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Abstract

In the past, enterprise applications used to be hosted on dedicated physical

servers in data centres. The trend to rely on inexpensive, but computational

powerful commodity hardware has lead to operational inefficiencies caused

by resource demand patterns, non-stationary and high levels of volatility in-

duced by business working hours. To overcome these issues, shared infrastruc-

tures enabled by virtualization technologies have emerged. While a plethora

of approaches have been proposed for shared infrastructure management, a

performance comparison of the methods does not exist. The thesis at hand

provides insights on the competitiveness of static server consolidation and re-

source overbooking in comparison to reactive control for dynamic workload

management. By exercising a large set of experiments, we investigate on the

impact of control system parameters on operational efficiency and application

response times. Even though we are able to determine parameter settings

that lead to high levels of efficiency and to reduce costly virtual machine live

migrations substantially for all benchmark scenarios, static consolidation in

combination with overbooking is found to be preferable.
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Zusammenfassung

In der Vergangenheit wurden betriebliche Anwedungen in Rechenzentren auf

dedizierter Hardware betrieben. Durch den Trend zur Nutzung von günstiger

und leistungsfähiger Hardware, die für den Massenmarkt produziert wird,

wurde der Rechenzentrumsbetrieb ineffizient. Grund dafür sind nichtsta-

tionäre Muster in der Ressourcennachfrage und hohe Grade an Volatilität,

verursacht durch typische Geschäfts- und Arbeitszeiten. Im Gegenzug wur-

den Infrastrukturen aufgebaut, die mit Hilfe von Virtualisierungstechnolo-

gie geteilt nutzbar sind. Obwohl eine Vielzahl von Verwaltungsmechansimen

für diese Infrastrukturen existieren, ist es bis heute weitgehend unbekannt,

ob dynamische oder statische Ansätze Vorteile bieten. Die vorliegende Ar-

beit beschäftigt sich mit dieser Fragestellung anhand von Experimenten,

die in einem realen Rechenzentrum durchgeführt wurden. Unter zu Hilfe-

nahme einer beträchtlichen Menge von Experimenten werden die Auswirkun-

gen von Konrolsystemparameterausprägungen auf operationale Effizienz und

Anwendungsantwortzeiten studiert. Obwohl es möglich ist hohe Effizien-

grade zu erziehlen und kostspielige Live-Migrationen von virtuellen Maschinen

substantiell zu reduzieren, ist statische Konsolidierung in Kombination mit

Überbuchung für viele Testszenarien zu bevorzgen.
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Chapter 1

Introduction

...in a nutshell, Isaac Newton led a fulfilling life and during his

85 years contributed vastly to human knowledge. Isaak Walton,

with 5 more years on earth, gave us a book about fishing...

by Dave Blackhurst (http://www.sabotagetimes.com)

Data centres have become important infrastructure building blocks for en-

terprises that more and more depend on the performance and availability of

information technology services. The continuous growth in demand for com-

putational resources, excited by web-based applications that have become in-

dispensable utilities for a broad spectrum of users has spurred the need for

multiplexing computational resources in data centres. Multiplexing, or shar-

ing hardware amongst several applications, needs to be carried out in ways

that balance application performance with economical objectives such as sav-

ing on energy and reducing investment costs. As of today, server virtualization

technology has found wide spread use in building up shared application host-

ing infrastructures that may be used to achieve an equilibrium between the

two oppositional goals. Despite the apparent practical relevance, currently

1
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employed ad-hoc, reactive and dynamic resource provisioning techniques are

not well studied with respect to delivered operational efficiency.

In this thesis we will investigate on fundamental issues arising from resource

allocation mechanisms designed to minimize costs for powering and cooling

physical servers in virtualized data centres. Even though our excursion is lim-

ited in scale and scope, the combination of algorithms, estimation procedures

and the system design we apply are designed for managing large virtualized

data centres containing hundreds of physical servers and possibly thousands of

virtual machines. Especially the heavy demands that typical enterprise appli-

cations place on the storage infrastructure render the acquisition costs for the

required hardware expensive and imposes unique challenges on system admin-

istration and setup. Hence, we derive our insights from scaled down problems

that have been designed on the basis of real world data sets. We shed light

on decision problems with high practical relevance to data centre operators

aiming at energy efficient, yet service level agreement compliant operations.

The three main question we will answer, given a certain data centre workload,

are:

• Are reactive control systems suitable and able to provide operational ef-

ficiency?

• How should a reactive control system be parameterized to achieve the de-

sired equilibrium between operational efficiency and application response

times?

• Are reactive control systems for dynamic workload management in gen-

eral favorable over static server consolidation?

Because of the vast amount of details and problems that need to be addressed,

we will avoid treatments of well researched issues but focus on several key

problems inevitably arising in the problem domain. In particular, we will
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address the following obstacles when searching for answers to the three key

research questions:

• The definition and generation of a data centre benchmark that allows us

to compare several infrastructure management approaches using differ-

ent workload scenarios representative for normal, real world data centre

operations.

• The estimation of consolidation overheads and their consideration dur-

ing the consolidation planning process. On contemporary commodity

hardware, resource demands of co-located virtual machines turn out to

be non-additive due to interference and contention for shared hardware

resources and other effects. As we are investigating on the performance

of static server consolidation and overbooking, we necessarily require

a way to estimate the non-additive resource demand effects. Without

consideration, static server consolidation is not feasible in our testbed

infrastructure as well as on other hardware platforms.

• The online estimation and prediction of resource demands of virtual ma-

chines and physical servers from volatile and noised monitoring data.

The performance and behavior of reactive control systems depends on

an accurate, yet smooth representation with sufficient predictive capabil-

ities to enable effective decision making, even under severe uncertainty.

• The influence of control parameters of reactive control systems with re-

spect to the characteristics of the data centre-wide workload. Depending

on the characteristics of the overall data centre workload, the control

parameters influence on the degree of consolidation aggressiveness, con-

trol action overheads and side effects incurred by dynamic infrastructure

management.

• A comparison of reactive control system and static consolidation with

overbooking of temporal resources with respect to operational efficiency
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and service level compliance. It is, by no means, obvious that reactive

control systems are able to actualize potential energy savings and to

ensure application response times comparable to static consolidation.

Even though it would be beneficial, we will not immerse deeply into the intri-

cacies of hardware related problems or show how our results may be transfered

to different hardware or virtualization platforms. Our treatment of these issues

will be limited to an extend that allows us to estimate he impact of contention

effects for hardware resources. Whenever we feel necessary, we will evaluate

virtualization techniques such as virtual machine live migration by taking a

measurement based approach to underpin decisions related to our control sys-

tem and experimental design.

1.1 Motivation

Over the past decades, several ways for resource allocation in data centres,

ranging from dedicated to shared models were employed. In the early stages

of this development a small number of large mainframe systems were used to

host several disparate applications by rigidly partitioning the available hard-

ware resources. According to Williams (2007), both acquirement as well as

expansion of a mainframe systems was expensive, required prolonged lead and

setup times as well as careful long term capacity planning under demand un-

certainty. Investment decisions were affiliated with considerable financial risks.

In response, data centre operators favored the use of cheap, modestly capac-

itated commodity hardware that could be acquired with limited exposure to

experiencing unprofitable investments.

Rapid advances in computing technologies and falling hardware prices in com-

bination with the trend to distributed application design paradigms supported

the incremental acquisition of physical servers. Rather than sharing resources,
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physical servers were operated in a dedicated manner as this hosting model

ensured high levels of application performance. On the downside, it required

conservative, peak demand oriented capacity planning. As resource demands

of enterprise applications are more often than not characterized by significant

fluctuations on short time scales such as minutes and hours in combination

with high peak to mean ratios on coarser time scales, dedicated application

hosting has lead to low average physical server utilization and resource short-

ages. In combination with the unbridled sprawl of physical servers, excessive

surplus costs have to be beard by data centre operators for server administra-

tion, facility space and most importantly energy costs for powering and cooling

physical servers. As energy is often estimated to account for about 50% of total

data centre expenses, a main potential for optimizing data centre operations

is the reduction of required physical servers through demand oriented resource

allocation methods.

As of today, data centres consist of steadily increasing numbers of physical

servers with low average resource utilization. In an empirical study of six

data centres, containing in total over 1000 physical servers, Andrzejak et al.

(2006) found that more than 80% of the physical servers used at most 30% of

their capacities during periods of peak demands. A recent survey by Sargeant

(2010) reveals that around twelfe million servers are currently operated in

data centres worldwide with average server utilization levels of 15 to 20%.

Kaplan et al. (2008) even claim that average server utilization rarely exceeds

6%. The Report to Congress on Server and Data Center Energy Efficiency,

published by Brown et al. (2008), estimates that data centres in the United

States consumed about 61 billion kilowatt-hours or roughly $4.5 billion in

energy costs in 2006. It was expected, assuming a continuing trend, that

energy consumption by data centres in the United States would reach nearly

100 billion kilowatt-hours by 2011, accounting for more than two percent of

the total energy consumption of the country. Extending these numbers to a

global scale and considering rising energy costs in combination with increasing
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demand for computational resources, the impact of improved, energy efficient

data centre operations becomes more than evident.

To overcome the short comings of the dedicated application hosting model,

shared infrastructures have emerged that are often built using virtualized com-

modity hardware equipped with modest computational resource capacities in

comparison to mainframe systems. A shared hosting infrastructure runs vari-

ous applications, whereas the number of applications exceeds by far the num-

ber of physical servers. Virtualized infrastructures provide the required agility

and elasticity for resource provisioning that enables demand oriented resource

allocation, which in turn shall lead to higher resource utilization levels of phys-

ical servers and energy savings. While virtualization is not the only technol-

ogy for implementing shared infrastructures, it is a technology that achieves

strong isolation between disparate applications and does not, in contrast to

the work presented by Urgaonkar et al. (2009) require the adaptation of exist-

ing operating systems for save and fair resource allocation amongst competing

applications.

Server, network and storage virtualization is well established and accepted

amongst service providers and data centre operators. According to Barham

et al. (2003), these techniques provide the means for performance isolation

and secure co-location of multiple applications and enable flexible resource

allocation strategies by dissolving the strong linkage of enterprise applications

to physical servers at deployment and runtime.

Surprisingly, only simulation studies exist on reactive control systems and how

dynamic management can be improved to realize better levels of efficiency.

However, most management methods have not been studied under real world

conditions and not in a comparative way. Our study is the first to compare

static and dynamic workload management methods by analyzing an exten-

sive set of real world experiments. In this respect, the work at hand fills an

important gap in the literature on operational data centre management.
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1.2 Contributions

Shared application hosting infrastructures are more and more used to host typ-

ical web-based, transaction processing, multi-tier enterprise applications that

are accessible to their users via standard Internet protocols. Application com-

ponents such as web, application or database servers are typically deployed

into virtual machines and communicate with each other when processing user

requests. Several authors, including Gmach et al. (2007) and Speitkamp and

Bichler (2010), state that hosting enterprise applications in shared infrastruc-

tures is a challenging task due to recurring resource demand patterns, high

peak to mean ratios as demonstrated by Casale et al. (2009), unpredictable,

non-persitent demand fluctuations addressed by Urgaonkar et al. (2008), Chen

and Heidemann (2005), Wang et al. (2009) and Urgaonkar and Shenoy (2005)

and trends induced by business cycles. Obviously, even if strong seasonal

demand patterns exist, uncertainty about future resource demands can be

considered the rule, not the exception. Even if coupled with sensitivity anal-

ysis, the insights and predictive power of long term forecasting models may

be limited. Intuitively, this observation is convincing by taking into account

the overall environment in which enterprise applications are used. According

to Burgess et al. (2002), enterprise applications are utilized by organizational

personnel, business partners, customers and even other applications via online

services. Consequently, applications are influenced by service demand from a

wide variety of sources. This exposes the underlying computing infrastructure

to a broad random source of external influence and makes it difficult to retrace

the measured resource demands and patterns, rendering long term planning a

potentially non-promising endeavor.

Despite that argument, Gmach et al. (2008) shows that long term trends and

seasonal patterns can be predicted quite well, but argues that predicting the

resource demand behavior of an enterprise application on short time scales is

difficult, unreliable and according to Gmach et al. (2009) and Andreolini et al.
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(2008) often afflicted with poor forecasting accuracy. While the former insight

calls for static server consolidation, the latter argument provoked researchers

such as Kusic and Kandasamy (2007) and Chase et al. (2001) to design re-

active control systems that do not employ long term forecasting techniques,

but exploit agility and elasticity for resource allocation in a demand oriented

way. Agility and reactive control are envisioned to solve the problem of con-

tinued growth of data centres and complex demand behavior of virtual ma-

chines, as dynamically determining optimal virtual machine to physical server

assignments is challenging and often computational prohibitive. Therefore,

commercial products as well as research efforts try to tackle these problems

by exploiting agile resource provisioning approaches enabled through virtual

machine live migration. However, it is far from obvious how dynamic resource

allocation approaches perform in contrast to static server consolidation with

respect to operational efficiency and delivered application performance.

We mainly investigate on reactive control systems for virtualized infras-

tructures used for resource allocation to enterprise applications that expose

pronounced daily demand patterns. We compare their performance with static

consolidation and overbooking methods and investigate on how to efficiently

manage physical server resources despite volatile and fluctuating resource

demands. To answer this main question, we focus on the following obvious,

yet open key research challenges:

Effectiveness and efficiency of reactive control systems : Diao et al. (2005)

characterize control methods in terms of controllability, inertia of the con-

trolled system, efficiency and stability. As reactive control systems derive

ad-hoc virtual machine placement decisions in combination with simple, short

sighted resource demand estimation procedures, there are no guarantees for

system stability nor for the realization of potential efficiency gains of dynamic

workload management. Even though statements about energy reductions

are often found in the literature (Chase et al. (2001), Khanna et al. (2006),
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Hermenier et al. (2009), Verma et al. (2008) and Gmach et al. (2009)),

it is not known whether dynamic workload management is able to realize

potential energy savings. We evaluate the influence of several parameters

of reactive control systems for their effectiveness with respect to stability,

realized operational efficiency and overheads for executing virtual machine

live migrations. We show that despite the ability of reactive control systems

to deliver high levels of operational efficiency compared to pre-computed

potential efficiency gains, their performance is affected by non-negligible

application performance degradation and intense overheads on the physical

network and server infrastructure. To gain these insights, we develop a

decision model hat pre-computes expectable control system performance for

data centre level benchmark scenarios.

Comparison of operational efficiency : It is intuitive to believe that reactive

control systems may lead to reductions in the amount of required physical

servers when demands of virtual machines follow daily patterns induced

by business and working hours and are positively correlated. However,

their performance in comparison to static server consolidation is not well

known. As reactive control systems are faced with high levels of demand

uncertainty and volatility, ad-hoc virtual machine placement decisions may

become quickly obsolete. We quantifying the possible gains in operational

efficiency by exercising a set of benchmark scenarios and show that static

server consolidation in combination with resource overbooking is competitive

with reactive control schemes when considering real world constraints such as

static main memory allocation. Our insights may be used to improve existing

control systems that combine pre-computed virtual machine to physical server

assignments with carefully designed anomaly detection and conditioning

strategies.

Our work is distinctive to previous explorations of dynamic workload manage-
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ment and static server consolidation in several important aspects:

• We reduce the amount of assumptions on technical details such as consol-

idation overheads, migration overheads, application performance degra-

dation due to resource shortages and contention for hardware resources

as it is often done in simulation studies given by Gmach et al. (2009),

Khanna et al. (2006) or Bobroff et al. (2007).

• Our study is based on an extensive set of benchmark scenarios derived

from real world data. Several studies on dynamic workload management

exist, but are more often than not limited to very few demand scenar-

ios derived from replaying web server access traces, or artificial as well

as non-documented service demands. We exercise several workload in-

tensity levels and show that is its even possible to consolidate virtual

machines with high demand levels relative to the resource capacities of

physical servers. This sets us apart from Speitkamp and Bichler (2010),

where slightly utilized virtual machines are consolidated, as well as from

Wood et al. (2009a), who do not describe the workloads used to evaluate

their control system as well as simulation studies based on raw real world

demand traces that may be affected by anomalies.

• We present results relative to expectation baselines that allow for an

objective evaluation and judgment of the performance of our reactive

control system design.

• We measure quality of service metrics instead of assuming that resource

shortages may lead to performance degradation as done by Speitkamp

and Bichler (2010), Wood et al. (2009a) or Gmach et al. (2009). This al-

low us to judge in a proper way on the performance of dynamic workload

management in comparison to static server consolidation as a comparison

on operational efficiency only is not sufficient.
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• We measure and analyze several overheads in detail and provide jus-

tification for control system design decisions rather than assuming the

appropriateness of our algorithms and estimation procedures.

• We study resource allocation problems with real world constraints. In

contrast to systems implementing dynamic memory allocation as pro-

posed by Wood et al. (2009a), we show that dynamic memory allocation

is not recommendable in our context.

The results we obtain and discuss in subsequent chapters fill some major gaps

in the literature published so far, as we will show that reactive control is not

superior to static sever consolidation in combination with overbooking.

1.3 Organization

This work is devoted to real world experiments using a testbed consisting of

a data centre benchmark and a small scale virtualized data centre. To do so,

we proceed in the following way:

Chapter 2 will provide necessary background on virtualization techniques and

discusses related work in server consolidation and dynamic workload manage-

ment. We will also give details on how our work differs from existing studies,

how we build up on previous work and how our insights differ.

Chapter 3 introduces the problem definition and notation. We describe sev-

eral extensions of the basic server consolidation problem for dynamic workload

management and consolidation overheads.

In Chapter 4 we give a statistical analysis of the two data sets used in this

work. We have chosen to provide an in-depth exposition as our findings be-

come more accessible when understanding the volatile and stochastic nature

of service demands enterprise applications are exposed to.
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In Chapter 5 the experimental testbed is presented that we use to exercise a

reactive control system under real world conditions. We describe a data center

benchmark consisting of a method for scenario generation and a workload gen-

eration system. We give details on the hardware setup and present results for

consolidation and migration overheads. We also describe the internal workings

and design of our reactive control system.

Chapter 6 provides an evaluation of several resource demand prediction tech-

niques that justifies our predictor selection. We evaluate existing time series

models and smoothing techniques for workload prediction that we use in our

control system and show that it is possible to predict future workload devel-

opments reasonably well for short prediction periods.

In Chapter 7 we present an extensive study of the reactive control system

and compare its performance in terms of operational efficiency and delivered

application performance to static server consolidation and overbooking.

Finally, Chapter 8 summaries the insights of the work and provides directions

for future work.



Chapter 2

Background and Related Work

Don’t get me wrong, I’ve nothing against fishing or wasting

time, I’m just pointing out that fishing is a waste of time. I know

because I’ve wasted precious time with a rod in my hand.

by Dave Blackhurst (http://www.sabotagetimes.com)

Server virtualization is an established technology to increase the resource uti-

lization of physical servers and to ease the management of large scale hosting

infrastructures. Data centre operators already capitalize economies of scale

to provide computational resources to enterprise applications in cost efficient

ways. In this chapter we will provide the required background on the basic

techniques, models and methods for infrastructure management our work is

based on. We will discuss related research efforts, highlight the differences to

our work and will draw upon open issues.

2.1 Server Virtualization

Server virtualization allows to run multiple operating systems, encapsulated

in virtual machines on a single physical server using resource sharing and par-

13
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Figure 2.1: Hypervisor and hardware layers

titioning techniques. It was invented to partition large mainframe servers into

multiple virtual machines by means of a software layer called virtual machine

monitor or, as we will do hypervisor. A virtual machine mimicked the un-

derlying physical hardware sufficiently enough to let operating systems and

software targeted for the underlying hardware execute unmodified. The hy-

pervisor runs directly on the hardware, is in charge of resource scheduling

and to provide uniform access to all kinds of hardware resources. Figure 2.1

depicts the responsibilities and the architectural role of a hypervisor as an

intermediate layer between virtual machine and the hardware in a schematic

way. As even x86-based physical servers became powerful enough to support

the execution of several applications simultaneously, multiplexing of hardware

resources has again become a reality in data centres. By breaking up the

tight bond of operating systems and applications with the underlying hard-

ware through normalized resource access, server virtualization allows, up to

a certain degree, the isolation of applications competing for resources, fault

isolation and the migration of running operating system instances from one

physical server to another with limited impact on running applications. Server

virtualization enables flexibility in the management of computational resources

as resource shares of virtual machines can be dynamically adjusted. Live mi-

gration extends the flexibility from the physical server to the data centre level

and allows to shrink and expand the set of powered physical servers directed

by time changing resource demands of virtual machines.
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However, the extra layer of abstraction comes at the price of reduced appli-

cation performance as shown by Wood et al. (2008). The deviation from

native performance is often acceptable to practitioners. The overheads stem

from various tasks performed by the hypervisor such as code rewriting, trap-

ping memory access and I/O operation execution. The actual extent depends

on the type of virtualization platform and the characteristics of the hardware

architecture in use. Overheads are also incurred when executing virtual ma-

chine live migrations that depend on the employed algorithm and the memory

intensity of a virtual machine’s workload. On commodity systems, hardware

resources are heavily shared which leads to overheads caused by parallel and

shared access of virtual machines to hardware caches and memory controllers.

While overheads incurred by the virtualization layer have been studied ex-

tensively in the past, the latter issue has not received much attention in the

scientific community. We will review different types of virtualization platforms

before we discuss the mentioned overheads in more detail.

2.1.1 Types of Server Virtualization

A variety of different techniques for the implementation of virtual machines

(sometime referred to as guests) are available today. We give a short overview

of server virtualization platforms in general before we go into the details of

the Citrix Xen hypervisor developed by Citrix (2012), that we rely on in our

work. Contemporary hypervisor implementations can be classified by the way

they enable the execution of guest operating systems with and without direct

hardware access.

• Emulation and translation based platforms execute privileged guest in-

structions in software because the virtual machine’s operating system

and hardware architectures are incompatible. It allows for the execution

of unmodified operating systems but incurs the overhead of instruction

translation.
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• Full virtualization platforms employ binary code translation to trap ac-

cess to non-virtualizable instructions. It allows the execution of unmodi-

fied guest operating system. VMware uses binary translation techniques

to achieve full virtualization of x86-based hardware. Hardware-assisted

virtualization enables efficient full virtualization using hardware capa-

bilities, primarily from the physical servers processors and was added

to x86 processors lately. Most modern x86-based processors support

hardware virtualization. Hardware extensions support a privilege level

beyond supervisor mode, used by the hypervisor to control the execution

of a virtual machine’s operating systems. In this way, the hypervisor can

efficiently virtualize the entire processor instruction set by handling sen-

sitive instructions using classic trap and emulate techniques implemented

in hardware.

• Paravirtualization allows the guest operating system to execute in user

mode, but provides a set of special function calls to the hypervisor, which

allows the guests to execute privileged instructions. It requires a modi-

fication of the guest operating systems to replace hardware instructions

with calls to the hypervisor.

2.1.2 Citrix Xen Virtualization Platform

Xen is an open source hypervisor for the x86 hardware platform and has been

commercialized, but is still available as an open source distribution main-

tained by Citrix. Xen introduced paravirtualization on the x86, using it to

support virtualization of modified guest operating systems without hardware

support or binary translation. Xen also allowed for full virtualization based on

hardware support and manages these hardware features using a common ab-

straction layer that enables unmodified guest operating systems to run within

Xen virtual machines. Hardware-assisted virtualization in Xen allows, through
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the addition of new instructions, paravirtualized guests to call the hypervisor

directly which allows the hypervisor to keep hardware access under control.

Above the Xen hypervisor, which runs on the highest privilege level, operate a

set of virtual machines, also called guest domains. The guests use hypervisor

services to manipulate virtual CPUs and to perform I/O operations. A special

virtual machine called domain0 owns management privileges and has direct

access to the hardware, serving as device driver domain. Domain0 can be

used to manage other virtual machines and allows them to access native device

drivers. Hardware supported virtual machines get I/O virtualization through

device emulation.

As the I/O devices are shared across all virtual machines, the hypervisor con-

trols access to them by implementing a delegation model for device access.

A split device driver design enables the execution of unmodified, native de-

vice driver in domain0. An emulated hardware interface, called the backend

driver, hides the native drivers from the guest domains. The backend driver

exposes a standardized set of hardware devices that all guest operating systems

interface with by using the front-end driver. The front-end driver communi-

cates with the backend driver via a shared-memory ring architecture and an

eventing mechanism implemented in the hypervisor. This I/O execution model

leads to additional CPU overheads in contrast to other I/O virtualization tech-

niques as it requires CPU time in domain0 and in the involved guest domain,

which requires the respective virtual CPUs to be scheduled on a physical CPU.

Liao et al. (2008) show that I/O performance depends on the employed CPU

scheduling strategy and propose modified scheduling algorithms to improve

I/O performance and to reduce CPU overhead. Cherkasova et al. (2007) pro-

vide an performance analysis of CPU scheduling in Xen. They show that both

the CPU scheduling algorithm and the scheduler parameters heavily impact

on the I/O performance.

As we will discuss in section 5.7, live migrations executed by the domain0
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affect the performance of co-hosted virtual machines, on the sending and the

receiving physical server. For completeness, the shortly described Xen archi-

tecture is depicted in figure 2.2. As domain0 requires CPU time, it is treated
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Figure 2.2: Xen architecture

as any other domain by the Xen CPU scheduler. Besides the resource require-

ments for I/O operations, domain0 also executes live migrations by sending

and receiving main memory pages over the network and tracks memory pages

that need to be send or resend. When receiving a virtual machine, domain0

copies the virtual machines memory to the reserved main memory pages on the

target physical server. We will measure the CPU overhead for executing live

migrations in section 5.7 and provide a discussion why migration overheads

are not easy to quantify exactly.

The performance of I/O dependent applications operating in guest domains

depends on the techniques and configuration used for I/O and CPU scheduling

and how main memory is allocated. We briefly describe the techniques for CPU

and main memory allocation in the following subsections.
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2.1.3 Resource Allocation and Overbooking

The role of the hypervisor is to provide each virtual machine a portion of

the resources of the hardware. The hypervisor allocates only fractional parts

of the overall server capacities to each virtual machine. How the hypervisor

achieves this depends on the implementation and resource type. It can either

partition resources in a fair and even way or allow for prioritization which

leads to uneven and biased allocation schemes. Citrix Xen and other hyper-

visors support fine grained allocation of CPU resources, main memory and

network bandwidth to virtual machines. Resource overbooking, that is pro-

viding less resources than conservative capacity planning would suggest, has

been proposed lately as a way to increase the profits of data centre operators.

Urgaonkar et al. (2009) applies statistical overbooking to temporal resources

and experimental work by Williams et al. (2011), Gupta et al. (2010), Heo

et al. (2009), Wood et al. (2009b) and Zhao et al. (2009) propose to apply it

to non-temporal resources such as main memory. As oversubscribing physical

resources increases the probability of overloads and memory overload is known

to be particularly damaging, also stated by Urgaonkar et al. (2009), the effec-

tiveness for applications with tight quality of service requirements has not been

shown up to now. It is found by Williams et al. (2011) that transient overloads

can be well handled using lightweight approaches, like network attached main

memory, without severely degrading application performance. Williams et al.

(2011) recommend to use heavyweight methods such as virtual machine live

migrations to mitigate sustained overload situations on physical servers. As

we will see throughout the evaluation of our experiments in chapter 7, short

overloads can not be handled well by live migrations as their overheads in

combination with unavoidable lagging for overload detection renders dynamic

infrastructure adaptation inappropriate: it is impossible to anticipate a tran-

sient, short lived overload in a reliable way without introducing substantial

delays for initiating live migrations as counter actions.
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2.1.3.1 CPU Allocation

The shared resource of main interest in the literature on workload management

in data centres is CPU time. It is allocated temporarily by a scheduler in a sim-

ilar way CPU time is scheduled to processes in modern multitasking operating

systems. There the CPU scheduler may preempt processes as required, ensures

fair allocation and aims at not wasting CPU cycles. The Xen CPU scheduler

is in charge of scheduling the virtual CPUs assigned to virtual machines on

physical CPUs. In contrast, a virtual machine’s operating system scheduler

manages operating system processes from the run queue and schedules them

on the available virtual CPUs. In Xen and other hypervisors a single virtual

machine may use one or more virtual CPUs. The scheduler is responsible to

determine which virtual CPU should be executed on which physical CPU. To

achieve the assignment task, the scheduler determines which virtual CPUs are

idle and which are busy. In a second step the scheduler selects a virtual CPU

from the busy set and assigns it to a physical CPU. A virtual CPU is idle if

no process is scheduled for execution by its operating system and is running

the idle task on a virtual CPU.

The credit based scheduler is the default algorithm in Xen. According to

Cherkasova et al. (2007), it delivers good performance for average workloads.

A cap can be used to control the CPU utilization of a virtual machine, limit-

ing it to fractions of the overall CPU capacity. A cap of zero corresponds to

the schedulers work conserving mode and allows a virtual machine to receive

spare CPU time on any physical CPU. A non-zero cap limits the amount of

CPU time a virtual machine may receive and corresponds to the non work-

conserving mode of the scheduler. The credit scheduler requires each domain

to have a weight assigned, the cap is optional. The weight indicates the rel-

ative CPU allocation a virtual machine may receive compared to co-located

virtual machines. It is a non-preemptive, fair share proportional scheduler and

supports work-conserving and non work-conserving modes using virtual ma-
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chine weights. The weights correspond to credits in a token bucket algorithm.

Credits are earned at a constant rate, saved up to a maximum, and consumed

while a virtual CPU runs on a physical CPU. Negative credits imply a priority

of over, positive balance implies a priority of under. Whenever a scheduling

decision is to be made for a physical CPU, the head of the physical CPUs run

queue is allocated to it. The run queue is sorted according to the virtual CPUs

priority. If there is no virtual CPU of priority under available in the run queue,

the queues of other physical CPUs are searched for virtual CPUs with prior-

ity under and if one is found it is scheduled. On symmetric multi-processor

hardware, system wide load balancing is achieved without explicit pinning of

virtual CPUs. Virtual machines are guaranteed to receive a fair share of CPU

time. However, Zhou et al. (2011) show how to break the guarantees and

how a virtual machine may steal CPU time from co-located virtual machines.

It is also ensured that physical CPUs only switch into the idle state if no

runnable virtual CPU are available. The basic scheduling scheme accurately

distributes resources between CPU-intensive workloads, but comes at the price

of reduced I/O performance, as shown by Liao et al. (2008). To achieve better

I/O latency, the scheduler attempts to prioritize I/O operations by boosting

priorities of virtual CPUs with left over credits waiting for I/O operations.

When a virtual CPU is awakened with remaining credits, it may exceptionally

preempt running or waiting virtual CPUs with lower priorities. That way, I/O

intensive workloads obtain low latency by requiring only occasionally small

amounts of CPU time, while the scheduler is still able to preserve a fair CPU

distribution. Knowledge of the credit scheduler is required to understand the

impact of virtual machine live migration on CPU demands on the target and

source physical server.

Several control theoretic approaches operating on very short time scales such as

seconds have been presented by Padala et al. (2007) and Padala et al. (2009),

that detect and mitigate CPU bottlenecks and provide service differentiation

by controlling CPU allocation using caps and weights. Similarly, Wood et al.
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(2009a) adjusts the amount of virtual CPUs available to a virtual machine in

response to changes in demand. In contrast, we do rely on the credit based

scheduler to assign CPU time to virtual machines in a demand oriented way.

We do not control the CPU allocation as it requires knowledge of the appli-

cation running inside the virtual machine, an application may not even take

advantage of additional virtual CPUs, and we do not assume priorities for vir-

tual machines in an enterprise setting. Virtual machines are considered to be

non-discriminable in importance by the data centre control system.

2.1.3.2 Main Memory Allocation

In contrast to CPU time, main memory is often not amenable to multiplexing

or overbooking. This circumstance is often claimed to prevent higher degrees

of consolidation. Main memory is, in the parlance of Urgaonkar et al. (2009) a

non-temporal resource and requires more conservative capacity planning than

temporal resources such as CPU and network bandwidth. Even slight shortages

of main memory severely degrade application performance due to high memory

access latencies caused by page faults. The concept of overcommitting physical

memory is well studied in the context of operating systems, but much less

studied for server virtualization.

Xen allows the adaptation of main memory allocations of virtual machines, but

no automatic adjustment techniques are currently available. Virtual machines

are assigned a minimum and maximum amount of main memory that can be

adjusted using balloon drivers to temporarily remove memory from running

virtual machines. Under normal operations, every memory page of a virtual

machine is directly backed by a memory page on the physical server. The

balloon driver works by inflating or deflating a memory balloon, which is an

area of a virtual machine’s main memory address space. A balloon driver uses

an operating system specific technique to increases memory pressure within the

virtual machine. The operating system assumes that it can no longer use the
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requested memory. In response it swaps out not heavily used memory pages to

secondary storage. After acquiring memory pages, the balloon driver informs

the hypervisor that the physical memory pages that back the virtual machines

memory pages have been freed. The hypervisor in turn revokes the guest’s

access privilege to these physical memory pages, and makes them available

to other guests. When a guest’s memory allocation should be increased, the

hypervisor asks the balloon driver to deflate its memory balloon. In order

to do so, the balloon driver requests the hypervisor to remap ballooned-out

guest memory pages to physical memory pages. In case that there are no spare

physical memory pages available on the server, the hypervisor may refuse to

increase the memory allocation. After a successful increase, the swapped out

memory pages will be eventually swapped in on demand. Gupta et al. (2010)

state that as I/O operations are involved, especially in an infrastructure that

is based on network accessible storage, swapping main memory pages in and

out is an expensive operation.

Main memory overbooking has not been widely studied, except on the VMware

platform. Here, the aggregated memory allocation of all virtual machines may

exceed the memory capacity of a physical server. Waldspurger (2002) intro-

duces a technique called content-based page sharing for the VMware platform.

This technique improves the effective use of physical main memory by as much

as 33%, measured in production environments. Page sharing identifies virtual

machine memory pages with identical content and consolidates them into a

single shared page. This technique, implemented at the physical server level

applies only to virtual machine co-located on a single physical server. In a large

data centre, opportunities for content-based page sharing may only be realized

if virtual machines with similar memory contents are located on the same

physical server. Wood et al. (2009b) present a memory page sharing-aware

placement system for virtual machines. This system determines the sharing

potential among a set of virtual machines in a data centre, and computes

possibly more efficient placements. It uses live migrations to optimize virtual
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machine placement in response to changes in resource demands. The evalua-

tion of the prototype, using a mix of enterprise applications, demonstrates an

increase of data center capacity by 17%, but imposes control overheads and is

specifically targeted towards the VMWare platform. The observed savings in

memory are due to fact, that applications use a limited writable working set;

a fact that is also exploited by live migration algorithms. However, it is not

stated how much of the savings are due to the fact that all virtual machines

used in the evaluation are installed using the same operating system and iden-

tical software version. Heterogeneity in deployed operating systems and appli-

cations may decrease the potential benefits noticeable. It is important to note

that changes in the degree of page sharing may lead to severe main memory

shortages on a physical server and consequently to performance degradation

for the applications running in the assigned virtual machines. These effects in

combination with volatile demands for temporal resources potentially lead to

complex interdependencies rendering the analysis of the delivered performance

of control systems difficult at best.

Amongst the few studies on dynamic memory allocation, Heo et al. (2009) use

feedback control for memory allocation in Xen. A control system prototype

for demand oriented memory allocation for virtual machines is used to show

how hosted applications achieve the desired performance in spite of their time-

varying CPU and memory demands. However, the system is evaluated in a

small scale environment without using virtual machine live migrations and

the impact on application performance to memory over-provisioning is not

shown. The applications we study in this work do not exhibit volatile memory

demand, on the contrary, their memory demands are rather stable. Memory

that is acquired once, is seldom released and instead used for enhancing caching

and buffering. Hence, in our setting, dynamic memory allocation may not lead

to substantial savings, but to rather intense levels of application performance

degradation.

Gupta et al. (2010) introduce memory sharing at finer, sub-page granularity
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that allows for higher savings of about 65%. Their technique detects duplicated

memory pages on a physical server and keeps only a single, shared copy of

that page. Milos et al. (2009) implement experimental support for memory

page sharing in Xen. However, the dynamic memory management policies in

VMWare come at substantial application performance overheads as shown by

Gupta et al. (2010). The availability of the memory balloon driver in Xen

makes it possible to dynamically repartition physical server memory among

multiple virtual machines. However, on a physical server with saturated main

memory capacity, it is only possible to increase the amount of main memory

of a single virtual machine by reclaiming the same amount of physical memory

of another virtual machine. Hence, it is only possible to run additional virtual

machines by reducing the amount of memory available to co-located virtual

machines.

Chen et al. (2010) introduce a lightweight solution to gracefully reduce the

performance degradation when memory pages need to be swapped on a phys-

ical server if page sharing and ballooning fail to revoke enough memory for

reallocation purposes. The proposed techniques prefetch pages from the phys-

ical server memory swap as long as good spatial locality in memory access

patterns persists so as to reduce disk transfers. The virtual machines are no-

tified when the hypervisor swaps out pages, which hides those pages from its

memory reclamation routines to eliminate unnecessary virtual machine swap-

ping and to prevent double paging. The experimental system shows that guest

performance can be improved substantially, but still suffers from substantial

application performance degradation.

2.1.4 Virtual Machine Live Migration

Virtual machine live migration is the process of moving a running operating

system with low impact on its availability and performance from one physi-

cal server to another. The main difficulty is to transfer the main memory and
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processor state while it is constantly modified. We discuss virtual machine live

migrations in a local area network context, where physical servers are inter-

connected by high speed networks and storage systems are accessible over the

network through standard protocols like NFS or iSCSI. In a local area network,

a migrating virtual machine moves with its TCP/IP state and its IP address

by generating an unsolicited ARP request including an IP address mapping to

the MAC address of the target physical server. All receiving physical servers

and switches will update their mapping. This technique frequently reduces the

adoption time of the new MAC address to a few milliseconds. While a few

network packages in transit may be lost, very minimal impact can be expected,

especially for TCP connections. Wide area network live migrations have been

studied by Bradford et al. (2007) but also requires the migration of secondary

storage.

Currently, the live migration techniques of choice for commercial and open-

source virtualization platforms are pre-copy based approaches. In contrast,

post-copy live migration techniques have been developed but still suffer from

some severe limitations, application performance degradation ad extended pe-

riods of residual dependencies. Stop-and-copy migration (Sapuntzakis et al.,

2002) algorithms and on-demand (Zayas, 1987) migration techniques also de-

liver poor performance. The usage of the former leads to elongated service

downtimes, the latter to high total migration time, residual memory depen-

dencies and degraded application performance during the synchronization of

on-demand memory page transfers between participating physical servers.

While there has been some progress, especially for overcoming the shortcom-

ings of post-copy based algorithms (Hines et al., 2009), the currently prevailing

live migration algorithms used in Xen, Citrix or VMWare VMMotion belong

to the family of iterative pre-copy algorithms. By combining a bounded itera-

tive push phase with a final and typically short stop-and-copy phase of active

memory pages. The idea of this design relies on iterative convergence: by

iterating through multiple rounds of copying in which the virtual machines
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memory pages that have been manipulated during the previous copy phases

are resent to the destination on the assumption that at some point the num-

ber of modied pages will be small enough to stop the execution of the virtual

machines temporarily, copy the hopefully small number of remaining pages

and restart the virtual machine on the destination server. While this design

reduces both total migration time and downtime, rendering it suitable for

dynamic workload management, it incurs significant overheads on the source

and destination servers of a migration by requiring network bandwidth and

processor time.

Pre-copy based live migration algorithms aim at reducing the service down-

time a virtual machine may experience. The algorithms are based on the

key observation that only small parts, the so called writable working set of

the main memory an virtual machine is frequently modified. In pre-copy live

migration the memory allocated to a virtual machine is copied to the target

physical server in a first copy iteration. The hypervisor traps memory write

access using shadow page tables. When shadow tables are activated, the page

table of a virtual machine is replaced by an empty page table and all pages

are made read-only. The hypervisor propagates changes made to the shadow

table to the real page table forth and back. When a virtual machine modifies

its memory pages, modified pages are marked as dirty in a bitmap. The user

space migration daemon reads the bitmap to identify the memory pages that

have to be resend to the receiving physical server. After the bitmap is read,

it is cleared and all memory pages are marked as read-only again. After the

initial bulk memory transfer, a subset of the memory pages will be dirty, and

these are again send to the target physical server in a subsequent iteration.

The iterative copying goes on until the dirty memory set is sufficiently small.

Then the virtual machine is suspended at the source physical server, the re-

maining dirty memory pages are copied and the virtual machine is resumed

on the target server. Possible improvements include the exclusion of particu-

larly hot memory pages from being copied in any but the last iteration. This



28 CHAPTER 2. BACKGROUND AND RELATED WORK

workaround prolongs the service downtime.

The disadvantages of pre-copy algorithms is their need to transfer a large

number of memory pages more than once. Pre-copy live migration leaves no

residual dependencies on the source host and does not suffer from the increased

risk of virtual machine failure. Should the network or the target physical

server fail during a live migration, the source server may resume the execution

of the virtual machine. In contrast, post-copy algorithms first suspend the

migrating virtual machine at the source physical server, copy processor state

to the target physical server, resume the virtual machine, and begin to fetch

memory pages over the network from the source into the empty address space

of the virtual machine. When a page fault occurs, the page is fetched from

the source physical server before the virtual machine is allowed to continue

execution. The virtual machine is only unresponsive for the short amount of

time taken to transfer processor state to the target server, but performance of

the virtual machine running at the target server suffers, since every page-fault

must be resolved across the network.

The main goal of pre-copy algorithms is to keep the service downtime small by

minimizing the amount of virtual machine state that needs to be transferred

during the last copy iteration. Pre-copy limits the number of copying iterations

to a predefined iteration count since the writable working set is not guaran-

teed to reduce significantly across successive iterations. On the other hand,

if the iterations are terminated too early, then the larger writable working

set will signicantly increase service downtime. This approach minimizes ser-

vice downtime and application degradation if the virtual machine is executing

a read-intensive workload. However, even moderately write-intensive work-

loads can reduce pre-copys effetiveness during migration (Hines et al., 2009).

While many of the problem associated with post-copy algorithms such as appli-

cation performance degradation and prolonged residual dependencies by ap-

plying demand-paging, active push, pre-paging, and dynamic self-ballooning

as demonstrated by Hines et al. (2009) and Hirofuchi et al. (2011), one prob-
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lem with post copy migration is that a failure of the network or the source

or destination host during migration, will result in irrecoverable failure of the

migrating virtual machine, because no physical server possesses a current and

complete version of the virtual machines execution state.

Xen uses a tailored pre-copy algorithm that is executed in domain0. The algo-

rithm requires the use of memory shadow page tables to keep track of dirtied

memory pages, which in turn requires the hypervisor to trap each main mem-

ory write access. The migration daemon needs to access the virtual machines

main memory and copies memory pages over the network interfaces at the

maximum bandwidth rate available, which saturates the network link for the

duration of a migration.

2.2 Resource Allocation on Multi-Core Chips

During the consolidation planning process, the additional resource require-

ments for virtualization and server consolidation need to be taken into con-

sideration. While modern multiprocessor servers provide abundant hardware

parallelism to achieve server consolidation, contention for available processing

cores, hardware caches and memory bandwidth may introduce performance

isolation concerns and additional resource demands. Hence, an estimate of the

effects of resource contention and virtualization overheads need to be included

into the consolidation planning method.

Despite advantages such as security and fault isolation, current virtualization

techniques do not provide effective performance isolation between virtual ma-

chines (Koh et al., 2007). Specifically, contention for physical resources impacts

performance to varying degrees in different workload configurations, causing

significant variance in observed system throughput and response times. The

contention effects will be even more prevalent on multi-core processors, as their
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use has become prevalent in data centres and multi-core systems are very likely

to be equipped with even more cores per chip in the future.

For scheduling algorithms used on multi-core systems, the primary goal for

placing threads on cores is load balancing. Operating system schedulers try

to balance the runnable threads across the available cores to ensure fair dis-

tribution of CPU time and minimize the idling of cores. However, there is

a fundamental aw with this strategy which arises from the fact that a core

is not an independent processor but rather a part of a larger on-chip system

and hence shares resources with other cores. It has been documented by Tam

et al. (2009) that the execution time of a thread can vary greatly depending

on which threads run on the other cores of the same chip. This is especially

true if several cores share the same last-level cache or if several threads share

a single core thereby sharing the whole cache hierarchy.

There exists a certain body of work that explores the performance degrada-

tion applications incur when running in isolation on virtualized servers, or how

different virtual machines affect each other when running on a physical server

(Huber et al. (2011), Wood et al. (2008), Menon et al. (2005), Gupta et al.

(2006), Pu et al. (2010), Koh et al. (2007)). However, a limited amount of stud-

ies exist that address the issue of resource overheads incurred by contention

for shared hardware resources, that lead to non additive resource demands of

virtual machines. The main body of work on static server consolidation as-

sumes additivity for resource demands of multiple virtual machines running

simultaneously on a physical server. However, this assumption does not hold

true on commodity hardware. Operating multiple virtual machines hosting en-

terprise workloads simultaneously introduces contention for shared resources

on a physical server with non-dedicated hardware components as shown by

Iyer et al. (2009). By utilizing a measurement approach based on a bench-

mark for server consolidation it is shown how hardware metrics such as cycles

per instruction and cache misses per instruction increase through shared cache

space and memory bandwidth contention. It is found that contention for pro-
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cessing cores reduces processor utilization while contention for shared cache

space increases the required cycles per instruction and consequently measured

CPU utilization. In their experiments, they show an increase of over 40% in

required cycles per instruction due to the consolidation of virtual machines on

a multi-core physical server. Their findings are derived using a consolidation

benchmark that employs typical enterprise applications. The main source for

increased CPU utilization is attributed to shared last level cache interference

effects. Cache sensitive applications are shown to cause CPU utilization to

increase even if only a small fraction of the last level cache is not exclusively

usable. While Blagodurov et al. (2010) also find that cache contention does

have an effect on performance degradation, it is not the only source for con-

tention. As the cache miss rate is highly correlated with contention for other

shared resources (e.g. if two threads share a cache which causes excessive cache

misses, the threads will also compete for resource on all memory hierarchy lev-

els between the shared cache and the main memory of the physical server) it is

found to be a well suited predictor for contention effects. This insights extends

up the path to first level caches if two threads run on a single core in parallel.

In contrast to several works on contention effects, the findings in Iyer et al.

(2009) are of most relevance to our work as the workloads employed resemble

the ones we are interested in. Most other works are based on micro-benchmark

suited to identify shortcomings in cache-sharing and access strategies, but do

not influence much on solving practical overhead estimation problems.

2.3 Static Server Consolidation

Static server consolidation is the process of allocating virtual machines to

physical servers with the aim to minimize the amount of required physical

servers. The task requires careful resource demand estimation even under

highly stochastic, time dependent resource demand behavior to ensure suffi-
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cient resources to enterprise applications at any time or to overbook resources

in a controlled way. Vogels (2008) points out that due to unpredictable demand

fluctuations and spikes it will never be possible to achieve perfect resource uti-

lization through server consolidation. An average utilization of about 40% is

considered a major success, 50% is assumed to be unrealistic. We will show

in the description of our benchmark scenarios in section 7.2, that an aver-

age utilization of 40% is quite reasonable for conservative server consolidation

plans.

Speitkamp and Bichler (2010) study static resource allocation problems with

the objective of minimizing the number of required physical servers. In their

work, linear integer programming formulations are evaluated for static server

consolidation problems. The proposed models are variants of the well known

vector bin packing problem. Vector bin packing models the resource alloca-

tion problem where a set of physical servers with unit capacities along several

dimensions d and a set of virtual machines with known demands in each dimen-

sion are given. A single dimension refers to a type of resource such as CPU or

main memory within a time slot of a given planning period. A planning period

is subdivided into several time slots, which allows the incorporation of time

varying resource demands. The objective is then to assign virtual machines

to physical servers in a way that minimizes the required amount of physical

servers without exceeding any servers’ capacity in any dimension. Under the

assumption that the resource demands of virtual machines can be estimated

by nominal values and are additive when co-locating virtual machines, the

problem is well modeled.

As shown by Woeginger (1997), the vector packing problems is APX-hard for

any d ≥ 2, which means that there is no asymptotic polynomial time approxi-

mation algorithm for the problem, unless P = NP . Fernandez de la Vega and

Lueker (1981) showed that it is possible to derive a (d+ε)-approximation algo-

rithm in O(n), where n is the amount of virtual machines. This guarantee was

improved by Chekuri and Khanna (2004), who propose an approximation algo-
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rithm with a (1+dε+ ln(1
ε
)) worst case guarantee. More recently, Bansal et al.

(2009) gave a rather complex algorithm with a 1 + ln(d) guarantee. However,

both algorithms have exponential runtime requirements in d or even worse. For

large values of d, the guarantee is rather loose and given the runtime require-

ments of limited practical relevance. Yao (1980) showed that no algorithm

with running in time O(n log(n)) can give better than a d-approximation.

Despite the rather discouraging approximation results, Speitkamp and Bichler

(2010) show that theoretically hard problems can be solved for modest sized

real world instances and that simple approximation algorithms derived from

the well know any-fit family often produced highly competitive, if not opti-

mal solutions. Approximation algorithms belonging to the any-fit family for

the vector bin packing problem have already been studied decades ago in a

numeric way by Maruyama et al. (1977). Their worst-case behavior has been

studied by Kou and Markowsky (1977) and Csirik et al. (1990), their average

behavior over practical instances by Maruyama et al. (1977) and Roy et al.

(2008) in the context of distributed real-time embedded systems. The results

indicate that the existing performance guarantees are quite pessimistic for real

world problems. Approximation algorithms beyond the standard greedy ones

are proposed by Leinberger et al. (1999) and Maruyama et al. (1977).

In contrast, the classical bin packing problem, where each item is determined

by a single, nominal value, is very well studied and tight approximation guar-

antees for the first-fit decreasing algorithm have been given by Johnson and

Garey (1985) exist. Even though lately, Dosa (2007) improved the worst case

bound by giving a tight bound of the additive constant in the guarantee (the

constant was decreased from 1 to 6
9
), the bin packing problem can be consid-

ered well studied and can be solved well with existing, simple approximation

algorithms.

As of today, even static consolidation approaches as introduced by Urgaonkar

et al. (2009) and Rolia et al. (2004) that employ stochastic workload models

rely on the efficiency of approximation algorithms. The low computational
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complexity have already been utilized by dynamic workload management in

data centers due to real time requirements for making virtual machine place-

ment decisions. It is also known that commercial products for static consoli-

dation employ simple approximation algorithms as the size of typical problems

consisting of several hundreds or even thousands of virtual machines renders

exact algorithms impractical.

The stochastic packing problem, where resource demands are defined by ran-

dom variables rather than nominal point estimates, has been studied by Klein-

berg et al. (2000) in the context of network bandwidth allocation. The authors

study statistical multiplexing from the perspective of approximation algo-

rithms with a focus on on-off demand source that can be modeled as Bernoulli

trials. The authors derive performance bounds for polynomial time algorithms

for this type of stochastic demand and extend their investigation to distribu-

tions that specify the probability p of high demand values that are given as

a nominal value. It is shown that there exist a polynomial time algorithm

that has a O(log(p−1) log(n)) worst case deviation guarantee from the optimal

solution.

Stillwell et al. (2010) propose a new formulation of the multi-resource allocation

problem in shared hosting platforms for static server consolidation that aims

at application performance, fairness, and increased server utilization. Several

classes of resource allocation algorithms are proposed for the problem as well

as the classical vector bin packing problem, which are evaluated in numeric

simulations using artificial data. Their work identifies an approximation al-

gorithm that achieves average performance close to the optimal across many

experimental scenarios. Furthermore, the algorithm exposes moderate run-

time for large problem instances and thus is usable in practice. The scope of

their work is static consolidation where the number of virtual machines and

the resource demands of virtual machines do not change throughout time. It

is noted that in practice resource allocations for virtual machines need to be

adapted throughout time. The proposed algorithms can be used to recompute
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appropriate resource allocations periodically or based on particular events.

The authors state the need for a planning approach that is aware of over-

heads for virtual machine reassignments. Without including these overheads,

a newly computed allocation could be widely different from the previous one,

possibly leading to unnecessary and excessive migrations. One solution is to

compute resource allocations that are likely to delay the need for allocation

adaptation as much as possible, as proposed by Ali et al. (2008). Another,

complementary option is to adapt the resource allocation while minimize the

amount of change required as proposed by Karve et al. (2006). The mentioned

work strives dynamic workload management that, due to real time constraints,

requires the use of approximation algorithms developed in the context of static

server consolidation.

2.4 Dynamic Workload Management

Dynamic workload management and fine grained resource access control has

been mainly driven by application level performance objectives, as done by

Wang et al. (2009), Zhang et al. (2007) Appleby et al. (2001), Urgaonkar et al.

(2008) and Abdelzaher et al. (2002). In contrast, Verma et al. (2008) addresses

the problem of power and migration cost aware virtual machine placement in

heterogeneous server clusters. The work investigates on the viability of us-

ing CPU utilization based, application specific power consumption models to

develop virtual machine placement algorithms and validates the proposed sys-

tem using an experimental data centre infrastructure using a limited set of

experiments. Similar to this work, Kumar et al. (2010) propose a system that

also aims at minimizing virtual machine migrations that are often triggered

by largely fluctuating resource demands. The proposed method embraces un-

predictable short term fluctuations through stochastic demand modeling and

is able to reduce the amount of required virtual machine live migrations by
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a factor of two in contrast to existing virtual machine placements methods.

However, again the evaluation is conducted on a very limited set of workload

traces and the influence of system control parameters such as thresholds is

not investigated upon. Their work shows that power consumption on a single

physical server can be reduced by about 10 % by optimally placing virtual

machines in response to changes in their CPU demands. It is not shown how

much energy can be saved by completely evacuating physical servers nor is an

estimate given how many live migrations might be needed by a clairvoyant,

optimal control strategy. Whether the achieved energy consumption reduc-

tions as well as the reduction in live migrations are significant or close to what

could be achieved is left unanswered.

A main motivation for our study of reactive control systems is the existence

of commercial systems that rely on reactive methods that derive ad-hoc live

migration and virtual machine placement decisions. For example, VMwares

Distributed Resource Scheduler (VMWare, 2012a) uses live migrations for au-

tomated load balancing in response to resource shortages or extended periods

of underutilization. It monitors virtual machine resource demands in a black-

box way, without taking application specific information into consideration as

done by Wood et al. (2009a).

One of the earliest work in the area of dynamic workload management that

does not rely on virtualization, but on using dedicated physical server is given

by Chase et al. (2001). The proposed resource management architecture is

designed to save energy. By operating an active set of servers at predefined

utilization thresholds and by sending lightly utilized servers servers to low

power consumption states, the system adapts to dynamically changing work-

loads. The system continuously monitors utilization levels and plans resource

assignments by estimating the effects on application performance. Experimen-

tal results from a prototype show that the system adapts to changes in the

applied workload and can reduce server energy usage by 29% or more for typ-

ical web application workloads in contrast to using a static pool of physical
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servers. Their evaluation is based on two real world workload traces, but does

not consider consolidation.

Wood et al. (2009a) introduces a reactive, threshold based control system for

monitoring and detecting server overloads that upon detection of an overloaded

server reassigns virtual machines to assure application performance. In order

to choose which virtual machine to migrate from a physical server, the system

sorts them using a volume-to-size ratio, which is a metric based on current

CPU utilization, network, and memory demands. The system employs virtual

machine swaps (the exchange of virtual machines between two physical servers)

to overcome the problem of inefficient virtual machine to physical server as-

signments that may prevent higher levels of operational efficiency. However

the effectiveness of the swapping mechanism is not evaluated in depth and may

even result in additional, but ineffective reassignments. Additionally, the sys-

tem incorporates dynamic memory allocation. The viability of the system is

not evaluated in terms of operational efficiency nor application response times.

Especially it is not the aim of the system to achieve operational efficiency nor

is the impact of control actions analyzed. The work does also not elicit on the

service demand that is used for the evaluation. Sandpiper implements heuristic

algorithms to determine which virtual machine to migrate from an overloaded

server, where to place them and the resource allocation for the virtual machine

on the target server. Sandpiper implements a black-box and a gray-box moni-

toring approach that exploits application-level metrics. It is shown by example

that the gray-box approach is able to anticipate overloads in a more precise

way than the black-box approach. While this may be beneficial in some cases,

it may also lead to superfluous migration decisions.

Dynamic workload management has also been studied in the area of cluster

and grid computing were computational tasks are executed in virtual machines.

Hermenier et al. (2009) present a workload management system for homoge-

neous clusters that performs dynamic task consolidation based on constraint

programming and includes migration overheads in the placement decisions.
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The use of constraint programming allows the system to determine near op-

timal virtual machine to physical server assignments and outperforms assign-

ments based on simple approximation algorithms. As migration overhead is

taken into account when deriving assignment decisions, migrations are chosen

that can be implemented efficiently, incurring a low performance overhead.

The authors notice that large migration overheads may nullify the benefits of

dynamic workload management.

Dhiman et al. (2010) introduce a system that manages power consumption in

consolidated infrastructures and reassigns virtual machine with the objective

to reduce the power consumption on all physical servers and aims at reducing

the overall active set of physical servers at any point in time. The system

estimates the relationship between the architectural characteristics of a vir-

tual machine, its performance and power consumption. Based on the learned

application performance and power profile of the hosted virtual machines, the

system aims at intelligently placing virtual machine on physical servers. The

system does not deal with time varying resource demands but characterizes

workloads based on steady state demands, exercising micro benchmark appli-

cations. Their system is able to reduce the overall energy consumption by

about 20% compared to existing virtual machine scheduling and placement

algorithms.

A large body of work that is close to ours is based on simulation studies.

Khanna et al. (2006) proposed a dynamic workload management algorithm,

which is triggered when a physical server becomes overloaded or under-loaded.

The main goals of their algorithm are to guarantee service level conformance,

to minimize live migration cost and the required number of physical servers

used at any point in time. Their approach is reactive and threshold based and

is shown to work well in simulations of real workload traces. A similar method

is proposed in Bobroff et al. (2007) that also considers service level agreements.

The main contribution is the evaluation of a dynamic workload management

algorithm to reduce the amount of required capacity and the amount of service
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level violations. The study uses historical workload traces to forecast future

demands and relies on periodic control algorithm executions to minimize the

number of physical servers required to support the resource demands of all

hosted virtual machines.

Gmach et al. (2009) propose the usage proactive trace-based virtual machine

placement scheme along with a reactive migration controller to ensure efficient

operations and high levels of resource utilization. By comparing several com-

binations of these two methods they show that it is possible to achieve high

levels of operational efficiency and quality of service compliance. However the

best combination of both schemes, that also minimizes the amount of required

physical servers requires a considerable amount of live migrations - about 15

migrations per hour and physical server.

Except for Hermenier et al. (2009), all discussed works rely on the low computa-

tional complexity of simple approximation algorithms due to their compatibil-

ity to real time requirements for making virtual machine placement decisions.

In terms of theoretical insights, little is known about approximation algorithms

that may be used for dynamic workload management. One exception is the

work of Ivkovic and Lloyd (1999) on fully dynamic bin packing problems. In

this variant, algorithms are designed for situations where items may arrive or

depart from the problem instance over time. Fully dynamic algorithms adapt

to changes in a reactive way. Previous work on online bin packing problems

studied by Lee and Lee (1985), Seiden (2002) and van Vliet (1992) or on dy-

namic bin packing studied by Coffman et al. (1983) and Chan et al. (2008)

differ from this problem definition either because items may not be moved from

a bin, or items may only arrive but not depart. The fully dynamic packing

algorithm makes an attempt to reach a competitive ratio close to an optimal

off-line algorithms while moving only a limited number of items. It requires

Θ(log n) time per item insertion and deletion operation. The competitive ra-

tio of 5
4

is nearly as good as that of the best practical off-line algorithms. In

order to reach that ratio and to circumvent the constraint that only a constant
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number of items may be moved, the algorithm bundles very small items and

treats them as a single larger item. While the algorithm is designed to move

smaller items in favor of large items, it is not aiming at minimizing migration

overhead as required in a practical setting. Without bundling small items into

a single larger item when moves are required, it may even lead to an excessive

amount of single movements.



Chapter 3

Problem and Model Definitions

If I had an hour to solve a problem and my life depended on the

solution, I would spend the first 55 minutes determining the proper

question to ask, for once I know the proper question, I could solve

the problem in less than five minutes.

by Albert Einstein

In this chapter we introduce the basic resource allocation problem and intro-

duce some required notation and vocabulary. We assume the role of a data

centre operator hosting a set of virtual machines, J on a set of identical phys-

ical servers I. The virtual machines are managed by a hypervisor operating

on the physical servers. Each virtual machine j ∈ J is running an enterprise

application stack or a subset of the tiers of a multi-tiered application. We dis-

tinguish virtual machines by their type g(j). The type of a virtual machine is

determined by the application tier it is running. We restrict our study to three

types of virtual machines: (1) virtual machines running all tiers, subsequently

referred to as monolithic application configuration, (2) virtual machines run-

ning a web and application server and (3) virtual machines running a database

41
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server. Types 2 and 3 make up the distributed application configuration. Be-

sides the application type, virtual machines are not differentiated any further.

Virtual machines expose time varying demands for a set of temporal and non-

temporal computational resources R. Let the estimated demand of virtual

machine j for resource r ∈ R for time period t ∈ T be denoted by âjtr. T

denotes a finite planning period that is subdivided into (not necessarily equal

length) time intervals t ∈ T . The time intervals are ordered by their index

value t. It is important to understand that the planning period may relate to

a real period of time such as five days ahead of time, or it may be a possibly

shorter representation of a planning period. E.g. a real period of a month

may be represented by a single component day, or a single component week,

resulting in a resource demand profile that is independent of a real period of

time but is used to characterize the demand behavior for the planning period.

A representation serves as simplified, reduced resource demand and capacity

model of a planning period. Figure 3.1 shows a daily CPU demand profile,

with five minute time intervals (left) and one hour intervals (right). The red

lines show different, nominal percentile estimates for resource demands âtr.

The resource demand estimate âjtr is a nominal value that needs to be derived

from raw, historic resource measurement data obtained from monitoring sys-

tems. In our problem domain, historic data is the time series, or vector ~ajr

recorded at a certain frequency (typically every five minutes for offline prob-

lems, for online problems every five seconds). We use the index n to address a

single value anjr ∈ ~ajr. In a slight misuse of mathematical standard notation, we

say n ∈ t to express a mapping of monitoring data anjr to a time interval t ∈ T
of the planning period. Please note that in case of a non-temporal resources

r ∈ R, all values anjr ∈ ~ajr have the same actual value. A physical server i ∈ I
is equipped with static, time invariant resource capacities bir for each r ∈ R.

If we omit the index r, we refer to the CPU demand value (or series) of virtual

machine j: anj (~aj). The problem of allocating the estimated computational

resources to each virtual machine while minimizing the amount of required
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Figure 3.1: Example CPU demand profile

physical servers can be achieved in two different ways. Either in a static way

that relies on long term estimation and prediction of resource demands, or in

a dynamic, demand driven way. In the former, a virtual machine may not be

moved from one server to another in response to time-varying demands for

temporal resources, in the latter it is possible to move virtual machines from

on physical server to another and to dynamically in- and decrease the amount

of required physical servers.

3.1 Static Server Consolidation Problem

Most available approaches for static server consolidation analyze historic mon-

itoring data ~ajr that have been obtained through periodic sampling of resource

measurements obtained from monitoring systems. Depending on the time reso-

lution and the amount of resources considered, the resulting resource allocation

problem can be modeled as a d-dimensional vector packing problem, which is a

generalization of the well known, one-dimensional bin packing problem. Here,

each item and each bin is a d-dimensional vector with non-negative entries.
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Given a set of item vectors with length d and bin capacity vectors, the goal is

to pack the items using the minimum number of bins in a way that for every

bin, the sum of the assigned item vectors is, for each vector component no

greater than the bins capacity vector. By normalizing the resource demand

vectors of the items to the uniform capacity of the servers, the capacity vectors

of the servers are unit vectors, the components of the item vectors are all in

the range of [0, 1].

The items can be though of as virtual machines with estimated resource re-

quirements âjtr for each of the independent resources and in each time interval.

The bins represent physical servers that have a certain amount of capacity for

each resource available. The resource demand vector of a virtual machine âjtr

has length d = |T | × |R|. The resource capacity of the physical servers can

simply be extended to include a time index, but remain fixed over time.

The length of time slot t can be arbitrarily chosen, but is typically one hour.

The goal is then to assign the virtual machines on the minimum number of

physical servers so that no server is overloaded and the resource demands of

each virtual machine are met in each time interval, for each resource. From

an algorithmic point of view, the packing problem becomes harder as d grows

(e.g. the length of the time intervals of t ∈ T decrease form hours to minutes

or more resources are considered). Judging on the impact of the length of

the time intervals is, at the current state of research, subject to estimation,

let alone to define an optimal length. Intuitively, resource demands can be

scanned better by decreasing the length of the time intervals. However, the

resource demand estimation procedure used to derive âjtr also influences on

the choice of the length and may superimpose the benefits of using short time

interval lengths. The choice of the length and amount of the intervals depends

on the problem instance and the demand estimation procedure. It has a direct

effect on the computational time required to solve a problem instance.

The following integer program (SSAPv) was used in Speitkamp and Bichler
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(2010) to study server consolidation problems using a simple demand estima-

tion procedure that leads to nominal estimation values âjtr.

min

n∑
i=1

ciyi (3.1)

s.t.

m∑
j=1

xij = 1 ,∀j ∈ J (3.2)

m∑
j=1

âjtrxij ≤ biryi ,∀i ∈ I,∀r ∈ R, ∀t ∈ T (3.3)

yi, xij ∈ {0, 1} (3.4)

The model, as well as the method to derive representative demand profiles

was initially proposed and evaluated by Rolia et al. (2003) and Rolia et al.

(2004). The integer program formalizes the vector packing problem. There are

two binary decision variables xij and yi. The former set of variables denotes

the physical server to virtual machine assignments while the later indicates

which of the offered servers should be used. Obviously, if a virtual machine is

assigned to a server, the server must be used. This is ensured by constraint

3.3. Constraint 3.2 ensures that all virtual machines are assigned exactly

once. The constants ci denote the cost for acquiring or running a physical

server i ∈ I. Even though we assume identity of servers, the cost weights

are used to differentiate between multiple, optimal solutions and to mitigate

large symmetry groups, which is especially helpful for branch and bound based

algorithms.

The resource allocation problem with time dependent resource demands, as

given by the above linear integer program assumes nominal resource demand

estimates for each resource and in each time interval. Assuming accurate

estimates for future resource demands of a virtual machines, the program can

be used to calculate an optimal virtual machine assignment for a given planning

period. However, as Woeginger (1997) showed, the problem is APX-hard, the
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1-dimensional bin packing problem is already NP -hard. Hence, we may not

expect the existence of computationally efficient, exact methods that scale

for large problem instances consisting of several hundreds of virtual machines

and require the use of relatively low capacitated physical servers that may host

only a small number of virtual machines - the problem becomes computational

harder with increasing |I|.

However, commercial as well as open-source solver packages can be used to

compute exact solutions for small scale problem instances. Even though

Speitkamp and Bichler (2010) solved moderate problem instances with up to

250 virtual machines using up to 288 time intervals within reasonable time

bounds, the physical servers sizes where chosen rather large: on average a

physical server was able to host more than 25 virtual machines. Despite the

computational complexity, we will use the basic model and some extensions

in this work to calculate consolidation plans and expectation baselines for dy-

namic workload management.

3.2 Consolidation Overheads Extension

One of the assumptions of the SSAPv model is the additivity of resource

demands when hosting virtual machines on shared hardware. While this as-

sumption may hold true for special hardware partitioning methods and for

some types of resources, it is not valid on commodity hardware for CPU de-

mands as shown by Iyer et al. (2009), Jerger et al. (2007), Govindan et al.

(2011), Nathuji et al. (2010) and Blagodurov et al. (2010). These works show

that application performance is severely affected by cache contention effects

that increase the amount of computing cycles required for the execution of an

instruction, which leads to increased CPU demands. Govindan et al. (2011)

proposes a measurement based approach to deal with application performance

degradation in server consolidation problems.
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Consolidation overheads due to virtualization, shared access to physical re-

sources such as hardware caches and technologies like hyper-threading lead to

non-additive resource demands when running two or more virtual machines on

a single physical server. These effects lead to increased, super-additive resource

demands on the physical infrastructure. In the overhead aware extension of the

SSAPv consolidation model, we let the resource demand estimate of a virtual

machine become a function of the demand estimate âjtr without overheads.

We replace constraint 3.3 by the new constraint 3.5.

m∑
j=1

fg(j)r(âjtr)xij ≤ biryi ,∀i ∈ I,∀r ∈ R, ∀t ∈ T (3.5)

In the section 5.8, we propose a way to derive the function fg(j)r : [0, 1] ⇀ [0, 1].

It is important to note that the static consolidation problem remains a linear

program as we estimate the contribution of each virtual machine to the over-

heads incurred by co-locating virtual machines, that is we modify the demand

estimates âjtr in a way that compensates for co-location effects. Clearly, if a

virtual machine is assigned in isolation to a physical server, the domain of the

function fg(j)r is restricted to not exceed a physical servers capacity. As we

will see, the linear model and the estimation procedure may not be the most

suitable one for estimating the consolidation overheads that arbitrary sets of

heterogenous virtual machines cause. However, in a non-deterministic environ-

ment with simultaneously executing virtual machines that host multithreaded

applications, we opt for a straight forward way to estimate consolidation over-

heads. We value a reasonable approximation, as the benefits of a more complex

one will be limited in our setting and will complicate the service consolidation

problem further, rendering it potentially computationally infeasible. As our

measurements in section 5.8 will reveal, the overheads are dependent on the

type of the virtual machine. Therefore we only estimate the relative, propor-

tional impact of each virtual machine type at a given resource demand level.
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3.3 Assignment Transition Problem with

Overheads

The SSAPv consolidation model, if applied to a single time interval t of a

multi-interval planning problem, say, the multi-interval problem has |T | = 24

time interval, gives a virtual machine to physical server assignment xtij that is

optimal for the single interval t. By solving the problem for each time interval

t ∈ T , we get the estimated amount of physical server required in each time

interval. However, the assignments xtij may differ largely from each other, that

is the virtual machines may be shuffled around on the physical servers if two

sequential time intervals t and t+1 are compared, which would lead to unneces-

sary virtual machine migrations. Therefore we propose a planning model that

can be used to minimize the required migrations necessary to transfer a data

centre from one optimal assignment xtij to the next optimal assignment xt+1
ij .

The model can be used to define expectation baselines for dynamic workload

management methods. Due to changing resource demands of virtual machines,

assignments valid for a given time interval t may become infeasible which re-

quires the transition from one optimal assignment to the next. If we assume

to have available the estimates âjtr for time interval t and if we can defer from

the resource demand estimate the overhead for migrating a virtual machine at

the transition to t we can solve the assignment problem. Let mj denote the

estimated costs for migrating virtual machine j within the current transition

phase. Let wij denote the current assignments, where wij = 1 if virtual ma-

chine j is currently running on server i. Then the optimization problem, that

minimizes the amount of required servers by taking into account the resource

demand estimates of the future time intervals (t + 1, t + 2, ...) ∈ Tl is given

by replacing the objective function of the SSAPv model by the new objective
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function 3.6. The new planning period Tl is a prefix subset of T , Tl = {l|l ≥ t}.

min

n∑
i=1

ciyi +
∑
j∈J

mj

∑
i∈I

1

2
|wij − xij| (3.6)

In this formulation, we need to ensure two constraints on the migration costs

mj: first, the sum of all migration cost must be smaller than the minimum

costs of any physical server. This constraint ensures that the optimal amount

of physical servers will not be influenced by the migration costs. More for-

mally, we require: mini∈I ci >
∑

j∈J mj. Second, we require that the min-

imum migration cost minj∈J(mj) to be strictly larger than the difference

maxi∈I(ci)−mini∈I(ci). Without this restriction, it would be possible to favor

a migration with high costs over a migration with lower costs.

We estimate the migration costs for a virtual machine j with respect to the

estimated resource demands âjtr, rather than incorporating the consolidation

overheads by application of the function fg(j)r, but include it into the capacity

constraints (3.5). Please note that by solving the model 3.6 on a rolling basis,

for each t ∈ T with a lookahead period Tl and by summing up the migrations

required for each transition, we obtain a lower bound for the amount of migra-

tions required over the planning period T if we allow for migrations between

each time interval t ∈ T .

The sum of all migrations computed for all transitions in T defines a lower

bound on the amount of migrations, by setting all mj to the same value,

or the cost weighted minimum of migrations required. It is a lower bound

as it may not be possible to arrive at new, per time interval assignments

without additional utility migrations, especially during transitions that result

in a reduction of the required amount of physical servers (a utility migration is a

migration that does not transfer a virtual machine directly to its target server).

The determination of the exact amount of required migrations, including utility

migrations, is a scheduling problem that is out of scope of our work.



Chapter 4

Data Set Description

As the United States Congress confronts budgeting challenges,

whether federal funding of scientific research is perceived as an

investment or a discretionary expense will have long-term conse-

quences.

”Budgeting for the long run”, Nature Materials Volume 10, Is-

sue 407, 2011

Our study relies on two distinct, real world data sets that we inspect to defer

typical data centre workload scenarios and to reason about resource alloca-

tion methods. Additionally, we use the first data set to gain insights into the

performance of short term demand prediction models. The second data set

serves us as a basis for deriving workload scenarios for a data centre bench-

mark. We will refer to the two data sets as resource demand traces and service

demand traces. As the data sets are fundamental to our work, we provide a

detailed analysis. The analysis will reveal the difficulties involved in forecast-

ing resource demands and will support our rational to investigate on average

demand conditions in our data centre benchmark which sets us apart from pre-

vious studies (Kumar et al. (2010), Chase et al. (2001), Gmach et al. (2009)

50
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or Kusic and Kandasamy (2007)). The analysis of the first data set will be

important to understand why our benchmark scenarios contain demand level

dependent noise.

The resource demand traces are obtained from 259 standard SAP application

stacks. The traces contain data of about three months for CPU and main mem-

ory demands. Each trace is recorded at a frequency of five minutes, each entry

representing an average value over a five minute period. The set stems from a

diverse set of customers domiciled in different branches of industry. The second

set contains service demands for 50 core business processes that are executed

on distributed transaction processing systems of a large telecom provider. The

traces are recorded at a frequency of an hour, each record represents the aver-

age number of service requests for one of the business processes for an one hour

time interval. The traces also contain more than three months of data. The

telecom provider conducts business with private as well as business customers,

offering mobile telecom products as well as mobile data services. On weekdays,

the service demand is mainly issued by shop employees, customers, call center

agents and external sales partners using web-based application services. The

processes, triggered by a request for service, are related to the management

of retail customers including billing, customer data acquisition, phone number

management, tariff management, customer subscription and deactivation and

network provisioning. During night times, internal billing and customer rela-

tionship management systems operate in batch mode executing analytical jobs

that are also triggered by service requests. We consider the service demand

data set as representative for medium and large enterprises and base our data

centre benchmark on this set.
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4.1 Seasonal Patterns and Self-Similarity

Both data sets are comprised of time series that exhibit two seasonal compo-

nents: patterns of change that repeat themselves on a daily and weekly basis.

While the daily pattern correspond to business working days and hours, the

weekly pattern evolves from non-working hours during weekends.

To analyze seasonal patterns, auto-correlation functions are useful to deter-

mine the correlation for all pairs of observations which are separated by the

same lag. By means of the autocorrelation function, the degree of a linear

relationship between observations with the same time distance is measured

using the Pearson correlation coefficient. For instance, for time series contain-

ing observations of five-minute intervals, a lag of twelve measures the linear

relationship between the observations relative to the mean of the overall time

series between all pairs of observations which are one hour apart. For the

service demand data, a lag of twelve means measuring the correlation between

all pairs of observations which are twelve hours apart.

4.1.1 Resource Demand Traces

Figure 4.1 shows an example of a CPU demand trace over a single, extracted

week of the resource demand data set. Phases of high demands repeat on

a daily basis on the working days while the weekends are characterized by

constantly low demands. We also observe differences between the different

working days, e.g. demand peaks on Wednesday are much higher than those

on the following and preceding days. Peaks are rather sharp and occur seldom.

The example shows that although we may observe repeating patterns (the red

line is a smoothed version of the series, better showing the daily seasonalities),

the patterns are, to a certain extend, blurred by noise and large fluctuations

on short time scales. The different demand levels on neighboring days in

combination with sharp, sporadic demand spikes and the amount of noise may



4.1. SEASONAL PATTERNS AND SELF-SIMILARITY 53

CPU Demand Service 218, Week 1

C
P

U
 D

em
an

d

0
50

0
10

00
15

00
20

00

Measurements Series
Smoothed Series

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Figure 4.1: Example CPU demand over a week
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Figure 4.2: Example CPU autocorrelation function up to lag 300

render point estimates for future CPU demand rather inaccurate, while the

general daily pattern is more stable and hence better predictable. In figure 4.2

and 4.3, we show sample auto-correlation function plots for different lags. We

observe very significant peaks in auto-correlation values both at the 288-th lag

and its multiples (a day consists of 288 five-minute intervals) and at the 2,016-

th lag and its multiples. Almost all traces contain strong diurnal and weekly

seasonalities, but almost no long-term seasonal patterns or trend components.

While this observation may be specific to our data set, we interpret it as an

indication for a more or less regular behavior of the demands over extended

periods of time. We also observe significant auto-correlation values on short

lags for up to several hours. Figure 4.4 gives the average autocorrelation
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Figure 4.3: Example CPU autocorrelation function up to lag
2100

function over all CPU traces. The plot confirms our observation that most

traces exhibit daily and weekly patterns. However, the non-regular shape of the

plot - given strong daily patterns we would expect low and negative correlation

values at some lags up to 24 hours - indicates that a significant amount of the

series expose non-regular behavior or that the regular behavior is hidden by

even more noise than in our example shown in figure 4.1. For the series with

strong auto-correlation values we may state that demand prediction based on

past observations should be feasible. We will determine this claim in section

7. However, the amount of noise and irregular behavior that is modulated

onto the repeating daily and weekly patterns suggests that complex, possibly

nonlinear time series models will be required to predict the demand accurately

on short and long time scales, if possible at all.

The degree of self-similarity of a time series is often summarized by the Hurst

parameter. According to Dinda (1999), the Hurst parameter describes the rela-

tive contribution of low and high frequency components to the observed signal.

A parameter value of 0.5 gives an indication of a series made up of uncorre-

lated white noise, with no dominant frequency. Larger values indicate that low

frequencies contribute more to the overall signal: larger parameter values indi-

cate self-similarity with positive near neighbor correlation. The CPU demand
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Figure 4.4: Average ACF for CPU resource demands

traces expose a mean Hurst parameter value of 0.7949 (minimum of 0.5269 and

maximum of 0.9800). The high mean value suggests that low frequencies are

dominating the series signal, which is in accordance with the analysis of the

auto-correlation values. Figure 4.5 displays the distribution of the correlation
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Figure 4.5: CPU correlation coefficient distribution

coefficient for all pairs of traces (n = 61752). The distributions shape resem-

bles the normal distribution N = (µ = 0.053, σ = 0.082) with slight misfits at

right and left tail. The shape also indicates that the overall cross-correlation

structure can be regarded insignificant. This is due to the high level of noise
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and the sporadic peaks contained in the traces, that deteriorate any linear

relationship. If we smooth the traces using a simple moving average filter with

a window length of 25 (51), we get a higher and statistically significant mean

value of 0.114 (0.132). This observation shows that there is a tendency of the

traces to show similar, positively cross-correlated demand behavior. It also

means that we may not expect large gains in efficiency when consolidating

these demands as there is a tendency of correlated peak demands that renders

static consolidation potentially inefficient and may favor dynamic workload

management.

Main memory demand is much less volatile than processor demand and does

not exhibit patterns as the CPU demand traces. Furthermore, we did not

find any significant or regular correlation patterns between main memory and

CPU demand traces; main memory demands do not expose regular demand

patterns, but are rather constant with only slight variations. Often, memory

demands drop sharply on weekends, but at moderate amounts. The observa-

tion is caused by cache invalidation and garbage collection tasks.

4.1.2 Service Demand Traces

We also found seasonal patterns in the service demand traces, as shown in

the average auto-correlation plots for all traces in figures 4.6 and 4.7. In

comparison to the resource demand traces, the plots are much more regular

and reflect the daily and weekly seasonal patterns much better. This is due

to the fact that the traces are containing average values for one hour time

intervals. The coarsened recording frequency hides noise.
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Figure 4.6: Average ACF for service demands
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Figure 4.7: Average ACF for service demands

This is clearly an assumption given the sole data only. However it is rational

to assume that service demands are volatile as well, given the environment

for which the service demands were recorded. The service demand traces also

exhibit a lower mean hurst exponent value of 0.645 (minimum of 0.5106 and

maximum of 0.7838), which would indicate more influence of higher frequen-

cies. This observation is due to the fact that several traces exhibit two or

more pronounced peak demand periods occurring at higher frequencies than

the daily patterns. The peaks are caused by demands occurring at day and

night times: batch processes are executed during night and end-user initiated

service requests are processed during regular working hours. In contrast, the

resource demand traces almost never expose demands during night times.
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Figure 4.8: Service demand correlation coefficient distribution

Figure 4.8 shows the distribution of the correlation values for all pairs of nor-

malized traces (n = 2450). The process demands are often found to be pos-

itively correlated with a mean value of 0.115, the distribution shape deviates

clearly from the shape of the maximum likelihood fitted normal distribution

which leads us to the conclusion that the correlation structure is systematic.

It also means that opportunities to combine these demands by exploiting the

correlation structure might not be very high, as we could not find many pairs

of traces that are negatively correlated. This observation is in accordance with

the resource demand traces data set after smoothing the contained traces.

4.1.3 Study Results

In both data sets, the weekly pattern was often found to be the strongest in a

statistical sense, mainly because the working days more often than not differ

largely, which leads to much more variance and lower auto-correlation val-

ues: the amount of noise ”blurs” out the daily pattern for the high frequency

resource demand traces. The days of the weekends exhibit very different de-

mand patterns than working days, which contributes to the degeneration of

the daily pattern. Weekends negatively affect statistical significance of daily
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patterns which becomes evident when excluding them from the traces. There-

fore the daily pattern was also significant and is of more interest to us than

the low demand phases during the weekends. The low demand phases during

the weekends lead to statistically stronger weekly patterns as can be deferred

from power spectral density periodogram plots not shown here. As it is evident

that the periods of low demand on weekends do not contribute to our research

goals, we focus on working days and exclude weekends from our data sets in

the following sections and chapters.

4.2 Statistical Analysis

We have seen that there exist seasonal demand patterns in the two data sets.

In the following subsections, we will give descriptive statistics on the filtered

traces: we exclude weekends from the two sets.

4.2.1 Resource Demand Traces

The resource demand traces expose complex behavior over a wide range of

time scales: repeating patterns on longer time scales as induced by positive

auto-correlation values on long lags and heavily noised behavior on short time

scales. In summary, we observe self-similarity which induces variation across

long and short time scales and also induces that even high level of smoothing

does not decrease the observed variance as we still find high variance due to

long term, seasonal behavior. This observation may lead to the assumption

that non-stationary stochastic processes with long memory behavior may de-

scribe the series well as suggested by Dinda (1999). However, the demand

distributions show complex, long tailed behavior that renders the precondition

for linear time series models problematic, that the error terms are independent

identically-distributed random variables, sampled from a normal distribution.
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Before we give some aggregated statistics for all traces, we show a phenomenon

in our demand traces: The mean of the overall demand of a trace is positively

correlated with the variance of the series (correlation value of 0.7857), which

is depicted by the scatterplot in figure 4.9. The plot also shows that there are

only a few series with high mean demands and high levels of volatility. The

main part of the traces exposes low to medium (between 5 and 15%) mean

demand values as well as volatility.
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Figure 4.9: Mean versus standard deviation of CPU resource
demands

The correlation of the mean and the variance of the resource demand traces can

be evaluated on a time interval basis, comparing all time intervals of a given

length with each other. In table 4.1 we report the mean correlation values

for different time interval lengths of all traces. CPU demands are strongly

positive correlated on average for all time intervals. For main memory, we can

observe a slightly negative correlation. This is due to the constant demand

behavior that is seldom interrupted by sharp declines, during which the mean

demand drops, but the variance rises. For the service demand traces in the

next subsection we observe a correlation value of 0.892 on average over all
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traces for one hour time intervals.

Type Resource Mean

5 Minute Interval CPU 0.799

5 Minute Interval RAM -0.38

1 Hour Interval CPU 0.817

1 Hour Interval RAM -0.016

3 Hours Interval CPU 0.809

3 Hours Periods RAM -0.074

Table 4.1: Resource demand correlation for time intervals

These correlation findings are in accordance with the observation presented in

Burgess et al. (2002). Figure 4.1 shows the time dependent volatility of the

CPU resource demand distribution for an example trace. We can easily see

from the chart that periods of high demand intensity are governed by larger

deviations. While our observations apply to a macroscopic view, Andreolini

et al. (2008) also found this behavior for various, heterogenous service demand

scenarios and changing service demand mixes at the microscopic level for a

monitoring frequency of seconds. We can also observe a phenomenon which

is referred to as volatility clustering in the field of econometrics. Volatility

clustering refers to the observation, that large variation in time series tend to be

followed by large variations, either positive or negative changes, and periods of

low volatility tend to be followed by low volatility. We may consequently expect

forecasts to be accurate during periods of low demand and rather inaccurate for

periods of high demands. We also find that demand peaks vary significantly in

aspects such as steepness, magnitude or level, duration, and temporal locality.

Table 4.2 summarizes the normalized traces, each trace is normalized to its

maximum value and expressed in percent, by giving averages for each metric.
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Resource µ 25% 50% 75% 90% 95% 97.5% κ γ σ

CPU 6.78 0.77 1.84 6.58 17.12 30.39 48.12 16.01 3.58 12.35

RAM 86.36 82.01 91.21 94.54 96.91 97.98 99.82 4.11 -1.95 15.64

Table 4.2: Resource demand traces: overall utilization metrics

The CPU traces of the resource demand set expose low levels of demand up

to the 75% percentile and large volatility indicated by the standard deviation

exceeding the mean (µ) demand by almost a factor of two. The main memory

demands are by far less volatile and bursty, at constant high levels almost

always above 80%. In table 4.3 we give the average correlation values of

standard statistical metrics.

75% -

µ δ CV 25% 50% 75% 25% κ

δ 0.79

CV -0.57 -0.25

25% 0.71 0.22 -0.40

50% 0.91 0.50 -0.58 0.86

75% 0.94 0.75 -0.61 0.55 0.84

75% - 25% 0.76 0.77 -0.52 0.15 0.57 0.91

κ -0.51 -0.63 0.25 -0.14 -0.32 -0.48 -0.50

γ -0.27 -0.40 -0.01 -0.05 -0.15 -0.24 -0.26 0.89

Table 4.3: Resource demand traces: correlation of statistical
standard merics

We can state that resource demand for CPU are bursty and volatile in nature,

exposing low mean demands with rare peaks. This observation is confirmed

when analyzing the high demand above the 75% percentile. This burstiness

causes the maximum resource demands to be significantly higher than a high

percentile of the observed CPU demand distribution. Consequently, we find

that the 95% percentile is smaller by a factor of 3.29, while the 90% percentile
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yields a reduction of a factor up to 5.84, the median even a factor of over 50.

An intuitive interpretation for a data centre operator is as follows: if CPU is

allocated according to the average 90% demand percentile, it would be pos-

sible to support almost six times more virtual machines on a single physical

server (assuming equal demand levels for all virtual machines) compared to a

resource allocation scheme that follows the maximum CPU demands. How-

ever, resource provisioning according to lower percentiles comes at the price

of possible overloads. These impressive overbooking ratios may not be realiz-

able but indicate a large potential for costs reductions, if resource shortages

are acceptable. The same motivation for resource overbooking is given by Ur-

gaonkar et al. (2009), who analyze steady-state CPU demands of several types

of applications. However, their analyses is only valid for very lightly utilized

applications as the following experiment we conducted demonstrates.

In figure 4.10 we depict the CPU demands of a monolithic application con-

figuration (please refer to subsection 5.3 for more details) of the SpecjEnter-

prise2010 benchmark system we use in our work. We exercised the application

with three different amounts of constant service demand. As we can see, the

long tails of the demand distribution diminish with increasing service demand

and CPU demands for constant service demand. Low service demand levels

expose more outlying and exceptional demand values. As depicted on the right

hand side of figure 4.10 also document the correlation of mean demands and

their variance.
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Figure 4.10: CPU demad distributions SpecJEnterprise2010

Hence, under more volatile and time varying resource demands, the insights

presented by Urgaonkar et al. (2009) on overbooking efficiency may not hold

true anymore. Still, resource overbooking may deliver substantial efficiency

benefits if negatively correlated workloads can be combined on physical servers.

We also examine the skewness, γ and kurtosis, κ of the CPU demand dis-

tributions. Skewness captures whether most of the distributions values are

closer to the lower bound (right-skewed), upper bound (left-skewed), or nei-

ther (symmetric). Kurtosis is a measurement of peakedness of a distribution,

defined as a normalized form of the fourth central moment. On average, the

traces exhibit highly right skewed distributions. Right skewed distributions

are particularly common when mean values are low, variances large, and val-
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ues cannot be negative. Such right skewed distributions often closely fit the

log-normal distribution as indicated by E. Limpert and Abbt (2001), Lee and

Wang (1992) and Johnson et al. (1994) and can often be parameterized to

mirror this behavior quite well. The log normal distribution is useful to rep-

resent data which varies in inverse powers of ten and is symmetrical about

the most probable value on a logarithmic scale. The high positive correlation

(0.89) between skewness (γ) and the kurtosis (κ) indicates, that right skewed

distributions are very often highly peaked.
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Figure 4.11: Example for overall, time-independent CPU
demand density estimation

However this way of modeling does not describe our data well because of

slightly, but significantly pronounced local maxima in the distribution shapes

of example demand distribution of several traces given in figures 4.11 and 4.12.

The log-normal distribution is sufficient to approximate the important right

tail of many of our traces, but does not capture local maxima well that we

observe in almost all CPU demand traces. If we extend our analysis to the

demand distributions for the time intervals of the daily demand profiles (e.g.

the demand distribution for each weekday from 2 to 3 p.m.), shapes with

multiple local maxima become even more prevailing. We observe that different
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Figure 4.12: Example for overall, time-independent CPU
demand density estimation

time intervals exhibit different distribution shapes, often not mirrored by a log

normal distribution or any other standard distribution. The long tails stem

from exceptional demand behavior rather than the average behavior which is

much more prevailing and better predictable. We observe that different time

intervals exhibit different demand distribution shapes, often not mirrored by

a log normal distribution or any other standard distribution. The log normal

distribution may fit the overall data well at the important upper tail. However,

even per time interval distributions exhibit shapes with multiple local maxima.

We find that the resource demand distributions have significant skewness, long-

term and short term auto-correlation, and changes in volatility over time.

The observations of high levels of heteroskedacity in combination with the

correlation of mean and volatility lead us to the conclusion that demands are

generated by a mixture of demand distributions that relate to demand states

exposing different demand behavior. Mixture densities are able to express

complex distributions in terms of mixture components. Mixture densities can

be used to model a statistical population with sub-populations, where the

mixture components are the densities of the sub-populations. A demand state

can be thought of as being a sub-population.
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In table 4.2 we depicted the unconditional mean and standard deviation of all

(CPU) resource demand traces, which provides information about the overall

behavior of all series. However, if we include time information, we can cal-

culate standard deviation conditional on a time interval of a working day. In

combination with significant short term auto-correlation, the effect is known

as conditional heteroskedacity. Unconditional estimates and predictions may

vary largely, from day to day and even hour to hour under these conditions.

Structural changes in the time series and level shifts, that we observe for al-

most all series will lead to poor forecasting results if the models applied are

not frequently re-estimated and fitted.

4.2.2 Service Demand Traces

The observation of the service demand traces will even be more pronounced

than the observations we found for the resource demand traces. While we still

found highly right skewed distributions, the service demands are even more

bursty than the resource demands as can be deferred from table 4.4. The

high kurtosis value is a clear indication for this claim. The mean demands

are even lower as well as all percentile values. These observations lead us to

the conclusion that the service demand traces are influenced by very seldom,

exceptional outlying demand values.

µ 25% 50% 75% 90% 95% 97.5% κ γ σ

Service Demand 4.31 0.00 0.16 2.88 13.32 23.33 39.53 174.52 9.00 8.33

Table 4.4: Service demand metrics

The mean of the service demands of all traces is positively correlated with the

variance of the series (correlation value of 0.9205), which is depicted by the

scatterplot in figure 4.13. We observe a similar correlation structure for the

service demands as we do for the resource demand traces.
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Figure 4.13: Mean versus standard deviation of service demands

4.3 Important Distinctive Features

In summary, the study of statistical properties of the two data sets reveals a

wealth of interesting, stylized facts. For both sets, we examined some key sta-

tistical metrics: distribution skewness and kurtosis, correlation over time, and

changing and high levels of volatility over time, which leads us to the conclu-

sion that extreme values in both series are highly influential on the statistical

properties of the traces. The usage of the raw traces for examining the per-

formance of control systems is hence not adequate: If we happen to select, by

chance periods with large outliers, we may not be able to defer any universally

applicable statements: reactive control will, as well as static consolidation, suf-

fer from unpredictable spikes, probably even more, as reactive control aims at

achieving higher levels of workload consolidation. To summarize our analysis,

we list the main characteristics that we found in the two data sets.

Excessive volatility : Volatility refers to the actual volatility of the demands for

a time interval within a periodic pattern. We observe high levels of volatility
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for one hour time intervals in both data sets: the mean is mostly much lower

than the standard deviation. The traces exhibit relatively low mean demand

but very high variability, measured by the standard deviation. The maximum

demands often exceed the mean demand by an order of magnitude and more,

depending on the time of the day and time of the week. The high volatility,

also observed by Dinda (1999) in a grid computing environment, indicates that

short term time series prediction algorithms may be used to predict workload

on short time scales. Long term forecasting models are very unlikely to predict

sporadic spikes and should not. Including outliers in the estimation procedure

will lead to biased predictions and overly pessimistic demand estimates.

Volatility and heteroskedacity : The demand level (mean demand in a time

interval) is strongly positively correlated with demand volatility. Moreover,

demand level and volatility show the same type of extended or long mem-

ory behavior. Measures of volatility, such as the standard deviation and the

inter quartile range, are strongly positive correlated with the mean demand

in time intervals. Consequently demands with a high mean will also tend to

have a large standard deviation and maximum. The correlation indicates het-

eroskedacity which defeats most classical time series models that are based

on regression techniques for parameter estimation. We may also state, that

up to a certain demand level, time series prediction methods may be more

efficient on traces with higher demand levels: the autocorrelation is more dis-

tinct, patterns are more explicit (the Hurst exponent and the mean demand

are positively correlated for the resource demand traces) than for traces with

low demand. Traces with very high demand levels lead expose rather extreme

volatility that will make short term forecasting methods unreliable.

Volatility clustering : as noted by Mandelbrot (1963), large changes tend to be

followed by large changes, of either sign, and small changes tend to be followed

by small changes.

Heavy tails : the unconditional distribution of resource demands displays a
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heavy tail with positive excess kurtosis. Excess kurtosis measures the fatness

of the tails of a distribution. Positive kurtosis is the degree of peakedness of

a distribution, defined as a normalized form of the fourth central moment.

Heavy tails induce that there is a higher than normal probability of large

demand values. That is, excess kurtosis indicates that the volatility of the

demands is itself highly volatile.

Long tails : very often, the probability of experiencing large demand levels

can not be described by heavy tailed distributions since there is often an ag-

glomeration of extremely large valued observations. Long tails are typically

found in exponential and Zipf-like type distributions as well as the log-normal

distribution. Exceptional demand values cause long tails.

Right-skewed distributions : Most of the distributions values are closer to the

lower bound, but exhibit complex distributions that are not well-fitted by

standard distributions. Under these conditions, the computation of confidence

intervals for demand levels may not be a reasonable operation.

Auto-correlation: Time series analysis of the traces shows that demands are

strongly autocorrelated over short and long time scales. The autocorrelation

function typically decays very slowly while the raw periodogram often shows

two dominating frequencies (weekly frequency is the strongest followed by a

daily frequency). However, the high auto-correlation values on short legs in-

duce complex frequency domain behavior that requires autoregressive predic-

tion models of high order.



Chapter 5

Experimental Data Centre

Testbed

”If today were the last day of my life, would I want to do what I

am about to do today ?” And whenever the answer has been ”No”

for too many days in a row, I know I need to change something.

by Steve Jobs, Address at Stanford University (2005)

In this chapter we describe the experimental testbed used to exercise a reactive

control system and static server consolidation under real world conditions. The

testbed consists of a method to generate data centre benchmark scenarios, a

virtualized infrastructure, a component that handles the execution life-cycle of

benchmark runs in a fully automated way based on a set of configuration files

and a control system in charge of taking virtual machine placement decisions

in real-time. Figure 5.1 depicts the testbed in a schematic way. We will give

more details on the testbed and its components in the following subsections.
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Figure 5.1: Testbed system overview

5.1 Testbed Workflow and Components

We describe the components of the testbed in a contextual way by depict-

ing the workflow used to execute experiment runs and measurements used in

this work. Figure 5.2 shows the workflow using an activity diagram. The
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Figure 5.2: Testbed workflow overview

benchmark scenario generator is a set of scripts that are used to define service

demand for each system under test (SUT). It can be parameterized to control
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the amount of virtual machines in a scenario, their resource demands relative

to the capacities of a SUT physical server, the type of application configuration

of a single enterprise application (whether it will be deployed in a distributed

or monolithic way) and the volatility and shape of the service demands it will

serve. The generator prepares configuration files used by the Master Blaster

to control the execution of a benchmark run. The Master Blaster is a collec-

tion of Maven plugins that can be orchestrated for scenario run execution. A

benchmark run is the execution of a benchmark scenario with a specific set

of parameters for the control system. The execution workflow first checks the

scenario configuration for inconsistencies or errors as well as the availability

of all required virtual machines and physical servers. If the infrastructure is

found to be in conformance with the scenario configuration, all required vir-

tual machines on the SUT physical servers, as well as the virtual machines

required for service demand generation are assigned the configured resources

such as main memory, virtual CPU, CPU scheduler weights and caps as well

as network bandwidth allocation. According to the assignments computed

for the benchmark scenario, the virtual machines are started on the physical

servers. Once the setup process is complete for all virtual machines, the Master

Blaster distributes the required configuration files to the control system, the

load master, load drivers and the SUT applications, all running in dedicated

virtual machines. After the configuration files are distributed, the SUTs are

configured and populated with the required data to support a given amount of

virtual users. Application configuration information includes memory buffer

sizes, maximum allowed connections for the databases systems or minimum

and maximum heap space for the application servers, load drivers and load

masters. Each run is setup in this way, ensuring consistency across all runs

of a scenario. A run is started by activating all load masters according to a

predefined activation schedule which is necessary as a parallel warm up of all

SUTs would lead to severe overloads on the physical servers and a breakdown

of the storage servers. After the run initialization schedule is executed, the
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control system is started and the benchmark run starts. The control system

executes a configurable control strategy that is supplied with required con-

figuration parameters. During the run, the Master Blaster monitors all load

masters, checking the health of their execution status. A benchmark run is

aborted in case a load master reports misbehavior or can not be contacted

for a certain period of time. The same applies to the control system: if a

control action fails, or the control system is not able to monitor the physical

infrastructure anymore, the benchmark run is aborted.

Upon successful completion of a benchmark run, the Master Blaster shuts

down the control system and collects resource demand, virtual machine place-

ment, live migration log and response time monitoring traces from the control

system and the load masters for subsequent inspection.

5.2 Workload Generator Implementation

Most workload generators are not designed to support time varying workloads

or service request issued by virtual users. As an example, the well known tool

Httperf (Httperf, 2012) can be used to generate requests for web application

performance testing, but only at a fixed, constant rate. Therefore, we required

a flexible load testing framework that supports time varying amounts of virtual

users to emulate real world service demands. As the Faban framework (Faban,

2012) provides this capability and is already used to drive well accepted indus-

try benchmarks we decide to re-use the framework for our benchmark system.

Faban is a lightweight framework that is scalable across a large number of load

generation nodes and provides the required time synchronization between all

participating systems and automated application performance measurements

such as throughput and response times. All involved physical and virtual ma-

chines, their network addresses, access credentials, file and directory paths,

and application component settings are stored in the scenario configuration.
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Figure 5.3: Overview of load generation with Faban

The configuration is maintained centrally by the Master Blaster. Figure 5.3

depicts our usage of Faban. To steer a run’s execution the Master Blaster

controls one or several Faban load master instances that in turn control Fa-

ban load drivers. The load drivers are responsible for executing virtual users

that exercise a system under test (SUT) by sending web request. The number

of virtual active users is defined in the scenario configuration maintained by

the Master Blaster. A load master hosts the benchmark execution definition

(the allowed workflow for virtual users on the SUT) and allows an automatic

deployment of required libraries. In order to control and monitor a single load

master, an integrated web server and configuration files are used. A load mas-

ter may control several load agents which generate the actual service demand

that is issued to the SUT.

5.3 System Under Test Applications

The SUT application systems are made up of a typical three tier enterprise

application decomposed into web, application, and database servers. We use

the commercially available SPECjEnterprise2010 benchmark to simulate a

real-world application. In contrast to other application benchmarks such as

Rubis or Olio, SPECjEnterprise2010’ s application and the required software

stack can be considered to be more representative of enterprise workloads.

SPECjEnterprise2010 models an automobile manufacturer whose main cus-



76 CHAPTER 5. EXPERIMENTAL DATA CENTRE TESTBED

tomers are automobile dealers. In this business case a customer-relationship-

management, manufacturing and supply chain management scenario is used.

The Java EE 5 application describes an end-to-end business process and uses

several Java EE technologies, such as dynamic web page generation, web ser-

vice based interactions, transactional components, distributed transactions,

messaging and asynchronous task management and object persistence. SPEC-

jEnterprise2010 is mainly used to measure the scalability and performance of

Java EE based enterprise application servers but also puts significant workload

on the database server. We use the Glassfish application server version 3.1 as

application and web server, as database server we rely on the MySQL database

version 5.5.
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Figure 5.4: Monolithic application configuration

We operate the SUT in two distinct configurations: the monolithic configu-

ration as depicted in figure 5.4 and the distributed configuration as depicted

in figure 5.5. In the monolithic configuration, we run all application tiers in

a single virtual machine, in the distributed configuration we run the database

and the application server in two distinct virtual machines.
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Figure 5.5: Distributed application configuration

By splitting up application tiers we are able to generate a variety of bench-

mark scenarios with distinct workload characteristics, which is important for

our data centre benchmark. Especially virtual machines hosting databases re-

quire much less main memory and CPU in comparison with virtual machines

executing the full application stack, or the application server only.

5.4 Physical Infrastructure Description

The infrastructure consists of 13 physical servers: five servers for service de-

mand generation, scenario execution control and to host the data centre con-

trol system and six servers for hosting the virtual machines that contain the

systems under test (SUT). The eleven physical servers run Citrix XenServer

version 5.6 and hence allow to run multiple virtual machines in parallel. All

hosted virtual machines are based on the CentOS operating system. The two

storage servers are operated by the Solaris operating systems serving secondary

storage for all SUT virtual machines over the NFS Version 3 file, specified by

Sun Microsystems (1995). The storage subsystem, which is made up of 16

SATA 7200 RPM harddisks are managed by the ZFS file system in a RAID-Z1
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assemblage. All NFS shares are network accessible over a channel bond of two

1 G/bit ethernet interfaces. The bond implements data striping to achieve

higher throughput by data aggregation over multiple network links simulta-

neously. The switch is configured for bonding assistance. The SUT physical

servers use a dedicated bond of two 1 G/bit ethernet interfaces for traffic tar-

geting at the storage servers. A single 1 G/bit ethernet interface is reserved for

virtual machine live migrations and resource monitoring and a fourth 1 G/bit

ethernet interface is dedicated for network traffic that is targeted to the SUT

systems. The three types of network traffic are well separated and sufficiently

capacitated to prevent any network bottlenecks.

5.4.1 Physical Server Configuration

The SUT physical servers are equipped with one Intel Nehalem Xeon E5520

CPU with 4 cores, 16 GB main memory and four 1 Gbit Ethernet network

interfaces. Each core owns a private L1 and L2 cache, the 8 MB L3-Cache is

shared amongst all cores. Each processor core features an integrated Quick-

Path Interconnect memory controller.
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Figure 5.6: Hardware setup, two hyper-threads, one CPU core

We operated the physical servers with only one core activated, but hyper-

threading activated, leading to two logical processors or hyper-threads on the
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active physical core. Each individual hyper-thread is abstracted by the hard-

ware as a logical processors and is presented to the hypervisor as a physical

processor. The two hyper-threads share the cache-hierachy of the physical

core. The configuration is depicted in figure 5.6. We will refer to this setup as

the hyper-threaded hardware setup.

5.4.2 Intel’s Hyper-Threading Technology

The Intel ”Hyper-Threading Technology” (Intel, 2012) is an implementation of

simultaneous multithreading. It allows multiple threads to execute in parallel,

that is, instructions from multiple application threads can be executed within a

single hardware cycle. In contrast to other multithreading models described by

Tullsen et al. (1998), all hardware contexts are simultaneously active, thereby

competing for all processor resources. The availability of a larger numbers of

instructions scheduled for execution potentially increases the per cycle as well

as overall utilization of the processor because of increased instruction-level

parallelism and interference effects. At the same time, as a single physical

processor or core is able to execute two or more threads at the same time,

hardware resources are fully shared, in particular hardware caches, which is a

cause for thread interference effects as shown by Tam et al. (2007), Chandra

et al. (2005) and Iyer (2004). Shared last level caches (L3) may lead to a

removal of parts or even the full memory working set of an operating system

thread, let alone a virtual machine. The result is performance degradation or

variability for threads or virtual machines. The level of variability then depends

on which other virtual machines and what type of workloads are concurrently

running on the other hyper-thread. For hyper-threads sharing not only the

last level but the full cache hierarchy, the performance variability may even

be higher in contrast to physical cores sharing the L3 cache only. According

to Nathuji et al. (2010), technologies like hyper-threading designed to increase

resource efficiency almost unavoidably lead to increases in interference and
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contention for hardware resources.

For operating systems, awareness of the processor hierarchy is desirable in

order to avoid circumstances such as a system with two physical cores hav-

ing two runnable threads scheduled on two hyper-threads of one core and

therefore sharing resources while the remaining physical core is idle. Current

operating systems have this kind of awareness built in. We are not aware

of any processor hierarchy awareness in the Xen CPU scheduler. In Xen, an

administrator may use the possibility to pin virtual CPUs to logical proces-

sors in a hierarchy-aware way. However, a statical assignment may lead to

asymmetric and unfair resource allocation as a core with all hyper-threads idle

provides more CPU resources than a core with only one idle hyper-thread and

all other hyper-threads busy. VMWare’s hypervisor (VMWare, 2012b) pre-

vents this issue as the CPU scheduler can be configured to control the way

hyper-threads are utilized by charging consumed CPU time only partially if a

virtual CPU is scheduled on a hyper-thread. For operating systems, Bulpin

and Pratt (2005) show that the CPU scheduler can improve application level

throughput by scheduling application threads in parallel on hyper-threads of

a core that deliver combined throughput better than other application level

thread combinations. To achieve throughput improvement, processor metrics

are used to inform the scheduler of the realized performance. Since hyper-

threads share a physical core, they run slower than they would do if they had

exclusive use of a core. However, in most cases the combined throughput of

the threads is higher than the throughput of either one of them running ex-

clusively, providing increased throughput at the expense of individual threads’

throughput. According to Tuck and Tullsen (2003) and Bulpin and Pratt

(2004), the overall system throughput can be expected to increase for about

20% using hyper-threading. Despite these findings, it is also known that there

exist combinations of workloads that reduce throughput or lead to a biased

per-thread throughput.

The possible increases in throughput and the possibility to co-schedule do-
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main0 with other guest domains for improved performance and resource uti-

lization has lead us to the decision to use hyper-threading in our experiments.

As we will see in section 5.8, the hyper-threading hardware setup as shown in

figure 5.6 incurs, in relative terms, larger consolidation overheads as the setup

using two physical cores as shown in figure 5.7.

!""#$%&$'()*+,)$ -.$
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Cache Cache 
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Thread 1 Thread 2 

Figure 5.7: Hardware setup, two CPU cores

However, as it is not evident how hyper-threading affects resource contention

on our hardware platform, we compare the hyper-threading setup with a setup

that uses two physical cores. Figure 5.7 shows a setup that we use to compare

consolidation overheads due to last level cache sharing effects. It is a config-

uration where we activate two physical cores that share the last level cache

(L3). This setup will be called two core setup.

5.5 Benchmark Scenario Generation Method

An immediate requirement for a data centre benchmark is to generate realistic

service demands. While techniques for generating realistic workloads tech-

niques exist, an often employed method is to replay actual workload traces.

As our study of two data sets in chapter 4 revealed, this method may lead to

chance-driven results which does not allow for reasoning about normal oper-

ations. Consequently, we have taken an approach that relates to an average
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analysis by generating workloads that replay typical workload patterns rather

than replaying random and possibly outlier afflicted instantiations of the pat-

terns. In this respect, our approach differs from others that have been pro-

posed for studying web based application performance, content distribution,

load balancing, caching or resource allocation. The work of Urgaonkar and

Shenoy (2008), Welsh and Culler (2003), Urgaonkar et al. (2008) or Chen and

Heidemann (2002) put a primary focus on how systems perform under steady

workload increases, sudden workload spikes or flash crowds, that present excep-

tional situations. While it is interesting how unforeseen service demand spikes

can be handled and according to Bodik et al. (2009) as stochastic service de-

mand for web based applications is much more the rule than the exception for

large, public web sites, our focus is on enterprise applications for which service

demand is much more stable and predictable. For enterprise environments, we

undertake the first attempt for the definition of a data centre benchmark.

The statistical analysis in subsection 4.1.2 revealed that service demand for the

processes in our data set exhibit regular daily and weekly demand patterns with

sharp outliers leading to large peak to mean ratios and rather extreme levels

of volatility. In our study, we are interested in exploring normal operations

rather than exceptional situations that are hard to predict and may require

admission control and load balancing to ensure application performance. We

focus on daily patterns that recur on working days and derive service demands

that represent demand profiles that do not exhibit exceptionally high service

demand levels. Due to time constraints for our study, a benchmark scenario

is executed in 12 hours real time, simulating 24 hours of operations.

A benchmark scenario consists of a set of virtual machines with resource de-

mand profiles that can be consolidated, using the overhead aware static server

consolidation model described in section 3.3 with 24 time intervals onto six

physical servers. We can control the amount, the type and the relative ca-

pacity of the virtual machines during the scenario generation process. The

resource requirements of the virtual machines are determined during the ser-
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vice demand generation process for each SUT. Each SUT’s service demand is

derived from a randomly drawn process of the service demand trace data set.

Duplicates are allowed, however as different demand levels are assigned to the

SUTs, the general demand pattern may be the same but the demand intensity

will be different.

Once a service demand trace is assigned to each virtual machine running a web

and application server in a scenario, the actual service demand is generated in

the following way:

1. Normalize each service trace using its maximum value: we are interested

in the general demand pattern, not the actual demand intensity. The

intensity is rather specific to our data set.

2. For each virtual machine j ∈ J , generate the service demand distribu-

tions Xs
tj for each hour of a day (t ∈ T , |T | = 24). The resulting, per

hour demand distribution for an example process is shown in figure 5.8.

3. Filter the distribution by removing all values above the 75 % percentile

and below the 25 % percentile of Xs
tj, leading to the truncated service

demand distribution Y s
tj = {x ∈ Xs

tj | x ≥ Q0.25(Xtj) ∨ x ≤ Q0.75(Xtj)}

4. The median of the truncated distribution is used to define the service

demand level series ~lsj at each time interval t ∈ T : lstj = Q0.50(Y s
ti). The

median is shown in figure 5.8 by the solid red line.

5. The 95 % percentile of the truncated distributions is used to define

the planned service demand level P s
ti at each time period t ∈ T :

P s
ti = Q0.95(Y s

ti). This demand level is used to estimate the CPU de-

mands in each time interval using a lookup table. The table stores CPU

demand estimates obtained in offline measurements: for each amount of

virtual users {10, 20, 30...200} the CPU demand level is given. The de-

mand level is the average of three measurement runs plus two times the
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standard deviation. We have chosen this simple estimation procedure

as it ensures sufficient resources and service level preserving application

response times.

6. Each entry lsti defines the demand level for period t ∈ T and is the equiv-

alent to the CPU demand estimate âjtr used for consolidation planning

in the server consolidation models presented in chapter 3. As it is unre-

alistic to assume a steady service demand level for the duration of half

an hour, we expand the series ~lsi by replacing each entry lsti with repeat-

ing it 30 times, leading to 720 entries in the time series ~lsi . Each entry

corresponds to the service demand level of a minute real time (or two

minutes simulated time). Padala et al. (2009) even change the amount

of virtual users every 10 seconds to generate a realistic service demand

that matches the characteristics of production traces.

7. ~lsi is a step function of time t ∈ T . As a series contains very sharp in- and

decreases in service demand values, we smooth the series using a simple

moving average filter with a sliding window length of 6 values. We will

denote the smoothed series with ~lsi .

8. The series ~lsi is very smooth and still far from generating resource de-

mands as volatile as we could observe in the resource demand data set.

We add noise to each value of ~lsi according to the variance we have found

in the truncated service demand distribution Y s
ti for the corresponding

hour of the day. For this purpose we define a random variable Zs
ti that

follows a normal distribution N(0, σ(Y s
ti)). Each value of ~lsi is replaced

by adding a randomly drawn value from N(0, σ(Y s
ti)). However, we do

not exceed the value Q0.75(Xtj) which avoids large outliers.

9. We normalize the series ~lsi again to its new maximum value. This allows

us to assign a maximum service demand to a series in a subsequent step

and to plan for the maximum resource demands of a virtual machine.



5.5. BENCHMARK SCENARIO GENERATION METHOD 85

The maximum service demand is used to estimate the main memory

demand, again using a lookup table. This value corresponds to the main

memory demand estimate âjtr presented in chapter 3.

We need to elaborate on our decision to add random noise to the service

demand. As we exercised our test system with the smooth service demand, we

could not observe large CPU demand fluctuations as we have seen in our study

on the resource demand traces in chapter 4. Therefore, to add burstiness and

randomness we decided to add noise to the service demand traces. We have

chosen the normal distribution N(0, σ(Y s
ti)) in accordance to the principle of

maximum entropy.

●●

●

●

●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●
●●

●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●
●
●
●

●

●

●

●●

●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●
●●●●

●

●

●●●●●●

●

●

●●●

●

●
●
●●

●●

●●●●
●●●●●●●●●●●●●●

●

●

●

● ●●●●●●●●●●●●●

●

●●●●

●

●●●●

●

●●●●●●●●●●●●●●●●●

●

●●●●●●
●
●●●●

●

● ●●●●●●●●●●
●
●●●●●
●●

●

●
●●●●
●
●●●●●●●●●●●●●●●●

●

●●●●●●

●

●●●●●● ●●●●●
●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●
●
●●
●

●

●●●●●●●●●●●●●
●●
●
●●
●
●

●

●●●

●●

●●

●

●

●●
●●

●●

●

●
●

●

●●
●

●

●●
●

●
●●
●
●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●●
●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●
●
●

●

●

●
●

●
●

●

●

●
●

●

●
●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●●
●●

●

●

●

●
●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●●●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●●●

●

●

●

●

●

●

●

●

●
●
●

●
●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●

●

●
●
●
●●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●●
●

●
●
●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●
●●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●●●●●
●
●

●
●●

●

●

●●●●

●

●●●●
●●●
●
●●
●●●●●

●

●
●

●●●●
●●
●
●●●●

5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Service Demand Distribution, Service: 1

Time (24 Hours)

N
or

m
al

iz
ed

 S
ev

ic
e 

D
em

an
d Median Truncated Slot

Upper/Lower Slot Percentile
Planning Percentile

Figure 5.8: Workload definition: Per hour service demand
distribution

In Bayesian probability as described in Jaynes (2003), the principle is a postu-

late stating that, under a set of known constraints, the probability distribution

that minimizes the amount of prior information is the one with the largest

entropy. The normal distribution N(µ, σ) has maximum entropy among all

real-valued distributions with given mean µ and standard deviation σ. There-

fore it is recommended to assume a normal distribution. Our choice to link
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the level of noise to σ(Y s
ti) reflects the heteroskedastic behavior of both sets of

traces studied.
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Figure 5.9: Generated service demand for twelve hours real time

Figure 5.9 depicts a resulting service demand time series using the outlined

approach. It should be noted that we preserve the main characteristics of

the underlying real world service demand traces, in particular heteroskedacity.

In table 5.1 we compare the statistical properties of the raw, but normalized

service demand series with the statistical properties of the truncated service

demands.

25% 50% 75% 90% 95% 97,5% µ σ σ
µ

Normalized 0.0001 0.0015 0.029 0.133 0.233 0.395 0.043 0.083 1.933

Truncated 0.0015 0.0340 0.061 0.102 0.142 0.187 0.043 0.031 0.721

Table 5.1: Normalized versus truncated demand distribution

While we reduced the volatility by a factor of three, we kept the overall mean

demand identical to the input data’s mean. The increased lower percentiles

show that our traces expose a slightly increased demand level, which we believe

is acceptable.
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RAM (GB) Reduction (%) Swap (GB/30 s) µ Rsp. σ Rsp.
3.50 0.00 0.00 0.068 0.087
3.45 1.43 0.004 0.217 0.207
3.40 2.86 0.011 0.456 0.346
3.35 4.29 0.019 0.758 0.519
3.30 5.71 0.031 1.028 0.853
3.25 7.14 0.072 1.789 1.567
3.15 10.00 0.113 2.487 1.989
3.00 14.23 0.206 3.392 2.426

Table 5.2: Memory shortage with constant service demand of
180 parallel users

5.6 Resources under Control

In our study, we focus on dynamic CPU allocation and refrain from dynamic

memory management for several practical reasons. Despite the viability of

memory overcommitment, which has been shown by Waldspurger (2002), not

all currently available virtualization solutions allow for memory overcommit-

ment or dynamic memory allocation adjustment. Even though Citrix Xen

supports the memory ballooning mechanisms to reclaim main memory from

a virtual machine and even though it is possible to detect memory shortages

based on the swapping rate of a virtual machine using a black-box monitoring

approach (for non-blackbox methods it is possible to inspect the page fault

rate of a virtual machine), a virtual machine that swaps memory pages to sec-

ondary storage suffers from performance degradation especially when storage

is served over a network. Swapping memory pages in and out is also degrading

application performance and places heavy demands on the storage infrastruc-

ture. We measured the impact of memory shortages in our setting and report

the effects in table 5.2.

When serving 180 users with a monolithic application configuration, the av-

erage response times are about 0.068 seconds if no memory shortage is expe-

rienced. A slight reduction of 1.43% of memory allocation leads to swapping

activities and response time increase of about 300%. Higher decreases in al-

located memory lead to even more sever response time increases. To exclude
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Scheduler Users µ CPU σ CPU µ Rsp. σ Rsp.
Cap 100 160 34.42 5.95 0.078 0.097
No Cap 160 35.19 5.59 0.084 0.090
Cap 100 170 36.67 5.78 0.126 0.115
No Cap 170 37.35 5.68 0.081 0.096
Cap 100 180 43.11 5.02 0.394 0.488
No Cap 180 40.10 6.23 0.091 0.114
Cap 100 190 47.44 3.47 0.565 0.614
No Cap 190 43.77 6.17 0.093 0.012
Cap 100 200 49.20 1.63 0.976 0.808
No Cap 200 46.91 6.39 0.092 0.116
Cap 100 210 49.47 0.57 1.628 1.578
No Cap 210 48.77 7.21 0.112 0.128
Cap 100 220 49.58 0.38 2.292 2.687
No Cap 220 52.88 7.02 0.114 0.117

Table 5.3: CPU shortage with increasing parallel users

these severe effects from our study, we ensure sufficient memory allocations for

all experimental scenarios. One reason for the large degradation is that mod-

ern operating systems attempt to optimize their performance by using spare

main memory for system buffers. Under these conditions it is non-trivial to

determine how much memory can be reclaimed from a virtual machine. It is

also hard to determine how much memory might be actually required in case

of an overload situation. Additionally, if a virtual machine with a reduced

memory allocation suddenly requires more memory, it is important to quickly

provision the additionally required memory. If memory is not available when a

virtual machine is in need, the performance degradation is severe. We also note

that dynamic memory allocation for enterprise applications may have limited

effects on data centre efficiency as especially the applications we consider do

not release main memory that has once been acquired.

In contrast, CPU shortages are less harmful as can be deferred from table

5.3. We used the two physical cores setup of our hardware for the following

experiments. We used caps to limit a virtual machine to one virtual CPU and

measured the CPU demand and the response time. In comparison to the non-

caped execution, the response time grows much more moderately in contrast

to memory shortages. In summary: if we allocate memory dynamically, we

would very likely incur rather negative impact on application response times.
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Therefore we focus on dynamic CPU allocation based on the fair share guaran-

tees the Xen CPU scheduler provides under appropriate configuration settings

and exclude memory induced response time degradation from our study.

5.7 Virtual Machine Live Migration Over-

heads

Virtual machine live migration enables automated control systems to move

an operational virtual machine without major downtimes between physical

servers. However, short interruptions of service are unavoidable during live

migrations executed by pre-copy algorithms. Previous studies have demon-

strated that service downtimes can vary considerably for different types of ap-

plications due to memory usage patterns, ranging from milliseconds to seconds.

While the existence of service downtimes for a virtual machine in migration

are known, but assumed to be acceptably small, a second effect is by far less

well studied: the live migration of a virtual machine affects the performance of

executing virtual machines on the source and the target physical server as the

task of executing a migration causes noticeable CPU overhead and in the case

of Xen as it lets domain0 become a contender for resources. In this section we

will study the measurable CPU overheads for migrating virtual machines host-

ing different application components under various workload levels. We will

not descent into measuring the effects a migration has on co-located virtual

machines in terms of application slowdown, but will give sufficient insights to

justify our virtual machine selection strategy that we employ in our reactive

control system. All experiments in this section have been executed at least

three times, the experiments for determining migration times and memory

page dirtying rates include at least ten migrations measured on different phys-

ical servers. All virtual machines have been assigned 4 GB of main memory.
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Figure 5.10: CPU overheads for monolithic application
configuration

Figure 5.10 depicts the measured CPU overheads for migrating a virtual ma-

chine hosting the monolithic application configuration on the hyper-threaded

hardware setup. The CPU demand is measured for the duration of each mi-

gration on the source and target physical server. The overheads are given in

absolute numbers. The additional CPU demand during a migration increases

in a linear way with increasing CPU demand of the virtual machine and reaches

a saturation level at 50% CPU load and more. At that demand level, the over-

head does not increase anymore as the workload’s memory access behavior

prevents the live migration algorithm to transfer dirtied memory pages. A mi-

gration at these workload levels incurs a prolonged downtime phase with largely

increased response times (the maximum response times for these experiments

were more than two times higher than for experiments without migrations,

while the 90% percentile remained at the same level). The standard error of

the measurements indicate that the overheads on the source server are variable

which is partly caused by our resource demand monitoring approach described

in section 5.9.1 and the way we aggregated the results into groups defined by

CPU demand ranges. Interestingly, the target server also incurs a rather large

(about 10% of the available CPU capacity), but constant CPU overhead due to

I/O processing and for copying of memory pages to the reserved memory area
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Figure 5.11: CPU overheads for application server

of the migrating virtual machine. As the maximum bandwidth and memory

transfer rate is already used when migrating low demand virtual machines,

there is almost no increase in overheads for high demand virtual machines.

Figure 5.11 depicts the measured CPU overheads for migrating a virtual ma-

chine hosting the application server of the distributed application configuration.

We observe lower CPU overheads for migrating a virtual machine in compar-

ison to migrating a monolithic virtual machine. This observation, as we will

see shortly is due to the memory intensity (in terms of memory writes) of the

application workload. We exercised the same amount of virtual users as for

the results presented in 5.10. The saturation point for the overheads have

not been reached, as the memory access behavior of the applied workload

has not reached the intensity level as the monolithic application configuration

workload. In figure 5.12 the CPU overhead for migrating a virtual machine

hosting a database are displayed. Again, the overheads on the target server

are slightly lower than the ones incurred when to migrating a monolithic as

well as an application server virtual machine. The overheads on the source

server are about the same for all demand groups compared to the previously

presented virtual machine types. Again, the memory intensity if the database
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Figure 5.12: CPU overheads for database server

three plots we can deduct the following statement: The overheads incurred

during the runtime of a live migration may be estimated by the CPU demands

of a virtual machine as there is an observable, approximately linear relation

between the CPU demand of virtual machine and the CPU overheads incurred.

To understand why this relation exists, we measured the amount of main mem-

ory pages that are written per second. To do this we used the Xen hypervisor

API and the shadow page tables to track write access to memory pages. We

will also study the dependence of the CPU demand with the temporal length

of a migration.

5.7.1 Monolithic Application Configuration Migration

Overheads

Figures 5.13, 5.14 and 5.15 display the time required to execute virtual ma-

chine migration and the measured average memory pages dirtied for a virtual

machine running a monolithic application configuration with increasing main
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memory allocations. We note the linear relationship between the three mea-

sured metrics: with increasing CPU demand, the main memory page dirtying

rate (please note that we count all page writes, not distinct page writes) and

the required time for a migration. For low CPU demands the time required

is only little above the time required to transfer the main memory at 1 G/bit

throughput (e.g. 3 GB can be transfered in about 26 seconds at 120 MB/s

usable bandwidth). For higher CPU demands the migration times and mem-

ory pages dirtied increase proportionally. We have not included measurements

with larger CPU demands than 50 % of the available capacity, as the linear

behavior does not continue beyond that demand level which is due to the mi-

gration algorithm not transferring memory pages that are dirtied frequently.

As the memory page dirtying rate reaches a critical value where more and more
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Figure 5.13: Live migrations of 2.5 GB virtual machine

pages are excluded from transmission by the migration algorithm. This be-

havior leads to longer service downtimes, but shorter overall migration times.

We should note that the CPU demand level is the most influential factor for

migration durations and main memory write intensity for the types of appli-

cations we study. The main memory allocation is a subordinate factor for
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Figure 5.14: Live migrations of 3 GB virtual machine

migration durations of virtual machines hosting the same type of application

exposing similar memory usage behavior.
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Figure 5.15: Live migrations of 4 GB virtual machine
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5.7.2 Application Server Migration Overheads

As in the previous subsection, figures 5.16, 5.17 and 5.18 gives the time re-

quired to execute virtual machine migrations for a virtual machine running

an application server, again with increasing main memory allocations. As for
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Figure 5.16: Live migrations of 2 GB virtual machine

the monolithic application configuration, the migration times increase approx-

imately linearly with increasing CPU demands. The main memory dirtying

rate is lower compared to the monolithic case even at the same CPU demand

levels. This observation supports the finding, that CPU overheads depend on

the main memory access intensity. The migration times are also shorter for

application server workloads than for the monolithic application configuration.

This is mainly due to the lower main memory dirtying rate as less main mem-

ory pages need to be transfered multiple times. Still, the CPU demand level

is the most influential factor for migration durations and main memory write

intensity. We also observe an approximately linear relationship between CPU

demand and migration duration.
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Figure 5.17: Live migrations of 2.5 GB virtual machine
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Figure 5.18: Live migrations of 3 GB virtual machine

5.7.3 Database Migration Overheads

Figures 5.19 and 5.20 gives the time required to execute virtual machine migra-

tions for a virtual machine running an database server with two different main
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memory allocations. The observations obtained for the monolithic application
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Figure 5.19: Live migrations of 1 GB virtual machine

configuration and application server still hold for virtual machines running a

database server only. Albeit the measurements are more noisy and influenced

by some outliers, the main, basic (linear) relationship between CPU demand,

main memory dirtying rate and migration time is still observable.

5.7.4 Main Findings on Migration Overheads

Our measurements of the migration duration, the main memory dirtying pages

and CPU demands have revealed a linear relationship that can be exploited

during the decision making for selecting virtual machines for migration to

prevent physical server overloads or to evacuate a physical server. We will

exploit these insights in the design of our reactive control system in section

5.9. As the CPU demand is the main determinant for memory intensity for

all three application configurations, followed by the main memory allocation,

both metrics will be included in a linear estimation function. The function

will prefer low CPU demand virtual machines over high demand ones as well
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Figure 5.20: Live migrations of 1.5 GB virtual machine

as virtual machines with lower main memory allocations for migration. While

it would have been interesting to study the adverse effects of live migrations

on application response times in detail, we decided not to do so as the average

response in our experiments did not increase significantly. This is mainly due

to the fact that our experiment did not stress the migration algorithm beyond

the main memory dirtying levels it has been designed for. Hence the service

downtimes where not influential in our experiments. Additionally, our exper-

iments are run for several minutes and served a large number of application

requests. The proportionally small amount of requests that suffered from net-

work induced delays do not influence much on the average response times in

our experiments.

However, we need to mention that response time degradation during a live

migration is caused by packet losses and packet re-transmissions as shown

by Kikuchi and Matsumoto (2012). The authors measure the impact of live

migrations for multi-tiered applications and determine that TCP can be an

influential factor for application response time degradation. While their in-
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vestigation is valid, their investigation is concerned with maximum response

times caused by service downtimes during a live migration. In contrast, we

focus on the migration process and show that not only the downtime, evoked

by the required ARP request, is a factor when studying migration overheads

in our experimental testbed.

5.8 Consolidation Overheads

The overheads for virtual machine live migrations influence on the design of dy-

namic workload management systems. Particularly static consolidation meth-

ods need to deal with the no-additive resource demands when co-locating vir-

tual machines on a single physical server. Each chart in this section has been

derived from five experiments lasting 30 minutes each. The median of each

measurement is taken and the median of the medians together with the stan-

dard deviation of the sample is depicted. All experiments are executed using

the hyper-thread setup which allows the assignment of one or two virtual cores

to a virtual machine. The main aim of this section is to introduce a consol-

idation overhead estimation function based on the CPU demands of a single

virtual machine hosting a given type of application. We will demonstrate that

overheads are dependent on the amount of virtual machines, the workload level

and type of virtual machine workload. While the interdependence of the three

factors is complex and can only be estimated accurately if the set of virtual

machines and their types is known in advance, we aim for a simple estimation

procedure that does not complicate the basic consolidation problem and can

be applied in a real world setting.
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Figure 5.21: Monolithic application resource demands one
virtual machine

5.8.1 Monolithic Application Configuration Consolida-

tion Overheads

First, we study consolidation overheads for virtual machines running the mono-

lithic application configuration. Figure 5.21 gives the CPU demands of a single

virtual machine of this type. The resource demand for two cores are consis-

tently higher than the demands for the one core assignment. At the same time

the application response times are on average 14.08% lower (response times are

not shown here). This effect is due to hyper-threading which increases, espe-

cially for web-based and therefore I/O bound workloads, the CPU utilization

and improves throughput and response times. The effect increases slightly and

proportionally with rising CPU demands, however not to the same extend for

the response times. At higher workload levels, more parallelism helps to lower

response times. The measurements given in 5.21 serve as a baseline for subse-

quent experiments: the additive bar shows the resource demands for multiple

virtual machines, assuming their resource demands are additive. Figure 5.22

depicts a comparison for two virtual machines having a single core assigned

and running in parallel on a single physical server. The amount of virtual
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Figure 5.22: Monolithic application consolidation overheads two
virtual machines, one virtual core

users on the x-axis is the sum of virtual users exercising the virtual machines.

All virtual machines are run with the same amount of virtual users, hence no

asymmetric workloads are used in this section. The relative overheads increase

with increasing workload levels indicating a non-linear overhead effect.

Figure 5.23 depicts a comparison for two virtual machines having two cores

assigned. The comparison to the additive demands is based on the two core

measurements given in figure 5.21. The overheads are comparable in the low

CPU demand regions to the single core case. However, with 240 virtual users,

the physical server is overloaded while it is at about 90% CPU load for the

single core case. The same non-linear relative increase in overheads can be

observed as in the single core case. While the overheads are rather well behaved

in the low demand regions, the non-linear increase in relative overheads is

an effect that is most relevant to consolidation planning and virtual machine

placement decisions. The same observation can be taken from the following

cases with four and eight virtual machines. The overheads depend on the

demand level of a virtual machine. For the one core experiments, each virtual

machine incurs 12.76% overhead (68.44% aggregated demand, 27.26% for a

single virtual machine with 80 virtual users) for two co-hosted virtual machines,
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Figure 5.23: Monolithic application consolidation overheads two
virtual machines, two virtual cores

9% for four co-hosted virtual machines (67.82% aggregated demand, 12.47%

for a single virtual machine with 40 virtual users) and 5.67% for eight co-

hosted virtual machines (86.54% aggregated demand, 7.44% for a single virtual

machine) at 160 aggregated virtual users. The overhead per virtual machine

increases with the demand level for symmetric demand distributions.
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Figure 5.24: Monolithic application consolidation overheads four
virtual machines, one virtual core

Figure 5.24 gives the results for the single core assignment cases with four

virtual machines. While the same overhead effect can be observed, the non-
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linear behavior is not as distinctive as in the two virtual machine cases. This

can be explained by the lower workload levels applied to each virtual machine.

The CPU demand level of a single virtual machine is most critical to the

aggregated overhead effect: the higher the CPU demand level of a single virtual

machine, the larger the per virtual machine consolidation overheads.
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Figure 5.25: Monolithic application consolidation overheads four
virtual machines, two virtual cores

Figure 5.25 gives the results for the two core assignment case with four vir-

tual machines. The same effect as in the previous case with one core can be

observed.
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Figure 5.26: Monolithic application consolidation overheads
eight virtual machines, one virtual core

The next two cases with eight virtual machines confirm the results of the pre-

vious experiments and display the same non-linear increase of the overheads.

40 80 120 160

Monolithic Application Configuration, 8 VM Consolidation Overheads, 2 Core

(Relative Overhead %)
Virtual Users

C
P

U
 D

em
an

d 
(M

ed
ia

n 
+

/−
 S

td
.D

ev
.)

0

20

40

60

80

Measured
Simple Additive

(4.92) (13.44) (32.41) (42.93)

Figure 5.27: Monolithic application consolidation overheads
eight virtual machines, two virtual cores

So far, we have evaluated symmetric workload distributions for co-hosted vir-

tual machines. As we aim to assign overheads to a single virtual machine

without considering co-located virtual machines, we also study asymmetric

distributions and present the results in appendix A. As the overheads deviate
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largely from the symmetric load experiments, we need to include these over-

head measurements in the consolidation overhead estimation procedure. By

doing so, we take a probe-based approach to overhead estimation as it is a prac-

tical way to derive a consolidation overhead estimation function definition in

a real world setting. We also executed similar experiments for application and

database servers. The experiments lead to similar, yet scaled down overheads.

Therefore we abstain from including the results and the description.

5.8.2 Consolidation Overhead Function Definition

To define the consolidation overhead estimation function fg(j)r : [0, 1] ⇀ [0, 1]

used in constraint 3.5 of the consolidation overheads extension of the static

server consolidation problem for any given virtual machine type g(j) for CPU

demands, we employ a regression spline approximation method. As the over-

heads expose different behavior for two, four and eight co-located virtual ma-

chines, we estimate the overheads for all cases separately in this subsection.

We derive a single function that we will employ to estimate the consolidation

overheads for arbitrary amounts of co-locate virtual machines. We employ

regression splines for the estimation as the method provides an popular ap-

proach for nonparametric function estimation. Splines can be used for non-

linear regression. The regression method adapts well to non-linear curves as

the regression curve is constructed piece-wise from polynomial functions and

can be fitted well to our overhead data sample and several sub-populations.

In figure 5.28 we plot the measured consolidation overheads (in %) against

the assumed, additive CPU demands for all overhead experiments (for 2, 4

and 8 virtual machines including symmetric and asymmetric workloads) for

the monolithic application configuration and fitted a quadratic spline to all

values and to the maximum overhead values for each expected, additive CPU

demand level. The two curves describe two possible overhead estimation func-

tion definitions.
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Figure 5.28: Monolithic application consolidation overhead
estimation function, one virtual core

While the dotted, maximum value based curve gives a function that tends to

over-estimate the sampled overheads, especially for low CPU demands, the all

values based curve converges towards the maximum value based curve for high

CPU demands. Both curves flatten out for high demand values. This shape is

highly desirable as with increasing CPU demands on a single virtual machine

the workload distribution on a physical server tends to be asymmetric. For our

purpose of consolidation, we are interested in approximating the overheads for

high demands in a more precise an conservative way than for low demands, as

aggregated high demands of virtual machines may quickly lead to overloads

on physical servers.

To validate and select the estimation function definition, we compare the error

distribution and dependence on the CPU demand in the following three figures:

5.29, 5.30 and 5.31 and analyze the errors for several amounts of co-located

virtual machines. In figure 5.29 we give the errors for two co-located virtual

machines both hosting the monolithic application configuration. On the left

hand side, we estimate the overhead function using the all CPU demand values

estimator, the single core assignments and plot the distribution of the errors.
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Figure 5.29: Monolithic application consolidation overhead
estimation for two virtual machines, one virtual core

On the right hand side we do the same for the maximum values estimator. The

mean value of the absolute error distribution of all values estimator is 7.988 %,

for the maximum value estimator it is 18.353 %. While the former estimator

also gives less variance, the maximum value estimator is better suited for high

demands as it delivers better estimates for high aggregated CPU demands. In

figure 5.30 we give the errors for four and eight co-located virtual machines

hosting the monolithic application configuration. On the left hand side of we

estimate the overhead function using the all CPU demand values estimator

for single core assignments and plot the distribution of the errors. On the

right hand side we do the same for the maximum values estimator. The mean

value of the absolute error distribution of all values estimator is −4.73%, for

the maximum value estimator it is 3.28%. While the former estimator also

gives a smaller variance it underestimates the resource demands much more

often, the maximum value estimator is better suited for high demands as it is

performing better high aggregated demand CPU demands. In figure 5.31 we

give the combined errors for two, four and eight co-located virtual machines

hosting the monolithic application configuration. On the left hand side of we

estimate the overhead function using the all CPU demand values estimator
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Figure 5.30: Monolithic application consolidation overhead
estimation for four and eight virtual machines, one virtual core
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Figure 5.31: Monolithic application consolidation overhead
estimation, one virtual core



5.8. CONSOLIDATION OVERHEADS 109

40 80 160 320

Monolithic Application Configuration, 2 Cores

Virtual Users

C
P

U
 D

em
an

d 
(M

ed
ia

n 
+

/−
 S

td
.D

ev
.)

0

10

20

30

40

50

Two Cores

Figure 5.32: Monolithic application configuration, two physical
cores

the single core assignments and plot the distribution of the errors. On the

right hand side we do the same for the maximum values estimator. The mean

value of the absolute error distribution of all values estimator is 1.85 %, for

the maximum value estimator it is 11.87%. If judging the raw distribution

metrics, the former estimator outperforms the latter. However, the all values

estimator is more aggressive, performing worse for high demand values. This

observation holds for all types of virtual machines. Therefore we have chosen

the maximum value estimator for our purposes. The consolidation overheads

and estimation results for database and application server virtual machines

are given in appendix B.

5.8.3 Consolidation Overheads with Physical Cores

Our study of consolidation overheads is based on the hyper-thread hardware

setup shown in 5.6. To demonstrate the need for consolidation overhead esti-

mation on other hardware setups, especially none hyper-thread based ones, we

executed a limited set of experiments with the physical core setup, depicted in

5.7 using the monolithic application configuration only. Figure 5.32 depicts the

CPU demands for 40, 80, 160 and 320 virtual users for a virtual machine allo-

cated with two virtual cores. First we have to mention that the CPU demand

is much lower than for the hyper-thread hardware setup: The hyper-thread
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setup supports 240 virtual users at about 52% CPU demand, the physical core

setup supports 320 virtual users at about the same CPU demand level.
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Figure 5.33: Monolithic application configuration, two physical
cores, two virtual machines

The overheads are also lower. The hyper-thread setup incurs, for two virtual

machines running 240 virtual users in sum, about 66% overhead, the physical

core setup incurs, for 320 virtual users only about 11 %.
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Figure 5.34: Monolithic application configuration, two physical
cores, four virtual machines

For four virtual machines, the hyper-thread setup incurs, running 160 virtual

users in sum, about 43% overhead, the physical core setup incurs, for 160

virtual users about 15%. The overheads increase to almost 40% for 320 virtual

users.
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5.8.4 Estimating Consolidation Overheads

We have shown a simple, measurement-based approach for estimating consoli-

dation overheads. The approach can be employed in real world data centres by

collecting measurements for each virtual machine in a controlled profiling en-

vironment. After collecting overhead measurements for various demand levels

and amount of co-locate virtual machines, per virtual machine overhead es-

timation functions can be estimated and used during consolidation planning.

If a consolidation plan is outdated as physical servers become over- or under-

loaded for extended periods of time, overhead estimation functions need to be

re-estimated.

We also showed that the consolidation overheads are more pronounced for the

hyper-thread hardware setup, especially for low CPU demands. The hyper-

thread setup not only suffers from inefficient hardware cache usage, but also

from higher CPU utilization caused by hyper-threading in comparison to the

two physical core setup. The results in this section are mainly dependent on

the hardware setup and may not be transferable to other hardware platforms.

However, as shown by Iyer et al. (2009) as well as Blagodurov et al. (2010)

hardware cache contention is a main source for consolidation overheads and

are hence unavoidable for a wide range of hardware architectures.

5.9 Reactive Control for Autonomic Comput-

ing

Autonomic computing, as envisioned by Kephart and Chess (2003), aims at

development of self-managing computer systems. While there exist several

ways to achieve system operation objectives, ranging from centralized, control

theoretic approaches which employ controllers or hierarchies of controllers with

explicit goal focus to approaches that rely on decentralized coordination of
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Figure 5.35: Control system

multiple decision makers where aimed at system behavior emerges implicitly.

As it has been recognized by researchers and practitioners, the large scale

and complexity of data centre management problems renders this domain a

promising candidate for autonomic, reactive management methods.

The basic layout of the control system we employ in our work is given in 5.35.

The control system relies on a monitor that gathers resource demand monitor-

ing data from the infrastructure, including all physical servers and all virtual

machines, including domain0, and keeps a record of the monitoring history. In

our implementation, the monitor retrieves demand data at a five second fre-

quency, delivering an instantaneous snapshot of the systems’ resource demand

state. The control strategy is triggered once a system state could be gathered

completely and derives virtual machine placement decisions. A system state

snapshot view is not representative as volatile demands and measurement noise

does not allow for proper decision making. Therefore the monitoring subsys-

tem employs a resource demand predictor to deal with noise as described in

subsection 5.9.1. An actuator is in charge of executing the control actions

issued by the control strategy and updates the system state (the virtual ma-

chine assignments) upon completion of a control action. Reactive control can

be characterized by relative myopia and best effort decision making. Reac-

tive, feedback-based controllers studied by Hellerstein et al. (2004) have been

found to be effective in managing computer systems when monitoring data is

gathered at high frequencies. These methods have been applied in problem
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domains requiring real time behavior for control decision making and execu-

tion. Reactive control systems employ short term system state extrapolation

and prediction models. An obvious reason for this design decision is the gen-

eral uncertainty associated with the environments these systems operate in and

the limited availability of computational resources. Economical feasibility may

also constrain the use of computational demanding, potentially more accurate

methods for demand state prediction and assignment planning.

In order to provide system stability and to enable reliable, durable virtual ma-

chine placement decisions, the resource demands of virtual machines need to be

estimated in a way that ensures a representative estimate of the actual, highly

noised resource demand measurement data: estimates need to be as predictive

as possible,indicative for a trend and smooth. Decision algorithms used for real

time virtual machine placement typically make fast decisions on the basis of

the resource demands of the managed virtual machines. The workloads char-

acterizing most web-based enterprise applications makes it extremely difficult

to deduce a representative view of a resource demand from collected measures

that show large variability even at different time scales. Hence, any decision

based on instantaneous or average views of the resource demands may lead to

useless or even wrong virtual machine placement decisions.

In order to realize the potential gains in infrastructure efficiency, dynamic

resource allocation systems require robust and prudent runtime decisions for

deciding when a physical server should offload virtual machines and where the

offloaded machines should be placed. Since workload levels have been found to

change rapidly for enterprise applications as we have shown in chapter 4, but

has also been reported by Gmach et al. (2009), Cherkasova et al. (2009) and

Arlitt and Williamson (1997), control systems have to adapt to such variations

and provision resources over short time scales, usually on the order of minutes.

In order to reach decisions in a timely manner, control systems employ real time

decision making algorithms that scale for large problem instances as well. At

the same time, there is a need to take into account the cost of control, i.e., the
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switching costs associated with migrating virtual machines from one physical

server to another. Our measurements of the migration overheads in section 5.7

give an indication that excessive use of live migrations, that may occur in an

uncertain operating environment where resource demands are highly volatile,

may be harmful. As each migration decision is risky, control systems should

employ as much care as possible when deriving these decisions. Hence,real

time controllers should aim at system stability. The notion of stability is, ac-

cording to Nikolaou (2001), central in the study of dynamical systems. Infor-

mally speaking, stability is a systems property related to well-defined long-run

behavior. In our context, stability by itself may not necessarily guarantee sat-

isfactory performance, it is not conceivable that a control system may perform

well without delivering system stability if large, hard to estimate control action

overheads can be incurred that adversely affect application performance.

Intuitively, reactive control can be expected to require more control actions

than necessary, considering their myopic nature and the fact that limited

amounts of historic monitoring data do not provide much information about

the future resource demand behavior of virtual machines in volatile environ-

ments. Long term resource demand patterns are not taken into consideration

by reactive control and even though large control action overheads exist, agility

is the key feature that reactive methods are based upon. The determinants

that mostly influence on stability in our problem domain are

• resource demand estimation, prediction, overload and under-load detec-

tion,

• virtual machine migration candidate selection in response to under- or

overload detection and

• decisions concerning virtual machine reassignments.

As we will see in chapter 7, the three sub-problems and their interplay influ-

ence largely the stability of the virtual machine assignments and the control
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systems ability to meet the quality of service requirements for applications.

These sub-problems are particular to control chart based management meth-

ods. Threshold based event detection requires the definition of thresholds of

resource utilization on physical servers. A threshold violation (exceedance of

an upper threshold or shortfall of a lower threshold) potentially triggers an

immediate virtual machine migration. We use resource utilization thresholds

to define physical server demand states. A threshold is a tuple consisting of

an upper and lower utilization percentage. If the given state condition is met,

a server is said to be in a resource utilization state as defined by the respective

thresholds:

1. The under-loaded state is entered as the resource utilization is detected

to be below the lower threshold.

2. The normal state is entered as the resource utilization is detected to be

below the upper and above the lower threshold.

3. The over-loaded state is entered as the resource utilization is detected to

be above the upper threshold.

The problem of detecting substantial, non-transient overload or under-loads

on physical servers hosting virtual machines is crucial to the performance of

reactive control. Threshold based detection schemes are widely used to detect

deviations from normal, or average operations and have found acceptance in

industrial process control as well as performance management in computer

systems (Breitgand et al., 2011). The ability of a control system to detect and

to properly respond to these changes is critical to control system operations, as

predicting false-positive and false-negative alarms leads to unnecessary control

actions. While the detection and prediction are already non-trivial under real

time constraints, the proper definition of values for the thresholds is at least

as difficult as it heavily depends on the resource demand characteristics of the

hosted virtual machines.
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To give an impression of the problem complexity we give several examples

in figure 5.36. The raw resource demands are shown in light gray, slightly

smoothed with a symmetric moving average smoother are depicted as black

and strongly smoothed are shown as a red line. The horizontal blue lines de-

pict upper and lower thresholds of 30 % and 75 % percent resource demand.

All example demands depict an interesting problem: If we use an aggressive

detection scheme based on the raw demands, we would potentially classify all

servers as overloaded several times. Actually two overload alarms would be

raised using the detection methods proposed by Wood et al. (2009a) for the

server on the upper left. For this server, using a very moderate smoothing

level, we would potentially detect the server as under-loaded several times (in-

dicated by the black line crossing the lower threshold several times). Using

the heavy smoothed series as a demand state representative, the server would

be classified to be in a normal demand state most of the time, leading to no

control actions at all. While it is desirable to detect over- or under-loads in a

predictive manner, the large amount of noise as well as as transient fluctuations

in resource demand measurements may lead to overreaction, i.e. predictively

detecting a persistent threshold violation even though the realization was tran-

sient. Under-reactive behavior, i.e. a non transient threshold violation has not

been detected or too late to give the control system the opportunity to initiate

corrective actions is also undesirable.

Consider an example. At time t, an under-load situation is detected on server a.

The control system starts to evacuate the server by migrating away all virtual

machines in a sequential way. However, quickly after the first virtual machine v

has been migrated, say at time t+1, the demand of all virtual machines rises, so

that the under-load of server a is reversed to normal operations. As the demand

of virtual machine v, that is allocated to server b at time t + 1 also raised,

physical server b may get overloaded as well. If the under-load of physical

server a would have been identified as transient, no migration would have

been necessary. An excess of live migrations may lead to reduced operational
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Figure 5.36: Example CPU demand for consolidation scenario

efficiency and undesirable system oscillations.

Control chart-based methods employ threshold based event detection meth-

ods. Thresholds define levels of resource utilization on physical servers that

potentially require control system actions. A threshold is a tuple consisting of

an upper and lower utilization percentage. If the given state condition is met,

a server is said to be in a resource demand state defined as by the respective

thresholds. The state entry condition defines the level of reactiveness for clas-

sification. There are several ways to define a state entry condition as well as

factors that influence the runtime behavior of the entry condition.
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The results presented in the evaluation will show, that proper parameter tuning

is dependent on the overall workload characteristics and that it is possible to

tune parameters in a way that leads to sensible virtual machine placement

decisions.

As enterprise applications must meet performance-oriented quality of service

objectives an overload of a physical machine should be anticipated to allow

the control system to take remedial actions. It is thus necessary to derive

predictions for the estimated resource utilization. Such predictions allow an

automated data center control system to deal with anticipated resource uti-

lization in a proactive way by initiating migrations ahead of time, before a

resource shortage occurs.

The state entry condition defines the level of reactiveness for demand state

classification. In our work we employ a simple definition of an entry condition.

If the resource demand estimate is k-consecutive control cycles above or below

a threshold, the entry condition is met. If no entry condition is met, a server is

in the normal state. We refer to this entry condition definition as a sustained

decision that gives two desirable properties if the resource demand estimation

is appropriate (not over-reactive but accurate and representative):

1. The detection of transient demand state changes is reduced, reducing the

amount of triggered migrations.

2. Effective migration decisions can be derived as a non-transient overload

leads to a higher overload intensity, which in turn leads to a more effective

selection of migration candidates (overload is mitigated by migrating

virtual machines with higher demands).

There exist several ways to define a state entry condition. Both the state

entry condition and the demand estimation technique characteristics have to

be adjusted and tuned as we will discuss in chapter 7.
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The applied control loop algorithm is given in listing 1. The system state is

represented by the set I, the physical servers, J the set of virtual machines, the

set of historic control actions H and a function a : I ⇀ K ⊆ J), that returns

the set of all assigned virtual machines for a given physical server. The control

parameters are the triple P , where T is the set of upper and lower thresholds,

the demand predictor p, the detection delay d. We shortly describe the

necessary subroutines:

• filter-in-action: The subroutine filters out all physical servers that are

currently participating in a migration or have been participating a mi-

gration with the last minute. It uses the control action history H.

• state-classify : The subroutine assigns load states to all servers using the

demand predictor, threshold definitions and and detection delay param-

eters. It returns the disjunctive sets Io (over-loaded servers), In (normal

servers), Iu (under-loaded servers). The sets are ordered:

– Io is decreasingly ordered by the intensity of the overload, that is

the difference between the load state and the upper threshold for

CPU load. Higher overloaded servers should be evacuated first.

– In is decreasingly ordered by the sum of the normalized resource

demands for CPU and main memory.

– Iu is increasingly ordered by the sum of the normalized resource

demands for CPU and main memory.

• try-migrate: The subroutine tries to place a virtual machine on an under-

loaded or normally loaded server. According to the placement strategy,

it sorts the available target servers. Using the best-fit strategy, it first

sorts the normal load state servers in decreasing order according to the

sum of the normalized resource demands for CPU and main memory

and appends them to the set of under-loaded servers that are also sorted
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Input : System State S = (I, J, H, a),
Control Parameter P = (T, p, d)

Output: Control Actions C
begin

I ←− filter-in-action(I,H)

C ←− ∅
Io, In, Iu ←− state-classify(I, P)
// ordered sets: Io overload intensity decreasing,

// In sum decreasing,

// Iu sum increasing

for i ∈ Io do // handle overloads

Je ←− overload-evac(i, a(i), p, T)
// Je ordered decreasing by expected migration cost

for j ∈ Je do
m←− try-migrate(j, In, Iu, p, d, T)
if m != null then

execute-action(m), C ←− C ∪m
In ←− In \mtarget, Iu ←− Iu \mtarget, H ←− H ∪m
break

end

end

end
for i ∈ Iu do // handle underloads

Je ←− underload-evac(i, a(i), p, T)
for j ∈ Je do

m←− try-migrate(j, In, Iu, p, d, T)
if m != null then

execute-action(m), C ←− C ∪m
In ←− In \mtarget, Iu ←− Iu \mtarget, H ←− H ∪m
break

end

end

end
try-swap(In, p, d, T)

end
Algorithm 1: Basic control cycle algorithm
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in decreasing order. In contrast, using the worst-fit placement strategy,

it sorts the normal state servers in increasing order. It then identifies

the first server that can support the additional resource demands of the

virtual machine (the resource demands of the virtual machine have been

adopted by assigning the overheads of the domain0 proportionally to the

demands of the virtual machine) without exceeding the upper thresholds

for all resources. If no physical server can be found, no migration m is

proposed (and executed by the actuator), otherwise the selected server

is used as the target server mtarget for migration m.

• overload-evac: The subroutine first identifies all virtual machines, now

referred to as set O, that mitigate the overload on the physical server a

virtual machine is assigned to currently. A virtual machine qualifies for

this set if the server load state switches to normal (under the assumption

of additive CPU demands) if the virtual machine is moved from the

server. If no virtual machine qualified itself for O, O is set to a(i). O is

then sorted in increasing order according to the expected migration cost.

The cost is estimated using the following formula: (1+mcpu/100)×mram,

where mcpu is the current CPU load state of the virtual machine to be

migrated and mram the main memory allocation of the virtual machine.

In section 5.7 we have given a justification for the usage of the proposed

estimation procedure. In case of an overload, we want to migrate a virtual

machine that causes a minimum amount of overhead and mitigates the

overload sufficiently.

• underload-evac: The subroutine sorts the given virtual machines accord-

ing to the expected migration costs in decreasing order. In case of an

under-load, we first try to execute expensive migrations as we have suf-

ficient resources available to do so and second, if we can place virtual

machines with larger demands, we may be able to place virtual ma-

chines with less demands on the available servers without overloading
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them as we do not take consolidation overheads into consideration dur-

ing placement decisions. Lower demand virtual machines cause lower

consolidation overheads, as we have shown in section 5.8.

• try-swap: If an overload can not be mitigated because normal or under-

loaded servers can not be used for placing any virtual machine assigned

to the overloaded server, we try to exchange virtual machines on normal

or under-loaded servers in order to free capacity for the virtual machines

of the overloaded servers. A swap is executed in following way, similar

to how Wood et al. (2009a) proposed the implementation of swaps:

1. If a overloaded server exists, the assigned virtual machines are

sorted as done in overload-evac. Then, for each virtual machine

j ∈ Je possible target servers (non-overloaded ones) are selected

beginning with the highest loaded one.

2. We then check if it is possible to move a virtual machine from the

target server e to another, less loaded server (g) without violating

the upper thresholds. If it is possible, we then loop over all virtual

machines g ∈ Jg (sorted in increasing order of their normalized

resource demands for CPU and main memory) and check if we can

move a virtual machine to the server e without violating the upper

thresholds if j and g are moved to this server. If it is possible, we

issue the migration of g and j in a sequential order (by queuing up

the control actions, so they are executed in this order).

3. If no swaps are found to be feasible, no migrations are triggered.

We only enabled swaps for a very limited set of experiments, as swaps are a

not well known and evaluated way to increase operational efficiency.

Once an over- or under-load has been detected, the control system needs to

select virtual machines to migrate from a server to a target server. The deci-

sion which virtual machine to migrate depends on the resource demand states
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the other servers are in (a virtual machine might not have a potential receiver

under its current resource demands), the intensity of the current over-load and

the expected migration overheads. Generally speaking, a control system will

aim at taking effective, corrective actions afflicted at the lowest possible over-

heads. Wood et al. (2009a) introduces the concept of virtual machine swaps to

reduce wasted capacity and improved load balancing. A swap is an exchange

of two virtual machines hosted on different servers potential requiring a third

physical server to temporarily host a virtual machine, which then requires three

migrations to implement a swap instead of two in case of a directly executable

swap. Swaps may lead to even increased numbers of live migrations and select

high demand virtual machines which will lead to additional overheads. It is

not known whether swaps improve the efficiency of data centre operations and

do not contribute to system stability. We will show that swaps do not lead

to improvements, but lead to higher overheads and application performance

degradation.

Citrix Xen ships with a monitoring application that allows to monitor the

CPU, network and I/O demands of all virtual machines and physical servers.

On multi-core hardware, a virtual machine may be restricted to have access to

a limited amount of physical cores which can be controlled and configured in

a dynamic way. The CPU demand data for a virtual machine do not include

the CPU overhead caused in domain0 for processing I/O request on behalf

of other domains. As domain0 incurs non-neglibile CPU demand for I/O

intensive virtual machines, we account for the CPU demand by allotting to

virtual machines proportional to their current share of I/O demand on the

physical server. Similar to Wood et al. (2009a), each virtual machine is charged

a fraction of domain0 s CPU usage based on the proportion of the total I/O

requests made by that virtual machine.

As we employ a black-box approach that does not allow us to inspect a virtual

machine and to get memory demand measurements (the memory utilization is

only known to the guest operating system), it is not easy to collect memory
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demand measurements. While it is possible to observe memory accesses of vir-

tual machines through the use of shadow page tables, trapping each memory

access results in a signicant application slowdown as well as CPU overhead,w

e do not monitor main memory usage statistics. Thus, memory usage statis-

tics are not directly available and would have to be inferred from externally

observable swapping activity. Since substantial swapping activity is indicative

of memory shortage, this monitoring approach is not advisable, as swapping

significantly affects application performance. We assign memory in a static

way as it allows us to reason about CPU shortages.

5.9.1 Resource Demand Monitoring Architecture

Our reactive control system includes a monitoring subsystem for collecting

resource demands of virtual machines and physical servers that is depicted in

figure 5.37. For each physical server, the monitoring system runs a monitoring

thread that retrieves every five seconds resource demand measurements from

each physical server via HTTPS using the Citrix Xen monitoring API.
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Figure 5.37: Detailed monitoring architecture

This includes all running virtual machines and domain0 on the physical server.

The monitor keeps a configurable amount of historic demand values. A config-

urable instance of a demand predictor (will be describes in more detail in the

next subsection) then runs on the demand traces and delivers a single demand

value for each physical server and virtual machine of the infrastructure. Once a

demand value could be determined for each infrastructure entity, a full system

state is reported by the monitoring system to any subscriber of monitoring

events. The monitoring system can also deliver physical server and virtual

machine monitoring events to its subscribers.

5.9.2 Online Resource Demand Estimation

Most control systems supporting runtime resource allocation decision mak-

ing, such as the ones proposed by Wood et al. (2009a) and Urgaonkar et al.

(2008) evaluate the resource demand conditions through high frequency, peri-

odic sampling of resource demand measures obtained from system monitors.
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In the contexts of performance management of web server systems as pre-

sented by Abdelzaher et al. (2002) and Chen and Heidemann (2002), these

measurements are sufficient to make decisions about present and future work-

load behavior; that is to decide whether the demand condition on a physical

server is in an overloaded or stable state and whether it is necessary to trigger

control actions. On the other hand, these measurements are of little value for

the systems and workloads caused by modern enterprise applications that we

deal with. We can confirm that the resource measures obtained from resource

demand monitors are very volatile even at different time scales and tend to

become quickly obsolete as indicated by Dahlin (2000).

Figure 5.36 provides an example of the resource demands on a physical server

in one of our consolidation scenarios for all six physical servers. We display

the raw monitoring data as well as two smoothed versions. As we can see, the

smoothing factor determines the amount of threshold alarms, not smoothing

the monitoring data would lead to several false alarms. Consequently, the

selection of the resource demand estimation and prediction model for virtual

machines as well as the demand representation of a physical server directly

influences on the performance of a control strategy.

From our study of the main body of literature on resource demand estimation

and prediction in highly volatile environments, we conclude that the selec-

tion of an appropriate method depends on several factors and hence requires

a problem specific study. Albeit valuable contributions given by Andreolini

et al. (2008), Dinda and O’Hallaron (2000), Wolski (1998), Krishnamurthy

et al. (2003) exist, it is far from obvious which technique delivers good results

in our problem setting. Amongst the very few studies for predictive resource

allocation is the work of Xu et al. (2006). The work shows that CPU resource

allocation shares on a single physical server can be controlled in a proactive

way using autoregressive time series models to predict the resource demands

of virtual machines. It is however noted that the performance of a predictive

controller depends on the accuracy of the estimation and that the estimation
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values are often influenced by a high level of volatility. Based on an exten-

sive literature review, we identified several potential techniques for short term

prediction:

• Andreolini et al. (2008), Wolski (1998), Krishnamurthy et al. (2003) and

Cherkasova and Phaal (2002) propose simple smoothing techniques to

address the high level of noise and volatility in resource demand mea-

surements. Although smoothing does not directly relate to time series

forecasting, it can still be advantageous to smooth the raw measurement

stream in order to reduce out of scale values and to use the resulting se-

ries as a trend indicator as proposed by Lilja (2000). Wolski (1998) and

Krishnamurthy et al. (2003) use smoothing for forecasting purposes. One

of the advantages of smoothing methods is that they are lightweight and

can be implemented efficiently. We evaluate several smoothing methods

that have already been proposed by Andreolini et al. (2008) and Wolski

(1998) for resource demand state estimation and prediction. While the

performance of smoothing methods for one step ahead forecast based

on resource demand measurements has been evaluated in Wolski (1998),

their performance for k step ahead forecasts and trend extrapolation is

not well studied.

• More advanced, linear time series techniques have been studied by Dinda

and O’Hallaron (2000) and, to a limited extent by Andreolini et al.

(2008). The work of the former introduced autoregressive (AR), moving

average (MA), autoregressive moving average (ARMA), autoregressive

integrated moving average (ARIMA) and autoregressive fractional inte-

grated moving average (ARFIMA) models. Especially auto-regressive

models have been found to predict resource demands consistently to a

useful degree and to be compatible with runtime requirements in large

scale data centre control problems. However, according to Tran and Reed

(2004), Casolari and Colajanni (2009) and Baryshnikov et al. (2005), it



128 CHAPTER 5. EXPERIMENTAL DATA CENTRE TESTBED

is difficult or even impossible to retrieve an accurate prediction if the

auto-correlation of the measured data is low. Gmach et al. (2009) argues

that linear models are appropriate for short term prediction.

• The presented prediction models generate a single point forecast. How-

ever, the prediction quality is not constant, but varies depending on the

underlying series as well as the forecast horizon. Thus, a metric that

measures the estimated accuracy of the prediction is needed. Processes

that require forecast can then use the point forecast in combination with

the estimated accuracy to decide on further actions. As point estimates

for resource demands can only be expected to predict central tendencies

in face of large demand fluctuations, prediction methods for volatility are

usefully to amend point forecasts with a measurement of uncertainty. As

we have already seen in chapter 4, resource demands often exhibit time-

variation in the conditional volatility. Conditional heteroskedasticity in

time series has been studied in the literature on financial engineering and

econometrics, starting with the ARCH model of Engle (1982). Due to

time restrictions we do not present our results on volatility forecasts, as

we found that existing models are hard to select and to tune. We do not

use volatility forecasts in our control system design.

The fact that no method has found wide-spread acceptance or has been shown

to deliver good results on average in combination with the comments of Wood

et al. (2009a) on possible improvements reactive control may realize due to

optimal resource demand prediction, leads us to a detailed study of the pre-

diction and estimation problem. In particular, we will study the performance

of several methods and evaluate possible improvements.

In the following, we introduce the resource demand predictors that we use in

our study to obtain a representative view from high frequency resource demand

measurements. As indicated by Andreolini et al. (2008), a resource demand



5.9. REACTIVE CONTROL FOR AUTONOMIC COMPUTING 129

predictor should not simply filter and smooth noise but should deliver an esti-

mate of the actual resource demands that can be used subsequently by a control

system to detect over and under-load situations or to select virtual machines

that should be migrated. Hence we seek for the right compromise between

accuracy and responsiveness of a predictor. As predictors we will consider

simple moving average (SMA), exponential moving average (EMA), median

alpha trimmed mean (ATM), two sided quartile-weighted median(QWM) and

autoregressive (AR) time series models. The notation SMAn, will denote the

amount of historic measurements (window of length n) that the predictor is

applied to. For smoothing techniques, this is simply the window the smoother

is applied to, for time series models it is the time series that is used to fit a

model. We exclude several linear time series models from our study due to

their runtime requirements for model fitting as will be shown in section 6.3.

Simple Moving Average: The most basic one of the considered smooth-

ing filters is the simple moving average (SMA) technique. It computes the

unweighted mean of the last n resource measures. That is,

SMAn(~ajr) =
1

n

n∑
i=1

aijr (5.1)

As stated before, SMA is a very lightweight smoothing filter. But as all mea-

sures are weighted equally, the filter tends to introduce a delay with respect

to the raw time series. The delay increases with subject to the window size n.

Hence we may expect bad accuracy and reactiveness results for SMA.

Exponential Moving Average: In order to mitigate the delay effect in SMA

and in order to give more recent measures a higher relevance, Exponential

Moving Average (EMA) weights more recent measures higher than the older
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ones. These weights fall off exponentially, that is,

EMAn(~ajr) = α ∗ anjr + (1− α) ∗ EMAn−1(a1
jr, a

2
jr, . . . , a

n−1
jr ) (5.2)

EMA1(~ajr) = a1
jr (5.3)

with α = 2/(n+ 1).

Median: In some cases, the median smoothing filter can be useful, partic-

ularly if the measurement sequence contains randomly occurring asymmetric

outliers as stated by Wolski (1998). For the calculation of the median, the

measurements in the time series must be sorted by its value first. In the fol-

lowing, ~x denotes the time series ordered ascending by its values. That is,

~x = {ajr|aijr ≤ ai+1
jr , 1 ≤ i < n}. Then the median filter is

Median(~x) =

~xn+1
2

if n is odd

1
2

(
~xn

2
+ ~xn

2
+1

)
if n is even

(5.4)

according to Haddad and Parsons (1991), the median filter rejects extreme

outliers, but tends to produce a considerable amount of jitter.

Alpha Trimmed Mean: One combination of mean based approach with the

class of median filters is the alpha trimmed mean (ATM). First, a window of

the central n − 2 ∗ α ∗ n values of ~ajr is taken. With k being the number of

values to be trimmed on each side, i.e. k = bα ∗ nc, and 0 < α < 0.5, the

definition of the ATM is

ATMn(~ajr) =
1

n− 2r

n−r∑
i=r+1

aijr (5.5)

Two Sided Quartile-Weighted Median: Another Median based approach

is the Two Sided Quartile-Weighted Median. It is considered to be a robust

statistic that is independent of any assumption on the distribution of the re-
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source measures Duffield and Lo Presti (2002). With Qp denoting the p %

percentile, the two sided quartile-weighted median is defined as

QWMn(~ajr) =
Q.75(a1

jr, . . . , a
n
jr) + 2 ∗Q.5(a1

jr, . . . , a
n
jr) +Q.25(a1

jr, . . . , a
n
jr)

4
(5.6)

Autoregressive Time Series Model: The series ~ajr is an autoregressive

time series process of order p if

atjr = φ1a
1
jr + φ2a

2
jr + · · ·+ φpa

p
jr + wt (5.7)

where φ1, . . . , φp are the autoregressive coefficients of the model with φp 6= 0

for an order p process. The order p of the filter is generally very much less

than the length of the series. wt represents the noise term or residue and is

almost always assumed to be white noise. The AR(p) process shown in 5.7 can

be written in short as

atjr =

p∑
i=1

φia
i
jr + wt (5.8)

~ajr is already known as it is the measured resource utilization. Thus, the main

task in AR is to find the best values for φ1, . . . , φp for a given time series

~ajr.There are two main categories for computing the AR coefficients: the least

squares and the Burg method. For both methods, several variants are known.

The most common least squares method, for example, is based upon the Yule-

Walker equations. By multiplying 5.8 by adjr, taking the expectation values

and normalizing, a set of linear equations can be derived Box et al. (2008).

These linear equations are called the Yule-Walker equations and can be solved

efficiently.
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Figure 5.38: Baseline examples

5.10 Expectation Baselines

For our study, we require a point of reference, comparable to lower or upper

bounds for optimization problems. We would like to know what performance a

reasonable reactive control system may deliver in terms of delivered operational

efficiency and the amount of virtual machine live migrations required for any

workload scenario. Without a reference, we would not know what performance

levels can be reasonably expected. As we pre-compute the workload scenarios

and are able to defer the resource demands for all virtual machines at any

point in time (figure 5.9 shows the service demand for a virtual machines), we

use the assignment transition problem with overheads presented in section 3.3

to compute the amount of expected efficiency and amount of migrations on

an hourly basis. Figure 5.38 gives an example for a pre-computed efficiency

baseline and the realized efficiency for two reactive control experiment runs.

The red, dashed line depicts the amount of physical servers required for each

hour time slot of the 24 hour period of the scenario’s consolidation problem.

The grey solid line depicts the amount of servers actually required by the

reactive controls system during one experiment run.



Chapter 6

Evaluation Demand Prediction

Forecasting is like driving a car blindfolded with help from some-

one looking out of the rear window.

by Brian G. Long, Ph.D.

Dynamic management of virtualized data centres requires methods to identify

and estimate current as well as future resource demands of virtual machines

and physical servers. In this chapter, we analyze prediction techniques for

CPU demands of physical servers and virtual machines. The dedication of a

whole chapter may seem excessive, however the behavior of a reactive control

depends crucially on the applied predictor. As the characteristics of resource

demands generated by web-based enterprise applications make it difficult to

deduce a representative view from collected measurements that exhibit large

volatility at different time scales, techniques are required that mitigate prob-

lems with instantaneous views that may lead to ineffective control actions.

Virtual machine placement decisions and consequently the stability of virtual

machine assignments critically depend on the performance and characteristics

of the employed estimation technique. We evaluate resource demand predictors

133
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in terms of quality (accuracy and predictive power, responsiveness, stability)

and feasibility (runtime requirements). Especially accuracy and responsive-

ness are in conflicting with stability, as an estimator should not deliver highly

volatile values. A predictor giving optimal results for the three properties may

not exist. Hence, an acceptable trade-off needs to determined for the partic-

ular domain of application. Therefore an evaluation of possible predictors is

mandatory when designing a reactive control system. According to Andreolini

et al. (2008), a control system that is to take immediate actions may prefer

a reactive predictor that delivers high accuracy, while a control system that

has to apply care when triggering control actions may prefer a less accurate

and less responsive predictor. We show that the exponential moving average

is a preferable predictor in our domain and that it is not very likely to find a

better predictor.

Our evaluation is based on two data sets: the resource demand data set studied

in chapter 4 and a data set that we generated using our data centre benchmark.

It consists of six runs of static consolidation, containing CPU demand traces

of 36 physical servers and altogether 56 virtual machine traces recorded at a

frequency of five seconds for a time period of twelve hours. We use the two data

sets, as the traces in the first expose pronounced patterns, while the second

data set does not.

6.1 Excluded Prediction Models

We evaluated several prediction models that we did not include in our study

as the models did not deliver promising results.

Smoothing based Auto-regressive Time Series Model: As indicated by

Andreolini et al. (2008), Casolari and Colajanni (2009) and Baryshnikov et al.

(2005), auto-regressive time series models unfold their strength especially for

time series with recurring patterns and high, significant auto-correlation values.
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Noised measurements may lead worse prediction results as the auto-correlation

values are negatively influenced by random fluctuations and large levels of noise

(as we have depicted in figure 4.4 for our resource demand data set). If a series

exposes significant positive auto-correlation values for a given lag, a resource

measurements may be used to predict the demand value about that lag into the

future. However, according to Tran and Reed (2004), Casolari and Colajanni

(2009) and Baryshnikov et al. (2005), it is difficult or even impossible to retrieve

an accurate prediction if the auto-correlation of the measured data is low. A

way to improve the forecast accuracy of autoregressive models is to change the

prediction basis from the raw measurements to a smoothed equivalent, if the

smoothed series exposes higher auto-correlation values than the raw series. As

a smoothed series better describes the central tendencies of a series, we may

expect better forecast for the tendencies. We evaluated the smoothing based

autoregressive time series model, that uses an exponential moving average

with window size of twelve for the prediction of the raw series. Our results

did not indicate an improvement, neither for accuracy nor for reactiveness.

While the smoothed series improved auto-correlation values, the forecasts did

not improve, as the smoothed series introduced forecasting errors that were

not compensated by the improved performance of the forecasting model. An

ex-post smoothed series did introduce non-compensable lagging of the forecast.

Linear Regression Extrapolation: Baryshnikov et al. (2005) proposes a

simple model that uses linear regression to forecast the central tendency of a

series. While this model delivered results similar to the average performance of

the smoothing techniques for one step ahead forecasts, its accuracy decreased

substantially for 3, 6 and 12 steps ahead and did not deliver useful results for

24 and 36 steps.

Smoothing based Linear Extrapolation: Inspired by Baryshnikov et al.

(2005), Andreolini et al. (2008) propose an extrapolation approach based on

a smoothed series. Rather estimating the trend based on the raw series the

smoothed series is taken. However, the model suffered from the same problems
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as the linear regression extrapolation model.

6.2 Accuracy Measures

There exist several measures of forecast accuracy defined for the difference of

forecast to actual time series values. Hyndman and Koehler (2006) give an

exhaustive survey over such measures. For highly volatile time series, these

measurements do no reflect a predictor’s ability to predict central tendencies:

whether a time series is following an upward or downward trend or whether

it is stabilizing. As outliers are not predictable and large levels of non-normal

noise would distort standard accuracy measurements, we opt for a comparison

of the predicted values with the ex-post smoothed time series. That is a

time series derived using a symmetric moving average filter with an odd sized

smoothing window. In this way the same amount of past as well as future

values are included into he smoothing process that leads to a less noisy, yet

representative version of the raw series. In figure 6.1 we show an example of

the smoothed version as the black line, the grey line is the raw series, the red

line is the series given by an EMA12 predictor for one step ahead forecasts.

The error series in figure 6.1, first given for the raw series then for the ex-post

smoothed series reveals that the error statistics are influenced by short, one

value demand spikes that can not be predicted well. Therefore, as a reference

for judging on the quality of a predictor, we use the ex-post smoothed time

series ãtjr.

As no single best accuracy measurement exists, several authors such as Bow-

erman et al. (2004) and Box et al. (2008) recommend different measurement

metrics; we voted for scale-dependent measurements as these are useful when

different methods are compared on the same set of data. When data sets

with different scalings are being compared, then these measurements should

be avoided. The mean square error (MSE) is generally more sensitive to out-
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Figure 6.1: Example EMA12 ex-post measurement

liers than the respective absolute error measures. Often, the root mean square

error (RMSE) is preferred in contrast to the MSE, as its measure is on the

same scale as the data. The definition is:

RMSE =

√√√√ 1

n

n∑
t=1

(ãtjr − âtjr)2 (6.1)

where âtjr is the predicted value for time step t. In the following evaluation, the

RMSE is chosen for the comparison of the prediction accuracy. The reason is

that the underlying data sets have the same scaling, i.e. 0 - 100(%), the RMSE

weights outliers stronger, which is intended, and RMSE respectively the MSE

is most frequently used in other publications, e.g. by Wolski (1998).
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Figure 6.2: Runtime model fitting

6.3 Runtime Evaluation

As we already stated, we exclude several time series methods e to their runtime

requirements. In figure 6.2 we depict the average time required to fit a time

series model on 2000 resource demand measurements . The runtime evaluation

was performed within the R environment on an Intel Core 2 Duo CPU with 2.4

GHz. In order to obtain stable measurements, the fitting was performed ten

times and the mean is displayed. All smoothing techniques incur runtimes for

calculating predictions that are well below the time required to fit an AR(1)

model, therefore we omit the results from the figure. From figure 6.2, we

conclude that the computational cost of most linear time series models are not

compatible with our runtime requirements. Up to the AR(64) we consider the

runtime as acceptable. Although a computation time of below 100 ms might

appear acceptable, we would require vast amounts of computing power to fit

the models for several thousands of resource demand series in a large scale data

centre. Considering the fact that we need sophisticated evaluation steps for

choosing the right model order for ARMA, ARIMA or GARCH models, we do
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not include these models in our study. To avoid model re-fitting, adaptation

logic is required to track the deterioration of the prediction accuracy in order to

decide when a model needs to be re-fitted. Therefore we do not study complex

time series model such as ARMA, ARIMA or GARCH that require complex

parameterization procedures.

6.4 Accuracy Results

We evaluate the smoothing and AR-based forecasting techniques for two CPU

demand data sets: the demand resource traces presented in chapter 4 and

our experimental data sets and evaluate their responsiveness and current load

state estimation (one step ahead forecasts) and predictiveness (3, 6, 12, 24

and 36 steps ahead forecasts). We do so by comparing the RMSE for different

smoothing window sizes and training data window sizes for model fitting. We

compare all prediction models with the last value of the time series and with

a clairvoyant, optimal prediction method that chooses, at each prediction step

the best predictor available by choosing the predictor value that cases the

smallest the forecast error. The following data sets are obtained by applying

all predictors to all time series. The RMSE values for all time series are

collected and the mean and standard deviation are calculated. In the following

subsections we display the results as bar charts: on the y-axis the predictors

are listed in a sorted way, on the x-axis the RMSE is displayed. Each bar gives

the mean RMSE for a predictor, the standard deviation is given by the error

bars.

6.4.1 Consolidation Run Data Results

We present the prediction results for our traces generated during the baseline

consolidation runs of our experiments that we will evaluate in chapter 7. In
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figure 6.3, the accuracy results for a one step ahead prediction are given and

summarized in table 6.1.
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Figure 6.3: Resource demand predictor comparison, one step
ahead forecast

The optimal predictor gives a very low RMSE of 1.70, that is almost achieved

by the best smoother, the EMA6 (with a smoothing window size of 6 past
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measurements). The smoother outperforms the best AR model (the model is

of order 8 with 1024 past measurements as training data for model fitting).

Both outperform the last value predictor. The differences between the AR 8

models with different amounts of training data is statistically insignificant: a

pairwise comparison for equality of the mean, using a two sample Wilcoxon

rank sum test, as the three RMSE distributions are all non-normal, lead to

p-values between 0.6492 and 0.7739. Hence, the model fitting can not be

improved by acquiring more training data. As the traces in this subsection

do not exhibit seasonal patterns, the predictions obtained benefit from the

incorporation of very recent trends. The model order of 8 is adequate as it

delivers much better results than all other AR models. Obviously the increase

of model order does not lead to better prediction results as the models of order

16, 32 and 64 all performed worse. It is also interesting to note that an increase

in the amount of training data did lead to improvements for reactiveness for

the 16, 32 and 64 AR models, albeit models of higher order benefit slightly

more than models of lower order. The worst performing AR(64) with 256 past

measurements as training data lead to an average RMSE of 3.22, a relative

deviation of 89.49% in comparison to the optimal predictor.

Absolute Relative

RMSE Deviation Deviation (%)

Optimal Predictor 1.70 0 0

Last Value 2.35 0.65 38.11

Best Smoother (EMA 6) 1.87 0.17 9.96

Worst Smoother (Median 72) 4.25 2.55 149.81

Best AR (AR(8) 1024) 2.06 0.36 21.39

Worst AR (AR(64) 256) 3.22 1.53 89.49

Table 6.1: One step ahead forecast, summary table

In contrast to the worst smoothing technique, the median filter with a smooth-

ing window length of 72 delivered an average RMSE of 4.25, or a relative devia-
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tion of 149.81% in comparison to the optimal predictor. The median smoother

is consistently delivering worse RMSE values than all other smoothing tech-

niques for all smoothing window sizes. The opposite holds true for the EMA

smoother: it outperforms all other smoothing techniques for all smoothing

window sizes. For the window size of 6 the results are statistically significant:

comparing the EMA6 means against all other smoothers with that window

size, the Wilcoxon rank sum test leads to p-values between 3.438 × 10−4 and

1.107 × 10−9. Hence, we may reject the null hypothesis of the mean values

being equal.
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Figure 6.4: Example AR(8) 256 ex-post measurement, one step
ahead

For one step ahead forecasts, the last value deviates on average by 38.11%

from the optimal predictor and is, due to the volatility of the measurements a

very unstable and unreliable predictor. The same observation holds true for all

AR models for one step ahead predictions as shown in figure 6.4. The red line

gives the one step ahead predictions obtained from the AR(8) 256 model. The
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volatile forecasts reflect the behavior of the raw series well, but lag behind,

which is especially observable for demand spikes.
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Figure 6.5: Resource demand predictor comparison, three steps
ahead forecast

Figure 6.5 presents the results for a three steps ahead forecast. As to be ex-

pected, the optimal predictor lost accuracy compare to the one step ahead
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prediction as well as the last value. Still the best smother and forecaster are

the EMA6 and AR(8) model, however the amount of training data change to

512. The difference between the 1024 and 512 raining window for AR(8) are

negligible. The trend previously observed pertains for the other AR models:

the more training data taken into consideration, the better the forecast accu-

racy. For the smoothers, the observations for the one step ahead predictions

apply to the three steps ahead predictions as well. However, the differences be-

tween the types of smoothers and the smoothing window sizes become smaller

in relative and absolute terms. Table 6.2 confirms this observation. The ob-

servable convergence of all predictors will continue in subsequent analysis steps

for larger forecasting steps. Remarkably, the best predictor is still the EMA6

smoother.

Absolute Relative

RMSE Deviation Deviation (%)

Optimal Predictor 2.04 0 0

Last Value 3.36 1.32 64.58

Best Smoother (EMA 6) 2.81 0.77 37.64

Worst Smoother (Median 72) 4.39 2.35 114.93

Best AR (AR(8) 512) 2.88 0.84 41.03

Worst AR (AR(64) 256) 3.96 1.92 93.70

Table 6.2: Three steps ahead forecast, summary table

Figure 6.6 presents the prediction results for twelve steps, or one minute real

time ahead forecasts. The best smoother is the EMA12. At the 12 steps ahead

forecasting horizon, all smoothers with a window length of twelve outperform

their counterparts with a window length of six.
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Figure 6.6: Resource demand predictor comparison, twelve steps
ahead forecast

However, the differences between the smoothers and the window sizes become

even less significant, the differences between the smoother and the forecasting

models also decrease further as table 6.3 reveals. Still the best smoother is

superior in terms of accuracy to the forecasting models.
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Absolute Relative

RMSE Deviation Deviation (%)

Optimal Predictor 2.86 0 0

Last Value 4.85 1.99 69.39

Best Smoother (EMA 12) 4.23 1.37 47.85

Worst Smoother (Median 72) 4.93 2.07 72.01

Best AR (AR(8) 256) 4.43 1.57 54.76

Worst AR (AR(64) 256) 5.28 2.42 84.38

Table 6.3: Twelve Steps ahead forecast, summary table

In appendix C, section C.1, we present additional results for 6, 24 and 36 steps

ahead predictions. The predictions for more than 12 steps ahead deteriorate

to a level that must be considered not useful.

6.4.2 Resource Demand Traces

The 259 real world CPU resource demand traces are recorded at a five minute

frequency (averages over five minutes are reported), giving a more coarse

grained view on server load behavior. However, as we have shown in chap-

ter 4 the traces still exhibit considerable noise and volatility, but also long

term patterns that we expect to be valuable for forecasting purposes. As the

most important pattern for our short term forecasting is the daily pattern,

we adjust the training data size for the AR models to multiples of 288 and

increased the window sizes for the forecasters to allow for pattern recognition

and model fitting. In contrast, the traces studied in the previous subsection

do not contain patterns, but are instantiations of daily patterns.

In figure 6.7 the reactiveness results (and accuracy) results for a one step ahead

prediction are given and summarized in table 6.1. We exclude all smoothers

with a smoothing window of 6, as the results where very comparable to the
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window 12 smoothers. As with the previous data set, the increase of model

order does not lead to better prediction results as the models of order 16,

32 and 64 all performed worse. An increase in the amount of training data

did lead to improvements for reactiveness for all AR models, albeit models of

higher order benefit proportionally slightly more than models of lower order.

The worst performing AR(64) with 288 past measurements as training data

lead to an average RMSE of 3.79, or an deviation of 37.18% in comparison to

the optimal predictor. In contrast the worst smoothing technique, the median

filter with a smoothing window length of 864 delivered an average RMSE of

8.70, or an deviation of 149.81% in comparison to the optimal predictor. The

optimal predictor gives a low RMSE of 2.76, that is almost achieved (3.12) by

the best forecast model, the AR(8) 1440. The forecaster outperforms the best

smoother EMA12. Both outperform the last value predictor. The differences

between the AR 8 models with different amounts of training data is statistically

insignificant: a pairwise comparison for equality of the mean, using a two

sample Wilcoxon rank sum test (as the three RMSE distributions are all non-

normal) lead to p-values between 0.4409 and 0.6251, except for 288 training

set which lead to a p-value of 0.00673. The value does not allow us to accept

the null hypothesis of equal mean values.

Absolute Relative

RMSE Deviation Deviation (%)

Optimal Predictor 2.76 0 0

Last Value 3.65 0.88 31.95

Best Smoother (EMA 12) 4.27 1.50 54.21

Worst Smoother (Median 864) 8.70 5.93 214.23

Best AR (AR(8) 1440) 3.12 0.36 12.73

Worst AR (AR(64) 288) 3.79 1.03 37.18

Table 6.4: Resource demand traces: one step ahead forecast,
summary table
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Figure 6.7: Resource demand predictor comparison, resource
demand smoothed series, one step
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Again, the median smoother is consistently delivering worse RMSE values

than all other smoothing techniques for all smoothing window sizes. The

opposite holds true for the EMA smoother. It outperforms all other smoothing

techniques for all smoothing window sizes. For the window size of six, the

results are statistically significant. Comparing the EMA12 means against all

other smoothers with that window size, the Wilcoxon rank sum test leads to

p-values between 1.855×10−16 and 2.054×10−18. We reject the null hypothesis

of the mean values being equal. In contrast to the findings for the previous

data set, the forecaster are more reactive than the smoothers, hat is, they

adapt quicker to changes in the demands.
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Figure 6.8: Resource demand predictor comparison, resource
smoothed series, three steps ahead forecast

Figure 6.8 depicts the results for a three steps ahead forecast. As previously,

the optimal predictor is degrading in accuracy compared to the one step ahead

prediction. The last value predictor is also getting less accurate. The best

smoother and forecaster are the EMA12 and AR(8) model with a training data
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size of 1440. For three steps ahead, the predictiveness of all forecasters suf-

fered proportionally. However in comparison to the smoothers, the forecasters

degraded much more. The best smoother outperforms the worst forecaster.

For the other AR models the trend previously observed pertains: the more

training data taken into consideration, the better the forecast accuracy. For

the smoothers, the observations for the one step ahead predictions apply to

the three steps ahead predictions as well. However, the differences between the

types of smoothers and the smoothing window sizes become smaller in relative

and absolute terms. Table 6.5 confirms this observation. The observable con-

vergence of all predictors will continue in subsequent analysis steps for larger

forecasting steps. The convergence will be even more pronounced than for the

first data set. Remarkably, the best predictor is the EMA12 smoother.

Absolute Relative

RMSE Deviation Deviation (%)

Optimal Predictor 3.54 0 0

Last Value 5.79 2.25 63.56

Best Smoother (EMA 12) 5.51 1.97 55.73

Worst Smoother (Median 864) 8.71 5.17 145.86

Best AR (AR(8) 1440) 4.85 1.31 37.03

Worst AR (AR(64) 288) 5.59 2.05 57.82

Table 6.5: Resource demand traces: three steps ahead forecast,
summary table

Figure 6.9 presents the prediction results for 12 steps ahead. The best

smoothers still are the EMA, ATM, SMA and QMA filters with a smooth-

ing window size of 12.
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Figure 6.9: Resource demand predictor comparison, resource
demand smoothed series, 12 steps ahead forecast

However, the differences between the smoothers and the window sizes become

even less significant, the differences between the smoother and the forecasting

models stay about the same as in the six steps ahead case as table 6.3 reveals.

Still the forecasting models are superior to the smoothers.
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Absolute Relative

RMSE Deviation Deviation (%)

Optimal Predictor 4.40 0 0

Last Value 8.09 3.68 83.54

Best Smoother (SMA 12) 7.06 2.65 60.20

Worst Smoother (Median 864) 8.73 4.32 98.07

Best AR (AR(8) 1440) 6.40 2.00 45.30

Worst AR (AR(64) 288) 7.08 2.67 60.54

Table 6.6: Resource demand traces: twelve steps ahead forecast,
summary table

In appendix C, section C.2, we present additional results for 6, 24 and 36 steps

ahead predictions. The predictions for more than 12 steps ahead deteriorate

to a level that can be considered not useful anymore. For longer prediction

windows, the accuracy of all predictors becomes unreliably and chance-driven.

6.5 Insights Gained

We evaluated short term resource demand estimation techniques that have

been proposed in the literature for two distinct data sets. We found that it

is possible to predict the resource demands for typical enterprise applications

up to twelve steps ahead of time for both data sets with acceptable prediction

accuracy. Predicting high frequency time series that expose highly volatile

behavior is feasible for short forecasting horizons by applying the selected

techniques and methods. Forecasts for longer horizons are difficult even if

strong, recurring patterns exist. While we can not preclude the existence of

better techniques, we have shown that it may be hard to improve upon the best

currently known estimation techniques given the highly volatile and uncertain

environment. The convergence process observed for all predictors and data

sets indicates that it is not possible to adjust the prediction methods.
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While smoothing techniques with short smoothing window sizes are superior

to time series models if no demand patterns can be assumed or exist, time

series models outperform smoothing techniques for traces that expose signif-

icant patterns. Even time series models that are able to consider past time

series behavior and consequently repeating patterns do not outperform sim-

ple smoothing methods in short as well as longer forecasting horizons. All

estimators incur very low computational effort.

We showed that exponential smoothing techniques perform well as they de-

liver representative estimates and at the same time a reasonable degree of

predictiveness in contrast to other techniques. We have given an extensive

evaluation, as the estimation quality is highly influential on the performance

of reactive control. In our reactive control system, we use an exponential mov-

ing average with window of length 12 in all experiment runs. Several reasons

lead us to this decision. First, the predictors based on linear time series mod-

els require large amounts of training data to deliver adequate performance,

which is infeasible for our experiments. Second, the overheads incurred by live

migrations lead to distortion in the monitoring data. Fitting linear models on

distorted monitoring data would lead to biased parameter values and unreli-

able predictions. Third, we require smooth predictions to prevent premature

decisions on server demand state entries that are cause by fluctuations rather

than persistent trends. Volatile predictions would lead to irreproducible, non-

reliable virtual machine placement decisions. Andreolini et al. (2008) even

considers AR models as inadequate to support runtime decision systems in

highly variable demand scenarios. Amongst the smoothers, EMA weights the

most recent measures higher than the older ones, hence it is able to adapt

quickly to substantial changes in the time series. In direct comparison of the

smoothers, the median filter performed worst. ATM, QWM, and SMA are

often indistinguishable in terms of performance, very seldom outperforming

EMA. Smoothing, in particular with EMA, seems to be a reasonable predic-

tor for series that change slowly and contain a considerable amount of noise.
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Figure 6.10: Example AR(8) 256 ex-post measurement, twelve
steps ahead forecast

As soon as there are substantial changes in the series, i.e. ascending and

descending trends, then smoothing as well as linear time series models intro-

duce inevitable lagging that is best compensated by rather short smoothing

an training data windows. Figure 6.10 shows the lagging effect for an AR(8)

256 forecasting model.

In addition to lagging, linear time series, even though they lead to accurate

predictions, tend to produce highly volatile predictions. Hence we do not con-

sider AR models as a reliable demand estimator. Our decision deviates from

the choice of other authors (Gmach et al. (2009) and Wood et al. (2009a))

who do not present evaluation results for their choice. Figure 6.11 shows the

same lagging effect for an EMA12 predictor, but not as pronounced as the

AR(8) 256 forecasting model exposed. We have chosen a window length of 12

as it gives an acceptable tradeoff between responsiveness, accuracy and delay.

Figure gives an example of an EMA12 smoother for one step ahead predic-

tions. The demand predictions are rather smooth as well as accurate. As we

do not aim at retrieving predictions that are accurate for more then twelve
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Figure 6.11: Example EMA12 ex-post measurement, twelve
steps ahead forecast
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ahead forecast
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steps ahead of time, the EMA is the best choice for our purposes. Linear time

series models are often adopted for workload representation and estimation.

Our findings are in accordance with Cherkasova and Phaal (2002) who show

that the exponential moving average of the CPU demand can be used as a

valid predictor for web server workloads, as well as Andreolini et al. (2008).

The authors evaluate various smoothing techniques and auto-regressive time

series models to obtain a representative, instantaneous view of the resource

utilization trends from high frequency monitoring data and apply this repre-

sentation to support runtime decision systems such as admission control and

load balancing. Their study shows that even simple smoothing methods like

exponential moving averages have a computational cost that is compatible

with runtime constraints and that one step ahead predictions can be done us-

ing the smoothing techniques. Their findings deliver empirical evidence that

EMA techniques are feasible even on small window sizes and deliver an ac-

ceptable trade-off between responsiveness and accuracy. In contrast, Dinda

and O’Hallaron (2000) propose linear models on CPU demand traces gath-

ered from productive physical servers operating in a grid environment. Their

results show that the simple auto-regressive model exposes good predictive

power. However these methods, as shown in Andreolini et al. (2008) are not

well suited for highly volatile resource demands and result in rather noised

predictions which reduce the predictive power of auto-regressive models and

may lead to wrong control decisions in threshold based control strategies.

In summary, we have shown that very simple smoothing methods are rea-

sonable for predicting the resource utilization in highly volatile environments.

Our work on resource demand prediction is closest to Andreolini et al. (2008),

however we use different and real world data sets to evaluate the predictive

power of simple time series methods and focus on techniques that can be used

in large enterprise data centres. An issue with simple prediction techniques,

even for highly reactive ones, is latency and responsiveness of the predictions.



Chapter 7

Reactive Control System

Evaluation

Better to be alone than in bad company

by George Washington

Our main interest is the analysis of the performance of our reactive control

system and the impact of different control system parameters using a set of

generated benchmark scenarios that vary in the amount of virtual machines

deployed into the infrastructure, their resource demands relative to the ca-

pacity of the physical servers and the time-varying service demands. We first

describe the experimental set-up before we present an analysis of the obtained

results, give a discussion on the insights gained and provide a short conclusion.

Due to the sometimes limited amount of data, we will rely on statistical tests

to underpin our findings with statistical significance.

All our experiments for reactive control are run using the EMA12 filter as it

gives an acceptable tradeoff between responsiveness and accuracy. All experi-

ments have been executed with the same resource allocation for domain0 : It

158
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has 512 MB of main memory allocated and a single virtual CPU. This allo-

cation has proven to be reasonable and never lead to memory shortages for

domain0.

To clarify on our nomenclature, we introduce several terms we will use fre-

quently in subsequent subsections:

• A scenario is a set of virtual machines with time dependent service de-

mands and a conservative, baseline consolidation plan that utilizes all

six SUT physical servers.

• An experiment is a scenario in combination with a control system pa-

rameter configuration. To uniquely identify a control parameter config-

uration, we introduce the notation: (Placement Strategy/Lower Thresh-

old/Upper Threshold/Detection Delay); E.g. an experiment with an up-

per threshold of 75, lower threshold of 20, a detection delay of 12 control

cycles and a best fit placement strategy is denoted as (BF/20/75/12).

• An experiment run is the execution of an experiment. An experiment

may be executed several times. The execution of a baseline consolidation

plan is called baseline consolidation run.

• In the subsection 7.6 on overbooking we reduce the number of servers

available for a base consolidation plan. These plans will be denoted

by x% overbooked consolidation plans, where x is the amount to the

reduction of available servers in %.

7.1 Experimental Design

Overall, we include 215 experiment runs with 13 different benchmark scenarios

into our analysis. For 9 scenarios we executed a full set of treatments, while

4 scenarios served us for initial testing purposes and to determine relevant
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treatments to study. We therefore include only valid experiment runs for these

3 scenarios. For each experiment we executed two experiment runs.

The treatments we test are:

• Upper CPU thresholds ∈ {75, 85}

• Lower CPU thresholds ∈ {20, 30}

• Detection delay ∈ {1, 6, 12, 24, 36}

• Virtual machine placement strategy ∈ {BF,WF}

As a full coverage of all treatments would have required 960 experiments, each

requiring about 16 hours on average, including infrastructure setup, initial-

ization and tear down and post processing time, which would have resulted

in 640 days experimental time, we reduced the treatment combinations. The

experiment groups are listed in table 7.1.

For each scenario we executed experiments with lower and upper thresholds of

30 and 75% respectively and detection delay of 1 for both placement strategies.

This requires 4 experiment runs for each scenario. We executed these two

experiments for all scenarios leading to 13 = 52 experiment runs (experiment

groups 1 and 2).

We then executed experiments with the worst fit placement strategy for all

remaining detection delays (6, 12, 24, 36) for the same threshold values which

required another 8 runs per scenario, which required 9 × 8 = 72 experiment

runs (experiment groups 3 to 6). We excluded four scenarios that exhibited

very similar behavior to other scenarios due to time constraints.

Experiment groups 7 was setup to provide a fair comparison of the worst fit

with the best fit placement strategy using the detection delay that provided

the best results for each scenario in terms of average response time (detection
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delay OPT ). This required another 9×2 = 18 experiment runs for experiment

group 7, employing the best fit placement strategy for 9 scenarios.

We then executed, with a detection delay of one, an experiment with lower

and upper threshold of 20 and 75% and the worst fit placement strategy as

well as an experiment with the best detection delay for the 9 scenarios, which

required another 9× 4 = 36 experiment runs (experiment groups 8 and 9).

To test the influence of the upper threshold we executed an experiment with

detection delay one and an experiment with the best detection delay on seven,

respectively six hand-picked scenarios resulting in 14 + 12 = 26 experiment

runs (experiment groups 10 and 11).

The remaining experiments were used to test the influence of virtual machine

swaps and to test a tentative controller. We hand-picked two scenarios, and

executed experiments with the worst fit placement strategy, upper and lower

thresholds of 30/75 and different detection delays requiring seven experiment

runs (experiment groups 12 and 13) in sum. For the tentative controller tests

we executed four experiment runs for two hand-selected scenarios (experiment

group 14). We will refer to the experiment groups in the following sections to

point out which experiment runs were used in the statistical analyses.

Overall, we executed 215 experiment runs with the control systems enabled and

36 as static consolidation runs without the control system. The time required

was more than seven months. Even though we executed the experiments in

a fully automated way, we were not able to execute more experiments, as we

had to discard several runs due to hardware defects, network outages and most

often failed live migrations caused by errors in the hypervisor layer.

For all consolidation runs we set the usable resource capacities to 98.5% for

main memory and 85% for CPU. We consider 15% CPU capacity to be a

reasonable buffer. We used the same settings to calculate the expectation

baselines for the scenarios. All reactive control experiments were started with



162 CHAPTER 7. REACTIVE CONTROL SYSTEM EVALUATION

Experiment Purpose Scenarios Configuration Runs
Group Id

1 Placement Strategy 13 WF/30/75/1 26
2 Placement Strategy 13 BF/30/75/1 26
3 Detection Delay 9 WF/30/75/6 18
4 Detection Delay 9 WF/30/75/12 18
5 Detection Delay 9 WF/30/75/24 18
6 Detection Delay 9 WF/30/75/36 18
7 Detection Delay 9 BF/30/75/OPT 18
8 Lower Threshold 9 WF/20/75/1 18
9 Lower Threshold 9 WF/20/75/OPT 18
10 Upper Threshold 7 WF/20/85/1 14
11 Upper Threshold 6 WF/20/85/OPT 12
12 Swaps 1 WF/30/75/1 2
13 Swaps 2 WF/30/75/OPT 5
14 Tentative Controller 2 WF/30/75/1 4

Table 7.1: Experiment groups

the virtual machine assignments derived by the baseline consolidation plan.

During system design, implementation and tuning we executed several experi-

ment runs that guided our design choices and system implementation. We also

executed numerous static consolidation runs to define the overhead estimation

procedures and used the monitoring data gathered in the previous section for

resource demand estimation.

7.2 Benchmark scenarios

In table 7.2 we present details of the benchmark scenarios, where we give the

following metrics for all scenarios:

• The amount of virtual machines in the scenario. We executed scenarios

with virtual machines ranging from 8 to 37 virtual machines. Scenar-

ios with larger amounts of virtual machines were generated using more
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distributed application configurations. The more virtual machines a sce-

nario contains, the smaller the average CPU demand per virtual machine.

• The expected efficiency gives the gains in efficiency in percent, relative

to the baseline consolidation plan of the virtual machines using the six

physical servers. There are some scenarios with the same values for

expected efficiency, which is not too surprising as the expected efficiency

is bound by the static memory allocation that prevents more efficiency

gains from dynamic workload management methods.

• The expected amount of migrations gives the minimum expected amount

of migrations calculated by the scenario expectation baseline. The ex-

pectation baselines are calculated with 25 time intervals instead of 24.

The first time interval is predefined by the baseline consolidation plan

(the virtual machine to physical server assignments) to include the tran-

sition from the initial run assignment to the assignments during the first

time interval.

• The mean (µ) and standard deviation (σ) for CPU demands for all virtual

machines are the demands measured during the base consolidation run.

The mean and standard deviation of the main memory demands are not

measured, but are values defined in our resource allocations as memory

is allocated statically.

The expected efficiency and the expected amount of migrations are calculated

using the assignment transition problem with overheads given in section 3.3.

For migration costs mj we use the formula for selecting virtual machine mi-

gration costs presented in section 5.9: (1 + mcpu/100) ×mram and scaled the

weights according to the constraints give in section 3.3. Besides the metrics

for virtual machines, we give utilization metrics for the servers of the baseline

consolidation runs in table 7.3. It is important to note that the base consoli-

dation runs did not experience extended overloads as can be deduced from the
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Scen. Amount Exp. Exp µ CPU δ CPU µ RAM δ RAM
Id VMS Eff. Mig. VMS VMS VMS VMS
1 37 19.44 135 5.99 3.54 11.07 4.17
2 24 29.86 61 6.48 3.35 11.94 3.61
3 29 24.31 93 7.11 5.02 9.78 5.16
4 20 34.03 109 9.25 5.13 13.49 4.54
5 16 34.03 62 10.19 5.83 16.30 2.82
6 16 23.61 82 10.40 6.57 17.59 3.27
7 13 36.11 57 10.66 4.55 17.59 3.27
8 12 36.81 58 11.55 3.89 18.24 3.25
9 10 47.92 67 13.23 10.37 16.93 6.23

10 8 47.92 54 14.95 9.92 21.03 0.98
11 12 34.03 58 17.21 9.29 20.56 1.88
12 12 47.22 59 18.08 5.66 18.04 0.38
13 12 34.03 54 19.31 6.04 20.17 1.73

Table 7.2: Benchmark scenarios with consolidation run demands

CPU demand metrics. While 99% percentile is, for some scenarios, close to

100% CPU utilization, the 95% percentile is well below for all scenarios. This

is important to note, as it shows that our consolidation overhead estimation

is effective and provides an appropriate comparison basis for dynamic control

methods. Overloads during the base consolidation runs would have possibly

lead to increased resource demand pressure during reactive control runs that

could have influenced the comparison.

The mean server utilization ranges between 22.42% and 43.14%, indicating

potential for costs savings through dynamic workload management (reactive

control) methods. In comparison to our analysis of the resource demand traces

in chapter 4, the resource demands of the consolidated physical servers are by

far not as volatile as (the coefficient of variation is well below one for all

scenarios) the resource demands of the single real world series, which is due

to the way we generate the benchmark scenarios (table 7.2 gives the same

result for virtual machines that participated in a scenario). We believe that

the lower volatility even favors reactive control systems as live migrations may
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Scen. 25% 50% 75% 95% 99% µ σ Gbyte
Id Server Server Server Server Server Server Server Sum
1 16.86 40.85 66.76 91.20 99.38 43.14 28.48 171.80
2 16.04 29.08 40.81 65.35 76.95 30.02 18.11 150.51
3 6.86 25.78 60.10 87.87 94.41 34.59 29.64 120.85
4 5.37 21.20 53.88 85.13 95.24 31.21 28.78 125.94
5 4.86 19.54 49.15 74.74 89.36 27.97 25.61 124.91
6 4.41 25.03 51.41 82.15 98.13 30.75 27.38 128.17
7 4.49 18.54 40.94 62.28 93.84 24.42 22.13 105.90
8 6.0 23.62 40.49 67.32 85.10 26.19 21.44 114.44
9 4.92 19.84 39.32 72.30 84.63 25.62 23.46 107.69

10 4.12 17.08 34.01 64.92 79.01 22.42 20.88 106.27
11 5.34 28.35 57.07 87.93 99.38 35.10 31.55 142.94
12 12.25 33.86 62.16 84.21 96.20 39.09 29.27 162.39
13 7.83 37.00 69.34 88.20 99.95 40.70 32.43 168.33

Table 7.3: Benchmark scenario consolidation runs, CPU and
network demands on physical servers

not be well suited for handling hard to predict, transient and sharp demand

spikes. Additionally, the mean utilization is about 2 to 3 times smaller than

the 99% percentile, which also indicates that the periods of high utilization

are rather short-lived. This observation supports the feasibility of resource

overbooking and more aggressive levels of consolidation that we will present in

section 7.6. We also give the aggregated network bandwidth consumed by the

clients for sending requests and receiving responses as well as the bandwidth for

communication between the application components (required by distributed

application configuration) during our consolidation runs. The numbers are

interesting as we will see that live migrations require a significant amount of

additional network bandwidth.
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7.2.1 Overall Statistics

In table 7.4 we give an overview of the metrics we elevated from the log data

collected during all experiment runs. We will see during the evaluation that

tuning reactive control system is a highwire act that has to balance reactivity

and control action overhead with application quality of service. Several factors

influence on the performance of reactive control that need to be in balance

to achieve high levels of operational efficiency. While it is rather simple to

implement a control system, its tuning is far from being easy, which is a main

reason why a study like ours does not exist up to now. To support our main

study goals we have chosen the following metrics.

1. µ Response time is the average response time of all operations of the

benchmark applications executed in a benchmark run.

2. σ Response time is the standard deviation of the response times of all

operations of the benchmark applications executing in a benchmark run.

3. 90% Response time is the 90% percentile of the response times of all

operations of the benchmark applications executed in a benchmark run.

The 90% percentile is used to set an acceptable level for quality of service

requirements. For our application this value is set to 2 seconds.

4. 99% Response time is the 99% percentile of the response times of all

operations of the benchmark applications executed in a benchmark run.

5. µ VM residence time is an indicator for system stability. It gives the

average time a virtual machine was executing on a physical server. The

longer the average resident time, the more stable we consider a system.

It is given in minutes.

6. µ Server down time is also an indicator for system stability. It gives the

average time a physical server was in an idle state, not executing any
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virtual machines. The longer the average down time, the more stable is

a system. It is given in minutes.

7. Realized efficiency gives the savings reactive control delivered in percent,

relative to the baseline consolidation run.

8. CPU overhead is the amount of additional CPU required for reactive

control. The overhead is due to the CPU demand for migrations on the

source and target server. However, consolidation overheads influence on

the measurements. The overhead is given in percent relative to the CPU

demands of the base consolidation run.

9. NET overhead is the amount of additional network bandwidth required

for reactive control. The overhead is due to the bandwidth demand for

migrations. The overhead is given in percent relative to the bandwidth

demands of the base consolidation run.

10. µ Migration duration specifies the mean duration of a migration in sec-

onds over all migrations in an experiment run.

11. Relative efficiency specifies the relative distance to the pre-computed

expected efficiency of a clairvoyant dynamic workload management

method. A negative values indicates a worse than expected efficiency,

a positive value indicates better than expected performance.

12. Relative amount migrations specifies the relative amount of migrations

triggered by the reactive control system in comparison to the pre-

computed minimum amount of expected migrations if resources are pro-

visioned as requested (including consolidation overhead estimation) by

a clairvoyant dynamic workload management method. Negative values

indicate that less migrations than the minimum amount of expected mi-

grations have been triggered and executed, positive values indicate that

more migrations were required.
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In the following, σµ denotes the standard error of the mean, which is the

standard deviation of the sample-mean estimate and can be interpreted as

the standard deviation of the error in the sample mean relative to the true

mean. σµ is estimated by the sample standard deviation divided by the square

root of the sample size (assuming statistical independence of the values in

the sample). As we can defer from the set of scenarios, scenarios with less

virtual machines, but with more intensive level of resource demands exhibit

more potential for savings (-0.80 correlation value). The rather strong positive

correlation of 0.745 for the amount of virtual machines with the mean CPU

demand allows us to state that the intensity of the demands drops with the

amount of virtual machines. Interestingly, we observe a positive correlation

between the mean CPU demand of the virtual machines in a scenario and the

relative migrations required (0.41 for the runs in the experiment groups 1 to 9).

This means: the higher the mean demands, the more migrations are needed

relative to the pre-computed baseline. The observation becomes convincing

as placing larger virtual machines in a suboptimal way is much harder to

compensate for as there are much less potentially admissible assignments for

sets of large demand virtual machines than there are for low demand virtual

machines. There are much more suboptimal, but admissible assignments and

re-assignment decisions can compensate for these shortcomings in a better

way. Also placement decisions are more reliable to derive as the consolidation

overheads are not as significant for scenarios with less intense workloads as they

are for scenarios with less virtual machines but much more intense workloads.

From table 7.4, which summarizes the runs of the experiment groups 1 to 11

we can derive some interesting facts. In none of our benchmark runs reactive

control achieved the level of quality of service as static consolidation achieved.

The minimum of the average response time is 48.19% higher, the maximum

increase was 613.41%. The standard deviation of the response times increase

in a similar way as well as the 90% and 99% percentile of the response times.

The increase in the response time statistics is positively correlated with the
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Figure 7.1: Mean CPU versus response times, experiment
groups 1 to 11

workload intensity (mean CPU demand per virtual machine) as shown in figure

7.1 for experiment groups 1 to 11, in figure 7.2 for experiment groups 1 to 7 and

in figure 7.3 for experiment groups 1 to 2. On average, reactive control comes

close to the baseline efficiency. The average of −10.60% for relative efficiency,

meaning the expected efficiency was not achieved, indicates an absolute loss

in operational efficiency of about 4%. The difference is significant: we tested

the null hypotheses that the true mean is zero (%) using a one-sample, two-

tailed Wilcoxon signed rank test as the distribution of the relative efficiency

values is non-normal as shown the quantile-quantile plot in figure 7.4, even

after filtering the tails. The obtained p-value of < 2.2e−16 leads us to the re-

jection of the null-hypthesis. The 95 % confidence interval is −11.84,−9.35%.

This indicates to us that while reactive control is able to deliver even better

performance than the expectation baseline, the minimum efficiency is 11.98%,

that is some runs achieved better efficiency than the expected efficiency, given

the right control parameter configuration for a scenario. The quantile-quantile

plot in figure 7.4 and the distribution of the relative efficiencies of the runs of
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Figure 7.2: Mean CPU versus response times, experiment
groups 1 to 7
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Figure 7.3: Mean CPU versus response times, experiment
groups 1 and 2
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Figure 7.4: Distribution of relative efficiency, all experiment runs
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Figure 7.5: Distribution of relative efficiency, selected scenarios

the experiment groups 1 - 11 indicate that the population mean is influenced

by the large left tail, reaching out to almost 50% of efficiency losses. The left

tail can be explained by considerable differences in the achieved level of relative

efficiency for some scenarios. As can be deferred from table 7.11, two scenarios

(6 and 10) expose much lower efficiency in contrast to the remaining scenarios.

In figure 7.5 and table 7.6, which gives detailed summary statistics, we provide

more details on the relative efficiency distribution of the two scenarios as well

as on the distribution of all scenarios and all remaining scenarios. The dif-

ferences are attributed to the main memory demands of the virtual machines
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Scenario Min. 25% 50% µ 75% Max
1 - 6, 8 - 10 -48.72 -16.05 -7.93 -10.41 -3.67 11.98
1 - 5, 8, 9 -40.72 -10.38 -6.16 -7.310 -2.859 11.98
6 -36.30 -19.88 -16.96 -18.24 -15.54 -7.03
10 -48.72 -31.88 -28.47 -27.69 -23.07 -11.99

Table 7.5: Scenario efficiency comparison

of the two scenarios. Optimal virtual machine assignments are harder to find

as the main memory demands render the packing problems for these scenarios

harder (there are less optimal solutions). Slight deviations from the baseline

assignments (e.g. two virtual machines are not assigned to the server they

are assigned to in the expected efficiency case) already lead to more required

servers. For the other scenarios, especially those with more virtual machines,

memory allocations do not influence as much on the efficiency. For the scenar-

ios 6 and 10 virtual machine swaps could be a remedy. We refer to this effect

as a ”memory induced efficiency deadlock”. Experiment groups 12 and 13 will

be used to evaluate the effect of virtual machine swaps. To show the statistical

significance of the effect we tested the four distinct experiment populations for

mean equality by a two sample Wilcoxon rank sum test. The distributions are

all non-normal. Table 7.6 reports the statistical significance of the efficiency

comparison of the four sub-populations. Especially scenarios 6 and 10 deliver

significantly worse average efficiency than the remaining scenarios. Our null-

hypothesis is that the means of the three groups are equal. All p-values in table

7.6 indicate to us the rejection of the null-hypothesis. To show the statistical

significance of the opposite effect, that scenarios with many virtual machines

and low memory demands are not influenced by memory induced efficiency

deadlocks, we tested the four distinct populations for mean equality by a two

sample Wilcoxon rank sum test. Again, the distributions are all non-normal.

Comparing the scenarios 1 - 6, 8 - 10 with the scenarios 4, 5, 6, 8 - 10 we

get a p-value of 0.08947, which leads us to accept the null hypothesis, we may
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Population Population p-value Null
A B hypothesis
1 - 6, 8 - 10 1 - 5, 8, 9 0.002006 Reject
1 - 6, 8 - 10 6 1.352× 10−6 Reject
1 - 6, 8 - 10 10 1.259× 10−11 Reject
1 - 5, 8, 9 6 3.441× 10−11 Reject
1 - 5, 8, 9 10 1.664× 10−14 Reject
6 10 2.504× 10−5 Reject

Table 7.6: Statistical significance of efficiency comparison

Scenario Min. 25% 50% µ 75% Max
1 - 6, 8 - 10 -48.72 -16.05 -7.93 -10.41 -3.67 11.98
4, 5, 6, 8 - 10 -40.72 -10.90 -6.32 -8.25 -3.16 11.98
1 -15.30 -8.43 -5.70 -6.46 -3.80 -1.36
3 -21.04 -11.11 -5.86 -6.57 -1.53 2.37

Table 7.7: Scenario efficiency comparison

assume equality of the means of the two populations. Both sample populations

are affected by memory induced efficiency deadlocks.

In contrast, if we compare scenario 1 with scenario 3, we get a p-value of 0.7028,

which leads us to accept the null hypothesis. Hence we assume equality of the

means - the memory induced efficiency deadlock effect can be considered not

to be influential in these scenarios.

The presented efficiency results of all experiments give an indication that the

calculated baselines are indeed reasonable as the realized efficiency is on av-

erage slightly lower and rather seldom higher. However, the savings come at

a price: increased, and largely volatile response times. The reason for this

observation is two-fold. First, migrations lead to performance degradations

for all scenarios. To a certain extend that is dependent on the intensity of the

workload the virtual machines are serving. As shown in figure 7.6, the increase

in the mean response time is moderately positively correlated (0.369) with the
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Figure 7.6: Mean response time increase versus relative amount
of migrations

relative amount of migrations, while the correlation of increase in the mean re-

sponse time with the network bandwidth overhead, the CPU overhead and the

mean migration duration is much higher (0.748, 0.607 and 0.536 respectively).

The correlation of the mean migration duration with the CPU overhead and

the bandwidth overhead is 0.567 and 0.78. Both types of overheads are posi-

tively correlated (0.67), which was to be expected. We found a slightly positive

correlation between the mean response time increase and the realized efficiency

of 0.11, which is, given large amount of experiments significant at the 0.05 level

as the test statistic exceeds the critical value with a value of 1.876. While it

is only slightly positive, indicating that an increase in efficiency leads to an

increase in the mean response time. It leads us to the following conclusion: the

more aggressive the virtual machine to physical server assignments, the higher

the response times. This is immediately understandable as higher utilization of

computational resources lead to more contention and reduced response times of

the applications executing in virtual machines. This is the second component

of the response time increase incurred by dynamic workload management. In

figure 7.6, we differentiate between two sub-populations: For the experiment
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Filter ρ ρ ρ p-value p-value
(µ <= (µ > µ Response Rel. Amount

11.88%) 11.88%) Times Migrations
30/75/BF 0.047 0.684 0.384 1.07× 10−6 0.0059
30/75/WF 0.199 0.534 0.326 6.43× 10−7 0.0575
30/75 0.408 0.525 0.403 2.20× 10−16 2.76× 10−7

None 0.424 0.556 0.369 2.20× 10−16 4.08× 10−10

Table 7.8: Mean response time increase versus relative amount
of migrations

runs for scenarios with a mean CPU demand per virtual machine greater than

11.88% and smaller or equals than 11.88%. For the former the correlation

of the mean response time is positively correlated (0.556) with the relative

amount of migrations, for the latter slightly less (0.424). This observation,

when taking into account the moderately positively correlation of the overall

population, leads us to the conclusion that there is another reason for increased

response times than a large amount of migrations. The second reason for this

effect is the higher workload density and asymmetric (non balanced) workload

distributions amongst the physical servers. While it is not an influencing factor

during periods of low demand (non working hours), it is a significant factor

during peak times, that are relatively short-lived as table 7.3 revealed.

A further analysis is given in table 7.8 for several control system parameter

settings. The p-values are derived by the Wilcox signed rank test for comparing

groups of data. The placement strategy does not influence on the relationship

between response times and relative amount of migrations. However, as we

executed much more experiment runs under the worst fit placement strategy,

we consider the results more representative. If we do not apply a filter to the

experiments, the relationship is affected by control parameter setting effects.

In figure 7.7 the distribution of the relative amount of migrations is depicted

for several sub populations. The accompanying summary statistics are given in

table 7.9. Especially scenario 5 exhibits a larger relative mean for migrations
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Figure 7.7: Relative amount of migrations

Scenario Min. 25% 50% µ 75% Max
1 - 6, 8 - 10 -25.19 92.79 150.00 172.90 243.50 512.90
1 - 4, 6, 8 -10 -25.19 80.68 134.20 151.20 216.30 449.20
5 59.68 139.90 216.90 219.30 296.00 512.90

Table 7.9: Scenario migration comparison

than all other scenarios. However no statistical significance can be observed

by comparing the three sub-populations using a Wilcoxon rank sum test. The

obtained p-values range between 0.0435 (comparing 1 - 6, 8 - 10 and 1 - 4, 6, 8

-10 ), 0.01453 (comparing 1 - 6, 8 - 10 and 5) and 0.0004525 (comparing 1 - 4,

6, 8 -10 and 5). These values do not allow us to reject the null hypothesis of

equal means. As we can also give no rational for the result, we believe that the

difference is obtained by chance rather than a systematic deviation induced

by scenario specifics. Analyzing the relative amount of migrations we notice

that on average 186.51% more migrations were required than calculated by he

expectation baseline. However, we also executed experiment runs that required

substantially less migrations, as the minimum is 25.19% less migrations than

the expectation baseline. Especially high values for detection delays lead to

this observation. If the detection delay is set too high, transient overloads or
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Scen. Correlation µ CPU
Id Value VMS
1 -0.011 5.99
2 0.015 6.48
3 -0.206 7.11
4 0.22 9.25
5 0.115 10.19
6 0.421 10.40
7 0.486 10.66
8 0.455 11.55
9 0.529 13.23

10 -0.124 14.95
11 0.635 17.21
12 0.743 18.08
13 0.781 19.31

Table 7.10: Mean response time increase and realized efficiency
correlation for all scenarios

overloads that do not develop sustained threshold violations because of large

demand fluctuations do not trigger live migrations and lead to undershooting

the expected amount of migrations. However, these cases occurred in only

0.813% of our experiment runs and were limited to a single scenario.

We also analyze the correlation for each scenario. As we can see from table

7.10, there is an observable trend. The higher the mean CPU demands of the

virtual machines in a scenario are, the higher the correlation between the re-

sponse time increase and the realized efficiency. Together with the observation

that there is a low correlation between the relative efficiency and the relative

amount of migrations we may conclude that the smaller the virtual machines

are becoming, the larger the influence of the consolidation overhead induced

response time degradation effects become. The migration overheads become

less important for the increase in the response times. Scenario 10 gives an

negative correlation value, leading to an outlier as the statistic is influenced

by experiments with long detection delays. As we will see later on, longer

detection delays lead to less efficiency but largely increased mean response

times. For scenarios with large virtual machines, short detection delays where

required to prevent severe overload situations due to sharply rising resource

demands. Delayed migrations also lead to largely increased overloads due to
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high migration overheads. The runs with 85% upper thresholds lead to im-

proved efficiency but largely increased response times because the higher upper

threshold often lead to severe overload situations. However, we removed these

experiments for the correlation calculation. The two tables 7.11 and 7.12 give

summary statistics for each scenario. We may observe that the three metrics,

average migration time, CPU overhead and bandwidth overhead in combina-

tion are a measurement for the potential impact a migration has on application

performance: the more time it takes and the more overhead it generates, the

more a migration impacts on application performance. The correlation with

CPU overhead is not as distinctive as the correlation with bandwidth over-

head, which is due to the fact that the measured CPU overhead is influenced

by the consolidation overheads: Different combinations of virtual machines,

with different demand levels cause different levels of CPU utilization. The

bandwidth overhead is consequently a better indicator for workload intensity

and performance impact.

Also, a large amount of migrations is not a guarantee for efficiency: the relative

efficiency is only slightly positively correlated (0.0363) with the relative amount

of migrations. Our claim that system stability is something to aim at, is

supported by the negative correlation of -0.4587607 between the mean response

time increase and the mean virtual machine residence time. We use the two

metrics, mean server down time and mean virtual machine residence time

to characterize a systems stability. One would expect that the two are almost

perfectly correlated. However a correlation factor of 0.675 gives rise to assume a

weaker relationship and indicates that large amounts of migrations and control

system reactivity do not necessarily lead to energy savings. The increase in

the mean response time is moderately negatively correlated (-0.459) with the

mean residence time, the relative amount of migrations is stronger correlated

with the mean residence time (-0.686).

Reactive control initiates virtual machines migrations during times of peak

demands to prevent overloads rather than to turn down servers. However,
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during peak times placement decisions become much more risk affected as

projected resource demands become much more inaccurate, leading to system

oscillations.

7.2.2 Placement Strategy: Worst Fit versus Best Fit

We used two virtual machine placement decisions in our experiments, namely

the worst-fit (WF) and best-fit (BF) placement rules. In case a migration

is triggered, WF selects as the target server the one that has the most free

capacity after the virtual machine is migrated, the BF rule places the virtual

machine on the server with the least capacity available after the migration.

We expected the more aggressive BF strategy to perform better in terms of

realized efficiency. As we use the t-test in the following to account for statistical

significance, we test all data samples using the Anderson-Darling and Shapiro-

Wilk test. The two tests reject the hypothesis of normality when the calculated

p-value is ≤ 0.05. Failing the normality tests allows us to state that with 95%

confidence, the data does not fit the normal distribution. However, passing the

normality test allows us to state no significant departure from normality was

found. This is a sufficient precondition to employ the t-test. We use the two

tests, as it is well known that the Anderson-Darling is often found to lead to

problematic results when applied to real world data containing ties. To ensure

the correctness of the statistical test procedures we hence employed a second

test, namely the Shapiro-Wilk test to underpin our findings.

7.2.2.1 Low Detection Delay

The following comparison is based on all experiments (experiment groups 1 -

11) with detection delay 1, and 30/75 thresholds. We present the results of our

comparison in table 7.13. We show the differences in percent, with BF being

the point of reference. A negative value means worse, a positive better then
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BF. The comparison is done on a run by run basis, meaning for each scenario

we compare the two runs for each placement strategy pairwise which leads to

3× 13 = 39 values. The amount of data values allows us to reason about the

comparison in a way that ensures statistical significance.

The WF placement strategy outperforms the BF strategy for almost all met-

rics. All response time related metrics are statistically significant and improve

between 24.76 and 40.35 % in comparison to BF. While it can be argued that

the reduction of the mean response time is not of practical relevance as we

compare against average response times of about 0.326 seconds, the reduc-

tions of the high percentiles are indeed relevant as theses metrics are in the

order of seconds: the 90% percentile is on average 0.890 seconds, the 99%

percentile 5.320 seconds. Improvements of 30% and more are perceivable by

users, taken into account that higher response times are often incurred during

peak demand working hours.

The response time improvements are due to an reduction of executed migra-

tions. On average, and again statistically significant with a p-value of 0.651

(the null hypothesis is a mean of zero), the worst fit placement strategy re-

duced the amount of required migrations by 19.42%. The 5% percentile gives

even a reduction of 54.60% which outperforms the reduction in required migra-

tions achieved by the statistical demand modeling approach given by Kumar

et al. (2010) by far, however their method was evaluated on a small set of

experiments and demand scenarios, which renders a comparison problematic.

However, as we will se in the sub sections to come, there are even better ways

to reduce the amount of migrations triggered by reactive control systems.

Interestingly the average migration duration is reduced by 4.68%, the band-

width demand overhead reduces by 17.24% and the CPU overhead by 9.09%.

While the bandwidth reduction is about the reduction as the amount of migra-

tions, the small difference can be explained by the reduced average migration

duration. However, the CPU overhead reduction is about two times less the
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Metric 5% 50% µ 95% σ
Relative Amount Migrations -54.60 -14.81 -19.42 2.64 24.34
µ Response Time -65.91 -21.32 -24.76 3.52 22.08
σ Response Time -101.91 -34.12 -40.35 4.82 35.41
90% Response Time -85.10 -27.54 -30.26 11.09 30.18
99% Response Time -68.79 -23.36 -26.15 6.16 26.24
Realized Efficiency -9.10 0.00 -0.10 11.60 6.03
µ VM Residence Time -13.43 11.91 13.98 54.76 19.23
µ Server Down Time -50.82 8.69 5.07 63.73 41.65
CPU Overhead -87.11 2.74 -9.09 18.57 37.77
NET Overhead -58.44 -8.81 -17.24 4.74 30.67
µ Migration Duration -23.91 0.18 -4.68 11.58 22.52

Table 7.13: Worst-fit versus best-fit, low delay comparison

reductions of the migrations. This is an effect of the varying consolidation

overheads and the reduced time required for the migrations. We have to note

that the reduction of the migration duration is statistically not significant, but

occurred by chance. The Anderson-Darling test for normality gave a p-value

= 0.724, the Shapiro-Wilk of 0.492. Hence the assumption of normality can be

supported. We carried out a two sided, one-sample t-test testing with the null

hypothesis that the mean is zero. A p-value of 0.682 lead us to accept the null

hypothesis. We also calculate the correlation factors for the data that were

used in this comparison for validating the results with the results obtained on

the overall data (experiment groups 1 - 11). We found that the correlation be-

tween the relative amount of migrations and the mean response times increase

on the subset is 0.399, compared to 0.74 on the overall data set. The reduction

was to be expected as the highly reactive setup with a detection delay of one

leads to an excessive amount of migrations and the reductions obtained by the

WF placement strategy are only one way to reduce the amount of migrations,

as we will see later on.

Most important, we could not observe a significant reduction in operational
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efficiency for the WF placement strategy. First, the Anderson Darling and

Shapiro-Wilk test resulted in p-values of 0.3244 and 0.1335. The low p-values

where caused by outliers: when we filtered out the values above and below

the 95% percentile and 5% percentile the test resulted in p-values of 0.809

and 0.531. The two-sided t-test resulted in p-values of 0.5441 and 0.8763

respectively that allowed us to accept the null hypothesis of the mean being

equal to zero, the 95% confidence interval is given by {−1.37, 1.17}.

7.2.2.2 Optimal Detection Delay

The following comparison is based on the experiments (experiment groups

5 - 9) with the optimal detection delay with respect to the mean increase in

response time, and 30/75 thresholds. We present the results of our comparison

in table 7.14. We show the differences in percent, again BF being the point

of reference, that is a negative value means less, a positive more then BF.

The comparison is done on a run by run basis, meaning for each scenario we

compare the two runs for each placement strategy pairwise which leads to 3×
11 = 33 values. The WF placement strategy still outperforms the BF strategy

for almost all metrics. All response time related are statistically significant and

improve between 31.75 and 39.56%. While it can be argued that the reduction

of the mean response time is not impressive as we compare against average

response times of about 0.326 seconds, the reductions in the high percentiles

are indeed relevant as theses metrics are in the order of seconds: the 90%

percentile is on average 0.780 seconds, the 99% percentile 6.010 seconds.

The response time improvements are again mainly due to a reduction of ex-

ecuted migrations, however compared to the low detection delay comparison

the mean reduction was lower. A two sample t-test lead to a p-value of 0.0206

when comparing the means of the two samples under the null hypothesis that

the two means are equal. The low p-value requires us to reject the null hypoth-

esis, leading us to the conclusion that the detection delay has a major influence
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Metric 5% 50% µ 95% σ
Relative Amount Migrations -39.88 -17.93 -14.86 12.67 21.40
µ Response Time -65.46 -29.76 -31.75 -7.74 22.43
σ Response Time -54.77 -32.42 -24.94 9.44 28.30
90% Response Time -81.47 -41.01 -39.56 3.67 32.33
99% Response Time -63.98 -20.62 -29.18 -7.81 22.77
Realized Efficiency -7.54 -3.36 -2.20 4.16 4.45
µ VM Residence Time -19.76 16.73 21.14 51.26 27.35
µ Server Down Time -33.64 14.81 13.43 49.70 31.93
CPU Overhead -40.95 -1.44 -6.31 13.48 21.38
NET Overhead -39.48 -7.78 -14.83 7.57 20.67
µ Migration Duration -9.05 -0.87 -0.69 6.56 5.99

Table 7.14: Worst-fit versus best-fit, optimal delay comparison

on the amount of migrations as the placement strategy. As the response time

reductions are about the same as the reductions in the previous comparison,

the detection delay influences on the response times in about the same way as

the placement strategy. While this observation holds true in general, it is much

more distinct for scenarios with relatively high demand virtual machines.

On average, and again statistically significant with a p-value of 0.39 (the null

hypothesis is a mean of zero), the WF placement strategy reduced the amount

of required migrations by 14.86%. The 5% percentile gives even a reduction of

39.88% which is less than the reduction in the low detection delay comparison

previously given.

Interestingly, the average migration duration is reduced by 0.69%, the band-

width demand overhead reduces by 14.83% and the CPU overhead by 6.31%.

The bandwidth reduction is as high as the reduction of the amount of mi-

grations, the reduced average migration duration is not significant. However,

the CPU overhead reduction is still about two times less the reductions of the

migrations. The reduction of the migration duration is again statistically not

significant, but occurred rather by chance. The Anderson-Darling test for nor-



186 CHAPTER 7. REACTIVE CONTROL SYSTEM EVALUATION

mality gave p-value = 0.602, the Shapiro-Wilk of 0.392. Hence the assumption

of normality can be supported. We carried out a two sided, one-sample t-test

testing the null hypothesis that the mean is zero. A p-value of 0.814 lead us

to accept the null hypothesis.

In contrast to the low detection delay comparison, we could observe a signif-

icant reduction in operational efficiency for the WF placement strategy. The

Anderson Darling and Shapiro-Wilk test resulted in p-values of 0.6425 and

0.3931. The p-values were even higher when we filtered out the values above

and below the 95% percentile and 5% percentile the test resulted in p-values

of 0.8886 and 0.9261. The two-sided t-test resulted in p-values of 0.007876 and

0.00317 respectively that allowed us to reject the null hypothesis of the mean

being equal to 0, the 95% confidence interval is given by {−3.489,−0.552}.
While the result indicates that BF outperforms WF under optimal values for

detection delay, the reduction was found to be rather low. A reduction of 3.5%

would lead to an absolute reduction of less than 1%. In summary, worst fit

outperforms best fit under high and low system dynamics.

7.2.3 Impact of Lower Thresholds

In this subsection we evaluate the impact of reducing the lower threshold using

the experiment groups 1, 3-6 and 8-9 (the runs resulting in the best response

times of the groups 3-6 have been extracted). Figure 7.8 gives an overview by

means of a distribution plot. In summary, reducing the lower threshold results

in a significant reduction of operational efficiency, a significant reduction of

the amount of required migrations and a significant improvement of the mean

response time increase. The solid black lines denote the distributions of the

population, the dashed red lines the subset with the lower threshold set to

20%, grey dashed lines the subset with lower threshold set to 30%.
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Figure 7.8: Impact of lower thresholds

Lower Minimum 25% Median Mean 75% Maximum
Threshold

20/30 -48.72 -16.72 - 7.88 -10.35 -2.16 8.10
20 -48.72 -22.89 -16.01 -18.77 -10.98 -6.32
30 -38.50 -14.84 -6.16 -9.30 -2.94 8.10

Table 7.15: Efficiency decrease lower thresholds

7.2.3.1 Impact on Efficiency

To underpin the findings indicated by figure 7.8 we present summary statis-

tics for the decrease of efficiency in table 7.15 induced by lower thresholds.

The table gives the absolute values for efficiency (which is itself relative to the

expected efficiency). The 20% threshold experiments lead to a reduction of

almost 50% on average (9.47% difference) in efficiency in comparison to the

30% threshold experiments. When comparing the two sub-populations, the

Wilcox rank sum test (with continuity correction) leads to a very low p-value
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Lower Minimum 25% Median Mean 75% Maximum
Threshold

20/30 69.85 130.25 172.57 204.78 230.67 613.40
20 74.25 116.00 139.40 156.40 184.00 320.40
30 69.85 133.60 188.80 218.50 250.40 613.40

Table 7.16: Mean response time increase lower thresholds

of 6.214 × 10−8. We hence assume that the difference is significant and re-

producible. The two sub-populations are also significantly different from the

population (the 20% sub-population has a p-value of 4.462 × 10−4, the 30%

sub-population has a p-value of 0.0279).

The result is immediately understandable as physical server get evacuated less

quickly with lowered low thresholds, leaving physical severs often at low CPU

utilization levels. At the same time, this behavior more often than not leads to

more well balanced workloads on the physical servers, which is also influencing

on the response time improvements.

7.2.3.2 Mean Response Time Lower Thresholds

Table 7.16 gives details on the distributions of the absolute values of the

mean response times. The 20% sub-population incurs 156.40% higher aver-

age response times in comparison to the baseline consolidation runs, while

the 30% sub-population incurs 218.50% higher average response times. The

difference is significant as the p-value is 0.00293 for the comparison of the

two sub-populations. While the comparison of the population with the 30%

sub-population (p-value of 0.0693) does not induce a significant difference, the

20% sub-population (p-value of 0.0166) does. The lower response times are

also influenced by the lower amount of migrations lower thresholds lead to but

also to the lower average physical server utilization during non peak times.
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Lower Minimum 25% Median Mean 75% Maximum
Threshold

20/30 -14.75 103.67 167.62 165.35 226.45 419.70
20 22.02 75.75 113.40 123.30 150.40 275.30
30 -14.75 111.50 189.70 188.70 265.40 419.70

Table 7.17: Relative amount of migrations decrease by lower
thresholds

7.2.3.3 Migrations Lower Thresholds

Table 7.17 gives details on the distributions of the relative difference of the

expected amount of migrations. The 20% sub-population incurs 123.30% more

migrations in comparison to the expected amount of migrations, while the 30%

sub-population incurs 188.70% more migrations. The difference is significant

as the p-value is 0.000243 for the comparison of the two sub-populations. The

comparison of the population with the 30% sub-population (p-value of 0.05167)

does not necessarily induce a significant difference, the 20% sub-population (p-

value of 0.003893) does. The lower amount of migrations is reflected by the

lower response times and the lower system dynamics induced by the lower

thresholds.

7.2.4 Impact of Upper Thresholds

In this subsection we evaluate the impact of raising the upper threshold using

the experiment groups 1, 3-6 and 10-11 (the runs resulting in the best response

times of the groups 3-6 have been extracted). Figure 7.9 gives an overview by

means of a distribution plot. In summary, raising the upper threshold results

in a measurable, weakly significant increase of operational efficiency, a non

significant reduction of the amount of required migrations and a significant

increase of the mean response time increase. It is interesting to note that



190 CHAPTER 7. REACTIVE CONTROL SYSTEM EVALUATION

−60 −40 −20 0 20

0.
00

0.
01

0.
02

0.
03

0.
04

Relative Efficiency Density Estimates
 Upper Thresholds

Relative Efficiency

D
en

si
ty

Overall Density
75 Percent Upper Threshold
85 Percent Upper Threshold

−100 0 100 200 300

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8

Relative Migration Amount Density Estimates
 Upper Thresholds

Relative Amount Migration

D
en

si
ty

Overall Density
75 Percent Upper Threshold
85 Percent Upper Threshold

0 100 200 300 400

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8
0.

01
0

0.
01

2

Mean Rsp. Increase Density Estimates
 Upper Thresholds

Mean Rsp. Increase

D
en

si
ty

Overall Density
75 Percent Upper Threshold
85 Percent Upper Threshold

Figure 7.9: Impact of upper thresholds

Upper Minimum 25% Median Mean 75% Maximum
Threshold

75/85 -48.72 -26.93 -15.04 -16.87 -5.02 8.34
75 -48.72 -27.75 -16.21 -19.94 -12.08 -6.32
85 -35.26 -24.24 -13.99 -12.59 -2.23 8.34

Table 7.18: Efficiency increase upper thresholds

despite the reduction of the amount of migrations, the average response times

increased.

7.2.4.1 Efficiency Upper Thresholds

To underpin the findings indicated by figure 7.9 we present summary statistics

for the increase of efficiency in table 7.18 induced by upper thresholds. The

table gives the absolute values for efficiency (which is itself relative to the

expected efficiency). The 85 % threshold experiments lead to an increase
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Upper Minimum 25% Median Mean 75% Maximum
Threshold

75/85 -25.19 39.62 102.24 107.52 141.24 226.80
75 22.02 75.64 109.80 119.70 150.90 226.80
85 -25.19 23.53 86.76 90.84 158.00 225.80

Table 7.19: Relative amount of migrations decrease by upper
thresholds

of almost 37% on average (7.35% difference) in efficiency in comparison to

the 75% threshold experiments. When comparing the two sub-populations,

the Wilcox rank sum test (with continuity correction) leads to a p-value of

0.07525. The p-value is rather low and does not allow us to speak about

significance. However, as an analysis of the different scenarios reveals, scenarios

with low average CPU utilization of the virtual machines benefit much more

than scenarios with larger mean CPU demands per virtual machine. When

we spilt the scenarios up into subgroups A (containing scenarios 1 - 6) and B

(containing scenarios 8 - 10) the difference becomes significant with a p-value

of 0.3273. We hence assume that the difference is significant and reproducible

for different types of workload scenarios.

7.2.4.2 Migrations Upper Thresholds

Table 7.19 gives details on the distributions of the relative difference of the

expected amount of migrations. The 85% sub-population incurs 90.84% more

migrations in comparison to the expected amount of migrations (derived with

85% maximum capacity), while the 75% sub-population incurs 119.70% more

migrations. The difference is statistically significant as the p-value is 0.1937

for the comparison of the two sub-populations. When we spilt the scenarios up

into subgroups A (containing scenarios 1 - 6) and B (containing scenarios 8 -

10) the difference becomes even more significant with a p-value of 0.2749. We

hence assume that the difference is significant and reproducible for different
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types of workload scenarios. Subgroup A scenarios again benefit more than

subgroup B scenarios.

7.2.4.3 Response Time Upper Thresholds

Table 7.20 gives details on the distributions of the absolute values of the mean

response times. The 75% sub-population incurs 143.40% higher average re-

sponse times in comparison to the baseline consolidation runs, while the 85%

sub-population incurs 221.20% higher average response times. The difference

is not significant as the p-value is 0.002814 for the comparison of the two sub-

populations. The higher response times are mainly influenced by the higher

Upper Minimum 25% Median Mean 75% Maximum
Threshold

75/85 53.16 149.25 174.26 200.40 230.57 393.50
75 77.52 125.80 139.20 143.40 167.20 201.80
85 53.16 158.90 200.60 221.20 305.20 393.50

Table 7.20: Mean response time increase upper thresholds

workload density and the well known, non-linear response time increase effect

at high physical server utilization levels. When we spilt the scenarios up into

subgroups A (containing scenarios 1 - 6) and B (containing scenarios 8 - 10)

the difference becomes significant with a p-value of 0.3806. We hence assume

that the difference is significant and reproducible for different types of work-

load scenarios. Subgroup A scenarios again benefit more than subgroup B

scenarios.

7.2.4.4 Scenario Analysis of Upper Thresholds

In table 7.21 we give an analysis of the impact of increasing the upper threshold

from 75 to 85% for all seven scenarios. The comparison given in the table is
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a relative comparison of the averages values of the experiment runs in the

experiment groups 8, 9, 10 and 11 with 75 and 85% upper thresholds, 20%

lower threshold, with a detection delay of one and the optimal detection delay

for each scenario (with respect to the mean response time). All entries in table

7.21 are percent values.

While increasing the upper thresholds leads to a decrease of required migra-

tions for almost all scenarios and detection delays (between 193.90 and 5.18%),

all response time related metrics increase except for scenario 1 that is made

up of the smallest virtual machines with respect to the average CPU demand

of the virtual machines. The result shows that the 75% threshold is a reason-

able setting for scenarios with large capacitated virtual machines, the 85% is

well suited for scenarios with low capacitated virtual machines. The increase

in response times is due to high resource utilization on the physical servers

and intense overloads caused by insufficient spare CPU time for executing live

migrations. The adverse effect of live migrations is becoming more significant

in these scenarios.

Except for scenario 5 the realized efficiency increased with a tendency for

higher gains for scenarios with higher average resource demands, however, the

relative improvements range between 4.03 and 22.72% and can be considered

marginal in absolute numbers.

7.2.5 Detection Delay

In this subsection we analyze the impact of the detection delay on the migra-

tions, response time and efficiency metrics. For our comparison we use the

runs of the experiment groups 1, 3-6 for the 9 complete scenarios with the

(30/75/WF) experiment configuration.
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7.2.5.1 Efficiency Detection Delay

In this subsection we evaluate the impact of the of the detection delay on the

achieved efficiency. Table 7.22 shows the results. Obviously neither the mean

nor the median values differ largely across the different detection delays. The

obvious feature of this comparison is that the maximum values differ largely:

that means if the detection delay increases, it is more probably to outperform

the expectation baseline, which could be expected as some demand peaks are

simply neglected by the control system. The Wilcox signed rank test for all

Detection Minimum 25% Median Mean 75% Maximum
Delay

1 -26.80 -12.74 -8.26 -9.69 -3.99 1.27
6 -38.50 -17.53 -5.80 -11.66 -3.34 0.40

12 -31.91 -11.82 -6.16 -8.42 -1.70 3.01
24 -28.42 -6.03 -4.61 -6.53 -2.01 8.10
36 -31.77 -14.21 -6.35 -9.16 -2.89 7.30

Table 7.22: Detection delay impact on efficiency

pairs of detection delays we get a mean p-value of 0.4894. The distribution

statistics are given in table 7.23. All p-values are well above the 0.05 level,

which indicates that none of the groups exhibits significant differences.

Min. 25 % 50 % µ 75 % Max.

0.1128 0.3052 0.5166 0.4894 0.6634 0.7756

Table 7.23: Detection delay impact on group comparison

We may conclude that the detection delay has no impact on the efficiency,

however the probability to increase the efficiency is higher using longer detec-

tion delays, which is scenario dependent. For this reason we calculated the

correlation of the detection delay with the relative efficiency for the 9 fully
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Scen. Correlation µ CPU
Id Value VMS
1 0.356 5.99
2 0.075 6.48
3 0.545 7.11
4 0.175 9.25
5 -0.0785 10.19
6 -0.0652 10.40
8 -0.652 11.55
9 -0.0785 13.23

10 -0.124 14.95

Table 7.24: Detection delay and realized efficiency correlation
for all scenarios

Detection Minimum 25% Median Mean 75% Maximum
Delay

1 132.80 240.40 287.60 285.50 334.30 419.70
6 58.62 163.80 207.30 214.40 266.70 367.20

12 14.68 124.40 141.50 165.90 219.40 270.40
24 46.55 80.49 111.00 137.10 203.00 296.30
36 -14.75 53.70 68.88 75.81 109.50 156.50

Table 7.25: Detection delay and amount of migrations

evaluated scenarios as shown in table 7.24. While we do not consider the cor-

relation values to be highly representative considering the rather small amount

of data, we may observe a trend: For scenarios with larger virtual machines,

an increase in efficiency is achieved by a lower detection delay. For scenarios

with low demand virtual machines the detection delay tends to be positively

correlated with with the achieved efficiency: a longer detection delay leads to

slightly higher levels of operational efficiency.

7.2.5.2 Migrations Detection Delay

We analyze the effect of different detection delay settings on the amount of

migrations in table 7.25. From the table we may defer a simple insight: The

amount of migrations is largely influenced by the detection delay. While a de-
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Minimum 25% Median Mean 75% Maximum
0.00000 0.00000 0.00075 0.01656 0.02117 0.10140

Table 7.26: Detection delay and amount of migrations: p-value
distribution

tection delay of 36 leads to 75.81% more migrations then expected on average,

a detection delay of one leads to 285.50% more migrations then expected. If

we compare all the groups induced by the detection delays using the Wilcox

signed rank test it becomes apparent that the differences of the mean values

are significant indeed. The results of the p-value distribution for all pairs of

groups is given in table 7.26 The only combination for which we may accept

the null hypothesis of identical means with a p-value of 0.10140 is between the

detection delay of 12 and 24. This can be considered an outlier as the correla-

tion on all runs between the relative amount of migrations and the detection

delay is -0.7284. Table 7.27 gives the correlation values for all scenarios.

Scen. Correlation µ CPU

Id Value VMS

1 -0.895 5.99

2 -0.849 6.48

3 -0.880 7.11

4 -0.696 9.25

5 -0.3039 10.19

6 -0.848 10.40

8 -0.652 11.55

9 -0.5054 13.23

10 -0.8707 14.95

Table 7.27: Detection delay and amount of migrations
correlation for all scenarios

For all fully executed scenarios the amount of migrations is highly negatively

correlated with the detection delay: Higher detection delays reduce the amount

of migrations and at least as influential as the employed placement strategy.
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Detection Minimum 25% Median Mean 75% Maximum
Delay

1 75.46 142.30 200.70 223.30 245.20 492.80
6 101.2 188.80 213.50 238.70 336.60 411.50

12 76.45 121.70 155.00 190.90 199.20 588.20
24 69.85 113.50 161.90 210.10 186.20 613.40
36 72.29 107.70 188.50 225.90 258.00 571.40

Table 7.28: Detection delay and response times

Minimum 25% Median Mean 75% Maximum
0.01357 0.14400 0.33980 0.35540 0.47330 0.89920

Table 7.29: Detection delay and response time correlation for all
scenarios

7.2.5.3 Response Times Detection Delay

The response times are also affected by the detection delays as shown in table

7.28. We can not observe a trend from table 7.28. All detection delay settings

increase the average response times by 190.90% to 238.70%. While the maxi-

mum response time increases seem to be correlated with the detection delays,

the effect is caused by chance. If we compare all the groups induced by the

detection delays using the Wilcox signed rank test, it becomes apparent that

the differences in the mean values are non-significant indeed, that is the mean

response times are not influenced by the detection delay. The results of the

p-value distribution for all pairs of groups is given in table 7.29. The aver-

age correlation value is -0.1265808 for all scenarios shown in table 7.30. The

investigation needs to be extended to a more scenario-oriented way as done

in figure 7.10. There we depict the for each scenario the development of the

response times (average and 90% percentile) in dependence to the detection

delay and mark the best results with a red circle. The trend that can be ob-

served from the table 7.30 is better to be recognized here: Scenarios with large
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Scen. Correlation µ CPU
Id Value VMS
1 -0.4044 5.99
2 -0.319 6.48
3 -0.567 7.11
4 -0.34 9.25
5 0.315 10.19
6 -0.238 10.40
8 -0.0393 11.55
9 0.039 13.23

10 0.591 14.95

Table 7.30: Detection delay and response time correlation for all
scenarios
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Figure 7.10: Response time versus detection delay
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relative virtual machine resource demands benefit from rather short detection

delays. While migrations are more costly for these scenarios, it is better to

initiate migrations in a highly reactive way as overload situations are much

more problematic for these scenarios, leading to response time degradation.

7.2.6 Main Findings

We have shown that reactive control is about to deliver expectable operational

efficiency but incurs response time penalties compared to less efficient static

consolidation. As we did not treat main memory as a dynamically assignable

or sharable resource, some of our scenarios suffered from main memory induced

efficiency deadlocks that caused negative deviations from these efficiency re-

sults.

Besides the negative effects live migration have on the application performance

of hosted applications, higher levels of sever utilization and consolidation ef-

fects increase the response times for dynamic workload management. The

effects of live migrations diminish as more low demand virtual machines are

managed. Scenarios with high demand virtual machines are affected much

more by these effects.

Reactive control initiates on average about 170% more live migrations than re-

quired to achieve the expected efficiency, which is caused by system oscillations

and overly reactive control system settings. While the detection delay has no

impact on operational efficiency from a statistical point of view for all exper-

iments, the probability to increase the efficiency is, for some scenarios higher

using higher detection delays. This would indicate that longer detection delays

are preferable over shorter ones as longer ones also reduced the amount of live

migrations significantly. However, short detection delays deliver best results

for scenarios with virtual machines with relatively large resource demands.

We also found hat the worst fit virtual machine placement strategy outper-
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forms the best fit strategy for almost all metrics of interest. All response time

related metrics improve between 24.76 and 40.35%, a reduction in operational

efficiency for the worst fit placement strategy could not be observed and on

average, and statistically significant, the worst t placement strategy reduced

the amount of required migrations by 19.42%.

Reducing the lower threshold results in a reduction of operational efficiency,

a significant reduction of the amount of required migrations and a signifi-

cant improvement of the mean response time increase, while raising the upper

threshold results in a measurable increase of operational efficiency, a non sig-

nificant reduction of the amount of required migrations and an increase of the

mean response time increase.

These general statements are important to tune reactive control systems. In

the next section we will show that bad parameter selection leads to adverse

control system performance in terms of system stability and application per-

formance. However, efficiency is not affected in the same way as the amount

of migrations and application response times.

7.3 Improvements by Proper Parameter Se-

lection

We have discussed the effects of the various control parameters on some per-

formance metrics and have seen that the performance of reactive control varies

significantly for different parameter configurations and their combinations. In

the following subsections we will show the actual differences on a per sce-

nario basis. To highlight the importance of proper control system parameter

selection we compare the average of the experiment runs of an experiment con-

figuration that delivered best and worst results with respect to a given metric

(average response time, amount of migrations and efficiency). Results will be
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Scen. µ Exp. Pl.. Upper Lower Det. µ Real. Am.
Id VM Eff. Strat. Thres. Thres. Delay Rsp. Eff. Mig.

CPU Time
1 5.99 19.44 WF (BF) 85 (75) 20 (30) 24 (1) -114.56 1.92 -242.92
1 5.99 19.44 WF 85 (75) 20 (30) 24 (6) -56.64 4.22 -321.68
2 6.48 29.86 BF (WF) 75 (75) 20 (30) 36 (6) -195.18 -13.66 -63.26
2 6.48 29.86 WF 75 (75) 30 (30) 36 (6) -189.13 4.61 -282.05
3 7.11 24.31 BF (BF) 75 (75) 30 (30) 24 (6) -85.62 4.51 -112.45
3 7.11 24.31 WF 75 (75) 30 (30) 36 (6) -47.29 2.63 -52.65
4 9.25 34.03 WF (BF) 75 (75) 20 (30) 24 (1) -90.44 -18.61 -170.25
4 9.25 34.03 WF 75 (75) 20 (30) 24 (1) -59.56 -15.60 -120.96
5 10.19 34.03 WF (WF) 75 (85) 20 (20) 24 (1) -185.17 6.08 9.36
5 10.19 34.03 WF 75 (85) 20 (20) 24 (1) -185.17 6.08 9.36
6 10.40 23.61 WF (WF) 75 (85) 30 (20) 24 (1) -73.52 -4.86 -42.55
6 10.40 23.61 WF 75 (85) 30 (20) 24 (1) -73.52 -4.86 -42.55
8 11.55 36.81 WF (WF) 75 (85) 30 (20) 24 (1) -225.41 -9.44 -34.07
8 11.55 36.81 WF 75 (85) 30 (20) 24 (1) -225.41 -9.44 -34.07
9 13.23 47.92 WF (BF) 75 (75) 20 (30) 12 (1) -90.06 -18.63 -119.76
9 13.23 47.92 WF 75 (75) 20 (30) 12 (1) -64.35 -21.12 -98.14

10 14.95 47.92 WF (WF) 75 (75) 30 (30) 1 (24) -58.39 -2.67 7.34
10 14.95 47.92 WF 75 (75) 30 (30) 1 (24) -58.39 -2.67 7.34

Table 7.31: Relative response time differences

presented in relative and absolute numbers, for all parameter settings includ-

ing the placement strategy in the first table row for each scenario. The second

table row for each scenario gives the comparison for all parameters but the

placement strategy. For the latter we restrict the comparison to the worst fit

placement strategy, which is given in tables in the second scenario row. The

entries contained in brackets denote the configuration that delivered the worst

results.

7.3.1 Average Response Time Differences

The comparison for average response time reflects the findings presented in

figure 7.10. Irrespective of the settings of the remaining configuration, the de-

tection delay has a main influence on the average response times. With optimal

parameter settings, the average response times can be improved by 58.39 an

up to 225.41% for all parameters (on average 124.26%), which corresponds to

56.46 up to 253.22% improvement in absolute terms as given in table 7.32 (ab-
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Scen. µ Exp. Pl.. Upper Lower Det. µ Real. Am.
Id VM Eff. Strat. Thres. Thres. Delay Rsp. Eff. Mig.

CPU Time
1 5.99 19.44 WF (BF) 85 (75) 20 (30) 24 (1) -71.38 0.36 -274.50
1 5.99 19.44 WF 85 (75) 20 (30) 24 (6) -35.29 0.79 -363.50
2 6.48 29.86 BF (WF) 75 (75) 20 (30) 36 (6) -201.64 -3.46 -94.00
2 6.48 29.86 WF 75 (75) 30 (30) 36 (6) -199.48 1.39 -179.50
3 7.11 24.31 BF (BF) 75 (75) 30 (30) 24 (6) -56.46 1.07 -153.50
3 7.11 24.31 WF 75 (75) 30 (30) 36 (6) -35.60 0.62 -89.50
4 9.25 34.03 WF (BF) 75 (75) 20 (30) 24 (1) -120.49 -4.08 -300.50
4 9.25 34.03 WF 75 (75) 20 (30) 24 (1) -79.35 -3.42 -213.50
5 10.19 34.03 WF (WF) 75 (85) 20 (20) 24 (1) -244.69 1.83 11.00
5 10.19 34.03 WF 75 (85) 20 (20) 24 (1) -244.69 1.83 11.00
6 10.40 23.61 WF (WF) 75 (85) 30 (20) 24 (1) -122.23 -0.96 -65.50
6 10.40 23.61 WF 75 (85) 30 (20) 24 (1) -122.23 -0.96 -65.50
8 11.55 36.81 WF (WF) 75 (85) 30 (20) 24 (1) -240.63 -3.40 -31.00
8 11.55 36.81 WF 75 (85) 30 (20) 24 (1) -240.63 -3.40 -31.00
9 13.23 47.92 WF (BF) 75 (75) 20 (30) 12 (1) -253.22 -7.10 -182.50
9 13.23 47.92 WF 75 (75) 20 (30) 12 (1) -180.93 -8.05 -149.50

10 14.95 47.92 WF (WF) 75 (75) 30 (30) 1 (24) -213.73 -1.18 16.00
10 14.95 47.92 WF 75 (75) 30 (30) 1 (24) -213.73 -1.18 16.00

Table 7.32: Absolute response time differences

solute refers to the comparison to the response times delivered by the baseline

consolidation scenario). At the same time the amount of migrations decrease

for almost all scenarios (only for scenarios 5 and 10 the amount of migrations

increased slightly by 9.36 an 7.34%). For scenario 5 the increase of the up-

per threshold to 85 % caused this effect: the higher server utilization levels

cause the response time increase, the higher amount of migrations is due to the

lower upper threshold. The higher upper threshold is the main contributor to

the worsening of the average response times in this case. For scenario 10 the

shorter detection delay is causing the higher amount of migrations, which is

in line with our previous finding: it is beneficial to initiate migrations quickly

for scenarios with high average capacity demands per virtual machine. The

comparison of the delivered efficiency does not allow for a distinct statement

as the improvements (positive values) and the deterioration do no follow a sys-

tematic pattern. The effects of the placement strategy in combination with the

detection delays and the threshold settings emerge by chance under response

time minimization objectives.
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Scen. µ Exp. Pl.. Upper Lower Det. µ Real. Am.
Id VM Eff. Strat. Thres. Thres. Delay Rsp. Eff. Mig.

CPU Time
1 5.99 19.44 WF (BF) 85 (75) 20 (30) 36 (1) -72.41 4.43 -333.63
1 5.99 19.44 WF 85 (75) 20 (30) 24 (1) -56.64 4.22 -321.68
2 6.48 29.86 WF (BF) 75 (75) 30 (30) 36 (1) -123.49 9.97 -416.73
2 6.48 29.86 WF 75 (75) 30 (30) 36 (1) -90.34 11.17 -381.12
3 7.11 24.31 BF (BF) 75 (75) 30 (30) 36 (1) -56.66 8.64 -165.75
3 7.11 24.31 WF 75 (75) 30 (30) 36 (1) -16.31 2.89 -107.94
4 9.25 34.03 BF (BF) 75 (75) 30 (30) 24 (1) -49.05 1.37 -189.09
4 9.25 34.03 WF 75 (75) 30 (30) 36 (1) -26.15 0.04 -134.47
5 10.19 34.03 WF (BF) 85 (75) 20 (30) 24 (1) 35.72 -6.36 -192.65
5 10.19 34.03 WF 85 (75) 20 (30) 24 (1) 55.19 -12.12 -141.62
6 10.40 23.61 WF (BF) 75 (75) 30 (30) 36 (1) -6.55 -2.57 -143.35
6 10.40 23.61 WF 75 (75) 30 (30) 36 (1) 9.92 2.78 -109.61
8 11.55 36.81 WF (BF) 75 (75) 30 (30) 24 (1) -57.18 -0.81 -100.74
8 11.55 36.81 WF 75 (75) 30 (30) 24 (1) -31.02 -1.47 -76.48
9 13.23 47.92 WF (BF) 75 (75) 20 (30) 12 (1) -71.56 -12.99 -228.92
9 13.23 47.92 WF 75 (75) 20 (30) 12 (1) -48.36 -15.37 -196.57

10 14.95 47.92 WF (BF) 75 (75) 30 (30) 36 (1) 7.89 0.80 -238.01
10 14.95 47.92 WF 75 (75) 30 (30) 36 (1) 30.60 4.62 -175.60

Table 7.33: Relative differences in amount of migrations

7.3.2 Differences in Amount of Migrations

Comparable to the average response times, the amount of migrations can be

significantly decreased by setting the control parameters in an optimal way.

For all scenarios, the decrease ranges between 100.74 and 416.73% for all pa-

rameters and 76.48 and 381.12% for the restricted parameter set. Interestingly

the rates of improvements are very similar for both parameter sets. We may

conclude that the detection delay is the most influential factor for the amount

of migrations as the worst results were always delivered by the shortest de-

tection delay. Therefore we discussed the reactiveness and accuracy of the

demand predictor at length in chapter 7. Table 7.33 gives the absolute values

for the relative ata given in table 7.33

7.3.3 Differences in Efficiency

Table 7.35 is listing the results for the efficiency comparison. The best con-

figuration leads to 6.18 and up to 39.22% relative increase in efficiency for
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Scen. µ Exp. Pl.. Upper Lower Det. µ Real. Am.
Id VM Eff. Strat. Thres. Thres. Delay Rsp. Eff. Mig.

CPU Time
1 5.99 19.44 WF (BF) 85 (75) 20 (30) 36 (1) -45.12 0.83 -377
1 5.99 19.44 WF 85 (75) 20 (30) 24 (1) -35.29 0.79 -363.50
2 6.48 29.86 WF (BF) 75 (75) 30 (30) 36 (1) -130.25 3.01 -265.33
2 6.48 29.86 WF 75 (75) 30 (30) 36 (1) -95.28 3.37 -242.66
3 7.11 24.31 BF (BF) 75 (75) 30 (30) 36 (1) -37.36 2.05 -226.25
3 7.11 24.31 WF 75 (75) 30 (30) 36 (1) -12.28 0.68 -183.50
4 9.25 34.03 BF (BF) 75 (75) 30 (30) 24 (1) -83.50 0.36 -312
4 9.25 34.03 WF 75 (75) 30 (30) 36 (1) -44.07 0.01 -223.67
5 10.19 34.03 WF (BF) 85 (75) 20 (30) 24 (1) 134.59 -1.80 -205.17
5 10.19 34.03 WF 85 (75) 20 (30) 24 (1) 207.98 -3.43 -150.83
6 10.40 23.61 WF (BF) 75 (75) 30 (30) 36 (1) -14.88 -0.49 -194
6 10.40 23.61 WF 75 (75) 30 (30) 36 (1) 22.55 0.53 -148.34
8 11.55 36.81 WF (BF) 75 (75) 30 (30) 24 (1) -61.04 -0.29 -91.67
8 11.55 36.81 WF 75 (75) 30 (30) 24 (1) -33.11 -0.53 -69.60
9 13.23 47.92 WF (BF) 75 (75) 20 (30) 12 (1) -222.91 -5.20 -233.50
9 13.23 47.92 WF 75 (75) 20 (30) 12 (1) -150.62 -6.15 -200.50

10 14.95 47.92 WF (BF) 75 (75) 30 (30) 36 (1) 41.60 0.37 -192
10 14.95 47.92 WF 75 (75) 30 (30) 36 (1) 161.40 2.14 -141.66

Table 7.34: Absolute differences in amount of migrations

all parameters and between 6.18 and 35.68% for the restricted parameter set.

Table 7.36 gives the absolute numbers. Again it becomes obvious that the best

configurations are obtained by increasing the upper threshold. The worst are

almost exclusively delivered by decreasing the lower thresholds. As the amount

of migrations is not exposing a clear pattern it is also intuitive to state that

the amount of migrations does not influence on operational efficiency. As the

response times do not expose any obvious nor signifiant dependencies, we may

confirm that while there is a relationship between the scenario characteristics

and the response times delivered by reactive control, there is no relationship

to be found between response times and operational efficiency.

7.3.4 Selection Tradeoffs

The per scenario analysis given in this section mirrored the statistics-based

statements that we derived previously in this chapter, albeit on a more quali-

tative level. We may conclude that while it is possible to derive well performing
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Scen. µ Exp. Pl.. Upper Lower Det. µ Real. Am.
Id VM Eff. Strat. Thres. Thres. Delay Rsp. Eff. Mig.

CPU Time
1 5.99 19.44 WF (BF) 75 (75) 30 (20) 24 (1) -3.55 17.20 -52.43
1 5.99 19.44 WF 75 (75) 30 (20) 24 (24) -15.27 16.22 30.26
2 6.48 29.86 BF (WF) 75 (75) 30 (20) 36 (36) 22.55 39.22 -38.10
2 6.48 29.86 WF 75 (75) 30 (20) 24 (36) 29.30 35.68 0.98
3 7.11 24.31 BF (WF) 75 (75) 30 (20) 36 (1) -25.54 9.10 -144.69
3 7.11 24.31 WF 75 (75) 30 (20) 12 (1) 4.88 8.41 -62.93
4 9.25 34.03 BF (WF) 75 (75) 30 (20) 24 (1) 21.73 16.84 -6.97
4 9.25 34.03 WF 85 (75) 20 (20) 1 (1) 35.87 15.40 7.83
5 10.19 34.03 BF (WF) 75 (85) 30 (20) 12 (1) 8.52 20.66 43.47
5 10.19 34.03 WF 75 (75) 30 (20) 24 (1) -22.25 16.85 26.77
6 10.40 23.61 BF (WF) 75 (75) 20 (20) 1 (24) 21.20 23.66 43.15
6 10.40 23.61 WF 75 (75) 30 (20) 12 (24) 11.68 22.90 9.03
8 11.55 36.81 WF (WF) 85 (75) 30 (20) 24 (24) 40.66 26.96 -16.60
8 11.55 36.81 WF 85 (75) 30 (20) 24 (24) 40.66 26.96 -16.60
9 13.23 47.92 WF (WF) 75 (75) 30 (20) 1 (12) 39.15 17.44 49.53
9 13.23 47.92 WF 75 (75) 30 (20) 1 (12) 39.15 17.44 49.53

10 14.95 47.92 WF (WF) 75 (75) 30 (30) 6 (12) -53.20 6.18 0.84
10 14.95 47.92 WF 75 (75) 30 (30) 6 (12) -53.20 6.18 0.84

Table 7.35: Relative differences in efficiency

Scen. µ Exp. Pl.. Upper Lower Det. µ Real. Am.
Id VM Eff. Strat. Thres. Thres. Delay Rsp. Eff. Mig.

CPU Time
1 5.99 19.44 WF (BF) 75 (75) 30 (20) 24 (1) -2.52 3.35 -162
1 5.99 19.44 WF 75 (75) 30 (20) 24 (24) -10.84 3.16 93.50
2 6.48 29.86 BF (WF) 75 (75) 30 (20) 36 (36) 36.92 12.61 -28
2 6.48 29.86 WF 75 (75) 30 (20) 24 (36) 52.57 10.84 1
3 7.11 24.31 BF (WF) 75 (75) 30 (20) 36 (1) -16.84 2.16 -197.50
3 7.11 24.31 WF 75 (75) 30 (20) 12 (1) 4.25 1.98 -129
4 9.25 34.03 BF (WF) 75 (75) 30 (20) 24 (1) 36.99 4.44 -11.50
4 9.25 34.03 WF 85 (75) 20 (20) 1 (1) 74.52 3.99 15
5 10.19 34.03 BF (WF) 75 (75) 30 (20) 12 (1) 17.69 6.98 111.50
5 10.19 34.03 WF 75 (75) 30 (20) 24 (1) -34.55 5.43 53
6 10.40 23.61 BF (WF) 75 (75) 20 (20) 1 (24) 47.03 5 127.50
6 10.40 23.61 WF 75 (75) 30 (20) 12 (24) 23.11 4.79 16.67
8 11.55 36.81 WF (WF) 85 (75) 30 (20) 12 (24) 125.73 10.95 -19.17
8 11.55 36.81 WF 85 (75) 30 (20) 24 (24) 125.73 10.95 -19.17
9 13.23 47.92 WF (WF) 75 (75) 30 (20) 1 (12) 180.93 8.05 149.83
9 13.23 47.92 WF 75 (75) 30 (20) 1 (12) 180.93 8.05 149.83

10 14.95 47.92 WF (WF) 75 (75) 30 (30) 6 (12) -195.79 2.89 1.67
10 14.95 47.92 WF 75 (75) 30 (30) 6 (12) -195.79 2.89 1.67

Table 7.36: Absolute differences in efficiency
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parameter settings that lead to distinct results for the three metrics of inter-

est. However optimizing average response times, operational efficiency and

the amount of migrations at the same time is not possible using the same

parameter settings. Especially the fact that there is no obvious relationship

between efficiency and response times renders static consolidation a more reli-

able management method, as the adverse effects induced by overbooking and

uncertainty are more predictable and traceable (clearly static consolidation

leads to much more severe response time degradation if control actions are

required but not executed at all).

7.4 Virtual Machine Swaps

The scenarios 6 and 10 suffer from the ”memory induced efficiency deadlock”

effect. Therefore we considered these two scenarios as good candidates for

virtual machine swaps that may increase the efficiency of reactive control.

However, swaps do not guarantee improved efficiency. We found that swaps do

increase the amount of migrations without significantly increasing efficiency.

The experiment group 16 is compromised of the two scenarios. In the two

subsections to follow, we compare the experiment runs on an average and a

run by run basis.

7.4.1 Scenario 6

Table 7.37 gives results for the experiments runs without swaps for the best (24)

and worst detection delay (1) with respect to average response times for the

experiment configurations (WF / 30 / 75). Table 7.38 gives the average values

for the run results in table 7.37. Table 7.39 gives results for the experiments

runs with swaps for the for the same experiment configurations. Table 7.40

gives the average values for the run results in table 7.39. Comparing the
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Scen. µ Exp. Pl.. Upper Lower Det. µ Real. Am.
Id VM Eff. Strat. Thres. Thres. Delay Rsp. Eff. Mig.

CPU Time
6 10.40 23.61 WF 75 30 1 212.96 18.03 278
6 10.40 23.61 WF 75 30 1 201.83 17.81 274
6 10.40 23.61 WF 75 30 24 171.12 19.58 163
6 10.40 23.61 WF 75 30 24 159.83 19.81 148

Table 7.37: Scenario 6, detection delay 1 and 24 run metrics

Scen. µ Exp. Pl.. Upper Lower Det. µ Real. Am.
Id VM Eff. Strat. Thres. Thres. Delay Rsp. Eff. Mig.

CPU Time
6 10.40 23.61 WF 75 30 1 207.40 17.92 276
6 10.40 23.61 WF 75 30 24 165.48 19.64 150.5

Table 7.38: Scenario 6, detection delay 1 and 24 average metrics

Scen. µ Exp. Pl.. Upper Lower Det. µ Real. Am.
Id VM Eff. Strat. Thres. Thres. Delay Rsp. Eff. Mig.

CPU Time
6 10.40 23.61 WF 75 30 1 386.82 19.34 305
6 10.40 23.61 WF 75 30 1 312.48 18.90 297
6 10.40 23.61 WF 75 30 24 224.77 19.82 168
6 10.40 23.61 WF 75 30 24 259.24 19.23 162

Table 7.39: Scenario 6, detection delay 1 and 24 run metrics
with swaps

Scen. µ Exp. Pl.. Upper Lower Det. µ Real. Am.
Id VM Eff. Strat. Thres. Thres. Delay Rsp. Eff. Mig.

CPU Time
6 10.40 23.61 WF 75 30 1 349.65 19.12 301.00
6 10.40 23.61 WF 75 30 24 242.00 19.53 165.00

Table 7.40: Scenario 6, detection delay 1 and 24 average metrics
with swaps
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Scen. µ Exp. Pl.. Upper Lower Det. µ Real. Am.
Id VM Eff. Strat. Thres. Thres. Delay Rsp. Eff. Mig.

CPU Time
10 14.95 47.92 WF 75 30 1 310.46 44.03 209
10 14.95 47.92 WF 75 30 1 404.73 43.69 238

Table 7.41: Scenario 10, detection delay 1, run metrics

Scen. µ Exp. Pl.. Upper Lower Det. µ Real. Am.
Id VM Eff. Strat. Thres. Thres. Delay Rsp. Eff. Mig.

CPU Time
10 14.95 47.92 WF 75 30 1 357.60 43.86 218.5

Table 7.42: Scenario 10, detection delay 1, average metrics

average results we can clearly see that the amount of migrations increased,

while the effect on operational efficiency is very limited: it increases only

slightly for the detection delay 1 case, or the detection delay 24 case it even

dropped slightly. In both cases the average response time increased due to

the increased amount of migrations. Swaps did not realize their aim in this

scenario.

7.4.2 Scenario 10

Table 7.41 gives results for the experiments runs without swaps for the worst

detection delay (1) with respect to average response times for the experiment

configurations (WF / 30 / 75). Table 7.42 gives the average values for the run

results in table 7.37. Table 7.43 gives results for the experiments runs with

swaps for the for the same experiment configurations. Table 7.44 gives the

average values for the run results in table 7.43. Comparing the average results

we can see that the amount of migrations increased, the average response times

increased and the efficiency increased slightly.

From our experiments we can not support the claim provided by Wood et al.

(2009a). In our experimental setup swaps did not reduce wasted capacity and
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Scen. µ Exp. Pl.. Upper Lower Det. µ Real. Am.
Id VM Eff. Strat. Thres. Thres. Delay Rsp. Eff. Mig.

CPU Time
10 14.95 47.92 WF 75 30 1 485.38 45.19 256
10 14.95 47.92 WF 75 30 1 410.82 44.68 230

Table 7.43: Scenario 10, detection delay 1, run metrics with
swaps

Scen. µ Exp. Pl.. Upper Lower Det. µ Real. Am.
Id VM Eff. Strat. Thres. Thres. Delay Rsp. Eff. Mig.

CPU Time
10 14.95 47.92 WF 75 30 1 448.10 44.94 238

Table 7.44: Scenario 10, detection delay 1, average metrics with
swaps

improved load balancing to a significant extend. On the contrary, swaps lead

to increased numbers of live migrations which leads to higher overheads and

application performance degradation. As the selected test scenarios exposed

allocation problems that we expected to be solved by swaps, we did not extend

our study to other scenarios. Our insights do not justify the usage of swaps.

7.5 Causes for Excessive Amounts of Migra-

tions

As we have shown in the preceding sections, the amount of migrations executed

by the reactive control system is often found to be much higher than the

expected amount of migrations. This behavior is due to several reasons:

• Aggressiveness of threshold values: If the operational corridor, induced

by the upper and lower thresholds is too narrow, the control system

is operating in a too aggressive mode. However, choosing the corridor

too widely either leads to lost efficiency or to application performance
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degradation: too high upper thresholds lead to severe overloads during

migration execution, too low high values require much more physical

servers. Too low lower threshold values lead to lost efficiency, too high

lower threshold values lead to oscillations as we move high demand vir-

tual machines first, then smaller ones.

• Non effectiveness migrations: It is unknown to the controller whether the

evacuation of a server can be realized or not. The controller does do con-

sider the current system state to estimate whether the virtual machines

of one or several under-loaded servers can be consolidated on the re-

maining physical servers? If it is not possible to fully evacuate a physical

server, no migrations should be triggered at all. We have tested a tenta-

tive version of the controller that uses a randomized first fit placement

algorithm to determine whether the amount of required physical servers

can be reduced. In case it is possible an evacuation enabled, if not, no

migration is issued from under-loaded physical servers. We executed 4

experiment runs, which lead to a reduction of migrations of about 3.28%

on average. During times of high resource demands almost no reduction

could be observed as well as no impact on response times. The tentative

controller prevented unnecessary migrations during times of declining

demands, delaying the shrinkage of the set of required physical servers.

Therefore almost no impact on response times could be observed. The

tentative controller could not deliver substantial improvements.

• Consolidation overheads: Non-additive resource demands, especially for

virtual machines with memory intensive workloads lead to bad placement

decisions. Therefore the worst fit placement strategy performs better

as it allows for more headroom for uncertainty and compensates bad

demand estimations.

• Placement decisions: Ad-hoc placement decisions can not be expected to

find an optimal allocation and may not even realize them as (multiway)
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swaps may be required that require perfect clairvoyance.

• Virtual machine selection: Which virtual machine is selected for migra-

tion in response to an overload depends on the intensity of the overload.

If overload is detected at the instant it occurs, the selection procedure will

migrate a low demand virtual machines as the intensity is only slightly

developed. However, low demand virtual machines are most often than

not the reason for experiencing overloads. While the migration of a

small virtual machine also lowers the measured resource demands of the

co-located virtual machines, more often not it would be better to migrate

a virtual machine with higher demands, incurring higher migration over-

heads, but at the same time it would resolve the overload.

• Demand estimation lagging: Due to the non-preventable fact that re-

source demand estimation lags behind, it happens that a server is classi-

fied as under-loaded even though its resource demands are rising. As we

migrate the currently most utilized virtual machine it may happen that

this move leads to an overload on another physical server shortly after

the migration has been executed.

Due to the inevitable shortcomings of the reactive control systems, we evaluate

static consolidation with resource overbooking in the next section.

7.6 Reactive Control versus Overbooking

The high amount of migrations and the overheads in terms of CPU and network

bandwidth in combination with the degradation of application performance

do not allow for a fair comparison of reactive runs with static consolidation.

Therefore we reduced the amount of physical servers available for virtual ma-

chine assignment in comparison to the the base consolidation scenario. To do

so, we reduce the resource demand estimates for the virtual machines in each
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time interval iteratively by 0.5% and calculated a new assignment until we were

able to reduced the number or required physical servers by one. This leads to a

systematic underestimation of the resource demands of virtual machines and a

reduction in required physical servers, which is often referred to as overbooking

(Urgaonkar et al., 2009). In the following we give an average comparison on

the response times and efficiency achieved by overbooking resources as finding

the right control parameters for a reactive control system is dependent on the

overall workload characteristics and other factors. Therefore we assume an

average case by calculating the mean response time and mean efficiency over

all reactive control runs executed in the experiment groups 1 - 11 and compare,

on a scenario basis, the delivered efficiency and response times with the same

metrics achieved by overbooking by a given percentage. We compare, on a

scenario basis, the delivered efficiency and response times with the efficiency

achieved by overbooking by 16.66, 33.33 and 50.00% which relates to reducing

the amount of physical servers from 6 to 5, 4 and 3. Please note that we do

not reduce the amount of servers to 3 for all scenarios as this would not have

been possible for scenarios with relatively large amounts of virtual machines:

The minimum number of servers is restricted by main memory demands.

As it is hard to determine the best control system parameters for any given

workload scenario, the mean case, that is the average of the mean response

times and efficiency over all reactive control runs is the fairest comparison ba-

sis for overbooking. As can be seen in figure 7.11 and table 7.45, overbooking

is even more competitive, especially for scenarios with large virtual machine

capacities. Overbooking by 33.33% outperforms or comes close to dynamic

workload management in terms of operational efficiency. For scenarios with

large virtual machines, the response times are even better, while for the re-

maining scenarios, the degradations are moderate. Overbooking by 50.00%

might be acceptable, as the response time penalty for very large scenarios is

about 300%, but delivers almost 5% better operational efficiency.

According to the average case comparison, resource overbooking is a viable
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Figure 7.11: Overbooking versus mean case

Scenario 1 2 3 4 5 6 8 9 10
16.66 % µ Rsp. -31.11 130.24 -72.64 124.75 112.18 136.83 134.05 242.19 308.86
16.66 % Eff. 1.50 11.08 6.08 7.95 13.60 2.64 18.72 27.08 28.87
33.33 % µ Rsp. -471.46 57.90 -323.00 -80.97 -84.84 -83.11 65.42 132.07 46.47
33.33 % Eff. -15.17 -5.59 -10.59 -8.72 -3.07 -14.03 2.05 10.41 12.20
50.00 % µ Rsp. 0.00 0.00 0.00 0.00 -682.75 -788.31 -574.75 -293.29 -332.07
50.00 % Eff. -30.70 -22.26 -27.26 -31.84 -25.39 -19.74 -14.62 -6.26 -4.47
µ CPU VM 5.99 6.48 7.11 9.25 10.19 10.40 11.55 13.23 14.95

Table 7.45: Overbooking versus mean case, summary statistics
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alternative to dynamic workload management as it is afflicted with overheads

and response time degradation. In appendix D, we provide an analysis of

the expected, minimum and maximum cases. The mean case reveals that

overbooking of a percentage between 16.66% and 33.33% is balancing out the

response time penalties with operational efficiency. In a real world consoli-

dation scenario, we are give much more servers. There, it is perceivable to

find an overbooking level that renders overbooking as efficient as reactive con-

trol and delivers about the same average response times. Even the minimum

case suggests that moderate overbooking of about 16.66% is advisable for data

center operators for all types of scenarios. Our results indicate that resource

overbooking in combination with very careful, damped reactive control system

design is a very promising combination to balance out response time service

levels with operational efficiency.



Chapter 8

Conclusion

The main scientific contribution of the presented work is the experimental

evaluation of a reactive control system for virtualized data centres and a com-

parison with static server consolidation and resource overbooking for enterprise

application. We explicitly aimed at studying typical instantiations of normal

resource demand behavior of virtual machines to gain unbiased and represen-

tative insights. The comparison revealed that dynamic management is su-

perior to conservative server consolidation when assuming CPU as the main

bottleneck resource. However, more aggressive server consolidation plans incur

only short periods of overloads with acceptable shortage intensities and come

close to reactive control methods in terms of operational efficiency and deliv-

ered application performance. Due to the real-time requirements for reactive

control systems and high levels of uncertainty for future resource demands,

more often than not ad-hoc virtual machine placement decisions lead to much

more virtual machine live migrations than required. Migrations have a sig-

nificant impact on application response times even for benchmark scenarios

with moderate average workload levels. We compared the results of more

aggressive consolidation planning and showed that it is feasible to overbook

CPU resources in a way that renders static server consolidation preferable
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over dynamic workload management. Reactive control is indeed able to real-

ize potential efficiency gains in comparison to static consolidation but is not

able to deliver comparable levels of application response times. However, the

optimal parameterization of reactive control systems is heavily dependent on

the characteristics of the data centre wide workload and parameter settings

are often hard to tune towards the desired operational goal metric. An equi-

librium between delivered response times and operational efficiency is only

achievable by incurring significant overheads on the infrastructure. Therefore,

static consolidation and resource overbooking turn out to be preferable over

dynamic workload management as the combination of unavoidable prediction

and detection delays renders heavy weight control actions more often than not

ineffective.

We have to mention that our results are, to a certain extend, bound to the sys-

tem configuration of our testbed. Several realization choices and the hardware

setup influence these results, especially the effect of migration and consolida-

tion overheads can be expected to be less severe for higher quality hardware

equipment used in today’s enterprise data centres. It is also perceivable that

reactive control can be improved upon by incorporating online consolidation

overhead estimation procedures. Nevertheless, we believe that our main claim

holds for other setups as well: Aggressive, static sever consolidation is com-

petitive with any dynamic control approach, even if dynamic control unfolds

its efficiency potential to the fullest extend.

Our insights may be used to improve existing control systems that combine

pre-computed virtual machine to physical server assignments with carefully

designed anomaly detection and conditioning strategies. By combining aggres-

sive overbooking methods with reactive anomaly handling and predetermined

consolidation schedules, better results may be obtained for dynamic workload

management. Furthermore, adjusting the detection delay and threshold set-

tings according to the relative workload intensity may allow for less migrations

overheads.
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As we have given the first extensive study on reactive control systems in a real

world testbed, we have brought up several issues that have not been addressed

by other scientific studies. Partially, our results are in contradiction and cast a

different light on the results existing studies have drawn out. This is due to the

fact that most existing studies are based on computer simulations and assump-

tions about migration overheads that do not hold true in real infrastructures.

In contrast to studies that have been executed in real testbeds, we provide a

more rigorous and transparent evaluation of strengths and weaknesses of reac-

tive control systems and give in depth results that support design choices and

system implementation rationales.



Appendix A

Consolidation Overheads

In table A.1 we provide results for experiments executed with two virtual ma-

chines serving non-equal amounts of virtual users. Each row in the table is

marked with a type. Type 1 marks the measured resource demands and gives

the consolidation overhead in percent compared type 2, which gives the re-

source demand expected under additivity. The overheads deviate from the

symmetric case. For 40 virtual users, the overheads are slightly less, but we

have to note that for most other cases, the asymmetric overheads are higher.

One reason for this observation is that high demand levels for a single vir-

tual machine lead to a strong dependence on the effectiveness of hardware

caches. The displacement of memory pages in the caches, caused by low de-

mand co-located virtual machines leads to higher cache miss rates for all vir-

tual machines, requiring more cycles per instruction, and hence leads to higher

processor utilization.

Table A.2 lists the results for experiments executed with four virtual machines

serving non-equal amounts of virtual users. For four virtual machines, sim-

ilar observations can be derived as for the two virtual machine asymmetric

workload experiments. If there are highly loaded virtual machines competing

for hardware resources with lightly loaded virtual machines, the highly loaded

219
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Virtual Split Virtual Cores µ 50 % σ Type Overhead Symmetric
Users Machines in % Overhead

40 30/10 2 1 14.91 15.13 2.76 1 6.10 6.99
40 30/10 2 1 - 14.26 0 2 0 -
80 60/20 2 1 24.89 25.19 3.25 1 14.65 10.24
80 60/20 2 1 - 21.97 0 2 0 -

120 100/20 2 1 34.79 34.81 3.5 1 14.92 20.30
120 100/20 2 1 - 30.29 0 2 0 -
120 90/30 2 1 36.79 36.99 4.56 1 23.84 20.30
120 90/30 2 1 - 29.87 0 2 0 -
120 80/40 2 1 39.41 39.77 6.03 1 25.73 20.30
120 80/40 2 1 - 31.63 0 2 0 -
160 120/40 2 1 50.41 51.27 7.53 1 34.25 25.52
160 120/40 2 1 - 38.19 0 2 0 -
160 100/60 2 1 52.79 53.21 7.94 1 43.04 25.52
160 100/60 2 1 - 37.20 0 2 0 -
200 160/40 2 1 63.04 63.54 7.93 1 44.5 36.58
200 160/40 2 1 - 43.97 0 2 0 -
200 120/80 2 1 67.95 67.72 8.49 1 55.68 36.58
200 120/80 2 1 - 44.14 0 2 0 -
220 200/20 2 1 75.35 75.37 10.84 1 57.97 -
220 200/20 2 1 - 47.71 0 2 0 -
240 200/40 2 1 84.3 86.78 9.97 1 63.4 75.83
240 200/40 2 1 - 53.11 0 2 0 -
240 160/80 2 1 98.08 99.28 2.97 1 102.28 75.83
240 160/80 2 1 - 49.92 0 2 0 -
260 200/60 2 1 99.3 99.72 1.79 1 81.97 -
260 200/60 2 1 - 54.80 0 2 0 -

Table A.1: Monolithic application consolidation overheads for
asymmetric workload distributions, one virtual core, two virtual

machines



221

Virtual Split Virtual Cores µ 50 % σ Type Overhead Symmetric
Users Machines in % Overhead

80 40/20/10/10 4 1 35.07 35.88 4.43 1 27.73 23.86
80 40/20/10/10 4 1 - 28.09 0 2 0 -
80 30/30/10/10 4 1 35.74 35.29 4.73 1 23.74 23.86
80 30/30/10/10 4 1 - 28.52 0 2 0 -

120 90/10/10/10 4 1 46.82 47.73 6.57 1 35.97 30.32
120 90/10/10/10 4 1 - 35.97 0 2 0 -
120 50/50/10/10 4 1 49.44 49.83 5.73 1 34.82 30.32
120 50/50/10/10 4 1 - 36.96 0 2 0 -
120 60/20/20/20 4 1 51.2 50.38 9.81 1 39.43 30.32
120 60/20/20/20 4 1 - 35.85 0 2 0 -
120 40/40/20/20 4 1 52.55 53.84 5.49 1 32.74 30.32
120 40/40/20/20 4 1 - 40.56 0 2 0 -
150 120/10/10/10 4 1 57.92 58.82 8.27 1 44.8 -
150 120/10/10/10 4 1 - 40.62 0 2 0 -
160 80/60/10/10 4 1 65.56 65.99 8.85 1 54 36.00
160 80/60/10/10 4 1 - 43.5 0 2 0 -
190 160/10/10/10 4 1 73.39 73.45 8.92 1 58.3 -
190 160/10/10/10 4 1 - 46.4 0 2 0 -

Table A.2: Monolithic application consolidation overheads for
asymmetric workload distributions, one virtual core, four virtual

machines

virtual machines are the root cause for additional processor demands.



Appendix B

Consolation Overhead

Estimation

B.1 Database Consolidation Overheads

As the consolidation overheads can be accounted to the main memory access

behavior of the applications running in a virtual machine, we conducted the

consolidation overhead experiments for databases as well. Figure B.1 gives

the CPU demands for a single database virtual machine running in isolation

on a physical server. Figure B.2 visualizes the consolidation overheads for two

database servers. As we expected, the relative overheads (for comparable CPU

demand levels) are by far smaller than those measured for the monolithic appli-

cation configuration. The same observation applies to four virtual machines

(figure B.3) and eight virtual machines (figure B.4). The effect is due to the

less main memory requirements for database servers than for the monolithic

application configuration and much less dependence on cache performance.

I/O performance is more influential for this type of workload. Figure B.5 gives

the overhead estimation function for database virtual machines. Its shape is

similar to the shape of the monolithic application configuration function.
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Figure B.1: Database server CPU demands one virtual machine
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Figure B.2: Database consolidation overhead estimation for two
virtual machines, one virtual core
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Figure B.3: Database consolidation overhead estimation for four
virtual machines, one virtual core
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Figure B.4: Database consolidation overhead estimation for
eight virtual machines, one virtual core
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Figure B.5: Database server consolidation overhead estimation
function, one virtual core
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Figure B.6: Application server CPU demands one virtual
machine
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Figure B.7: Application server consolidation overhead
estimation for two virtual machines, one virtual core

B.2 Application Server Consolidation Over-

heads

Figure B.6 gives the CPU demands for a single application server virtual ma-

chine running in isolation on a physical server. Figure B.7 gives the consolida-

tion overheads for two co-located application server virtual machines. Again

the relative overheads are smaller than those measured for the monolithic

application configuration. The same observation applies to four virtual ma-

chines (figure B.8) and eight virtual machines (figure B.9). Figure B.10 gives

the overhead estimation function for application servers virtual machines. Its
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Figure B.8: Application server consolidation overhead
estimation for four virtual machines, one virtual core
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Figure B.9: Application server consolidation overhead
estimation for eight virtual machines, one virtual core
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Figure B.10: Application server consolidation overhead
estimation function, one virtual core
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shape is similar to the shape of the monolithic application configuration and

the database server function. However, the overheads are more pronounced for

application server than for database server virtual machines. The observation

can again be explained by higher dependencies of main memory access and

usage patterns of the application server workload.



Appendix C

Resource Demand Estimation

C.1 Consolidation Run Data Results

Figure C.1 presents the prediction results for six steps ahead forecasts (30

seconds real time). The best smoothers are the SMA6 an ATM6, but are

only slightly better than the EMA6 smoother. As the differences between the

smoothers become less significant, the differences between the smoother and

the forecasting models also decrease further as table C.1 reveals.

228



C.1. CONSOLIDATION RUN DATA RESULTS 229

AR(64) 1024

AR(64) 512

AR(64) 256

AR(32) 1024

AR(32) 512

AR(32) 256

AR(16) 1024

AR(16) 512

AR(16) 256

AR(8) 1024

AR(8) 512

AR(8) 256

SMA 72

SMA 60

SMA 48

SMA 36

SMA 24

SMA 12

SMA 6

QWM 72

QWM 60

QWM 48

QWM 36

QWM 24

QWM 12

QWM 6

Median 72

Median 60

Median 48

Median 36

Median 24

Median 12

Median 6

EMA 72

EMA 60

EMA 48

EMA 36

EMA 24

EMA 12

EMA 6

ATM 72

ATM 60

ATM 48

ATM 36

ATM 24

ATM 12

ATM 6

LAST_VALUE 1

Optimal

Optimal Forecaster vs. Smoother/Forecaster for Lookahead 6

RMSE (Mean +/! Std. Dev.)

S
m

o
o
th

e
r/

F
o
re

c
a
s
te

r

0 1 2 3 4 5 6 7

Optimal: 2.3843 ! 100 %

Last Value abs: 4.0154 ! dif to opt: 1.63 !  168.41 %
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Best Smoother abs: 3.4527 ! dif to opt: 1.07 !  144.81 %

Worst Smoother abs: 4.5927 ! dif to opt: 2.21 ! 192.62 %

Best Forecaster abs: 3.5509 ! dif to opt: 1.17 ! 148.93 %

Worst Forecaster abs: 4.5376 ! dif to opt: 2.15 ! 190.31 %

Figure C.1: Resource Demand Predictor Comparison, 6 Steps
Ahead Forecast

We need to note that the average RMSE values are still very acceptable for

the best predictors ranging between 3.45 and 3.55 in contrast to 1.87 to 2.06.

The last value predictor is losing in relative accuracy.
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Absolute Relative

RMSE Deviation Deviation (%)

Optimal Predictor 2.38 0 0

Last Value 4.01 1.63 68.41

Best Smoother (ATM 6) 3.45 1.07 44.81

Worst Smoother (Median 72) 4.59 2.21 92.62

Best AR (AR(8) 512) 3.55 1.17 48.93

Worst AR (AR(64) 256) 4.53 2.15 90.31

Table C.1: 6 Steps ahead forecast, summary table

Figure C.2 presents the prediction results for 24 steps, or two minute real

time ahead forecasts. The best smoother is the EMA24. At the 24 steps

ahead forecasting horizon, all smoothers with a window length of 12 outper-

form their counterparts with smaller window sizes. The differences between

the smoothers and the window sizes is further decreasing, the differences be-

tween the smoother and the forecasting models also decrease further as table

C.2 reveals. Still, the best smoother is superior in terms of accuracy to the

forecasting models.
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Figure C.2: Resource demand predictor comparison, smoothed
series, 24 steps ahead forecast
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Absolute Relative

RMSE Deviation Deviation (%)

Optimal Predictor 3.45 0 0

Last Value 5.69 2.24 64.77

Best Smoother (EMA 24) 4.92 1.47 42.39

Worst Smoother (Median 72) 5.48 2.03 58.61

Best AR (AR(8) 256) 5.42 1.97 56.95

Worst AR (AR(64) 256) 6.08 2.63 76.00

Table C.2: 24 Steps ahead forecast, summary table

At a forecast horizon of 36 steps, the results are given in figure C.3. The

best smoother is the EMA36. At the 36 steps ahead forecasting horizon, all

smoothers with a window length of 36 outperform their counterparts with

smaller window sizes. The differences between the smoothers and the window

sizes is almost not measurable anymore, the differences between the smoother

and the forecasting models also decrease further as table C.3 reveals. Still the

best smoother is superior in terms of accuracy to the forecasting models. The

best forecasting model is the AR(32) 512, but performs only slightly better

than the last value predictor. At this forecasting horizon, the AR forecasts

can not be considered useful anymore, the predictions by the smoothers can

be considered chance-driven.
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Figure C.3: Resource demand predictor comparison, 36 steps
ahead forecast
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Absolute Relative

RMSE Deviation Deviation (%)

Optimal Predictor 3.92 0 0

Last Value 6.15 2.23 56.78

Best Smoother (EMA 36) 5.41 1.49 37.93

Worst Smoother (Median 72) 5.98 2.05 52.25

Best AR (AR(32) 512) 6.11 2.10 55.73

Worst AR (AR(64) 256) 6.72 2.79 71.13

Table C.3: 36 Steps ahead forecast, summary table

C.2 Resource Demand Traces

Figure C.4 presents the prediction results for six steps ahead forecasts (30 min-

utes real time). The best smoother is the EMA6 filter. The differences between

the types of smoothers with the same smoothing window (ranging between

RMSE values of 6.50 and 6.67) are not significant anymore (e.g. the QMA,

SMA, ATM and EMA deliver statistically non significant results (the Wilcoxon

rank sum test leads to p-values between 0.4047 and 0.6766 for pairwise com-

parisons of the mean), except for the Median filter, that is still performing

worse. the differences between the smoother and the forecasting models also

decrease further as table C.1 reveals.
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Figure C.4: Resource demand predictor comparison, resource
demand smoothed series, 6 steps

We need to note that the average RMSE values are acceptable for the best

predictors ranging between 5.93 and 6.62 in contrast to 3.12 to 3.79 for the

one step ahead predictions. The spread between the forecaster is becoming

less. Notable, the last value predictor is degrading proportionally more in
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accuracy then all other predictors.

Absolute Relative

RMSE Deviation Deviation (%)

Optimal Predictor 4.12 0 0

Last Value 7.35 3.23 78.27

Best Smoother (EMA 12) 6.50 2.38 57.40

Worst Smoother (Median 864) 8.72 4.60 111.35

Best AR (AR(8) 1440) 5.93 1.81 43.69

Worst AR (AR(64) 288) 6.62 2.50 60.57

Table C.4: Resource demand traces: 6 steps ahead forecast,
summary table

Figure C.5 presents the prediction results for 24 steps, or two hours of real

time ahead forecasts. The best smoother is the EMA288. At the 24 steps

ahead forecasting horizon, all smoothers with a window length of 288 outper-

form their counterparts with smaller window sizes. This effect is due to the

daily demand patterns. The last value predictor is the worst predictor of all,

even outperformed by the worst smoother so far (Median864). The differences

between the best and the worst smoothers is further decreasing, the differences

between forecasting models also decrease further as table C.2 reveals. The best

forecasting is superior in terms of accuracy to the bets smoother. However the

large RMSE values indicate that the forecasts are not reliable anymore.
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Figure C.5: Resource demand predictor comparison, resource
demand smoothed series, 24 steps
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Absolute Relative

RMSE Deviation Deviation (%)

Optimal Predictor 5.11 0 0

Last Value 9.63 4.52 88.37

Best Smoother (EMA 288) 7.70 2.59 50.50

Worst Smoother (Median 864) 8.77 3.66 71.56

Best AR (AR(8) 1440) 7.37 2.26 44.14

Worst AR (AR(64) 288) 7.99 2.88 56.30

Table C.5: Resource demand traces: 24 steps ahead forecast,
summary table

At a prediction horizon of 36 steps, the results given in figure C.6 are given

for completeness. The best smoothers are those with window sizes of 288. At

the 36 steps ahead forecasting horizon, smoothers with smaller window sizes

approach the last value predictor. The large RMSE values, also observable for

the forecaster models, in combination with the observation that all forecasting

models perform almost equally bad, as table C.3 reveals, leads us to the con-

clusion that these predictions can not be trusted. At this forecasting horizon,

the AR forecasts can not be considered useful anymore, the predictions by the

smoothers can be considered chance driven.
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Figure C.6: Resource demand predictor comparison, resource
demand smoothed series, 36 steps
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Absolute Relative

RMSE Deviation Deviation (%)

Optimal Predictor 5.40 0 0

Last Value 10.25 4.85 89.82

Best Smoother (EMA 288) 7.87 2.48 45.82

Worst Smoother (Median 12) 9.29 3.91 72.13

Best AR (AR(16) 1440) 7.70 2.30 42.61

Worst AR (AR(64) 288) 8.26 2.86 53.07

Table C.6: Resource demand traces: 36 steps ahead forecast,
summary table



Appendix D

Reactive Control versus

Overbooking

In the following sections we will give a comparison on the response times and

efficiency achieved by overbooking resources in contrast to:

The expected case: Finding the right control parameters for a reactive control

system is dependent on the overall workload characteristics and other factors.

However, if we assume a clairvoyant control strategy that requires a minimum

of migrations the impact on the quality of service metrics of an application may

be much lower than what we achieved in our runs. Hence, in the expected case

we compare the efficiency of overbooking against the baseline consolidation

efficiency and response times. We assume no increase in response times that

would be incurred by control actions.

The minimum case: We select the reactive run from all runs executed in the

experiment groups 1 - 11 that delivered the best average response time and

compare, on a scenario basis, the delivered efficiency and response times with

the same metrics achieved by overbooking by a given percentage.

The maximum case: We select the reactive run from all runs executed in the

241
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experiment groups 1 - 11 that delivered the worst average response time and

compare, on a scenario basis, the delivered efficiency and response times with

the same metrics achieved by overbooking by a given percentage.

During the comparison, we will not strive for statistical significance as our

data set is too small. We rather opt for a qualitative analysis.

D.1 Expected Case

If we expect a control system that delivers the same application performance

as the base consolidation run, we can defer from figure D.1 and table D.1 the

following results:
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Figure D.1: Overbooking versus expected case

1. By reducing the amount of physical servers by one, or 16.66%, the av-

erage response times would get worse for all scenarios (sorted b average
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CPU demand) from 39.51% to 161.70%. The efficiency gains would be

moderate for scenarios with many small sized virtual machines (between

2.78 and 17.37%) and more significant for the remaining scenarios (be-

tween 20.15 and 31.26%). Given the assumption of a very well operating

control system, overbooking would be an alternative in several cases if

we consider CPU an network overheads that are not to avoidable. For

scenarios with large capacitated virtual machines, overbooking is viable,

but dynamic workload management would deliver efficiency benefits.

2. By reducing the amount of physical servers by two, or 33.33%, the av-

erage response times would further worsen for all scenarios (sorted b

average CPU demand) from 108.14% to 558.90%. The slowdown is most

notable for scenarios with small capacitated virtual machines, however

for these scenarios overbooking would already outperform even very ef-

ficient dynamic workload management. The efficiency gains would be

moderate for scenarios with large sized virtual machines (between 3.48

and 14.59%). For medium sized and mixed case scenarios, overbooking

would be favorable over dynamic workload management.

3. A reduction of 50.00% can not be considered viable as the response times

slowdowns (between 660.21 and 982.62%) can be considered as not ac-

ceptable.

Scenario 1 2 3 4 5 6 8 9 10

16.66 % µ Rsp. -118.55 -49.56 -165.15 -57.74 -82.13 -76.57 -39.51 -124.73 -161.70

16.66 % Eff. 2.78 13.20 7.65 17.37 17.37 6.95 20.15 31.26 31.26

33.33 % µ Rsp. -558.90 -121.90 -415.51 -263.46 -279.15 -296.51 -108.14 -234.85 -424.09

33.33 % Eff. -13.89 -3.47 -9.02 0.70 0.70 -9.72 3.48 14.59 14.59

50.00 % µ Rsp. 0.00 0.00 0.00 0.00 -865.24 -982.62 -748.31 -660.21 -802.62

50.00 % Eff. -15.97 -15.97 -13.19 -2.08 -2.08 -26.39 -20.14 -25.69 -30.56

µ CPU VM 5.99 6.48 7.11 9.25 10.19 10.40 11.55 13.23 14.95

Table D.1: Overbooking versus expected case, summary
statistics
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D.2 Minimum Case

We now consider the reactive control runs that delivered the best average re-

sponse time and compare, on a scenario basis, the efficiency and response times

with the same metrics achieved by overbooking experiments. This compari-

son favors reactive control. As such a comparison with the expected case is

obvious.
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Figure D.2: Overbooking versus minimum case

We can defer from figure D.2 and table D.2 the following results:
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Scenario 1 2 3 4 5 6 8 9 10

16.66 % µ Rsp. -65.39 46.79 -116.96 58.85 45.78 83.26 56.58 134.58 148.76

16.66 % Eff. 2.70 10.78 6.96 0.79 14.42 3.15 20.31 22.20 27.37

33.33 % µ Rsp. -505.74 -25.55 -367.32 -146.87 -151.24 -136.68 -12.05 24.46 -113.63

33.33 % Eff. -13.97 -5.89 -9.71 -15.88 -2.25 -13.52 3.64 5.53 10.70

50.00 % µ Rsp. 0.00 0.00 0.00 0.00 -748.65 -854.71 -652.22 -400.90 -492.16

50.00 % Eff. -32.55 -18.92 -13.03 -11.14 -5.97 -30.19 -22.56 -26.38 -30.64

µ CPU VM 5.99 6.48 7.11 9.25 10.19 10.40 11.55 13.23 14.95

Table D.2: Overbooking versus minimum case, summary
statistics

1. By reducing the amount of physical servers by one, or 16.66%, the average

response times of the overbooking runs are almost always better than the

response times delivered by the reactive control runs. In the worst case

the response times degrade by 116.96%, in the best case they are still

better by 148.76%. A slight trend can be observed: the response times

get better for scenarios with relatively large capacitated virtual machines.

The high correlation value of 0.82303 supports this finding, which is in

accordance with our previous findings: the overheads for live migrations

are much more influential for these scenarios. However it is important

to note that the performance degradations incurred by overbooking are

minor. As in the expected case, the efficiency gains would be moderate

for scenarios with many small sized virtual machines (between 2.78 and

14.42%) and more significant for the remaining scenarios (between 20.31

and 27.37%). In contrast to the expected case, the best real experiments

deliver much worse response times and slightly lower efficiency.

2. By reducing the amount of physical servers by two, or 33.33%, the aver-

age response times of almost all scenarios are worse than the best reac-

tive control runs. At he same time the efficiency gains of reactive control

are compensated by overbooking, rendering overbooking a competitive

alternative to dynamic workload management, especially for scenarios
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with small capacitated virtual machines as these scenarios outperform

dynamic workload management by up to 15.88%.

3. Again, a reduction of 50.00% can not be considered viable as the response

times slowdowns (between 400.90 and 854.71%) can be considered as not

acceptable.

D.3 Maximum Case

The maximum case is a comparison based on the worst case performance de-

livered by reactive control and is given in figure D.3 and table D.3.
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Figure D.3: Overbooking versus maximum case

Under this comparison overbooking by 16.66% already mitigates largely the

efficiency benefits delivered by reactive control for scenarios with low capaci-
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tated virtual machines an delivers better response times for almost all scenar-

ios. Even overbooking by 33.33% delivers almost equal better response times

for all scenarios and provides efficiency benefits compared to reactive control.

For scenarios with large virtual machines, overbooking becomes a highly com-

petitive alternative.

Scenario 1 2 3 4 5 6 8 9 10

16.66 % µ Rsp. 23.10 326.40 -36.83 223.46 311.39 219.11 335.25 458.58 451.71

16.66 % Eff. 1.38 10.97 6.28 11.06 12.09 3.54 21.76 27.65 28.37

33.33 % µ Rsp. -417.25 254.06 -287.19 17.74 114.37 -0.83 266.62 348.46 189.32

33.33 % Eff. -15.29 -5.70 -10.39 -5.61 -4.58 -13.13 5.09 10.98 11.70

50.00 % µ Rsp. -584.04 -589.10 -373.55 -76.90 -189.21 0.00 0.00 0.00 0.00

50.00 % Eff. -22.28 -21.25 -11.58 -5.69 -4.97 -29.80 -22.37 -27.06 -31.96

µ CPU VM 5.99 6.48 7.11 9.25 10.19 10.40 11.55 13.23 14.95

Table D.3: Overbooking versus maximum case, summary
statistics
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