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Summary

We are drowning in information and starving for knowledge.

—Rutherford D. Roger

Rapid developments in the field of mass spectrometry-based proteomics are now

enabling the identification and quantification of thousands of proteins under differ-

ent biological conditions. This facilitates the generation of sufficient data to study

numerous biological problems, such as the complex mechanisms underlying the in-

tricate dynamics of signal transduction or the biological conditions resulting in the

onset of severe diseases such as cancer. However, obtaining the data to the needed

depth is just the first step in the process of knowledge generation, and in a second

step suitable analytical tools and methods are required to complete it. This thesis

provides contributions to this second part – the development and application of so-

phisticated tools for knowledge mining of large-scale proteomics data. In particular,

computational methods for two major sub-fields in proteomics are described: post-

translational modifications and clinical studies.

Nowadays, thousands of phosphorylation sites are routinely being identified in mass

spectrometry-based proteomics experiments upon suitable cell stimulation and en-

richment. As in many other areas characterized by fast developing technology, the

functional annotation of the measured data is lagging far behind. Mapping phos-

phorylation sites to specific biological context, such as structural environment and

interaction with other post-translational modifications, has the potential to reveal

important insights into their functions. Chapter 2 of this thesis focuses on the

analysis of various properties of phospho-sites and elaborates on how these may

be intertwined with their functional roles. Special emphasis is placed on phospho-

tyrosines and the mechanisms underlying the accurate execution of their regulatory

actions. The ability of phospho-sites to form functional clusters and to cross-talk
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Summary

with other post-translational modifications is investigated. The observed tendencies

provide strong evidence of the ability of the cell to efficiently integrate signals from

distinct pathways in order to produce rapid and robust responses to various stimuli.

Furthermore, they exemplify possible mechanisms for enhancing the functional and

interaction spaces of phospho-proteins.

In chapter 3, the variation of phosphorylation during the cell cycle is studied with

respect to the structural environment of the phospho-sites. Two groups are distin-

guished: sites with dynamically varying levels that are associated with intrinsically

disordered regions and sites with more constant phosphorylation levels predomi-

nantly found in regular secondary structures. These results suggest that protein

structure may encode distinct functions of the phospho-acceptors.

Motivated by the need for better diagnostic markers and drug targets, the second

part of the thesis focuses on the development of a framework for analysis of on-

coproteomics data. Accounting for processes such as degradation, secretion and

localization, proteome profiling provides direct insights into the functional pheno-

type of cells during cancer progression. However, the large feature space (thousands

of proteins) combined with a low sample size (tens of patients) and the large genetic

variability characterizing the patients pose significant challenges for efficient data

analysis. The framework developed here addresses these difficulties by coupling so-

phisticated supervised learning methods with efficient feature selection techniques.

The generic implementation of the framework supports diverse classification meth-

ods, however, due to their suitability for data sets with high dimensional feature

space Support Vector Machines are employed in the analyses in this thesis. More-

over, the high prediction performance is enhanced through feature reduction meth-

ods such as ANOVA-based or SVM weights-based ranking. The rigorous design and

implementation of the analysis workflow ensures maximum generalizability of the

trained models and relevance of the identified discriminative features.

Furthermore, the developed framework is successfully applied to two oncoproteomics

data sets. In both sets, biologically relevant features are identified and high perfor-

mance predictors are built. The comparison of the selection methods reveals that,

based on their underlying principles, they can be used to address different biological

10
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and clinical questions and may be suitable to identify single biomarkers or protein

sets, characteristic of the underlying mechanisms of the disease. The results clearly

demonstrate that proteomics data combined with supervised learning techniques

holds tremendous promise for progress in the field of personalized medicine.
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Zusammenfassung

Rasante Fortschritte auf dem Gebiet der massenspektrometriebasierten Proteomik

ermöglichen heute die Identifikation und Quantifizierung von tausenden Proteinen

in unterschiedlichen biologischen Zuständen und somit die Generation einer um-

fassenden Datenbasis zur Untersuchung biologischer Fragestellungen. Dazu gehören

beispielsweise die komplexen Mechanismen, die der Dynamik von Signaltransduktion

unterliegen, oder die biologischen Zustände, die zur Entstehung schwerwiegender

Erkrankungen wie Krebs führen. Die Erfassung der Daten in der benötigten Tiefe ist

jedoch nur der erste Schritt im Prozess des wissenschaftlichen Erkenntnisgewinnes.

In einem zweiten Schritt werden zur Analyse und Bewertung der gewonnenen Daten

geeignete analytische Werkzeuge und Methoden benötigt. Diese Dissertation leistet

einen Beitrag zu der erforderlichen Entwicklung und Anwendung fortgeschrittener

Werkzeuge zum Erkenntnisgewinn aus umfangreichen Proteomikdatensätzen. Im

Speziellen werden computergestützte Methoden für zwei wichtige Teilbereiche in

der Proteomik beschrieben: posttranslationale Modifizierungen und klinische Stu-

dien.

Tausende von Phosphorylierungsstellen werden derzeit routinemäßig nach geeigneter

Zellstimulation und Anreicherung mittels massenspektrometrie-basierter Proteomik-

Analyse identifiziert. Wie in vielen Feldern, die von schnellen technologischen En-

twicklungen geprägt sind, bleibt die funktionelle Einordnung und Erklärung der

gemessenen Daten oft weit zurück. Die Zuordnung von Phosphorylierungsstellen

zu ihrem biologischen Kontext, wie dem strukturellen Umfeld und der Interaktion

mit weiteren posttranslationalen Modifikationen kann potenziell wichtige Erkennt-

nisse über deren Funktion liefern. Kapitel 2 dieser Dissertation konzentriert sich

auf die Analyse verschiedener Eigenschaften von Phosphorylierungsstellen und führt

aus, wie diese mit deren Funktion zusammenhängen können. Ein besonderer Fokus

liegt auf Phosphotyrosinen und den Mechanismen, die die präzise Umsetzung ihrer

12



Zusammenfassung

regulatorischen Wirkung ermöglichen. Untersucht wird die Fähigkeit von Phospho-

rylierungsstellen, funktionelle Cluster zu bilden und mit anderen posttranslationalen

Modifikationen Wechselwirkungen einzugehen. Die beobachteten Tendenzen weisen

auf die Fähigkeit der Zelle hin, Signale von unterschiedlichen Signalwegen effektiv zu

integrieren, um schnelle und robuste Antworten auf verschiedene Stimuli zu erzeu-

gen. Zudem werden dabei beispielhaft mögliche Mechanismen zur Erweiterung der

Funktions- und Interaktionsräume von Phosphoproteinen gezeigt.

Kapitel 3 beinhaltet die Untersuchung der Variabilität von Phosphorylierungen im

Verlauf des Zellzyklus mit besonderem Fokus auf die strukturelle Umgebung der

Phosphorylierungsstellen. Dabei konnten zwei Gruppen von Phosphorylierungsstellen

unterschieden werden: Stellen mit dynamisch veränderlichen Phosphorylierungsleveln,

die mit eigentlich ungeordneten Regionen assoziiert sind, und Stellen mit eher kon-

stanten Phosphorylierungsleveln, die vorwiegend in regelmäßigen Sekundärstrukturen

gefunden werden. Dieses Ergebnis weist auf die Kodierung der Funktion von phospho-

Akzeptoren durch die Proteinstruktur hin.

Angeregt durch den Bedarf an besseren diagnostischen Markern und Drug Targets

ist der zweite Teil dieser Dissertations auf die Entwicklung eines Klassifizierungsrah-

mens zur Analyse von Onkoproteomikdaten ausgerichtet. Unter Einbeziehung von

Prozessen wie Abbau, Sekretion und Lokalisierung kann proteomisches Profiling di-

rekte Einblicke in den funktionellen Phänotyp von Zellen während der Krebspro-

gression liefern. Allerdings stellt die Größe des Merkmalsraumes (Tausende von

Proteinen) in Kombination mit einer geringen Anzahl von Proben und genetischer

Variabilität der Patienten eine groe Herausforderung für effiziente Datenanalyse dar.

Der hier entwickelte Klassifizierungsrahmen widmet sich diesem Problem durch die

Verbindung von anspruchsvollen überwachten Methoden des maschinellen Lernens

mit effizienter Auswahl von Merkmalen.

Die generische Implementierung des Rahmens unterstützt diverse Klassifikations-

methoden, jedoch wurden im Rahmen dieser Dissertation Support Vector Machines

verwendet aufgrund ihrer Eignung für Datensätze mit hochdimensionalen Merk-

malsräumen. Zudem wurde die hohe Vorhersageleistung durch Merkmalsreduk-

tionsverfahren wie ANOVA- oder SVM-wichtungsbasierten Rankings weiter gesteigert.

Stringentes Design und Implementierung von Analyseabläufen stellt eine maximale

13
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Verallgemeinbarkeit der erzeugten Modelle und Relevanz der identifizierten Merk-

malen sicher.

Darüberhinaus wird im Rahmen der vorliegenden Dissertation die erfolgreiche An-

wendung des Klassifizierungsrahmens auf zwei Onkoproteomikdatensätze gezeigt.

In beiden Datensätzen wurden biologische relevante Eigenschaften identifiziert und

leistungsstarke Prädiktoren erstellt. Ein Vergleich der Auswahlmethoden und ihrer

zugrundeliegenden Prinzipien zeigt, dass diese bei der Untersuchung weiterer bi-

ologischer und klinischer Fragestellungen zur Anwendung kommen können. Zu-

dem können sie eingesetzt werden, um einzelne Biomarker oder Proteingruppen

zu identifizieren, die charakteristisch für den zugrundeliegenden Mechanismus einer

Krankheit sind. Die vorliegenden Ergebnisse belegen deutlich, dass die Kombination

von Proteomikdaten mit anspruchsvollen überwachten Methoden des maschinellen

Lernens ein großes Potential für Fortschritte im Feld der personalisierten Medizin

aufweist.
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Chapter 1
Introduction

Proteins are actively involved in almost all biological activities and together with

the other building blocks in the cell regulate the execution of various functions and

shape the response to external and internal stimuli. The scientific area concerned

with obtaining a comprehensive view of the entire complement of proteins expressed

by an organism or a cell population in a specific state is proteomics [1, 2, 3]. In

particular, mass spectrometry-based proteomics enables the extensive characteriza-

tion and understanding of the intricate dynamics of the cellular processes. It holds

an arsenal of technologies and methods to study both the absolute amount and

the relative changes in the amount of proteins, including information on compart-

mentalization, localization and protein-protein interactions [4]. Post-translational

modifications add an extra level of complexity to the proteome and present another

subject of study of proteomics. Thus, proteomics has emerged as an indispensable

part of systems biology allowing for detailed and accurate portrayals of the differ-

ences of functionally-relevant sub-proteomes expressed under different conditions [5].

Bioinformatics plays a vital role in the development of the field of mass spectrometry-

based proteomics. On one hand, advanced algorithms enable and enhance the

peptide identification and protein quantification from raw mass spectrometry files

[6, 7, 8]. On the other hand, the interpretation of the large-scale quantitative data

requires the development and use of sophisticated methods for analysis, as well the

combination of various information resources. For example, putting proteomics data

in the context of other annotations such as cellular localization, biological processes,

domains and structural features is necessary to assign functional relevance. Often

15
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the comparison of proteome profiles of complex samples is desired in order to extract

valuable information on differentially expressed features. This task can be compli-

cated by the existence of additional signals related to other sources of variability,

noise and high feature dimensionality. The nature of mass spectrometry-based ac-

quisition of proteomics data and the challenges related to the downstream analysis

of such data are discussed in detail in the remaining part of the Introduction section.

1.1 Mass spectrometry-based proteomics

Recent advances in the field of mass spectrometry-based proteomics have enabled the

identification and quantification of tens of thousands of proteins in highly complex

biological samples under different conditions [9, 3, 10, 11, 12, 13]. The proteins in

a sample are identified based on their accurate and often unique molecular weight

most commonly using a shotgun proteomics approach, in which high performance

liquid chromatography is directly coupled to the mass spectrometer.

1.1.1 Cell lysis and enzymatic digestion

The two currently-employed approaches of protein characterization are top-down

and bottom-up proteomics. In top-down proteomics the intact proteins or protein

complexes are directly subjected to analysis in the mass spectrometer, whereas in

bottom-up approaches the molecules are first digested into peptides. The first step

in a typical bottom-up workflow is cell lysis during which the proteins are extracted

from their cellular environment. Due to the complexity of the protein mixtures,

mass spectrometry is usually combined with various separation techniques at dif-

ferent stages of the analysis. An optional next step is the separation of the protein

mixture, for example, by means of liquid chromatography or gel electrophoresis. Al-

ternatively, proteins can be separated according to their size by SDS-PAGE, upon

which the gel is cut into slices. The extracted proteins are then digested to peptides.

A commonly employed enzyme is trypsin, which cuts the amino acid sequence after

an arginine and lysine residue generating peptides with optimal length and charge

for mass spectrometry. In order to decrease the analyte complexity different frac-

tionation techniques are applied prior to loading the samples in a mass spectrometer.

In High Performance Liquid Chromatography (HPLC) the analytes of interest are

16



1.1. Mass spectrometry-based proteomics

Figure 1.1: Shotgun proteomics workflow. An outline of the shotgun proteomics

workflow including: A) sample preparation, B) liquid chromatography separation and ion-

ization and C) mass spectrometry analysis. Adapted with permission. from: Ḧandbook of

systems biology: Concepts and Insights.̈, 2013, [14]. Copyright 2013 by the Academic

Press.

loaded on a column packed with specific chromatographic material (forming the

stationary phase). In a standard reverse-phase HPLC format, the peptides are sep-

arated during their migration based on selective hydrophobic interaction affinities.

This is accomplished by a gradient of organic solvent that elutes the peptides in

order of hydrophobicity.

The main principle of peptide mass spectrometry is the dependence of the trajec-

17
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tory of charged particles in electromagnetic fields on their mass-to-charge ratio. Thus

prior to entering a mass spectrometer the analyte is transferred to the gaseous state

and ionized. A wide-spread technique for converting peptides to gas phase ions is

the Nobel prize winning development of the electrospray ionization technique [15]. It

allows direct coupling to the effluent of the column. As the solvent evaporates from

an electrosprayed droplet that has a net electric charge, the density of the charges

on the droplet surface increases. After a critical mass is reached, the droplet splits

into numerous offspring droplets, from which peptide ions are generated. These are

injected into the mass spectrometer, where every few seconds the entire mass range

is scanned. Several precursors are then isolated for fragmentation and mass spectra

of their fragments are acquired. The resulting MS/MS spectra are then used in a

database search to retrieve the corresponding amino acid sequences.

1.1.2 Quantification

Gaining in depth understanding of the molecular function and regulation of proteins

requires quantitative information [16, 17]. Quantitative proteomics comes in two

main forms: absolute and relative [18]. In absolute quantification the amount of

the substance of interest is determined; for example, the exact quantity of a given

biomarker in a sample in ng/mL or the copy number of a protein per cell. The abso-

lute amount of a protein can be quantified using spike-in standards or isotopically-

labeled proteins of known quantity. In relative quantification the amount of a sub-

stance is determined with respect to a measurement of another instance of the same

substance, for instance, fold change in protein abundance as a result of a system

perturbation.

The methods for quantification can be grouped into stable isotope labeling and

label-free methods. Label-free methods employ information such as the number of

peptide-identifying spectra or the summed intensities of peptide ions for a given

protein. The understanding and application of the dependence of the protein abun-

dance on the number of acquired spectra [19] has gradually evolved to utilizing a

measure that fairly accurately characterizes low abundant proteins - the absolute

protein expression index [20]. In other major label-free approaches the averaged

normalized ion intensities of each or of the top three identified ion peptide are used

for quantification [21, 22, 23].
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Based on the way in which the proteins or peptides are isotopically labeled, several

groups of labeling methods can be distinguished: (i) incorporation during the en-

zyme digestion [24, 25, 26], (ii) addition of an isotopically-labeled tag [27, 28, 29],

(iii) introduction of a labeled spike-in standard of known quantity [30, 31] and (iv)

metabolic labeling [32, 33, 34].

Due to its high reproducibility and high accuracy differential stable isotope label-

ing has become a widely-used method for quantification. It employs stable non-

radioactive isotopes of amino acids and can be used both for absolute (used as a

spike-in standard) and relative quantification. The method relies on the fact that

the physicochemical properties of the isotopes and consequently their ionization effi-

ciencies remain unchanged. The isotopic forms of an MS/MS identified peptide are

characterized by identical elution profiles and a specific mass shift corresponding

exactly to the mass differences in the labels. Upon detection of an isotopic pair

the ratio between the intensity peaks of the heavy and the light version of the pep-

tide is calculated. A major advantage of stable isotope labeling is the ability to

measure multiple samples simultaneously, introducing as little experimental noise

as possible by treating the samples always together upon labeling. For example,

stable isotope labeling by amino acids in cell culture (SILAC) [32, 35, 36] is a label-

ing technique that has been successfully used in a wide range of proteomics studies

[5]. Amino acids with heavy labels, such as arginine bearing six or lysine bearing

eight 13C atoms (resulting in 6Da or 8Da mass shifts respectively), are introduced

in the growth media of the cells. The labeled precursors become fully incorporated

into all cellular proteins during cell growth and protein turnover. Cell populations

grown in different media can be used in comparative studies to unravel changes in

the biologically-relevant total or sub-proteomes.

1.1.3 Temporal dimension

SILAC can be also used to gain deeper insights into the biological systems by pro-

viding a non-static view of various cellular processes. A time course experiment can

be set up by differentially labeling several populations of cells and keeping one of

them as a control while perturbing the others. Andersen et al. described the changes

in the nucleolar proteome over time and in response to three different metabolic in-

hibitors [37]. In their setup three instances of the same cell line were metabolically
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labeled with three versions of arginine and lysine (light, medium and heavy), treated

with an inhibitor of transcription and harvested at three time points. In order to

gain a more accurate temporal profile the experiment was repeated several times

with a common zero time point resulting in up to 9 different time points in total.

Information about the temporal changes can be extremely useful in studying the

cellular responses to various stimuli during signal transduction, examples of which

are discussed later in this thesis.

1.1.4 Large-scale proteomics applications

Proteomics has been successfully employed in a wide range of areas, such as de-

termining the protein composition of complex mixtures, studying the changes in

phosphorylation upon a stimulus, determining protein-protein interactions and clin-

ical studies [4]. Importantly, the advances in shotgun proteomics are now beginning

to enable the characterization of complete proteomes [38].

Mass spectrometry-based proteomics is ideally suited for studying the protein com-

ponents of subcellular structures [39, 40]. The main challenges related to the frac-

tionation of the cell and the isolation of the organelle of interest are overcome through

enrichment strategies [41] or with the help of protein correlation profiling [42]. The

latter approach discriminates between different compartments on the basis of char-

acteristic abundance patterns by proteins from the same compartment exhibited

over density centrifugation gradients [43, 44].

Mass spectrometry-based proteomics combined with affinity purification techniques

has emerged as a powerful technique for the investigation of molecular interactions

[45, 46, 47]. SILAC labeling has been used to quantitatively characterize protein-

protein [48, 49], protein-nucleic acids [50] and protein-peptide complexes [51, 52].

Application of mass spectrometry-based proteomics in detection and quantification

of post-translational modifications, as well as in clinical studies are discusses in detail

in the following sections of this thesis.
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1.2. Phosphoproteomics

1.2 Phosphoproteomics

One of the major advantages of large-scale proteomics studies is the ability to in-

vestigate the dynamics of the cellular process at the level of post translational mod-

ifications (PTMs). Almost any PTM can be detected by mass spectrometry-based

proteomics, including phosphorylation, glycosylation, ubiquitination and acetylation

[53]. To date phosphorylation remains the most studied one with thousands of in vivo

phosphorylation sites identified, quantified and stored in public databases. It plays

an important role in the regulation of a myriad of cellular process, such as cell-cell

communication, cell division, apoptosis, and signal transduction [54]. Tasks related

to the proteomic analysis of post translational modifications include identification

of the modified peptide/protein, localization of the modification site, quantification,

assignment of a functional role , as well as possible cooperative interactions among

multiple modification sites.

1.2.1 Identification of phopho-sites

Large-scale identification of phospho-sites in mass spectrometry-based experiments

is a challenging task as they are often of low abundance, transient and reversible.

The problem of phospho-peptides escaping detection and identification by MS analy-

sis can be alleviated by employing enrichment strategies prior to mass spectrometry

processing [55]. A plethora of such methods have been developed, among which

affinity-and antibody-based ones are most widely used. Immobilized Metal Affin-

ity Chromatography (IMAC) makes use of metal beads packed in a column, which

preferentially bind phosphopeptides [56, 57]. The method has been shown to be

very efficient with various types of metal ions. Nonetheless, care has to be taken to

avoid binding of strongly negatively-charged peptides. A method that is generally

characterized by higher affinity is titanium dioxide (TiO2) enrichment [58]. In acid-

ified conditions a column packed with TiO2 can retain organic phosphates, whereas

alkaline conditions cause elution. Strong Cation Exchange Chromatography is an-

other powerful technique for phosphopeptide enrichment [59]. As the phosphate

group reduces the solution charge of a phosphorylated peptide, its modified and

unmodified forms are characterized by distinct solution charge states. These differ-

ences allow easy separation by SCX chromatography using a linear salt gradient.

Together with hydrophilic interaction liquid chromatography, SCX is used rather as
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Figure 1.2: Mass spectrometry-based analysis of PTMs An outline of the main

sample preparation and computational tasks including: A) enrichment techniques, B)

PTM identification and quantification and C) PTM quantification in the form of absolute

stoichiometry. Adapted with permission from: Ḧandbook of systems biology: Concepts and

Insights.̈, 2013, [14]. Copyright 2013 by the Academic Press.

a prefractionation technique and is followed by additional enrichment steps. Fur-

thermore, immunoprecipitation with specific antibodies and phosphatase inhibition

are successfully applied to the enrichment of phospho-tyrosines [60].

Due to the complexity associated with the characterization of phosphopeptides, spe-

cific MS acquisition strategies are required in their detection and identification. The

main approaches rely on the detection of either reporter ions or neutral losses. Dur-
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ing MS analysis characteristic reporter ions (HPO3- anion with specific mass of 79

m/z) are produced by the phospho-peptides. To detect these ions the mass spec-

trometer must be set to negative ion mode. However, as MS/MS spectra in negative

ion mode are of low quality, a switch to positive ion mode is required for sequencing.

This is not the case for the precursor ion produced by phosphotyrosine (immonium

ion, 216.043 m/z) as it can be detected directly in the positive mode. Neutral loss

scans can be carried out in positive ion tandem MS and are directly compatible with

online HPLC. In Collision Induced/Activated Dissociation (CID or CAD) phospho-

serine and phosphothreonine residues generate neutral losses of 98 Da (H3PO4) or

80 Da (HPO3). Unfortunately, phosphotyrosines appear to be more stable, making

the neutral loss method less applicable for their identification.

1.2.2 Localization of phospho-sites

Assignment of the phosphorylation to a particular position in the peptide is another

challenge. In the case of precursor ion detection, difficulties arise when such a spe-

cific fragment ion cannot be efficiently generated or detected by the mass spectrom-

eter. The localization can further be impaired by the presence of multiple potential

phosphorylation sites. To address the problem of lack of fragmentation spectra in-

formation several computational methods have developed a probability-based score

such as the post translational modification (PTM) score [61] and Ascore [62]. The

PTM score is derived from information about the phospho-peptides fragments and

about the presence and intensity order of diagnostic fragment ions in the MS/MS

spectra. The score is computed exhaustively for each possible phosphorylation posi-

tion or combinations of positions in the peptide and has been further optimized for

use with the Andromeda search engine (see below) [63].

1.2.3 Quantification of phosphorylation

Most cellular processes are controlled by gradual changes at the molecular level,

therefore to study in depth the functional effects of phosphorylation, quantitative

information is needed. Similarly to quantification of unmodified peptides, label-

based (chemical - iTRAQ and metabolic labeling - SILAC) and label-free methods

can quantify abundance changes of phosphorylated peptides/proteins in response to

various stimuli. To accurately assess the changes in phosphorylation the changes
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in protein abundance should be taken into account. Furthermore, for many appli-

cations absolute stoichiometry is desired (the proportion of a given protein species

phosphorylated at a given site at a given time point). One way to obtain this infor-

mation is to combine data on the ionization efficiencies of a modified peptide and its

unmodified version [64]. Olsen et al. developed a method for quantification of the

stoichiometry phosphorylation that relies on three measures: the ratios of the two

states (e.g. heavy and light labeled) of the modified and of the unmodified versions

of a peptide and the protein ratio [65]. In their study occupancy was computed for

more than 20,000 sites, showing two peaks of phosphorylation: at mitosis (possibly

related to inhibition of various cellular processes) and at S-phase (regulating stress

and DNA damage response). An alternative method was described by Wu et al. [66],

in which the relative intensities of two differentially-labeled samples – one subjected

to phosphatase inhibition and the second without inhibition – were used to obtain

stoichiometries.

1.2.4 Temporal dimension of phosphorylation

Another important feature of mass spectrometry-based phospho-proteomics is the

ability to add a temporal dimension to the data. Phosphorylation is the major

mechanism of signal transduction and facilitates the rapid and robust response of the

cell to a stimulus. Therefore having the means to study changes of phosphorylation

at different time points can drastically improve our understanding of the cellular

processes. Blagoev et al. and Olsen et al. have successfully studied changes in the

phosphoproteome upon stimulation with the epidermal growth factor (EGF) in a

time-resolved manner [67, 61, 65]. In both studies SILAC differentially-labeled cell

populations were employed, using one of the states as a reference. In study of Olsen

et al. three different versions of arginine and lysine residues were used, resulting in

quantitative data for six time points over the cell division cycle.

1.2.5 Phosphorylation and protein structure

More than 500 kinases, encompassing about 2% of the genome of multiple organisms,

are known to catalyze phosphorylation reactions [68]. Kinases are characterized by

high sequence and structure conservation and can be divided into serine/threonine,

tyrosine and dual-specificity (i.e. capable of modifying all 3 residues) kinases [69, 70].
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The strong conservation of the catalytic region of different kinases together with the

large number of serine, threonine and tyrosine residues in a typical eukaryotic cell

necessitate specific mechanisms to ensure accurate substrate recognition [71]. Vari-

ous in vivo experiments have demonstrated the presence of short consensus motifs

on specific kinase substrates [72]. These are usually 3 to 11 residues long, found

in protein regions that lack defined tertiary structure and evolve much faster than

highly conserved domains [73]. Linear motifs are associated with various regulatory

functions such as serving as binding regions for multiple domains (e.g. WW, SH2,

SH3, PTB, 14-3-3), signal transduction and protein trafficking. Three major classes

of kinases can be distinguished based on the amino acid content of their consensus

motifs: basophilic, acidophilic and proline-directed. Cyclic AMP-dependent pro-

tein kinase A (PKA) is a representative of the basophilic class as positively-charged

residues at positions preceding the serine/threonine residue determine the substrate

specificity [74]. Proline-directed kinases require a proline residue at position +1 rel-

ative to the phosphorylation site. In the case of CDK2, for example, the substrate

binding site is characterized by a specific conformation that explicitly favors a pro-

line residue in order to satisfy a hydrogen bond from the nitrogen atom in the main

chain of the substrate [75].

Although consensus motifs have been widely accepted as one of the major mech-

anisms underlying kinase specificity, the rules for recognition are not completely

understood. For example, the presence of a certain recognition motif does not al-

ways lead to phosphorylation by the expected kinase. Furthermore, some kinases

recognize linear motifs different from their consensus. Additionally, the recognition

motifs of some kinase families show substantial overlap, suggesting the existence of

other mechanisms facilitating substrate specificity [71]. In general, the linear consen-

sus motifs describe the primary structure around phosphorylation sites and thus do

not adequately account for all factors that may contribute to the kinase specificity.

Secondary and tertiary protein structures may reveal additional recognition mecha-

nisms, such as distant residues that lie close in space. Additional linear motifs that

can be situated at a larger distance from the phosphorylation site may further in-

crease the substrate concentration in the proximity of the kinase. Similarly, priming

phosphorylation may be required to provide efficient docking interactions. Further-

more, targeting subunits and scaffolds (molecules and proteins that bind kinases and
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contain domains that interact with kinase substrates) also contribute to the kinase

specificity and diversify the set of sites that a kinase can modify. For instance, cy-

clins are targeting subunits that not only activate CDK kinases, but also contain

docking domains, enabling recruiting of substrates to the kinase [75].

Another important factor influencing kinase specificity is subcellular localization.

The presence of various kinases in different subcellular compartments allows better

control over the concentration of the correct substrates for a given kinase and reduc-

tion of the overall number of substrates to which a kinase has access. Ubersax and

Ferrell demonstrated the influence of the depth and the hydrophobiciry of the cat-

alytic cleft, as well as the sequence complementarity between kinases and substrates

on the specificity and the binding energy [71]. It may, however, turn out that it is

the combination of several such mechanisms that regulates the proper substrate tar-

geting. Alexander et al. showed how localization and sequence motifs act together

to achieve kinase specificity in mitosis [76]. In particular, kinases with overlapping

localization exhibited different motif preferences, whereas kinases with similar motif

preferences were characterized by different localizations.

Studying the structural properties of phosphorylation sites helps to increase our

knowledge of the process of phosphorylation and to gain further understanding of

kinase specificity mechanisms. Multiple resources for storing structural information

about phosphorylation sites are now available. Phospho3D and Phospho3D 2.0 are

online applications that store and display structural information such as the local

structure of ten residues-long phospho-regions and spatial regions encompassing all

residues within 12Ådistance from the phospho-site [77, 78]. Furthermore, given

a protein structure as input, phosphorylation sites in that protein are predicted

by comparison to the structural motifs present in the database. Another effort to

systematize structural data on phosphorylation is the mtcPTM database [79]. A

separate web page for each protein combines information on different sites from

multiple experiments, allowing for direct comparison between the phosphorylation

profiles under different conditions.

Analysis of the structural properties of phospho-sites in available PDB structures

and homology models revealed that they appear with higher frequencies in regions

between or at the termini of structured domains, are in most cases solvent acces-

26



1.2. Phosphoproteomics

sible and less conserved than expected. In their study Durek et al. confirmed the

preference of modification sites to appear predominantly in flexible regions that lack

defined structure and investigated the amino acid propensity distributions in both

the sequential and spatial surrounding of phospho-sites [80]. A kinase-specific anal-

ysis revealed enrichment of residues explicitly in the 3D surroundings, illustrating

possible presence of specificity determinants encoded at the structural level.

Overall all studies agree on several structural properties as characteristic for phos-

phorylation sites: phosphorylation occurs predominantly at regions that lack de-

fined structure and at irregular secondary structures [81, 80, 82, 83]. Specifically,

Iakoucheva et al. found a strong similarity in the sequence complexity, amino acid

composition and flexibility properties between phospho-sites environments and in-

trinsically disordered sequences. Aromatic residues were depleted, whereas the net-

charged in the surrounding regions was high. In agreement with the expectation

that phospho-acceptor sites need to be accessible for the modifying enzyme, the

majority of them were characterized by high solvent exposure. Modification sites

that appeared to be buried in the protein may be explained by inaccurate struc-

ture models or they could be associated with conformational changes that lead to

residue exposure. Furthermore, these sites were found in regions with high flexibil-

ity, characterized by large B-factors (a measure of the flexibility of an amino acid)

and missing electron density.

Using protein structures that contained the phosphorylated residues with the phos-

phate group attached, a distinction of the distribution of charged residues surround-

ing phospho-sites and non-modified residues has been reported [84]. The proximal

charged amino acids stabilizes the phosphate group by favorable electrostatic inter-

actions. These interactions have implications in phospho-peptide binding in signal

transduction [85], in complexes formation [86] and in the regulation of activation

loops [87].

Linear motifs and intrinsically disordered regions characterize the majority of phos-

phorylation sites, suggesting only a limited relevance of structurally-defined kinase

binding regions. However, Plewczynski et al. reported that about 60% of all phos-

phorylation sites modified by protein kinases A and C (PKA, PKC) reside within

alpha helices [88]. Furthermore, buried sites and sites present in well characterized
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structures are not uncommon, implying that structural surface features and motifs

may play a role in kinase recognition and specificity [89].

Structural properties have successfully been used in the development of computa-

tional methods for prediction of phosphorylation sites and such prediction tools have

shown an increase in performance over those that rely only on sequential informa-

tion [90, 91, 92, 93]. NetPhos utilizes contact maps computed from the sequence

surrounding phosphorylated and non-phosphorylated residues in the training of arti-

ficial neural networks [83]. DISPHOS is a predictor incorporating disorder informa-

tion into a combination of logistic regression models in order to discriminate between

phospho-and reference sites [81]. Phos3D, PHOSIDA and the method developed by

Plewczynski et al. make use of structural properties of phosphorylation sites such as

secondary structure and disorder features, conservation, hydrophobicity and charge

distribution and local structure segments in the training of Support Vector Machines

(SVMs).

1.2.6 Functional annotation of phosphorylation sites

The advances in mass spectrometry-based proteomics have enabled the identifica-

tion of thousands of phosphorylation sites, which are now stored and made available

through various web-based databases [94, 95, 96, 97], for a comprehensive review see

Hjerrild et al. [98]. Phosphorylation is involved in the regulation of a large number

of cellular processes including cell growth, cell division, cell-cell communication, sig-

nal transduction, localization and apoptosis [99, 100, 101, 102]. However, unraveling

the function of most of the phosphorylation events remains a challenging task.

Furthermore, this modification plays an important role in the regulation of protein-

protein interactions [103]. Nishi et al. demonstrated a tendency of phosphorylation

towards transient complexes and estimated relatively small changes in the corre-

sponding binding energies. The additional phosphate group can lead both to acti-

vation or inhibition of an enzyme [104, 105]. At complex interfaces phosphorylation

sites can promote or disrupt interactions through electrostatic or steric effects with-

out major structural rearrangements.

Phosphorylation is involved in modification of the protein function by inducing con-

formational changes or by creating or eliminating binding sites [106]. The influence
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of phosphorylation and other post-translational modifications on protein-protein in-

teractions has been systematized in a domain-centric view. Seet et al. categorized

modification-dependent mechanisms for domain recognition and binding and pro-

vided examples of how these regulate various cellular processes [106]. The different

interaction categories include but are not limited to: (i) cooperative interactions

requiring the modification of several sites in order to achieve the desired function,

(ii) sequential interactions, in which initial phosphorylation of a particular site is re-

quired for a subsequent modification or conformational change and interaction, (iii)

antagonistic PTMs, encompassing modification sites that prevent the interactions

between adjacent sites and their binding partners.

The large number of identified phosphorylation sites with no functional annota-

tions and the limited understanding of kinase specificity have provoked a dispute

over the existence of non-functional sites [107]. Such idea finds support from evo-

lutionary perspective, as phosphorylation sites without functions would in most of

the cases cause no harm and thus would not have to be eliminated. Furthermore,

functionally-neutral phosphorylation events may influence the ability of signaling

networks to evolve [108]. It is estimated that only around 1% of the cellular ATP

would be used up for non-functional phosphorylation, thus making the hypothesis

of silent phosphorylation even more plausible. As phosphorylation often occurs on

multiple sites in a protein, functional redundancy among such sites is also possible.

In their study Wang et al. described a computational model of the role of multiple

nonessential sites in enhancing a switch-like regulation of proteins in response to a

stimulus [109]. The authors argued that a response that has both ultrasensitivity

and high threshold can be achieved only when the proportion of nonessential phos-

phorylated sites to the total number of modification sites is optimal.

Important indicators for the functionality of a phosphorylation site are its stoi-

chiometry and evolutionary conservation [110]. Levy et al hypothesized that highly

abundant proteins are more likely to encounter random kinase interactions, which

may thus lead to an on average larger number of phosphorylation sites on highly

abundant proteins. Such sites were characterized by evolutionary pressure that was

not higher than that of non-phosphorylated reference sites and were of low stoi-

chiometry [111]. Nonetheless, the argument that low abundance of phosphorylation

is indicative of an off-target phosphorylation and is therefore more likely to result
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in non-functional sites should be considered with caution. For example, in signaling

cascades only few copies of an activated protein, possibly in a specific cellular local-

ization, are sufficient to achieve the desired response.

There has been a long-standing debate on the conservation of phosphorylation sites,

accompanied by conclusions ranging from no or weak evolutionary pressure [112]

to statistically significant conservation [44, 113, 114]. Currently the most widely-

accepted opinion is that phosphorylation sites are characterized by an overall low

level of conservation. Although for some of the sites their low conservation may

reflect the functional difference between orthologous organisms, in others these non-

conserved sites may indeed lack a function. In any case, modification sites, which

have a characterized function, appeared to be more conserved on average than sites

without functional annotation [112, 115]. Recent studies suggested that secondary

structure, stoichiometry and protein abundance need to be taken into consideration

to accurately estimate the level of conservation [112, 116]. The structural context of

phosphorylation sites has to be considered as a control for background effects such

as quickly evolving intrinsically disordered regions.

1.3 Clinical proteomics

An important focus area in proteomics is the development of sample preparation

techniques and analysis methods applicable to clinical research. Investigating the

proteome profiles of clinical samples poses major challenges both with respect to the

experimental set-up and the analytical tools that are needed. Despite the difficulties

that oncoproteomics is still facing, numerous studies have already made first steps

in addressing vital clinical questions [117, 118, 119, 120, 121]. The range of cancer

types studied so far includes but is not limited to: breast [122], prostate [123],

ovarian [124], lung [125], colon [126], lymphoma [127], head and neck [66], and liver

[128] cancer.

1.3.1 Sample preparation techniques

Clinical proteomics can be applied to a wide range of samples including body fluids

– most importantly the plasma part of the blood – and tissues and each is associated

with specific challenges. For example, the large dynamic range of the body fluid pro-
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teomes has often necessitated targeted techniques such as MRM ([129]) or antibody

enrichment ([130]). Tissue samples from patients offer a more feasible system for un-

biased, in-depth proteomic analysis [131, 132, 133] and furthermore greatly benefit

from advances in sample preparation such as the Filter Aided Sample Preparation

(FASP) protocol [134].

1.3.2 Quantification with super-SILAC

Quantification of the tissue proteome can be achieved by using SILAC-labeled cell

lines as an internal standard, thus avoiding the need for labeling the tissue itself. As

patient samples are very heterogeneous, the proteome of a single cell line often does

not account for the complete variability and may lead to inaccurate quantification.

A new technique – super-SILAC – that circumvents this limitation was successfully

used in clinical proteomics studies [135]. It uses a mix of isotopically-labeled cell

lines that more adequately represents different tumor stages or subtypes, thereby

allowing accurate quantification. In their paper Geiger et al. demonstrated the

application of the technique to achieve deep proteome coverage of tumor tissues and

accurate quantification ratios between replicates.

1.3.3 Analysis of clinical proteomics data

The application of advanced analysis techniques to oncoproteomics data is becom-

ing increasingly popular [136, 137]. Many clinical proteomics studies directly utilize

MS features in their multivariate analysis [138]. For example, Han et al. developed

a feature selection method based on multi-resolution independent component anal-

ysis and combined this with powerful machine learning techniques such as linear

discriminant analysis and support vector machines [139]. The authors argued that

taking feature frequencies into consideration increases the reliability of the results.

Adam et al. used decision trees in the classification of normal, benign hyperplasia

prostate and prostate cancer samples [140]. They reported 96% accuracy with 9

selected protein-mass patterns, suggesting that multiple biomarkers are required to

overcome the problem of tumor heterogeneity. In another study, artificial neural

networks were applied to distinguish between two grades of astroglial tumor [141].

The authors identified two ions whose relative intensity patterns strongly discrimi-

nated between the grades. Feature selection based on principal component analysis
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(PCA) combined with support vector machines were employed in a protein profil-

ing study of the differences between Parkinson’s and multiple system atrophy [142].

Marchiori et al. demonstrated the importance of feature selection techniques for

handling noisy data, improving the classification accuracy and building biologically

relevant models [143]. Furthermore, their article provided a discussion on a list of

clinical proteomics studies making use of different machine learning techniques in

combination with various feature reduction methods.

As it has only recently become possible to quantitatively characterize the protein

content of patient tissues to a substantial depth, the number of clinical proteome

profiling studies is still limited. Generally, due to their smaller variability cell lines

provide an easier system to work with than patient samples and enable accurate

segregation of different cancer subtypes. In a study of the progression of estrogen

receptor-negative breast cancer tumors Geiger et al. correctly clustered the different

cell lines according to the tumor stage from which they were derived based on their

proteome profiles [122]. Similarly, the accurate quantification of more than 7,500

proteins allowed perfect segregation of the activated B-cell-like from the germinal-

center B-cell-like lymphoma subtypes using PCA [127]. In a label-free approach Wis-

niewski et al. identified and quantified more than 7,500 proteins between healthy,

primary carcinoma and nodal metastasis tissues [144]. Hierarchical clustering of the

samples based on the protein expression patterns revealed notable differences in the

proteome profiles between healthy and tumor tissues, but was unable to draw a clear

distinction between primary tumors and metastatic samples.

Overall, the current results of multivariate analyses of clinical proteomics data sug-

gest that to efficiently account for the heterogeneity of patient samples and the

complexity of various diseases, such as cancer, a set of biomarkers (a signature)

rather than single markers must be investigated. Surprisingly, independent studies

of the same biological system often show small overlap of the putative biomarkers.

Indeed, most of the identified biomarkers are never validated and are of little or

no clinical use [145, 146, 147, 148]. The reasons explaining these phenomena are

multiplex. On one hand, the differences in the sample preparation, instrument han-

dling and performance strongly influence the data. On the other hand, often the

lack of understanding of the nature of the data or improper use of statistical tests

results in biologically-irrelevant features being selected and in an overestimation of
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the prediction accuracy. Chapter 4 of this thesis focuses on the problem of accurate

and efficient ways of feature selection and correct estimation of the generalizability

of a model.

1.4 Large scale proteomics data analysis

1.4.1 Processing of raw mass spectrometry data

With the increasing ability to analyse complex biological samples and to gener-

ate large-scale datasets with the help of mass spectrometry-based proteomics, the

need for adequate computational tools to process these data has grown dramati-

cally. Various tools and frameworks have been developed to address tasks of peptide

and consequently protein identification and quantification from the raw MS data

[149, 150, 6, 151, 152, 153, 154, 155]. The computational proteomics tasks include

but are not limited to: spectrum identification (extraction of peaks from raw data),

matching MS/MS spectra against a sequence database and accurate protein quan-

tification . The MaxQuant suite of algorithms is a state-of-the art tool, designed to

analyse high-resolution quantitative mass spectrometry data [6]. Our general com-

putational workflow is depicted in Figure 1.3. In a feature detection step MaxQuant

first assembles the two dimensional signals formed in the mass-intensity plane over

the retention time into three dimensional peak hills. The list of these features is

then reduced by identification of isotope patterns using graph theory. High mass

accuracy is achieved by weighted averaging and through mass recalibration by sub-

tracting the determined systematic mass error (a function of the m/z value and the

retention time [8]) from the measured mass of each MS isotope pattern. In the

peptide identification step peptide fragmentation spectra are matched against a se-

quence database with the Andromeda search engine [63]. The scoring function used

in the matching employs a binomial distribution probability formula. The exper-

imentally determined tandem spectra are tested against theoretical fragment ions

from database peptides, including reverse sequences and contaminants [156, 157].

MaxQuant also provides quantification of experiments using both label-based and

label-free techniques. In SILAC-based experiments protein ratios are computed as

the median of all SILAC pairs ratios of peptides associated with this protein. Detec-

tion of SILAC pairs is based on high correlation of the intensity of the two isotope
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Figure 1.3: Overview of the independent modules of the MaxQuant suite.

patterns and agreement with the expected mass shift resulting from the mass differ-

ence between the heavy and light residue isotopes. Label-free quantification com-

bines signal information of the same peptide in different experiments. The isotope

patterns are matched across runs using peptide identifications, high mass accuracy

and nonlinearly remapped retention times. The preprocessing of the raw files results

in qualitative and quantitative information about the proteins in the given samples

that require further downstream functional analysis. Large scale discovery studies

are intended to identify as many proteins as possible, whereas comparative studies

are often employed to target a specific biological question.

1.4.2 Downstream analysis of proteomics data

The ability to study biological systems under different conditions has been consid-

ered as one of the major advances in the field of mass spectrometry-based proteomics
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1.4. Large scale proteomics data analysis

[5]. The main goal of proteome profiling studies is finding proteomic patterns that

discriminate between different biological states. The comparison of large-scale pro-

teomics datasets harbors many analytical challenges, such as experimental noise,

systematic variation between the different measurements, and large feature space.

Different statistical procedures have been developed and are used routinely in the

pre-processing and functional analysis of quantitative proteomics data.

The commonly used methods can be combined in several large groups: (i) differen-

tial analysis, such as t-test-based statistics, analysis of variance, (ii) unsupervised

learning methods, such as hierarchical clustering, k-means clustering, and (iii) super-

vised learning methods: principal component analysis, linear discriminant analysis,

k-nearest neighbors, support vector machines. Briefly, differential analysis employs

statistical tests comparing the means of the different groups and aims at the iden-

tification of features that show significant difference between these groups. Un-

supervised learning is used to find patterns in the data, enabling the distinction

of different groups. In contrast, supervised learning makes use of the information

about the known group identity of the samples and discovers rules to be used in the

classification of new unlabeled instances.

1.4.3 Unsupervised learning techniques

Means-based methods are widely applied in differential analyses. Numerous omics

studies have successfully employed t-test and ANOVA methods to identify proteins

that significantly differ between groups. The t-statistics overcome the drawback

of threshold-based methods by taking into account the possibly different variances

between the features. One of the limitations of such tests is related to the require-

ment for normality of the data (i.e. the compared groups have to follow normal

distribution in order for the test to be applicable). Additionally, t-test-based statis-

tics evaluate the importance of each feature separately and thus often fail to detect

groups of features that have a high relevance to the biological question of interest.

In cluster analysis, samples (and features) are grouped together in classes based on

their similarity (e.g. protein expression levels). Clustering techniques are used to

unravel general patterns in the data, which may serve for hypothesis generation.

In hierarchical clustering, clusters can be combined or split (i.e. can be agglomer-
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ative or divisive) using a metric of distance, such as Euclidean distance, between

the feature vectors of the samples. Alternatively, the cluster definition can be based

on the correlation between the expression profiles of the samples. For instance, a

member of the centroid-based clustering methods, the k-means approach redefines

the clusters through an iterative recalculation of the ’k’ centroids.

Commonly used in microarray analysis [158], due to their relative algorithmic sim-

plicity and suitability for visualization these techniques have also become a standard

tool in the profiling of proteomics data [159]. Unfortunately their success decreases

with increasing data complexity. For examples, studying patient samples appears to

be a much more challenging task than profiling of cell lines, due to the high genetic

variability of the former. As a consequence of the genetic variability the biological

signal of interest is often weakened by other unrelated signals and the identification

of the correct classes can be severely impaired.

1.4.4 Supervised learning techniques

The limitations of the above-described statistical analysis methods are to a large

extent surmounted by the more advanced supervised learning techniques. Unlike

unsupervised methods, supervised techniques incorporate the information about the

class identity of each sample. The superiority of such methods to both statistical

and unsupervised approaches has been shown in numerous studies [160]. However,

a possible problem known as ”overfitting” can arise in many situations. Overfitting

results in a classifier that has a high performance in the given training set but is

characterized by low generalizability (i.e. has a poor performance in independent

test sets). Such situations are common in biological studies due to the combina-

tion of a large number of features with a comparatively limited number of samples.

The remedy for such problems is dimensionality reduction, which can be achieved

through efficient feature selection. It has been demonstrated that the performance

of machine learning methods improves when they are combined with an appropriate

feature selection method as irrelevant features are discarded and the noise is reduced

[161]. However, bias in the feature selection can have a large influence on the results

and their functional interpretation. As a consequence of improper feature scaling

or sampling variation, certain features may be selected that are not relevant for the

subject of interest.
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1.5. Thesis motivation and organization

Feature selection methods can be grouped in rank-based and rank-free categories.

In the former features are ranked and sorted according to a certain score. The score

can be computed based on a correlation measure (e.g. t test-based statistics measur-

ing the signal to noise ratio) or on its significance (i.e. t-test p-value). Information

gain has also been employed in feature ranking procedures [161]. Alternatively, the

classifier’s weights derived during its training can be used for the score computation

[162]. The performance of a classifier also depends on the manner with which the

feature selection method and the classifier are combined. The three main approaches

that can be distinguished are (i) wrapper, (ii) filter and (iii) embedded and they are

discussed later in the thesis.

Support vector machines are a particular class of supervised methods that are well-

suited for analysis of data in high dimensional feature space, they are computationally-

efficient and capable of detecting biologically-relevant signals [163, 164]. The train-

ing of an SVM classifier results in the determination of an optimal hyperplane that

separates two classes. Each new sample is then classified according to its position

relative to this hyperplane. The method is robust and efficient due to the use of dot

products, which allows efficient computations in high dimensional space, handling of

linearly-nonseparable cases and generalizability to multi-class problems. The prop-

erties and advantages of support vector machines and their application to large scale

proteomics data are described in greater detail in Chapters 4 and 5 of this thesis.

1.5 Thesis motivation and organization

The above-described advances and developments in the field of mass spectrometry-

based proteomics have led to a vast increase in the amount of acquired data. This

thesis introduces the challenges that arise in the interpretation of these data (see

Section 1: Introduction) and presents different analytical techniques and tools to

address them. The two main parts are organized as follows: In part 1, analysis of

the structural features of phosphorylation sites and their tendency to cluster and

cross-talk with other post-translational modifications (Chapter 2), which serves as

a basis for an in-depth study of the interplay between phosphorylation regulation

and protein disorder (Chapter 3). Part 2 describes development of a framework for

comparative analysis of proteome profiles of cancer patients (Chapter 4) in order
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to achieve better subtype classification and to discover novel potential biomarkers

(Chapter 5).

Part 1: Chapter 2 deals with the analysis of various properties of phosphorylation

sites, such as preference for a particular structural environment, solvent accessibil-

ity and relation to domain regions. These features are then used to investigate a

possible distinction between phosphorylation sites of regulatory and unknown func-

tions. Additionally, the tendency of phospho-sites to cluster and their participation

in cross-talk with other post-translational modifications are discussed in regard to

the newly emerging view of a PTM code.

The large number of identified sites has opened many questions concerning their

functional relevance and the possibility that the majority of them may result from

unspecific kinase actions. Mapping the phosphorylation sites to particular biologi-

cal contexts provides insights into their possible functional relevance. On one hand,

phosphorylation sites are characterized by global features enhancing their proper

functioning and regulation. On the other hand, modification sites with defined reg-

ulatory roles appear to exhibit distinct properties. Lower solvent accessibility and

preferences for particular type of disordered regions, together with high evolutionary

conservation deepen our understanding of the undelying machinery of signal trans-

duction and suggest the existence of specialized mechanisms of action of regulatory

phosphorylation sites. Furthermore, these may lay the foundations for classification

of the functional relevance of the numerous phosphorylation events in large-scale

data sets.

The regulation required to produce a robust and rapid response to various stim-

uli is achieved through a complex interplay between (i) multiple phosphorylation

sites and (ii) phosphorylation sites and other post-translational modifications. The

majority of phospho-proteins are found to contain more than one phosphorylated

residue. Moreover, these sites are not randomly distributed over the entire length

of the protein, but show preferences for significantly smaller distances. Similarly,

modified lysine residues are found to be enriched in the proximity of phosphorylation

sites. The interplay between the two modifications appear to be most prominent

in the case of phospho-tyrosine sites, resulting also in the statistically significant

enrichment of various GO-terms among the proteins hosting this pair of residues.

38



1.5. Thesis motivation and organization

Chapter 3 presents a study of the structural properties in relation to the phospho-

rylation variation over the cell division cycle. It demonstrates how the structural

context provides an additional regulatory mechanism. Regions with defined struc-

ture limit the number of possible phosphorylation sites, as these contribute towards

a more disordered environment. Furthermore, due to the conservational properties

of ordered regions, sites in such an environment are also characterized by a higher

evolutionary pressure. The charged residues in the flanking regions of sites with

low phosphorylation variability provide favorable electrostatic interactions with the

phosphate group and add to the overall charge distribution at protein-protein inter-

faces. In contrast, disordered regions are often enriched in multiple phosphorylation

sites. The higher phosphorylation variability of these sites is related to their regu-

latory function, which is further supported by the association of this group of sites

to proline-related kinases (i.e. kinases with consensus motifs that contain a proline

residue at a position within the close sequential proximity of the modification site).

The functional and mechanistic role of proline as an important building element

of regulatory motifs and its connection to the highly regulated sites in the cell cy-

cle data are discussed in detail in that chapter. Next, the kinase preferences for

specific phosphorylation variation and disorderedness level are combined to yield a

reconstruction of functional classes of kinases, enhancing the discovery of additional

relations and properties of kinases that were previously not known. The last part of

the section focuses on the possible existence of a different time scale of phosphory-

lation, which may act in a conjunction with the level of phosphorylation variation

and the structural context of the sites. This phenomenon may be further related

to the diverse functional roles of the modification events, which contribute to a dif-

ferent extent to the structural stability, catalytic activation or inactivation or the

interaction potential of the modified protein.

Part 2: Despite the developments and efforts in the area of cancer diagnosis and

treatment there is still large room and need for improvement. Biomarkers, molecules

that are produced by the cancer or by the organism as a cause or consequence of

the cancer, have been extensively used in the assignment of a particular treatment

and the assessment of the response to that treatment. Furthermore, their detection

in screening tests in abnormal quantities is interpreted as an indicator of an early-

stage cancer. However, there are serious limitations associated with the application
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of the currently available biomarkers for diagnostics, especially in the latter case.

For example, elevated level of the prostate-specific antigen (PSA) in the blood can

either signify prostate cancer or be caused by benign prostatic hyperplasia. Due to

the relatively low specificity of the this marker a large number of men who exhibit

elevated levels of PSA are falsely diagnosed with prostate cancer, causing physiolog-

ical distress, invasive treatment such as radiation therapy or surgery, which is often

unnecessary but frequently results in bodily disfunction [165]. Similarly, alarming

studies report that about 30% of women who undergo mammography screening and

test positive represent overdiagnosis, often leading to overtreatment [166]. Some re-

search estimates the accuracy rate of diagnosis among pathologist to range between

58 to 74% [167].

Therefore the second part of this thesis (Chapters 4 & 5) is motivated by the need for

improvement in this area and it aims at offering analytical tools for alleviating some

of these problems. The proteomics view of the cell can reflect the underlying pro-

cesses very accurately by looking at and measuring the actual amount of expressed

molecules and their post-translational modifications. Thus proteomics could enable

scientists to unravel important mechanisms and gain better understanding of a large

number of complex diseases. This can be achieved by comparative studies of the

proteome profiles of patients suffering from different subtypes of a given diseases,

being at different stages of the disease, or studying different responses to a certain

medicine. The ultimate goal is the identification of differentially expressed proteins,

whose expression level is directly related to or caused by the disease onset.

As in every other discipline important lessons can be learned from history. In the

course of analysis of complex microarray data numerous possible biomarkers have

been identified and reported. The majority of them, however, did not become rec-

ognized diagnostic markers or drug targets, but instead now appear to be artifacts

of poor sample preparation and technical noise, combined with low sample size and

to a large extent incorrect data handling [147, 148]. This thesis demonstrates how

the last issue can be overcome by combining powerful machine learning techniques

with properly-conducted feature selection procedures (i.e. always embedded in an

external cross validation procedure see Chapter 4), especially in the case of small

data sets.
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Furthermore, it is now increasingly accepted that a single biomarker is not very likely

to be a strong discriminator between different populations of patients. Instead, the

complexity of the majority of diseases, such as cancer, necessitates the identification

of a set of proteins to be used as an informative signature. Therefore, analytical

techniques that are suited for the assessment of the predictive power of a group of

proteins should yield biologically more relevant and thus more useful results.

Chapter 4 of this thesis focuses predominantly on the computational methods and

tools, whereas Chapter 5 demonstrates the practical application of the developed

framework in the analysis on two real data sets. This work shows that despite the

strong genetic variability and the overall low sample size, the detection of disease-

related proteins from proteomics profiles of patients is feasible. However, adequate

techniques, such as supervised learning, embedded in cross validation procedures

and combined with efficient feature selection methods are required.
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Chapter 2
Properties of Phosphorylation sites and

Functional Inference

2.1 Introduction

With tens of thousands of sites identified, phosphorylation is the most studied post

translational modification to date. Similarly to other examples of fields character-

ized by rapid technological developments in the past, the functional interpretation

and assignment of biological context to the measured data is lagging behind. Studies

attempting to address functional relevance of the high-throughput sites often em-

ploy conservational information. This approach has had some intermediate success,

exemplified by the controversial view on conservation due to the preference of these

sites for rapidly evolving unstructured regions. Nonetheless, the intricate regulation

of numerous cellular processes, which is achieved through phosphorylation, suggests

the existence of well-defined mechanisms governing the action of kinases.

Such mechanisms can be encoded at the structural level and can be related to the

degree of disorderedness of the local and global environment of a phospho-site, to

its solvent accessibility properties or to its relation to structural domains. In this

chapter general characteristics of phospho-sites are described and special focus is

given to phospho-tyrosine residues, which have been less well-studied. A graphical

summary of the main findings is shown in Figure 2.1.

In addition, the question of the functional relevance of phospho-acceptor residues
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identified in large-scale studies is addressed through the statistical comparison of

various properties of sites with annotated regulatory functions and sites of unknown

function.
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Figure 2.1: Schematic overview of Chapter 2. A) Phosphorylated residues are

predominantly found in regions that lack regulat structure. Unlike modified serines and

threonines, phospho-tyrosine residues prefer less exposed areas. B) Phospho-sites with

regulatory functions prefer less solvent accessible regions in the protein. C) Distances

between phosphorylated residues (solid red curves) are on average smaller than distances

between non-modified serine, threonine and tyrosine residues (dashed black curves). D)

Modified lysine residues show a tendency to lie in close proximity to phospho-sites (red

curves). The phenomenon is most prominent in the case of phospho-tyrosines (solid red

curves).

Post translational modifications are generally viewed as a mechanism to increase

the proteome complexity and diversity. Yet another level of signal integration is

added through the elaborate interactions between multiple phospho-sites and the
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cross-talk between different types of modifications. The second half of this chapter

focuses on the tendency of phospho-sites to form clusters and on the relation of

this tendency to protein abundance levels. Furthermore, the inter-communication

between phospho-sites and modified lysine residues is elucidated and a functional

interpretation of this phenomenon is proposed.

In this chapter, a large-scale dataset of human phosphorylation sites comprising

more than 50,000 sites and generated in our laboratory is analyzed. In agreement

with previous experiments, the group of modified serines was the largest (41,009),

followed by threonines (9,919), with tyrosines being the smallest group (1803). This

is one of the largest sets available on phosphorylated tyrosine residues, allowing for

in-depth analysis of the properties of this class of modifications.

Table 2.1: Phosphorylation and disorder.

Phospho Reference Odds ratio P-value

S
disordered 226087 36154

5.618783 <2.2e-16
ordered 161210 4855

T
disordered 117149 8572

6.856634 <2.2e-16
ordered 126228 1347

Y
disordered 31531 1091

4.006186 <2.2e-16
ordered 82439 712

The counts of both phosphorylated and non-modified (reference) serine, threonine and tyro-

sine residues predicted to lie ordered and disordered regions were used to build contingency

tables. Preference of phospho sites to appear in disordered regions were computed using

Fisher exact test and are shown by the corresponding odds ratios and their significance.

2.2 Phosphorylation and preferences for disorder

and coil secondary structures

A total of 52,731 phospho-sites on 6,682 proteins measured in-house were used in this

analysis of structural properties (see Section 2.9). A reference set of sites was built

from all serine, threonine and tyrosine residues in the phospho-portein sequences that

were not found to be modified in our data set. Next, the disorder state (ordered or

disordered) was predicted for each residue using the DISOPRED program [168].
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2.2. Phosphorylation and preferences for disorder and coil secondary structures

The number of modified residues predicted to lie within disordered regions was

compared to the number of reference sites with similar structural context (Fig. 2.2).

Fisher exact test was employed to compute odds ratios and the corresponding p-

values. Clearly, phospho-acceptor sites were significantly more enriched in disordered

regions than their non-modified counterparts (Table 2.1). The enrichment factors of

phospho-serine and phospho-threonine residues in regions lacking defined structure

were quite similar, whereas phospho-tyrosines were enriched to a lesser extent.
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Figure 2.2: Structural preferences of phospho-sites. A) The per cent of both

phosphorylated and non-modified (reference) serine, threonine and tyrosine residues in

disordered and ordered regions is shown (disordered in red and ordered in blue). B) Anal-

ogously, the distribution of modified and reference residues in different secondary structure

regions is shown for each phospho-acceptor (coil in red, beta-strands in blue and alpha-

helices in green). Phospho-sites are characterized by higher preferences for disordered and

coil regions than reference residues.

The secondary structures of all phospho-proteins were predicted with the PsiPred

program [169] and the preferences of phospho-sites for specific structural environ-

ment were investigated using the corresponding non-modified sites as background.

The proportion of modified residues in regions with irregular secondary structure

(coils) was significantly larger than that of the reference sites (Table 2.2, p-values

were computed using the proportions test implemented in R [170]). This tendency

was less pronounced for phospho-tyrosine resdiues, however, around 70% of these

sites where predicted to lie in coil regions. The second most preferred structural
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category was α-helices, whereas the smallest proportion of phospho-sites were found

in β-sheets.

Table 2.2: Phosphorylation and secondary structure.

Phospho Reference Prop. phospho Prop. reference P-value

S

coil 38930 299583 0.9493038 0.7735226 <2.2e-16

helix 1774 69276 0.0432588 0.1788705 <2.2e-16

sheet 305 18438 0.007437392 0.047606875 <2.2e-16

T

coil 9460 165182 0.9537252 0.6787083 <2.2e-16

helix 308 54550 0.03105152 0.22413786 <2.2e-16

sheet 151 23645 0.01522331 0.09715380 <2.2e-16

Y

coil 1251 56817 0.6938436 0.4985259 <2.2e-16

helix 334 37813 0.1852468 0.3317803 <2.2e-16

sheet 218 19340 0.1209096 0.1696938 4.938e-08

Counts and proportions of phospho-sites and non-phosphorylated serine, threonine and

tyrosine residues predicted to lie within α-helix, β-strand and coil regions. Preference

of phospho sites for each local structural context were computed with the poportions test

implemented in R. The corresponding p-values are given for each phospho-acceptor and

each structural background.

Phospho-sites showed significant preferences for disordered regions and irregular

secondary structures. Undermining the structure-function paradigm, intrinsically

disordered regions have been shown to convey a large number of functions in the cell

[171, 172, 173]. The implications of disordered regions in protein-protein interac-

tions, in particular through increasing the number of interaction partners, ensuring

flexibility of the bound complex and allowing for regulation through conformational

changes, make them suitable mediators of signal transduction. Therefore, not sur-

prisingly, many studies have reported the association of phosphorylation with disor-

der [81, 80], described the mechanisms of interplay between the two and presented

disorder-based prediction methods for discovery of new modification sites [81]. More

details on the role of intrinsic disorder for protein phosphorylation are discussed in

Chapter 3 of this thesis.

46



2.3. Phosphorylation and solvent exposure

2.3 Phosphorylation and solvent exposure

Using the SABLE prediction package [174] an accessibility score representing the rel-

ative solvent accessible area was computed for each residue in all phospho-proteins.

High score indicates high solvent accessibility. The solvent exposure of phospho-

rylated residues was compared to that of the corresponding non-modified residues

(Fig. 2.3). Phospho-serine and -threonine residues were significantly more exposed

on average (mean accessibility score 4) than reference serine and threonine residues

(mean accessibility score 3, Wilcoxon test p-value <2.2e-16 ). Although the same

tendency was observed for phospho-tyrosine residues, they appeared more buried on

average than the other two phospho-acceptor residues (accessibility score means 1

and 2 for modified and reference sites, respectively; p-value <2.2e-16).
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Figure 2.3: Solvent accessibility of phospho-sites. The solvent exposure of phos-

phorylation sites (light green) is compared to that of their corresponding reference residues

(blue): A) serine, B) threonine and C) tyrosine. The overlap between the two distri-

butions is shown dark green and the corresponding means (4 and 3 respectively) of the

groups are depicted by the dashed lines. In all cases the modified residues appeared to be

significantly more exposed than the reference sites (Wilcoxon test).

As expected the modification sites were more exposed on average than the modified

reference sites. The polar nature of these residues underlies their preference for more

solvent accessible areas in the protein. This exposure then facilitates access of the

kinase to the phospho-acceptor site.
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2.4 Phosphorylation and domains

We tested if phosphorylation sites tend to appear within structural domains, or

rather prefer the interconnecting loops. Domain definitions were obtained from the

Interpro online resource [175] and were mapped to the phospho-proteins in our data

set as described in the Materials and methods section 2.9. Preferences of phospho-

sites for regions between Interporo domains were computed using the Fisher exact

test and the corresponding odds ratios and significance values are shown below.

Considering only sites predicted to lie within disordered regions, this showed that

about 42% of all modified sites resided within an Interpo domain, whereas this was

the case for 60% of the reference sites. The preference for regions outside Interpro

domains was even more pronounced when sites with ordered structural background

were analysed – 71% of those phospho-sites were found to lie within a domain.

Nonetheless, all phospho-acceptor residues in this group were significantly enriched

in regions connecting domains in comparison to their corresponding non-modified

residues (Table 2.3).

Table 2.3: Tendency of phosphorylation sites predicted in ordered regions to occur outside

Interpro domains.

Phospho Reference Odds ratio P-value

S
outsideDomains 1282 30759

1.516393 <2.2e-16
within domains 2836 103182

T
outside domains 302 22091

1.39018 2.279e-06
within domains 818 83183

Y
outside domains 138 13160

1.224803 0.03935
within domains 476 55597

Preference of phospho-sites to appear in regions connecting Interpro domains. Contingency

tables containing the counts of phospho-sites and non-modified reference sites found within

and outside Interpro domain regions. Only sites predicted to lie within ordered regions

were used. Fisher exact tests were computed for each phospho-acceptor residue separately.

Modified sites were significantly overrepresented in regions outside Interpro domains.

There were small but highly significant differences with respect to the three phospho-

acceptor residues in disordered environments (Supplementary table 6.1). Phospho-

serine and -threonine sites were significantly enriched in regions outside of the interpo
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2.4. Phosphorylation and domains

domains, although the enrichment factor was relatively low. In contrast, phospho-

tyrosines were found to be equally likely to appear both within and outside do-

mains. Overall, despite the large number of phospho-sites appearing within struc-

tured domains a clear preference of phospho-serine and phospho-threonine for the

interconnecting regions was evident, while no strong differences were found between

phospho-tyrosines and non-modified tyrosine residues.

Phospho-serine and -threonine residues showed significant preferences for inter-domain

regions even when they were predicted to lie within ordered regions. This observa-

tion is in agreement with the above-described tendency of phospho-sites to lie within

intrinsically-disordered regions. In contrast, phospho-tyrosines showed only a weak

preference for such regions when sites in ordered structures were considered and were

found to be enriched within domains when sites in disordered structures were consid-

ered. This tendency together with the smaller preference of this phospho-acceptor

residue for disordered regions and its lower solvent accessibility may facilitate the

specific functional roles of this site in the cell. Tyrosine phosphorylation is involved

in the regulation and execution of a wide range of processes, such as differentiation,

proliferation, cell death, motility and transcriptional activation [100] and aberrant

regulations are often associated with disease development [176]. The precise im-

plementation of these functions requires a well-controlled mechanism to ensure the

accurate phosphorylation of tyrosine residues, which is achieved through a complex

interplay between tyrosine kinases, phosphatases and proteins with phospho-tyrosine

recognition domains [177]. One general scenario of signal transduction involves the

binding of some signaling molecule such as a growth factor or cytokine to the ex-

tracellular domain of a receptor tyrosine kinase, upon which an effector molecule

is phosphorylated. Downstream of the signaling cascade, specificity is governed

through the residues surrounding the phospho-acceptor sites, which recruit diverse

but specific phospho-tyrosine binding domains. For example, the SH2 phospho-

tyrosine-binding domain is characterized by strongly conserved residues at the bind-

ing pocket that stabilize the phosphate moiety [178]. Specificity and high fidelity

are achieved through a second binding pocket formed by some of the conserved loop

regions and beta-strands, which enhances the recognition of residues surrounding

the phospho-tyrosine predominantly C-terminal to the modification site.

Furthermore, the lower solvent accessibility and less disordered environment of
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Chapter 2. Properties of Phosphorylation sites and Functional Inference

phospho-tyrosines that we find in our data are in general characteristic of more

hydrophobic regions. These, consequently, present suitable environments for the

formation of stable protein-protein interactions, which is agreement with what is

known about the role of phospho-tyrosines, which are to a large extent involved in

the direct regulation of such interactions during signal transduction.

The current data set on tyrosine phosphorylation sites indicates that this modifica-

tion is much less numerous than serine and threonine phosphorylation and occurs

at less exposed and more structurally ordered regions. Moreover, these properties

are characteristic for the binding regions of stable complexes and the sequential

and structural contexts play an important role for the specificity of its functions.

Hot spots were shown to be enriched in tyrosine residues [179], therefore it may

be promising to investigate the overlap between pospho-tyrosines and hot spots, as

they may have similar characteristics and regulate protein-protein itneractions in an

analogous manner. Based on these observations it can be hypothesized that tyrosine

phosphorylation results from purposive kinase interactions, is regulated in a strict

manner and results in a highly specific cellular response.

2.5 Properties of regulatory phosphorylation sites

The large number of phosphorylation sites reported to date have led to the sug-

gestion that a significant proportion of those sites may be non-functional and may

result from unspecific kinase actions. Therefore, it is of high interest to be able to

distinguish functionally-important from silent phosphorylation sites. To do that, a

curated set of functionally-annotated phosphorylation sites was obtained from the

PhosphoSitePlus resource [94] and mapped to the original set of phosphorylation

sites (see Material and methods section 2.9 for details). In total 768 sites from our

data set were annotated with a regulatory function. This set was then used to study

various properties of the regulatory phospho-sites using as a background all other

modified sites that were measured.

The phospho-serine sites with regulatory functions showed significantly smaller pref-

erence for disordered regions than the corresponding background modification sites

of no specified function (Fig.2.4 A). This tendency was not present for threonine
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Figure 2.4: Structural properties of regulatory phospho-sites. A) Proportions

of phospho-sites of regulatory functions and of unknown funcitons in disordered (red) and

ordered (blue) structural regions are compared. Regulatory phospho-serines prefer disor-

dered regions to a significantly lesser extent than modification sites of unknown function,

whereas no difference is present for the other two phospho-acceptor residues. B) Distri-

butions of sites of regulatory and of unknown functions in different secondary structure

regions is shown for each phospho-acceptor (coil in red, beta-strands in blue and alpha-

helices in green). There are no statistically significant differences between the preferences

for secondary structure elements of regulatory and functionally unannotated phospho-sites.

C) Solvent accessibility scores of regulatory phosphorylation sites (blue) and phospho-sites

of uknown funcitons (light green) are compared. The overlap between the two distribu-

tions is shown in dark green. Regulatory phospho-sites are significantly less exposed than

phospho-sites of unknown function (Wilcoxon test p-valus <2.2e-16).

and tyrosine residues. Interestingly, larger proportions of regulatory serine, threo-

nine and tyrosine residues were found in coil regions, however, the differences were

not statistically significant (Fig.2.4 B). In contrast, there was a clear difference be-

tween the preferences of the two groups of sites for solvent accessibility, revealing

that the annotated sites are more buried on average (Fig. 2.4 C).

To test if the regulatory sites have different preference for the protein abundance as

compared to sites with no functional annotation we compared the distributions of

protein intensities (measured in our original data set) in the two groups (Fig. 2.5).

Considering only sites within ordered regions, the proteins containing sites with reg-

ulatory annotation were characterized by lower intensities on average as compared

to the proteins hosting sites with unknown functions. In contrast, no significant

differences were found between the two groups when only disordered regions were
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considered (Supplementary fig. 6.1).
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Figure 2.5: Regulatory phospho-sites and protein intensity. Protein intensities

of phospho-sites in ordered regions with regulatory (blue) and unknown (light green)

functions are compared: A) serine, B) threonine and C) tyrosine. The overlap between

the two distributions is shown in dark green. The corresponding group means of intensity

(regulatory µ1 and unknown µ2 respectively) and the p-values computed with the Wilcoxon

test are shown for each residue.

An interesting question arising from the above-made observations is if there are ma-

jor differences in the evolutionary pressure acting on the two groups of sites. To

compute evolutionary rates clusters of orthologs from the EggNOG resource [180]

for six eukaryote organisms were employed. The rates were then calculated using a

local version of the rate4site algorithm (see [181] and Materials and methods section

2.9). The annotated sites were clearly more conserved than the background set in

both ordered (Supplementary fig. 6.2) and disordered (Fig. 2.6) structural environ-

ments. The smallest difference in the conservation rate between annotated sites and

sites of unknown function was observed for tyrosine residues.

Generally, the phospho-sites that were annotated as regulatory in the Phospho-

SitePlus resource exhibited different properties than the rest of the sites in our set.

Interestingly, the sites annotated with regulatory functions were characterized by an

overall lower solvent accessibility. In addition to the lower accessibility, a very large

fraction of them was found within irregular secondary structures (coils), but at the

same time phospho-serine residues showed larger preference for ordered regions. As

our understanding of the implications of disorder in dynamical processes in the cell

increases, more evidence emerges that disorder may come in different forms. A clear

distinction was found between long unstructured and regular well-structured loops,
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Figure 2.6: Evolutionary conservation of regulatory phospho-sites. Evolutionary

rates of phospho-sites (predicted in disordered regions) with regulatory (blue) and unknown

(light green) functions are compared: A) serine, B) threonine and C) tyrosine. The

overlap between the two distributions is shown in dark green color. Evolutionary rate

means of the compared distributions (regulatory µ1 and unknown µ2 respectively) and the

corresponding p-values computed with the Wilcoxon test are presented for each residue.

Note that lower values correspond to higher conservation.

mainly with respect to their length, lack of regular secondary elements and solvent

accessibility [182]. Moreover, these different types of disorder may be implicated in

distinct functional roles, a hypothesis which finds confirmation in the conservational

analysis of Bellay et al [183]. These authors distinguished 3 levels of conservation

in disordered regions and drew a link between one of them - flexible disorder (the

flexibility is conserved regardless of the exact amino acid composition) and signaling

pathways. Chapter 3 contains a more comprehensive discussion on the importance

of disorder in the regulation of phosphorylation.

One of the mechanisms through which regulatory functions can be carried out by

modification sites is conformational change. These include both changes in the

immediate environment of the phospho-acceptor sites and allosteric changes influ-

encing protein regions that lie far apart. The clustering of energetically-important

residues characterized by low solvent accessibility at the interfaces of protein-protein

complexes contributes to the binding free energy [179, 184]. This low solvent acces-

sibility enhances the exclusion of bulky solvent molecules and thus prevents their

interference with the affinity of the interactions, ensuring accurate execution of the

regulatory functions induced by the modification sites. Demerdash et al. demon-

strated that residues with allosteric function tend to be more buried than residues
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Chapter 2. Properties of Phosphorylation sites and Functional Inference

that do not have such roles [185], suggesting that a more densely-populated net-

work of residues may provide suitable environment for inducing structural changes

at a distant location. Therefore the lower accessibility of the regulatory sites may

be indicative of the mechanism through which they achieve their function, namely

through allosteric interactions.

Not surprisingly in view of the above discussion, we found that the sites that were

functionally-annotated were subject to higher conservational pressure than sites of

unknown functions. This observation supports the hypothesis that these sites may

be related to functionally-important regions on the protein surface and thus would

impose low evolutionary rate. Interestingly, the regulatory phospho-tyrosines were

only slightly more conserved than the modified tyrosines with no annotated funci-

ton. This could well be explained by the general distribution of these residues in the

protein. Tyrosine is a much less frequent residue, characterized by a bulky aromatic

ring. Due to its physicochemical properties it plays an important role in struc-

ture maintenance and protein-protein interactions, necessitating its higher average

conservation.

2.6 Multiple phosphorylation sites

The distribution of the number of phospho-sites per protein is shown in Fig.2.7

A). Of the total of more than 50,000 phospho-sites that were measured in 6,768

unique uniprot entries 5,121 (22%) had only a single phosphorylation site and were

discarded from the rest of the analysis in this section. About half of the proteins

contained between 2 and 10 sites and around 20% contained more than 10 sites.

We were interested in a possible tendency of phosphorylation sites to cluster. The

distances between any two phospho-sites in a protein were computed and the smallest

distance for each site was retained. Next, 1,000 randomisations of the modification

positions over all serine, threonine and tyrosine residues were computed for each

protein and the corresponding distance distributions were estimated (see Materials

and methods section 2.9). Figure2.7 B clearly demonstrates that the measured

phosphorylation sites were characterized by smaller distances than the randomized

data sets, suggesting a strong and highly significant tendency of these modification

sites to cluster together. This effect was larger in intrinsically disordered regions, a
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tendency that underlines the capability of such regions to accumulate a large number

of phosphorylation sites.
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Figure 2.7: Characteristics of multiple phosphorylation sites. (A) The distribu-

tion of proteins with specific number of phospho-sites (as a proportion of the total number

of phospho-proteins) is plotted with color gradient ranging from dark red - proteins with

single sites to grey - proteins with more than 10 sites. Overall, gradual decrease of the num-

ber of proteins with increasing number of sites is visible. (B) The distribution of distances

between the measured phospho-sites (in light red) and between randomized phospho-sites

(in light blue) are compared. The overlap between the two distributions is shown in dark

blue. The distances are measured in amino acids, shown in log2 scale and the density of

the distribution is plotted. (C) A scatterplot of the number of phospho-sites in a protein

against the protein intensity (log10) is shown. The correlation coefficient between the two

variables indicates a small positive correlation. (D) Distributions of distances between

phospho-sites are compared between protein groups with different intensities. The group

with smallest intensities (red) corresponds to the first quartile of the intensity distribution

and the group with the largest intensities (purple) correponds to the last quartile.
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The importance of multiple phosphorylation sites has been discussed in a large num-

ber of studies (see [54] for a comprehensive review). For example, the mitogen-and

stress-activated protein kinase (MSK1) undergoes phosphorylation on Thr581 and

Ser360 and is further capable of autophosphorylation of six additional sites [186].

Two of these sites, which lie in specific motifs and loops, were shown to be deter-

mining for the catalytic activity of the N-terminal kinase domain. Precise regulation

of multiple phosphorylation sites has been shown to be important in a myriad of

cellular processes such as DNA damage checkpoint regulation [187], chromosome

condensation initiation [188], localization [189], protein degradation [190] and regu-

lation of transcription [191].

The mechanisms underlying the cross-talk between multiple phosphorylation sites

are still not well understood. Functional implications include but are not limited to:

priming phosphorylation, in which the phosphorylation of one residue is a determin-

ing factor for the modification of another [192, 193]; compensatory interactions, in

which modification of one or few of all potential phosphorylation sites is enough to

achieve the required function [194]; synergetic phosphorylation, in which the cumu-

lative effect of the phosphorylation of all sites in a region determines the function

of the protein [187] and exclusive phosphorylation, in which the modification of one

site prevents the modification of another [195].

Using the connexin proteins family as a model, Chen et al. concluded that the im-

plication of multiple phosphorylation sites was more complex than simply creating

a binary switch controlling a single function [196]. Instead they proposed that the

manifold levels of phosphorylation of multiple sites (depending on localization, order

of modification and absolute stoichiometry) may be needed for the efficient integra-

tion of diverse signals and may contribute to the regulation of various processes in

the cell [197, 198]. Overall, the presence of multiple phosphorylation sites increases

the regulatory potential of the modified protein. For example, the proapoptotic

protein BAD can be phosphorylated on three sites as a result of the activation of

three distinct pathways. Phosphorylation of any of the three sites counteracted the

apoptotic function of the protein, indicating the efficiency of this biological system

in the integration of distinct signals [199].

Given the high number of clustered phosphorylation sites emerging from this large-
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2.7. Correlation between protein intensity and number of phosphorylation sites

scale analysis, it would be interesting to test them in relation to some of the above

functions and mechanisms.

2.7 Correlation between protein intensity and num-

ber of phosphorylation sites

Levy et al. argued that high protein abundance may increase the number of ran-

dom interactions between kinases and phospho-proteins, thus resulting in a large

number of non-specific modification sites [110]. To investigate this possibility, two

measures from our phospho data set were used: protein intensity and the correspond-

ing number of phospho-acceptors and the correlation between the two variables was

estimated (Fig.2.7 C). In agreement with Levy et al. a trend for more abundant

proteins to contain a larger number of phosphorylation sites was evident (R: 0.19,

p-value <2.2e-16). However, as the confidence with which phospho-sites are identi-

fied and localized is also correlated with the protein abundance, the possibility that

the above trend is related to the methodology of assigning sites cannot be excluded.

Next, we wanted to know if the observed tendency for higher abundant proteins to

have more phosphorylation sites enhances their ability to cluster or rather if more

abundant proteins were characterized by more clustered phospho-sites in general.

The phospho-proteins were split into four classes corresponding to the intensity

quartiles. The distances between phospho-sites in each class were computed in an

analogous manner to that used to compute the general distribution of distances (see

Materials and methods section 2.9). What we found was that the lowest abundance

protein group had the least tendency for phospho-sites to cluster on average as com-

pared to all other groups (Fig.2.7 D).

Levy et al. reasoned that a large number of the phosphorylation sites on highly

abundant proteins were not functional and resulted from random kinase-substrate

interactions. They supported this hypothesis by showing that these sites had lower

rates of evolutionary conservation. However, another possibility is that more abun-

dant proteins require more precise control and regulation, and one way to achieve

this could be through a larger number of sites.

Signaling through phosphorylation is among the major mechanisms enabling the cell
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to form a rapid and adequate response to various stimuli and stress conditions. For

example, the function of the multisubunit eukaryotic translation initiation factor

(elF) is regulated through its interaction with the family of repressor polypeptides

(4E-BPs). Interestingly, this interaction depends on the level of phosphorylation

of the 4e-BP molecule; the hypophosphorylated forms show high affinity for elF,

whereas hyperphosphorylation prevents the interaction completely [200, 201].

Moreover, theoretical models showed how the interplay between multiple phosphory-

lation sites may enhance temporally-regulated responses, integrating various signals

and gradual changes. Varedi et al. proposed a model for effective and flexible

regulation of protein degradation [202]. They suggested that degradation may be

achieved in a time-resolved manner through incorporation of the gradual changes

in the concentration of the responsible kinases. After reaching a phosphorylation

threshold (i.e. a certain number of modified sites) rapid degradation would take

place. Ultrasensitivity, enhanced by the presence of multiple phosphorylation sites,

appeared to be a common mechanism, implicated in the regulation of various pro-

teins [203, 204, 205]. This phenomenon can be exemplified by a threshold behavior,

controlled through variation of the requirement of the ratio of concentrations of ki-

nases to phosphatease with respect to the number of phospho-sites. In a detailed

theoretical analysis Gunawardena et al. argued that although phosphorylation at

multiple sites may provide an efficient threshold, it does not necessarily cause a rapid

switch [206].

Multiple phosphorylation sites are further implicated in the regulation of protein-

protein or protein-nucleic acids interactions. Nishi et al. found a significant en-

richment of phospho-sites at interfaces of complexes and a large overlap with hot

spots [103]. Surprisingly, their results suggested that phosphorylation is more likely

to cause an increase in the diversity of possible interaction partners than to lead

to altered binding affinity. Furthermore, the accumulation of negatively charged

phosphate groups may have an influence on the electrostatic forces between the in-

teracting partners. Both scenarios of favorable interactions between surfaces with

residue clusters of opposite charges [207] and repulsive interactions, for example,

with the negatively charged DNA molecules [208], are possible. In another example,

the hydrogen bonding network formed by arginine and glutamate residues during

the binding of cytoplasmic linker-associated protein 2 to end-binding protein 1 was
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disrupted through unfavorable electrostatic forces resulting from the addition of

multiple phosphate groups [209]. Clusters of phosphate groups may also influence

the structural compatibility between the interaction partners, for instance, by intro-

ducing steric hindrance [210] or by increasing the binding affinity [211]. Structural

changes caused by multiple phosphorylation sites can regulate interactions regard-

less of if they occur at the binding interface or at more distant positions through

allosteric conformational changes.

These examples strongly suggest that the individual role of phosphorylation sites

may not be as important as their cumulative effect. In that case low conservation

level and relatively low stoichiometry of such sites would be more readily explain-

able and would not indicate that these sites are non-functional. The presence of

functional clusters of sites may be an important mechanism of increasing the pro-

teome’s plasticity. Compensatory phosphorylation provides alternative routes for

achieving a specific outcome. This phenomenon allows for the integration of the

signal of various source, while limiting the chances of failure in the cellular response.

Furthermore, the requirement for modification of several sites may be an efficient

way of integrating gradual changes in a time-resolved manner.

2.8 Cross-talk between phosphorylation and mod-

ified lysine sites

The complexity underlying the regulation of numerous cellular processes is further

increased through various post-translational modifications working in a coordinated

manner. A possible inter-dependence between phosphorylation sites and modified

lysine sites was investigated through analysis of the preference of the two types

of modification to occur at residues of close proximity at the sequence level. We

matched experimental data on ubiquitination, acetylation and sumoylation sites that

were obtained from the PhosphoSitePlus repository [94] to the phospho-protein se-

quences in our data set (see Materials and methods section 2.9). In total, 24,004

lysine modifications were used in the analysis. The fraction of modified to non-

modified lysine residues in the vicinity of phospho-acceptor sites was computed for

both the measured modified lysine positions and the their randomized distribution

(see Materials and methods section 2.9). The fractions were compared at variable
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distance intervals around the phospho-sites (Fig.2.8). Clearly, the measured modi-

fied lysine residues showed different behavior from the randomized data. The sur-

rounding of all phospho-acceptor residues: serine, threonine and tyrosine - showed

higher proportions of modified lysines. The phenomenon indicates a possible func-

tional cross-talk that may facilitate the dynamic control of signal transduction under

various conditions. The tendency became more pronounced at shorter distances,

suggesting the existence of a specific mechanism of intercommunication between the

two modification types. Interestingly, the most prominent effect was observed for

phospho-tyrosine residues, which may result from specific functional pressure acting

on the distribution of this combination of modifications.
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Figure 2.8: Cross-talk between PTMs. The fraction of modified lysine residues (cor-

responding to ubiquitination, sumoylation and acetylation as reported in PhosphoSitePlus)

and non-modified lysine residues for a particular interval of amino acids surrounding a

phospho-site are represented by solid lines. The different colors correspond to the three

phospho-acceptor residues: serine (red), threonine (green) and tyrosine (blue). Background

fractions (represented by the dashed lines) were computed analogously, but the positions of

the modified lysines were randomly re-distributed over all other lysine residues preserving

the overall number of this modification.

Various interaction patterns exist between multiple modification sites, which also
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2.8. Cross-talk between phosphorylation and modified lysine sites

lead to distinct outcomes. The interactions between lysine modifications and phos-

phorylation sites can have synergistic character or be mutually exclusive with oppo-

site functional effects [212]. Phosphorylation at multiple sites was shown to lead to

enhanced transcription activity of the ATF7 and to abolish the inhibitory effect of

sumoylation, most likely through conformational changes [213]. Similarly, phospho-

rylation of the thymine DNA glycosylase prevented acetylation of a nearby lysine site

and ensured preservation of the efficient DNA repairing role of the protein [214]. In

contrast, the phosphorylated form of the N-terminal tail of histone H3 was reported

to act as a signal for subsequent acetylation giving an example of the synergistic

modifications [215]. Furthermore, phosphorylation-dependent ubiquitination [216]

and sumoylation [217] have been observed.

Recent improvements in MS-based proteomics have enabled the identification of

thousands of post-translational modifications and the subsequent analysis of the

cross-regulation between them. The vast amount of possible and functionally-

distinct combinations of multiple sites of various modification types has led to the

development of the term ”post-translational modifications code” [212, 218, 219, 220],

which resembles the concept of the genetic code. In their review, Nussinov et al. ar-

gued that modifications with allosteric effect (i.e. modulating distant regions in the

protein) increase even further the combinatorial and thus functional space, modu-

lated by the diverse nature of PTMs [218]. Furthermore, analysis of the co-evolution

of different types of PTMs over 8 eukaryotic organisms revealed a vastly intercon-

nected network of functionally associated modification types [220]. Phosphorylation

and lysine modifications appeared central to the network due to their spatial and

temporal regulatory roles. The substantial intertwining between phosphorylation

and acetylation networks was further demonstrated on an organismal level [221].

The functional interplay between tyrosine phosphorylation and acetylation has harldy

been addressed in large-scale experiments. Studies on individual proteins identified

varying modes of cross-talk. In cortactin the two modifications did not occur simul-

taneously, but had similar functional effects [222], indicating possible antagonistic

character. In contrast, a synergistic effect between the two was elucidated in the for-

mation of the complex between the major herpes simplex virus type 1 DNA-binding

protein and single strand DNA [223]. Tyrosine phosphorylation as well as lysine

modifications are involved in the regulation of various signaling events, interactions,
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Figure 2.9: Cross-talk between PTMs. Enrichment analysis of GO categories in the

proteins set, that contains modified tyrosine and lysine residues separated by maximum 5

amino acids. Categories related to the GO term of biological processes are shown in red

(GOBP), whereas GO terms representing molecular functions (GOMF) are shown in blue.

localization and numerous cellular processes. To identify specific functions and pro-

cesses, in which cross-talk between the two may have a significant implication, we

performed an enrichment analysis of GO categories (Fig. 2.9). The set of proteins

that contained a modified pair of lysine and tyrosine residues, lying within a dis-

tance of 5 amino acids or less, was used in the analysis. The interplay between the

two appeared to be important in the regulation of binding between diverse partners,

whereas the major processes that were significantly enriched were predominantly re-

lated to signal transduction and stimuli response. Interestingly, the proteins spanned

a large range of cellular components, including nucleus, cytoplasm, organelles and
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extracellular space. Overall, the interaction between the two modifications appears

to act as a general mechanism facilitating the cellular response to various signals

and in various cellular contexts.

2.9 Materials and methods

Phosphorylation, reference and regulatory sites sets definitions

An in-house phosphorylation data set was used in the analysis (courtesy of Dr. K.

Sharma). High resolution mass spectrometry at the MS and MS/MS level for in-

depth characterization of the phosphoproteome of a human cancer cell line (HeLa)

was emplyed. Phosphopeptides were enriched using strong cation exchange based

fractionation and metal complexation. The data were measured on a benchtop

quadrupole Orbitrap instrument with HCD fragmentation and very high sequencing

speed [224]. MS raw files were processed with the MaxQuant suite [6]. Phosphory-

lation sites were measured across a number of cellular conditions including mitosis

and EGF stimulation. In particular, high coverage of phospho-tyrosine residues

was obtained using pervanadate treatment of cells to inhibit tyrosine phosphatases.

The set comprised 52,731 sites on 6, 682 proteins. The distribution of the different

phospho-acceptor residues was as follows: 41,009 serines, 9,919 threonines and 1803

tyrosines.

A reference set was defined as all serine, threonine and tyrosine residues from the

phospho-proteins in the phosphorylation set, which were not found to be modified

in our data set.

A set of phospho-sites with regulatory functions was obtained from the Phospho-

SitePlus online resource [94]. It comprised curated phosphorylation sites, i.e. sites,

which were shown in literature to regulate molecular functions, biological processes,

and molecular interactions. The regulatory sites were then mapped to our set of

phospho-sites, resulting in 768 sites being annotated with regulatory functions.

Prediction of structural features of phosphorylation sites

The disordered state of each phospho-protein in the data set was predicted using a

local installation of the DISOPRED [169] software with default parameters. To each
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residues was assigned one of two states: disordered or ordered. Analogously, sec-

ondary structure predictions were computed with a local installation of the PsiPred

prediction tool [169]. Each residues was associated with one of three possible as-

signments: ’H’ for α-helix, ’E’ for β-strand and ’C’ for coiled regions. Solvent

accessibility was predicted with the SABLE package [174]. SABLE uses sequential

information to predict the relative solvent accessibility area.

Domain assignment

Domain information was downloaded from the Interpro online resource [175]. The

Interpro database integrates domain predictions from various resources and thus

provides a comprehensive representation of domain assignments for a protein of

interest. The domain regions were mapped to the phospho-proteins in our set and

depending on the relative position of each phospho-site to the end and start positions

of the domains, a state ’withinDomain’ or ’outsideDomain’ was assigned.

Conservation of phospho-sites

Clusters of orthologs were obtained from the EggNOG resource [180]. Phospho-

proteins were matched with the corresponding EggNOG cluster, if available. Next,

the clusters were reduced, so that sequences from only 6 eukaryotic organisms were

contained: human (9606), zebrafish (7955), Mus musculus (10090), Saccharomyces

cerevisiae (4932), Arabidopsis thaliana (3702) and Caenorhabditis elegans (6239).

The rate4site algorithm was then used locally to compute evolutionary rates of all

phospho-sites [181]. Rate4site computes the relative evolutionary rate for each site

in a multiple sequence alignment using a probabilistic evolutionary model. Based on

the alignment a phylogenetic tree is computed and the resulting topolgy and branch

lengths are used in the estimation of the evolutionary rates. Note that lower values

correspond to higher conservation.

General statistical methods

The R statistical framework [170] and the Perseus software were used to perform

the statistical tests reported in the analysis. The Wilcoxon non-parametric test was

used when two distributions were compared (e.g. solvent exposure of regulatory

sites with sites of unknown function). Enrichment of phospho-sites in disordered
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regions was computed with the Fisher Exact test implementation in R. Enrichment

in secondary structure regions was computed with the proportions test, implemented

in R. The category assignment and enrichment of GO terms was done in the Perseus

environment. Most of the graphics were produced using the ggplot2 package [225].

Computing distribution of distances between phosphorylation sites with

respect to protein intensity

The protein intensity information measured in the phospho-data set was used to

build four groups of protens based on the underlying intensity quartiles. Next, the

distances between all phospho-sites in a protein were computed and the smallest

distance for each site was used to build distance distributions. The distributions of

distances in the four intensity groups were plotted in the R framework, using the

ggplot2 package [225].

Cross-talk between various PTMs

Ubiquitination, acetylation and sumoylation data sets were obtained from the public

repository PhosphoSitePlus [94]. PhosphoSitePlus is an online resource integrating

information about post-translational modifications from both small-scale and large-

scale studies. The modified lysine residues were mapped to the phosphorylation data

set. The fraction of modified to non-modified lysine residues in the surroundingn of

each phospho-site was computed. Different distance intervals were considered (e.g.

+/- 5, +/-10, +/-20 amino acids surrounding the phospho-site). Next, the positions

of the modified lysines were randomized over all lysine residues in the corresponding

proteins and the above-described fractions were re-computed. The randomization

was repeated 1,000 times creating a background distribution of random distances.

The measured and randomized fractions were plotted for each phospho- serine, -

threonine and tyrosine residue. The set of protein that contained modified tyrosine

and lysine residues lying within a distance of maximum 5 amino acids was used in

the GO term enrichment analysis.
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Chapter 3
Phosphorylation dynamics over the cell

cycle and intrinsic disorder

Phosphorylation at specific residues can activate a protein, lead to its localization

to particular compartments, be a trigger for protein degradation and fulfill many

other biological functions. Protein phosphorylation is increasingly being studied at

a large scale and in a quantitative manner that includes a temporal dimension. By

contrast, structural properties of identified phosphorylation sites have so far been

investigated in a static, non-quantitative way. Here we combine for the first time

dynamic properties of the phosphoproteome with protein structural features. At six

time points of the cell division cycle we investigate how the variation of the amount

of phosphorylation correlates with the protein structure in the vicinity of the modi-

fied site. We find two distinct phosphorylation site groups: intrinsically disordered

regions tend to contain sites with dynamically varying levels, whereas regions with

predominantly regular secondary structures retain more constant phosphorylation

levels. The two groups show preferences for different amino acids in their kinase

recognition motifs - proline and other disorder-associated residues are enriched in

the former group and charged residues in the latter. Furthermore, these preferences

scale with the degree of disorderedness, from regular to irregular and to disordered

structures. Our results suggest that the structural organization of the region in

which a phosphorylation site resides may serve as an additional control mechanism.

They also imply that phosphorylation sites are associated with different time scales

that serve different functional needs.
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3.1 Introduction

Phosphorylation is a ubiquitous post-translational modification that is known to be

important for the regulation of a myriad of cellular processes, among which are cell

growth, apoptosis, differentiation, signal transduction and transport [54]. Rapidly

evolving mass spectrometry (MS)-based technologies, innovative labeling techniques

and advances in computational proteomics provide powerful means for overcoming

the low abundance problem of this modification and are making it possible to ob-

tain large-scale, high-resolution quantitative data. With these advances, not only

can single protein phosphorylation experiments be done with high accuracy, but also

whole-phosphoproteome studies are becoming increasingly feasible [61, 6].

Given the availability of these data, much research has been devoted to analyzing

and understanding the structural features of phospho-sites. This includes creation

of online resources containing structural information [78], combining data on linear

motifs and structural properties [226], and development of software tools that use

three-dimensional data for the prediction of phosphorylation sites (DISPHOS [81],

Phos3D [80]). Large-scale studies of the structural characteristics of phosphoryla-

tion sites have focused on solvent exposure, local and global structure, amino acid

context of the spatial surrounding, and structural motifs [80, 79, 84]. The mech-

anism of modification suggests that serine, threonine and tyrosine residues should

be located on the protein surface where they are accessible for the modifying kinase

[80].

The main challenge in studying structural properties of phospho-sites from exper-

imental data is their preference for unstructured regions [81] for which electron

density is often missing in X-ray structures. Disorder is strongly associated with

protein-protein interactions [227]. Modified residues found within disordered re-

gions can act as on/off switches, either promoting or inhibiting an interaction. Due

to the specific structural organization of some protein kinases, in which the cat-

alytic loop resides within a small cleft between two lobes, flexible regions within the

substrates interaction surface are well suited for binding to the kinase. However,

a recent systematic study suggested that kinase preference for disordered regions

is only marginal [79]. Furthermore, a computational study of kinase specificity re-

ported that approximately 60% of the sites modified by protein kinase A lie within
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-helical regions [228]. These considerations raise an interesting question: can a dis-

tinction between kinases be made with respect to the level of structural organization

of their substrates.

Since phosphorylation events both depend on the structural environment and in-

fluence its properties, protein structure and phosphorylation should be considered

interrelated and mutually dependent. On one hand, disorder facilitates the access

of a kinase to the residue to be modified. On the other hand, the addition of

a phosphate moiety may lead to structural changes. Both order-to-disorder and

disorder-to-order transitions upon phosphorylation have been observed in nature or

studied via molecular dynamics simulations [229, 230, 231, 232]. The major driving

forces of conformational changes observed upon phosphorylation are the electrostatic

interactions between the negatively charged phosphate group and the surrounding

charged residues. The functional roles of charged residues range from stabilization

to correct substrate identification and facilitation of conformational changes.

Although numerous previous studies have focused on structural properties of phos-

phorylation sites [81, 80, 79] no systematic analysis has been performed combining

large-scale quantitative data with structural features. To bridge this gap we here

build on data from a recent study by Olsen et al., which elucidated phosphorylation

site occupancy during mitosis [65]. Quantitative data were measured at six time

points, corresponding to major phases of the cell division cycle. The additional

temporal dimension of these data makes it possible to examine how various phos-

phorylation sites are dynamically regulated. Olsen et al. clustered sites according to

their distinct phosphorylation patterns and similarities in regulation with the aim

to infer each sites functional importance. Here, in contrast, we focus on structural

properties of the phosphorylation sites and, for the first time, distinguish between

two groups of sites with respect to the overall variation of phosphorylation over time.

We find that sites that lie within regular secondary structures exhibit less variable

phosphorylation fold changes during the cell cycle than sites that are found in dis-

ordered regions. Analysis of the amino acid composition of the flanking regions

of these two groups of sites revealed enrichment of positively charged residues and

depletion of disorder-related residues such as proline, serine and threonine in the

former group.
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Figure 3.1: Temporal phosphorylation patterns of phospho-sites with distinct

structural properties. Phosphorylation fold changes of three sites (UniProt accession

number and residue identification number are given) during the six time points is shown

together with their corresponding local structure. From left to right the phosphorylation

variation over the six time points increases, together with the level of disorder: from (A)

regular secondary structure (-helix or -sheet) through (B) irregular coils and loops to (C)

disordered regions. Phospho-serine residues (pS) within regular regions and loops show

small fluctuations in their phosphorylation levels, while larger changes occur in disordered

regions.

3.2 Variation of phosphorylation in disordered re-

gions

Using the data from the Olsen et al. investigation [65], we here computed the over-

all variation of the phosphorylation ratios during six time points of the cell cycle

and investigated the differences between the sites with small variation as opposed

to the sites with large variation. The original data set comprised 6,027 proteins

with 20,443 unique phosphorylation sites. We retained only those sites that had

quantitative information for all six time points available (1,059 proteins with 5,173

sites). The phospho-site variability is calculated as the standard deviation of the

phosphorylation ratios over the six time points measured during the cell cycle.
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We sought to investigate a possible relation between the structural organization of

the environment in which a modified residue is found and the experimentally mea-

sured changes in phosphorylation during the cell cycle. To do so, we compared the

phosphorylation variation of two groups of sites. These two groups were composed

of sites that reside in ordered regions and sites that lie within disordered regions as

predicted with DISOPRED [168]. In agreement with previously observed tendency

we found over 90% of the modified residues to lie within disordered regions (4,675

sites versus 498 sites). Figure 1 shows three examples from our large-scale dataset,

illustrating a non-variable site on a regular secondary structure (-helix), a slightly

variable site on a short loop and a variable site in a disordered region.

Our results revealed notable differences in the distributions of phosphorylation vari-

ations of the two sets (Kolmogorov-Smirnov test p-value 6.6E-13). The sites associ-

ated with structurally characterized regions were found to exhibit smaller changes

in phosphorylation during the cell cycle (median 1.77) as compared to sites located

in disordered regions (median 2.22, Figure 2A).

3.3 Phosphorylation variability scales with the level

of structural order

Having investigated the difference between ordered and disordered regions on a

global scale, we next predicted protein secondary structure in more detail using

PsiPred [169]. First we classified sites into regular structures (92 in -helices or

53 in -sheets) and sites with irregular structures (5,028 in loops, turns and coils).

Phosphorylation in regular secondary structures showed smaller variation over the

six time points of the cell cycle. This effect was small but statistically significant

(ANOVA p-value 1.8E-04).

Although there is a large intersection between ordered structures and regular sec-

ondary structures, and the terms are often used interchangeably, the two sets are not

identical. We observed that a large number of regions predicted as coil by PsiPred

are predicted as ordered by DISOPRED. This reflects a distinction between ordered

and disordered coils. A major difference between these two groups of coils is the

length distribution of their elements (p-value 4.12E-114): ordered coils are much
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Figure 3.2: Comparison of phosphorylation variation of sites within different

structural categories. A) Sites within ordered regions (blue) show smaller variation of

the phosphorylation fold change over the cell cycle than those within disordered regions

(red). The significance of the observation has been tested with Kolmogorov-Smirnov test

(p-value 6.6E-13). (B) The variation of phosphorylation changes over the cell cycle scales

with the structural propensities of the phosphorylated residues: from lowest in regular struc-

tures (blue) to highest in disordered regions (red). The observed differences were found to

be significant by ANOVA test (p-value 3.02E-09).

shorter on average as they mainly correspond to turns and short loops connecting

regular secondary structures. By contrast, disordered regions are longer and repre-

sent large protein regions lacking defined structure (see Text S1 for details).

In order to take this distinction into account, we redefined the structural environ-

ments into three categories: regular structures (predicted as helix/sheet and or-

dered), irregular structures (predicted as coil and ordered), and disordered regions
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(predicted as coil and disordered) (Figure 2B). We found significant differences in

the variation of the phosphorylation ratios between these distinct structural groups

(ANOVA p-value 3.02E-09). Sites within ordered structural environments appeared

to be subjected to the lowest level of regulation during the cell cycle (median 1.65).

Interestingly, a distinction emerged between coils (median 1.83) and disordered re-

gions (median 2.22), signifying that the latter exhibited the largest variation in

phosphorylation changes. We speculate that the increased variation of phosphoryla-

tion in longer, disordered coils correlates with their higher solvent exposure, which

makes them more easily accessible for both kinases and phosphatases. Overall, our

data shows that the phosphorylation variation of a site clearly scales with the level

of order of its structural context (i.e. the tendency of a site to be found within a

regular, irregular or disordered region).

3.4 Amino acid content of flanking regions of phos-

phorylation sites

We wanted to investigate if sites with distinct phosphorylation patterns over the cell

cycle differ not only according to structural context, but also with respect to the

amino acid content in their local sequence environment. A two-sample logo [233] was

computed to contrast the two data sets, using the highly variable sites as a negative

set (Figure 3). For each position and each possible amino acid, a two sample t-

test was used to evaluate the null-hypothesis that the vectors of residues at a given

position in both the positive and negative data sets (i.e. low and high variation) come

from the same distribution. We found statistically significant enrichment of charged

amino acids and depletion of proline, serine and threonine in the surrounding of

sites with small phosphorylation variability (p-value ¡ 0.05). Additional comparisons

of the amino acid distributions of the two sets against a background distribution

accounting for structural differences using the composition profiling technique [234]

revealed similar trends (see Text S1 for the detailed analysis and results).

The enrichment of serine and threonine residues in the vicinity of the detected

phosphorylation sites could correlate with additional modification events. To check

this hypothesis, we determined if multiple phosphorylation sites are found with

higher preference in disordered regions. Phosphorylation sites that had at least
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one neighboring phosphorylation site in both ordered and disordered regions were

compared. A neighbor was defined as any phosphorylated residue that lies within

+/-1,2,3,4, or 5 residue-long flanking region of a given modification site. Regardless

of which of these five cut-offs was chosen, multiple phosphorylation sites were always

highly significantly enriched in disordered regions (Table 3.1).

Figure 3.3: Two sample logo of flanking regions of phosphorylation sites of

low versus high phosphorylation variation. Amino acids in the top and bottom parts

(A) central residue serine and (B) central residue threonine) represent residues, which

are enriched or depleted correspondingly in the flanking regions of sites with small phos-

phorylation variation. Strong preferences are found for charged residues such as arginine,

aspartate, and glutamate. In contrast, the majority of the amino acids that are more

frequent in the negative set (i.e. variable phosphorylation set) are disorder-related e.g.

proline, serine and glycine.
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Table 3.1: Enrichment of multiple phosphorylation sites in disordered regions.

Distance+- Odds ratio P-value

1 1.45 8.15E-04

2 1.64 1.80E-07

3 1.69 6.86E-08

4 1.90 3.72E-10

5 1.96 2.36E-10

The enrichment of additional phosphorylation sites at different distances from the

central modified residues was computed. The odds ratios were calculated with the

Fishers Exact test implemented in R. Multiple phosphorylation sites were found

significantly more often in disordered regions for any of the considered distances.

3.5 Conservation of phospho-sites with different

structural context

Next, we were interested in potential differences in evolutionary constraints on the

phospho-sites in structured and disordered regions. When analyzing conservation

it is important to take into account the different evolutionary rates of disordered

and ordered regions. We therefore compared conservation scores between phospho-

rylated serines, threonines and tyrosines with control serine, threonine and tyrosine

residues with a similar structural background. We define the set of control residues,

as all potential phosphorylation sites that were not found to be phosphorylated in

the study of Olsen et al [61].

As expected, phospho-sites that were predicted to lie in regular regions appeared

significantly more conserved than phospho-sites in disordered regions (p-value 3.23E-

120), due to the more conserved structural background of the former (Figure 4). In

agreement with a previous study [82] modified residues in regions that lack de-

fined structure were more conserved than the control serine, threonine and tyrosine

residues with the same surrounding environment (Mann-Whitney Wilcoxon test p-

value 3.4E-03). The same holds true for phospho-serine, phospho-threonine and

phospho-tyrosine in ordered regions as compared to their equivalent control sets (p-

value 2.24E-16). Despite the small size of the effect (groups means -0.38, -0.28, 0.14
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and 0.22 for pS/pT/pY ordered, S/T/Y ordered, pS/pT/pY disordered and S/T/Y

disordered respectively) the higher evolutionary pressure on phosphorylated residues

suggests functional importance of these sites in a broad range of species.

Figure 3.4: Conservation of phosphorylated sites versus conservation of con-

trol sites taking into account local structure. Lower values correspond to slower evo-

lutionary rate and higher conservation. Phosphorylation sites predicted to lie within regular

structures (in blue, pS/pT/pY regular) appeared to be more conserved than their equivalent

non-phosphorylated residues from the same proteins (p-value 2.24e-16). The same ten-

dency was present for modified sites in disordered regions (in red, pS/pT/pY disordered),

which were also subjected to a statistically significant slower evolutionary rate than their

control set (p-value 3.4E-03). Phosphorylation sites in regular structures showed higher

conservation than that of phosphorylation sites in irregular structures (p-value 3.23E-120).

3.6 Motif decomposition with the 2D annotation

enrichment technique

We next asked if different groups of kinases would exhibit preferences for less vari-

able or highly variable phosphorylation sites. To identify kinase recognition motifs

that show similar behavior with respect to two variables protein disorder and phos-

phorylation variation, we used the recently described 2D Annotation Enrichment

technique (see Materials and methods and [235]). It employs a two dimensional gen-
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eralization of the nonparametric two-sample test to detect preferences of a certain

group of elements for two numerical attributes simultaneously relative to all other

elements. The motifs separation is plotted in Figure 5 (the complete data are avail-

able in Table 2). The general trend between disorder and phosphorylation variation

is reflected in the plot as sites with more disordered background show also higher

variability. For individual kinases a very clear separation reflecting their preference

for specific amino acids in their consensus motifs becomes apparent. Overall, four

classes can be distinguished: (i) tyrosine kinases (black squares), (ii) proline-directed

kinases (red circles), (iii) non-proline directed kinases with charged residues in their

substrate recognition motif (green and blue triangles) and (iv) proline-oriented ki-

nases, which contain a proline residue in their motif (red triangles and pentagons).

Figure 3.5: Kinase motif decomposition based on phosphorylation variability

and structural preferences.The preferences of various kinases for sites with specific

structural background and phosphorylation variation were calculated by the 2D Annotation

Enrichment technique (see Materials and methods). In general four classes can be dis-

tinguished: (i) tyrosine kinases (black squares), (ii) proline-directed kinases (red circles),

(iii) non-proline directed kinases with charged residues in their substrate recognition motif

(green and blue triangles corresponding to acidophilic and basophilic kinases respectively)

and (iv) proline-oriented kinases, which contain a proline residue in their motif at position

different from +1 relative to the modification site (red triangles and pentagons).

The class of tyrosine kinases shows a strong preference for low phosphorylation
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variability and structured regions, whereas the other three classes favor more dis-

ordered regions, but span a wider range of phosphorylation variation values. Also

among the latter three groups higher quantitative variability is clearly associated

with higher disorder. As seen in Figure 5, basophilic and acidophilic kinases occupy

the regions on the graph corresponding to low phosphorylation variation, whereas

proline-directed kinases are located on the right part of the graph, demonstrating

their preference for more variable sites. The motif corresponding to the highest

variability is the consensus motif for the proline-directed CDK5 kinase, which is in

agreement with the important regulatory role of this enzyme during the cell cycle.

The proline-related class represented by two acidophilic, one basophilic and one

atypical protein kinases shows preferences for intermediate level of disorderedness

and phosphorylation variation properties. The Casein kinase II is characterized by

various substrate recognition motifs [236], but the main differences are related to

presence or absence of a proline residue preceding the phosphorylated site. These

two motifs show distinct structural and variation preferences the former type being

more similar to proline-directed kinases and the latter to non-proline ones. The

occurrence of the G protein-coupled receptor kinase 1 (GRK1) near the proline-

directed kinases (red triangle) can be explained analogously by the presence of a

proline residue in the consensus sequence for that kinase. Interestingly, the reported

consensus motifs of the MAPKAPK2 kinase (blue triangle) do not contain proline

residues, however, it is still grouped together with the more variable kinase motifs.

After careful examination of the amino acid composition of substrates of the MAP-

KAPK2 kinase in our data set we found multiple examples that contained proline

within +/-6 residue window around the phospho-site. Together with our structural

analysis, this suggests that this residue may play an important role in the substrate

recognition. Overall, the group of proline-oriented kinases has similar preferences

for disorder and phosphorylation variability as the proline-directed group. This

observation also extends to the functional relevance of the member kinases to the

regulation of the cell cycle. For example, the DNA-dependent protein kinase (DNA-

PK) is involved in stress response and DNA repair and is known to play a role in

the progression of the cell cycle [237]. Furthermore, the MAPKAPK2 kinase is in-

volved in DNA repair processes and thus can provide an alternative to checkpoints

activation [238].
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Proline-directed kinases such as PLK1 are known to actively regulate the progression

of the cell division cycle, thus implying that disordered regions (which are enriched

for prolines) are subjected to regulation and therefore to variable phosphorylation

patterns. We therefore checked if the tendency of phosphorylation variability to

scale with the level of disorder persists if we control for proline-directed kinases and

excluded all sites modified by such from the data set. Indeed, the effect of lower

phosphorylation variability being associated with ordered regions and higher - with

disordered regions remained the same.

Table 3.2: Enrichment of kinase recognition motifs with specific preferences for disorder

and phosphorylation variation.

Variation Disorder Benj. Hoch. FDR Names

-0.16 0.06 3.20E-03 Akt kinase

-0.27 -0.33 7.67E-05 ALK kinase

-0.15 0.00 6.19E-05 b-Adrenergic Receptor kinase

-0.13 0.03 7.49E-05 Calmodulin-dependent protein kinase II

-0.22 0.01 2.71E-10 Casein kinase II

-0.04 0.05 1.88E-05 Casein Kinase II

0.52 0.10 6.32E-03 CDK5 kinase

0.07 0.05 2.88E-03 DNA dependent Protein kinase

-0.24 -0.52 5.72E-05 EGFR kinase

0.07 0.07 6.97E-07 ERK1,2 Kinase

0.04 0.05 2.15E-05 G protein-coupled receptor kinase 1

0.01 0.08 5.73E-04 Growth associated histone HI kinase

0.03 0.06 1.76E-03 GSK3 kinase

0.11 0.07 1.04E-09 GSK-3, ERK1, ERK2, CDK5

-0.12 -0.35 1.76E-03 JAK2 kinase

-0.18 0.05 1.84E-03 MAPKAPK1 kinase

0.03 0.05 4.63E-03 MAPKAPK2 kinase

-0.10 0.03 1.26E-05 PKA kinase

-0.09 0.02 8.09E-05 PKC kinase

-0.08 -0.18 1.83E-04 Src kinase

The enrichment of kinase substrate motifs with specific preferences for disorder and phos-

phorylation variation was calculated with the 2D annotation enrichment technique [235].
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3.7 Discussion

Previous studies had already found a prefeence of phosphorylation to occur in loops

or disordered regions [81, 80]. However, those studies generally did not have access

to the dynamics of phosphorylation and they therefore based their analysis on the

absence or presence of phosphorylation sites alone. Here, we instead made use of

a large-scale quantitative phosphorylation data set to investigate a possible rela-

tion between the structural features of phosphorylation sites with their degree of

regulation. This allowed us to contrast the behavior of less variable sites to those

that were dynamically regulated. Our data clearly demonstrate that the propensity

of phosphorylation sites to be regulated during the cell division cycle is related to

the level of structural organization of the environment in which these sites reside.

Furthermore, we discovered that this effect occurs in a graded manner: regions with

regular structure are least likely to harbor regulated phosphorylation sites, followed

by irregular regions (short loops or random coils). Note that over 90% of the sites

were found within disordered structures and their high phosphorylation variability

relates them to regulated phosphorylation events.

Interestingly, the sets of sites within ordered loops and disordered structures showed

significant differences. It has been shown before that different flavors of disordered

regions exist with regards to their lengths, amino acid composition, and the confor-

mational transitions that they undergo upon binding [239, 182]. Liu et al. defined

regions with no regular secondary structures (NORs) as one specific category of

disordered regions. They demonstrated that NORs differ significantly from regular

structured loops and argued that these might have different functional implications,

a hypothesis which finds support in our study.

Functional analysis of the highly variable set of sites revealed enrichment of cell

cycle-related, biosynthesis and cellular organization and localization processes (Ta-

ble S1). Some examples are RNA, DNA and mRNA processing, localization and

transport, regulation of gene expression and biosynthesis. Cell cycle-associated pro-

cesses such as regulation of the different phases of the cycle, DNA replication and

repair, telomere organization and maintenance and chromatin assembly were also

strongly over-represented in the variable set of sites.
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Phosphorylation is an important mechanism for regulation of a myriad of intricate

processes during cell division. A detailed study of the cell cycle regulation through

phosphorylation focused on functional analysis of protein groups that are up or down

regulated at specific time points [61]. These were the proteins that contained sites

that reached phosphorylation peaks at S or M phases. As expected, proteins involved

in mitotic and cell cycle processes were shown to be maximally phosphorylated at

mitosis. Interestingly, Olsen et al. found proteins that regulate metabolic processes

to be weakly phosphorylated during S phase and highly phosphorylated at mitosis.

An explanation to this discovery is the possibly inhibitory character of phosphoryla-

tion on proteins that regulate metabolic processes, as protein synthesis and related

functions tend to shut down during mitosis. Furthermore, DNA replication takes

place during S phase, which rationalizes the up-regulation through phosphorylation

of various proteins involved in DNA replication repair. High phosphorylation of

cytokinesis-related proteins in S phase appears to play an important role in the con-

trol of the correct segregation of the two daughter cells.

The tendency of modification sites in regular structures to be less variable may be

facilitated by proximal charged residues acting as stabilizers of the phosphate group.

Charged flanking regions offer a suitable environment for hosting a phosphate group

and allow for favorable interactions that potentially result in phosphorylation acting

on a longer time scale. For instance, these favorable interactions could reduce the

efficiency of phosphatases in removing a phosphate group, thereby contributing to

the tendency for smaller variation in the phosphorylation level that we observe in

our data. In contrast, negatively charged residues could lead to repulsion-driven

conformational changes and polarization of the entire protein surface by creating

clusters of negatively charged residues.

Several mechanisms that are known from literature furthermore contribute to the

observed tendency for structural rather than regulatory phosphorylation sites to be

present in ordered regions. Specific structural changes due to phosphorylation in-

clude stabilization of the N-termini of -helices via favorable interactions of the added

phosphate group with the helix backbone [240]. This is effected by the interaction

of the phospho group with the helix dipole moment. Yet, the same modification

introduced at the C-terminus would have the opposite effect [241]. The optimal sta-

bilizing position for the phosphate group was estimated as -2 relative to the N-cap
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of a helix. Additionally, favorable electrostatic interactions between proximal posi-

tively charged residues (e.g. at a helix cap) and the phosphate group can enhance

helix formation. The stabilizing effect of salt bridges formed between a phosphate

group and a lysine side-chain has been recognized as one of the strongest possible

-helix inducers [242]. In contrast, the phosphate-guanidinium interaction leads to

disruption of the local regular structure [243]. Phosphorylation has also been re-

ported to cause conformational changes in -sheets and disruption of -hairpins. In

those cases repulsive interactions with an aromatic tryptophan residue in the spa-

tial vicinity of the phospho-site are observed [244]. A related question that arises

from our investigation is to what extent the phosphorylation variability of a site is

connected to a role in the overall structural re-arrangements of a protein. A phos-

phorylation event can alter the energy that is required for a conformational change

[232], and thus hinder or facilitate it. Further experiments including 3D structural

information or computational models are needed to increase our understanding of

the interplay between structure and phosphorylation.

Multiple experimental studies show the regulatory role of modification sites that

show variation in their phosphorylation patterns and lie within intrinsically disor-

dered regions For example, the cyclin-dependent kinase inhibitor 1B (p27) is an

intrinsically unstructured protein, which is multiply phosphorylated and regulates

the cell cycle by inhibition of cyclin-dependent kinases (CDKs) [245]. The disor-

deredness of p27 plays an important role in keeping the complex formed between

CDK and p27 flexible. Due to this flexibility the segment, which blocks the ATP

binding site becomes exposed. This allows a tyrosine residue to become accessi-

ble for phosphorylation, upon which the space previously occupied by the inhibitor

becomes available for ATP binding. Then the partially reactivated CDK phospho-

rylates p27 at another residue, which leads to its degradation and allows CDK to

regain full activity and guide the progression through the cell cycle [246].

In another example, multiple phosphorylation sites on the transcription regulator

Retinoblastoma protein (Rb) influence its ability to interact with transcription fac-

tors and other regulatory proteins. A detailed structural study reports that the

different phospho-sites found within disordered regions induce distinct conforma-

tional changes and also serve different functional roles [247]. For instance, one of

the modified residues decreases the affinity of Rb for binding the transcription factor
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E2F by reordering the pocket domain. At the same time another modified site at a

loop in the pocket domain induces complete blocking of E2F binding.

We found that the set of sites with varying phosphorylation patterns was enriched

in amino acids associated with disorder, specifically Pro, Gly and Ser. Interestingly

the same sites were more likely to have additional modified residues in their vicinity.

Phosphorylation of a protein often occurs at several distinct residues and it has been

reported that modification sites tend to cluster and function in a cooperative man-

ner [248]. Mathematical models suggest that this phenomenon leads to an increase

in the sensitivity and robustness of the cellular response [206] and may promote a

switch-like behavior [203]. In such a case, the exact position of a modification site

in a cluster would not be a determining factor on its own, but would rather con-

tribute to a cumulative effect. It would be worth studying how different levels of

phosphorylation variability in regions with different structural organization may be

implicated in the cellular regulation of the cell cycle. Multiple phosphorylation sites

with highly dynamic phosphorylation patterns may be suitable for both rapid and

robust response. In contrast, the robustness of the response of sites within regular

regions might be achieved on a longer time scale and be related to longer lasting

effects of phosphorylation.

We showed that phosphorylated residues tend to be more conserved than their equiv-

alent non-modified residues. Conservation of phosphorylated residues has been a

broadly debated issue [82, 112], but the general consensus appears to be that the

overall conservation of phospho-sites is low. Even though statistically it is signif-

icantly stronger than that of the equivalent non-modified sites, the effect size is

relatively small. Possible explanations include (i) loss and gain of phospho-sites at

different positions in disordered regions, likely due to clusters of sites acting as func-

tional units regardless of the exact sequence position [249] and (ii) potential silent

phosphorylation events [112].

The idea that it is the cluster of phosphorylation sites that plays a functional role

is becoming increasingly accepted [248, 206]. The functional roles of multiple phos-

phorylated residues span a wide range: (i) targeting for sub-cellular localization, (ii)

targeting for degradation, (iii) control of protein-protein and protein-nucleic acid

interactions (often through electrostatic effects) and (iv) enhancement of a robust
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and rapid response to a stimulus [54]. Furthermore, mechanisms of priming phos-

phorylation are also well-known [250].

Here we showed that disordered regions harbor variable sites, which tend to be

surrounded by additional phosphorylated sites. This raises the possibility that the

variability of these sites is related to some of the above-described phenomena. It

is known that disordered regions can facilitate a large number of interaction part-

ners, and that multiple sites can control their association and dissociation. Given

the wide range of functions of multiple phosphorylated sites in disordered regions, a

larger variability in their phosphorylation patterns may provide an adequate func-

tional mechanism to effect the desired regulation. In contrast, structural regularity

imposes certain constrains on the less variable sites. The necessity of evolution-

ary conservation of the structure tends to prevent the accumulation of disorder-

associated serine and threonine residues and a consequent change of their positions.

Furthermore, the more rigid structure implies a more limited number of interactions

partners. Therefore, we reason that the requirement for regulation for these sites in

structured regions can be smaller.

Our data allowed us to investigate the kinase preferences of phosphorylation sites

with high vs. low levels of regulation. Tyrosine kinases and kinases that require

charged residues in their substrate recognition motives clearly preferred sites with

smaller phosphorylation variation, whereas proline-directed kinases were clearly as-

sociated with sites that were dynamically regulated. Proline is known to be a helix

and sheet breaker, due to the planarity of its side-chain. Proline lacks an NH back-

bone donor to form a hydrogen bond and thus disrupts the formation of regular

hydrogen bond patterns, which are the basis of regular structure formation. Due to

its unique stereochemistry the proline residue can adopt two different conformational

states cis and trans and a large number of folded proteins contain both states of

the residue. The intrinsic conformational changes resulting from the proline isomer-

ization play an important role in determining the function, ligand recognition and

interactions of the protein [251]. For instance, certain kinases, such as MAPKs and

CDK2 preferentially modify substrates with the trans isomer [75]. Proline isomer-

ization in a S/TP motif, where S/T is phosphorylated, can also control the opposite

step dephosphorylation, as some phosphatases appear to be conformation-specific

and prefer the trans state [252]. Therefore, the preference of proline-directed kinases
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for sites with higher variation illustrates a connection between dynamic regulation

and disordered regions.

3.8 Materials and methods

Computation of phosphorylation sites with high and low variability over

the cell cycle

In the data set underlying our analysis [65], human HeLa S3 cells were labeled with

SILAC [5, 32] to produce three different isotopic forms of lysine and arginine (light,

medium and heavy). The light and heavy isotopes were synchronized in six differ-

ent stages of the cell cycle, while the medium one was kept non-synchronized as

a reference. Relative quantification of protein abundances (protein ratios) and/or

phosphorylation (phospho-peptide ratios) were computed by taking the ratio be-

tween two cell states at each time point (i.e. synchronized heavy-labeled cells in

S phase and non-synchronized medium-labeled cells). In order to account for the

possible influence of protein abundance, changes in the phosphorylation ratios be-

tween the reference and the stimulated cells were normalized by the protein change.

We mainly focused on the phosphorylation ratios as they were available for a larger

number of sites compared to the absolute occupancy values.

The data set contained information about the UniProt id of the phosphorylated

protein, sequence positions of phosphorylated residues, and quantitative measures

of phosphorylation (normalized phosphorylation ratio) at 6 time points (i.e. cell

cycle phases: G1, G1S, Early S, Late S, G2 and M). In total 1,059 proteins and

5,173 phosphorylation sites with measured phospho-ratios for each of the six time

points of the cell cycle were used in the analysis.

In order to assure that the observed phenomena are not due to the properties of the

chosen subset of sites, we repeated the analysis of phosphorylation variation between

different structural groups with data sets containing five (5,254 sites), four (8,537

sites), and three (8,731 sites) time points only (see Text S1 for details). Although

slight fluctuations were observed, the main tendencies remained stable and the con-

clusions did not change. Therefore, no bias in the reduced data set (i.e. the one
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containing information about all six time points) was found.

Phosphorylation variation value for each modified site was computed as the stan-

dard deviation of the phosphorylation ratios over the six time points. High variation

corresponds to sites with temporal variation of phosphorylation ratios (e.g. a peak

is observed in S phase), while low variation describes those sites that retain constant

or slightly variable phosphorylation fold change during the cell cycle.

Structure prediction and structural categories

The secondary structure of each site was predicted with PsiPred [169]. Each site

was assigned one of three possible states: H for -helix (92 sites) E for -sheet (53

sites), and C for random coil, turn or loop region (5,028 sites).

An intrinsic disordered state was also predicted for each site using DISOPRED [168]

with standard settings. We found 498 sites to be in the order state while the re-

maining 4,675 were predicted to be in the disorder state.

Based on a combination of secondary structure and disorder predictions, we defined

three distinct structural categories for each phosphorylated site: (i) regular regions

(helices and sheets in ordered regions, 145 sites), (ii) irregular regions (coils in or-

dered regions, 353 sites), and (iii) disordered regions (coils in disordered regions,

4,675 sites).

Statistics

Statistical analyses were performed within the R environment [170] and using the

in-house statistics work frame Perseus. The lattice package was utilized for com-

paring distributions of phosphorylation variation in different structural categories.

Differences between distributions were assessed with the standard non-parametric

Kolmogorov-Smirnov test. In the case of three structural categories, analysis of vari-

ance of the phosphorylation fold change was performed using the structural category

as an independent variable. Data on phosphorylation site variation and structure

predictions are available in the Supporting material (Table S2). Enrichment of func-

tional Gene Ontology (GO) categories was performed with the GOrilla tool [253].

Evolutionary analysis of phosphorylation sites

We performed conservation analysis on phosphorylated residues in ordered and dis-
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ordered regions. The proteins from our data set were mapped to pre-computed

EggNOG groups of orthologs [180]. We used the maximum likelihood-based rate4site

algorithm to build phylogenetic trees from the EggNOG clusters and to compute

residue-based evolutionary rates [181]. Lower evolutionary scores correspond to

stronger conservation.

The control sets of sites were defined as all serine, threonine and tyrosine residues

from the phospho-proteins that were not measured to be phosphorylated in our data

set with equivalent structural background (i.e. disordered and ordered as predicted

by PsiPred [169]).

Enrichment of proximal phosphorylation sites in disordered regions

We tested if disordered regions are enriched in multi-phosphorylation sites, as com-

pared to ordered regions. We considered phosphorylation sites with at least one

modified neighbor as multi phospho-sites. A neighbor residue is defined as a phos-

phorylated serine, threonine or tyrosine located within +/- 1,2,3,4 or 5 residue-long

flanking regions of a central phospho-site. For each cut-off length, we built a contin-

gency table. Each contingency table contained the number of sites with and without

neighboring phospho-sites for both ordered and disordered regions. The significance

of the enrichment was estimated with the Fishers Exact Test.

2D Annotation Enrichment Technique

The 2D Annotation Enrichment technique [235] enables analysis of the preference

of a certain group of elements (i.e. phosphorylation sites, characterized by the same

consensus motif) for two numerical attributes simultaneously relative to all other

elements (in our case all other phosphorylation sites). It employs a two dimen-

sional generalization of the nonparametric two-sample test and uses the Benjamini-

Hochberg method to correct for multiple hypotheses testing. We used the default

settings to distinguish the statistically significant groups, corresponding to false dis-

covery rate ¡ 0.01. We used the Human Protein Reference Database motif definitions

in this analysis [236].

Two sample logos

The difference between the amino acid content of the flanking regions of the sites

with low and the sites with high phosphorylation variation was computed, assessed
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and visualized with the help of the Two Sample Logo method [233]. The highly

variable set was used as the negative set. Residues significantly enriched in a certain

position are shown above the horizontal line in the logo.
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Chapter 4
Framework for efficient feature selection

and classification of cancer proteome

profiles

4.1 Introduction

Clustering techniques have been shown to perform well on proteome profiles derived

from cell lines due to the relatively low sample complexity and the lack of high bi-

ological variability. For example, Geiger et al. studied the quantitative differences

in the proteomes of cell lines from different stages of breast cancer [254]. First they

used T-test-based statistics to determine the proteins that showed significant varia-

tions. From the total of 7,800 proteins approximately 50% were found to significantly

change their expression levels and these were retained for further analysis. Using

unsupervised hierarchical clustering the authors were able to distinguish two main

groups that exactly corresponded to tne basal and luminal subtypes. Subsequent

analysis using T-test statistics resulted in the identification of potential biomarkers.

In another study the proteomes of two diffuse large B-cell lymphoma subtypes were

compared [127]. Clear subtype segregation was achieved with hierarchical clustering

of the expression profiles of the samples and the groups were shown to be separable

by the first component of a principal component analysis. The actual complexity

of comparative analysis of proteomics experiments was illustrated in the study by

Wisniewski et al. [132]. The proteomes of tissue samples from normal mucosa, pri-
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mary and metastatic colon cancers were compared. More than 7,500 proteins were

quantified using the MaxQuant label free quantification algorithm [6]. Between the

normal mucosa and the two cancer tissue types more than 1,800 proteins were sig-

nificantly differentially expressed. These strong differences were easily detected in

an unsupervised comparison, in which the normal tissues clustered together instead

of clustering according to patients of origin. The unsupervised approach, however,

failed to detect the subtle differences between the proteomes of the primary and the

metastatic cancer sets. Instead, in this case the samples were grouped together in

corresponding pairs (primary and its nodal metastasis coming from the same pa-

tient). This result exemplifies the limitations of unsupervised techniques in cases

when the signal due to biological variability is much stronger than that coming from

the disease stage and clearly demonstrates the need for more sophisticated analysis

methods (probably in addition to larger data sets).

Supervised learning methods are now becoming the state-of-the-art techniques in

the analysis of large scale mass spectrometry-based data. Decision trees [255, 256],

Bayesian neural networks [257] and support vector machines (SVMs) [136] are among

the methods that are used. However, in order to overcome the limitations associated

with the nature of the data, such methods need to be combined with efficient feature

selection and noise reduction techniques [258, 259]. Furthermore, special care has

to be taken to assure that all methods are used correctly and overfitting during the

evaluation of the classifier’s accuracy is minimized.

In this chapter the performance of SVMs in combination with efficient feature se-

lection techniques is explored and discussed in detail. A feature ranking technique

based on the weights of the instances computed during the training of a classifier is

implemented in a recursive manner to improve the quality and the relevance of the se-

lected features. All methods are integrated as a plug-in into the Perseus framework,

which enables downstream analysis of large-scale proteomics data. This ’Learning’

plug-in supports classification and prediction, feature selection and parameter op-

timization and allows any desired combination between the implemented methods.

The user is prompted to use cross validation during both processes of classification

and feature selection in order to guarantee good generalizability of the results. The

dataframe used in the software is a matrix containing instances in the columns and

features in the rows by default, but a swapped orientation is also supported. The
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output is also in the form of matrices, which can be conveniently used for further

functional analysis in the Perseus framework.

4.1.1 Support Vector Machines (SVMs)

The Support Vector Machines technique allows building accurate classifiers in both

linearly-separable and linearly-inseparable problems. The binary nature of SVMs,

however, requires their extension to multi-class problems. In the simplest case of

a two-class problem with linearly-separable classes, a classifier is trained to find a

linear decision boundary (a hyperplane) in a high-dimensional space that separates

the groups in the data. The decision hyperplane is defined by a weights vector w (a

normal perpendicular to the hyperplane) and an intercept term b (Eq.4.1), where x

denotes the set of feature vectors. As numerous such hyperplanes exist, the main

task becomes the maximization of the distance between the hyperplane and the

nearest training examples, known as margin maximization, where the margin equals

2/|w|. The instances lying on and within the margin constitute the support vectors,

which are used in the actual prediction of the class of a new unlabeled instance. The

margin size can be further controlled to allow for misclassifications in the training set

with appropriate penalties (Eq. 4.2). Using the so-called soft margin increases the

classifier’s generalizabilty. The size of the soft margin is controlled by the penalty

parameter C (large values correspond to large penalties for misclassification and

resemble a hard margin classifier) and a slack variable ξ which measures the degree

of misclassification.

D(x) = w · x+ b (4.1)

where w is the weights vector and b is a bias value.

minw,b,ξ
1

2
wTw + C

l∑
i=1

ξi (4.2)

subject to yi(w
Txi + b)<1− ξi and ξ ≥ 0 (4.3)

In the case of linearly separable classes, the decision function is a linear discriminant

function based on the weighted sums of the training instances plus some bias (Eq 4.1)

and all instances can be separated without errors. Often the underlying patterns in

the data do not allow linear separation and instead require the definition of complex
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functions to build a good classifier. Support vector machines use kernels to deal

with such situations. With the help of kernels the original finite space is mapped to

a high dimensional feature space. The hyperplanes in the higher dimensional space

are represented by all points defining a set, whose inner product with a vector in

that space is constant. As the SVMs depend on the data only through dot products,

it is possible to compute the dot products even at a high dimension at low cost

by applying the so-called kernel trick, i.e. the dot product is replaced by a kernel

function. The kernel functions should be such that the distance between any two

points in space xi and xj is defined in the transformed space and has a relation to

the distance in the original space. Some of the most commonly used kernels are:

linear : K(xi, xj) = xTi xj (4.4)

sigmoid : K(xi, xj) = tanh(γxTi xj + r) (4.5)

radial basis : K(xi, xj) = exp(−γ|xi − xj|2), γ > 0 (4.6)

polynomial : K(xi, xj) = (γxTi xj + r)d, γ > 0, (4.7)

where γ is the slope, d is the degree of the polynomial and r is a constant.

A more detailed explanation of the SVMs can be found in the following SVM meth-

ods papers [163, 164, 260, 261].

4.1.2 Feature selection

The importance of feature selection for classification has long been recognized [258,

259]. Using a subset of the total number of features often leads to an improvement

in the prediction performance of the classifier as noisy and irrelevant features are

discarded. Furthermore, focusing only on highly-relevant and specific features may

help to gain a deeper understanding of the underlying patterns in the data. Train-

ing a prediction with a smaller number of features further improves its speed and

efficiency. Dimensionality reduction is particularly useful in classification problems

emerging from proteomics data, as they are often characterized by a relatively small

sample size and a large feature space. Essentially, two main applications of feature

selection are distinguishable: (i) dimensionality reduction to create a more accurate

and generalizable predictor and (ii) discovery of a small subset of features that dis-

criminate well between the given classes and in the case of clinical proteomics can
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be utilized as a disease-related signature.

Based on how they interact with the classification model, feature selection algo-

rithms fall in three large categories: wrapper, filter and embedded (for more details

see [262]). The filter approach is applied prior to the classification, is independent

from the classification method and makes use only of the general characteristics of

the data. The ability of each feature to discriminate between the different classes is

estimated separately regardless of its interactions with the other features often using

statistical tests such as ANOVA. All features meeting certain criteria are retained

during the training and testing of the classifier. In contrast, wrapper techniques re-

quire a predefined classification method. The classification method is used as a black

box in the evaluation of the predictive power of a feature or a set of features. The

assessment of the goodness of the selected set is usually done in a cross-validation

procedure. Embedded techniques incorporate the feature selection process directly

into the training procedure of the classifier.

A common problem of numerous microarray and proteomics classification studies is

the inaccurate use of feature selection procedures. Often feature selection is per-

formed prior to the classification and the evaluation of the predictive power of the

selected subset of feature is done on the complete training set. This practice results

in overfitting, imprecise estimation of the classifier’s accuracy and the identification

of biologically-irrelevant or simply unspecific proteins. One possible way to over-

come this problem and to increase the number of the selected disease-associated

proteins is embedding the feature selection in a cross validation procedure. In this

way, estimation of the classifier’s accuracy is always performed on a subset of the

entire set of instances (i.e. within a cross-validation procedure) regardless of the

choice of a feature ranking method. This procedure is followed here.

4.2 Recursive feature elimination embedded in cross

validation

An outline of the feature selection process using the SVM weights-based ranking

method (see Materials and methods section 4.4) and the generation of a ranked

features list is shown in Fig. 4.1. In the first step the data are split into q fractions
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(in the case of Leave-one-out cross validation q equals the number of instances). The

training set is always formed by q−1 fractions and the remaining fraction is used as

a test set. Only the examples from the training set are used in the feature ranking

process.

We have generalized the Recursive feature elimination (RFE) procedure [162] for

multi-class problems as outlined in Figure 4.1. There are two methods for handling

multi-class data: One-versus-Rest and Each-versus-Each. In the first approach,

the number of trained classifiers equals the number of classes, as each classifier is

designed to separate one particular class from all the rest. In the second approach,

c(c − 1) binary classifiers (corresponding to the number of possible combinations

of two groups) are trained, where c equals the number of classes. For example, if

the data contain 3 classes, in the One-versus-Rest approach 3 binary classifiers are

trained. Each of the classifiers is used to rank all features using the SVM-RFE

procedure described in the Material and methods section of this chapter, resulting

in 3 separate lists of ranked features.The three lists are then united into a single

final ranked list as outlined in Figure 4.1. First the best feature from the first list is

added to the final ranked list, then the best feature from the second list and so on

until the best features from all lists are included. Next, the second best feature from

the first list is added and this process continues until all features have been added to

the final list (double entries are not allowed).The united ranked list is then used to

determine the optimal number of features to be used in training a classifier. To do

so, subsets of ranked features of different sizes are used for training and testing and

the classifier’s accuracy is recorded. The optimal number of features is determined

in a cross-validation procedure as outlined next.

Sample set: X with size n, feature set: F

Procedure outline:

1 : for i in (0 : n)

2 : Xtrain = X(0 : i; i+ 1 : n); Xtest = Xi

3 : Rank all features F in Xtrain

4 : for f in 0 : F

5 : Restrict Xtrain, Xtest to f features

6 : Train(Xtrain)

7 : Test(Xtest)

.
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The dataset is split into training and test sets according to one of the standard cross

validation procedures: Leave-one-Out, n-fold cross validation or random sampling.

Then a feature selection procedure is applied on the training set. In the case of the

SVM-RFE, a binary classifier is trained and the computed SVMs weights are used

to calculate the features ranks. To determine the optimal number of features, the

size of the feature subset is gradually varied with a defined step (starting from 1 and

ending with the total number of features) and the accuracy of the trained classifier

using these subsets of features is estimated on each test set. The procedure results

in an error rate curve as a function of the number of features, allowing for accurate

determination of the optimal size or a range of optimal feature set sizes (Fig. 4.1).

4.3 Implementation in the Perseus environment

To enable a larger group of scientists who are not necessary experts in the field of su-

pervised learning to apply such analytical techniques, the above-described methods

were implemented and integrated into the above mentioned statistical analysis envi-

ronment Perseus. Perseus offers a user-friendly graphical interface, which integrates

state-of-the-art statistical tools for functional analysis of large-scale proteomics data.

It is one of the main cores of the MaxQuant suite for identification and quantifica-

tion of peptides and proteins from mass spectrometric measurements. Upon protein

identification and quantification with MaxQuant the user can perform a complete

downstream analysis within the Perseus module. The software is implemented in

C# in a practical format consisting of main core, to which plug-ins are added. This

format allows easy integration of an unlimited number of independent tools that can

then be used together. Already the software includes a wide range of functionalities,

such as data transformation and normalization, statistical tests, functional annota-

tions, enrichment tests, clustering methods and many others.

The supervised learning-related methods are implemented as part of the ”Learn-

ing” plug-in and are designed to work with the rest of the tools. The standard data

frame of Perseus is a matrix, in which instances (samples) are stored as columns and

features (in the case of proteome studies - proteins) are stored as rows. Thus the

input of the Learning plug-in is also a matrix, however, both orientations - samples

as columns and rows are accepted. In a standard proteomics analysis workflow the

94



4.3. Implementation in the Perseus environment

Feature 1

Fe
at

ur
e 

2

Feature 1

Fe
at

ur
e 

2

Feature 1

Fe
at

ur
e 

2

Generate Ranked Lists

Classi�er 1
L1 L2 L3f2023.

fm

..

f38.
fm.
.

f518.

.

.fm

Number of features (log)

Er
ro

r r
at

e(
%

)

0 1 2 3 4 5 6 7 8 9 10 11121314

10
20

30
40

50
60

70

 L1 U L2 U L3

Classi�er 2

Classi�er 3

number of binary classi�ers =
= number of classes

f2023
f38
f518

f52

f52

f52

f52
fm

Identify topN features

Feature Selection Work�owProcedures Outlines

1:
2:
3:
4:
5:
6:
7:

for i in (0:n)
    Xtrain=X(1:i,i+1:n); Xtest=Xi
    Rank all features F in Xtrain (RFE)
    for f in (0:m)
        Restrict Xtrain,Xtest to f 
        Train(Xtrain)
        Test(Xtest)

Procedure:

Sample set: X with size n, Feature set F

Procedure:

1:

Input:

Initialization:

Training set: Xo = [x1...xn]
Class labels:    Y = [y1...yn]

Feature set: F = [1...m]
Ranked list: R = [ ]

2:
3:
4:
5:
6:
7:
8:

while (Feature set is not empty)
Restrict samples to selected features
Train classi�er
Compute weights
Compute ranking criteria
Fnd the worst q features
Update ranked list
Remove worst q features from F

Output:
Ranked list: R

Cross Validation

Recursive Feature Elimination

Figure 4.1: Outline of the feature selection framework with SVM-RFE imple-

mentation. The feature selection is embedded in a corss-validation procedure to avoid

overfitting. Feature ranking is performed on a subset of all samples and the prediction

accuracy of subsets of ranked features of different sizes is then tested on the remaining test

data set. The recursive feature elimination procedure allows optimization of the feature

ranking at every next cycle as weak features are excluded and better decision functions

are computed. Feature selection in multi-class problems is achieved by building c binary

classifiers resulting in c ranked lists of features, which are then combined into a single final

ranked list. The search for the optimal number of features is performed on this final list.

MaxQuant pre-processed raw files can be uploaded into Perseus and subjected to

downstream analysis (Fig. 4.2). The first step is always transformation and nor-
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malization of the data in order to meet the data assumptions of various statistical

methods and to diminish the influence of outliers. After normalization the data are

ready to be used in the ”Learning” module.

Figure 4.2: Loading of clinical proteomics data into Perseus. Proteomics profiles

of patients from two clinically-distinct lymphoma subtypes are loaded into Perseus. The

patient samples are displayed in columns and each row contains protein expression over the

different samples. The known classes are specified in the ’Class’ annotation row: ABC and

GC lymphoma subtype correspondingly. The second annotation row ’SubClass’ contains

information about replicate measurements (triplicates in the lymphoma example). The last

three samples lack labels and are used as a test set.

4.3.1 Classification form

Input form: The Classification option of the Learning module allows assessment of

the classifier’s accuracy and prediction of labels of new unlabeled instances (sam-

ples). Figure 4.3 shows the options available in the Classification form. The clas-

sifier’s accuracy is estimated with the Cross-validation (CV) option. The standard

CV methods are all implemented: n-fold with the number of fractions being mod-

ifiable by the user; Leave-one-out and Random sampling, where both the size of
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the sample to be used for training and the number of samplings can be specified by

the user. As the samples can be organized both in columns and rows the correct

orientation of the matrix has to be specified together with the correct labeling of

the samples (Fig. 4.3). Samples that lack labels are automatically used as a test

Figure 4.3: Perseus Classification input form. In the example Classification with n-

fold cross validation procedure is selected. The ’Predict unassigned items’ option is selected

to enable prediction of samples with unknown labels. The data organization is specified in

the ’Items are in’ fields as follows: ’Class’ corresponds to the sample labels and ’SubClass’

- to the replicates grouping of the samples. Support vector machines is chosen as the

’Classification algorithm’ with Polynomial kernel and default parameter settings.

dataset and their labels are predicted using the classifier trained on the labeled data.

In case the data have been measured in replicates, second grouping indicating the

replicate samples, has to be specified in the Sub-classes option. This information is

then taken into account during the cross-validation procedure by always using all

replicates together for training or testing, which is important to avoid overfitting.

Several classification methods are currently supported: K Nearest Neighbors and

Support Vector Machines. The LibSVM library ([263]) translated into C# is used

as a basis for the SVM-based classification. The user can select from four kernels

(discussed in the Materials and methods section of this chapter): linear, polynomial,

radial basis function and sigmoidal. Upon selection of a kernel, the associated pa-

rameters become modifiable. An optional step is to include feature selection directly

in the classification or cross validation processes. The user is required to specify the
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desired number of features to be used in the learning process. The complete feature

set is then ranked using the user-defined ranking parameters and the top n features

are retained. The feature selection procedure is discussed in detail in Section 4.3.3.

Output description: The output matrix is shown in Figure 4.4. The first columns

contain the decision values generated during the training of the classifier and used

in the class prediction. The original labels of the data (both main and replicates

labeling), as well as the sample names are indicated. The actual prediction is stored

in the ’Winner’ column, whereas competing labels that have been assigned to the in-

stance during the cross-validation procedure are displayed in the ’Winners’ column.

This misclassification column can be a good indicator of wrongly assigned labels in

the training data, especially when a strong tendency towards a particular label is

present.

4.3.2 Parameter optimization form

Performance of an SVM-based classifier depends on the choice of kernel function

that best describes the patterns in the data. However, for optimal performance

optimization of kernel-specific parameters is often necessary. The parameter opti-

mization option in the Learning module of Perseus allows for a parameters space

search (Fig. 4.5).

Input form: The input form is similar to that of the Classification option and speci-

fication of the cross validation procedure, the kernel type and the data organization

are required. All parameters related to the selected kernel function can be optimized

either on a one-by-one basis or in a two dimensional scan. The number of values to

be tested, the step size with which the values are altered and the operation which is

used to alter the values (addition or multiplication) can be defined by the user. For

each value or combination of values of the kernel parameters a classifier is trained

and tested on the specified data.

Output form: The prediction error rate associated with each parameter or parameter

set is computed and stored in the output table. The parameters corresponding to the

lowest error rate can directly be used in a classification procedure or alternatively

can be subjected to further parameter refinement with a smaller step size.
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Figure 4.4: Perseus Classification Result form. The first two columns of the Clas-

sification result matrix contain the actual decision values on which the classifier bases its

prediction. The ’Class’, ’SubClass’ and ’Sample’ columns contain the original data set

assignments when available. Predictions are made for the samples with unknown class.

The predicted class is displayed in the ’Winner’ column. The ’Winners’ column contains

competing predictions, i.e. labels different from the final prediction that have been assigned

to a given sample during some of the steps of the cross validation.

4.3.3 Feature selection form

The Feature optimization option facilitates the extraction of features that discrimi-

nate best between the subgroups in the data. Currently several rank-based methods

are implemented in the software: (i) ANOVA, (ii) Golub score-based and (iii) SVM

weights-based. A detailed description of the underlying theory behind each of them
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Figure 4.5: Perseus Parameter optimization input and result forms. A) Various

parameters of both the classification algorithm and the feature selection method can be

optimized. In the example polynomial kernel is selected and the classification degree and

coefficient are set for optimization in the dual parameter scan option. The number of

values to be tested for each parameter, the starting value and the size of the step with

which the value is altered can be set by the user. B) The parameter values tested as well

as the associated error rate of the classifier are shown in the output matrix.

is available in Section 4.4. Briefly, the labeled set of instances is split into training

and test subsets and the selected ranking method is used to rank all features in the

training set. The top F features are then used for training and prediction, where

top F is gradually increased using the step size defined by the user.

Input form: The parameters of the input form are shown in Figure 4.6. Feature
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Figure 4.6: Perseus Classification feature optimization input form. First, the

classification algorithm and the cross validation type have to be specified. Cross validation

is always enforced in order to ensure the generalizability of the results. Various feature

ranking methods can be used, including SVM weights-based, ANOVA and Golub score-

based methods. The specific parameters for each ranking method can be set by the user.

The size of the step, with which the number of features in a set to be tested is varied, can

be specified in the ’size reduction factor’ option.

selection is always performed within a cross-validation procedure in order to avoid

overfitting. Moreover, a reliable estimation of predictor’s accuracy and selection of

biologically-relevant features are ensured, see Section 4.2).

Output form: Two output tables are generated (Fig. 4.7). The first one is a copy of

the original input table with an additional column: ’Ranks’, which contains the rank

computed for each feature with the selected ranking method. Sorting the column

in ascending order displays the best predictive features on top. The information

about the optimal number of features, i.e. the smallest subset of ranked features

that generates the highest classification accuracy, is stored in the second output

table. It summarizes the classification accuracy and the corresponding number of

features on which the classifier has been trained. Depending on the initial biological

question there are two main usages of the optimal number of features. On one hand,

a new classifier can be trained using only the top F selected features (using the same
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classification and feature ranking parameters and setting the number of features to

F in the Classification form). On the other hand, the selected subset of features

can be subjected to further functional analysis in order to gain a deeper insight into

underlying biological processes.

Figure 4.7: Perseus Classification feature optimization result forms. A) The

first output matrix of the feature optimization form contains information about the error

rates corresponding to the different features sets. In the example a classifier trained on

the top2 ranked features has the highest prediction accuracy. B) The second output matrix

shows a copy of the original input matrix plus the additional column ’Ranks’, containing the

ranks computed during the feature selection procedure. Sorting the Ranks column displays

the features with the highest predictive power on top of the list.
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4.4 Materials and methods

Classification problems are defined by instances in the form of vectors of features. In

the case of clinical proteomics experiments the instances correspond to the patient

samples and the features are the proteins expression values. The goal of supervised

learning is to infer a rule from a set of instances with known labels, which can be

used to assign labels to new instances. Support Vector Machines is a cutting edge

supervised learning technique, which is well-suited for mining of high dimensional

data.

A large range of feature ranking methods exist including correlation-based, mul-

tivariate selection-based, causal relevance-based methods and others [259]. In the

simplest class: correlation-based methods the evaluation of the predictive power of

the features depends on the feature correlation to a particular class.

Golub’s score-based method

The correlation coefficient defined by Golub [264] is defined by the mean and the

standard deviation of the distribution of values of a given feature in a certain class

(Eq. 4.8):

wi =
(µi(+)− µi(−))

σi(+) + σi(−)
, (4.8)

where µi and σi are the average and standard deviation of the values of feature i in

the positive and the negative class respectively.

Features weights can be viewed as signal-to-noise ratio estimations, resulting in the

assignment of high scores to features that have larger between-class difference than

within-class difference. In the original report of Golub et al. an equal number of

the features with the largest positive and negative scores formed the final set of

discriminative features. Alternatively the absolute value of the score can be used as

a measure of its predictive power [265].

ANOVA-based method

More advanced ranking methods are the T-test statistics-based methods. Analysis

of variance (ANOVA) measures the significance of the variation of the response vari-

able attributable to the differences between the groups as opposed to the difference
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within the groups. The generalizability of the method to a multi-class problem turns

it into a powerful feature selection tool. Unlike the Golub method it uses the fea-

tures variance as an estimation of the noise level. The calculated ANOVA p-values

are ranked and converted into feature ranks.

The advantage of correlation-based methods is that they are relatively simple and

usually fast to execute. Such methods are efficient in excluding features that are

weak predictors, but do not take into account interactions between the features, thus

eliminating potentially good predictors.

SVM weights-based feature selection

Unlike other feature ranking methods that estimate the predictive potential of single

features, the SVM weights-based method assesses the capability of a set of features

to distinguish between the different classes. In this method the weights computed

for each instance during the training of the classifier are used to compute the feature

ranks. The weights of an SVM predictor are based only on a limited subset of the

training examples - the support vectors. Consequently the feature scores are influ-

enced only by the most discriminative instances, as opposed to the scores generated

by the Golub ranking method, which averages over the complete training set. The

feature score vector (Eq. 4.9) is a linear combination of the support vectors and

their non-zero weights.

w =
∑
k

αkxkyk, (4.9)

where alphak, xk and yk are the weight, value and class of the kth instance.

SVM-Recursive Feature Elimination (RFE)

As it would be computationally- and time-expensive to test the predictive power

of all possible subsets of features, more efficient strategies are needed. Guyon et

al. [162] proposed a Recursive Feature Elimination (RFE) technique, which enables

optimal feature subset discovery in a reasonable time. RFE is an instance of the

backward elimination algorithm in which a classifier is trained, all features are ranked

and the worst feature or worst several features are removed (see: Recursive Feature

Elimination Procedure Outline). The procedure is repeated until no features remain
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in the training set. The recursive manner of the procedure ensures that every next

run results in a more precise decision function and further optimizes the scores of

the features.

Recursive Feature Elimination Procedure Outline:

1 : Restrict instances to the selected features set S: X = X0[0 : S]

2 : Train classifier: SVMTrain(X,Y)

3 : Compute weights: −→w =
∑
k

αkxkyk

4 : Compute ranking criteria: c = w2

5 : Find the worst m features: f = argmin(c,m)

6 : Update ranked list R: R = [S(f), R]

7 : Remove the worst m features from the feature set S: S = [S : f ]

.
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Chapter 5
Cancer classification: applications

” . . . there is moderate certainty that the benefits of PSA-based screening for prostate

cancer do not outweigh the harms . . . ”

(USPSTF, Annals of Internal Medicine, 22 May 2012)

5.1 Introduction

The recent advances in the field of mass spectrometry-based proteomics provide a

promising platform for clinical studies. The newly developed super-SILAC tech-

nique enhances the identification and accurate quantification of a large number of

proteins from patient samples [135, 122]. A heterogeneous cell lines mixture - super-

SILAC - has been shown to be a good representative of the complexity and the large

biological variability of tissue samples. A standard clinical proteomics work-flow

utilizes formalin-fixed paraffin-embedded (FFPE) tissues in combination with the

FASP protocol [266]. The MaxQuant computational framework enables the pro-

cessing of the raw files obtained from mass spectrometric measurements and results

in the identification and quantification of thousands of proteins, ready for down-

stream analysis [6]. Thus mass spectrometry-based clinical proteomics may provide

the means to improve the current state of disease detection and staging, as well as

to develop accurate tools for prognosis and prediction of the therapeutic outcome

and of the probability of recurrence of a disease.

Among the main goals of clinical proteomics are classification of tumor-specific pro-

teomics profiles and identification of potential biomarkers and drug targets. The
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large biological variability that characterizes tissue samples poses a big challenge

for the applicability of statistical and analytical methods for classification of disease

subtypes that have previously only been shown to perform well on cell lines [127].

The task is further complicated by a usually small sample size combined with high

dimensional feature space.

Prostate cancer is the 6th leading cause of death for men in the world [267] with an

incidence of more than 200,000 new cases per year in the United States alone. A

large number of markers that have the potential to distinguish between healthy and

malignant tissues are available or are under clinical trials [268]. The prostate-specific

antigen PSA is a major biomarker used in the early detection of the disease and in

the evaluation of the chances of biochemical recurrence. Elevated levels of PSA in

the blood are used as indicators of possible development of a malignant prostate

formation or of biochemical recurrence of an already treated tumor [269]. By far

most of the deaths associated with this form of cancer are caused by metastases. It

is therefore of high clinical importance to deepen our understanding of the molec-

ular functions of the oncogenic activators and drivers of the transformation of the

primary tumor cells into metastatic ones.

Breast cancer is among the most common cancers affecting women and a major

cause of death. From clinical perspective 3 major breast cancer subtypes can be dis-

tinguished: estrogen receptor positive (ER+), Epidermal Growth Factor Receptor

2 positive (Her2+/ErbB2) and triple negative (TNBC), in which none of the 3 per-

tinent receptors: ER, progesterone receptor PR or Her2 are expressed. This main

classification is based on the recognition of three biomarkers that are extensively

used in diagnostics and treatment - Her2, ER and PR. As the disease is character-

ized by large heterogeneity even finer subtypes can be defined. For example, based

on microarray data 5 classes have been characterized: basal-like, luminal A and B,

ErbB2-overexpressing and normal breast-like tumors [270, 271].

Despite the efforts in diagnosis, prognosis, and treatment the ability to distinguish

between different subtypes is still limited and offers large space for improvement.

The presence or absence of overexpression of any of the above-mentioned breast

cancer biomarkers has been shown to be of clinical importance and in some cases

also sufficient to guarantee a positive outcome of a treatment. The use of a drug
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that targets the Her2 receptor - Herceptin - is highly effective in the class of Her2+

patients [272, 273]. The situation is very different for patients falling in the TNBC

class. Despite the known mutation in the BRCA1 gene that increases the chance

of women to develop this type of cancer [274], the optimal treatment options are

still very limited. The main treatment is based explicitly on chemotherapy with

overall poor survival prognosis, which clearly points to the need for discovery of new

drug targets [275]. Furthermore, elevated PSA level can also be caused by benign

prostatic hyperplasia or even by conditions unrelated to the prostate. Characterized

by high sensitivity but low specificity, the usefulness of screening tests relying on

the PSA biomarker has been seriously questioned [165, 268, 276].

Overall, the currently-known single biomarkers fail to account for the large hetero-

geneity associated with breast cancer subtypes and they do not reliably estimate

the risks of prostate cancer development and recurrence. This can result in wrong

diagnosis and overdiagnosis and therefore in suboptimal treatment of the patient.

Furthermore, better understanding of the molecular processes orchestrating the de-

velopment and progression of cancer subtypes is needed in order to address the need

for more efficient personalized medicine. Proteome analysis may offer a more direct

insight into the functional phenotype of the cells than mRNA studies do as it takes

into account processes such as protein degradation, secretion and localization. Con-

sequently, it is reasonable to hypothesize that proteome profiling of cancer patients

could enable the discovery of more suitable biomarkers or sets of biomarkers with

high impact on both accurate diagnosis and drug development.

5.2 Data preprocessing

5.2.1 Data transformation

Various preprocessing steps are usually applied to any type of data prior to the main

analysis. The first step in working with proteomics data is removing (’filtering’) un-

reliable and noisy data, such as contaminants and hits from the reverse database

(see Chapter 1, Quantification). In the proteome profiling of cancer tissues using the

super-SILAC technology, the protein quantity is measured and reported as a ratio
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between the heavy (the cell lines mix) and the light (the tissue samples) sets. As

one is interested in comparing the tissue samples in different conditions, the data are

inverted for convenience. The log2 transformation of the data diminishes the depen-

dence on the absolute magnitude and helps to avoid the strong influence of outliers

and skewed distributions. If the data are approximately normally distributed, upon

log2 transformation there is an even distribution of negative and positive values

centered around the 0 value, which makes the interpretation of the up and down

regulation differences between the groups more intuitive.

5.2.2 Missing values imputation

Due to the nature of the proteomics data and the current limitations of the mass

spectrometry technology missing values are a common problem. It is however rea-

sonable to assume that the missing values result from low-intensity entries that thus

could not be quantified. One rational strategy to impute such missing values is

to fit a normal distribution to the values in each sample, from which values will

be randomly drawn to fill in the missing data points. Following the above-made

assumption the new distribution is shifted towards lower values and its width is

narrowed down. It is important to avoid creating a second peak in the original dis-

tribution by carefully controlling the two parameters (down-shift and width). The

effects of imputation and of the amount of valid values that is required per feature

(protein group) is discussed in the subsequent sections of this chapter. Overall, the

results suggested that filtering for 70-80% valid values is a good compromise between

discarding valuable information and introducing noise in the data (i.e. caused by

the imputation of a larger number of missing values).

5.2.3 Data normalization

In case the protein ratio distributions of the instances appear to be shifted, nor-

malization is performed in order to center them around zero. This can be achieved

by subtraction (if the data are log-transformed) of the most frequent value or of

the median of that distribution from all elements of that instance. Some particular

analysis techniques strongly benefit from normalization of the features. For exam-

ple, the underlying data patterns become much better visible in clustering when the

features are z-scored (i.e. follow a distribution with mean 0 and standard deviation
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1). Furthermore, normalization strategies such as z-scoring and placing the data

into some interval (e.g. [-1;+1]) minimize the influence of outliers in the data on the

performance of the analytical tools.

5.3 Classification of breast cancer subtypes

Proteome profiles of 40 breast cancer patients were measured on a high performance

Q Exactive instrument. Protein extraction and digestion were performed using

the FFPE-FASP protocol [266] and a super-SILAC mix [135] of five cell lines was

employed to obtain accurate quantification of the proteins in the tissue samples.

The data set includes patients from three main breast cancer subtypes: 14 Her2+,

13 ERPR+ and 13 triple negative samples, respectively. The aim of this study is

to identify a discriminative set of features that can increase our understanding of

the distinct mechanisms governing the development of the subtypes and possibly

discover new potential biomarkers and to estimate their predictive power. The

influence of various feature selection methods and data normalization techniques on

the performance of the predictor is also discussed.

The original data contained 12,500 identified protein groups with more than 8,000

proteins quantified per sample. Data acquisition is described in detail in the Matrials

and methods secion 5.5. The data were filtered for reverse hits and contaminants,

inverted, log2 transformed and filtered for different cutoffs of valid values. The

missing values were imputed as described in section 5.2.2 above, using a width

parameter of 0.2 and a downshift by 1.0 standard deviations. Furthermore, several

data normalization techniques were used to reduce the influence of outliers and of

the possible bias introduced during the imputation on the final result of the classifier.

5.3.1 Effect of valid values filtering on the prediction accu-

racy

Support vector machine classifiers were trained and tested on several subsets derived

from the original breast cancer data, generated by varying the minimal number of

required valid values (available protein ratios). Four conditions were tested: (i) 50%

valid values, corresponding to protein measurements available in at least 20 samples,
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(ii) 70%, (iii) 80% and (iv) 100%, i.e. only those features were kept, for which quan-

titative information was available for all 40 samples. The remaining missing values

were then imputed as described in Section 5.2.2 using values randomly drawn from

a fitted Gaussian distribution with width 0.2 and shift of 1 standard deviations to

the left of the center of the original sample distribution.

The effect of data normalization was further tested for each derived data set by

comparing performances of classifies on non-normalized data, z-scored data and

data scaled to the [-1;1] interval. The classifiers were combined with different fea-

ture selection methods (see Section 4.1.2) and the summary of the results is shown

in Figure 5.1.

Overall, the accuracy curves plotted as a function of the number of features were

similar when the same feature selection method was used, regardless of the number

of missing values. However, choosing an optimal filter for valid values did influence

the quality of the classifier and the biological relevance of the selected features. Im-

posing the most stringent requirement of 100% valid values strongly reduced the

features size, but also led to losing important information as visible from Fig. 5.1.

The optimal accuracy that was reached by applying feature selection on this data

set based on ANOVA or Golub score ranking was significantly lower than that when

only 50% valid values were required. This was because FOXA1 and AAC1, two of

the top ranked features in the larger data set, were eliminated at the valid values

filtering step.

The results of the classification of the data set with lower requirements for valid val-

ues (50, 70 and 80%) were highly similar and the differences can be readily explained

by the precision of the accuracy estimation and the small variability introduced dur-

ing the imputation by random values. In all sets, in which means-based feature

ranking methods were used, the classifier reached its optimal accuracy with either

the top 3 (50 and 70% valid values) or the top 4 (80% valid values) features, where

three of these four were the same as top3 in the other two sets of selected features.

The variation in the optimal number of features selected with the SVM weights-

based ranking method was greater: 214 (50%), 521 (70%) and 333 (80%). The

similar trends of the classifiers performances demonstrate the overall small effect

that the number of missing values has on the prediction power of the classifiers.
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The variation in the selected sets of proteins was more tightly related to the type of

ranking method, which is discussed in detail in Section 5.3.3.
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Figure 5.1: Influence of valid values filtering on classification accuracy. Clas-

sification error rate as a function of the number of features is shown for three distinct

feature selection methods A) ANOVA-based ranking, B) Golub score-based ranking, and

C) SVM weights-based ranking. Each of the feature selection methods is applied on several

data sets varying according to the percentage of valid values filtering and to the technique

used to normalize the features prior to the analysis.
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In summary, datasets with missing values between 50 and 80% are suitable for clas-

sification and feature selection tasks. However, one can argue that the more tolerant

approach of keeping all features for which data were available in 50% of the samples

may result in the introduction of more noise upon imputation and thus in overall

lower reliability of the classifiers. Therefore, a threshold of 70-80% valid values is rec-

ommended as it would allow preservation of the majority of the important features

and at the same time limit the noise introduced by imputation.

5.3.2 Influence of feature normalization on the prediction

accuracy

Analysing directly the original data without any preprocessing may lead to unex-

pected behavior of the classifier or to the selection of features that are irrelevant to

the biological question of interest. Some of the problems that may necessitate data

transformation prior to the analysis are: (i) influence of outliers in the data that

interfere with the biological signal, (ii) features that appear to be on different scales

with respect to the magnitude of their variation, causing them to become incompa-

rable and (iii) imputed missing values that increase the noise level in the data.

Z-scoring is a linear transformation that normalizes the distribution of each feature

to have a mean of 0 and a standard deviation of 1. As the different features may vary

with different magnitude, it is often advisable to normalize the data to improve the

features comparability. Essentially, z-scoring brings small and large differences to

the same scale. However, this normalization technique is not insensitive to outliers

in the data. Furthermore, bringing the variability of the features to similar scales

makes the task of means-based feature ranking methods to identify clear winners

among the ample of features more difficult.

Scaling the feature values to some interval is similar to the standard score normal-

ization in the sense that the differences between the features are minimized, but the

extent to which the small differences are amplified is smaller.

Generally, normalization techniques do not strongly influence the performance of

the predictors (Fig. 5.1). It can, however, be seen that in the dataset contain-

ing only the original measurements (no missing values) the highest accuracy was
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reached when no normalization was performed. The other data sets, in which a

certain percentage of missing values was retained and imputed, the predictors ben-

efitted from the rescaling of the data. Although the differences were not large the

normalization functioned as a filter for any noise that could have been introduced

by the imputation and slightly improved the performance.

5.3.3 Effect of feature ranking methods on accuracy

Interestingly, notable differences were present in the performance of the classifiers

with respect to the feature selection method with which they were combined (Fig.

5.2). Means-based methods (ANOVA p-value and Golub score) reached highest ac-

curacy with the top3 or top4 ranked features. This result is not surprising as the

strength of such methods lies in identifying single features that show high discrim-

inative power. However, the accuracy dropped significantly as new features were

added. Although each additional feature may be a good candidate on its own,

ANOVA and Golub score-based ranking methods ignore the interplay between fea-

tures and thus fail to recognize sets of features with good predictive properties. In

contrast, the prediction accuracy of the classifier, combined with SVM weights-based

feature ranking, improved upon increasing the number of ranked features in the test

set until a maximum was reached. This is because this ranking method estimates

the goodness of complete sets of features as opposed to single features.

The performance curves obtained with the different ranking methods provided two

important pieces of information. The means-based methods detected three features

that carried most of the predictive power in the features set, strongly suggesting

that these three proteins are potential biomarkers. The much larger optimal feature

sets identified by the SVM weights-based ranking method, may instead provide in-

formation about the biological mechanisms underlying the disease onset, rather than

about single potential markers. The larger signatures were also characterized by a

smaller overlap betewen the different runs of the cross validation procedure (shown

by the average ranks estimated during the cross validation procedures). This sug-

gests that a signature would consist of features that complement each other with

less regard of their individual contributions. Suppose such a set included features

from different pathways or of different biological modules, the SVM weights-based

ranking method would not favor a particular feature from that pathway or module.
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Figure 5.2: Influence of feature selection methods on classification accuracy.

The prediction accuracy is plotted as a function of the number of features. The four panels

summarize the results for data sets generated by different valid values requirements: A)

50%, B) 70%, C) 80% and D) 100%. In each panel, classifiers using three distinct feature

ranking methods are depicted: SVM weights-based ranking in green, ANOVA-based ranking

in red and Golub score-based ranking in blue.

In the different runs of the cross validation it would pick any of the features, as long

as the overall set has a high predictive value.

In summary, means-based methods unambiguously identified the features that showed

the largest between-class variation, whereas SVM weights-based ranking selected any

of several possible features that added predictive information to the complete set.

Therefore, the two techniques can be used to answer distinct biological questions
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and may have complementary clinical applications.

5.3.4 Biological relevance of the selected features (GO and

GSEA enrichment analysis)

An obvious question in feature selection tasks concerns the relevance of the selected

features to the problem of interest, here the subtyping of breast cancer. Literature

search showed that the three features that always received high ranking with the

means-based ranking approach are important in the onset of breast cancer. The v-

erb-b2 erythroblastic leukemia viral oncogene homolog 2 (ErbB2), also called Her2,

which was the top ranked feature regardless of the ranking method of choice, is an

already established biomarker. ErbB2 is the defining marker in the diagnostics and

treatment of Her2+ breast cancer patients [277, 278, 279]. The fact that this pro-

tein was picked from the proteomics data set of 8000 quantified proteins, provides

strong evidence for the quality of the data and the analysis. The second top fea-

ture was the protein encoded by the human anterior gradient-2 (AGR2). Significant

co-expression of the AGR2-encoded protein and the estrogen receptor has been re-

ported, see for instance [280]. Additionally, there is strong evidence that AGR2 may

act as a metastasis inducer [281] and it was further demonstrated to have separate

prognostic value for survival [282]. The last feature that appeared to be necessary

to achieve the highest accuracy with the means-based ranking methods was a tran-

scription factor, the Forkhead box protein A1 (FOXA1). Not much is known about

FOXA1 in breast cancer, but a recent study has shown that breast cancer-associated

SNPs alter the binding of the FOXA1 protein to DNA, which in turn regulates the

estrogen receptor α (ER) function [283]. This observation provides strong support

for the relevance of the FOXA1 protein as a potential biomarker in relation to the

ER+ subtype.

A 4th feature appeared to be highly important in the 80% valid values filtered data

set - the Growth factor receptor-bound protein-7 (GRB7), an SH2 domain contain-

ing protein involved in growth factor signaling. GRB7 has already been identified

as both a prognostic and recurrence marker in gene expression studies [284, 285]. It

has been related to the Her2 protein but has also been shown to carry predictive and

diagnostic information on its own, thus adding yet another promising feature to the

list of known and potential biomarkers [286]. Thus the extensive support found in
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literature provides strong evidence that feature selection with means-based ranking

procedures is a powerful technique for discovery of potential biomarkers.

Figure 5.3: Hierarchical clustering of patient samples. The 40 patient samples are

clustered based on the proteome profiles of the 333 features selected with the SVM weights-

based ranking method. The 3 main breast cancer subtypes are shown in blue (ERPR+),

green (TNBC) and purple (HER2+), respectively.

Although the accuracy with the top 3 features was around 80%, this still means that
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about 20% of all patients would be misclassified, illustrating the need for further im-

provement. The SVM weights-based ranking method reached highest performance

(82% accuracy) with the top 333 features. Although this number may be too high to

provide a clinically-applicable signature, it already offers a good platform for anal-

ysis of the underlying biological processes. Furthermore, the selected by the SVM

weights-based method set contained the above-described top4 proteins at highly-

ranked positions, which is a strong indication of its biological relevance.

Hierarchical clustering of the patient samples based on the selected 333 features re-

sulted in 3 clear clusters corresponding to the ERPR+ breast cancer subtype in blue,

TNBC in green and Her2+ in purple (Figure 5.3). Furthermore, patterns of group-

specific differentially-regulated clusters of features emerged. Some clusters were up-

regulated in a specific class, while others were up-regulated in two of the classes but

not in the third one. In total, 35 of all samples were correctly grouped, whereas five

formed separate clusters. Inspection of the quality of the wrongly-clustered samples

showed that they contained noticeably fewer identified and quantified proteins. It

is therefore highly probable that exactly the larger number of missing values and

the consequent imputation increased the noise level and made these instances more

challenging for segregation. This also provides a useful yardstick for the quality of

proteomics datasets needed in the classification of breast cancer subtypes.

The selected subset of 333 features was tested for enrichment of GO-terms and

GSEA categories. Interestingly, several breast cancer gene sets contained in the

GSEA database were significantly enriched: (i) SMID BREAST CANCER LUMI-

NAL B UP, (ii) SMID BREAST CANCER BASAL DN, (iii) DOANE BREAST

CANCER ESR1 UP and others (Fig. 5.4). The most enriched gene ontology term

was the major histocompatibility complex I (MHC I) class peptide loading complex.

The MHC class I molecules are involved in the cellular immune response in cancer:

decreased levels lead to poor defense mechanisms ([287]). The strong enrichment of

this category may point to a connection of the selected proteins to general processes

involved in cancer development.

118



5.4. Classification of relapse and non-relapse prostate cancer subtypes

anatomical structure development
basolateral plasma membrane

biosynthetic process
cell death

cell maturation
cellular macromolecule catabolic process

cellular metabolic process
cellular nitrogen compound metabolic process

cellular process
cytoskeleton organization

death
DOANE_BREAST_CANCER_ESR1_UP

embryo development
HAN_SATB1_TARGETS_UP

hormone metabolic process
intracellular non−membrane−bounded organelle

ion transport
macromolecule metabolic process

MASSARWEH_TAMOXIFEN_RESISTANCE_UP
metabolic process

MHC class I peptide loading complex
module_377

module_83
mRNA metabolic process

mRNA processing
multicellular organismal process

NIKOLSKY_BREAST_CANCER_17Q11_Q21_AMPLICON
nitrogen compound metabolic process

nucleobase−containing compound metabolic process
organelle

organelle organization
primary metabolic process

protein modi�cation by small protein conjugation or removal
protein targeting
protein transport

proteolysis
proteolysis involved in cellular protein catabolic process

REACTOME_GENE_EXPRESSION
regulation of transport

response to drug
ribonucleoprotein complex

RNA catabolic process
RNA metabolic process

RNA processing
RNA splicing

signal transduction
SMID_BREAST_CANCER_BASAL_DN

SMID_BREAST_CANCER_LUMINAL_B_UP
spliceosomal complex

translation
viral reproduction

xenobiotic metabolic process

0 5 10

GO term

GOBP name

GOBP slim name

GOCC name

GOCC slim name

GSEA

G
O

 te
rm

Enrichment factor

Figure 5.4: Enrichment of GO-terms and GSEA categories. Cellular Compart-

ments (GOCC) in green and Biological Processes (GOBP) in red gene ontology terms or

their broader versions (GOCC slim in purple and GOBP slim in blue), GSEA categories

in orange that were significantly enriched in the selected set of 333 ranked features and

their corresponding enrichment factors are shown.

5.4 Classification of relapse and non-relapse prostate

cancer subtypes

Upon radical prostatectomy some patients suffer a recurrence of the prostate can-

cer, currently detected by elevated levels of the prostate specific antigene (PSA).

The timely diagnosis of the patient with respect to one of the two possible classes -

recurring or non-recurring - would allow for a more rational and efficient treatment

increasing the patient’s survival chances or sparing patients from unnecessary treat-
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ment. The goal of this project is to investigate if features that strongly discriminate

between the relapse and non-relapse patient samples can be extracted based on their

proteomic profiles and to evaluate their predictive power.

In total more than 9,800 proteins were identified and quantified in 20 samples from

prostate cancer patients that were characterized as either ’relapse’ or ’non-relapse’,

depending on the level of PSA. Standard pre-processing was applied to the initial

set, including log2 transformation of the ratios, filtering for valid values (similarly

to the breast cancer set four thresholds were tested) and normalization of the fea-

tures. Support vector machines based classification was used in combination with

two feature ranking methods: ANOVA-based and AVM weights-based (Fig. 5.5).
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Figure 5.5: Influence of feature selection methods on classification accuracy.

The prediction accuracy is plotted as a function of the number of features. The two panels

summarize the results for data sets with different levels of missing values: A) 70%,B)

80% were required respectively. Classifiers using SVM weights-based ranking are shown in

blue and ANOVA-based ranking – in red. The solid lines represent feature values scaling

to interval, whereas the dashed line – z-scoring.

Classifiers trained on sets derived by different missing values filtering showed similar

trends. In contrast to the results in the breast cancer subtype classification, none

of the ranking methods was able to detect strong class discriminators exemplified

by the size of the features set that had the best prediction accuracies (Fig. 5.5).
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The ANOVA-based ranking reached 78% accuracy with the top 70 (80% valid values

filtering) and top 150 (70% valid values filtering) features. Using the SVM weights

in the feature ranking resulted in sets of about 50 features and an overall accuracy

ranging between 77 and 80%. Examination of the top ranked features revealed im-

portant proteins with known implications in the development and progression of

prostate cancer. The set included various proteins such as chaperones, kinases and

other signaling proteins, some of which are described in the following paragraphs.
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Figure 5.6: Hierarchical clustering of patient samples. The 20 prostate cancer

patient samples were clustered based on the proteome profiles of the 48 features (80%

accuracy) selected with an SVM weights-based ranking method. The relapse (R1) and

non-relapse (R0) classes are shown in red and blue respectively.

121



Chapter 5. Cancer classification: applications

One of the top-ranked features was the DNAJ homolog subfamily C member 7

(DNAJC7), which is a member of the heat shock protein family 40 and is known

to regulate the molecular functions of the chaperones HSP70 and HSP90 [288]. In

particular, DNAJC7 has been shown to be involved in the regulation of the folding

of the progesterone receptor [289]. In the study of Bonkhoff et al. the progesterone

receptor (PR) has been detected in a significant number of metastatic and recurrent

prostate cancers and was further shown to correlate with prostate tumor progression

[290]. The authors argued that as progesterone is considered a marker of estrogen

activity, the high expression of PR at late stage progression demonstrates the ability

of prostate cancer cells to escape androgen deprivation and instead utilize estrogens

for growth and maintenance, which clearly demonstrates how DNAJC7 may be in-

volved in cancer recurrence.

Another protein in the top ranked features was the mitogen-activated protein ki-

nase 3 (MAPK3). Together with other molecules important in signaling cascaded,

de-regulation of the MAPK3 (also known as ERK1) is associated with the onset of

various cancer types including prostate cancer [291]. Extracellular Signal-Regulated

Protein Kinases (ERK1) is implicated in proliferation, differentiation, angiogenesis,

motility and invasiveness [292], which suggests the importance of this protein for

prostate cancer recurrence. Moreover, constituent activation of the MAPK3 kinase

has been shown to be implicated in hypersensitivity of PSA to reduced levels of

androgen [293].

A feature with high predictive power was also the nucleolar and coiled-body phos-

phoprotein 1 (NOLC1) – a phosphoprotein that is localized in the nucleolus and due

to its ability to bind nuclear localization signals it has been hypothesized to play a

role as a chaperone for transport between the nucleolus and the cytoplasm. In addi-

tion, it is involved in the synthesis of rRNA and ribosomes. Several lines of evidence

point at the possible importance of this feature as an oncogene. NOLC1 has been

shown to bind to the promoter of the tumor protein p53 while enhancing the pro-

gression of nasopharyngael carcinoma [294]. Interestingly, one of the transcription

regulators of NOLC1 was found to be the transcription factor NF-kB [295]. NF-kB

influences the expression level of many genes, which are known to be involved in

major cellular processes. Missregulation in its function often has detrimental con-

sequences, including tumorgenesis [296]. Moreover, a clear connection between the
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function of NF-kB and both prostate cancer development [297, 298] and recurrence

after prostatectomy [299, 300] has been established.

The described literature provides substantial evidence, that despite the lack of clear

biomarkers or strong signature discriminating between the relapse and non-relapse

prostate cancer subtypes, disease-relevant features were present in the top selected

set.

Hierarchical clustering of the samples using only the features selected with the SVM

weight-based ranking method (upon filtering for 80% valid values, 48 proteins with

accuracy 80%) resulted in the correct grouping of the samples in their correspond-

ing categories – relapsed or non-relapsed (Supplementary figure 5.6). However, no

GO terms or GSEA categories were significantly enriched in the selected set of pro-

teins. Moreover, the average ranks of the selected features showed a large deviation

from the final ranks (Pearson correlation coefficient of 0.61), which indicates that a

large number of sets of features with similar predictive power can be derived from

the current data set. This observation together with the small sample size and the

questionable reliability of the prostate specific antigene, which was used in the ini-

tial categorization of the samples explain why the task of identification of a set of

features that discriminates well between relapse and non-relapse patients appeared

challenging. Strategies for improving the prediction accuracy and the relevance and

generalizability of the selected features are discussed in detail in the Outlook section

of this thesis (Chapter 6).

In summary, the machine learning methods and feature ranking techniques described

in Chapter 4 were employed in the analysis of two clinical proteomics data sets. The

first study addressed the challenges in accurate breast cancer sub-class diagnosis.

A 3-class predictor was trained on the major breast cancer subtypes: ER+, Her2+

and TNBC and its accuracy to distinguish between the proteomic profiles of the 3

groups was estimated in a cross-validation procedure. The highest accuracy reached

was 80% after feature selection with RFE-SVM procedure (see Section 4.2).

The second study aimed at revealing important regulators of prostate cancer that

can be used to distinguish between patients that experience reccurring cancer upon

radical prostatectomy and patients that remain free of symptoms. An SVM-based
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classifier in combination with feature selection reached prediction accuracy of 80%

in a random sampling cross validation procedure.

Special emphasis was placed on the data preprocessing required prior to any anal-

ysis and the effects it had on the classification accuracy. Furthermore, the outputs

of different feature selection techniques were compared, providing important in-

sights for the optimal analysis framework. The classification and feature selection

results demonstrate the potential that proteomics data hold for clinical applica-

tions. Clearly they may bring the desired transformation of personalized, adequate

and time-efficient treatment from a research field into a rountine practice one step

closer.

5.5 Materials and methods

5.5.1 Data acquisition

The specially developed clinical proteome workflow developed in our group was used

for the sample preparation of the tumor tissues. Protein extraction and digestion

were performed from formalin-fixed paraffin-embedded (FFPE) tumor tissues fol-

lowing the FASP (Filter Aided Sample Preparation) protocol [134]. To enrich the

content of cancer cells in the samples the tissues were dissected.

The super-SILAC mix strategy [135] was employed to account for the high tis-

sue heterogeneity and to allow for accurate quantification of the proteome content.

Stable-isotope labeling by amino acids in cell culture (SILAC) has become a stan-

dard method for cell line protein quantification [32]. Cell lines are labeled through

the incorporation of stable heavy versions of essential amino acids, typically lysine

and arginine. The labeling produces a mass difference of 8 and 10 mass units, re-

spectively, for each tryptic peptide, thus allowing for accurate quantification of the

proteins in the sample. As complete metabolic incorporation is required, this proce-

dure is not directly applicable to analysis of human tissues. Instead, metabolically-

labeled cell lines are used as internal standards and mixed with the tissue sample

lysates [301]. The standard mass spectrometric analysis steps are then performed on

the mixed samples together. However, to achieve in depth and accurate quantifica-

tion of the majority of the relevant proteins, the SILAC-labeled proteome should be
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sufficiently similar to the proteome of interest. The identification and quantification

of the deep proteome of the complex tissue sample was thus enhanced by using a

mixture of five SILAC-labeled cell lines as opposed to using a single cell line. The

use of the mixture of variable cell lines (e.g. from different cancer grades and stages)

allowed to account more fully for the tumor cells heterogeneity [302].

The proteomes were measured on the high-precision Q Exactive instrument [224] in

the relatively short time - 6 fractions of 4 hour gradients per sample.

5.5.2 Protein identification and quantification

The raw mass spectrometric data files were processed with the MaxQuant computa-

tional framework. All standard setting were kept, including advanced options such

as ’Match between runs’ and ’Advanced ratio estimation’. The breast cancer data

were analysed with two separate parameter groups: one for the tissue samples and

an additional one for the super SILAC mix with only heavy labels. The use of the

mix in the analysis improves the overall identification rates.

5.5.3 Prostate cancer dataset

Tumor samples were obtained from 20 patients. Based on the PSA levels upon

radical prostatectomy the patients were classified into two groups: 9 samples showing

chemical relapse (i.e. high PSA level) and 11 - lacking chemical relapse (retaining

low PSA level). In total 9,828 proteins were identified and quantified.

5.5.4 Breast cancer dataset

Tumor samples were obtained from 40 breast cancer patients. The samples were

categorized into the 3 main subgroups: 14 Her2+, 13 ERPR+ and 13 triple negative

samples. In total 12,555 proteins were identified and quantified with more than 8,000

proteins in each sample.

5.5.5 Data analysis

The methods used in the data analysis (support vector machines with recursive

feature elimination embedded in cross validation) and the software framework are
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described in detail in Chapter 4.
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Chapter 6
Conclusions and outlook

Overall, this thesis makes contributions to the analysis of two main types of pro-

teomics experiments: phospho-proteomics and onco-proteomics data. The first part

of the thesis focuses on the analysis of various properties of phosphorylation sites

and their applicability to address the difficult task of distinguishing functional from

silent modification sites. The second part describes the development of a computa-

tional framework for feature extraction and classification of patient samples based

on their proteomics profiles and its successful application to two cancer data sets.

Phospho-tyrosines exhibit structural properties that are significantly dif-

ferent from those of modified serine and threonine residues

All phosphorylation residues showed a statistically significant preference for disor-

dered and irregular regions. However, this tendency was much less pronounced for

phospho-tyrosines, a large proportion of which appeared in ordered regions. In ad-

dition, they were found to be much less solvent accessible and appeared with similar

frequencies in domain and inter-domain regions, with a slight preference for the

former when sites in disordered environment were considered. Interestingly, such

properties are characteristic for the interfaces of stable protein-protein complexes,

suggesting a possible overlap between the two environments. This hypothesis is in

agrement with our current knowledge of the role of modified tyrosine residues in the

regulation of interactions. Furthermore, as tyrosine residues are generally known to

make an important contribution towards the free binding energy of many complexes,

it would be interesting to investigate the intersection between phospho-tyrosines and
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known hot spots.

Tyrosine phosphorylation is involved in the regulation of a myriad of cellular pro-

cesses and deviations from its proper modification often have severe consequences.

Therefore, based on the distinct properties of phospho-tyrosines, it can be hypothe-

sized that the majority of these sites have a strictly regulated role and are well-suited

for accurate control of protein-protein interactions both through direct effect on the

binding affinity and the structural fit and through indirect allosteric changes.

Phosphorylation sites with regulatory functions are more evolutionary

conserved, more buried and prefer coil regions

The question of the existence of non-functional phosphorylation sites is becoming

more and more urgent due to the rapid increase in the number of identified sites

that lack a defined function. This possibility is supported by the unexpectedly low

conservation characterizing the majority of these sites and the hypothesis that more

abundant proteins are prone to the random actions of kinases, thus resulting in

unspecific phosphorylation events. Indeed, the results in this thesis show that the

phospho-acceptor sites with an assigned regulatory function had different properties

compared to those with unknown function. Their preference for more ordered coil

regions and lower solvent exposure is indicative of the specific environment that is

required to facilitate their proper recognition and functioning. Furthermore, the

higher evolutionary conservation suggests that the modification of these sites have

important functional roles.

In summary, the specific properties of regulatory phosphorylation sites may become

a useful instrument to distinguish functional from silent modifications. However, it

would be difficult to claim the lack of functional relevance of any site, as it is possible

that what is lacking is the knowledge and the understanding of its function. There-

fore, a more likely hypothesis is that such differences between the various modifica-

tion sites may enable the identification of distinct functional classes of phospho-sites

and in general of post-translational modifications (e.g. regulatory versus fine-tuning

as a part of a set of modifications) and provide deeper insights into the underlying

mechanisms.

The functional analysis of phospho-sites would greatly benefit from methods that
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on one hand assess the conservation of the functional role of a site, regardless of

its positional conservation, and on the other hand distinguish between conserved

and evolving disordered regions. Phosphorylation sites that lie within structurally-

defined regions or that are associated with specific conformational changes, such

as loop activation, are often facilitated by complex networks of hydrogen bonding

with the surrounding residues. Therefore, it is natural that such sites exhibit strong

evolutionary pressure. In contrast, phosphorylation sites present in disordered re-

gions are characterized by much lower conservation, in line with the rapidly evolving

nature of these regions. Often such sites are involved in the regulation of protein-

protein interactions by influencing various electrostatic and steric properties. Thus

the actual position of the phospho-acceptor site may not be as important as the

overall effect of the phosphate group on the particular region in the protein. It

would therefore be interesting to systematically investigate the existence of an alter-

native form of conservation, in which not the position, but the function is retained.

Furthermore, the properties of disordered regions need to be considered with great

caution while investigating conservation of modification sites, due to the existence

of different types of disordered regions. The possibility that kinase consensus motifs

shift along the disordered regions or that they are transformed into motifs of other

kinases may also contribute to the better understanding of the evolutionary pressure

acting on phospho-sites.

Multiple phospho-sites and PTM cross-talk increase the complexity of

the proteome and add evolutionary flexibility

The investigation of the co-occurrence of phosphorylated residues and modified

lysines revealed that the two appeared at shorter distances than would be expected

if they were scattered randomly over the protein length. This tendency provides

strong evidence that the cross-talk between the different types of modifications may

add another layer of complexity to the intricate system of regulation in the cell.

It boosts the number of functional states of a protein and further fine-tunes its

interaction network. Additionally, the presence of various modifiable residues al-

lows the incorporation of signals from distinct pathways and facilitates the precise

timing and regulation of the cellular response. The proportion of modified lysine

residues in the close proximity of phospho-tyrosines was the highest among the three

phospho-acceptor sites, which further supports the hypothesis that the majority of
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the phosphorylated tyrosines have a well-defined regulatory role.

Phosphorylation dynamics scales with structural propensities

Our data allowed us to investigate the kinase preferences of phosphorylation sites

with high vs. low levels of regulation. The results highlight the central role of

proline, as a disorder-promoting residue that is also part of regulatory motifs [303].

The directing role of proline together with the multiple functions associated with

disorder explain the more variable character of phosphorylation of sites with these

properties that we observe in our study. Furthermore, our statistical analysis of the

interplay between structure and phosphorylation variation in relation to specific ki-

nase recognition motifs presents a new approach of describing and classifying protein

kinases. We showed that the combination of both properties can be used to gain

conceptual and specific insights into regulation. We were able to reproduce known

relations and to identify new links between kinases, which may reflect functional de-

pendencies emerging from common regulatory behavior and structural preferences.

In conclusion, we have related the tendency of phosphorylation sites to be dynam-

ically regulated throughout the cell cycle with the structural features of the sites.

While we have found clear relations between phosphorylation dynamics and protein

structure, we are only scratching the surface of what we believe could be an exciting

new area at the interface of proteomics and structural biology.

Phosphorylation sites have a tendency to cluster in regions that lack defined struc-

ture. An interesting question arising from this phenomenon is if proximal phos-

phorylation sites can compensate each other (i.e. if only the total effect plays a

role) or if they act in concert (i.e. each of them is regulated in a specific manner).

To address this question quantitative information in the form of absolute protein

quantification and quantification of the exact amount of phosphorylation of each

site (occupancy) is required. A suitable set-up for such investigation would involve

different perturbations and various time points at which changes in occupancy are

measured. In a particular scenario a cluster of phospho-sites may retain an overall

constant amount of phosphorylation, which would suggest additive function or pres-

ence of silent phosphorylation events. In different settings, the sites in the cluster

may be regulated in a similar fashion indicating the distinct functional role of each
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of them. Such a study would clearly add to our understanding of both the interplay

between multiple phosphorylation sites and their functional relevance.

Classification of cancer patients based on their proteome profiles requires

feature selection embedded in cross validation

The efficient treatment of cancer patients greatly depends on accurate subtype clas-

sification, which despite the available and long established biomarkers is not always

straightforward and often suboptimal. Clinical mass spectrometry-based proteomics

is becoming an increasingly powerful technology for addressing the needs for bet-

ter diagnostic and discovery of novel biomarkers. The current advances in sample

preparation and quantification of proteins in tissues enable the characterization of

thousands of proteins from patient samples, thus providing ample data encoding the

disease mechanisms and its impact on the organism. The size and complexity of

these data, however, necessitate the development and use of sophisticated analyt-

ical tools. A classification framework was developed that allows feature selection

in a rigorous manner and enables any scientist to perform supervised learning on

proteomics data. It addresses the main challenges, related to the tasks of signature

detection and subsequent sample classification: (i) high biological variability among

patient samples and (ii) large feature space combined with low sample size.

The framework is built as a plug-in (called ’Learning’) to the statistical software

Perseus, becoming increasingly popular in the analysis of large-scale proteomics

data. Its generic implementation allows the addition of various supervised learn-

ing methods, however, the focus in this thesis is in particular on support vector

machines. The framework provides the modules: classification and prediction of

clinical proteomics samples, feature selection and parameter optimization. The con-

venient implementation enables scientist who are not necessarily experts in learning

theory to employ supervised learning methods to analyse complex data. In the clas-

sification module, the accuracy of a classifier trained on the data can be estimated

using any of three cross validation procedures. Furthermore, this classifier can then

be used to predict the labels of new unlabeled samples. The parameters required for

optimal performance of the support vector machines can be conveniently explored

in the ’Parameter optimization’ module of the framework.
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Perhaps the most powerful module of the three is the ’Feature optimization’ option.

In addition to improving the classifier’s performance, feature selection allows the

identification of disease-relevant features with high clinical relevance. The frame-

work supports various feature selection methods. The key to recognizing a reliable

set of features is to avoid overfitting during the feature selection procedure. Perform-

ing feature selection on the entire data set is still a common mistake, which leads

to the identification of features that discriminate well between the classes of the

training samples, but have poor performance in independent test sets. The devel-

oped framework overcomes this problem by enforcing feature selection to be always

embedded in a cross validation procedure, ascertaining maximum generalizability of

the results.

Thus, an easy to use analytical framework was developed, that provides the user with

the ability to employ various state-of-the art methods for discovering patterns un-

derlying complex proteomics data. The software combines an user-friendly graphical

interface with rigorous implementation of the analytical procedures, ensuring their

proper application and reliability of the results.

The detection of biomarkers is plausible and holds great promise for the

future

Chapter 5 demonstrated the successful application of the earlier described analysis

framework (see Chapter 4) to feature selection and classification of the subtypes

of two types of cancers – prostate and breast cancer – based on protein expression

data.

The optimized analysis showed that despite the limited number of samples it is

possible to distinguish disease-related patterns and to extract biologically-relevant

features from large-scale proteomics data sets. Furthermore, the comparison of the

different ranking methods revealed that due to their underlying principles they can

serve different purposes. Means-based methods are tailored for the detection of

single features that strongly discriminate between the classes and ignore any inter-

actions among the features. These methods thus result in an overall small number

of features and are suitable for the discovery of potential biomarkers that could be

directly used in diagnostics and treatment. In contrast, the SVM weights-based
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ranking method estimates the predictive power of complete sets of features. The

highest accuracy using this method is reached with a much larger number of ranked

features and it can therefore be used to increase our understanding of the mecha-

nisms and implications of the disease.

In summary, clinical proteomics combined with rigorously-applied data mining tech-

niques holds great promise for improvements in the field of personalized medicine.

The foundations have already been laid, however, several improvements would lead

to even better performance of the developed framework.

In a continuation of the work in this thesis it would be highly interesting to extend

the presented methods to different proteomics platforms. A medical test used on

daily basis has to be fast and reliable, therefore a procedure that is able to achieve

high accuracy and precision in diagnostics as well as in correct treatment assignment

from small amounts of samples and in a short time is highly desirable. For instance,

single-shot proteomics provides such a platform by skipping the pre-fractionation

step and by making use of highly sensitive mass spectrometers [304]. A systematic

research is, however, needed to assess if the depth of the data measured in this way

would be enough for clinical applications.

Another currently unaccounted for aspect is the regulation of the functions of pro-

teins through post-translational modifications. Modifications can alter the structure

and the function of the proteins adding a new level of complexity to the cellular or-

ganization and the underlying mechanisms. PTMs are often responsible for the

activation of oncogenes or the inactivation of tumor-suppressor genes, turning them

into important factors for the process of cancer development. For instance, tyrosine

kinases have become one of the largest classes of drug targets for cancer treatment

[305] due to their regulatory role in a wide range of cellular processes. It is therefore

of high interest to make use of the information at the post-translational level (i.e.

modification profiles) in order to build accurate classifiers and unravel informative

features.

Furthermore, the developed framework for analysis would greatly benefit from a

larger cohort of samples. Due to the fast speed of development of mass spectrometry-

based proteomics the profiling of tens and even of hundreds of samples will soon be
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feasible. In addition to increasing the number of samples, coupling tumor tissue

to healthy tissue from the same patient would provide the ultimate remedy to the

heterogeneity problem. The presence of healthy tissue can be used to compute ra-

tios of the protein expression levels between tumor and healthy tissues in order to

cancel the genetic variability and intensify the disease-related signal. In addition,

a collection of tumor samples from different areas in the tumor may help to avoid

misclassifications resulting from the existence of different cell subpopulations in the

same tumor [306].
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Appendix

Table 6.1: Tendency of phosphorylation sites, predicted in disordered regions, to occur
outside Interpro domains.

Phospho Reference Odds ratio P-value

S
outsideDomains 17947 104779

1.037986 0.004705
withinDomains 10718 64951

T
outsideDomains 4186 52072

1.104311 0.0001264
withinDomains 2610 35853

Y
outsideDomains 484 14054

0.9700555 0.6697
withinDomains 357 10056

Preference of phospho-sites to appear in regions connecting Interpro domains. Contingency
tables containing the counts of phospho-sites and non-modified reference sites found within
and outside Interpro domain regions. Only sites predicted to lie within disordered regions
were used. Fisher exact tests were computed for each phospho-acceptor residue separately.
Modified sites were significantly overrepresented in regions outside Interpro domains.
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Figure 6.1: Regulatory phospho-sites and protein intensity. Protein intensities
of phospho-sites in disordered regions with regulatory (blue) and unknown (light green)
functions are compared: A) serine, B) threonine and C) tyrosine. The overlap between
the two distributions is shown in dark green. The corresponding group means of intensity
(regulatory µ1 and unknown µ2 respectively) and the p-values computed with the Wilcoxon
test are shown for each residue.
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A B C

μ1 = -0.47; μ2 = -0.08
p-value = 1.178e-02

μ1 = -0.81; μ2 = -0.06
p-value = 1.153e-03

μ1 = 0.08; μ2 = 0.23
p-value = 7.699e-01
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Figure 6.2: Evolutionary conservation of regulatory phospho-sites.Evolutionary
rates of phospho-sites (predicted in ordered regions) with regulatory (blue) and unknown
(light green) functions are compared: A) serine, B) threonine and C) tyrosine. The
overlap between the two distributions is shown in dark green color. Evolutionary rate
means of the compared distributions (regulatory µ1 and unknown µ2 respectively) and the
corresponding p-values computed with the Wilcoxon test are presented for each residue.
Note that lower values correspond to higher conservation.

Table 6.2: Preference of regulatory phosphorylation sites for disordered regions.

Regulatory Unknown Odds ratio P-value

S
disordered 460 4655

0.7724114 0.03884
ordered 87 680

T
disordered 101 1249

1.340972 0.144
ordered 41 233

Y
disordered 43 180

0.8563674 0.6102
ordered 36 129

Preference of regulatory phosphorylation sites versus phosphorylation sites of unknown

funciton to appear in disordered regions are shown by odds ratios and their significance

(based on Fisher’s exact test).
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Table 6.3: Preference of regulatory phosphorylation sites for secondary structure ele-

ments.

Regulatory Unknown Prop. phospho Prop. reference P-value

S

coil 523 5005 0.9561243 0.9381443 0.1119

helix 17 275 0.03107861 0.05154639 0.04598

sheet 7 55 0.01279707 0.01030928 0.7469

T

coil 139 1403 0.9788732 0.9466937 0.1409

helix 3 45 0.02112676 0.03036437 0.7177

sheet 0 34 0.00000000 0.02294197 0.1292

Y

coil 56 209 0.7088608 0.6763754 0.6757

helix 7 65 0.08860759 0.21035599 0.02024

sheet 16 35 0.2025316 0.1132686 0.05627

The preference of regulatory phosphorulation sites versus phosphorylation sites of unknown

funciton to appear in coil regions are shown by the corresponding proportions in each

structural group and the corresponding p-values (Proportions test).

162



Acknowledgements

The implementation and completion of this thesis would have not been possible

without the help, encouragement and support by several people that are acknowl-

edged here:

I would like to thank Prof. Dmitrij Frishman for all the support, pieces of advice

and encouragement during the completion of this thesis. I am especially thankful

for the scientific freedom and trust and the possibility to gain experience in various

aspects of science.

I would like to express my deep gratitude to Prof. Matthias Mann for giving me the

opportunity to work on exciting projects, for the tremendous help in paper writing,

his generosity and the inspirational supervision that I have received.

Additionally, I want to thank Prof. Harald Luksch, who was so kind to agree to

become the head of my defense committee.

Special thanks to Jürgen Cox for being an unlimited source of knowledge, ideas

and always having good solutions and clever answers to the hardest problems and

reviewers’ questions.

Furthermore, I would like to express my gratitude to: Tami Geiger for the inspiring

collaborations and fruitful discussions, Kirti Sharma for sharing her knowledge both

on the beautiful world of signaling and the laws of life; Nadin, Michal and Rochelle

for all the stimulating discussions and pleasant coffee breaks and lunches; Richard

Sheltema for his constructive criticism, realistic pessimism and the geeky talks; Dirk

Walther for critical reading and help with the German translation of parts of this

thesis and the entire Mann department for the great working atmosphere, bringing

professionalism, fun and friendship together.

I am very thankful that I had the chance to work with Martin Sturm, who helped

me a lot during my first steps as a PhD student; Andre Jehl who introduced me in

a fun way to the world of pathogens; Dmitry Suplatov for sharing his expertise in

structural biology and offering vital help during my trips in Moscow.



Acknowledgements

Special thanks to Andrey Chursov for offering expert advice on machine learning

and data analysis problems and patiently answering all my questions. I cherish very

much our existential talks that also thought me a lot about management and prior-

itization of daily life tasks.

I am especially grateful to Claudia Luksch for always being so positive, helpful and

dedicated to assisting students with all issues. I am obliged to her for helping me out

with the translation of parts and all the bureaucracy associated with the submission

of this thesis.

Last but not least, I say ” a huge thank you” to Milena Makaveeva, Simon Leis,

Daniel Cernea and my family who shared the ups and downs, never lost trust in me

and keep filling my life with love, happiness and meaning.

164
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AGR2 – Anterior gradient 2 homolog

CID – Collision-Induced Dissociation

DNAJC7 – DNAJ homolog subfamily C member 7

ER – Estrogen Receptor

FASP – Filter-aided Sample Preparation

FFPE – Formalin-fixed Parafin-embedded

FOXA1 – Forkhead box protein A1

GO – Gene Ontology

GOBP – Gene Ontology Biological Process

GOMF – Gene Ontology Molecular Function

GRB7 – Growth factor receptor-bound protein-7

Her2 – Human epidermal growth factor receptor 2

HCD – Higher energy Collisional Dissociation

HPLC – High Performance Liquid Chromatography

HSP – Heat Shock Protein

MAPK3 – Mitogen-activated protein kinase 3

NOLC1 – Nucleolar and coiled-body phosphoprotein 1

PCA – Principal Component Analysis

PR – Progesterone Receptor

PSA – Prostate-Specific Antigene

PTMs – Post Translational Modifications

RFE – Recursive Feature Elimination

SILAC – Stable Isotope Labeling by Amino acid in Cell culture

SVMs – Support Vector Machines

TNBC – Triple Negative Breast Cancer


