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Abstract

This thesis deals with two problems arising in the application of polynomial chaos (PC)
in dynamical systems with parametric uncertainty. In the first part, an algorithm for the
parametrization of a random variable in terms of a polynomial basis from given obser-
vations is presented. The proofs for the corresponding convergence results are based on
the theory of optimal transportation. PC expansions do not preserve positivity in general,
although this property is central for problems in mathematical biology. A solution to this
problem is proposed in the second part. It is based on the construction of positive summa-
bility kernels. The last chapter of the thesis is concerned with the optimization of the
euglycemic clamp experiment. Two methods based on Monte Carlo and PC are analyzed
and compared.

Zusammenfassung

Die vorliegende Doktorarbeit befasst sich mit zwei Problemen in der Anwendung von
polynomialen Chaos (PC) in dynamischen Systemen mit Parameterunsicherheit. Zunächst
wird ein Algorithmus zur Darstellung einer Zufallsvariablen bezüglich einer polynomi-
alen Basis aus gegebener Beobachtungen entwickelt. Die Beweise für entsprechende Kon-
vergenzergebnisse basieren auf der Theorie des optimalen Transportes. PC Entwicklungen
erhalten die Positivität generisch nicht, obwohl diese Eigenschaft zentral bei Problemen
der mathematischen Biologie ist. Es wird eine Lösung für dieses Problem vorgestellt, die
auf der Konstruktion von positiven summierbaren Kernen basiert. Der letzte Teil der Ar-
beit beschäftigt sich mit der Optimierung des euglykämischen Clamp Experiments. Zwei
Methoden basierend auf Monte Carlo und PC werden analysiert und verglichen.
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1 Introduction

Pour définir le probable il faut posséder le vrai.
Jean-Paul Sartre

1.1 Motivation and objectives

Mathematical models for biological systems often take the form of dynamical systems that
involve unknown parameters. These have to be estimated from data, which are subjected
to measurement errors. If individual organisms are considered, due to natural variation or
different health conditions, they will have similar but different values for the same param-
eter. This makes it sometimes impossible to find one parameter value that fits various data
sets corresponding to different subjects, and thus stresses the need to introduce stochastic-
ity in models for biological processes.

The estimation of parameters in a model from noisy observations consists an inverse
problem [75, 77]. Although deterministic methods to solve this inverse problem exist, the
focus in this thesis will be stochastic methods and more precisely Bayesian methods [16,108].
In this context, unknown parameters and measurements are modeled mathematically as
random variables in an abstract probability space (Ω,A, P ). Any existing information on
the model parameters may be incorporated in the inference procedure by the use of a
prior distribution assigned initially to the parameters. In the presence of data, this prior
distribution is updated by Bayes’ theorem to the posterior distribution. The latter is the
estimate of the parameters in the Bayesian framework. This is one of the main differences
between Bayesian and deterministic approaches, which result in point estimates.

Markov Chain Monte Carlo (MCMC) methods are a class of techniques introduced to ex-
plore the posterior distribution and compute location and dispersion estimates, such as
moments and credible intervals, and are an active research area [33, 62]. They are em-
ployed to discretize the posterior distribution, which is usually analytically intractable, by
drawing a sample of realizations from it. This sample is then used to numerically evalu-
ate the aforementioned estimates, which often take the form of high-dimensional integrals
with respect to the posterior distribution. In the case that the data come sequentially and
real-time estimation is required, sequential Monte Carlo (SMC) methods are employed to
solve this problem faster and more efficiently [37, 44, 49].

Bayesian methods naturally require the propagation of uncertainty in the parameters
through the model equations. Monte Carlo (MC) simulation, a method which dates back to
the work of von Neumann and Ulam provides a simple solution to this problem: the model
equations are solved for a set of realizations from the distribution of the model parameters
and thus produce an ensemble of solution realizations [30]. This ensemble is then used to
obtain density estimates and reveal statistical properties of the solution. An alternative to
Monte Carlo methods, which can also speed up computations in a Bayesian framework as
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1 Introduction

was shown by Marzouk, Najm and Rahn [92, 93] are methods based on polynomial chaos
(PC) expansions.

The term was first used by Wiener [126] and gained much attention by the engineering
community due to the work of Ghanem and Spanos [61]. The idea is that given a basic
random variable Ξ and a corresponding sequence of orthogonal polynomials {Pn : n ∈
Nd0}, every random variable X defined on the probability space (Ω, σ(Ξ), P ) with finite
variance can be decomposed in a series of polynomials

X = gX(Ξ) =
∑
n∈Nd

0

ĝXnPn(Ξ)

provided that the polynomials are dense in the Hilbert space L2(Ω, σ(Ξ), P ) [52, 72, 128].
Polynomial chaos expansions can be found in the literature also under the names Wiener-
Askey [128] or Wiener-Haar expansions [86]. Instead of orthogonal polynomials, other basis
functions, as Haar wavelets may be chosen [84]. In this thesis, only global orthogonal
polynomials will be considered.

In a dynamical system framework, both the model parameters and initial conditions
may be random variables and thus admit such expansions. Then, the solution of the model
equations will be a stochastic process and its time and/or space dependent PC coefficients
{ĝXn : n ∈ Nd0} can be computed via intrusive (Galerkin) and non-intrusive spectral methods
[86, 131]. These coefficients summarize all the statistical information about the solution.

In many applications one may not only be interested in the propagation of parametric
uncertainty through a given model, but also in the design of an optimal controller. Deter-
ministic solutions for such problems based on robust control theory and worst-case anal-
ysis usually result in very conservative controls [50, 132]. The field of probabilistic robust
control theory seeks for solutions to the optimal control problem in a probabilistic sense:
one does not seek for a controller which is optimal for all possible realizations of the pa-
rameters, but for a controller that has a given probability of being optimal over the range of
parameters. Sampling and MC methods has been used to handle such problems [29, 119].
As an alternative to these methods, PC approximations can be used for the control design
of systems with parametric uncertainty. A number of works exist already in this direction.
The idea of the application of PC methods in control problems with parametric uncertainty
first appeared in the literature in the paper of Monti, Ponci and Lovett [96], where the PC
techniques were applied for the control of a power converter. Later, Hover and Triantafyl-
lou [71] stressed out the potential of PC methods for the control of nonlinear systems and
as an alternative to costly MC simulations. In the paper of Fisher and Bhattacharya [53] the
stochastic stability and the optimality conditions were analyzed for a linear quadratic reg-
ulator (LQR) of systems with parametric uncertainty represented by PC expansions. In the
PhD thesis by Blanchard [23] a numerical method for the solution of an LQR optimization
problem related with the PC framework was proposed and in the one by Templeton [118] a
theoretical framework for the extension of H2 and LQR design to systems with parametric
uncertainty approximated by PC expansions was given. More recently, Peng, Ghanem and
Li [102] studied the problem of the control of a Duffing oscillator subjected to stochastic
excitation and proposed a solution based on PC expansions.

Two problems that may arise on considerations regarding the development of control
methods based on PC and may limit their applicability are next stated.
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1.2 Outline

Problem 1: There is no generally accepted method for the parametrization of a random
variable X based on a sample from its distribution in terms of a basic random variable
Ξ. The problem translates in finding a measure preserving transformation gX such that
X = gX(Ξ). The situation becomes of course more difficult when X is a random vector
with dependent components. Taking into account the dependences is essential in order
to have a useful and accurate PC representation. Le Maı̂tre and Knio note in [86] that
”the impact that UQ [uncertainty quantification] schemes can bring to such situations [elaborate
physical models] is in large part conditioned on a suitable representation of the uncertainty in the
model inputs”.

This problem may arise in a control framework when PC methods are combined with
Bayesian parameter estimation. In this case, one needs to find an appropriate transforma-
tion gX of a random variable X , whose distribution is given by a complicated posterior
distribution.

Problem 2: The second problem arises when approximating positive (or more gener-
ally bounded) random variables by truncated polynomial expansions. In such cases, one
cannot guarantee that the finite approximation will stay positive for all realizations of the
basis random vector Ξ. The problem was addressed in [41, 106] and it was pointed out
how this situation can lead to instabilities when propagating a finite expansion through a
dynamical system. In addition, it may result in meaningless control policies when design-
ing a controller based on PC methods for nonlinear models, which may exhibit blow-up
behavior in finite time.

Particularly in mathematical biology the preservation of positivity is of central impor-
tance: comparing to engineering problems where the law of physics guarantee the validity
of the models, positivity is one of the minimal properties to require for mathematical mod-
els which represent biological processes in order for them to be meaningful.

1.2 Outline

The thesis is organized as follows.
In chapter 2 basic concepts are introduced and notation is fixed. Sections 2.1 and 2.2

contain results from probability and polynomial chaos theory. The application of PC ex-
pansions in ordinary differential equations with parametric uncertainty is discussed in
section 2.3, where also spectral Galerkin and non-intrusive methods are briefly reviewed.

Chapter 3 deals with the problem 1 stated above. An algorithm for the parametrization
of a random variable X in terms of another random variable Ξ from given observations
is presented. The method is based on the construction of a discrete transformation which
converges to a continuous transformation gX as the number of observations grows. This
discrete map is used to estimate the PC coefficients via a regression approach. After a
review of existing work in section 3.1, basic results from the theory of order statistics and
optimal transportation are summarized in sections 3.2 and 3.3. Section 3.4 deals with the
problem in the one-dimensional case, where the discrete map is constructed with the help
of order statistics and with the general multi-dimensional case, where the discrete map is
constructed by solving a discrete optimal transportation problem. The chapter closes with
numerical simulations in section 3.5.

3



1 Introduction

The preservation of positivity in finite polynomial approximations is examined in chap-
ter 4. A solution is proposed based on positive summability methods. Known results from
approximation theory are generalized to the multi-dimensional case and applied to the
stochastic framework. In section 4.1, tools from functional analysis are summarized. The
summability methods are analyzed in section 4.2, where convergence results and approx-
imation errors for the proposed method are also given. Examples of positive kernels are
stated as well as numerical simulations to validate the theoretical results in sections 4.3
and 4.4 respectively.

The results in this chapter were developed in cooperation with PD Dr. Josef Obermaier
from Helmholtz Zentrum München, Institute of Computational Biology. Original papers
on this topic include [10, 11, 81–83, 100].

Chapter 5 deals with the optimization of the euglycemic hyperinsulinemic clamp (EHC)
test, a widely accepted experimental test used in diabetes research. The optimization is
mathematically a problem of individual based real-time optimal control. Section 5.1 pro-
vides with the essential biological background on the glucose-insulin system and details
on the conduction of the EHC test. A mathematical model for the glucose dynamics dur-
ing the test is presented in section 5.2. The model is based on data from clamps run on
mice provided by Dr. Susanne Neschen from Helmholtz Zentrum München, Institute of
Experimental Genetics. Bayesian methods for parameter inference are reviewed in section
5.3 and in section 5.4 a first optimization algorithm is given based on the exact solution of
the quadratic optimization control problem and SMC methods. In the last section 5.5, a
second algorithm based on PC expansions, SMC methods and the results from chapter 3
is presented and analyzed.

The results in this chapter were partly obtained in cooperation with Prof. Dr. Youssef M.
Marzouk and Dr. Tarek El Moselhy from Massachusetts Institute of Technology, Depart-
ment of Aeronautics and Astronautics.

Finally, conclusions are drawn in chapter 6.
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2 Preliminaries

2.1 Basics from probability theory

In this section, some basic concepts and results from probability theory are recalled. For a
rigorous introduction to the topic, the reader is referred to [78, 112].

Let Ω be a set containing all the possible outcomes of a random experiment.

Definition 2.1. Let Ω 6= ∅. A collection A of subsets of Ω with the properties

(i) Ω ∈ A,

(ii) if A ∈ A, then Ω \A ∈ A,

(iii) if {An}n∈N ⊆ A, then ∪n∈NAn ∈ A,

is called a σ-algebra on Ω. An element A ∈ A of a σ-algebra A is called an event.

The tuple (Ω,A) is called a measurable space. Given a non-empty collection of subsets C
of Ω, there exists the smallest σ-algebra that contains C. This will be denoted by σ(C) and
is called the σ-algebra generated by C. The smallest σ-algebra generated by the open sets in
the Euclidean space Rd is called the Borel σ-algebra and is denoted by B(Rd).

Definition 2.2. A function µ : A → R is called a measure if it satisfies the following

(i) µ(∅) = 0,

(ii) µ(A) ≥ 0,∀ A ∈ A,

(iii) if {An}n∈N ⊆ A are disjoint sets, then µ(∪n∈NAn) =
∑

n∈N µ(An).

The triple (Ω,A, µ) is called a measure space. If in addition µ(Ω) = 1, then µ is called a
probability measure, it is usually denoted by P and the triple (Ω,A, P ) is called a probability
space. The support of a measure µ on a measurable space (Ω,A) is defined as

suppµ = {ω ∈ Ω: µ(U) > 0 for every neighborhood U of ω}. (2.1)

Next, functions on Ω are defined.

Definition 2.3. Let (Ω,A) be a measurable space. A function X : Ω→ Rd that satisfies

∀ B ∈ B(Rd), X−1(B) = {ω ∈ Ω: X(ω) ∈ B} ∈ A (2.2)

is called a A − B(Rd) measurable function. In the context of probability spaces, measurable func-
tions are called random variables. The corresponding σ-algebras when referring to measurable
functions will be omitted, if these are clear from the context.
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2 Preliminaries

The values or realizations X(ω) = x ∈ Rd of a random variable X will be denoted with
small letters. Random variables mapping on Rd for d ≥ 2 are called random vectors and
will be also denoted with bold capital letters. Each component Xi : Ω → R, i = 1, . . . , d of
a random vectorX = (X1, . . . , Xd) : Ω→ Rd is a random variable.

The notion of a stochastic process is now defined. These are random quantities that also
depend on time or space. For more details see in [48].

Definition 2.4. A stochastic process is a collection {Xt}t∈T of random variables, indexed by a set
T and defined on a common probability space (Ω,A, P ). The set T can be countable or not. For
fixed t, Xt is a random variable and for fixed ω ∈ Ω, {Xt(ω)}t∈T is a function on T and is called a
sample path or realization of the process.

The smallest σ-algebra generated by a random variable X , denoted σ(X), is the σ-algebra
σ(C) generated by the collection of sets C = {X−1(B), B ∈ B(Rd)}. An important con-
cept in probability theory is the independence of random variables. This is based on the
independence of σ-algebras.

Definition 2.5. Let (Ω,A, P ) be a probability space and {σi}i=1,...,I ⊆ A a collection of σ-algebras
on Ω. One says that the σi are independent, if for any n ∈ N and any setsAi1 ∈ σi1 , . . . , Ain ∈ σin ,
the following holds:

P (Ai1 ∩ . . . ∩Ain) = P (Ai1) · · ·P (Ain). (2.3)

A collection of random variables {Xi}i=1,...,I are called independent if their generated σ-algebras
{σ(Xi)}i=1,...,I are independent.

Each random variable X defines a probability measure PX on the measurable space
(Rd,B(Rd)) by the equation

PX(B) = P (X−1(B)), ∀ B ∈ B(Rd). (2.4)

This measure is called the image measure or distribution of the random variable X and is
also denoted by (X)#P . A random variable Y which has the same distribution as X will
be called a copy of X .

One can easily show that if X : Ω → Rd is a random variable and g : (Rd,B(Rd)) →
(Rd,B(Rd)) a measurable function, then the function Y : Ω → Rd, Y = g(X) is again a
random variable. The following lemmata play a central role in what follows.

Lemma 2.6. (Doob-Dynkin) Let Ξ, X be two random variables defined on a common measurable
space (Ω,A) and denote by σ(Ξ) the σ-algebra generated by Ξ. Then, X is σ(Ξ)−B(Rd) measur-
able if and only if there exists a measurable function

gX : (Rd,B(Rd))→ (Rd,B(Rd))

such that
X = gX(Ξ). (2.5)

Lemma 2.7. (Change of variables) Let X : (Ω,A, P ) → (Rd,B(Rd)) be a random variable and
g : (Rd,B(Rd))→ (Rd,B(Rd)) a measurable function. The function g is integrable with respect to
PX if and only if the random variable g(X) is integrable with respect to P and in such cases∫

Ω
g(X(ω))dP (ω) =

∫
Rd

g(x)dPX(x). (2.6)
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2.1 Basics from probability theory

The distribution function of a random vectorX = (X1, . . . , Xd) is the function F : Rd → R
defined by

FX(x) = P (X1 ≤ x1, . . . , Xd ≤ xd), x = (x1, . . . , xd) ∈ Rd. (2.7)

If there exists a function fX : Rd → R such that fX ≥ 0,
∫
Rd fX(x)dx = 1 and

FX(x) =

∫ x1

−∞
· · ·
∫ xd

−∞
fX(y)dy, x = (x1, . . . , xd) ∈ Rd, (2.8)

then fX is called the density of FX . The random vector X is called in this case continuous
with respect to the Lebesgue measure. Related to distribution functions are marginal and
conditional distributions. The marginal distribution function of the random variable Xi, i =
1, . . . , d is defined as

FXi(xi) = lim
x1→∞

. . . lim
xi−1→∞

lim
xi+1→∞

. . . lim
xd→∞

FX(x), (2.9)

and its conditional distribution function given the random variables {Xj}j∈J , where J ⊆
{1, . . . , d} \ {i}, is defined as

FXi|Xj,j∈J (xi | xj,j∈J) ≡ Fi|j∈J(xi | xj,j∈J) = P (Xi ≤ xi | Xj = xj , j ∈ J). (2.10)

For the independence of random variables the following characterization based on their
distribution functions holds.

Proposition 2.8. Let (Ω,A, P ) be a probability space and let X1, . . . , Xd be random variables
defined on it with distribution functions F1, . . . , Fd respectively. Then, the random variables are
independent if and only if the distribution function of the random vector X = (X1, . . . , Xd) takes
the product form, i.e.

FX(x) = F1(x1) · · ·Fd(xd), x = (x1, . . . , xd) ∈ Rd. (2.11)

One is usually interested in statistical quantities of a random vector X such as its mo-
ments and covariance. The 1-st moment of a random vector, also called the expectation, is
defined as the vector of expectations of the random variables Xi, i = 1, . . . , d, which are
given by

E[Xi] =

∫
Ω
Xi(ω)dP (ω) =

∫
R
x dPXi(x). (2.12)

The 2-nd order central moment or variance is defined as the vector of variances of the
components defined by

Var[Xi] =

∫
Ω

(Xi(ω)− E[Xi])
2dP (ω) =

∫
R

(x− E[Xi])
2 dPXi(x). (2.13)

Similarly, the m-th order moments are defined by the equations

E[Xm
i ] =

∫
Ω
Xm
i (ω)dP (ω) =

∫
R
xm dPXi(x). (2.14)

Finally, the covariance of two random variables Xi, Xj is defined as

Cov[Xi, Xj ] = E[(Xi − E[Xi])(Xj − E[Xj ])], i, j = 1, . . . , d. (2.15)

The Lp spaces of random variables are now introduced.
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2 Preliminaries

Definition 2.9. A random variable X on a probability space (Ω,A, P ) is called p-integrable if∫
Ω
|X(ω)|p dP (ω) <∞, for 1 ≤ p <∞. (2.16)

The space of all p-integrable random variables on (Ω,A, P ) is denoted by Lp(Ω,A, P ).
For p =∞, one defines that a random variable X belongs to the space L∞(Ω,A, P ), if

ess sup
ω∈Ω
|X(ω)| <∞. (2.17)

If one equips these spaces with the norms

‖X‖p =

(∫
Ω
|X(ω)|pdP (ω)

) 1
p

, 1 ≤ p <∞ (2.18)

and
‖X‖∞ = ess sup

ω∈Ω
|X(ω)| (2.19)

respectively, then they become Banach spaces. For the special case p = 2 the norm ‖ · ‖2 is
induced by the inner product

〈X1, X2〉 =

∫
Ω
X1(ω)X2(ω)dP (ω), (2.20)

thus making the space L2(Ω,A, P ) a Hilbert space. In the sequel, the explicit reference to
the underlying probability space will be omitted if this is clear from the context.

There exists several notions of convergence of sequences of random variables. These
and some related results to be used in the sequence are summarized here.

Definition 2.10. Let {Xn}n∈N be a sequence of random variables defined on a common probability
space (Ω,A, P ). One says that the sequence {Xn}

(i) converges weakly to a random variable X , and write Xn ⇀ X , if

E[f(Xn)]→ E[f(X)], n→∞ (2.21)

for all bounded continuous functions f : R→ R.

(ii) converges in probability to X , and write Xn
P→ X , if

∀ ε > 0, P (ω ∈ Ω : |Xn(ω)−X(ω)| > ε)→ 0, n→∞. (2.22)

(iii) converges with probability 1 or almost surely (a.s.), and write Xn
wp1→ X or equivalently

Xn
a.s.→ X , if

P (ω ∈ Ω : Xn(ω)→ X(ω)) = 1, n→∞. (2.23)

(iv) converges in Lp, and write Xn
Lp

→ X if

E[|Xn|p + |X|] <∞ and E[|Xn −X|p]→ 0, n→∞. (2.24)
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2.2 Generalized polynomial chaos (PC) expansions

The L2-convergence is also referred as mean square convergence in the literature. Conver-
gence with probability 1 implies convergence in probability which implies weak conver-
gence. Furthermore, convergence in Lp implies convergence in probability. The converse
implications are not in general true.

Two results on the convergence of random variables are next stated.

Theorem 2.11. (Law of large numbers) Let {Xn}n∈N be an independent, identical distributed (iid)
sequence of random variables on a common probability space (Ω,A, P ). Then, E[X1] < ∞ if and
only if

1

n

n∑
i=1

Xi
wp1→ E[X1], n→∞. (2.25)

Theorem 2.12. (Continuous mapping theorem) Let {Xn}n∈N, X be random variables on a proba-

bility space (Ω,A, P ) with values in Rd such that Xn
wp1→ X and let g : Rd → Rd be a continuous

function. Then g(Xn)
wp1→ g(X).

Note that Theorem 2.12 holds also in the case of convergence in probability and in dis-
tribution, since these are implied from the the almost sure convergence.

Two types of convergence of measures are also here recalled.

Definition 2.13. A sequence of measures {ρn}n∈N defined on a measurable space (Ω,A)

(i) converges strongly to a measure ρ, denoted as ρn → ρ, if

ρn(A)→ ρ(A), n→∞ (2.26)

for all events A ∈ A such that ρ(∂A) = 0. Here, ∂A stands for the boundary of the set A.

(ii) converges weakly to a measure ρ, denoted as ρn ⇀ ρ, if∫
Ω
f(ω)dρn(ω)→

∫
Ω
f(ω)dρ(ω), n→∞ (2.27)

for all bounded continuous functions f : Ω→ R.

Finally, note that a property E will be said to hold µ-a.e. for a measure µ, if the property
E is true for all ω ∈ Ω \A and µ(A) = 0.

2.2 Generalized polynomial chaos (PC) expansions

The material in this section is based on the books [86,131]. For more details and theoretical
results on orthogonal polynomials see in [35, 117].

Polynomial chaos (PC) expansions are spectral expansions of random variables with fi-
nite second moments. The term dates back to the work of Wiener [126] who used the term
polynomial chaos to define polynomial spaces over Gaussian random variables. Cameron
and Martin [27] proved later that there exists an expansion of Hermite polynomials in
Gaussian random variables for a certain class of functionals. The theory gained much
attention in the engineering community with the work of Ghanem and Spanos [61] who

9



2 Preliminaries

used expansions of Hermite polynomials in Gaussian random variables in a stochastic
finite element framework. Later, Xiu and Karniadakis [128] proposed the use of poly-
nomial expansions in non-Gaussian random variables to speed up the convergence rate
of the approximation. These expansions are known also as generalized polynomial chaos
expansions. Their idea is based on the fact that the density functions of the most com-
mon probability distributions are the same as the weighting functions used to define the
most common sequences of orthogonal polynomials. In Table 2.1 (as in [128]) the most
important distributions and the corresponding polynomial systems are summarized. The
conditions under which the generalized polynomial chaos expansions actually converge
were examined in [52].

Table 2.1: The Askey scheme of orthogonal polynomials

probability distribution orthogonal polynomials
continuous Gaussian Hermite

Beta Jacobi
Gamma Laguerre
Uniform Legendre

discrete Poisson Charlier
Binomial Krawtchouk

Negative Binomial Meixner
Hypergeometric Hahn

Here the theory is presented in the general case. For more details on the Gaussian case
see in [72]. Moreover, only the case of expansions in global polynomials is considered.
Other expansions, for example in wavelet or local bases in the stochastic space, have been
considered and are an active research area [84, 125].

Let (Ω,A, P ) be a probability space and assume that there exist independent random
variables

Ξi : (Ω,A)→ (R,B(R)), i = 1, . . . , d (2.28)

such that, first of all,

Ξi ∈ Lp(Ω,A, P ) ∀ i = 1, . . . , d and ∀ 1 ≤ p <∞, (2.29)

and secondly, the support suppµ = Si of the image measure µi = (Ξi)#P of Ξi is of infinite
cardinality for any i. Note that the random variables need not be identically distributed.
Then for any i there exists a sequence of orthogonal polynomials {Pi;n}∞n=0 such that Pi;n
is a polynomial of degree n and∫

R
Pi;n(x)Pi;m(x)dµi(x) =

1

hi;n
δn,m, ∀ n,m ∈ N0 (2.30)

with hi;n > 0. The quantities hi;n are called Haar weights. Different normalizations exist
for each sequence of orthogonal polynomials. For simplicity, it is assumed in this thesis
that Pi;0(x) = 1 and thus hi;0 = 1 for any i = 1, . . . , d. Every sequence of orthogonal
polynomials satisfies a 3-term recurrence relation as follows

xPi;n(x) = γi;nPi;n+1(x) + βi;nPi;n(x) + αi;nPi;n−1(x), ∀ i = 1, . . . , d, ∀ n ∈ N0, (2.31)
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2.2 Generalized polynomial chaos (PC) expansions

where Pi;−1(x) = 0, for all x ∈ R and for all i = 1, . . . , d and {αi;n}∞n=0, {βi;n}∞n=0 and
{γi;n}∞n=0 are real sequences. One can further show that

ai;n+1hi;n+1 = γi;nhi;n, ∀ i = 1, . . . , d, ∀ n ∈ N0. (2.32)

To each sequence of orthogonal polynomials one can associate its linearization coefficients
ci;m,n,k which are determined by

Pi;m(x)Pi;n(x) =
m+n∑
k=0

ci;m,n,kPi;k(x) =
m+n∑

k=|m−n|

ci;m,n,kPi;k(x). (2.33)

Consider now the random vector

Ξ = (Ξ1, . . . ,Ξd) : (Ω,A)→ (Rd,B(Rd)). (2.34)

Due to independence, the image measure of the random vector Ξ is determined by µ =
µ1×· · ·×µd with support suppµ = S = S1×· · ·×Sd. The set of multivariate polynomials
{Pn : n ∈ Nd0}with

Pn(x) =

d∏
i=1

Pi;ni(xi), ∀ n = (n1, . . . , nd) ∈ Nd0, x = (x1, . . . , xd) ∈ Rd (2.35)

is an orthogonal set with respect to µ, that is∫
Rd

Pn(x)Pm(x)dµ(x) =
1

hn
δn,m, ∀ n,m ∈ Nd0, (2.36)

where hn = h1,n1 · · ·hd,nd
. In what follows P = lin{Pn : n ∈ Nd0} will denote the linear

space spanned by the sequence of orthogonal polynomials.
The following theorem [52] states the conditions under which there exists a polynomial

representation for square integrable random variables.

Theorem 2.14. Let
X : (Ω, σ(Ξ))→ (R,B(R)) (2.37)

be a σ(Ξ)− B(R) random variable such that X ∈ L2(Ω, σ(Ξ), P ). Then, there is an expansion

X = gX(Ξ) =
∑
n∈Nd

0

ĝXnPn(Ξ)hn, (2.38)

where
ĝXn =

∫
Ω
gX(Ξ(ω))Pn(Ξ(ω))dP (ω) =

∫
Rd

gX(ξ)Pn(ξ)dµ(ξ), (2.39)

if and only if {Pn : n ∈ Nd0} is a dense (complete) orthogonal set in L2(Rd,B(Rd),µ).

As mentioned in [52] a case when the polynomial system {Pn : n ∈ Nd0} is complete is
when the support S of µ is compact. This result will be useful in the sequence.
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2 Preliminaries

The existence of the function gX is ensured by Lemma 2.6. The convergence is to be
interpreted in the mean square sense, i.e. if

XN =

N∑
|n|=0

ĝXnPn(Ξ)hn, |n| = n1 + . . .+ nd, N ∈ N0 (2.40)

denotes the N -th order approximation of X , then one has

‖X −XN‖2 → 0, N →∞. (2.41)

In the case one deals with a random vector X , then one has to consider a polynomial
expansion for each component Xi, i = 1, . . . , d. In practice, one works with the N -th or-
der truncated PC expansion defined in (2.40). This is the best approximation of X in the
subspace

PN = lin{Pn : n ∈ Nd0, |n| ≤ N} (2.42)

of P in the sense that
‖X −XN‖2 = inf

Q∈PN
‖X −Q‖2. (2.43)

For a given order N and dimension d of the basis random vector Ξ, the dimension of the
space PN is

dimPN + 1 =

(
N + d

N

)
. (2.44)

Usually, the lexicographical order is used in practice to order the terms in (2.40), i.e. the
multi-indices n ∈ Nd0 are ordered such that n > m if and only if |n| > |m| and the first
non-zero coordinate of the multi-index n −m is positive. A single index notation is then
also used after the multi-indices are ordered in ascending order according to the above
rule. An example of the lexicographical order and the single index notation for the case
d = 2 and N = 2 is given in Table 2.2.

Table 2.2: Lexicographical order and single index notation

|n| multi-index n single index n polynomials
0 (0,0) 0 P0(ξ) = P0(ξ1)P0(ξ2)
1 (1,0) 1 P1(ξ) = P1(ξ1)P0(ξ2)
1 (0,1) 2 P2(ξ) = P0(ξ1)P1(ξ2)
2 (2,0) 3 P3(ξ) = P2(ξ1)P0(ξ2)
2 (1,1) 4 P4(ξ) = P1(ξ1)P1(ξ2)
2 (0,2) 5 P5(ξ) = P0(ξ1)P2(ξ2)

Theorem 2.14 is stated here in the case of finitely many basis random variables Ξi. In
the literature, this is called the finite-dimensional noise assumption. Convergence results in
the case of countably many random variables are given in [52]. The infinite-dimensional
situation arises for example in the approximation of stochastic processes by their Karhunen-
Loève (KL) expansion. In this thesis only the finite dimensional case is considered. For more
information on KL expansions see for example in [88].
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2.3 PC expansions and differential equations with parametric uncertainty

When a polynomial expansion for a random variable X is available in the form (2.38),
then its statistical quantities can be easily computed from this expansion by using the or-
thogonality of the polynomials. The expectation can be expressed by the 0-th order coeffi-
cient

E[X] =

∫
Ω
X(ω)dP (ω) =

∫
Ω

∑
n∈Nd

0

ĝXnPn(Ξ(ω))hn

 dP (ω) = ĝX0, (2.45)

and the variance by the sum of the squared coefficients

Var[X] =

∫
Ω

(X(ω)− E[X])2dP (ω) (2.46)

=

∫
Ω

∑
n∈Nd

0

ĝXnPn(Ξ(ω))hn − ĝX0

2

dP (ω)

=
∑
|n|≥1

(ĝXn)2hn.

In the case of two random variables X1, X2 their covariance is given by

Cov[X1, X2] =

∫
Ω

(X1(ω)− E[X1])(X2(ω)− E[X2])dP (ω) (2.47)

=

∫
Ω

∑
n∈Nd

0

ĝX1nPn(Ξ(ω))hn − ĝX10

∑
n∈Nd

0

ĝX2nPn(Ξ(ω))hn − ĝX20


=
∑
|n|≥1

ĝX1nĝX2nhn.

2.3 PC expansions and differential equations with parametric
uncertainty

In this section, it is described how polynomial chaos expansions are used for the propa-
gation of parametric uncertainty through dynamical systems. The theory is presented on
the example of ordinary differential equations (ODE) although it can be in the same way
applied for example to partial differential and differential algebraic equations.

Let x denote a quantity of interest which evolves in time according to the following
dynamics

ẋ(t,Θ) = f(t,x,Θ), x(t0,Θ) = x0(Θ), (2.48)

where Θ = (Θ1, . . . ,Θd) denotes a d-dimensional vector of unknown parameters, x(t,Θ) =
(x1(t,Θ), . . . , xr(t,Θ)) and f(t,x,Θ) = (f1(t,x,Θ), . . . , fr(t,x,Θ)).

The parameter d is called the stochastic dimension of the problem and r its deterministic
dimension. Let J ⊆ R, U ⊆ Rr and D ⊆ Rd be open sets with (t0,x

0) ∈ J × U such that
the function f is smooth on J × U ×D. Then, there is a unique smooth solution of (2.48),
possibly defined on subsets of J , U and D [34].
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Let Ξ be a d-dimensional vector of basis random variables defined on a probability space
(Ω,A, P ) with image measureµ such that the corresponding orthogonal set of multivariate
polynomials {Pn : n ∈ Nd0} with respect to µ (as in (2.35)) is complete. Assume that Θ ∈
L2(Ω, σ(Ξ), P ). Then, there exists a function gΘ = (gΘ1 , . . . , gΘd

) : Rd → Rd, so that each
component of Θ has due to (2.38) an expansion of the form

Θi = gΘi(Ξ) =
∑
n∈Nd

0

λi;nPn(Ξ)hn, i = 1, . . . , d. (2.49)

The N -th order truncated expansion for Θi, i = 1, . . . , d will be denoted as (Θi)N

(Θi)N =
N∑
|n|=0

λi;nPn(Ξ)hn, i = 1, . . . , d, N ∈ N0. (2.50)

An important step in the formulation of stochastic systems is the parametrization of the
unknown parameters Θ in terms of the basis random vector. In the one dimensional case,
i.e. d=1, the isoprobabilistic transformation used in random number generation provides
such a parametrization. Its multi-dimensional generalization is the Rosenblatt transforma-
tion [110]. Both transformations are based on the distribution functions of the involved
random variables.

Theorem 2.15. (Isoprobabilistic transformation) If Θ is a continuous random variable with values
inR, distribution function FΘ and inverse F−1

Θ , then the random variableU = FΘ(Θ) is uniformly
distributed on [0, 1]. If X = F−1

Θ (U), then the distribution of X is FΘ.

Combining the above, one easily sees that the random variable F−1
Θ (FΞ(Ξ)) has the dis-

tribution function FΘ, and is thus a copy of Θ.

Theorem 2.16. (Rosenblatt) Let X = (X1, . . . , Xd) be a random vector with distribution func-
tion F : Rd → R and let U = (U1, . . . , Ud) be a vector of independent and uniformly distributed
random variables. Define the random vector Y = (Y1, . . . , Yd) = T (U) recursively by the equa-
tions

Y1 = F−1
1 (U1) (2.51)

Yi = F−1
i|1,...,i−1(Ui | U1, . . . , Ui−1), 2 ≤ i ≤ d.

Then, the distribution function of Y is F .

In practice, the Rosenblatt transformation is not analytically tractable as it relies on the
conditional inverse distribution functions, which are in general not known analytically. In
chapter 3 a method to overcome this difficulty is presented.

Return now to the quantity x. Assume from now on that r = 1 and drop the bold
notation of x for simplicity. If r > 1, what follows should be applied to each component
of x. Under the previous assumptions, the solution x(t,Θ) of (2.48) is a stochastic process
measurable with respect to σ(Ξ) for each fixed time t ∈ J . If we assume that it belongs to
the space L2(Ω, σ(Ξ), P ) for all times t ∈ J , then again from (2.38) it admits the following
polynomial expansion

x(t,Θ) = x(t, gΘ(Ξ)) ≡ x(t,Ξ) =
∑
n∈Nd

0

qn(t)Pn(Ξ)hn, (2.52)
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2.3 PC expansions and differential equations with parametric uncertainty

where the coefficients are defined by (2.39)

qn(t) =

∫
Rd

x(t, ξ)Pn(ξ)dµ(ξ), n ∈ Nd0. (2.53)

Equation (2.53) is of no practical use as it includes the (in general) unknown solution.
The two main numerical approaches to compute these coefficients are intrusive or spectral
Galerkin [61] and non-intrusive methods [129,130]. In the next subsections, these approaches
are reviewed.

2.3.1 Stochastic Galerkin methods

Intrusive methods are based on a weak formulation of the original stochastic problem.
Assume that one looks for an approximation xN (t,Ξ) of x(t,Ξ) in the finite dimensional

polynomial subspace PN defined in (2.42), where

xN (t,Ξ) =
N∑
|n|=0

qn(t)Pn(Ξ)hn, N ∈ N0. (2.54)

The method consists of two main steps: one first introduces the truncated polynomial ex-
pansions (2.54) and (2.50) in the governing equations (2.48) and then projects the resulting
residual on each basis polynomial in PN . This process leads to a deterministic coupled
differential equation system satisfied by the PC coefficients {qn(t) : |n| ≤ N}. Standard
numerical methods such as Runge-Kutta methods [116] can be then employed for its nu-
merical integration with initial conditions that are determined by the initial conditions of
the original ODE system (2.48). More precisely one requires that

E[(ẋN (t,Ξ)− f(t, xN ,Ξ))Pn] = 0, ∀ n ∈ Nd0, |n| ≤ N. (2.55)

The stochasticity in these equations will be integrated out and the resulting deterministic
ODE system will be of dimension dimPN .

The Galerkin approach is optimal in the mean square sense as the only error introduced
is that resulting from truncating the infinite series expansion of the solution. A difficulty
associated with this approach is that the derivation of the Galerkin system can be nontrivial
in situations in which the original system is nonlinear. Furthermore, the method results
in a system of higher dimension than the initial deterministic one and to determine the
PC coefficients one has to solve a coupled system of equations. In the next subsection, it
will be shown that in the case of stochastic non-intrusive methods each coefficient can be
determined independently of the others.

2.3.2 Non-intrusive methods

Methods that fall in the class of non-intrusive methods include non-intrusive spectral pro-
jections, least squares approximation and collocation methods. The common feature un-
derlying all these methods is that one solves the deterministic system for a set of real-
izations of the basis random vector and infers the PC expansion of the solution from the
ensemble of the corresponding solution realizations.
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Non-intrusive spectral projections (NISP)

The basic idea of NISP approaches is to numerically approximate the multidimensional
integrals in the definition (2.53) of the PC coefficients. Existing methods can be categorized
in stochastic methods which include Monte Carlo integration and similar techniques and
deterministic methods which are based on numerical cubature. Once again, assume that
one is looking for an approximation xN of x in PN as in (2.54).

In Monte Carlo integration, one generates a random sample {ξm}m=1,...,M from the dis-
tribution of the basis random vector Ξ and then the PC coefficients of the solution are
approximated by the sums

qn(t) ≈ 1

M

M∑
m=1

x(t, ξm)Pn(ξm), |n| ≤ N, N ∈ N0. (2.56)

The convergence rate of the Monte Carlo integration is O(M−
1
2 ) [30]. The main advantage

of this approach is that this rate does not depend on the stochastic dimension of the prob-
lem. This makes the method appealing for high-dimensional integrals. Methods which
improve the above rate of convergence include quasi Monte Carlo and Latin Hypercube
methods. The reader is referred to [30, 95] for more details.

Alternatively and when the stochastic dimension d is not too large, deterministic inte-
gration methods can be used. The integrals in (2.53) can be approximated by the sums

qn(t) ≈
K∑
k=1

x(t, ξk)Pn(ξk)wk, |n| ≤ N, N ∈ N0, (2.57)

where {ξk}k=1,...,K , wk > 0 are the nodes and weights respectively of a d-dimensional
cubature rule. Cubature rules can be constructed by the tensorization of one-dimensional
quadrature rules. For more on numerical quadrature, see for example [116]. Compared
to Monte Carlo methods, quadrature formulas suffer from the curse of dimensionality, i.e.
the number of nodes on which the solution has to be evaluated grows very rapidly with
the stochastic dimension. To overcome this difficulty, sparse cubature rules and adaptive
sparse cubature rules have been developed [58, 113].

Least squares estimation

Another way to estimate the PC coefficients is via the solution of a least squares problem.
Assume that one has realizations of the basis random variables {ξl}l=1,...,L and the corre-
sponding realizations of the solution {x(t, ξl)}l=1,...,L. One can estimate the PC coefficients
by minimizing over the real numbers the residual

L∑
l=1

∣∣∣∣∣∣x(t, ξl)−
N∑
|n|=0

qn(t)Pn(ξl)hn

∣∣∣∣∣∣
2

(2.58)

for each fixed time t ∈ J . As in the classical regression, the solution to this optimization
problem for fixed time t is given by

q̃N (t) = (DTD)−1DTxL(t, ξ) (2.59)
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where q̃N (t) = (q̃0(t), . . . , q̃N (t))T is the vector of the estimated PC coefficients {qn(t) : n ≤
N} in single index notation, xL(t, ξ) = (x(t, ξ1), . . . , x(t, ξL))T is the vector of the solution
realizations at time t and the matrix D ∈ RL×dimPN

is the design matrix of the regression
problem with elements Di,j = Pj(ξi), i = 1, . . . , L, j = 1, . . . ,dimPN , where again the
single index notation is used. The residual

res(t, ξ) = x(t, ξ)−
N∑
|n|=0

q̃n(t)Pn(ξ)hn (2.60)

of the least squares problem will be orthogonal to PN only in the limit L→∞. The choice
of the points {ξl}l=1,...,L in the stochastic space is important for this method. In [20, 22]
tensored Gaussian points were selected, while in [36] the points were selected at random
based on the distribution of the basis random vector. More sophisticated techniques for
selecting these points have been developed. They rely on experimental design to optimize
certain properties of the design matrix [67, 105].

Collocation methods

In these methods, one seeks a polynomial approximation x̂N of x, which interpolates the
solution for a given time t at given points (ξi, x(t, ξi))i=1,...,I , i.e. one requires that

x̂N (t, ξi) = x(t, ξi), i = 1, . . . , I. (2.61)

A difference with the previous methods is that in this case the polynomial basis does
not need to be pre-described but it can be defined by the points {ξi}i=1,...,I . This can be
achieved for example if one assumes the following form for the polynomial x̂N

x̂N (t, ξ) =
N∑
|n|=0

q̂n(t)Ln(ξ), N ∈ N0, (2.62)

where Ln(ξ) are the multi-dimensional Lagrange polynomials. These are the tensor prod-
ucts of the one-dimensional Lagrange polynomials {Li(ξ)}i=1,...,I , which in classical ap-
proximation theory are defined for a given set of nodes {ξi}i=1,...,I by the equations

Lj(ξ) =
I∏

i=1
i 6=j

ξ − ξi

ξj − ξi
, j = 1, . . . , I. (2.63)

High-dimensional interpolation suffers like high-dimensional integration from the curse
of dimensionality. Other methods, such as sparse collocation and adaptive collocation
methods can also be applied as examined in [8, 98, 129].

Finally, it is noted that the main advantage of non-intrusive methods compared to Galer-
kin approaches is their ease of implementation: in the former, a deterministic code that
solves the initial problem can be used, whereas in the latter, the equations of the Galerkin

17



2 Preliminaries

system have to be formulated and new code for the coupled system is needed. Further-
more, the non-intrusive methods can easily deal with nonlinearities in the initial system.
Despite this relative advantage, these methods are not always preferred as they are not
optimal: apart from the truncation error introduced by the approximation of the quantity
of interest in a finite dimensional space, another error, the aliasing error is introduced by
the numerical integration or interpolation used [65, 70].
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3 Optimal maps and polynomial chaos
expansions

This chapter deals with the problem of the representation of parametric uncertainty in
terms of a finite number of independent basic random variables. Firstly, the problem is
formulated using the notation introduced in the previous chapter. After a short review of
previous work on the problem and basic tools to be used in the sequence, results are stated
for the one-dimensional and the general case.

Problem formulation Let (Ω,A, P ) be a probability space and let Ξ : (Ω,A)→ (Rd,B(Rd))
be a basic random vector as in (2.34) andX : (Ω, σ(Ξ))→ (Rd,B(Rd)) another random vec-
tor of the same dimension as Ξ with finite variance. Given a sample {Xm}m=1,...,M from
the distribution ofX , estimate the coefficients ĝXn in the PC expansion

X = gX(Ξ) =
∑
n∈Nd

0

ĝXnPn(Ξ)hn, (3.1)

up to a given order N , i.e. for all multi-indices n ∈ Nd0 such that |n| ≤ N .
In the general multivariate case, it will be assumed that the random vectors Ξ and X

are continuous and with compact supports. In the one-dimensional case, it will be further
assumed that the distribution function FX of X is twice differentiable and its density fX is
bounded away from zero on its support SX , i.e. it is assumed that

∃ c ∈ R : fX(x) > c > 0,∀ x ∈ SX . (3.2)

For simplicity, the same polynomial system will be used in each stochastic dimension.

3.1 Previous results

As stated already in chapter 2, a basic result related to this problem is the Rosenblatt trans-
formation [110]. It provides an explicit form for the function gX which appears in the
definition of the PC coefficients. This transformation is defined by conditional probabil-
ity distribution functions. These functions are in general not known analytically and the
transformation has to be approximated numerically based on a sample from the random
variable X . This approach was followed in [39], where the joint probability distribution
function of X was estimated by employing the maximum entropy principle and a non-
linear least squares method. In [40], the same transformation was again used but two dif-
ferent approaches were there presented. In the first one, the joint probability distribution
function was estimated by linear interpolation of the histogram of the observations and
in the second approach, the authors estimated the marginal probability density functions
and then the Spearman’s rank correlation coefficient was used to capture the dependen-
cies between the components of the vector X . As mentioned in [39], one has to note that
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3 Optimal maps and polynomial chaos expansions

the transformation depends on the ordering of the random variables. Thus, Rosenblatt ac-
tually provides with d! transformations corresponding to all possible permutations of the
components of X . An obstacle of this method is that it breaks down for high dimensions,
as conditioning on a discrete sample becomes numerically unstable.

Other existing approaches to the same problem are based on maximum likelihood es-
timation. In [45, 46] a surrogate model for the likelihood of the observations was used to
simplify the computations and in [60] the authors used the method of simulated anneal-
ing to maximize this surrogate likelihood function. In [115] the likelihood was maximized
by using a random search algorithm. Methods based on Bayesian estimation are stated
in [2, 59]. In both papers, a kernel density estimation method is used to estimate the likeli-
hood function of the coefficients given the data. Note that all the above authors are dealing
with the estimation of PC coefficients for the random variables appearing in the KL expan-
sion of a random field. The special properties of these random variables and especially the
fact that they are uncorrelated form a central ingredient of these approaches.

The method proposed here relies on the matching of two samples from the distribution
functions of Ξ andX by using a discrete transformation which converges to a continuous
transformation gX and such that it respects the underlying image measures. The discrete
transformation is combined with a regression approach in order to estimate the coeffi-
cients. It is shown that these estimates are asymptotically consistent for the coefficients in
the series expansion of a specific copy ofX . Recall that an estimate θM based on a sample

of size M of a quantity θ is called consistent, if θM
P→ θ as M → ∞. Here one is making

no assumption on the correlation of the random vectors. Thus, it can be used in both the
cases of correlated and uncorrelated random vectors.

For the one-dimensional case the method relies on the theory of order statistics. As there
is no total order in Rd for d ≥ 2 and no appropriate definition of multivariate order statis-
tics, the multi-dimensional case will be handled with results from optimal transportation
(OT) theory. This theory has been recently applied independently by other authors in
different problems related to uncertainty quantification. In [97] it was used to provide
an alternative method for sampling from a posterior distribution function in a Bayesian
framework and in [107] it was used as an alternative to importance sampling and related
methods.

3.2 Order statistics

This section includes basic definitions and results from the theory of order statistics. For
more details see in [111].

Let X be a continuous random variable with density fX and distribution function FX .
For 0 < p < 1, the p-th quantile of FX is defined as

F−1
X (p) = ζp = inf{x ∈ R : FX(x) ≥ p}. (3.3)

Let {Xm}m=1,...,M be an independent sample from the distribution function FX . The em-
pirical distribution function of X is then defined as the stochastic process

FX,M (x) =
1

M

M∑
m=1

1{Xm ≤ x}, x ∈ R, (3.4)
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3.3 Optimal transportation

and the sample p-th quantile as

ζ̂p,M = F−1
X,M (p), 0 < p < 1. (3.5)

A measure of closeness of FX,M to FX is the Kolmogorov-Smirnov distance defined by

DM = sup
x∈R
|FX,M (x)− FX(x)|. (3.6)

It can be shown that as M →∞, DM
wp1
→ 0 [121]. The following theorem due to Dvoretzky,

Kiefer and Wolfowitz provides the rate of this convergence [51]. The proof for the sharp
constant K = 1 can be found in [94].

Theorem 3.1. Let FX be a distribution function defined on R. Then, for all M ∈ N and all d > 0

P (DM > d) ≤ Ke−2Md2 . (3.7)

An equivalent formulation to the empirical distribution function are the order statistics.
These are defined as the ordered sample values

X(1M) ≤ X(2M) ≤ . . . ≤ X(MM). (3.8)

One has the relation
X(mM) = ζ̂m/M,M , m = 1, . . . ,M. (3.9)

The following theorem is proved in [9].

Theorem 3.2. (Bahadur) Let 0 < p < 1. Suppose that FX is twice differentiable at ζp and
F ′X(ζp) = f(ζp) > 0. Then

ζ̂p,M = ζp +
p− FX,M (ζp)

fX(ζp)
+RM , (3.10)

where
RM = Owp1

(
M−3/4(logM)3/4

)
, M →∞. (3.11)

REMARK One says that a sequence of random variables (Xn)n∈N is Owp1(an) as n → ∞
for a real sequence (an)n∈N, if the sequence Xn/an is bounded with probability 1.

3.3 Optimal transportation

The theory of optimal transportation is dealing with the existence and characterization of
maps T : Rd → Rd such that X = T (Ξ). These maps are the solution to a given minimiza-
tion problem, which involves the image measuresµ = (Ξ)#P and ν = (X)#P of Ξ andX
respectively. Some results from the theory of optimal transportation on Euclidean spaces
used below are summarized in the present section. See in [123,124] for more details on the
topic and for the proofs of the stated results.
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3 Optimal maps and polynomial chaos expansions

3.3.1 The continuous case on Euclidean spaces

Given two probability measures µ and ν on the measurable space (Rd,B(Rd)), denote by
Π(µ,ν) the set of probability measures defined on (Rd×Rd,B(Rd)×B(Rd)) so that eachπ ∈
Π(µ,ν) has marginal measures µ and ν. Given a measurable cost function c : Rd×Rd → R,
the Kantorovich optimal transportation problem reads

I[π] =

∫
Rd×Rd

c(x,y)dπ(x,y)→ inf
π∈Π(µ,ν)

, (3.12)

where I[π] is called the total transportation cost of π. The measures π for which the infimum
is attained are called optimal transference plans. If π can be represented as

dπ(x,y) = dµ(x)δ[y = T (x)], x,y ∈ Rd, (3.13)

where T : Rd → Rd denotes a measurable function such that ν = (T )#µ, then T is called
a transport map and π will be denoted in this case also by π = (Id, T )#µ. The Monge
formulation of the optimal transportation problem reads

I[T ] =

∫
Rd

c(x, T (x))dµ(x)→ inf
T : ν=T#µ

. (3.14)

The difference between transference plans and transport maps is that the former allow
mass located in a point x to be split and distributed over several y locations, while the
latter requires that the whole mass in x is transported to a unique location y. This fact
indicates that the Kantorovich problem is a relaxed version of the Monge problem. In con-
trast to transference plans, transport maps do not always exist. Consider for example the
case where µ is a Dirac delta and ν a measure continuous with respect to the Lebesgue
measure. Then, no transport map exists: the only way of transporting the mass concen-
trated on the Dirac delta is to split it and distribute it over the support of ν.

The existence of optimal maps depends on the cost function and on the regularity of the
measures µ and ν. For example, consider cost functions of the form c(x,y) = ‖x − y‖pE ,
with 0 < p < ∞, where ‖ · ‖E stands for the Euclidean distance in Rd. One can then show
that if µ and ν are continuous with respect to the Lebesgue measure, then there is a unique
optimal transference plan and a unique optimal map if p > 1, whereas for p < 1, there is
in general no optimal transport map, although there is an optimal transference plan.

For the special case p = 2 and for the quadratic cost function

c(x,y) = ‖x− y‖2E , x,y ∈ Rd, (3.15)

the following results on existence, uniqueness and stability of optimal transference plans
and transport maps hold.

Proposition 3.3. The minimization problem (3.12) admits a minimizer. This means that there
exists an optimal transference plan.

A central result in OT theory is the theorem of Brenier, which gives a characterization of
optimal maps for the quadratic cost function in Rd. Before the main theorem is stated, the
notion of a small set is defined.
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3.3 Optimal transportation

Definition 3.4. A measurable set A ⊂ Rd is a small set if it has Hausdorff dimension at most
d− 1.

Note, that a measure µ does not give mass to small sets if it is for example continuous
with respect to the Lebesgue measure.

Theorem 3.5. (Brenier) Assume that the measures µ and ν have finite second order moments. If µ
does not give mass to small sets, then the optimal transference plan π for the cost function in (3.15)
is unique and π = (Id ×∇φ)#µ, where ν = (∇φ)#µ and ∇φ is the unique µ-a.e. gradient of a
convex function φ : Rd → Rd. The function∇φ is the unique optimal transport map.

Note that in general there is no closed form solution for the optimal transport map in
Theorem 3.5.

Theorem 3.6. Let µ and ν be two probability measures on (Rd,B(Rd)). Consider two sequences
of probability measures (µn)n∈N and (νn)n∈N such that µn ⇀ µ and νn ⇀ ν, as n→∞. Denote
by πn an optimal transference plan between µn and νn for the cost in (3.15). If

∀ n ∈ N, I[πn] < +∞ and lim inf
n→∞

I[πn] <∞, (3.16)

then there exists a transference plan π ∈ Π(µ,ν), which is optimal for the measures µ, ν and the
quadratic cost. Furthermore, there exists a subsequence (πnk

)k∈N of (πn)n∈N such that πnk
⇀ π,

as k →∞.

As for the transport maps the following result holds.

Corollary 3.7. Let µ and ν be two probability measures on (Rd,B(Rd)) such that the support of
ν is a closed subset of Rd. With the notation and assumptions of the previous theorem, assume
furthermore that there exist measurable maps Tn, T : Rd → Rd such that

∀ n ∈ N, πn = (Id, Tn)#µn and π = (Id, T )#µ,

and that π is unique. Then,

∀ ε > 0, lim
n→∞

µn

[
{x ∈ Rd : ‖Tn(x)− T (x)‖E > ε}

]
= 0.

3.3.2 The discrete case on Euclidean spaces

Consider next the transportation problem for the case of two discrete and equally weighted
measures µn and νn,

µn =
1

n

n∑
i=1

δxi and νn =
1

n

n∑
j=1

δyj , x1, . . . ,xn,y1, . . . ,yn ∈ Rd. (3.17)

The joint measures π ∈ Π(µ,ν) are now n × n matrices A with nonnegative entries and
such that the sum of their rows and columns are equal to 1/n. Each element aij of such
a matrix A gives the probability that the joint measure π assigns to the point (xi,yj). By
rescaling the matricesA, the set of joint measures π ∈ Π(µ,ν) can be represented by the set
B of bistochastic n× n matrices such that each matrix B ∈ B has real elements bij ∈ [0, 1].
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3 Optimal maps and polynomial chaos expansions

Recall that a bistochastic matrix is a matrix with nonnegative elements and such that its
rows and columns sum up to 1.

In the discrete setting considered here, minimizing the total transportation cost I[π] in
the Kantorovich formulation, equation (3.12), is equivalent to minimizing the following
cost

I[B] =
1

n

n∑
i,j=1

bijc(xi,yj)→ min
B∈B

. (3.18)

It can be shown that the minimizers of this linear optimization problem defined on the
bounded, convex set B are permutation matrices, i.e. stochastic matrices with bij = δiσ(i),
where σ ∈ Sn, the set of all permutations of {1, . . . , n} [21]. Therefore, in the case of equally
weighted discrete measures, every solution of the Kantorovich problem corresponds to a
solution of the following problem

I[σ] =
1

n

n∑
i=1

c(xi,yσ(i))→ min
σ∈Sn

. (3.19)

The permutation σ which minimizes I[σ] defines a map T : {x1, . . . ,xn} → {y1, . . . ,yn}
by

T (xi) = yσ(i), i = 1, . . . , n, (3.20)

which is the optimal map for the Monge problem involving the measures µn and νn.
The discrete transportation problem is a special type of a network optimization problem

with linear cost function and it is called the assignment problem in the related literature.
In this context, the locations xi, i = 1, . . . , n are considered as persons that one wishes to
match with n objects yj , j = 1, . . . , n, such that the total cost

J [σ] =

n∑
i=1

s(xi,yσ(i))→ max
σ∈Sn

, (3.21)

is maximized. Here, s(xi,yj) is the value (or benefit) for matching person xi with the object
yj . This equation is of the same type as the discrete Monge problem in (3.19). For the
case of the quadratic cost function considered here, minimizing I[σ] for the cost c(x,y) =
‖x− y‖2E is the same as maximizing J [σ] for the cost s(x,y) = 〈x,y〉E , where 〈·, ·〉E is the
Euclidean inner product in Rd.

An efficient algorithm to solve the discrete optimal transportation problem is the auction
algorithm first proposed by Bertsekas in [17]. Of course, the linear optimization problem in
(3.18) can be also solved by linear programming techniques such as simplex methods, see
for example in [120]. The auction algorithm is more efficient as it takes into account the
network structure of the problem.

3.3.3 The auction algorithm

The auction algorithm is here shortly described. It is one of the three main types of algo-
rithms for linear and network flow optimization problems, see in [18, 26] for more details.
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3.3 Optimal transportation

It is related to the dual of the assignment problem: here, one seeks for an optimal price
vector p = (p1, . . . , pn) such that the total cost

n∑
i=1

max
j=1,...,n

{s(xi,yj)− pj}+
n∑
i=1

pj (3.22)

is minimized. If the following condition

s(xi,yσ(i))− pσ(i) = max
j=1,...,n

{s(xi,yj)− pj} (3.23)

is satisfied by a permutation σ for all i = 1, . . . , n, then one says that the assignment
σ and the prices n satisfy complementary slackness (CS). In this case it can be shown that
this permutation is optimal for the assignment (discrete transportation) problem and the
corresponding prices are optimal for the dual problem.

The auction algorithm is based on a related property called ε-complementary slackness
(ε-CS) and on partial assignments, which are assignments in which only a subset of the n
persons is assigned to objects. One says that a partial assignment and a vector of prices p
satisfies ε-CS if

s(xi,yσ(i))− pσ(i) ≥ max
j=1,...,n

{s(xi,yj)− pj} − ε, ε > 0. (3.24)

The algorithm runs as follows: one starts with a price vector and a partial assignment
satisfying ε-CS. One then chooses a person xi which is still unassigned and assigns him to
the object yk where

k = arg max
j=1,...,n

{s(xi,yj)− pj}. (3.25)

If any person was already assigned to the object yk, he becomes unassigned. The price
vector is changed by augmenting the element pk by the factor γi + ε, where

γi = vi − wi, (3.26)
vi = max

j=1,...,n
{s(xi,yj)− pj},

wi = max
j=1,...,n,j 6=k

{s(xi,yj)− pj}.

The iterations continue until all persons are assigned. It can be shown that the algorithm
ends with a permutation which total transportation cost is within nε from being optimal.
In the special case where the values s(xi,yj) are integers for all i, j = 1, . . . , n and ε < 1

n ,
the auction algorithm yields the optimal transportation cost. The running time of the al-
gorithm depends on the initial price vector, on the precision ε and on the maximal value

max
i,j=1,...,n

|s(xi,yj)|. It is noted finally that the algorithm is offered for parallel implementa-

tion and has a time complexity of O(n2logn). For more details on computational issues,
the reader is referred to [32].

REMARK

(i) In the one-dimensional case the permutation which solves the assignment problem
and thus the discrete transportation problem corresponds to the matching of the or-
dered sample values and is the discrete analog of the integral transformation, see for
example in [38]. This result justifies the choice of the optimal maps as the generaliza-
tion of the order statistics in the multi-dimensional case.
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3 Optimal maps and polynomial chaos expansions

(ii) An interesting result in the optimal transportation theory is that the Rosenblatt (or
Knothe-Rosenblatt as is known in this field) transformation turns out to be the limit
of the optimal transportation maps, each one occurring as the solution of a trans-
portation problem with a special quadratic cost function [31].

(iii) Note that no transport map exists in the case that the discrete measures are not
equally weighted, i.e. if

µn =
n∑
i=1

wiδxi and νn =
n∑
j=1

w̃jδyj , x1, . . . ,xn,y1, . . . ,yn ∈ Rd, (3.27)

with wi, wj ∈ (0, 1] and wi 6= w̃j , i, j = 1, . . . , n. This is again because mass in points
xi, i = 1, . . . , n will have to be split in order to be transported to mass in the points
yj , j = 1, . . . , n.

3.4 Estimation of PC coefficients

3.4.1 One-dimensional case

Assume in this section that µ and ν are measures on the Euclidean space R.

Linear case

Consider first the simple case where the random variables Ξ and X have the same dis-
tribution function F with density f and support S. Assume two independent samples
{Ξm}m=1,...,M and {Xm}m=1,...,M from F are given. Denote by Ξ(M) = (Ξ(1M), . . . ,Ξ(MM))
and X(M) = (X(1M), . . . , X(MM)) the vectors of the corresponding order statistics. As-
sume the following truncated polynomial regression model

X(mM) =
N∑
n=0

qn,MPn(Ξ(mM))hn, m = 1, . . . ,M, N ∈ N0. (3.28)

This means that it is assumed that the underlying discrete map TM : {X1, . . . , XM} →
{Ξ1, . . . ,ΞM} is defined by the equations

TM (Ξ(mM)) = X(mM), m = 1, . . . ,M. (3.29)

The vector of the unknown coefficients qM = (q0,M , . . . , qN,M ) is to be estimated by mini-
mizing the residual

M∑
m=1

|X(mM) −
N∑
n=0

qn,MPn(Ξ(mM))hn|2 → min
qM∈RN+1

. (3.30)

The design matrix of the regression model reads

D(Ξ(M)) =


P0(Ξ(1M))h0 P1(Ξ(1M))h1 . . . PN (Ξ(1M))hN
P0(Ξ(2M))h0 P1(Ξ(2M))h1 . . . PN (Ξ(2M))hN

...
P0(Ξ(MM))h0 P1(Ξ(MM))h1 . . . PN (Ξ(MM))hN

 (3.31)
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The following proposition shows that the discrete transformation TM defined in equation
(3.29) converges to the identity operator as the sample size grows. Thus, the matching of
the corresponding ordered statistics yields in the limit the expected result, as in this case
one can assume that X = gX(Ξ) = Ξ.

Proposition 3.8. Assume that the distribution function F is twice differentiable and that the
density f is bounded away from zero on the support S. Furthermore, assume that S is a compact
subset of R. Let q̃M be the solution to the least squares problem in (3.30)

q̃M =
(
D(Ξ(M))TD(Ξ(M))

)−1
D(Ξ(M))TX(M). (3.32)

Then, in the limit M →∞, the quantities q̃M are well defined, the inverse(
D(Ξ(M))TD(Ξ(M))

)−1
exists and the underlying transformation gX such that X = gX(Ξ) is

the identity.

The proof is based on the following two lemmata.

Lemma 3.9. Under the assumptions of Proposition 3.8, consider the random variable

ZM =
1

M

M∑
m=1

(
X(mM) − ζm

M

)
, (3.33)

where ζm
M

is the m
M -th quantile of the distribution function F of X . Then ZM

P→ 0, as M →∞.

Before the proof is given, some more notation is introduced. Denote by [x] the floor
function,

∀ x ∈ R, [x] = max{k ∈ Z : k ≤ x}. (3.34)

The following properties can be easily verified

[x] ≤ x ≤ [x] + 1 and [x+ k] = [x] + k, ∀ k ∈ Z, x ∈ R. (3.35)

Proof. One has to show that ∀ ε > 0, limM→∞ P (|ZM | > ε) = 0. This is equivalent to
showing that

∀ ε > 0 ∀ δ > 0 ∃M ′ ∈ N : ∀M ≥M ′ P (|ZM | > ε) < δ.
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Fix ε > 0, δ > 0 and choose p ∈ (0, 1) such that 0 < p < ε
8 supS . It holds,

P (|ZM | > ε) = P

(∣∣∣∣∣ 1

M

M∑
m=1

(
X(mM) − ζm

M

)∣∣∣∣∣ > ε

)

= P

(∣∣∣∣∣ 1

M

M∑
m=1

(
ζ̂m

M ,M − ζm
M

)∣∣∣∣∣ > ε

)

≤ P

(
1

M

M∑
m=1

|ζ̂m
M ,M − ζm

M
| > ε

)

≤ P

 1

M

[Mp]∑
m=1

|ζ̂m
M ,M − ζm

M
|+

[M(1−p)]∑
m=[Mp]+1

|ζ̂m
M ,M − ζm

M
|+

M∑
m=[M(1−p)]+1

|ζ̂m
M ,M − ζm

M
|

 > ε


≤ P

 1

M
2Mp supS +

1

M

[M(1−p)]∑
m=[Mp]+1

|ζ̂m
M ,M − ζm

M
|+ 1

M
2Mp supS > ε


≤ P

 1

M

[M(1−p)]∑
m=[Mp]+1

|ζ̂m
M ,M − ζm

M
| > ε− 4p supS

 .

Let ε′ = ε− 4p supS > 0. Then, it follows from Theorem 3.2 and equation (3.10) that

P (|ZM | > ε) ≤ P

 1

M

[M(1−p)]∑
m=[Mp]+1

|ζ̂m
M ,M − ζm

M
| > ε′


= P

 1

M

[M(1−p)]∑
m=[Mp]+1

|
m/M − FM (ζm

M
)

f(ζm
M

)
+RM | > ε′

 .

From (3.35), it follows that

1

M
([M(1− p)]− [Mp]) ≤ 1

M
(M − 2Mp) = 1− 2p.

Therefore,

P (|ZM | > ε) ≤ P

 1

M

[M(1−p)]∑
m=[Mp]+1

|F (ζm
M

)− FM (ζm
M

)|
f(ζm

M
)

+ (1− 2p)|RM | > ε′


≤ P

 1

M

[M(1−p)]∑
m=[Mp]+1

|F (ζm
M

)− FM (ζm
M

)|
f(ζm

M
)

+ (1− 2p)CRM
−3/4(logM)3/4 > ε′


≤ P

sup
ξ∈S
|F (ξ)− FM (ξ)| 1

M

[M(1−p)]∑
m=[Mp]+1

1

f(ζm
M

)
> ε′ − (1− 2p)CRM

−3/4(logM)3/4

 .

Consider now the term
1

M

[M(1−p)]∑
m=[Mp]+1

1

f(ζm
M

)
(3.36)
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and the interval Ip = [ζp, ζ1−p]. In the sum given by (3.36), there are

[M(1− p)]− [Mp] ≤M −Mp−Mp = M − 2Mp < M

terms. Choose randomly M − ([M(1− p)]− [Mp]) points from the distribution of F condi-
tioned on Ip and denote by ζk, k = 1, . . . ,M the set of points consisting of the points in Ip
appearing in (3.36) along with the extra chosen points. Then, one has

1

M

[M(1−p)]∑
m=[Mp]+1

1

f(ζm
M

)
≤ 1

M

M∑
k=1

1

f(ζk)
,

as the density function f is assumed to be strictly positive. By the law of large numbers
(Theorem 2.11),

1

M

M∑
k=1

1

f(ζk)

wp1
→
∫ ζ1−p

ζp

1

f(x)
dx, as M →∞.

Define ∫ ζ1−p

ζp

1

f(x)
dx = Cp,f .

This integral exists, as it is assumed that f is bounded away from zero in the support S.
Therefore, for ε′ > 0, ∃M ′ such that with probability 1 and for all M ≥M ′, it holds

1

M

M∑
k=1

1

f(ζk)
≤
∫ ζ1−p

ζp

1

f(x)
dx+ ε′ = Cp,f + ε′.

Thus, for all M ≥M ′,

P (|ZM | > ε) ≤ P

(
sup
ξ∈S
|F (ξ)− FM (ξ)|(Cp,f + ε′) > ε′ − (1− 2p)CRM

−3/4(logM)3/4

)

= P

(
sup
ξ∈S
|F (ξ)− FM (ξ)| > ε′ − (1− 2p)CRM

−3/4(logM)3/4

Cp,f + ε′

)

≤ exp

−2M

(
ε′ − (1− 2p)CRM

−3/4(logM)3/4

Cp,f + ε′

)2
 ,

where Theorem 3.1 has been used. Here, CR and Cp,f are positive real numbers. The term
in the exponential converges to 0 asM →∞. Therefore, for all δ > 0, there exists aM ′′ ∈ N
such that ∀M > max(M ′,M ′′), P (|ZM | > ε) < δ holds true. �

Lemma 3.10. Under the assumptions of Proposition 3.8, it holds that the random variable eM
defined as

eM =
1

M

M∑
m=1

Pk−1(Ξ(mM))hk−1

(
X(mM) − Ξ(mM)

)
(3.37)

converges in probability to 0 as M →∞.
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3 Optimal maps and polynomial chaos expansions

Proof. Let ε > 0. Then,

P (|eM | > ε) = P

(∣∣∣∣∣ 1

M

M∑
m=1

Pk−1(Ξ(mM))hk−1

(
X(mM) − Ξ(mM)

)∣∣∣∣∣ > ε

)

≤ P

(
1

M

M∑
m=1

|Pk−1(Ξ(mM))hk−1| |X(mM) − Ξ(mM)| > ε

)

≤ P

(
‖Pk−1‖∞hk−1

1

M

M∑
m=1

|X(mM) − Ξ(mM)| > ε

)

≤ P

(
‖Pk−1‖∞hk−1

1

M

M∑
m=1

|X(mM) − ζm
M
,M + ζm

M
,M − Ξ(mM)| > ε

)

≤ P

(
‖Pk−1‖∞hk−1

1

M

M∑
m=1

(
|X(mM) − ζm

M
,M |+ |ζm

M
,M − Ξ(mM)|

)
> ε

)
≤ P

(
‖Pk−1‖∞hk−1

(
Z1
M + Z2

M

)
> ε
)
,

whereZ1
M = 1

M

∑M
m=1|X(mM)−ζm

M
,M | andZ2

M = 1
M

∑M
m=1|ζm

M
,M−Ξ(mM)| are copies of the

random variable ZM appearing in Lemma 3.9, from which it follows that ZiM
P→ 0, i = 1, 2.

It holds ‖Pk−1‖∞ <∞ due to the assumed compactness of the support. Then, by Theorem

2.12, one has that ‖Pk−1‖∞hk−1(Z1
M + Z2

M )
P→ 0, which completes the proof. �

The proof of Proposition 3.8 is now straight-forward.

Proof. (Proposition 3.8) Rewrite equation (3.32) in the form

1

M

(
D(Ξ(M))TD(Ξ(M))

)
q̃M =

1

M
D(Ξ(M))TX(M), (3.38)

and define the random matrix, respectively random vector

AM =
1

M

(
D(Ξ(M))TD(Ξ(M))

)
, zM =

1

M
D(Ξ(M))TX(M).

Equation (3.38) can be thus written in the compact form

AM q̃M = zM .

For the elements (AM )k,l of the matrix AM one has

(AM )k,l =
1

M

M∑
m=1

Pk−1(Ξ(mM))hk−1Pl−1(Ξ(mM))hl−1, k, l = 1, . . . , N + 1.

From Theorem 2.11 one has in the limit M →∞

(AM )k,l
wp1
→ hk−1hl−1E[Pk−1(Ξ)Pl−1(Ξ)] = δklhk−1, k, l = 1, . . . , N + 1, (3.39)
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3.4 Estimation of PC coefficients

due to the orthogonality of the polynomials, see equation (2.30). For the elements of the
vector zM it holds

(zM )k =
1

M

M∑
m=1

Pk−1(Ξ(mM))hk−1X
(mM) (3.40)

=
1

M

M∑
m=1

Pk−1(Ξ(mM))hk−1

(
X(mM) − Ξ(mM) + Ξ(mM)

)
=

1

M

M∑
m=1

hk−1Pk−1(Ξ(mM))Ξ(mM) +
1

M

M∑
m=1

Pk−1(Ξ(mM))hk−1

(
X(mM) − Ξ(mM)

)
.

The first term converges to hk−1E[Pk−1(Ξ)Ξ] with probability 1, as M → ∞. From the
3-term recurrence relation in equation (2.31), it follows

Pk−1(Ξ)Ξ = γk−1Pk(Ξ) + βk−1Pk−1(Ξ) + αk−1Pk−2(Ξ), k ≥ 1.

Using the linearity of the expectation, it follows for all k ≥ 1

E[Pk−1(Ξ)Ξ] = γk−1E[Pk(Ξ)] + βk−1E[Pk−1(Ξ)] + αk−1E[Pk−2(Ξ)]

= βk−1δk1
1

h0
+ αk−1δk2

1

h0

= β0
1

h0
+ α1

1

h0
,

because E[Pk(Ξ)] = 0, for all k ≥ 1, E[Pk−1(Ξ)] = δk1
1
h0

and E[Pk−2(Ξ)] = δk2
1
h0

. The
second term in equation (3.40) converges in probability to 0 as follows from Lemma 3.10.
Thus, the Gauss estimator q̃M satisfies in the limit the following linear system

h0 0 . . . 0
0 h1 . . . 0

...
0 0 . . . hN



q̃0

q̃1
...
q̃N

 =


h0β0

1
h0

h1α1
1
h0

...
0

 (3.41)

The matrix in (3.41) is invertible as the Haar weights are positive real numbers. It follows
that limM→∞ q̃M = q̃ = (β0h0 ,

α1
h0
, 0, . . . , 0), where the limit is to be understood as conver-

gence in probability. All together for M →∞,

X =
β0

h0
P0(Ξ)h0 +

α1

h0
P1(Ξ)h1.

In chapter 2, it was assumed P0(ξ) = 1, ∀ ξ ∈ R. Under this assumption and by using
again the 3-term recurrence relation, it follows that P1(ξ) = ξ−β0

γ0
, ∀ ξ ∈ R. By equation

(2.32), it holds α1h1 = γ0h0. Therefore, as the sample size grows to infinity

X = β0 +
α1

h0

Ξ− β0

γ0
h1 = β0 + Ξ− β0 = Ξ,

and the proof is completed. �
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3 Optimal maps and polynomial chaos expansions

Non-linear case

The general case where the samples {Ξm}m=1,...,M and {Xm}m=1,...,M come from two dif-
ferent distributions FΞ and FX is now considered. Assume as in the linear case the follow-
ing regression model

X(mM) =
N∑
n=0

qn,MPn(Ξ(mM))hn, m = 1, . . . ,M. (3.42)

Theorem 3.11. Assume that the distribution function FX is twice differentiable and that the den-
sity fX is bounded away from zero on the support SX . Furthermore, assume that SX is a compact
subset of R. The solution q̃M to the least squares problem as in (3.30) converges in probability to
the vector q = (q0, . . . , qN ) of the coefficients in the PC expansion of a copy ofX , as the sample size
M grows to infinity.

Proof. Consider the Gauss estimator satisfying AM q̃M = zM , as in the linear case. Again
equation (3.39) holds. For the components of the vector zM , one has

(zM )k =
1

M

M∑
m=1

Pk−1(Ξ(mM))hk−1X
(mM)

=
1

M

M∑
m=1

Pk−1(Ξ(mM))hk−1

(
gX(Ξ(mM))− gX(Ξ(mM)) +X(mM)

)
=

1

M

M∑
m=1

Pk−1(Ξ(mM))hk−1gX(Ξ(mM)) +
1

M

M∑
m=1

Pk−1(Ξ(mM))hk−1

(
X(mM) − gX(Ξ(mM))

)
.

For the first term it holds

1

M

M∑
m=1

Pk−1(Ξ(mM))hk−1gX(Ξ(mM))
wp1
→ E[hk−1Pk−1(Ξ)gX(Ξ)] = hk−1qk−1, M →∞.

Consider the second term

eM =
1

M

M∑
m=1

Pk−1(Ξ(mM))hk−1

(
X(mM) − gX(Ξ(mM))

)
. (3.43)

As in the linear case, one has to show that eM
P→ 0, with M → ∞. Note that the match

of the ordered values in the two samples is the discrete version of the isoprobabilistic
transformation: ordering the values {Ξm}m=1,...,M and taking their image under F−1

X ◦ FΞ

results in an ordered sample in the X-space. This is because the transformation G = F−1
X ◦

FΞ is non-decreasing. So, the coefficients one is actually computing with the proposed
method are the coefficients of the random variable X = F−1

X ◦ FΞ(Ξ). Assume therefore
that gX ≡ G. This means that the difference X(mM) − gX(Ξ(mM)) in equation (3.43) can be
assumed to be the difference of two ordered samples from the same distribution. It follows
immediately from Lemma 3.10 that also in the nonlinear case

eM =
1

M

M∑
m=1

Pk−1(Ξ(mM))hk−1

(
X(mM) − gX(Ξ(mM))

)
P→ 0, M →∞.
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3.4 Estimation of PC coefficients

By building again the limit linear system for the Gauss estimator, the conclusion of the
proposition follows easily. �

REMARK

(i) The coefficients qn and q̃n,M , n ∈ {0, . . . , N} do not depend on N . The truncation
error of the PC expansion of X plays here no role, as the orthogonal projection to
the space lin{Pn : n = 0, . . . , N} is equivalent with the minimization of the quadratic
distance to this space.

(ii) As explained in the proof of Theorem 3.11, the transformation corresponding to the
matching of the ordered values is the discrete version of the one-dimensional Rosen-
blatt transformation.

(iii) One could possibly estimate the coefficients qn direct by their definition as

q̂n,M =
1

M

M∑
m=1

X(mM)Pn(Ξ(mM)), n = 0, . . . , N. (3.44)

In the next section, it will be shown how this approach can be mathematically justi-
fied.

3.4.2 Multi-dimensional case

Consider next two random vectors Ξ = (Ξ1, . . . ,Ξd) and X = (X1, . . . , Xd) on a prob-
ability space (Ω,A, P ). Assume that the supports SΞ and SX of their corresponding
image measures µ = (Ξ)#P and ν = (X)#P are compact subsets of Rd. Let {Ξm =
(Ξm1 , . . . ,Ξ

m
d )}m=1,...,M and {Xm = (Xm

1 , . . . , X
m
d )}m=1,...,M be two independent random

samples from their distributions FΞ and FX respectively and assume that these distribu-
tion functions admit densities with respect to the Lebesgue measure. Denote by

µM =
1

M

M∑
m=1

δξm and νM =
1

M

M∑
m=1

δxm (3.45)

the discrete empirical (random) measures on (Rd,B(Rd)) corresponding to these random
samples.

Let T = (T1, . . . , Td) : SΞ → SX be the optimal transportation map between the mea-
sures µ and ν for the quadratic cost, so that X = T (Ξ). From Theorem 3.5 and the
assumptions made here, this map exists and is unique and so is also the corresponding
optimal transference plan π. One wishes again to estimate the PC coefficients in the trun-
cated expansions

(X1, . . . , Xd) '

 N∑
|n|=0

q1
nPn(Ξ)hn, . . . ,

N∑
|n|=0

qdnPn(Ξ)hn

 , n ∈ Nd0, (3.46)

for a given approximation order N ∈ N0. Analogously to the one-dimensional case, a
matching between the samples {Ξm}m=1,...,M and {Xm}m=1,...,M has to be first build. As
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3 Optimal maps and polynomial chaos expansions

mentioned earlier, there is no total order in the Euclidean space Rd and the samples will be
matched by solving the corresponding assignment problem and constructing the discrete
analog of T. Therefore, denote by σM the optimal permutation which solves the assignment
problem for the cost s(x,y) = 〈x,y〉E and the measures µM and νM . This permutation
defines the discrete optimal map TM = (TM1 , . . . , TMd ) between the measures µM and νM
by the equation

TM (Ξm) = XσM (m), m = 1, . . . ,M, (3.47)

and corresponds to an optimal transference plan πM . As explained in sections 3.3.2 and
3.3.3 this permutation can be computed via the auction algorithm.

Regression approach

The goal is to estimate the coefficients in (3.46) from the given samples by minimizing the
residual

M∑
m=1

|XσM (m)
1 −

N∑
|n|=0

q1
n,MPn(Ξm)hn|2 + · · ·+

M∑
m=1

|XσM (m)
d −

N∑
|n|=0

qdn,MPn(Ξm)hn|2.

Analogously as in the one-dimensional case, the design matrix of this least-squares prob-
lem reads

D(Ξ) =


P0(Ξ1)h0 P1(Ξ1)h1 . . . PdP (Ξ1)hdP
P0(Ξ2)h0 P1(Ξ2)h1 . . . PdP (Ξ2)hdP

...
P0(ΞM )h0 P1(ΞM )h1 . . . PdP (ΞM )hdP


Here the single index notation is used for simplicity and dP + 1 denotes the dimension of
the polynomial subspace PN defined in equation (2.42). One has

q̃jn,M =
(
D(Ξ)TD(Ξ)

)−1
D(Ξ)TX

(M)
j , j = 1, . . . , d, (3.48)

whereX(M)
j = (X

σM (1)
j , . . . , X

σM (M)
j )T , j = 1, . . . , d.

Theorem 3.12. Assume that Ξ andX are two continuous random vectors with compact supports.
Let q̃jn,M , j = 1, . . . , d be the solutions of the least-squares problems as in (3.48). Then,

q̃jn,M
wp1→ qjn, for M →∞, j = 1, . . . , d, (3.49)

where {qjn : |n| ≤ N}j=1,...,d are the PC coefficients of the random vector X = T (Ξ) in equation
(3.46).

Proof. The proof is similar to the proof of Theorem 3.8. Define as before

AM =
1

M
D(Ξ)TD(Ξ), zjM =

1

M
D(Ξ)TX

(M)
j , j = 1, . . . , d.
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3.4 Estimation of PC coefficients

The elements (AM )k,l, k, l = 1 . . . ,K + 1 of the matrix AM converge with probability 1 to
δk,lhk−1 as before. For the elements of zjM , j = 1, . . . , d we have

(zjM )k =
1

M

M∑
m=1

Pk−1(Ξm)hk−1X
σM (m)
j

=
1

M

M∑
m=1

Pk−1(Ξm)hk−1

(
X
σM (m)
j − Tj(Ξm) + Tj(Ξ

m)
)

=
1

M

M∑
m=1

Pk−1(Ξm)hk−1Tj(Ξ
m) +

1

M

M∑
m=1

Pk−1(Ξm)hk−1

(
X
σM (m)
j − Tj(Ξm)

)
.

The first term converges with probability 1 to E[Pk−1hk−1Tj(Ξ)] = hk−1q
j
k−1 for M → ∞.

It remains to examine the terms

ejM =
1

M

M∑
m=1

Pk−1(Ξm)hk−1

(
X
σM (m)
j − Tj(Ξm)

)
, j = 1, . . . , d.

One has

|ejM | =

∣∣∣∣∣ 1

M

M∑
m=1

Pk−1(Ξm)hk−1

(
X
σM (m)
j − Tj(Ξm)

)∣∣∣∣∣
=

∣∣∣∣∣ 1

M

M∑
m=1

Pk−1(Ξm)hk−1

(
TMj (Ξm)− Tj(Ξm)

)∣∣∣∣∣
≤ ‖Pk−1‖∞hk−1

1

M

M∑
m=1

|Tj(Ξm)− TMj (Ξm)|.

Again ‖Pk−1‖∞ <∞, due to compactness of SΞ. Define C = ‖Pk−1‖∞hk−1. Then,

|ejM | ≤ C
1

M

M∑
m=1

|Tj(Ξm)− TMj (Ξm)|

= C

∫
SΞ

|Tj(ξ)− TMj (ξ)|dµM (ξ)

≤ C
∫
SΞ

‖T (ξ)− TM (ξ)‖EdµM (ξ).
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3 Optimal maps and polynomial chaos expansions

Choose an ε > 0 and rewrite the above integral

|ejM | ≤ C
[∫

SΞ

1{‖T (ξ)− TM (ξ)‖E > ε}‖T (ξ)− TM (ξ)‖EdµM (ξ)

+

∫
SΞ

1{‖T (ξ)− TM (ξ)‖E ≤ ε}‖T (ξ)− TM (ξ)‖EdµM (ξ)

]
≤ C

[∫
SΞ

1{‖T (ξ)− TM (ξ)‖E > ε}‖T (ξ)− TM (ξ)‖EdµM (ξ) + εµM (SΞ)

]
≤ C

[
diam(SX)

∫
SΞ

1{‖T (ξ)− TM (ξ)‖E > ε}dµM (ξ) + εµM (SΞ)

]
= C

[
diam(SX)µM (‖T (ξ)− TM (ξ)‖E > ε) + ε

]
All together one has that

|ejM |≤ Cdiam(SX)µM
(
‖T (ξ)− TM (ξ)‖E > ε

)
+ Cε, j = 1, . . . , d.

The empirical measure µM converges strongly to µ by the law of large numbers and with
probability 1, as M →∞. Thus, the weak convergence µM ⇀ µ holds also with probabil-
ity 1. By using the uniqueness of the optimal map and the optimal transference plan for
the quadratic cost, Corollary 3.7 then guarantees that with probability 1 it holds

∀ ε > 0, µM
(
‖T (ξ)− TM (ξ)‖E > ε

)
→ 0, M →∞.

This means that |ejM |
wp1
→ 0, when the sample size M grows to infinity. Returning again to

the Gauss estimators q̃jn,M , j = 1, . . . , d in (3.48), it follows that in the limit M → ∞ they
satisfy P-a.s the equation

h0 0 . . . 0
0 h1 . . . 0

...
0 0 . . . hdP



q̃j0
q̃j1
...
q̃jdP

 =


h0q

j
0

h1q
j
1

...
hdP q

j
dP

 , (3.50)

where the single index notation is again used. The matrix in (3.50) is the same invertible
matrix which appeared in the limit of the one-dimensional problem and is invertible. Now,
the conclusion of the proposition follows immediately. �

Non-intrusive approach

Another way to compute the PC coefficients using the theory of optimal transportation is
directly through their definition in equation (2.39), where instead of fX one can substitute
the optimal map T from the previous subsection. In this case

qjn =

∫
Ω
Tj(Ξ(ω))Pn(Ξ(ω))dP (ω) =

∫
SΞ

Tj(ξ)Pn(ξ)dµ(ξ), j = 1, . . . , d. (3.51)
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3.4 Estimation of PC coefficients

Assume again that finite samples of size M from µ and ν are available. Then, one can
approximate qjn by

q̂jn,M =

∫
SΞ

TMj (ξ)Pn(ξ)dµM (ξ) (3.52)

=
1

M

M∑
m=1

TMj (ξm)Pn(ξm) =
1

M

M∑
m=1

x
σM (m)
j Pn(ξm).

Proposition 3.13. Under the assumptions of Theorem 3.12, it holds that there exists a subsequence
(q̂n,ML

)L∈N of (q̂n,M )M∈N such that

q̂jn,ML

wp1→ qjn, L→∞, for j = 1, . . . , d, (3.53)

where q̂n,M are the estimated PC coefficients defined by equation (3.52).

Proof. Fix ε > 0 and n ∈ Nd0.
Then,

|q̂jn,M − q
j
n| =

∣∣∣∣∫
SΞ

TMj (ξ)Pn(ξ)dµM (ξ)−
∫
SΞ

Tj(ξ)Pn(ξ)dµ(ξ)

∣∣∣∣
=

∣∣∣∣∫
SΞ×SX

xjPn(ξ)dπM (ξ,x)−
∫
SΞ×SX

xjPn(ξ)dπ(ξ,x)

∣∣∣∣ .
Theorem 3.6 assures that as M →∞, there exists a subsequence (πML

)L∈N of (πM )M∈N
which converges weakly to the measure π with probability 1. The real functions rj(x, ξ) =
xjPn(ξ), j = 1, . . . , d belong to the class of continuous bounded functions on SΞ × SX
because of the assumed compactness of the supports. Therefore, by Definition 2.13, there
is a L′ ∈ N, so that ∀ L ≥ L′,∣∣∣∣∫

SΞ×SX

xjPn(ξ)dπML
(ξ,x)−

∫
SΞ×SX

xjPn(ξ)dπ(ξ,x)

∣∣∣∣ < ε,

thus also
|q̂jn,ML

− qjn|< ε, ∀ j = 1, . . . , d.

�

REMARK

(i) In the one-dimensional case, the solution to the discrete assignment problem is the
matching of the ordered statistics. Thus, OT theory allows to prove formula (3.44) in
the one-dimensional case. This was not possible with the theory of ordered statistics
as in general F−1

X (FΞ(Ξ(mM))) 6= X(mM).

(ii) When working with the definition of the polynomial chaos coefficients, it is here
proved that there is only a subsequence which converges to the exact coefficients.
This property expresses itself in rather bad approximations, compared with the re-
sults obtained by the method that uses the linear regression, as it will be shown in
the next section via numerical experiments.
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3 Optimal maps and polynomial chaos expansions

(iii) The approach using the optimal transportation theory allows to prove convergence
with probability 1. Thus, a stronger result is obtained compared to the order statistics
approach which resulted only in convergence in probability.

3.5 Numerical simulations

The theoretical results obtained in the previous sections are verified here numerically.

3.5.1 One-dimensional case

Let Ξ be a random variable distributed uniformly on [−1, 1]. Then the sequence of the
corresponding orthogonal polynomials are the Legendre polynomials. Let X be a random
variable distributed uniformly on the interval [a, b]. Then, the underlying transformation
can be assumed to be

X = gX(U) =
a+ b

2
+
b− a

2
U, (3.54)

so that the coefficients in the PC expansion of X

X =

∞∑
n=0

qnPn(Ξ)hn (3.55)

in terms of the Legendre polynomials are

q0 =
a+ b

2
, q1 =

b− a
2h1

, and qn = 0, ∀ n ≥ 2. (3.56)

The PC coefficients are estimated from given samples from the distribution of X of dif-
ferent sizesM by using the regression and the non-intrusive approach. For the simulations
it was assumed that a = 0 and b = 20. In Figure 3.1, density estimators from samples gen-
erated by the estimated PC expansions are shown. In Table 3.1, the estimated coefficients
up to order N = 4 are summarized for different sample sizes and for the two different
methods.

3.5.2 Multi-dimensional case

Let now X = (X1, . . . , Xd) be a random vector distributed according to a Dirichlet distri-
bution parametrized by a vector r. The Dirichlet distribution is the conjugate prior of the
categorical and the multinomial distribution in Bayesian statistics [57]. Its support is the
standard (d− 1) - dimensional simplex, this means the compact set

SX = {x = (x1, . . . , xd) ∈ Rd :

d∑
i=1

xi = 1 and xi ∈ [0, 1], ∀ i = 1, . . . , d}. (3.57)

Let Ξ = (Ξ1, . . . ,Ξd) be a vector of independent random variables each distributed uni-
formly on [−1, 1]. The multivariate Legendre polynomials are the corresponding orthogo-
nal polynomials. Assume one has a sample of size M from the Dirichlet distribution and
wishes to estimate the PC expansion of the associated random variable X with respect to
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Figure 3.1: Density estimates from samples generated by the estimated PC expansion of
X ∼ U [0, 20]: regression (left) and non-intrusive (right) approach. M denotes
the size of the given sample. The black line corresponds to the density estimate
from a sample of size 60000 from the uniform distribution.

Ξ. The performance of the two different approaches is next numerically demonstrated.
The parameter r of the Dirichlet distribution was fixed to r = (0.5, 1, 1.5, 2, 2.5). The order
of the approximation was fixed in all cases to N = 5.

In Figures 3.2 and 3.3, the regression approach was followed when it was assumed that
samples of two different sizes M = 1000 and M = 5000 respectively from the distribution
ofX are given. The parameter ε of the auction algorithm was set in both cases to ε = 0.001.
The implementation of the auction algorithm in MATLAB R©was used for the simulations.
It can be seen that already with the smaller sample size the dependencies and the marginal
densities of the 5-dimensional random vectorX are captured well. When the sample sizes
increases, the estimated samples tend to lie better on the simplex.

In Figure 3.4, the PC coefficients were estimated directly via the definition and by equa-
tion (3.52) when a set of observations of size M = 5000 from the distribution of X was
given. This method fails to capture the underlying distribution and verifies the theoretical
obtained results of poor convergence.
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3 Optimal maps and polynomial chaos expansions

Table 3.1: Estimated PC coefficients for X ∼ U [0, 20]

q0 q1 q2 q3 q4

true 10 10/3 0 0 0
regression

M = 100 9.96492051 3.18918970 -0.20330119 0.14687919 0.01739027
M = 1000 9.90444163 3.22706395 0.07341866 0.06003626 -0.04232979
M = 2000 9.936422608 3.377922081 0.017718355 -0.027664351 -0.014423813
M = 5000 10.078532222 3.346777517 -0.023336428 -0.009852080 0.004974737

non-intrusive
M = 100 10.17417866 2.77339313 -0.71158370 -0.05911298 0.05289290
M = 1000 9.88902374 3.45150115 0.36403198 0.09614726 -0.06000841
M = 2000 9.892016654 3.308645462 0.006242148 -0.020342941 0.059028209
M = 5000 10.12343 3.403760 0.01609069 0.00004540619 0.02416661
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3.5 Numerical simulations
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Figure 3.2: Univariate marginal estimates and bivariate sample plots. Blue curves and
points are generated from the Dirichlet D(0.5, 1, 1.5, 2, 2.5) and red curves and
points from its estimated PC expansion given a sample of size M = 1000 and
for ε = 0.001 via regression.
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Figure 3.3: Univariate marginal estimates and bivariate sample plots. Blue curves and
points are generated from the Dirichlet D(0.5, 1, 1.5, 2, 2.5) and red curves and
points from the estimated PC expansion given a sample of size M = 5000 and
for ε = 0.001 via regression.
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Figure 3.4: Univariate marginal estimates and bivariate sample plots. Blue curves and
points are generated from the Dirichlet D(0.5, 1, 1.5, 2, 2.5) and red curves and
points from the estimated PC expansion given a sample of size M = 5000 and
for ε = 0.001 via the non-intrusive approach.

43



3 Optimal maps and polynomial chaos expansions

44



4 Weighted polynomial chaos expansions

As discussed in chapter 2, truncated polynomial chaos expansions are being used for the
approximation of the solution of dynamical systems with parametric uncertainty, and their
coefficients are determined by stochastic Galerkin or non-intrusive methods. In many ap-
plications, the solution x(t,Θ) of (2.48) describes a quantity such as a chemical concen-
tration or a population density. Thus, positivity (or better non-negativity) is a natural
property to require for the solution and the initial condition of the dynamical system.

Even when the given dynamical system preserves positivity, i.e. solutions starting from
non-negative initial data remain non-negative in their existence interval, it cannot be as-
sured that any finite polynomial approximation xN (t,Ξ) as in (2.54) remains positive for
all realizations of Ξ and all times t.

The problem of positivity in truncated expansions was addressed in [106], where it was
analyzed that positivity is related to stability problems. It was there shown that increasing
the approximation order may not solve this problem, as one would expect. In [41, 106] it
was further stressed out that representing random variables which are positive but have a
small mean and a large variance can lead to positive probabilities of negative values and
therefore to instability. One way to overcome this problem is by using local expansions in
a multi-wavelet basis [85]. Another possible solution is to transform the random variable
first by using a strictly positive function such as the exponential, i.e. to find first the PC
expansion of the random variable Y = eX and then infer the PC coefficients of X from
the coefficients of the random variable Y . This step will introduce a high degree of non-
linearity along with the issues that its existence implies [41]. Furthermore, in this way one
is not able to represent quantities that can be also zero, which is usually the case in practice.

In this chapter it is shown how the positivity of the solution can be preserved by apply-
ing proper summability methods. This is equivalent to introducing weights in the trun-
cated polynomial approximation. The same methods allow to gain expansions also in the
case X ∈ Lp(Ω, σ(Ξ), P ), p 6= 2.

4.1 Basics from functional analysis

In this section, results from functional analysis are summarized which will be used as
tools in the sequence. More details can be found for example in [68] or other textbooks on
functional analysis.

Definition 4.1. A linear operator F : Lp(Rd,B(Rd),µ)→ Lp(Rd,B(Rd),µ) is called bounded if
there exists a constant M ≥ 0, such that

‖F (f)‖p ≤M‖f‖p, ∀ f ∈ Lp(Rd,B(Rd),µ). (4.1)
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4 Weighted polynomial chaos expansions

One can show that F is a bounded operator if and only if it is continuous. The norm
‖F‖Lp

of the bounded linear operator F is defined as

‖F‖Lp
= sup

f∈SLp

‖F (f)‖p, 1 ≤ p ≤ ∞, (4.2)

where
SLp = {f ∈ Lp(Rd,B(Rd),µ) : ‖f‖p = 1} (4.3)

denotes the unit sphere in Lp(Rd,B(Rd),µ). One can show that

‖F‖Lp
= inf{M ≥ 0: ‖F (f)‖p ≤M‖f‖p, ∀ f ∈ Lp(Rd,B(Rd),µ)}. (4.4)

Definition 4.2. An operator F : Lp(Rd,B(Rd),µ) → Lp(Rd,B(Rd),µ) is called positive if and
only if for all f ∈ Lp(Rd,B(Rd),µ) such that f(x) ≥ 0 µ-a.e. it holds that also F (f)(x) ≥ 0
µ-a.e.

Known theorems are next recalled.

Theorem 4.3. (Hölder’s inequality) Let 1 ≤ p ≤ q ≤ ∞with 1
p + 1

q = 1. If f ∈ Lp(Rd,B(Rd),µ)

and g ∈ Lq(Rd,B(Rd),µ), then∫
Rd

|f(x)g(x)|dµ(x) ≤ ‖f‖p‖g‖q. (4.5)

Lemma 4.4. (Urysohn) Let A ⊆ Rd be a compact set and U ⊆ Rd an open set such that A ⊂ U .
Then, there exists a continuous function g : Rd → [0, 1] such that g(x) = 1, for all x ∈ A and
g(x) = 0, for all x ∈ Rd \ U .

Theorem 4.5. (Fubini) Let (Rd,B(Rd),µ) and (Rd,B(Rd),ν) be two probability spaces and let
W = (Rd ×Rd,B(Rd)×B(Rd),µ× ν) be their product space. Let f be a measurable function on
W and assume that one of the following integrals is finite∫

Rd×Rd

|f(x,y)|dµ(x)× ν(y), (4.6)∫
Rd

∫
Rd

|f(x,y)|dµ(x)dν(y),∫
Rd

∫
Rd

|f(x,y)|dν(y)dµ(x).

Then, it holds∫
Rd×Rd

f(x,y)dµ(x)× ν(y) =

∫
Rd

∫
Rd

f(x,y)dµ(x)dν(y) =

∫
Rd

∫
Rd

f(x,y)dν(y)dµ(x). (4.7)

Definition 4.6. Let µ be a measure on the measurable space (Ω,A). The total variation |µ| : A →
R is defined as

|µ|(A) = sup
A∈A
{
N∑
n=1

|µ(An)| : {A1, . . . , AN} is a measurable partition of A}. (4.8)

The measure norm ‖µ‖ is defined as |µ|(Ω).
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4.2 Summability methods based on kernels

Theorem 4.7. (Riesz’s representation theorem) Let (Rd,B(Rd),µ) be a probability space and let σ
be another measure on (Rd,B(Rd)). Then, the functional Q : L∞(Rd,B(Rd),µ)→ R defined by

Q(f) =

∫
Rd

f(x)dσ(x) (4.9)

is a bounded linear functional and
‖Q‖L∞ = ‖σ‖. (4.10)

Theorem 4.8. (Banach-Steinhaus) Let X,Y be two Banach spaces and let {Fi}i∈I be a family of
bounded linear operators from X into Y such that

sup
i∈I
{‖Fi(x)‖Y } <∞, ∀ x ∈ X. (4.11)

Then, the operator norms are also bounded,

sup
i∈I
{‖Fi‖} <∞. (4.12)

Finally, Sobolev spaces are here defined (as in [4]). They will be used later in the error
analysis of positive summability methods.

Definition 4.9. Let 1 ≤ p <∞ and l ∈ N0. The Sobolev space H l
p(Rd) is defined as

H l
p(Rd) = {f ∈ Lp(Rd) : D(n)f exists and D(n)f ∈ Lp(Rd), ∀ n such that |n| ≤ l}, (4.13)

where D(n)f is the nth-weak derivative of f . If equipped with the norm

‖f‖Hl
p

=

 l∑
|n|=0

‖D(n)f‖pp

1/p

(4.14)

it becomes a Banach space.

4.2 Summability methods based on kernels

4.2.1 General summability methods

Following the notation from chapter 2, µ is the image measure of the basis random vector
Ξ = (Ξ1, . . . ,Ξd) and denote by S = suppµ its support. Assume from now on that S is
compact. In this case, it holds that

Lp(S,B(S),µ) ⊂ Lq(S,B(S),µ), ∀ 1 ≤ q ≤ p ≤ ∞, (4.15)

which can be proven by using the Hölder’s inequality. Let now f ∈ L1(S,B(S),µ) and
define its Fourier coefficients by

f̂n =

∫
S
f(x)Pn(x)dµ(x), n ∈ Nd0. (4.16)
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4 Weighted polynomial chaos expansions

Let τi : N0 → N0, i = 1, . . . , d, be sequences with limN→∞ τi(N) = ∞, and ωN,n be
complex numbers for all N ∈ N0, n ∈ Nd0. Define for N ∈ N0 the linear operators

FN : Lp(S,B(S),µ)→ Lp(S,B(S),µ), 1 ≤ p ≤ ∞ (4.17)

by

FN (f) =

τ1(N)∑
n1=0

· · ·
τd(N)∑
nd=0

ωN,nf̂nPnhn. (4.18)

Lemma 4.10. The operators FN as defined above are continuous.

Proof. Let f ∈ Lp(S,B(S),µ), 1 ≤ p ≤ ∞. Then, using the triangle inequality for the norm
yields

‖FN (f)‖p ≤
τ1(N)∑
n1=0

· · ·
τd(N)∑
nd=0

‖ωN,nf̂nPnhn‖p =

τ1(N)∑
n1=0

· · ·
τd(N)∑
nd=0

|ωN,n||f̂n|‖Pn‖phn. (4.19)

From the definition of the coefficients f̂n it follows

|f̂n| ≤
∫
S
|f(x)||Pn(x)|dµ(x) ≤ sup

x∈S
|Pn(x)|

∫
S
|f(x)|dµ(x) = ‖Pn‖∞‖f‖1,

so that equation (4.19) becomes

‖FN (f)‖p ≤
τ1(N)∑
n1=0

· · ·
τd(N)∑
nd=0

|ωN,n|‖Pn‖∞‖f‖1‖Pn‖phn

=

τ1(N)∑
n1=0

· · ·
τd(N)∑
nd=0

|ωN,n|‖Pn‖∞‖Pn‖phn

 ‖f‖1.
From Hölder’s inequality, it follows immediately

‖f‖1 ≤ ‖f‖p, ∀ 1 ≤ p ≤ ∞,

which completes the proof. �

This lemma thus assures the existence of the operator norms ‖FN‖ for all N ∈ N0. The
following theorem states the conditions under which the weighted truncated expansions in
(4.18) converge to the actual function of interest f . When these conditions are satisfied, it is
guaranteed that in the limit the weighted expansions converge to the correct quantity and
thus the weights do not affect the approximation property of the polynomial expansions.

Theorem 4.11. Let 1 ≤ p < ∞ and {FN}∞N=0 be a sequence of operators defined by (4.18). Then
it holds that

FN (f)
Lp

→ f, ∀ f ∈ Lp(S,B(S),µ) (4.20)

if and only if
lim
N→∞

ωN,n = 1, ∀ n ∈ Nd0, (4.21)

and there exists a constant C > 0, independent of N such that

‖FN‖L
p
< C, ∀N ∈ N0. (4.22)
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4.2 Summability methods based on kernels

Proof. Before the proof is stated, it is noted that if limN→∞ FN (f) = f for all functions
f ∈ Lp(S,B(S),µ), then the following equivalence holds true[

lim
N→∞

FN (Pn) = Pn

]
⇔
[

lim
N→∞

ωN,n = 1

]
. (4.23)

This can be easily seen by substituting Pn as the function f in (4.18). Using the orthogo-
nality of the polynomials, it then follows that

FN (Pn) = ωN,nPn, ∀ n ∈ Nd0, N ∈ N0.

Consider firstly the forward direction for the proof of the theorem. Equation (4.2.3)
follows then immediately from the remark above. Moreover, equation (4.20) is equivalent
to

∀ ε > 0,∃N ′ ∈ N0 : ∀N ≥ N ′, ‖FN (f)− f‖p < ε.

This means, that

‖FN (f)‖p ≤ max{‖F0(f)‖p, . . . ‖FN ′−1(f)‖p, ‖f‖p + ε}.

Thus, from Theorem 4.8, (4.22) follows immediately.
Conversely, assume that equations (4.2.3) and (4.22) hold. Let f ∈ Lp(Rd,B(Rd),µ) and

ε > 0. Equations (4.2.3) and (4.23) imply that limN→∞ FN (Q) = Q for all polynomials
Q ∈ P . Since P is dense in Lp(S,B(S),µ), for 1 ≤ p < ∞ [68] one may choose Q ∈ P
with ‖Q− f‖p < ε. Moreover, for any such Q, and any ε, there exists an N ′ ∈ N0, such that
∀N ≥ N ′, ‖FN (Q)−Q‖p < ε. By the triangle inequality one has

‖f − FN (f)‖p ≤ ‖f −Q‖p + ‖Q− FN (Q)‖p + ‖FN (Q)− FN (f)‖p.

Using now the above and equations (4.4) and (4.22), one has

‖f − FN (f)‖p ≤ ‖f −Q‖p + ‖Q− FN (Q)‖p + C‖Q− f‖p
≤ (2 + C)ε

for all N ≥ N ′ and for all ε > 0, which completes the proof. �

One wishes now to verify equation (4.22) for the operators under consideration, that is
one wishes to find an upper bound for the operator norms ‖FN‖L

p
, which is independent

of N . To this end, define for all x,y ∈ S and for all N ∈ N0 the kernels

KN (x,y) =

τ1(N)∑
n1=0

· · ·
τd(N)∑
nd=0

ωN,nPn(x)Pn(y)hn. (4.24)

Then, by substituting the definition of the Fourier coefficients (4.16) in (4.18) one gets the
integral representation for the operators

FN (f)(x) =

∫
S
f(y)KN (x,y)dµ(y). (4.25)

The following lemma provides with upper bounds for the norm of the operators. These
bounds depend on the kernels defined in (4.24).
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Lemma 4.12. Let 1 ≤ p ≤ ∞ and FN defined by (4.25). Then

‖FN‖L
p ≤ ‖FN‖L

1
= ‖FN‖L

∞
= sup
x∈S

∫
S
|KN (x,y)|dµ(y). (4.26)

Proof. Case p =∞. Then for all f ∈ L∞(Rd,B(Rd),µ), one has

‖FN (f)‖∞ = sup
x∈S
|FN (f)(x)|

≤ sup
x∈S

∫
S
|f(y)KN (x,y)dµ(y)|

= sup
x∈S

∫
S
|f(y)||KN (x,y)|dµ(y)

≤ sup
x∈S

∫
S
‖f‖∞|KN (x,y)|dµ(y)

≤
(

sup
x∈S

∫
S
|KN (x,y)|dµ(y)

)
‖f‖∞,

which means that

‖FN‖L
∞ ≤

(
sup
x∈S

∫
S
|KN (x,y)|dµ(y)

)
. (4.27)

To establish the equality, one can show the reverse inequality in (4.27). Let x ∈ S be
arbitrary, fixed. Consider the linear functional Qx : L∞ → R defined by

Qx(f) =

∫
S
f(y)KN (x,y)dµ(y).

By Theorem 4.7, it holds for the norm of Qx

‖Qx‖L
∞

=

∫
S
|KN (x,y)|dµ(y).

On the other hand from the definition of the operator norm, one has

‖Qx‖L
∞

= sup
f∈SL∞

|Qx(f)|.

All together, for all x ∈ S one has

‖Qx‖L
∞

=

∫
S
|KN (x,y)|dµ(y) (4.28)

= sup
f∈SL∞

|Qx(f)|

= sup
f∈SL∞

|
∫
S
f(y)KN (x,y)dµ(y)|

= sup
f∈SL∞

|FN (f)(x)|

≤ sup
f∈SL∞

sup
x∈S
|FN (f)(x)|

= sup
f∈SL∞

‖ FN (f) ‖∞= ‖FN‖L
∞
.
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4.2 Summability methods based on kernels

Thus, by (4.27) and by taking supremums on both sides of (4.28) it follows that

‖FN‖L
∞

= sup
x∈S

∫
S
|KN (x,y)|dµ(y).

Case p = 1. By using the definition of the L1-operator norm, Fubini’s theorem, and the
symmetry property of the kernel KN , namely

KN (x,y) = KN (y,x), ∀ x,y ∈ S,

one has

‖FN‖L
1

= sup
g∈SL1

‖FN (g)‖1

= sup
g∈SL1

sup
f∈SL∞

∣∣∣∣∫
S
f(x)

∫
S
g(y)KN (x,y)dµ(y)dµ(x)

∣∣∣∣
= sup

g∈SL1

sup
f∈SL∞

∣∣∣∣∫
S
g(y)

∫
S
f(x)KN (y,x)dµ(x)dµ(y)

∣∣∣∣
= sup

f∈SL∞
sup
g∈SL1

∣∣∣∣∫
S
g(y)FN (f)(y)dµ(y)

∣∣∣∣
= sup

f∈SL∞
‖FN (f)‖∞ = ‖FN‖L

∞
.

Case 1 < p < ∞. Let q be such that 1/p + 1/q = 1, and f ∈ Lp(Rd,B(Rd),µ). Applying
Hölder’s inequality with respect to the measure |KN (x,y)|dµ(y) yields(∫

S
|f(y)||KN (x,y)|dµ(y)

)p
≤
(∫

S
|KN (x,y)|dµ(y)

)p/q ∫
S
|f(y)|p|KN (x,y)|dµ(y).

Using the above equation and Fubini’s theorem one gets

‖FN (f)‖pp =

∫
S
|FN (f)(x)|pdµ(x)

=

∫
S
|
∫
S
f(y)KN (x,y)dµ(y)|pdµ(x)

≤
(

sup
x∈S

∫
S
|KN (x,y)|dµ(y)

)p/q ∫
S

∫
S
|f(y)|p|KN (y,x)|dµ(x)dµ(y)

≤
(

sup
x∈S

∫
S
|KN (x,y)|dµ(y)

)p/q (
sup
y∈S

∫
S
|KN (y,x)|dµ(x)

)∫
S
|f(y)|pdµ(y)

≤
(

sup
x∈S

∫
S
|KN (x,y)|dµ(y)

)p/q (
sup
y∈S

∫
S
|KN (y,x)|dµ(x)

)
‖f‖pp.

Hence,

‖FN‖L
p ≤

(
sup
x∈S

∫
S
|KN (x,y)|dµ(y)

)1/q
(

sup
y∈S

∫
S
|KN (y,x)|dµ(x)

)1/p

.
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By the symmetry of the kernel KN , it follows

‖FN‖L
p ≤ sup

x∈S

∫
S
|KN (x,y)|dµ(y), ∀ 1 < p <∞,

and the proof is completed. �

So far, the estimates for the operator norms depend on the index N . Next, it is shown
that when one restricts itself on positive operators, one can raise this problem and thus
fulfill the condition in equation (4.22).

4.2.2 Positive summability methods

Consider now the case where one is dealing with positive quantities f and wishes to es-
tablish the positivity and approximating property for the operators FN . Firstly, a simple
characterization of the positivity for the operators under consideration is stated.

Lemma 4.13. The operator FN is positive if and only if KN (x,y) ≥ 0 for all x,y ∈ S.

Proof. It is easily seen by (4.18) that KN (x,y) ≥ 0 for all x,y ∈ S implies the positivity of
FN .
Assume now that FN is positive and that there exist x0,y0 ∈ S withKN (x0,y0) < 0. Then,
because of the continuity of the kernel KN , there is a δ < 0 and an open set U ⊂ S with
y0 ∈ U such that

KN (x0,y) < δ < 0, ∀ y ∈ U.

There exists a compact set V  U with µ(V ) > 0. Due to Lemma 4.4, there exists a
continuous function g : S → [0, 1] with g(y) = 1, for all y ∈ V and g(y) = 0, for all
y ∈ S \ U . Thus,

FN (g)(x0) =

∫
S
g(y)KN (x0,y)dµ(y)

=

∫
S\U

g(y)KN (x0,y)dµ(y) +

∫
U
g(y)KN (x0,y)dµ(y)

< δ

∫
U
g(y)dµ(y) < δ

∫
V
g(y)dµ(y) = δµ(V ) < 0

which contradicts the positivity of the operator FN . �

In the case of positive operators, the following results follow from Theorem 4.11 and
Lemma 4.12. The first one gives a more concrete value to the norm of the positive operators
and the second one simplifies the conditions under which the sequence of the positive
operators converges.

Corollary 4.14. If FN is positive, then ‖FN‖L
p ≤ ωN,0, 1 ≤ p ≤ ∞, where 0 = (0, . . . , 0) ∈ Nd0.
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Proof. If FN is positive, then KN (x,y) ≥ 0 for all x,y ∈ S, see Lemma 4.13. Therefore, by
orthogonality

‖FN‖L
∞

= sup
x∈S

∫
S
KN (x,y)dµ(y)

= sup
x∈S

τ1(N)∑
n1=0

· · ·
τd(N)∑
nd=0

ωN,nPn(x)hn

∫
S
Pn(y)dµ(y)

= sup
x∈S

τ1(N)∑
n1=0

· · ·
τd(N)∑
nd=0

ωN,nPn(x)hnδ0n
1

hn

= sup
x∈S

P0(x)ωN,0 = ωN,0,

as it was assumed in Chapter 2 that P0(x) = 1. By using the fact that ‖FN‖L
p ≤ ‖FN‖L

∞
,

as established in Lemma 4.12, the conclusion follows. �

Finally, the central theorem for this chapter is given. It states that in the case of positive
kernel operators, defined as in equations (4.24) and (4.25), only the limiting condition on
the weights has to be verified. The condition of the uniform boundedness of the operator
norms in Theorem 4.11 follows then immediately.

Theorem 4.15. If {FN}∞N=0 is a sequence of positive operators, then FN (f)
Lp

→ f for all f ∈
Lp(Rd,B(Rd),µ), 1 ≤ p <∞ if and only if limN→∞ ωN,n = 1 for all n ∈ Nd0.

Proof. The forward direction of the proof is obvious from Theorem 4.11. It remains to show
that if limN→∞ ωN,n = 1 for all n ∈ Nd0, then the condition ‖FN‖L

p
< C, ∀ N ∈ N0 holds

true.
If {FN}∞N=0 is a sequence of positive operators, then Corollary 4.14 yields ‖FN‖L

p ≤
ωN,0. Hence, if equation (4.2.3) is true, then especially forn = 0, one has that limN→∞ ωN,0 =
1. This means that the sequence {ωN,0}N∈N0 is bounded, thus there exists a constant C > 0
such that ωN,0 < C, for all N ∈ N0 and the proof is completed. �

More generally, the positive kernel operators allow to preserve boundedness, as shown
in the following lemma.

Lemma 4.16. Let m,M ∈ R be given real numbers and let {FN}∞N=0 be a sequence of positive
operators. Then, m ≤ FN (f)(x) ≤M , µ-a.e. for all f ∈ Lp(Rd,B(Rd),µ), 1 ≤ p <∞ such that
m ≤ f(x) ≤M , µ-a.e. if and only if ωN,0 = 1, for all N ∈ N0.

Proof. Let f ∈ Lp(Rd,B(Rd),µ), 1 ≤ p < ∞ and assume that f(x) ≥ m, µ-a.e. Then,
the function g(x) = f(x) −m will be positive and thus FN (g) will be also positive for all

53



4 Weighted polynomial chaos expansions

N ∈ N0, since {FN}∞N=0 is a assumed to be a sequence of positive operators. Then

0 ≤ FN (g) =

τ(N)∑
n1=0

· · ·
τ(N)∑
nd=0

ωN,nĝnPnhn

=

τ(N)∑
n1=0

· · ·
τ(N)∑
nd=0

ωN,n(f̂n −mδn0)Pnhn

=

τ(N)∑
n1=0

· · ·
τ(N)∑
nd=0

ωN,nf̂nPnhn − ωN,0m

= FN (f)− ωN,0m

from it follows that the condition ωN,0 ≥ 1, ∀N ∈ N0 must hold. By bounding the truncated
expansion from above, it follows that ωN,0 ≤ 1, ∀N ∈ N0, and the proof is completed. �

A method to construct multivariate kernels is by using univariate ones in the following
way. Assume that one has the one-dimensional kernel

LN (x, y) =

τ(N)∑
n=0

ωN,nPn(x)Pn(y)hn, x, y ∈ R. (4.29)

Consider the kernel KN (x,y) defined as the product

KN (x,y) = LN (x1, y1) · · ·LN (xd, yd) (4.30)

=

τ(N)∑
n1=0

· · ·
τ(N)∑
nd=0

ωN,nPn(x)Pn(y)hn

with ωN,n = ωN,n1 · · ·ωN,nd
. It is obvious that the kernel KN (x,y) is positive if the one-

dimensional kernel LN is positive. Therefore, due to Corollary 4.15, it is sufficient to con-
struct positive kernels LN with limN→∞ ωN,n = 1 for all n ∈ N0.

REMARK Note here that for the special construction of the multivariate kernels as in
(4.30), the weighted polynomial approximation is carried out in the polynomial space
P̃N = lin{Pn : n ∈ Nd0, max1≤i≤d ni ≤ τ(N)}, whose dimension is dimP̃N = τ(N)d. The
dimension of this space grows much faster than the dimension of the polynomial space
PN = lin{Pn : n ∈ Nd0, |n| ≤ N}which is usually used in practice.

4.2.3 Approximation error

Let P̃N = lin{Pn : n ∈ Nd0, max1≤i≤d ni ≤ N}. For a function f ∈ L2(S,B(S),µ), the
polynomial expansion

GN (f) =
N∑

n1=0

· · ·
N∑

nd=0

f̂nPnhn (4.31)

is the best approximation of f in the polynomial space P̃N . Results on the rate of conver-
gence of the approximation error

εN = ‖f −GN (f)‖2, N ∈ N0 (4.32)
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to zero are usually stated in terms of the norm of the function f in a suitable Sobolev
space H l

p, l ∈ N0. This rate depends also on the polynomial system under consideration.
Assume that for a polynomial system {Pn : n ∈ Nd0}, there exists a constant C̃ > 0 and a
real sequence {κ(N, l)}N,l∈N0 such that

‖f −GN (f)‖2 ≤ C̃κ(N, l)‖f‖Hl
p
, N ∈ N. (4.33)

Estimations of the type (4.33) can be found for example in [5] for Hermite polynomials
and in [28] for Legendre polynomials and Chebyshev polynomials of the first kind. More
general results can be found in the books [4, 47, 70] and the references therein.

The weighted expansion will preserve the positivity of the approximation on the cost of
the optimality. Theorem 4.15 does not give any information on the quality of the approx-
imation, therefore the behavior of the approximation error eN is here considered, where

eN = ‖f − FN (f)‖2, N ∈ N0. (4.34)

It was seen before, that the sequence of weights ωN,n should satisfy the limiting condi-
tion

lim
N→∞

ωN,n = 1, ∀ n ∈ Nd0,

in order to gain positive approximation operators. Assume that in the one-dimensional
case one has that

1− ωN,n = O(γ(N)), ∀ n = 0, . . . , N,

where γ : R→ R is a function such that limx→∞ γ(x) = 0. Then, it holds also that

ωN,n = 1 +O(γ(N)), ∀ n = 0, . . . , N.

In the multi-dimensional case, the weight sequences were defined as products of the one-
dimensional weights. Therefore, it holds for their convergence rate

1− ωN,n = 1− ωN,n1 · · ·ωN,nd

= 1− (1 +O(γ(N))) · · · (1 +O(γ(N)))

= O(γ(N)), ∀ n = (n1, . . . , nd) ∈ Nd0, max
1≤i≤d

ni ≤ N.

For the error eN in (4.34) and for all N ∈ N0, it holds

e2
N ≤ ‖f −GN (f)‖22 + ‖GN (f)− FN (f)‖22,

which means that the approximation error can be decomposed in the classical truncation
error and in the error due to the introduction of weights in the expansion. For the second
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term in the above equation, one has

‖GN (f)− FN (f)‖22 = ‖
N∑

n1=0

· · ·
N∑

nd=0

f̂nPnhn −
N∑

n1=0

· · ·
N∑

nd=0

ωN,nf̂nPnhn‖22 (4.35)

= ‖
N∑

n1=0

· · ·
N∑

nd=0

(1− ωN,n)f̂nPnhn‖22

=
N∑

n1=0

· · ·
N∑

nd=0

(1− ωN,n)2f̂2
nhn

≤ C2γ(N)2
N∑

n1=0

· · ·
N∑

nd=0

f̂2
nhn.

The expansionGN (f) is the orthogonal projection of the function f on the space P̃N , there-
fore it holds

‖f‖22 = ‖f −GN (f)‖22 + ‖GN (f)‖22, (4.36)

and thus ‖GN (f)‖22 = ‖f‖22 − ‖f − GN (f)‖22. On the other hand, due to the orthogonality
of the polynomials, it holds

‖GN (f)‖22 = ‖
N∑

n1=0

· · ·
N∑

nd=0

f̂nPnhn‖22 =
N∑

n1=0

· · ·
N∑

nd=0

f̂2
nhn. (4.37)

Combining equations (4.36) and (4.37), it follows that

N∑
n1=0

· · ·
N∑

nd=0

f̂2
nhn = ‖f‖22 − ‖f −GN (f)‖22. (4.38)

Substituting (4.38) in (4.35), one obtains

‖GN (f)− FN (f)‖22 ≤ C2γ(N)2(‖f‖22 − ‖f −GN (f)‖22) ≤ C2γ(N)2‖f‖22.

All together, it holds for the error of the weighted expansions

e2
N ≤ C̃2κ(N, l)2‖f‖2Hl

p
+ C2γ(N)2‖f‖22.

The definition of the Sobolev norm in equation (4.14) implies that

‖f‖22 ≤ ‖f‖2Hl
p
.

All together one has
e2
N ≤ (C̃2κ(N, l)2 + C2γ(N)2)‖f‖2Hl

p
,

and thus
eN ≤ (C̃2κ(N, l)2 + C2γ(N)2)‖f‖Hl

p
.

This means, that although one has a control over the approximation error, this may be
worse than the error resulting from the classical unweighted approximation, depending
on the chosen weighted sequence and its properties.
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4.3 Positive kernels for Jacobi polynomials

In this section, explicit examples for weight sequences are summarized for the case of
approximations with Jacobi polynomials. The Jacobi polynomials are firstly introduced.

Let the basic random variable Ξ have a Beta distribution with parameters α and β on
[−1, 1]. Then the image measure µ has a density with respect to the Lebesgue measure
given by

dµ(α,β)(x) =
Γ(α+ β + 2)

2α+β+1Γ(α+ 1)Γ(β + 1)
(1− x)α(1 + x)βdx, α, β > −1.

The sequence of Jacobi polynomials {P (α,β)
n }∞n=0 is orthogonal with respect to the measure

µ(α,β) and assume from now on that the polynomials are normalized so that

P (α,β)
n (1) = 1, ∀ n ∈ N0, α, β > −1.

Then, the Haar weights are given by the following expression

h
(α,β)
0 = 1 and h(α,β)

n =
(2n+ α+ β + 1)Γ(β + 1)Γ(n+ α+ 1)Γ(n+ α+ β + 1)

Γ(α+ 1)Γ(α+ β + 2)Γ(n+ 1)Γ(n+ β + 1)

for all n ∈ N, where Γ denotes the Gamma function. One can easily verify the symmetric
relation

P (α,β)
n (x) = P (β,α)

n (−x)P (α,β)
n (−1), ∀ x ∈ [−1, 1]. (4.39)

Furthermore, in the case α ≥ β and α ≥ −1/2 it holds

|P (α,β)
n (x)| ≤ P (α,β)

n (1) = 1, ∀ x ∈ [−1, 1], (4.40)

see [117].
In the case α = β, the Jacobi polynomials are called ultraspherical polynomials and there

exists an explicit formula for their linearization coefficients defined in equation (2.33).
If k ∈ {|m− n|, |m− n|+ 2, . . . ,m+ n}, then

c
(α,α)
m,n,k =

(k + α+ 1/2)Γ(2α+ 1)Γ(m+ 1)Γ(n+ 1)Γ((m+ n− k + 1)/2 + α)

((m+ n+ k + 1)/2 + α)Γ(α+ 1/2)Γ(α+ 1/2)Γ(m+ 2α+ 1)Γ(n+ 2α+ 1)
×

Γ((m− n+ k + 1)/2 + α)Γ((n−m+ k + 1)/2 + α)Γ((m+ n+ k)/2 + 2α+ 1)

Γ((m+ n− k)/2 + 1)Γ((m− n+ k)/2 + 1)Γ((n−m+ k)/2 + 1)Γ((n+m+ k + 1)/2 + α)
,

and else c(α,α)
m,n,k = 0 [54, 55].

An important role in the construction of positive kernels for Jacobi polynomials plays
the following product formula, which was first proved in [56]. In the case α ≥ β > −1 and
(β ≥ −1/2 or α + β ≥ 0) and for all x, y ∈ [−1, 1] there exists a probability measure πx,y
such that

P (α,β)
n (x)P (α,β)

n (y) =

∫
R
P (α,β)
n (z)dπ(α,β)

x,y (z), ∀ n ∈ N0. (4.41)

Examples of positive kernels for Jacobi polynomials are now stated. In all the following
examples and in order to show the positivity of the kernel, the idea was to expand first
a positive quantity in the polynomial system under consideration and to use the product
formula (4.41) to imply the positivity of the corresponding kernel.
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4.3.1 De la Vallée-Poussin kernel

In [99] the following kernel was studied

V
(α,β)
N (x, y) =

N∑
n=0

ν
(α,β)
N,n P (α,β)

n (x)P (α,β)
n (y)h(α,β)

n , (4.42)

where

ν
(α,β)
N,n =

Γ(N + 1)Γ(N + α+ β + 2)

Γ(N − n+ 1)Γ(N + n+ α+ β + 2)
, n = 0, . . . , N. (4.43)

To verify for which α, β > −1 the above kernel is positive, define

F
(α,β)
N (x) =

N∑
n=0

ν
(α,β)
N,n P (α,β)

n (x)h(α,β)
n , x ∈ [−1, 1], N ∈ N0.

In [3] it is shown that F (α,β)
N (x) can be expressed as follows

F
(α,β)
N (x) =

N∑
n=0

ν
(α,β)
N,n P (α,β)

n (x)h(α,β)
n =

Γ(β + 1)Γ(N + α+ β + 2)

Γ(N + β + 1)Γ(α+ β + 2)

(
1 + x

2

)N
,

from which it follows that for all x ∈ [−1, 1] and for all N ∈ N0, the quantity F (α,β)
N (x) is

positive. By using now the product formula (4.41), one has that in the case α ≥ β > −1
and (β ≥ −1/2 or α+ β ≥ 0)

V
(α,β)
N (x, y) =

N∑
n=0

ν
(α,β)
N,n P (α,β)

n (x)P (α,β)
n (y)h(α,β)

n =

∫
F

(α,β)
N (z)dπ(α,β)

x,y (z) ≥ 0

for all x, y ∈ [−1, 1], N ∈ N0. By using the symmetric relation in equation (4.39) one can
see that

V
(α,β)
N (x, y) = V

(β,α)
N (−x,−y), ∀x, y ∈ [−1, 1], N ∈ N0.

This means that if α + β ≥ 0 or (α ≥ −1/2 and β ≥ −1/2), then V
(α,β)
N (x, y) is a positive

kernel on [−1, 1]2. Furthermore, it was shown that the asymptotic behavior of the Gamma
function yields

lim
N→∞

ν
(α,β)
N,n = 1 for all n ∈ N0

and that the convergence rate of the weights is

1− νN,n = O(
1

N
), n = 0, . . . , N. (4.44)

4.3.2 Fejér kernel

In [81, 82] the following kernel was proposed

FJ
(α,α)
N (x, y) =

2N∑
n=0

χ
(α,β)
2N,n

χ
(α,β)
2N,0

P (α,β)
n (x)P (α,β)

n (y)h(α,β)
n , (4.45)
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where

χ
(α,β)
2N,n =

N∑
m=0

N∑
i=|n−j|

c
(α,β)
n,m,ih

(α,β)
i . (4.46)

It was shown that the function

F
(α,β)
N (x) =

2N∑
n=0

χ
(α,β)
2N,n

χ
(α,β)
2N,0

P (α,β)
n (x)h(α,β)

n , x ∈ [−1, 1], N ∈ N0

can be expressed as follows

F
(α,β)
N (x) =

Γ(N + α+ β + 2)Γ(β + 1)Γ(N + α+ 2)

Γ(α+ β + 2)Γ(N + β + 1)Γ(α+ 2)Γ(N + 1)

(
P

(α+1,β)
N (x)

)2

and is thus positive for all x ∈ [−1, 1] and all N ∈ N0. The required convergence of the
weights was also shown in the aforementioned works. By using the product formula one
concludes that FJ (α,β)

N (x, y) is a positive kernel for all α ≥ β > −1 and α+ β ≥ −1 and for
all x, y ∈ [−1, 1]. The convergence rate of the Fejér weights is

1− χ2N,n = O(
1

N
), n = 0, . . . , 2N. (4.47)

4.3.3 Modified Fejér kernel

A more recent example was considered in [100] for the ultraspherical polynomials. Define
the kernel

MF
(α,α)
N (x, y) =

N∑
n=0

ϕ
(α,α)
N,n

ϕ
(α,α)
N,0

P (α,α)
n (x)P (α,α)

n (y)h(α,α)
n , (4.48)

with

ϕ
(α,α)
N,n =

N∑
k=n

Γ(2α+ 2)Γ(k + 1)

Γ(k + 2α+ 2)
(4.49)

=



N + 1− n if α = −1/2,
N∑
k=n

1

1 + k
if α = 0,

Γ(2α+ 2)

−2α

(
Γ(N + 2)

Γ(N + 2α+ 2)
− Γ(n+ 1)

Γ(n+ 2α+ 1)

)
if α 6= 0,−1/2.

(4.50)

The above kernel is positive for α ≥ −1/2 because the quantity

1− P (α,α)
N+1 (x)

1− P (α,α)
1 (x)

=

N∑
n=0

ϕ
(α,α)
N,n P (α,α)

n (x)h(α,α)
n

is positive for all N ∈ N0 and all x ∈ [−1, 1) as one can see by equation (4.40). It was in
addition showed that the weights satisfy the limiting condition if and only if α ≤ 0. All
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together, the kernel MF
(α,α)
N (x, y) is positive for all −1/2 ≤ α ≤ 0 and for all x, y ∈ [−1, 1].

The convergence rate of the modified Fejér weights depends on the parameter α and is
given by

1−
ϕ

(α,α)
N,n

ϕ
(α,α)
N,0

=


O(

1

N
) if α = −1

2 ,

O(
1

logN
) if α = 0.

(4.51)

4.3.4 Modified Jackson kernel

In the same work, the following kernel was considered

MJ
(α,α)
N (x, y) =

2N∑
n=0

ι
(α,α)
N,n

ι
(α,α)
N,0

P (α,α)
n (x)P (α,α)

n (y)h(α,α)
n , (4.52)

where

ι
(α,α)
N,n =

N∑
m=0

N∑
k=0

c
(α,α)
m,n,kϕ

(α,α)
N,k ϕ

(α,α)
N,m h(α,α)

m . (4.53)

Based on the representation(
1− P (α,α)

N+1 (x)

1− P (α,α)
1 (x)

)2

=

(
N∑
m=0

ϕ
(α,α)
N,m P (α,α)

m (x)h(α,α)
m

)2

=

2N∑
n=0

ι
(α,α)
N,n P (α,α)

n (x)h(α,α)
n ,

for all N ∈ N0, x ∈ [−1, 1) one can show that the kernels MJ
(α,α)
N (x, y) remain positive for

all α ≥ −1/2 and for all x, y ∈ [−1, 1]. It was in addition shown that

lim
N→∞

ι
(α,α)
N,n

ι
(α,α)
N,0

= 1 for all n ∈ N0,

if and only if α ≤ 1. All together, the kernel MJ
(α,α)
N (x, y) is positive on [−1, 1]2 provided

that −1/2 ≤ α ≤ 1. The convergence rate depends on the parameter α and is given by

1−
ι
(α,α)
N,n

ι
(α,α)
N,0

=



O(
1

N2
) if α = −1

2 ,

O(
logN

N2
) if α = 0,

O(
1

N
) if α = 1

2 ,

O(
1

logN
) if α = 1.

(4.54)

Finally, one should mention that there is also a product formula for the systems of gen-
eralized Chebyshev polynomials P (α,β)

n (x), α, β > −1 [80]. These polynomials are orthog-
onal on [−1, 1] with respect to the measure with density (1 − x2)α|x|2β+1dx. Examples of
positive kernels for such systems are given for instance in [82, 83, 99].
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4.4 Application of weighted expansions in dynamical systems

Returning now to the problem of positivity in polynomial chaos approximations, this can
be solved if one assumes a weighted PC expansion related to a positive kernel. So, instead
of the classical PC approximation one can work with

xN (t,Ξ) =

τ(N)∑
n1=0

· · ·
τ(N)∑
nd=0

ωN,nqn(t)Pn(Ξ)hn, N ∈ N0, (4.55)

see (4.18). As demonstrated in the previous section, the weights are pre-computed real
numbers. They depend neither on the solution nor on the coefficients qn(t) in (4.55). The
PC coefficients can be computed by the numerical methods summarized in chapter 2.

4.4.1 Example: the logistic equation

One of the first continuous models describing population dynamics was the logistic equa-
tion introduced by Verhulst [122]. Assume x(t) describes the size of a population at time t
growing according to the following law

ẋ(t) = rx(t)(1− x(t)

K
), x(0) = x0, (4.56)

where r is the growth rate of the population, K its carrying capacity, and x0 is the initial
population size at time t = 0. The exact solution of this model is easily computed by
separation of variables and reads

x(t) =
K

1 + K−x0
x0

e−rt
, t ≥ 0. (4.57)

Equation (4.56) has two fixed points at x = 0 and x = K, with the origin being unstable
and the state x = K being stable. For biologically meaningful positive initial values, the
solution x(t) will converge to the carrying capacity as the time t growing to infinity. A
completely different situation occurs if the initial condition x0 is negative. In this case, a
blow-up occurs in finite time as the denominator in (4.57) becomes zero at time

t? =
1

r
ln
K − x0

x0
. (4.58)

Fix now the parameters r and K. Assume that the initial condition is modeled as a ran-
dom variable Θ and one wishes to examine how the uncertainty in this parameter propa-
gates through the logistic equation. Now, the positivity becomes an important issue: if at
some time point realizations of the solution become negative, then the expectation of the
solution will be in finite time infinite and the expansion of the solution will thus provide
with no useful information about the population.

For the numerical simulations, it was assumed that the fixed parameters have the values
r = 3 and K = 1. The initial value Θ was modeled as a log-normal distributed random
variable with parameters (v, σ), with v = −1.2 and σ = 1.26 as in [106]. Note that a
non-negative distribution is assigned to Θ. The basis random variable Ξ is chosen to be a
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uniform random variable on [−1, 1] and the Legendre polynomials are the corresponding
orthogonal polynomials. The random variable Θ has finite variance and therefore it admits
an expansion

Θ = gΘ(Ξ) =

∞∑
n=0

λnPn(Ξ)hn. (4.59)

The PC coefficients are estimated by using the isoprobabilistic transformation and their
definition

λn =

∫ 1

−1
gΘ(ξ)Pn(ξ)dµ(ξ) =

∫ 1

−1
F−1

Θ (FΞ(ξ))Pn(ξ)dµ(ξ), n ∈ N0. (4.60)

The known closed forms for the distribution function and its inverse for log-normal and
uniform random variables were substituted in (4.60) and the resulting integrals were esti-
mated by using Gauss-Legendre quadrature with 10 nodes in the interval [−1, 1]. In Figure
4.1, the density estimators from a sample from the log-normal distribution and from sam-
ples generated by the estimated PC expansions for approximation orders N = 4, 8, 10 are
plotted.
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Figure 4.1: Density estimates from samples generated from a log-normal distribution and
from the unweighted PCE for approximation orders N = 4, 8, 10.

Table 4.1 summarizes the minimum, maximum, mean, standard deviation and proba-
bility of negative values estimated from the same samples.

Tables 4.2 and 4.3 summarizes the minimum, maximum, mean, standard deviation and
probability of negative values estimated from the weighted expansions. Comparing to
table 4.1, it can be seen that although the mean value is estimated well, the standard de-
viation, minimum and maximum are underestimated. The probability of negative values
is zero, as the weights introduced result in positive approximations. As seen in Figures
4.1 and 4.2, the tail of the log-normal distribution is not well captured by the finite (un-
weighted and weighted) expansions in Legendre polynomials. Therefore, an estimate for
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Table 4.1: Sample estimates for the unweighted expansions

min max mean st. deviation P (Θ < 0) P (Θ > max(ΘN ))

N = 4 -0.0808866 2.60528 0.5730354 0.6564249 0.0414 0.0466
N = 8 -0.1688893 4.388988 0.6169931 0.8563759 0.0173 0.0174
N = 10 -0.117983 5.67271 0.6173979 0.9049591 0.0097 0.0101
exact 0.002915366 30.97578 0.6647008 1.209795 0
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Figure 4.2: Density estimates from samples generated from a log-normal distribution and
from the weighted PCE for approximation orders N = 4, 8, 10. For the left
figure, the De la Vallée-Poussin weights were used and for the right figure the
modified Fejér weights. In both cases, the basis polynomials used were the
Legendre polynomials.

the probability of the log-normal distribution being greater than the maximum value of
the truncated expansion is also reported in the last columns of all tables.

Assume now that the solution of the logistic equation with unknown initial condition
represented by the random variable Θ, has the following PC expansion

x(t,Ξ) =
∞∑
n=0

qn(t)Pn(Ξ)hn. (4.61)

By substituting the truncated N -th order expansion of x(t,Ξ) in the dynamics (4.56) and
projecting the residual on the corresponding polynomial subspace, it follows that the co-
efficients {qn(t)}n=0,...,N satisfy the following coupled differential equations

q̇n(t) = rqn(t)− r

K

N∑
l=0

N∑
m=0

ql(t)qm(t)〈PlPm, Pn〉hlhm, n = 0, . . . , N, (4.62)

with initial conditions
qn(t0) = λn, n = 0, . . . , N. (4.63)
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Table 4.2: Sample estimates for the weighted expansions (De la Vallée-Poussin)

min max mean st. deviation P (Θ < 0) P (Θ > max(ΘN ))

N = 4 0.09746752 1.443358 0.5712307 0.3795152 0 0.1091
N = 8 0.06042169 2.2542 0.6147099 0.5572159 0 0.0585
N = 10 0.05217915 2.611289 0.6317278 0.6202718 0 0.0462
exact 0.002915366 30.97578 0.6647008 1.209795 0

Table 4.3: Sample estimates for the weighted expansions (modified Fejér)

min max mean st. deviation P (Θ < 0) P (Θ > max(ΘN ))

N = 4 0.1914131 1.42841 0.5709131 0.3297167 0 0.1108
N = 8 0.1667508 2.300286 0.6151546 0.4692217 0 0.0563
N = 10 0.1605935 2.74657 0.6305314 0.5162878 0 0.0425
exact 0.002915366 30.97578 0.6647008 1.209795 0

The estimated coefficients for the log-normal random variable Θ correspond to random
variables ΘN which have small but non-zero probability of negative values, as seen in Ta-
ble 4.1. Propagating these distributions through the dynamics results in a blow-up as seen
in Figure 4.3. The mean value tends to −∞ and the variance to +∞ after approximately
one-two units of time for the different approximation orders N = 4, 8, 10.

Assume now that the initial conditions of the Galerkin system are set to

qn(t0) = ωN,nλn, n = 0, . . . , N, (4.64)

meaning that the distribution of the initial condition is strictly positive. In this case, the
blow-up of the solution is avoided since a non-negative distribution is propagated through
the dynamics. In Figures 4.4 and 4.5, the mean and the standard deviation of the solution
over time are plotted. These are estimated through Monte Carlo integration and through
weighted PC expansions for two different weight sequences.

The same behavior is demonstrated when employing a NISP approach. To this end,
the PC coefficients of the solution were computed by numerically approximating their
definition integrals

qn(t) =

∫ 1

−1
x(t, gΘ(ξ))Pn(ξ)dµ(ξ) ≈ 1

M

M∑
m=1

x(t, gΘ(ξm))Pn(ξm), n = 0, . . . , N, (4.65)

where {Ξm}Mm=1 is a random sample from the uniform distribution on [−1, 1]. Again, if
gΘ(ξm) =

∑N
n=0 λnPn(ξm)hn, corresponds to a negative realization of Θ, a blow-up of the

solution of the logistic equation will occur in finite time and the PC coefficients will be
undetermined after this time point. In Figure 4.6, the mean and the standard deviation
of the solution are plotted when using an unweighted PC expansion for Θ for different
approximation orders. In Figures 4.7 and 4.8, the initial conditions are sampled from a
weighted PCE for Θ, where the De la Vallée-Poussin and the modified Fejér weights were
used respectively.
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Figure 4.3: Mean and standard deviation over time estimated by Monte Carlo integration
(black line) and via the PC expansion of the solution for approximation orders
N = 4, 8, 10. The PC coefficients of the solution were computed via a Galerkin
approach.
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Figure 4.4: Mean and standard deviation over time estimated by Monte Carlo integration
and via the Galerkin method for approximation orders N = 4, 8, 10. The De la
Vallée-Poussin weights were used for the PC expansion of the initial condition.
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Figure 4.5: Mean and standard deviation over time estimated by Monte Carlo integration
(black line) and via the Galerkin method for approximation orders N = 4, 8, 10.
The modified Fejér weights were used for the PC expansion of the initial
condition.
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Figure 4.6: Mean and standard deviation over time estimated by Monte Carlo integration
and via a NISP method for approximation orders N = 4, 8, 10.
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Figure 4.7: Mean and standard deviation over time estimated by Monte Carlo integration
(black line) and via a NISP method for approximation orders N = 4, 8, 10.
The De la Vallée-Poussin weights were used in the PC expansion of the initial
condition.
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Figure 4.8: Mean and standard deviation over time estimated by Monte Carlo integration
and via a NISP method for approximation orders N = 4, 8, 10. The modified
Féjer weights were used in the PC expansion of the initial condition.
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5 Real-time optimal control of the
euglycemic hyperinsulinemic clamp
(EHC) on mice

The euglucemic hyperinsulinemic clamp (EHC) is the gold standard test for quantifying
insulin resistance in diabetes research. In this chapter, a method is proposed for the opti-
mization of this experiment on mice. It is based on a Bayesian framework that combines
sequential Monte Carlo methods for parameter inference with model predictive control
for the underlying optimization problem. Two different ways are considered for the opti-
mization: a sample-average and a polynomial chaos based approach.

In the next section, an introduction to the biological problem is given. A model for the
glucose-insulin regulatory system in the special situation of the clamp test is presented and
its performance is evaluated with comparison to real data. After a short introduction to
Bayesian methods for parameter inference, the two algorithms for the real-time control of
the linear non-autonomous system with parametric uncertainty are stated. The control and
inference steps are separated and studied in more detail. The performance of the methods
is evaluated through numerical simulations.

5.1 Biological background

Glucose is used as an energy source by living organisms and normal blood glucose con-
centrations are vital for the proper functioning of the body. The glucose levels can be
affected by various factors such as food intake or exercise. The term hyperglycemia is used
to describe the condition of elevated blood glucose concentration values. It can lead to de-
struction of the blood vessels, retinopathy, nephropathy and even more severe problems,
as glucose is highly toxic. When glucose levels drop to levels lower than the physiolog-
ical ones, the body cannot keep the organs functioning. This situation is referred to as
hypoglycemia and can even lead to a coma. The endocrine hormones glucagon and insulin,
which are produced by the α- and β-cells of the pancreas respectively, are responsible
for keeping the glucose concentration at physiological levels. In healthy individuals, the
glucose-insulin system is an extremely robust control system. In Figure 5.1 a schematic
representation of this system is given.

Diabetes mellitus is a metabolic disease characterized by a disorder of this regulatory
system and is divided into two categories. Type-I diabetes or insulin-dependent diabetes
occurs when the β-cells produce little or no amounts of insulin and is the cause of about
5-10% of the diabetic cases. On the other hand, type-II diabetes or insulin-independent di-
abetes characterizes the rest 90-95% of the cases and is related to insulin resistance, the situ-
ation occurring when the body cells are not responding adequately to the action of insulin
and are unable to absorb the hormone and metabolize the glucose in the blood. Under this
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Figure 5.1: The glucose-insulin regulatory system. Glucose is produced by the liver and
utilized by the brain, the muscles and fat cells. It stimulates the production of
insulin by the pancreas, which in turn suppresses the liver glucose production.

condition, the liver fails to detect elevated glucose concentrations, glycogen is converted
to glucose and the result is a combination of high glucose and insulin blood concentra-
tions. According to data from the World Health Organization (WHO), diabetes is expected
to rise from the eleventh to the sixth place of most common diseases in the world by the
year 2030 [127]. These numbers emphasize the need and importance of the development
of new effective diagnostic, preventive, and therapeutic methods for diabetes.

A variety of tests exist for the detection of hyperglycemia with most common the intra-
venous glucose tolerance test (IVGTT) and the oral glucose tolerance test (OGTT). These are
easy to conduct and are routinely used to classify subjects as insulin-resistant or diabetic.
In [42] two further tests were developed: the hyperglycemic and the euglucemic hyperinsuline-
mic clamp test. The idea behind them and their big advantage is to break the glucose-insulin
feedback loop and place the system under the control of the experimentalist. In the first
one, glucose is raised to high non-physiological values and kept constant (clamped) at those
values by a variable glucose infusion. The test quantifies the amount of insulin secretion
and is thus related to type-I diabetes. In the latter one, the goal is to keep the glucose level
constant at physiological levels with a variable glucose infusion while insulin concentra-
tion is kept fixed in high levels by a continuous infusion of insulin. It is related to type-II
diabetes and it is used to determine the insulin-sensitivity index (SI) of an individual. This
corresponds to the amount of glucose infused in the last twenty minutes of the test, un-
der steady-state conditions, i.e. under conditions where the glucose concentration remains
constant. A low SI value characterizes the individual as insulin-resistant (or pre-diabetic).
The clamp tests are expensive and difficult to execute and are mainly employed in studies
targeted at drug development and at the reveal of the causes of diabetes.

In this thesis, only the EHC test on mice will be studied. Figure 5.2 describes how the
EHC is conducted. Mice are fasted over night or for shorter periods to avoid the appear-
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ance of meal-related glucose to the plasma. A preparation period of two hours (from−120
[min] to 0 [min]) precedes the actual clamp experiment. During this time, a solution of
[3-3H]-glucose is given to the mice and its concentration equilibrates in this period in all
muscles and tissues. This radioactive glucose is used to quantify the endogenous glu-
cose production (EGP) and the rate of disappearance of glucose (Rd). At the end of the
preparatory period, blood samples are taken to estimate physiological values of glucose
and insulin concentration. The actual clamp begins at 0 [min] with the injection of an in-
sulin bolus, i.e. a high dose of insulin administered in a very short time. Its role is to shut
down the EGP and stimulate the utilization of glucose by the muscles and tissues. After
that and until the end of the experiment, insulin concentration is held constant at high non-
physiological levels by a continuous constant insulin infusion. At the same time, a glucose
solution is infused. Until the end of the experiment, blood samples are taken at regular
times and the glucose infusion rate is adjusted accordingly to maintain a reference glucose
concentration level. A bolus of 2 [14C]-deoxy-glucose, i.e. another type of radioactive glu-
cose, can be also administered during the second hour of the test in order to quantify the
glucose uptake by specific tissues. More information on this test run on mice can be found
in [6, 7].

                                  Equilibration                                       Clamp

Constant [3-3^H] glucose infusion

Variable glucose infusion

Constant insulin infusion

Begin fast

[3-3^H] glucose prime

-120 [min]

2[14^C] deoxyglucose bolus

65 [min]0 [min] 120 [min]

Figure 5.2: The euglycemic hyperinsulinemic clamp.

The basic problem experimentalists are facing is that there is no model-based strategy to
determine the glucose infusion rate in order to maintain euglycemia throughout the test.
Until now this was accomplished based on experience and intuition. The achievement of
the steady-state conditions is crucial for the interpretation of the experiment: only after
these conditions are achieved, one can extract useful information from the resulting data
and make comparisons between different individuals. Clamps running on humans or even
on rats are relative easier to run comparing to clamps on mice because the underlying
system is more stable and one can rely on a large number of blood samples to monitor close
the changes in glucose concentration and thus react quickly and efficiently to deviations
from the desired reference level. Mice in contrary are very sensitive and large fluctuations
occur around the reference concentration. These are caused mainly by the impact of stress
on the glucose-insulin system, see for example in [7]. In addition, as the volume of blood in
mice is rather limited, the number of measurements is accordingly small. These problems
have to be taken under consideration in the development of the optimization algorithm.
Despite the difficulties mentioned, mice are preferred for example when the relation of
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gene mutations to diabetes are examined.
Next, the data and the developed model are presented.

5.2 Modeling the glucose dynamics during the EHC in mice

There exists a vast amount of literature on the modeling of the glucose-insulin system. See
in [89–91] for reviews on the topic. One of the first models is the one by Bolie [24]. The
most widely accepted model is the minimal model first proposed in [13], named like that
because of its simple form and its low number of parameters compared to previous exist-
ing models. This model was developed to explain data obtained by the IVGTT. Although
suitable for some situations, it fails to explain other tests and long term dynamics of the
glucose-insulin system, as it was shown in [43]. Still, it is mainly used in clinical tools to
extract information about the underlying physiological system [14, 15].

Particularly for the EHC test, a deterministic model was proposed in [103] based on data
from long-duration clamps run on humans. This model takes into account the underlying
physiology and has a complicated form including delay and integral terms and ten pa-
rameters which have to be estimated from data. The deterministic version was followed
by a stochastic extension in [104], in which one of the parameters was assumed to depend
linearly on a Wiener process.

In contrast with the aforementioned approach, the main goal here is not to explain the
underlying physiology in a detailed way but to control the system and optimize the exper-
iment. For this purpose, a simple model in the form of an ordinary differential equation
was developed. As the number of available data was also relative small, the number of
parameters had to be also reduced in comparison with the model in [103].

5.2.1 Data description

Two groups of mice were considered. The control group included 13 individuals and the
case group included 12 individuals. The weight of the mice before and after fasting along
with fasting hours were reported. From 0 − 3 [min], an insulin bolus was injected whose
concentration depends on the weight of each mouse. Its concentration in insuslin was
given. From 3−120 [min], insulin was infused at a given constant rate. From−120 [min] to
120 [min], the [3-3H]-glucose was administered in two different solution concentrations be-
fore and after 0 [min]. At 65 [min], a bolus of 2[14C]-deoxy-glucose was injected. This bolus
is given from the same catheter that is used for the injection of insulin, glucose and [3-3H]-
glucose. This means that at this time an unspecified amount of these quantities is given to
the subject and that after the labeled glucose is given, the subject does not receive any in-
sulin, glucose and [3-3H]-glucose until their flow in the catheter is restored. This procedure
causes stress to the mouse and great fluctuations in the glucose concentrations around this
time point. Furthermore, the concentrations of the injected glucose solution along with
reference and physiological glucose levels were reported. Data were given on measured
plasma glucose concentrations at times −10, 10, 30, 45, 60, 67.5, 70, 75, 80, 90, 100, 110 [min]
and on the actual glucose infusion rates and their times of change. Note that no data are
given on insulin concentrations throughout the experiment. This makes for example im-
possible to fit the minimal model since this is fitted in a decoupled manner on glucose and
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insulin data [101].

5.2.2 The model

Denote the time by t and by θ = (θ1, . . . , θ6) the unknown vector of parameters of the
model. u(t) stands for the glucose infusion rate and x(t,θ, u) for the plasma glucose con-
centration. The initial time point is t0 = −10 [min] and the end point of the experiment is
T = 110 [min]. These have been rescaled to t0 = 0 [min] and T = 120 [min]. Assume that
the glucose dynamics evolve during the clamp as follows

ẋ(t,θ, u) = −(θ1 + θ2t
2e−θ3t + θ4e

θ5t)x(t,θ, u) +
u(t)

VG
, (5.1)

x(t0,θ, u) = θ6.

The initial value is considered unknown and has to be also estimated. The parameter
VG represents the plasma volume of the mice per kilogram of body weight and its value
was taken by the literature to be 0.49 [ml/kgBW] [1]. Note that no equation is considered
for the dynamics of the insulin concentration. The action of insulin on the change of the
glucose dynamics is included in the degradation rate

γ(t, θ1, . . . , θ5) = θ1 + θ2t
2e−θ3t + θ4e

θ5t. (5.2)

This function summarizes all possible reasons for appearance or disappearance of glucose

0 20 40 60 80 100 120

0
5

10
15

20

Time [min]

In
su

lin
 c

on
ce

nt
ra

tio
n 

[m
gr

/d
l]

mouse 1
mouse 2
mouse 3

Figure 5.3: Data on insulin concentration

in the plasma. It thus includes the natural degradation rate of glucose, the disappearance
of glucose from the blood due to the action of insulin, the insulin-independent absorption
of glucose (for example by the brain, see Figure 5.2) as well as the endogenous glucose
production. In Figure 5.3, data on insulin concentrations for three different individuals
during a clamp test are plotted. As it can be seen, insulin values raise in the beginning
of the experiment due to the action of the insulin bolus and then remain approximately
constant. The elevated insulin levels in this phase, i.e. the pick of the insulin seen in Figure
5.3, are reflected to the bell shaped form of the degradation rate function during this period
curve.
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5 Real-time optimal control of the euglycemic hyperinsulinemic clamp (EHC) on mice

In Figures 5.4, 5.5 and 5.6, the glucose concentration data of three individuals and the
fitted model are plotted. The value for the reference glucemia for all the subjects was
xref = 150 [mg/dl]. Furthermore, the given glucose infusion rates and the estimated
degradation rates are given for comparison. As it can be seen in these figures, the ex-
perimentalists fail to clamp the glucose concentrations around the reference value, thus
explaining the need for an algorithmic approach to the problem. In each figure, the first
subfigure includes the given glucose concentration data (circles) as well as the fitted model
(black line). The dashed line corresponds to the reference glucose level. The second sub-
figure shows the estimated degradation rate and the third one, the given glucose infusion
rate applied during the test.
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Figure 5.4: Glucose concentration, degradation rate and infusion rate for Mouse Di20.
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Figure 5.5: Glucose concentration, degradation rate and infusion rate for Mouse Di22.

Table 5.1 summarizes the median along with minimum and maximum values of the
fitted parameters for the two groups. The parameters were estimated by a least squares
fitting.

In order for the developed model to be adequate for control, it has to be able to predict
the data. This is depicted in Figure 5.7. Here, the parameters are estimated from the three
first data points and 95% estimation and prediction intervals are plotted around the data.
It can be seen, that the data in general lie in these prediction intervals. This suggest that
the model is suitable for the control.
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5.3 Bayesian methods for parameter inference
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Figure 5.6: Glucose concentration, degradation rate and infusion rate for Mouse SD14.

Table 5.1: Estimated parameters for control and case subjects.

Controls (13 subjects) Cases (12 subjects)
θ1 0.015 [0.0014, 0.038] 0.012 [0.0004, 0.026]
θ2 0.0003 [0.00014, 0.00044] 0.0003 [0.00015, 0.0006]
θ3 0.055 [0.054, 0.068] 0.065 [0.055, 0.085]
θ4 0.0004 [0.00005, 0.00067] 0.00031 [0, 0.00075]
θ5 0.033 [0.008, 0.05] 0.033 [0, 0.066]
θ6 159 [140, 223] 173 [121, 215]

5.3 Bayesian methods for parameter inference

A short introduction of Bayesian methods is given here. More details can be found for
example in [16, 57, 75].

Let x ∈ Rn be a quantity of interest which depends on an unknown parameter vector
θ ∈ Rd. Furthermore, assume that x can be observed and that k independent noisy mea-
surements y1, . . . ,yk are available. Note that in some cases only some components of the
vector x can be observed or even functions of its components. The presentation is here
restricted to the full observable case for simplicity.

In contrast with the frequentist approach, in a Bayesian setting unknown parameters
and observed data are considered as random variables. Therefore, according to the nota-
tion used in this manuscript, they will be denoted from now on with capital letters and the
small letters will be reserved for their realizations. It is also assumed here for simplicity
that these random variables are continuous, and thus their measures admit densities with
respect to the Lebesgue measure.

Let (Ω,A, P ) be an abstract probability space and define on this space the random vari-
ables Θ and Y for the parameters and the data under consideration respectively. The
available information on the parameters prior to the experiment based for example on
previous experiments or on physical constraints, is summarized into a probability distri-
bution, which is called the prior distribution of Θ. Its density will be denoted as pΘ. Its
construction is an important step for the method and different approaches exist. The ex-
istence of a prior distribution has been the main point of criticism of Bayesian methods,
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Figure 5.7: Prediction for the mice Di20, Di22 and SD14. The parameters are estimated
from the first three data points and 95% estimation and prediction intervals are
plotted around the given data (red circles).

as it introduces subjectivity to the method. Jeffreys defined non-informative priors to over-
come this obstacle [73, 74]. Details are here omitted and the reader is referred to [76, 108].
In the context described here, the information available from previous experiment is use-
ful as it restricts the domain where the parameters of the model are meaningful and thus
helps also the control procedure. The next step is to construct the likelihood function L(θ).
This is defined as the density of the conditional probability of the observed data given the
parameters

L(θ) = `(y1, . . . ,yk | Θ = θ). (5.3)

Note that the likelihood is considered as a function of the parameter vector although it
depends also on the observations. The above are combined through Bayes’ theorem which
is next stated in terms of probabilities of events.

Theorem 5.1. (Bayes) Let A1, A2 be subsets of the σ-algebra A with P (A2) > 0. Then,

P (A1 | A2) =
P (A2 | A1)P (A1)

P (A2)
. (5.4)

Its continuous version is used to update the prior information on the parameter vector
in the presence of data. The posterior distribution of the parameters is defined as the con-
ditional probability of the parameters given the data and its density is given according to
Bayes’ theorem by

πΘ(θ) = πΘ(θ | y1, . . . ,yk) =
`(y1, . . . ,yk | θ)pΘ(θ)∫

Rd `(y1, . . . ,yk | θ)pΘ(θ)dθ
. (5.5)

The denominator in this expression is a normalizing constant (that does not depend on θ)
so that πΘ(θ) is indeed a density. It is called the evidence or marginal likelihood and will be
denoted by β. Thus, (5.5) can be written as

πΘ(θ) =
`(y1, . . . ,yk | θ)pΘ(θ)

β
=
π̃Θ(θ)

β
∝ π̃Θ(θ), (5.6)
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5.3 Bayesian methods for parameter inference

where π̃Θ(θ) = `(y1, . . . ,yk | θ)pΘ(θ). In contrast with the classical statistical methods,
in Bayesian theory the parameter estimation is based on a whole distribution and not only
on a point estimate.

5.3.1 Monte Carlo methods

The information contained in the posterior distribution can be summarized in many ways.
One can compute for example the posterior mean or the maximum a posteriori (MAP) esti-
mate, i.e. the value(s) of θ which maximize the posterior density. Measures of dispersion
such as the posterior covariance as well as the construction of α-credible regions may be
also used, i.e. subsets C of Rd such that

∫
C πΘ(θ)dθ = 1 − α. The computations of these

quantities requires usually the evaluation of integrals with respect to the posterior density
of the following form

EΘ[h] =

∫
Rd

h(θ)πΘ(θ)dθ, (5.7)

where h ∈ L1(Rd,B(Rd), πΘ(θ)dθ). In high dimensional problems, this integration can
be intractable with usual deterministic methods like numerical quadrature. Monte Carlo
(MC) methods are a class of methods developed for the efficient numerical evaluation of
these integrals. The idea is to approximate the measure µΘ with density the posterior
density by a discrete empirical measure µΘ,N based on a sample from the distribution of
Θ. By the law of large numbers, if {θm}Mm=1 is an i.i.d sample from the posterior of Θ, then
the integrals in (5.7) can be approximated by

EΘ[h] ≈ 1

M

M∑
m=1

h(θm). (5.8)

The problem now arises of how to sample from a posterior distribution of complicated
form. A class of methods in this direction are the Markov chain Monte Carlo methods
which are next briefly reviewed.

5.3.2 Markov chain Monte Carlo (MCMC) methods

These sampling techniques are based on the construction of a Markov stochastic process
{Θn}n∈N0 , i.e. a sequence of random vectors on Rd with the property that its value in the
future depends only on the values of the current random vector and not on the past values.
Mathematically, this is formulated as

P (Θn+1 ∈ A | Θn = θ,Θn−1 ∈ An−1, . . . ,Θ0 ∈ A0) = P (Θn+1 ∈ A | Θn = θ), (5.9)

for all n ∈ N0, all events A,An−1, . . . , A0 ∈ B(Rd) and all θ ∈ Rd. When the above prob-
abilities do not depend on the index n, the Markov process is called homogenous. In this
case, one can define the transition distribution P (θ, A) of the process as follows.

Definition 5.2. A function P : Rn × B(Rd) ∈ [0, 1] is called a transition distribution or function
if it has the following properties

(i) for all θ ∈ Rd, the function P (θ, ·) is a probability distribution, and
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(ii) for all A ∈ B(Rd), the function P (·, A) is measurable.

One can then define the transition kernel p(θ,φ) as the density of the transition distribu-
tion.

A probability measure µ on (Rd,B(Rd)) is called an invariant measure of the function
P (θ, A) if

µ(A) =

∫
Rd

P (θ, A)dµ(θ). (5.10)

If the measure µ and the transition function admit densities π and p respectively, then
(5.10) can be written as

π(θ) =

∫
Rd

p(θ,φ)π(φ)dφ, (5.11)

and then π is the invariant density for the kernel p. In Bayesian theory, MCMC methods
provide with a sample from the posterior distribution πΘ by constructing a Markov pro-
cess which admits this posterior distribution as its invariant measure. The mathematical
justification of these methods is based on the Ergodic theorem. More details can be found
for example in [62, 66].

The Metropolis-Hastings (MH) algorithm

A special class of methods for constructing a transition kernel with the desired properties
are the Metropolis-Hastings algorithms. A nice introduction in this type of algorithms is
given in [33]. Here, a basic version is considered. Let q(θ,φ) : Rd × Rd → R be a function
such that

∫
Rd q(θ,φ)dφ = 1. It can be shown that a density π is invariant for the transition

function given by

P (θ, A) =

∫
A
q(θ,φ)α(θ,φ)dφ+ 1{θ ∈ A}

(
1−

∫
A
q(θ,φ)α(θ,φ)dφ

)
, (5.12)

where

α(θ,φ) =

{
min

(
1, π(φ)q(φ,θ)

π(θ)q(θ,φ)

)
, if π(θ)q(θ,φ) > 0,

1, else .
(5.13)

In practice, the algorithm is implemented as follows

(i) Choose an arbitrary starting value θ(0) and set the index m = 1.

(ii) Generate a new value φ from the density q(θ(m−1), ·).

(iii) Evaluate the acceptance probability α(θ(m−1),φ) and generate u ∼ U [0, 1].
If u < α(θ(m−1),φ), set θ(m) = φ, else θ(m) = θ(m−1).

(iv) Update the index m→ m+ 1 and return to step (ii) until convergence is reached.
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5.3 Bayesian methods for parameter inference

5.3.3 Sequential Monte Carlo (SMC) methods

The material in this section is based on [37, 44, 49]. When data are coming sequentially,
MCMC methods are inadequate to solve the inference problem as they require to run a
long chain for each new data point and they do not take into account previous compu-
tations. Sequential Monte Carlo methods or particle filters provide a faster alternative to
MCMC and can be used for real-time parameter estimation. They are based on the follow-
ing observation. Assume that after k measurements are given, the posterior distribution
of Θ is πkΘ(θ). When the next k + 1-measurement arrives, one has

πk+1
Θ (θ) ∝ `(y1, . . . ,yk,yk+1 | θ)pΘ(θ) (5.14)

∝ `(yk+1 | y1, . . . ,yk,θ)`(y1, . . . ,yk | θ)pΘ(θ)

∝ `(yk+1 | θ)πkΘ(θ),

which means that the posterior density at step k can be used as the prior for the next
iteration.

SMC techniques are based on updating the weights of a discrete empirical measure
{(θm, 1

M )}Mm=1 from the prior distribution pΘ by a re-weighting procedure to produce
a discrete measure converging for M → ∞ to πkΘ,∀ k = 1, . . . ,K. In other words, a
weighted sample (or a set of weighted particles) {(θm, wk(θm))}Mm=1 is carried over time
and the weights {wk(θm)}Mm=1 are updated at each iteration. This procedure relies on the
importance sampling method, which is next presented.

Assume that integrals with respect to the posterior as in (5.7) are to be computed. When
the posterior distribution is difficult to sample form, one can use an auxiliary measure to
transform the integrals. Let ν be a probability measure with density η, which is called the
importance density such that η(θ) > 0, for all θ in the support of the posterior measure.
Then, by using equation (5.6), equation (5.7) can be written as

EΘ[h] =

∫
Rd

h(θ)πΘ(θ)dθ =

∫
Rd

h(θ)
π̃Θ(θ)

β
dθ (5.15)

=
1

β

∫
Rd

h(θ)
π̃Θ(θ)

η(θ)
η(θ)dθ =

1

β

∫
Rd

h(θ)w(θ)η(θ)dθ,

where the weight function

w(θ) =
π̃Θ(θ)

η(θ)
(5.16)

is introduced. In the same way, one can rewrite the integral defining the evidence β as

β =

∫
Rd

π̃Θ(θ)dθ =

∫
Rd

π̃Θ(θ)

η(θ)
η(θ)dθ =

∫
Rd

w(θ)η(θ)dθ. (5.17)

Let now {θm}Mm=1 be a random sample from ν and denote by νM the corresponding em-
pirical measure. Then, one has

EΘ[h] ≈

(
1

M

M∑
m=1

w(θm)

)−1
1

M

M∑
m=1

h(θm)w(θm) =

M∑
m=1

w(θm)∑M
m=1w(θm)

h(θm). (5.18)
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Back to the sequential Bayesian context described above, assume one has a sample
{θm}Mm=1 to approximate πkΘ. To generate a set of particles from πk+1

Θ , one uses as weight
function

wk(θ) =
πk+1

Θ (θ)

πkΘ(θ)
∝
π̃k+1

Θ (θ)

π̃kΘ(θ)
∝ `(yk+1 | θ). (5.19)

This means, that at each iteration one has to multiply each wk(θ) with the weight wk+1(θ).
This has as a consequence the reduction of the number of particles with significant weight
at each step. This phenomenon is called particle degeneracy.

A resampling step may be used to eliminate samples with insignificant weight and save
computational time. The most common algorithm for resampling is multinomial selection,
i.e. at stage k, one chooses M particles from the set {θm}Mm=1 with probability the corre-
sponding normalized weights { wk(θm)∑M

m=1 w
k(θm)

}Mm=1, see [64]. For other approaches, see for

example in [87]. The improved method is called sampling importance resampling (SIR). Note
that resampling does not save from degeneracy.

The combination of SIR with a MH-step was proposed first in [63] to reduce degeneracy.
One chooses a transition kernel and applies one MH-step on each particle and accepts
or rejects the proposed value through the acceptance probability as in the classical MH-
algorithm. In this way, new sample values will enter the set {θm}Mm=1 and will have a
signifiant weight so that particle degeneracy is reduced. The acceptance rate can be used
as a measure of the rejuvenation of the sample. The choice of the kernel influences the
efficiency of this step and different approaches exist.

All together, an SMC algorithm in the Bayesian context is as follows

(i) Generate a sample {θm}Mm=1 from the prior, assign the weight 1
M to each particle and

set the index k = 1.

(ii) Compute the weight wk(θm) given by (5.19) and update the weight of each particle
by multiplying with the corresponding wk. Normalize the new weights by dividing
with the total weight.

(iii) Resample and assign the weight 1
M again to each particle.

(ii) Draw φm ∼ Kk(θm, ·), for m = 1, . . . ,M , where Kk is a kernel with stationary
distribution πkΘ and accept or reject φm by computing the acceptance probability
α(θm,φm) as in (5.13).

(v) Renew the set {θm}Mm=1 by including the accepted particles. All particles have again
weight 1

M . Set k → k + 1 and return to step (ii) until k = K.

5.4 Real-time parameter estimation and optimal control for the
EHC

In this section, the first algorithm for the optimization of the test is presented. It is based
on Monte Carlo approximation of the underlying expectations. First, the problem is for-
mulated and then the algorithm is stated. Its individual steps are analyzed in sections 5.4.1
and 5.4.2.
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5.4 Real-time parameter estimation and optimal control for the EHC

Problem formulation Estimate the parameter vector Θ and drive the glucose concentra-
tion to the reference state xref by minimizing the cost functional

J0(u) = EΘ[

∫ T

t0

(x(t,Θ, u)− xref)
2dt] (5.20)

over all piecewise constant control functions of the form

u(t) =

K∑
i=1

ui1{(ti−1, ti]}(t), t ∈ [t0, T ], (5.21)

with u(t) ∈ [0, umax] and under the dynamic constraint

ẋ(t,Θ, u) = −γ(t,Θ)x(t,Θ, u) +
u(t)

VG
, t ∈ [t0, T ], (5.22)

x(t0,Θ, u) = x0(Θ).

Noisy data yk are given sequentially at times tk

yk = x(tk) + εk, εk
i.i.d∼ N (0, σ2

M ), k = 0, . . . ,K. (5.23)

Here, σ2
M denotes the assumed known measurement error and umax is an upper bound on

the glucose infusion rate which is physiologically accepted and also satisfies the capability
of the device used. The above formulation is based on the special experimental setup and
the given protocol. According to it, the control (the glucose infusion rate) is changed after
a new measurement is given and is a piecewise constant function, as seen in Figures 5.4,
5.5 and 5.6. The parameter vector is noted with a capital letter to emphasize the fact that it
is now modeled as a random variable. Define for each k = 0, . . . ,K−1, the cost functionals

Jk(u) = EΘ[

∫ T

tk

(x(t,Θ, u)− xref)
2dt]. (5.24)

The complete algorithm is now given.

Algorithm

• Set counter k = 1, initialize a prior distribution pΘ and generate an equally weighted
sample {(θm, 1

M )}Mm=1 from pΘ. While k < K :

A. Estimation

– get at time tk−1 the measurement yk−1,

– use Bayes theorem to obtain the posterior distribution πkΘ,

– use an SMC step and update the sample to {(θm, wk(θm))}Mm=1,

B. Control

– compute ū = (ūk, . . . , ūK) = argminJk−1(u),

– apply ūk to the system in the time interval (tk−1, tk],

• set as new prior the posterior πkΘ, k → k + 1 and go to the estimation step.
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5.4.1 Exact solution of the optimal control problem

It is here shown how the minimizer of J0(u) can be computed. The same procedure is valid
for all Jk(u), k = 1, . . . ,K − 1.

Assume a control function as in equation (5.21). The solution of the homogenous system
corresponding to (5.22) for a fixed realization θ of the parameter vector reads

xh(t,θ) = Φ(t,θ)Φ−1(t0,θ)x0(θ), (5.25)

where

Φ(t,θ) = exp

(
−θ1t+

θ2

θ2
3

e−θ3t(t2 + 2t+ 2)− θ4

θ5
eθ5t
)
. (5.26)

The solution of the non-homogenous differential equation is given by

x(t,θ, u) = xh(t,θ) + Φ(t,θ)

∫ t

t0

Φ−1(s,θ)
u(s)

VG
ds. (5.27)

Substituting (5.21) in the last integral, one has∫ t

t0

Φ−1(s,θ)
u(s)

VG
ds =

1

VG

∑
i<max{j : tj−1<t}

ui

∫ min(t,ti)

ti−1

Φ−1(s,θ)ds. (5.28)

It is next shown that the minimization of the cost functional J0(u) in (5.20) over the as-
sumed piecewise constant control functions leads to an equivalent quadratic programming
problem of the following form

J0(u) = uTAu+Bu→ min!ui∈[0,umax]
i=1,...,K

, u = (u1, . . . , uK)T , (5.29)

where A ∈ RK×K , B ∈ RK×1. Firstly, by substituting the exact solution into the cost
functional one obtains

J0(u) = EΘ

[∫ T

t0

(x(t,Θ, u)− xref)
2dt

]
(5.30)

= EΘ

[∫ T

t0

(
xh(t,Θ) + Φ(t,Θ)

∫ t

t0

Φ−1(s,Θ)
u(s)

VG
ds− xref

)2

dt

]

= EΘ

∫ T

t0

xh(t,Θ) +
Φ(t,Θ)

VG

∑
i<max{j : tj−1<t}

ui

∫ min(t,ti)

ti−1

Φ−1(s,Θ)ds− xref

2

dt


= EΘ

∫ T

t0

(
xh(t,Θ) +

Φ(t,Θ)

VG

K∑
i=1

ui1{t > ti−1}
∫ min(t,ti)

ti−1

Φ−1(s,Θ)ds− xref

)2

dt

 .
Expand now the quadratic term in the integral and neglect additive terms which do not
depend on the control u. Denoting again by J0(u) the equivalent quantity to be minimized,
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one has

J0(u) = EΘ

∫ T

t0

Φ(t,Θ)2

V 2
G

(
K∑
i=1

ui1{t > ti−1}
∫ min(t,ti)

ti−1

Φ−1(s,Θ)ds

)2

+ 2xh(t,Θ)
Φ(t,Θ)

VG

K∑
i=1

ui1{t > ti−1}
∫ min(t,ti)

ti−1

Φ−1(s,Θ)ds

− 2xref
Φ(t,Θ)

VG

K∑
i=1

ui1{t > ti−1}
∫ min(t,ti)

ti−1

Φ−1(s,Θ)ds

)
dt

]
.

Using the linearity property of the expectation and the integration, expanding the quadratic
appearing in the first term in the cost integral and collecting together similar terms, it fol-
lows that

J0(u) =
K∑
i=1

u2
i

V 2
G

EΘ

∫ T

t0

(
Φ(t,Θ)21{t > ti−1}

(∫ min(t,ti)

ti−1

Φ−1(s,Θ)ds

)2)
dt

 (5.31)

+
K∑
i=1

K∑
j=i+1

2uiuj
V 2
G

EΘ

[∫ T

t0

(
Φ(t,Θ)21{t > ti−1}1{t > tj−1}

∫ min(t,ti)

ti−1

Φ−1(s,Θ)ds

∫ min(t,tj)

tj−1

Φ−1(s,Θ)ds

)
dt

]
(5.32)

+
K∑
i=1

2ui
VG

EΘ

[∫ T

t0

(
(xh(t,Θ)− xref)Φ(t,Θ)1{t > ti−1}

∫ min(t,ti)

ti−1

Φ−1(s,Θ)ds

)
dt

]
.

Returning now to the quadratic programming formulation in (5.29), the exact expressions
for the elements of the matrices A and B are now given. The diagonal entries of A for
i = 1, . . . ,K are

aii =
1

V 2
G

EΘ

∫ T

t0

Φ(t,Θ)21{t > ti−1}

(∫ min(t,ti)

ti−1

Φ−1(s,Θ)ds

)2
 dt

 (5.33)

=
1

V 2
G

EΘ

∫ T

ti−1

Φ(t,Θ)2

(∫ min(t,ti)

ti−1

Φ−1(s,Θ)ds

)2
 dt

 ,
and the off-diagonal elements for i, j = 1, . . . ,K and j > i are

aij =
2

V 2
G

EΘ

[∫ T

t0

(
Φ(t,Θ)21{t > ti−1}1{t > tj−1}∫ min(t,ti)

ti−1

Φ−1(s,Θ)ds

∫ min(t,tj)

tj−1

Φ−1(s,Θ)ds

)
dt

]
(5.34)

=
2

V 2
G

EΘ

[∫ T

tj−1

(
Φ(t,Θ)2

∫ ti

ti−1

Φ−1(s,Θ)ds

∫ min(t,tj)

tj−1

Φ−1(s,Θ)ds

)
dt

]
.
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The elements of the vector B for i = 1, . . . ,K are given by

bi =
2

VG
EΘ

[∫ T

t0

(
(xh(t,Θ)− xref)Φ(t,Θ)1{t > ti−1}

∫ min(t,ti)

ti−1

Φ−1(s,Θ)ds

)
dt

]
(5.35)

=
2

VG
EΘ

[∫ T

ti−1

(
(xh(t,Θ)− xref)Φ(t,Θ)

∫ min(t,ti)

ti−1

Φ−1(s,Θ)ds

)
dt

]
.

Once the matrices A and B are known, standard numerical procedures for the solution
of box constrained quadratic optimization problems can be used for the numerical solution
of problem (5.29), see for example in [19, 25].

The control policy is to be applied in the following way. At each measurement time tk−1,
the vector ū = (ūk, . . . , ūK)T is computed as the solution to the optimization problem in
equation (5.29). Next, the control ūk is applied to the system in the time period (tk−1, tk].
After the measurement at tk is given, the new ū = (ūk+1, . . . , ūK)T is computed as the
minimizer of the cost functional Jk and only ūk+1 is applied. This procedure continues
until all measurements are given. The expectations appearing in the control optimization
are going to be approximated by sample averages based on the current distribution πkΘ of
the random vector Θ, as in (5.8).

5.4.2 Parameter inference based on SMC methods

A particle filter algorithm will be used to update the distribution of the model parameters
after each new glucose measurement becomes available.

To build up an informative prior for the vector Θ, the fitted parameters to the available
mice data were used. For simplicity, a uniform prior was assumed for each parameter in
the range of the estimated values and the parameters were assumed to be independent
before the experiment. All together, the prior on Θ is of the following form

pΘ(θ) =

6∏
i=1

(θi − ai)(bi − θi), θ = (θ1, . . . , θ6), (5.36)

where ai, bi, i = 1, . . . , 6 are the minimum and maximum bounds of the estimated pa-
rameters. The measurement errors εk, k = 0, . . . ,K were assumed to be independent and
normally distributed with variance σ2

M = 15, so that the likelihood L after K given mea-
surements has the following form

L(θ) ∝
K∏
k=0

exp

(
−(yk − x(tk,θ, u))2

2σ2
M

)
. (5.37)

At each iteration, a multinomial sampling scheme was applied to reduce the number of
particles with negligible weight. After this step, all the particles are equally weighted. To
avoid degeneracy, an independent transition kernel was used based on the normal approx-
imation of the current set of particles, i.e. for m = 1, . . . ,M a particle φm was proposed
from the normal distribution N (r̂, Σ̂), with mean

r̂ =
1

M

M∑
m=1

θm, (5.38)
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and covariance matrix

Σ̂ =
1

M

M∑
m=1

(θm − r̂)(θm − r̂)T . (5.39)

5.4.3 Numerical simulations

The performance of the above method is demonstrated on the example of one in silico
individual. A parameter vector is drawn from the prior distribution and it is fixed. It
is denoted by θtrue. Measurements are taken at the times indicated by the protocol and
stated in section 5.2.1. The SMC algorithm was based on a sample of size M = 5000
particles. In Figure 5.8, the time evolution of the ”true” underlying glucose concentration
and the sampled data are shown, along with the degradation rate obtained with the true
parameter vector and the rate obtained with the mean of the posterior distribution at the
end of the experiment. The computed optimal control policy is also given. Figures 5.9 and
5.10 show the density estimator for the distribution of each model parameter after a new
measurement became available.
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Figure 5.8: First subfigure: Sampled data (circles), model solution for the fixed value
θtrue (solid line) and reference glucemia (dashed line). Second subfigure: true
and estimated degradation rate. Third subfigure: computed glucose infusion
rate. The parameter vector was fixed at θtrue = (2.593369e − 02, 3.395887e −
04, 7.093037e− 02, 4.171830e− 04, 2.376361e− 02, 1.510564e+ 02). The solution
is based on the Monte Carlo version of the algorithm.

It can be seen that the glucose concentration stays around the reference value Gref =
150 [mg/dl] in a more consistent way than the intuitive approach used until now by the
biologists. The posterior distribution is centered for all parameters around the nominal
value.

5.5 Optimal control based on PC expansions and optimal maps

In this section it is shown how polynomial chaos methods can be used to solve the opti-
mal control and parameter estimation problem discussed in the previous section. Here,
the optimal control policy will be computed by expressing the cost functional in terms of
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Figure 5.9: Kernel density estimators for parameters Θ1,Θ2 and Θ3. The corresponding
components of the true parameter vector were θtrue,1 = 2.593369e− 02, θtrue,2 =
3.395887e− 04, θtrue,3 = 7.093037e− 02.
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Figure 5.10: Kernel density estimators for parameters Θ4,Θ5 and Θ6. The corresponding
components of the true parameter vector were θtrue,4 = 4.171830e−04, θtrue,5 =
2.376361e− 02, θtrue,6 = 1.510564e+ 02.

the PC coefficients of the solution and solving the related quadratic optimization problem.
The parameter inference problem will be solved by combining SMC methods and the con-
struction of optimal maps discussed in chapter 3. Recall the problem formulation and the
notation introduced in equations (5.20) - (5.24). The algorithm flow is stated here and then
the individual steps will be closer examined.

• Set counter k = 1, initialize a prior distribution pΘ, build a PCE for Θ based on this
prior, and generate an equally weighted sample {(θm, 1

M )}Mm=1 from the prior. While
k < K,

A. Estimation

– get at time tk−1 the measurement yk−1,

– apply Bayes theorem to obtain the posterior distribution πkΘ,

– use an SMC step and update the sample to {(θm, wk(θm))}Mm=1,

– use this sample to build a PCE for Θ via the optimal maps,
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5.5 Optimal control based on PC expansions and optimal maps

B. Prediction

– build the Galerkin system for the PC coefficients of the glucose dynamics,

C. Control

– compute ū = (ūk, . . . , ūK) = argminJk−1(u),

– apply ūk to the system in the time interval (tk−1, tk] and

• set as new prior the posterior πkΘ, k → k + 1 and go to the estimation step.

5.5.1 Polynomial chaos approximation for the glucose dynamics

The polynomial chaos approximation of the homogenous glucose dynamics

ẋh(t,θ) = −γ(t,θ)xh(t,θ), (5.40)
xh(t0,θ) = x0(θ)

is presented here. This forms the base for the PC approximation of the non-homogenous
solution, since the non-homogeneity is an additive deterministic function. By using firstly
a NISP approach the polynomial order sufficient for the application is determined.

Let Ξ be a vector of basis random variables and let {Pn : n ∈ N6
0} be the corresponding

orthogonal polynomial sequence. Assume that each parameter has a polynomial expan-
sion of the form

Θi = gΘi(Ξ) =
∞∑
|n|=0

λi;nPn(Ξ)hn, i = 1, . . . , 6, n ∈ N6
0, (5.41)

and so does the solution of equation (5.40)

xh(t,Θ) = xh(t, gΘ(Ξ)) ≡ xh(t,Ξ) =

∞∑
|n|=0

qh,n(t)Pn(Ξ)hn, n ∈ N6
0, (5.42)

where gΘ(Ξ) = (gΘ1(Ξ), . . . , gΘ6(Ξ)). Let N ∈ N0 and denote by xh,N the PC approxima-
tion of order N of the homogenous solution xh in (5.40). PN stands for the corresponding
polynomial subspace as defined in equation (2.42). For the numerical simulations, the ba-
sis random vector Ξ was chosen to consist of independent uniformly distributed random
variables on [−1, 1], so that the corresponding orthogonal polynomial sequence are the 6-
dimensional Legendre polynomials. The parameter vector Θ is assumed to be distributed
according to the uniform prior given in equation (5.36), so that before any data are given
only the 0-th and 1-st terms in the functions gΘi , i = 1, . . . , 6 have non-zero PC coefficients.

NISP approach

As explained in chapter 2, one way to estimate the PC coefficients in equation (5.42) is by
numerically computing the integrals

qh,n(t) =

∫
S
xh(t, gΘ(ξ))Pn(ξ)dµ(ξ), |n| = 0, . . . , N, n ∈ N6

0, (5.43)
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whereS = [−1, 1]6 is the support of the uniform measureµ. Two orders of approximations
are considered, N = 3, 4 and the integrals were approximated by Monte Carlo integration
based on a sample of size M = 60000 generated from the distribution of Ξ. The relative
error over time

errrel(t) =
‖ xh(t,Ξ)− xh,N (t,Ξ) ‖L2

‖ xh(t,Ξ) ‖L2

(5.44)

is estimated also via Monte Carlo integration for both approximation orders and shown
in Figure 5.11. As it can be seen, an approximation order of N = 4 is enough to keep the
relative error smaller than 5% in the time interval [t0, T ].

0 20 40 60 80 100 120

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

Time [min]

R
el

at
iv

e 
er

ro
r: 

M
on

te
 C

ar
lo

N=3
N=4

Figure 5.11: Relative error of the PC approximation of the homogenous solution computed
via a Monte Carlo NISP approach.

Galerkin approach

In order to build the Galerkin system for the homogenous solution, one needs to compute
the PC coefficients in the expansion of the degradation rate γ(t,Θ),

γ(t,Θ) = γ(t, gΘ(Ξ)) ≡ γ(t,Ξ) =
∞∑
|n|=0

γn(t)Pn(Ξ)hn,n ∈ N6
0. (5.45)

The PC coefficients of the N-th order approximation of the degradation rate

γN (t,Ξ) =

N∑
|n|=0

γn(t)Pn(Ξ)hn (5.46)

will be approximated by a NISP approach based on Monte Carlo and sparse grids inte-
gration. Once this PC expansion is build, then one can solve the Galerkin system for the

88



5.5 Optimal control based on PC expansions and optimal maps

coefficients of the model solution. In Figure 5.12 the relative error for the degradation
rate is estimated by Monte Carlo integration with a sample of size M = 40000 and for
orders N = 3, 4, and by using sparse grids based on the Kronrod-Patterson rule for level
l = 5, [69, 79]. This error is defined as

errrel(t) =
‖ γ(t,Ξ)− γN (t,Ξ) ‖L2

‖ γ(t,Ξ) ‖L2

. (5.47)

As the relative errors are comparable, sparse grids will be in what follows preferred as
they require less computational effort and time.
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Figure 5.12: Relative error of the PC approximation of the degradation rate estimated via
NISP approaches: Monte Carlo (first subfigure) and sparse grid (second sub-
figure) integration.

The Galerkin system for the homogenous solution is now formulated. By substituting
the truncated PC expansions of total orderN of the stochastic processes γ(t,Ξ) and xh(t,Ξ)
in the system dynamics, one has

N∑
|n|=0

q̇h,n(t)Pn(Ξ)hn = −

 N∑
|m|=0

γm(t)Pm(Ξ)hm

 N∑
|n|=0

qh,n(t)Pn(Ξ)hn

 . (5.48)

By projecting the residual on the subspace PN and taking expectations, one obtains

N∑
|n|=0

q̇h,n(t)〈Pn, Pl〉hn = −
N∑
|m|=0

γm(t)

N∑
|n|=0

qh,n(t)〈PmPn, Pl〉hmhn, (5.49)

and by orthogonality one has for all l ∈ N6
0 with |l| = 0, . . . , N

q̇h,l(t) = −
N∑
|m|=0

γm(t)
N∑
|n|=0

qh,n(t)〈PmPn, Pl〉hmhn, (5.50)

89



5 Real-time optimal control of the euglycemic hyperinsulinemic clamp (EHC) on mice

or in matrix form

q̇h(t) = −A(t)qh(t), (5.51)

where qh(t) = [qh,0, qh,1, . . . , qh,dP ]T is the vector of PC coefficients in single index notation,
dP + 1 = dimPN and

A(t) =



∑N
|m|=0 γm(t)〈PmP0, P0〉hmh0 · · ·

∑N
|m|=0 γm(t)〈PmPdP , P0〉hmhdP∑N

|m|=0 γm(t)〈PmP0, P1〉hmh1 · · ·
∑N
|m|=0 γm(t)〈PmPdP , P1〉hmhdP

...∑N
|m|=0 γm(t)〈PmP0, PdP 〉hmh1 · · ·

∑N
|m|=0 γm(t)〈PmPdP , PdP 〉hmhdP


.

(5.52)
This system has to be solved with initial value the vector of PC coefficients of the parameter
Θ6, which represents the unknown initial condition for the glucose dynamics. In single
index notation, this means that

qh,j(t0) = λ6,j , ∀ j = 0, . . . , dP . (5.53)

In Figure 5.13, the relative error of using a Galerkin approximation of orders N = 3, 4 for
the homogenous solution based on a sparse grid approximation of the degradation rate of
depth l = 6 is plotted. As in the NISP approach, the 4-th order approximation provides
with the desired accuracy.
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Figure 5.13: Relative error of the PC approximation of the homogenous solution via
Galerkin projection.
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5.5.2 Quadratic optimization

Let now

x(t,Θ, u) = x(t, gΘ(Ξ), u) ≡ x(t,Ξ, u) =

∞∑
|n|=0

qn(t, u)Pn(Ξ)hn, n ∈ N6
0 (5.54)

be the PC expansion of the non-homogenous system and denote by xN (t,Ξ) its approxi-
mation in the subspace PN .

The Galerkin system for the coefficients {qn(t, u) : |n| = 0, . . . , N,n ∈ N6
0} has the fol-

lowing form

q̇(t, u) = −A(t)q(t, u) + u(t) (5.55)

q(t0, u) = q0,

where q(t, u) = (q0(t, u), . . . , qdP (t, u)) is the vector of the PC coefficients in single index no-
tation, A(t) is the matrix in equation (5.52), q0 is the initial condition defined by equations
(5.53) and now u(t) is the vector

u(t) = [
1

Vg

K∑
i=1

ui1{(ti−1, ti]}(t), 0, . . . , 0]T . (5.56)

Recall now the optimization problem formulation defined through equations (5.20)-
(5.23). By exchanging the integral over time and the expectation in equation (5.20) and
expanding the square, one obtains

J0(u) =

∫ T

t0

EΘ[(x(t,Θ, u)−xref)
2]dt =

∫ T

t0

(
EΘ[x(t,Θ, u)2]− 2xrefEΘ[x(t,Θ, u)] + x2

ref
)
dt.

(5.57)
As seen in Chapter 2, the moments of a random variable can be expressed by its PC co-
efficients. Substituting expressions of the form (2.45) and (2.46) in (5.57) and neglecting
additive terms that do not depend on the control u, one has

J0(u) =

∫ T

t0

 ∞∑
|n|=0

q2
n(t, u)hn − 2xrefq0(t, u)

 dt. (5.58)

The infinite summation will be substituted in what follows by the order N -th approxima-
tion for computational purposes.

Next, it will be shown how the cost functional in equation (5.58) can be brought to the
form

J0(u) = uTCu+Du, u = (u1, . . . , uK), C ∈ RK×K , D ∈ RK×1, (5.59)

which is suitable for quadratic optimization.
Let Ψ(t, s) = Φ(t)Φ(s)−1, where Φ(t) is the fundamental matrix of the linear system

(5.51). Then, the solution of the system (5.55) can be computed by the method of variation
of constants and has the form

q(t, u) = Ψ(t, t0)q0 +

∫ t

t0

Ψ(t, s)u(s)ds. (5.60)
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Substituting in the above equation u(s) by equation (5.56), the integral term can be rewrit-
ten as

∫ t

t0

Ψ(t, s)u(s)ds =

∫ t

t0

Ψ(t, s)
1

Vg


∑K

i=1 ui1{(ti−1, ti]}(s)
0
...
0

 ds (5.61)

=
1

Vg

∫ t

t0

Ψ(t, s)
K∑
i=1


ui
0
...
0

1{(ti−1, ti]}ds

=
1

Vg

K∑
i=1

ui1{t > ti−1}
∫ min(t,ti)

ti−1

Ψ(t, s) b ds,

where b = [1, 0, . . . , 0]T . Thus, returning to (5.60) this can be written as

q(t, u) = Ψ(t, t0)q0 +
1

Vg

K∑
i=1

ui1{t > ti−1}
∫ min(t,ti)

ti−1

Ψ(t, s) b ds (5.62)

= Ψ(t, t0)q0 +
1

Vg

K∑
i=1

ui1{t > ti−1}Ψ(t,min(t, ti))

∫ min(t,ti)

ti−1

Ψ(min(t, ti), s) b ds,

where the translation property of the matrix Ψ(t, s) has been used. Define the functions

fi−1(t) =

(∫ t

ti−1

Ψ(t, s) b ds

)
, i = 1, . . . ,K, (5.63)

and

vi−1(t) =

(
Ψ(t, ti)

∫ ti

ti−1

Ψ(ti, s) b ds

)
, i = 1, . . . ,K − 1. (5.64)

Then, it holds

q(t, u) = qh(t) +
1

Vg

K∑
i=1

ui1{t > ti−1} (1{t > ti}vi−1(t) + 1{t < ti}fi−1(t)) , (5.65)

where qh(t) can be computed by solving the homogenous problem of equation (5.51)

q̇h(t) = −A(t)qh(t), qh(t0) = q0. (5.66)

The functions fi−1, i = 1, . . .K and vi−1, i = 1, . . . ,K can be computed by solving
appropriate initial value problems as shown next. By differentiating the functions fi−1 one
has

ḟi−1(t) =
d

dt

(∫ t

ti−1

Ψ(t, s) b ds

)
=

(∫ t

ti−1

d

dt
Ψ(t, s) b ds

)
+ Ψ(t, t) b−Ψ(t, ti) 0 (5.67)

= b+A(t)fi−1(t), i = 1, . . . ,K.
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This system has to be solved with initial condition

fi−1(ti−1) = 0, (5.68)

as one can easily see by substituting t with ti−1 in equation (5.63). For the functions vi−1,
one has

v̇i−1(t) =
d

dt

(
Ψ(t, ti)

∫ ti

ti−1

Ψ(ti, s) b ds

)
=

(
d

dt
Ψ(t, ti)

)∫ ti

ti−1

Ψ(ti, s) b ds+ Ψ(t, ti) 0

(5.69)

= A(t)Ψ(t, ti)

∫ ti

ti−1

Ψ(ti, s) b ds = A(t)vi−1(t), i = 1, . . . ,K − 1,

with initial condition computed by equations (5.63) and (5.64)

vi−1(ti) = fi−1(ti). (5.70)

Here, the Leibniz rule for differentiating an integral has been used, namely

d

dt

∫ b(t)

a(t)
f(t, s)ds =

∫ b(t)

a(t)
ft(t, s)ds+ f(t, b(t)) b′(t)− f(t, a(t)) a′(t), (5.71)

for all continuous functions f : R × R → R such that the derivative ft(t, s) exists and is
continuous.

Denote the n-th component of the functions qh(t), fi−1(t), vi−1(t) as qnh(t), fni−1(t) and
vni−1(t) respectively. Then, the cost functional J0(u) can be written as

J0(u) =

∫ T

t0

 N∑
n=0

hn

(
qn+1
h (t) +

1

Vg

K∑
i=1

ui1{t > ti−1}(1{t > ti}vi−1(t) + 1{t < ti}fi−1(t))

)2

− 2xref

(
q1
h(t) +

1

Vg

K∑
i=1

ui1{t > ti−1}(1{t > ti}v1
i−1(t) + 1{t < ti}f1

i−1(t))

)]
dt.

Expanding the quadratic term yields

J0(u) =

∫ T

t0

[
N∑
n=0

hn

(
(qn+1
h (t))2 + 2qn+1

h (t)
1

Vg

K∑
i=1

ui1{t > ti−1}

(1{t > ti}vi−1(t) + 1{t < ti}fi−1(t))

+
1

V 2
g

(
K∑
i=1

ui1{t > ti−1}(1{t > ti}vi−1(t) + 1{t < ti}fi−1(t))

)2


− 2xrefq
1
h(t)− 2xref

1

Vg

K∑
i=1

ui1{t > ti−1}(1{t > ti}v1
i−1(t) + 1{t < ti}f1

i−1(t))

]
dt.
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Neglecting additive terms that do not depend on the control u, it holds

J0(u) =

∫ T

t0

[
N∑
n=0

hn

(
2qn+1
h (t)

1

Vg

K∑
i=1

ui1{t > ti−1}(1{t > ti}vi−1(t) + 1{t < ti}fi−1(t))

+
1

V 2
g

(
K∑
i=1

ui1{t > ti−1}(1{t > ti}vi−1(t) + 1{t < ti}fi−1(t))

)2


− 2xref
1

Vg

K∑
i=1

ui1{t > ti−1}(1{t > ti}vi−11(t) + 1{t < ti}f1
i−1(t))

]
dt. (5.72)

Consider now only the quadratic term

Q(t) =

(
K∑
i=1

ui1{t > ti−1} (1{t > ti}vi−1(t) + 1{t < ti}fi−1(t))

)2

. (5.73)
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Expanding the square, one obtains

Q(t) =
K∑
i=1

u2
i1{t > ti−1}(1{t > ti}vi−1(t) + 1{t < ti}fi−1(t))2

+ 2
K∑
i=1

K∑
j=i+1

uiuj1{t > ti−1}1{t > tj−1}(1{t > ti}vi−1(t)

+ 1{t < ti}fi−1(t))(1{t > tj}vj−1(t) + 1{t < tj}fj−1(t))

=
K∑
i=1

u2
i1{t > ti−1}(1{t > ti}(vi−1(t))2 + 21{t > ti}1{t < ti}vi−1(t)fi−1(t)

+ 1{t < ti}(fi−1(t))2)

+ 2
K∑
i=1

K∑
j=i+1

uiuj1{t > tj−1}(1{t > ti}1{t > tj}vi−1(t)vj−1(t)

+ 1{t > ti}1{t < tj}vi−1(t)fj−1(t) + 1{t < ti}1{t > tj}fi−1(t)vj−1(t)

+ 1{t < ti}1{t < tj}fi−1(t)fj−1(t))

=

K∑
i=1

u2
i1{t > ti−1}(1{t > ti}(vi−1(t))2 + 1{t < ti}(fi−1(t))2)

+ 2
K∑
i=1

K∑
j=i+1

uiuj1{t > tj−1}(1{t > tj}vi−1(t)vj−1(t) + 1{ti < t < tj}vi−1(t)fj−1(t)

+ 1{t < ti}fi−1(t)fj−1(t))

=
K∑
i=1

u2
i1{t > ti−1}1{t > ti}(vi−1(t))2 +

K∑
i=1

u2
i1{t > ti−1}1{t < ti}(fi−1(t))2

+ 2

K∑
i=1

K∑
j=i+1

uiuj1{t > tj−1}1{t > tj}vi−1(t)vj−1(t)

+ 2
K∑
i=1

K∑
j=i+1

uiuj1{t > tj−1}1{ti < t < tj}vi−1(t)fj−1(t)

+ 2

K∑
i=1

K∑
j=i+1

uiuj1{t > tj−1}1{t < ti}fi−1(t)fj−1(t).
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All together, one has

Q(t) =
K∑
i=1

u2
i1{t > ti}(vi−1(t))2 +

K∑
i=1

u2
i1{ti−1 < t < ti}(fi−1(t))2 (5.74)

+ 2
K∑
i=1

K∑
j=i+1

uiuj1{t > tj}vi−1(t)vj−1(t)

+ 2
K∑
i=1

K∑
j=i+1

uiuj1{tj−1 < t < tj}vi−1(t)fj−1(t).

Substitute this expression back in the cost functional in (5.72) to obtain

J0(u) =

∫ T

t0

[
N∑
n=0

hn2qn+1
h (t)

1

Vg

K∑
i=1

ui1{t > ti−1}(1{t > ti}vi−1(t) + 1{t < ti}fi−1(t))

]
dt

+

∫ T

t0

[
N∑
n=0

hn
1

V 2
g

Q(t)

]
dt

−
∫ T

t0

[
2xref

1

Vg

K∑
i=1

ui1{t > ti−1}(1{t > ti}vi−11(t) + 1{t < ti}f1
i−1(t))

]
dt

=

∫ T

t0

[
2

Vg

N∑
n=0

hnq
n+1
h (t)

(
K∑
i=1

ui1{t > ti−1}1{t > ti}vi−1(t)

+
K∑
i=1

ui1{t > ti−1}1{t < ti}fi−1(t)

)]
dt

+

∫ T

t0

[
1

V 2
g

N∑
n=0

hn

(
K∑
i=1

u2
i1{t > ti}(vi−1(t))2 +

K∑
i=1

u2
i1{ti−1 < t < ti}(fi−1(t))2

+ 2

K∑
i=1

K∑
j=i+1

uiuj1{t > tj}vi−1(t)vj−1(t)

+ 2
K∑
i=1

K∑
j=i+1

uiuj1{tj−1 < t < tj}vi−1(t)fj−1(t)

 dt
+

∫ T

t0

[
2xref

Vg

(
K∑
i=1

ui1{t > ti−1}1{t > ti}v1
i−1(t) +

K∑
i=1

ui1{t > ti−1}1{t < ti}f1
i−1(t)

)]
dt.
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By exchanging the finite sums and the integration in the above expression, it holds

J0(u) =
2

Vg

K∑
i=1

ui

∫ T

t0

[
1{t > ti−1}1{t > ti}

N∑
n=0

hnq
n+1
h (t)vi−1(t)

]
dt

+
2

Vg

K∑
i=1

ui

∫ T

t0

[
1{t > ti−1}1{t < ti}

N∑
n=0

hnq
n+1
h (t)fi−1(t)

]
dt

+
1

V 2
g

K∑
i=1

u2
i

∫ T

t0

[
1{t > ti}

N∑
n=0

hn(vi−1(t))2

]
dt

+
1

V 2
g

K∑
i=1

u2
i

∫ T

t0

[
1{ti−1 < t < ti}

N∑
n=0

hn(fi−1(t))2

]
dt

+
2

V 2
g

K∑
i=1

K∑
j=i+1

uiuj

∫ T

t0

[
1{t > tj}

N∑
n=0

hnvi−1(t)vj−1(t)

]
dt

+
2

V 2
g

K∑
i=1

K∑
j=i+1

uiuj

∫ T

t0

[
1{tj−1 < t < tj}

N∑
n=0

hnvi−1(t)fj−1(t)

]
dt

− 2xref

Vg

K∑
i=1

ui

∫ T

t0

[
1{t > ti−1}1{t > ti}v1

i−1(t)
]
dt

− 2xref

Vg

K∑
i=1

ui

∫ T

t0

[
1{t > ti−1}1{t < ti}f1

i−1(t)
]
dt.

Taking under consideration the characteristic functions, the above expression becomes

J0(u) =
2

Vg

K∑
i=1

ui

∫ T

ti

[
N∑
n=0

hnq
n+1
h (t)vi−1(t)

]
dt+

2

Vg

K∑
i=1

ui

∫ ti

ti−1

[
N∑
n=0

hnq
n+1
h (t)fi−1(t)

]
dt

+
1

V 2
g

K∑
i=1

u2
i

∫ T

ti

[
N∑
n=0

hn(vi−1(t))2

]
dt+

1

V 2
g

K∑
i=1

u2
i

∫ ti

ti−1

[
N∑
n=0

hn(fi−1(t))2

]
dt

+
2

V 2
g

K∑
i=1

K∑
j=i+1

uiuj

∫ T

tj

[
N∑
n=0

hnvi−1(t)vj−1(t)

]
dt

+
2

V 2
g

K∑
i=1

K∑
j=i+1

uiuj

∫ tj

tj−1

[
N∑
n=0

hnvi−1(t)fj−1(t)

]
dt

− 2xref

Vg

K∑
i=1

ui

∫ T

ti

v1
i−1(t)dt− 2xref

Vg

K∑
i=1

ui

∫ ti

ti−1

f1
i−1(t)dt.

Returning back to the formulation of the cost functional in the quadratic form

J0(u) = uTCu+Du, (5.75)
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the elements di, i = 1, . . . ,K of the vector D are given by

di =
2

Vg

∫ T

ti

[
N∑
n=0

hnq
n+1
h (t)vi−1(t)

]
dt+

2

Vg

∫ ti

ti−1

[
N∑
n=0

hnq
n+1
h (t)fi−1(t)

]
dt

+
2xref

Vg

∫ T

ti

v1
i−1(t)dt− 2xref

Vg

∫ ti

ti−1

f1
i−1(t)dt.

The diagonal elements cii, i = 1, . . . ,K of the matrix C are given by

cii =
1

V 2
g

∫ T

ti

[
N∑
n=0

hn(vi−1(t))2

]
dt+

1

V 2
g

∫ ti

ti−1

[
N∑
n=0

hn(fi−1(t))2

]
dt, (5.76)

and the off diagonal elements cij , i, j = 1, . . . ,K with j > i are given by

cij =
2

V 2
g

∫ T

tj

[
N∑
n=0

hnvi−1(t)vj−1(t)

]
dt+

2

V 2
g

∫ tj

tj−1

[
N∑
n=0

hnvi−1(t)fj−1(t)

]
dt. (5.77)

The control policy is to be applied in the same way as explained at the end of section
5.4.1.

5.5.3 Parameter inference combined with polynomial chaos expansions

The parameter inference will be based again on SMC methods as in the Monte Carlo ver-
sion of the algorithm. Assume that k measurements are available, where k = 1, . . . ,K
and that one has an equally weighted sample {(θm, 1

M )}Mm=1 from the posterior πkΘ after
one run of the SMC algorithm. This sample will be used to build the PC expansion of the
model parameters Θ distributed now according to the posterior πkΘ. This means, that after
each measurement is given, one builds the transformation

Θ = gkΘ(Ξ), k = 1, . . . ,K, (5.78)

where Θ ∼ πkΘ and Ξ is the basis random vector. The functions gkΘ are expanded in
the polynomial basis and are used to update the PC coefficients of the degradation rate
γ(t,Θ) = γ(t, gkΘ(Θ)) and thus update the Galerkin system for the solution x(t,Ξ).

5.5.4 Numerical simulations

The performance of the algorithm based on PC approximations is now demonstrated
on the example of one in silico individual. The underlying model parameters are fixed
to θtrue = (2.593369e − 02, 3.395887e − 04, 7.093037e − 02, 4.171830e − 04, 2.376361e −
02, 1.510564e + 02), which is the same parameters used for the numerical simulation of
the first MC version of the algorithm. The SMC algorithm was based again on the same
sample size, namely M = 5000 particles for comparison.

The first subfigure in Figure 5.14 shows the time evolution of the glucose concentration
obtained by solving the model with the parameters θtrue along with the sampled data.
The second subfigure contains the time evolution of the degradation rate obtained with
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the true parameter vector and with the mean of the posterior distribution at the end of
the experiment. The computed optimal control policy is also given in the third subfigure.
Figures 5.15 and 5.16 show the density estimators of the posterior distributions for each
model parameter.
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Figure 5.14: First subfigure: Sampled data (circles), solution of the glucose concentration
model for θtrue (solid line) and reference glycemia (dashed line). Second sub-
figure: true and estimated degradation rate. Third subfigure: computed glu-
cose infusion rate. The parameter vector was fixed at θtrue = (2.593369e −
02, 3.395887e−04, 7.093037e−02, 4.171830e−04, 2.376361e−02, 1.510564e+02).
The solution is based on the polynomial chaos version of the algorithm.
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Figure 5.15: Kernel density estimators for parameters Θ1,Θ2 and Θ3. The corresponding
components of the true parameter vector were θtrue,1 = 2.593369e−02, θtrue,2 =
3.395887e− 04, θtrue,3 = 7.093037e− 02.

The glucose concentration deviates only in the first 40 minutes from the reference value
Gref = 150 [mg/dl]. After this point, the glucose concentration stays very close to the target
glucemia. This method obviously performs better than the Monte Carlo version of the
algorithm, comparing Figures 5.8 and 5.14. This is due to the fact that the PC summarizes
the entire distribution of the parameters, while the Monte Carlo algorithm is based on a
sample approximation of the expectations. This is known to converge very slow, as it was
pointed out in chapter 2. Another important observation is that the control policy based
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Figure 5.16: Kernel density estimators for parameters Θ4,Θ5 and Θ6. The corresponding
components of the true parameter vector were θtrue,4 = 4.171830e−04, θtrue,5 =
2.376361e− 02, θtrue,6 = 1.510564e+ 02.

on PC expansions is much more stable than its Monte Carlo counterpart. This is very
important for the application as rapid changes in the glucose infusion rate adds additional
stress to the mice, which in turn results in abrupt changes in the glucose dynamics and
thus make the control of the system more difficult. Finally, the posterior distributions are
centered for all parameters around the nominal value, as it can be seen in Figures 5.15 and
5.16.

REMARK

(i) The preservation of positivity of the PC approximation was not taken into account in
the above algorithm, as negative realizations, although making no biological sense,
do not lead to a finite time blow up in the linear model under consideration. As seen
from the simulations, the existence of negative values does not have any important
consequences for the optimization of the test. In addition, the tensor product struc-
ture of the multivariate kernels proposed in chapter 4 would result in a very high
dimensional Galerkin system for the 6-dimensional model considered here, which in
turn would lead to an additional computational effort.

(ii) The algorithm proposed here does not incorporate the PC expansion of the solu-
tion in the likelihood. This would require an adaption of the SMC algorithm to take
into account the transformation of the random variables corresponding to the pos-
terior and the proposal distribution. This step is not crucial for the running time
and the performance of the algorithm, since the dynamics have here the simple form
of a one-dimensional ordinary differential equation. The SMC sample is used only
to build the PC approximation of the model parameters when they are distributed
according to the posterior. As seen in chapter 3, in a 5-dimensional space and for
a well-behaved distribution a random sample of size M = 1000 can already cap-
ture well the marginals densities and the dependence structure. If the method is to
be applied to more complicated and/or higher-dimensional systems, the saving of
computation time may be significant when using the PC expansion of the solution
also in the inference part of the algorithm.
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6 Conclusion

Two problems related with applications of polynomial chaos theory in the propagation of
uncertainty in dynamical systems were examined in this thesis: the problem of the rep-
resentation of an arbitrary random variable in terms of a basic random variable and the
problem of preservation of positivity in truncated polynomial expansions. The basis of the
solution for both cases was the Doob-Dynkin lemma from probability theory, which as-
sures the existence of transformations of the basis random variable to the general variable.

A solution to the former problem was given by constructing a discrete map between
random samples from the two variables and combining it with a regression approach in
order to finally estimate the PC coefficients. Proofs for convergence were given for the one-
and the multi-dimensional case. It was shown that the estimated PC coefficients via the
discrete maps converge to the PC coefficients obtained when the transformation appear-
ing in the Doob-Dynkin lemma is assumed to be an optimal map. The estimation of the
coefficients directly by their definition performed bad even with an increased sample size.
The convergence theorem revealed that only a subsequence convergences. Therefore, the
approach via regression and optimal transportation is essential in practice. The theoret-
ical results were verified by numerical simulations on the example of a one-dimensional
uniform distribution and of a 5-dimensional Dirichlet distribution.

The second problem was solved by viewing the finite PC expansions as operators on the
function space L2(Rd,B(Rd)), to which the transformations appearing in the Doob-Dynkin
lemma belong. Weight sequences were then introduced in the PC expansions whose role
was to enforce the positivity of these operators. The approximation error from the intro-
duction of weights was proven to have possibly a slower convergence rate than the one
resulting from the unweighted expansions. This is expected since for finiteN the weighted
expansions are a worse approximation than the best L2 classical PC approximations. Ex-
amples for suitable weight sequences were stated and the performance of the method was
demonstrated on the example of the logistic equation with uncertain initial condition.

Polynomial chaos methods may be used for the design of controllers in systems with
parametric uncertainty. They enable to separate the deterministic and the stochastic part
of the problem and thus transform the stochastic control problem to a deterministic one,
for which a well established theory exists. Both problems considered above may occur in
such considerations. When the control design is combined with a sequential Bayesian pa-
rameter estimation procedure, one has to find the PC representation of a random variable
distributed according to a posterior distribution, a question falling into the first class of
problems mentioned above. Even when the prior and posterior distributions have com-
pact supports, the estimated finite PC representation will admit also realizations outside
this support. When working with nonlinear systems, these realizations corresponding to
the fact that the underlying estimated density function has non zero probability mass out-
side the support. This may lead to instabilities and failure of the control design.
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