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Abstract
This thesis presents a generalization of the recently proposed Finite Cell Method (FCM) for
problems in solid mechanics to the simulation of convection-diffusion transport problems in
porous media. The FCM – a combination of a Fictitious Domain approach and high order
Finite Elements - is an accurate computational technique for complex domains, which dis-
penses with the need for generating boundary-conforming meshes. The high order FEM will
be shown to stabilize the oscillation at nodal solutions introduced in convection-dominated
problems. One- and two-dimensional model problems are demonstrated where exponential
convergence rates are observed. The validity of the approach is studied for convection- and
diffusion-dominated flows, concluding this treatise with a three-dimensional single compo-
nent, convection-diffusion example and a two-dimensional multicomponent, reactive transport
problem based on a complex interior geometrical structure to emphasize the potential of this
method.

Zusammenfassung
Die vorliegende Arbeit soll einen Beitrag zur Generalisierung der Finite Cell Methode (FCM)
leisten, die für Probleme aus der Festkörpermechanik bereits sehr erfolgreich angewendet
wurde und nun auf die Simulation von Transportprozessen erweitert wird. Dabei stellt die
FCM – eine Kombination aus Fictitious Domain-Methode mit finiten Elementen hoher Ord-
nung – ein genaues numerisches Verfahren dar, das insbesondere bei komplexen Gebieten durch
den Verzicht auf die Generierung von randkonformen Netzen seine Stärke ausspielen kann. Am
Beispiel ein- und zweidimensionaler Probleme wird gezeigt, dass finite Elemente hoher Ord-
nung Oszillationen von Knotenlösungen in konvektionsdominierten Problemen stabilisieren
und sich exponentielle Konvergenzraten erzielen lassen. Die Gültigkeit des Verfahrens wird
dabei für konvektions- und diffusionsdominierte Strömungen untersucht. Anhand weiterer
Beispiele wird das Potenzial der verwendeten Methode herausgestellt.
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Chapter 1

Introduction

The thorough understanding of contaminant transport behavior in the flow of groundwater
is a challenging prerequisite in the face of increasingly serious environmental problems. The
underlying physics of the contaminant transport can be modeled and described using the
groundwater flow equation and analyzed by solving the governing equation analytically or nu-
merically. The transport behavior in groundwater flow can be modeled mathematically using
the groundwater equation, which is based on the convection-diffusion equation. When there
is a chemical reaction between different species, the equation also includes a coupled reaction
term serving as a source term.

Since the analytical solution is only applicable for simple boundary value problems, the nu-
merical solution is more feasible and preferable in most real-life problems. The Finite Element
Method (FEM), one of the most popular numerical methods, has a powerful track record in
solving complex domain problems with a high degree of accuracy. In this thesis, we will deal
with two of the major challenges facing the finite element analysis for groundwater problems:

1. The geometry of the domain is complicated by impervious materials;

2. The dominance of the convection flux with respect to the diffusion flux may cause non-
physical oscillations;

In hydrogeology, groundwater flow models are used to describe the water contained in the
saturated zone (such as aquifers and aquitards etc.), which is located beneath the water ta-
ble. An aquifer is a pervious geological formation that allows a great amount of water to
move through it. An aquitard is a semi-pervious geological formation and has a relatively low
permeability compared to an aquifer [4]. Figure 1.1 shows the schematic structure of the un-
derground area, where pervious and impervious materials are distributed in a random manner.

Impervious materials enable a very slow rate of flow, or no flow at all, so the domain con-
taining impervious material should be excluded from the physical domain, which makes the
domain complex. The intrinsic permeability of different strata layers and materials are shown
in Table 1.2 ( [66], modified from [4]).

Since flow patterns in groundwater are highly influenced by the irregular distribution of ma-
terials through which the flow passes, it is a particularly demanding challenge to generate
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Figure 1.1: Permeable and impermeable materials in groundwater flow

boundary-conforming finite element meshes for the complex domain. During the past few
decades, a lot of effort has therefore been invested in developing numerical simulation tech-
niques for highly complex domains of computation, which dispense with the need to generate
body-fitted meshes. The methods can be roughly classified as follows:

1. the extended finite element method (XFEM), with variation in the generalized finite
element method (GFEM) or partition of unity method (PUM);

2. meshless or mesh-free methods;

3. embedding or fictitious domain methods, often also denoted as immersed boundary
methods.

XFEM was first proposed in 1999 [46] to alleviate shortcomings in the finite element method
for problems containing singularities. In this method, the standard finite element approxima-
tion space is enriched locally by functions enabling a precise approximation of discontinuities
within elements [54]. In the field of fluid mechanics, XFEM has been applied to immiscible
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Figure 1.2:
Intrinsic permeability of different strata and subsoil materials in terms of groundwater
flow [66]

two-phase flows, where jumps in the concentration appear across the interfaces between the
phases. Chessa [11] applies the XFEM to two-phase fluids to solve the Navier-Stokes equation.
The discontinuity in the velocity field is captured by enriching the process with basis functions
whose gradient is discontinuous at the interface. Another approach is the intrinsic XFEM [21],
enriching the shape functions locally without the introduction of additional global unknowns.
All these methods are designed to dispense with the task of resolving geometric features us-
ing mesh generation and to extend the Ansatz spaces for the numerical approximation instead.

Meshless (sometimes called mesh-free) methods discretize the computational domain with a
set of nodal points only, instead of classical elements [10]. One origin of these concepts is
the smooth particle hydrodynamics method, which was first used for modeling astrophysical
phenomena without exterior boundaries [42]. Extensive development has been carried out,
leading to a number of variants, among which the element-free Galerkin method [5] and the
radial point interpolation method [40] are the most relevant in the context of this paper. The
element-free Galerkin method has been applied to advection-dispersion transport through sat-
urated porous media [38]. The Galerkin weak form of the governing equation is formulated
using mesh-free shape functions constructed by moving least square approximation. The radial
point interpolation method employs the Galerkin weak form and radial basis shape functions
which are constructed solely on the basis of a group of nodes. It has also been applied in the
transportation of contaminants through saturated porous media [39].

The principle of fictitious or embedding domain methods was introduced by Hyman [35] as
long ago as the 1950s and later by Saul’ev [55]. They have recently become the focus of
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considerable attention again [47, 3, 13, 22]. The common idea of all these approaches is to
extend the original physical domain to a larger but geometrically simpler region, which is then
discretized in a structured mesh (very often by a Cartesian grid) independent of the original
boundary. The methods differ in their approach to implicitly capture the physical domain
of computation. Many fictitious domain methods with different features have been explored
for fluid problems. Glowinski [23] presents a Lagrange multiplier-based approach to simulate
fluid-particle motion. The core feature of this method is to introduce a Lagrange multiplier
function to enforce constraints at the interface between fluid and particles. Ramiere [49]
solves convection-diffusion problems using fictitious domain methods which are able to simu-
late free-boundaries undergoing transient deformations. The fat boundary method is proposed
by Maury [45] to solve elliptic problems in domains with holes. The method aims at achieving
the global resolution on a coarse Cartesian mesh and is capable of an accurate approximation
of the solution in the neighborhood of the holes by local refinement. Vos [64] demonstrates the
good performance of this method for fluid-structure interaction problems. In a partitioned,
strong coupling fluid-structure framework, Wall [65] developed two fixed grid methods by
combining them with a) XFEM and b) Arbitrary Lagrangian Eulerian (ALE) based methods
coupled with the Chimera approach.

The Finite Cell Method (FCM), recently proposed in [48, 18] was first applied in solid me-
chanics. It employs the basic concept of fictitious domain approaches, but extends them to
high order Ansatz spaces familiar from the p-version of the Finite Element Method [60]. Here,
the physical domain is recovered by a trivial continuation of the Galerkin weak form to the
fictitious domain and a refined integration of element matrices is performed. The method has
been investigated for linear elasticity problems [18], geometrically nonlinear problems [57, 56]
and thin-walled, shell-like structures [51]. Although the true boundary of the physical domain
is disregarded, the FCM inherits the superior approximation properties of high order finite
element methods. It even shows an exponential rate of convergence, provided there are no
singularities in the exact solution. Moreover, due to the simple algorithmic structure, it is
possible to achieve a highly efficient implementation of the method, even allowing interactive
numerical simulation [69, 68]. In this thesis, the FCM is extended to problems of steady
convection-diffusion mass transport problems in porous media.

Another topic discussed in this thesis is the high order FEM for convection-diffusion prob-
lems, which is also a fundamental basis of FCM. Standard Bubnov-Galerkin finite elements are
known to deliver oscillating solutions for convection-dominated problems for meshes that are
not fine enough. It has not yet been proven whether raising the polynomial degree of the shape
functions will increase or decrease numerical oscillations. The research result described in this
thesis will show that increasing the polynomial degree stabilizes the numerical oscillations in
Bubnov-Galerkin type finite elements naturally, without the addition of any stabilization term.

Many stabilized finite element methods that can effectively eliminate numerical oscillations
have been proposed in the wider body of literature. One of these methods is the streamline
upwind Petrov-Galerkin method (SUPG) [7, 33]. It achieves stability by adding extra artificial
diffusion, which needs to be modeled explicitly. Alternatively, the local projection stabilization
(LPS) [6, 44, 37] may be used. The LPS method suppresses numerical oscillations without
refining the mesh or enriching the finite element space. It is necessary to choose locally con-
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structed stabilization parameters instead. Other methods, such as the orthogonal subgrid
scale (OSS) [12], Galerkin least-squares (GLS) [25], residual-free bubble(RFB) [53], discontin-
uous Galerkin methods [26], and the variational multi-scale method (VMS) [29, 31, 32] provide
a wealth of remedies for the curse of artificial oscillation in convection-dominated problems
which are usually applied in lower order finite elements.

For convection-diffusion problems discretized by high order finite element methods (also re-
ferred to as p-FEM), Tobiska [62] developed a new stabilized approach combining p-FEM and
the VMS approach. Roos et al. [52] stated that a better behavior of higher order polynomial
degrees has been observed in numerical experiments than in their linear counterparts. [41]
looks at the high order finite element method together with SUPG and shock-capturing stabi-
lization. Nevertheless, to the author’s knowledge, the p-FEM without any stabilization term
has not been systematically analyzed so far for convection-diffusion problems. This thesis
aims to analyze the stabilization capacity of pure p-FEM from the numerical and mathemat-
ical point of view.

The layout of the thesis is as follows:

Chapter 2 recalls the relevant basic equations in fluid mechanics. The governing transport
equation in groundwater flow is then derived and extended for multi-component reactive trans-
port problems. Basic principles of the Finite Difference Method and Finite Element Method
are introduced as well as the corresponding discretization schemes.

Chapter 3 describes the High Order Finite Element Method (or p-FEM) and its application
in transport problems. Numerical examples show that the p-FEM limits the artificial oscil-
lations in convection-dominated problems for both single- and multi-component, rather than
increasing them. As we will show, not only does the numerical scheme remain stable for an
extended range of P éclet numbers, but the solution also converges exponentially to the exact
solution when the polynomial degree is increased.

Chapter 4 explains the stabilization capability of the p-FEM mathematically by analyzing stiff-
ness matrices and their eigenvalues. A straightforward p-FEM extension naturally decreases
the truncation error introduced by the linear Bubnov-Galerkin discretization for convection-
dominated problems. We also derive, which polynomial degree is sufficiently high to completely
eliminate numerical oscillations at nodes.

Chapter 5 introduces the Finite Cell Method and its application in transport problems in
porous media. As a combination of the p-FEM and fictitious domain method, FCM provides
an attractive approach to solve the groundwater flow problems.
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Chapter 2

Numerical simulation in fluid
mechanics

2.1 The basic equations of fluid mechanics

In this section, we recall the basic equations of fluid mechanics in differential and integral
forms, which will later serve as fundamental equations in the numerical discretization ap-
proach.

One of the most fundamental and representative statements of fluid mechanics in an incom-
pressible fluid is the conservation law. The general conservation law states that no quantity
in an isolated fluid system can be created or destroyed in the absence of sources or sinks [27].
According to the property of the conserved quantity, the conservation law can be classified
under the scalar conservation law, and the vector conservation law. Moreover, the mass and
energy conservation equation are derived from the scalar conservation law and the momentum
conservation equation comes from the vector conservation law, see Figure 2.1. In this thesis,
the main differential equation that we are dealing with is the convection-diffusion equation,
which is derived from scalar conservation law.

General conservation law

Scalar conservation law

Vector conservation law

Mass conservation equation

Energy conservation equation

Momentum conservation equation

Transport equation

... ...

... ...

Figure 2.1: The classification of the general conservation law
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2.1.1 The conservation law for a scalar quantity
Considering a control volume Ω in Figure 2.2, the conservation law balances the rate of change
of a conserved scalar quantity U inside Ω, the rate of U crossing the control surface S and the
contribution from any source (or sink) of U [27].

�QS

QΩ
d�S

�F

dΩ

Figure 2.2: Illustration of the conservation law for a scalar quantity

The rate of change of U inside the control volume is the volume integral

d

dt

∫
Ω

UdΩ =
∫
Ω

∂U

∂t
dΩ . (2.1)

The amount of U crossing the unit of surface per unit of time is called flux, a directional
quantity denoted by �F . The rate of U crossing the control surface is accordingly the surface
integral

∮
S

�F · d�S .

In the presence of the volume source (or sink) term
∫

Ω QΩdΩ and the surface source (or sink)
term

∮
S

�QS · d�S, the general conservation equation reads

∫
Ω

∂U

∂t
dΩ +

∮
S

�F · d�S =
∫
Ω

QΩdΩ +
∮
S

�QS · d�S . (2.2)

Applying the divergence theorem to transform the volume integral to the surface integral,
Equation 2.2 becomes

∫
Ω

∂U

∂t
dΩ +

∫
Ω

∇ · �FdΩ =
∫
Ω

QΩdΩ +
∫
Ω

∇ · �QSdΩ . (2.3)
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When the fluxes are differentiable – at least C1 continuous, Equation 2.3 is also valid in an
infinitely small control volume, where we obtain the differential form of the conservation law

∂U

∂t
+ ∇ · �F = QΩ + ∇ · �QS . (2.4)

Equation 2.4 can be interpreted as the mass or energy conservation equation when the scalar
quantity U is replaced by the fluid density ρ or the total energy density ρE, respectively.
For another conserved quantity c, where c stands for the concentration of a certain quantity,
Equation 2.4 becomes a general conservative form of the transport equation, which is also
referred to as the convection-diffusion equation based on its physical property.

2.1.2 Convection-diffusion equation
Substituting the conserved quantity c in the place of U , Equation 2.4 becomes

∂c

∂t
+ ∇ · �F = QΩ + ∇ · �QS in Ω . (2.5)

The name of Convection-diffusion equation comes from the flux �F in Equation 2.5, which has
mainly two components

1. Convective flux �FC

2. Diffusive flux �FD

.
The convective flux �FC is the flux transported along with the fluid due to the bulk motion of
the fluid. For example, the impurities or pollutants upstream can be transported along the
river and found downstream after a certain time. The convective flux describes the physical
phenomena with directional properties and is proportional to the velocity �a and the concen-
tration c.

�FC = �ac (2.6)

The diffusive flux �FD results from the random motion of molecules or the random eddies aris-
ing in turbulent flow. The former process is called molecular diffusion and the latter eddy or
turbulent diffusion.
As is depicted in Figure 2.3(a), molecules in fluid move randomly at any moment. Let us
suppose that there are two regions with a different concentration in fluid. Assuming an iden-
tical molecular propensity to move in any direction, the number of molecules moving from the
region of higher concentration to that of a lower concentration is greater than the other way
around. After a certain time, the quantity consequently moves from a higher concentration
to a lower one. Molecular diffusion occurs independent from the bulk motion of the fluid. For
instance, if we put a certain amount of salt in a cup of water, the salt spreads evenly through
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the water after a while without being stirred. Molecular diffusion flux can be computed using
Fick’s first law, derived by Adolf Fick in the year 1855.

Fick’s first law relates the diffusive flux to the gradient of the concentration and can be
expressed as

�FD = −ν∇c , (2.7)

where ν is the diffusion coefficient with units of m2/s.

(a) Molecular diffusion (b) Eddy or turbulent diffusion

Figure 2.3: Diffusion process in transport problems

In eddy diffusion, the quantity becomes mixed due to the random motion of eddies, see
Figure 2.3(b). Eddy diffusion exists in turbulent flow and occurs much more rapidly than
molecular diffusion. Turbulent flow is characterized by the Reynolds Number Re defined in
Equation 2.8 [58].

Re =
ρūL

μ
(2.8)

where ρ is the fluid density, ū is the mean velocity, L is the characteristic length and μ is the
dynamic viscosity. Turbulent flow occurs when Re approaches the critical level, for example,
Recrit = 4000 in [28]. Although the eddy diffusion coefficient has a different value than the
molecular one, the flux can be also computed using the same formula as Fick’s first law.

Another diffusion-like process is called mechanical dispersion. The blending of the quantity
is caused by variations either in the velocities in Figure 2.4(a) or in the flow pathways in
Figure 2.4(b).
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�a t = 0

t = t1 t = t2

(a) Variations in velocities

A

B

C

A′

B′

C ′

(b) Variations in flow pathways

Figure 2.4: Mechanical dispersion process in transport problems

The velocity in fluid varies when the flow comes in contact with other stationary objects. For
instance in a round pipe flow, the velocity in the cross-sectional area depends on the diameter
of the pipe. The flow is fastest at the center of the pipe and slowest at the point of contact
with the pipe. As shown in Figure 2.4(a), due to differences in the speed of flow, the solute is
spread out in the longitudinal direction – i.e. in the direction of flow.

Variations in flow pathways happen in porous media, for example in groundwater flow, where
the path of the flow changes due to the structure of the media. Figure 2.4(b) demonstrates
that, due to heterogeneities in pore structures, the flow B and C are dispersed and the flow
A and B converge after passing through a certain area in the porous layer.

Although the mechanical dispersion process is fundamentally different from the diffusion pro-
cess, it can be mathematically modeled in a similar way to the diffusion process. Hence, the
dispersion flux can be computed in Equation 2.9.

�F ′
D = −νmd∇c (2.9)

where νmd is the mechanical dispersion coefficient.
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In this thesis, the dispersion flux is not considered as a separate item but its value is already
included in the general diffusive flux. Substituting the convection and diffusion flux term in
Equation 2.5 with Equation 2.6 and Equation 2.7, a generalized convection-diffusion equation
is accordingly obtained in Equation 2.10.

∂c

∂t
+ ∇ · (�ac − ν∇c) = QΩ + ∇ · �QS in Ω (2.10)

To characterize the relative importance of the convection and diffusion flux, we introduce the
P éclet number, which is named after the French physicist Jean Claude Eugène P éclet.

There are up to 10 different P éclet number definitions [34] for particular types of problems.
In this thesis, we employ the one defined in Equation 2.11, which is called the local or mesh
or grid P éclet number

P e =
ah

2ν
, (2.11)

where a is the magnitude of the velocity, h is the mesh size and h/2 is accordingly the char-
acteristic length of the mesh. It therefore expresses the ratio between the convection and
diffusion flux in relation to the mesh size. Mesh P éclet number has a significant meaning in
numerical analysis. Many discretization schemes become instable as soon as the mesh P éclet
number exceeds a certain value.

2.2 Transport equations in groundwater flow
The transport equation in groundwater flow describes the solute transport processes by con-
vection and diffusion flux through an aquifer. It is based on the conservation law of dissolved
component concentrations and Darcy’s law with the following assumptions [67]:

1. The aquifer material is incompressible

2. The water is incompressible

3. Any external loads on the aquifer are constant

4. The groundwater is flowing slowly (Reynolds number less than unity)

5. The hydraulic conductivity is an isotropic scalar

The groundwater flow equation of a single component concentration c reads:

θ
∂c

∂t
+ ∇ · (�ac − θν∇c) = f in Ω

c = cD on ΓD

�n · ν∇c = cN on ΓN

(2.12)
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where ΓD is the Dirichlet boundary, ΓN is the Neumann boundary, θ is volumetric water
content, �a is the convection velocity and f is the source or sink term. The volumetric water
content is the quantity of water contained in porous medium on a volumetric basis. Assuming
that Vl, Vs, Vp and Vt are the volumes of the liquid, solid, pore and total phase in this porous
medium, respectively, the volumetric water content θ can be computed using Equation 2.13

θ =
Vl

Vs + Vp
=

Vl

Vt
. (2.13)

On the other hand, the volumetric water content is the product of total porosity Pt and
saturation ratio Rs

θ = Pt · Rs = Vp

Vt

· Vl

Vp

= Vl

Vt

. (2.14)

which has the same result as Equation 2.13. Convection velocity �a in the groundwater flow is
computed based on Darcy’s law, which is elaborated in the following section.

2.2.1 Darcy’s law
Darcy’s law describes the relationship between the volumetric flow rate and the pressure drop
over a given distance in a porous medium. It was experimentally obtained in 1856 by a French
engineer named Henry Darcy [36]. He set up the equipment, which is depicted in Figure 2.5,
and employed a sand filter as the porous medium.

The results of the experiment showed that the volumetric flow rate or flux Q(m3/s) is cor-
related with the length L(m) and cross-sectional area A(m2) of the sand filter as well as the
difference between upper and lower height h1 − h2(m) in manometers. By introducing the
hydraulic conductivity K(m/s), the results can be formulated as

Q = KA(h1 − h2)
L

. (2.15)

Hydraulic conductivity K is directly proportional to the permeability κ(m2) of the porous
medium, the weight of the fluid ρg(N/m3) and inversely proportional to the fluid dynamic
viscosity μ(N · s/m2). The mathematical formula accordingly reads:

K = κρg

μ
. (2.16)

where permeability κ is the property of porous medium and measures the fluid’s ability to
pass through the medium. Combining Equation 2.15 and 2.16, the general form of Darcy’s
law is obtained in one dimension

q = −κ

μ

p1 − p2

L
, (2.17)
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h1

h2

L

A

Q

Manometers

Constant-level

reservoirs

Figure 2.5: The equipment employed in Darcy’s experiment

where q(m/s) is the flux per unit area and the product of ρgh is replaced by the pressure p.
The minus sign is introduced here to indicate that the fluid flows in the direction of decreasing
pressure p. With the same unit as velocity, q is called Darcy velocity or Darcy flux. Darcy
velocity q is not a real fluid velocity at any specific point, but it describes the average velocity
over the cross-sectional area in porous medium. Since the flows cannot pass through the solid
part of porous medium, Darcy velocity is related to the pore velocity v by the factor of porosity
Pt.

v = q

Pt
= q

Vp

Vt

(2.18)

With a wide range of parameters, it is experimentally proven that Darcy’s law is valid for
relatively low flow rates in viscous flow. The range value of the flow rates is limited by
Reynold’s number Re. In granular porous medium, the flow with a Re lower than 5 is con-
sidered as Darcian flow. In fracture media, the critical value of Re is 1000 and non-Darcian
flow is defined with a q greater than approximately 6 × 10−3m/s [36]. In fact, most prob-
lems in groundwater flow have low a Re and accordingly fall into the category of Darcian flow.
Therefore, Darcy velocity q can be considered as convection velocity in groundwater problems.

2.2.2 Multicomponent reactive transport problems
In groundwater flow, for example, in the process of groundwater contamination, more than one
dissolved component is transported by convection and diffusion flux. These components are
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simultaneously influenced by the chemical reaction or biological transformations with other
components. Chemical and biological interactions appear as the source or sink term in the
differential equation together with any external contribution. The governing equation in mul-
ticomponent reactive transport problems in Equation 2.19 is derived by incorporating reaction
terms into general convection-diffusion equations.

θ
∂cj

∂t
+ ∇ · (�acj − θν∇cj) =

N∑
i=1

Rij in Ω (2.19)

where cj [ML−3], j = 1, 2, 3 is the jth dissolved component concentration and Rij is the cj

related reaction term stemming from chemical or biological interaction. The reaction terms
usually depend on dissolved concentrations themselves, which yields a coupled problem.

Let us consider a one-dimensional reactive transport problem in the domain Ω, where three
components are coupled together in a first-order reaction network. These three components
are Ammonium, Nitrite and Nitrate respectively and the schematic reaction network is illus-
trated in Figure 2.6.

c1

c1

c2

c2

c3

S

Figure 2.6: Reaction network between three components in the 1D transport problem (schematic)

The relation between sorbed contaminant mass of rock S[ML−3] and concentration of com-
ponent c1 can be modeled using the following equation:

∂S

∂t
= Kd

∂c1

∂t
(2.20)

where Kd is the constant adsorption coefficient, which indicates the sorption process of com-
ponent c1 on the soil matrix. Accordingly, the governing equation reads

(1 + Kd)∂c1

∂t
= ν

∂2c1

∂x2 − a
∂c1

∂x
− k1c1

∂c2

∂t
= ν

∂2c2

∂x2 − a
∂c2

∂x
− k2c2 + k1c1

∂c3

∂t
= ν

∂2c3

∂x2 − a
∂c3

∂x
− k3c3 + k2c2 .

(2.21)
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where ki[T −1], i = 1, 2, 3 are reaction coefficients. By applying Dirichlet boundary conditions
c1 = cD1, c2 = cD2 and c3 = cD3 for x = 0 and t ≥ 0, the corresponding analytical solutions
are derived by Lunn et al. [43], which reads

c1 = cD1P1

c2 = cD2P2 + k1cD1

k2 − k1
{P1 − P2 + exp(k2 − k1

Kd

t)(P (ν,
μ2 − μ∗

ν − ν∗ ) − P (ν∗,
μ2 − μ∗

ν − ν∗ ))}

c3 = cD3P3 + k2cD2

k3 − k2
(P2 − P3) + k1k2cD1

(k3 − k2)(k3 − k1)(k2 − k1)
× {(k2 − k1)P3 + (k1 − k3)P2

+ (k3 − k2)P1} + k1k2cD1

(k3 − k2)(k2 − k1)
× exp{k2 − k1

Kd

t}(P (ν,
μ2 − μ∗

ν − ν∗ ) − P (ν∗,
μ2 − μ∗

ν − ν∗ ))

− k1k2cD1

(k3 − k2)(k3 − k1)
× exp{k3 − k1

Kd

t}(P (ν,
μ3 − μ∗

ν − ν∗ ) − P (ν∗,
μ3 − μ∗

ν − ν∗ )) ,

(2.22)
where

ν∗ = ν/(1 + Kd)
μi = a2/4ν + ki, i = 1, 2, 3
μ∗ = μ1/(1 + Kd)

P (A, λ) = 1
2

(exp( vx

2D
− x

√
λ)erfc( x√

4At
−

√
Aλt) + exp( vx

2D
+ x

√
λ)erfc( x√

4At
+

√
Aλt))

P1 = P (ν∗,
μ∗

ν∗ )

Pj = P (ν,
μj

νj
), j = 2, 3 .

The concentration profiles for three components in Equation 2.22 will serve as reference so-
lutions in numerical analysis. This example will be further investigated numerically as a
one-dimensional benchmark problem in Chapter 3.

2.3 Numerical methods in transport problems
As shown in the previous sections, transport problems in fluid mechanics are frequently de-
scribed mathematically by partial differential equations (PDE), from which it is often impos-
sible to derive corresponding analytical solutions. Various numerical methods are accordingly
employed in practice in order to obtain the solutions for real-life problems via numerical ap-
proximation. In this section, we introduce two different numerical methods along with their
basic theories and applications in transport problems.

2.3.1 Finite difference method
The finite difference method (FDM) was first developed by A. Thom in 1920s under the
title ”the method of square” to solve nonlinear hydrodynamic equations [61]. FDM solves
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differential equations by approximating derivatives numerically using finite differences in the
algebraic form. These algebraic forms are derived by means of the Taylor series expansion,
which connects a real-valued function to the sum of its derivatives of different orders at a
certain point. Compared to the two other methods, FDM is the oldest one and comparatively
easy to implement. However, the conservation property of FDM is limited by the size of the
grid.

2.3.1.1 Basic theory

FDM discretizes a given function on a grid and its derivatives are approximated from the
function values at each grid point. Taylor’s theorem states [9]: Let a function f(x) : R → R

be n times differentiable over the interval I = (a, b). For a < x0, x0 + h < b, the function
evaluated at x = x0 + h has a value

f(x0 + h) = f(x0) + f ′(x0)
1!

h + f (2)(x0)
2!

h2 + ... + f (n)(x0)
n!

hn + O(hn) , (2.23)

where

• f (n) =
dnf

dxn

• f (n)(x0) is the nth derivative of f with respect to x evaluated at x = x0

• O(hn) is the remainder term, which means that all terms of order n or higher are ignored.

With the value n = 2, Equation 2.23 can be rearranged and the first derivative of f has the
following expression

f ′(x0) = f(x0 + h) − f(x0)
h

+ O(h) . (2.24)

Based on Equation 2.24, the first order derivative at x = x0 can be approximated by ignoring
the remainder term.

f ′(x0) ≈ f(x0 + h) − f(x0)
h

(2.25)

Equation 2.25 is called a first order forward-difference scheme with the step size h. As shown
in Figure 2.7, the derivative of f at grid point P is approximated by the value at the forward
grid point B. Similarly, a first order backward-difference scheme is derived in Equation 2.26,
where the derivative at P is estimated on the basis of the value at A.

f ′(x0) = f(x0) − f(x0 − h)
h

+ O(h) ≈ f(x0) − f(x0 − h)
h

(2.26)
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P

A

B

x

f(x)

x0 x0 + hx0 − h

Figure 2.7: The derivatives of f at P can be approximated by forward or backward differences

By adding a forward and backward difference scheme, it is possible to obtain the second order
difference scheme in Equation 2.27, which is called the central difference scheme.

f ′(x0) = f(x0 + h) − f(x0 − h)
2h

+ O(h2) ≈ f(x0 + h) − f(x0 − h)
2h

(2.27)

The accuracy of FDM is influenced by the order of truncation error in the approximation.
Higher order finite difference approximations can be obtained by including more high order
terms in Taylor’s expansion, which improves the corresponding accuracy of the approximation.
Taylor’s expansion can be also extended to PDEs with multiple independent variables.

2.3.1.2 Application in mass transport problems

A simple transient linear convection equation in one dimension has the following PDE

∂c

∂t
+ a

∂c

∂x
= 0 in Ω × (0, T ) . (2.28)

Partial derivatives with respect to independent variable x and t in Equation 2.28 can be
discretized respectively using different discretization schemes. The function is evaluated at
the grid points (xi, tj), where constant grid spacing Δx and Δt are applied. With the help
of the grid shown in Figure 2.8, the coordinates of evaluation points can be computed in
Equation 2.29, where i, j, n are non-negative integers.

xi+n = xi + n · Δx

tj+n = tj + n · Δt
(2.29)
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(xi, t
j)

(xi−1, t
j−1

(xi+n, t
j+n)

x

t

0

Figure 2.8: Spatial and time variables are approximated independently

Equation 2.28 becomes Equation 2.30 after discretizing the unknown function c(x, t) using
forward finite differences, where cj

i is the abbreviated term for c(xi, tj).

cj+1
i − cj

i

Δt
+ a

cj
i+1 − cj

i

Δx
= 0 (2.30)

2.3.2 Finite element method

The development of the finite element method (FEM) can be traced back to 1943, when R.
Courant discretized a domain into triangles to achieve approximated solutions to Dirichlet
problems in vibration systems [63]. The method has also been employed in the field of fluid
mechanics since 1970s. FEM discretizes a complex geometry into simpler and disjoint compo-
nents called finite elements, or elements for short, so that solutions on individual elements can
be approximated by shape functions. Compared to the FDM, FEM can handle more complex
geometries.

2.3.2.1 Basic principles

Based on Equation 2.10, steady convective-diffusive transport can be described by the follow-
ing strong form of the boundary-value problem:
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Given f : Ω → R and constant cD and cN , find c : Ω → R, such that
⎧⎪⎪⎨
⎪⎪⎩

�a · ∇c − ∇ · (ν∇c) = f in Ω
c = cD on ΓD

�n · ν∇c = cN on ΓN ,

(2.31)

where ΓD is the Dirichlet boundary, ΓN is the Neumann boundary and �n is the outward-
pointing unit normal vector on the boundary Γ = ∂Ω. As a starting point for the finite
element method, the strong form of Equation 2.31 is transferred in an integral formulation,
the so-called weak form of the PDE.

Consider u, v : Ω → R, where the domain Ω ⊂ R
n. The Sobolev space H1(Ω) is defined by

the inner product in Equation 2.32 and the norm in Equation 2.33 [30].

(u, v)1 =
∫
Ω

uv + u,iv,idΩ, 1 ≤ i ≤ n (2.32)

‖u‖1 = (u, u)1/2
1 (2.33)

Let the unknown function c be a member of the trial function space S = {c|c ∈ H1(Ω), c = cD

on ΓD} and a weighting function w be a member of the test function space V = {w|w ∈
H1(Ω), c = 0 on ΓD}. The equivalent weak formulation of the strong form in Equation 2.31 is
obtained using the divergence theorem under the hypothesis of incompressible flow.

Given f : Ω → R and constant cD and cN , find c ∈ S, such that for all w ∈ V

∫
Ω

w(�a · ∇c)dΩ +
∫
Ω

∇w · (ν∇c)dΩ =
∫
Ω

wfdΩ +
∫

ΓN

wcNdΓ in Ω

c = cD on ΓD

�n · ν∇c = cN on ΓN .

(2.34)

When the divergence theorem is employed, the Neumann boundary condition is automatically
included in the weak form. It also implies that, when the homogeneous Neumann boundary
condition is given, i.e. cN = 0 in Equation 2.31, the only thing that has to be done is to delete
the last term in the weak form.

To make following formulations more convenient, we introduce a compact form of Equa-
tion 2.34, which reads

C(w, c) + D(w, c) = F(w) , (2.35)
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where

C(w, c) =
∫
Ω

w(�a · ∇c)dΩ

D(w, c) =
∫
Ω

∇w · (ν∇c)dΩ

F(w) =
∫
Ω

wfdΩ +
∫

ΓN

wcNdΓ .

(2.36)

Solutions of the weak and strong form are identical when the solutions have the required
smoothness [30] of the strong solution. In FEM, the weak form is discretized in finite dimen-
sional spaces Sγ ⊂ S and Vγ ⊂ V to obtain approximated solutions. Superscript γ can be a
function of mesh size h, when these spaces are characterized by the finite element mesh size
h, or a function of polynomial degree p, when these spaces are characterized by a polynomial
degree of shape functions, or a function of h and p. The weak form is then converted into the
following discrete model

Given f : Ω → R, find cγ ∈ Sγ , such that for all wγ ∈ Vγ

C(wγ, cγ) + D(wγ, cγ) = F(wγ) . (2.37)

Here C(wγ, cγ) is a non-symmetric bilinear form defined on Vγ × Sγ , D(wγ, cγ) is a symmetric
bilinear form defined on Vγ × Sγ and F(wγ) is a linear functional defined on Vγ . The non-
symmetric bilinear form C is related to the convection flux and D corresponds to the diffusion
one.

In pure diffusion problems, the weak equation has an elliptic form and the Bubnov-Galerkin
discretization method leads to the best approximated solution cγ . However, when the con-
vection flux dominates, solutions obtained by means of the Bubnov-Galerkin scheme have
spurious oscillations. For this reason, several other stabilization methods have been developed
to keep the solution stable. For example, the Streamline Upwind Petrov-Galerkin (SUPG)
method can stabilize the solution by introducing an artificial diffusive term. These two differ-
ent spatial discretization schemes are elaborated in the following sections.

2.3.2.2 The Bubnov-Galerkin discretization

The Bubnov-Galerkin method is one of the most popular spatial discretization schemes, which
can convert the continuous problem in Equation 2.35 to the discretized one in Equation 2.37.
By expressing test and trial functions using shape functions (or basis functions) of the same
discretized, finite dimensional space, the original differential equation becomes an algebraic
matrix system, which can then be solved numerically.

As for the continuous problem, a numerical solution can be obtained only if boundary condi-
tions are prescribed. It has been shown in Equation 2.34 that the Neumann boundary con-
dition is naturally included in the weak form, whereas the Dirichlet boundary condition is not.
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To impose the Dirichlet boundary condition, the approximated function cγ ∈ Sγ can be
decomposed into two components: an unknown component cγ

H ∈ Sγ
H and a known component

cγ
D ∈ Sγ which satisfies the prescribed Dirichlet boundary condition. Here space Sγ

H is also a
subset of V. In other words

cγ = cγ
H + cγ

D , (2.38)

where

{
cγ

H = 0 on ΓD

cγ
D = cD on ΓD .

(2.39)

By substituting Equation 2.38 into Equation 2.37, we obtain Equation 2.40, which reads

C(wγ , cγ
H) + D(wγ, cγ

H) = F(wγ) − C(wγ, cγ
D) − D(wγ, cγ

D) . (2.40)

cγ
D can be any function in Sγ . Therefore, the corresponding part is moved to the right-hand

side and the value of it is added to the system by enforcing the prescribed Dirichlet bound-
ary condition using, for example, the Penalty method. The next step is to construct a finite
dimensional space to approximate wγ and cγ

H , respectively.

In the Bubnov-Galerkin discretization, an arbitrary test function space Vγ can be chosen in
such a way that it is the same as Sγ

H – another subset of the space V. Let the finite dimensional
space Vγ and Sγ

H be constructed by the same set of basis functions Ni, i = 0, 1, 2, ..., n. Let
us take a one-dimensional convection diffusion problem in Ω := (0, l) by way of an example.
For the sake of simplicity, the Dirichlet boundary condition is applied to the first node: c(x =
0) = cD. The trial function cγ and the test function wγ are defined in Equation 2.41.

cγ = cγ
H + cγ

D

=
n∑

i=1
ĉiNi(x) + cDN0(x) ∈ Sγ

wγ =
n∑

j=1
ŵjNj(x) ∈ Vγ

(2.41)

Here N0(x = 0) = 1 and ĉi, ŵi are scalar weights. If the shape functions are piecewise linear,
the possible trial and test function are depicted in Figure 2.9. The dashed lines indicate the
weighted shape functions at each node that contributed to the trial or test functions.
The Bubnov-Galerkin discretization scheme is known to be optimal for elliptic and parabolic
problems due to its orthogonality properties for symmetric bilinear forms. This means that
the difference between the approximated solution cγ under Galerkin discretization and the
original solution c is orthogonal to the space Vγ .

D(wγ, c − cγ) = D(wγ, c) − D(wγ, cγ)
= F(wγ) − F(wγ) = 0

(2.42)
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Figure 2.9: Possible trial and test functions using Bubnov-Galerkin discretization

2.3.2.3 The Streamline Upwind Petrov-Galerkin (SUPG) discretization

Due to the non-symmetric convection term, the differential equation does not hold an elliptic
or a parabolic form any more. When the convection flux dominates, the Bubnov-Galerkin dis-
cretization leads to spurious oscillations in numerical solutions. Many stabilization methods
have been developed based upon the standard Bubnov-Galerkin discretization to eliminate
non-physical oscillations. An alternative approach to Bubnov-Galerkin schemes is the Petrov-
Galerkin method, which assigns different discretization spaces for trial and test functions.

In order to compensate the negative diffusion created by the Bubnov-Galerkin method, we
add a non-physical diffusion artificially in SUPG [15]. For example, in a one-dimensional
convection-diffusion problem, the weak form of the differential equation

ac′(x) − νc′′(x) = 1 on Ω := (0, 1)
c(x) = 0 at x = 0
c(x) = 0 at x = 1

(2.43)
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is

1∫
0

(wac′ + w′(ν + ν̄)c′)dx = 0 , (2.44)

where

ν̄ = ah

2
(cothP e − 1/P e) . (2.45)

The numerical solutions computed by applying the standard Bubnov-Galerkin scheme and
the SUPG scheme with different mesh P éclet number are compared in Figure 2.10 and Fig-
ure 2.11. It can be observed that for both cases P e > 1 and P e < 1, the additional added
diffusion of the Petrov-Galerkin scheme will lead the non-oscillatory solution, whereas the
Bubnov-Galerkin scheme oscillates for P e > 1. How to obtain this amount of diffusion will be
derived in Chapter 4. However, defining the necessary artificial diffusivity for more compli-
cated problems in multi-dimensions will make the numerical analysis more complicated, which
is a disadvantage of this method.
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Figure 2.10:
Numerical solutions obtained by the Bubnov-Galerkin and the SUPG scheme with
Pe=0.5



24 2. Numerical simulation in fluid mechanics

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

x(fluid domain)

c(
co

nc
en

tr
at

io
n)

 

 

Numerical solution by SUPG
Nodal solution by SUPG
Analytical solution
Numerical solution by BG
 Nodal solution by BG

Figure 2.11:
Numerical solutions obtained by the Bubnov-Galerkin and the SUPG scheme with
Pe=2.5

2.3.2.4 Error estimation in different norms

An error estimation process is always necessary in numerical methods, where the quality of
the approximated solution can be evaluated in different norms.

A norm is a mapping of a complex or real space A, ‖·‖ : A → R. Let x, y ∈ A and α ∈ R,
then a norm ‖·‖ has the following properties [30].

1. Positive definiteness: ‖x‖ ≥ 0, and
‖x‖ = 0 if and only if x = 0

2. Positive homogeneitity: ‖αx‖ = |α| ‖x‖

3. Triangle inequality: ‖x + y‖ ≤ ‖x‖ + ‖y‖

Consider a domain Ω ⊂ R
n, n > 1, and let c, w : Ω → R. The sth Sobolev space Hs(Ω) has

the natural norm

‖c‖s =

⎛
⎝∫

Ω

(c2 + c2
,i + c2

,ij + ... + c2
,ij...k)dΩ

⎞
⎠

1/2

, 1 ≤ i, j, ..., k ≤ n (2.46)
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and a seminorm

|c|s =

⎛
⎝∫

Ω

(c2
,ij...k)dΩ

⎞
⎠

1/2

, 1 ≤ i, j, ..., k ≤ n . (2.47)

The only property of a seminorm that is different from a norm is that a seminorm is positive-
semidefinite. In this thesis, the relative error in the L2(Ω) norm and energy E(Ω) norm are
computed for evaluation of the numerical solutions. The L2(Ω) norm is the 0th Sobolev natural
norm, which reads

‖c‖L2(Ω) = ‖c‖0 =

⎛
⎝∫

Ω

(c2
,ij...k)dΩ

⎞
⎠

1/2

, 1 ≤ i, j, ..., k ≤ n . (2.48)

An energy norm is a semidefinite form, defined as

‖c‖E(Ω) = |c|1 =

⎛
⎝∫

Ω

(c2
,i)dΩ

⎞
⎠

1/2

, 1 ≤ i ≤ n . (2.49)

An error e is the difference between the exact solution cex and its numerical solution cfe

whereas the relative error is er the ratio between error and the exact solution. The relative
error in the L2 norm and in the energy norm, respectively, read

‖er‖L2(Ω) =
‖e‖L2(Ω)

‖cex‖L2(Ω)
=

‖cex − cfe‖L2(Ω)

‖cex‖L2(Ω)
, (2.50)

‖er‖E(Ω) =
‖e‖E(Ω)

‖cex‖E(Ω)
=

‖cex − cfe‖E(Ω)

‖cex‖E(Ω)
. (2.51)

Since it is not generally possible to obtain an exact solution cex even for model problems,
the reference solution in this thesis is obtained by means of a high-resolution mesh with high
polynomial degrees for corresponding shape functions. In addition, the relative error in the
L2 or energy norm is approximated by Equation 2.52 and Equation 2.53, computed using an
in-house p-FEM code – AdhoC [17].

‖er‖L2(Ω) =
‖cex − cfe‖L2(Ω)

‖cex‖L2(Ω)

≈ ‖cex‖L2(Ω) − ‖cfe‖L2(Ω)

‖cex‖L2(Ω)

(2.52)
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‖er‖E(Ω) =
‖cex − cfe‖E(Ω)

‖cex‖E(Ω)

≈ ‖cex‖E(Ω) − ‖cfe‖E(Ω)

‖cex‖E(Ω)

(2.53)

It is worth mentioning that Equation 2.53 is only exact in the case of an elliptic problem and
the application of a Bubnov-Galerkin scheme, as the Galerkin orthogonality [14] only holds in
this constellation. In all other cases, the expression can nevertheless be regarded as a good
approximation to the error.
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Chapter 3

High Order Finite Element Method
(p-FEM)

Discretization in spatial and time domain is a necessary step in FEM to restrict the number
of degrees of freedom (DOF) to a finite level. On the other hand, this process introduces
an inevitable discretization error, which is one of the most important facts that influence the
accuracy of numerical approximations. In order to perform a reliable computation, it is essen-
tial to control the discretization error. The obvious solution for decreasing the discretization
error is to increase the number of DOF and, when it goes to infinity, the discretization er-
ror for a convergent scheme becomes zero. The number of DOF can be increased by simply
refining the mesh locally or globally in the h-FEM. In this chapter, we introduce the high
order finite element method, also called p-FEM, by way of another discretization strategy
and apply it to fluid transport problems. The p-FEM keeps the finite element mesh fixed and
increases the number of DOF by raising the polynomial degree of shape functions for elements.

3.1 Basic principles
The basic principles of the p-FEM can be explained using a one-dimensional steady convective-
diffusive transport problem with a Dirichlet boundary condition, which reads

Given constant a, ν and f , find c : Ω → R, such that⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a
dc

dx
− ν

d2c

dx2 = f on Ω = {x|0 < x < 1}
c = 0 at x = 0
c = 0 at x = 1 .

(3.1)

The straightforward application of the Bubnov-Galerkin discretization leads to the correspond-
ing weak form of Equation 3.2

1∫
0

(ac′w + c′νw′)dΩ =
1∫

0

fwdΩ , (3.2)
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where w is an arbitrary test function and c′ and w′ are the compact forms of dc
dx

and dw
dx

,
respectively. The scalar function c and w are both discretized and approximated by the same
shape functions {Ni}p+1

1 . By applying h-FEM, where finite elements are only approximated by
linear shape functions, the discretized function cγ

H at any point in the element Ωe
j = [xj , xj +1]

can be expressed as

cγ
H(ξ) = N1(ξ)c(xj) + N2(ξ)c(xj+1) , (3.3)

where ξ denotes the normalized local coordinate, −1 ≤ ξ ≤ 1. The linear shape functions are
expressed as

N1(ξ) =
1
2

(1 − ξ)

N2(ξ) = 1
2

(1 + ξ) .
(3.4)

In p-FEM, the trial and test function can be approximated using higher order polynomials in
an elemental area Ωe. When the set of polynomials is expanded up to the order p, the function
cγ

H is also enriched accordingly.

cγ
H(ξ) = N1(ξ)c(xj) + N2(ξ)c(xj+1) +

p∑
i=2

Ni+1(ξ)ai+1 (3.5)

Besides the linear functions, the finite element space now contains higher order ones as well,
which offers the opportunity to approximate any curved function more efficiently. The linear
shape function N1, N2 and second order hierarchic shape function N3 are schematically drawn
in Figure 3.1.

ξ−1 1

xj xj+10 1

N1 N2

x

N3

Figure 3.1: Discretization and approximation functions in 1D convection-diffusion problem
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3.2 High order shape functions
There is more than one set of the shape functions that can construct the same high order
finite element space. To make the computation efficient and convenient, however, it is nec-
essary to take several factors into consideration before any set of the shape functions can be
chosen. The shape functions should be easy to implement, for instance, in order to facilitate
the process. The ideal case would be: the shape functions with the polynomial degree p + 1
contain those with p. In addition, the shape functions should be favorable for the efficient
computation of stiffness matrices and load vectors. To satisfy this condition, orthogonal or
near-orthogonal shape functions, which can yield diagonal or near-diagonal element stiffness
matrices, are preferable.

Lagrange and hierarchic shape functions are two typical shape functions used in the standard
finite element approaches, which will be discussed further in the following sections.

3.2.1 Lagrange shape function – nodal expansion
Lagrange shape functions are constructed on the basis of a nodal polynomial expansion. In
one dimension, the set of Lagrange polynomials has the form

Np
i (ξ) =

p+1∏
j=1,j �=i

ξ − ξj

ξi − ξj
, (3.6)

where ξ1, ξp+1 are end nodes and {ξj}p
2 are internal points of one element. As a notable

property, the Lagrange shape function Np
i has the value 1 at the point ξi and 0 at other

points ξj , j �= i. Consequently, the corresponding coefficient ai in Equation 3.5 has a physical
interpretation: the approximate solution at the point ξi. The internal points are called nodes
and are usually chosen to be equidistant, i.e.

ξj = −1 + (j − 1)2
p

, j = 1, 2, ..., p + 1 . (3.7)

The Lagrange shape functions for the polynomial degree p = 1, ..., 6 are illustrated in Fig-
ure 3.2.

It is obvious that, when the polynomial degree is increased, the whole shape function set has
to be completely reconstructed, which makes the implementation process inefficient. Another
property of the Lagrange shape function is that the sum of all shape functions for a certain
polynomial degree is always equal to 1.

3.2.2 Hierarchic shape function – modal expansion
Another choice of the shape function is the hierarchic shape function, which is based on the
orthogonal Legendre polynomials.
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3.2.2.1 One-dimensional hierarchic shape function

The Legendre polynomials are solutions to Legendre’s differential equation, defined in the
interval x ∈ (−1, 1) using Rodrigues’ formula

Ln(x) = 1
2nn!

dn

dxn
(x2 − 1)n, n = 0, 1, 2, ... . (3.8)

By definition, the orthogonal Legendre polynomial sequence {Ln(x)} is defined in such a way
that any two different polynomials in this sequence are orthogonal. In one dimension, the
Legendre inner product is zero in the interval (−1, 1)

〈Ln(x), Lm(x)〉 =
1∫

−1

Ln(x)Lm(x)dx = δnm
2

2n + 1
, (3.9)

where δnm is called Kronecker delta, which has the value

δnm =
{

1 if n = m

0 otherwise .
(3.10)

One-dimensional hierarchic shape functions are derived from the integrated Legendre polyno-
mials and defined in [59], for example,

N1(ξ) = 1
2

(1 − ξ)

N2(ξ) = 1
2

(1 + ξ)

Ni(ξ) = φi−1(ξ), i = 3, 4, ..., p + 1 ,

(3.11)

where

φj(ξ) =
√

2j − 1
2

ξ∫
−1

Lj−1(x)dx, j = 2, 3, ..., p . (3.12)

The linear shape functions called N1(ξ) and N2(ξ) are nodal modes and {Ni(ξ)}p+1
i=3 are internal

modes due to the fact that

Ni(−1) = Ni(1) = 0, i = 3, 4, ..., p + 1 . (3.13)

The hierarchic shape functions for the polynomial degree p = 1, ..., 6 are illustrated in Fig-
ure 3.3.

As opposed to the Lagrange shape functions, the enrichment of the hierarchic shape functions
from p to p + 1 maintains all the shape functions up to p and only requires the construction
of one more shape function – the internal mode. The hierarchic shape functions are therefore
constructed by the modal expansion.
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3.2.2.2 Two-dimensional hierarchic shape function

Hierarchic shape functions for quadrilaterals are derived from the Ansatz functions introduced
in [59]. The standard quadrilateral finite element is illustrated in Figure 3.4 [16].

The two-dimensional shape functions consist of three modes [16]:

1. Nodal modes: The nodal modes

NNi
1,1(ξ, η) = 1

4
(1 + ξi ξ)(1 + ηi η) , i = 1, ..., 4 (3.14)

are the standard bilinear shape functions, which are familiar from the isoparametric
four-noded quadrilateral element. (ξi, ηi) denote the local coordinates of the ith node.

2. Edge modes: These modes are defined separately for each individual edge; they vanish
at all other edges. The corresponding modes for edge E1 read

NE1
i,1 (ξ, η) =

1
2

(1 − η)φi(ξ) . (3.15)

3. Internal modes: The internal modes

N int
i,j (ξ, η) = φi(ξ)φj(η) (3.16)

are purely local and vanish at the edges of the quadrilateral element.

The indices i, j of the shape functions denote the polynomial degrees in the local directions
ξ, η.

3.2.2.3 Three-dimensional hierarchic shape function

Hierarchic shape functions in three dimensions are derived for the hexahedral elements illus-
trated in Figure 3.5 [16].
Analogous to two-dimensional formulations, three-dimensional shape functions can be classi-
fied into four groups [16]:

1. Nodal modes: The nodal modes

NNi
1,1,1(ξ, η, ζ) =

1
8

(1 + ξi ξ)(1 + ηi η)(1 + ζiζ), i = 1, ..., 8 (3.17)

are the standard trilinear shape functions, well known from the isoparametric eight-
noded brick element. (ξi, ηi, ζi) are the local coordinates of the ith node.

2. Edge modes: These modes are defined separately for each individual edge. If we
consider edge E1, for example, the corresponding edge modes read

NE1
i,1,1(ξ, η, ζ) = 1

4
(1 − η)(1 − ζ)φi(ξ) . (3.18)
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3. Face modes: These modes are defined separately for each individual face. If we take a
look at face F1, for instance, the corresponding face modes read:

NF1
i,j,1(ξ, η, ζ) = 1

2
(1 − ζ)φi(ξ)φj(η) (3.19)

4. Internal modes: The internal modes

N int
i,j,k(ξ, η, ζ) = φi(ξ)φj(η)φk(ζ) (3.20)

are purely local and vanish at the faces of the hexahedral element.

The indices i, j, k of the shape functions denote the polynomial degrees in the local directions
ξ, η, ζ .
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Figure 3.2: One-dimensional Lagrange shape functions, p = 1, ..., 6



34 3. High Order Finite Element Method (p-FEM)

−1 −0.5 0 0.5 1
−1

0

1
p=1

x
−1 −0.5 0 0.5 1

−1

0

1
p=2

x

−1 −0.5 0 0.5 1
−1

0

1
p=3

x
−1 −0.5 0 0.5 1

−1

0

1
p=4

x

−1 −0.5 0 0.5 1
−1

0

1
p=5

x
−1 −0.5 0 0.5 1

−1

0

1
p=6

x

Figure 3.3: One-dimensional Hierarchic shape functions, p = 1, ..., 6



3.2. High order shape functions 35

N4 N3

N1 N2

ξ

η

E2

E3

E4

E1

Ωq
st = (−1, 1)× (−1, 1)

Figure 3.4: Nodes and edges in a standard quadrilateral element

ζ

ξ η

N6

N5

N8

N7

N2

N3

N4

N1

E6

E9

E12

E10 E11

E8

E7

E4

E3
E2

E1

E5

F3

F2 F6

F1

F4

F5

Figure 3.5: Nodes, edges and faces in a standard hexahedral element



36 3. High Order Finite Element Method (p-FEM)

3.3 Numerical examples in transport problems

3.3.1 Single-component transport problems
3.3.1.1 One-dimensional simple Dirichlet boundary problem

This section compares the numerical results of the one-dimensional convection-diffusion trans-
port problem with the exact solution. The given differential equation 3.21

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a
dc

dx
− ν

d2c

dx2 = 0 on Ω = {x|0 < x < 1}
c = 0 at x = 0
c = 1 at x = 1

(3.21)

has the analytical solution

y = eax/ν − 1
ea/ν − 1

. (3.22)

When the mesh is fixed, the ratio between velocity and diffusivity determines the P éclet num-
ber and characterizes the convergence of the numerical solution. When the P éclet number
increases, the standard Bubnov-Galerkin method based on linear elements exhibits oscillations
in the numerical solution. We choose the parameters a = 2m/h, ν = 0.02m2/h, and compute
the corresponding numerical solutions with 10 elements of the same length h = 0.1. Figure 3.6
shows numerical solutions with different polynomial degrees. The dashed line denotes the ex-
act solution, while the solid line represents the numerical solution.

As expected, when the P éclet number P e =
ah

2ν
= 5 is larger than 1, the numerical solution

with linear Bubnov-Galerkin discretization introduces non-physical oscillations. The p-FEM
can eliminate these oscillations by simply raising the polynomial degree p. Figure 3.6 shows
that, with p = 7, the oscillation is drastically suppressed and the numerical solution is in good
agreement with the analytical one.

3.3.1.2 Two-dimensional steady rotating pulse problem

Here, the stabilization of the Bubnov-Galerkin finite elements for high order shape functions
is demonstrated by means of a two-dimensional diffusion-convection-reaction transport prob-
lem with a rotating velocity and a discontinuous source. The well-known partial differential
equation reads

a · ∇c − ∇ · (ν∇c) + σc = f , (3.23)
where σ is the reaction coefficient. We apply the following boundary conditions c(x = −1) =
c(x = 1) = c(y = −1) = c(y = 1) = 0 in the domain Ω = (−1, 1) × (−1, 1). The velocity field
is given as

a = φ(ρ)
(−y

x

)
, (3.24)
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Figure 3.6: Numerical solution with different polynomial degrees, Pe = 5

where

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

φ(ρ) =

⎧⎨
⎩1 − ρ2 if ρ ≤ 1

0 else

ρ =
√

x2 + y2 .

(3.25)

For the following computations, the coefficients are defined as σ = 2, ν = 0.0001 and the
source term is

f =

⎧⎨
⎩1 if ρ ≤ 1/2

0 otherwise .
(3.26)

This example is also discussed in [15]. The result has an interior layer along the circle ρ = 1/2.
In this instance, a uniform mesh with 10×10 elements is applied and the numerical solution
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based on different polynomial degrees of shape functions can be seen in Figure 3.7.

(a) p = 1 (b) p = 3

(c) p = 6 (d) p = 12

Figure 3.7: The numerical solutions with different polynomial degrees using 10 × 10 elements

The numerical result displays a strong oscillation along the boundary layer with the applica-
tion of low order elements. This numerical oscillation can be dramatically reduced or even
suppressed by increasing the polynomial degree, as shown in Figure 3.7. The p-FEM with
the standard Bubnov-Galerkin method is therefore capable of resolving the solution with a
boundary layer.

3.3.2 Multi-component reactive transport problems
As shown in Chapter 2, a one-dimensional multi-component reactive transport problem can
be described by Equation 2.21, where the governing equations are coupled by first-order re-
action terms. In a multi-dimensional problem, the generalized governing equation for an
N-component reactive transport problem with constant velocity �a and diffusion coefficient ν
is

Ri
∂ci

∂t
+ �a · ∇ci − ν∇2ci =

N∑
j=1

sijcj , i = 1, 2, ..., N , (3.27)

where sij are the coefficients for the reaction terms. Let us assume that homogeneous Dirichlet
conditions are applied to the boundary ∂Ω. Applying the backward-difference scheme for time
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discretization in Equation 3.28, the corresponding weak form for the i-th component ci is
obtained in Equation 3.29.

∂ct+Δt
i

∂t
= ct+Δt

i − ct
i

Δt
at time t + Δt (3.28)

Mt+Δt
i

Δt
+ Ct+Δt

i − Dt+Δt
i = F t+Δt

i +
Mt

i

Δt
, i = 1, 2, ..., N on Ω

Mt
i = M(ct

i) =
∫
Ω

Riwic
t
idΩ at time t

Ct
i = C(ct

i) =
∫
Ω

wi(�a · ∇ct
i)dΩ at time t

Dt
i = D(ct

i) =
∫
Ω

∇wi · (νct
i)dΩ at time t

F t
i = F(ct

i) =
∫
Ω

wi(
N∑

j=1
sijc

t
j)dΩ at time t

(3.29)

Here Δt denotes the time step in the backward-difference scheme. They are discretized by
applying the Bubnov-Galerkin method and then constructed by assembling the element con-
tributions shown in Equation 3.30.

Mi = Anel
e=1Me

i , Me
i,lk =

∫
Ωe

Nl · (RiNk)dΩ

Ci = Anel
e=1Ce

i , Ce
i,lk =

∫
Ωe

Nl�a · ∇NkdΩ

Di = Anel
e=1De

i , De
i,lk =

∫
Ωe

∇Nlν · ∇NkdΩ

Fi = Anel
e=1Fe

i , F e
i,l =

∫
Ωe

NldΩ

(3.30)

After introducing shape functions to approximate the unknown function, the weak form at
time t + Δt reads

(
Mi

Δt
+ Ci + Di)ct+Δt

i = Fi(
N∑

j=1
sijct+Δt

j ) +
Mi

Δt
ct

i, i = 1, 2, ..., N on Ω , (3.31)

where ct
i is the solution vector of the component ci at the time step t whereas Mi, Ci, Di and

Fi correspond to mass matrix, convection matrix, diffusion matrix and force vector of the
component ci, respectively.
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3.3.2.1 Fixed point iteration for coupled reaction terms

We wish to mention that, in Equation 3.29, the coupled reaction term is treated as a source
term which depends on the unknown function ci. This coupling term can be solved by fixed
point iteration. A fixed point for a scalar function is a number whose value remains unchanged
when the function is applied [8]. The number p is a fixed point when g(p) = p for a given
function g. For a root-finding problem f(x)=0, we can find a function g, such that

f(x) = x − g(x) . (3.32)

It is easy to see that if p is a fixed point of the function g, then p is the solution to the equation
f(x) = 0. In the fixed point iteration, we take a value x0 to express an initial guess at the
solution and the function g(x) maps x0 to the next point x1. The iterative scheme

xn+1 = g(xn), n = 0, 1, ..., nmax (3.33)

is repeated until the required precision is achieved. Applying the fixed point iteration, the so-
lutions achieve convergence when the difference between the current solution and the previous
one is smaller than the given tolerance ε0. As with scalar functions, it is possible to define
fixed point iterations to vector valued functions. Applying the fixed point iteration instead of
Equation 3.29 in the numerical analysis solves the following equation system

(
Mi

Δt
+ Ci + Di)ct+Δt

i = Fi(
N∑

j=1
sijct

j) +
Mi

Δt
ct

i, i = 1, 2, ..., N on Ω . (3.34)

In other words, the value

ct+Δt
i =

(Mi

Δt
+ Ci + Di

)−1
⎛
⎝Fi(

N∑
j=1

sijct
j) + Mi

Δt
ct

i

⎞
⎠ , i = 1, 2, ..., N on Ω (3.35)

will be computed iteratively. The initial value in this iteration is set to be ct0
i = 0 over the

domain. Basically, the solution from the last iteration step is substituted in the reaction term
of the current step to obtain an updated solution. This iteration process is repeated at each
time step until the solutions converge, as shown in Equation 3.36, or the iteration comes to
an end.

ε =

∥∥∥ct
i,k − ct

i,k−1

∥∥∥
L2∥∥∥ct

i,k−1

∥∥∥
L2

< ε0, i = 1, 2, ..., N at time t and k-th fixed point iteration step

(3.36)

Once the solution finally fulfills the condition in Equation 3.36, this solution is taken to be a
final solution. The flow chart of the computational process is depicted in Figure 3.8. In this
figure, ct

i,k indicates the concentration of the component ci computed in the kth iteration step
of the fixed point method at time t.
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3.3.2.2 Three-component transient reactive transport problem in 1D

Here, the one-dimensional example introduced in Chapter 2 is further investigated using p-
FEM. The governing equation is the same as Equation 2.21 and corresponding parameters
and their values are listed in Table 3.1.

Domain length L 5 L
Element size Δx 1 L
Diffusion coefficient ν 0.001 L2T −1

Velocity a 0.01 LT −1

Sorption coefficient Kd 1.0 -
Reaction coefficient 1 k1 0.05 T −1

Reaction coefficient 2 k2 0.03 T −1

Reaction coefficient 3 k3 0.02 T −1

Table 3.1: Parameter values in the 1D three-components reactive transport problem

The mesh P éclet number has the value P e = 5, which indicates the transport is convection flux
dominated. Figure 3.9 illustrates the oscillatory solution obtained by linear FEM. Increasing
the polynomial degree p to 3 effectively eliminates oscillation in Figure 3.10 and when p = 5,
the numerical solution matches the analytical one perfectly, see Figure 3.11.
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t = t+Δt

cti,k =
(
Mi

Δt +Ci +Di

)−1 (
Ft

i,k · (∑N
j=1 sijc

t−Δt
j ) + Mi

Δt c
t−Δt
i

)
Update of intermediate

Time iteration:

Error evaluation: ε =
‖cti,k−cti,k−1‖L2‖cti,k−1‖L2

< ε0

Time evaluation: t ≥ ttotal

End

N

N

Y

Y

cti = cti,k

Ft
i,k = F(cti,k)

k = k + 1Fixed point iteration:

Update of force vector:

Update of solution:

solution

Figure 3.8: Flow chart of multi-component reactive transport problems in computational process
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Figure 3.9: FEM solution for concentration profiles of three components, Pe = 5, p = 1
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Figure 3.10: FEM solution for concentration profiles of three components, Pe = 5, p = 3
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Figure 3.11: FEM solution for concentration profiles of three components, Pe = 5, p = 5
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Chapter 4

Stability analysis of p-FEM in
convection-dominated problems

This chapter is dedicated to the one-dimensional steady convection-diffusion transport problem
set out below:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a
dc

dx
− ν

d2c

dx2 = f on Ω = {x|0 < x < 1}
c = 0 at x = 0
c = 0 at x = 1 .

(4.1)

Here, the source term f has a constant value of 1 and the corresponding analytical solution
reads

c(x) = 1
a

·
(

x − 1 − e
ax
ν

1 − e
a
ν

)
. (4.2)

We discuss the discretization on an equidistant mesh with the size h. It is a well-known fact
that the numerical solution of Equation 4.1 is stable for the problem with piecewise linear ele-
ments if P e is not greater than 1 [15]. The straightforward application of the Bubnov-Galerkin
discretization leads to the corresponding weak form of Equation 4.1

Given f : Ω → R, find c ∈ S, such that for all w ∈ V:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∫
Ω

ac′w + c′νw′dΩ =
∫
Ω

fwdΩ on Ω

c = cD on ΓD

�n · ν∇c = cN on ΓN .

(4.3)

The scalar function c and w are both discretized and approximated by the same shape functions
Ni, which leads to Equation 4.4 featuring the convection matrix C, diffusion matrix D and
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force vector f .

(C + D)�c = f (4.4)

When n denotes the number of equations of the system, C and D are n×n matrices, obtained
by assembling element convection matrix Ce and element diffusion matrix De, respectively.
In the one-dimensional example described in Equation 4.1, Ce, De and f e correspond to:

Ce
ij =

∫
Ωe

aNiNj,xdx

De
ij =

∫
Ωe

νNi,xNj,xdx

f e
i =

∫
Ωe

fNidx .

(4.5)

Whilst the Bubnov-Galerkin discretization is known to be optimal in the finite element analysis
for elliptic problems, when the convection flux becomes more and more dominant, i.e. as P e
grows, the solution obtained by means of the Bubnov-Galerkin method is less and less accurate
for a fixed polynomial degree. The next section explains the effect of P e on the accuracy of
the nodal solution.

4.1 Truncation error of the Bubnov-Galerkin discretiza-
tion in the h-FEM

We consider the problem stated in Equation 4.1 with two adjacent elements [xj−1, xj ] and [xj ,
xj+1] as depicted in Figure 4.1, where a node xj is shared by two elements.

cj−1 cj cj+1

xxj−1 xj xj+10 1

Figure 4.1: 1D example with p=1: three degrees of freedom in two elements

For the sake of simplicity, we apply the source term f = 1 and discretize the geometry using
a uniform mesh with the element length h. The shape functions of a linear element are given
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by [59].

N1(ξ) = 1 − ξ

2
(4.6)

N2(ξ) =
1 + ξ

2
(4.7)

where ξ is the normalized local coordinate. Setting Ωe
j = [xj, xj+1] = [−1, 1] and applying the

transformation between local and global coordinates, we obtain the following convective and
diffusive matrices as well as the force vector [15] for each element, h being the length of the
element.

Ce = a
∫

Ωe

⎛
⎜⎜⎜⎝

N1
∂N1

∂x
N1

∂N2

∂x

N2
∂N1

∂x
N2

∂N2

∂x

⎞
⎟⎟⎟⎠ dx = a

2

⎛
⎜⎜⎜⎝

−1 +1

−1 +1

⎞
⎟⎟⎟⎠ (4.8)

De = ν
∫

Ωe

⎛
⎜⎜⎜⎝

∂N1

∂x

∂N1

∂x

∂N1

∂x

∂N2

∂x
∂N2

∂x

∂N1

∂x

∂N2

∂x

∂N2

∂x

⎞
⎟⎟⎟⎠ dx = ν

h

⎛
⎜⎜⎜⎝

+1 −1

−1 +1

⎞
⎟⎟⎟⎠ (4.9)

f e =
∫

Ωe

(
N1
N2

)
dx =

h

2

(
+1
+1

)
(4.10)

Assembling the global system matrix, we obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−a

2
+ ...

a

2
...

−a

2
a

2
− a

2
a

2

... −a

2
a

2
+ ...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ν

h
+ ... −ν

h
...

−ν

h

ν

h
+ ν

h
−ν

h

... −ν

h

ν

h
+ ...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

cj−1

cj

cj+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

h

2
+ ...

h

2
+ h

2
h

2
+ ...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.11)

The jth row of the matrix is related to the coupled degrees of freedom xj and reads

a(
cj+1 − cj−1

2h
) − ν(

cj+1 − 2cj + cj−1

h2 ) = 1 . (4.12)

We now follow the analytical process introduced in [15], where the truncation error of a
Bubnov-Galerkin discretization of Equation 4.1 is quantified in order to specify the additional
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diffusion term used in Petrov-Galerkin methods. The exact solution of Equation 4.1 with
f = 1 is

c(x) = 1
a

·
(

x − 1 − e
ax
ν

1 − e
a
ν

)
. (4.13)

Ideally, the value at each node should accordingly fulfill the exact solution

cj = c(xj) =
1
a

·
⎛
⎝xj − 1 − e

axj
ν

1 − e
a
ν

⎞
⎠ . (4.14)

In a uniform mesh with an element length of h, the coordinates of three consecutive nodes
have the relationship

xj−1 + h = xj = xj+1 − h . (4.15)

Imposing the exact value on each node as in Equation 4.14 leads to the following system of
equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cj−1 =
1
a

⎛
⎝(xj − h) − 1 − e

a(xj−h)
ν

1 − e
a
ν

⎞
⎠

cj =
1
a

⎛
⎝xj − 1 − e

axj
ν

1 − e
a
ν

⎞
⎠

cj+1 = 1
a

⎛
⎝(xj + h) − 1 − e

a(xj+h)
ν

1 − e
a
ν

⎞
⎠ .

(4.16)

To facilitate a comparison with the discrete equation resulting from the straightforward linear
discretization given in Equation 4.12, we set three coefficients α1, α2, α3, such that the equation

α1cj−1 + α2cj + α3cj+1 = 1 . (4.17)

is valid for all nodes, all P éclet numbers and any length h. Inserting the nodal expressions
from Equation 4.16 into Equation 4.17, we obtain the following conditions:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

α1 + α2 + α3 = 0

−α1 + α3 =
a

h
α1e

−2P e + α2 + α3e
2P e = 0

(4.18)

Having solved α1, α2, α3 and replaced the values in Equation 4.17, we derive Equation 4.19,
which has a similar form to Equation 4.12

a
(

cj+1 − cj−1

2h

)
− (ν + ν̄)

(
cj+1 − 2cj + cj−1

h2

)
= 1 , (4.19)
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where ν̄ is an additional term that does not appear in Equation 4.12. This extra term can be
interpreted either as the truncation error of the first order Bubnov-Galerkin method or as an
additional diffusivity required to provide nodally exact results. This term is a function of the
P éclet number and reads

ν̄ =
(

cothP e − 1
P e

)
νP e . (4.20)

Its value increases with the P éclet number. In fact, Equation 4.20 forms the basic motivation
behind using the Petrov-Galerkin method. In many stabilization approaches, efforts are made
to control the artificial numerical oscillations in convection-dominated problems by compen-
sating for the truncation error by adding extra diffusivity. As shown in the next section,
however, the truncation error of the Bubnov-Galerkin method decreases as the polynomial
order of the spatial discretization increases.

4.2 Truncation error of the Bubnov-Galerkin discretiza-
tion in the p-FEM

In this section, we contemplate the same example as presented in Section 4.1, where we
apply hierarchic shape functions of second order derived from the set of integrated Legendre
polynomials and investigate the polynomial orders up to 5. The convection and stiffness
matrices are then computed analogously to the low order finite element method, as follows

Ce = a
∫

Ωe

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

N1
∂N1

∂x
N1

∂N2

∂x
N1

∂N3

∂x

N2
∂N1

∂x
N2

∂N2

∂x
N2

∂N3

∂x

N3
∂N1

∂x
N3

∂N2

∂x
N3

∂N3

∂x

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

dx =
a

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 +1 −
√

6
3

−1 +1
√

6
3√

6
3

−
√

6
3

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.21)

Ke = ν
∫

Ωe

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂N1

∂x

∂N1

∂x

∂N1

∂x

∂N2

∂x

∂N1

∂x

∂N3

∂x
∂N2

∂x

∂N1

∂x

∂N2

∂x

∂N2

∂x

∂N2

∂x

∂N3

∂x
∂N3

∂x

∂N1

∂x

∂N3

∂x

∂N2

∂x

∂N3

∂x

∂N3

∂x

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

dx =
ν

h

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

+1 −1 0

−1 +1 0

0 0 +2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.22)

f e =
∫

Ωe

⎛
⎜⎝N1

N2
N3

⎞
⎟⎠ dx = h

2

⎛
⎜⎜⎜⎝

+1
+1

−
√

6
3

.

⎞
⎟⎟⎟⎠ (4.23)

The total number of degrees of freedom in two elements is five and consists of three nodal
modes and two internal modes, see Figure 4.2.
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cj−1 cj cj+1

xxj−1 xj xj+10 1

aj−1 aj

Figure 4.2: 1D example with p=2: five degrees of freedom in two elements

We wish to mention that the elements are only coupled by the linear modes. All higher order
modes are purely local to the element and thus independent of other degrees of freedom. One
block of the global matrix, which corresponds to five degrees of freedom depicted in Figure 4.2,
is shown in Equation 4.24.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cj−1 cj cj+1 aj−1 aj

cj−1
ν

h
− a

2
+ ... −ν

h
+

a

2
+ ... −

√
6

6
a

cj −ν

h
− a

2
2ν

h
−ν

h
+

a

2

√
6

6
a −

√
6

6
a

cj+1 −ν

h
− a

2
+ ...

ν

h
+ a

2
+ ...

√
6

6
a

aj−1

√
6

6
a −

√
6

6
a

2ν

h

aj

√
6

6
a −

√
6

6
a

2ν

h

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cj−1

cj

cj+1

aj−1

aj

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h

2
+ ...

h

h

2
+ ...

−
√

6
6

h

−
√

6
6

h

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.24)

The discrete functions referring to degrees of freedom cj, aj−1 and aj can be computed inde-
pendently. There are consequently three equations to solve

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ν

h
· (−cj−1 + 2cj − cj+1) +

a

2
· (−cj−1 +

√
6

3
(aj−1 − aj) + cj+1) = h

ν

h
· 2aj−1 +

√
6

6
a · (cj−1 − cj) = −

√
6

6
h

ν

h
· 2aj +

√
6

6
a · (cj − cj+1) = −

√
6

6
h .

(4.25)

aj−1 and aj , the variables related to the internal mode, can be eliminated from the last two
equations. After substituting these variables in the first equation of Equation 4.25, we arrive
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at the condensed Equation 4.26, which is solely related to nodal degrees of freedom

a
(

cj+1 − cj−1

2h

)
− (ν + ν̄2)

(
cj+1 − 2cj + cj−1

h2

)
= 1 , (4.26)

where

ν̄2 = 1
3

P e2ν . (4.27)

ν̄2 represents the additional numerical diffusion generated naturally by the second order
Bubnov-Galerkin method and can be regarded as an approximation of Equation 4.20. Gener-
ally speaking, it is possible to condense the system equation in Equation 4.28 in an analogous
manner using polynomial degrees higher than 2, all higher modes being purely internal to the
element. The form of the resulting equation at node xj is similar to Equation 4.26

a
(

cj+1 − cj−1

2h

)
− (ν + ν̄p)

(
cj+1 − 2cj + cj−1

h2

)
= 1 (4.28)

The additional numerical diffusion term ν̄p can be computed in the same way. For third,
fourth and fifth orders, it reads

ν̄3 =
5P e2ν

P e2 + 15

ν̄4 = ν(P e4 + 35P e2)
10P e2 + 105

ν̄5 =
14ν(4P e4 + 90P e2)

4P e4 + 420P e2 + 3780
.

(4.29)

In fact, the condensation approach from Equation 4.25 to Equation 4.26 can be interpreted
as follows: the contribution of the internal degrees of freedom in p-FEM is transferred to the
contribution of nodal degrees of freedom located at the vertices of the element only. The
solutions of the condensed system in Equation 4.28, which consists solely of nodal degrees of
freedom, are identical to the nodal solutions of the complete system, where the internal modes
are also taken into account.

Compared to Equation 4.20, the relative truncation error of p-FEM is defined as

Δνp = ν̄ − ν̄p (4.30)

and depicted in dependence of P e in Figure 4.3, where the ordinate displays Δνp.

In general, the curves have different tendencies which correspond to the parity of the polyno-
mial degree. Odd degrees generate curves that increase monotonically as P e increases, while
the even ones decrease. Although the sign of relative truncation error depends on the parity
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Figure 4.3: Relative truncation error with different polynomial degrees

of the order, the absolute value of relative truncation error decreases with each higher order
of shape function. Accordingly, the numerical solution at the nodes comes close to the exact
solution.
On the other hand, using odd polynomial degrees, the numerical diffusivity of the high or-
der approach is less than ν̄. This lack of diffusivity explains the oscillatory behavior of the
numerical solution with a high P e. By contrast, the numerical diffusivity is always greater
than ν̄ using even polynomial degrees. Consequently, nodal solutions exhibit an over-diffusive
behavior and never show nodal oscillations. This result is analyzed from a more detailed,
mathematical angle in the next section.

4.3 Connection of the stability and the structure of the
system matrix

The stability of the system is determined by the discrete maximum principle which manifests
itself in the sign pattern of the off-diagonal terms of the system matrix. This connection
was proven for the transient heat equation by Rank [50], where the size of the time step δt
must remain above a certain threshold for the discrete maximum principle to be fulfilled, as
otherwise the system will become unstable. More recently, this connection was studied at
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greater depth in [19], where the form of the system matrix resembles the tridiagonal Toeplitz
matrix.

4.3.1 Spectral properties of tridiagonal Toeplitz matrix
By applying the Galerkin discretization to Equation 4.3, we obtain a discrete linear system of
equations in the following form

A�c = f . (4.31)

For example, the system matrix A corresponds to the sum of a convection and a diffusion
matrix in Equation 4.4. [19] proved that, if the system matrix A is similar in form to Equa-
tion 4.32, the solution of the system is stable, i.e. the solution does not oscillate, if and only
if α is not larger than 1.

A(α) = tridiag(−1 − α, 2, −1 + α) (4.32)

Applying the linear Bubnov-Galerkin discretization to an evenly-spaced computational grid,
it is possible to reformulate Equation 4.12 in such a way that the global stiffness matrix has
an analogous tridiagonal structure

A = ν

h2 · tridiag(−1 − P e, 2, −1 + P e) . (4.33)

Equation 4.33 is clearly valid in the case with linear elements, since the P éclet number corre-
sponds directly to α. Eigenvalues {λj}N

j=1 of Equation 4.34 can be computed using the theory
of Toeplitz matrices.

λj = 2
(

1 +
√

|1 − P e2|e i
2 (π+arg(P e−1))cos(jπh)

)
j = 1, 2, ..., N (4.34)

It means that eigenvalues {λj}N
j=1 are complex when P e exceeds 1, whereas for P e ≤ 1, they

only lie on the real axis. Equation 4.34 can be re-written in the form of

λj =

⎧⎪⎨
⎪⎩

2
(
1 − √

1 − P e2cos(jπh)
)

0 ≤ P e ≤ 1

2
(
1 + i

√
P e2 − 1cos(jπh)

)
P e > 1

j = 1, 2, ..., N . (4.35)

4.4 Stability analysis of nodal solutions in the p-FEM
Similarly, in convection-diffusion problems, the solution stability is also influenced by the sign
pattern of the entries in the system matrix. In the p-FEM, additional degrees of freedom
are introduced into the matrix when the polynomial degree p is larger than 1, which makes
the matrix more complicated than the tridiagonal one. When hierarchic shape functions are
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applied, however, the equations of internal degrees of freedom can be condensed out such that
the system matrix contains only the equations of nodal degrees of freedom. Equation 4.28 can
be reformulated as

(− a

2h
− (ν + ν̄p)

h2 ) · cj−1 + 2(ν + ν̄p)
h2 · cj + ( a

2h
− (ν + ν̄p)

h2 ) · cj+1 = 1 . (4.36)

We now evaluate the stability solely at the nodal degrees of freedom rather than the internal

ones. For the sake of clarity, we abbreviate the common factor
(ν + ν̄p)

h2 in Equation 4.36. The
condensed system now has the same structure as Equation 4.32, i.e. it is a Toeplitz matrix.

Ap = (ν + ν̄p)
h2 tridiag(−1 − αp, 2, −1 + αp)

αp = ah

2(ν + ν̄p)

(4.37)

The stability of the nodal solutions is consequently determined by the value of αp. The
value of αp, moreover, can be quantified for higher order polynomial degrees on the basis of
Equations 4.27 and 4.29.

p = 2 α2 = 3P e

P e2 + 3

p = 3 α3 = P e(P e2 + 15)
2P e2 + 5

p = 4 α4 =
5P e(2P e2 + 21)

P e4 + 45P e2 + 105

p = 5 α5 = P e(P e4 + 105P e2 + 945)
15(P e4 + 28P e2 + 63)

p = 6 α6 = 21P e(P e4 + 60P e2 + 495)
P e6 + 210P e4 + 4725P e2 + 10395

p = 7 α7 =
P e(P e6 + 378P e4 + 17325P e2 + 135135)

7(4P e6 + 450P e4 + 8910P e2 + 19035)
.

(4.38)

The corresponding values are plotted in Figure 4.4. As we can see, αp increases as P e for odd
polynomial degrees. For even polynomial degrees, αp first increases and then decreases, while
the value is always smaller than 1. This, in turn, means that, the numerical solution at nodal
degrees of freedom never oscillates in the case of even polynomial degrees. This result also co-
incides with the conclusion from the relative truncation error analysis in the previous section.
To clarify this point even further, we plot the solution of the 1D example with P e = 20, as
shown in Figure 4.5.

Figure 4.5 illustrates that, when the polynomial degree is even, numerical oscillations only
stem from internal modes and the numerical solutions at each node do not oscillate. For odd
polynomial degrees, numerical oscillations are reflected by both internal and nodal degrees of
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freedom.

By setting αp = 1 in Equation 4.38, we can compute the maximum value of P e allowed, thus
guaranteeing nodally stable solutions for the given polynomial degree of the shape functions.

p = 3 P e = 2.322185
p = 5 P e = 3.646738
p = 7 P e = 4.971786
p = 9 P e = 6.297019

p = 11 P e = 7.622340
· · ·

(4.39)

In other words, for a given P éclet number, the corresponding p stated in Equation 4.39 is
the minimum polynomial degree required, and their relationship is depicted in Figure 4.6. It
turns out to be almost linear for polynomial orders p ≤ 11.

The value of the P éclet number includes the information of the element size h, so Equation 4.39
also indicates the relationship between mesh size h and the polynomial degree p for a given
a

ν
. The maximum mesh size allowed with respect to the value of a

ν
is plotted in Figure 4.7 for

different orders.
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Figure 4.5: Numerical solutions with different Ansatz degree, Pe=20
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4.5 Verification of truncation analysis in 1D convection-
diffusion problem

In this example, the numerical result of the one-dimensional convection-diffusion transport
problem is compared to the exact solution to verify the P éclet numbers stated in Equation 4.39.
We again consider the 1D convection-diffusion equation

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a
dc

dx
− ν

d2c

dx2 = 1 on Ω = {x|0 < x < 1}
c = 0 at x = 0
c = 0 at x = 1 .

(4.40)

We choose the parameters a = 1.2m/h, ν = 0.02m2/h, and compute the corresponding
numerical solutions with 10 elements of the same length h = 0.1. The analytical solution
reads

y = a

(
x − eax/ν − 1

ea/ν − 1

)
. (4.41)

Employing linear elements, the Bubnov-Galerkin method produces the expected oscillations,
since P éclet number P e = ah

2ν
= 3 is greater than 1. Figure 4.8 shows the comparison between

the exact solution and the numerical solution for different polynomial degrees.

The oscillations tend to decrease as the polynomial degree increases. Although there is con-
siderable improvement in the numerical oscillations using linear elements with p = 3, the
nodal solution still oscillates. The solution at node x = 0.8 is smaller than the exact solution,
whereas that at its neighboring node x = 0.9 is larger. In other words, the solution still oscil-
lates around the exact solution. With p = 5, the numerical solutions at both nodes are greater
than the exact solution, which is a clear indication that the nodal oscillation has now vanished
completely. This observation is perfectly compatible with the result obtained mathematically
in Equation 4.39.

Figure 4.9 shows the eigenvalues of the full system matrix computed by means of Lagrange
shape functions. Since the Lagrange shape functions are nodal-based, the solution obtained
by solving the system matrix has a physical interpretation – the solution at each internal or
end-node. Therefore, the stability of the solution can also be reflected by analyzing eigenvalues
of the full system matrix constructed using the Lagrange shape functions. With p = 5, all
the eigenvalues lie on the real axis, whereas some eigenvalues are located on the complex axis
using p = 3. This observation coincides well with the results given Equation 4.35.

With a stabilized solution, it is now possible to enjoy the benefits of the exponential conver-
gence rate of the p-version of finite element method. The numerical error in the finite element
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approximation can be quantified by the error in L2 norm defined by

‖e‖L2
=

∫
Ω

e2dΩ =
∫
Ω

(cex − cfe)2dΩ . (4.42)

Figure 4.10 plots the result with a double logarithmic scale, showing the convergence rate of
the error in the L2 norm by a pure h- and p-extension, respectively. With different values of
a/ν, the p-extension exhibits exponential convergence, whereas the h-extension only obtains
an algebraic rate of the convergence. In addition, the effect of the a/ν can also be observed in
Figure 4.10. If the value a, ν and h satisfy the condition that point (a/ν, h) is located below a
certain curve in Figure 4.10, then the nodal solutions are non-oscillatory for the corresponding
polynomial degree p.
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Chapter 5

Finite Cell Method in transport
problems in porous media

5.1 Basic principles
We consider a linear convection-diffusion single-component transport problem in porous media.
The basic partial differential equation describing the transport of a dissolved contaminant in
a steady state reads

∇ · (�qc) − ∇ · (θν∇c) = f on Ω
c = cD at ΓD .

(5.1)

Here, c is the unknown concentration, ν is the effective diffusion coefficient, �q is Darcy’s
velocity, θ is the volumetric water content, f is the source term and cD denotes the prescribed
concentration on the Dirichlet boundary ΓD. The weak form of Equation 5.1 on a given
domain Ω then reads

B(c, w) = F(w) . (5.2)

in which c is the concentration and w is a test function. When Neumann boundary conditions
are absent, the operators B and F are defined as

B(c, w) :=
∫
Ω

[�qc · ∇w + θν∇c · ∇w]dΩ . (5.3)

F(w) :=
∫
Ω

wT fdΩ (5.4)

The FCM now embeds the physical domain Ω in an extended domain Ωe, see Figure 5.1. The
physical domain is taken into account at the integration level of the weak formulation, simply
setting appropriate material coefficients in and outside Ω.
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Flow transport domain Obstacles Embedding domain

Ω Ωe \ Ω Ωe

+ =

α = 1

α = 0

Figure 5.1:
The physical, or flow transport domain Ω is embedded in the fictitious or embedding
domain Ωe

An extended bilinear form is introduced in the embedding domain Ωe.

Be(c, w) :=
∫

Ωe

[�qec · ∇w + (θν)e∇c · ∇w]dΩ (5.5)

where �qe is Darcy’s velocity and (θν)e is the effective diffusion coefficient on the embedding
domain with the values

{
�qe = α · �q
(θν)e = α · θν .

(5.6)

The value of α in Equation 5.7 denotes the physical and fictitious part of the embedding
domain.

α =
{

1 in Ω
0 in Ωe \ Ω (5.7)

Equation 5.5 can now be rewritten as

Be(c, w) =
∫

Ωe

[�qec · ∇w + (θν)e∇c · ∇w]dΩe

=
∫

Ωe

α · [�qc · ∇w + (θν)∇c·∇w]dΩe

=
∫
Ω

[�qc·∇w + θν∇c·∇w]dΩ

+
∫

Ωe\Ω
0 · [�qc·∇w + θν∇c·∇w]dΩe \ Ω . (5.8)

It is evident that the bilinear form in Equation 5.8 is equivalent to the original formulation on
the physical domain given in Equation 5.2. We would also like to point out that the second
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part of the equation, which is defined on Ωe \Ω, does not contribute any energy to the solution.

The extended domain Ωe is now meshed into ’cells’ of a simple Cartesian grid (see right-hand
section of Figure (5.1)) in which high order Ansatz functions are defined. These functions are
used to compute a finite element approximation, taking into account the physical material
properties in the original domain Ω and the fictitious material (i.e. zero-values) outside. At
this point, it is important to emphasize that, in contrast to the classical low order finite ele-
ment shape functions, high order Ansatz functions allow for jumps in the material coefficients
(from 1 to 0) in an element, without necessarily suffering from deterioration of the approxima-
tion quality. It is, however, imperative to integrate element matrices accurately in cells that
are cut by the boundary of the domain Ω. Various methods, ranging from (very) high order
Gaussian integration [48] to an octree-based integration formula [18, 1], have been investigated.

In this thesis, we divide the cells into a uniform grid of sub-cells, where those that are in-
tersected by the boundary are integrated using an adaptive Gaussian approach (see [18, 1]).
Finally it should be noted that, for numerical reasons, α is not set to zero in the implementa-
tion of FCM, but to a small positive value. This serves to introduce a minor modeling error,
which is usually much smaller than the discretization error and can thus be disregarded.

5.2 Different integration schemes
The integration error plays an important role in the FCM, since the geometry is described im-
plicitly by the parameter α in Equation 5.7 at each Gaussian point. The Gaussian quadrature
rule yields an accurate result for the integral of a function that can be approximated satis-
factorily using polynomials. Due to the discontinuity of α within one element in the FCM,
however, the standard Gaussian quadrature scheme is unable to produce the highest level of
accuracy. Other adapted integration schemes are accordingly called for with the FCM.

5.2.1 Gaussian quadrature employing over-integration
The Gaussian quadrature rule is conceived in such a way that n Gaussian points can integrate
a polynomial function of degree 2n − 1 exactly [20]. In the standard FEM, if shape functions
are polynomials of degree p, then the maximum polynomial degree of the system matrix is
2p + 1. Then the minimum required number of Gaussian points ngp is

ngp = p + 1 ≥ 2p + 1
2

. (5.9)

Nevertheless, this amount of Gaussian points is still not sufficient for discontinuous functions,
which is usually the case with the FCM. So, for some simple examples, such as the one in Sec-
tion 5.3.1, more than p + 1 Gaussian points are employed to improve the integration accuracy.

There is no guarantee, however, that merely increasing the number of Gaussian points will
solve the problem. For example, in Figure 5.2, the discontinuity occurs at ξ = 0 and more
Gaussian points are required there. Due to the unequal distribution of the Gaussian points



68 5. Finite Cell Method in transport problems in porous media

shown in Figure 5.2, integration points tend to be allocated at two ends of an element rather
than the middle part, where more integration points would be required. It means that the
required number of Gaussian points depends on the position where the discontinuity occurs,
which makes the integration scheme unpredictable and inefficient.
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Figure 5.2: Distribution of Gaussian points for 1D problems

Compared to this scheme, subcell integration approaches introduced in the next sections make
integration more efficient.

5.2.2 Subcell integration schemes

In order to decrease the integration error, cells are cut into smaller units, each unit being
called a subcell. Subcells are introduced for integration purposes only, and the number of
degrees of freedom does not change.
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Let us take a one-dimensional convection-diffusion equation as an example to derive the math-
ematical expression for the subcell integration. For the sake of simplicity, the one-dimensional
domain with the length l is divided into n elements of equal length. The element diffusion
matrix described in Equation 4.5 can be rewritten as

Ke
ij(x) =

l∫
0

Ni,x(x)νNj,x(x)dx

=
l∫

0

Bi(x)νBj(x)dx ,

(5.10)

where Bi(x) is the abbreviation of the first derivative of Ni(x) with respect to x. Figure 5.3
shows the subcell division in a one-dimensional problem.

Element

Cell

Subcell

x

ξ

r

0 1−1

−1 0

0

1

l

Figure 5.3: The projection of a one-dimensional element into the subcell coordinate

A cell can be subdivided into uniform or non-uniform subcells and Gaussian integration points
are located on subcells. The first step is to compute the element diffusion matrices in the cell
coordinate ξ

l∫
0

Bi(x)νBj(x)dx =
1∫

−1

[
Bi(ξ)

dξ

dx

]
ν

[
Bj(ξ)

dξ

dx

]
dx

dξ
dξ

=
n−1∑
k=0

−1+(k+1)l/n∫
−1+kl/n

[
Bi(ξ) dξ

dx

]
ν

[
Bj(ξ) dξ

dx

]
dx

dξ
dξ .

(5.11)

Each cell is then again projected into the subcell coordinate r and approximated by means of
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n Gaussian Points

−1+(i+1)l/n∫
−1+il/n

[
Bi(ξ) dξ

dx

]
ν

[
Bj(ξ) dξ

dx

]
dx

dξ
dξ

=
1∫

−1

[
Bi(ξ(r)) dξ

dx

]
ν

[
Bj(ξ(r)) dξ

dx

]
dx

dξ
(dξ

dr
dr)

≈
n∑

p=1

[
Bi(ξ(rp))

dξ

dx

]
ν

[
Bj(ξ(rp))

dξ

dx

]
dx

dξ

dξ

dr
wp .

(5.12)

The components of the subcell stiffness matrices are added to the cell stiffness matrices, which
does not increase the degrees of freedom but only improves the integration accuracy. Finally,
a global stiffness matrix is obtained by assembling all cell stiffness matrices together. Two
different sorts of subcell integration schemes are introduced in the following sections.

5.2.2.1 Uniform subcell integration scheme

Based on the equations derived above, the uniform subcell integration scheme can be im-
plemented for a three-dimensional example. As depicted in Figure 5.4, Gaussian integration
points are located on each individual subcell.

Domain Cell Subcellx
y

z

ξ
η

ζ

r
s

t

Gaussian points

Figure 5.4: The projection of a three-dimensional element into the subcell coordinate

The optimal number of subcells required in the integration process can be determined by
comparing the effective domain iteratively. An effective domain is the sum of the domain of
subcells, where at least one Gaussian point is inside the physical domain. The coordinates of
Gaussian integration points of the subcells are evaluated at each iteration to check whether
they are in the physical or the fictitious domain. The corresponding weight function of a
Gaussian point is then multiplied by the penalization factor α and its value is allocated to the
effective domain. When the difference between the current effective domain and the previous
one is smaller than the prescribed tolerance, the number of subcells in the current iteration is
deemed to be sufficient.
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The optimal number of subcells is calculated using the flowchart in Figure 5.5, which is imple-
mented in AdhoC. Ωold and Ωnew denote the effective domain before and after the computation
at each step, whereas Ωcell is the whole domain of the corresponding cell.

Loop over each subcell

ri = −1 + i · hξ

sj = −1 + j · hη

tk = −1 + k · hζ

The reference point of each subcell in the cell coordinate

ξ
η

ζ

Loop over each Gaussian point: (Rr, Ss, Tt)

(ri, sj, tk) hη

hζ

hξ

Map coordinates from subcell to cell

ξr = ri +
1
2(1 + Rr) · hξ

ηs = sj +
1
2(1 + Ss) · hη

ζt = tk +
1
2(1 + Tt) · hζ

Map coordinates from cell to global coordinate

(x, y, z) = mapXYZ(ξ, η, ζ)

r
s

t(Rr, Ss, Tt)

Compute the derivative of the shape function at the Gaussian point

Ke
rst = E → formB(E, ξ, η, ζ)

Is this Gaussian point inside or outside the physical domain?

If(inside(x,y,z)) α = 1.0

else α = 0

x
y

z

(x, y, z)Compute the effective domain dΩ

dΩ = dx
dξ · dξ

dr · w · α
Add the contribution to the effective domain

Ωnew = Ωold + dΩ

Compare the difference to the tolerance

(Ωnew − Ωold)/Ωcell < Tol

Initialize the number of subcells i, j, k = 1 and Ωold

i++, j ++, k ++

Yes End

No

Ωold = Ωnew

Ωold = 0

Figure 5.5: The uniform subcell integration implemented in AdhoC
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5.2.2.2 Adaptive integration scheme

As opposed to the uniform subcell integration scheme, the adaptive integration scheme em-
ploys subcells of varying sizes created by a hierarchic decomposition. In the uniform subcell
approach, when the integration error is larger than the predefined tolerance, each individual
cell will be cut into the same number of subcells, no matter where the cell is located. However,
cutting the cell located completely inside or outside of the physical domain does not help to
improve the integration accuracy but only makes the computation inefficient. For this reason,
we employ the adaptive integration scheme to overcome the shortcoming [18].

The first step of this approach is to define a certain number of checkpoints in each cell (or
subcell) and check whether the cell (or subcell) is cut by the boundary. If all the checkpoints
are located inside (or outside) the physical domain, there is no need to divide the cell (or sub-
cell) any further, thus making the computation more efficient. At each refinement level, α = 0
or α = 1 is assigned for each Gaussian point according to the physical coordinate. Then the
effective area in the physical domain can be computed by adding up the weighting functions
of each Gaussian point multiplied by α. The cell (or subcell) will be further refined until the
effective area computed at the last refinement step is very close to the one computed at the
current step. The flowchart of the adaptive integration scheme is illustrated in Figure 5.6.
Aold and Anew denote the effective area before and after computation at each step, whereas
Acell is the whole area of the corresponding cell.
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Figure 5.6: The adaptive subcell integration implemented in AdhoC

5.3 FCM in single-component reactive transport prob-
lems in porous media

5.3.1 The performance of the FCM in 1D transport problems
In this section we investigate the performance of the FCM for a one-dimensional single-
component transport problem, which may seem trivial but nevertheless sheds some light on
the performance of the method. As formulated, the example displays a material-void problem
whose schematic interpretation is depicted in Figure 5.7.

Since convective flux is physically uninterpretable in the 1D material-void domain, transporta-
tion is carried out by means of a pure diffusion process. The associated differential equation
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Figure 5.7: One-dimensional diffusion transport example

in domain Ω = (0, 1) is

d

dx
(θν

dc

dx
) = 0

c = 0 at x = 0
c = 1 at x = 1 .

(5.13)

With the standard finite element method, the boundaries at x = 0.4 and at x = 0.6 would have
to be respected by the mesh on which the shape functions are defined. This is not necessary
using the FCM, however. We define the extended domain as Ωe = {x|0 ≤ x ≤ 1} and divide
it into two cells only, whose common boundary does not coincide with the discontinuity in the
effective diffusion coefficient.

In addition, a homogeneous Neumann boundary should be imposed at the material-void
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boundary x = 0.4 and x = 0.6, since there is no flux in the void domain. However, it is
not feasible to express the homogeneous Neumann boundary condition explicitly in the FCM,
since material-void boundary is not a part of ∂Ω. The void part is accordingly treated as
a different ’material’ set in the computational domain. A homogeneous Neumann boundary
condition can also be applied by setting material properties to zero in the void domain. This
effect can be achieved by multiplying parameter α in Equation 5.7, which indicates on the
other hand that the void part is regarded as a fictitious domain in the FCM.

Since the element boundary is not usually in line with the physical-fictitious boundary in the
FCM, there are several different materials within one cell, which are expressed by the stiffness
matrix at each Gaussian point. To minimize the integration error resulting from insufficient
Gaussian points for discontinuous functions, the numerical integration of the stiffness matrix
in this problem is then carried out by over-integrating the cells with 40 Gaussian points each1.
The p-extension of the Ansatz is then employed, inherited from the classical high order finite
element method.

With α distribution shown in Figure 5.7, Equation 5.13 has a piecewise constant analytical
solution in the physical domain

c(x) =
{

1 in x ∈ [0, 0.4]
0 in x ∈ [0.6, 1] .

(5.14)

The computational results are depicted in Figure 5.8. For linear and even cubic Ansatz spaces,
the numerical solution is only a very rough approximation of the piecewise constant analytic
solution. Nevertheless, p = 5 already provides an acceptable result and p = 7 yields an accu-
rate result. The solution in the void part of the domain (i.e. the part in between 0.4 ≤ x ≤ 0.6
where α=0) is shown here on purpose, although it does not have any physical meaning. As
the shape functions forming the solution are piecewise polynomials, the approximation simply
extends smoothly into this void part. Provided the shape functions represent a good transition
between the physical domain parts, they do not harm the quality of the approximate solution
there.

The numerical error quantified in L2-norm is defined by Equation 4.42. Figure 5.9 shows the
exponential convergence in L2-norm of the p-extension.

Note that value α is chosen to be 0 in this example. It will not cause any singularity problem
for the stiffness matrix since there are only two elements in this case. When there are more
elements, however, so that one of these elements only contains a void part, α = 0 will introduce
a singular stiffness matrix. In practice, we therefore choose a very small value for α instead of
0. It is important to make a compromise and choose a value for α that is somewhere between
the condition number of the stiffness matrix and the accuracy. Figure 5.10 shows the influence
of α on error in the L2-norm and condition number of the stiffness matrix in this 1D example,

1Alternatively, a composed integration scheme that respects the boundaries at x = 0.4 and at x = 0.6 could
be used to reduce the integration error. However, simple over-integration already provides accurate results in
this example
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Figure 5.8: 1D diffusion problem solved by FCM with different Ansatz degrees

where the polynomial degree is chosen to be 7. The value of α can be chosen according to the
required error or condition number level.

5.3.2 The performance of the FCM in 2D transport problems
This section investigates the performance of the FCM for two-dimensional problems and the
influence of convection dominance on the convergence behavior, which will then be com-
pared to the standard finite element method. In the first example, the physical domain
is a square measuring 4m × 4m, containing a circular, impermeable obstacle with a ra-
dius of 1m located at its center. Dirichlet boundary conditions are imposed as follows:
c(x = −2, y) = 1, c(x = 2, y) = 0 on the left and right-hand boundaries of the embed-
ding domain: Ω = [−2, 2] × [−2, 2] and the homogeneous Neumann boundary condition is
applied to the upper and lower boundaries of the domain Ω. We set the effective diffusion
coefficient to ν = 1m2/h and investigate the flow for different P éclet numbers.

The reference solution is computed by means of a classical p-FEM discretization with a
boundary-conforming mesh. With the p-FEM approach, the boundary conditions are the
same as the ones imposed in the FCM model. In addition, the homogeneous Neumann bound-
ary condition is also applied explicitly at the boundary of the circular domain, indicating that
the flux cannot flow into the circular domain. The quarter circle in the elements is represented
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Figure 5.9: Convergence rate of 1D example with respect to p-refinement

with absolute geometric precision in the spatial discretization by employing the blending func-
tion method [24]. The mesh is depicted in Figure 5.11.

By contrast, the FCM uses 4 cells which are not conform with the boundary. They are ob-
tained by means of simple Cartesian subdivision resulting in 2×2 cells. The integration of the
stiffness matrix is performed numerically in a composed manner on 6×6 subcells. A schematic
sketch is depicted in Figure 5.12. Please see Section 5.2.2.1 for details of the integration scheme.

To begin with, let us consider the case of a pure diffusion problem with P éclet number 0. The
reference solution, as computed by the boundary-conforming p-version of the FEM, and the
solution computed by the FCM are shown in Figure 5.13.
These two results are compared once again in Figure 5.15 by investigating the solution along
the diagonal cut-lines depicted in Figure 5.14 (left).

It is apparent that the FCM solution coincides very well with the reference solution obtained
by the boundary-conforming p-version of the finite element method. This is, of course, only
true in the physical domain. The solution in the void domain is arbitrary and can be disre-
garded. Again, it is only included here for illustrative reasons.

The relative error computed in the energy norm is depicted in Figure 5.16. In order to illus-
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Figure 5.10: The influence of α on the error and condition number of the stiffness matrix

trate the convergence of the method, we compare the FCM to both a boundary-conforming
p-extension and a classic h-extension. The h-extension was computed using meshes with ele-
ments possessing parabolic edges to approximate the shape of the circle. Both the p-extension
and the FCM converge exponentially while the conventional h-version only exhibits algebraic
convergence. As a result, the FCM needs up to two orders of magnitude less degrees of freedom
to achieve the same accuracy as a classical h-version. In addition, only four cells are needed
in the FCM in order to accurately approximate the results.

We will now proceed to take a closer look at a diffusion and a convection-dominated case.
The mesh P éclet number is defined in Equation 2.11 and indicates which flux is dominant. In
the convection-diffusion study, we establish the diffusion coefficient ν = 1m2/h as a constant
value. The diffusion and the convection-dominated cases are then obtained by setting Darcy’s
velocity to 0.5m/h, 1m/h and 2m/h, which results in a P éclet number of P e = 0.5, P e = 1.0
and P e = 2.0, respectively. The results obtained by the FCM with different P éclet number
are depicted in Figure 5.17.
The influence of the P éclet number on the convergence rate is evaluated by the error in the
energy norm in Figure 5.18 and the L2-norm in Figure 5.19.

In both cases, as the degrees of freedom increase, the convergence behavior of the convection-
dominated flow solved using the FCM is slightly inferior to the diffusion dominated case. Al-
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Figure 5.11: Boundary-conforming mesh of the p-version finite element method

though it has, in general, a lower convergence rate than the standard p-FEM, the convergence
is still exponential. At this point, it should be noted that standard low order Bubnov-Galerkin
approaches always exhibit instabilities for convection-dominated flows and stabilization is nec-
essary in any case. By contrast, the approach presented here, which is based on high order
Ansatz functions, remains stable without any artificially added stability measures for moder-
ate P éclet numbers.

Another two-dimensional example was chosen to illustrate the further potential of the FCM for
the simulation of flow in complex geometries. Obstacles of different sizes are embedded in the
flow domain Ω = [−10, 10] × [−10, 10], significantly increasing the effort for the generation of
boundary-conforming meshes in the finite element method. The adaptive subcell integration
scheme is applied in this example, as illustrated in Figure 5.20.

We apply the same boundary conditions as in the example above. The simulation results of
the p-version of the FEM and the FCM are given in Figure 5.21 with P e = 1 and Figure 5.22
with P e = 2 respectively. The polynomial degree p = 8 is applied in both cases.

In analogy to the previous example, the cut-line for the P e = 1 case is drawn along the
diagonal of the domain in Figure 5.14 (right) and the simulation results are displayed in Fig-
ure 5.23. The conformity of the two solutions along the cut-line shows how accurately the
FCM is able to approximate the solution even for those areas where the physical domain is
very narrow compared to the size of the cells. These areas are usually difficult to mesh as they
define the mesh size in their vicinity and accordingly increase the number of elements. This is
particularly the case in 3D models, where it is a real challenge to obtain boundary-conforming
meshes for domains where obstacles are almost touching each other.
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Figure 5.12: A simple structured mesh in the Finite Cell Method

5.3.3 The performance of the FCM in 3D transport problems
In reality, obstacles in flow regimes are often distributed randomly on a microscopic scale. To
obtain effective macroscopic material properties it is, therefore, necessary to perform a large
number of individual simulations, each with a different distribution of obstacles. Using clas-
sical simulation methods, it is nevertheless extremely time-consuming to generate a tailored
computational mesh for each individual case. The FCM completely dispenses with this neces-
sity and can accordingly compute efficiently and accurately on a large number of randomly
generated granular media.

For the sake of illustration, a computational domain was generated with 100 randomly dis-
tributed spheres with random radii, see Figure 5.24.

The complex 3-dimensional, physical domain is now embedded in a cube and subdivided into
10 ×10 ×10 structured cells. The integration is performed with (p + 1)3 Gaussian points in all
cells that do not contain an inclusion, where p is the polynomial degree of the shape functions.
A composed integration is only employed for cells which are cut by, or contain an inclusion.
The polynomial degree of the Ansatz was chosen to be p = 4 in each cell for the given example,
where the trunk space [60] was utilized. The real computation time is 26.7 hours on a sin-
gle threaded process on Intel(R) Core(TM)2 Quad CPU Q6600@2.40GHz. The distribution
of the concentration in the physical domain, as computed using the FCM, is depicted on a
cutting plane lying parallel to the x−y and the x−z plane in Figures 5.25 and 5.26 respectively.

Due to some very narrow flow bridges between the obstacles, it is difficult to generate a
boundary-conforming mesh in the p-FEM. However, the application of the FCM is not limited
by the complexity of the geometry, and we can still obtain physically reasonable results with
a simple structured mesh.
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Figure 5.13:
A pure diffusion problem solved by p-FEM (left) using boundary-conforming mesh and
the FCM (right)

Figure 5.14: Illustration of cut-lines along the diagonal in two-dimensional problems
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Figure 5.15: Comparison of solutions along the cut-line in the first two-dimensional problem
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Figure 5.17: 2D benchmark problem solved by the Finite Cell Method, p=8
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Figure 5.18: The influence of the P éclet number on the convergence behavior in the energy norm
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Figure 5.20: Adaptive subcell integration scheme for the second two-dimensional example
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Figure 5.21: Numerical solution computed using p-FEM (left) and FCM (right) with Pe = 1

Figure 5.22: Numerical solution computed using p-FEM (left) and FCM (right) with Pe = 2
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Figure 5.24: Granular media with randomly distributed spheres in 3D
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Figure 5.25: Distribution of the concentration: x-y plane
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Figure 5.26: Distribution of the concentration: x-z plane
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5.4 FCM in multi-component reactive transport prob-
lems in porous media

In this section, we investigate the multi-component reactive transport in two-dimensional
porous media, the governing equations being given in Equation 5.15.

θ
∂cj

∂t
+ ∇ · (�acj − θν∇cj) =

N∑
i=1

Rij in Ω (5.15)

The geometry of the domain and its dimensions are illustrated in Figure 5.27 and we apply
the parameters listed in Table 5.1.

(0, 0)

r = 1

(2, 2)

(−2,−2)

p(c1) = 1 x

y

α = 0

α = 1

Figure 5.27: The geometry of 2D domain and its dimensions

Diffusion coefficient νx 1 L2T −1

Diffusion coefficient νy 0.3 L2T −1

Velocity qx 0.5 LT −1

Reaction coefficient 1 k1 0.05 T −1

Reaction coefficient 2 k2 0.03 T −1

Reaction coefficient 3 k3 0.02 T −1

Table 5.1: Parameter values in 2d three-components reactive transport problem in porous media

In this example, the space domain is discretized using a boundary-conforming mesh and the
p-FEM approach is employed, whereas 4 × 4 structured grids are employed in the FCM. The
time domain is discretized by the backward finite difference method and the fixed-point it-
eration is applied to solve the unknowns in coupled reactive terms iteratively. The reference
solution is obtained using p-FEM with polynomial degree p = 6 and the shape functions
with p = 8 is applied in the FCM. To improve the integration accuracy, we use the uniform
subcell integration approach with 36 subcells in each cell. The numerical solutions of three
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components obtained by means of the p-FEM and the FCM at time t = 50T are shown in
Figures 5.28, 5.29 and 5.30, respectively.

Figure 5.28:
Comparison of c1 between computed using p-FEM with p=6(left) and FCM with
p=8(right), at time t=50T

The upper sections of Figures 5.28, 5.29 and 5.30 describe the concentration distributions of
c1, c2 and c3, while the lower sections illustrate the contour of the distribution for a better
comparison of the results. We see from the results that, the numerical solution obtained using
the FCM corresponds well, generally speaking, with those obtained by means of the p-FEM.
The accuracy of the numerical solutions can be improved upon using following approaches: 1)
Reducing the integration error by using the adaptive integration scheme. 2)Discretizing the
time space with a more accurate method, such as the central finite difference method.

As introduced in Chapter 1, irregular distributions of impermeable materials in groundwater
flow give rise to a complex shape of the fluid domain. To solve the concentration distribution
during transportation accurately, boundary-conforming meshes are necessary to describe the
complex fluid domain, which involves a lot of computational effort. Thanks to the fictitious
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Figure 5.29:
Comparison of c2 computed using p-FEM with p=6(left) and FCM (right), at time
t=50T

domain concept, the FCM does not require boundary-conforming meshes and is accordingly
very well suited for solving transport problems in groundwater flow. In Section 5.3 and Sec-
tion 5.4, many numerical examples have already proved that either single- or multi-component
problems can be solved satisfactorily using the FCM with a level of accuracy comparable with
that obtained using the p-FEM.

For the sake of simplicity, the constant velocity and diffusivity are applied over the whole
domain. To model more realistic transport problems in groundwater flow, microscopic analysis
is required to obtain local velocity and diffusivity at different points of the domain, which can
be offered by other project partners in MAC B5 [2]. This information can be written in a file
and read by the FCM codes to initialize the velocity field and diffusivity of the domain.
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Figure 5.30: Comparison of c3 computed using p-FEM (left) and FCM (right), at time t=50T
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Chapter 6

Conclusion

This dissertation has investigated an extension of the FCM for the computation of convection-
diffusion problems in porous media. As a combination of the p-FEM and the fictitious domain
method, the FCM has effectively controlled the artificial oscillations in convection-dominated
problems by an increasing polynomial degree and the solution converges exponentially to the
exact solution. By introducing the fictitious domain principle, an originally complex geometry
is embedded in a geometrically simpler domain and discretized with structured Cartesian grids.

The distribution of a substance that is fully dissolved in the groundwater flow is described in
the context of a convection- diffusion transport problem in porous media. We present that
diffusion-dominated flow problems are accurately solved by the standard Bubnov-Galerkin
finite element method, whereas it exhibits non-physical oscillations for convection-dominated
problems. It is also a common perception that the high order finite element methods increase
artificial oscillations for convection dominated problems, rather than decreasing them. The
numerical examples in this dissertation clearly show the contrary, however.

The underlying reason for the non-physical oscillation of low order Bubnov-Galerkin meth-
ods is that the inclusion of the convective term in the stiffness matrix gives rise to complex
eigenvalues of the stiffness matrix, which adds an oscillation component to the solution from
a mathematical point of view. The eigenvalue analysis of stiffness matrices in the p-FEM
shows that, this oscillation at nodal solutions can be fully eliminated merely by increasing the
polynomial degree of the shape functions to a certain value. Compared to other stabilization
approaches, the p-FEM succeeded in stabilizing the oscillatory nodal solutions while simulta-
neously retaining the simplicity of forming weighting functions, benefiting from the standard
Bubnov-Galerkin method.

A boundary-conforming mesh for a complex domain is no longer required with the FCM.
Three different integration schemes are discussed here: Gaussian quadrature employing over-
integration, uniform subcell integration and the adaptive subcell integration scheme. The
Gaussian quadrature over-integration approach is easy to implement, whereas subcell integra-
tion provides more accurate results.

In order to demonstrate the principle behavior of the FCM, we present one-dimensional ex-
amples for flows transported by diffusive flux. Two-dimensional examples are introduced to
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show the effect of different P éclet numbers and to highlight the advantage of the FCM in the
mesh-generation process. In the case of both convection- and diffusion-dominated problems,
a p-extension of the FCM yields an exponential rate of convergence in both the L2−norm
and the energy norm. The three-dimensional problem with randomly distributed obstacles in
porous media simulates the real situation in groundwater flow, which is solved admirably us-
ing the FCM. Moreover, the FCM also shows a high level of accuracy in the three-component
reactive-transport problem including chemical reactions, where each component is coupled
with all the others by means of first order reactions.
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