
TUM
TECHNISCHE UNIVERSITÄT MÜNCHEN
INSTITUT FÜR INFORMATIK

Technischer
Technische Universität MünchenInstitut für InformatikBericht

Maria Spichkova (Editor), Alarico Campetelli (Editor),
Klaus Lochmann (Editor)

TUM-I1336

Seminar: Embedded Systems

Abstract

Embedded systems are not only one of the most important fields for current
computer-based applications, it is also one of the most challenging fields of
software engineering: embedded system must meet real-time requirements, are
safety critical and distributed over multiple processors. Embedded systems are
used in many areas - from vehicles and mobile phones to washing mashines
and printes. Nowadays it is impossible to imagine our life without them. The
increasing complexity and real-time requirements require new modelling tech-
niques as well as application of formal methods. In the seminar “Embedded
systems” we will try to answer the following questions:

• What does the term ”embedded system” mean?

• Which methods are especially important to the development of these sys-
tems?

• What are the distinctive features of one of the most interesting kinds of
the embedded systems - automotive systems?

This report presents the results of our first seminar on “Embedded Systems”
held in the winter term of 2012/13. The deliverables to be developed by the
students were a learning module prepared by each student as final presentation
and the documentation of the learning module in an essay (content of this
report). The topics were:

• Topic 1: What does “Embedded System” mean?
Student: Fan Zhuosi (Advisor: Klaus Lochmann)

• Topic 2: Cyber-Physical systems
Student: Johannes Muhr (Advisor: Alarico Campetelli)

• Topic 3: Real-time systems
Student: Christian Lichtmannegger (Advisor: Klaus Lochmann)

• Topic 4: Tasks in Embedded Systems
Student: Manuel Bonk (Advisor: Maria Spichkova)

• Topic 5: CAN Protocol
Student: Nicolas Beneš (Advisor: Alarico Campetelli)

• Topic 6: FlexRay Protocol: general idea, synchronization
Student: Robert Lang (Advisor: Maria Spichkova)

• Topic 7: OSEKtime OS: Scheduling
Student: Kostadin Kotev (Advisor: Maria Spichkova)

• Topic 8: Testing vs. Verification and Model Checking vs. Theorem Prov-
ing
Student: Philipp Pickel (Advisor: Alarico Campetelli)

ii

Contents

1 Fan Zhuosi: Introduction to the ES 1
1.1 Introduction . 1

1.2 The foundation of ES . 1

1.2.1 Embedded system vs PC 2

1.2.2 Characteristics . 3

1.2.3 The history of ES . 4

1.3 The composition of ES . 5

1.3.1 Embedded hardware . 5

1.3.2 Embedded software: . 6

1.4 Application fields . 7

1.5 Problems . 8

1.6 Conclusion . 9

2 Johannes Muhr: Cyber-physical Systems 11
2.1 Introduction . 11

2.2 Cyber-physical Systems . 11

2.2.1 The development and concept 11

2.2.2 Classification . 14

2.2.3 Vision and Aims . 16

2.3 Challenges . 16

2.3.1 Non-functional Challenges 17

2.3.2 Digital and analog world 17

2.3.3 Complexity Challenge . 17

2.3.4 Lack of Timing . 18

2.4 Modelling techniques . 18

2.4.1 Models of Computation 18

2.4.2 Multimodelling . 19

2.4.3 Hybrid Systems . 20

2.5 Conclusion . 20

3 Christian Lichtmannegger: Real-time systems 23
3.1 Introduction . 23

3.2 The basics . 23

3.2.1 Different types of tasks 25

3.3 Scheduling . 25

3.3.1 Scheduling: The basics . 25

3.3.2 Static scheduling . 26

3.3.2.1 Round Robin/Static cyclic scheduling 26

iii

Contents

3.3.2.2 Cyclic static table driven algorithm 27
3.3.2.3 Analysis . 28

3.3.3 Dynamic scheduling . 28
3.3.3.1 Least laxity first (LLF)/Dynamic earliest dead-

line first . 29
3.3.3.2 The problem with overloads 29
3.3.3.3 Fault tolerance 30
3.3.3.4 Resource reclaiming 30
3.3.3.5 Discussion . 30

3.4 RT operating systems . 31
3.5 Developing of RT systems . 32
3.6 Conclusion . 32

4 Manuel Bonk: Tasks in Embedded Systems 33
4.1 Introduction . 33
4.2 Definition of Tasks . 33
4.3 Processes . 33
4.4 Interaction between Tasks . 34

4.4.1 Synchronization via Events 34
4.4.2 Cooperation via Global Variables 34
4.4.3 Communication via Messages 36

4.5 Tasks in OSEK-OS and OSEKtime OS 37
4.6 Conclusion . 39

5 Nicolas Beneš: CAN Protocol 41
5.1 Introduction . 41
5.2 Functional Key Concepts . 42

5.2.1 Electro-physical Function Principle 42
5.2.2 Messaging Principle . 43
5.2.3 Error and Bus Overload Behaviour 45
5.2.4 Fault Confinement Entity and Frame Timing 45

5.3 Protocol Stack . 48
5.3.1 Logical Link Control . 49

5.3.1.1 Data Frame and Remote Request Frame 50
5.3.2 Medium Access Control 50

5.3.2.1 Data Frame and Remote Request Frame 51
5.3.2.2 Error Frame . 52
5.3.2.3 Overload Frame 53

5.3.3 Physical Signalling and Physical Medium Access 53
5.4 Time Triggered Communication 54
5.5 Alternative Protocols . 55
5.6 Conclusion . 56

6 Robert Lang: FlexRay Protocol: general idea, synchro-
nization 57
6.1 Introduction . 57

iv

Contents

6.2 FlexRay Specification . 59

6.2.1 Communication . 59

6.2.1.1 Architecture . 59

6.2.1.2 Topologies . 60

6.2.1.3 Node . 61

6.2.1.4 Bus . 61

6.2.1.5 Bus Level . 63

6.2.1.6 Bus Guardian 63

6.2.2 Bus Access . 64

6.2.2.1 Communication Cycle 65

6.2.2.2 Static Segment 66

6.2.2.3 Static Slot . 66

6.2.2.4 Dynamic Segment 66

6.2.2.5 Dynamic Slot . 67

6.2.3 Framing . 68

6.2.3.1 Header, Payload and Trailer 68

6.2.3.2 Coding . 69

6.2.4 Synchronization . 70

6.2.4.1 Phase & Frequency Synchronization 71

6.2.4.2 Synchronization Method 73

6.3 Conclusion . 77

7 Kostadin Kotev: OSEKtime OS - Scheduling 79
7.1 Introduction . 79

7.2 OSEKtime . 79

7.2.1 Architecture of the OSEKtime OS 80

7.2.2 Task state model . 81

7.2.3 Scheduling Policy . 83

7.2.4 OSEK OS as a subsystem of the OSEKtime 84

7.2.5 Deadline monitoring . 85

7.2.6 Interrupt management . 86

7.2.7 Start-up synchronization 87

7.3 FTCom . 88

7.4 Summary . 90

8 Philipp Pickel: Testing vs. Verification and Model Check-
ing vs. Theorem Proving 93
8.1 Introduction and Motivation . 93

8.2 Testing vs. Verification . 93

8.2.1 Testing . 93

8.2.1.1 Black Box Testing 94

8.2.1.2 White Box Testing 95

8.2.2 Inspections, Reviews and Walkthroughs 96

8.2.3 Verification . 96

8.2.3.1 Runtime Verification 97

8.2.3.2 Formal Verification 97

v

Contents

8.2.3.3 Abstract Interpretation 97
8.2.4 Advantages and Disadvantages 98

8.3 Model Checking vs. Theorem Proving 99
8.3.1 Model Checking . 99

8.3.1.1 Bounded Model Checking 100
8.3.2 Theorem Proving . 102
8.3.3 Advantages and Disadvantages 102

8.4 Conclusion . 103

Bibliography 105

vi

1 Fan Zhuosi: Introduction to the ES

1.1 Introduction

Embedded systems are computer systems that are designed for specific applica-
tions. According to the definition from IEEE:“an embedded computer system
is a computer system that is part of a larger system and performs some of
the requirements of that system; for example, a computer system used in an
aircraft or rapid transit system” [Crn]. Embedded systems are unlike a general-
purpose computer system, they are always dedicated for a special application,
so that the developer could optimize them in order to reduce the size, power
consumption and the cost. In recent years, with the development of the em-
bedded technologies, embedded systems have been more and more widely used.
From the small mp3 player, microwave oven to the big plane, the devices with
embedded systems are all around us. It could be said, embedded systems have
already changed our way of life. In this paper, we will give an introduction to
the embedded systems.

This paper is structured into four parts: the foundation of embedded systems,
the composition of embedded systems, application fields and problems. Chapter
1.2 gives an overview of embedded systems and defines their conception clearly.
In this chapter the main differences between an embedded system and a personal
computer will be figured out. We will also have a look at their history and
figure out what characteristics do they have so that it could be so widely used.
In Chapter 1.3, the structure of an embedded system will be given. We will
show how an embedded system can be composed and the functionality of their
components. In Chapter 1.4, we will discuss its particularly wide range of use.
In Chapter 1.5, we will discuss their problems.

1.2 The foundation of ES

Embedded system is also known as embedded computer system, just like its
name implies, it is a special form of a general computer. In order to under-
stand what exactly an embedded system is, we must give a clear definition of a
computer.

“A computer is an electronic device, operating under the control of instruc-
tions stored in its own memory. These instructions tell the machine what to
do. The computer is capable of accepting data (input), processing data arith-
metically and logically, producing output from the processing, and storing the
results for future use. Most computers that sit on a desktop are called PC, or
personal computers” [Uni00]. Briefly, it is an electronic device for data process-
ing and instruction executing. As we all know, a complete computer system

1

1 Fan Zhuosi: Introduction to the ES

includes hardware and software. Software is the stuff that manages the funk-
tions of your computer (cf. [Uni00]). It is a set of instructions and data that
are needed for running a program. And hardware are the physical pieces or
components in the computer (cf. [Uni00]). These physical components consti-
tute an environment or a platform for executing instructions and performing
the functions. They are the components that could be touched. The hardware
of a computer is majorly composed by the central processor, memory, power,
hard drive and peripheral devices. Each component performs its own functions.

Nowadays the well-known desktop and laptop computers are usually with
powerful performance. They are able to perform different functions by in-
stalling different software. They are not limited to a specific field. But with
the development of the computer technologies, computers have been more and
more widely used in some specific fields. A lot of dedicated equipments require
the use of computer for data handling, automatic process control or other spe-
cial purposes. In such equipment, the computer is application dedicated, and
is a fixed part in the entire device or system (cf. [Rui]). We call it an embed-
ded system. In short, “embedded systems are information processing systems
embedded into enclosing products” (cf. [Mar10]).

1.2.1 Embedded system vs PC

Embedded systems are always designed for special equipments, so they must be
designed to be suitable for those devices. The requirements of size, cost, power
consumption and reliability will be taken into consideration. And that makes
the embedded systems very different from the general-purpose computer. In
the following, we talk about some concrete differences:

• CPU
A general CPU is designed for the needs of the general-purpose computer.
General CPUs have very high computing speed, so that they can complete
a task faster or have better performances in multitasking. The general
CPU structures are very similar. Embedded systems always use CPUs
that are specially designed for embedded applications in the considera-
tions of energy, size and cost. So according to the different embedded
applications, the structures of the embedded CPUs should be dedicatedly
designed. Some need to be designed to be more reliable, so that they
could be used in a machine which works in harsh environments. Some
need to be designed as small as possible in order to be packed into some
small devices. There is a wide range of embedded CPUs. According to
incomplete statistics, there are more than 1000 kinds of embedded CPUs
worldwide (cf. [Rui]).

• OS
It is almost impossible that a general-purpose computer has no operat-
ing system. But the situation in embedded systems is quite different.
We do not need operations in some particularly easy embedded systems,
functions can run directly on the hardware platform (cf. [Rui]). It is not
necessary to set an operating system on them. But in other complicate

2

1.2 The foundation of ES

embedded systems, the support of multi-task may be required, and then
we need a dedicated operating system for them. These operating systems
are also totally different from the desktop operating systems. We could
only do the operations or functions that are in connection with the specific
applications. There are no other functions in these operating systems.

• Expensibility
Generally, an embedded system can not be upgraded like a general-purpose
computer. We usually can not improve its performance by extending or
upgrading hardware. An embedded system is a fixed part in a device. The
structure, installation and even interfaces are fixed. They are intergraded
in a dedicated computer system. So an embedded system generally does
not have expansion capability on its hardware. We also can not achieve
another function in an embedded system by installing another software
on it. Its software is generally also a fixed part in the device. The func-
tions are dedicated for the equipment demands, so in its relatively long
life cycle, we do not need to make changes to its software (cf. [Rui]).

• Standardization
PC is the most popular general-purpose computer. Its mainboard, mem-
ory, power, external device interface and even the screws, that we need
to assemble the chassis, are fully standardized [Rui]. There are hundred
brands of main boards or memories. But they all have an uniform stan-
dard. This standard specifies their sizes and the form of their interfaces
so that these components could be massively produced according to the
standard. They are appropriate for every PC. So the PCs could be also
completely produced in a large-scale. PC standardization is reflected not
only in the hardware but also in the software. Its software has also a
high standard such as operating system standard (cf. [Rui]). Windows
could be applied in almost each PC. Embedded systems do not have such
a standard like PC. Each embedded system is function-specific designed,
the design and production of its hardware and software must be in line
with the applications. It could be totally different from another one. So
it is impossible to develop an unified standard for embedded systems, and
it is also the reason that the embedded market could not be monopolized
by one or two companies.

1.2.2 Characteristics

The reason why the embedded systems could be so widely used is that they
have the following attributes.

• Low power consumption
“Computational energy efficiency is the key characteristic of execution
platform technologies” [Mar10]. Since the embedded systems are usually
used in some small devices, the power resources are relatively limited.
For example, the electronic watches. The low energy consumption re-
quirement should be considered at first. No one wants to replace the
battery for his watch every month.

3

1 Fan Zhuosi: Introduction to the ES

• Dependable
An embedded system must be reliable and maintainable. “Reliability is
the probability that the system will not fail. Maintainability is the proba-
bility that a failing system can be repaired in a certain time-frame” [Mar10].
The embedded systems are always intergraded into a device. The entire
device could not work if the embedded system does not work or breaks
down. The assembly and heat-dissipation problems must be considered.
As a fixed part in a device, embedded systems must be designed to avoid
these problems. Reliability and maintainability are particularly impor-
tant for them.

• Dedicated user interface
“Most embedded systems do not use keyboard or large monitor for their
user interface. Instead, there is a dedicated user interface consisting of
push button, steering wheels etc” [Mar10]. Users can only control the
device, they can not modify the programs. The positive side is that, it is
good for the security of the system.

• Real-time efficiency
Embedded systems generally have real-time requirements [Rui]. An em-
bedded system is usually used for controlling of procedures. A procedure
is a series of processes. Embedded system could set a time frame. A
process must be finished in this certain time frame. That is the real-time
requirement. It is a very important feature in the assembly line applica-
tion.

1.2.3 The history of ES

From the invention of microcontroller in 1970s to the large-scale use of various
kinds of embedded microprocessors, embedded systems have a history of more
then forty years.

The first high-volume production of an embedded system is the D-17 auto-
matic navigation control computer system in the Minuteman 1 missile which
was launched in 1961. It can reprogram the guidance algorithms, so that the
missile could obtain higher accuracy. Another significance of embedded systems
is that, it made the price of intergraded chips drop from 1000 dollar to 3 dollar
each. Intergraded chip commercial became possible1.

In 1976, Intel launched its first single chip 8048. After that in the early 1980s,
Intel improved its 8048. The company launched its new single chip 8051. It
was the most famous single chip in the world1.

In 1990s, the performance of embedded systems has been further improved.
The real-time conception appeared. Embedded systems began to support multi-
task. Many companies began to develop their own embedded systems.

In 2000s, with the development of the embedded technologies, embedded
systems had a considerable improvement in reliability, power consumption and
performance. They could be packed into a very small device but with high

1http://en.wikipedia.org/wiki/Embedded system, accessed on 2013-01-17

4

http://en.wikipedia.org/wiki/Embedded_system

1.3 The composition of ES

performances, you can use it for more than two or three weeks without changing.
Ipod is a good example. Its success could prove the importance of a good
embedded system.

Nowadays the multi-core technology is coming into our life. It could support
multi-task better. It is also the direction of the future technology.

1.3 The composition of ES

“An embedded system is one that has computer-hardware with software embed-
ded in it as one of its most important components. It is a dedicated computer-
based system for an application or product. It may be either an independent
system or a part of a larger system” [Kam08]. As we mentioned above, in order
to be suitable for those equipments, each embedded system for such applications
or products is customized. The size, functionality, performance and structure
of those embedded systems have to be modified correspondingly according to
the embedded demands. So there might be quite a lot of differences with each
other. But in the perspective of computer principles, it should also consist of
hardware and software.

1.3.1 Embedded hardware

“In terms of hardware aspect, this can mean limitations in processing perfor-
mance, power consumption, memory, hardware functionality, and so forth” [Noe05].
The hardware part is majorly composed by an embedded processor, memory,
communication interface equipment and human-computer interaction device.

• Embedded processor
It is the most important part in the entire embedded system and also the
core member of the hardware part. It controls the operation of the sys-
tem. There are a wide variety of embedded processors with different func-
tion and performance, from the 8-bit microcontroller which is still widely
used to the latest 32-bit, 64-bit embedded CPU. With the improvement
of processor technology, embedded processors made a great progress in
size, power consumption and performance. But all of them have a com-
mon characteristic, they must be refining designed. That means they will
not leave too much room on the computing speed as a general-purpose
CPU. Nowadays the most popular used embedded processor is a micro-
controller. “A microcontroller is a single chip, self-contained computer
which incorporates all the basic components of a personal computer on a
much smaller scale. Microcontrollers are often referred to as single chip
devices or single chip computers” [ES002]. They have the advantages of
small size, high reliability, low power consumption and cost. So they have
a the market share of more than 70 percent (cf. [Rui]).

• Memory
A memory is used to storage of data and programs. There are many kinds
of memories. For example: RAM, ROM and flash memory. “RAM (Ran-
dom access memory) consists of memory the CPU can both read from and

5

1 Fan Zhuosi: Introduction to the ES

write to. RAM is used for data memory and allows the CPU to create
and modify data as it executes the application program” [ES002]. But
the problem is that, when the power goes out, the content in the RAM
will get lost. “ROM (read only memory) is typically used for program
instructions. The ROM in a microcontroller usually holds the final appli-
cation program” [ES002]. It can hold the data when the power turns off.
But you could not change the content in it any more. The flash memory
combines the strengths of the ROM and RAM. It has a fast speed and
could keep the data when the power turns off. So it has been widely used
in our life.

• Communication interface equipment
Its role is to exchange the data between the devices. For example, USB
interface is such an equipment for data exchanging between the devices.

• Human-computer interaction device
It services as a medium of communication between user and computer. It
is divided into two major parts: in-put device and out-put device. Users
can give an instruction to begin or control a process by using the in put
devices such as keyboard and touchscreen. The computer could give the
answer through out put devices such as monitor and voice out-put.

1.3.2 Embedded software:

Embedded software: The software part of an embedded system is actually an
embedded operating system. An embedded operating system is a special kind
of operating system. An operating system manages the hardware of the com-
puter and controls the operation of programs. It provides also an user interface
which serves as a bridge for communication between user and computer. The
operating system could interpret the instructions that the users give, so that the
hardware could understand what they should do in order to achieve the func-
tions. The main principles of the embedded operating systems are similar with
a normal operating system. But its functions and operations are customized for
the devices. It has generally fewer functions than a normal operating system
and has a different user interface.

According to [Shi], the operating system can generally be classified into three
categories: order execution operating system, time-sharing operating system
and real-time operating system. In an order execution operating system, there
could be only one program in the system. This program occupies the whole CPU
itself. In the time-sharing operating system, there could be more programs in
the system. All the programs share the CPU. In a real-time operating system,
there could be also programs in the system. Each program has a priority, only
the task with the highest priority could occupy the CPU.

We often use a real-time operating system in an embedded system. A real-
time operating system can support multi-tasking, it organizes the sequence of
the tasks according to a plan. Each program must be finished in a certain
time frame. Users need not to adjust the sequence manually. The programs
run automatically. So the operation of the system becomes easier. Because of

6

1.4 Application fields

the advantages of better support of multi-tasking and the easy operation, so it
could be widely used in the embedded system. According to [Mar10], a real-
time operating system could be still classified into two categories according
to the real-time constraints: hard real-time operating system and soft real-
time operating system. A hard real-time operating system means that, if a
program could not be finished in a certain time frame, the system will result in a
serious consequence. For example, every process in a flow line machine must be
finished in a set time, or the product will be scrapped. You can change this set
time, but the process must be finished on time. The other real-time operating
systems are soft real-time operating system. They are more flexible, they could
tolerate some occasional time-out errors. Developers could choose which real-
time operating system that is more suitable for the application according to
demands.

Figure 1.1 shows the structure of ES briefly.

Figure 1.1: the composition of an embedded system (according to [Rui])

1.4 Application fields

Embedded systems have already covered a huge range of applications. We
enumerate some concrete application fields in the daily life.

• Consumer electronic products
Embedded systems have been most widely applied in this area. The prod-
ucts in this field are the most common products in our life. For example,
a mp3 player and a mobile phone. The embedded system is the core mem-
ber in these devices. Programs have been defined in embedded system in
advance. The equipment can run the functions when it receives the com-
mand. In a mp3 player, it could control the play of music. You can easily
push the “next” or “back” button to play a previous or next song or steer
the “volume” wheel to control the volume. These operations are actually

7

1 Fan Zhuosi: Introduction to the ES

the instructions that you give. Embedded system could tell the hardware
what to do after executing the instructions. A mobile phone has generally
more functions than a mp3 player. Most handy phones have already in-
tergraded mp3 function. So they usually have a more complex embedded
system. You may bring two or three such products with you when you
go to school or go to work. Another good example is a washing machine.
Now the operation of a washing machine has been strongly simplified.
You can just easliy choose the function on the control panel what you
want to wash, and then the machine could do the program automatically.
All these programs are controlled by inner embedded system.

• Manufacturing equipment
The example is a production line. An embedded system could help it to
control the processes. The production of a product could be accurately
divided into several steps. An embedded system will control what should
be done in which step. More importantly, it could enhance the accuracy
of the production process, so that each end product could get the same
quality. The application in this field makes the massive manufacture of a
product in a short time become possible.

• Automotive
All the electronic equipments in a car are controlled by embedded systems.
The automatic air-conditioning system could adjust the temperature au-
tomatically. The media system could achieve the functions of playing
music, GPS navigation, rear camera display and so on. More impor-
tantly, some system could save your life in the emergencies. For example,
the esp system. It could detect which tire loses the grip and then take the
appropriate measures to ensure that the car is not out of control. A car
is something that is armed by electronic equipments which are controlled
by embedded systems.

• Public management
Embedded systems are usually used in the public management as well.
The traffic system could tell you when you can go across the street, when
you must wait. The video surveillance system could record and upload the
videos automatically. Now these two systems are always intergraded into
one combination system to manage the traffic. When something happens,
the police could easily find the videos.

1.5 Problems

We talked about lots of the advantages of embedded systems. They have also
problems. The problems come from two aspects: the side of developer and the
side of use. For the developers, they have to design both the hardware and
software parts of a device. That makes more difficulty in the development. For
the users, they could not upgrade or make changes to the embedded system
themselves. If the system gets into trouble, the problem could only be solved

8

1.6 Conclusion

by technical staff. But in general, the advantages of embedded systems far
outweigh their disadvantages.

1.6 Conclusion

This paper began with the definition of an embedded system. And then intro-
duced the differences between a personal computer and an embedded system
so that we could have a concrete conception of embedded systems. It also sum-
marized the characteristics of embedded systems so that they could be widely
used. The structure of the embedded systems have been divided into several
components. The functions of each component have been defined. In the last
two chapters, we presented some application fields of the embedded systems and
also problems. This paper explains the importance of the embedded systems.
With the development of embedded technologies, whey will be more widely used
in the future.

9

1 Fan Zhuosi: Introduction to the ES

10

2 Johannes Muhr: Cyber-physical Systems

2.1 Introduction

In the past decades the information and communication technology (ICT) has
developed in an unbelievable velocity. In the middle of the nineties, many peo-
ple probably didn’t know much about the Internet, maybe never heard of it
at all. Nowadays, a life without Internet and the correspondending ICTs is
unthinkable. In industraial countries, everybody comes in contact with differ-
ent kinds of ICTs in daily life, as it is meanwhile in nearly ever product or
used in services like the energy supply [BBB+10]. Thus, Embedded Software
was developed further with a similiar speed, using technologies of ICTs. Em-
bedded Software exists in small, daily used systems like a washing machine
and smartphones, but by now also in larger systems (vehicles) subsist a lot of
small embedded systems like in the antilock brake system (ABS) or in the elec-
tronic stability program (ESP) [Mar11]. Consequentially the market volume of
embedded systems achieved in the year 2010 already an amount of 19 billion
[BBB+10]. The next aim of the scientists is to create Cyber-physical systems
(CPSs), an advancement and connection of Embedded Systems (ES). This work
deals with that new topic. Section 2.2 explains the development of CPSs and
its basic architecture, Section (2.3) deals with the challenges of CPSs during
the process of creation. In the last part, Section 2.4, some modelling techniques
and ways that lighten the design process are addressed.

2.2 Cyber-physical Systems

In the first part of this work, the question “what do you understand under
the term CPS and how has it developed ?” is answered. It starts with the
development of CPSs, afterwards the term per se and also the structure of
these Systems is explained. At the end of this part, CPSs are compared with
the traditional Embedded- and Real-Time Systems and the visions and main
benefits of CPSs are announced.

2.2.1 The development and concept

The term Cyber-physical System (CPS) is a quite new notion in modern sci-
ences. It emerged around 2006 in the National Science Foundation in the United
States [LS11].

11

2 Johannes Muhr: Cyber-physical Systems

Figure 2.1: Evolution of Cyber-physical Systems

Figure 2.1 ([BGC+11]) shows the evolution process of CPSs. The process
started with the evolution of small Embedded Systems (ES). Those traditional
ESs were small single systems which combine physical processes with comput-
ing. But many of these ESs just replace mechanical work. Over time, new
techniques and simultaneously better systems have been developed. The result
was a networking of some different ESs which communicate with each other.
Now, modern systems like automobile engine controllers can’t be simply re-
placed through mechanical devices anymore [BGC+11, Wol09].

The question is, whether these networked ESs can be seen as CPSs. That
is not easily to be answered, especially as the German BITCOM uses CPS as
a synonym for ES [BBB+10]. So in the view of the BITCOM, CPSs are just
common systems, which are already available. On the other side, the National
Science Foundation (NSF) clearly differs between the two terms and says that
CPSs are not the “traditional post-hoc embedded/real-time systems and not
today’s sensor nets” [Gil08]. So, the NSF recognizes in CPSs a larger dimension
than it is the fact in the common ESs. To consolidate these facts we say that
the networked ESs of today are a kind of “small” CPSs. But the actual meaning
of the NSF was different. This concept will be explained in the following section.

Due to the huge scope of the term several definitions are used. The following
two examples express the fundamental factors of CPSs.

“Cyber-Physical Systems (CPS) are integrations of computation with physical
processes. Embedded computer and networks monitor and control the physical
processes, usually with feedback loops where physical processes affect computa-
tions and vice versa.” [Lee08]

12

2.2 Cyber-physical Systems

“Cyber-physical systems (CPS) are physical and engineered systems whose
operations are monitored, coordinated, controlled and integrated by a computing
and communication core.” [Sta10]

As we can see in these two definitions, the key point of CPSs is the two way
interaction between physical laws and computation. In CPSs, these sciences
are not united, but rather intersected. Instead of concentrating on single topics
of the system, we should focus on the interaction of them. Figure 2.2 ([LS11])
illustrates an abstract example of the structure of CPSs. Especially the interac-
tion of the individual elements from the different components is clearly shown
[LS11].

Figure 2.2: Abstract structure of Cyber-physical Systems

There are three main parts in this illustration (Figure 2.2), the first part is
the physical plant, which is simply everything that is not realized with comput-
ers, it can include various things like mechanical parts and so on. The second
part involves one or more computational platforms with components like com-
puters, sensors and actuators. Sensors measure the results of the process and
actuators impact on base of the elaborations on the physical plant. The last
part is the communication (network fabric), which provides the communication
mechanisms for the computers of the different platforms. The ICTs provides
different ways to execute the data communication in the network fabric. To-
gether, the network fabric and the computational platforms form the “cyber”
in the term Cyber-physical Systems, whereas the physical plant stands for the
“physical”.

In this example (Figure 2.2), there are two platforms, each platform has one
sensor measuring the impact of the physical processes. The platform 2 includes
an actuator that controls the physical plant. Computation 1 sends the mea-
sured data via the communication network (network fabric) to computation 3.

13

2 Johannes Muhr: Cyber-physical Systems

Each computation element implements a control law giving commands to the
actuator, based on the data received from the sensors. So the commands of
computation 2 and the consolidated commands of computation 1 and compu-
tation 3 are merged and sent to the actuator.

Together, the structure of CPSs is characterised through the complicated in-
teraction and connection of Embedded-, Computational Systems with (world-
wide) networks. CPSs can communicate with communication platforms like the
Internet with widely distributed systems. To be more generally, CPSs are the
intersection and the direct connection between the physical and digital world.
Though, the digital world involves various components like the communication
medium, computers and so on [Bro10].

2.2.2 Classification

We have seen in the first section (cf. 2.2.1) that it is often difficult to clas-
sify the different Systems to their belonging. We learned also something about
the special characteristics of CPSs. In this section, CPSs are classified in the
overall context and challenges of this classification are introduced and discussed.

Figure 2.3 ([Bro10]) shows the architecture of CPSs, where we can see that
a major part of them is built up on ESs and all the corresponding components
like: sensors, actuators, hardware, software and also the interfaces to users and
further systems.

Figure 2.3: The Architecture of CPS

Therefore it is sometimes not easy to conclude if a system is still an ES or al-
ready a small CPS. Figure 2.4 illustrates again the large overlap of Embedded-,

14

2.2 Cyber-physical Systems

Real-Time (RTS)- and CPSs1. It is clear that there is an overlap between CPSs
and ESs as each CPS needs embedded software to work and integrates com-
putation with physical processes. But the difference to the traditional ESs is
that CPSs do not simply replace mechanical work and they have the focus on a
multitude of devices. Together, CPSs are more distributed and more interactive
with the nature [Bro10, KKI+11, Wol09].

In comparison to the modern ESs, CPSs work and communicate in a very
large system, whereas the ESs are within a well-defined system. An example is
the mentioned automobile engine controllers (ES, “small” CPS) in a car. An
example for a CPS would be a networked intelligent intersection, where a set
of cars are communicating with each other. Additionally, the cars can access
to detailed information from the infrastructure and the other way round. The
task of the whole system (cars, traffic lights, etc.) is to arrange an efficient
traffic flow in real time. For example the system must notice if there are a lot
of cars waiting in front of a traffic light. Then it should try to dissolve the jam
as soon as possible in consultation with the other elements of the system (other
cars and traffic lights) [Gil08].

Figure 2.4: Overview of Embedded-, Real-Time- and Cyber-physical Systems

In comparison with Real-Time Systems (RTSs), it is again obvious that CPSs
have tasks that must be executed periodically or that they have deadline or
latency constraints. But the difference is that in the classical field of RTSs,
the system does not interact in the process from itself. So the system monitors
the action and may give some signals, but it does not try to solve the problem
itself. In the last example with the intelligent intersection (cf. 2.2.2) we have
seen that CPSs should try to find its own answer. Examples for classical RTSs
are monitoring consoles in hospitals. They supervise certain values and give
alarm if a critical limit is reached; still they do not interact in the process and
do not help the doctor to reduce the increased magnitudes [LCS+88].

1Figure at the address http://scm-l3.technorati.com/10/02/03/4111/cps-technorati.

jpg

15

http://scm-l3.technorati.com/10/02/03/4111/cps-technorati.jpg
http://scm-l3.technorati.com/10/02/03/4111/cps-technorati.jpg

2 Johannes Muhr: Cyber-physical Systems

2.2.3 Vision and Aims

In this section the focus lies on the actual vision and goals of CPSs. The
intension of CPSs is to create a huge network with distributed systems that
can interact and communicate with each other and with humans through new
modalities. Based on the new abilities of interaction with the physical world,
the high functionality and reliability; CPSs will be a key enabler for future
technology developments that far exceed the levels of autonomy today [BG11].

That results in the area of automotive as an extensive network between all
vehicles and the complete infrastructure, like traffic lights or parking decks.
Due to the continuous real-time data exchange (about weather, information
about the traffic, etc), the distributed traffic management systems can work as
a planning and coordination assistant and react on unforeseen situations like
traffic jam. Through an optimal traffic management with an early recognition
of threats and barriers, the road safety (less accidents with other cars or pas-
sengers) may be increased. Further, through this intelligent planning the road
users may save time and money due to the reduction of fuel consumption and
the CO2 saving, which is also important for the environment protection.

The grand vision of Cyber-physical System is the Smart City [BGC+11],
which is a cross domain topic which involves different sectors, like smart mo-
bility, smart health, smart grid, smart factory, smart home and so on. These
sectors are all connected with each other and manifest a lot of interdependen-
cies. An example for the combination of smart home and health is a system
that recognizes and gives an alarm signal, if a room is (for a defined amount
of time) empty and the stove is on. So, the different future scenarios are not
isolated from each other, instead-, there are a lot of relationships and depen-
dencies between the distributed subsystems.

2.3 Challenges

We have seen that CPSs are very complex and large systems, with a wide range
of applications. It includes the mentioned traffic control, safety and advanced
automotive systems, avionics, environmental control like the observation of wa-
ter resources, infrastructure control, communication systems, electric power and
so on. Altogether, most applications are safety critical or at least critical in that
each system affects other areas [Lee06]. So it is obvious that the design and
modelling of these systems is very challenging. Some of the challenges that
arise during the design process of CPSs are introduced and discussed in the
next sections.

16

2.3 Challenges

2.3.1 Non-functional Challenges

It is very important that CPSs meet the dependability aspects (reliability, main-
tainability, availability, safety and security) to guarantee a save use of the sys-
tem. The reliability, so the probability of failing, must be limited to a value
near zero, since most systems are critical. As this is not 100% guaranteed,
the failing system must be repaired in a minimum time-frame (high maintain-
ability) so that the negative effects through the failure of the system (damage,
costs, etc.) are as small as possible. The reliability and maintainability should
be high in order to fulfill a high availability. The property of causing any harm
through a system failure must be again very low (high safety). The challenge
and risk of CPSs is that even small errors can lead to enormous damage and
an endangering of human life. For the same reasons, but also in the interest
of data protection, it must be guaranteed that the confidential data of the sys-
tems stays conversant. In equal measure, the system must be protected from
hostile takeovers (high security). This is again a very demanding challenge as
the systems are very large and interact with each other; therefore there are a
lot of possibilities to influence the process in a malicious way [Mar11].

2.3.2 Digital and analog world

An elemental problem of CPSs is the gap between the digital and analog world.
While the physical part is based on the classical continuous math, the digital
information processing (which involves models for the implementation, pattern
for data acquisitions, processes and architecture of the digital systems) is based
on discrete logic. But through the interaction of the physics with computation,
CPSs must consolidate two (from the origin) very different domains. Models
that constrain themselves to only one of the two approaches (digital or analog)
are in those cases useless. Therefore, there is a need of an integrated system-
and model-layer, which combines the diverse mathematical ways. To join the
indivudual models (digital and analog), qualified levels of abstraction have to
be found. A model which is able to consolidate the analog and digital domain
is called Hybrid-System [HKPV98, Bro10] (cf. Section 2.4.3).

2.3.3 Complexity Challenge

A further problem is the environment that interacts with the systems. Phys-
ical processes are by nature concurrent, which means that there are parallel
processes. An additional difficulty is the fact that these processes cannot be ex-
actly foreseen [Lee06]. Even if a system is engineered reliable and predictable,
the nature can still manage to expose the system to an unknown condition.
CPSs are working consequently in an uncontrolled environment. As a result,
CPSs must be adaptable to failures as the availability can never be absolutely
guaranteed [Lee08], although this is very difficult, since a lot of systems are
interdependent and need data from each other to execute perfectly.

17

2 Johannes Muhr: Cyber-physical Systems

Further, due to this networked environment and the combination of different
disciplines like computer science and electrical engineering, all standard engi-
neering methods become more complicated. Based on the dimension of those
systems, different modelling techniques from different branches are used that
are not directly compatible and suitable. Divisions of labour and decentralized
working are further keywords that complicate the engineering process relevantly
[Bro10]. Consider the smart city that was introduced in Section 2.2.3, it is very
difficult to arrange the interdependencies and the involved developers in the
modeling of the system. These properties and conditions influence the whole
engineering process. At the end of this process there is once again a huge chal-
lenge. Testing the major network with all the different subsystems seems to be
very challenging [Lee08].

2.3.4 Lack of Timing

Another challenge of CPSs is the software part. A simple programm with no
concurrency can perform on a computer with 100% reliability, but in CPSs
there are instead of small programms huge software systems. Keeping this soft-
ware (or rather the software model) in that complicated dependency consistent
is a big challenge. A further problem are the high interconnected sensors and
actuators. In CPSs the interaction between sensors and the hardware of ac-
tuators (cf. Section 2.2.1) is very important, but this specific behavior is not
very well represented in programming languages. The problem is that imper-
ative or sequential programming languages do not match well with the needs
of CPSs. Even the simplest program is in the context of CPSs not reliable, as
the aspects of the systems behavior are not expressed by the language. It can
execute perfectly and match all semantics, but it can still miss real-time con-
straints, because timing is not in their semantics. But meeting this real-time
constraints is essential for CPSs. This is an issue from the very first time in
the development process, where the concurrent processes must be known and
illustrated in models. This problem becomes more complex and worse if the sys-
tems get bigger and bigger, as it is the case with CPSs [DLSV12, Lee08, Mar11].

2.4 Modelling techniques

The challenges discussed in the last section (cf. 2.3) show the huge amount
of problems that need to be overcome. In the next section, some models and
techniques, which help and simplify the modelling process, are explained.

2.4.1 Models of Computation

In Section 2.3 it is mentioned several times that a lot of the problems emerge
from the heterogeneity and complexity of CPSs and their applications. To re-
lieve that problem in the design process, qualified levels of abstraction have to

18

2.4 Modelling techniques

be found that use modelling techniques with well-defined, expressive and pre-
cise semantics. This can be fulfilled with the Model of Computation (MoC),
which is a defined set of operations used in computation and their respective
costs. There are a variety of such models existing (Turing machine, finite-state
machine, random-acess machine and so on), so it is usually not easy to find a
suitable model. Especially the heterogeneity of CPSs forces the developer to
combine a multiplicity of models.

In the case of CPSs, the MoCs try to illustrate the concurrent composition
of actors. An actor is a component that reacts to stimuli at input ports and
produces stimuli on output ports. The interaction of the actors is defined by
three sets of rules. The first set specifies the constitution of the components,
which means having an overview about the whole architecture of the systems
from the beginning, knowing which systems are dependent and affect each other.
Secondly, you have to specify the concurrency mechanisms. After knowing the
interdependencies of the subsystems you have to determine how the systems give
semantic to the concurrency. For example, define whether the systems execute
simultaneously or if they share a notion of time. The last set of rules defines
the semantics of the communication mechanism. Specifying, if the subsystems
communicate via synchronous or asynchronous messages or which protocols for
the data exchange are used and so on. The challenge in the design process is
to identify the actually needed MoCs from the huge amount that is available
[DLSV12, LS11, Sav98].

2.4.2 Multimodelling

It is already mentioned in this work that interfaces are the key issue for CPSs
(cf. Section 2.2.1). Through the magnitude and heterogeneity of CPSs and
the resulting work-sharing processes, a lot of different modelling and specifica-
tion techniques are used during the design process and further actions (various
MoCs). The problem is that the semantics of the different MoCs are not directly
compatible and comparable. So the main focus should lay on the integration
of the multiple models to get the interfaces operating with each other. This
is called “multimodelling”. Good software architecture for a CPS and their
interoperations will only arise from an excellent and errorless understanding of
the semantics of interoperation (cf. Section 2.4.1). Further, the deterministic
aspects of elaboration must be a very important property of these systems,
especially through the huge amount of interfaces to other subsystems. A par-
ticular input must always lead to the same output in all dependent systems.
Otherwise, the requirements of the non functional challenges (cf. Section 2.3.1)
could not be achieved, as the system has no operation mode that leads to a re-
liable output. Non-determinism is only used if it is needed by the application.
Through this kind of modelling, better concurrency mechanisms than with the
normally used models and a better interoperation are possible [DLSV12].

19

2 Johannes Muhr: Cyber-physical Systems

2.4.3 Hybrid Systems

CPSs are the integration of computation, networking and the physical dynam-
ics. Therefore, single models (cf. Section 2.3.2) that address only either to
differential equations (continuous dynamics) or to state-machines (discrete dy-
namics) are in that case inadequate. Hybrid systems try to deal with this
problem by providing a bridge between the state-machines and the time based
models. The notion stands for a particular composition of continuous and dis-
crete dynamics. In other words, the systems proceeds continuously, but has
occasional jumps, corresponding to the state change in an automata. These
transitions are caused either by the continuous evolution itself or by external
events (stimuli on the input ports). A very trivial example from [LS11] is a
thermostat, which has no continuous state variables, no output actions and no
set actions (cf. Figure 2.5).

Figure 2.5: A thermostat with continuous-time output

Instead of a discrete input, the system receives a continuous time signal (Π
(t)), the temperature at time t. Further, the thermostat has the two states,
cooling and heating, whereat each state is associated with a time-based system
(a so called state refinement labeled as “h(t)”). In a hybrid system, the current
state of the state machine gives the dynamic behavior of the output (h) as a
function of the input (Π). In the example, the system produces a signal whose
value is 0 when the heat is off and 1 when the heat is on. Such control signals
could directly supervise the thermostat and drive it.

2.5 Conclusion

We have seen in this work that CPSs compromise models of physical processes as
well as models of the software, computational platforms and networks. For de-
veloping CPSs the existing technologies are sufficient. They need new ones that
combine the different models of CPSs and overcome the challenges. Although

20

2.5 Conclusion

in the meantime some tools that relieve the design process were developed, it is
still a long way to develop dependent and large CPSs, but in foreseeable time
physical computing will interact more and more in our life and will revolutionize
a lot of areas like transportation systems, manufacturing, process control and
power grids. There are already projects existing (for example project simTD in
Germany) that explore and prove technologies like the car to car communica-
tion (like in the mentioned intelligent intersection (cf. 2.2.2)) and applications
for a save and intelligent mobility. Altogether a save application of CPSs will
lead to a more efficient and saver life for people all age groups and can also
protect the environment [Sta10], as explained in this project 2.

2www.simtd.de

21

www.simtd.de

2 Johannes Muhr: Cyber-physical Systems

22

3 Christian Lichtmannegger: Real-time
systems

3.1 Introduction

Real-time (RT) systems are an important field in embedded systems and em-
bedded systems are an important part of our daily life. This is called ubiquitous
computing. It is no surprise when a person has 2 or more computers and if we
count the embedded systems too, then people can easily have 10 or more. RT
systems make a big part of embedded systems and therefore a big part of our
life. A RT system produces a result in a given time interval. Because the aspect
of time is mostly excluded in the majority of programming languages, so it is
hard to make time itself part of your program. In addition, normal operating
systems give a very good average efficiency but a RT task must finish in time,
so the scheduling must be changed, to fulfill the timing aspect [Sta96b, YB+97].
Only those points show that RT systems can be a very interesting field of re-
search. In this paper, I will examine some fundamental aspects of RT systems
and show you some techniques to overcome the scheduling problems.

3.2 The basics

There are various definitions of RT systems but I focus on the one proposed by
John A. Stankovic [Sta96a]. “Real-time systems are those systems in which the
correctness of the systems depends not only on the logical result of computation
but also on the time at which the results are produced.” We can reduce this
quote to two key messages.

Logical result That means if the system solves the problem or not

Time aspect That means how much time does it take to get the logical result

So we do not only have to focus on solving the problem, but we have also to
consider how much time does it take. For instance, because if you sit in a car
and have an accident then it is necessary not only that the airbag opens but
also that it will open in time. This shows very well that RT systems can be
safety critical [BLMSV98]. To get a better understanding of what RT systems
are, I will give three examples of them.

Table 3.1 shows three different examples of RT systems. They have some
common but also different aspects. All RT systems consist of a controlling
part, that is the computer chip and the RT system itself, and a controlled
part. That is the environment the computer interacts [Sta96a]. In case of

23

3 Christian Lichtmannegger: Real-time systems

Air-traffic control Assembly lines in in-
dustry

Remote conference
application

Consist of a controlling and a controlled system

Scheduling of processes to meet the RT constraints

Hard RT constraints Hard and soft RT con-
straints

Soft RT constraints

Safety critical system Less safety critical sys-
tem

Not safety critical sys-
tem

Figure 3.1: Examples of different RT system

the air-traffic control system the environment are the planes and the airports.
In case of the assembly line example the environment is defined through the
assembly line itself and in the example with the remote conference application
the environment are the users of the system and their PCs.

But thats nothing special because this pattern of a controlling and a con-
trolled system is caused by it’s definition as an embedded system. Every em-
bedded system consists of this two part. So RT systems are embedded systems
by their definition.

The next common point is the importance of scheduling processes. This is
exactly the second point given by the definition at the beginning of this article.
The time when a result is produced is important. All RT systems have a special
scheduling algorithm and I will examine some of them in the following chapter.

Despite those common points this systems have many differences too. Not
to mention the different costs of an air-traffic control system and a remote
conference application there are fundamental differences like safety criticalness.
There is a strong relation between timing constraints and the safety criticalness
of a system. You can use this simple thumb rule: The more safety critical the
system is the harder are the deadlines of the tasks. Every task has its own
deadline but it possible to miss the deadline in some case. If this is possible the
deadline is called soft if not the deadline is hard (cf. [BLMSV98]).

In the example of an air traffic control system the deadlines are hard because
the pilots need all the information in the right time to react and prevent a
disaster. In assembly lines the deadlines are largely soft because if a task can
not be executed in time then the system can reduce the speed of the assembly
line to give the tasks more time to finish. The problem with that is that if the
system often reduces its speed, you can produce less goods and therefore the rate
of met to missed deadlines is an important mark of quality of those systems. In
a remote conference application you have only soft deadlines because problems
are just only annoying, if you hear a bad noise or see some skipped frames on
the monitor, for example. But here also the rate of met and missed deadlines
plays a role in quality (cf. [Sta96b]).

24

3.3 Scheduling

3.2.1 Different types of tasks

It’s important to know that in a RT system you have to handle different types
of tasks:

Periodic task This is the most simple task. Its deadline just repeats itself after
a periodic time interval. So this task must be executed every n time units.

Aperiodic task This task has to be executed after an event occurs. So its
deadline is defined through the time the trigger event occurs.

Sporadic task This task is quiet similar to an aperiodic task. The main dif-
ference is, that between two activations of a sporadic task a given time
interval must have been passed. That means that after the first execution
of the task you must wait until this interval passed before you can activate
the task a second time.

3.3 Scheduling

3.3.1 Scheduling: The basics

Schedule is the process of allocating resources to various tasks. The main
resources in computation systems are CPU resources and computation time.
So you allocate a task to one or more specific CPU units for a specific time.
The problem is that, in most cases, we do not exactly know how long it takes to
execute a task. So we need a reference value and this is the worst case execution
time. Because when you know, that a task takes between n and m time units,
the task is definitely finished after m time units. So you can guarantee to have
enough time for execution whatever happens. So a task is not only defined by
its deadline, like in the above text, but also by its worst case execution time. To
make it simpler I assume that a task always takes all the resources of a CPU,
so only one task can be executed on the same CPU at the same time.

Scheduling in RT systems must meet two goals:

1. Meeting deadlines

2. Maximize resource utilization

The first point, that a RT system must meet its deadlines is essential and
the key objective. But you have to think about resource utilization too. Those
two goals often conflict each others. Because if you have so much resources
too meet all deadlines whatever happens, then you normally have a very low
resource utilization. This means that you have much unused CPU space and
this makes the system more expensive. On the other hand, if you have a very
high resource utilization then you have only few unused CPU space and if you
have to execute an unexpected task you can not execute it. So you must find a
good balance between those two key objectives (cf. [BLMSV98]).

There are two different approaches to meet those objectives. Static and
dynamic scheduling.

25

3 Christian Lichtmannegger: Real-time systems

3.3.2 Static scheduling

Static scheduling is to form a feasible schedule before runtime. That means
that all the computation effort for scheduling is done before runtime and so less
computation resources are needed during runtime. That makes the resulting
system much cheaper.

3.3.2.1 Round Robin/Static cyclic scheduling

The most basic algorithm is called Round Robin. At the beginning there is
a task pool and we just form a cycle from all those tasks. So we have a cy-
cle with every single task in it. During runtime the tasks of the cycle will be
checked if they can be executed. That means that there are enough resources
free to execute it. If a task can be executed then it will be started immedi-
ately. Else the next task will be checked. This algorithm does not care about
deadlines and the only good thing about it is that every task is checked once
in a cycle but it could happen that important tasks must wait very long until
execution (cf. [BLMSV98]).

Pro Contra

• Very low memory alloca-
tion

• Every task is checked dur-
ing a cycle

• Many deadlines could be
missed

A little improvement of the standard Round Robin approach is to duplicate
important tasks, so they appear more often in the cycle. This little change seems
to reduce the missing deadlines problem significantly but it also increases the
cycle length. The result is although important tasks are checked and executed
more often the ”normal” tasks lack of execution. In addition it takes longer to
go through the cycle so the execution problem is increasing too.

Pro Contra

• Very low memory alloca-
tion

• Increased number of
checks for important
tasks

• We can not predict that
all deadlines will be met

26

3.3 Scheduling

Figure 3.2: Cyclic algorithm every LCM

3.3.2.2 Cyclic static table driven algorithm

A very efficient algorithm is a cyclic algorithm which repeats every least com-
mon multiply (LCM) of the task length. If there are tasks that take 10, 20 and
30 ms of worst case execution time, then the LCM of those tasks is 60 ms. So
the scheduler forms a cycle length of 60 ms. Now the scheduler looks at the
deadlines of the tasks and tries all permutations of those tasks, so they are all
finished in time. If the scheduler finds a proper schedule, then the work is done.
This cycle is repeated continuously during execution time of the system. An
example of this technique is shown in Figure 3.2.

If the scheduler can not find a feasible schedule then more CPU resources
must be added. In case of a very long task, the scheduler can split this task into
independent subtasks, to get a better usage of the resources. Those subtasks
can be executed on their own and at the end of computation the results are put
together to form the final result of the task. This is only possible if a splitter
tasks does not need information from another splitter task to continue. It could
happen that there is some unused computation time at the end of the cycle and
if that is the case it could be possible to reduce the number of CPUs to get a
better capacity utilization.

Because in worst case the scheduler must check all permutations of tasks to
find a feasible schedule and additionally he can split up tasks and make even
more tasks, the computation effort for creating a schedule is growing exponen-
tially. The good thing is that all that effort is done before runtime. That results
in less wasted computation resources during runtime and so the system is much
cheaper then one with dynamic scheduling. Because during one cycle, no dead-
line is missed and the cycle repeats in a static way it is easy to predict, that no
deadline will be missed. So it’s perfect for safety critical issues (cf. [BLMSV98]).

27

3 Christian Lichtmannegger: Real-time systems

Pro Contra

• Very predictable

• Splitting of tasks increase
feasibility of schedules

• Good for safety critical
systems

• Very high computation ef-
fort before runtime

• Splitting of tasks in-
creases the effort even
more

3.3.2.3 Analysis

So in fact good static algorithms are very predictable. So all deadlines will be
achieved and they are mostly used in safety critical systems. Because we can
guarantee that the system will not miss a deadline. Another good point is that
all the computation effort is done pre-runtime and so the resulting system needs
less computation resources.

A problem with static algorithms is that it is hard to implement aperiodic
tasks and user interaction. The predictability of such a system is caused by the
knowledge when a task arrives. If there is an aperiodic task, you do not know
when it will start and so you do not know the exact deadlines pre-runtime. It
is likely the same with user interactions. It would be possible to make an extra
slot just for those unpredictable tasks but if you have an overload of tasks, so
you can not execute all of them in time then a static system fails. Another
problem I totally ignored in this article so far, is that tasks could fail. It could
happen that through a programming mistake or just a bit switch, the task
fails and the result of the computation is useless. To overcome these problems
dynamic algorithms were created.

3.3.3 Dynamic scheduling

The main difference of dynamic by comparison to static scheduling is that the
creation of a feasible schedule is done during runtime. That means that CPU
resources are needed to create the schedule. So the chip makes continuously
feasibility checks. That means extensive simulations and requires the use of
heuristic functions to keep the effort acceptable. Another difference to static
approaches is the use of a dynamic priority. So every task has a worst case
execution time, a deadline and a priority. If there is an overload, that means
that there are so many tasks that not all of them can be executed punctual,
then a task with a higher priority is privileged. The concept a priority can be
used in static techniques too, but in dynamic scheduling algorithm the priority
can change. So it is more flexible. The problem with dynamic algorithms is that
most of them are very complex and so I will only show very simple and basic
ones. A more complex and efficient algorithm is described in (cf. [MM98]).

28

3.3 Scheduling

Figure 3.3: Task Pool

3.3.3.1 Least laxity first (LLF)/Dynamic earliest deadline first

Two basic algorithms are LLF and DEDF. They are both priority driven algo-
rithm and their priority is calculated very simple.

LLF has the laxity as priority. Laxity is the amount of time a task can wait
before starting the execution, so it will still meet its deadline. At first there is
a task pool and the scheduler creates a priority queue with the task with least
laxity first. Then the tasks are assigned to CPU resources one after another.
If there are multiple CPUs then it is possible to execute more tasks at a time.
The change of priority is pretty self explaining, because as time proceeds the
laxity of all tasks decreases. If there is another task, then it will be added to
the queue properly.

Figure 3.4: The resulting schedule

DEDF is pretty similar to LLF, the only difference is the priority here is
just the time until the deadline arrives. That reduces the calculation effort
for priority but it is almost only used in systems where all tasks have the
same execution time. Because then the computation time is irrelevant for the
priority (cf. [BLMSV98]).

3.3.3.2 The problem with overloads

I already mentioned in the introduction to dynamic algorithm, that an overload
is when there are so many tasks that some of then cannot be executed in time.
Then the algorithm has to differ between tasks that are worth to execute and
those that can be discarded and execute later. That means that safety critical
tasks like opening an airbag has a high value and controlling the air conditioner
for example has a low value. Or the length of the execution time reduces

29

3 Christian Lichtmannegger: Real-time systems

value, or soft real time constraints reduce value, while hard deadlines increase
it (cf. [BLMSV98]).

3.3.3.3 Fault tolerance

Another big advantage of dynamic systems is that they are fault tolerant. It
could happen that through a simple bit switch or a programming bug, the task
fails and the result is useless. The key idea behind fault tolerant systems is that
you have two tasks, to solve the same problem

Primary task This task is scheduled that it will meet the soft deadline of the
task or so that a secondary task can be executed before the hard deadline
arrives. This task is normally sufficient.

Secondary task This task is like a backup, it is scheduled directly after the
primary task. This task is only executed if the primary task fails.

That means that if no error occurs the secondary task is discarded and if
there is an error then the second task solves the problem in time. It is also
possible to use more then one backup task. But this means that there is a huge
waste of resources, because if the secondary task is discarded in most cases then
this time is lost for other task. To solve this problem it seems logical to use
resource reclaiming too (cf. [BLMSV98]).

3.3.3.4 Resource reclaiming

Resource reclaiming goes hand in hand with fault tolerance in most cases. But
systems without backup tasks use it as well. Because the scheduler assigns a
task for its worst case execution time to a CPU, a task normally ends before
it reaches its worst case execution time, so almost every task wastes resources.
This is a problem and dynamic scheduling gives us the opportunity to change
this. A system that uses resource reclaiming uses this unused computation time
to run RT or non-RT tasks. This rescheduling must be very quick so it takes
only very little time to reschedule tasks. It is important to predict that if we
save time, the computation effort to reschedule is lower then the saved time,
independent from the number of tasks running.

3.3.3.5 Discussion

The main disadvantage with dynamic scheduling systems is that they do not
exactly know when a task arrives. So it is hard to promise that all deadlines
will be met and due to the extra CPU the system is more expensive too. But
for systems with high user interaction static approaches do not fit and dy-
namic algorithm evolved in the past years so they are a very good alternative.
Especially resource reclaiming and fault tolerance increase their efficiency dra-
matically. But this algorithms, are very complex, image an overload and you
discard some tasks, then you do not need a secondary task and save computa-
tion time then it could be possible to reschedule discarded tasks then simply
move all other tasks forward.

30

3.4 RT operating systems

3.4 RT operating systems

Most systems need an operating system (OS) to work properly, but “normal”
OS do not fit RT requirements. They offer a good average performance but in
RT systems there is a need for higher priority for hard RT tasks and a lower
priority for all other tasks. So a new type of special purpose OS are invented,
RTOS. They offer the same functionality of normal OS

• Process management

• Memory management

• Interprocess communication

• In- and Output

RTOS can be divided into 3 main categories: Small and fast kernels, RT
extensions for existing OS and research kernels.

Small and fast kernels are those chips you find in most RT systems. They
are cheap and like the name says they are small. This results in reduced func-
tionality, compared to a normal big OS, but they respond to interrupts quickly
and minimize the time between intervals those interrupts are disabled. Those
points makes those kernels very fast. But fast is not RT, so they maintain a real
time clock, for synchronization and they support real time queuing. Many also
provide a priority scheduling mechanism. All this together turns the system
into a RTOS (cf. [HP88, BLMSV98]).

RT extensions for existing OS are a new approach to bring the RT part into
a normal OS. The problem is that writing a new OS with all the functionality
of Windows or Linux would be exhausting and so RT extensions were created.
For example RT Linux, it is just a small application inside of Linux. If there
is a non-RT process, then nothing special will happen and Linux will take care
of this process. But if a RT process arrives then RT Linux takes over control.
To reduce the complexity of RT Linux it will only take care of the RT part of
the task, so almost all RT tasks will be split into a RT and non-RT part. The
non-RT part will be executed by “normal” Linux and also scheduled by Linux.
The in most cases very small RT part of the task will then be handled under RT
conditions. As example we can imagine an audio recording task. This process
consists of two main parts, storing the RT stream in a buffer and writing the
buffer into a file. In this case storing the RT stream is the RT part, because
this recording has to be done very accurate, to enhance quality, while writing
the buffer into a file to save the record can be done almost at any time. So
only a small part of the whole task is really done in RT and the rest is done
conventional (cf. [YB+97]).

Research kernels are experimental kernels to try out new ways of solving
problems, or are specialized kernels for very specific tasks. Those kernels are
out of scope of this paper.

31

Manuel Bonk: Tasks in Embedded Systems

3.5 Developing of RT systems

Now we know what RT systems exactly are and how they work, but the develop-
ing of those systems is also an important field of research. RT systems feature
the combination of soft- and hardware. That makes testing and verification
harder, because not only the software must be checked but also the interac-
tion with the hardware components. Additionally the size and complexity of
RT systems is growing and this increases the effort for testing and verification
even more. That makes testing and verification extremely expensive, especially
for more safety critical system where more testing must be done. The idea to
improve this situation is to make testing and verification a pervasive part of
software development.

Because the costs of repairing an error are increasing exponential compared
to the time the error is detected. This would not only save money it would also
leads to a better code. If an error is found early then a new solution can be
created, but if the error is detected at the end then in many cases a complicated
fix is done, which makes the system harder to maintain and to understand.

At first an informal specification is given, this normally comes from the client.
This can be transformed in a semi formal specification. This can be seen as
an optional step, but is useful in many cases. A semi formal specification is
normally given as pseudo code. This specification will then be transformed into
a formal specification. Such a formal specification is given in a formal language,
which can be proved through a proving software or by hand. This is the first
check cycle, if the system fits the requirements or not. The next step is forming
a model of the system and test and verify this model. If everything is correct
then the final code will be created and will be checked one last time, before
release. This new model implements three checking cycles and will probably be
adopted by industry (cf. [HST10a, HST10b]).

3.6 Conclusion

Now we have a good impression what RT systems are and how they work. RT
systems cover a wide spread of fields of application, so their future importance
will grow. Because of the separation between soft and hard RT constraints we
are able to develop systems to satisfy different needs, like costs, flexibility, pre-
dictability or safety criticalness. Also the improvements brought to us by RTOS
will find their way into “normal” OS too. But beside these points scheduling is
still the main problem with RT systems and so this is a very interesting field
of research, especially in the dynamic scheduling section. It would be great
to find a technique to make dynamic scheduling more predictable so all their
advantages could be used in safety critical systems too. All in all RT systems
are very interesting and the more research is done in this field, the more per-
sistent those systems will become. This effect will be boosted by ubiquitous
computing. So RT systems in combination with embedded systems systems in
general will probably have a very high impact on our daily life.

32

4 Manuel Bonk: Tasks in Embedded
Systems

4.1 Introduction

In our everyday life embedded systems become more and more important. Even
if people often doesn’t recognize them as computer systems embedded systems
are small units often dedicated for very few and specialized use cases only.
Nearly every embedded system is controlled by a real-time operating system.
These operating systems organize their workload by the means of tasks. It
will be elucidated how tasks are realized in real-time operating systems for
embedded systems in general and in OSEK OS and OSEKtime OS in particular.

4.2 Definition of Tasks

The main part of this chapter, Sections 4.2–4.4, is based on the materials from
[SZ10]. This chapter is organized as follows: first of all, in section 4.2 we give
a definition of a task, then in section 4.3 processes are described. Section 4.4 is
about the different kinds of interaction between tasks.

First of all a task needs to be defined. Larger assignments can conveniently
be subdivided in smaller parts. These parts can be implemented by the means
of tasks. A task provides the framework for the execution of functions. The
operating system is responsible for both task switching mechanisms and the
concurrent and asynchronous execution of tasks. A task is executed after its
activation. Timing is the most essential part of a real-time operating system.
Therefore there are various time slots, one for each task. There are two kinds
of real-time requirements a task has to fulfill:

• “Hard” real-time requirements: at the end of a task’s execution time slot
the result is validated with a short test. If this test fails an error is thrown,
if not, the system continues with the next task.

• “Soft” real-time requirements: the results of these tasks needn’t be vali-
dated after their termination.

In order that tasks can be executed correctly a worst case execution time
(WCET) has to be calculated and set. For more information see [SZ10].

4.3 Processes

A set of tasks with equal real-time requirements can be handled as a set of tasks
or can be summarized to a larger task. The subtasks of these larger tasks are

33

4 Manuel Bonk: Tasks in Embedded Systems

called processes (cf. Figure 4.1). The execution order of the processes has to
be adhered and can’t be varied of the former order. For further information see
[SZ10].

Figure 4.1: Process (adapted from [SZ10])

4.4 Interaction between Tasks

Tasks are “parallel” (e.g. on a multi-core system) or “alternating/quasi-parallel”
(cf. also [SZ10]) executed and most of them collaborate in a larger assignment
they have to interact with each other. In the following the different types of
interaction between tasks, such as Synchronization via Events, Cooperation via
Global Variables and Communication via Messages are described. Not all kinds
of information exchange always works properly. Therefore several errors could
occur. In the following subsections possible errors are also elucidated.

4.4.1 Synchronization via Events

The simplest form of interaction between tasks is the synchronization via events
(cf. Figure 4.2 and also [SZ10]): a task sends a short event with very few
information such as “the light is on” to another task. By receiving and sending
an event a task changes its state. Because of this simplicity there are nearly no
error sources.

4.4.2 Cooperation via Global Variables

Another yet slightly more complex possibility of interaction between tasks is the
cooperation via global variables (cf. Figure 4.3). An example for this procedure
is visualized in the following:

Task A initializes a global variable and assign a value to it. Task can access
and process the newly created variable. Global variables contain more infor-
mation than synchronized events. But with greater capabilities comes greater

34

4.4 Interaction between Tasks

Figure 4.2: Synchronization via events (adapted from [SZ10])

Figure 4.3: Collaboration via a global variable (adapted from [SZ10])

susceptibility to errors. For instance, Task A writes a global variable and si-
multaneously Task B reads said variable. Task B will get inconsistent data, as
shown on Figure 4.4.

This issue can easily be fixed the usage of an interrupt lock: If a task writes a
value to a global variable no other task can read the variable while the writing
task hasn’t finished writing (cf. Figure 4.5).

Figure 4.4: Inconsistency by simultaneous read and write access (adapted from
[SZ10])

35

4 Manuel Bonk: Tasks in Embedded Systems

Figure 4.5: Read access is denied while a variable is written to (adapted from
[SZ10])

In some case the cooperation via global variables is still error-prone. Put the
case that Task A declares X := x1. After writing the variable but before termi-
nation Task A gets paused and Tasks B is started. Task B reads variable X and
uses the received value x1 for further computations. During these calculations
Task B is interrupted and Task A is resumed. Task A now assigns X a new
value x2. After that Task A terminates and Task B is getting continued. Task
B now needs to read X again for its computations. But now it uses the newly
received value x2 which distorts the results, as shown on Figure 4.6.

For a more detailed description see [SZ10].

Figure 4.6: Inconsistency after interruption of Task B by Task A (adapted from
[SZ10])

4.4.3 Communication via Messages

The most sophisticated mode of interaction between tasks is the communication
via messages (cf. Figure 4.7 and also [SZ10]). This mean of interaction is very
similar to the cooperation via global variables. If a task receives a message
containing a value x1 assigned to variable X a local copy is made. Task B

36

4.5 Tasks in OSEK-OS and OSEKtime OS

makes a local copy of the received variables. If tasks B needs the variable again
the locally copied the local co the received variable X is used the locally saved x1

is read. If during the task’s execution a message containing a reassigned variable
X is received it will be ignored. Due to that strategy consistency between input
and output is maintained.

Figure 4.7: Synchronization via messages (adapted from [SZ10])

4.5 Tasks in OSEK-OS and OSEKtime OS

In the previous paragraphs tasks we discussed the behavior of tasks in gen-
eral in embedded system. In this section, which is based on the specifications
[OSE05] and [Gro01b], we discuss the representation of tasks in OSEK-OS and
OSEKtime OS. OSEK-OS is a specification for real-time operating systems for
embedded system commonly used in automotive engineering.

First of all there are two different kinds of tasks in OSEK-OS: basic and
extended tasks (see Figure 4.8). Basic tasks switch between their three different
states “running”, “ready” and “suspended”. Extend tasks can additionally
adopt the “waiting” state.

A task is set to “ready” state when all requirements for execution are fulfilled.
A “ready” tasks only waits for the allocation of the processor. The scheduler,
a system service decides which “ready” task is executed next. At the end of
it’s execution the task has to terminate itself, this job is not performed by a
system service. If its a extended task its state can transit to “waiting” when
it can’t continue its execution because it’s e.g. waiting for an external event.
After one or more event occurred the “waiting” task has been waiting for it can
be released to the “ready” state again. A task can be activated more than once.
The main advantages of basic tasks is less usage of system resources, especially
RAM, and their less complexity.

The main advantages extended tasks are more opportunities to synchronize
via events, every time it enter and leaves the “waiting” state. A basic task can
only synchronize at its execution’s beginning and ending. A direct transforma-

37

4 Manuel Bonk: Tasks in Embedded Systems

tion from “suspended” to “running” isn’t implemented because it’s redundant
and would add extra complexity to scheduler.

Figure 4.8: Basic and extended task model (adapted from [OSE05])

Tasks in OSEK-OS and OSEKtime OS have very much in common. In both
operating systems tasks state can be “running” where they’re allocated to the
central processing unit. The termination of tasks in both systems has to be
performed by themselves. Independent of the OS a tasks’ state turns “sus-
pended” after termination. It can be executed more than once. Another over-
lap is the “preempt” transition where launched but not terminated tasks can
be stored. After being preempted tasks can be “resumed”/“started”. Tasks
both in OSEK-OS and OSEKtime OS can’t be handed over parameter at their
launch.

Figure 4.9: OSEKtime OS tasks’ state machine [Gro01b]

Although tasks in OSEK-OS and OSEKtime OS have a lot in common there
are still significant differences between them. The most significant one is that
tasks in OSEKtime OS are completely time-triggered. Therefore there is no
“waiting” state in OSEKtime OS (cf. Figure 4.9). In case of combined OSEK

38

4.6 Conclusion

OS and OSEKtime implementations OSEKtime has always a higher priority
than OSEK OS. Another difference is that tasks in OSEKtime OS are activated
by a dispatcher while in OSEK OS they’re activated by a scheduler. Also tasks
in OSEKtime can be restarted directly after termination while in OSEK OS
they have to be activated before that.

4.6 Conclusion

In this chapter tasks in real-time operating-systems in general were defined. The
concept of a process was also treated. Additionally various kinds of interaction
between tasks including possibly occurring errors were presented.

Also tasks in OSEK-OS and OSEKtime OS were compared. Properties of
tasks in OSEK OS where examined. Then both similarities and differences
between tasks in OSEK OS and OSEKtime OS were presented.

39

4 Manuel Bonk: Tasks in Embedded Systems

40

5 Nicolas Beneš: CAN Protocol

5.1 Introduction

The Controller Area Network (CAN) represents a composition of a Control-
ler Network and an Area Network (AN). The former consists of control-loop
and regulation units, interconnected through a network providing exchange of
data that may be used in a controller’s calculations and therefore affect its de-
cisions and state. The latter represents a network, which is limited to a specific
scale, scope, or domain. Examples for widespread ANs are Local Area Net-
work (LAN), Wide Area Network (WAN), and Storage Area Network (SAN).

CAN is an event triggered serial communication protocol for bus topology net-
works [ISOa]. Furthermore, recent developments extend CAN to provide time
triggered communication [ISOd] and support of star topology networks [ISOc]
as well as bus-line redundancy [CANe] as required by maritime vehicle stan-
dard [CANd].

Initially, CAN was developed between 1983 to 1986 by Robert Bosch GmbH
and designed as a distributed, real-time capable, and multiplexing protocol for
use within automobiles [ISOa], for instance to interconnect Electronic Control
Units (ECUs) in the engine control system. Later, it was transformed into the
international standard ISO 11898, which specifies the data link layer and phys-
ical layer for high-speed CAN and low-speed CAN, according to the ISO/OSI
reference model. Bosch still holds patents on its invention, resulting in fees like
the CAN Protocol License to be paid by semiconductors implementing CAN
modules in their chip designs [Rob].

Today, CAN is a widely adopted protocol for real-time and safety critical sys-
tems in the automotive, automation, and industrial control domains. Moreover,
it can be found in maritime, aerospace, and medical applications [CANc, CANe].
Domain specific interest groups, user communities, and organizations, for in-
stance CAN in Automation e.V. [CANa], try to enhance and promote CAN and
its higher layer protocols.

41

5 Nicolas Beneš: CAN Protocol

5.2 Functional Key Concepts

5.2.1 Electro-physical Function Principle

CAN L

CAN H

Termination RTA RTB Termination

Node 1 . . . Node n

Figure 5.1: Electrical connections and components for high-speed CAN [ISOb].

Physically, the CAN bus consists of two lines CAN H and CAN L, typi-
cally realized through a shielded or unshielded twisted-pair cable. In case of
high-speed CAN (Figure 5.1), the termination resistors RTA and RTB connect
CAN H and CAN L to prevent signal reflections, which occur at the wire ends.

In case of low-speed CAN (Figure 5.2), the termination resistors RTL and
RTH are connected in parallel to each node and the respective bus line.

CAN L

CAN H

Node 1 . . . Node n

R1
TL R1

TH R∗
TL R∗

TH Rn
TL Rn

TH

Figure 5.2: Electrical connections and components for low-speed CAN [ISOc].

Individual CAN nodes are attached to the bus via short stub lines and consist
of a control unit, such as an ECU, a CAN controller implementing the logical
part of the protocol, and a CAN line driver implementing the physical part of
the protocol.

For a transmission, both bus lines behave inversely to reduce noise due to
interferences and crosstalk. The information itself is represented by the differ-
ential voltage:

Udiff = UCAN H − UCAN L (5.1)

The protocol uses a binary alphabet consisting of the symbols dominant d

and recessive r. If both symbols are applied at the same wire at the same time,
then the d symbol overrides the other; hence, the behaviour is isomorphic to
the logic ∧-operation with d as 0 and r as 1.

The two physical layer standards [ISOb] (high-speed) and [ISOc] (low-speed)
define different voltage levels and ranges for the respective symbol. Illustrated
by figure 5.3 for high-speed CAN, the voltage levels in the r state are close to

42

5.2 Functional Key Concepts

the mean voltage which results in a differential voltage close to 0V. During the
d state the voltage of CAN H rises, whereas the voltage of CAN L decreases;
consequently the differential voltage is positive.

U
V

0

1

1.5

2

V CC
2V

3

3.5

4

V CC
V

t

UCAN H,typ

CAN H

UCAN L,typ

CAN L

recessive dominant

Udiff
V

0

1

2

3

−0.12

0.012

1.2

t

Udiff,min

Udiff,max

Udiff,typ

recessive dominant

Figure 5.3: Typical bus voltages and allowed differential voltage ranges for
high-speed CAN [ISOb]. Constant maximum CAN H voltage (7V)
and constant minimum CAN L voltage (−2V) excluded.

In contrast, the r state voltage levels for CAN H and CAN L on a low-speed
CAN bus (Figure 5.4) are close to 0V and V CC respectively; thereby leading
to a negative differential voltage at −V CC. For d, the CAN H voltage rises
and the CAN L voltage decreases, creating a positive differential voltage, just
as with high-speed CAN.

5.2.2 Messaging Principle

CAN allows simultaneous bus access by multiple nodes (multi-master) and uses
CSMA/CD algorithm for collision detection [Paz02]. This is accomplished
by using a non-destructive bitwise arbitration process at the beginning of a
frame (Section 5.3.2.1) where the nodes continuously compare their sent sym-
bol with the actual state on the bus. If a node sends an r bit but monitors
a d bit originated by another node, it looses arbitration, thus receding from

43

5 Nicolas Beneš: CAN Protocol

U
V

0

1

2

V CC
2V

3

4

V CC
V

0.3

1.4

3.6

4.7

t

UCAN H,max

UCAN H,min

CAN H

UCAN L,min

UCAN L,max

CAN L

recessive dominant

Udiff
V

−V CC

−4

−3

−2

−1

0

1

2

3

4

V CC

−4.4

2.2

t

Udiff,max

Udiff,min

recessive dominant

Figure 5.4: Allowed bus voltage ranges and differential voltage ranges for
low-speed CAN [ISOc].

transmission, queuing the message to be sent, and switching to normal receiver
mode. After completion of the previous transmission, the node starts sending
the queued message as before, and may loose arbitration again.

The section in a frame where arbitration takes place contains the message
identifier indicating the priority of a message. This message ID must be unique
to the message and transmitter; hence, it ensures that the message with the
highest priority (lowest message ID) wins arbitration and is sent without loss of
time or information. However, this only guarantees that the message with the
highest priority meets its deadlines, whereas the other messages are delayed for
an indeterminate time.

In contrast to destination-oriented networking technologies like Ethernet,
CAN messages are always broadcasted and each receiver decides through frame
acceptance filtering whether to forward the message to the higher protocol layer
or to drop it.

44

5.2 Functional Key Concepts

5.2.3 Error and Bus Overload Behaviour

Especially in hazard prone environments such as automotive, care must be
taken to ensure the correctness and system wide consistency of communication.
Therefore, CAN provides several mechanisms to verify correct message trans-
mission and reception, as well as system wide notification of error and overload
conditions:

• error detection, a transmitter continuously monitors the state of the bus
and compares it to the sent symbol, starting with error signalling in case of
a mismatch. Furthermore, the frame contains an acknowledge bit, where
receivers notify the transmitter about correct reception, so the transmitter
can undertake a proper recovery procedure.
Receivers on the other hand, check for violation of the bit stuffing rule
used in parts of a frame and the included CRC checksum. Bit stuffing is
a method done by the transmitter where an opposite bit is inserted after
a sequence of consecutive equal bits (stuff width) [CGHP12]. The fields
where bit stuffing is used should not contain a sequence of consecutive
equal bits longer than the stuff width. In case of CAN, the stuff width is
5 bits;

• error signalling, nodes, which detect an error, stop the current transmis-
sion or reception respectively and send an error frame (Section 5.3.2.2)
instead. Additionally, receivers do not write the acknowledge slot.
The error frame itself is defined to violate the bit stuffing rule, thus cre-
ating an error condition for other nodes that might not have detected the
error before. This propagation of error conditions ensures the consistency
of information between all nodes on the bus;

• overload signalling, receivers, which need additional time to process the
data, can send up to two consecutive overload frames (Section 5.3.2.3) to
delay the next transmission.

These procedures and mechanisms not only detect protocol errors but also
electrical bus failures and random noise.

5.2.4 Fault Confinement Entity and Frame Timing

Error frames sent in response to an error condition slow down the communi-
cation of the whole network, probably by triggering other error frames and
requiring the previous transmission to be repeated. Consequently, frequent er-
ror conditions have to be avoided, otherwise the real-time criteria cannot be
fulfilled. To prevent nodes with hardware failures, such as defective bus drivers
or failures on the bus wires, from frequently emitting error frames, a Fault Con-
finement Entity (FCE) surveys the node’s errors and successively deactivates
the erroneous node; hence, the communication of the remaining network is inter-
rupted less frequently. Furthermore, the FCE distinguishes between temporary
errors and permanent failures, and may reactivate a node when the quality of
the communication increases.

45

5 Nicolas Beneš: CAN Protocol

Physical Layer

Medium Access
Control

Logical Link
Control

Fault
Confinement

Entity

REC
TEC

Bus off release response

Bus off release request

Bus off response

Bus off request

Error active response

Error active request

Error passive response

Error passive request

Succesful transfer

Error delimiter too late

Counters unchanged

Error/overload flag

Primary error

Error

Transmit/receive

Normal mode request

Normal mode response

Bus off

Reset request

Reset response

Node status

Figure 5.5: Messages between FCE and CAN sublayers [ISOa].

The FCE (Figure 5.5) cannot be assigned to a single layer in the ISO/OSI
reference model, because it communicates across all protocol layers. It pro-
vides two counters the Receive Error Counter (REC) and the Transmit Error
Counter (TEC). They are increased or decreased when an error or a successful
transfer is monitored by the MAC sublayer and a notification message is sent to
the FCE. Depending on the relative error rate, the counters are changed more
or less fast.

A state machine (Figure 5.6) implements the behaviour of a node. By default,
a node is in an error active state, in which it emits active error frames on
error conditions. If the REC/TEC values exceed a specific limit, the node is
switched into the error passive state, where it emits passive error frames and
has to wait an additional time after having been transmitter. An active error
frame contains d bits and therefore actively changes the bus, whereas a passive
error frame contains r bits and will not interrupt other nodes if there is at
least one node left, which sends d bits to avoid bit stuffing error conditions. In
case the error was temporary, REC/TEC is decreased and the node is switched
back into the error active state. If the error state persists and is caused by the
current node, TEC continues to increase until the node is switched to the bus

46

5.2 Functional Key Concepts

error
active

Initialization Request
init

error
passive bus off

REC > 127 or
TEC > 127

REC < 128 and
TEC < 128

TEC > 255

User Request and
128 occurrences of 11

consecutive recessive bits

Figure 5.6: State machine of node behaviour according to [ISOa].

off state with its bus drivers being disabled and then only reading from the bus
is allowed. Switching the node back into the error active state with reset of
REC/TEC requires a user request and a long delay for bus monitoring.

any frame intermission suspend TX bus idle data/remote frame

any frame intermission bus idle data/remote frame

interframe space

interframe space

t

error active

error passive

Figure 5.7: Frame timing dependent on error state [ISOa].

Usually, the interframe space (Figure 5.7) following a frame consists of the in-
termission field and bus idle. Intermission is a delay of 3 r bits preceding a data
or remote request frame. An error active node may start a new transmission
at any time during bus idle including immediately after intermission, whereas
an error passive node which was the transmitter of the previous frame, has an
additional suspend transmission delay of 8 r bits. If another transmission is
started during this period, the node will switch to normal receiver mode and
retry transmission when the bus becomes idle again.

47

5 Nicolas Beneš: CAN Protocol

5.3 Protocol Stack

Physical

Data Link

Network

Transport

Session

Presentation

Application

ISO/OSI

PLS Physical Signalling

PMA Physical Medium Access

MDI Medium Dependent Interface

MAC Medium Access Control

TTC Time Triggered Communication

LLC Logical Link Control

CANopen, DeviceNet,
TTCAN, . . .

Controller Area Network

Figure 5.8: CAN layers in ISO/OSI reference model [ISOa].

The CAN standards correspond to the lowest two layers (Figure 5.8) of the
ISO Open Systems Interconnection (OSI) model [ISOe], the data link layer and
the physical layer. Higher layer protocols exist but are defined in their own
respective standards or are company specific and not standardised. The data
link layer (DLL) is split into the two sublayers, logical link control (LLC) and
medium access control (MAC). In case the time triggered communication option
plus TTC sublayer is chosen MAC has to behave differently, which makes time
triggered CAN incompatible with traditional event triggered CAN (Section 5.4).
The physical layer (PL) contains the physical signalling (PLS), physical medium
access (PMA), and medium dependent interface (MDI) sublayers. The latter
defines the limiting electrical values for connectors, bus wires and termination
circuits; therefore, it is not discussed in detail within this document.

The sublayers communicate via messages to their neighbours and provide
services (Figure 5.9). A higher layer may request transmission of an LLC data
frame or an LLC remote request frame and gets a local confirmation on whether
the transfer was successful. The local confirmation does not imply that a re-
mote LLC entity actually received the message. Upon frame arrival, the higher
layer gets an indication containing the received LLC data frame or LLC remote
request frame respectively.

Similarly, LLC may request transmission and receive frames and confirma-
tions for MAC data frames, MAC remote request frames, and MAC overload
frames. The remote confirmation for data frame and remote request frame
implies that a remote MAC entity received the message, whereas the overload
frame confirmation does not.

48

5.3 Protocol Stack

Physical Medium Access

Physical Signalling

Medium Access Control

Logical Link Control

(other higher layer outside CAN)

PLS Data

MA RemoteMA DataMA OVLD

L RemoteL Data

R
eq

u
es

t

In
d
ic

a
ti

o
n

C
o
n
fi
rm

R
eq

u
es

t

In
d
ic

a
ti

o
n

C
o
n
fi
rm

R
eq

u
es

t

In
d
ic

a
ti

o
n

C
o
n
fi
rm

R
eq

u
es

t

In
d
ic

a
ti

o
n

C
o
n
fi
rm

R
eq

u
es

t

In
d
ic

a
ti

o
n

C
o
n
fi
rm

R
eq

u
es

t

In
d
ic

a
ti

o
n

R
es

et
R

eq
u
es

t

R
es

et
R

es
p

o
n
se

N
o
d
e

S
ta

tu
s

B
u
s

o
ff

B
u
s

o
ff

-
re

le
a
se

O
u
tp

u
t

In
p
u
t

Figure 5.9: Messages and services between CAN sublayers.

The MAC sublayer may request transmission and receive a d or r bit from
PLS which controls the bus drivers in the PMA sublayer.

5.3.1 Logical Link Control

The LLC sublayer is the top most CAN layer and provides these functions:

• frame acceptance filtering, messages are broadcasted and do not contain
any destination information; however, they can be distinguished by us-
ing their identifier and data length code. LLC provides these filters and
forwards only matching messages;

• overload notification, in case LLC or another higher layer is in an over-
load condition, LLC requests overload frames from the MAC sublayer to
delay the next transmission. A maximum delay of two overload frames is
allowed;

• recovery management, if LLC gets notified by MAC about an error during
transmission, it keeps the message and automatically retries transmission
when the bus is idle again. Furthermore, the LLC using layer gets a
proper notification.

49

5 Nicolas Beneš: CAN Protocol

5.3.1.1 Data Frame and Remote Request Frame

Identifier Data Length Code Data

Identifier Data Length Code

Figure 5.10: LLC data frame (top) and remote request frame (bottom) [ISOa].

The LLC data frame is used to transmit 0 to 8 bytes of payload data, whereas
the LLC remote request frame is used to request another node to transmit the
data frame with the same message identifier as the remote request frame’s.

The LLC data frame and LLC remote request frame (Figure 5.10) consist of
the same fields, except the data field which only exists in the data frame:

• identifier field (ID), the ID field contains the message ID, which must be
unique to the CAN network. For historical reasons, there exists a base
ID format and an extended ID format. Therefore, the ID field consists
of three segments: 11 bits base ID, 1 bit extension flag (EF) and 18 bits
ID extension. If the EF is 0, the ID extension should be ignored. If the
EF is 1, the base ID corresponds to bits 28 to 18 and the extended ID to
bits 17 to 0 of the resulting message ID. Mixing both ID formats within
the same network is allowed and is without side effects;

• data length code field (DLC), the 4 bits wide DLC specifies the payload
size in bytes in case of a data frame or the payload size of the requested
data frame in case of a remote request frame. The possible range of values
is from 0 to 8; all higher DLC values shall be interpreted as 8;

• data field (data frame only), the data field contains 0 to 8 bytes of payload
data in a data frame.

5.3.2 Medium Access Control

The MAC sublayer takes a frame from LLC or received from PL and does:

• frame coding, an LLC frame to be transmitted has to be encapsulated
by the MAC specific fields, including CRC sequence calculation. Further-
more, stuff bits with a stuff width of 5 bits are added to the fields between
SOF to CRC sequence (both including) before frame serialization. Upon
frame reception, the bit stream from PL is deserialized, and stuff bits and
MAC-specific information is removed;

• data consistency checking, during transmission, errors are detected by
continuously monitoring the bus levels and checking of the ACK slot. Sim-
ilarly for reception, the bit stuffing rule and CRC sequence are checked,
and the ACK bit is written if the frame is correct. In case of an error, a
MAC error frame is emitted;

50

5.3 Protocol Stack

• medium access management, the sublayer detects important bus condi-
tions, such as bus idle, start of frame, error and overload frames. In case of
error or overload frames, the corresponding frames are emitted reactively
to propagate the condition.

5.3.2.1 Data Frame and Remote Request Frame

SOF Arbitration Control Data CRC ACK EOF

SOF Arbitration Control CRC ACK EOF

base format: Base ID RTR IDE R0 DLC

extended format: Base ID SRR IDE Extended ID RTR R1 R0 DLC

Figure 5.11: MAC data frame (top) and remote request frame (bottom) [ISOa].

The MAC data frame and MAC remote request frame (Figure 5.11) corre-
spond to the LLC frames extended with MAC-specific information:

• start of frame field (SOF), 1 bit, always d;

• arbitration field, the arbitration field is used in the arbitration process to
determine the message with the highest priority to be sent immediately.
Depending on the ID format, the arbitration field and control field have
different structure.

In base format, the arbitration field contains the base ID and the remote
transmission request bit (RTR). If the RTR bit is d, the frame should be
interpreted as data frame, otherwise as remote request frame.

In extended format, the RTR bit is replaced by the substitute remote
request bit (SRR) followed by the r ID extension bit (IDE), the extended
ID and the RTR bit. In base format, the IDE bit belongs to the control
field;

• control field, the control field is used to distinguish base and extended ID
format and carries the DLC.

In base format, the ID extension bit (IDE) is set to d and thus differs
from the IDE in the arbitration field in extended format. The reserved
bit R0 shall be ignored and is followed by the DLC from LLC.

In extended format, the IDE bit is moved to the arbitration field and
replaced by the reserved bit R1 followed by the bit R0 and the DLC from
LLC;

51

5 Nicolas Beneš: CAN Protocol

• data field (data frame only), the MAC data field is passed through from
LLC;

• CRC field, the CRC field consists of a 15 bits cyclic redundancy check
sequence (CRC) and a 1 bit r CRC delimiter. The generator polynomial
used in calculations is

G(x) = x15 + x14 + x10 + x8 + x7 + x4 + x3 + 1 = 459916

It is applied to the destuffed bit stream of SOF, arbitration field, control
field, data field (if present) and the CRC sequence. The initially compute
the CRC sequence for frame transmission the CRC sequence is assumed
to be set to 0;

• acknowledge field (ACK), the acknowledge field consists of a 1 bit ACK
slot and a 1 bit r ACK delimiter. The transmitter sends an r bit in the
ACK slot and monitors whether the receivers acknowledged with a d bit.
Therefore, the sequence of CRC delimiter, ACK slot and ACK delimiter
for a correct frame is rdr and rrr for an invalid frame;

• end of frame field (EOF), 7 bits, all r.

5.3.2.2 Error Frame

Error Flag Error Delimiter

Figure 5.12: MAC error frame [ISOa].

The MAC error frame (Figure 5.12) is emitted upon detection of an error
condition, such as a missing stuff bit or CRC sequence error, is detected. The
error frame itself violates the bit stuffing rule and therefore triggers error con-
ditions for other receivers. Depending on the error state of a node an active
error frame or a passive error frame is sent directly after the error has been
detected:

• error flag, an error active node emits an active error flag, consisting of
6 consecutive d bits, violating the bit stuffing rule with a stuff width of
5 bits.

Similarly, an error passive node sends a passive error flag, consisting of
6 consecutive r bits. Therefore, an error passive transmitter creates an
error condition for other nodes, except if

– the error flag occurs in the arbitration field, while another node is
transmitting d bits, or

– the error flag appears less than 6 bits before the end of the CRC
sequence and all last bits of the CRC sequence happen to be r.

52

5.3 Protocol Stack

A receiver sends r bits until 6 equal bits are monitored.

As result of error propagation and multiple nodes sending error flags, the
superposition of these error flags is between 6 to 12 bits in length;

• error delimiter, the error delimiter consists of 8 consecutive r bits, inde-
pendent of the node’s error state.

5.3.2.3 Overload Frame

Overload Flag Overload Delimiter

Figure 5.13: MAC overload frame [ISOa].

An overload frame (Figure 5.13) is created upon request by LLC or as a
reaction to an overload frame of another node. In contrast to error frames,
overload frames are placed directly after the end of a frame, thus overriding the
intermission field and notifying all other nodes about the overload condition.
These start sending MAC reactive overload frames on their own. The LLC may
request up to two overload frames:

• overload flag, an overload flag consists of 6 consecutive d bits, violating
the bit stuffing rule and overriding the r intermission field;

• overload delimiter, the overload delimiter consists of 8 consecutive r bits,
just as the error delimiter.

5.3.3 Physical Signalling and Physical Medium Access

The PLS sublayer implements a service to exchange data bits. It accepts output
units and returns input units with the possible states d and r. Additionally, it
controls the bit timing and synchronization by splitting the nominal bit time
into segments, and relative positioning of the sample point. When receiving
a bus off request message from the FCE (Figure 5.5), PLS sends a Bus off
message to the PMA sublayer to detach the bus drivers from the bus. The
complementary procedure is used for the Bus off release request message.

The PMA sublayer represents the electrical bus drivers and interacts with
PLS, setting the bus drivers into d or r state.

The PL is defined in two standards: High-speed CAN [ISOb] supports a
data rate up to 1 Mbit/s and two termination resistors are applied to the bus,
whereas low-speed and fault-tolerant CAN [ISOc] only supports up to 125 kbit/s
but provides termination resistors for every node. Therefore, defective termi-
nation resistors have less impact on the bus and can be controlled separately.
High-speed CAN is used in closed and isolated subsystems, where environmen-
tal or mechanical influences are low. On the other hand, low-speed CAN is
suited for subsystems that do not require high data rates, but have to tolerate
mechanical and electrical stress, e.g. CAN nodes in a door of a vehicle.

53

5 Nicolas Beneš: CAN Protocol

5.4 Time Triggered Communication

Traditional CAN is event triggered and therefore easier to implement, because
no global time and synchronization is required. However, in scenarios with
high and peak bus loads, difficulties arise for performance analysis and verifi-
cation (peak bus load and overload analysis, test coverage, proof), especially
for hard real-time constraints: CAN only ensures that the message with the
highest priority is sent in time, other messages are delayed for an indeterminate
time. Peak bus loads frequently appear in extreme and crucial situations, such
as a car crash when lots of sensor data must be evaluated, and depending on
the severity of the impact, life saving systems like airbags have to be triggered
as fast as possible.

An alternative to event triggered communication is time triggered commu-
nication: the available time is split into time slots, which are assigned to the
messages in a message scheduling plan. A message is not sent when an event
occurred, but when its time slot appears. A predefined scheduling plan with
time slots makes it easier to verify the requirements and constraints, because
the worst case delays for each message can be determined.

An extension to CAN is named time triggered CAN (TTCAN) and is defined
in [ISOd]. It provides time triggered functionality and implements a higher layer
protocol on top of traditional CAN. Moreover it activates the time triggered
communication option in DLL, which changes the error behaviour, such as
deactivation of automatic retransmission of erroneous frames. Hence, TTCAN
is conceptually incompatible to traditional event triggered CAN, furthermore
the clock sources of CAN nodes have to fulfil narrower tolerances.

TTCAN uses cyclic and periodical communication, i.e. the available time
is split into equal sized basic cycles which are subdivided into time windows.
After the set of basic cycles has been transmitted, the process repeats from the
beginning. Assigning a message to more time windows or basic cycles increases
its priority, because more relative bus time is reserved.

Reference
Message

Exclusive
Window

Arbitrating
Window

Exclusive
Window

Reference
Message

Free
Window

t

Figure 5.14: Example structure of a TTCAN basic cycle [ISOd].

A basic cycle (Figure 5.14) starts with a reference message, followed by mes-
sage time windows. Amongst other fields, the reference message carries the
cycle count of the current basic cycle, and the timing information to permit
frequency, phase, and cycle time adjustment to keep all nodes of the network in
sync with the global reference clock. The reference message is sent by a special
node, the time master. For message time windows, three types exist:

• exclusive time window, an exclusive time window is assigned to a single

54

5.5 Alternative Protocols

message only. This guarantees, that a message cannot be interrupted by
another transmitter, hence no arbitration is necessary and the message is
always sent without delay. Exclusive time windows are used for critical
messages, that require to fulfil hard deadlines;

• arbitrating time window, arbitrating time windows can be assigned to
more messages, which will resolve the collisions by the traditional arbi-
tration process. Messages loosing arbitration are retransmitted at the
next cycle or time window they are assigned to. As a result, arbitrating
time windows permit sharing of the same time window among several
messages with soft deadlines;

• free time window, free time windows are not assigned to any message and
behave as reserved time window for future needs.

Reference
Message

Exclusive
Window

Arbitrating
Window

Exclusive
Window

Reference
Message

Free
Window

Arbitrating
Window

Free
Window

Reference
Message

Arbitrating
Window

Arbitrating
Window

Exclusive
Window

Basic Cycle 0:

Basic Cycle 1:

Basic Cycle 2:

Transmission Columns

Figure 5.15: Several combined TTCAN basic cycles [ISOd].

Individual basic cycles can have a different structure and are assembled to a
full cycle (Figure 5.15) of basic cycles. The time windows may have different
length but equal length within their respective time column.

5.5 Alternative Protocols

Besides CAN exist several competing protocols (Table 5.1) used in the auto-
motive domain, for instance Local Interconnect Network (LIN) and FlexRay
(Chapter 6). CAN is used for safety critical systems that require real-time
capability, such as the instrument panel, air conditioning, and central body
control [Koo12].

Because of the relatively high costs for CAN controllers and its complexity for
development, LIN is used for less critical and less timing sensitive applications,

55

Robert Lang : FlexRay Protocol: general idea, synchronization

CAN LIN FlexRay
[ISOa] [LIN10] [Fle10]

topology bus, star bus bus, star

max. payload 8 bytes 8 bytes 254 bytes

max. bit rate 1 Mbit/s 20 kb/s 10 Mbit/s

nodes ≈ 60 1 master, 16 slaves (no data found)

automotive driving information, door locks, engine and
applications air conditioner lights break control

Table 5.1: Comparison between CAN and similar protocols.

such as interior light control, door locks, and electric window lift [Koo12]. LIN
is a typical master/slave protocol and can be implemented using a UART, which
is present in hardware in almost every modern microcontroller. Therefore LIN
transceivers are extremely cheap.

For high bandwidth and high-speed applications, the time-triggered FlexRay
protocol has been developed. It is similar to CAN, but provides 10 times of
data rate and more than 30 times of payload data size than CAN. FlexRay is
currently being standardized by ISO, and will replace CAN in high performance
systems that justify its much higher costs, for instance in engine control.

5.6 Conclusion

Since the year of the introduction of CAN, the industries gained experience,
and a variety of hardware and software testing tools has been developed. Thus,
CAN can be seen as a reliable and established protocol for automotive and au-
tomation domains. The acceptance as an international standard by ISO ensures
compatibility between devices of different suppliers and long term reliability as
a basic technology, as well as continuous maintenance and improvements.

Nevertheless, CAN has crucial limitations concerning the maximum data rate
of 1 Mbit/s and the maximum payload data size of 8 bytes. They might not fulfil
the increasing demands of future applications, and restrict the possibilities to
define more complex higher layer protocols. Furthermore, event triggered CAN
is difficult for verification and performance analysis, because of its not fully
determinate behaviour upon peak loads.

Clearly, CAN will not disappear during the next decade and will be used
in embedded systems in various domains, since the manufacturers have the
knowledge and tool support, as well as they require backward compatibility to
their systems currently in use. According to [CANc], CAN will gain increasing
relevance in the US and the Far Eastern market. Moreover, continuous main-
tenance ensures a state of the art technology, for instance TTCAN and CAN
with flexible data rate (CAN FD). CAN FD, which has already been submitted
to ISO [CANb, CANf], provides higher bandwidth and is intended to shorten
the times required for firmware update of ECUs.

56

6 Robert Lang: FlexRay Protocol: general
idea, synchronization

6.1 Introduction

The automotive sector has experienced a significant change since the past two
decades. Electronics and its software overran the mechanics area and became
the main driving factor for innovations. These embedded systems are offering
solutions to satisfy the continuously increasing requirements for comfort, safety
and fuel consumption [SZ10]. Especially the safety section benefited from this
young development. Former safety systems just concentrated on soften the con-
sequences of an accident, also known as passive safety, whereas new electronic
ones are concerned about avoiding accidents, also known as active safety.
ESP (Electronic Stability Program) for instance is such an active system. It
helps the driver in extreme situations to keep the control of the car by correct-
ing braking interventions on single wheels.
A complete area originated due to the embedded system movement is the Ad-
vanced Driver Assistance. It captures aspects from different automotive sections
like comfort, safety and fuel consumption and combines them in one system.
An example of such a system is Adaptive Cruise Control (ACC). ACC combines
an ordinary Cruise Control with an automatic braking assistant which gets ac-
tivated if the own car is getting too close to the car in front. This system is
possible due to some sensors, such as a long range radar, some actors like an
electro hydraulic braking system and of course some electronic control units
(ECUs) which do the processing.
Infotainment is another pure electronics area. The name Infotainment origi-
nates from Information and Entertainment and also serves these two sub-areas.
Infotainment can be seen as the next development stage of the former most
complicated electronic device in the car – the radio.
These advanced driver assistance, safety and comfort/infotainment functions
are all connected to each other through a network of communication systems,
where mostly one function is implemented on one embedded system or rather
one ECU. This results in highly coupled and distributed systems. According
to the implemented functions the communication systems have to fulfil differ-
ent requirements such as determinism, fault tolerance or have to be real-time
capable. The degree of fulfilment depends on the particular automotive area.
For instance Infotainment functions need a high data rate whereas determin-
ism, fault tolerance and real-time capability aren’t nearly as important as for
powertrain or safety functions.

Since the past decade the amount of functions and ECUs is exponentially ris-

57

6 Robert Lang: FlexRay Protocol: general idea, synchronization

ing. It can be foreseen that this trend will hold on at least what’s regarding
the functions. The amount of ECUs in contrary, which now is located at round
about 90 in a higher mid-range car, will stagnate and even decrease [Car12].
The reason for this development is that nowadays many functions are coded in
hardware, in future they will be realized in software, therefore one ECU is more
flexible and powerful, thus it can handle a lot more functions than an actual
ECU.
A future automotive system architecture can be imagined as a customizable
Plug&Play system like a personal computer. There are a few central ECUs
connected to little or even just one communication-system interacting with each
other. Additional systems like advanced driver assistance, infotainment, safety,
powertrain or energy management systems can easily be added as software com-
ponents. The software has access to sensors, actors and the computing power
of the few ECUs, thus new functions can easily be added. Furthermore the
hardware-costs will decrease and after-production upgrades will be very simple.
New electronic control units and wiring aren’t necessary.
But the car itself won’t be the outer boundary. Some components will be able
to interact with the cars environment and other cars. These entities will publish
the collected environmental related information over the web accessible by all
traffic participants. This will be the first step to an auto-piloted traffic-system.

The mentioned growth of functions involving electronics entails highest re-
quirements on the reliability, fault tolerance and real-time capability of the
used communication system in the car. The fulfilment of these requirements is
especially important for safety-related functions. Therefore a communication
system is needed where components easily can be attached (Plug&Play), the
communication is independent from the bus load and determinism as well as
fault tolerance can be guaranteed.
CAN (Controller Area Network), the well-established automotive communica-
tion protocol, misses these advanced requirements because of its event-oriented
communication profile. Therefore the determinism and real-time requirements
can’t be satisfied. Furthermore CAN doesn’t specify a fault-tolerant topol-
ogy or communication. The addition of other components in a CAN network
will result in a different behaviour of the whole communication system and its
components. Finally CAN offers just a very slow transmission rate of up to 1
MBit/s, which won’t be enough considering the exponential growth of commu-
nicating entities.
As there were no other alternatives which would meet the requirements, the
FlexRay consortium was founded in 2000 with the purpose of developing a
communication protocol, which satisfies the needs.
The consortium was founded by Daimler Chrysler, BMW Motorola and Philips.
Today there are more core and a couple of associate members. They are all al-
lowed to implement FlexRay without having to pay license fees.
One reason for the success of FlexRay is its detailed specification, which is of-
ficial available on the FlexRay website. In 2010 the FlexRay consortium was
dissolved, but its specification is still available on the web. At the moment the
FlexRay specification is being transformed into an ISO standard.

58

6.2 FlexRay Specification

6.2 FlexRay Specification

In the following sections the essential principles of the FlexRay communication
protocol are described. These principles are divided in four subsections, which
are Communication, Bus Access, Framing and Synchronization in the end.

6.2.1 Communication

The communication part is concerned about the structure of a FlexRay network
and the way of sharing information between its entities.

6.2.1.1 Architecture

A FlexRay communication system (FlexRay Cluster, cf. Figure 6.1) consists
out of a couple of FlexRay nodes and a connecting physical transmission line
(FlexRay Bus). Because FlexRay isn’t bound to a fixed topology, there can be
point to point and bus connections as well as star topologies.

Figure 6.1: Illustration of a FlexRay Cluster (Source: [Gmb12])

FlexRay uses two communication channels each at a maximum speed of 10
MBit/s. The transferred data on both channels can be the same and redun-
dant for increasing the fault tolerance or they can be different to maximize the
throughput. The control on how to use the two channels is transmitted within
each message, so that the two channels can dynamically be used in favour of
fault-tolerance or throughput. The selection usually depends on the safety-level
of the transmitted message.
FlexRay is based on a time-triggered communication architecture which allows
a static and time-fixed activation of events. This principle makes a determin-
istic data-communication possible and the addition of devices by adding new
time slots very simple. As another result the realization of fault-tolerance is
possible due to the simultaneous activation of events on both channels.

59

6 Robert Lang: FlexRay Protocol: general idea, synchronization

To realize the time-triggered communication TDMA (Time Division Multiple
Access) is used. This procedure specifies an exactly fixed time schedule when
which node is allowed to put data on the communication channels. Each node
gets its own time-slot in the schedule, more specifically in the communication
cycle. A communication example can be seen on Figure 6.2.

Figure 6.2: Principle of the TDMA method (Source: [Gmb12])

6.2.1.2 Topologies

Especially in the automotive sector a communication line is exposed to different
kinds of influences, so FlexRay specifies four different types of topologies with
different restrictions due to signal integrity and electromagnetic compatibility.
In case of a point-to-point connection, two FlexRay nodes are directly intercon-
nected. According to the Electrical Physical Specification (EPL), the maximum
line length may not exceed 24 meters.
A connection of 3 up to 22 FlexRay nodes is possible due to a passive star. Even
in this configuration no more than 24 meters line length is allowed between any
two FlexRay nodes.
The third connection type is the line topology in which the 4 up to 22 nodes
can be connected with stubs (separate tap lines) to the bus. The maximum line
length should also not exceed 24 meters.
As fourth possibility active star couplers can be used. The advantages in con-
trary to passive stars are the enhanced line length, the quality achieved by
amplifying the signal and the avoidance of propagating errors by simply dis-
connecting faulty communication branches. Therefore a maximal length of 24
meters from a node to the active star is allowed. As a consequence of amplify-
ing and distributing the messages an active star needs some time to reach its

60

6.2 FlexRay Specification

Figure 6.3: Possible clean topologies in a FlexRay cluster (Source: [Gmb12])

operating state. To avoid the loose of the first bits, the transmission of each
FlexRay message must begin with a Transmission Start Sequence (TSS).
Besides these clean topologies there are also mixed topologies allowed, e.g. some
bus lines are connected to a star. It is also possible to connect two active stars
with each other, which simplifies the topology design in cars essentially and
theoretically extends the maximum line length. However, the specification lim-
its the network length to a maximum of 3 x 12 meter to assure signal integrity.
The length can still be extended by decreasing the data rate.

6.2.1.3 Node

A FlexRay node is an electronic control unit (ECU), the host, connected to
a bus via an interface (see Figure 6.4). The interface consists of a FlexRay
controller and one or two transceivers, depending on the number of channels or
communication lines.
The FlexRay controllers primary tasks are framing, bus access, error detection

and handling, synchronization, putting the FlexRay bus to sleep and waking it
up, as well as coding TX messages and decoding RX messages.
The FlexRay transceiver couples the controller with the bus. Its primary task
is signal transformation, which means the transformation of electrical voltages
in logical signals and vice versa.

6.2.1.4 Bus

FlexRay is designed for data rates up to 10MBits/s. It offers several mechanisms
for increasing immunity against high-frequency interference fields, electrostatic
discharge (ESD) and for reducing noise emissions.
The Physical signal transmission in a FlexRay cluster is based on the transmis-
sion of differential voltages. Thus interferences by other electronic devices are

61

6 Robert Lang: FlexRay Protocol: general idea, synchronization

Figure 6.4: Design of a FlexRay Node (Source: [Gmb12])

faded out. Additionally the noise emission by the FlexRay cluster is nominal
because of the low differential voltages (2 Volt for high and minus 2 Volt for
low) used. Thus unshielded, cheaper cables can be and actually are used.
Because of the transmission of differential voltages, two lines per channel have
to be utilized: Bus Plus (BP) and Bus Minus (BM). The lines are twisted to
avoid the exposure of a magnetic field.
Another mechanism is the avoidance of reflections by termination resistors on
the ends of the communication channel. Termination is needed because the
higher the data rates and the longer the line length the greater the reflections.
An example of the physical connection between two nodes can be seen in Figure
6.5.

Figure 6.5: Overview of the physical connection between two nodes (Source:
[Gmb12])

62

6.2 FlexRay Specification

6.2.1.5 Bus Level

FlexRay defines four different bus levels, which are all assigned either to the
recessive or dominant bus state. The recessive bus is characterized by a differ-
ential voltage of 0 Volt, the dominant by a differential voltage not equal to 0
Volt. All four bus types and their specific voltages can be seen in Figure 6.6.

1. The idle low power bus level is active if all FlexRay transceivers are in
their low-power mode. The bus is here in a recessive state.

2. The idle bus level.

3. The level Data 1 is dominant, has a differential voltage of 2 Volt and
represents the logical 1.

4. The level Data 0 is also dominant, has a differential voltage of -2 Volt and
represents the logical 0.

Figure 6.6: Overview of the four possible bus levels (Source: [Gmb12])

6.2.1.6 Bus Guardian

Due to the high requirements on safety for the communication channel, the con-
cept of a bus guardian was introduced in the specification Version 2.0.9. The
versions specification is still preliminary which means that there isn’t a concrete
implementation of a bus guardian. Nevertheless a short overview what a bus
guardian does follows here.
A bus guardian is locally assigned to every FlexRay node (see Figure 6.7) and
ensures that the controller only gets bus access during the static segment when
the node is allowed to. Therefore it ensures that the node meets the global
schedule and secures the bus from not permitted access which would lead to
collisions.

63

6 Robert Lang: FlexRay Protocol: general idea, synchronization

Figure 6.7: FlexRay node with a bus guardian (Source: [Gmb12])

The bus guardian concept foresees that a bus guardian ideally shall have its own
time base. Using the local time base of the node would make the idea of the bus
guardian irrelevant, because this guardian would allow the bus access whenever
the node means its static slot is on turn. But an own local clock of a bus
guardian wouldn’t be enough, additionally a bus guardian must be equipped
with synchronization and other functions similar to a controllers. This leads to
nearly the same complexity as that of a controller and increases the node costs
significantly.

6.2.2 Bus Access

In a FlexRay cluster Time Division Multiple Access (TDMA) is used to manage
the bus access in the static segment of the cycle. Every node has its exclusive
time slot to put data on the bus. Flexible Time Division Multiple Access
(FTDMA) is used for the dynamic segment. Although FTDMA consists of the
TDMA method not every node in one cycle may get the chance to put data in
the dynamic segment.
The TDMA method defines a fixed periodically schedule for the static segment.
It determines when and for how long a node gets bus access. Every node in
the cluster is aware of this time table and it’s the job of theirs controllers and
bus guardians to meet that schedule. Just in this wise a deterministic data
communication can be guaranteed.
For sporadic or asynchronous messages the dynamic segment with FTDMA can
be used. If the static segment is too short for a node, it can also put data in the

64

6.2 FlexRay Specification

dynamic segment of the cycle. The access of a node to the dynamic segment
isn’t guaranteed, because the length of one dynamic message is just limited
to the entire segment length. Thus the first node which accesses the dynamic
segment might also be the only one accessing it. A communication example
can be seen in Figure 6.8. The communication schedule on the right top of the
Figure assigns the available static slots in a cycle to the particular nodes. On
the bottom a concrete cycle of this schedule is shown.

Figure 6.8: Example of the bus access in FlexRay (Source: [Gmb12])

6.2.2.1 Communication Cycle

A FlexRay communication cycle is periodical and consists of a static segment
and the NIT (network idle time) segment. The dynamic segment and the sym-
bol window are optional.
The NIT is needed for the synchronization of the local clocks, no data is trans-

Figure 6.9: Overview of a FlexRay communication cycle (Source: [Gmb12])

mitted during the NIT and its length varies from node to node. In the symbol
window different symbols are transmitted, such as the collision avoidance sym-
bol for indicating the start of the first communication cycle to a node, the media

65

6 Robert Lang: FlexRay Protocol: general idea, synchronization

test symbol for testing the bus guardian and the wake-up symbol for waking
up the bus.

6.2.2.2 Static Segment

The static segment is the elementary segment within a FlexRay communication
cycle. The static segment is organized in a number of equally long time slots
(static slots), assigned to the bus participating FlexRay nodes. A node can be
assigned to one or more static slots on one or both channels. The maximum
number of static slots is 1023 and the minimum 2, because at least 2 nodes are
needed to build the global time base. An example of a static segment can be
seen in figure 6.10. The example shows the scheduling table for both channels
on the left and the resulting communication cycle on the right.

Figure 6.10: Example of a static segment (right) with its time table (left)
(Source: [Gmb12])

6.2.2.3 Static Slot

The FlexRay static slot, illustrated in Figure 6.11, has to be long enough to
encapsulate the FlexRay message and some local node advances and delays.
Basically a FlexRay message is made up of header, payload, trailer and control
symbol. The message is always followed by a channel idle delimiter, which
indicates the end of the message. FlexRay nodes may deviate in its local time
bases, to catch this circumstance the static slot additionally consists of an action
point offset at the beginning and a channel idle in the end. This ensures that
the deviation of two nodes, doesn’t lead to collisions or missing received data.

6.2.2.4 Dynamic Segment

A dynamic segment consists out of a fixed number of equally long minislots.
Thus it has always the same length and doesn’t affect the determinism of the
communication cycle. A minislot serves for message transmission and also in-
cludes an action point offset like a static slot to catch time base deviations.

66

6.2 FlexRay Specification

Figure 6.11: Layout of a static slot with two examples (Source: [Gmb12])

The dynamic segment starts with all nodes incrementing their counter values.
Each counter value stands for a dynamic slot whereas each slot is assigned to
one specific node. If the counter value matches a nodes slot, then this node
is allowed to access the communication channel. In case that there is no send
request by the node the dynamic slot is just one minislot long and all FlexRay
nodes increment their counter values after this minislot by one.
If on the other hand there is a send request, the FlexRay node transmits the
whole message in the dynamic slot which can be longer than just one minislot.
After the dynamic slot the counter values are incremented as well and the next
minislot follows immediately.
This procedure is repeated until the dynamic segment is finished, which means
there are no more minislots left or the segment is no longer long enough to
encapsulate a dynamic message of any FlexRay node following. In this case
nothing is being transmitted for the rest of the segment. A communication ex-
ample is shown in figure 6.12. Like in the illustration from the static segment,
there is a schedule on the left and its resulting cycle on the right. There are
actually just two messages transmitted during the dynamic segment, because
only node C and B triggered an event (send request).

6.2.2.5 Dynamic Slot

A dynamic slot, illustrated in Figure 6.11, is always starting with an action point
offset followed by the actual message and ending with a eleven bit long channel
idle delimiter, similar to the layout of the static slot. The action point at the
end of the action point offset corresponds to the action point of the first minislot
in the dynamic slot. Because a dynamic slot can be longer than one minislot
and has to end precisely with the next possible action point, the message is

67

6 Robert Lang: FlexRay Protocol: general idea, synchronization

Figure 6.12: Example of a dynamic segment (right) with its order (left). The
dynamic slot number (left) equals the node specific counter value.
(Source: [Gmb12])

lengthened by the so-called Dynamic Trailing Sequence. Theoretically, this
length may be a maximum of one minislot in length.

Figure 6.13: Layout of a dynamic slot with two examples (Source: [Gmb12])

6.2.3 Framing

This section describes the structure of a FlexRay message and its specific im-
plementation in a communication cycle.

6.2.3.1 Header, Payload and Trailer

In a FlexRay cluster messages are used for communication. Each message
is composed of three parts: header, payload and trailer. The structure of a
FlexRay message is shown in figure 6.14.
The first 5 indicator bits of the header are specifying the message more precisely.

68

6.2 FlexRay Specification

Figure 6.14: Structure of a FlexRay message (Source: [Gmb12])

The following 11 bits represent the identifier (ID), which assigns the message to
a specific slot. The field payload length contains the length of the actual payload
in words. The payload length is followed by a 11 bit long CRC checksum over the
ID, the payload length and some of the indicator bits. In the end of the header
is the cycle count which holds the actual cycle number of the communication
in which the message is sent.
The payload part can transmit a maximum of 254 bytes. In the static segment
every payload has the same length, whereas in the dynamic segment the payload
length of each message can vary. To check the correct data transmission the
payload is followed by another CRC checksum over the header and the payload.

6.2.3.2 Coding

The coding of a static message is illustrated in Figure 6.15. It can be seen
that the physical transmission of the message actually doesn’t start with the
first bits of the header, but rather with the Transmission Start Sequence (TSS).
The TSS is inserted because of the time that an active star node needs (Star
Truncation) to change from passive into active operation mode. This time
gets now covered by the 3-15 Bit long Transmission Start Sequence, so that no
information gets lost. The TSS is finalized by the Frame Start Sequence (FSS).
After the FSS the transmission of the header followed by payload and trailer
starts, whereas a Byte Start Sequence (BSS) is inserted in front of each byte of
the entire message. The flank change of the BSS is used for synchronization.
The end of a message is marked by the Frame End Sequence (FES).
In contrary the coding of a dynamic message, illustrated in Figure 6.16, ends
with the FES followed by the Dynamic Trailing Sequence, which is lengthening
the whole message to end with the next possible action point.

69

6 Robert Lang: FlexRay Protocol: general idea, synchronization

Figure 6.15: Coding of a static message (Source: [Gmb12])

Figure 6.16: Coding of a dynamic message (Source: [Gmb12])

6.2.4 Synchronization

In a distributed system each component has its own local time base. Due to
temperature fluctuations, voltage fluctuations and production tolerances of the
timing source, the different clocks in the system diverge, even with exactly the
same time base at start-up (shown in Figure 6.17).
In a time-triggered system every node in the cluster assumes that its local time
base equals the global one. This assumption can be fulfilled if a small difference
between the time bases is allowed. The maximum value of this difference is
known as the precision.
The FlexRay protocol uses a distributed clock synchronization mechanism in
which each node synchronizes itself by observing the timing of transmitted
synchronization frames from other nodes. Two methods are used here: Phase
correction and frequency correction.

70

6.2 FlexRay Specification

Figure 6.17: Local clocks diverge from global time base (Source: [Gmb12])

6.2.4.1 Phase & Frequency Synchronization

FlexRay defines micro- and macroticks. A microtick is a time unit directly
derived from the communication controllers oscillator clock tick. The time in-
terval of a microtick is controller specific and may vary, because of the above
mentioned fluctuations in temperature, voltage and production.
Macroticks are synchronized on a cluster-wide time base. The duration of each
local macrotick is an integer number of microticks. The number of microticks
may vary in the same node from macrotick to macrotick. A macrotick has in
every node the same duration plus, minus a tolerance (precision). A cycle con-
sists of an integer number of maroticks, this number stays for each cycle the
same. Figure 6.18 clarifies the relationship between micro- and macroticks.

The synchronization method in FlexRay has to handle phase and frequency
deviations of a node. The phase deviation is the total deviation of the local
clock to the global one at a specific time-point. On the other hand frequency
deviation is the relative deviation of the local clock to the global one over a
specific time-period, more precisely over one communication cycle. In Figure
6.19 the two kinds of deviations are illustrated on a time-axis.

The phase correction now ensures that the FlexRay nodes have the same phase
and the communication cycle (the first macrotick) starts at the same time.
Without this correction the difference between the local clock-times would re-
duce the maximum possible data rate considerably.
While phase correction only treats the symptoms of frequency deviation, fre-
quency correction addresses its cause. As the duration of a microtick can differ
from node to node, a macroticks duration is cluster-wide the same. Frequency
correction now modifies the divider, determining the relation between microtick
and macrotick, so that a cycle has the same duration for each node. This makes
the cluster extremely robust against transient disturbances and the failure of

71

6 Robert Lang: FlexRay Protocol: general idea, synchronization

clock synchronization can be tolerated over multiple communication cycles. In
Figure 6.20 phase and frequency correction is applied on some example deviat-
ing clocks.

Figure 6.18: Relationship between micro- and macroticks (Source: [Gmb12])

Figure 6.19: Difference between phase & frequency deviation (Source: [Gmb12])

72

6.2 FlexRay Specification

Figure 6.20: Appliance of phase & frequency correction (Source: [Gmb12])

6.2.4.2 Synchronization Method

The FlexRay synchronization method is based on the fact that every node in
the cluster knows the send and receive time points of all static messages. This
ensures that every node can correct its phase and frequency to match the global
one.
In a FlexRay cluster there are at least 2 to a maximum of 15 synchronization
nodes (sync nodes) which transmit messages flagged as synchronization mes-
sages in a defined static slot of each cycle. A FlexRay node now compares the
arriving time points of these sync-messages with the known time-table of the
communication cycle. Then the node creates a sorted list of differences between
the known and received time-points. This list is used to calculate the nodes
phase-offset using the fault tolerant midpoint (FTM) algorithm.
FTM determines that extreme deviating values from the list aren’t considered
in the calculation process. The ignored values are always these with the largest
and smallest time-point difference. The amount of ignored values depends on
the entire number of values or rather the entire number of sync nodes in a clus-
ter. This means, according to Table 6.1, that in a cluster the k largest and the
k smallest values are discarded.
Now the remaining largest and smallest values are averaged for the calculation
of the midpoint value (see Figure 6.21).

73

6 Robert Lang: FlexRay Protocol: general idea, synchronization

Number of k

values/sync (ignored values)

nodes

1 - 2 0

3 - 7 1

> 7 2

Table 6.1: Number of synchronization nodes depending on complete number of
nodes

Figure 6.21: Appliance of the fault tolerant midpoint algorithm on some exam-
ple values [Source: [Con12]]

The resulting midpoint value is assumed to represent the nodes deviation from
the global time base on a specific point in time and serves as the phase correction
value. The method for calculating the frequency correction value is identical,
the only difference being that the FlexRay nodes measure the cycle lengths
underlying the sync messages. Thus the resulting frequency correction value
reflects the relative clock-deviation in microticks after one communication cycle.
Both, the phase and frequency correction, are performed based on the local
clocks, whose smallest unit is the microtick. An offset deviation gets resolved
by adding or subtracting a microtick factorized with the phase correction value
in the NIT at the end of each odd cycle. In contrary a frequency correction is
applied by modifying the local number of microticks representing a macrotick.
As the number of macroticks per cycle is globally fixed, the frequency correction
value divided by the macrotick number gets as result the microticks which have
to be added over a macrotick if positive or have to be subtracted if negative.
This means that the local relation (the divider) between a microtick and a
macrotick changes, possibly after each cycle. The principle of the measurement
of the correction values and their appliance can be seen in Figure 6.22 and
Figure 6.23, respectively.

74

6.2 FlexRay Specification

F
ig

u
re

6.
2
2:

M
ea

su
re

m
en

t
of

th
e

p
h

as
e

&
fr

eq
u

en
cy

co
rr

ec
ti

on
va

lu
es

(S
o
u

rc
e:

[G
m

b
12

])

75

6 Robert Lang: FlexRay Protocol: general idea, synchronization

F
ig

u
re

6
.2

3
:

C
o
rr

ec
ti

on
o
f

p
h

as
e

&
fr

eq
u

en
cy

d
ev

ia
ti

on
ov

er
se

ve
ra

l
co

m
m

u
n

ic
at

io
n

cy
cl

es
(S

o
u

rc
e:

[G
m

b
1
2
])

76

6.3 Conclusion

6.3 Conclusion

FlexRay includes mechanisms and methods to satisfy high requirements on
fault tolerance, determinism and real-time capability to guarantee high safety
in communication.
Summing up these mechanisms and methods fault tolerance is guaranteed by
the transmission of the same information over two channels. The downside of
this mechanism is displayed in the decreased possible data rate. A deterministic
communication is guaranteed by the use of the TDMA method in the static
segment and the FTDMA method in the dynamic segment. This results in
equally long communication cycles which makes message transmission times
predictable and therefore real-time applications possible.
In the end FlexRay is a high performing communication protocol for all safety
and real-time related systems in the car. With the exponentially increasing
amount of new functions a prosperous future of FlexRay can be foreseen.

77

6 Robert Lang: FlexRay Protocol: general idea, synchronization

78

7 Kostadin Kotev: OSEKtime OS -
Scheduling

7.1 Introduction

The automotive industry nowadays is one of the most dynamic and rapidly
growing. The number of electronic control units (ECUs) and distributed ap-
plications in vehicles continues to grow. Advanced driver assistance systems
(ADAS) such as break-by-wire, steer-by-wire, adaptive cruise control, lane de-
parture warning system, lane change assistance, park assistance, night vision,
adaptive light control are just a few examples of how complex, higly coupled
and distributed the ADAS systems are. While software becomes more complex
and larger, responce time of the systems have to become shorter and faster.
The ADAS belong to the active safety systems, i.e. their goal is to avoid car
accidents – they are safety critical and therefore they must meet hard real-
time requirements. To implement the functionality needed, often systems are
executed in parallel and synchronically with each other, or an application is
distributed in many ECUs in the vehicle, therefore a need of a global time
and synchronization methods are also required. Communication between dif-
ferent applications in a vehicle needs to be fault-tolerant and, in case of a fault
recognisable from all other communication partners, to assure an appropriate
reaction.

The operating system used before in the automotive embedded systems – the
event-triggered OSEK OS – was not able to satisfy those requirements. The
OSEK OS did not assure a deterministic behavior of tasks, did not support a
fault-tolerant communication and did not provide global time synchronization
methods. Therefore the OSEK OS could not be used for safety critical and hard
real-time applications. For example, it was not possible to determine whether
two different applications running on different ECUs finish at the same time.
OSEK OS has been used with success in soft real-time applications, for example
in vehicles’s interior applications. To satisfy the hard real-time requirements
a new operating system had to be developed – the time-triggered operating
system OSEKtime OS.

7.2 OSEKtime

OSEKtime OS is a time-triggered operating system, which can satisfy hard
real-time requirements. Beside all standard services of an OS such as preemp-
tive static scheduling, interrupt handling, dispatching with dispatcher table,
global time and synchronization methods, OSEKtime supports a special fault-

79

7 Kostadin Kotev: OSEKtime OS - Scheduling

tolerant communication layer (FTCom). The main focus of this chapter is on
the scheduling policy of the OSEKtime.

7.2.1 Architecture of the OSEKtime OS

OSEKtime OS is responsible for the real-time distribution of the CPU’s re-
sources. As Figure 7.1 below shows, OSEKtime OS consists of three main
parts:

• OS services,

• Network Management and

• FTCom layer.

Figure 7.1: Architecture of the OSEKtime OS [Gro01b].

OSEKtime OS provides a well-defined application programming interface (API).
All applications communicate with the OS only through this API. A direct con-
trol over the hardware resources is prohibited.
The Network Management describes node-related and network-related manage-
ment methods and is also responsible for shutting down the whole bus in the
right order, i.e. when a node in the bus should be shut down, the network

80

7.2 OSEKtime

management layer sends a notification message to all participants on the bus
that this node is going to be shut down, therefore the participants do not need
to wait anymore for information from that specific node. If this specific node is
not shut down properly on the bus, there could be a deadlock situation – other
participants wait for some information from the node.
The FTCom layer is responsible for fault-tolerant communication between dis-
tributed applications and provides error detection mechanisms and algorithms
for fault-tolerant communication. It consists of three main parts: application
layer, fault-tolerant layer and interaction layer. A more detailed overview is
provided later in the chapter.
All the services the OSEKtime OS provides can be indvidually picked up and
compiled according to the needs of the application. In such a way the com-
piled OSEKtime OS is kept as small as possible and saves hardware resources,
meanwhile fully satisfying the needs of the application. The OSEKtime OS is
configured and built at system generation time and therefore cannot be modified
later at runtime.

7.2.2 Task state model

In this chapter some properties of the task model in OSEKtime OS will be
discussed.
Tasks are executed sequentially starting at the entry point and running to the
exit [Gro01b]. Tasks can have internal loops (except for forever loops), but the
developer should be able to determine the Worst Case Execution Time (WCET)
in order to build a dispatcher table. Tasks are only activated by the dispatcher
as a result of a dispatcher tick. The dispatcher tick is triggered by the local time
interrupt and this is the reason why it is very important to have the local time
synchronized with the global time. Preemption in OSEKtime OS is allowed,
which means that a task can preempt another task, but a task cannot block for
resources or wait for some events. Each task (except for the special ttIdleTask)
should terminate itself before its deadline.

In the OSEKtime OS, there are 3 states a task can be in: suspended, running
and preempted. In Figure 7.2 the event-triggered and time-triggered task state
models are compared. The reason that the state waiting is not available in the
time-triggered state model is that a task cannot block or wait for ressources or
events. At the beginning all tasks are in the suspended state and stay there
until activated by the dispatcher. Preemption in OSEKtime OS is realized with
the so called stack-based model, i.e. tasks which are preempted from another
tasks are stored in a Last-In-First-Out (LIFO) stack, i.e. the last preempted
task is stored on the top of the stack, and the task on the top of the stack is
the first to be resumed from preempted state into the running state.
Let us discuss a small example: let task A is activated by the dispatcher. Task
A is now in state running. In this state task A has all CPU resources and runs.
If task A finishes in time it goes back into the suspended state. If task A has not
finished yet and another task B has been activated by the dispatcher, then task
A is preempted and goes into the preempted state, and task B is now in state

81

7 Kostadin Kotev: OSEKtime OS - Scheduling

Figure 7.2: Comparison between event-triggered and time-triggered OSEK OS
task state models.

running. After task B finishes, task A will be resumed from state preempted
and will run again. Let assume that task B has not yet finished and a third
task C has been activated. Now task B will also go to the preempted state and
on the top of the LIFO stack – task A will be on the bottom of the stack –
until task C finishes. After task C terminates, the task which is on the top of
the LIFO stack will be resumed first – in this case task B.
In OSEKtime the developer cannot configure a static priority for a task. Tasks
are always activated at the same time by the dispatcher according to the dis-
patcher table. A dispatcher table is a table which describes all tasks with their
properties such as activation time, execution time, deadline and task ID. Figure
7.3 represents a very simple example of a dispatcher table.

Figure 7.3: An example of a dispatcher table.

This table describes only the activation time and the task ID. A complete
execution of a dispatcher table is called a dispatcher round. The dispatcher
cyclically executes the dispatcher round and in case there is no problem in the
code, the dispatcher round is executed forever, always in the same way, therefore
providing deterministic behaviour, which is very important in the safety critical

82

7.2 OSEKtime

automotive hard real-time applications. In a dispatcher round a task can be
activated more than once. Let us assume the following situation: in Figure
7.3 task ttTask1 should have a higher priority than the other tasks, but as
already mentioned assigning a static priority in OSEKtime OS is not possible.
To deal with this issue the developer can activate ttTask1 more often in one
dispatcher round, so that ttTask1 will be able to use the CPU resources more
often in comparison to the other tasks, and ttTask1 looks like to be with a
higher “logical priority”. Figure 7.4 shows the new dispatcher table:

Figure 7.4: An example of a logical priority for ttTask1.

7.2.3 Scheduling Policy

OSEKtime OS has a preemptive static scheduling policy. In comparison to
desktop operating systems, the scheduler of the OSEKtime OS is almost not
used, because the execution order of the time-triggered tasks in the dispatcher
table is already defined offline at configuration time. The dispatcher table is
generated offline by a special scheduling tool. Based on timing information
(activation time, execution time, deadline, WCET, offsets) about all tasks, this
tool generates the dispatcher table in such a way that a deadlock caused by
data dependencies between different tasks is excluded by design, i.e. once a dis-
patcher table is generated, it guarantees precedence relations between tasks and
non-appropriate preemption is avoided. As already mentioned a LIFO stack is
used for storing the preempted tasks.
A scheduling example, based on the information from the dispatcher table
shown in Figure 7.3, is represented in Figure 7.5. The horizontal axis repre-
sents the time axis in which the dispatcher ticks are shown. The activation
times of the three tasks are also marked there. At the beginning at time 0 in
the dispatcher table ttTask2 is activated. ttTask2 is now in the state running,
meanwhile ttIdleTask is in the state preempted. This is a special task which
is explained later. ttTask2 will run so long until it terminates itself or the dis-
patcher activates another task. At time 8 ttTask1 is activated by the dispatcher
and preempts ttTask2. ttTask2 now goes into the preemted state and ttTask1
is in the state running. The LIFO stack-based method now applies – on the
top of the LIFO stack is ttTask2 and on the bottom – ttIdleTask. At time 14
ttTask3 is activated and preempts the still running ttTask1. ttTask1 now goes
on the top of the LIFO stack. ttTask3 executes and terminates itself. At this
moment the task which is on the top of the stack – ttTask1 – can be resumed.

83

7 Kostadin Kotev: OSEKtime OS - Scheduling

Resuming ttTask1 is only possible on the next dispatcher tick – in the time
interval between two dispatcher ticks a task cannot be resumed. In the Figure
7.5 this time interval is shown by two dotted lines between states preempted
and running. In this time interval the CPU does not execute any task. After
ttTask1 terminates, ttTask2 will be resumed, again ttTask1 terminates between
two dispatcher ticks and ttTask2 should wait until the next dispatcher tick. At
the end of the dispatcher round, when all other tasks have executed, the special
task ttIdleTask can be activated and executed. At time 39 the dispatcher round
ends, and the dispatcher begins executing the new dispatcher round, which is
exactly the same as the previous one.

Figure 7.5: A scheduling example in OSEKtime OS.

7.2.4 OSEK OS as a subsystem of the OSEKtime

ttIdleTask has a special role in OSEKtime OS. This task is the first task to
be executed after the start of the system (ECU). It is the idle task of the sys-
tem – it does not calculate anything. The ttIdleTask runs always when there
is no other task running, therefore the ttIdleTask does not have any deadline
and it is not part of the dispatcher table – this is the reason why in Figure
7.3 there is no definition of ttIdleTask. It also never returns and therefore it
has the lowest “priority” and can be interrupted by all kinds of interrupts and
other tasks. Per definition the time when the ttIdleTask runs, the ECU is actu-
ally “free”. Theoretically this “free” time could be used to execute some other
tasks, for example soft real-time tasks (applicatons). This is exactly what au-
tomotive Original Equipment Manufacturers (OEMs) have realized – they have
replaced the ttIdleTask with a complete event-triggered OSEK OS implemen-
tation, therefore optimizing the use of the ECU.

84

7.2 OSEKtime

This is only possible if the OSEKtime OS has a higher processing level than
OSEK OS. There is also a number of hardware requirements that should be
met: the CPU of the ECU should provide enough interrupt levels for the imple-
mentation of the above model and for highly dependable applications, memory
protection mechanisms should be used [Gro01b].
Figure 7.6 shows an example of a running OSEKtime OS with an OSEK OS as
a subsystem. At the beginning all time-triggered tasks are executed. After that
can event-triggered tasks be activated and executed – OSEK OS tasks are exe-
cuted at the end of the dispatcher round. In the time slot specified for the OSEK
OS there are other scheduler and dispatcher than the OSEKtime’s scheduler and
dispatcher running, which specify and decide which event-triggered task is to
be executed next. Depending on their decision in this time slot there can be
just a single event-triggered task or many event-triggered tasks running. As
shown in Figure 7.6, the OSEK OS always stays on the bottom of the LIFO
stack. This guarantees that the hard real-time tasks execute first.
OSEK OS tasks can be non-preemptive, but they are only non-preemptable
from other OSEK OS tasks, i.e. time-triggered OSEKtime OS tasks can at any
time preempt any event-triggered OSEK OS tasks.

Figure 7.6: An example of an event-triggered OSEK OS as a subsystem of the
OSEKtime OS [Gro01b].

7.2.5 Deadline monitoring

An important attribute of a task is its deadline. Per definition each task should
terminate itself before its deadline. In this chapter will be discussed how dead-
line monitoring is defined in the OSEKtime specification and how the system
reacts in case of a deadline violation.
The deadline monitoring is realized by the dispatcher. Each task has a special
entry in the dispatcher table called “Deadline monitoring”. This entry contains
information whether a task has missed its deadline or not. At runtime the
dispatcher monitors all tasks and updates their entries with the current dead-
line monitoring status of each task. There are two mechanisms to execute the
violation check:

• Stringent task deadline monitoring: when this mechanism is used, the

85

7 Kostadin Kotev: OSEKtime OS - Scheduling

“Deadline monitoring” entry is written exactly at the time when a task’s
deadline passes

• Non-stringent task deadline monitoring: the difference with the other
mechanism is the time when the information in the “Deadline monitoring”
entry is written. The dispatcher proves whether a task violates its deadline
again exactly at the moment when the task’s dealine passes, but in this
case the dispatcher has time until the end of the current dispatcher round
to update the entry in the dispatcher table.

The developer can configure at compile time which mechanism is to be used by
the dispatcher.

Error Handling

In case a task has missed its deadline, OSEKtime OS provides special error
handling mechanisms. These mechanisms are the same for both – OSEKtime
OS and OSEK OS. An error handling example is shown in Figure 7.7. In the
example there are two tasks – TT1 and TT2. TT1 is running, while TT2 is
suspended. The dispatcher notices that at its deadline TT1 still keeps executing
and registers a deadline violation. At the next dispatcher tick the dispatcher
calls the ttErrorHook routine. This routine is to be programmed by the de-
veloper and represents the specific behaviour of the task in case of a deadline
violation – for example in this routine can be implemented a function which
informs all other nodes depending on this task that it will be shut down. Af-
ter this routine returns the OSEKtime OS calls ttShutdownOS routine. This
routine is OSEKtime specific and its goal is to properly shut down the whole
system, i.e. the ECU. After the ECU has been shut down, the OS calls ttShut-
downHook routine, which is also to be programmed by the developer. In this
routine the developer specifies the behaviour of the whole ECU in case of a
deadline violation. ttShutdownHook routine could be an implementation of a
simple forever loop, doing no calculations or sending some error messages on
the bus. In case the developer wants the ECU to be restarted this routine must
return. After ttShutdownHook routine returns, OSEKtime OS starts executing
its start-up sequence.

7.2.6 Interrupt management

To react to user interactions OSEKtime OS provides an interrupt service frame.
Interrupts are enabled, disabled and reenabled only by the OS, i.e. applications
should not enable or disable interrupts. If the hardware platform supports
enough interrupt levels, nested interrupts (interrupt which interrupts another
interrupt) are allowed. Interrupts are enabled at a specific time, which is defined
in the dispatcher table. After an interrupt is serviced it is disabled until a point
in time comes in the dispatcher table at which it is again enabled. In one

86

7.2 OSEKtime

Figure 7.7: An error handling example in case of a task’s deadline violation
[Gro01b].

dispatcher round an interrupt can be enabled more than once. There are two
types of interrupts:

• Maskable interrupts: these interrupts can be preempted by a time-triggered
task

• Non-maskable interrupts: these interrups cannot be preempted by a time-
triggered task. This is the reason why this kind of interrupts should be
avoided or used with great care.

Figure 7.8 shows an example of two interrupts. Interrupt 1 is enabled first and
after it is serviced is disabled by the dispatcher. The dispatcher activates Inter-
rupt 2 when the specified time in the dispatcher table comes. After Interrupt
2 executes the dispatcher disables the interrupt. Interrupt 1 is being enabled
twice in the dispatcher round. The exact time when interrupts are enabled
and reenabled are calculated offline, so that no time-triggered task misses its
deadline because of an interrupt.

7.2.7 Start-up synchronization

In OSEKtime OS the dispatcher plays an important role. Per definition the dis-
patcher is controlled by the local time interrupt. For a synchronized communi-
cation between different nodes and distributed applications it is very important
that the local time is synchronized with the global time. In this chapter the
three synchronization mechanisms are briefly discussed. Figure 7.9 represents
how the synchronization takes place.

• Synchronous start-up: after start-up the dispatcher waits for a global time
to be available. At the beginning of the first global tick the dispatcher
begins with the execution of the dispatcher table. Using this mechanism
a delay after start-up takes place.

87

7 Kostadin Kotev: OSEKtime OS - Scheduling

Figure 7.8: An example of interrupts in OSEKtime OS.

• Asynchronous start-up hard : after start-up the dispatcher immediately
starts with the execution of the dispatcher table. When global time is
available specific OSEKtime functions detect and calculate the offset be-
tween both – local and global time – and at the end of the current dis-
patcher round the dispatcher delays the beginning of the next round with
the whole offset.

• Asynchronous start-up smooth: again the dispatcher starts executing the
dispatcher table immediately after start-up, but in comparison to hard
asynchronous start-up, the dispatcher does not delay the start of the next
round with the whole offset, but rather with a fraction of it. This fraction
is configurable at compile time by the developer. A complete synchro-
nization is achieved after several dispatcher rounds. The advantage of
this method is that the offset between both times is compensated without
making big time delays.

Developer can configure at compile time which method is to be used. Once
chosen the method cannot be change at runtime.

7.3 FTCom

As mentioned in the beginning, OSEKtime OS provides error detection mech-
anisms for fault tolerant communication – the FTCom layer. FTCom is an im-
portant part of the OSEKtime OS and has its own specification. FTCom layer
does not define a new communication protocol, but rather provides mechanisms
for detecting errors during sending and receiving messages. It also provides the
global logical time.
The FTCom layer is designed to detect faults in communication. One such ex-
ample is the bubbling idiot problem – a defect ECU continuously sends nonsence

88

7.3 FTCom

Global Time

Dispatcher Table

Synchronous Start-up

Global Time available

Start of the Dispatcher Table

Global Time

Asynchronous Start-up - hard

Global Time available

Start of Dispatcher Table

Dispatcher Table

Global Time

Asynchronous Start-up - smooth

Start of Dispatcher Table

Dispatcher Table

Synchronised

Synchronised
Global Time available

Task 1 Task 2 Task 3 Task n...

Figure 7.9: Local time synchronization at start-up of the OSEKtime OS
[Gro01b].

on the bus, therefore making the whole bus unusable. A possible solution to
this problem is an implementation of a bus monitor on all of the ECUs. Its
goal is to specify time slots in which a specific ECU can send information on
the bus [Kal07].

Architectural overview of the FTCom layer

Figure 7.10 shows a more detailed overview of the FTCom layer. FTCom layer
consists of three important layers:

• Application layer,

• Fault tolerant layer and

• Interaction layer.

Application layer provides the API functions to the application. The appli-
cation itself is not aware of the FTCom layer and cannot communicate directly
with it – the FTCom layer is hidden from the application. The API func-
tions provided are: ttReceiveMessage, ttSendMessage and ttInvalidateMessage
[Gro01a]. Whenever an application wants to send some information it uses the

89

7 Kostadin Kotev: OSEKtime OS - Scheduling

above functions. The OS then is responsible for the right calls of the appropri-
ate FTCom layer functions to provide fault-tolerant communication.
Fault tolerant layer is the core element of the FTCom layer. This layer con-
tains the algorithm which provides the fault-tolerant communication. This is
possible due to redundant transmitting a single message in space and time. On
the one hand while transmitting, FTCom layer clones the message to be send
in many message instances, which are then sent at different time on different
communication channels. For example a message A is send three times on two
different channels – at time 0 on channel 1, at time 5 on channel 2 and at time
6 on channel 1. On the other hand while receiving, the FTCom layer is respon-
sible for building a single message from those message instances. Following the
previous example, the receiver ECU now has three redundant messages. FT-
Com layer provides predefined algorithms and agreements, e.g. is the Replica
Determinate Agreements with “majority vote” algorithm, which defines how to
build a single message from many message instances. The developer however,
can implement another algorithm if neccessary.
Interaction layer is responsible for building the FTCom frames from different
message instances and then extracting single message instances from the FT-
Com frames. This layer is also responsible for converting the message into the
right byte order – when transmitting a message the interaction layer converts
the message from the ECU’s byte order to the communication channel’s byte
order and vise versa – when receiving a message it converts the message back
to the ECU’s byte order.

7.4 Summary

In this chapter we have briefly discussed the time-triggered OSEKtime OS and
its main properties. The OSEKtime OS has been developed in order to satisfy
the new requirements needed by the automotive industry, which the event-
triggered OSEK OS could not satisfy. It has been shown that the OSEKtime
OS executes tasks in a predefined, predictable and deterministic order, which is
stored in a dispatcher table. A dispatcher, triggered by the local logical time,
cyclically executes this dispatcher table. An important part of the OSEKtime
OS – the FTCom layer – has been introduced, which provides fault-tolerant
communication between different nodes and applications and also provides the
global logical time, so all participants on a bus can synchronize themselves (their
dispatcher ticks) and work in parallel. As an advantage of the OSEKtime OS
has been mentioned the possibility of the OSEKtime OS to be built individu-
ally for different applications, i.e. the developer can choose and compile just
those OS services, which are important to the application – thus saving hard-
ware resources. Furthermore it has been shown that it is possible to integrate a
complete subsystem such as OSEK OS instead of the OSEKtime’s ttIdleTask.
To summarize, the OSEKtime OS has been developed especially to meet hard
real-time requirements for safety critical applications in the automotive embed-
ded systems and to provide a standard to be used by all OEMs and suppliers

90

7.4 Summary

Figure 7.10: An overview of the fault-tolerant communication layer - FTCom -
of the OSEKtime OS [Gro01a].

when developing automotive software.

91

7 Kostadin Kotev: OSEKtime OS - Scheduling

92

8 Philipp Pickel: Testing vs. Verification
and Model Checking vs. Theorem Proving

8.1 Introduction and Motivation

In today’s world we are surrounded by technical devices whereof most are con-
trolled by software. This software is the integral part of such embedded systems.
A typical example for an embedded system is a car. Almost everything in it
from the engine over the media system to the airbags is software driven. But
software is not only used in embedded systems, but also in almost every com-
pany to support the business processes. So a reliable and completed software
development environment can be one of the company’s competitive advantages.
Because of this challenge for competitive advantages in the field of software,
also the requirements towards it are growing. As a consequence of this the pro-
grams get more and more complex. But complexity is not the only problem of
today’s software development. While the requirements are increasing also the
need of software correctness is rising. Especially in embedded systems there are
safety critical systems. In fact failure of such a safety critical system can cause
economic damage of several million dollars and even human losses.
An example of a catastrophe caused by a software defect is the explosion of the
“Ariane 5” rocket in June 1996. The examination of this incident came to the
conclusion that a better verification process could have avoided this disaster,
as described in [LDG+98]. Circa 290 million dollars were lost in the explosion.
Obviously the monetary aspect is an important aspect for every system devel-
opment plan. It is well know that the costs for correcting a defect raises from
development stage to the next development stage, and the costs to correct the
error later do not grow linear but exponential. So everyone in a software project
wants to find errors as soon as possible, as argued in this article [McC].
That’s why testing and verification methods are needed to provide high software
quality. In the following there will be first an explanation of the two general
approaches that are testing and verification, with a comparison at the end. The
second part will explain two formal verification techniques with their specific
advantages and disadvantages: model checking and theorem proving. The last
section is conclusions.

8.2 Testing vs. Verification

8.2.1 Testing

“(Software testing is) the process of operating a system or component under
specified conditions, observing or recording the results and making an evalu-

93

8 Philipp Pickel: Testing vs. Verification and Model Checking vs. Theorem Proving

ation of some aspects of the system or component” [oEE90]. This definition
gives already an outlook how big the field of testing is. Corresponding to the
conditions one has specified or the aspect you want to evaluate there are lots
of different objectives of testing. For example you can test your functional and
non-functional requirements. Or you can test a system in different stages of
development, like in alpha and beta tests. There are several more aspects you
can test and also there are different methods of testing.
Two very important approaches are the black box testing and white box testing
which will be explained in 8.2.1.1 respectively in 8.2.1.2. Another important
part of testing, which is also mentioned by the definition, is the documentation
of the results. Like in software development, in general, also in testing a good
documentation is needed for a good structured process and result, for a detail
explanation of that we refer to [Lig02].
The common attribute of every (dynamic) test is that the code is executed.
This execution with different inputs can either be made and observed by a hu-
man or another program. In contrast to verification, which is in section 8.2.3,
testing can almost never be exhaustive, because of the possible enormous num-
ber of inputs. Nevertheless, today most of dynamic testing is automated. A
quite well known product in this field is JUnit 1.
Testing is also an integral part of several development models. Widely spread in
Germany is the V-model XT 2, in which there are the stages of system design:
from the requirements over making a general design specification to the detailed
design as shown in Figure 8.1 3. After writing the source code the development
model has on the right side of the “V” the different levels of testing that corre-
spond to the part of the system design that have to be validated. On the lowest
level there are the Unit tests. On this stage the functionality of methods are
tested separately, so that side effects can be excluded. Possible side effects are
tested on the next stage. Component testing which is also called integration
test concentrates on the interfaces between these units that were tested on the
previous stage. As explained in [Lig02], at the end there is the acceptance test,
which checks if the produced system works on the customer’s infrastructure
properly.

8.2.1.1 Black Box Testing

All the mentioned test stages commonly use black box testing, for which we
refer to [Pat05]. In this testing method the tester doesn’t know the internal
structure of the implementation and source code. So as shown in Figure 8.2 4

the tester only gets an output according to the provided input without knowing
how the system computed it. The tests are derived from the requirements, for
example by an equivalence partitioning. Using this technique it is possible to
divide inputs into classes. From every class only one example is tested. Another

1http://junit.sourceforge.net
2http://www.v-modell-xt.de
3http://www.winlims.info/index.php?title=Implemenation
4http://soorajknair.com/411/

94

http://junit.sourceforge.net
http://www.v-modell-xt.de
http://www.winlims.info/index.php?title=Implemenation
http://soorajknair.com/411/

8.2 Testing vs. Verification

Figure 8.1: V-Model XT

way is to derive them from use cases, which are defined in the requirements.

Figure 8.2: Black Box Testing

8.2.1.2 White Box Testing

The opposite of black box testing is white box testing (see [Pat05]). In this
case the tester knows the internal structure of the implementation as shown
in Figure 8.3 5. So the tests are derived directly from the source code. The
aim is to have good code coverage. There are different stages of code coverage.
If the source code is represented by a flowchart diagram, one example of code
coverage is that in a test every node of such a diagram has to be visited at least

5http://bangded.blogspot.de/2012/05/contoh-laporan-testing-whitebox-dan.html

95

http://bangded.blogspot.de/2012/05/contoh-laporan-testing-whitebox-dan.html

8 Philipp Pickel: Testing vs. Verification and Model Checking vs. Theorem Proving

once. Another stage wants every path to be visited at least once. White box
testing is in general only applied to unit testing.

Figure 8.3: White Box Testing

8.2.2 Inspections, Reviews and Walkthroughs

Other approaches to find defects are inspections, reviews and walkthroughs,
more information about them are in [Lig02]. In all these approaches the source
code is examined systematically. The primary focus is on syntax checking.
There are more formal methods like the Fagan inspection [Fag76] where a strict
list of possible defects has to be worked off and more informal methods like
pair programming. In pair programming you have two programmers who write
source code alternating. While one is writing the other one is watching and
checking if any errors are made.
Inspections, reviews and walkthroughs are sometimes referred as static testing
in the literature.
Like in dynamic testing there are also automated tools for every programming
language. Examples are Checkstyle 6 or FindBugs 7 for Java or Klocwork 8 for
C and C++. The main disadvantage of these approaches is the high number of
false positives. This means the tools says there would be an error while in fact
everything is correct, as described in [Som10].

8.2.3 Verification

An even more formal approach is verification. This “is the process of evaluating
a system or component to determine whether the products of a given develop-
ment phase satisfy the conditions imposed at the start of that phase” [oEE90].
Also it can be a “formal proof of program correctness” [oEE90]. Such a formal
proof of correctness can be given by formal verification. This definition also
says that it is in contrast with validation. Validation is according to the IEEE:
“the process of evaluating a system or component during or at the end of the
development process to determine whether it satisfies specified requirements”

6http://checkstyle.sourceforge.net
7http://findbugs.sourceforge.net
8http://www.klocwork.com

96

http://checkstyle.sourceforge.net
http://findbugs.sourceforge.net
http://www.klocwork.com

8.2 Testing vs. Verification

[oEE90].
So with other words validation asks if the requirements satisfy the customer’s
needs while verification wants to verify that the software implements the re-
quirements given by the customer. Two important approaches in the field of
verification are runtime verification and formal verification.

8.2.3.1 Runtime Verification

In runtime verification you observe the normal program execution to find er-
rors and to better understand the system. The properties one wants to verify
are normally defined as temporal constraints. Examples of such temporal con-
straints are formulas in Linear Temporal Logic (cf. [Pnu77]), state charts or
automata. The main reasons why this technique is used are that some infor-
mation about the system is only available at runtime and that the behavior
of software can depend on the environment, where it is executed in. But run-
time verification can only provide a partial proof of correctness. As argued in
[CM05], so runtime verification is stronger than testing but weaker than formal
verification in its ability to assure system correctness.

8.2.3.2 Formal Verification

Formal verification is based on formal methods, that are according to Marciniak:
“mathematically based techniques for describing system properties. Such for-
mal methods provide frameworks within which people can specify, develop, and
verify systems in a systematic, rather than ad hoc manner” [Mar02]. He also
defines the term “formal” more precisely and says that “a method is formal
if it has a sound mathematical basis, typically given by a formal specification
language” [Mar02]. So the requirements and the program itself are translated
into a mathematical logic. In this process errors can be made. An error in
this phase would make the later gained proof worthless and that’s why much
expertise is needed for formal verification. Nevertheless it is widely spread in
hardware development, but in software development it isn’t that popular to the
present day.
There are two most significant approaches in formal verification: model check-
ing and theorem proving. Both will be explained in detail in section 8.3.1 and
8.3.2. Additionally we considered also abstract interpretation, which could be
called a basic technique in the field of formal verification.

8.2.3.3 Abstract Interpretation

Abstract interpretation was formalized by Patrick Cousot in the late 70s (cf.
[CC77]). Its function is quite easy to understand: Every concrete value is
transformed into an abstract value in an abstract domain, which is made by a
function. In the abstract domain there are also counterparts of concrete oper-
ations. So the concrete semantics are transformed into abstract semantics. As
shown in Figure 8.4 9 in concrete semantics one can say if something is correct

9http://www.absint.com/astree/slides/4.htm

97

http://www.absint.com/astree/slides/4.htm

8 Philipp Pickel: Testing vs. Verification and Model Checking vs. Theorem Proving

or false for sure. In the abstract semantics one can still have definitely correct
properties but only potential false ones on the other hand, because the preci-
sion is lost due to the abstraction itself. This means a definitely correct one
in the concrete semantics can turn into a potentially false one in the abstract
semantics. That is represented in the figure by the surrounded dots. An easy
example of abstract interpretation could be that after the abstraction one can
only say if a value is positive, negative or zero instead of knowing the whole
number in the concrete domain.
That means abstract interpretation is always an efficiency-precision-trade-off.
On the one hand it makes an analysis of a large software project feasible. But
on the other hand one might lose precision. That’s why an answer to a yes/no
question after abstract interpretation can be “maybe”. But this imprecision
is only on the safe side. This means everything considered correct is definitely
correct and only potential false ones can be true in fact, as explained in [Cou05].
As already mentioned abstract interpretation is a basic technique and can there-
fore be implemented in model checking or theorem proving approaches.

Figure 8.4: Concrete and Abstract Semantics

8.2.4 Advantages and Disadvantages

Both testing and verification provide specific advantages and disadvantages
whereof a summary is given in Figure 8.5. The main advantage of verification
is that it can provide a proof of correctness while testing can only find defects.
This is because of the possible exhaustiveness of verification. Exhaustive test-
ing on the other hand is almost impossible due to the large number of possible
inputs involved. Another advantage of verification is that it may be applicable
to all stages of the development process, while testing is usually only applicable
after the source is written. So defects may be found earlier with verification
and so money can be saved. But testing has in general lower needs than verifi-
cation. One reason for this is that testing may be performed in less time than
verification. The high time consumption is one of the main disadvantages of
verification because time is a crucial aspect in almost every project. Another
problem of verification is the lower number of experts on this field because of
the high skill requirements managing it. In the field of testing there are com-
paratively more experts. This can also be attributed to the fact that testing is

98

8.3 Model Checking vs. Theorem Proving

performed in almost every project and even part of some development models.
So verification should only be used in addition to testing when there is a high
need for guarantees of system correctness. Otherwise the disadvantages of high
required skills and time consumption can’t be justified.

Figure 8.5: Testing vs. Verification

8.3 Model Checking vs. Theorem Proving

8.3.1 Model Checking

Model checking transforms a system into a formal model to check if a desired
property is fulfilled. Therefore the system is modeled as a finite state system.
Also the requirements are transformed into formally specified properties. These
two are the inputs of a model checker. They are either modeled with temporal
logic (cf. [Pnu77]) - called temporal model checking (cf. [EC82]) - or as au-
tomata. For the second approach there are different notations in use: language
inclusion (cf. [Kur95]), refinement orderings (cf. [Ros94]) and observational
equivalence (cf. [CPS93]).
The formally specified properties can be split up into two main categories:

• “Safety properties, which state that something bad never happens - that
is, that the program never enters an unacceptable state” [OL82].

• “Liveness properties, which state that something good eventually does
happen - that is, that the program eventually enters a desirable state”
[OL82].

Both categories can be proofed by model checking. The model checker performs
an exhaustive state space search to decide whether the property is fulfilled or

99

8 Philipp Pickel: Testing vs. Verification and Model Checking vs. Theorem Proving

not. So as output is either provided a proof of correctness or a counterexample,
like it is shown in Figure 8.6 10.

Figure 8.6: Model Checking

In an exhaustive state space search the model checker visits every program
state until none is left or a defect is found, as it is shown in Figure 8.7 11. If
a defect is found the model checker gives the path from an initial state to it
as a counterexample or a path from an initial state containing a loop where
a required condition is not reached. The main problem of unbounded model
checking is the state space explosion. That means that the state system can
become so large it can’t be explored in an acceptable time or there is not enough
memory to contain it. An extended explanation of such problem is in [CS01].
Examples of model checkers are SMV respectively nuSMV 12 which was one
of the first ones to use Binary Decision Diagrams (for more information see
[Bry86]). Binary Decision Diagrams are an improved way of representing the
state space system in order to perform a faster search on it. Another example
is SPIN 13 which has been used by the NASA since 2001.
Due to better approaches like the Binary Decision Diagrams the performances
of model checkers are increasing. Also the growing computing power makes
them faster. So there have been checked systems with 10 to the power of 120
reachable states. Although abstraction techniques are often needed to reduce
the state space dimension and so improve the performance, like for instance
abstract interpretation.

8.3.1.1 Bounded Model Checking

In order to reduce to problem of the state space explosion there is a modified
approach of model checking: bounded model checking (cf. [BCCZ99]). In this

10http://embsys.technikum-wien.at/projects/decs/verification/formalmethods.php
11http://babelfish.arc.nasa.gov/trac/jpf/wiki/intro/testing vs model checking
12http://nusmv.fbk.eu
13http://spinroot.com/spin/whatispin.html

100

http://embsys.technikum-wien.at/projects/decs/verification/formalmethods.php
http://babelfish.arc.nasa.gov/trac/jpf/wiki/intro/testing_vs_model_checking
http://nusmv.fbk.eu
http://spinroot.com/spin/whatispin.html

8.3 Model Checking vs. Theorem Proving

Figure 8.7: State Space Search

case the state space search isn’t exhaustive but only states that can be reached
in a bounded number of steps are visited. So a higher performance than un-
bounded model checking can be achieved. But there could be counterexamples
that are only reachable with more than the bounded number of steps. So
bounded model checking may not provide a certain proof of correctness.
This problem is visualized in Figure 8.8. The bounded number of steps in this
example is two. The green circles represent states that have been visited be-
cause they are reachable within the bounded number of steps. The red circles
represent unchecked states and therefore they may be states where the property
is violated. So bounded model checking is often a iterative process starting with
a small number of steps. Then the number of steps increases until the problem
of state space explosion occurs.

Figure 8.8: Bounded Model Checking

101

8 Philipp Pickel: Testing vs. Verification and Model Checking vs. Theorem Proving

8.3.2 Theorem Proving

Theorem proving is besides model checking one of the main categories in the
field of formal verification, more information about it are in [CW96]. Also in
this approach the system and the properties are expressed in a mathematical
logic, which may vary from theorem prover to theorem prover. The proof of
correctness is constructed out of the axioms of this mathematical logic and its
rules. This is quite similar to a proof in mathematics. That’s why most theo-
rem provers can also help finding mathematical proofs.
One of the important mathematical logics used in this field is the Hoare logic
(cf. [Hoa69]). It describes an issue with a Hoare triple that has the following
form:

PRE P POST

The meaning of the Hoare triple is that if a pre-condition PRE is fulfilled and
the program or function call P is executed a post condition POST will take
place.
Theorem provers range from semi-automated to interactive. Interactive means
that the proof is found by a man-machine collaboration. The theorem prover
splits the wanted proof into subgoals. To compute these subgoals are often
needed further inputs by the user. This process of splitting up the problem can
be run through multiple times until the theorem prover can provide the desired
proof of correctness.
One example of such an interactive theorem prover is Isabelle 14, which is
developed at the Technische Universität München 15 in cooperation with other
universities. Its proof language is called Isar which goal it is to be human as
well as machine readable.

8.3.3 Advantages and Disadvantages

A small summary of the specific advantages and disadvantages of model check-
ing and theorem proving is given in Figure 8.9.
In the case of a negative result a model checker provides a counterexample that
can be very helpful in the process of debugging. On the other hand theorem
proving can’t provide such a counterexample but it gives the user a useful in-
sight into the system. A bigger disadvantage of theorem proving is the grade
of automation. While theorem provers range from semi-automated to interac-
tive there are completely automatic model checkers. Especially the interactive
theorem provers require a good understanding of the underlying mathematics
as well as a good insight of the system. So the use of theorem proving needs
even more skill than the use of model checking which is another disadvantage
of theorem proving. Also with regard to performance model checking is often
faster than theorem proving as long as there is no state space explosion. In
many cases theorem provers need more lines of proof than actual lines of code

14https://isabelle.in.tum.de
15http://www.tum.de/

102

https://isabelle.in.tum.de
http://www.tum.de/

8.4 Conclusion

are proofed. For example in one case the Isabelle prover needed 200 000 lines
of proof to prove about 10 000 lines of code (cf. [KEH+09]). But also model
checking has some specific disadvantages. It can handle infinite space systems
only with abstraction to a finite state system while theorem proving has no
further problems with infinite state systems. Another problem of model check-
ing is the state space explosion which has been already mentioned. A complete
comparison between model checking and theorem proving is in [OL07].

Figure 8.9: Model Checking vs. Theorem Proving

8.4 Conclusion

The previously described approaches all have their specific advantages and dis-
advantages and according to them they have spread differently in the software
development of companies. As already brought up no software project is finished
without testing. So test cases are sometimes even described in the requirements.
That’s why the field of testing is well-known by most software developer and
has a high acceptance as an import part of a project. Also inspections, reviews
and walkthroughs are widely spread, especially among the huge companies like
IBM, Motorola or Allianz. Also NASA uses these techniques, as reported in
[RCJ+08]. On the other hand there are the formal verification methods, like
model checking and theorem proving. Both aren’t used that often nowadays
but are growing more and more popular. There are some reasons for this grow-
ing popularity. First there are the improvements in the techniques themselves.
Together with the rising computing power the performance increased dramat-
ically since the beginning of formal verification. This goes along with a better
usability of model checkers as well as theorem provers. Not only the techniques
themselves were improved but also the need for them. Today there are a lot of
safety critical software applications and its number is growing. Therefore also

103

8 Philipp Pickel: Testing vs. Verification and Model Checking vs. Theorem Proving

the need to prove these applications is growing. One can see this development
especially in the field of embedded systems, where such proof of correctness
can be only provided by formal verification. Additionally verification can be
exhaustive in comparison to testing. In fact safety standards recommend veri-
fication in embedded systems.
But there are still problems. First of all there are the high costs because of the
skill required to manage formal verification and the comparatively little number
of experts on this field. Another problem is the high time consumption. Since
every project has to meet its deadline it can be a hard decision for the project
manager whether a formal verification is absolutely needed or not.
So all in all one can say that the choice for testing and/or verification has to
meet the requirements and design of a project. It must be taken into account
if a system is safety critical or not and if guarantees of system correctness are
needed.
If such guarantees are needed and one decided to make a formal verification
one must think about which technique provides more advantages in this speci-
fic case and which degree of abstraction one needs.
In conclusion verification is not meant to replace testing but to amend it and a
mix of testing and verification leads to high product quality.

104

Bibliography

[BBB+10] S. Bakhkhat, F. Boede, M. Brucke, K. Degen, C. Ebert, I. Ein-
siedler, C. Gouma, F. Grunert, R. Moellers, J. Niehaus, K. Renger,
S. Richter, S. Rupp, J. Salecker, R. Stein, O. Winzenried, and
S. Ziegler. Eingebettete Systeme-Ein strategisches Wachstumsfeld
für Deutschland; Anwendungsbeispiele, Zahlen und Trends. Tech-
nical report, Bitcom, 2010.

[BCCZ99] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yun-
shan Zhu. Symbolic model checking without bdds. In TACAS,
pages 193–207, 1999.

[BG11] R. Baheti and H. Gill. Cyber-physical systems. In T. Samad
and A.M. Annaswamy, editors, The Impact of Control Technology,
pages 161–166. IEEE Control Systems Society, 2011.

[BGC+11] M. Broy, E. Geisberger, M. V. Cengarle, P. Keil, J. Niehaus,
C. Thiel, and H. J. Thoennißen-Fries. Cyber-physical systems-
innovationsmotor für mobilität, gesundheit, energie und produk-
tion. Technical report, Acatech, dec 2011.

[BLMSV98] F. Balarin, L. Lavagno, P. Murthy, and A. Sangiovanni-Vincentelli.
Scheduling for embedded real-time systems. Design & Test of
Computers, IEEE, 15(1):71–82, 1998.

[Bro10] M. Broy. Cyber-physical systems-wissenschaftliche heraus-
forderungen bei der entwicklung. In M. Broy, editor, Cyber-physical
Systems-Innovation durch Software intensive eingebettete Systeme,
pages 13–28. Springer Berlin Heidelberg, 2010.

[Bry86] Randal E. Bryant. Graph-based algorithms for boolean function
manipulation. IEEE Trans. Comput., 35(8):677–691, August 1986.

[CANa] CAN in Automation e.V. About can in automation (cia). http:

//www.can-cia.org/index.php?id=aboutcia. Retrieved 2013-
02-04.

[CANb] CAN in Automation e.V. CAN FD submitted to ISO. http:

//www.can-cia.de/index.php?id=1689. Retrieved 2012-12-28.

[CANc] CAN in Automation e.V. Can history. http://www.can-cia.de/
index.php?id=systemdesign-can-history. Retrieved 2012-12-
07.

105

http://www.can-cia.org/index.php?id=aboutcia
http://www.can-cia.org/index.php?id=aboutcia
http://www.can-cia.de/index.php?id=1689
http://www.can-cia.de/index.php?id=1689
http://www.can-cia.de/index.php?id=systemdesign-can-history
http://www.can-cia.de/index.php?id=systemdesign-can-history

Bibliography

[CANd] CAN in Automation e.V. Maritime devices. http://www.

can-cia.org/index.php?id=106. Retrieved 2013-02-04.

[CANe] CAN in Automation e.V. Maritime vehicles. http://www.

can-cia.org/index.php?id=190. Retrieved 2013-02-04.

[CANf] CAN in Automation GmbH. First-hand information on can fd.
http://can-newsletter.org/engineering/standardization/

nr stand can-fd detroit 121022. Retrieved 2012-12-28.

[Car12] CarIT. Plug&play statt noch mehr Steuergeräte. http://www.

car-it.com/plugplay-statt-noch-mehr-steuergerate, 2012.
[Online; accessed 01-November-2012].

[CC77] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice
model for static analysis of programs by construction or approx-
imation of fixpoints. In Conference Record of the Fourth Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pages 238–252. ACM Press, New York, NY, 1977.

[CGHP12] Georg Carle, Stefan M. Günther, Nadine Herold, and Stephan
Posselt. Grundlagen rechnernetze und verteilte systeme. Uni-
versity Lecture https://www.net.in.tum.de/fileadmin/TUM/

teaching/grnvs/ss12/slides chap2.pdf, Summer 2012. Re-
trieved 2013-02-05.

[CM05] Samuel Colin and L. Mariani. Run-Time verification. In Model-
based testing of Reactive Sytems, volume 3472 of LNCS. Springer,
2005.

[Con12] FlexRay Consortium. Flexray Specification. http://www.

flexray.com/, 2012. [Online; accessed 01-November-2012].

[Cou05] Patrick Cousot. The verification grand challenge and abstract in-
terpretation. In VSTTE, pages 189–201, 2005.

[CPS93] Rance Cleaveland, Joachim Parrow, and Bernhard Steffen. The
concurrency workbench: a semantics-based tool for the verifica-
tion of concurrent systems. ACM Trans. Program. Lang. Syst.,
15(1):36–72, January 1993.

[Crn] Ivica Crnkovic. Component-based approach for embedded sys-
tems. Technical report, Maelardalen University, Department of
Computer Science and Engineering.

[CS01] Edmund M. Clarke and Bernd-Holger Schlingloff. Model check-
ing. In Alan Robinson and Andrei Voronkov, editors, Handbook of
automated reasoning, pages 1635–1790. The MIT Press, 2001.

[CW96] Edmund M. Clarke and Jeannette M. Wing. Formal methods:
State of the art and future directions. ACM Computing Surveys,
28:626–643, 1996.

106

http://www.can-cia.org/index.php?id=106
http://www.can-cia.org/index.php?id=106
http://www.can-cia.org/index.php?id=190
http://www.can-cia.org/index.php?id=190
http://can-newsletter.org/engineering/standardization/nr_stand_can-fd_detroit_121022
http://can-newsletter.org/engineering/standardization/nr_stand_can-fd_detroit_121022
http://www.car-it.com/plugplay-statt-noch-mehr-steuergerate
http://www.car-it.com/plugplay-statt-noch-mehr-steuergerate
https://www.net.in.tum.de/fileadmin/TUM/teaching/grnvs/ss12/slides_chap2.pdf
https://www.net.in.tum.de/fileadmin/TUM/teaching/grnvs/ss12/slides_chap2.pdf
http://www.flexray.com/
http://www.flexray.com/

Bibliography

[DLSV12] P. Derler, E. A. Lee, and A. L. Sangiovanni-Vincentelli. Modeling
Cyber-Physical Systems. Proceedings of the IEEE, 100(1):13–28,
2012.

[EC82] E. Allen Emerson and Edmund M. Clarke. Using branching time
temporal logic to synthesize synchronization skeletons. Sci. Com-
put. Program., 2(3), 1982.

[ES002] First Steps with Embedded Systems. Byte Craft Limited, 2002.

[Fag76] Michael E. Fagan. Design and code inspections to reduce errors
in program development. IBM Systems Journal, 15(3):182–211,
1976.

[Fle10] FlexRay Consortium. FlexRay Communications System, Protocol
Specification, Version 3.0.1. 2010.

[Gil08] H. Gill. From vision to realitiy:cyber-physical systems. HCSS Na-
tional Workshop on New Research Directions for High Confidence
Transportation CPS: Automotive, Aviation, and Rail, nov 2008.

[Gmb12] Vector Informatik GmbH. Vector: Software + Services for Au-
tomotive Engineering. http://www.vector.com/, 2012. [Online;
accessed 01-November-2012].

[Gro01a] OSEK Group. OSEK/VDX Fault Tolerant Communication Spec-
ification, Version 1.0. 2001.

[Gro01b] OSEK Group. OSEK/VDX Time-Triggered Operating System
Specification, Version 1.0. 2001.

[HKPV98] T.A. Henzinger, P.W. Kopke, A. Puri, and P. Varaiya. What’s de-
cidable about hybrid automata? Journal of Computer and System
Sciences (JCSS), 57(1):94–124, 1998.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming.
COMMUNICATIONS OF THE ACM, 12(10):576–580, 1969.

[HP88] D. J. Hatley and I. A. Pirbhai. Strategies for real-time system
specification. Dorset House Pub., 1988.

[HST10a] F. Hoelzl, M. Spichkova, and D. Trachtenherz. AutoFocus Tool
Chain. Technical report, Technische Universität München, 2010.

[HST10b] F. Hoelzl, M. Spichkova, and D. Trachtenherz. Safety-Critical Sys-
tem Development Methodology. Technical report, Technische Uni-
versität München, 2010.

[ISOa] ISO 11898-1:2003. Road vehicles – Controller Area Network (CAN)
– Part 1: Data link layer and physical signalling. ISO, Geneva,
Switzerland.

107

http://www.vector.com/

Bibliography

[ISOb] ISO 11898-2:2003. Road vehicles – Controller Area Network (CAN)
– Part 2: High-speed medium access unit. ISO, Geneva, Switzer-
land.

[ISOc] ISO 11898-3:2006. Road vehicles – Controller Area Network (CAN)
– Part 3: Low-Speed, fault-tolerant, medium-dependent interface.
ISO, Geneva, Switzerland.

[ISOd] ISO 11898-4:2004. Road vehicles – Controller Area Network (CAN)
– Part 4: Time-triggered communication. ISO, Geneva, Switzer-
land.

[ISOe] ISO/IEC 7498-1:1994. Information technology – Open Systems In-
terconnection – Basic Reference Model: Basic Model. ISO, Geneva,
Switzerland.

[Kal07] Gregor Kaleta. OSEKtime - Time-Triggered OSEK/OS. Technis-
che Universität Dortmund, 2007.

[Kam08] Raj Kamal. Embedded systems 2E. McGraw-Hill Education, 2008.

[KEH+09] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick,
David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt,
Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch,
and Simon Winwood. sel4: formal verification of an os kernel. In
Proceedings of the ACM SIGOPS 22nd symposium on Operating
systems principles, SOSP ’09, pages 207–220, 2009.

[KKI+11] M. A. Kinsy, O. Khan, I.Celanovic, D. Majstorovic, N. Celanovic,
and S. Devadas. Time-predictable computer architecture for cyber-
physical systems: Digital emulation of power electronics systems.
In IEEE Real-Time Systems Symposium, pages 305–316. IEEE
Computer Society, 2011.

[Koo12] Philip Koopman. Distributed embedded systems. University Lec-
ture http://www.ece.cmu.edu/∼ece649/lectures/11 can.pdf,
Fall 2012. Retrieved 2013-02-05.

[Kur95] R. P. Kurshan. Computer-Aided Verification of Coordinating Pro-
cesses: The Automata-Theoretic Approach. Princeton Series in
Computer Science. Princeton University Press, 1995.

[LCS+88] T. J. Laffey, P. A. Cox, J. L. Schmidt, S. M. Kao, and J. Y. Read.
Real-Time Knowledge-Based Systems. AI Magazine, 9(1):27–45,
1988.

[LDG+98] P. Lacan, A. Deutsch, G. Gonthier, J. N. Monfort, and L. V. Ribal.
Ariane 5 - the software reliability verification process. DASIA 98,
1998.

108

http://www.ece.cmu.edu/~ece649/lectures/11_can.pdf

Bibliography

[Lee06] E. A. Lee. Cyber-physical systems - are computing foundations ad-
equate. Position Paper for NSF Workshop On Cyber-Physical Sys-
tems: Research Motivation, Techniques and Roadmap, oct 2006.

[Lee08] E. A. Lee. Cyber physical systems: Design challenges. In ISORC,
pages 363–369. IEEE Computer Society, 2008.

[Lig02] Peter Liggesmeyer. Software-Qualität - testen, analysieren und
verifizieren von Software. Spektrum Akadem. Verl., 2002.

[LIN10] LIN Consortium. LIN Specification Package, Revision 2.2A. 2010.

[LS11] Edward A. Lee and Sanjit A. Seshia. Introduction to Embedded
Systems - A Cyber-Physical Systems Approach. Lee and Seshia,
1st edition, 2011.

[Mar02] John J. Marciniak. Encyclopedia of Software Engineering. John
Wiley & Sons, Inc., 2nd edition, 2002.

[Mar10] Peter Marwedel. Embedded System Design: Embedded Systems
Foundations of Cyber-Physical Systems. Springer, 2nd edition edi-
tion, 2010.

[Mar11] P. Marwedel. Embedded System Design- Embedded Systems Foun-
dations of Cyber-Physical Systems. Springer Dordrecht Heidelberg
London New York, 2nd edition, 2011.

[McC] S. McConnell. Software quality at top speed. http:

//www.stevemcconnell.com/articles/art04.htm. Retrieved
26/11/2012.

[MM98] G. Manimaran and C.S.R. Murthy. A fault-tolerant dynamic
scheduling algorithm for multiprocessor real-time systems and its
analysis. Parallel and Distributed Systems, IEEE Transactions on,
9(11):1137–1152, 1998.

[Noe05] Tammy Noergaard. Embedded Systems Architecture: A Compre-
hensive Guide for Engineers and Programmers. Elsevier, 2005.

[oEE90] Institute of Electrical and Electronics Engineers. IEEE standard
computer dictionary, 1990.

[OL82] Susan Owicki and Leslie Lamport. Proving liveness properties of
concurrent programs. ACM Trans. Program. Lang. Syst., 4(3):455–
495, July 1982.

[OL07] Martin Ouimet and Kristina Lundqvist. Formal software verifi-
cation: Model checking and theorem proving. Technical report,
Målardalen University, March 2007.

[OSE05] OSEK/VDX, Germany/France. OSEK/VDX Operating System
Specification, February 2005.

109

http://www.stevemcconnell.com/articles/art04.htm
http://www.stevemcconnell.com/articles/art04.htm

Bibliography

[Pat05] Ron Patton. Software testing. Pearson, 2005.

[Paz02] Keith Pazul. Controller Area Network (CAN) Basics. Mi-
crochip Technology Inc., 2002.

[Pnu77] Amir Pnueli. The temporal logic of programs. In FOCS, pages
46–57, 1977.

[RCJ+08] H. Dieter Rombach, Marcus Ciolkowski, D. Ross Jeffery, Oliver
Laitenberger, Frank E. McGarry, and Forrest Shull. Impact of
research on practice in the field of inspections, reviews and walk-
throughs: learning from successful industrial uses. ACM SIGSOFT
Software Engineering Notes, 33(6):26–35, 2008.

[Rob] Robert Bosch GmbH. Can protocol license. http://www.

bosch-semiconductors.de/en/ubk semiconductors/safe/

ip modules/can protocol license/can protocol license.

html. Retrieved 2012-12-28.

[Ros94] A. W. Roscoe. Model-checking CSP. In A Classical Mind: Essays
in Honor of C. A. R. Hoare, pages 353 – 378. Prentic-Hall, 1994.

[Rui] Xu Ruiquan. The principles and design of embedded system. Tech-
nical report, Huazhong University of Science and Technology.

[Sav98] John E. Savage. Models of computation - exploring the power of
computing. Addison-Wesley, 1998.

[Shi] Zhu Shi. The foundation of operating system. Technical report,
University of science and technology of china.

[Som10] Ian Sommerville. Software Engineering. Addison-Wesley, 9. edi-
tion, 2010.

[Sta96a] J A Stankovic. Real-time and embedded systems. ACM Computing
Surveys (CSUR), 28(1):205–208, 1996.

[Sta96b] J.A. Stankovic. Strategic directions in real-time and embedded
systems. ACM Computing Surveys (CSUR), 28(4):751–763, 1996.

[Sta10] R. Rajkumar; I. Lee; L. Sha; J. A. Stankovic. Cyber-physical sys-
tems: the next computing revolution. In Sachin S. Sapatnekar, ed-
itor, Proceedings of the 47th Design Automation Conference, DAC
2010, Anaheim, California, USA, July 13-18,2010, pages 731–736.
ACM, 2010.

[SZ10] Jörg Schäuffele and Thomas Zurawka. Automotive Software Engi-
neering: Grundlagen, Prozesse, Methoden und Werkzeuge effizient
einsetzen, volume 4. Vieweg + Teubner, January 2010.

[Uni00] San Diego State University. Introduction to computers. 2000.

110

http://www.bosch-semiconductors.de/en/ubk_semiconductors/safe/ip_modules/can_protocol_license/can_protocol_license.html
http://www.bosch-semiconductors.de/en/ubk_semiconductors/safe/ip_modules/can_protocol_license/can_protocol_license.html
http://www.bosch-semiconductors.de/en/ubk_semiconductors/safe/ip_modules/can_protocol_license/can_protocol_license.html
http://www.bosch-semiconductors.de/en/ubk_semiconductors/safe/ip_modules/can_protocol_license/can_protocol_license.html

Bibliography

[Wol09] Wayne Wolf. Cyber-physical systems. IEEE Computer, 42(3):88–
89, 2009.

[YB+97] V. Yodaiken, M. Barabanov, et al. A real-time linux. In Pro-
ceedings of the Linux Applications Development and Deployment
Conference (USELINUX), 1997.

111

