
FAKULTÄT FÜR INFORMATIK

Lehrstuhl für Echtzeitsysteme und Robotik

DER TECHNISCHEN UNIVERSITÄT MÜNCHEN
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Zusammenfassung

Ein kardiogener Schock ist mit einer hohen Sterberate assoziiert. Meist leiden Patien-
ten schon an irreversiblen Organschäden bevor ein Krankenhaus zur professionellen Be-
handlung erreicht wird. In den letzten Jahren erhöhten miniaturisierte extrakorporale
Kreislauf-Unterstützungssysteme die Überlebenschancen durch eine Erstversorgung des
Patienten am Unfallort und während des Transports. Dennoch verhindern Platzmangel in
Krankenwagen, Fachkräftemangel und finanzielle Überlegungen den flächendeckenden
Einsatz solcher Systeme.

Ein automatisch gesteuertes Unterstützungssystem könnte den Patienten optimal per-
fundieren, wodurch die Patientensicherheit erhöht und das Notarztteam entlastet wird.
Diese Arbeit beleuchtet 2 Aspekte bei der Automatisierung einer portablen Herz-Lungen
Maschine: Die Entwicklung robuster Regler für die Steuerung der Herz-Lungen Maschine,
sowie die Anwendung von Data Mining Methoden für intelligentes Patientenmonitoring.
Tierexperimente ermöglichten die Aufzeichnung von Vitalparametern des Patienten und
ihrem Zusammenspiel mit der Herz-Lungen Maschine in verschiedenen Szenarien. Ba-
sierend auf diesen Daten wird ein Simulationsmodell und ein hydraulisches Kreislauf-
modell erstellt. Das hydraulische Modell bildet das kardiovaskuläre System nach und
wird dazu verwendet, robuste Regler für die Pumpgeschwindigkeit der Herz-Lungen
Maschine, in Abhängigkeit von Blutdruck und -fluss, zu entwickeln. Vier konkurrierende
Regelstrategien wurden implementiert: ein PI-Regler, ein H∞-Regler, ein Fuzzy-Regler
und ein modellbasierter adaptiver Regler. Die Regler werden robust eingestellt und in
mehreren Szenarien evaluiert.
Autonome Kreislauf-Unterstützungssysteme erfordern kontinuierliches und ausfallsicheres
Patienten-Monitoring. Gewöhnlich entscheidet der Arzt über die Behandlung aufgrund
aktueller Patientenparameter und seiner Erfahrung. Erst in den vergangenen Jahren wur-
den Data Mining und Knowledge Discovery Methoden in medizinischen Fragestellungen
untersucht. In dieser Arbeit werden Data Mining Methoden für eine Online-Bewertung
des Patientenzustands besprochen. In einer Benchmark-Studie wird gezeigt, wie ent-
sprechende Algorithmen dabei helfen können, die Fehlalarmrate von Patientenmonitoren
zu verringern. Hierdurch wird die Behandlungsqualität verbessert und der Einsatz au-
tonomer medizinischer Geräte, wie der geregelten Herz-Lungen Maschine, wird unterstützt.
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Abstract

A cardiogenic shock is associated with a high mortality rate. Often, patients suffer from
irreversible organ damage before they reach a hospital for professional therapy. In recent
years miniaturized extracorporeal circulatory support systems increased the survivor rate
by providing primary care for the patient at the emergency site and during transporta-
tion. Nevertheless, the limited space in ambulances, the lack of trained staff and financial
considerations constrain an area-wide employment of such systems.

An automatically regulated support system could provide optimal perfusion, increas-
ing patient safety and reducing the workload of the emergency team. This work examines
two aspects of the automation of a portable heart-lung machine: The design of robust con-
trollers for the regulation of the heart-lung machine, and the application of Data Mining
methods for intelligent patient monitoring.
Animal experiments allowed to collect vital patient parameters and their interaction with
the heart-lung machine in distinct scenarios. Based on this data a simulation model and
a hydraulic circulatory model are established. The hydraulic model replicates the cardio-
vascular system and is used to design robust controllers, regulating the pump speed of
the heart-lung machine dependent on blood pressure and flow. Four concurrent control
strategies were implemented: a PI Controller, a H∞-Controller, a Fuzzy Controller and a
Model Reference Adaptive Controller. The controllers are tuned robustly and evaluated in
several scenarios.
Autonomous circulatory support systems require continuous and failure-safe patient mon-
itoring. Usually, the medical practitioner decides on the choice of treatment, based on cur-
rent patient parameters and his experience. Only in recent years Data Mining and Knowl-
edge Discovery methods found their way into medical research. In this work Data Mining
methods for the online assessment of the patient’s condition are reviewed. In a benchmark
study it is shown how such algorithms are able to reduce the false alarm rate of patient
monitors. This increases the quality of care and supports the application of autonomous
medical devices such as the controlled heart-lung machine.
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1. Motivation and Goals

The World Health Organization assumes that by 2015 cardiovascular diseases will be the
number one cause of death worldwide. Each year approximately 12 million people die
due to cardiovascular diseases [16]. In Germany cardiovascular diseases were the most
common cause of death in 2011 (40.2% from a total of 852.328). The predominant group
suffered from an ischemic heart disease (127.101), followed by acute and recurring my-
ocardial infarct (55.286)[17].
Cardiac insufficiency or myocardial infarcts can cause a cardiogenic shock, associated with
a mortality of up to 75% [18]. With the malfunction of the heart, cardiac output is de-
creased, leading to hypoxia and, eventually, organ failure. The high rate of mortalitity
could be decreased with an early application of an Extracorporeal Circulation Support
System (ECCS). An ECCS pumps venous blood from the body through the external de-
vice, where it is enriched with oxygen, and back into the human circulatory system again.
I.e., the ECCS takes over the function of the heart and the lungs. By providing a suf-
ficient blood flow and oxygenation, patients can be stabilized until they reach a cardiac
center for in-depth care and therapy. Cardiopulmonary Bypass (CPB) with a Heart-Lung
Machine (HLM) is routine practice in cardiac surgery, but rarely for patients undergoing
emergency resuscitation, due to the large size and complicated set-up of currently avail-
able systems [19]. Only in recent years companies started to develop compact and portable
ECCSs, that, together with defibrillators and mechanical cardiopulmonary resuscitation
devices, complement the family of emergency cardiac support systems.
In clinical settings HLMs allow operations at the rested heart and guarantee sufficient or-
gan perfusion for the patient. They are operated by trained perfusionists in cooperation
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with anaesthesiologists and cardiac surgeons. Monitoring systems constantly observe vi-
tal parameters during the operation. Miniaturized monitoring systems, the construction of
smaller and more efficient pumps and oxygenators facilitated the development of portable
systems, intended for both clinical and emergency applications. With such portable ECCSs
patients can already be perfused during transportation to the clinic, increasing the survivor
rate.

However, the shift from clinical to emergency applications holds some obstacles and
has special requirements. First, space in ambulances or helicopters is limited. Therefore,
additional staff (perfusionist, surgeon) might not be available. And second, financial con-
siderations limit the availability of additional manpower. According to Feindt et al. [20],
at least two trained medical practitioners are required: One experienced surgeon, that is
able to perform the percutaneous cannulation and one perfusionist, operating the HLM.
Apart from the organizational problems, also safety aspects can constrain the application
of an ECCS as an emergency device. A comprehensive patient monitoring system, compa-
rable to those applied in operating rooms, is not available. Furthermore, sensor data can
be disturbed more easily, for example by vibrations during transportation. And the emer-
gency staff might be stressed in critical situations and not able to take care of the patient
and the machine at the same time.
Therefore, an autonomous device, providing optimal perfusion, based on online data of
the patient, is desirable. It could reduce the workload of the paramedics in stressful situa-
tions and increase the patient safety and quality of care, by continuous observation of vital
patient parameters, and according adjustments of machine parameters. Still, the automa-
tion task is intrinsically complex: Until now, the regulation and control of characteristic
and critical variables are managed by human decisions and actions, dependent on the per-
fusionist experience, sensibility and habits [21]. Schwarzhaupt et al. identified the need
for an objective observer for automated HLM operation and suggested decision trees and
neural networks for the assessment of the physiological patient status and the detection of
particular events, such as loss of volume or stenosis [22].

This work shall contribute to medical device automation in non-clinical applications.
The control of a portable HLM, the Lifebridge B2T system [23] (see Figure I-1), serves as a
real-world application. A particular focus of this thesis is on the design and evaluation of
control strategies for robust pump speed control. The pump speed of the HLM has direct
impact on two major perfusion parameters, the blood pressure and the blood flow in the
patient’s Cardiovascular System (CVS).
The context of HLM applications in emergency situations is different from the standard
clinical setting. For a secure and robust control system, a closed-loop control is favor-
able. Perfusion will be more adequate, if the autonomous HLM is aware of the situa-
tional requirements, the physical and the physiological conditions of the patient. There-
fore, Data Mining (DM) methods in medical applications are examined and applied to the
well-known problem of false alarm rate reduction in patient monitoring.
Two major goals can be formulated for autonomous Extracorporeal Circulation (ECC) dur-
ing emergency situations or transportation:

1. Adequate Perfusion: Based on the current state of the patient an adequate perfusion
shall be provided. Optimal perfusion depends on multiple parameters, including
age, height, sex and more (see Chapter 4). A certain blood pressure and blood flow
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needs to be maintained in order to deliver oxygen to organs and tissue.

2. Robust Patient Monitoring: In order to provide adequate perfusion the patient and
the HLM must be continuously monitored. Patient and machine data must be ver-
ified and analyzed, since this data is the basis for autonomous HLM control. Also,
due to the special requirements in non-clinical applications (sensor malfunction, de-
tachment etc.), robust monitoring of vital patient parameters is needed.

(a) Cardiac surgery at the German Heart
Center Munich.

(b) Emergency transportation. From [23].

Figure I-1.: The Lifebridge B2T is a portable HLM designed for two fields of applications:
for cardiac surgery (a) and for emergency transportation (b).

2. Methodology and Contribution

This thesis looks into two aspects of ECCS automation for non-clinical applications: (i)
The design and evaluation of robust pump speed controllers and (ii) the potentials of DM
methods for intelligent patient monitoring. The automation of a HLM serves as a real
world application. A holistic approach was chosen to design and to examine pump speed
controllers. This approach included animal experiments, a hydraulic circulatory mock
model and a virtual model of the CVS and the HLM.
Literature shows, that each of the three approaches had been applied before. Exemplarily,
Meyrowitz [24] developed a computer model of the CVS and a HLM and also conducted
a trial animal experiment, but misses out a hydraulic model. Misgeld [25] on the other
hand built up a hydraulic model and a system simulation, but did not conduct animal
experiments. Each method is justified on its own, but has limitations. For example, ani-
mal experiments do not allow the repetition of specific procedures or tests with the same
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setting, such as a computer simulation or a hydraulic model allows. A hydraulic model is
helpful for hardware and software tests in a standardized in-vitro setting, but cannot sim-
ulate oxygen delivery. And finally a computer simulation can be close to reality but, ex-
emplarily, is unable to include unpredictable events, such as human interventions, as they
can happen during animal experiments. Only the combination of all approaches gives a
comprehensive overview on HLM automation and, at the same time, a deeper insight into
control engineering in the medical field. Together with DM methods for patient monitor-
ing, a better understanding of the possibilities and obstacles in medical device automation
is elaborated.

Animal Experiments: The major goal of the experiments was to record reference data
of a patient (pig) under ECC. Vital parameters of the patient and important parameters
of the HLM were recorded. This data served as ground truth data for both the hydraulic
mock model and the simulation. Furthermore, the animal experiments allowed the eval-
uation of several sensor and data acquisition devices. And finally, a prototype controller
for automated pump speed control of the HLM could be tested during one experiment.
A tailor-made software was developed in order to aggregate and visualize the parameters
from different devices in one place. In total, 10 experiments were conducted, in accordance
with legal and ethical guidelines, following a specific protocol (see Chapter IV).

Hydraulic Mock Model: The circulatory mock model was needed in order to design, test
and evaluate control strategies for pump speed control in a standardized physical setting.
The model represents the CVS under ECC and was validated with data from animal exper-
iments. The design of the model followed the well-known Westerhof model [26], which is
said to give the best trade-off between simplicity and accuracy by many researchers (see
Chapter III). Since the components of the mock circulation can be represented in a math-
ematical way, a complete analytical model of the system (patient and HLM) was derived
and transfered to a state space representation, which is the most common system descrip-
tion in control engineering. Four state-of-the-art controllers were designed and evaluated
in several test cases (see Chapter V).

Simulation: A mathematical description also serves as the basis for the simulation ap-
proach. The heart, lungs, venous and arterial trees can be represented by electrical circuits,
consisting of resistors, capacitors and inductances. A network of those basic elements is
able to replicate the complete human CVS. Also models for temperature or oxygen deliv-
ery under ECC can be implemented in a computer simulation. During this project a CVS
simulation was extended with components of a HLM, such that it replicated the CVS un-
der ECC. Again, the simulation can be validated with animal data and eases the design
and evaluation of control strategies. The simulation approach is thoroughly described in
the dissertation of Alejandro Mendoza [27].

Patient Monitoring: An autonomously operating HLM can only be successful with reli-
able patient and device data. Therefore, secure and robust patient monitoring is needed.
The vision of intelligent monitoring, i.e. the automatic assessment of the patient state,
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requires fast and accurate algorithms, detecting significant events and changes in the pa-
tient’s vital parameters. Only in recent years, researchers think about applying Machine
Learning and DM algorithms in medical applications. Especially the area of alarm man-
agement on Intensive Care Units (ICUs) has become a major focus of interest. In this work
DM methods for monitoring in medical applications are reviewed and a benchmark test is
performed on a well-known database from ICU monitoring.

This work evolved from contributions of several project collaborators. Particularly, it
complements the dissertation of Alejandro Mendoza [27]. While he focuses on the simula-
tion approach and control with (adaptive) Fuzzy Controllers (FUZZYCs), central topics of
this work are the hydraulic mock model, the design and evaluation of robust pump speed
controllers, and DM methods for patient monitoring. In particular, contributions to the
following aspects are made:

Medical Data Fusion: The AutoMedic software-framework [2] was co-developed. It man-
ages the aggregation of data streams of multiple sensors and was predominantly devel-
oped for animal experiments. With different interfaces such as RS232, Ethernet, analog in-
puts or CAN-Bus, vital patient parameters (blood pressure, oxygen saturation, ECG, heart
rate, . . . ) and key data from the Lifebridge HLM (pump speed, produced flow, inlet and
outlet pressure) were recorded and visualized. Due to its modular design, the library also
served as a basis for the simulation and hydraulic model. With a communication module
channel data can be streamed and also processed by third-party software such as Matlab.

Circulatory Mock Model: A physical replication of the CVS under ECC was set-up. The
CVS is represented by two resistors and an air chamber to replicate the peripheral and aor-
tic resistance and capacity. After an extensive literature research the three-element Wester-
hof model [26] was chosen as a basis for the layout and design. A complete mathematical
description of physical CVS representation and a centrifugal pump, replicating the ECCS,
is derived. The model is validated with data from animal experiments and the analytical
description is also verified. The differential equations, representing the mock model, are
transfered to a linearized state space representation, which is used for the design of pump
speed controllers. Both resistance elements and the pump speed can be controlled by the
AutoMedic framework, or alternatively, the real-time environment of Matlab/Simulink.

Robust Pump Speed Controllers: Based on the mathematical model, several pump speed
controllers for flow and pressure control were implemented. As a classical feedback con-
troller a Proportional-Integral Controller (PIC) was chosen. From the field of Adaptive
Control a Model Reference Adaptive Controller (MRAC) was designed. TheH∞-Controller
(HINFC) represents the Robust Control family and, finally, a FUZZYC was selected from
Intelligent Control approaches. The controllers were tuned robustly and tested in three
scenarios, including step changes of the target values, external perturbations and varia-
tions of the peripheral resistance. The design process is described thoroughly and results
are compared to other works in HLM automation.
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Medical Data Mining: As mentioned before, an ideal HLM controller would have knowl-
edge about the current constitution of the patient, so that it is able to recognize and cope
with contextual events, such as sensor failure or intervention of the staff. Motivated from
Clinical Decision Support Systems (CDSSs), the challenges of automated ECC and medi-
cal DM are identified. Related work is reviewed and commonly used DM algorithms are
introduced. Finally, those algorithms are tested on a well-known ICU database [28] and
contribute to

False Alarm Rate Reduction in Patient Monitoring: The high FA rate is a persistent
problem in patient monitoring and DM or Machine Learning algorithms are rarely applied,
due to the lack of publicly available large-scale databases. During this work an online sur-
vey on monitoring alarms was developed and 23 surgeons from the German Heart Center
Munich contributed to an alarm database. A classical DM approach, including feature ex-
traction, learning and classification, is followed and state of the art algorithms are applied
in a benchmark test with the goal to correctly classify alarm situations. Instead of only
observing one parameter, a multimodal approach is followed, considering data from mul-
tiple sources at the same time. Surprisingly, literature is sparse in this field. The results are
quantitatively compared to data from another study [29] and also discussed qualitatively.

3. Organization

This work resulted from a cooperative project between the Department of Informatics, Tech-
nische Universität München and the German Heart Center Munich. The project team included
computer scientists, electrical and mechanical engineers and cardiac surgeons. There was
also a close collaboration with industry (Lifebridge Medizintechnik AG, Sorin Group). This
means, that some contributions of this thesis are the result of teamwork. It also means,
that some results have been published in journals or have been presented at conferences
already. This will be clearly indicated at the beginning of a section. The thesis is structured
as follows:

Chapter II describes the medical fundamentals needed to understand this work. First, an
introduction to the human CVS is given (sections 1 and 2) and hemodynamic aspects are
described mathematically (2.1). In the following, the evolution of the HLM is outlined and
main components are described (3). Finally, major perfusion strategies and parameters are
described with a focus on hemodynamic aspects (4).

Chapter III gives an overview on the state of the art. Previous physical setups for CVS
modeling are described, starting in the 1970ies, including 3 and 4-element Windkessel
models (section 1). The models are reviewed in terms of accuracy and complexity. Section
2 introduces mathematical CVS models and simulation approaches, which are predomi-
nantly based on the model of Avolio [30]. The chapter ends with a summary of the few
previous approaches towards HLM automation (3).
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Chapter IV describes the animal experiments as the first approach towards HLM au-
tomation. First, an overview is given, introducing the experimental protocol as well as
general preparations and sensor placement (section 1 and 2). Section 3 reports the exper-
imental procedures in more detail and their results. In section 4 a prototype controller is
introduced which was tested during one experiment, counteracting the effects of vasoac-
tive drugs.

Chapter V is a core part of this thesis and introduces the physical setup of the CVS under
ECC. First, the layout and components of the circulatory mock model are depicted and, at
the same time, a mathematical describtion is derived. Differential equations are formed,
that describe the relationships between the pump speed of the HLM, the produced flow
and the pressure difference between pump inlet and outlet. The analytical model is trans-
fered to a linearized state space representation and both, the physical setup and its ana-
lytical representation, are validated with data from animal experiments (section 1). In the
following, four state-of-the-art controllers are designed, based on the mathematical system
description. The control task is to regulate the pump speed, based on pressure or flow. A
PIC (section 2), a HINFC (section 3), a MRAC (section 4) and a FUZZYC (section 5) were
designed robustly and tested in three scenarios. Results are presented (section 6), followed
by a discussion (section 6.4) and a summary (section 7).

Chapter VI motivates the application of DM and Knowledge Discovery algorithms in
medical control applications. Considering the special requirements of automated ECCSs
in non-clinical environments, goals for a CDSS are formulated (section 1). Section 2 sum-
marizes standard DM algorithms and highlight the challenges in medical DM (section
2.1). Finally, section 3 summarizes the related work in medical DM and Knowledge Dis-
covery (KD), with a focus on the classification of online patient data.

Chapter VII shows the applicability of DM methods for patient monitoring with a bench-
mark study on a well-known database from ICU monitoring. First, the problem of false
alarm rates is described (section 2). Sections 3 – 5 follow the classical machine learning
process and explain the training data and selected features, as well as the classification
process. The chapter closes with the achieved results and a discussion (section 6).

Chapter VIII concludes this thesis and gives an outlook on future work.
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This chapter starts with a short introduction of the human circulatory system. Only the
aspects needed to understand this work will be mentioned. Detailed information on the
human physiology can be found in medical textbooks [31–33]. After an introduction to
ECC and HLMs the physiological and hemodynamic aspects of ECC will be illustrated in
Section 4. Again, only the mechanisms relevant for this work are described.

1. The Heart

The human heart is a muscular organ pump, which pumps blood through the systemic and
pulmonary circuit. The heart is divided into a left and right heart, separated by the sep-
tum (see Figure II-1). Both parts are again divided into an atrium for blood collection and
a ventricle chamber for blood ejection. The chambers are connected by valves, preventing
the backflow of blood. Blood flow in the heart is achieved by rhythmic contraction of the
left and right ventricles. The heart is connected to the vascular system by the aorta ascen-
dens and the arteria pulmonalis on the arterial side, and the vena cava superior/inferior
and vena pulmonalis on the venous side.
Oxygen-poor blood from the vascular system is collected in the right atrium and, after
opening of the tricuspid valve, enters the right ventricle. After the contraction of the heart,
the pulmonary valve opens and the blood is pumped into the lungs, where a gas exchange
takes place. Carbon dioxide (CO2) is exhaled and the blood is enriched with oxygen (O2)
again. The oxygen-rich blood enters the left atrium and, passing the mitral valve, the left
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II. Medical Background and Extracorporeal Circulation

ventricle. When finally the aortic valve opens, the blood enters the aorta from where it
is delivered into the vascular system. Blood supply for the heart itself is delivered by
coronary arteries.

During standard CPB applications in an operating room, the heart is decoupled from the
circulatory system and the pumping function is taken over by an ECCS. Since this thesis
deals with the automation of a portable HLM, the preconditions are slightly different. In
situations where the portable HLM is used, cannulation is done via the femoral artery
and femoral vein. This means, that the heart is still connected to the circulatory system,
however, is not able to produce enough cardiac output for adequate perfusion.

Figure II-1.: Schematic representation of the human circulatory system with the heart, pul-
monary and systemic circulation. From [25].

2. The Circulatory System

The circulatory system can be divided into the pulmonary circulation and the systemic
(body) circulation, connected by the heart (see Figure II-1). The main purpose of the cir-
culatory system is the delivery of oxygen, nutrients and other substances to organs and
different tissue areas and the removal of CO2. The vessels leading away from the heart
are called arteries, the ones leading towards the heart are called veins. Arteries, except
for the pulmonary arteries, transport oxygen-rich blood from the heart to organs and tis-
sue. Veins, except for pulmonary veins, carry oxygen-poor blood from the vascular system
back to the heart.
The vascular system can be also regarded as an arterial high-pressure and a venous low-
pressure system. The mean blood pressure in the low-pressure system does usually not ex-
ceed 20 mmHg while the pressure of the high-pressure system is between 60 and 100 mmHg.
About 85% of the total blood volume is in the low-pressure system [32]. Figure II-2 shows
the perfusion in human pulmonary and systemic circulation under normal physiological
conditions. From the left ventricle the blood is transported through the aorta, which sep-
arates into big arteries going to organ and tissue areas. Arteries are separated again into
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arterioles and capillaries, where blood gases, nutrients etc. are exchanged between the
blood and interstitial spaces.

Figure II-2.: Perfusion in the CVS during rest. Shown is the distribution of the cardiac out-
put on major body organs depending on different vascular resistances. From
[25], modified from [32].

2.1. Hemodynamics

Blood flow is caused by pressure differences in the circulatory system. Blood flows from
areas with high pressure into areas with low pressure. Thereby it has to overcome an
inner and vascular resistance R, depending on the diameter and the length of the vessel.
Analogous to Ohm’s law the relation between the pressure difference ∆P and current I
can be formulated as

I =
∆P

R
(II.1)

with I describing the blood volume ∆V per time ∆t, passing the cross-sectional vessel
area:

I =
∆V

∆t
. (II.2)

With the decreasing diameter of the vessels, the resistance increases. The Hagen-Poiseuille-
Law describes a stationary and laminar current in a rigid cylinder and can serve as a rough
approximation of the blood flow, depending on the vessel’s inner radius r, its length l and
the fluid viscosity (η):

I =
r4π∆P

8ηl
(II.3)
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Using Equation II.1, the resistance of a vessel can be expressed as

R =
8ηl

r4π
. (II.4)

The resistances of the systemic vascular system are cumulated in the Total Peripheral Re-
sistance (TPR) which is calculated from the Mean Arterial Pressure (MAP) and the cardiac
output (CO):

TPR =
MAP

CO
. (II.5)

The MAP is the mean value of the arterial pressure waveform. The cardiac output is the
Heart Rate (HR) times the stroke volume. Another important parameter in this context
is the Central Venous Pressure (CVP). It is measured in the right atrium and reflects the
ability of the right heart to pump blood [25]. During CPB it is an important measure to
prevent the venous systemic vessels from collapsing.

The Hagen-Poiseuille-Law does not consider the elasticity of the vessels and the Non-
Newtonian characteristics of blood (viscosity is not constant but depends on the flow char-
acteristics). The flow resistance is usually higher than the calculated value.

A more accurate flow model can be derived when the elasticity of the arteries is consid-
ered. Flow of incompressible fluid through elastic tubes can be described by the Navier-
Stokes equation, which, in its general form, reads

∂v

∂t
+ (v∇)v = −

1

ρ
∇p+

η

ρ
△ v+ ff (II.6)

with v representing the flow velocity, ρ the fluid’s density, p the pressure, η the dynamic
viscosity and ff the body force applied to a volume element. Based on several assumptions
and simplifications, Misgeld [25] shows how to simplify the nonlinear Equation II.6 to a
system of differential equations, yielding

pn − pn+1 = Ln ·
∂qn
∂t

+Rnqn (II.7)

qn − qn+1 = Cn ·
∂pn
∂t

(II.8)

with the parameters

Ln =
9ρ∆ln
4πr2n

Rn =
81µ∆ln
8πr4n

and Cn =
3πr3nln
2Endn

. (II.9)

Equations (II.7) and (II.8) describe the relation between pressure and flow in the n-th vas-
cular compartment, where E represents the elastic modulus, d the tube gauge and µ the
kinematic viscosity. Rideout and Dick [34] have shown how to derive the parameters L, C
and R. They also show how to construct electrical circuits, representing a vascular com-
partment. L describes the fluid inertance, C the vascular compliance and R the vascular
resistance.

The presented relationships form the basis of computer models and hydraulic represen-
tations of the circulatory system as presented in chapters III and V. Using physical data
(length, radius, blood viscosity, etc.), models of the circulatory system can be built with
different complexity. Exemplarily, the famous Avolio-model of the arterial tree consists of
128 compartments [30].
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3. The Heart-Lung Machine

The age of modern heart-surgery with HLMs starts on May 6, 1953, when John Heysham
Gibbon Jr. successfully closed an atrial septal defect under surgical vision and CPB, af-
ter many years of research beginning in the 1930s [35]. The patient, an adult woman,
recovered completely and the normal circulation was detached from the heart for 25 min.
Already in 1812 Le Gallois thought about an artificial replacement of the heart: If one could
substitute for the heart a kind of injection of arterial blood, either naturally or artificially
made, one would succeed in maintaining alive indefinitely any part of the body whatso-
ever [36]. In 1885, Max von Frey and Max Gruber developed one of the first prototypes
of a HLM, containing a film oxygenator and a syringe pump for closed-loop system per-
fusion. Half a century later, along with technical evolution and a deeper understanding
of human physiology, Gibbon made a revolutionary breakthrough and presented a HLM
with a roller pump and a film oxygenator [37]. His work was technically and financially
supported by IBM. Further developments, including bubble and membrane oxygenators,
fostered advances in heart surgery.

During cardiac surgery, HLMs take over the pumping function of the heart and the gas
exchange function of the lungs. Although minimally invasive operation techniques have
been established during the last years, a vast amount of interventions is conducted at the
rested heart. With an ECCS a sufficient perfusion and, hereby, a sufficient oxygenation of
the patient is ensured [38]. ECC has turned from first experimental perfusion of organs
into a standard procedure of heart surgery. It will always be necessary when operations
require a rested heart, or if circulation support of the beating heart is necessary [39].
Figure II-3 shows two state of the art HLMs, the S5 HLM from Sorin, a model used in
operating theaters, and the Lifebridge HLM, a portable ECCS designed for short-term
peripheral cardiopulmonary bypass in emergency circulatory resuscitations [40].

(a) (b)

Figure II-3.: State of the art HLMs. S5 HLM from Sorin (a) and portable HLM from
Lifebridge (b). From [23, 41].

In a basic setup a HLM consists of the following main components:

• Venous Reservoir

• Blood Pump
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• Oxygenator

• Heat Exchanger

• Filter

• Arterial and Venous Cannula

A HLM replaces the function of both the lungs (gas exchange) and the heart (provide
energy to ensure circulation of blood). Typically, blood is drained by gravity through
the cannulas in the Superior Vena Cava (SVC) and Inferior Vena Cava (IVC) or IVC and
Right Atrium (RA) into the HLM, from where it is pumped (with a roller or centrifu-
gal pump) through the artificial lung (“oxygenator”) back into the systemic vasculature,
through an arterial cannula placed in the ascending aorta [42]. The functional principle
of the Lifebridge HLM is shown in Figure II-4 with the main components of the HLM
connected to a patient via femoral cannulation.

Figure II-4.: Functional principle of a HLM with main components and peripheral cannu-
lation of the patient. From [23].

3.1. Venous Reservoir

The reservoir collects blood from the venous system of the patient. It serves as a buffer for
fluctuations in venous drainage and is a source of fluid for rapid transfusion [42]. Usually
the drainage is passive, since the reservoir level is lower than the patient level. Addition-
ally, blood from the surgical field and vent suction devices can be collected in the reservoir.
Reservoirs are either designed as hard shells or soft bags. The rigid design seems to be su-
perior, since the hard shells are usually bigger and air elimination and volume measure are
easier [43]. Hard shell reservoirs are typically used in open-loop systems with the advan-
tage of a better air elimination. During ECC the filling level must be observed constantly,
since an empty reservoir would lead to the delivery of air into the arterial line.
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3.2. Blood Pumps

Two kind of blood pumps are used in today’s HLMs: Displacement/roller pumps and cen-
trifugal pumps. The pumps have to deliver sufficient volume, minimize damage to blood
cells and operate reliably. In operating theaters roller pumps are commonly used. Their
setup is simple, cheap and allows a pulsatile blood flow. Two rollers are placed opposite
to each other and move the blood by occlusion of the surrounding tubing. However, blood
traumatization in long-period ECC application is higher than for centrifugal pumps [44].
Centrifugal pumps are predominantly used in portable HLMs. The pump head is driven
by an electro motor via magnetic coupling and, by the rotational speed, kinetic energy is
transfered to the liquid [38]. Centrifugal pumps do not transport air bubbles, since the
lower density of air compared to blood keep possible bubbles in the pump center. How-
ever, air bubbles in the pump significantly reduce the produced pump flow. Figure II-5
displays schematic drawings of a roller pump and a centrifugal pump to illustrate the
functional principle of the two different types.

(a) (b)

Figure II-5.: Roller (a) and centrifugal (b) pump. From [43].

3.3. Oxygenators

Oxygenators take over the function of the lungs, i.e. to exchange vital gases [39]. Mem-
brane oxygenators are routinely used to oxygenate the blood. They have a semi-permeable
membrane, usually made of polypropylene, separating gas from blood. State of the art
oxygenators allow operating times between 6 and 8 hours. Due to diffusion processes
there is an exchange between O2 and CO2. The driving force of these processes is the
partial pressure of O2 and CO2. Due to the pressure difference gas penetrates from one
side of the membrane to the other (from high to low pressure regions). The diffusion rate
is proportional to the pressure gradient [45]. After the oxygenator the oxygen-rich blood
passes an arterial filter before entering the CVS of the patient again. The filter eliminates
bubbles and micro particles from the ECC.

3.4. Cannulation

The interface between the ECCS and the human CVS are the cannulas. The arterial can-
nula transports the externally oxygenated blood back into the CVS of the patient, while
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the venous cannula draines blood from the vascular system into the ECCS. Central arte-
rial cannulation is usually done via the aorta ascendens. Venous cannulation takes place
via the superior or inferior vena cava. Peripheral cannulation (via A. femoralis and V.
femoralis) is favored in emergency situations due to the better accessibility. In contrary
to the central cannulation a total circulation support is not possible. About 80% of the
blood volume is drained, while 20% pass the lungs. This leads to a lower pump volume
(3.5–4 lpm). During femoral perfusion this also means, that the arterial blood only reaches
up to the aortic arch, where it collides with the residual cardiac output of the heart [43].
Cannula size depends on the patient’s anatomy, as well as on the required cardiac output,
which is usually between 3.5 and 6 lpm for adults.

3.5. Miniaturization and Application outside Operating Rooms

The HLM is the most frequently employed type of ECC [43]. Miniaturization and techni-
cal innovations have led to the development of numerous cardiovascular support systems
(HLM, Extracorporeal Membrane Oxygenation (ECMO), Ventricular Assist Device (VAD),
etc.), which are also used outside the cardiac operating room [20]. In comparison to stan-
dard HLMs, miniaturized versions need less tubing and therefore less priming volume.
However, they need to be placed closer to the patient. Another functional difference is,
that Mini-HLMs are closed loop systems. At the initiation phase of ECC air in the venous
line has to be removed completely. Existing built-in bubble traps are only designed for
small air volumes [43].
One of the most reduced form of an ECCS are ECMOs. They consist of a pump and a
membrane oxygenator, the main components of a regular HLM. Being closed-loop sys-
tems without a venous reservoir, ECMOs are designed for continous long-term support in
hospitals (ICU) or during transportation.

The major indications for mechanical circulatory assist devices outside the hospital are
listed in Table II.1. The listed indications are critical and life-threatening situations and
require the presence of trained staff for therapy and a secure operation of the ECCS. Up
until now a cardiac surgeon with sufficient experience in percutaneous cannulation and
a cardiac perfusionist operating the HLM are needed. The application in emergency sit-
uation offers new opportunities to treat patients with acute or severe cardiovascular in-
sufficiency, but also faces regulatory and organizational problems [20]. This work focuses
on the development of an automated pump speed regulation. Together with intelligent
patient monitoring it can support the emergency staff, increase the patient safety and ease
the complex application of ECCSs outside the hospital. However, animal experiments (see
Chapter IV) have shown, that sometimes an adequate blood flow can not be maintained
with percutaneous cannulation. Segesser et al. [46] state, that there is a conflict of interest
in remote access perfusion, as the operator’s preference goes to relatively small cannula
diameters, whereas larger diameters are necessary to achieve high blood flows.

4. Perfusion during Extracorporeal Circulation

The primary objective of cardiac surgery is a healthy, productive long-term survivor, rather
than simply hospital survival and absence of gross organ dysfunction. Optimal perfusion
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Protracted cardiogenic shock

Refractory acute lung dysfunction

Intoxication with acute cardiovascular failure

Hypothermia with/without circulatory collapse

Pulmonary embolism with acute right-sided heart failure

Table II.1.: Indications for the application of HLMs outside the cardiac operating room.
From [20].

can be defined as that, which is followed by the best long-term patient outcome in terms
of survival and function of all organ systems [47]. Perfusion during ECC is complex and
subject to several influences. The operation and monitoring of the HLM is the task of a
perfusionist, who communicates with the surgeon and the anaesthesiologist. Especially in
the beginning and at the end of ECC support and during all major activities, clear coor-
dination between those three parties is essential. ECC support is a severe intervention to
the human CVS. Moreover, patients are in an exceptional state, being narcotized, under
the influence of medication and usually with some acute cardiac disease. Following [48]
and [45], the major factors influencing the patient state under ECC support are displayed
in Figure II-6. Since this work deals with the automatic control of an ECCS, specifically

Patient

under ECC

Support

Basic

Disease

Anaesthesia
Anti-

coagulation

Hemodilution

Hypothermia

Acid-Base-

Management Perfusion

Technique

Figure II-6.: Multiple influences on a patient under ECC support.

controlling the pump speed, the hemodynamic aspects and variables during ECC support
are described in more detail, while details on other perfusion related influences, such as
acid-base management or anaesthesia, can be found in the related literature.

4.1. Pulsatile vs Constant Flow Perfusion

Most heart centers use a non-pulsatile perfusion technique [24], resulting in a constant
blood flow. Proponents of pulsatile perfusion argue, that pulsatile flow patterns improve
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major organ blood flow. Others have concluded, that pulsatile pumps increase the com-
plexity of the CPB circuit and enhance the destruction of red blood cells and platelets [47].
More than 150 articles, comparing pulsatile and nonpulsatile perfusion, have been pub-
lished [49]. However, the diversity of the devices used to generate pulsation [50], the lack
of a clear definition of pulsatile flow [51], and the variety in the experimental design of re-
lated studies, hinder a quantitative analysis. So far, efforts to optimize pulsatile perfusion
patterns during ECC, that resemble the physiological perfusion, do not seem to be justified
[52].

4.2. Patient Monitoring during Extracorporeal Circulation

During ECC support the following parameters should be monitored at the patient (from
[24]):

• invasive measurements of MAP and CVP

• body temperature

• oxygen delivery

• acid-base balance and electrolyte metabolism

• coagulation

• urine production

• Electrocardiogram (ECG)

On the machine side perfusionists should observe the following parameters (from [43]):

• pump flow

• pump inlet and outlet pressure

• bubble sensor

• gas monitor

• reservoir filling level

In the following, parameters relevant for this work are described in more detail.

4.3. Mean Arterial Pressure

One of the most important patient parameters to monitor during ECC is the Arterial Blood
Pressure (ABP). Using a non-pulsatile perfusion technique, the blood pressure can be
registered as a mean value only. The MAP depends on the produced pump flow of the
HLM, mainly restricted by the cannula size and the TPR. To increase the MAP, the pump
speed can be increased, or, if that’s not sufficient, the peripheral resistance can be in-
creased medicamentously. Since the MAP is influenced by a multitude of factors (flow,
temperature, hematocrit, depth of anesthesia and others), and due to a large amount of
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controversary studies, guidelines for optimal perfusion pressures are hard to give. Mur-
phy [47] suggests, that the choice of perfusion pressures must be based on the assessment
of the benefits and risks of higher and lower MAPs on a case-by-case basis (see Table II.2).
Usually, pressures between 40 and 60 mmHg are recommended [45]. Some studies support

Potential advantages of higher MAPs Potential advantages of lower MAPs

Enhanced tissue perfusion in high risk
patients (hypertensive, diabetic, elderly)

Less trauma to blood elements

Improved collateral flow to tissues at risk
of ischemia

Reduction of blood in the surgical field

Allows for higher pump flow rates on
CPB

Less cardiotomy suction

Permits the use of smaller venous and ar-
terial cannulae
Enhanced myocardial protection (re-
duced collateral coronary blood flow)
Reduced embolic load to the central ve-
nous system (reduced pump flow)

Table II.2.: Arterial Pressure Management. From [47].

MAPs above 70 mmHg. Especially for certain patient populations as elderly [53], hyper-
tensive [54], diabetes [55] patients or people with advanced atherosclerotic disease of the
aorta [56], higher perfusion pressures seem to be appropriate.

4.4. Central Venous Pressure

The CVP, measured in the superior vena cava or in the right atrium, is a good indicator for
the cardiac state and the volume status of the patient. Any deficit in cardiac function will
elevate the CVP, if blood volume and vascular dynamics are stable. When cardiovascular
function is stable, the central venous pressure will tend to vary directly with alterations in
blood volume [57]. A low CVP is usually caused by hypovolemia, while several factors,
such as increased blood volume, cardiac insufficiency or pulmonary embolism among oth-
ers, can cause a high CVP [58]. Also the usage of too small or wrong positioned cannulas,
as well as kinking of the venous line, can cause high CVPs during ECC [45]. Usually the
CVP is between 0 and 15 mmHg, in the superior vena cava at around -3 mmHg and in the
right atrium even lower [58].

4.5. Pump Flow

Following Lauterbach [45], the produced pump flow should be high enough to cover the
oxygen demand of the patient and as low as possible in order to avoid blood traumatiza-
tion. Again, the blood flow depends on multiple factors with the Body Surface Area (BSA),
the degree of hypothermia and the oxygen consumption of the patient being the most im-
portant ones. There is no evidence from large-scale randomized trials supporting a min-
imal safe flow rate during normothermic or hypothermic CPB. Furthermore, the optimal
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flow rate, that supports the most favorable organ perfusion and results in improved clin-
ical outcomes, has not been determined [47]. Usually a flow rate of 2.4 l/min/m2 is pur-
sued for normothermic perfusion [43, 45]. This flow rate approximates the cardiac index
of a normothermic anesthetized patient with a normal hematocrit [59]. Depending on the
degree of hypothermia, the flow rate can be adapted (see Table II.3).

Degree of hypothermia Recommended flow rate

Normothermia 2.2− 2.6 l/min/m2

Light Hypothermia (32− 35 ◦C) 2.0 l/min/m2

Moderate Hypothermia (26− 31 ◦C) 1.5 l/min/m2

Table II.3.: Recommended flow rates per BSA based on the degree of hypothermia. From
[43].

4.6. Hematocrit and Hemodilution

In the early beginnings of heart surgery HLMs were primed with whole blood. After
studies have shown, that asanginous liquids (Ringer solution) for priming did not lead to
worse outcomes, hemodilution became a standard practice. Hemodilution is due to the
addition of volume for hemodynamic stabilization during anaesthesia, the priming vol-
ume of the HLM, and the application of cardioplegia [42, 45]. Overall, hemodilution leads
to a reduction of the hematocrit value of about 50% and a decrease of blood viscosity [58].
This leads to an improved microcirculatory flow, a reduced risk of hypertension during
higher bypass flow, and a decreased requirement for intraoperative transfusions. Exces-
sive hemodilution, however, may compromise DO2 at the tissue level and contribute to
hypotension during CPB [47]. The decrease of blood viscosity comes along with a de-
crease of the TPR. Flow is increased and blood flow characteristics are improved, leading
to a better organ perfusion [45]. An obvious disadvantage of hemodilution is the decrease
of the carrying capacity of oxygen. Again, the maximum degree of hemodilution should
be assessed individually for each patient, considering factors such as age, sex or previous
diseases.

4.7. Oxygen Delivery

Sufficient oxygen supply of the patient during ECC is a major task for perfusionists in
order to avoid hypoxia. The O2-Supply can be calculated as the product of the flow Q and
the arterial concentration of O2:

O2-Supply = Q · CaO2. (II.10)

The oxygen consumption is calculated as the product of the flow and the arteriovenous
oxygenation difference:

O2-Consumption = Q · avDO2. (II.11)

A high oxygen consumption of an organ is associated with a large avDO2 and a low con-
centration of oxygen on the venous side. The Oxygen Saturation (SpO2) is determined
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by the partial pressure of oxygen, the pO2, and expresses the percentage of O2-saturated
hemoglobin. The relation between pO2 and SpO2 is displayed in the oxyhemoglobin dis-
sociation curve II-7. At a pO2 healthy adults have a SpO2 value of about 97%. On the

Figure II-7.: Oxyhemoglobin dissociation curve. Modified from [45].

venous side an average pO2 of about 40 mmHg is measured, associated with a saturation
of 73% [45]. Several factors can influence the dissociation curve. If, for any reasons, the
pH-value increases, the pO2 or the body temperature decreases, the dissociation curve is
shifted to the left. Vice versa, if these parameters change in the opposite way, the disso-
ciation curve is shifted to the right. Oxygen delivery to the tissue is eased, however, a
larger pO2 is needed to adsorb the same amount of oxygen. During ECC oxygen delivery
can be improved by increasing pump flows, increasing hematocrit concentrations, or by
increasing hemoglobin saturation and the amount of dissolved oxygen [47].
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1. Hydraulic Mock Circulation Systems

CVS modelling has been subject to numerous studies for more than 50 years now. One of
the first reported artificial circulatory setups was the Kolff model in 1959 [60]. Especially
in the 1970ies much effort was put into building artificial hearts and circulatory mock
models [61–66]. This development was also driven by the contributions of Guyton et al.
[67], who turned physiology from a speculative into an engineering science, by providing
a complete system analysis of circulatory regulation. Guyton’s simulation model consisted
of 18 modules, containing about 600 physiological parameters and variables [68].

One of the most popular artificial models from that time is the three-element windkessel
or Westerhof model [26]. For the first time Westerhof et al. give an in-depth description
of the design, construction and testing of an artificial circulatory model. Starting from an
electrical model of the systemic arterial tree [69] (Figure III.1(a)), their work deals with the
hydrodynamic equivalent. The setup consists of two resistances, replicating peripheral
resistance and characteristic impedance of the vessels. Furthermore, a compliance, repre-
senting the total compliance of the arterial tree. The model was validated in two ways:
First, a pump, producing sinusoidal flows in a range of 0.4-30 Hz was used to measure
input impedances. This data was then compared to reported in vivo values of a dog’s and
cat’s input impedances. As a second verification, the model was used as a load for an iso-
lated heart of a cat and pressure and flow curves were compared. Both tests agreed well
with in vivo data and the realistic pressure and flow wave shapes have been confirmed by
other authors as well [70, 71]. In conclusion, the Westerhof model imitates the normal car-
diac load very well and shows, that it is possible to arrive at an easily adjustable hydraulic
load for a heart with an input impedance close to the arterial tree.
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A few years later Donovan [72] developed a hydraulic analog of the circulatory system
for evaluating artificial hearts. The setup comprised four chambers, simulating systemic
and pulmonary arterial and venous vasculature. A good comparison between the mock
circulatory system response and the system response of a calf was reported. Another fa-
mous mock model is the Pennsylvania State circulation model, described by Rosenberg
et al. [73]. In addition to the Donovan Setup a parallel plate resistor, downstream of the
aortic compliance, simulates the systemic resistance of the circulation [74]. The Penn State
model showed adequate results when compared to human data and was mainly used for
in vitro testing of blood pumps. However both the Donovan and the Penn State model
lack thorough system analysis and evaluation.
Also the test circulation system of Arabia and Akutsu [75] lack a thorough evaluation.
Their mock model included several RLC lumped parameter elements to mimic aorta, pul-
monary artery, systemic and pulmonary veins. With the objective to study artificial hearts,
the contribution of their work is the derivation of a complete mathematical description of
their model, which many other authors omit. Arabia and Akutsu examined blood-volume
and pressure distributions, as well as flowrates in steady conditions. However, some de-
viations between measured parameters and physiological data were reported.

The circulation loop of Vermette et al. [76] was built in order to test cardiovascular
devices with a focus on the evaluation of different materials, used for cardiovascular ap-
plications. It consisted of a feed tank, a centrifugal pump, three valves, a regulating flow
tank and a pulsatile mechanism. Pulsatile flow was produced by axial displacement of
a cylinder, that periodically compressed the conduit. This setup allowed to study both
pulsatile and constant flow patterns. However, the cylinder produced an additional flow
resistance and, for high flow rates, the range of achievable mural pressures was signifi-
cantly reduced. Still, the setup allowed to create flow and pressure waveforms in a broad
range, similar to the wave propagation in peripheral circulation.

Stergiopulos et al. [77] describe the three-element windkessel model of Westerhof as an
almost perfect load for isolated heart studies, but criticise that it does not lead to accurate
estimates of the total arterial compliance. They argue, that for low frequencies the whole
blood mass is accelerated simultaneously and hypothesize, that an initial term is miss-
ing from the three-element model. They showed, that when a three-element windkessel
is used to fit aortic pressure with aortic flow as input, the estimates of the compliance
and the characteristic impedance of the aorta deviate significantly from their values ob-
tained with standard methods used in the literature. Particularly, the arterial compliance
is overestimated, while the characteristic impedance is underestimated. In conclusion, the
three-element windkessel can produce realistic aortic pressures and flows, but only with
parameter values that quantitatively differ from the vascular properties [70].
To overcome this deficiancy they introduce a fourth element, an inertial term in parallel to
the characteristic impedance (Figure III.1(b)) and show, that their model is superior to the
three-element version in terms of Root-Mean-Square Errors (RMSEs). Four-element wind-
kessels have been studied before and the better accuracy to in vivo data was known. How-
ever, there was no physical interpretation of the inertial element and was therefore only
considered as a further degree of freedom [78]. Stergiopulos et al. now interpret the fourth
element as the summation of all local inertances of the arterial system. For mean pressure
and flow (0 Hz), wave transmission is of no importance and only the peripheral resistance
contributes [77]. The examined ECCS (Lifebridge) in this work produces constant flow
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and, therefore, a fourth element, adding more complexity, seems to be unnecessary for the
hydraulic mock model.

C Rp

Rc

(a) Three-element windkessel model

C RpL

Rc

(b) Four-element windkessel model

Figure III-1.: Electric representation of three- and four-element Windkessel models with
characteristic resistance Rc, peripheral resistance Rp, arterial compliance C
and inertia L.

Kind et al. [79] questioned the use of a four-element model, due to low identifiability of
the inductivity. In their study they estimated three- and four-element windkessel param-
eters using a subspace model identification algorithm. Systematic errors in the parameter
estimation were investigated using simulation data. From a simulated aortic flow curve,
the corresponding aortic pressure curve was calculated using the two windkessel models.
The models were compared to the real pressure curve in terms of the RMSE. They found
a systematic error in the identification of the four-element model, while all parameters for
the three-element windkessel were estimated with an error of less than 1%. A limitation in
the study of Kind et al. is, that no in vivo data had been used, so modeling errors cannot
be excluded. Although the four-element model seems more suitable from a physiologi-
cal point of view and achieves a better RMSE, the parameter estimation turns out to be
more problematic. Also Lambermont [80] states, that the four-element windkessel model
increases the statistical fit, but the differences to parameter predictions in three-element
windkessel models are small and do not warrant the additional complexity.

Sharp and Dharmalingam again find the three-element model among others to exhibit
the best tradeoff between simplicity and accuracy [81]. They first used computer studies to
identify the configuration of lumped parameter elements in a model of the systemic circu-
lation. They simulated RC, RCR, RLRC and RCLRC combinations to find the best match of
impedance to human data. The models were compared to data from 5 normal subjects [82].
The accuracy increased with the number of elements in the system, but the three-element
model already showed a good match with a minimum number of elements and was cho-
sen for the construction of a physical replicate as a compromise between accuracy, size,
weight and complexity. The hydraulic mock model was designed and constructed analo-
gous to simulations. Sliding plates were used as adjustable resistors to vary the flow area
and a variable-volume air chamber as an adjustable compliance (Figure III.2(a)). Their
results show a close match with data from humans and the setup was compared to the
Donovan [72] and the Penn State [73] mock models, with superior results in the low, fun-
damental heartbeat frequency range. Water was used as a blood substitute, because the
non-Newtonian properties of blood do not substantially impact bulk pressure and flow
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response in large vessels under normal conditions [83].

(a) (b)

Figure III-2.: Schematics of the hydraulic mock circulation loops of (a) Sharp and Dharma-
lingam [81] and (b) Liu et al. [84].

Verdonck et al. [85] constructed a computer-controlled mock model to test mitral valves.
It consists of a model of the human heart, connected to a windkessel model of the systemic
circulation. The fluid enters the system from a preload reservoir, travels through two rigid
pulmonary veins and a replaceable mitral valve to a left ventricle component. From there,
it passes the aortic valve and enters the windkessel model, consisting of a compliance
chamber and a hydraulic resistance. This model was also used by Vandenberghe et al.
[86] to assess the hydrodynamic performance of an intra-arterial Left Ventricular Assist
Device (LVAD).

Another mock model for the testing of LVADs was designed by Liu et al. [84]. The mock
loop consisted of pulsatile left and right cardiac simulators, air/water tanks to model the
arterial and venous compliances, tygon tubes to connect the elements and to model ve-
nous, arterial and other system flow resistances, and a tuning clamp to vary system re-
sistance characteristics under different pressure/flow conditions (Figure III.2(b)). Several
conditions, including healthy resting, healthy sleeping, healthy exercise and congestive
heart failure, were tested. Parameters for several conditions were presented, but not vali-
dated. The mock model was said to be sufficient for testing continuous flow LVADs under
various heart rates and contractility, however it does not provide accurate prediction of
LVAD performance in the transition of activity levels, due to its inability to model the
Frank-Starling response.

Pantalos et al. [87] presented a mock circulation model for testing cardiac devices in
normal and pathologic states. Well-aware of already existing models, their focus was to
show the ability of the model to mimic the Frank-Starling response of normal, heart fail-
ure and cardiac recovery conditions. The mock circulation consisted of atrium, ventricle,
systemic and coronary vasculature components. It was validated by comparison of hemo-
dynamic parameter values and ventricular pressure-volume relationships with published
physiologic data [82]. Mechanical properties were estimated using the four-element wind-
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kessel model. Lumped parameter elements (resistance, compliance, inertance and charac-
teristic impedance) were adjusted, until the error between the experimentally measured
impedance and the model derived impedance had been minimized. Pantalos et al. re-
ported physiologically equivalent hemodynamic waveform magnitudes and morphology.
Also the characteristic cardiovascular parameters were comparable with physiologic val-
ues. They concluded, that mock circulations are not intended to replace in vivo models,
but can be a valuable research tool for assessing the performance of cardiac devices, devel-
oping experimental protocols in a controlled environment and training personnel on the
operation and maintenance of cardiac devices. Koenig et al. [88] used this model to inves-
tigate hemodynamic and pressure-volume responses to continuous and pulsatile LVADs.
And Glower et al. [89] evaluated an artificial vascular device with this model while Litwak
et al. [90] focused on aorta outflow graft location.

Ferrari et al. [91] attest, that hydraulic circulation models are always a compromise be-
tween mechanical complexity and accuracy. When compared to numerical models, they
are rather expensive and often not sufficiently flexible or accurate. However, those mod-
els are needed, e.g. when testing new cardiac devices. Therefore, Ferrari et al. proposed a
hybrid mock circulatory system. From a closed loop model [92] left artrial and systemic ar-
terial pressures were measured. Based on those values the left ventricular output flow was
calculated on a computer, which controlled a gear pump, producing the designated flow.
Results showed, that the model is coherent with the physiopathology of the circulatory
system in relation to the pressure-volume distribution and arterioventricular interaction.
The approach of merging numerical and physical models was also followed by Kozarski
[93].

(a) Westerhof et al. (1971) [26] (b) Donovan (1975) [72]

(c) Koenig et al. (2004) [88] (d) Timms et al. (2005) [94]

Figure III-3.: Hydraulic mock circulation loops.
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With continuous improvements Timms and colleagues established an advanced mock
circulation loop [94–96]. The authors diagnose, that current circulation loops often lack
the auto-regulatory feedback mechanisms of the natural cardiovascular system, such as
the Frank-Starling mechanism, baroreceptor-reflex and shifts to volume, due to skeletal
muscle pump and postural changes. Also, many mock models are designed for a spe-
cific use case and do not combine many circulatory features. The model of Timms et al.
consists of a detailed replicate of the heart using multiple tubes as chambers and several
mechanical valves even including left and right coronary circulations. It is completed with
a five-element windkessel model, representing systemic and pulmonary vasculatures. A
mathematical simulation was used to determine the physical properties, such as pipe di-
mensions and input pressures [97]. The mock loop was validated by replication of arterial
pressure and flow rates of a patient progressing through therapy. The model is the basis for
several studies and cardiovascular devices have successfully been tested with it [98, 99].

Author Year 3-el. WK 4-el. WK >4-el. WK Simulation Validation

Westerhof et al. [26] 1971 x cat, dog

Donovan [72] 1975 x calf

Rosenberg [73] 1981 x human

Arabia and Akutsu [75] 1984 x x human

Sharp and
Dharmalingam [81]

1999 x x x x human

Ferrari et al. [91] 2002 x x human

Pantalos et al. [87] 2004 x human

Timms et al. [96] 2011 x x human

Table III.1.: Comparison of selected hydraulic mock circulation loops.

In summary, hydraulic mock circulation loops are a valuable tool to study cardiovascu-
lar dynamics in an in vitro setting. Since the 1970ies, those models became more and more
advanced and accurate. The mock setups are predominantly used to test new cardiovascu-
lar devices, but also training of medical staff is an option. By several authors the 3-element
windkessel was found to exhibit the best trade-off between simplicity and accuracy. Ac-
curacy did not improve significantly with the addition of a fourth element. Improvements
were only noticeable with a fifth element. Since many mock models were developed for
specific applications, comparison is difficult. Table III.1 summarizes the key features of
well-known hydraulic circulatory replicates. Indicated are the number of windkessel ele-
ments, the validation method (predominantly models were validated by comparison with
human data) and whether a simulation or analytical analysis was done. Milestones are the
contributions of Westerhof et al. [26] for the first in-depth analysis and design guidelines,
of Sharp and Dharmalingam [81] for an extensive comparison between several windkessel
models and the contributions of Timms et al. [96] for establishing a sophisticated and
flexible mock circulation loop. With consideration of the requirements for this thesis, the
3-element windkessel model appears to be sufficient. The examined HLM produces con-
stant flow, i.e. there is no need for considering frequency characteristics of the model. The
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3-element model provides a simple analytical description, easing the process of control de-
sign. And the patient can be regarded as a black-box model, i.e. there is no need for flow
or pressure analysis in specific compartments of the model, so that a lumped parameter
approach is legitimate.

2. Mathematical Models and Circulatory System Simulations

Mock circulation loops are key elements during the development and testing of cardiac de-
vices, but of course have limitations as described above. On the other hand, mathematical
circulatory models permit the study of features and behaviors that would be impractical
to investigate using physical mock circulation systems. For example, model components
can be added or removed, and their parameters varied with relative ease [100]. Also, for
the design of regulation and control systems, such as in this work, a simulation model is
indispensable.

One of the first complete circulatory models was published by Avolio [30]. The arterial
vasculature was segmented into 128 elements, arranged according to the anatomical ar-
chitecture of the human arterial tree and considered vessels with a diameter of 2 mm or
more. Each segment is considered as a thin-walled, uniform cylindrical tube with viscous,
elastic and inertial properties. All terminations to peripheral segments consist of a resis-
tance, determined by the nominal characteristic impedance of the segment and a specified
reflection coefficient. The model was originally designed to examine the wave propaga-
tion in the arterial system and to study dynamics under pathologic conditions. Written
in Fortran, it was later implemented in the Matlab/Simulink environment by Riesenberg
[101] and served as the basis for the work of Meyrowitz [24] and Bauernschmitt et al. [102].
Along with technical advances and increasing computing power, simulations of the CVS
became particularly popular from the 1990ies on.

Figure III-4.: Structured representation of the arterial circulatory system from Avolio [30].
This model was the basis for the work of Bauernschmitt [102] and Meyrowitz
[24] among others.

The pulsatile model of Ding and Frank [103] included several reflex control systems,
such as baroreceptor feedback loops and non-linearities of vessel compliance. Again, the
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circulatory system is represented by RLC networks. A major achievement of Ding and
Frank was the implementation of an artificial heart. The rhythmical contractions of the
right and left sides of the heart were simulated by time-variant compliances. A PFM con-
troller was designed to control the volume and blood pressure of the circulatory system,
with the measured pulmonary and systemic venous pressures being the inputs.

Vollkron et al. [104] developed a Matlab/Simulink model to study LVADs. Their circu-
latory system consisted of 6 segments: left and right ventricle, left and right atrium and
pulmonary and systemic vascular segments. They studied the interaction of the model
with a continuous-flow pump, the effects of changing pre- and afterloads and the possi-
bilities for indirect estimation of hemodynamic parameters and pump control. The model
was validated in 3 steps. First, different segments were validated by comparison with data
from the literature and previously collected in vitro and in vivo data. In a second step, the
entire closed loop circulation with parameter variations, was again compared to available
data, while an assist device model was only included in the third step. Shape and value
of the calculated arterial, pulmonary and central venous pressure patterns corresponded
very well with findings in patients. Also the hysteresis behavior of the pressure-flow rela-
tion in the computer model showed excellent correlation with in vitro experiments.

With focus on developing a physiological controller for a LVAD, Wu et al. [105] pre-
sented yet another Matlab model of the arterial CVS. Ventricles were modeled as nonlin-
ear capacitors and the TPR as a variable resistance. Different parameter settings were used
to display different cardiovascular conditions. The authors did not give details about the
validation process, but stated, that some hemodynamic parameter values may seem too
high, compared with clinical data. However, this did not affect the validity of the model
to test the LVAD control performance.

Korakianitis and Shi [106] presented a model to simulate human circulation dynam-
ics. The heart was modeled as a four-chamber pump with variable elasticity, following
a model of Suga et al. [107]. The systemic and pulmonary circulation was again mod-
eled by RCL elements, representing segments of aortic and pulmonary artery sinus, artery,
arteriole, capillary and vein. In addition to other models, atrioventricular interaction mod-
els and heart valve dynamics are presented. Results showed, that these advances greatly
improved the simulation accuracy and it was possible to realistically simulate important
physiological characteristics in the cardiac response, such as dicrotic notch or regurgitant
flow. The model was implemented in the C programming language. Shi et al. [108] later
used this model to compare the hemodynamic response in the CVS, when three types of
VADs were applied to assist a diseased left ventricle.

A functional model, representing the CVS, was also presented by Hassan et al. [109].
Their 14-compartment model was implemented in Matlab and, in comparison to many
other models, also included a baroreflex-feedback regulatory mechanism. In addition to
represent a normal state, the model was used to simulate hypertension and acute conges-
tive heart failure. The magnitudes and shapes of all resulting variables were reported to
agree well with the medical references and literature. Shi et al. [110] also included a barore-
ceptor model. Along with simulation, they built up an electrical circuit and reported good
agreement with medical data.
Sheffer et al. [111] presented a Matlab model of the CVS in order to study various flow
models and pathological conditions. They focused on a modular setup with the intention
to easily replace building blocks, depending on the application. Their toolbox was made
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available online and consisted of Simulink models of the heart, vessels, oxygen transporta-
tion and others. However, no validation data was provided.

Hassani et al. [112] tried to improve existing models by adding more segments and pa-
rameters and, thereby, create a more detailed model. Their circuit representation included
42 segments, each again modeled by resistance, compliance and impedance elements. Left
and right ventricles were modeled by AC power supplies and ideal diodes, generating
a pulsatile 1 Hz signal, which is equivalent to a HR of 60 bpm. The authors report good
agreement with medical data extracted from articles and textbooks. The model was later
used to simulate aorta artery aneurysms and renal artery stenosis [113].

Bauernschmitt and colleagues presented a mathematical circulation model under car-
diopulmonary bypass [102, 114]. Following the model of Avolio [30], the arterial circula-
tion was segmented into 128 branches. Each branch was characterized by physical prop-
erties (length, diameter, wall thickness, module of elasticity). Patient specific properties,
such as height, weight or total blood volume could be simulated by changing the corre-
sponding model parameters. With the future goal of an automated HLM, their model was
able to simulate the effects of different perfusion regimens on arterial hemodynamics and
whole body oxygen consumption. Implemented in Matlab/Simulink, the model proved
to simulate hemodynamic responses during bypass in accordance with data from the liter-
ature and similar to the clinical situations in the operating theatre. A modified sinusoidal
wave was used as an input signal and hypothermia, acid-base management, hemodilution
and oxygen consumption were studied. A baroreflex control was added later [115]. For
future models, the authors expressed the need for a useful reduction of variables, which
does not alter the circulatory behavior.

Pennati et al. [116] developed a lumped-parameter mathematical model of the hydraulic
behavoir of the arterial side of an extracorporeal circuit under pulsatile flow conditions. In
contrast to other studies they focus on the description of the extracorporeal circuit. A
membrane oxygenator, an arterial filter and an arterial cannula were modeled as lumped
RLC elements. The simulation model was compared to a hydraulic setup under static
conditions and with increasing forward and backward flow rates. A fairly satisfactory
matching between the simulated and experimentally measured tracings was reported.

Also Mayrowitz [24] further developed a preexisting circulation model on the basis of
the Avolio model [30]. Realized in Matlab/Simulink, the model considers the circulatory
system under ECC and contains several subsystems which model organs and physiologi-
cal processes, such as the blood, blood gases or acid-base-management. As input param-
eters, individual patient parameters can be given, including age, sex, height and weight.
Like in the work of Bauernschmitt et al., several perfusion regimes can be tested. Perfusion
rate, pump flow characteristics, acid-base-management, blood temperature and Fraction
of inspired Oxygen (FiO2) can be set independently. Again an electrical analogon is de-
rived with RLC elements, described by differential equations. Small vessels were modeled
as terminating resistors. For the CVS under ECCS, a 128-element model was used, fol-
lowing the Avolio model [30]. Employing the Navier-Stokes-Equations, blood pressure
and flow were calculated in each segment. Hypothermic conditions were modeled by ad-
justing the resistance elements. Terminating resistances of the periphery were increased
to have more blood volume in the central parts of the body. Several perfusion regimes,
including low- and high-flow perfusion were evaluated. A good accordance with clinical
data was reported.
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3. Automatic Control of Heart-Lung Machines

Until today there are only few studies dealing with the automation of HLMs. Some of the
first considerations towards computer-controlled ECC were published by Prilutskii et al.
[117]. As one of three major design principles, the authors suggest to monitor physiologic
and technical parameters in hierarchic sequence, i.e. a preference series should be formu-
lated in selecting control and optimization criteria for the machine and the body. As the
major control goal, the maintenance of a given perfusion rate is identified. If a deviation in
one of the parameters occurs, an examination and possibly a correction of the parameter
must be made (design principle 2). The third principle considers the individual physio-
logical deviations of the patients and demands, that control criteria for adequate perfusion
are based on the current state of the body and possible pathogenetic disturbances.

Beppu et al. [118] described a computerized control system for CPB in 1995. A PIC
with a control interval of 1 s regulated the CVP based on a total fluid balance of a patient.
A blood level sensor for the venous reservoir was used as the input parameter. The PIC
controlled both a pulsatile infusion and a withdrawal pump. The setpoint of the reservoir
could be adjusted and, depending on the current filling level, either the infusion or with-
drawal pump was activated. An additional screening algorithm was able to detect mea-
surement artefacts and artifical noise by monitoring the intensity of the CVP frequency
spectrum. If any disturbances were detected, the current flow rates were maintained. Sev-
eral additional safety mechanisms were implemented. During all applications the total
fluid balance was maintained satisfactorily. The system was tested in 15 patients with sim-
ilar constitution during cardiac operations. Compared to a reference group with manually
controlled CPB no significant difference was noted.
The concept of rule-based reservoir level control had already been applied by Fukui et
al. [119] for use in infants and later by Momose et al., with the intention to stabilize the
preload of the heart during the initiation and weaning stages of ECC [120].

As an all-embracing approach towards automated ECC, Boschetti et al. implemented a
computer simulation of a patient connected to a ECCS [21]. The virtual patient consisted
of five models: (i) hemodynamic, (ii) thermal, (iii) biochemical, (iv) volume and (v) drug
model, while the ECC circuit comprised a heat exchanger, a gas transfer and a hemody-
namic model. Several parameters, such as the patient’s age, height or weight could be
adjusted. A model validation or evaluation was not reported. The system was intended
for education and training purposes.

An advanced study on ECC control was done by Misgeld et al. [25, 121]. In comparison
to other authors [118, 119, 122], only arterial pressure and flow were controlled, since in
a HLM with a buffered venous bag, the control of venous conditions plays a secondary
role. They compared three different aortic flow controllers, a PIC, a HINFC and a General
Predictive Controller (GPC). Starting from a five-compartment model of the CVS, the PIC
and the HINFC were robustly tuned and then compared to the self-tuning GPC. For the
controller design a worst-case approach was chosen, depending on non-linearities, time-
variant parameter disturbances and additive/multiplicative model parameter uncertainty.
The controllers were tested in a closed-loop control simulation and showed stable behav-
ior. Later, the controllers were tested in a hydrodynamic mock model (2-element Wind-
kessel) [123, 124]. To test the robustness of the controllers, the model parameters (resis-
tance and compliance) were changed. In terms of the Integral of Absolute Error (IAE) the
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HINFC was superior to the other controllers, but showed only a slight advantage over the
PIC. It was found, that the GPC adapted very slowly to parameter changes, due to the
linear parameter estimator that was used. Since the PIC generally showed a good perfor-
mance and is easier to implement, it was then used for both pressure and flow control.

Apart from the work of Misgeld, the study of Meyrowitz [24] also deals with a com-
prehensive approach towards the automation of a HLM. Starting from a 128-element vir-
tual model of the circulatory system under ECC (see 2), Meyrowitz implemented a PID-
Controller, a State Space Controller and a Model Predictive Controller for the control of
hemodynamics (pressure and flow), temperature and acid-base-equilibrium. Again, the
PIC is recommended, due to its simplicity and robustness. The controller was tested in
simulations and in animal experiments (pig).
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Animal Experiments
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1. Overview

During this project several animal experiments have been carried out. The experiments
had been approved by the Bavarian authorities and the animals received human care in
compliance with the Guide for the Care and Use of Laboratory Animals (NIH publication
85-23). The experiments served several purposes:

• Hardware/Sensor Performance Test: Sensors and data acquisition hardware can be
tested and verified in a real-world setup. Hardware from different manufacturers
can be compared and evaluated.

• Software Test: The developed software for recording, processing and visualization
of sensor and machine data can be verified in an in-vivo setting.

• Reference Data for System Models: Recorded data from both the HLM and the
patient undergoing ECC serves as reference data for the hydraulic and the virtual
system model.

• Prototype Controller Test: A prototype fuzzy controller for the HLM was tested
during one of the experiments.

During the experiments domestic pigs were given anaesthesia and connected to the Life-
bridge HLM via femoral cannulation. The subsequent tests followed a protocol as far as
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the current state of the subject under ECC allowed. This included recording a steady state
with and without ECC, application of vasoactive drugs and variations of the HLM pump
speed among others. The general procedure for the experiments is shown in Figure IV-1.

The sections 2 and 3 of this chapter follow a publication in the Journal of Medical Engineering &
Physics [15] and the dissertation of Alejandro Mendoza [27].

Preparation
Femoral Cannulation

Median Sternotomy

Sensor Placement

Steady State
ECCS Closed

20min

Steady State
ECCS Opened

20min

Increase/Decrease
of Pump Speed
500 rpm/5min

Medication
Vasoconstrictor

Vasodilator

Increase/Decrease
of Pump Speed
500 rpm/5min

Clamping

Start of Experiment
after anaesthesia

End of Experiment

clamps opened heart stopped

Figure IV-1.: Experimental protocol

2. Anaesthesia, Preparation and Sensor Placement

Four domestic pigs weighing 50± 0.7 kg were pre-medicated with an intramuscular injec-
tion of ketamine (15 , Ketanest®, Parke Davis, Munich Germany) and an atropine sulphate
injection (0.5 , Braun, Melsungen, Germany). General anaesthesia was induced by intra-
venous injection of propofol (60 − 100mg, Propofol, Lipuro, B. Braun AG, Melsungen,
Germany). Anaesthesia was maintained by continuous intravenous application of propo-
fol (10 mg/kg/h Propofol 2%) and Fentanyl (30 ug/kg/h, Fentanyl, Jannsen Cilag, Neuss,
Germany) through a syringe pump.
After endotracheal intubation, the pigs were placed on a respirator and ventilated with a
mixture of oxygen and air. The FiO2 was set to 0.5. A catheter was inserted into the jugu-
lar vein (ArrowHowes ™Quad-Lumen central venous catheter, Arrow International Inc.,
USA) for monitoring the CVP. Through the right femoral artery, a catheter tip manometer
(Millar MIKRO-TIP ®SPC350, Houston, TX, USA) was placed in the descending aorta for
monitoring the aortic pressure.
Median sternotomy was done and the pericardium was opened. To measure the aortic
flow, a perivascular ultrasonic flow probe (A-Serie, Transonic Systems Inc., Ithaca, NY,
USA) was placed at the descending aorta above the crossing of the pulmonary veins. An-
other flow probe (C-Serie, Transonic Systems Inc., Ithaca, NY USA) was placed in the as-
cending aorta.

The pig was connected to the ECCS through femoral cannulation. From the arterial side
a 20F arterial cannula (Medtronic, Inc. Minneapolis, Minnesota, USA) was introduced into
the femoral artery and a 22F cannula (Edwards Lifesciences, CA, USA) was placed in the
femoral vein.
For online blood gas analysis the CDI 500 gas analyzer (Terumo Medical Corp, Tokio,
Japan) was used with the sensors placed between the arterial and venous cannulas and
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the ECSS. This device works with a sampling rate of 1 sample every 6 seconds and mea-
sured hematocrit and hemoglobin values, partial pressures of arterial and venous carbon
dioxide, as well as arterial and venous SpO2 values.
For heart beat and ECG readings a 4 lead ECG reader (EMI12, Corscience, Erlangen, Ger-
many) was used with 4 gel electrodes. ECG was captured at a 200 Hz sampling rate. An
oxymeter (ChipOx, Corscience, Erlangen, Germany) was placed at the ear to measure oxy-
gen saturation and an additional reading of heart rate at 1 Hz.
From the ECSS readings of pump flow, input and output pressure and pre-oxygenator
pressures were obtained via a CAN-Bus reader.
All sensor data was recorded using the tailor-made software AutoMedic [2] and a 16-bit
data acquisition board with a set sampling frequency of 200 Hz (NI PCMCIA 6036E, Na-
tional Instruments, TX,USA). Figure IV-2 shows the experimental setup with the pig con-
nected to the ECCS and sensor positions and illustrates impressions of the real-world ex-
periments.

(a) (b)

Figure IV-2.: Experimental setup with pig, Lifebridge ECCS and sensor positions (a) as
well as pictures from one experiment (b) showing the tailor-made patient
monitor, the Lifebridge HLM together with the CDI 500 blood gas analyzer
and the femoral cannulation process.

3. Experimental Procedure and Results

3.1. Steady State with and without ECCS

After administration of anaesthesia, placement of the sensors, and cannulation (with both
venous and arterial lines clamped) 20 minutes of steady state were recorded. After this,
clamps were opened and the ECC was initiated. The pump speed was increased, until an
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Extracorporeal Flow Rate (EFR) of about 4.5 lpm was reached. Online gas analysis was
started and again 20 minutes of steady state were recorded. Appropriate adjustments to
the gas blender were made by changing the FiO2 and gas flow in order to keep the arterial
oxygen partial pressure at 150 mmHg and oxygen saturation at approx. 75% of the venous
return. The CO2 partial pressures were kept around 45 mmHg.

Figure IV-3 shows the average results of the HR, MAP and flows obtained from the
different experiments, as well as a screenshot from the recording software AutoMedic. A
comparison is shown before ECC (A) and during ECC with beating (B) and rested heart
(C). The heart rate had a slight increase, when ECC was started, however, there was no
significant difference. The MAP slowly decreased from 75 ± 23mmHg to 61 ± 17mmHg
during the experiment, even after setting the ECCS blood pump to full speed. The arterial
flow measure in the aorta ascendens started at 5.18± 1.2 lpm and reduced to 2.1± 0.9 lpm.
From the aorta descendens an initial flow of 2.4 ± 1.4 lpm was registered, decreasing to
−0.3 ± 0.3 lpm on ECC. When the heart was at a complete stop, the average MAP de-
creased to 50 ± 10mmHg. The flow at the aorta ascendens showed a small negative flow
of −0.3± 0.3 lpm, which could be a possible indication of backflow to the heart. The aorta
descendens showed a negative flow of −1 ± 0.5 lpm, indicating a flow going towards the
upper body.

(a) Steady State Analysis (b) Screenshot from AutoMedic

Figure IV-3.: Steady state measurements. Shown are overall analysis (a) as well as a screen-
shot from the recording software during one of the experiments (b)

3.2. Medication: Vasoconstriction and Vasodilation

Medication was administered in order to examine the behavior of the ECCS and to col-
lect valuable reference data for the system models. The medication experiment was later
implemented in the virtual system model, as well as in the hydraulic mock model, where
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it corresponds to changes of the peripheral resistance, simulating various patient param-
eters. In one experiment medication was used to test a prototype controller (see section
4).

As a vasoconstrictor 0.1 mg of Norepinephrine (NEP) were given. In all test cases the
HR was increased above 200 bpm and then slowly decreased again. Also the MAP was in-
creased by 30±20mmHg, while the CVP remained relatively constant (see Figure IV.4(b)).
As a vasodilator drug Sodium Nitroprusside (SNP) was used. Exemplarily Figure IV.4(a)
shows the HR, MAP and CVP for the vasodilation case during one experiment. The HR
and the CVP did not show any significant change. The MAP decreased from 65±4mmHg
to 55 ± 4mmHg. Due to the already low HR the pump speed of the HLM had to be in-
creased after about 2 min, counteracting the drug effect.

(a) Vasodilation (b) Vasoconstriction

Figure IV-4.: From top to bottom the HR, the MAP and the CVP are shown during the
administration of a vasodilator (a) and a vasoconstrictor (b) in one of the
experiments.

3.3. Pump Speed Variation

Variations of the pump speed during the animal experiments are a good opportunity for in
vivo system identification. The measurements provide approximations of the system dy-
namics and the relations between the major parameters pump speed, pressures and flows.
During the experiment the pump speed was gradually decreased and increased again in
steps of 500 rpm. Recordings of the produced pump flow and the different pressure sen-
sors in the HLM were made during each step. The experiment was aborted, if the current
state of the pig did not allow a further reduction of the pump speed. Exemplarily, Fig-
ure 3.3 shows results from two experiments, in which the pump speed was gradually in-
creased from 1500 rpm to 3500 rpm. From top to bottom, readings from different pressure
sensors, the MAP and flow values measured at the HLM (EFR), the aorta ascendens (FAA)
and descendens (FAD) are shown. The recordings of pressure values include outlet and
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inlet of the HLM, as well as the internal sensor placed before the oxygenator (Pre-Oxy).
Additionally, pressure sensors were placed at the cannulas (Art Can, Ven Can).

The highest pressure values were observed before the oxygenator. The change in pump
speed leads to a pressure increase on the arterial side and a decrease on the venous side.
Regarding the MAP, the two experiments were different. In the first a slight increase of
the MAP was observed, while it stayed relatively constant during the second test, where
the initial value was already high. Both experiments showed an approximately linear
correlation between the pump speed and flow measurements. The EFR started from 1 ±
0.2 lpm and increased up to 4± 0.5 lpm at full speed.

Figure IV-5.: Pump speed variation in two experiments. Shown from top to bottom are
readings from pressure sensors, the MAP and flow values.

3.4. Cannula Obstruction

During the experiments the effect of kinking either the arterial or the venous line of the
HLM was studied. Since the portable HLMs will be moved together with the patient,
obstructions and kinking of the tubings are a possible real world scenario. Kinking events
have to be registered immediately, since they put the patient at high risk and can cause
severe damage to HLM components.

In this experiment, both the arterial and venous tubings were subsequently clamped
and opened again. Figure IV.6(a) shows the closing (left) and opening (right) of the clamp
at the arterial line. Obstructing the line led to an immediate decrease of the EFR down
to 0 lpm and an increase of the output pressure of the HLM (POut) above 600 mmHg.
The intervention is also noticed in the MAP now with a rapid decrease. After about 2 s a
pressure increase at the inlet of the HLM can be observed (Pin). Saturation of the pressure
transducer before the oxygenator (POxy) was noticed with the arterial line closed, showing
0 mmHg. The countereffects are shown on the right hand side of Figure IV.6(a), when the
clamp is opened again and the parameters go back to a normal range again.

In the second part of the experiment the venous line was kinked (see Figure IV.6(b)).
Again, the tubing was clamped and opened again. In the MAP and the inlet pressure
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(a) Arterial kinking

(b) Venous kinking

Figure IV-6.: Cannula obstruction. Closing (left) and opening (right) of the arterial and
venous lines.
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of the HLM the closing can be observed as a rapid increase. After 2 s a drop in the EFR
is visible and also all pressure sensors record decreasing values. Since there is no blood
drained into the HLM anymore, the reservoir runs empty after a while. When opening the
clamp again, a recovery of the EFR was not possible in the displayed experiment anymore,
because the machine was filled with air already. Obviously, the clamping of the venous
line is more dangerous for both the patient and the machine.

4. Prototype Controller Test

During one of the experiments there was the opportunity to test a FUZZYC in an in-vivo
setting. Although this happened during an early stage of the project, results showed the
general applicability of such controllers in the given system setup.

The results of this section have also been published in the Conference Proceedings of the 5th
Russian-Bavarian Congress on Biomedical Engineering [1].

A standard fuzzy system with Mamdani inference to control the pump speed of the
HLM was implemented. The input parameter of the control loop is the MAP, since it is a
major variable in perfusion. For the input variable 3 fuzzy sets are defined, labled as low,
medium and high. The controller output is a correction factor of the current pump speed
(Delta RPM). The pump speed is increased if the MAP drops below 50 mmHg (low). It
is decreased, when the MAP is above 80 mmHg (high). For a pressure value in between
these limits, the pump speed remains constant (medium). The fuzzy sets for both input and
output variables are displayed in Figure IV-7. The controller is operating at 1 Hz, i.e. every
second the current MAP is obtained and a new pump speed is set accordingly.

In terms of software the MATLAB Fuzzy Toolbox was used to design the controller in
the first place. A C++ wrapper for the controller was then developed, which can be used
as a stand-alone application and integrates into the AutoMedic software framework.

(a) (b)

Figure IV-7.: Fuzzy sets for the controller’s input variable, the MAP (a), and its output
variable Delta RPM (b).

In order to test the automatic pump speed control, vasoactive drugs were administered
successively during the animal experiment. Vasoactive drugs increase or decrease the
blood pressure and the heart rate. The taks of the controller was to counteract this ef-
fect. First, 0.1 mg of a vasoconstrictor was given, increasing the MAP. After the controller
had regulated the MAP back to a normal range, 2 mg of a vasodilator were administered.
As an effect the MAP decreased.

In the experiments the FUZZYC displayed expected behavior. Both experiments are il-
lustrated in Figure IV-8. From top to bottom, the MAP, the controller’s output (Delta RPM),
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as well as the nominal (RPM nom) and currently measured (RPM act) pump speed are dis-
played. The nominal pump speed is set by the controller, depending on the current pump
speed and Delta RPM. E.g. a current pump speed of 1200 rpm and a Delta RPM value of
-50 rpm result in a nominal speed of 1150 rpm. The actual pump speed is measured by a
built-in tachometer of the HLM and can be accessed via the device’s CAN Bus.

During vasoconstriction (Figure IV.8(a)), the controller reacts with a decrease of the cur-
rent pump speed, until the MAP is in a convenient pressure range again. During vasodila-
tion (Figure IV.8(b)) the pump speed is increased to counteract the drop of the MAP value.
Both experiments exhibited smooth control characteristics without overshoots or oscilla-
tions.
It took about 25 s to regulate the effect of vasoconstriction. Looking at the vasodilation
case, the MAP first dropped below 50 mmHg, resulting in an increase of the pump speed.
After about 70 s, the MAP had reached the value of 50 mmHg again, which made the con-
troller keep the current pump speed for a while, before pressure dropped again, yielding
a further increase of the pump speed. Compared to the experiments without automatic
pump speed control during medication, the effect of the administered drugs is alleviated,
which encourages automated pump speed control for handling patient-specific variations
of the CVS.
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Figure IV-8.: Control during application of vasoactive drugs. From top to bottom the MAP,
the controllers output, Delta RPM, as well as the nominal (RPM nom) and
currently measured (RPM act) pump speed are displayed.

In comparison to other control methodologies, the fuzzy approach has several advan-
tages: expert knowledge can be implemented ad hoc and no experimental or mathematical
system analysis is needed. Also system maintenance is simple. This allowed the applica-
tion of the controller in an early stage of the project. However, the controller’s simplicity
holds some pitfalls: since the controller only monitors the MAP, the pump of the HLM
might even be stopped, if the pump speed is decreased due to a high MAP. But also if
the MAP is within the given boundaries the pump speed might be set too low to generate
sufficient blood flow. Thus, favorable organ perfusion can not be guaranteed. A possible
solution to this problem is to integrate more variables into the control loop, such as the
arterial and venous oxygen saturation and the blood flow. A second control loop with the
blood flow as an input variable has been implemented in successive stages of this project
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(see V). Meyrowitz [24] implemented control methods for both parameters with the pos-
sibility to manually switch between the controllers. Although it is relatively easy in fuzzy
logic to integrate more input parameters, this comes along with an increase of the rulebase
(there are mn rules for a system with n inputs and m fuzzy sets). Automated rulebase
generation is also discussed in [27]. A hierarchical fuzzy approach, as introduced by Wang
[125], is not applicable, since the pump flow and the MAP are not independent variables.
Methods for monitoring and automatically assessing the current state of a patient and us-
ing this meta-information for an extended control loop are desirable.

5. Summary

Animal experiments allowed the analysis of different patient and HLM parameters ob-
tained during ECC. The experiments provided the reference data necessary to create the
mathematical and hydraulic model of the CVS together with an ECCS. The experiment re-
sults show, that a linear relation between EFR and pump speed may be considered, how-
ever, the response in pressure may be different. The amount of EFR, that the machine
produces will change from one patient to another, also depending on whether the heart is
still beating or not, the heart strength and the vascular resistance. In the case of a beating
heart, it was noticed, that the load of the heart was effectively reduced during ECC. The
negative flow at the aorta ascendens indicates, that the ECCS can produce a small back
flow. Most of the cardiac output is used to perfuse the head and upper extremities, while
the centrifugal pump flow perfuses the organs in the lower systemic circulation. At dif-
ferent experiments it was not possible to achieve an EFR greater than 5 lpm and a MAP
greater than 80 mmHg, even when running the HLM at full speed. Further analysis in-
dicated, that the resistance caused by the cannulas causes a considerable pressure drop.
Several studies are already focusing on reducing cannula resistance [46].

Apart from the steady state measurements, system dynamics were identified by a con-
trolled reduction and increase of the centrifugal pump speed. These measurements are
approximate only, since they can change from one patient to another. However, they are
a good reference for the hydraulic system setup, described in the following part of this
work. Additionally, real-world scenarios were simulated during animal experiments, in-
cluding the administration of vasoactive drugs and kinking of the venous and arterial
lines. Clamping the inlet or outlet of the HLM endangers the patient and can do severe
damage to the ECCS. Therefore, these events should be detected immediately. Vasoactive
medication was also done to test a prototype controller. In all experiments, this controller
showed good results and was able to regulate the MAP accurately.
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1. Hydraulic Circulatory Model

Hydraulic models of the circulatory system allow to simulate hemodynamics in a stan-
dardized setting. Such models are used for testing and evaluating new devices and their
performance prior to clinical implementation. In this work an in-vitro mock model is
developed, that mimics hemodynamics under ECC. The model replicates pressure-flow
relationships, as observed in animal experiments, and plays an important role in the de-
velopment of an automated HLM, since it links animal experiments with the mathematical
system description. Moreover, the setup allows parameter variations in order to represent
natural differences in the human CVS dynamics. Thereby the variability from one patient
to another is imitated. For the first time, an objective and comprehensive comparison of
different HLM control strategies in an in-vitro setting is made. The purpose of the mock
loop in this work is manifold:

• Hardware/Sensor Test: The circulation loop can be used to test HLM performance
and sensors before animal experiments.
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V. Development and Automation of a Hydraulic Circulatory Mock Model

• Software Test: The developed software for recording, processing and visualizing
sensor and machine data can be examined prior to in-vivo experiments.

• Mathematical System Description: Since the component parameters of the mock
model can be identified, a mathematical system description can be derived, relating
flow, pressure and pump speed variables.

• Controller Design: Based on the mathematical system description, robust pump
speed controllers for the HLM can be designed.

• Controller Evaluation: The setup allows objective and reproducible comparisons
between different control strategies due to the standardized setting.

In the following the model setup is described in detail and a mathematical system de-
scription is derived and validated. Flow and pressure measurements of the model are
compared to data from animal experiments in order to verify the mock loop setup. Based
on the analytical description, four state-of-the-art controllers are implemented: a PIC, a
HINFC, a FUZZYC and a MRAC. Controllers for both pressure and flow control are de-
signed, in which the control task is to keep the produced pump flow or the pressure dif-
ference at the pump at a predefined target value. In the results section of this chapter, the
controllers are evaluated in three different scenarios:

1. Changes of Target Value: Flow and pressure targets are changed during test runs in
order to examine accuracy and response time of the controllers.

2. External Perturbations: Sensor data is disturbed by a random noise signal, while the
controllers have to follow a given target value.

3. System Parameter Variation: System parameters are changed during test runs, re-
vealing the applicability of the different control strategies to a system with uncertain
or changing parameters.

1.1. Layout and Components

The design goals for a physical representation of the HLM and the CVS were accuracy,
simplicity and usability. Since the Westerhof model, also known as three-element wind-
kessel model, is widely accepted in the community and has been examined thoroughly
(see Chapter III), the mock circulatory system used in this work is based on the model de-
scribed by Sharp and Dharmalingam [81].
The three-element model consists of two resistances (R) and one compliance element (C)
in a RCR configuration. This setup was found to be both simple and accurate by multi-
ple studies. The HLM is represented by a motor-driven centrifugal pump connected to
a venous and arterial cannula at its in- and outlet. In the most basic configuration other
components of the HLM, such as the oxygenator or arterial filters, are replicated by a static
resistance at the pump outlet, since their influence on pressure-flow-dynamics is linear
with the pump speed. Resistances can be driven via two step motors varying the aperture
area of the connected tubings. The compliance is represented by an air chamber. Its di-
mension can be changed by increasing or decreasing the filling level. Figure V.1(a) shows
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1. Hydraulic Circulatory Model

a schematic overview of the used components and Figure V.1(b) a photograph of the phys-
ical setup.
The following sensors are used to measure the model’s parameters: Two pressure sensors
(P) measure the in- and outlet pressure of the pump. A flow sensor (F) and a tachometer
(W) complement the setup with measures of the pump speed and produced pump flow.
An AD/DA-Converter (National Instruments DAQ 6036E) together with a control unit
(laptop) is used to receive and process sensor signals, as well as to control the motor speed
and the variable resistances of the patient module via electric motors (M).

M
D

A

M M

P

Patient Model

R R

C

P

F

W

Control

Unit

(a) (b)

Figure V-1.: Schematic (a) and physical (b) layout of the hydraulic mock model with con-
nected sensors and control unit.

In order to design controllers for the plant, an analytical description of the components is
needed. In the following, the various elements are described in detail and their mathemat-
ical representation is derived in parallel. First, motor parameters are identified, followed
by the pump and the CVS component. After that, all components are aggregated and the
system is validated by comparison of the mathematical system description with measure-
ments from the mock circulation loop. Finally, the model is justified by comparison with
data from animal experiments.

1.1.a. Motor

To drive the centrifugal pump a direct current motor (Faulhaber Company) is used. The
motor is controlled via a direct current power controller that can be actuated by the analog
output of the AD/DA-Converter. The motor speed is measured by a tachometer.
A mathematical representation follows the state space model of a direct current motor
[126]: �

İA(t)
ω̇(t)

�
=

�
−RA

LA
−KT

LA
KT

J
−TFl

J

�
·

�
IA(t)
ω(t)

�
+

�
1
LA

0

0 − 1
J

�
·

�
VA(t)
TL(t)

�
(V.1)

The armature current IA and the motor’s rotation speed ω are the states of the differential
equation system. Inputs are the armature voltage VA and the load torque TL. RA, LA and
KT describe the armature resistance, the phase inductivity and the engine torque constant.
These constants are given in the motor’s data sheet. The load torque TL can be derived
from characteristics of the centrifugal pump (see 1.1.b). The friction torque TF l and the
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motor’s inertia J are identified experimentally.
Since the time constant of IA is much lower than of ω, a state reduction of the equation
system can be performed. IA is considered as steady state, which yields İA(t) = 0. Now
the first part of the equation system reads

0 = −
RA

LA
IA(t)−

KT

LA
ω(t) +

1

LA
VA(t). (V.2)

If Equation (V.2) is solved for IA(t) and applied to the second state in Equation (V.1), ω̇(t)
is given as

ω̇(t) =
KT

J

�
−
KT

RA

ω(t) +
1

RA

VA(t)

�
−

TF l

J
ω(t)−

1

J
TL(t). (V.3)

For the sake of simplicity Equation (V.3) can be written as

ω̇(t) = k1VA(t)− k2ω(t)− k3TL(t), (V.4)

with

k1 =
KT

JRA

k2 =
K2

T

JRA

+
TF l

J

k3 =
1

J
.

The motor’s response to changes in the actuating variable VA can be recorded now and
TF l and J can be identified using Equation (V.4). Figure V-2 shows the experimentally
measured rotation speed in comparison to the calculated speed and with respect to step
changes in the armature voltage. For motor speeds below 1000 rpm a rather large differ-
ence between the model and the real setup can be observed. However, the identified pa-
rameters give a good approximation for motor speeds above 1000 rpm, which are mainly
used in this application.

1.1.b. Pump

By magnetic coupling the motor drives a centrifugal pump (FloPump by IBC). Following
[126], the pump can be modeled as

∆p(t) = hNNω(t)2 − hNV ω(t)q(t)− hV V q(t)
2. (V.5)

∆p(t) represents the pressure difference between pump inlet and pump outlet. q(t) stands
for the produced pump flow. hNN , hNV and hV V are pump constants, that can be identified
experimentally: to identify hNN , the inlet is connected to a water tank, while the outlet is
branched off, thus the pump does not produce any flow. If the pressure difference ∆p(t)
at different pump speeds is measured with all flow-related terms equal 0, then hNN reads

hNN =
∆p(t)

ω(t)2
. (V.6)
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Figure V-2.: Comparison of measured and simulated rotation speed of the dc-motor (b) as
a response to step changes in the armature voltage (a).

To determine hNV and hV V , the pump is connected to a water circulation that consists
of an open water tank and connecting tubings. The tubing is elastic, so its resistance is
variable. The pump runs at constant speed. While increasing the tube resistance, changes
in pressure and flow are measured. This procedure can be repeated for different pump
speeds. Using the standard least square method, the pump constants can be identified
from the experimental data. In all tests ordinary tap water, mixed with copper sulfate
(0.5 g/l), was used as a circulating medium. The different viscosity compared to blood is
not significant for the identification of the model components and the control design. Tests
have shown, that air bubbles in the system significantly change the produced pump flow.
Therefore, it had to be assured that the system was air-free before experiments.
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Figure V-3.: Collected data for pump identification. Pressure difference ∆p during increase
of ω with a branched off pump outlet (a) and resistance-dependant pressure-
flow-relation at constant speeds (b).
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Figure V-3 shows the experimental data that was collected during the identification pro-
cess. V.3(a) shows the pressure difference that was measured at the pump with a final
resistance (no flow) and constantly increasing pump speed. V.3(b) displays the pressure-
flow relation at constant motor speeds and variable tube resistances. To verify the pump
model, the measured pressure difference and flow at various rotation speeds are compared
with their predicted values. Figure V-4 shows the comparisons for the produced pressure
difference ∆p (a) and pump flow (b). There was a good prediction for ∆p with a mean
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Figure V-4.: Comparison of predicted (green) and measured (blue) pressure difference (a)
and flow (b).

error of 5.68 mmHg but a rather large mean error of 0.48 lpm for flow prediction. Those
variations are considered as parameter uncertainties in the control design.

Measurements for pump identification are also used to derive the motor’s load torque
TL. The required power for the pump is

P = q(t)∆p(t). (V.7)

Furthermore it holds, that

P = TLω(t). (V.8)

Hence, the required torque is

TL =
q(t)∆p(t)

ω(t)
. (V.9)

1.1.c. Cardiovascular Components

The setup for the cardiovascular component follows the three-element Windkessel model
[81]. Arteries are modeled as elastic chambers, veins and capillaries as linear resistances.
In the RCR-configuration used, the two resistances replicate the aortic and peripheral re-
sistance. The air chamber represents the total compliance of the aortic tree.

The analytical description is derived from the electrical analogon, a parallel circuit of a
capacitor and a resistance (see Figure V.5(a)). The pressure-flow relationship in the cardio-
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vascular component can be described by the following equation:�
1 +

Ra

Rp

�
q(t) + CRa

dq(t)

dt
=

p(t)

Rp
+ C

dp(t)

dt
(V.10)

Ra and C describe the aortic resistance and capacity, while Rp models the peripheral resis-
tance. Equation (V.10) can be derived by simple considerations from circuit theory. First,
the circuit is redrawn with common labels from network theory (Figure V.5(b)).
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Resistance
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Aortic
Resistance
Ra q

∆p

(a)

Cu2

i2

i3

Rpu3

Ra

u1

i1

u

(b)

Figure V-5.: Network representation of the three-element Windkessel model (a) with stan-
dard labels from circuit theory (b).

Applying Kirchhoff’s and Ohm’s laws the following relationships hold:

i1(t) = i2(t) + i3(t) (V.11)

i2(t) = C
du2(t)

dt
(V.12)

i3(t) =
u3(t)

Rp

(V.13)

u(t) = u1(t) + u2(t) (V.14)

u1(t) = i1(t)Ra (V.15)

u2(t) = u3(t) (V.16)

With (V.12) and (V.13) in (V.11) i1(t) reads

i1(t) = C
du2(t)

dt
+

u2(t)

Rp
. (V.17)

Replacing u2(t) in (V.17) with (V.14) yields

i1(t) = C
d(u(t)− u1(t))

dt
+

u(t)− u1(t)

Rp
. (V.18)

With (V.15) i1(t) can be written as

i1(t) = C
d(u(t)− i1(t)Ra)

dt
+

u(t)− i1(t)Ra

Rp

. (V.19)
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Rearranging the equation yields�
1 +

Ra

Rp

�
i1(t) + CRa

di1(t)

dt
=

u(t)

Rp

+ C
du(t)

dt
. (V.20)

Since i1(t) corresponds to the flow q(t) and u(t) represents the pressure difference ∆p(t),
Equation (V.20) is equivalent to Equation (V.10).

In the physical setup a change of resistances is realized by a change of the tube diameter.
Resistances can be changed via two step motors, which are actuated via the analog output
of the AD/DA-Converter.

A closed air chamber represents the aortic capacity. Changes in the capacity are related
to changes in the gas volume within the chamber. They can be realized by changing the
filling level of the fluid. To identify the capacity, changes in pressure at different filling
levels were measured (see Table V.1). The dimensions of the chamber allow capacity values
in the range of 0.46 to 0.9 ml

mmHg
.

Filling level (ml) Pressure change (mmHg) Capacity ( ml
mmHg

)

500 166 0.9

550 180 0.83

600 197 0.76

650 225 0.67

700 256 0.58

750 290 0.52

800 324 0.46

Table V.1.: Capacity measurements of the closed chamber.

1.2. Model Aggregation

In the last section the components of the hydraulic model of the human circulatory sys-
tem, together with a simplified model of a HLM (motor, pump), were introduced. Each
individual component was identified and described mathematically. As an overview, the
descriptive equations for the motor (V.21), the load torque (V.22), the pump (V.23) and the
cardiovascular component (V.24) are listed again:

ω̇(t) = k1VA(t)− k2ω(t)− k3TL(t) (V.21)

TL =
q(t)∆p(t)

ω(t)
(V.22)

∆p(t) = hNNω(t)2 − hNV ω(t)q(t)− hV V q(t)
2 (V.23)�

1 +
Ra

Rp

�
q(t) + CRa

dq(t)

dt
=

∆p(t)

Rp
+ C

d∆p(t)

dt
(V.24)

In the following. those Equations are transformed into a nonlinear state space represen-
tation of the complete system. A linearized form of this representation will be the basis for
the design of the controllers.
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1.2.a. State Space Representation

In the state space representation nonlinear, time-variant systems with one input and one
output variable can be written as

ẋ(t) = f(x(t), u(t)) (V.25)

y(t) = g(x(t), u(t)). (V.26)

ẋ(t) is a vector with the time-dependent terms of the system, the system states. In this

particular case ẋ(t) is two-dimensional with x(t) = [ω(t) q(t)]T for flow and x(t) =

[ω(t) ∆p(t)]T for pressure control representation. In the given system there is only one
input variable, the armature voltage, u(t) = VA(t), which controls the motor speed. The
control (output) equation reduces to y(t) = q(t) for flow and y(t) = ∆p(t) for pressure
control.

Exemplarily, the state space representation with the pump flow as a control variable is
derived. The state space model for pressure control can be calculated in an analogous
manner. For reasons of clarity, time-dependancy of the variables is not indicated in the
following considerations.

First, the load torque equation (V.22) and the motor’s equation (V.21) are combined:

ω̇ = k1VA − k2ω − k3
q∆p

ω
(V.27)

∆p is replaced by the pump transfer equation (V.23):

ω̇ = k1VA − k2ω − k3

�
hNNqω − hNV q

2 − hV V
q3

ω

�
= f1(ω, q, VA) (V.28)

Equation (V.28) is the first equation of the state space representation.

Since the system is a closed-loop system, the pressure difference at the pump is equal to
the pressure difference at the CVS. Therefore, ∆p in (V.24) is replaced by (V.23). With the
derivative of ∆p

d∆p

dt
= 2hNN ω̇ω − hNV ω̇q − hNV ωq̇ − 2hV V q̇q (V.29)

(V.24) can be written as�
1 +

Ra

Rp

�
q + CRaq̇ =

hNNω2 − hNV ωq − hV V q
2

Rp
(V.30)

+ C(2hNN ω̇ω − hNV ω̇q − hNV ωq̇ − 2hV V q̇q)

and solved for q̇:

q̇ =

1
Rp

�
hNNω2 − hNV ωq − hV V q

2
�
+ C (2hNN ω̇ω − hNV ω̇q)−

1
Rp

(Rc+Rp) q

C (Rc+ hNV ω + 2hV V q)
. (V.31)
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Replacing ω̇ in (V.31) by (V.28) finally yields the second equation of the state space model:

q̇ =

1
Rp

�
hNNω2 − hNV ωq − hV V q

2
�

C (Rc+ hNV ω + 2hV V q)
(V.32)

+
C (2hNNω − hNV q)

�
k1VA − k2ω − k3

�
hNNqω − hNV q

2 − hV V
q3

ω

��
C (Rc+ hNV ω + 2hV V q)

−

1
Rp

(Rc+Rp) q

C (Rc+ hNV ω + 2hV V q)

= f2(ω, q, VA)

By the equations (V.28) and (V.32) the state space representation of the second-order model

with x(t) = [ω(t) q(t)]T is fully characterized:�
ω̇
q̇

�
=

�
f1(ω, q, VA)
f2(ω, q, VA)

�
(V.33)

y = q (V.34)

1.2.b. Linearized State Space Representation

In control theory linear models are often used, even if the given system has nonlinear
characteristics. If the control has to keep a system at a certain working point, despite
external perturbations, then the system may be linearized around that working point. If
the control is successfull, the system will always stay close to the working point and it is
sufficient to characterize the system around that setpoint. This is a common procedure to
ease the design of controllers and can also be deployed in this work, since the control task
is to keep pressure or flow at predefined setpoints. In the following, the derived system
description is linearized and then compared to its nonlinear version.

A linearized version of a general state space representation with one input variable reads

∆ẋ = A∆x+B∆u (V.35)

∆y = C∆x+D∆u (V.36)

with

A =

�
∂fi
∂xj

�
(x∗,u∗)

,B =

�
∂fi
∂uj

�
(x∗,u∗)

,C =

�
∂gi
∂xj

�
(x∗,u∗)

,D =

�
∂gi
∂uj

�
(x∗,u∗)

. (V.37)

A denotes the system matrix, B the input matrix, C denotes the output matrix and D

the direct matrix. The operating point is described by x∗ and u∗. For the given setup the
linearized system representation can be written as�

∆ω̇
∆q̇

�
= A

�
∆ω
∆q

�
+B∆VA (V.38)

∆y = C

�
∆ω
∆q

�
+D∆VA (V.39)
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with

A =
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∂f1
∂ω

∂f1
∂q

∂f2
∂ω

∂f2
∂q

#
(ω∗,q∗,V ∗

A
)

(V.40)

B =

"
∂f1
∂VA
∂f2
∂VA

#
(ω∗,q∗,V ∗

A
)

(V.41)

C =
�

∂g
∂ω

∂g
∂q

�
(ω∗,q∗,V ∗

A
)
= [0 1] (V.42)

D =
�

∂g
∂VA

�
(ω∗,q∗,V ∗

A
)
= [0] . (V.43)

The linearized state space model can be equivalently represented by a second-order trans-
fer function in the frequency domain:

G(s) =
b1s+ b0

s2 + a1s+ a0
. (V.44)

The transformation from the state space representation to the transfer function using an
element-wise Laplace Transformation is described in [127], volume 1, p.246ff, for example.

1.2.c. Comparison of Linear and Nonlinear System Representation

In order to justify the linearization, the linarized state space representation is compared
with the nonlinear system representation. The working point is set at V ∗

A = 6V, yielding a
pump flow of q∗ = 2.54 lpm, a pressure difference of ∆p∗ = 235.32 mmHg and a rotational
motor speed of ω∗ = 302.06 rad/s. To identify differences between the two representations,
the system is excited with a sinusoidal input voltage, varying VA between 4 and 8 V at a
frequency of 0.16 Hz. Figure V-6 shows the pressure and flow dynamics of the nonlinear
model and its linearized state space representation. The mean absolute error between the
two representations was 10.68 mmHg for the pressure difference between the pump inlet
and pump outlet, and 0.07 lpm for the pump flow. Both values are considered as acceptable
for the control design. Please note that the linear representation is only used for the design
of the controllers and not for their evaluation.

1.3. Model Validation

1.3.a. Validation of analytical system description

To validate the mathematical system description, the motor speed, flow and pressure val-
ues under step changes of the input variable VA are measured and compared to their pre-
dicted values. Figure V-7 shows the dynamics of the variables in comparison. Generally
a good congruency between the experimentally measured values and the mathematically
predicted values can be observed. Absolute mean errors were 41.66 rpm for the motor
speed, 0.11 lpm for the pump flow and 6.92 mmHg for the pump’s pressure difference.
Detailed analysis revealed a time delay of Tt = 200ms between the simulated and physi-
cal model. To account for this delay in the controller design, the model’s transfer function
can be written as

G(s) =
b1s+ b0

s2 + a1s+ a0
exp (−sTt). (V.45)
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Figure V-6.: Pressure (a) and flow (b) dynamics of the nonlinear system model and its
linearized state space representation during sinusoidal changes of the pump
speed around a predefined working point.

1.3.b. Comparison with animal experiments

The hydraulic model is compared with data from animal experiments. During two exper-
iments the motor speed of the HLM was decreased from 3500 rpm to 1500 rpm in steps of
500 rpm, and increased again to the initial value (see Chapter IV). Pump parameters (flow
and pressure difference) were recorded. Figure V-8 shows the animal data in comparison
with the hydraulic setup. The hydraulic model data is compared with respect to the mean
values of the animal experiments. There was a rather large difference for pressure values
(Fig.V.8(a)) with a mean error of 44.45 mmHg and a standard deviation of 33.63 mmHg.
For the pump flow (Fig.V.8(b)) results were better with a mean error of 0.33 lpm and a
deviation of 0.05 lpm. However, many factors influence the acquired data of the animal
experiments such as the animal’s weight, height or current physiological condition. Also
different cannula size influences the results. The difference in pump flow between the two
displayed experiments of around 0.5 lpm at a pump speed of 2000 rpm examplarily shows
how big the deviations from one subject to another can be. Therefore, the primary goal of
the hydraulic setup was not to exactly match one experiment, but to display the same pres-
sure and flow dynamics within a reasonable range of values. Considering these factors,
the constructed model replicates the in-vivo data sufficiently.

In the following, four control strategies are designed based on the mathematical system
description. Each control method is shortly introduced and the design steps needed for
this model are described.
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Figure V-7.: Comparison of simulation model (green) and the hydraulic model (blue).
Shown are the input voltage for speed control (a) and the resulting motor
speed (b), flow (c) and pressure (d) curves.

2. Proportional-Integral-Controller

The PIC is one of the most established methodologies in control theory. Its mechanism is
rather simple. The P-Contribution accounts for the present error, while the I-Contribution
accounts for accumulated errors in the past. I.e., as long as there is a deviation from the
setpoint, the manipulating variable should be changed. Given the control loop in Figure
V-9, the control output u(t) in the time domain is given as

u(t) = KP e(t) +KI

Z t

0
e(τ) dτ. (V.46)

The parameter KP proportionally weighs the offset e(t), while KI amplifies the integrated
control deviation.
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Figure V-8.: Comparison of hydraulic model and data from two animal experiments.
Shown are pump flow (b) and pressure (a) characteristics.
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Figure V-9.: PI-Controller structure diagram.

2.1. Control Design

The parameters KP and KI are to be identified, such that the control system is stable. Gen-
erally spoken, control systems are stable, if bounded excitations lead to bounded system
reactions. A common approach to verify system stability is to analyze the transfer function
G(s). Considering Figure V-9 again, the transfer function of the closed loop system reads

G(s) =
GC(s,KP ,KI)GS(s)

1 +GC(s)GS(s)
. (V.47)

GC specifies the transfer function of the controller and GS the transfer funtion of the plant
(system). The control system is stable, if every pole of G(s) has a negative real part (see
[127]):

ℜ{si} < 0 (i = 1, 2, . . . , n) (V.48)

Replacing GC and GS by numerator and denominator polynomials (GC = NC

DC
, GS = NS

DS
),

Equation (V.47) can be written as

G(s) =
DC(s,KP ,KI)DS(s)

NC(s,KP ,KI)NS +DC(s,KP ,KI)DS(s)
. (V.49)

The denominator polynomial of Equation (V.49) is the characteristic polynomial P (s) of the
control loop, which is used to analyze the stability criterion. An elegant method to verify
system stability is the Paramter Space Approach introduced by Ackermann [128]. In the
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Parameter Space Approach the Laplace variable s is replaced by the complex frequency
jω, which is restricted to real non-negative values [128].

The boundaries between stable and instable candidates for the control parameters are
given by

Re{P (jω,KP ,KI)} = 0 (V.50)

Im{P (jω,KP ,KI)} = 0. (V.51)

Equations (V.50) and (V.51) determine an equation system with 2 unknown parameters
(KP , KI ) and a control variable ω. KP and KI can be expressed in dependency of ω:

KP = f1(ω) (V.52)

KI = f2(ω) (V.53)

The stability boundaries for KP and KI can be found by sweeping over ω.
To robustly design the PIC for the mock system, the motor’s inertia J , the friction torque

TF l, the pump constants hNN , hNV , hV V and parameters of the CVS Ra, Rp and C are
varied by 10%. For each parameter constellation the stability boundaries are plotted in the
KP -KI -plane (Fig. V-10), for both flow and pressure control. Each curve is the envelope
function for stable KP -KI -pairs at certain model parameters. The green area marks stable
KP -KI -pairs for the plant, considering the 10% variations of the plant parameters.
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Figure V-10.: Stability boundaries for various model parameters. KP -KI -pairs within the
green area lead to stable control of the plant, considering parameter uncer-
tainties of 10%.

Given the pairs of candidates for a stable control, specific parameters can be selected
based on a quality criterion which calculates the accumulated control error:

J =
Z T

0
|r(τ)− y(τ)|dτ, (V.54)

with the target value r(τ) and the system’s output y(τ). A specific KP -KI -pair can be cho-
sen, that reveals a small J value and minimal overshoots in the system’s step response.
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Figure V-11 shows the system response to a unit step of the input variable for three param-
eter pairs that exhibited the smallest values of J . The step response is displayed for both
flow and pressure control again.
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Figure V-11.: System’s step response for different KP -KI -pairs.

3. H∞-Controller

H∞-Control is a popular strategy for robust control. It is based on frequency response
characteristics, resulting in a controller, that accounts for particular specifications, such as
bandwidth limitations or robustness against parameter uncertainties [129].

In H∞-Control the control problem is formulated as an optimization problem and the
controller is considered as a solution of that problem. The simple control loop (Figure
V.12(a)) is extended with the additional input w and output z, which are used for the
performance rating of the controller (Figure V.12(b)). Following [127], the control path in
Figure V.12(b) is described by�

Z(s)
Y (s)

�
=

�
Gzw(s) Gzu(s)
Gyw(s) Gyu(s)

��
W (s)
U(s)

�
(V.55)

with

U(s) = −K(s)Y (s) (V.56)

and

Z(s) = G(s)W (s). (V.57)

The design task is to identify a controller K(s), that minimizes the norm of G(s):

min
K(s)

||G(s)||∞ (V.58)

For single-input-single-output systems the H∞-norm is defined as

||G(s)||∞ := sup
ω

|G(jω)| (V.59)
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and describes the maximal amplitude gain of a harmonic input signal with frequency ω
[130]. H represents the Hardy-Space, which defines bounded and analytical functions in
the right upper half complex plane.

K(s) G(s)
r e u y

−

(a)

G(s)

K(s)

w z

yu

(b)

Figure V-12.: Simple control loop (a) and H∞-standard-problem (b).

A very popular specification of the H∞ problem is the S/KS/T scheme, depicted in
Figure V-13. In this layout the specifications for the robust controller are expressed as re-
quirements to the gain response of the sensitivity S(s) and the complementary sensitivity
T (s):

S(s) =
1

1 +G(s)K(s)
(V.60)

T (s) =
G(s)K(s)

1 +G(s)K(s)
(V.61)

The weighting functions WS,WKS and WT can be used to influence the control character-
istics.

WS

WKS z

Controller System WT

}
zS

zKS

zTw = r e u y

−

Figure V-13.: Standard H-∞ weighting scheme.

The transfer matrix Tzw(s) for the S/KS/T scheme reads

Tzw(s) =

264 WS(s)S(s)
WKS(s)KS(s)
WT (s)T (s)

375 . (V.62)

The H∞-Algorithm tries to find a solution for the following optimization problem:

||Tzw(s)||∞ ≤ γ, (V.63)
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with the arbitrary positive value γ. This yields an inequality for each component of Tzw(s):

|WS(jω)S(jω)| ≤ γ (V.64)

|WKS(jω)K(jω)S(jω)| ≤ γ (V.65)

|WT (jω)S(jω)| ≤ γ. (V.66)

WS is used to express specifications, regarding the system’s sensitivity (control error). Ex-
emplarily, choosing WS(0) = 100 implies, that the static control error should be lower than
1%. Additionally, WT is used to design robustness against multiplicative model uncertain-
ties [127]. For example, WT (0) = 0.1 refers to robustness for a model uncertainty of 10%
in the stationary case. WKS weights the actuating variable and should be chosen low in
order to suppress extensive control activities. Algorithmically, the H∞ method reduces to
solving 2 Riccati equations (see [129] for further details).

3.1. Control Design

In the control design parameter uncertainties are introduced analogously to the PIC (see
Section 2.1). In Figure V-14 the frequency characteristics of the nominal system (green) and
the system under parameter variations (blue) are shown. Since WT is used to account for
parameter uncertainties, it is chosen, such that the system, weighted with WT , covers all
system variations (Figure V-14, red).
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Figure V-14.: Amplitude response of the nominal system (green), under parameter vari-
ations (blue), and the WT -weighted nominal system (red) for flow (a) and
pressure (b) control model

The transfer function of WS(jω) was modeled as a PT1 element with a stationary error
of 0.01 and a gain crossover frequency of 0.2 . To avoid extensive control activities WKS

was chosen small and constant (WKS = 1e−4). Figure V-15 shows the amplitude response
of WS and WT .

Due to the system extension (w, z), possible solutions for K(s) have a higher order than
the original system. Furthermore, solutions include modi that are hardly relevant for the
input-output-characteristics of the controller [129]. Therefore, a system order reduction
is desirable and can be achieved using Moore’s algorithm [131]. The system order can be
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Figure V-15.: Amplitude response of WS and WT for flow (a) and pressure (b) control.

reduced step-wise as long as there is no performance degradation. With Moore’s algorithm
the order of the HINFC for the mock model was reduced from 12 to 3. Finally, Figure V-16
shows the step response for the designed controller.
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Figure V-16.: HINFC step response for flow and pressure control.

4. Model Reference Adaptive Controller

In Adaptive Control the controller is redesigned online by looking at its performance and
automatically changing its dynamics. The core elements of Adaptive Control are

• an online parameter estimator, based on current measurements and control actions
and

• a control law, that recalculates the controller based on those parameters [132].

Obviously, the control performance strongly depends on a successful parameter estima-
tion. Usually, a differentiation is made between direct and indirect adaptive control. In the
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indirect case the estimated parameters refer to the plant, while they refer to the controller
in the direct case. A feedback loop for the direct case is shown in Figure V-17. The pa-
rameter estimator directly modifies the controller’s parameters, based on the controller’s
and the system’s output. A MRAC is one of the main approaches to Adaptive Control. A

Controller
C(θ) Plant

Parameter
Estimator

r up yp

up

yp

θ

Figure V-17.: Direct Adaptive Control loop.

reference model is chosen to generate a desired trajectory ym that the plant output yp has
to follow. The tracking error e1 = yp − ym represents the deviation of the plant output
from the desired trajectory [133]. By the definition of the reference model, control charac-
teristics can be implemented. The Adaptive Control feedback loop can be extended by the
reference model and redrawn as shown in Figure V-18.

Reference
Model

Controller
C(θ) Plant

Parameter
Estimator

r up yp

+

upθ

e1

yp

e1

ym

−

Figure V-18.: Direct MRAC loop.

4.1. Control Design

The design task is to specify the parameter adjustment mechanism, such that all signals in
the closed-loop plant are bounded and the error e1 is kept small.
In [133] a control law and an adaptation mechanism for second-order SISO-LTI Systems
with a relative degree of n∗ = 1 is derived. Table (V.2) displays the results. The parameters
that need to be identified are summarized in the vector θ = [θ1 θ2 θ3 c0]

T and are identified
using a gradient operation with step size γi.

For both flow and pressure control the reference model

Wm(s) =
3

s+ 3
(V.67)
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Plant yp = kp
Zp(s)
Rp(s)

up, n∗ = 1

Control law
ω̇1 = −2ω1 + uP , ω1(0) = 0
ω̇2 = −2ω2 + yP , ω2(0) = 0
up = θ1ω1 + θ2ω2 + θ3yP + c0r

Reference model ym = Wm(s)r, Wm(s) = km
Zm

Rm

Adaptive law
θ̇i = −γi e1 ωi sgn(kp/km), i = 1, ..., 4
θ = [θ1 θ2 θ3 c0]

T

e1 = yp − ym

Table V.2.: Direct MRAC scheme for second-order SISO plants with relative degree n∗ = 1.

was chosen with its step response depicted in Figure V-19. For a successful parameter
identification sufficient excitation of the input signal r is important. As suggested by [133],
a superposition of two sinusoidal signals with different frequency and amplitude was used
as an iput signal. The identification process for both pressure and flow control is shown
in Figure V-20. The identified parameters were then chosen as the initial values of the
controller.
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Figure V-19.: Step response of the reference model Wm(s) = 3
s+3

65



V. Development and Automation of a Hydraulic Circulatory Mock Model

0 10 20 30 40 50 60 70 80 90 100
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

s

θ1

θ2

θ3

c0

(a) Parameter identification flow control

0 10 20 30 40 50 60 70 80 90 100
−0.01

−0.005

0

0.005

0.01

0.015

0.02

s

θ1

θ2

θ3

c0

(b) Parameter identification pressure con-
trol

0 10 20 30 40 50 60 70 80 90 100
1

1.5

2

2.5

3

3.5

4

s

lp
m

ym

yp

(c) Plant and reference model output flow
control

0 10 20 30 40 50 60 70 80 90 100
190

200

210

220

230

240

250

260

270

280

s

m
m
H
g

ym

yp

(d) Plant and reference model output pres-
sure control

Figure V-20.: MRAC identification process. Shown are the identified parameters for flow
(a) and pressure control (b), as well as the corresponding plant and system
output (c)-(d) for an input signal with sufficient excitation.

5. Fuzzy–Controller

Fuzzy control is a well-established method in control engineering and has been applied to
a wide range of problems in diverse disciplines. It is especially useful, if a direct analytical
description of the control process seems unsuitable. Since fuzzy logic is able to interpret
vague and subjective knowledge, and allows qualitative system descriptions, it is well
qualified for medical decision making. Fuzzy logic was introduced by Zadeh in the 1960s
[134]. In fuzzy logic, complex systems are described on a verbal or symbolic level. The
use of IF-THEN rules facilitates the design process of the controller and expert knowledge
can be implemented ad hoc. Compared to the other control mechanisms described in
this chapter, no mathematical system description is needed. Also the maintenance and
adaptivity of the controller is simple. Rules can be added or deleted easily. Fuzzy Logic
permits simultaneous membership in more than one set, and thus is able to model systems
with roughly known response characteristics.
In fuzzy control, input and output variables are described by fuzzy sets. Each set consists
of membership functions, mapping symbolic to numerical values. For example, the fuzzy
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set for the control variable flow can be described by the linguistic terms low, medium and
high. Now membership functions can be defined for each term. E.g. a flow of q = 3 lpm is
considered medium (cmp. Figure V.22(a)), while a flow below 2 lpm is low. Membership
function values are limited to the interval [0, 1]. Membership functions can overlap, e.g.
a flow of 3.5 lpm partly belongs to the two sets of medium and high. Like this, fuzzy sets
for each variable can be defined. Together with a rulebase, control characteristics can be
implemented.
Fuzzy controllers consist of 4 stages (cmp. Figure 5):

1. Fuzzification: The fuzzification step determines the degree of membership by which
the inputs belong to the corresponding fuzzy sets. The input of fuzzification is a crisp
numerical value, while the output is a fuzzy degree of membership in the interval of
[0, 1].

2. Rulebase: The rulebase defines the control characteristics by linguistic rules and is
usually given by experts.

3. Inference Mechanism: Based on the fuzzified inputs and the rulebase, an output
fuzzy set is calculated.

4. Defuzzification: The defuzzification calculates a crisp number from the output fuzzy
set. The most popular method for defuzzification is the centroid calculation, which
returns the center of the output fuzzy set.

Rulebase

Fuzzification
Inference

Mechanism
Defuzzification

q, ∆p ∆V

Figure V-21.: General structure of a Fuzzy-Controller.

5.1. Control Design

For pressure and flow control of the hydraulic circulatory model, fuzzy sets for the flow
V.22(a) and the pressure V.22(b) are defined. Since the fuzzy controller can not react to
changes in the target values, several controllers (for each target value) are implemented.
Now, depending on the target values, different controllers can be activated. The control
output is an incremental change of the input voltage V of the motor, with corresponding
sets illustrated in Figure V.22(c). The rulebase is intuitive:

1. IF {q,∆p} is low THEN ∆V is increase.

2. IF {q,∆p} is medium THEN ∆V is steady.
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(a) (b)

(c)

Figure V-22.: Fuzzy sets for the controller’s input variables pump flow q and pressure dif-
ference ∆p and for the controller’s output V .

3. IF {q,∆p} is high THEN ∆V is decrease.

For evaluation purposes controllers for a medium flow of 2, 3 and 4 lpm were defined and
pressure controllers for a medium pressure difference of 210, 230 and 250 mmHg.

6. Results

The controllers designed in the last sections are evaluated in three different scenarios. First,
the controllers have to follow target values, that are changed during the test run. In the
second scenario the control input is perturbed with noise, while in the last setting the
peripheral resistance of the mock model is changed. The controllers are compared quanti-
tatively, using the normalized IAE:

IAE =
1

T

Z T

t=0
|r − y|dt (V.68)

In the discussion, the different methodologies are also compared qualitatively.

6.1. Changes of Target Value

In this setting the control targets are changed step-wise. For pressure control the targets
were set at 210, 230 and 250 mmHg. For flow control targets were 2, 3 and 4 lpm. Using
a step function, targets were changed after 10 s and the controllers had to follow those
changes. Figure V-23 shows the step changes in the target values and the variables under
control (flow or pressure). The IAEs for the different control methods are shown in Table
V.3.

Proportional-Integral Controller: The PIC revealed the lowest IAE for both pressure and
flow control and reached the target values quickly. During flow control overshoots with a
maximal offset of 0.24 lpm and small oscillations were observed.
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H∞-Controller: The HINFC reached the control targets without overshoots or oscilla-
tions, but was inert during flow control, reaching the target value only about 5 s after the
change was triggered. For pressure control the delay was smaller.

Fuzzy Controller: The FUZZYC was also able to reach the control targets, but similar
to the HINFC showed inert behavior during flow control. In pressure control small over-
shoots were observed. However, the overshoot was below 1% and fading quickly without
oscillation.

Model Reference Adaptive Controller: The MRAC showed a fast response without over-
shoots for pressure control. During flow control an overshoot of 1% was observed when
increasing the target value from 3 lpm to 4 lpm and the control was slow when the refer-
ence variable was decreased to 2 lpm, reaching the target value after about 4 s.

IAE PIC HINFC FUZZYC MRAC

Pressure 0.53 0.91 1.39 0.67

Flow 0.02 0.08 0.10 0.05

Table V.3.: IAE during changes in the target value.

6.2. External Perturbations

In the second scenario the control variable is perturbed externally. The measured flow
and pressure values are biased with a gaussian random noise signal, before fed to the
controller’s input. Such noisy signals were observed during animal experiments and can
be due to vibrations or movements of the patient or the HLM as well as to malfunctioning
sensors. The additional noise implies, that the control error is unlikely to become 0 and the
controllers constantly have to react to small changes. For flow control the noise signal was
zero mean with a variance of 1 lpm, while the variance was 10 mmHg for pressure control.
Again, the step function of the first setting is used as a reference input and shown together
with the control variables in Figure V-24. The IAEs are shown in Table V.4.

Proportional-Integral Controller: The PIC showed high-frequency oscillations in the con-
trol variables for both pressure and flow control, but it was able to follow the reference
variable with a low IAE. Maximal overshoots were around 1% for both pressure and flow
control.

H∞-Controller: The HINFC also displayed high-frequency noise and followed the char-
acteristics of the reference curve without significant overshoots, but the target value was
not reached well during flow control. As in the first setting, control was slightly inert.

Fuzzy Controller: The FUZZYC showed smooth behavior without high-frequency oscil-
lations. There were constant but little deviations from the target. Again little overshoots
in pressure control and a slowed reaction for flow control were observed.
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Figure V-23.: Control during changes of target value (scenario 1).
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Model Reference Adaptive Controller: The MRAC displayed smooth characteristics with
the lowest IAE for this setting. Again, a small overshoot of 1% was observed when the tar-
get flow was increased to 4 lpm. For pressure control the target was followed accurately
and fast without noticeable deviations.

IAE PIC HINFC FUZZYC MRAC

Pressure 0.82 1.59 1.69 0.69

Flow 0.07 0.09 0.11 0.05

Table V.4.: IAE during external perturbations.

6.3. System Parameter Variation

In the final evaluation setting, the peripheral resistance Rp is changed. This is equivalent to
increasing or decreasing the tube diameter in the hydraulic setup. Starting from its initial,
medium value, the diameter is altered by 25%. We distinguish again between flow and
pressure control. In contrast to the preceeding scenarios, the target value is kept constant
now. For pressure control this target is 230 mmHg and 3 lpm for flow control. Figure V-25
shows the characteristics of the uncontrolled plant during the change of Rp for both cases.
If the resistance is decreased, flow rises while the pressure difference drops. After 10 s
the resistance is changed back to its initial value. Afterwards it is increased, making the
pressure increase and the flow decrease. The challenge for the controllers is to keep the
target value, despite the change of the plant parameter. The results are displayed in Figure
V-26 and the IAE is shown in Table V.5.

Proportional-Integral Controller: The PIC dealt well with the parameter variations. De-
viations from the target value were observed, while the tube diameter was changed, but
they were small (0.03 – 0.06 lpm for flow and 0.5 – 1.8 mmHg for pressure control) and con-
trol was back to target, when the resistance parameter reached its setpoints. Concerning
the IAE, the PIC is ranked first for flow and second for pressure control.

H∞-Controller: The HINFC was also able to compensate for the parameter changes, but
again control was slow compared to the PIC. The IAE was worst for flow control with 0.44
and a maximal deviation of 2.4 mmHg.

Fuzzy Controller: The FUZZYC also compensated for the Rp variations and had the low-
est IAE for pressure control. Maximal deviations of 0.21 lpm during the change of Rp were
observed in flow control but were smaller for pressure control (1.3 mmHg).

Model Reference Adaptive Controller: Noticeable results were observed for the MRAC,
since it was not able to compensate for the Rp variation during the given time. This lead
to maximal deviations of 0.65 lpm during flow control. The deviations were smaller when
Rp was increased.
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Figure V-24.: Control during external perturbation (scenario 2).
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Figure V-25.: Plant characteristics during variation of Rp. Shown are pressure difference
and flow, starting from the fixed setpoint of 230 mmHg for pressure control
((a), (c)) and 3 lpm for flow control ((b), (d)).
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Figure V-26.: Control during variation of peripheral resistance (scenario 3).
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IAE PIC HINFC FUZZYC MRAC

Pressure 0.31 0.44 0.22 0.32

Flow 0.01 0.05 0.06 0.09

Table V.5.: IAE under system parameter variation.

6.4. Discussion

The PIC was ranked first or second in all three scenarios. It was able to follow target val-
ues, despite external perturbations and handled parameter variations of the system well.
The small overshoots observed during flow control can be eliminated by a fine-grained
grid search in the Kp-KI -plane. The good results are due to the fact, that the controller
was designed based on an accurate system model. In the design process parameter uncer-
tainties and time delays of the output variables were already considered. Its structure is
rather simple, but parameters need to be well-tuned.

The HINFC showed smooth behavior in most cases. It reached the given target values
without big overshoots. Noticeable was the high-frequent noise during pressure control
in the second scenario. Also the control was rather slow compared to its competitors. A
system model is indispensable during the design process of the HINFC. Similar to the PIC,
parameter uncertainties and time delays can be accounted for in the design. However, the
design process is rather complex and control behavior is hard to follow for people without
a background in control engineering. The observed inertia for most of the scenarios can
be impaired by a better choice of the gain crossover frequency of the weighting functions.
But target values were still reached within an acceptable period and a rather slow change
of the pump speed might even be beneficial for the patient compared to large and fast
variations.

The MRAC showed very smooth behavior during external perturbations, with the top
rank concerning the IAE, but did not cope well with the parameter variation in the third
scenario. However, additional tests showed that, if the parameter variations were re-
peated, the control error was lower than shown in V.26(g) or V.26(h). The reason is, that
control parameters are changed online and the controller can react more adequately on up-
coming parameter changes. Since the methodology is based on an identification process
a complete system model is not needed but the system order is sufficient for the design.
To guarantee a successful identification of the control parameters, the input signal should
have enough excitation. This is not the case for a constant target value as in the third sce-
nario and explain the big deviations from the target. As for the PIC and HINFC the design
is rather intransparent.

Concerning the IAE, the FUZZYC performed bad and was ranked fourth in scenario
one and two. However, it showed the lowest IAE for pressure control during the vari-
ation of Rp. Although there were deviations from the target value it did not exhibit the
high-frequency noise during external perturbation such as the HINFC and PIC. Since the
FUZZYC is a knowledge-based method, no analytical system model is needed. Using a
reasonable rulebase and membership functions, the control problem can be well charac-
terized. Also limits for the control variables can be set easily, while some low-level control
would be needed for the other controllers to prevent the generation of unphysiological
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values. Due to its independence from a system model, the FUZZYC deals well with the
third scenario. A big advantage is its transparency, enabling even the untrained to quickly
design a controller for a given task. The natural language rules ease discussions with ex-
perts from the medical domain and the control behavior is comprehensible, as long as the
rulebase is kept small.

In summary, all evaluated controllers led to a stable control and showed good perfor-
mance in the given control tasks. In terms of the IAE the results were close together with
slight advantages for the robustly tuned PIC. In the first scenario with step changes of
the target value, fine-tuning could even improve the good results and diminish the IAEs,
making it hard to favor a specific control method. In the second scenario the MRAC out-
performed the other methods, but also the FUZZYC led to smooth control without high-
frequency noise. In the third scenario the IAEs were close together again. As stated before,
the bad performance of the MRAC is due to the initial choice of the control parameters
and the control error decreases in longer test runs. This adaptivity to unknown or only
roughly known plants is an advantage, compared to its competitors. Although the PIC
and the HINFC are robustly tuned, they rely on an accurate analytical system description
and would need to be retuned for large changes or disturbances of the system. For exam-
ple, if a different blood pump was used in the setup, the pump parameters would change
and the plant description would need to be recalculated. As a consequence, the controllers
would also need to be redesigned. However, the adaptive MRAC and the knowledge-
based FUZZYC are indifferent to such changes and would cope well with the new system
setup.

In the work of Misgeld et al. [121] three controllers were designed for robust blood flow
control under ECC. They designed a robust PIC and HINFC. From adaptive control they
used a self-tuning GPC and tested the performance in a two-element mock model under
variation of resistance and compliance. Results showed the best performance with the
HINFC, closely followed by the PIC. For the GPC nearly instable behavior was reported
in regions of strongly varying non-linear system gain. External perturbation was not con-
sidered by Misgeld et al. and there was no knowledge-based control method evaluated.
However, the results presented in this work verify the results of Misgeld et al., that robust
PIC and HINFC perform well for the given control task. Still, in vivo tests might require a
redesign of those controllers. Considering the negligible differences in the IAEs for all of
the four control methods evaluated, soft factors need to be considered if a recommendation
for a favorable strategy should be given. It was shown, that the PIC and HINFC revealed
similar behavior, but the design process for the robust PIC is easier. The FUZZYC and the
MRAC are convenient, since they can adapt to unknown system parameters. However,
the MRAC is not the method of choice for quickly varying system parameters or for con-
stant target value control, since the input signal usually has hardly any excitation and the
parameter identification process might fail. Although the FUZZYC was ranked fourth in
two scenarios, concerning the IAE, qualitative comparison shows, that it is well-suited for
the given control task. It can be designed easily, using natural language rules. Changes
or later adaptations are possible without complex calculations or grid searches. And con-
trol behavior is transparent and comprehensible. From a medical point of view all four
evaluated control strategies are convenient, since they all reach the target values fast and
precisely - better than a human operator could do. The differences in terms of the IAE
are insignificant from that viewpoint. But again, the FUZZYC has the advantage, that it is
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based on natural language rules and its behavior can be easily influenced or changed by
physicians.

7. Summary

In this chapter a hydraulic circulatory model and a simplified representation of a HLM is
introduced. The complete setup replicates flow and pressure dynamics under ECC. The
model is used to design and evaluate control methods for the regulation of the HLM pump
speed in a predefined setup. Moreover, the setup can be used to test hard- and software
components prior to animal experiments.

The layout for the CVS representation follows the well-known Westerhof model, consist-
ing of two resistances and a closed air chamber, representing the aortic compliance. The
Westerhof model is predominant in literature and its layout is simple, but it accurately
replicates a hydraulic load for a real pumping heart [26]. A centrifugal pump, driven by a
direct current motor, together with a static resistance represent the HLM. Water was used
instead of blood as a circulating medium. Although there are obvious differences such as
viscosity or density between the two liquids, their influences are marginal and negligible
for control design. Mathematical descriptions of the motor, the pump and the CVS are
presented and combined for a complete analytical model of the setup. This description of
the closed-loop circulation is then compared to experimentally measured data and a very
good congruency is found. The model is also compared to data from two representative
animal experiments. It was found, that the produced pump flow is close to the animal data
while the pressure difference at the pump is lower, but still in an acceptable range.

For control design the state space representation of the system is derived and linearized
in a working point. The linearization is justified by comparison to the nonlinear model
representation. The control task is to adjust the pump speed in order to observe given tar-
get values for pump flow and pressure. Several control methodologies are designed and
evaluated. Since the human circulatory system is a plant with uncertain and time-invariant
parameters, controllers are tuned robustly. As a classical feedback controller the robust PIC
was chosen. The HINFC represents the state of the art method of robust control. From the
area of adaptive control a MRAC was designed and a FUZZYC from the family of intelli-
gent control. The controllers are evaluated in three different scenarios. First, step changes
of the target values are applied in order to examine the general control performance. In
the second test the control signal is charged with an additive random noise signal. Noisy
signals have been observed during animal experiments and can, for example, be due to
vibrations or sensor malfunction. In the third scenario the periperal resistance of the CVS
is varied during control in order to evaluate the adaptivity and robustness to system un-
certainties and changes of patient parameters.

The different methods are quantitatively evaluated using the IAE. All controllers lead
to a stable control with top rankings for the PIC in terms of the IAE. During external
perturbations (scenario 2) the MRAC performs best. Again the PIC is ranked first during
flow control under parameter variations (scenario 3), but is outperformed by the FUZZYC
in pressure control. Since the IAEs are all close together, other factors, such as transparency
and design complexity should be considered. Advantages can be found for the robustly
tuned PIC and the FUZZYC, since they are rather simple to design and their behavior
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is transparent. The FUZZYC has the additional advantage, that it is independent of an
analytical system description, while the PIC would need to be redesigned if components
of the system were changed.

It has to be mentioned, that the presented hydraulic model is not able to consider the
observation and regulation of patient parameters, such as temperature or SpO2, for exam-
ple. However, pressure and flow relations under ECC and their control can be examined
well using this model. Even more, the patient, represented by the Westerhof model, is
considered as a black box system. The control manages parameters which are exclusively
measured at the HLM, namely the pump speed, the produced pump flow and the pres-
sure difference between the pump inlet and outlet. Animal experiments, observations in
the OR and consultations with experienced physicians have shown, that a sufficient perfu-
sion of the patient can be assumed, if those parameters are observed. As long as there are
no unforeseen events, such as volume loss, kinking or technical problems, it is sufficient
to observe the HLM parameters. The good results show, that those variables can be well
controlled. In order to guarantee patient safety and to broadly examine ECC Control, a
virtual simulation model is indispensable [27].
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Medical Data Mining for Intelligent
Patient Monitoring
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1. Motivation and General Approach

The contributions of Misgeld et al. [121], Meyrowitz [24] and the previous chapters in
this work have shown, that an automatic pump speed control of a HLM is feasible from a
technical point of view. So far only well defined application settings have been described.
Automated HLMs have been tested in hemodynamic simulators [9, 121] and in laboratory
enviroments [1, 24].
The intention of this project, however, is to deploy HLMs in preclinical emergency situa-
tions. Using ECCSs outside the clinical environment is beneficial for patients suffering a
cardiogenic shock or other cardiac insufficiencies [135]. They can be stabilized and trans-
ported to a cardiac surgery center for in-depth treatment. The early application of ECCSs
implies several requirements and consequences. Ideally the HLM controller would have
knowledge about the current constitution of the patient and would be able to recognize
and cope with contextual events such as sensor failure or intervention of the staff. There-
fore, medical DM methods for the assessment of monitoring signals shall be examined.
In the following, the requirements for ECCSs in non-clinical environments are reviewed
(section 1.1) and the concepts of CDSSs (section 1.2) are introduced and reformulated for
automated ECC control. The feasibility of intelligent monitoring and control for an auto-
mated ECCS is then shown in a benchmark test. DM methods are reviewed (section 2) and
evaluated for the assessment of a patient’s health status. Due to the lack of large-scale,
publicly available databases for ECC applications a well-known database from ICU mon-
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itoring is used, and the problem of high false alarm rates in patient monitoring is tackled
(chapter VII).

1.1. Requirements for Automated Extracorporeal Circulation Systems in
Non-Clinical Environments

In non-clinical environments ECC requirements are different compared to a standard ap-
plication of HLMs in operating theaters. Human operators are presumably stressed dur-
ing emergency duties and simultaneous supervision of both the patient and the HLM is
hardly manageable, also because of the general lack of personnel in such situations. Both
financial considerations and the limited space in ambulances or helicopters do not allow
sufficient, specially trained personnel. Feindt et al. [20] identified requirements for the
application of ECC devices outside the hospital. Regarding the staff, they call for at least a
cardiac surgeon with sufficient experience in percutaneous and conventional cannulation
under emergency conditions, as well as for a cardiac perfusionist with sufficient clinical
experience. Concerning the equipment, arterial and venous cannulas in various sizes, a
set of sterile surgical instruments and a coagulation and blood gas analyzer complement
the standard emergency equipment.

An automated HLM reduces the workload of the staff and the patient can profit from
being continuously perfused in accordance to his personal needs. The shift from clinical
to pre-clinical applications of ECCSs involves some challenges regarding system safety
and reliability. There is no surgical team as in a regular operating room, there is no stan-
dard system and monitoring setup. Additionally, medical records of the patient are often
unknown [5]. Unpredictable context-driven events, such as kinking of arterial or venous
tubings, vibrations during transportation, sensor failure or alike can change the system dy-
namics and require immediate attention. Such events not only increase system complexity
but also influence the control behavior of an automated device and can set the patient at
risk if the control is only based on pure numerical sensor data, unaware of the situational
context. Therefore, a Supervising Unit (SU), validating sensor data and assessing the pa-
tient’s condition, would be desirable in control applications, since it could give valuable
feedback to both the controller and the human operator. Such systems, aggregating infor-
mation about the patient and giving guidelines to the practitioners, are known as CDSSs
but have neither been applied to online monitoring data nor to control applications.

1.2. The Clinical Decision Support Approach

Safe, effective and patient-centered delivery of care are main pillars of today’s medicine
[136]. Along this path automated diagnosis and decision support systems have been intro-
duced to improve the quality of care. Most of them are designed for specific applications
and operate on databases of medical records. These tools are used to define and follow
evidence-based therapy guidelines. Usually, they generate care suggestions and became
well-known as CDSS. Although their acceptance is still low and patient outcome is under-
studied, several CDSSs improved practitioner performance [137]. The requirements and
specifications for such systems are manifold and strongly depend on the application. Sev-
eral studies examined CDSSs in the context of cardiovascular diseases [138–141]. The main
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objectives are to increase system safety, patient safety and thereby quality of care. Greenes
[142] identifies 5 features of Clinical Decision Support (CDS):

1. The general aim of CDS can be to make data about a patient easier to assess by, or
more apparent to a human; to foster optimal problem-solving, decision-making, and
action by the human.

2. The decision support is provided to a user, who may also be a computer program.

3. A primary task of the computer is to select knowledge that is pertinent, and/or to
process data to create the pertinent knowledge.

4. The selection of knowledge and processing of data involve carrying out some sort of
inferencing process, algorithm, rule, or association method.

5. The result of CDS is to perform some action, usually to make a recommendation.

The concepts of CDS can also be applied in the context of this work. Particularly, three
purposes of CDSSs can be followed (cmp. [143]) and reformulated as goals for a CDSS,
supervising automated ECC:

• Diagnosis: Use statistical or DM/pattern recognition methods to assess the patient
and/or the machine status.

• Monitoring Actions: Detect events such as user intervention or sensor failures in
real-time and trigger alarms or influence the

• Choice of Treatment: Change the control behavior or give recommendations, e.g.
for adequate medication, to the medical practitioners.

Literature does not reveal any approaches towards CDSSs for control application, and
although there are many researches about ECG classification, studies on assessing the
health condition, considering multiple data sources, are sparse (see section 3). Therefore,
this work can only show the general feasibility of a CDSS in medical control and will focus
on the first formulated goal, the use of DM methods for the assessment of the patient state.
In the following, DM methods are reviewed and later applied to the application area of
alarm management on ICUs (see chapter VII).

2. Data Mining and Knowledge Discovery

The sections 2.2, 2.3 and 2.4 summarize state of the art procedures in DM and, with minor changes,
have been adopted from the master’s thesis of Kolja Rödel [144].

Yoo et al. [145] introduce DM as a relatively new concept, that emerged in the middle
of 1990’s as a new approach to data analysis and KD. (. . . ) While data mining mainly
originated from work done in the field of statistics and machine learning as an interdisci-
plinary field, data mining has advanced from these beginnings to include pattern recog-
nition, database design, artificial intelligence, visualization, etc. DM is the discovery of
interesting, unexpected or valuable structures in large datasets [146] with the goal to gain
new insights, which can then be used to support decision making [145].
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There is a strong correlation with the term KD and the nomenclature has been used inter-
changeably. However, many researchers regard DM to be a partial task in the process of
KD [147, 148]. Fayyad et al. [147] introduced the term “knowledge discovery in databases”
as identifying valid, novel, potentially useful, and ultimately understandable patterns in
data. The different steps of KD are shown in picture VI-1.
First, appropriate data has to be selected. This step often includes the consultation of do-
main experts. The given data mining task should be solvable, given the selected data.
Exemplarily, patient monitoring data is used in the case study described in chapter VII to
classify monitor alarms. For robust classification results, it is important to include about
the same amount of instances for each class. For the case study this means to include
about the same amount of true and false alarms. Also the inclusion of errorneous/noisy
data samples help to increase the robustness. Usually, the selected data has to be prepro-
cessed with the focus on data quality. Filtering or the handling of missing values are major
issues during this step. The preprocessed data is then transformed into the feature space.
Depending on the application this transformation usually reduces the amount of data to
be processed. For example, in time series classification a mean value could be used to
describe the data stream. Another common procedure in the transformation step is the
conversion from numerical into nominal data (depending on the raw data type), known
as discretization. DM, comprising feature selection and appropriate learning algorithms,
is at the core of the KD process. From the transformed data those algorithms create and
identify useful patterns. In the evaluation step these patterns are validated. In this part of
the work this classical procedure is followed in order to classify patient monitoring data.
Before applying DM algorithms in the medical domain one should be well aware of the
uniqueness of biomedical data and applicable algorithms.

2.1. Data Mining in Medical Applications

DM in medicine must consider several issues quite different from other applications. In
their position paper Cios and Moore [149] explain the uniqueness of medical DM and state,
that medical data is the “most rewarding and difficult of all biological data to mine and
analyze”.
Among the key points to consider when mining medical data, Cios and Moor [149] iden-
tify the heterogenity of medical data, ethical, legal and social issues, as well as the special
status of medicine in today’s life. The unclear ownership of medical data, the fear of law-
suits by physicians, privacy and security, and the acceptance by the patients are the most
significant challenges, apart from technical issues [144].
Medical data can be voluminous, complex and heterogenous. Patient data is usually ac-
quired from different devices and sensors (e.g. ECG recordings and oxygen saturation).
Managing all this data requires high capacity data storage devices and new tools to ana-
lyze such data [149]. The lack of a canonical form to describe medical data or events can
be another hindering factor. Furthermore, machine learning is always based on ground
truth data. In the medical domain these assessments are done by few domain experts. It
can be shown, that the opinions of several physicians about the state of a patient can vary
significantly [13].
Matheny and Ohno-Machado [150] criticize, that (i) data are simply not available or not
structured enough to allow knowledge to be learned from them and that (ii) techniques to
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Figure VI-1.: The knowledge discovery process. From [144], redrawn after [147].
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discover patterns from data are not well disseminated or not well evaluated in the biomed-
ical community.
The fact, that every individual has different physiological characteristics, can be an ob-
stacle for the application of DM algorithms or statistical analysis, when only taking crisp
numerical values into account. Also the issue of missing values impedes medical data
analysis [151]. Cios and Moore [149] claim, that “in a large medical database, almost every
patient-record is lacking values for some feature, and almost every feature is lacking val-
ues for some patient-record”. And also the nature of medical data itself can be an obstacle,
since some events or diseases occur more frequently than others.
Mikut et al. [152] also identify the existence of hidden information, possible correlations
between features and limited quality of data sets as difficulties when mining medical data.
Furthermore, the extraction of useful features from time series, e.g. provided by ECG
recordings, need special carefulness. Last but not least, Lavrač [153] states the need for ef-
fective and accurate prediction, as wrong results could cost lives. Only transparent and in-
terpretable results from DM algorithms will find their way into clinical practice [149, 153].

2.2. Discretization Methods

Each instance used for DM is characterized by a feature or attribute. Depending on the do-
main of the features or attributes, discretization methods can be divided into two groups
[154]. Numerical or quantitative attributes contain real numbers and have an infinite num-
ber of possible values. The other group is the nominal attributes, which are also known as
qualitative ones. Their domain is limited to a finite and typically small number of possi-
bilities. A special case of nominal attributes are binary ones [155] with only two possible
values, ”true” and ”false”. Some learning algorithms explicitly require nominal attributes.

While nominal attributes are more appropriate for most learning tasks, almost all mea-
surements deliver numerical data. For that reason, some efforts have been made to find
methods to convert numerical attributes into nominal ones.

2.2.a. Equal-Width Discretization

The simplest approach is the equal-width discretization. It is independent of the input
data as the range of possible attribute values is divided into a predefined number of equal
intervals [154]. Each of the intervals represents one value of the new nominal attribute.
This method is fast, easy to understand, and requires only the number of intervals, the
so-called bins, as a parameter. A drawback is, that the number of instances might not be
equally distributed on the bins.

2.2.b. Equal-Frequency Discretization

To tackle the deficiency of unequal distribution on the bins, the procedure of equal-frequency
discretization has been developed. Its idea is, that all instances are distributed uniformly
on the fixed number of intervals [154]. This guarantees, that each value of the nominal at-
tribute appears approximately as often as the other values. Indeed, the width of intervals
can become tiny. Then, very similar values at the original numerical attribute can fall into
different bins, which implies a substantial difference between them.
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2.2.c. Supervised Discretization

The two illustrated discretization methods are also referred to as unsupervised approaches.
This indicates, that they do not include a measure, how well they separate the instances
with respect to the learning task. A different procedure is the entropy-based discretization.
It is supervised and considers the prediction attribute in addition to the attribute which is
to be discretized. The entropy measure describes the distribution of the values of the pre-
diction attribute K in a set of instances m [155]. The entropy can be regarded as the sum of
weighted probabilities p of the prediction values K, i.e., at which percentage the prediction
value appears in the set m.

Entropy : −
KX
k=1

p̂mk log p̂mk (VI.1)

Using this formula, the set of instances is iteratively split up to minimize the entropy in
each step. The amount of entropy reduced is indicated by the information gain, which is
the difference of the entropy before and after the split [154]. The information gain ensures,
that neither bins contain a very unequal number of instances, nor very similar instances fall
into different bins. Entropy-based discretization consciously accepts, that some intervals
are wider and some contain more instances than others.

2.3. Feature Selection Approaches

A further important issue at the transformation step is the selection of appropriate fea-
tures. Usually, many features are generated from the input data at first. In most cases it is
unknown, which features are able to characterize instances belonging to one class. Some
algorithms have an implicit feature selection. In general, selecting features improves the
performance of the algorithms by dimensionality reduction. Moreover, less features mean
better understandability [154].
The approaches to extract useful features, can be grouped into two different procedures.
The wrapper methods on one hand include the usage of a learning algorithm and the pre-
diction attribute. They are therefore known as supervised selection. In contrast, the filter
methods do not involve a learning algorithm. Some authors refer to them as unsupervised
selection.

2.3.a. Unsupervised Feature Selection: Filter Methods

Filter methods compute an index for ordering the features by importance. Kira and Ren-
dell [156] proposed the Relief algorithm, which chooses the closest two neighbor instances
and determines a relevance level through all neighbors. Hall [157] used the correlation as
an indicator for the importance. He introduced the idea, that features with a very high
correlation to another feature can be replaced by that one and are therefore redundant.

2.3.b. Supervised Feature Selection: Wrapper Methods

The wrapper approaches are based on executing the embedded learning algorithm with
a different set of features. This implies more computational effort than just ranking the
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features, but wrapper methods are considered to perform better in general. They can be
distinguished by the direction for adapting the feature set. While forward selection starts
with an empty set and adds features incrementally, the complete set of feature is the initial
point for backward selection. Backward selection is regarded to output larger feature sets
and better prediction accuracy than forward selection. It may stop early if the performance
measure on the algorithm is not perfectly correct. The forward selection may also stop too
early, having only few features selected and therefore worse accuracy [154]. At wrapper
approaches, the error of the learning algorithm has to be kept in mind. If an algorithm
tends to disregard a specific feature or a group for some reason, it is unsuitable for feature
selection. This hazard can be tackled by applying several learning algorithms and use the
intersection or union set for learning.

2.4. Data Mining Algorithms

Generally, DM algorithms can be divided into two groups, supervised and unsupervised
learning algorithms. For supervised learning an extrinsic error measure is required for
optimizing the output [155]. For example, the regression algorithm (see below) must be
provided with information, how far a predicted value is from the optimal output to im-
prove the results. Equally, classification algorithms need some class information in the
training process. Unsupervised methods, such as cluster analysis, incorporate an explo-
rative approach and group data without this extrinsic information. There are 4 groups of
DM approaches, predominantly used.

Association Analysis: This method finds combinations of features, which appear rela-
tively frequently together in instances [155]. It makes binary decisions (available or not
available) for each feature resulting in feature patterns. This analysis often employed to
discover customers’ hidden sales patterns or relationships among items purchased [145].
It uses a so-called a priori property, i.e. if an attribute is not frequent among all instances,
its descendants are also not frequent. By this, the efficiency of the algorithm is increased.

Cluster Analysis: Identifying groups of instances based on a similarity measure is the
goal of clustering methods [155]. The members of the resulting clusters are more closely
related to each other than to the remaining instances. It is a method of unsupervised learn-
ing, i.e., it has an explorative power and is frequently used in studies with a large amount
of data but no, or very little, knowledge about that data. Clustering algorithms group
objects into a predefined number of clusters. After clustering, objects in one group are
similar to each others (in terms of attribute values) and distinct from other groups. Clus-
tering methods can be subdivided into hierarchical and partional algorithms [158].

Classification: Classification methods belong to supervised learning strategies and aim
at assigning a new instance to one of several classes [155]. Classification is a two-step
process consisting of training and testing. The first step, training, builds a classification
model, consisting of classifying rules, by analyzing training data containing class labels
(. . . ). The second step, testing, examines a classifier for accuracy (in which case the test data
contains the class labels) or its ability to classify unknown objects (records) for prediction
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[145]. In contrast to clustering, the classes have to be known beforehand for the training
process.

Regression: Unlike the classification method, numerical data is predicted for a new in-
stance instead of nominal data. The output of a regression model is therefore not a class,
but a real number [155]. This number is calculated on the basis of a formula derived from
the other instances.

In this work only classification algorithms are applied, since they are the core DM meth-
ods used in bioinformatics and biomedicine [145]. Therefore, the most prevalent algo-
rithms are shortly introduced in the following.

2.4.a. Nearest-Neighbor Classification

The values of similar instances in the training set V are regarded for classifying the new
instance v∗. The approach of looking at the neighbors is referred to as k-Nearest-Neighbors
(kNNs). The nearest neighbor of v∗, denoted as vmin ∈ V , can be obtained by using the
Euclidean distance in the feature space X and finding the instance with minimal distance:

vmin = vi ∈ V : min

�Ì
XX
x=1

(vi,x − v̂x)
2

�
(VI.2)

For numerical features the distance measure is obvious, nominal features have to be con-
verted into a numerical representation. The only parameter, which has to be determined
for this algorithm, is the number of neighbors k. Classifying an instance just by its nearest
neighbor (k = 1) tends to be suboptimal, since an outlier may disturb the prediction. There-
fore, the results can, in many scenarios, be improved by regarding k neighbors with k>1
[155]. Then, the majority class value from the k neighbors is assigned to v∗. The challenge
is to find an optimal k. There is a minimal error rate at a specific k which can be found by
brute force search.

Despite its simplicity, kNN has showed to perform very successfully. A characteristic
of the kNN algorithm is the absence of a model, which is trained once during the training
phase. Instead, all training instances have to be used for classifying new instances. For that
reason, the procedure is also known as instance-based learning. This approach is obviously
not fast compared to model-based algorithms. In fact, the computational complexity is
O(dn2) for d features (dimensions) and n instances [159].

2.4.b. Support Vector Machines

Like instance-based learning, Support Vector Machines (SVMs) are based on the proxim-
ity of instances with the same class value in the feature space. SVMs separate the classes
by finding a hyperplane [154]. In contrast to instance-based learning, not all training in-
stances have to be used repeatedly. The convex hull of the training instances per class is
constructed instead [154]. The challenge for the training process is to find the hyperplane
between the complex hulls with maximal margin, i.e. the distance to the hulls. Support
vector machines are based on the assumption, that large margins mean clear separation
and thus good classification [159]. From each convex hull, the instances, which are closest
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to the hyperplane, are called ”support vectors”. Then, SVMs can formally be expressed by
their hyperplane [154]:

x =
NX
i=1

αi yi ai a+ β (VI.3)

The instance vectors ai and their class information yi contain the training data. They are
provided with weights (αi) and an offset (β) to position the hyperplane correctly in the
feature space. The new classification x depends on the new instance vector a.

If the classes are linearly separable, and therefore the convex hulls of the classes are
disjunct, the task is relatively easy. The Simplex algorithm from linear optimization can be
utilized to find the most appropriate hyperplane [159]. The procedure includes a penalty
term for misclassified instances. Aiming at the goal to minimize the penalty, the optimal
hyperplane can be found [155]. However, if such a separation is not possible in the given
feature space, the kernel trick is an approach to solve the problem. Its basic idea is to
represent the data in a higher dimension. In this dimension, data of different classes should
be linear separable. Obviously, finding an useful mapping function (kernel) is crucial.
Including the transformation K(x, xi), the previous formula is extended to:

x =
NX
i=1

αi yi K(ai, a) + β (VI.4)

Popular kernel functions are polynomial and radial basis function (RBF) kernels [154]. The
kernel trick often increases complexity, even if the original problem was quite simple. This
may lead to overfitting, because many parameters can be perfectly fitted on the training
data available. However, SVMs have a relatively inflexible decision boundary [154], which
is useful against overfitting: the hyperplane is only modified, if the new instance is outside
the convex hull of all instances of the same class. This makes SVMs robust to noisy data
as well. In general, SVMs are considered as very accurate. Although the training process
is slow for SVMs, they are fast in the testing phase. For evaluation, only the new instances
have to be compared to the existing hyperplane.

2.4.c. Artificial Neural Networks

Although it is hard for humans to comprehend the specific behavior of a complex kernel
transformation like in SVMs, the basic concept of a hyperplane dividing instances into two
classes can be understood. Likewise, the Euclidean distance of kNN is easy to follow. In
contrast, Artificial Neural Networks (ANNs) apply a black-box approach. They do not
aim at interpretability, which is one of the reasons that they are hardly used in medical
applications. The idea is to compare input values and classifications and reproduce the
behavior with mathematical functions [155].
The structure of ANNs is inspired from the human brain [160]. The core idea is the distri-
bution of workload onto a large number of small and relatively simple components. By the
various combinations of those components, a decision is produced. In ANNs, these basic
components are called nodes. A node is a simple function, which can be parameterized by
a small number of factors. The nodes are connected by edges incorporating weights. This
enables some nodes to have greater impact on the result than others. Hence, the whole
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design of a neural network is a directed, acyclic graph. It can consist of several sequential
layers, usually there are at least the input, the hidden, and the output layer [159]. A layer is
a set of nodes with common predecessors and successors, but without edges between each
other. If more layers are involved these networks are also called Multi-Layer Perceptron.

The functions of the nodes play a key role in artificial neural networks. Although they
are simple by design, they are responsible for a complex output. Among the most popular
functions is the nonlinear sigmoid (VI.5a), explained in detail by Duda [159]. Also the
signum function (VI.5b) is frequently used [160], and last but not least the radial basis
functions VI.5c [159].

f(x) =
1

1 + e−x
(VI.5a)

f(x) =

8><>:−1 ∀x < 0

0 ∀x = 0

1 ∀x > 0

(VI.5b)

f(x) =
cX

i=1

ωi e
−

x−µi
σi (VI.5c)

The weights of the edges are trained by the back-propagation algorithm. It is an itera-
tive procedure, running through all layers. The algorithm starts with the adaption of the
weights between the last hidden layer and the output layer. For the output layer, the val-
ues are given by the training instances. The weights are adapted in such a way, that they
produce the available output values. Independent of the number of layers or nodes, the
classification error is minimized by gradient descent on the weights [160]. The training
phase belongs to the most expensive among all classification algorithms. This pays off at
testing, which is fast. Although the overall accuracy is considered as very good [155], bad
results are possible, if the model of the network does not fit the data. Also overfitting can
occur, if the network consists of too many nodes.

2.4.d. Bayesian Learning with Naive Bayes

If the dimensionality of the feature space is high, distance-based procedures such as kNN
or SVM are very expensive. Also ANNs incorporate serious costs for training. For that rea-
son, probability-based methods exist. They are also known as Bayesian learning methods
and use information about the distribution of a specific value per feature and class [154].
The basic formula behind Bayesian learning is the rule of Bayes (VI.6a). It is derived from
the formula of conditional probability (VI.6b) determining Pr[H | E].

Pr[H | E] =
Pr[E | H] Pr[H]

Pr[E]
(VI.6a)

Pr[H | E] =
Pr[H ∩ E]

Pr[E]
(VI.6b)

The probability Pr[H | E] states, how probable a certain hypothesis (or class) H occurs
given evidence (instance data) E. Directly computing Pr[H | E] is impossible due to the
unknown joint probability Pr[H ∩ E]. If this joint probability was known (for the case of
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instance data and class value occurring together), the classification would be unnecessary.
However, using the rule of Bayes, Pr[H | E] can be computed on the basis of the overall
probabilities of H and E and, in addition, the conditional probability Pr[E | H]. All these
three can be obtained during the training phase. Usually, several probabilities Pr[H | E]
and Pr[E] are computed for the different possibilities of E. For the actual classification, the
appropriate (according to the present instance data E) Pr[H | E] can be utilized to obtain
the probabilities for the hypotheses (class values). E is in fact the tuple (e1, . . . , en) and
contains an instance value of all features. Regarding this, formula (VI.6a) can be written
as:

Pr[H | e1, . . . , en] =
Pr[e1, . . . , en | H] Pr[H]

Pr[e1, . . . , en]
(VI.6c)

While the joint probability Pr[e1, . . . , en] in (VI.6c) is still possible to compute, the condi-
tional probability Pr[e1, . . . , en | H] can only be computed theoretically, but it would not
be feasible in practice [160]. The solution is referred to as Naive Bayes (NB) and assumes
the statistical independence of the features e1, . . . , en. Now the joint probabilities can be
replaced by multiplications (VI.6d).

Pr[H | e1, . . . , en] =

Pr[H]
nQ

i=1
Pr[ei | H]

nQ
i=1

Pr[ei]
(VI.6d)

The NB classifier provides very good results in many cases [155] and is fast, since the
class probabilities are computed during training. A mathematical problem in NB results
from the multiplication. If one possible value of any ei does not occur in the training data
for any class, its probability is naturally 0. Consequently, all other probabilities become
0. The standard strategy against a division-by-zero error is adding a constant term to all
probabilities in the nominator. The denominator has to be compensated by adding the
constant term once for each possible value of the feature [154].

2.4.e. Decision Trees

Decision Trees (DTs) use entropy information to separate classes. The idea is simple: Be-
cause entropy is a measure for the disarrangement in a set of instances, the data set is well
arranged, if the entropy is small. In a well-arranged set classification is easy by taking the
majority class. However, this works obviously bad at an equally distributed data set for
example. The goal is to group instances, which are well separable by one of the features.
The original data set is split up according to the splitting attribute. From the theoretical
perspective, they delimit subspaces of the feature space [159]. The main challenge is to find
the best splitting attributes. This is a recursive process to reduce the entropy stepwise. The
main method to select a splitting attribute is to utilize the information gain. It is defined as
the difference of the entropy before the split (S) and the weighted sum of entropies after
the split (Sv).

Gain(S,A) ≡ Entropy(S)−
X

v∈values(A)

|Sv|

|S|
Entropy(Sv) (VI.7)
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Although meaningful splits are possible by the information gain, attributes with many
values are preferred: They usually separate the instances better, because they have more
alternatives. In the extreme case, values such as date or id allow a perfect split since only
one instance is assigned to each class (entropy of 0 then). However, such a split does not
provide useful information for the learning algorithm, because the idea is to assign new
instances to the trained groups. The measure of gain ratio solves this problem: It divides
each information gain by the sum of all information gains at that step [160]. In other words,
it normalizes the information gain values. By this, splitting attributes are penalized, which
split the data set into several small groups (e.g. id or time). [155] recommend even binary
splits, because they try to avoid insufficient data at a lower level.
Again the problem of overfitting can occur if no adequate stopping criteria is applied.
Another disadvantage of DTs is the instability. In theory, one additional instance could
change the whole tree. For that reason, decision trees are not very suitable for online
classification. Hastie [155] proposes averaging over many trees to impede continuous re-
organizations, which is also known as bagging. In terms of computational complexity,
DTs are quite expensive. Duda [159] determine the complexity with O(dn (log n)2) for the
training phase and O(log n) for testing. A distinct advantage of DTs is their interpretabil-
ity. Whether the tree is visualized as graph structure with nodes and leafs or as logical
IF-THEN rules, the splitting attributes and conditions are clear and easily accessible for
domain experts.

2.4.f. Ensemble Methods

In contrast to the classification algorithms presented so far, ensemble methods involve a
different type of proceeding: they classify instances by combining other classifiers and us-
ing the results of those in an elaborate manner. The driving hypothesis is, that considering
several classifiers can improve the prediction accuracy. Three major ensemble methods
will be described in this section: Bagging, boosting, and stacking.

For bagging, several subsets of the training set are constructed [154]. They may overlap,
but should still be substantially different. Then, a classification algorithm is trained for
each subset. The resulting classifiers usually vary in terms of the model or parameters.
For relatively stable classification methods, these models tend to be similar. In this case,
bagging might not improve the accuracy considerably. However, for unstable methods
such as artificial neural networks or decision trees, bagging can be very useful [159]. Since
small changes in the training data may change the models, the prediction accuracy can
be increased by voting. From the computational perspective, bagging can be executed
concurrently, as the different models are independent of each other.

In boosting, the process starts with constructing a subset as for bagging and continues
with training a classifier of that subset. But in contrast to the other methods, the subset
is mainly constructed based on the instances, which are not well represented by the first
classifier [154]. Hence, the second classifier becomes an expert for data, on which the
first classifier performed poorly. This procedure is repeated iteratively. The produced
classifiers are usually weighted to determine their overall importance at the end. The
most popular boosting algorithm is AdaBoost [159]. Its distinctive idea is to increase or
decrease the probabilities for including an instance into a newly generated subset. By this,
the instances, which are already well covered by the existing classifiers, are chosen less
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Class True Class False

Classified as True TP FP

Classified as False FN TN

Table VI.1.: Different outcomes of a classification test, illustrated in a confusion matrix.

probably as training data for the new classifier. On the other hand, including instances
that are badly represented are chosen with a higher probability.

Stacking does not combine the same type of classifier several times, but involves com-
pletely different learners. Basically any classification algorithms can be used as a level-0
classifier [154]. From the results of those, a level-1 or meta-classifier predicts the final out-
come. The level-1 classifier could be as simple as voting (final class = majority of class
values). Either predetermined rules could be involved or dynamic learning based on the
error rate of the level-0 classifiers. Although any classification is allowed for the meta-
classifier. It is a common procedure to use a rather simple method [154].

2.5. Performance Analysis

A common problem in machine learning is overfitting, i.e. the algorithms are designed to
perform well on the training data, but perform badly in the general case, on arbitrary data
[159]. Therefore, to evaluate DM algorithms, the data set is usually split into a training
and a test set. Exemplarily, the data set is split into K=10 folds. Then, the algorithm is
iteratively executed and each time another fold is taken as a test set, while the remaining
K − 1 folds are used for training [155]. This procedure is called ”cross validation”. The
prediction error is averaged to obtain the overall performance measure [144].
Several other factors can be included in the performance evaluation. For instance, consid-
erations about computational complexity. Algorithms, which cannot be computed within
the available time and ressources, would be useless [159].
Especially in the medical domain transparency of the procedures and results of DM can
be another evaluation criteria. For example, illustrations of a decision tree with leafs and
connections in between are more comprehensible than weighting factors of an ANN and
are probably better accepted in the medical community.

Apart from the qualitative evaluation, several quantitative factors are used to determine
a DM algorithm’s performance. A key factor in the machine learning domain is the accu-
racy:

accuracy =
TP

total
100%. (VI.8)

It measures the percentage of correctly classified instances (TP =true positive) among all
test instances (total). However, this measure can hide essential details of the achieved re-
sults and is therefore not acceptable in medicine [149]. A sensitivity and specificity analysis
gives a more elaborate insight. In case of a binary class type, there are four possible out-
comes: true positives (TP) and true negatives (TN) comprise the correct predictions for
both classes. In contrast, false negatives (FN) and false positives (FP) combine the false
predictions. This can be illustrated in a confusion matrix (Table VI.1). Following Cios and
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Moore [149], three measure can be used for a thorough analysis:

sensitivity =
TP

TP + FN
100%, (VI.9)

specificity =
TN

FP + TN
100%, (VI.10)

predictive accuracy =
TP + TN

TP + TN + FP + FN
100%. (VI.11)

The sensitivity measures how many of the positive test examples were correctly predicted.
The specificity, on the other hand, is an indicator on how many of the negative examples
were correclty excluded, and the predictive accuracy gives an overall evaluation. Only
algorithms with high values in all three measures are assumed to perform well. It has
to be noticed, that for an analysis based on sensitivity and specificity, the classification
problem must be formulated as a yes-no-question, which can be challenging in medical
investigations [149].

3. Related Work

Concerning the state of the art in medical DM, several categories have to be distinguished.
This is due to the numerous interpretations of the term DM, as well as the broad range
of possible applications in the healthcare domain. Yoo et al. [145] give a good overview
of DM algorithms in the healthcare and biomedical domain. They generally differenti-
ate between applications reported from the industry and DM applications in the research
area. Studies can further be distinguished based on the DM approaches that were used
(e.g. classification, statistical measures, clustering or comparative studies) or based on the
particular application. Following Yoo et al. [145], efforts have exemplarily been made to
classify DNA micro arrays [161, 162] or to give breast cancer prognosis [163, 164]. In this
context the very recent work of Müller [165], examining DM algorithms for the diagnosis
of brest cancer and alzheimer disease, shall be mentioned.
Also Matheny [150] gives an overview of the literature and includes two application areas
relevant for this work, the prediction of ICU mortality and cardiovascular disease risk. Re-
garding the latter, Matheny lists prediction models primarily based on logistic regression
methods [166–168] and states, that external validation of these models has shown good
discrimination and calibration, with some limitations, when applied to populations with
significantly different demographics and specific comorbidities [169, 170].
In the context of ICU mortality a huge amount of studies have been published over the
last decades. Matheny [150] mentions a couple of studies to predict in-hospital mortality,
based on a variety of physiological variables, with the comparative studies of Markgraf et
al. [171], Beck et al. [172] and the review study of Ohno-Machado et al. [173] among the
most recent ones. All these studies have a predictive nature and usually consider patient
data from the last 24 hours. Therefore, they are not able to assess the current patient state
without a long-term monitoring.
During the last couple of years several algorithms have been presented to classify online
patient data. The intention is not to give predictions about future outcomes as in the stud-
ies presented before, but to increase patient safety and quality of care. Especially ECG
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classification and Heart Rate Variability (HRV) analysis are predominant research areas in
this category. Kampouraki et al. [174] applied Gaussian kernel-based SVM classification
to differentiate between healthy and pathological cases based on HRV features. They used
statistical features, such as standard deviation and autocorrelation values, as well as linear
prediction and Haar wavelets as inputs for the classifier. Evaluation was done by leave-
one-out cross validation and a 100% accuracy value was reported.
The study of Chin et al. [175] also examined ECG data. They focused on separating the
ventricular tachycardia, ventricular fibrillation and normal sinus rhythm. They applied
cross-correlation and a fuzzy kNN classifier and reported specificity and sensitivity val-
ues of 92.5% and 93.5%.
A different approach was chosen by Keogh et al. [176]. Instead of finding similar waves
in the ECG record like Chin et al. [175], they aimed at detecting unusual sections [144].
However, there was no large-scale performance analysis of their algorithm.
Instead of analyzing ECG data, Wang et al. [177] used blood pressure waveforms to distin-
guish between normal and pathological cardiovascular behavior. Again a SVM classifier
was applied and the blood pressure pulse waves were characterized by mean value, stan-
dard deviation and spectral energy ratios. They reported specificity and sensitivity values
of 85% and 93%.
Chambrin et al. [178] examined high-frequency SpO2 recordings and used a rule-based ap-
proach to classify deconnection, transient hypoxia and desaturation events. They reported
good classification results, however, the data set was very limited with only 38 annotated
events.
At the interface between the domains of DM and signal processing, Imhoff et al. [179] used
low-order autoregressive and phase space models to detect qualitative patterns in moni-
toring data. They used 134 time series records and evaluated the performance in detecting
the five patterns no change, outlier, temporary level change, permanent level change and trend.
They reported a reliable detection rate, but constrain, that their methods are too sensitive
for clinical use. Also Sharshar et al. [180] used regression models to describe trends, such
as increasing, decreasing, constant and transient.

The work of Apiletti et al. [181] presents a framework for monitoring health conditions
in any context. Particularly they focus on the generation of intuitive and sensible features
in medical time series and the creation of a risk function, based on feature clusters. As
risk components the authors extract the three measures sharp changes, long-term trend and
distance from normal behavior from physiological signals, such as the ABP or HR curve.
Apiletti et al. then apply different clustering algorithms (Simple K-Means, Farthest First,
Expectation Maximization) and aggregate the clustering results in a risk function:

riskx(t) =

P
i ki,xCi(zi(x))P

i ki,x
×

n

Cmax

i = 1 . . . 3 (VI.12)

riskx(t) determines the risk level [0 . . . n] of signal x at time t. Ci(zi(x)) indicates the risk
level associated to the risk component zi. Exemplarily, Figure VI-2 shows the risk levels
on an ABP recording from the MIMIC Database [28], obtained with K-means clustering.
Although the approach of Apiletti and coworkers is promising, it lacks a thorough evalu-
ation, which was apparently done by visual inspection only. The reported accuracy values
were acceptable with K-Means clustering, but omit the existing reports of false positive
values. However, the features used in [181] are well-chosen and will be further evaluated
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Figure VI-2.: Risk level assessment applying K-Means clustering on an ABP waveform.
From Apiletti et al. [181].

in this work. Generally, clustering algorithms are used for finding unknown structures in
large datasets. If intervals with high risk for the patients were known beforehand (training
set), classification algorithms would probably be the method of choice.
The procedure of learning from labeled data was followed by Aboukhalil et al. [29]. Their
work has two major contributions, (i) the creation of an annotated database for critical
ECG alarms and (ii) an algorithm to reduce false alarm rates by combining features from
ECG and ABP waveforms. Multiple expert reviews of 5386 critical ECG arrhythmia alarms
from a total of 447 adult patient records in the MIMIC II [28] database were made [29]. An
average of 42.7% of those alarms were found to be false. Aboukhalil et al. then introduce
an algorithm leveraging the power of data fusion. Using morphological features of the
ABP waveform, the ECG alarms triggered by bedside monitors, were validated. Alarms
were suppressed, if the features of the ABP curve did not confirm the alarm. The pro-
cessing distinguished between 5 alarm types: Asystole, Bradycardia, Tachycardia, Ventricular
Tachycardia, and Ventricular Fibrillation/Tachycardia. On average, their algorithm reduced
the incidence rate of false alarms from 42.7% to 17.2%, with an average FA suppression
rate of 59.7%. The suppression rate of true alarms was all zero, except for ventricular
tachycardia alarms (9.4%).
King et al. [182] evaluate smart alarms on a small clinical patient cohort. They started with
interviewing ICU nurses to determine threshold ranges for the HR, blood pressure, SpO2

and respiratory rate in post-operative patients after artery bypass graft. Using the expert
information, fuzzy sets and a corresponding rulebase were established. A distinct feature
in their reasoning is, that alarms are suppressed, if only one parameter is out of range, but
the other 3 indicate a stable patient condition. King et al. reported a false alarm reduction
rate of 55% with 1 missed true alarm.
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1. Case Study: Reducing False Alarm Rates of Patient Monitors

In order to show the applicability and to evaluate the previously introduced DM concepts
to assess a patient’s health status, a well-defined real-world problem is tackled: the re-
duction of false alarm rates of patient monitors in ICUs. Although the main focus of this
work deals with the automation of a portable HLM, there are several reasons why this
application was chosen:

1. Database availability: Since the use of ECCSs outside a hospital is a rather new and
specific application, there is no publicly available database. A large-scale and labeled
database, however, is indispensable for the learning process of DM algorithms. On
the other side, there are several databases available in the context of ICU monitoring.
A labeled subset of the MIMIC II database [28] will be used here. Moreover, common
patient parameters obtained during ECC, such as ECG, blood pressures or SpO2, are
also recorded in ICU databases.

2. Evaluation: During the last years intelligent monitoring and especially the reduction
of false alarms have become a more and more popular research area. A broad range
of studies (see section 2 and 3) employ DM approaches to increase patient safety and
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quality of care on ICUs. Due to the established community in ICU research, results
of this work are easier to compare and to evaluate with competing approaches if the
challenge of alarm rate reduction is accepted.

3. Contribution: Last but not least, alarming is a predominant issue for all kinds of
medical devices. The reliability of alarms is a major aspect, not only for the automa-
tion of a HLM. Therefore, the contribution of this part is not only limited to ICU
research and HLM automation, but the findings can be helpful for other automa-
tion projects, such as automated medication [183] or automated Cardiopulmonary
Resuscitation (CPR)1 as well.

A summary of this section has been published by the IEEE Engineering in Medicine & Biology
Society [12].

2. Persitency of False Alarms in Patient Monitoring

Patient monitors are indispensable in today’s medicine. Especially in ICUs they are of
significant importance. They support the staff in the assessment of a patient’s health sta-
tus and give acoustical warnings or alarms, if the physiological state of the patient needs
attention or if there is a technical problem. However, several problems concerning those
alarms have been reported. The produced noise can have a negative influence on both pa-
tients and staff. Gabor et al. [184] reported sleep disorders due to the noise on ICUs which
led to a slowed recovery. Also Novaes et al. [185] emphazise the negative impact of the
increased noise level in ICU and found, that machine alarms seem to disturb the members
of the professional team even more than the patients themselves. Topf et al. [186] reported
similar results, highlighting increased sound levels as an ambient stressor. Furthermore,
high rates of alarms without any clinical relevance have been reported. Chambrin et al.
[187] reported a false positive rate of 74.2%. Siebig et al. [188] stated, that only 17% of the
alarms are clinically relevant and Görges et al. [189] identified up to 94% of the alarms
as false. The high frequency of alarms, and especially of false alarms, also leads to a de-
sensitization of the staff, as reported by the German Association for Electrical, Electronic
and Information Technologies (VDE) [190]. Imhoff and Kuhls [191] state, that the rate of
false alarms has basically not changed during the last 20 years, despite technological and
methodological advances.
Usually, patient monitors display multiple signals such as ECG or blood pressures. Alarms
are often triggered, if one parameter is out of range, e.g. increased HR. The motivation for
this work is to reduce the rate of irrelevant alarms by not only looking at one parameter
for its own, but to incorporate the knowledge from several sensors at the same time. This
approach of data fusion is driven by human decision making: doctors or nurses assess the
state of a patient by looking at multiple features at once and by relating them among each
other, instead of just observing one parameter. This approach is supported by promis-
ing studies, using machine learning, artificial intelligence and knowledge-based methods

1Recently a cooperation between the German Heart Center Munich and the Robotics and Embedded Systems,
Dept. of Informatics, Technische Universität München was established to research the automation of an elec-
tromechanical CPR.
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Class False Alarm True Alarm Total

Asystole 130 43 173
Brady 65 193 258
Tachy 169 802 971
V-Fib 92 33 125
V-Tach 315 282 597

Total 771 1353 2124

Table VII.1.: Distribution of the training set over class and alarm type.

[192–194]. Also Lipton et al. suggest to combine multiple monitoring devices to generate
“smart alarms” [195].

3. Data Source and Selection Criteria

For training and test sets a subset of PhysioNet’s MIMIC II Waveform Database [28] was
used. The database comprises 4458 measurement records from 4099 patients. The num-
ber of signals within each record can vary. However, all records have a ”Waveform” part
containing up to four high-resolution signals (125 Hz). Furthermore, most of the records
have a ”Numerics” part with signals of low resolution (one value per minute). In addition
to waveform and numerics data, metadata is available, providing age and sex information
of the patients. Alarm notifications of the monitors are also included. They consist of a
timestamp, the alarm type, the channel that caused the alarm and threshold information,
if the alarm was caused by a parameter being out of range.
Aboukhalil et al. [29] selected a subset of the MIMIC II database for alarm labeling and
classification that fulfilled two criteria: a critical ECG arrhythmia alarm was issued and
one channel of ECG and an ABP waveform were present at the time of the alarm. They
labeled five types of arrhythmia alarms: asystole (asystolic pause of 4 s), bradycardia (HR
<40 bpm), tachycardia (HR >140 bpm), ventricular tachycardia (5 ventricular beats), and ven-
tricular fibrillation (fibrillatory waveform lasting for 4 s). A group of experts reviewed those
alarms and decided whether the alarm was true or false. Overall, 5386 alarms were labeled
and considered as ground truth. Their labeled subset was chosen for training and testing in
this work, but further requirements were imposed. Only records that contain the second
Einthoven ECG derivation and the ABP signal were included. Furthermore, the signals
had to persist continuously over a time window (alarm scope) of 20 seconds around the
alarm event (15 s before and 5 s after). If available, the Pulmonary Arterial Pressure (PAP)
was also part of the set. From the numerics part SpO2, the CVP, age and sex of the patient
were included. Only data with an associated alarm event and alarm label was included.
The final set for training and testing contained 2124 labeled alarms. The set distribution,
with respect to the alarm type and the alarm class (true/false alarm), is displayed in Table
VII.1. Each alarm scope (20 s) in the set contains 7504 values: age, sex, CVP, SpO2 and
from the waveform part ABP, ECG and PAP sampled at 125 Hz each. Fig. VII-1 exemplar-
ily shows an alarm scope retrieved from the database.
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Figure VII-1.: Sample from the training set (alarm scope), showing ECG, arterial and pul-
monary blood pressure as well as numerics data.

4. Preprocessing and Feature Design

By the transformation to feature space the characteristics of a particular alarm scope are
extracted. Moreover, scaling issues are avoided and the dimension of the input data for
classification is reduced.
For data from the numerics part of the set (Age, Sex, CVP, SpO2) there was no further
processing necessary, since those values did not change during an alarm scope. A QRS
detection on the ECG signal located the cardiac intervals (I , beat-to-beat distance) in the
scope. Based on those intervals, further time series, that were not present as raw data,
were created: the HR in bpm, diastolic (BPdias) and systolic (BPsys) blood pressure time
series (in mmHg) based on the min/max-values of the ABP and PAP data per interval:

HR(I) =
60

length(I)
(VII.1)

BPsys(I) = max(BP (I)) (VII.2)

BPdias(I) = min(BP (I)) (VII.3)

In the following, 8 basic operations fi=1,...,8 are described to extract characteristics of the
alarm scope X. The features were inspired by the work of Apiletti et al. [181] and have
been designed in close collaboration with medical practitioners. The features can be di-
vided into three groups: scope-based, interval-based and sample-based features. For interval-
and sample-based operations the results are aggregated, such that the alarm scope is de-
scribed by few single values.
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4.1. Scope-based Features

The first two operations are calculated directly from the signal samples xi=0,...,n in the
scope and don’t need any further preprocessing:

Mean Value: Obvious features of the alarm scope are mean values of the vital parame-
ters. The mean values help to easily distinguish several patient states such as bradycardia
or tachycardia:

f1(X) =
1

n

nX
i=0

xi (VII.4)

Dispersion: The second feature operation measures the dispersion of the waveforms and
illustrates, how much the samples deviate from the average:

f2(X) =

nP
i=0

|xi − f1(X)|

f1(X)
(VII.5)

The idea behind this operation is to detect strong variations in the sample values which
would indicate some severe physiological state change or sensor movements. The dis-
persion was chosen instead of the standard deviation since it is independent of absolute
values.

4.2. Interval-based Features

On the basis of cardiac intervals, the second feature group aims at characterising the ABP
and PAP data morphologically. Therefore, the height, width and integral of each cardiac
interval in the alarm scope is calculated:

Height: The height was computed as the difference of the maximum and the minimum
signal value of a cardiac interval.

f3(I) = xsys(i)− xdias(i) (VII.6)

Width: The time difference between consecutive systolic values represents the width of
the interval.

f4(I) = t(xsys(i+ 1))− t(xsys(i)) (VII.7)

Area: The third feature extracted from the blood pressure signals is the area under the
pressure waveform and is calculated as the integral of each interval.

f5(I) = (t(xdias(i+ 1)) − t(xdias(i))) ·

t(xdias(i+1))X
t=t(xdias(i))

xt (VII.8)
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The interval-based operations f3, f4 and f5 are aggregated for each alarm scope, by only
considering the minimum, maximum and mean value of all intervals in the scope:

f i(X) =

�
min(fi(I))
mean(fi(I))
max(fi(I))

Ǒ
, i = 3, 4, 5 (VII.9)

Exemplarily, in an alarm scope with 17 cardiac intervals, integral values for each inter-
val are calculated. After the aggregation those 17 values are summarized by only 3, the
minimum, mean and maximum values. By this aggregation the interval-based operations
describe the complete alarm scope with only a few values, independent of the number of
intervals within the scope. Figure VII-2 illustrates the interval-based features on a sample
blood pressure curve.

Area

Width

H
ei

g
h

t

Figure VII-2.: Morphological features of blood pressure waveforms. Based on cardiac in-
tervals, the height, width and integral of each interval are calculated and
then aggregated over the complete alarm scope.

4.3. Sample-based Features

The last group of features is sample-based and includes a distance to normality, slope and
an offset measure of the signal. This last group of features is applied to the HR, BPsys and
BPdias signals only. Those signals provide one sample per cardiac interval.

Normality Distance: Since many alarms are caused by exceedence of thresholds, dis-
tance measure inspired by Apiletti et al. [181] is introduced. For each channel, critical
thresholds c1 and c2 are defined, and, if exceeded, the distance to those limits is calculated:

f6(xi) =

8><>:c1 − xi ⇔ xi < c1

xi − c2 ⇔ xi > c2

0 ⇔ c1 ≤ xi ≤ c2

(VII.10)

The signal-dependant thresholds were taken from [181] and are shown in Table VII.2.
Again, the feature values were aggregated over the alarm scope. For the normality dis-
tance the sum and the maximum of f6(xi) is considered:

f6(X) =

�
sum(f6(xi))
max(f6(xi))

�
(VII.11)
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Signal c− c+
HR (bpm) 40 160

ABPsys (mmHg) 80 200

ABPdias (mmHg) 40 110

PAPsys (mmHg) 15 30

PAPdias (mmHg) 4 12

Table VII.2.: Thresholds for the normality range feature.

Slope: The slope of a curve is determined by the difference between the values of two
consecutive intervals and aims at detecting sharp changes, that can indicate a dangerous
situation for the patient. In contrast to the absolute measure of the normality distance, the
slope operation considers the relative change between the intervals:

f7(xi) = xi − xi−1 (VII.12)

Offset: The offset feature, also inspired by [181], is similar to the slope. It does not regard
a rapid change, but focuses on the trend over a few intervals. It calculates the difference
between the current value and the average of the five previous intervals. For both slope
and offset, several window sizes for the averaging were tried. A window of five intervals
exhibited a good trade-off between balancing peak values and not blurring temporary
signal aspects:

f8(xi) = |xi −
1

5

i−1X
j=i−5

xj | (VII.13)

The slope and offset features are aggregated again to represent the complete alarm
scope. The mean value and the maximum in the scope as well as the maximal sum of
five consecutive intervals were considered:

f j(X) =

�
mean(fj(xi))
max(fj(xi))

maxsum(fj(xi))

Ǒ
, j = 7, 8 (VII.14)

4.4. Feature Overview

Table VII.3 summarizes the presented features together with the physiological signal they
have been applied to. For the crisp values Age, Sex, CVP and SpO2 no transformation is
necessary and sensible, since they only provide one value per alarm scope. In total, 74
feature values are calculated per alarm scope. Since many classification algorithms don’t
yield better results when adding more and more features (accuracy can even get worse
[154]), and with respect to resources and computational power, the maximum number of
features was constrained to 20. Applying feature selection algorithms (see 2.3), heavy-
weight features can be identified.
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Feature Signals

Crisp value Age, Sex, CVP, SpO2

Mean Value f1(X) ECG, HR, ABPsys, ABPdias, PAPsys, PAPdias

Dispersion f2(X) ECG, HR, ABPsys, ABPdias, PAPsys, PAPdias

Height f3(X) ABP, PAP

Width f4(X) ABP, PAP

Area f5(X) ABP, PAP

Normality Distance f6(X) HR, ABPsys, ABPdias, PAPsys, PAPdias

Slope f7(X) HR, ABPsys, ABPdias, PAPsys, PAPdias

Offset f8(X) HR, ABPsys, ABPdias, PAPsys, PAPdias

Table VII.3.: Physiological signals and applied features.

5. Classification and Evaluation Criteria

The Weka workbench [196] was used to design and evaluate the classifiers. Combinations
of 5 discretization, 6 feature selection, and 9 classification methods were applied on the test
set. The applied algorithms are enumerated in Table VII.4. In addition to the algorithmic
feature selection, feature sets with less than 3 or more than 20 features were excluded. They
were considered as either too small to be representative or too voluminous with respect to
computation time. First, classifiers were trained and evaluated for the complete data set.
In a second phase the data set was split with respect to the alarm types and again classifiers
were trained and evaluated separately for each set. The classification was evaluated by a
10-fold cross validation and with respect to the evaluation guidelines of section 2.5.

6. Results and Discussion

Table VII.5 lists the most successful combinations of discretization, feature selection and
classification methods for the different data sets in terms of classification accuracy. The
accuracy for the complete set was 84.7% with a 6-bin equal frequency discretization, a
Naive Bayes wrapper for feature selection and a SVM with standardized RBF (C=1,γ=0.01).
71.7% of false alarms were suppressed. This comes along with a rather high suppression
of true alarms (7.9%).
The accuracy could be increased by splitting the data set with respect to the different alarm
types with the best accuracy for asystole alarms (98.8%). Surprisingly, the accuracy for
ventricular tachycardia alarms was worse than for the complete set (78.6%). Looking at the
suppression rates, the results were also better with trained experts for each alarm type. The
reduction rate of false asystole alarms was 99.2%. Again, ventricular tachycardia alarms
were hard to classify with a rather low suppression rate of false alarms (75.2%), but a
suppression of true alarms of 17.7%.

Compared to the work of Aboukhalil et al. [29] the reduction of false alarms was signif-
icantly better for tachycardia and ventricular-related alarms. However, they report a 0%
suppression of true alarms except for ventricular tachycardia alarms.
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Discretization

Methods

Equal Width (6, 10 Bins),
Equal Frequency (6, 10 Bins),
Supervised Discrectization

Feature Selection

Methods

Correlation-based Feature
Selection (forward, backward),
Supervised Feature Selection
based on Information Gain,
Relief Algorithm,
Wrapper incl. Decision Trees,
Wrapper incl. Naive Bayes

Classification

Methods

Naive Bayes,
kNN (1, 3, 5, 9 Neighbors),
kNN + Distance Weighting (1, 3, 5, 9 Neighbors),
Decision Tree (Confidence Level for Pruning: 0.2, 0.3, 0.5),
Binary Decision Tree (Confidence Level for Pruning: 0.2,
0.3, 0.5),
Unpruned Decision Tree,
SVM incl. Polynomial Kernel (Classical, Standardized,
Normalized, C=1, e=1),
SVM incl. RBF Kernel (Classical, Standardized, Normal-
ized, C=1, γ=0.01),
Multi-Layer Perceptron (Learning Rate: 0.2, 0.3, 0.4, 40
nodes)

Table VII.4.: Applied discretization, feature selection and classification methods.
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Training/
Test Set

Discretization Feature
Selection

Classification
Algorithm

TP FN FP TN Accuracy
(%)

Suppr.
Rate
TA(%)

Suppr.
Rate
FA(%)

Complete
Set

Equal
Frequency
(6 Bins)

Wrapper incl.
Naive Bayes

SVM RBF
Standardized

1246 107 218 553 84.7 7.9
(2.4)

71.7
(59.7)

Asystole Supervised
Discretization

Wrapper incl.
Naive Bayes

Naive Bayes 42 1 1 129 98.8 2.3
(0.0)

99.2
(93.5)

Brady Supervised
Discretization

Wrapper incl.
Decision Tree

kNN (1) 188 5 12 53 93.4 2.6
(0.0)

81.5
(81.0)

Tachy Equal Width
(6 Bins)

Wrapper incl.
Naive Bayes

Binary
Decision
Tree (0.3)

789 13 33 136 95.3 1.6
(0.0)

80.5
(63.7)

V-Fib Supervised
Discretization

Correlation-
based,
forward

Unpruned
Decision Tree

91 1 8 25 92.8 1.1
(0.0)

75.8
(58.2)

V-Tach Supervised
Discretization

Wrapper incl.
Decision Tree

Binary
Decision
Tree (0.5)

232 50 78 237 78.6 17.7
(9.4)

75.2
(33.0)

Table VII.5.: Classification results (10-fold cross validation) for different training and test
sets. The last two columns show the suppression rates of true and false alarms
and the corresponding values of [29] in parenthesis.

180 combinations of discretization, feature selection and classification algorithms have
been tested. A distinct combination performing equally well on all data sets was not
determined. However, several combinations appeared more frequently among the best
results. The top 5 combinations for each alarm type are shown in Appendix A. Supervised
discretization and correlation-based feature selection appeared most frequently. At the
classification level SVMs performed best, followed by kNNs.

Training and testing classifiers on few instances can yield misleading results. In particu-
lar, this may apply to the classification of asystole (173) and ventricular fibrillation alarms
(125). In addition, the class values of the training sets were unequally distributed (cmp.
Table VII.1). This was intensified by the limited size of the data set. E.g. asystole alarms
naturally occur less frequently than bradycardia alarms. Using only a subset of the train-
ing data to include the same number of alarms in every set solves the distribution problem,
but limits the overall data size.
Additionally, the available data was a mix of true and false alarms, but did not include
missed alarm events or sections without a triggered alarm. In future works such sections
should be included. Identifying missed alarm events might be troublesome considering
the vast amount of monitoring data, but adding random sections without alarms can be
helpful for increasing the robustness of the classifiers.
The available data has further implications: all alarm labels were obtained manually and,
even though they were declared gold standard by Aboukhalil et al., labels can be debat-
able, as results of a study at the German Heart center show [13]: In an online survey alarm
events were presented (see Figure VII-1) and participants had to judge, whether the pa-
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tient needed their attention, or if the alarm was false. Among the presented data were
486 events, that had already been labeled by Aboukhalil et al. It turned out, that 31.3%
of the events were labeled differently. This result was confirmed by comparing the rat-
ings among the group of participants (see [13], inter-institutional level), where the average
consistency rate was 78.8%. This study also showed, that manual labeling is error-prone.
Several alarm events were presented twice during the study and on average only 73.9% of
those identical pairs were labeled equally by the 23 reviewers.
Except for ventricular tachycardia alarms, the accuracies for a particular alarm type were
above the one for the complete set. All evaluated algorithms achieved an accuracy rate of
at least 71% except for V-Tach alarms (57%). Also the results given by Aboukhalil et al.
suggest particular problems in correctly classifying V-Tach events. The focus of this case
study, however, is not to find an optimal method for alarm classification, but to illustrate
the applicability of data mining to the problem of false alarm rate reduction and how data
fusion can help to reduce the FP rates. The high values in all the three evaluation criteria,
sensitivity (1 − Suppr. Rate TA), specificity (Suppr. Rate FA) and accuracy justify the ap-
proach of smart alarms to combine information from several data streams at once. A larger
database with equally distributed alarm types is desirable to foster the results.
After all, one should be aware that patient safety is the primary goal in ICU monitoring
and that an alarm classification system as presented suppresses true alarms. Tuning the
classification algorithms in order to achieve a 0% TA suppression rate decreases the sup-
pression rate of false alarms, but would be the method of choice for a product in clinical
use that still mitigates the reported high rates of false alarms.

The correct identification of monitoring alarms, and especially false alarms is of major
relevance for automated medical devices, such as an automated HLM. Many alarms are
threshold alarms, usually triggered by single parameters being out of range. Exemplarily,
a sensor could get disconnected. If the control is based on that sensor data, it could lead to
unwanted control behavior and set the patient at risk. Therefore, the data fusion approach
of assessing the patient condition based on multiple parameters should be included in the
control design. DM approaches, as presented before, already include this feature intrinsi-
cally and especially the presented use-case is of value, since many of the alarm events in
the study are due to sensor errors or movements.
Another evaluation criteria for the DM algorithms is their computational complexity and
realtime applicability. Generally, the learning process is more time and ressource consum-
ing and should be performed offline. Online learning algorithms are useful for patient-
specific therapy and care, but also need an offline initialization. In the presented appli-
cation of false alarm reduction, the number of features to calculate from an alarm scope
was limited to 20, ensuring a time-invariant calculation. The limiting factor are features
based on time series analysis using windowing techniques. Exemplarily, the analysis of
waveform trends naturally needs a certain amount of samples to be present. In the above
application 5 s after the alarm were considered as sufficient. All tested algorithms were
able to classify an alarm scope without significant delay during the evaluation phase and
are therefore applicable in an online analysis.
Despite the promising results, one should keep in mind that DM approaches to classify
monitoring data depend on the training data. ICU databases are publicly available, how-
ever, they often use different data formats or don’t include meta-information about patient
characteristics or ongoing therapy. Manual labeling is error-prone, as it was shown above,
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however, indispensable for DM algorithms. Databases for the particular case of an ECCS
application outside the hospital including patient and machine data, to the best of our
knowledge, don’t exist.
For using DM approaches in a real clinical setting a defensive procedure is suggested. At
no circumstances, a critical situation shall be missed. Therefore, all algorithms should be
tuned, such that the sensitivity value is 100%. Acceptance in the medical community is
another key factor. Decision trees, exemplarily can be illustrated in a comprehensible way
and are therefore better suited than ANNs with their black-box approach. DM and KD can
be integrated into the automation of a HLM, exemplarily by adding additional rules to a
FUZZYC.
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1. Summary

Preclinical applications of medical devices, such as HLMs or defibrillators, on patients
with severe cardiac insufficiencies, have proved to increase the survivor rate. Automated
defibrillators can even be used by untrained helpers in need. On the other hand, the use
of a HLM in emergency situations is still sporadic, since sufficient knowledge for cannula-
tion and additional staff for operating the device is needed. An automated device would
increase the patient safety, quality of care and, at the same time, reduce the workload of
the staff.
To investigate the potentials of an automated device, different approaches were followed.
In animal experiments, patient and machine parameters were collected, and a prototype
controller was tested with good results. Based on the aquired data and an extensive litera-
ture research, both a hydraulic and a virtual model of a patient under ECC was developed.
In this work the focus was on the hydraulic model and its control. The model followed the
three-element Windkessel model, which was found to give the best trade-off between ac-
curacy and complexity. It comprises a cylindrical air chamber as a compliance element
and two adjustable resistor elements, that change the tube diameter. A centrifugal pump
with a static outlet resistance represents the HLM. A complete mathematical description
was derived and transfered to a linear state space representation. Four concurrent control
strategies for automated pump speed control, based on the pump flow and pressure, were
implemented and evaluated in three scenarios. In scenario 1 all controllers were able to
follow step changes in the target values with slight advantages for the PIC. In scenario
2, with additional noise, the MRAC outperformed its competitors in terms of the IAE. In
experiment 3, the peripheral resistance was altered. The PIC achieved the lowest IAE for
flow control, while the FUZZYC was ranked first in pressure control.
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VIII. Conclusion

In general, all controllers lead to stable control and were able to solve the given tasks.
It was demonstrated, that pump speed control of a HLM is feasible with high accuracy.
However, qualitative factors such as design complexity and user acceptance should also
be considered in the evaluation. Compared to its competitors, both the FUZZYC and the
PIC are rather easy to design and to maintain. While the PIC design process requires
an analytical system description, the FUZZYC is independent of a mathematical system
model. This facilitates maintenance, because a redesign of the controller would not be
necessary, if system components change. Also the natural language rulebase differentiates
the FUZZYC from the other approaches. As long as the size of the rulebase is limited, the
control behavior is transparent, even for untrained users. Furthermore, expert knowledge
(from surgeons etc.) can be implemented directly. This increases the user acceptance, so
that the FUZZYC is particularly suited for medical control applications.
As a major limitation, the hydraulic mock model is not able to replicate oxygen delivery
or hypothermia, so that the control of the machine’s gas blender or temperature regulation
was not studied in the physical setup. Those tasks were evaluated in the simulation model
(see [27]). In both the animal experiments and the tests with the hydraulic model it was
observed, that the HLM was not always able to reach an appropriate blood flow. This is
due to the femoral cannulation, which requires rather small cannulas. The small cannula
diameters create a large resistance for the pump. A major advantage of the presented con-
trol approach is, that it is sufficient to measure the produced pump flow and the pressure
difference between the pump outlet and inlet. Those parameters are obtained at the HLM.
Data collection at the patient is therefore not required for pump speed control, even more,
the patient can be considered as a black-box.

However, the patient state should be considered in a fully automated HLM for emer-
gency applications. This is why the second aspect of this work examined DM methods
for the automatic assessment of the patient’s physiological constitution. Inspired from
CDSS and considering the special challenges of medical DM, the well-known problem of
false alarm rate reduction in patient monitoring was tackled. For the first time, a bench-
mark study, comparing several DM approaches, was done in this research area. A data
fusion approach was followed, integrating information from several physiological vari-
ables, in order to validate an alarm. SVMs and kNNs yielded good results as alarm classi-
fiers. Compared to competitive studies, higher specificity values were achieved, especially
when training expert classifiers for specific alarm types. Accurate pump speed control and
robust patient monitoring are two main aspects in preclinical ECC applications. This work
elaborated their potentials and limitations and thereby contributes to workload reduction,
patient safety and quality of care in emergency situations.

2. Future Work

The perception of contextual information, such as sensor reliablity, human intervention
(e.g. manual control, medication) or a general assessment of the patient state, could enrich
the quality and safety of a controlled HLM. If the patient state deteriorates during control,
a human operator could be warned, or the control strategy could be changed directly. This
thesis successfully demonstrated the feasibility of a pump speed control for HLMs, as well
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as the applicability of DM methods for the assessment of the current patient state. Future
work should combine these contributions in order to create a robust and reliable control
system. This idea was already published in a previous work [5] and a conceptual integra-
tion profile is illustrated in Figure VIII-1. The bottom layer (Data Acquisition Layer) deals

Alarming/User Notification Controller Decision Support Interface Layer

Technical Abnormalities Clinical Abnormalities User Intervention Data Abstraction

Layer

Standard Signal Features Trend Analysis Pattern/Event Detection Data Analysis

Layer

HLM Data Patient Monitoring Data Data Acquisition

Layer

Figure VIII-1.: Conceptual layout of a SU, illustrating the required informational levels
from sensoring to user interaction. From [5].

with the recording of crucial sensor data from both the HLM and the patient. This is al-
ready implemented in the co-developed AutoMedic Framework [2]. In the Data Analysis
Layer, signal features are extracted and special events, such as kinking of the arterial line
or sensor failure, should be detected. The third layer shifts the extracted features onto a
semantic level.
Future work should research, how to integrate this contextual knowledge into the control
strategy. For this, the implications of certain events need to be determined (“What hap-
pens if . . . ”) and technical questions need to be resolved: Exemplarily, it is rather easy
to extend a FUZZYC with additional rules, whereas a HINFC does not support semantic
rules directly.
The knowledge acquired in this work is not restricted to HLM automation only. The de-
veloped tools and programs for data acquisition and control design can be used in other
medical control applications as well. Projects dealing with CPR automation or automated
medication [183] examine the interaction of the CVS and a medical device as well. The
guidlines in control design and evaluation, presented in this work, can be adapted to those
applications without much effort.

Concerning the presented approach for robust monitoring, classification results strongly
depend on the given training and test sets. However, free, large-scale databases with la-
beled alarm situations are sparse. An online survey was designed, in which medical ex-
perts can label alarms [13]. Like this, more than 400 alarms were labeled during a relatively
short period. The feedback of the participants was mainly positive, so it is suggested to
extend this database in the future. Since the survey is web-based, it could include experts
from all over the world. Still an unresolved issue is the imbalanced distribution of alarm
types. Some alarms naturally appear more often than others. This implies, that classifica-
tion results on different alarm types are hard to compare. Furthermore, it can be shown
that human labeling of alarms is error-prone [13]. Therefore, each alarm situation should
be labeled by 3 experts at least. With regards to the implemented DM approaches, fine-
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tuning can be done, increasing the accuracy. Also the inclusion of monitoring data without
particular events can increase the robustness of the classifiers.
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Appendix

1. Classification of Complete Training Sets

Discretization Feature
Selection

Classification
Algorithm

TP FN FP TN Accuracy
(%)

Suppr.
Rate
TA(%)

Suppr.
Rate
FA(%)

Equal
Frequency
(6 Bins)

Wrapper incl.
Naive Bayes

SVM RBF
Standardized

1246 107 218 553 84.70 7.9 71.7

Supervised
Discretization

Wrapper incl.
Decision Tree

Decision Tree
(0.2)

1230 123 213 558 84.18 9.1 72.4

Supervised
Discretization

Wrapper incl.
Decision Tree

Binary Deci-
sion
Tree (0.3)

1218 135 211 560 83.71 10.0 72.6

Equal
Frequency
(6 Bins)

Wrapper incl.
Naive Bayes

kNN (5),
Dist. Weight

1222 131 220 551 83.48 9.7 71.5

Supervised
Discretization

Correlation-
based,
backward

SVM RBF
Standardized

1204 149 218 553 82.72 11.0 71.7
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2. Classification of Asystole Alarms

Discretization Feature
Selection

Classification
Algorithm

TP FN FP TN Accuracy
(%)

Suppr.
Rate
TA(%)

Suppr.
Rate
FA(%)

Supervised
Discretization

Wrapper incl.
Naive Bayes

Naive Bayes 42 1 1 129 98.84 2.3 99.2

Equal
Frequency
(6 Bins)

Wrapper incl.
Naive Bayes

Multi-Layer
Perceptron
(0.2)

38 5 0 130 97.11 11.6 100.0

Supervised
Discretization

Correlation-
based,
forward

SVM
Polynom.
Standardized

39 4 3 127 95.95 9.3 97.7

Supervised
Discretization

Correlation-
based,
backward

kNN (1) 37 6 2 128 95.38 14.0 98.5

Supervised
Discretization

Wrapper incl.
Naive Bayes

SVM
Polynom.
Standardized

36 7 2 128 94.80 16.3 98.5

3. Classification of Brady Alarms

Discretization Feature
Selection

Classification
Algorithm

TP FN FP TN Accuracy
(%)

Suppr.
Rate
TA(%)

Suppr.
Rate
FA(%)

Supervised
Discretization

Wrapper incl.
Decision Tree

kNN (1) 188 5 12 53 93.41 2.6 81.5

Supervised
Discretization

Wrapper incl.
Decision Tree

kNN (9),
Dist. Weight.

188 5 12 53 93.41 2.6 81.5

Supervised
Discretization

Wrapper incl.
Decision Tree

Decision Tree
(0.2)

188 5 12 53 93.41 2.6 81.5

Supervised
Discretization

Wrapper incl.
Decision Tree

Multi-Layer
Perceptron
(0.2)

188 5 12 53 93.41 2.6 81.5

Supervised
Discretization

Wrapper incl.
Decision Tree

SVM Poly-
nom.
Standardized

186 7 12 53 92.64 3.6 81.5
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4. Classification of Tachy Alarms

Discretization Feature
Selection

Classification
Algorithm

TP FN FP TN Accuracy
(%)

Suppr.
Rate
TA(%)

Suppr.
Rate
FA(%)

Equal Width
(6 Bins)

Wrapper incl.
Naive Bayes

Binary
Decision
Tree (0.3)

789 13 33 136 95.26 1.6 80.5

Equal
Frequency
(6 Bins)

Wrapper incl.
Naive Bayes

kNN (1) 788 14 33 136 95.16 1.7 80.5

Equal
Frequency
(6 Bins)

Wrapper incl.
Naive Bayes

SVM
Polynom.

783 19 35 134 94.44 2.4 79.3

Supervised
Discretization

Correlation-
based, back-
ward

Multi-Layer
Perceptron
(0.2)

781 21 34 135 94.34 2.6 79.9

Equal Width
(6 Bins)

Wrapper incl.
Naive Bayes

Naive Bayes 782 20 38 131 94.03 2.5 77.5

5. Classification of V-Fib/Tach Alarms

Discretization Feature
Selection

Classification
Algorithm

TP FN FP TN Accuracy
(%)

Suppr.
Rate
TA(%)

Suppr.
Rate
FA(%)

Supervised
Discretization

Correlation-
based,
forward

Unpruned
Decision Tree

91 1 8 25 92.80 1.1 75.8

Supervised
Discretization

Correlation-
based,
backward

kNN (5),
Dist. Weight

90 2 7 26 92.80 2.2 78.8

Supervised
Discretization

Correlation-
based,
forward

SVM RBF
Standardized

91 1 9 24 92.00 1.1 72.7

Supervised
Discretization

Correlation-
based,
backward

SVM
Polynom.
Normalized

87 5 5 28 92.00 5.4 84.8

Supervised
Discretization

Correlation-
based,
forward

Naive Bayes 87 5 6 27 91.20 5.4 81.8
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6. Classification of V-Tach Alarms

Discretization Feature
Selection

Classification
Algorithm

TP FN FP TN Accuracy
(%)

Suppr.
Rate
TA(%)

Suppr.
Rate
FA(%)

Supervised
Discretization

Wrapper incl.
Decision Tree

Binary
Decision
Tree (0.5)

232 50 78 237 78.56 17.7 75.2

Equal
Frequency
(6 Bins)

Wrapper incl.
Decision Tree

Decision Tree
(0.3)

209 73 58 257 78.06 25.9 81.6

Equal
Frequency
(10 Bins)

Wrapper incl.
Naive Bayes

kNN (9)
Dist. Weight

213 69 66 249 77.39 24.5 79.0

Equal
Frequency
(10 Bins)

Wrapper incl.
Naive Bayes

Naive Bayes 227 55 83 232 76.88 19.5 73.7

Equal
Frequency
(10 Bins)

Wrapper incl.
Naive Bayes

SVM RBF 213 69 71 244 76.55 24.5 77.5
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