
TUM
TECHNISCHE UNIVERSITÄT MÜNCHEN
INSTITUT FÜR INFORMATIK

 

Technischer
Technische Universität MünchenInstitut für InformatikBericht

Klaus Lochmann, Stefan Wagner

TUM-I1328

A Quality Model for Software Quality



Abstract

A large number of terms describing aspects of software quality, called quality attributes, are de-
fined by taxonomies in standards like ISO 9126 or ISO 25010. These definitions have come under
critique for being ambiguous, overlapping and incomplete. Based on our experience in quality
modeling, we developed a quality model, defining a hierarchy of quality attributes. It relies on
an activity-based paradigm and thus makes use of a clear decomposition criteria. We believe this
clearer decomposition solves some of the problems of other taxonomies.

2



1 The Quality Model

In this article, we present a quality model defining quality attributes for software systems. In differ-
ent research projects at the Chair for Software and Systems Engineering at Technische Universität
München, we gained experience in quality modeling regarding all different tasks of quality assur-
ance. Together with industry partners, we developed an activity-based quality model for maintain-
ability, used for the generation of guidelines and checklists [2]. In the research project Quamoco,
together with several research and industry partners, we extended the scope of the quality model
beyond maintainability and extensively worked on automatic measurement and aggregation of
measurement results [4, 8]. In other studies, we explored the usefulness of activity-based quality
models for the specification of quality requirements [6, 7, 5] and applied an activity-based quality
model to both security [9] and usability [10].

Our quality model in this article relies on the paradigm of activity-based quality models [2, 1].
Such quality models define its quality attributes by referring to activities that are conducted with
or on the system. For instance, the classical quality attribute maintainability, is described as the
efficiency and effectiveness of conducting the maintenance activity. The benefit of reasoning about
activities is that they provide a clear decomposition criteria: activities may be decomposed into
sub-activities. For instance, maintaining a system means conducting the following sub-activities:
analyzing the change request and the existing system, modifying the system, and releasing the
modified system. This leads to the introduction of analyzability, modifiability and releasability as
sub-quality attributes of maintainability.

As a starting point for the development of our quality model, we used the quality attributes of
ISO 25010 [3]. We redefined them according to the activity-based paradigm, removed and added
new terms where necessary.

1.1 Structure
The main part of the developed quality model consists of a tree of quality attributes. This tree
contains all quality attributes constituting the quality of a system. They were defined in a way to
be as non-overlapping as possible. Figure 1.2 shows the hierarchy of these quality attributes.

Besides the main tree of quality attributes, there is a list of auxiliary quality attributes, which are
overlapping with the main quality attributes. Each of these quality attributes includes multiple
of the main quality attributes or of parts of them. For instance, the auxiliary quality attribute
portability is a combination of adaptability and releaseability, whereby adaptability is a special
type of maintainability.

A third kind of quality attributes are orthogonal to other kinds of quality attributes. They are
provided as a separate list.

3



1.
2

M
ai

n
Q

ua
lit

y
A

tt
ri

bu
te

s

R
el

ia
bi

lit
y

A
pp

ra
is

ab
ili

ty
Q

ua
lit

y 
in

 B
us

in
es

s

T
im

e 
be

ha
vi

or

F
un

ct
io

na
l c

or
re

ct
ne

ss

C
P

U
 C

on
su

m
pt

io
n

M
em

or
y 

C
on

su
m

pt
io

n
E

xe
cu

ta
bi

lit
y

T
es

ta
bi

lit
y

R
ev

ie
w

ab
ili

ty
V

er
ifi

ab
ili

ty

R
el

ea
sa

bi
lit

y

M
od

ifi
ab

ili
ty

A
na

ly
za

bi
lit

y

O
pe

ra
bi

lit
y

C
on

fig
ur

ab
ili

ty

In
st

al
la

bi
lit

y

Le
ar

na
bi

lit
y

M
ai

nt
ai

na
bi

lit
y

A
cc

es
si

bi
lit

y

S
ec

ur
ity

Q
ua

lit
y 

in
 O

pe
ra

tio
n

Q
ua

lit
y 

in
 E

nd
-U

se

F
un

ct
io

na
l S

ui
ta

bi
lit

y

U
sa

bi
lit

y

Quality

C
o-

ex
is

te
nc

e

R
es

po
ns

e 
tim

e

T
hr

ou
gh

pu
t

E
rr

or
 p

ro
te

ct
io

n

C
on

fid
en

tia
lit

y

In
te

gr
ity

S
up

po
rt

ab
ili

ty

S
af

et
y

F
un

ct
io

na
l a

pp
ro

pr
ia

te
ne

ss

Q
ua

lit
y 

in
 D

ev
el

op
m

en
t 

an
d 

E
vo

lu
tio

n

E
co

no
m

ic
 d

am
ag

e 
ris

k

H
ea

lth
 a

nd
 s

af
et

y 
ris

k

E
nv

iro
nm

en
ta

l h
ar

m
 r

is
k

F
un

ct
io

na
l c

om
pl

et
en

es
s

R
eu

sa
bi

lit
y

A
ux

ili
ar

y
Q

ua
lit

y
A

ttr
ib

ut
es

P
er

fo
rm

an
ce

P
or

ta
bi

lit
y

A
da

pt
ab

ili
ty

4



Quality. the degree to which the system sat-
isfies the requirements of all stakehold-
ers.

Quality in End-Use. the degree to which the
system satisfies the requirements of the
end-user.

Usability. the degree to which the sys-
tem enables effective use with the end-
user. Using the system includes operat-
ing (i.e. interacting with it) and read-
ing/understanding the documentation.

Operability. the degree to which the system
enables effective operation with the end-
user. Operation by the end-user includes
providing input to the system and per-
ceiving and understanding the output of
the system.

Error protection. the degree to which the sys-
tem prevents the end-user from wrong
and/or accidential input to the system.

Accessibility. the degree to which the system
enables end-users with disabilities oper-
ating the system efficiently and effec-
tively.

Learnability. the degree to which the docu-
mentation of the system is suited to ef-
ficiently and effectively instruct the end-
user in operating the system.

Functional suitability. the degree to which the
system provides functionality that sup-
ports the tasks of the end-user.

Functional correctness. the degree to which
the system provides the correct results
with the required degree of precision.

Functional appropriateness. the degree to
which the functionality of the system
supports the tasks of the end-user.

Functional completeness. the degree to which
the tasks of the end-user are covered by
the functionality of the system.

Time behavior. the degree to which the sys-
tem satisfies required response times and
throughput rates.

Response time. the degree to which the system
satisfies required response times.

Throughput. the degree to which the system
satisfies required throughput rates.

Reliability. the probability of the system to be
functionally correct (see functional cor-
rectness) at any time.

Security. the degree to which the system pre-
vents unauthorized actors from (1) read-
ing or modifying data of the system
(2) hampering authorized actors from us-
ing the system.

Confidentiality. the degree to which informa-
tion and data are protected from unautho-
rized disclosure.

Integrity. the degree to which the system pre-
vents unauthorized reading or modifying
of data.

Safety. "the degree to which a product or
system does not, under specified condi-
tions, lead to a state in which human life,
health, property, or the environment is
endangered" [3].

Economic damage risk. "the degree of ex-
pected impact of harm to commercial
property, operations or reputation in the
intended contexts of use" [3].

Health and safety risk. "the degree of expected
impact of harm to people in the intended
contexts of use" [3].

Environmental harm risk. "the degree of ex-
pected impact of harm to property or the
environment in the intended contexts of
use" [3].

Quality in Development and Evolution. the
degree to which the system satisfies the
requirements of the stakeholders con-
cerned with tasks regarding the develop-
ment and evolution of the system. The
evolution of a system includes maintain-
ing and releasing it.

Maintainability. the degree to which the sys-
tem can be maintained efficiently and ef-
fectively. Maintaining the system means
modification of the system to correct
faults, to improve it to prevent future
faults, or to adapt the product to satisfy
changed requirements.

Analyzability. the degree to which the sys-
tems enables (1) the study of the feasibil-
ity and scope of a requested modification

5



and (2) the devision a preliminary plan
for design, implementation, test, and de-
livery.

Modifiability. the degree to which the systems
can be mofified by using the results of
the design phase, the current source code,
and project and system documentation.

Verifiability. the degree to which the system
enables the test for satisfaction of the
changed requirements.

Testability. the degree to which the system en-
ables to conduct software tests to assess
the satisfaction of requirements.

Reviewability. the degree to which the system
enables to conduct reviews of it.

Releaseability. the degree to which the system
can be efficiently and effectively released
to customers. Releasing means building,
naming, packaging, releasing of a partic-
ular version of the system, installing, and
making operational at the customers’.

Configurability. the degree to which the
system can be efficiently and effec-
tively adapted to certain circumstances
by means of using build-in functionality
of the system; i.e. without changing the
system itself.

Installability. the degree to which the system
can be efficiently and effectively installed
and/or uninstalled in a specified environ-
ment.

Reusability. the degree to which the system can
be efficiently and effectively used as part
of another software.

Quality in Operation. the degree to which
the systen satisfies the requirements of
the stakeholders concerned with operat-
ing the system. Operating includes oper-
ation of the hardware, and providing sup-
port to end-users.

Executability. the efficiency with which the
system can be executed on the target
hardware.

CPU consumption. the efficiency with which
the system uses the computing resources
of the CPU.

Memory consumption. the efficiency with
which the system uses the memory of the
hardware.

Co-existence. the degree to which the system
can co-exist with other independent sys-
tems in a common environment sharing
common resources without any detrimen-
tal impacts.

Supportability. the degree to which the sys-
tem enables providing technical assis-
tance, consulting with the user, record-
ing user support requests, and triggering
maintenance activities.

Quality in Business. the degree to which
the system satisfies the requirements of
the stakeholders concerned with acquir-
ing software.

Appraisability. the degree to which acquisi-
tioners can efficiently and effectively as-
sess whether the systems satisfies their
requirements.

6



1.3 Auxiliary Quality Attributes

Performance

Portability

Adaptability

Adaptability. a special type of maintenance,
with the goal of adapting the system to
satisfy changed requirements. Two other
special types of maintenance are correc-
tive and preventive maintenance.

Portability. the degree to which the system
can be efficiently and effectively trans-
ferred from one hardware, software or

other operational or usage environment to
another. Transferring the system means
adapting it, and releasing it. Thus, porta-
bility is a combination of adaptability and
releasability.

Performance. subsumes the time behaviour,
CPU consumption, and memory con-
sumption.

1.4 Orthogonal Quality Attributes

Pleasure

Comfort

Satisfaction

Trust

Purposefullness

Attractiveness

Satisfaction. the degree to which the system
makes the end-user feel satisfied by using
it.

Purposefullness. the degree to which the end-
user “is satisfied with their perceived
achievement of pragmatic goals, includ-
ing acceptable perceived results of use
and consequences of use” [3].

Trust. the degree to which the end-user “is sat-

isfied that the product will behave as in-
tended” [3].

Pleasure. the degree to which the “end-user
obtains pleasure from fulfilling their per-
sonal needs” [3].

Attractiveness. the degree to which the end-
user considers the product to be attrac-
tive.

7



Bibliography

[1] F. Deissenboeck. Continuous Quality Control of Long-Lived Software Systems, PhD thesis,
Technische Universität München. 2009.

[2] F. Deissenboeck, Stefan Wagner, M. Pizka, S. Teuchert, and J.-F. Girard. An Activity-Based
Quality Model for Maintainability. In Proc. of the International Conference on Software
Maintenance (ICSM ’07). IEEE Computer Society, October 2007.

[3] ISO. 25010, Systems and software engineering – System and software product Quality Re-
quirements and Evaluation (SQuaRE) – System and software quality models.

[4] K. Lochmann and L. Heinemann. Integrating Quality Models and Static Analysis for Com-
prehensive Quality Assessment. In Proc. of the International Workshop on Emerging Trends
in Software Metrics (WETSoM ’11). ACM, May 2011.

[5] K. Lochmann, D. Mendez Fernandez, and S. Wagner. A case study on specifying qual-
ity requirements using a quality model. In Proc. of the Asia-Pacific Software Engineering
Conference (APSEC 2012). IEEE Computer Society, December 2012.

[6] S. Wagner, F. Deissenboeck, and S. Winter. Erfassung, Strukturierung und überprüfung von
Qualitätsanforderungen durch aktivitätenbasierte Qualitätsmodelle. In Proc. of the Software
Engineering Konferenz (SE ’08). GI, February 2008.

[7] S. Wagner, F. Deissenboeck, and S. Winter. Managing quality requirements using
activity-based quality models. In Proc. of the International Workshop on Software Qual-
ity (WoSQ ’08). ACM, May 2008.

[8] S. Wagner, K. Lochmann, L. Heinemann, M. Kläs, A. Trendowicz, R. Plösch, A. Seidl,
A. Goeb, and J. Streit. The Quamoco Product Quality Modelling and Assessment Approach.
In Proc. of the International Conference on Software Engineering (ICSE ’12). ACM, June
2012.

[9] S. Wagner, D. Mendez Fernandez, S. Islam, and K. Lochmann. A Security Requirements Ap-
proach for Web Systems. In Proc. of the Workshop Quality Assessment in Web (QAW ’09).
Springer, June 2009.

[10] S. Winter, S. Wagner, and F. Deissenboeck. A Comprehensive Model of Usability. Engi-
neering Interactive Systems, (4940):106–122, 2008.

8


