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Abstract

System virtualization allows one to monitor, analyze, and manipulate the state of a
virtual machine from the vantage point of the hypervisor. This method is known as
virtual machine introspection (VMI). Various security mechanisms can be implemented
by exercising the extensive control the hypervisor has over the virtual machines running
on top of it, such as malware analysis, intrusion detection, secure logging, and digital
forensics. As virtualization technology becomes increasingly ubiquitous in everyday com-
puting, VMI represents a viable option to enhance system security from the hypervisor
level. However, all systems that utilize VMI face a common challenge, namely the se-
mantic gap. This challenge describes the disconnect between the low-level state that the
hypervisor has access to and its semantics within the guest.

In this work, we explore the possibilities and implications of bridging the semantic
gap to support security applications from the hypervisor level. We define a formal model
for VMI that allows us to describe and compare such approaches in a uniform way.
Using our model, we identify three common patterns for bridging the semantic gap and
describe the properties of the corresponding implementations. Based on these findings,
we propose a novel VMI framework that allows one to analyze the full virtual machine
state in a universal way. We apply semantic knowledge of the operating system kernel
to recreate the graph of kernel objects from guest physical memory. Since dynamic
pointer manipulations such as type-casting and pointer arithmetic are prevalent in kernel
code, we develop a type-centric, semantic source code analysis technique to identify such
runtime manipulations in the C programming language. The results of this analysis
augment the static type information and allow us to over-approximate the possible
data types of pointer values, thus increasing the overall coverage of the kernel object
graph in a fully automated fashion. However, not all instances of runtime dependent
type manipulations can be detected this way. As a solution, our framework additionally
supports the manual formulation of simple, yet powerful type manipulation rules. These
rules allow the user to extend the type knowledge with his own expertise in a generic,
re-usable way.

To give evidence for the effectiveness of our methods, we have implemented a proto-
type of this system as part of this work to perform virtual machine introspection. Our
prototype faithfully reconstructs the graph of kernel objects of Linux guests almost per-
fectly. The identified objects can be exposed to arbitrary VMI applications for further
analysis through a rich set of interfaces. From all the possible security applications that
could work on the object graph, we choose malware detection as an example. The ex-
perimental evaluation shows that our approach is well suited to detect various kinds of
kernel-level attacks, including those that are specifically designed to cover their tracks
within the system.
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Zusammenfassung

Systemvirtualisierung erlaubt es, den Zustand einer virtuellen Maschine auf der Ebene
des Hypervisors zu überwachen, zu analysieren und sogar zu manipulieren. Diese Metho-
de wird Virtual-Machine-Introspection (VMI) genannt. Basierend auf der umfangreichen
Kontrolle, die der Hypervisor über eine virtuelle Maschine ausübt, können verschiedenste
Sicherheitsanwendungen implementiert werden, wie etwa Malware-Analyse, Angriffser-
kennung, sichere Protokollierung oder digitale Forensik. Da Virtualisierungstechnik die
Computerwelt zunehmend durchdringt, stellt VMI eine viel versprechende Technik dar,
um die Systemsicherheit von der Ebene des Hypervisors aus zu verbessern. Eine Her-
ausforderung, denen sich alle VMI-Ansätze jedoch stellen müssen, ist die sogenannte
semantische Lücke (engl. semantic gap). Sie beschreibt die mangelnde Verknüpfung
zwischen dem Systemzustand auf Hardware-Ebene, auf den der Hypervisor Zugriff hat,
und seiner konkreten Semantik innerhalb des Gastes.

In dieser Arbeit erkunden wir die Möglichkeiten und deren Implikationen, wie diese
semantische Lücke auf Hypervisor-Ebene für Sicherheitsanwendungen überbrückt wer-
den kann. Wir definieren ein formales Modell für VMI, mit welchem sich solche Ansätze
allgemein beschreiben und vergleichen lassen. Mit Hilfe dieses Modells identifizieren wir
drei elementare Schemata, um die semantische Lücke zu überbrücken, und stellen die
jeweiligen Eigenschaften einer entsprechenden Implementierung heraus. Basierend auf
diesen Erkenntnissen schlagen wir ein neuartiges VMI-System vor, das es uns erlaubt,
den vollständigen Zustand einer virtuellen Maschine auf eine universelle Art zu analysie-
ren. Wir verwenden semantisches Wissen über den Betriebssystemkern, um den Graph
von Kernel-Objekten aus dem physischen Arbeitsspeicher des Gastes zu rekonstruieren.
Allerdings erweisen sich dynamische Pointer-Manipulationen, wie beispielsweise Um-
wandlungen von Datentypen und Pointer-Arithmetik, wie sie in Betriebssystem-Code
keine Seltenheit sind, als problematisch. Deshalb entwickeln wir eine Typ-zentrische,
semantische Analysetechnik für Quellcode in der Programmiersprache C, um solche
Manipulationen zu erkennen. Die Ergebnisse dieser Analyse ergänzen die statischen
Typ-Informationen und ermöglichen es, die potentiellen Interpretationen eines Speicher-
bereichs zu überapproximieren. Hierdurch lässt sich die Abdeckung des identifizierten
Arbeitsspeichers auf komplett automatisierte Weise deutlich erhöhen. Dennoch können
nicht alle Instanzen von Laufzeitmanipulationen durch diese Analyse erkannt werden.
Aus diesem Grund unterstützt unser System zusätzlich die Formulierung komplexer Re-
geln für die Umwandlung von Datentypen. Diese erlauben es dem Benutzer, seine eigene
Expertise in einer allgemeinen, wiederverwendbaren Form in das System einzubringen.

Um die Effektivität unserer Methoden unter Beweis zu stellen, haben wir im Rah-
men dieser Arbeit einen Prototypen des vorgeschlagenen Systems für Virtual-Machine-
Introspection entwickelt. Unser Prototyp ist in der Lage, den Kernel-Objekt-Graph für
Linux-Gäste nahezu perfekt zu rekonstruieren. Die Kernel-Objekte können dabei be-
liebigen VMI-Anwendungen für die weitere Analyse über verschiedene Schnittstellen
zugänglich gemacht werden. Aus der Menge der daraus möglichen VMI-basierten Sicher-
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heitsanwendungen haben wir für eine Evaluation unseres Systems die Malware-Analyse
als Beispiel ausgewählt. Unsere Experimente belegen, dass dieser Ansatz sehr gut geeig-
net ist, um verschiedene Arten von Angriffen auf den Betriebssystemkern zu erkennen,
darunter solche, die speziell darauf abzielen, ihre Spuren möglichst gut zu verwischen.
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Chapter 1
Introduction

1.1 Motivation

Computer systems have proven to be lucrative targets for attackers. The increasing de-
mand for and supply of valuable data and virtual assets has formed an underground econ-
omy with a considerable revenue [FJ08, ZHS+09, Nam09, HEF09]. As a consequence,
we see a constant growth in the number of malicious software, also known as malware,
as well as other forms of attacks on computer systems [CXS+05, Ric08, Kas08, Woo12].
Some attacks target specific applications or services on a system—for example, cross-site
scripting attacks on web applications or SQL injection attacks. The most severe types
of attacks, however, allow an adversary to execute arbitrary code on a target system.

If an attacker is able to execute code on a system, he typically crafts this code to
serve two purposes [PO10, Eck12]: First, he tries to escalate the privilege level of the
execution context if his current privileges do not suffice. Second, he tries to sustain
his presence on the target system by changing the system configuration, by installing
malware on the target, or by dynamically creating a process that performs malicious
tasks on his behalf.

While it is trivial to detect that the configuration has been modified, the situation
is much more difficult for malware processes running on a system. Such programs are
designed to run permanently in the background while concealing their activities from the
legitimate user. They avoid detection by hiding their files within the file system and by
disguising their communication with the outside world as inconspicuous network traffic,
for example. In order to achieve concealment, sophisticated malware often tampers with
the operating system (OS) to change the behavior of system (library) functions.

The most sophisticated stealth techniques are implemented by so-called rootkits (cf.
Section 2.5). The sole purpose of a rootkit is to hide its presence from the user by
nesting itself deeply into the system [HB06, KS07, BKI07, Blu09, Eck12]. According
to recent Internet security threat reports and malware trends, rootkits have become an
increasing danger to system security [BDG+12]. In fact, a large fraction of real-world

1



1 Introduction

malware already contains some rootkit functionality [Woo12]. If this code is executing
at the highest privilege level (e. g., as administrative user “root”), it is able to control
and manipulate any part of the OS and even deceive or deactivate security software
running on the system, such as virus scanners or firewalls [BY07]. As a consequence,
the system in its entirety has to be considered as potentially compromised. In such
cases, the legitimate user can no longer trust in any output or rely on any functions of
the system, including security software such as anti-virus products. This is what makes
rootkits particularly hard to detect and remove.

With the help of a technology called system virtualization, we can improve this situ-
ation for the defending side. In system virtualization, a thin software layer, namely the
hypervisor, provides a virtual hardware interface which allows a virtual machine (VM)
to run an entire operating system along with further user processes on top of it (cf.
Section 2.1). Per definition, the hypervisor remains in control of all virtual hardware
resources at all times [SN05]. Even if an adversary compromises the guest OS and gains
full system privileges within a virtual machine, the hypervisor still has unrestricted and
untainted access to the state of the guest (i. e., disk, memory, CPU registers, etc.).

The legitimate user can leverage this fact and bypass the untrustworthy guest. Using
the hypervisor’s privileges, the virtual machine can be monitored and to some extent
even protected against attacks without having to rely on the guest OS itself, a technique
known as virtual machine introspection (VMI) [GR03]. If rootkit detection for the guest
is performed on the hypervisor level, it does not depend on potentially compromised
functionality of the guest and can thus be more reliable.

In order to perform VMI, another challenge must be addressed first, namely the se-
mantic gap [CN01]. It describes the disconnect between the low-level state the hypervisor
has access to and its semantics within the guest. As a consequence, the analysis of a
guest OS from the vantage point of the hypervisor requires the application of some sort
of semantic knowledge to the low-level state of the virtual machine.

In this thesis, we will explore new ways of analyzing the entire state of a virtual ma-
chine from the hypervisor level using VMI. Our goal is to reconstruct the state of an
OS kernel in the form of the kernel’s data structures within the guest physical memory.
The state of the guest’s kernel is relevant to a number of security applications, such as
malware analysis, intrusion detection, secure logging, or digital forensics. For example,
if we understand how these kernel objects drive the kernel’s behavior, we can compare it
to the intended functionality in order to detect any undesired or even malicious modifi-
cations of the state, as they are performed by rootkits. Thus, it is imperative to bridge
the semantic gap between hypervisor and guest OS to enable hypervisor-based security
applications.
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1.2 Problem Statement

1.2 Problem Statement

Our ultimate goal is to reconstruct the kernel state using VMI in order to enable de-
tection of system level compromises of a guest OS. This task provides several challenges
that we address throughout this thesis. We describe each of these challenges in the
following.

(P1) Extraction of Kernel Objects from Physical Memory

An OS kernel keeps its state in form of specific data structures in a dedicated part of
the system’s physical memory. We call these instances of data structures kernel objects.1

The actual implementation varies among different hardware platforms, OSs, and kernel
versions. One feature that almost all prevalent OSs and hardware platforms share is
the concept of virtual memory. This technique introduces an abstraction layer to the
physical memory of the hardware to ease memory management and isolate the address
spaces of concurrently running processes.

In order to extract a kernel object from physical memory, the size, layout, and address
of the object must be known. However, a modern OS kernel is a very complex piece of
software that uses a large amount of data types and variables. For example, the Linux
kernel version 3.5, which was released in July 2012, consists of more than 15.5 million
lines of code [Lee12], and the Windows XP operating system was compiled from 45
million lines of code [Mic]. These numbers illustrate that managing type information in
an efficient and usable way becomes a challenge in itself.

In addition to managing the data types and variables, we must be able to perform the
same virtual-to-physical address translation the memory management unit of the kernel
or hardware platform applies in order to actually access the data values in the (guest)
physical memory.

(P2) Identification and Recreation of Dynamic Pointer and Type
Manipulations

Even today, large parts of modern OS kernels are written in the C programming lan-
guage. C is known to provide the programmer with a high degree of freedom and allows
him to write highly optimized code; however it lacks convenient features of modern pro-
gramming languages, such as native variable length arrays, object orientation, polymor-
phism, templates or generics, et cetera. It is common practice amongst C programmers
to simulate these features with custom code that makes use of pointer arithmetic, type
casts, and ‘struct’ or ‘union’ data types, often wrapped in preprocessor macros for
easier usage.

1In object-oriented programming languages, an “object” is an instance of a class type. However, large
parts of OS kernels are written in C. In this thesis, we extend the term “object” to any structured
chunk of memory, even if it only contains a single 32-bit integer value.
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This code leads to dynamic, runtime dependent kernel behavior which makes it much
harder to reliably determine the type and location of kernel objects in memory. Tradi-
tional type information as used by debuggers, for example, gives us the strictly typed
view of a compiler that only allows one single unambiguous interpretation of memory.
Such a static view is insufficient for VMI applications, as the kernel may use the same
objects in different ways depending on the context. The challenge here is to identify the
objects and contexts of dynamic behavior and to recreate this behavior when extracting
kernel objects from memory.

(P3) Exposing the Kernel State to a Flexible VMI Framework

Our goal of detecting system compromises does not dictate to follow a particular ap-
proach. In fact, we want to be able to perform various kinds of analyses and apply novel
methods to the system state that support our goal. Additionally, our detection meth-
ods should be portable between different kernel versions and hardware architectures.
Thus, they must be able to cope with differences in the type information and memory
extraction process.

These requirements pose some engineering challenges on a VMI framework that need
to be addressed. Since the resulting outcome of the detection methods is crucial for
security, the VMI framework must not only be reliable and fault tolerant; even more
critically, the resulting framework must not introduce new vulnerabilities to the host
system.

1.3 Contribution

In this thesis, we explore the challenges presented in the previous section and contribute
to their solution. As part of this work, our efforts have lead to a flexible and pow-
erful VMI framework for easy and safe development of VMI applications that we call
InSight [ins]. The focus of its application is the reliable detection of kernel-level attacks
within virtual machines. Unlike previous work in the field of VMI, we strive toward
making the entire kernel state available with a high degree of automation and as little
required domain knowledge as possible.

Throughout this work, we describe the methods we developed for achieving a high
kernel state coverage, both with and without incorporating the knowledge of human
experts. We also highlight the interesting aspects of the implementation of these methods
within InSight. In addition, we evaluate our methods and show the effectiveness and
efficiency of our implementation for malware detection. The following list summarizes
the contributions of this thesis:
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1.3 Contribution

(C1) Definition of a Formal Model for VMI

Based on a joint work with Jonas Pfoh, we define a formal model to describe and compare
arbitrary VMI approaches. Our model shows that there is only a limited number of
ways to actually bridge the semantic gap, each of which has unique properties. Using
our model helps to understand these properties and their implications for a particular
VMI application. This contributes to the solution of the challenges (P1) and (P3).

(C2) Identification of View Generation as a Unique Challenge

We see a demand for a VMI framework that provides some basic functionality for com-
mon introspection tasks. With our work, we are among the first to address the semantic
gap challenge in a generic way. We call the act of bridging the semantic gap view gener-
ation (cf. Section 3.2.2). This demand has inspired us to create such a VMI framework
and thus indirectly supports challenge (P3).

(C3) Development of a Universal VMI Framework

As part of our research, we have created a universal VMI framework, called InSight. It
maintains a type database of data structures to read corresponding kernel objects from
a physical memory image for Linux kernels on the Intel IA-32 and AMD64 architecture.
These kernel objects are accessible by the user through a rich set of interfaces, including
a command shell and a JavaScript engine. With these features, InSight supports the safe
and easy development of VMI applications and contributes to challenges (P1) and (P3).

(C4) Identification of Dynamic Pointer and Type Manipulations

We describe a method for a static analysis of full C source code. The focus of our analysis
is the implicit and explicit type flow within C statements. We call this type-centric code
analysis the used-as analysis. For every global variable and structure or union field in
the code, our analysis provides the answer to two questions: First, is this variable or
field used as a type that differs from its declaration? And, second, how do we need to
transform a source value (a field or variable) to derive the next object’s address? The
resulting answers help to overcome challenge (P2).

(C5) Supporting Rule-based Type Knowledge

We have implemented the used-as analysis as part of our VMI framework, InSight, to
establish used-as relations between data types. The information resulting from analyzing
the source code of the introspected kernel are expressed as type knowledge rules that
augment the type database. With this extension, InSight is able to retrieve objects that
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are referenced by generic pointers and even ‘void’ pointers in a completely automatic
and reliable fashion without requiring any manual annotation.

As a supplement to the derived type knowledge, the user can express his own expertise
in the form of hand-written type rules. The type rule engine of InSight identifies the
applicable used-as and manual rules for an object at runtime and evaluates them based on
their priority and context. With only very few manual additions, the memory coverage
can be improved even further while resolving possible ambiguities at the same time.
This approach contributes to the solution of challenge (P2).

(C6) Demonstration of the Effectiveness and Efficiency of our
Framework for Kernel-level Malware Detection

The implementation of the proposed methods generates a meaningful view of an intro-
spected OS kernel’s state. We give evidence of this claim and describe several exper-
iments we conducted to detect various kernel-level attacks using the state information
that InSight provides. The results show that with our VMI framework, it is possible to
reliably detect different kinds of attacks with minimal efforts.

1.4 List of Publications

This thesis contains some new and previously unpublished material, though it is sub-
stantially based on work that has been published in scientific, peer-reviewed conferences
and workshops. We will briefly introduce these publications and their contributions to
this work. For the sake of completeness, we will include some papers relevant to the
field of VMI that we have contributed to, but which are not covered in this thesis.

The formal model described in Chapter 3 is based on joint work with Pfoh and Eck-
ert [PSE09]. This paper directly relates to the contribution (C1). We presented our
VMI framework InSight for the first time in a publication together with the same au-
thors [SPE11]. It includes the contributions (C2) and (C3). We cover the contents of
this paper in much greater detail in Chapter 6. Chapter 7 is also based in large part on
published work [SPE12]. This paper describes our used-as analysis for detecting pointer
and type manipulations on the source code level. Its contributions are summarized in
(C4) and (C5).

In addition to the previously listed contributions, we have done research on different
methods of bridging the semantic gap which are not included in this thesis. Together with
Pfoh and Eckert, we investigated the possibilities and limitations of generating views
when relying solely on hardware state information [PSE10]. Based on these findings,
we proposed an efficient VMI-based tool for system call tracing [PSE11]. We used
the collected system call information to detect malware with machine learning methods
based on support vector machines and a specially adapted string kernel function [PSE13].
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1.4 List of Publications

In joint work with Vogl et al., we followed another approach to address the semantic
gap challenge: We injected kernel modules from the hypervisor level into the context
of a guest operating system very efficiently [VKSE13]. By using sophisticated isolation
techniques, the modules were able to access all state of the guest OS and even call kernel
functions without sacrificing their overall security.
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1.5 Thesis Outline

The remainder of this thesis is organized as follows. In Chapter 2, we lay out some
foundations that are relevant for our work. In addition, we establish some terms and
definitions used in the thesis.

Chapter 3 introduces our formal model for virtual machine introspection. This model
is helpful for comparing different VMI approaches and reasoning about their properties.
In particular, we explain the out-of-band delivery pattern for view generation which is
the focus of this work.

With this basis, we give an overview of work related to this thesis in Chapter 4 and
classify the different approaches according to our model. The comparison of our problem
statement and our contributions with such work separates this thesis from previous
research.

In Chapter 5, the challenges for out-of-band delivery based view generation are pre-
sented. In particular, we give several examples of Linux kernel code fragments that
render external view generation a hard problem.

Chapter 6 introduces our VMI framework, InSight. This framework adopts the out-
of-band delivery pattern and overcomes several of the challenges presented in Chapter 5.
It makes development of new VMI approaches an easy and intuitive task. We detail
several interesting aspects of InSight and sketch some useful applications.

In Chapter 7, we propose a new pointer analysis technique for full C source code, called
the used-as analysis. It identifies instances of dynamic pointer and type manipulations
on the source code level. The purpose of the analysis is to address additional challenges
outlined in Chapter 5 by extracting additional type knowledge from the code base that
would otherwise require expert knowledge and manual work. The implementation of
this method as an extension to InSight involves some engineering challenges which are
described along with our solution.

We evaluate the effectiveness and efficiency of our VMI framework in Chapter 8. We
use InSight to construct a graph of kernel objects for the Linux kernel and compare this
graph to the objects the kernel has actually allocated. In addition, we use the external
view generation to detect several Linux rootkits which are not directly detectable from
within the compromised system itself.

Finally, Chapter 9 summarizes the thesis and includes an outlook for further research
in this field.
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Chapter 2
Foundations

This chapter lays out some foundations that are used throughout this thesis. We cover
several technologies that we build upon and familiarize the reader with the terminology
required to describe our work.

Chapter overview. We begin with on overview of the concept of system virtualization
in Section 2.1. Our goal is to reason about the state of a virtual machine from the
outside, a technique called virtual machine introspection. This technique is introduced
in Section 2.2. Closely related to virtual machine introspection is the so-called semantic
gap challenge. We explain this gap and its origin in Section 2.3. Eventually, we want to
be able to detect rootkits and kernel-level attacks that are installed or carried out inside
of a virtual machine. Therefore, we describe what kernel-level attacks are in Section 2.4
and distinguish them from rootkits in Section 2.5.

2.1 System Virtualization

In computer systems, there exist various types of virtualization depending on the re-
sources or components that are being virtualized: memory, storage, an interface library,
or an entire hardware platform. Virtualization always introduces an abstraction layer
for an existing interface to real resources or components of a system.1 These abstract
resources are then accessible within the virtualized system. We refer to the real sys-
tem that provides the resources as the host, while the virtualized system that uses the
virtualization interface is called the guest.

Popek and Goldberg [PG74] define virtualization formally as an isomorphism f : Cr →
Cv which maps any real (host) state Si ∈ Cr to a corresponding virtual (guest) state
S ′
i ∈ Cv as follows. For any instruction sequence ei that transforms the host’s state Si

to ei(Si) = Sj, there exists a corresponding instruction sequence e′i for the guest such

1Note that this abstraction does not necessarily imply a reduced complexity or level of detail.
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Figure 2.1: Virtualization constructs an isomorphism f which maps the set of host states
Cr to the set Cv of states of the guest.

that f(ei(Si)) = e′i(f(Si)). In other words, all instruction sequences of the guest can
be mapped to instruction sequences of the host that reproduce the corresponding state
changes of the guest. This relation is illustrated in Figure 2.1.

For our work, we only concern ourselves with system virtualization, which describes
the abstraction of a complete hardware interface of a computing platform as a virtual
machine (VM). Smith and Nair [SN05] define system virtualization from the vantage
point of the virtual machine as follows:

“A system virtual machine provides a complete system environment. This
environment can support an operating system along with its potentially many
user processes. It provides a guest operating system access to underlying
hardware resources, including networking, I/O, and, on the desktop, a display
and graphical user interface.”

The virtual hardware interface is provided by a software layer called the virtual ma-
chine monitor (VMM) or hypervisor. It intercepts all guest accesses to privileged re-
sources, checks them for correctness, and executes them on behalf of the guest. Thus,
the hypervisor retains control of all privileged resources and has complete access to them
at all time. Those privileged resources are comprised of the CPU, the memory, and all
connected I/O devices, most notably the disk storage and network interface. We will
briefly describe how each of these resources can be virtualized in the following.

2.1.1 CPU Virtualization

CPUs distinguish between two (or sometimes more) privilege levels for their instructions
and according modes of operation. The user mode is the least privileged mode and al-
lows the execution of non-privileged instructions, such as basic arithmetic, branching,
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2.1 System Virtualization
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Figure 2.2: Different types of system virtualization: (a) none, (b) bare-metal virtualization,
(c) user-mode hosted virtualization, (d) dual-mode hosted virtualization

and regular memory accesses. The code of user-land applications typically runs in user
mode. In addition, there are the privileged instructions that change the behavior of the
CPU, the memory management unit, or other privileged components. These manage-
ment instructions are only allowed when the CPU runs in system mode and are reserved
for operating system code. When an application tries to execute a privileged instruc-
tion while the CPU is in user mode, the CPU handles it in one of two different ways,
depending on the instruction and CPU type: It can either perform a trap to the op-
erating system, that is, it transitions into system mode and invokes a special handler
function that the operating system has installed previously, or it effectively ignores the
instruction and does not change its state.

In order to virtualize a CPU, the hypervisor has to support both privileged and
non-privileged instructions of a virtual machine. A straightforward solution would be
to implement the virtual CPU entirely in software and emulate all instructions. This
approach obviously requires multiple instructions of the physical CPU to emulate a single
instruction of its virtual counterpart, leading to a significant performance degradation.
To achieve better performance, another strategy can be applied: One allows all non-
privileged instructions to execute directly on the host CPU and have the hypervisor
emulate only the privileged instructions. This method is called direct native execution.

When comparing the responsibilities of an operating system and a hypervisor, it be-
comes clear that they both perform similar tasks regarding resource management and
handling of privileged CPU instructions. Virtualization can be classified according to
the privilege level at which the hypervisor is executing, as depicted in Figure 2.2.

If no virtualization is performed, the operating system runs in privileged mode and is
responsible for managing all resources of the host (Fig. 2.2a). The classic approach to
virtualization is to execute the hypervisor in privileged mode as the lowest layer of the
software stack instead of the operation system (Fig. 2.2b). This type of virtualization
sometimes is called bare-metal virtualization because the hypervisor is running directly
on the hardware.

In hosted virtualization, the hypervisor runs as an application within a host operating
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system. This approach allows for a much simpler code base of the hypervisor itself
since it can rely on the host OS to provide essential functionality, such as bootstrapping
routines, hardware drivers, and management services. If the hypervisor runs entirely in
user mode, the host OS is the only code that runs in privileged mode (Fig. 2.2c). In dual-
mode hosted virtualization, the hypervisor is split up into a user-land application and
a (typically small) kernel module (Fig. 2.2d). Only the latter component is executed in
privileged mode within the kernel. Here the work of emulating the privileged instructions
is split up between the host OS and the hypervisor.

2.1.2 Memory Virtualization

Most hardware architectures and operating systems support the concept of virtual mem-
ory, an abstraction layer for the physical memory: The operating system splits up the
physical memory in fixed size chunks, the pages, and maintains one page table per pro-
cess which maps virtual pages to physical memory. This gives each process the illusion
of living in its own, unique address space. During execution, the memory management
unit (MMU) is responsible for translating virtual to physical addresses [Tan07]. For
performance reasons, the MMU is usually a part of the CPU itself to avoid having to
involve the operating system for every single memory access.

Hypervisors can make use of the virtual memory and the MMU to support direct
native execution. The key idea is to virtualize the page table pointer register of the
CPU by trapping all guest accesses to that register to the hypervisor [SN05]. For each
page table that the guest OS tries to install in that register, the hypervisor maintains
a shadow page table which maps guest-virtual to host-physical addresses. This page
table is the one consulted by the MMU during execution of the corresponding process
within the guest. To keep the shadow page tables in sync with the guest page tables,
the hypervisor also intercepts all updates the guest performs on a page table and applies
these changes to the corresponding shadow page table accordingly.

Due to the increasing popularity of system virtualization in server and desktop envi-
ronments, the two big processor manufactures for x86-based CPUs, Intel and AMD, have
introduced several virtualization extensions to their processors’ instruction sets to better
support reliable and high-performance virtual machines [UNR+05, NSL+06, AMD05].
But also in the world of embedded systems we start to see hardware extensions for
virtualization to established CPU architectures, such as introduced by ARM for their
Cortex-A15 processor [ARM12]. All of these extensions include support for extended
or nested page tables [Maf08], sometimes also called second-stage translation [VH11].
The basic idea is to add a second level of indirection to the MMU’s address trans-
lation scheme. This enables the MMU to translate guest-virtual to guest physical to
host-physical addresses all in hardware and without intervention of the hypervisor.
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2.2 Virtual Machine Introspection

2.1.3 Input/Output Virtualization

A virtual machine is equipped with a set of virtual devices that the guest OS interacts
with. Depending on the virtualized hardware architecture, such interaction functions
either trough specific CPU instructions or through read and write accesses of specific
memory regions (memory-mapped I/O).

Accessing any hardware device represents a privileged instruction, so all device ac-
cesses must be executed in privileged mode. If they are executed in user mode, they
trap to the hypervisor. Since the guest OS is always running in non-privileged mode (see
Fig. 2.2), all device commands automatically trap to the hypervisor which makes their
virtualization fairly straightforward. As a consequence, the guest OS never accesses the
physical hardware directly; the hypervisor maps the trapped requests to physical devices
or to resources of the host OS, depending on the virtualization type.

The technique that is used to map the guest’s device accesses to host hardware depends
on the characteristics of the device being virtualized. Some devices are intended for being
used exclusively, for example, the keyboard or the display. Such dedicated devices are
typically multiplexed by the hypervisor in some way. Continuing the previous example,
the keyboard input can be redirected to one virtual machine at a time. The display can
either be multiplexed in the same fashion, or the physical screen can be split into multiple
virtual screens showing all virtual machines’ displays at the same time. Other devices
lend themselves to being partitioned for multiple guests. A hard disk, for instance, can
be partitioned into several chunks, each of which is used by only one virtual machine.
Finally, some devices can be shared at a fine time granularity, creating the illusion that
each guest has exclusive access to it. A network card is an example of such a device. The
hypervisor simulates a virtual network card for each VM, buffers the packets that the
guests transmit, sends them out over the physical network card, receives the packets on
behalf of the guests, and delivers them to the corresponding guests using virtual device
interrupts.

2.2 Virtual Machine Introspection

The hypervisor controls the execution of the virtual machines running on top and pro-
vides strong isolation between them. Madnick and Donovan were among the first to
describe the relevance of this isolation property for overall system security [MD73]. In
addition, the hypervisor is able to observe and even modify the state and thus the be-
havior of the guest. Garfinkel and Rosenblum [GR03] characterize this authority as the
combination of three properties:

1. Isolation refers to the property that the hypervisor runs independent from the
guest, and (ideally) the guest cannot change other guests’ or the hypervisor’s
behavior in any irregular way.
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2. Inspection refers to the fact that the hypervisor is able to examine the entire state
of the guest without having to rely on the guest’s cooperation or trustworthiness.

3. Interposition refers to the hypervisor’s ability to manipulate the guest’s state or
to inject operations into the normal running of the guest.

These properties lend themselves to implement new functionality for supervision at
the hypervisor level. The act of using virtualization for the purpose of analyzing and/or
manipulating a guest’s behavior from the vantage point of the hypervisor is called virtual
machine introspection (VMI) [GR03].

2.2.1 VMI for Security Applications

Security mechanisms such as digital forensic tools and intrusion detection systems rely
on the ability to observe the system state. As such, these mechanisms clearly benefit
from the properties of VMI [CTS+08, HN08, NBH09, DGPL11]. For example, even if
an attacker has gained full control over the operating system running inside a guest,
the strong isolation through the hypervisor restricts the attacker’s code to this guest
and leaves only a minimal attack surface to escalate his privileges across the virtual
machine’s boundaries. Since the hypervisor still has access to the complete and untainted
guest state, all monitoring or enforcement of security policies on the hypervisor level is
unaffected by any doings of the attacker and thus very hard to evade.

A hypervisor manages a guest’s state as part of the state of the host system by mapping
accesses to resources of the virtual machine to physical counterparts of the host. This
allows the hypervisor to save and restore the state of a virtual machine and is another
benefit of the inspection property. For example, it enables one to reset a compromised
system to a known-good state or to preserve a machine’s state for offline forensic analysis
in case of an incident [DKC+02].

To retain control of all host resources, the hypervisor interposes privileged opera-
tions within the virtual machine and emulates their effect on behalf of the guest (cf.
Section 2.1). This mechanism can be exploited to interpose particularly interesting in-
structions [PSE10] and implement various security policies [VKSE13] . For example, it
allows one to monitor the interactions between a guest operating system and its user-
land applications by tracing the system calls that the processes invoke [PSE11]. Such
interactions have proven to be relevant for assessing a system’s state and for detecting
system attacks [KH97, HFS98, RTWH09, PSE13].

2.2.2 Limitations

To be able to rely on the advantages that VMI brings, the hypervisor as well as any
privileged VM involved in a VMI application must not be vulnerable to compromise.
Of course, this is an ideal assumption that cannot be guaranteed. In fact, several
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2.3 The Semantic Gap

vulnerabilities in various virtualization systems have already been discovered [Fer06].
Nevertheless, due to the strong isolation provided by the hypervisor, the attack surface of
VMI-based approaches that execute outside of the inspected VM is significantly reduced
compared to software running inside of it.

2.3 The Semantic Gap

When inspecting a VM from the vantage point of the hypervisor, the entirety of the
VM state is accessible. This state consists of the CPU registers, the main memory
(containing data and code), the disk storage, as well as the state of all attached devices,
such as network adapters or sound cards. However, since the hypervisor is only exposing
a virtual hardware interface, which is a very basic, low-level interface, it has only a limited
understanding of the semantics of this state. This inherent lack of semantic information
in the hypervisor has been characterized by Chen and Noble as the semantic gap [CN01].

Considering a hypervisor providing the guest with an x86-based hardware interface2,
for instance, the semantics of the virtual CPU’s control registers are precisely specified
by the CPU’s instruction set architecture (ISA) [Int09]. Thus, it is straightforward to
interpret this part of the guest’s state.

In contrast, the usage of the memory is completely left over to the operating system
running inside the virtual machine. As a consequence, from the perspective of the
hypervisor and without further knowledge, the semantics of the memory for the guest OS
are unknown. This lack of understanding of the state is illustrated in Figure 2.3a: When
accessing the VM’s memory, the hypervisor only sees raw, binary data and does not now
how it is used by the guest OS or how it affects its behavior. For VMI applications, it
is essential to bridge the semantic gap and resemble the guest’s view onto the memory,
as shown in Figure 2.3b. With knowledge about the data structures used by the kernel
and their layout in memory, the kernel state can be reconstructed from the hypervisor
level.

It is obvious that bridging the semantic gap requires application of knowledge about
the virtual hardware architecture, the guest OS, or both. Recall that the hypervisor
remains in control of and has access to all virtual hardware and resources at any time
(cf. Section 2.1). From this follows that, with complete knowledge about the virtual
hardware, the guest OS, and all software running inside the virtual machine, one can
theoretically generate a view of the guest’s state that is as complete as the internal
view of the guest OS itself. In practice, however, even with all that information at
hand this is hardly feasible: The view that can be acquired from the perspective of the
hypervisor will always be a compromise between completeness, performance, and other
implementation dependent trade-offs.

2When talking about the x86 architecture in this thesis, we include both the 32-bit architecture Intel
IA-32 as well as the 64-bit extension Intel 64/AMD64, unless otherwise stated. However, we do not
consider the Intel Itanium architecture (IA-64).
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struct module

state
list
name
mkobj
modinfo_attrs
version
src_version
holders_dir
syms
crcs
num_syms
...
ctors
num_ctors

module_state = MODULE_STATE_LIVE

struct list_head

next
prev

unsigned int = 0

void (*)() = NULL

char[60] = "loop"

struct module_kobject

kobj
mod
drivers_dir
mp

(b) Guest OS’s perspective

Figure 2.3: Illustration of the semantic gap when accessing the virtual machine’s memory.
(a) From the perspective of the hypervisor, the semantics of the memory is unknown. (b) The
guest operating system has a clear understanding of the location and layout of its data
structures. When this view can be reconstructed from the hypervisor level, the semantic gap
has been successfully bridged.
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2.4 Kernel-Level Attacks

One of the properties of VMI is the inspection property, which describes that the hy-
pervisor is able to examine the entire state of a guest “as-is”, that is, complete and
untainted by any adversary who might have taken control of the guest OS. This is the
reason why VMI-based approaches are most promising for defending against attacks that
target the kernel directly: After the kernel itself has been compromised, any detection or
removal mechanism cannot rely on kernel functions anymore since the attacker controls
them already. He may modify these functions to return false reports about the kernel’s
state or simply deny the termination of a malicious process. If we apply a VMI-based
detection or removal mechanism and choose the approach properly (cf. Section 3.3), we
leave the attacker’s range of influence and escape his control.

When using the term kernel-level attack, we refer to activities with (mostly) malicious
intent that are carried out on the kernel level and leave traces in the kernel’s state3.
Examples of such attacks include modifying a function pointer in the system call table
to perform key logging, removing a kernel object from a list by manipulating the list
pointers to hide its presence, or overwriting the user identifiers associated with a process
to elevate the process’s privileges.

One prominent incarnation of software that performs kernel-level attacks are root-
kits [HB06, Blu09, Eck12]. Rootkits are specialized in providing concealment for them-
selves and usually for an additional (typically malicious) payload that is supposed to run
undetected on a system, for instance, to provide remote access or to collect intelligence.
However, not every kernel-level attack has to be performed by a rootkit and not every
rootkit has to attack the kernel. We give a clear definition of rootkits and differentiate
them from kernel-level attacks in Section 2.5. Nevertheless, we will use kernel-level root-
kits as a running example throughout this section since it is convenient and intuitive to
explain kernel-level attacks from the perspective of a rootkit author.

The goal of a kernel-level attack is to make the kernel behave in a way the attacker
desires. Since this desired system behavior is contrary to the normal operation of the
kernel, it follows that the attacker has to modify the state of the kernel to achieve his
goal. There are basically two elements of the kernel he can alter: kernel code or data.
For both of these attack vectors, we describe some fundamental techniques that are
commonly used to subvert OS kernels in the following.

2.4.1 Data-based Attacks

The kernel organizes its state in form of instances of data types in memory, the so-
called kernel objects. The information contained within these objects steer the kernel’s
course in large parts. Other important information resides in locations dependent on
the hardware architecture, such as specific CPU registers. If an attacker can tamper

3Recall that the state includes not only the data but also the code of the running kernel.
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Figure 2.4: Control flow of a hook in the system call table, (a) before the modification and
(b) after the hook has been installed.

with this data, he can manipulate the system’s behavior to his advantage.

2.4.1.1 Function Pointer Hooking

Callback functions and call tables in the kernel are implemented using function pointers.
These pointers point to the entry point of the functions in charge to handle specific
events. A common technique to attack a kernel is to hook function pointers by swapping
the address the pointer holds with the address to some code under the control of the
attacker. The attacker’s code will then perform the intended actions on each event, for
example, logging the keystroke in case of a keyboard interrupt. Eventually, the malicious
code will call the original function, probably with modified parameters or filtering the
return values, to keep the system functional and to continue to operate undetected. This
control flow is illustrated in Figure 2.4.

Examples for function pointers of interest include the interrupt descriptor table (IDT)
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and several machine specific registers (MSRs) within the CPU, both of which are specific
to the x86 architecture. The system call table is an instance of an OS specific call table
that has become famous among attackers, especially for creating rootkits [Blu09].

2.4.1.2 Direct Kernel Object Manipulation

Kernel objects hold other security relevant information beyond function pointers. File
descriptors contain the access rights associated with an open file, process descriptors
contain references to the associated users which determines their privileges, and so on.
An attacker can change such values to his advantage, for example, to elevate his priv-
ileges. These types of attacks have become known as direct kernel object manipulation
(DKOM) [But04].

KPRCB

CurrentThread
NextThread
IdleThread

ETHREAD

KTHREAD

ApcState

EPROCESS

LIST_ENTRY

FLINK
BLINK

KTHREAD

EPROCESS

LIST_ENTRY

FLINK
BLINK

KTHREAD

EPROCESS

LIST_ENTRY

FLINK
BLINK

KTHREAD

Figure 2.5: Process hiding for the Windows operating system using direct kernel object
manipulation (DKOM). The process descriptor in the middle of the list is skipped by manip-
ulating the ‘FLINK’ field of the previous and the ‘BLINK’ field of the next process in the list
to remove the object from the list, thus hiding the corresponding process.

Aside from changing concrete values representing IDs, permissions and flags, an at-
tacker can also tamper with pointers to other objects. An attack that manipulates the
pointers to objects in a doubly-linked list was first described by Butler et al. [BUP03],
even though he simply referred to it as “process hiding”. The acronym “DKOM” was
coined later by Butler himself [But04]. The attack works a follows: By “skipping” a par-
ticular process descriptor in the list of all processes on a Windows system, as depicted
in Figure 2.5, the skipped process disappears from the output of many reporting tools
while the process continues to execute normally. Even though the process is hidden from
some reports, it may appear in other places where different pointers point to the skipped
process descriptor, for example, when accessing the ‘ETHREAD’ object and following field
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‘ApcState’. The same technique is also known to work for hiding drivers and network
connections in Windows [HB06] as well as processes and kernel modules in the Linux
kernel.

Note that in order to keep an object “active” and thus useful for the attacker, at least
some references to this object have to persist. If all references to an object would be
removed from the entire kernel state, the kernel itself would loose awareness of it. As
a consequence, a process would no longer be scheduled, a network connection would
not accept any more packets, and so on. Thus, an attacker has to be careful with the
pointers he manipulates to keep his code functional.

2.4.2 Code-based Attacks

Once an attacker has gained full kernel privileges, he can not only manipulate data,
but also the kernel code itself.4 This opens almost unlimited possibilities for kernel
manipulations. However, the most widely adopted use of code-based attacks is the
runtime or detour patching of functions to insert malicious code at certain points of the
existing control flow.

Even though the effect of this method is similar to the previously introduced function
pointer hooking, runtime patching is more generic and more powerful. Both approaches
allow an attacker to force the original code to take a detour and execute his code instead.
With runtime patching, he replaces an existing instruction at a chosen code position
with a jump instruction that will transfer control to his code. After the detour code has
been executed, the control flow can be returned to the position where the initial jump
instruction left of, depending on the intentions of the attack. To keep the functionality
of the original code sound, the detour code executes the instructions that were replaced
by the jump code before returning control back to the kernel code [HB06]. The control
flow of this attack is shown in Figure 2.6.

Runtime patching is a versatile technique for multiple purposes. It can be employed
to block function calls under certain conditions (e. g., to stop a malware removal tool),
to trace particular calls and record their parameters, to manipulate or filter input pa-
rameters to a function as well as the corresponding output values, and even to replace
entire routines with custom code [Blu09].

2.5 Rootkits

From the perspective of an attacker, gaining unauthorized access to a machine is a hard
piece of work, especially via a remote channel. Once he has successfully acquired system
privileges, he usually wants to sustain his presence on the compromised machine and
make it easier for him to re-gain these privileges later on. However, this has to be done

4Even though the kernel can write-protect his code using the protection bits of the page tables, an
attacker with full privileges can easily flip the protection bits to make the pages writable again.
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Figure 2.6: Control flow of a runtime or detour patch, (a) of the original code and (b) after
the patch has been applied.

without being noticed by the legitimate owner or administrator, because otherwise the
system might be cleaned and his efforts are lost. For this purpose, he typically installs
a rootkit on the system.

A more accurate description of a rootkit is given by the following definition from
Hoglund and Butler [HB06]:

“A rootkit is a set of programs and code that allows a permanent or
consistent, undetectable presence on a computer.”

This definition effectively restricts the functionality of a rootkit to providing stealth for
some sort of additional payload. Blunden broadens this definition [Blu09] and char-
acterizes rootkits as software that provides three services: concealment, command and
control, and surveillance. Even though there exists legitimate software that provides
parts of these services, for example, remote administration tools such as the OpenSSH
daemon, it is the stealthiness that differentiates such tools from rootkits.

2.5.1 Rootkit Taxonomy

Many of the examples for kernel-level attacks given in Section 2.4 illustrate their ap-
plicability for rootkits, especially for providing concealment. In fact, many real-world
rootkits that exist today employ such methods to provide their services. However, there
are other ways for a program to operate undetected without attacking the kernel. For
example, the first rootkits for Linux replaced important system programs that report
on running processes (ps), files (ls), network connections (netstat), etc., with custom
binaries that delivered fake reports. These replacements simply excluded a back door
daemon that was installed as part of the rootkit from their reports.
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To draw the connection between kernel-level attacks and rootkits, we use the malware
taxonomy introduced by Rutkowska [Rut06]. This taxonomy classifies malware accord-
ing to their interaction with the OS kernel. The first class is type 0 malware which runs
as a regular process within the operating system. It does not alter the kernel code or
data. Consequently, the Linux rootkit consisting of replacement binaries and a back door
is a type 0 rootkit. The next class is type I malware. A member of this class tampers
with the kernel, but only modifies parts of the state that are considered to by constant
during normal operation, such as code sections, the IDT or the system call table. For
example, a rootkit that only uses runtime patching or MSR hooking is a type I rootkit.
As the final class, type II malware operates on dynamic resources that are supposed to
change during runtime. Rootkits that rely on DKOM are obviously representatives of
the type II class.

2.5.2 Rootkits vs. Kernel-Level Attacks

In this thesis, we only concern ourselves with rootkits that involve kernel-level attacks.
Borrowing the terminology from Rutkowska, we are only interested in type I and type II
rootkits. Since these rootkits inevitably leave traces within the kernel state and VMI
provides us with a complete and untainted view of that state, we always have a chance
to detect them.

For simplicity, we use the term “rootkit” for kernel-level rootkits throughout this work,
i. e., rootkits that implement kernel-level attacks, or in other words, rootkits of type I
and type II.

2.6 Summary

This chapter has described the fundamental technologies that this work builds upon and
established a common vocabulary that is used in the remainder of this thesis. When
running an operating system inside of a virtual machine, we can make use of the hyper-
visor’s privileged position to inspect the state of the guest OS, a technique called virtual
machine introspection (VMI). Using this untainted view of the guest’s state, VMI is
very well suited to detect kernel-level attacks against the guest, especially rootkits that
tamper with the kernel’s state. However, before we can perform malware detection on
the hypervisor level, we first need to address the semantic gap issue, a common challenge
of all VMI applications. In the chapter that follows, we introduce a formal model that
can be used to describe different approaches for bridging the semantic gap and reason
about their properties.
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Chapter 3
Modeling VMI Approaches

In this chapter, we introduce a formal model which helps in examining and reasoning
about possible VMI approaches and their resulting properties. We focus on leveraging
VMI to perform intrusion detection on the OS level, that is, detection of kernel-level
attacks that are executed with full system privileges, as described in Section 2.4.

The typical goal of an intruder performing such attacks is to alter the OS state in
such a way that he may remotely access the system, abuse system resources, or collect
intelligence from the system or its users. These types of attacks include—but are not
restricted to—rootkits. User-level compromises that do not affect the OS state are out
of the scope of our considerations. While we focus on intrusion detection, our arguments
are applicable to further security applications of VMI as well, such as digital forensics,
secure logging, etc.

Chapter overview. We start in Section 3.1 with a summary of the challenges that need
to be addressed to perform virtual machine introspection. The basic components of our
formal model are defined in Section 3.2. Based on our model, we identify three basic
patterns for bridging the semantic gap in Section 3.3. Each of these patterns can be
associated with certain properties. We argue that one is able to model any possible way
of bridging the semantic gap with a combination of these three patterns. Finally, we
summarize the essential concepts of our model, the patterns, and the model’s application
in Section 3.4.

This chapter is based on joint work with Jonas Pfoh and contains material previously
published in: A Formal Model for Virtual Machine Introspection [PSE09].

3.1 VMI Challenges

Introspection is a synonym for self-examination. Virtual machine introspection describes
the act of examining and monitoring the virtual machine (i. e., the state of the guest
OS) from the vantage point of a hypervisor or a second privileged VM. As discussed
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in Section 2.2, the hypervisor naturally allows for this as all system state is inherently
visible.

Recall that the properties of virtualization which support intrusion detection from the
hypervisor level can be summarized as isolation, inspection, and interposition. These
properties lead to the following advantages of VMI which are beneficial for many security
applications:

• A complete and untainted view of the system state.

• A consistent view of the system state, since the VM can be paused.

• The ability to manipulate the VM state.

• Complete isolation of the VMI mechanism from the guest OS.

In order to leverage the full potential provided by these advantages, the following chal-
lenges must be overcome:

1. Interpreting the immense amount of binary low-level data that comprise the system
state to obtain abstract high-level state information.

2. Identifying relevant parts of that state information for a given application.

3. Classifying both known and unknown system states in an appropriate way.

These challenges are common among all VMI approaches and can be addressed in
different ways. The first challenge, which is equivalent to bridging the semantic gap, is
particularly interesting for the following reason: In order to bridge the gap, one needs
to apply knowledge about the virtual hardware architecture, the guest OS, or both (cf.
Section 2.3). Depending on the way this knowledge is acquired and applied, the resulting
approach will have characteristic properties. Consequently, it becomes beneficial to use
a generic model that allows to describe and compare any VMI approach and reason
about its characteristics.

3.2 VMI Model

In this section, we define a formal model for describing the inspection property of arbi-
trary VMI approaches in a generic way. This model complies with the challenges that we
identified in the previous section. Each of these challenges can be addressed by a func-
tion that, based on the appropriate input, produces the correct output for a particular
combination of virtual hardware and software architecture.

Before we introduce the functions themselves, we define the input and output sets
that these functions operate on. More precisely, we introduce the notion of a state, a
view, and a profile. The corresponding sets represent different levels of abstraction of
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the data accessible by the hypervisor and may include semantic knowledge about the
introspected guest or a history of previous information. Finally, the resulting information
can be evaluated and tagged with class labels to distinguish application specific classes
of guest states, such as “compromised by a rootkit” and “not compromised”.

When all of these sets have been specified, we model their relationships with generic
functions that each take at least one of the sets as input and output another. Every VMI
application implements several or sometimes all of these functions in order to bridge the
semantic gap. Since the actual implementation varies for each application, operating
system, and hardware architecture, we do not detail how such functions can be realized
in this chapter, but limit the description to the information flow in our model. (In
Chapter 6, we present our own implementation for one of these functions.)

3.2.1 States, Views, and Classes

All VMI approaches inspect guest system states. A guest system state is comprised of
all the guest system information that is either visible to the hypervisor or the guest OS,
that is, CPU registers, volatile memory, stable storage, as well as the internal state of
connected devices. For our model, we begin by defining two sets of states:

Definition 1 We define Sint ⊆ {0, 1}n as the set of all possible VM states visible to the
guest OS being monitored, and we define Sext ⊆ {0, 1}m as the set of all possible VM
states visible to the hypervisor. A single state is represented as a finite length string of
bits, where n and m are the number of bits required to represent an entire state from the
respective vantage point.

In other words, a state is simply the concatenation of all visible values within the
VM. Concretely, a state is the concatenation of all CPU register values, with the entire
contents of memory, with the entire contents of stable storage, and so on.

One challenge of creating a VMI-based security mechanism is classifying any given
machine state based on the specific application. For example, an intrusion detection
system in the hypervisor might label a given guest state as “compromised” or “uncom-
promised”. This is formalized in the following definition:

Definition 2 We define C as the set of all possible class labels for machine states for
a specific application.

Given a machine state s ∈ Sk, k ∈ {int, ext}, ideally one would like to have a function
f : Sk → C that directly outputs the correct class label for s. However, this may not be
possible in practice. First and foremost, the semantic gap challenge must be solved in
order to extract meaningful information out of the binary state.

In addition, a system state contains lots of information that is irrelevant to the classi-
fication. It is advantageous to extract only the relevant parts of the state for a respective
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application. For example, modern OSs tend to reserve a large amount of memory to
cache data from stable storage. This cache represents a portion of memory which has
no valuable contribution for many security mechanisms, such as intrusion detection.1

Finally, some s, s′ ∈ Sk with s 6= s′ may represent the same abstract system state for
a specific application, but differ in their binary representation due to the randomness in
a running kernel, such as memory locations of dynamic data structures, inodes, process
IDs, etc. For example, the order in which processes appear in the process list may not
be important from a system security perspective. Consequently, all permutations of a
process list would be considered the same.

In order to represent these factors in our model, we introduce the notion of a view:

Definition 3 We define Vint and Vext as the set of all possible views constructible from
Sint and Sext, respectively. A view is a concise representation of the partial or entire
state and can be constructed by any computational means.

Ideally, a view contains only relevant data and is completely independent of any kernel
randomness, such as variable memory locations, effective process IDs etc. In other words,
a view is the “essence” of a system state. In order for this “essence” to be useful, the
semantics of every single bit included in the view must be well-known. When we say
that the semantics of a bit is known, we mean that its meaning within the context of
the guest system is known. For example, the bits x to y within the view represent the
list of running processes in the form for n consecutive process descriptors.

To give the reader a better understanding of the view generation process, suppose
a VMI application requires to know the number of processes of the user “root”. To
generate this view, we can locate the kernel data structure that manages the processes
in kernel memory, extract the list of process descriptors, count the number of processes
belonging to “root”, and finally return the total number as the resulting view. This
illustrates that a view may be as simple as a single numeric value.

Now that we have defined the input and output sets that VMI approaches operate
on when bridging the semantic gap, we are ready to introduce the functions that, in
combination, classify a system state according to a given application.

3.2.2 View Generation, Aggregation, and Classification

Each operation presented in Definition 3 serves as a means for bridging the semantic gap.
Consequently, they all must incorporate knowledge of the virtual hardware architecture
and/or the guest system software architecture (i. e., the combined architecture of the
guest OS and all software running on the guest OS). This knowledge of the respective
architectures is denoted by the following:

1In fact, there do exist viruses that infect disk caches, e. g., Darth_Vader or W95/Repus, but due to
the inefficiency of their replication method, such viruses are not prevalent in the wild [Szo05].
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Definition 4 We define a virtual hardware architecture description λ and a guest system
software architecture description µ as:

λ ∈ {〈HW 〉 | HW is a hardware architecture}
µ ∈ {〈SW 〉 | SW is a software architecture}

At this point it is possible to define a model that is capable of representing the
transformation of a single state to a view and a view to a class label. The problem
with such a model is that it is not able to describe an approach that considers several
sequential system states or the change from one state to another in order to classify
it. However, this is an important aspect for many scenarios. Considering the case of a
VMI-based intrusion detection system (IDS) for illustration, a sequence of small state
changes spread over multiple views might not be considered harmful by themselves, but
may be malicious in this sequence.

The ability to model a stateful system also allows the measurement of certain activities
against a threshold. For example, a compromised process may sequentially open a large
number of sockets. A single view may seem benign since the process only opens a single
socket at a time. However, it may become clear that malicious activity is transpiring
when looking at a sequence of views. Thus, we introduce the notion of aggregating past
views into a profile:

Definition 5 We define P as the set of all possible profiles. A profile is an aggregation
of several consecutive views of a system run.

With the definition of a profile to model stateful introspection tasks, we are prepared
to specify a simple, yet universal formal model for virtual machine introspection:

Definition 6 For a virtual hardware architecture description λ and a guest system soft-
ware architecture description µ, we define the following functions:

fλ,µ : Sint → Vint (Internal view generation)

gλ,µ : Sext → Vext (External view generation)

a : Vint × Vext × P → P (Aggregation)

d : P → C (Classification)

These functions in combination are capable of modeling the information flow in any
given VMI application.

The process of generating a view is essentially the act of bridging the semantic gap.
In other words, the functions fλ,µ and gλ,µ can be seen as “semantic bridges” to close
this gap. We refer to these view-generating functions as internal and external as well
as use the subscripts int and ext for the sets of states and views. We may also refer to
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a process as happening internally or externally. These terms reflect the view point of
the VM being monitored. That is, “internal” refers to a function or process that occurs
within the monitored VM, while “external” refers to a function or process that occurs
within the hypervisor or a privileged VM.

The flow of information in the model is depicted in Figure 3.1. The view-genera-
ting function fλ,µ constructs a view internally, while gλ,µ constructs a view externally.
The aggregation function a takes these views along with the current profile to create a
new profile of the system state. This profile is, in turn, processed by the classification
function d to classify the current system state. Both the aggregation function and the
classification function are executed externally.

sint

sext

fλ,µ

gλ,µ

-

-

vint

vext
a -

p
d - cr

6

Figure 3.1: Visualization of the information flow in our VMI model, where sint ∈ Sint,
sext ∈ Sext, vint ∈ Vint, vext ∈ Vext, p ∈ P , c ∈ C. The function fλ,µ in the gray box is the
only function that is evaluated from within the monitored guest.

The functions in Definition 6 map sets to sets. In order to distinguish the functions
from a concrete implementation of such a function, we use the term component, de-
noted as [[f ]], when we talk about a computer program that implements a function f .
Consequently, we call implementations of the view-generating functions f and g view-
generating components (VGCs). In contrast to a function, a VGC is constrained by the
machine it is executing on with regard to processing power, memory, numeric precision,
and so on.

The subscripts that the view-generating function labels carry is a pair λ, µ, which
denotes that each function constructs its output based on the information contained in
µ and λ. For a particular VMI approach, it is possible that either µ = ε or λ = ε,
where ε is the empty word. In such a case, the approach makes use of a view-genera-
ting function that constructs its output based solely on the knowledge of either µ or λ.
Going forth, rather than explicitly stating that either µ = ε or λ = ε, we simply leave
the appropriate subscript out of the notation. For example, we denote the function fλ,µ,
where λ = ε as fµ.

Additionally, it is possible that for a particular VMI approach that either ∀sint ∈ Sint :
fλ,µ(sint) = ε or ∀sext ∈ Sext : gλ,µ(sext) = ε. In a practical sense, this represents the lack
of a corresponding component in the implementation. For example, a VMI approach
may only contain a single VGC within the hypervisor. In order to denote this, we simply
omit the appropriate view-generating function as well as its input into the aggregation
function when describing such an approach.
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3.2.3 Purpose

This model breaks a VMI system into its basic components and their interactions, thus
reflecting important design decisions. This is very helpful for understanding and rea-
soning about a VMI system design. As we will see, there are different ways to reach
the same goal in a VMI system which result in different security, safety, and portability
properties. Taking the time to describe a system with our model forces one to look at
all aspects of the system design. In doing so, one may find a flaw in parts of the system
that were not the focus of the initial design.

Our model reveals properties for individual view-generating functions in a fine-grained
manner. These properties are explained in the next section. The utility of our model
becomes especially evident in cases where two functions result in contradicting proper-
ties, for example, a hardware portable function in combination with a function which
is not hardware portable. Considering how these contradicting properties interact and
coming up with the ensuing property of the system as a whole takes some thought. This
thought process is easily overlooked or taken for granted in some circumstances. A fur-
ther discussion on this issue can be found in Section 3.3.5. If a design does not conform
to the properties it was set out to achieve, it may be tweaked and re-checked.

We have found this model to be a very helpful tool for our research and continue to
use it in the remainder of this thesis.

3.3 View Generation Patterns

From the vantage point of the hypervisor, the guest system state is seen in a strictly
binary form. Creating a view in this situation becomes quite challenging due to the fact
that the external view-generating function gλ,µ has no native knowledge about what this
binary data represents, for example, which data structures lie where in memory.

As stated before, view generation is a matter of bridging the semantic gap. That is,
discussing the different methods of generating views is, in fact, a discussion of ways to
bridge the semantic gap. This is an excellent example of how our model aids in the
discussion of a particular aspect of VMI.

In order for the hypervisor-based view-generating function gλ,µ to create an appropri-
ate view where the semantics of every bit is known, the function needs to make use of
knowledge about either the guest system software architecture µ, the virtual hardware
architecture λ, or a combination of the two. We refer to this knowledge as semantic
knowledge because it gives the function knowledge about the meaning of the observed
system state for the guest.

Using our model, we present three view generation patterns that may be used alone
or in any combination as a means for bridging the semantic gap, namely:

• the out-of-band delivery pattern,

• the in-band delivery pattern, and
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• the derivative pattern.

They differ in two ways, first, where within the architecture the view generation takes
place (i. e., internally or externally) and, second, how semantic knowledge is incorpo-
rated. The patterns can then be used alone or in combination to describe all possible
methods for bridging the semantic gap. What follows is an in-depth discussion of each
pattern along with its corresponding properties.

3.3.1 Properties

Before we start with the description of the view-generating patterns, we first introduce
the properties that may result from their application.

3.3.1.1 Hardware Portability

A view-generating function that is hardware portable can be used across multiple hard-
ware platforms without modification. In general, this property is only achieved if the
function does not require any knowledge of the hardware architecture λ, but is solely
based on the software architecture µ. Such an approach saves the user from the effort
of having to re-implement the same functionality for each hardware architecture.

3.3.1.2 Guest Operating System Portability

Similar to hardware portability, a view-generating function is said to be guest OS portable
if it supports multiple guest operating systems without change. Consequently, a function
that does not rely on any semantic knowledge about the software µ but only on hardware
knowledge λ is guaranteed to be portable among all OSs that run on that hardware
platform in compatible configurations. Portability does not come with any security
relevant advantages per se, but it allows the same function to be easily reused among
several OSs.

3.3.1.3 Binding Knowledge

The type of knowledge a view-generating function is based upon determines how well this
knowledge is dovetailed with the guest. Needless to say, a function gλ,µ that is designed
to apply semantic knowledge of the software architecture µ and hardware architecture
λ will most likely produce wrong results for some different architecture µ′ and λ′.

If a malicious entity changes the software architecture, for instance, by inserting some
hidden data structure, it effectively changes the appropriate software description from
µ to µ′. In that case gλ,µ is no longer fit to provide an accurate view. Bahram et al.
have demonstrated that such an attack is feasible in practice [BJW+10]. This attack
is possible because the semantic knowledge that the view-generating function uses is in
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no way bound to the actual software architecture of the running guest. For this reason,
such an approach is called non-binding [LLCL08].

In contrast, consider a function gλ that relies on the hardware architecture alone. The
hardware architecture description λ is bound to the hardware architecture of the virtual
machine because there is no way for a malicious entity that compromises the guest OS
to change the virtual hardware architecture. A malicious entity has no way of changing
λ, and whatever changes it may apply to µ will not effect the ability of gλ to create the
correct view. Figure 3.2 illustrates this relation. We call such an approach binding.

Guest
application

Guest OS

Virtual hardware

Hypervisor

Physical hardware

Described
in

Described
in

Figure 3.2: Even an attacker who has gained full control over a virtual machine (the
hatched area) cannot modify the virtual hardware architecture described in λ to evade view
generation. In addition, the strong isolation of the hypervisor prevents him to break out of
the virtual machine.

3.3.1.4 Isolation

The process of generating a view can be executed in one of two possible locations: either
within the guest that is to be monitored or outside of the guest. We say the view
generation process is isolated when it is running outside of the guest. This does not
imply that the function has to be implemented as part of the hypervisor itself. It only
means that the function is executed externally from the vantage point of the guest. Such
functions can just as well be carried out within a separate, privileged VM monitoring
the target VM without affecting our discussion.

The isolation property leads two to beneficial consequences. First, even if the kernel of
the monitored guest has been compromised, the view generation is not directly affected
since it runs independent of the guest, as shown in Figure 3.2. This is a major advantage
for security applications such as malware analysis or intrusion detection. Second, the
view can be generated without having any undesired side effects for the guest. For
example, a VMI-based tool for digital forensics that features the isolation property will
have no observer effect on the guest and thus will not distort any possible evidence.
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3.3.1.5 Offline Analysis

For some of the patterns we are going to describe, the VM is not required to be running
while the view is generated. In those cases, the pattern supports offline analysis. It
allows the view generation to be performed either while the VM is temporary suspended
or based on snapshots that contain the entire state of the guest and are stored as files
on the hard disk. Note that the offline analysis property always implies that the view
generation process is isolated from the guest and vice versa; both properties are mutual
dependent.

If the view is generated while the VM is not running, the observed state will be in
itself consistent. It cannot occur that one part of the state changes while another part is
still examined. A second advantage stems from the fact that this property allows one to
mitigate external effects of keeping a compromised system running. For example, it is
favorable to suspend a system which acts hostile to neighbors on a production network
while still being able to analyze it.

3.3.1.6 Full State Visibility and Applicability

A view-generating function that is executed in isolation of the guest possesses full state
visibility. That is, every bit that makes up the guest system state is visible to such
a function, even areas which are not accessible from within the VM itself. With this
complete and untainted access to the state, the function has the potential to observe any-
thing that happens within the guest, regardless at which layer of the hardware/software
stack. This is a very strong and encouraging argument from a security perspective.

However, the ability to access the complete state is different from being able to inter-
pret that information. The later also requires a complete understanding of the hardware
and software architecture. To distinguish between these two qualities, we say that a
function has full state applicability if the entire state is not only visible, but in addition
the function potentially has the semantic knowledge to analyze it. In other words, full
state applicability requires access to the full state as well as both λ and µ.

3.3.2 Out-of-Band Delivery

Now that we have described the properties that characterize the different view generation
patterns, we present the first pattern, which is the out-of-band delivery pattern. This
is the most commonly used method for bridging the semantic gap in the literature (cf.
Section 4.1). Here semantic knowledge is delivered to the external view-generating func-
tion in an out-of-band manner. That is, the external view-generating function receives
the semantic knowledge in advance, before VMI begins. For example, the hypervisor
may make use of a previously delivered symbol table based on the guest OS kernel to
determine the position of key data structures, which is illustrated in Figure 3.3.
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Virtual
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Guest OS
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Figure 3.3: Out-of-band delivery: The semantic knowledge about the guest software archi-
tecture µ is delivered out-of-band to the view-generating component [[gµ]].

Formally, this pattern is described as follows:

gµ : Sext → Vext

a : Vext × P → P

d : P → C

From this description, it can be seen that the view-generating function makes sole
use of knowledge of the software architecture µ. Since this knowledge is built into the
function, this function is only fit to create a view based on a software architecture for
which µ is the description. Consequently, this approach is non-binding.

As gµ depends entirely on µ, it lacks guest portability. That is, if the guest system
software is changed or replaced completely, the software architecture description must
also be changed to reflect this and the view-generating function must be constructed
anew to accommodate the new system software. However, it does not require λ, which
results in a hardware portable approach.

As seen in the formal description, this pattern makes use of the external view-gene-
rating function, gµ. The fact that the view generation is performed externally leads
to three additional properties, which are isolation, support for offline analysis, and full
state visibility. Unfortunately, even though the state is fully visible, it is not completely
applicable because gµ misses the semantic knowledge λ to interpret the hardware state.

3.3.3 In-Band Delivery

The in-band delivery pattern describes an approach in which an internal component
creates a view and delivers this view to the hypervisor. Since the view-generating func-
tion is internal, it may make use of the guest OS’s inherent knowledge of the software
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Figure 3.4: In-band delivery: The internal view-generating component [[fµ]] uses the inherent
semantic knowledge µ of the guest OS and delivers the view in-band to the aggregation
component [[a]].

architecture, as shown in Figure 3.4. That is, semantic knowledge is being delivered in
an in-band manner.

Upon closer inspection, this pattern does not so much bridge the semantic gap, but
rather avoids it. In fact, one could rightfully argue that this is not a method for bridging
the semantic gap in the purest sense since the view is generated from within the moni-
tored guest OS. As such, there is actually no gap that would require bridging. However,
we include this pattern for the sake of completeness and because it can be successfully
combined with other patterns.

This method is formally described as follows:

fµ : Sint → Vint

a : Vint × P → P

d : P → C

Having an internal view-generating function results in a few disadvantages. First, it
is not isolated from a potentially hostile environment since view generation takes place
within the monitored guest OS. As a consequence, the component that implements view
generation is susceptible to compromise from any malicious entity that has compromised
the monitored guest OS. In essence, it is necessary to trust a component which may be
not be trustworthy. Second, an internal function does not support the examination
of a suspended system, creating possible inconsistencies and resulting in the inability
to mitigate external effects. Third, an internal function will always interfere with the
system being monitored and finally, there may be parts of the state not visible to the
view-generating function. As with the out-of-band delivery pattern, this pattern is non-
binding. In-band delivery also shares the lack of guest portability with the out-of-band
delivery pattern.
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Figure 3.5: Derivation: The external view-generating component [[gλ]] derives the view
based on the semantic knowledge λ of virtual hardware architecture.

It seems appropriate to have a short discussion about why the in-band delivery pat-
tern is not being considered with a view-generating function that makes use of hardware
knowledge (i. e., fλ,µ, λ 6= ∅). While we admit it is practically possible to create such a
view-generating function within the monitored guest OS, view generation using knowl-
edge of the hardware architecture is always best done externally for one primary reason:
Any view-generating function that makes use of hardware architectural knowledge can
be implemented from within the hypervisor and gains all of the benefits associated with
such an approach (i. e., isolation, offline analysis, etc.). On the other hand, implement-
ing a view-generating function in the guest OS brings no advantages over an approach
in which the function is implemented externally. For this reason, we argue that while
implementing such a function internally is practically possible, there is absolutely no
added value and is therefore not discussed further.

3.3.4 Derivation

The final VMI pattern moves away from the more common approaches and has the hy-
pervisor derive information through semantic knowledge of the hardware architecture.
For example, understanding a particular architecture and monitoring control registers
within a CPU provides us with some semantic knowledge. Figure 3.5 depicts the appli-
cation of this pattern.

Formally, this approach is described as follows:

gλ : Sext → Vext

a : Vext × P → P

d : P → C
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From our formal description, it is seen that this pattern makes use of the external
view-generating function gλ, thus leading to the same advantages that are discussed in
Section 3.3.1 with respect to the externality.

Further, it can be seen that gλ constructs its output based on knowledge of the hard-
ware architecture alone. This results in two additional advantages. First, this pattern is
completely guest OS portable as the view-generating function makes no use of the guest
software architecture. Second, this is a binding approach in contrast to the two deliv-
ery methods. That is, the hardware architecture description is bound to the hardware
architecture of the virtual machine because even an attacker with full system privileges
has to play according to the rules of the hardware. Consequently, the view generation
process of gλ is unaffected by any doings of a malicious entity.

This seems like the ideal pattern, though in practice there is a large drawback to
such an approach: The view that is generated is generally very constrained. A lot of
information that is present in the state is lost through the view-generating function. This
is due to the fact that there is information that cannot be extracted by only making use
of hardware architectural knowledge and that information which can be extracted often
needs much expertise and effort to be extracted.

Finally, this approach is obviously not portable across various hardware platforms.
If the view-generating function is built to interpret the state of a particular hardware
architecture, then this function will clearly not be suited for use with another hardware
architecture.

3.3.5 Combination of Patterns

The patterns that have been discussed up to this point are in their purest form. It is,
of course, possible to combine such patterns. In fact, it is sometimes beneficial to use
a drawback of one pattern in combination with another pattern to one’s advantage: A
component of rootkit detection often involves trying to determine whether two mecha-
nisms, one usually at a higher level than the other, report the same status about some
OS data structure. Such an approach is possible by combining the in-band and out-
of-band delivery patterns and relying on the fact that a capable malicious entity will
compromise the internal view-generating function or the guest OS itself, thus leading
to an inconsistency between the two views created, which is then detected. Such an
approach can also be described with our model:

fµ : Sint → Vint

gµ : Sext → Vext

a : Vint × Vext → P

d : P → C

Using this formal description, it is clear which view-generating functions are used and
that this is a combination of the in-band and out-of-band delivery patterns. Note that
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Property Delivery Derivation

in-band out-of-band

Hardware portable X X —
Guest OS portable — — X
Binding knowledge — — X
Isolated from guest — X X
Offline analysis — X X
Full state visible/applicable —/— X/— X/—

Table 3.1: Comparison of the properties of the different view generation patterns.

in this case, the aggregation function a does not depend on a previous profile, thus P is
not used as an input to a. This information along with a thorough understanding of the
the properties associated with the three patterns allow for a more structured analysis of
a particular approach.

We have summarized the properties of the different patterns in Table 3.1. When
combining such patterns, it is important to carefully consider how the properties of
these patterns will interact with each other. For example, an external view-generating
function gλ,µ inherits the full state visibility property from the out-of-band delivery
and the derivation pattern. In addition, it becomes full state applicable because it
incorporates both hardware and software knowledge. This property cannot be achieved
with any of the three patterns alone.

However, deciding what approach is best for a given application is not as simple as
combining all patterns in order to get the benefits of each. An advantage of one pattern
will not necessarily negate the disadvantage of another. For example, a combination of a
delivery pattern with the derivation pattern will not result in an approach that is guest
portable simply because one of the patterns has such a property. In fact, in this case,
the opposite is true: The disadvantage of one pattern negates the advantage of another
and the resulting component is neither hardware nor guest OS portable.

There are additional cases in which the properties are independent, for example, a
combination of a delivery and a derivation pattern, though this time with respect to
the binding property. A combination of two such patterns can neither be classified as
binding nor as non-binding. There is simply some information that is the result of
bound knowledge and some information that is the result of unbound knowledge. How
this information is to be used needs to be carefully considered.

Finally, some patterns are simply not appropriate for a given application. For example,
using the derivation method alone to monitor changes in a file on a disk is a poor choice
as it is impossible—without knowledge of the file system structure in use—to derive the
exact sector of a disk on which the appropriate portion of a file lies.
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3.4 Summary

We have presented a universal formal model for virtual machine introspection. It is
universal in the sense that it can be applied to all security applications of VMI we are
aware of. This model has shown its usefulness throughout our research. To demonstrate
this usefulness, we have classified all possible view-generating approaches into three
patterns, namely in-band and out-of-band delivery, and derivation. Furthermore, we
presented a thorough discussion of each pattern’s properties as well as their advantages
and disadvantages for view generation.

In addition, we identified and discussed the three major challenges of VMI-based se-
curity applications, namely, interpreting the state information, identifying relevant state
information, and classification of states. We have found our model to be an invaluable
tool to discuss and to better understand all the intricacies of building VMI-based secu-
rity applications. The model and the associated patterns are able to represent all VMI
approaches in a consistent way, making them comparable and allowing one to reason
about their properties and appropriateness for a given application.
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Chapter 4
Related Work

Since the first computer viruses started to spread at the beginning of the 80s [Szo05,
Kas08], computer systems have been integrating dedicated security mechanisms in hard-
ware or software to counter the threat of malicious code or mitigate the possible impact.
Hence, it is no surprise that a lot of different approaches have been proposed over time
to protect computer systems. Due to the increasing popularity and availability of vir-
tualization in desktop and server environments [Ros04], researchers start to re-think
established, host-based mechanisms and combine them with virtualization techniques to
strengthen their resilience and effectiveness.

Virtualization provides interesting properties for implementing security applications
on the hypervisor level, as already discussed in Section 2.2. Garfinkel and Rosenblum
have pioneered this idea and coined the term virtual machine introspection [GR03]. Their
work has inspired many other researchers and lead to a whole new area of research.

The formal model for virtual machine introspection which was subject of Chapter 3 is
a helpful means to describe and compare the proposed mechanisms in this field. Since a
substantial part of our contribution in this thesis is about bridging the semantic gap, we
classify the following related work according to their way of overcoming the semantic gap
challenge when creating the guest view. In addition, we detail the level of automation
and sophistication the proposed view generation provides. Note that many approaches
use hybrid techniques for view generation, that is, a combination of patterns. In such
cases, the classification is based on the view generation pattern that contributes most
to the proposed work.

Later in this thesis, we cover a topic that might seem rather unrelated to the subject
of this thesis at first glance: static pointer analysis of source code in the C programming
language. This topic also has been the focus of extensive studies. However, we postpone
to look into related work in this field until Section 7.5 where our motivations and goals
for this kind of analysis should be more clear to the reader.

39



4 Related Work

Chapter overview. We begin with a description of related delivery-based approaches
in Section 4.1. Since these approaches provide a broad spectrum of view generation
techniques, we sub-divide them further with respect to the level of sophistication of the
employed view-generating component. In Section 4.2, we examine some work that uses
the derivative pattern for view generation. This includes two of our own publications
about hardware-based derivation of state information which are not part of this thesis.
Finally, we summarize this chapter and highlight the key differences between previous
work and our own research in Section 4.3.

4.1 Delivery-based Approaches

Delivery-based approaches are the most commonly used way for bridging the seman-
tic gap. Recall that the delivery-based VMI approaches deliver the required semantic
knowledge either in-band, that is, at runtime, or out-of-band, when the introspection
starts (see Section 3.3.2 and 3.3.3, respectively).

We partition the related work in this field into two sub-categories:

• The first category contains approaches that bridge the semantic gap in a way that
is highly tailored towards the proposed application. Typically, the view generation
process is supported by manual annotations that require in-depth domain knowl-
edge of the observed operating system. While such restricted view generation may
suffice for simple examples, it often cannot be generalized for other applications
and is very sensitive to changes of any parts of the hardware and software stack of
the guest.

• The second category consists of approaches that strive toward capturing a more
complete view of the guest kernel state in a generic way. This process requires much
more comprehensive semantic knowledge than the approaches in the first category
do, for example, in form of the kernel’s debugging symbols or source code. Such a
complete view has two advantages: First, it allows for much more detailed analysis
of a guest’s state, and second, the view is potentially more universal and can be
used for various kinds of analysis.

In Chapter 6, we introduce our framework for VMI applications, called InSight. It
uses a combined delivery-based and derivate approach to bridge the semantic gap. In-
Sight identifies kernel objects in memory and exposes them through several interfaces
to applications building upon the framework. Thus, it falls into the second category of
the two previously mentioned. In the following, we compare the methods used in our
framework to other approaches where applicable.
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4.1.1 Approaches using Restricted Semantic View Generation

The first VMI-based IDS was presented by Garfinkel and Rosenblum [GR03]. In their
system, called Livewire, the IDS runs in a separate VM and monitors another VM for
possible intrusions. The security mechanisms are enforced by a policy engine that is
able to handle various kinds of policies. An overview of Livewire’s system architecture
is shown in Figure 4.1.

The proposed policy modules range from a file integrity checker over a memory in-
tegrity checker for critical data structures up to a raw socket detector. One of the
modules performs lie detection, also known as cross-view validation [JADAD08], by
comparing an inside view created by an agent running within the guest OS to an out-
side view generated at the hypervisor level. This module is based on the observation
that malware often tries to hide its presence on a compromised system, for example, by
hooking critical OS functions and reporting forged information about the system state.
Consequently, if the inner view differs from the one created outside, something within
the guest lies about the OS’s state.

Livewire bridges the semantic gap in several ways. On one hand, it collects required
information by reading kernel objects from the guest physical memory using the “crash”
utility [Mis]. Crash itself uses the kernel debugging information to locate kernel symbols,
which clearly is an out-of-band delivery approach. However, in order to read the sym-
bols’ values from guest physical memory, it also requires at least some semantic hardware
knowledge, more precisely, an understanding of the virtual-to-physical address transla-
tion performed by the virtual hardware. Hence, the crash tool represents a combined

Figure 4.1: Overview of the system architecture of Garfinkel’s and Rosenblum’s VMI-based
IDS called “Livewire” (taken from [GR03]).
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approach for external view generation, written as gλ,µ. It is part of the “OS interface
library” in the architectural overview in Figure 4.1.

The agent running inside of the guest OS, on the other hand, actually does not need
to bridge the semantic gap as it is using the inherent guest knowledge to deliver the
desired information in an in-band fashion to the hypervisor. Also, it does not depend on
any hardware knowledge since it relies completely on guest OS functions. In our formal
model, the agent is expressed as internal view generation function fµ (not depicted in
the architecture).

In summary, Livewire implements a combination of all three patterns for view gener-
ation: in-band and out-of-band delivery as well as derivation. The aggregated profiles
do not depend on previous profiles, but only on the internal and external views Vint and
Vext. Using the notation of our model, this approach can be expressed as follows:

fµ : Sint → Vint

gλ,µ : Sext → Vext

a : Vint × Vext → P

d : P → C

Almost all policy modules of Livewire that monitor critical parts of the system state
and verify their integrity rely solely on gλ,µ in the form of the OS interface library. Basing
in IDS on external view generation is an excellent choice, since it provides isolation and
support for offline analysis, along with all advantages that were covered in Section 3.3.1.4
and 3.3.1.5. Through the combination of both hardware and software knowledge in gλ,µ,
this component not only has access to the entire state, but also has a chance to fully
apply it (see Section 3.3.1.3). The downside of this combination is that their system is
neither hardware nor guest OS portable. The internal view generation fµ is only used for
implementing the lie detection module. This is a clever way of using a drawback of the in-
band delivery approach, namely the lack of isolation, to one’s benefit: Any inconsistency
between the internal and external view is an indication for possibly malicious activities.
However, since both view generation functions mostly depend on delivered knowledge,
they are non-binding and susceptible to attacks that render µ incomplete [BJW+10].

We have seen much work that follows the ideas of Livewire in one way or the other
to implement security mechanisms on the hypervisor level. Among these approaches
are various intrusion detection systems and system monitors [JWX07, PCL07, PCSL08,
SSG08, XJZ+10, SWJX11], intrusion prevention systems [JKDC05, SLQP07, RJX08,
RRXJ09, WJCN09], tools for forensic or malware analysis [DKC+02, HN08, MFPC10,
RX10, DGPL11], an application-aware firewall [SG08], and a kernel-level debugger in
the hypervisor [FPMM10].

All of these approaches have in common that they use delivery-based methods for
view generation. However, the general tendency is to bridge the semantic gap just
enough for one particular application, often with support of manually added expert
knowledge. For example, a common introspection task for a Linux guest is to list the
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running processes. Many approaches implement this task by first retrieving the virtual
address of the ‘init_task’ variable—which represents the head to the process list—from
the ‘System.map’ file (out-of-band delivered knowledge) and then accessing the relevant
fields within this data structure with hard-coded offsets (expert knowledge). While this
leads to a straightforward implementation, it is very sensitive to changes to the kernel
configuration, the source code, or the hardware architecture. In addition, all important
data structures and fields have to be known in advance in order to extract their data.
Obviously, this technique does not scale well for a greater number of data structures,
kernel versions, configurations, and architectures.

In contrast to the work mentioned so far, our own view-generating component, In-
Sight, strives towards full state applicability, that is, capturing the entire kernel state
with the highest possible degree of automation (cf. Section 3.3.1). By using the debug-
ging symbols and the source code of the guest OS kernel, InSight extracts the required
semantic information independently and thus easily adapts to different kernel versions
and configurations on the x86 architecture. Our framework is not designed for one
particular use-case, but as a framework that supports arbitrary VMI applications and
provides several interfaces for their implementation. As a consequence, the view that is
generated by InSight is much more sophisticated and elaborated than the views of any
of the previously listed approaches.

One approach that sticks out of the masses is Virtuoso which was developed by Dolan-
Gavitt et al. [DGLZ+11]. It automates the generation of an entire view-generating
component by tracing the execution of a given in-guest program and learning how to
retrieve the same information from the hypervisor level. For the learning phase, multiple
traces have to be generated and analyzed to extract the correct set of instructions for
one particular application.

In terms of our model, Virtuoso is capable of transforming an in-band delivery into
an out-of-band delivery approach using derived knowledge. The resulting external view-
generating component inherits most of the beneficial properties from out-of-band delivery
and automatically bridges the semantic gap by learning from in-band knowledge. How-
ever, as the external component is generated from an in-band delivery approach that
lacks full state visibility, it is arguable whether the external component itself has the
potential to access the full state in practice.

While the proposed technique provides a high degree of automation even across mul-
tiple OSs, the training programs for which Virtuoso was demonstrated to work were all
very simple in nature and small in code size. Given the limitations of this approach that
the authors have identified themselves, it is clear that automating the generation of a
view of the guest kernel that is as complete as the one created by InSight is well beyond
Virtuoso’s scope.
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4.1.2 Approaches using Kernel Object Mapping

The following approaches aim to generate a complete view of the kernel state using
out-of-band delivered knowledge for the purpose of detecting kernel-level attacks. They
monitor the integrity of different parts of the kernel’s state that has the potential of being
abused by an attacker. The view-generating components of these approaches share some
similarities with InSight.

Petroni et al. propose a system that checks the integrity of kernel objects based on
user-specified policies [PFWA06]. Their system is able to detect inconsistencies resulting
from direct object manipulations performed by real-world rootkits. Even though their
system is not based on virtualization but is implemented as a separate add-in PCI
card [PFMA04], it shares all properties of a VMI-based approach with minor limitations.

Petroni furthers this work together with Hicks and verifies the integrity of the kernel-
level control flow [PH07]. With semantic information gathered from a source code anal-
ysis of the Linux 2.4 kernel, their implementation constructs and traverses the kernel
object graph and checks the integrity of all identified function pointers. However, their
code analysis requires manual annotations of the source code in order to cope with type
casts and generic pointers. Thus, it does not achieve the high degree of automation that
InSight provides.

Other researchers suggest to automatically derive invariants on kernel data structures
and assure that these invariants hold during runtime. Baliga et al. introduce Gibral-
tar [BGI08], a system that dynamically infers invariants of variables and data structures.
In a training phase, it learns the typical usage of these objects, while it checks that these
invariants hold during the monitoring phase. Wei et al. take a different angle and an-
alyze the source code of the Linux 2.4 kernel to identify variables, structure fields, and
array elements that are constant [WZS11]. During runtime, they monitor these vari-
ables and fields for changes and consider any occurring change to be an attack on the
kernel. Similar to the approach of Petroni [PH07], Wei’s source code analysis depends
on manual annotations of type casts and generic pointers.

When InSight analyzes the source code of an introspected kernel, it also derives type
invariants for data structures. However, they are not used to reveal attacks, but only
to validate the mapped kernel objects and to rule out bogus objects resulting from
dangling pointers or uninitialized data. This is because InSight is not an IDS, but a
view-generating component. Thus, it is not the task of InSight to detect intrusions, but
only to generate a usable view for other VMI applications, including—but not limited
to—intrusion detection.

Another very interesting approach was introduced by Carbone et al. in the form of
the KOP system [CCL+09]. KOP performs a source code analysis of the Windows Vista
kernel1 to derive a detailed understanding of the kernel memory layout, the used data
structures, and their fields. In contrast to the source code based approaches mentioned

1Even though the source code of Windows is not publicly available, some of the authors working for
Microsoft Research had access to it.
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so far, their analysis automatically recognizes pointer type casts and derives the correct
data type for most pointers, even for ‘void*’ pointers, without having to rely on manual
annotations. From all related work in the field of VMI, this work is the one most closely
related to our tool, InSight. We will revisit the KOP system in the related work section
of Chapter 7 to discuss its implementation in greater detail and to compare it to our
own semantic code analysis.

As a final representative of the delivery-based approaches, we describe the work of
Inoue et al. [IADB11]. Their introspection framework, named min-c, consists of an in-
trospection library built on top of Xen in combination with an interpreter for the C
programming language. Introspection software for their framework is written in simpli-
fied C using a syntax similar to the one of a guest-native program. As a consequence,
all introspection code has to incorporate domain knowledge to follow generic pointers
or to read dynamic arrays. By consulting the compiler-generated type information for
the introspected kernel, their C interpreter is able to resolve the types and symbols that
refer to the guest kernel. During execution of the code, the interpreter translates pointer
addresses to the memory range of the mapped guest physical memory, thus reading the
objects from the guest kernel’s address space. With these features, their system seems
to be comparable to our own VMI framework that we introduce in Chapter 6 without
the source code analysis technique and type rule engine described in Chapter 7.

All the approaches mentioned above make use of both hardware and software knowl-
edge λ and µ, thus having the potential for full state applicability. However, they fail
to achieve this property in a generic, guest OS-independent way due to their restrictive
system design.

4.2 Derivative Approaches

In order to move away from an approach with the non-binding property, it is necessary
to consider derivative approaches. Litty et al. present a system they call Manitou [LL06].
It uses the paging mechanism of x86-based processors from Intel and AMD to perform
integrity checks on code pages before their execution. They further this work to create
a system called Patagonix [LLCL08] for reporting running processes and maintaining
the integrity of code pages. A similar approach has also been proposed by Wessel and
Stumpf [WS12]. Such work uses knowledge of the hardware architecture, specifically the
paging mechanism, to perform the intended task. They clearly are an implementation
of the derivation pattern and are therefore bound to this hardware architecture.

Jones et al. take a slightly different approach, but also present a system that imple-
ments the derivation pattern [JADAD06, JADAD08]. Their system makes use of the
paging mechanism and the MMU on x86 and SPARC hardware architectures to identify
running processes.

The Ether system introduced by Dinaburg et al. [DRSL08] makes use of a page fault
based mechanism to trap system calls for Windows XP guests running on 32-bit x86
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platforms. In addition, there system is able to perform instruction-level tracing using
the debugging functionalities of the CPU. However, since this mechanism results in a trap
to the hypervisor for every single CPU instruction, the incurred overhead is tremendous
and the resulting system hardly usable for real-world applications.

Another interesting approach from Vogl et al. leverages the performance monitoring
counters within modern CPUs for trapping specific instruction types to the hypervi-
sor [VE12]. This method is suited for multiple purposes, for example, to reconstruct
the entire instruction stream of a specific process, including all kernel-level instructions,
by tracing all branches in the code. In a different experiment, only ‘call’ and ‘return’
instructions are traced to defend the system against return-oriented programming at-
tacks [Sha07] as follows. On each ‘call’, the current instruction pointer is pushed onto
a shadow stack, while on each ‘return’ the return address on the process’s stack is ver-
ified against the top-most address on the shadow stack. Even though this approach is
very elegant from an engineering perspective, the high performance degradation of this
method limits its usage to small programs.

In order to foster the usage of the derivative pattern, we also have investigated on the
possibilities to derive virtual machine state information using the x86 architecture in joint
work with Jonas Pfoh [PSE10]. We generalize from the simple derivate mechanisms of the
previously mentioned approaches and identify numerous ways to bridge the semantic gap
using hardware features. These novel and innovative methods led to the development
of Nitro, a hardware-based system call tracer [PSE11]. Nitro supports tracing of all
three hardware-assisted system call mechanisms for the x86 architecture, as shown in
Figure 4.2, and has proven to produce excellent results for Windows and Linux guests,
both for 32-bit and 64-bit flavors.

4.3 Summary

In this chapter, we have given an overview of related work in the field of virtual machine
introspection. The relevant approaches have been classified according to our formal
model that was introduced in the previous chapter. In addition, we distinguished the
individual view generation processes based on their level of sophistication.

When reviewing the existing work in this area, it becomes apparent that the view
generation process of almost all VMI approaches has been designed to support only one
particular application, for example, the detection of specific intrusions or the imple-
mentation of a hypervisor-based firewall. However, previous work fails to identify the
semantic gap as an inherent challenge for VMI and to address it accordingly. Rather,
each approach implements its own, restricted way for bridging the semantic gap with
manual annotations and hard-coded offsets.

The only three exceptions here are the Virtuoso [DGLZ+11], the min-c [IADB11],
and the KOP system [CCL+09]. Nevertheless, these approaches either provide a high
degree of automation but do not scale well for complex views (Virtuoso), or they are
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Figure 4.2: Control flow of a system call being intercepted by the hypervisor.

suitable for complex tasks but are entirely dependent on expert knowledge (min-c). Of
the aforementioned systems, KOP provides the best compromise between automation
of methods and scalability. Unfortunately, KOP relies on Windows specific internals to
achieve the high precision and coverage of the generated views. Thus, these methods
cannot readily be applied to generate views for different OSs.

With InSight, our own VMI framework, we focus on a versatile view-generating com-
ponent (VGC) that supports arbitrary VMI applications and scales well for complex
tasks with a high degree of automation independent of the introspected OS. While In-
Sight currently targets Linux guests, it does not make any Linux specific assumptions
about the guest and is expected to work for other OSs written in the C programming
language with only minor modifications. Even though InSight makes use of multiple
sources of semantic knowledge, it is highly unlikely that any VGC will be able to gen-
erate a perfect view without some manual adjustments to the view generation process.
For this reason, our framework features a dedicated interface for user-supplied expert
knowledge to guide the VGC in its decisions. This combination of automated methods,
support for centralized and reusable expert knowledge, OS independence, and flexible
interfaces sets InSight apart from all previous approaches in the field of VMI.
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Chapter 5
View Generation with Full State Applicability

Bridging the semantic gap requires knowledge about the virtual hardware architecture,
the guest operating system, or both. Recall that a VMI component that bridges the
semantic gap by applying such knowledge is referred to as a view-generating component
(VGC), as this component generates a useful “view” of the VM state that other VMI
components can work with.

In Chapter 3, we discuss that an external VGC has access to the entire, untainted
state of the introspected VM, a property called full state visibility. We also argue that,
with complete semantic knowledge about the hardware and the guest OS, a VGC can
theoretically generate a view of the guest’s state that is as complete as the internal view
of the guest OS itself. We call this property full state applicability. It can be achieved
by combining the out-of-band delivery and derivation pattern.

Full state applicability is a powerful enabler for security applications and a strong
argument for a combining the out-of-band delivery and the derivative approach. It is
the main reason we chose this combination for our VMI research.

This chapter investigates the challenges that one must overcome in order to achieve
full state applicability. We focus on the problem statements and do not describe how
we address them here. Our approaches to handle these challenges are introduced in
Chapter 6 and Chapter 7.

Chapter overview. We begin in Section 5.1 by taking a look at all parts of the state
information available to an external VGC and their relevance for detecting system-level
attacks. In addition, we estimate the efforts required to perform a semantic interpre-
tation of each part. As we will see, the guest’s physical memory is the most difficult
of these parts. For this reason, all of Section 5.2 is dedicated to the discussion of the
related challenges. We explain which semantic knowledge needs to be applied to the
guest’s memory to retrieve all kernel objects and why it remains a hard problem even
with all this information at hand. Finally, we summarize the chapter in Section 5.3 and
show the relevance of the achieved results for our own VMI approaches.
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5.1 Interpretation of State Information

The initial problem statement in Section 1.2 says that we want to detect system level
compromises of a guest OS using VMI. The most essential part of this problem is to
create a VGC that provides full state applicability. That is, the component should be
able to interpret the entire VM state with the same semantics as the guest kernel would
without having to rely on any cooperation with the guest OS.

As described in Section 2.3, the state of a VM consists of the CPU registers, the main
memory, the disk storage, as well as the state of all attached devices. Let us look at
each of these portions of state information, the effort required to interpret it from the
vantage point of the hypervisor, and their relevance for detecting system-level attacks.

5.1.1 CPU State

A modern CPU contains lots of different types of registers. Some of them are only used
for arithmetic computations and are of no interest from a security perspective. Other
registers configure the behavior of the CPU and how it interfaces with the running OS.
They are usually called system registers, control registers, or MSRs and are crucial for
the system’s security.

The configuration options available through these registers is well specified as part
of the hardware documentation. Consequently, all the semantic information required to
interpret this part of the state can be delivered out-of-band in the hardware description λ.
For example, the software developer’s manual for Intel’s IA-32 and 64 architecture [Int09]
describes that the control register 3 (CR3) holds the physical address of the top-level
page directory for the running process. It also defines the format of the page tables at
different levels and for different addressing schemes.

This example illustrates that interpreting the system registers of a CPU is straight-
forward. Since this step requires only hardware information, this knowledge is binding,
as described in Section 3.3.1.3. The virtual hardware interface is well-defined, and an
attacker has no means to change it. In addition, this knowledge is independent of the
type of OS running on the CPU.

5.1.2 Device State

Similar to a CPU, the state of a device may contain configuration values that control
the device’s behavior. Depending on the device type and the way it is virtualized (cf.
Section 2.1.3), this state information might be relevant for security.

Unlike CPU vendors, device manufacturers tend to provide their own software that
interfaces with the device in form of drivers rather than publishing a detailed specification
of their hardware’s inner working. If a specification of the semantics of the device’s state
is available, it can be included in the hardware description λ. If such information is not
available, interpretation of the state becomes very hard, if not impossible.
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5.1 Interpretation of State Information

Fortunately, we have not come across any system-level attack so far that is based on
the manipulation of a device’s state, so this limitation has no serious consequences for
detecting such attacks.

5.1.3 Disk Storage

The disk storage contains the file system of the guest OS and all configuration files and
system binaries, including the kernel itself. Thus, it is an important part of the state
with regard to system security.

Accessing a VM’s file system is not a problem in most cases. If it resides on a dedicated
physical disk or partition, it can be directly mounted by the host OS to access its files,
provided the host supports the guest’s file system. The Linux kernel, for example, comes
with support for most popular file systems, including Windows’ NTFS and Mac OS’s
HFS. In case the disk storage is provided by means of some virtual disk container,
this process gets only slightly more complicated. Most hypervisors come with tools to
access the file system within their containers and to convert between different container
formats used by other hypervisors. Using these tools, interpreting the disk storage of a
VM becomes effortless.

In terms of our model, mounting a VM’s disk using the host’s implementation of
the guest’s file system effectively represents a form of external view generation. The
knowledge about the file system’s internal structure and semantics is part of the software
architecture description µ. However, since the corresponding file system code within the
guest OS might be subject to attacks, this information is non-binding. A malicious
entity might deceive view generation by changing this code to a different file system
semantics. For example, the TDSS rootkit family comes with its own implementation
of a custom, encrypted file system [She09, GR10]. Thus, its files cannot be included in
the view unless the corresponding semantic information is added to µ.

5.1.4 Physical Memory

The guest OS kernel keeps its state in the system’s main memory in form of kernel
objects, as previously described in Section 1.2. These objects and their contained values
drive the kernel’s behavior through configuration options and jump tables, keep book
of the resources available and in use, define the privileges of processes and access rights
on files, and so on. Obviously, this state information provides an enormous potential
for an adversary when being tampered with, as the system-level attacks described in
Section 2.4 bear witness. As a consequence, it is absolutely essential for system security
to be able to read the kernel objects from memory and to interpret them as the guest
OS kernel would.

In order to read the kernel objects, the following semantic knowledge of the guest’s
hardware and software architecture description λ and µ must be applied to the guest
physical memory:
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1. the layout of the memory used by the kernel, i. e., the kernel address space (⊂ µ)

2. the layout and size of the kernel’s data structures (⊂ µ)

3. the location of data objects in the kernel’s address space (⊂ µ)

4. the function of the virtual-to-physical address translation (⊆ λ)

Given that this information is complete, the whole set of kernel objects can be retrieved
by starting at the global objects listed in µ and from there recursively follow all pointers
to further objects until all objects are found. This strategy, when carried out perfectly,
will indeed reveal all objects: As we already argue in Section 2.4.1.2, the kernel itself
must keep at least one link to each object in order to consider it for its decisions. If the
kernel has lost track of an object, it looses awareness of that object, and thus the object
has no more influence on the kernel’s behavior.

Following that line of thought, we model the state of the kernel as a directed graph
in which the kernel objects represent vertices and the pointers that link to other objects
represent directed edges. If a vertex represents an elementary data type, such as an
integer value, this value becomes an additional property of this vertex. Structure fields
of such elementary data types become vertices themselves, linked to their embedding
object. An example of such a graph is illustrated in Figure 5.1.

Using the semantic knowledge listed above to build the complete and correct kernel
object graph is a hard task. The next section helps to understand the challenges related
to that task and to the application of the semantic knowledge.

5.2 Challenges of Kernel Object Extraction

The guest physical memory is the most difficult part of a VM’s state information to
interpret. The previous section lists the semantic knowledge that is required to read
kernel objects from memory and to eventually build the graph of kernel objects. In the
following, we describe the challenges involved in applying this knowledge to retrieve the
entire set of kernel objects.

5.2.1 Memory Layout and Address Translation

The kernel objects reside in a dedicated part of the main memory. Most modern OSs
support the concept of virtual memory, typically utilizing a hardware MMU (see Sec-
tion 2.1.2). The MMU is in charge of translating virtual to physical addresses whenever
a virtual memory address is accessed. This translation is done on a per-process basis,
so every process lives in its own virtual address space separated from other processes.

When virtual memory is supported, the kernel itself also stores its objects in some
virtual address space. How the kernel’s virtual address space is implemented differs
across various OSs. For Windows and Linux systems, for example, the kernel code and
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Figure 5.1: A part of a kernel object graph.

data occupy a fixed virtual address range that is shared among all processes’ address
spaces. In contrast, most BSD-based systems such as FreeBSD or MacOS X dedicate a
separate virtual address space to the kernel.

5.2.1.1 Virtual-to-Physical Address Translation

Regardless of the OS specific implementation, the VGC always accesses the VM’s state
at the level of the virtual hardware. This interface limits the component to reading
(and probably writing) the guest’s memory at the guest physical level, as Figure 6.1
illustrates. Consequently, the VGC needs to perform the same address translation as
the MMU to read kernel objects from virtual addresses. To accomplish this translation,
the details of the address space layout are required along with the locations of the
necessary information in memory. For the x86 platform, for example, this information
consists of:

• the physical address of the top-level page directory of the kernel’s address space

• the operation mode of the CPU, which can be one of:

– 32-bit mode without physical address extension (PAE)
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– 32-bit mode with PAE

– 64-bit mode (i. e., “long mode”)

Part of this information can be obtained by checking various control registers of the
virtual CPU. However, the CPU state might not always be available, for example, when
performing an offline analysis of a previously stored memory dump. In such cases, this
information can be delivered as a part of the hardware knowledge λ that the VGC
requires to interpret a given state.

5.2.1.2 Swapped-out Memory

When utilizing virtual memory support, most OSs are able to make more total memory
available to their processes than there is physical memory installed on the system. This
is achieved by identifying memory that has not been accessed for a while and swapping
its contents out to a dedicated swap space on the hard disk. The swapped memory
region can then be handed out to a different process in need of more memory. Each
process’s page table records which pages are swapped out and another table keeps track
of where in the swap space these pages have been saved.

When reading a kernel object from a virtual address, a VGC might encounter memory
pages that are swapped out to disk. To provide full access to all kernel objects, either
the VGC must be able to interpret those tables and read the memory that has been
swapped out from disk, or swapping of kernel memory must be avoided.

5.2.2 Type Information

In order to read kernel objects from memory, information about the data types that the
kernel uses, that is, the kernel symbols, are required. If the source code of the OS kernel
is available, as is the case for Linux, FreeBSD or OpenBSD, the kernel can be compiled
with specific compiler flags to generate debugging symbols for it. The symbols contain,
amongst other information:

• the names of all data types, structures, unions, enumerations, and type aliases
(‘typedef’),

• the fields, offsets and memory alignments for structures and unions,

• the names, virtual addresses, and segments of global variables, and

• the names and parameters of functions and the virtual addresses of their entry
points.

This knowledge is sufficient for reading kernel objects from a known location within the
virtual address space.
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Going forth, when talking about “data structures” in general, this term refers to
both ‘struct’ and ‘union’ types as specified by the ANSI C standard [ISO90], unless
otherwise stated.

5.2.2.1 Consolidation of Type Information

For code written in C, it is common practice to include the same data types and function
declarations through header files in multiple translation units (i. e., source files). Most
compilers, however, create self-contained debugging symbols for every translation unit.
As a consequence, the debugging symbols for the whole kernel consisting of thousands
of source files contain a lot of redundant type information. This results in two problems:
First, the type information database becomes bloated and thus less efficient, and, second,
objects of the same type found in different translation units appear as having a different
type. For building a correct graph of kernel objects, the VGC must be able to recognize
objects of the same type as such. Consequently, we must be able to detect and merge
equivalent data types into one single type each.

Microsoft takes a different approach with their Visual C/C++ compiler for the Win-
dows OS. For the purpose of debugging, they offer type information for most of their
core libraries in the form of separate “program database” (PDB) files. Those files can
be obtained from Microsoft’s Windows Symbol Server by using the Debugging Tools for
Windows [win]. The advantage of this approach is that the linker automatically merges
type information originating from the same header file when linking multiple objects to
one binary. This solves the aforementioned problem of type equivalence at least on a
per-binary level.

5.2.3 Dynamic Pointer and Type Manipulations

The debugging symbols for the kernel contain information about the interconnection of
kernel objects in form of pointer fields of structures to further data structures. However,
the C language in which OS kernels are mostly written allows to dynamically change
pointer locations and types by means of pointer arithmetic and type casts. This runtime
behavior is not reflected in the debugging symbols, rendering this information not only
incomplete but sometimes even misleading. In the following, we give several examples
for such “pointer magic” to illustrate the fundamental problem.

The examples given in this section are based on the Linux kernel and are easily repro-
ducible due to the openness of Linux. When considering the general design of modern
operating systems regarding performance and efficient usage of system resources [Tan07],
it becomes evident that similar instances can most likely be found in any other compa-
rable OS kernel such as Microsoft Windows or other UNIX derivates. As a consequence,
the conclusions we draw from the Linux examples also apply to other OSs in one way
or the other.
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5.2.3.1 Linked Lists

OS kernels organize objects in efficient data structures such as linked lists or hash tables,
for example. A common implementation of these lists and tables works by defining
generic “node” data structures along with auxiliary functions and macros to operate on
them. These nodes must then be embedded as a field of the kernel object’s definition
to be organized in a list or table. To iterate over such a list or retrieve hashed objects
based on a key, the auxiliary functions only operate on the embedded nodes, but still
make the embedding object available through sophisticated address manipulations and
type casts.

Example 5.1 In the Linux kernel, the node structure for doubly linked lists is called
‘struct list_head’.1 This structure only contains two pointers, ‘next’ and ‘prev’, and
is defined as follows:

1 /********** Source: <include/linux/list.h> ***********/

2 struct list_head {

3 struct list_head *next, *prev;

4 };

N

One of the many data structures that makes use of the ‘list_head’ node is ‘struct
module’, which describes a loadable kernel module. However, the head to this list is not
an object of type ‘struct module’, as the following example shows:

Example 5.2 The definition of the ‘module’ structure embeds a field of type ‘struct
list_head’ to arrange the corresponding objects in a doubly linked list. The global
variable ‘modules’ serves as the head to this list and is initialized to point to itself:

1 /********** Source: <include/linux/module.h> ***********/

2 struct module {

3 enum module_state state;

4 struct list_head list;

5 char name[MODULE_NAME_LEN];

6 /* ... */

7 };

8

9 /********** Source: <kernel/module.c> ***********/

10 static struct list_head modules = { &modules, &modules };

N

1For Windows, the node structure for doubly linked lists is called ‘LIST_ENTRY’ and works exactly in
the same way as described for Linux’s ‘list_head’.
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struct list_head

next
prev

(a) Empty list

struct module

struct list_head

next
prev

struct module

struct list_head

next
prev

struct module

struct list_head

next
prev

struct list_head

next
prev

(b) List with three elements

Figure 5.2: A doubly linked list of ‘module’ objects utilizing ‘struct list_head’.

This list is then accessed using the variable ‘modules’ and operated on by the provided
auxiliary functions and macros. They only operate on the ‘next’ and ‘prev’ pointers
of field ‘list’ which hold the addresses of field ‘list’ within the next and previous
‘module’ objects, respectively. The last object points back to the head of the list. An
illustration of this pointer linkage is shown in Figure 5.2. To get access to the ‘module’
object that embeds the ‘list’ field, other macros are provided that subtract the offset
of field ‘list’ from the pointer value and perform a cast to the requested type ‘struct
module*’.

5.2.3.2 Functions and Macros Operating on Lists

In order to better understand the inner workings of lists and similar data structures and
the resulting problems for view generation, it is worth looking at the auxiliary functions
that operate on them. Typically, these operations are implemented as preprocessor
macros or as in-line functions.

Example 5.3 Consider the simple function ‘find_module’ in Listing 5.1 that finds a
loaded kernel module by its name. The loop starting at line 6 iterates over all ‘module’
objects, compares the name to the given one, and returns the matching object, if found.

As it turns out, the loop initialization ‘list_for_each_entry()’ actually is a macro
for iterating over a list and expects three arguments: a temporary variable which points
the object at each loop iteration (which is ‘mod’ in our example), a pointer to the head of
the list (‘&modules’), and the field of type ‘list_head’ in the embedding data structure
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Listing 5.1: Searching for a module by name.

1 /********** Source: <kernel/module.c> ***********/

2 struct module* find_module(const char *name)

3 {

4 struct module *mod;

5

6 list_for_each_entry(mod, &modules, list)

7 {

8 if (strcmp(mod->name, name) == 0)

9 return mod;

10 }

11 return NULL;

12 }

(‘list’).
Listing 5.2 shows the same function after being preprocessed by the compiler. The

original macro ‘list_for_each_entry’ has been expanded to a lengthy ‘for’ loop which
performs the list iteration. This loop requires some explanation:

• The initialization in line 6 assigns the value of ‘(&modules)->next’ − offset to
the ‘mod’ local variable2, where offset is the offset of field ‘list’ within ‘struct
module’, calculated using the compiler-specific function ‘__builtin_offsetoff’.
This calculation involves the additional temporary variable ‘__mptr’. Finally, the
resulting pointer is cast to type ‘typeof(*mod)*’ in line 8, which evaluates to
‘struct module*’.

• The loop condition in line 10 compares the address of the current object’s ‘list’
field to the address of the list’s head (‘&modules’). The end of the list has been
reached when the list wraps around, as depicted in Figure 5.2.

• The loop advancement in line 11 is almost identical to the initialization, the only
difference being that ‘mod’ is now assigned ‘mod->list.next’ − offset. The tem-
porary variable ‘__mptr’ and the type cast to ‘struct module*’ remain the same.

N

This example involves several instances of dynamic pointer and type manipulations
which makes it difficult to find all objects within this list. First, the static type infor-
mation for variable ‘modules’ only indicates that the ‘next’ and ‘prev’ fields point to

2The right-hand side of expression ‘mod = ({...})’ is an extension of the GNU C compiler called
compound braces statement. It expects a list of (almost) arbitrary definitions and statements between
the curly braces. The resulting value of the compound braces statement is the value of the last
statement within this expression. [St10]
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5.2 Challenges of Kernel Object Extraction

Listing 5.2: Macro expansion of ‘list_for_each_entry()’ from Listing 5.1.

1 struct module* find_module(const char *name)

2 {

3 struct module * mod;

4

5 /* expansion of: list_for_each_entry(mod, &modules, list) */

6 for (mod = ({

7 const typeof(((typeof(*mod) *) 0)->list) * __mptr = ←↩
((&modules)->next);

8 (typeof(*mod) *) ((char *) __mptr - ←↩
__builtin_offsetof(typeof(*mod), list));

9 });

10 &mod->list != (&modules);

11 mod = ({

12 const typeof(((typeof(*mod) *) 0)->list) * __mptr = ←↩
(mod->list.next);

13 (typeof(*mod) *) ((char *) __mptr - ←↩
__builtin_offsetof(typeof(*mod), list));

14 }) )

15 {

16 if (strcmp(mod->name, name) == 0)

17 return mod;

18 }

19 return NULL;

20 }

objects of type ‘list_head’, but there is no hint regarding the embedding objects of
type ‘struct module’. Second, even if the VGC knows that ‘modules.next’ points to a
‘module’ object, the value of offset to calculate the correct base address of that object is
unknown. One might assume that offset is the offset of a field of type ‘list_head’ within
‘struct module’, however the complete definition of this structure includes three such
fields, rendering this heuristic useless. Third, once the VGC has access to a ‘module’
object and follows the pointers of the embedded ‘list’ field, it again loose awareness of
the embedding objects of type ‘module’ and the correct value of offset.

5.2.3.3 Data Structures with Multiple Lists

The Linux kernel contains even more problematic use cases of lists that have not yet
been covered. For instance, many structures contain fields of type ‘list_head’ as the
heads to lists of objects with different types.
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Listing 5.3: Structures for managing PCI devices in the Linux kernel.

1 /********** Source: <include/linux/pci.h> ***********/

2 struct pci_bus;

3

4 struct pci_dev {

5 struct list_head bus_list; /* node in per-bus list */

6 struct pci_bus *bus; /* bus this device is on */

7 /* ... */

8 };

9

10 struct pci_bus {

11 struct list_head node; /* node in list of buses */

12 struct pci_bus *parent; /* parent bus this bridge is on */

13 struct list_head children; /* list of child buses */

14 struct list_head devices; /* list of devices on this bus */

15 /* ... */

16 };

Example 5.4 In Listing 5.3, ‘struct pci_bus’ describes the state of a PCI bus, which
is organized in a linked list using its field ‘node’. In addition, each PCI bus manages a
list of devices through its field ‘devices’. The state of each PCI device is contained in
objects of type ‘struct pci_dev’, however the fields ‘node’ and ‘devices’ both are of
type ‘list_head’. N

This example demonstrates that the correct type and offset for ‘list_head’ fields
cannot be trivially guessed based on the embedding type. Instead, detailed information
about the dynamic pointer and type manipulations is required per field.

To make matters worse, the offsets that are subtracted from the ‘next’ and ‘prev’
pointer values are not always consistent. For example, the data structure ‘task_struct’
arranges the process descriptors in a tree to reflect the parent, children, and sibling
relations between the processes using two ‘list_head’ fields ‘children’ and ‘sibling’.
These relationships are illustrated in Figure 5.3. Contradicting to the common usage
pattern, the pointer ‘children.next’ does not point to the embedding field ‘children’
of the first child’s process descriptor but rather to field ‘sibling’ of the first child.
Analogous, ‘children.prev’ points to the ‘sibling’ field of the last child’s process
descriptor.

The kernel not only uses doubly linked lists; there are several other data structures
that work in a similar way, for example, hash tables and red-black trees. Identifying all of
them and handling all special use cases manually is cumbersome and highly error-prone.
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P0

P1 P2 P3

P4

sibling.next
sibling.prev

parent

children.next
children.prev

Figure 5.3: The Linux kernel organizes its process descriptors in a tree to reflect the parent,
children, and sibling relations between the processes (illustration adapted from [BC05]).

5.2.3.4 Generic Pointers

Another problem results from objects that are pointed to by generic pointers such as
‘void*’ or ‘char*’, or pointers that are cast at runtime from integer values. In case of
a generic pointer, the VGC can at least assume that the pointer should hold a memory
address that could point to another object, a buffer, or a function. For integer values
that are cast to pointers, there is no easy way to determine if a numeric value represents
a memory address or not.

In addition, some integers hold an address together with some flags or status bits
stored in the least significant bits. The nodes of a radix tree having type ‘struct
radix_tree_node’, for instance, use one address bit to encode an internal, binary prop-
erty of the node without wasting additional memory. This bit is masked out at runtime
before the resulting pointer is dereferenced. For such cases, the values of these masks
and the involved arithmetic operations are required knowledge to access the referenced
objects.

5.2.4 Runtime Dependencies

Kernel code not only contains static type ambiguities as described in the previous sub-
section, but also runtime dependencies which cause dynamic ambiguities. We describe
these situations and explain why they cannot be handled statically, that is, at compile
time.
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5.2.4.1 Ambiguous Types

The ANSI C standard [ISO90] allows the specification of inherently ambiguous types
using a ‘union’ definition. Such a data type is specified in the same way as a ‘struct’,
however it only occupies memory equal to the size of its largest field. That is, only one if
its fields may be used at any given time. It is left up to the programmer to know which
field is valid at which position of the control flow.

Example 5.5 The ‘page’ data structure, defined in Listing 5.4, makes heavy use of
‘union’ fields. The Linux kernel employs it to describe the current usage of a physical
memory page (see Section 2.1.2). All fields having the keyword “SLUB” in their comment
are only valid when the corresponding page is currently used by the SLUB memory
allocator [Cor07]. Thus, the ‘union’ fields help to reduce the memory footprint of the
kernel’s management data. N

When a VGC builds up the kernel object graph, the objects found are not bound
to any control flow point. From the vantage point of the VGC, the objects—including
‘union’ objects—have no context that allows to determine their current usage. Con-
sequently, without additional information, all fields of a ‘union’ object are valid with
equal likelihood.

5.2.4.2 Dynamic Arrays

Another source of ambiguity are pointers that are used as arrays. When the kernel
requires variable length arrays, they are usually defined as pointers within a structure.

Example 5.6 An data structure might be used as a variable length array using a pointer
field and an integer field:

1 struct dynamic_array {

2 struct foo* array;

3 unsigned int len;

4 };

5

6 void array_alloc(struct dynamic_array *a, unsigned int len)

7 {

8 a->array = kmalloc(sizeof(struct foo) * len);

9 a->len = len;

10 }

The memory for this array is allocated at runtime with the base pointer stored in ‘array’
and the number of array elements stored in ‘len’. N

When encountering an object of this type, the debugging symbols only show a pointer
to a single structure ‘foo’ and an integer. The relationship between ‘array’ and ‘len’
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5.2 Challenges of Kernel Object Extraction

Listing 5.4: The ‘page’ structure contains several nested ‘union’ fields to reduce the
memory footprint of the corresponding objects.

1 /********** Source: <include/linux/mm_types.h> ***********/

2 struct page {

3 unsigned long flags; /* Atomic flags */

4 atomic_t _count; /* Usage count */

5

6 union {

7 atomic_t _mapcount; /* Count of ptes mapped in mms */

8 struct { /* SLUB */

9 u16 inuse;

10 u16 objects;

11 };

12 };

13

14 union {

15 struct {

16 unsigned long private; /* Mapping-private opaque data */

17 struct address_space *mapping; /* Points to address_space */

18 }; /* or to anon_vma object */

19 spinlock_t ptl;

20 struct kmem_cache *slab; /* SLUB: Pointer to slab */

21 struct page *first_page; /* Compound tail pages */

22 };

23

24 union {

25 pgoff_t index; /* Our offset within mapping. */

26 void *freelist; /* SLUB: freelist req. slab lock */

27 };

28

29 struct list_head lru; /* Pageout list */

30 };
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is in no way obvious at this level. Without further knowledge, a VGC is limited to
following the pointer ‘array’ to a single element of ‘foo’, effectively ignoring the fact
that ‘len’ might be set to zero, in which case the VGC would follow a dangling pointer,
or to a number greater than one, resulting in an incomplete view.

There are other instances of structure fields that are guarded by flags inside of a
kernel object. If this field happens to be a pointer and the VGC is unaware of that flag
indicating whether that pointer is valid, it will eventually follow a dangling pointer in
the same manner as for an array of length zero.

5.2.4.3 Dynamic Object Sizes

The kernel has no resources to waste and tries to save memory whenever possible. The
Linux developers go even so far to allocate less memory for an object than its definition
specifies, if it can be assured that not all of its fields are used.

Example 5.7 Listing 5.5 shows an example of a data structure whose size is defined
dynamically at runtime. The data type ‘struct kmem_cache’ is used by the SLUB
memory allocator. As the listing shows, its last field ‘cpu_slab’ in line 10 is an array of
length ‘NR_CPUS’ of pointers to per-CPU caches. ‘NR_CPUS’ is a compile-time constant
value for the maximum number of supported CPU cores on a system and typically ranges
between 32 (IA-32) and 512 (AMD64) on PC platforms.

The size of a ‘kmem_cache’ object is stored in the global variable ‘kmem_size’ at
line 14 and is first assumed to equal the declared size of ‘struct kmem_cache’. At boot
time, the SLUB allocator is initialized and ‘kmem_size’ is adjusted in line 19 according
to the actual number ‘nr_cpu_ids’ of CPUs that were detected. When later on new
‘kmem_cache’ objects are allocated in line 29, only the required amount of memory is
reserved, since all array fields with index ‘nr_cpu_ids’ ≤ i < ‘NR_CPUS’ will never be
accessed anyway. N

A VGC that encounters a pointer to a ‘kmem_cache’ object is unaware of the memory
savings that the kernel performs. Given that ‘nr_cpu_ids’ < ‘NR_CPUS’, it might find
objects that seem to overlap based on their declared size. What is worse, it might
even try to follow pointers of the array field ‘cpu_slab’ with indices i ≥ ‘nr_cpu_ids’,
resulting in bogus objects within the object graph.

5.3 Summary

External view generation with full state applicability is the goal we are striving for. The
state of the attached virtual devices is hard to interpret, however it has little relevance
for VMI-based security applications. The situation is different for the state information
describing the virtual CPU and the hard disk: It is both important for security as well as
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Listing 5.5: The size of a ‘struct kmem_cache’ object is dynamically determined at boot
time, independent of its defined size.

1 /********** Source: <include/linux/slub_def.h> ***********/

2 struct kmem_cache {

3 /* Used for retriving partial slabs etc */

4 unsigned long flags;

5 int size; /* The size of an object including meta data */

6 int objsize; /* The size of an object without meta data */

7 int offset; /* Free pointer offset. */

8 struct kmem_cache_order_objects oo;

9 /* ... */

10 struct kmem_cache_cpu *cpu_slab[NR_CPUS];

11 };

12

13 /*********** Source: <mm/slub.c> ***********/

14 static int kmem_size = sizeof(struct kmem_cache);

15

16 void __init kmem_cache_init(void)

17 {

18 /* ... */

19 kmem_size = offsetof(struct kmem_cache, cpu_slab) +

20 nr_cpu_ids * sizeof(struct kmem_cache_cpu *);

21 /* ... */

22 }

23

24 struct kmem_cache *kmem_cache_create(const char *name, size_t size,

25 size_t align, unsigned long flags, void (*ctor)(void *))

26 {

27 struct kmem_cache *s;

28 /* ... */

29 s = kmalloc(kmem_size, GFP_KERNEL);

30 /* ... */

31 return s;

32 }
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straightforward to interpret. The most challenging part for a VGC is the guest physical
memory of the virtual machine.

For defending a system against system-level attacks, we focus on the memory that
contains the kernel’s state in form of kernel objects. Our approach is to build the graph
of all objects used by the kernel, interconnected by pointers. If this is to be done with a
high level of completeness and accuracy, this task becomes very challenging, as we have
shown throughout this chapter. The C programming language that most OS kernels
are written in allows developers to create highly efficient code. However, this efficient
code tends to make view generation very difficult. Based on the source code of the Linux
kernel, we have shown several instances of such dynamic pointer and type manipulations
as well as other runtime behavior. In order to cope with this dynamic behavior in an
automated fashion, a VGC requires much more information than the kernel debugging
symbols alone.

The VMI framework that we introduce in Chapter 6 is a first step towards view gen-
eration with the potential for full state applicability. In Chapter 7, we propose a novel
method for automatically collecting additional semantic information based on the ker-
nel’s source code to solve many of the challenges that were detailed in this chapter.
To handle the remaining cases which cannot be solved autonomously, we extend our
VMI framework with a flexible rule engine which allows an easy incorporation of knowl-
edge from a human expert in addition to the collected semantic knowledge. With this
combined approach, we are able to address all instances of dynamic pointer and type
manipulations as well as resolve runtime dependencies such as we described here.
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Chapter 6
Towards Full State Applicability

In this chapter, we introduce our VMI framework, InSight, created as part of our re-
search for bridging the semantic gap. The heart of InSight consists of an external
view-generating component. Recall that according to our model, any VMI approach can
generate an internal view using fλ,µ and an external view using gλ,µ. The aggregation
function a combines these views over time into a profile, which in turn is classified by
the decision function d.

InSight focuses on the external view-generating component [[gλ,µ]] which makes use of
both hardware knowledge λ and software knowledge µ, as illustrated in Figure 6.1. With
the complete state visible, it has the potential for full state applicability. The framework
provides several interfaces that allow other components to further process the generated
view. In other words, InSight decouples the view generation from the aggregation and
classification step and strives towards making the implementation of the components [[a]]
and [[d]] as easy and straightforward as possible.

In contrast to our approach, previous VMI applications generally do not aim for full
state applicability. Their view generation typically targets exactly the portion of the
VM state necessary for a particular use case. This is due to the fact that bridging
the semantic gap is an admittedly difficult challenge [CN01]. Consequently, the way the
resulting systems bridge the semantic gap is very much tailored to only provide access to
the guest data relevant for the current task. The employed VGCs often rely on manual
annotations and expert knowledge such as OS version specific offsets, data types, and
sizes. Nevertheless, each of these approaches basically “reinvents the wheel” with regard
to view generation, when in fact the primary goal was to introduce new VMI applications.
We have outlined several such approaches with restricted view generation and manual
annotations in Section 4.1.1 and 4.1.2, respectively. Recently, some research has begun to
investigate stand-alone view generation [CCL+09, DGLZ+11, IADB11]. Such work has,
to this point, addressed aspects such as automation, but in its current state, it lacks the
completeness and flexibility necessary for the wide range of possible VMI applications.

InSight is one of the first approaches to focus on view generation with full state ap-
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Figure 6.1: The InSight VMI framework uses a combination of the out-of-band delivery
and derivation patterns for view generation in [[gλ,µ]]. The components [[a]] and [[d]] can be
tailored towards a given VMI application using the framework’s interfaces.

plicability, independent of the VMI application at hand. Instead of relying on manual
annotations and expert knowledge, InSight is designed to automatically adapt to differ-
ences among guest kernel versions and virtual hardware platforms. For example, InSight
supports view generation for Linux guests on the x86 platform for all three addressing
schemes (cf. Section 5.2.1) and all Linux kernel versions from 2.6 to 3.5, the latest version
by the time of this writing. A VMI application that is implemented using the interfaces
InSight provides will run without changes for all supported guest kernels.1

Chapter overview. In the following, we describe the design and implementation of
InSight. We begin with a short overview of the features of our framework and how it
may be applied for various VMI tasks in Section 6.1. This is followed by an in-depth
description of the techniques applied in InSight’s implementation in Section 6.2. This
covers the areas of managing the type information, accessing the kernel memory, and
representing and handling kernel objects, as well as the interfaces which provide access to
the types and kernel objects. We sketch some applications VMI applications that make
use of our framework in Section 6.3 and give some concluding remarks in Section 6.4.

6.1 Overview of InSight

InSight is a framework meant to ease the implementation of VMI-based security appli-
cations. The core of this framework is a versatile view-generating component with the

1It runs without changes subject to the caveat that the VMI application itself does not rely on internals
of the kernel that have been changed in newer kernel versions, of course.
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potential for full state applicability. However, InSight by itself is neither an intrusion
detection system nor any other type of VMI application; rather it provides everything
required to build such applications. Our framework is implemented in the C++ pro-
gramming language and follows the object-oriented paradigm. It is based on the Qt 4
libraries [qt] for better host portability. We have successfully tested InSight to run in
Linux and Windows host environments and expect it to work on MacOS X and other
BSD derivatives with at worst minimal code changes.

6.1.1 Supported Guests

InSight allows the creation of external views of Linux guests running inside of VMs that
provide an x86 hardware interface (i. e., Intel IA-32 or Intel 64/AMD64). It has been
successfully tested with Linux 2.6, 3.0, and 3.2 kernel versions and is expected to work
for any other kernel of the 3.X series. View generation focuses on the guest physical
memory of the VM, which is the most challenging part of the available state information
to interpret (cf. Section 5.1). InSight is able to read any kernel object from physical
memory and supports all three addressing schemes of the virtual x86 hardware: 32 bit
with and without PAE as well as 64 bit.

6.1.2 Supported Hypervisors

Our framework does not limit itself to working in conjunction with a particular hypervi-
sor. Since it operates on guest physical memory, it supports any hypervisor that provides
linear read access to the physical memory of the inspected VM. In our experiments, the
kernel-based virtual machines for Linux (KVM [KKL+07, Sha08]) have proven to work
well with InSight. In addition, a VM’s physical memory image saved as a dump file (i. e.,
a memory snapshot) can be analyzed just as well. Because of this, InSight is especially
useful for offline analysis of virtual machine states.

6.1.3 Modes of Operation

To support different usage scenarios, InSight is split up into two executables: a daemon
called insightd, and a front-end called insight. The daemon contains all the logic and
intelligence for view generation and normally runs as a regular terminal application in
the foreground. But as the name suggests, the daemon can also detach itself from the
controlling terminal to continue execution in the background. When running detached,
the front-end executable allows control of the daemon and attachment to its command
line interface. This mode of operation is meant for continuous, periodic introspection of
a VM during its regular execution.

69



6 Towards Full State Applicability

6.1.4 Interfaces

The view that is generated by the framework’s VGC can be accessed in three different
ways, described below.

6.1.4.1 Command Line Interface

InSight comes with a powerful command line interface, similar to a UNIX shell. This
interface is most useful for interactive inspection, browsing through the available types,
variables, and functions, and reading single kernel objects and their values from memory.
This mode of operation is similar to the traditional command line interface of a debugger.
In addition to that, the InSight shell allows one to execute scripts, to manage the type
information, and to load different memory snapshots of the introspected VMs.

6.1.4.2 JavaScript Interface

A scripting engine built into the framework allows developers to implement complex
analysis tasks in JavaScript. In the scripting engine, kernel objects read from memory
are encapsulated in native JavaScript objects, thus allowing an intuitive interaction with
the kernel state they represent. For example, suppose ‘t’ is a JavaScript variable holding
a process descriptor of a Linux guest, then the code ‘print(t.comm)’ will output the
‘comm’ field of the corresponding data structure, which holds the command line of the
executing binary. Due to the nature of scripting languages, all errors within the script
code are contained within the scripting environment and do not propagate to InSight.
This makes the development of new VMI applications both convenient and safe.

6.1.4.3 Library Interface

For even more flexible control of the analysis, InSight comes with a shared library that
allows an application to interface with the framework using C++ code. By linking
against this library, both the aggregation and classification components [[a]] and [[d]] can
be implemented efficiently as host-native executables while still preserving the benefits
provided by the excellent view generation component of the framework.

6.1.5 Availability

Using the VGC of our framework through any of these interfaces, the actual VMI ap-
plication is completely decoupled from the view generation process, making InSight a
universal tool for various applications such as intrusion detection, forensic analysis, as
well as kernel debugging.

We have released the InSight source code under an open source license [ins] to foster
the fast and intuitive development of new VMI and forensic approaches.
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6.2 Design and Implementation

After having introduced the basic features of InSight in the previous section, this section
details the design and implementation of the VMI framework. Note that some aspects
of the implementation we describe here do not reflect the latest development status
of InSight. Rather, they represent evolutionary steps that were taken while striving
towards our goal, which is view generation with full state applicability. Nevertheless, we
include them here as a motivation for our further work in Chapter 7.

6.2.1 Type Information

In order to read kernel objects from memory, InSight requires information about the data
types that it expects to find there as well as a way to describe these types internally.

6.2.1.1 Representation of Data Types

The data types that the introspected kernel uses require an internal representation de-
scribing their properties, such as the name and the fields of a data structure. In our
framework, all data types are represented as objects of one of the classes shown in
Figure 6.2. Each class is a descendant of the abstract class BaseType which holds ele-
mentary information such as a unique identifier, the type’s name, and its storage size.
For the purpose of view generation, many data types have similar properties and differ
only in details.

Example 6.1 All numeric types represent numbers, but they differ in their storage size
and their encoding. The following table shows the numeric types that occur within the
Linux kernel compiled with the GNU C compiler for the x86 platform, along with the
names of the corresponding classes representing these data types internally:

Encoding

Size signed unsigned boolean float

8 bit Int8 UInt8 Bool8
16 bit Int16 UInt16
32 bit Int32 UInt32 Float
64 bit Int64 UInt64 Double

N

The inheritance diagram in Figure 6.2 shows further abstract classes that introduce
new functionality shared by all descendants. Most of them do not require any further
explanation, with the exception of ReferencingType. This class provides a reference to
another BaseType object. As a consequence, all classes inheriting from RefBaseType,
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BaseType

NumericBaseType

Enum

Structured

RefBaseType

FloatingBaseType

IntegerBaseType

Struct

Union

Typedef

ConstType

VolatileType

Pointer

FuncPointer

Float

Double

Bool8

Int8

...

Int64

UInt8

...

UInt64

Array

Function

ReferencingType

Figure 6.2: Inheritance diagram of the classes that are used to internally represent all data
types. The class names in italic font represent abstract classes with shared functionality.
The color coding indicates similar properties for view generation.
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which is a descendant from both ReferencingType and BaseType, refer to another type
on either the syntactic or semantic level.

Example 6.2 Consider the following declarations:

1 typedef unsigned long long size_t;

2 const char* s = "foo";

The first line represents a syntactic reference of a Typedef with name ‘size_t’ to the
integer type UInt64. In the second line, the type of variable ‘s’ establishes two references:
a Const type referencing a Pointer type, which in turn references the type Int8. The
former is a syntactic reference while the latter represents a semantic reference. N

For FuncPointer and Function objects, the referenced type is the data type of the
function’s return value. In addition, there are other classes that inherit from Referenc-
ingType which are not shown in the diagram, namely StructuredMember (representing
a ‘struct’ or ‘union’ field), FuncParam (a function parameter), and Variable (a global
variable). Each of the corresponding objects holds a reference to the type of their dec-
laration.

6.2.1.2 Parsing Debugging Symbols

The VGC bases its knowledge about the types and global instances of kernel objects on
the kernel’s debugging symbols. Before InSight is fit to generate an external view of a
guest OS, it has to parse and process the corresponding debugging symbols first. This
step takes several minutes to complete. Afterwards, the type information can be stored
in a custom format to minimize the effort for future use, so this process is only required
once per kernel.

For a Linux guest, the debugging symbols can be obtained by recompiling the kernel
with specific compiler flags for symbol generation. This step is straightforward and nei-
ther influences the performance nor the semantics of the resulting kernel image. The
compiler and linker attach the debugging symbols to the kernel image file in a binary
format according to the DWARF standard [Fre05]. InSight utilizes the objdump pro-
gram that is part of the GNU binary utilities to transform the binary symbols into a
textual representation. The textual format is much simpler to process than the binary
counterpart.

Our prototype is able to correctly read the DWARF debugging symbols and is expected
to work well for other OSs that provide their kernel’s debugging information in this
format, such as FreeBSD and OpenBSD, with minimal modifications, if any. However,
InSight is not limited to the DWARF standard, as it uses its own format to store and load
the symbols after they have been parsed. In order to read the symbols for a Windows
guest, for example, one only needs to add a parser for Microsoft’s debugging symbols in
PDB format [win] to InSight.

73



6 Towards Full State Applicability

6.2.1.3 Consolidation of Type Information

As explained in Section 5.2.2.1, the debugging symbols contain information about all
defined types per translation unit, which leads to a high degree of redundancy. When
InSight processes the debugging information for the first time, it generates a hash value
for each data type. The hash is computed using the information listed in Table 6.1.
Based on these hashes, duplicated data types can be quickly recognized and merged into
single instances.

Example 6.3 For our experiments, we use a virtual machine with a Debian 6.0 (IA-32)
installation. This distribution uses Linux 2.6 as the default kernel (the Debian specific
version number is 2.6.32-5). The following table shows the number of types and function
prototypes occurring in the debugging symbols of the kernel and all modules along with
the number remaining after being merged together:

No. of symbols

Symbol original merged Reduction

Data types 10 390 462 73 456 99.3%
Function prototypes 278 373 152 135 45.4%

Total 10 668 835 225 591 97.9%

As the numbers demonstrate, merging the data types to unique representatives reduces
their number tremendously. N

6.2.2 Memory Access

An OS kernel stores its objects in a virtual address space. As InSight reads these objects
from the guest physical memory, it needs a sound understanding of the kernel’s address
space along with the ability to perform the same translation from virtual to physical
addresses that the hardware MMU normally does.

At this time, our prototype is able only to understand and use the kernel address
space of Linux guests. As a consequence, we limit our description of how to access the
guest’s memory to Linux. To add support for a different OS (for instance, Windows),
all that InSight requires is a specification of the address ranges that define the kernel’s
address space, as we explain for Linux below. The actual translation from virtual to
physical addresses is the job of the MMU and is independent of the OS using it. In other
words, our software-implemented MMU works for any guest when properly used.

6.2.2.1 Linux Kernel Address Space

The Linux kernel does not use a separate virtual address space for its code and data;
rather, it reserves a dedicated range within every process’s address space for this purpose.
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BaseType

class-specific enumeration value,
storage size

NumericBaseType Non-NumericBaseType

encoding type name

IntegerBaseType Enum RefBaseType Structured

bit size,
bit offset

enumeration
names and
values

hash of referenced type field names,
field offsets,
field type
hashes

Array FuncPointer

length parameter
names,
parameter type
hashes

Function

address of entry
point

Table 6.1: Information used to compute the hashes of data types. The vertical ordering of
classes indicates inheritance from bottom to top (cf. Figure 6.2).

That way, a process can invoke kernel functions without having to switch the context
first (i. e., via page tables).

The layout of the kernel’s address range differs for the Intel IA-32 and AMD64 archi-
tecture; however, it includes similar regions in both modes. These layouts are illustrated
in Figure 6.3 (a) and (b), respectively. The memory regions are defined by preprocessor
macros and global variables that mark their beginning, end, or offset relative to another
region. InSight incorporates knowledge about how the kernel uses these memory regions
in order to provide access to the objects stored within. We briefly describe both layouts
in the following.

32-bit Address Space Layout (IA-32). The lower 3 GB of the 32-bit address space
represents the user space and is unique for each process. This area is dynamically
mapped using the process’s page tables as the process allocates more memory. As a
consequence, reading objects in user space requires that the page tables used are from
the same process that allocated the objects.

The upper gigabyte of the address space is reserved by the kernel. The beginning
of this region is marked by the ‘PAGE_OFFSET’ macro. This area starts with a linear
mapping of the physical memory, up to a maximum amount of 896 MB. All physical
memory beyond 896 MB is mapped dynamically, as explained below. The end of this
mapping is defined by the global variable ‘high_memory’ and depends on the amount
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0x0000 0000

0xFFFF FFFF

PAGE_OFFSET

high_memory

VMALLOC_START

VMALLOC_END

VMALLOC_OFFSET

FIXADDR_START

Linear physical
memory mapping

(up to 896MB)

Dynamic memory mapping

User
space
(3GB)

Dynamic memory mapping

Kernel
space
(1GB)

Fixed memory mapping

(a) IA-32

0x0000 0000 0000 0000

0xFFFF FFFF FFFF FFFF

Linear physical
memory mapping

Dynamic memory mapping

User
space
(47 bit)

Kernel
space
(47 bit)

0x0000 7FFF FFFF FFFF

Dynamic memory mapping

0xFFFF 8000 0000 0000

PAGE_OFFSET

VMALLOC_START

VMALLOC_END

VMEMMAP_START

__START_KERNEL_map
MODULES_VADDR

MODULES_END

VMEMMAP_END

high_memory

Dynamic memory mapping

Dynamic memory mapping

Addr.
hole

Lin. phys. mem. map. (512MB)

(b) AMD64

Figure 6.3: Layout of the Linux kernel’s virtual address space for IA-32 and AMD64 systems.
The red area belongs to user space. Green areas belong to linearly mapped physical memory,
blue and yellow areas are mapped on a page granularity, and white regions are unmapped.

of physical memory available to the system. In other words, each virtual address v
with ‘PAGE_OFFSET’ ≤ v < ‘high_memory’ can be translated to a physical address p by
calculating p = v− ‘PAGE_OFFSET’. This enables us to bootstrap address translation for
the dynamically mapped memory areas, as we will see later in this section.

After a guarding hole of size ‘VMALLOC_OFFSET’, which is intended to catch out-of-
bounds memory accesses, the remaining part of the address space is mapped in a non-
linear way through the page tables. For the purpose of reading memory, the fixed and
dynamic memory mappings shown in Figure 6.3 (a) are treated equally: addresses within
these ranges are translated based on the page tables and according to the addressing
scheme that the CPU is configured to use (see Section 6.2.2.3).

64-bit Address Space Layout (AMD64). The address space in 64-bit mode is also
split into a user space in the lower memory range and a kernel space in the upper range,
both of which are 247 bytes in size. The size is constrained by the AMD64 architecture
which limits the usable address space to 48 bits: The 48th bit of any virtual address is
always extended to bits 49 to 64. That is, the most significant eight bits of an address
must all be set to either zero or one. In Figure 6.3 (b), this is indicated as the hatched
“addressing hole”.

Again, the physical memory of the system is linearly mapped at the address range be-
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tween ‘PAGE_OFFSET’ and ‘high_memory’. Since the address space in 64-bit mode is suffi-
ciently large, this mapping includes all physical memory that the architecture supports,
which is up to 64 TB by the time of this writing. In addition, a second linear memory
mapping is established starting at the address stored in macro ‘__START_KERNEL_map’.
It holds the first 512 MB of physical memory, which includes the entire kernel code
segment. For both of these regions, the address translation only requires a simple sub-
traction of the corresponding virtual offset, as we have discussed previously for the 32-bit
case.

As a complement to the linear mappings, the kernel space contains three areas with
dynamically mapped memory, each separated from other mappings by large holes of
unmapped addresses. The addresses that fall into the dynamically mapped areas can
point to any physical memory page and require translation on a per-page basis using
the page tables.

6.2.2.2 Obtaining the Address Space Layout

The layout of the kernel’s address space varies among different hardware architectures, as
described in the previous section, but also between different kernel versions and system
configurations. As a consequence, InSight requires the values of the symbolic constants
shown in Figure 6.3 for each inspected kernel in order to understand the individual
memory layout.

The hardware architecture is read from the kernel configuration, usually found in the
file ‘.config ’ within the kernel’s source tree. The architecture tells InSight the length of
the virtual addresses and thus the size of pointers (32 bit or 64 bit), how many page
table levels are used, and how many entries each table contains.

The ‘System.map’ file holds—among other information—the virtual addresses of sev-
eral kernel symbols which are unknown at compile time. This file is automatically
generated after the Linux kernel has been compiled.

The symbolic constants that describe the address space layout are defined in the
kernel’s source code. Unfortunately, the location of their definition within the source
tree has changed several times in the past. In addition, their values are the result
of conditional compilation of the source code which depends on Linux’s sophisticated
build system. To reliably extract this information independent of the kernel version and
configuration, we apply the following technique. When initially parsing the debugging
symbols for a new kernel version, InSight asks for the path to this kernel’s configured
source code. It then uses the kernel’s build system to compile a “dummy” module
for this kernel that stores all the required constants in a local data structure. Note
that this module does not need to be loaded into the kernel. Instead, InSight links
the intermediate object files that were created during the compilation along with some
interstitial code to a small helper program that outputs all the required values. The
helper program is then executed and the constants are read from its standard output.
InSight stores the obtained values along with the consolidated type information into

77



6 Towards Full State Applicability

one file. It performs these steps completely transparently and does not require any user
interaction.

Note that the symbol ‘high_memory’ actually is a global variable, not a compile-
time constant value. It is initialized by the kernel at boot time. InSight reads its value
during initialization of a new inspected guest. Since this variable resides within a linearly
mapped memory area, no page table based translations are required to read its value.

6.2.2.3 Virtual-to-Physical Address Translation

On x86-based architectures, Linux currently supports the following three addressing
schemes:

1. 32-bit virtual address space without PAE

2. 32-bit virtual address space with PAE

3. 64-bit virtual address space

InSight implements translation from virtual to physical addresses for all three schemes.
We do not detail the working of the page tables here, but instead refer to the Intel 64 and
IA-32 Architectures Software Developer’s Manual [Int09]. Since the address space layout
varies between the 32-bit and 64-bit mode, as shown in Figure 6.3, different information
is required to perform the address translation for each mode.

Table 6.2 shows a complete list of information and symbols that InSight uses for this
task, together with the way they are obtained. Strictly speaking, only the symbols
without parentheses are essential, since they define the linearly mapped memory areas.
All addresses outside of these areas can be translated using the page tables, if they are
mapped. However, we use the other symbols to distinguish between unmapped memory
and dedicated guarding holes to provide the user with more meaningful error messages.

6.2.2.4 Obtaining the Kernel’s Page Table

The translation for each of the three aforementioned addressing schemes differs in the
number of page table levels and in the format of their entries, but it always starts at
the physical address of the top-level page table, the so-called page directory. This is the
information InSight requires to bootstrap the page table-based address translation.

The Linux kernel maintains a set of special page tables, the master kernel page tables,
that always include the accurate mappings of the pages within the kernel space. During
process execution, the page tables of all processes are lazily synchronized with the map-
pings in the master tables using the kernel’s page fault handler. Therefore, we choose
the master tables as foundation for address translation.

The virtual address of the master kernel page tables is constant for a particular ker-
nel version. It can be obtained from the ‘System.map’ file. However, the translation
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Information 32-bit 64-bit Acquisition

Architecture X X Kernel configuration
PAGE_OFFSET X X Kernel build system
VMALLOC_START (X) (X) Kernel build system
VMALLOC_END (X) (X) Kernel build system
VMALLOC_OFFSET (X) — Kernel build system
VMEMMAP_START — (X) Kernel build system
VMEMMAP_END — (X) Kernel build systema

MODULES_VADDR — X Kernel build system
MODULES_END — (X) Kernel build system
START_KERNEL_map — X Kernel build system
swapper_pg_dir X — System.map
init_level4_pgt — X System.map
vmalloc_earlyreserve (X) — Physical memoryb

high_memory X X Physical memory

aMay be manually defined
bOnly for kernels before version 2.6.23

Table 6.2: Information and kernel symbols used for performing virtual to physical address
translation. The symbols with checkmarks in parentheses are actually not required, but they
help to rule out invalid addresses faster, especially for the 64-bit systems with four levels of
page tables.

requires the corresponding physical address. As it turns out, the master page tables
are located in a linearly mapped memory area of the kernel space. Consequently, its
physical address can be obtained by subtracting a fixed offset from its virtual address.
With this information, InSight is ready to access the page tables and to translate virtual
addresses in dynamically mapped memory areas.

6.2.3 Reading Kernel Objects

Each kernel object that is read from memory is internally represented as an object of
class Instance. An instance basically holds the type as well as the virtual address of
the kernel object and provides methods to inspect the type’s properties—for example,
the declared fields of ‘struct’ and ‘union’ types. The fields can then be accessed as
further instances with data types and addresses corresponding to the fields’ declaration
and offsets within the embedding object.

Instances that represent a numeric type allow access to the individual number they
currently hold: InSight reads the memory occupied by the instance and interprets the
value according to the data type, for example, as an unsigned integer value having a

79



6 Towards Full State Applicability

width of 32 bits. An instance of a pointer type can be dereferenced, yielding the kernel
object that it points to. Arrays allow access to their fields in the same manner.

Example 6.4 Consider the following code fragment:

1 struct foo {

2 int value;

3 };

4

5 struct bar {

6 struct foo* f;

7 };

8

9 struct foo sf = { 123 };

10 struct bar sb = { &sf };

This code might result in the following memory layout within the guest:

0x1000 · · ·
0x1004 123 ← field ‘value’ of variable ‘sf’

0x1008 0x1004 ← field ‘f’ of variable ‘sb’

0x100C · · ·

Suppose InSight is in possession of the corresponding type information so that it can
introspect the guest’s memory. We first request an instance of variable ‘sb’, then follow
its field ‘f’, dereference the pointer to retrieve the ‘struct foo’ object pointed to by ‘f’,
and finally access its integer field ‘value’. This access pattern will result in the following
four Instance objects within our framework:

Instance Instance Instance Instance

Type: Struct (bar) → Pointer (foo*) → Struct (foo) → Int32

Addr.: 0x1008 0x1008 0x1004 0x1004

N

6.2.3.1 Heuristics for Linked Lists

With regard to linked lists and hash tables that are implemented as detailed in Sec-
tion 5.2.3, we have already argued that the information contained in the debugging
symbols is insufficient to understand the involved pointer and type manipulations auto-
matically. Unfortunately, these data structures are ubiquitous in the kernel. In Chap-
ter 7, we extend InSight to reliably detect such dynamic behavior on the source code
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level. For the time being, we use the following heuristic to provide a semi-automatic
way to iterate over lists of kernel objects.

Recall that a data structure can be arranged in a doubly linked list by including a
“node” field of type ‘struct list_head’ in the structure’s declaration. To organize
objects in a hash table, the field must be of type ‘struct hlist_node’. When InSight
parses the debugging symbols, it detects these two special nodes and marks the particular
fields of the embedding structure accordingly. These nodes are assumed to resemble a
list of objects of the embedding type and point to the same field within these objects, as
shown in Figure 6.4. Whenever the ‘next’ or ‘prev’ pointer of a marked node structure
is dereferenced, InSight changes its type to a pointer of the embedding structure and
corrects the address by the field’s offset.

struct module

struct list_head

next
prev

struct module

struct list_head

next
prev

struct module

struct list_head

next
prev

Figure 6.4: The simple heuristic assumes that fields of type ‘struct list_head’ are used
to arrange objects of the same type into a linked list with the same offset.

Example 6.5 Consider the listing in Example 5.2 on page 56 once again. The decla-
ration of ‘struct module’ includes a field ‘list’ of type ‘struct list_head’. InSight
detects the node character of type ‘list_head’ embedded within the ‘module’ structure
and marks field ‘list’ accordingly.

Now let ‘m’ be a variable of type ‘struct module’. If the user accesses ‘m.list.next’,
he will again receive an object of type ‘struct module’ whose address addr has been
corrected by the offset of ‘list’ within ‘module’:

addr = ‘m.list.next’− offsetof(‘struct module’, ‘list’)

This corresponds to the same operation that is performed by the macros for list iteration.
N

The described heuristic is correct if the assumptions made about the usage of a
‘list_head’ field hold. It is left up to the user to know if this is the case for a partic-
ular node field within a data structure. This approach works well for enumerating all
processes in the guest starting at the global variable ‘init_task’, for example.

81



6 Towards Full State Applicability

In situations as described in Section 5.2.3.3 in which at least one of the assumptions
does not hold, the flexible design of InSight allows the user to address this manually by
choosing the correct type and/or offset for a node’s pointer. Using the type rule engine
of InSight, which is introduced in Section 7.3, this expert knowledge can be encapsulated
in libraries that are reusable for all applications.

6.2.4 Command Line Interface

InSight provides a command line interface in form of a shell for interactive analysis of
a VM’s state, allowing inspection of the kernel’s data structures and global variables.
In addition, it can be used to load and unload images of the guest’s physical memory.
The image can either be a physical memory snapshot stored in a regular file on disk, a
special file (such as a memory-mapped file), or a device node (such as the ‘/dev/mem’
device in Linux).

For each loaded memory file, the kernel objects represented by the global variables
as well as their fields can be accessed using the common notation ‘object.field’. In
addition, the user may choose to read an object from an arbitrary virtual or physical
address as any known data type, again allowing the user to further follow any fields of
that type. This functionality is similar to that of a debugger, but with the following key
differences:

1. A debugger typically inspects a running process at its current point within the
control flow — that is, its instruction pointer. It can analyze the stack frames and
show the local symbols according to their execution context. In contrast, InSight
does not have this information. The purpose of our framework is to analyze the
overall system state, not the volatile context of the current execution. For our
considerations, the kernel objects that are read from memory are contextless: All
state information that permanently influences the kernel’s behavior must be rooted
in some location that is globally accessible, such as a global variable or a hardware
register.

The only exceptions to this rule are objects that lie in user space: The page table
belonging to the process that allocated this object represents the object’s context.
To provide access to user-space objects, InSight allows switching to different page
tables that an application may specify.

2. Since InSight relies on the global variables alone, it provides mechanisms to au-
tomatically identify as many objects in memory as possible and to construct a
graph of kernel objects, as illustrated in Figure 5.1 on page 53. This graph can
be traversed and provides the answers to many questions that a debugger cannot
tell—for example, how many objects point to a particular object, which object
resides at a particular address, and so on.
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3. A debugger reads the virtual memory of a process and relies on the operating sys-
tem and hardware to transparently map accesses to physical memory. As InSight
cannot rely on any guest OS support and does not limit itself to a particular hyper-
visor, it operates directly on physical memory and performs the address translation
on its own.

The interactive command line interface is very helpful for understanding the kernel
memory and the relationships between objects. Once the user has gained a deeper
understanding of the objects that are relevant for a specific application, he may leverage
the full power of InSight by writing code for the JavaScript engine to automate repeating
VMI tasks.

6.2.5 Scripting Engine

Our VMI framework includes a scripting engine that allows users to write JavaScript
code for interacting with kernel objects read from memory and to perform complex
analysis tasks. The user can access global variables by requesting an Instance object
of a variable by using its name or its internal ID. If the resulting object represents a
structure, its fields can be accessed as object properties by their names using the dot
operator.

Example 6.6 The following code fragment demonstrates the basic interaction with a
kernel object using JavaScript code:

1 var swpr = new Instance("init_task");

2 println(swpr.comm); // output: "swapper"

In the first line, an Instance of the global variable ‘init_task’ is created. This variable
is of type ‘struct task_struct’ and represents the parent process of all processes in a
Linux system, the so-called “swapper” process. The process descriptor ‘task_struct’
has a field ‘char comm[16]’ which holds the name of the process. In the second line,
this field is accessed as a property of the JavaScript object ‘swpr’ and its value is printed
to the screen. N

When a field of a kernel object having a pointer type is accessed, all pointers that
point to accessible memory are automatically dereferenced, unless specified otherwise.
As a result, the user usually receives a new data structure, a numeric type or a function
pointer when a structure field is accessed as an Instance property.

In addition to field accesses, an Instance object provides function properties to access
meta information of the corresponding kernel object, such as the object type, fields,
storage size, and address. Part of this information can also be altered. For example, the
type of the instance can be changed or its address can be manipulated.
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Example 6.7 The following listing shows a more complex example script that prints
the list of all loaded modules for a Linux guest:

1 var head = new Instance("modules");

2 var m = head.next;

3 m.ChangeType("module"); // change to actual type

4 var offset = m.MemberOffset("list");

5 m.AddToAddress(-offset); // fix the address

6 head.AddToAddress(-offset); // for loop termination

7

8 do {

9 println(m.name, m.args);

10 m = m.list.next; // list_head heuristics

11 } while (m && m.Address() != head.Address());

Note that the Instance object that we retrieve from the global variable ‘modules’ in line 1
is of the type ‘list_head’. This scenario corresponds to the listing in Example 5.2 on
page 56 where a global variable of type ‘list_head’ represents the head of a list of
‘struct module’ objects. The flexibility of InSight allows us to change the object’s
type to structure ‘module’ in line 3 and correct its address in line 5 according to the
usage pattern of doubly linked lists. Once this is accomplished, the iteration over all
modules in the loop becomes straightforward and does not require any more type or
address corrections. In line 10, InSight applies the node heuristics to calculate the
correct address and infer the real object type automatically, thus hiding the any further
“pointer magic” of the lists from the user. N

The great advantage of the scripting engine over any low-level approach is the fact
that any sort of runtime error will not lead to a segmentation fault or similar failures.
Such errors lead instead to JavaScript exceptions that may be handled in the script
being executed. In any case, the errors are contained within the scripting engine and
do not propagate to the framework itself. As a script’s execution is triggered from the
command line interface, the user can modify the script and re-run it directly without
having to recompile the source code, restart InSight, or restart the monitored VM. This
is a major advantage of InSight over other view-generating approaches and greatly eases
the development of new VMI mechanisms.

6.3 Application

The current implementation of InSight already allows one to perform various types of
analysis and is deployed in several projects for VMI-based intrusion detection within our
research group. We describe the view generation and the application of the collected
data in the following paragraphs.
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6.3.1 Periodic Analysis

One way of monitoring a system for intrusions is to perform an analysis of the guest
in regular intervals and report any suspicious findings. If the interval is chosen to be
sufficiently long and the analysis can be performed quickly, this method typically incurs
only a small overhead.

An approach for VMI-based intrusion detection that has been described by various
authors [GR03, LLCL08, MFPC10] is called lie detection. It works by generating two
different views simultaneously, one inside of the guest OS and one with the help of VMI
techniques. These views are then compared with each other and any discrepancy between
them is taken as an indicator for malicious activity. One of our projects implements a
lie detector for running processes and loaded kernel modules on a live guest to reveal
rootkits that are trying to hide their presence [Kit10].

In a different project, we experimented with new ways of detecting intrusions on the
kernel level. For this purpose we created a series of sequential memory dumps of the
guest while inducing normal and malicious activities to perform offline analysis of the
collected states. Here InSight was used to gather information about running processes,
find the location of the code sections of loaded kernel modules to detect kernel code
patching, and reveal changes to the system call table, among other things [Vog10]. This
experimental work showed that InSight is also very much capable of performing forensic
analysis.

6.3.2 Event-driven Analysis

An alternative method for system analysis monitors and reacts to system events. In such
cases, a VMI-based approach manipulates the system in such a way that the events of
interest cause a trap to the hypervisor [PSE10]. Before the hypervisor returns control to
the guest, the VGC collects the required data from the current state of the guest. De-
pending on the frequency of such events, it is crucial to avoid any unnecessary overhead
for the analysis in order to minimize overall performance degradation.

As an example for such an approach, we have combined InSight with Nitro, a VMI-
based framework for system call tracing [PSE11]. Nitro uses InSight for view generation
to augment the low-level parameters of the monitored system calls. This combination
of tools allows us to produce a much richer output of system call information compared
to plain numbers and pointer values. For example, InSight is able to determine the
concrete type of a process’s file handle in calls to the ‘read’ and ‘write’ system calls
and print the corresponding data [Die11]. This data may consist of the IP addresses of
a connected socket or the file name of a regular file.

Figure 6.5 shows a sample output for tracing the ‘wget ’ binary when performing an
HTTP request. Each line starting with a time stamp lists one recorded system call
with its name followed by the expected parameters. The next lines contain the values
of the actual parameters passed to the system call in their context specific semantic
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1 Jun 20 17:58:20: sys_write: unsigned int fd, const char __user *buf, size_t ←↩
count

2 fd: unsigned int: 0x2 -> "tty1"

3 buf: const char __user *: 0x7FFF702FF080 ->

4 buffer content hex (of size 46):

5 43 6f 6e 6e 65 63 74 69 6e 67 20 74 6f 20 67 6f 6f 67 6c 65 2e 64 65

6 7c 32 30 39 2e 38 35 2e 31 34 38 2e 31 30 33 7c 3a 38 30 2e 2e 2e 20

7 buffer content string: Connecting to google.de|209.85.148.103|:80...

8 count: size_t: 0x2E

9

10 Jun 20 17:58:20: sys_socket: int domain, int type, int protocol

11 domain: int: 0x2 (PF_INET )

12 type: int: 0x1 (SOCK_STREAM )

13 protocol: int: 0x0 ()

14

15 Jun 20 17:58:20: sys_connect: int sockfd, struct sockaddr __user *addr, int ←↩
addrlen

16 sockfd: int: 0x3 -> (socket) -> [...] type: (SOCK_STREAM ) flags: ()

17 addr: struct sockaddr __user *: 0x7FFF702FF2D0 ->

18 -> (assuming sockaddr_in)

19 0. 0x00 sin_family : sa_family_t = 2

20 1. 0x02 sin_port : __be16 = 20480

21 2. 0x04 sin_addr : struct in_addr = ...

22 3. 0x08 __pad : unsigned char[8] = (0, 0, 0, 0, 0, 0, 0, 0)

23 dereferencing: sin_addr 1737774545 (209.85.148.103)

24 addrlen: int: 0x10

25

26 Jun 20 17:58:20: sys_write: unsigned int fd, const char __user *buf, size_t ←↩
count

27 fd: unsigned int: 0x3 -> (socket) -> [...]: (SOCK_STREAM ) flags: ()

28 buf: const char __user *: 0x7FFF702FF320 ->

29 buffer content hex (of size 107):

30 47 45 54 20 2f 20 48 54 54 50 2f 31 2e 30 0d 0a 55 73 65 72 2d 41 67

31 65 6e 74 3a 20 57 67 65 74 2f 31 2e 31 32 20 28 6c 69 6e 75 78 2d 67

32 6e 75 29 0d 0a 41 63 63 65 70 74 3a 20 2a 2f 2a 0d 0a 48 6f 73 74 3a

33 20 67 6f 6f 67 6c 65 2e 64 65 0d 0a 43 6f 6e 6e 65 63 74 69 6f 6e 3a

34 20 4b 65 65 70 2d 41 6c 69 76 65 0d 0a 0d 0a

35 buffer content string: GET / HTTP/1.0

36 User-Agent: Wget/1.12 (linux-gnu)

37 Accept: */*

38 Host: google.de

39 Connection: Keep-Alive

40 count: size_t: 0x6B

Figure 6.5: System call information resulting from a HTTP request of the ‘wget’ program
to google.de, collected with Nitro [PSE11] and augmented using InSight. The system call
parameters can be resolved to their semantics within the guest (taken from [Die11]).
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interpretation. Consider the lines 1 to 8, for instance, that detail a ‘write’ system call.
The file descriptor ‘fd’ is the one being written to and can be resolved to a file named
‘tty1’ in line 2; obviously, the monitored process is writing the first console, which is
attached to the device node ‘/dev/tty1 ’ in UNIX systems. The buffer that gets written
resides in user-space but can be dereferenced nevertheless. The lines 4 to 7 show its
contents in hexadecimal byte values and as an ASCII string. As can be seen in line 7,
the ‘wget ’ binary writes a message to the console in order to inform the user that it is
about to connect to host google.de at IP address 209.85.148.103 on port 80.

Other system calls are augmented similarly. In order to make data objects in user
space accessible, the page table is switched to the current process’s table during view
generation. This project has also shown that the separation of InSight into a back-end
and a front-end helps to minimize the per-analysis overhead. The parameter augmenta-
tion contributes only to a small degree to the total overhead of the complete framework.

6.4 Summary

We have identified view generation as a unique and worthwhile challenge for virtual
machine introspection. With our research, we strive to provide an external VGC that
combines hardware and software knowledge for full state applicability. The result of
our efforts is InSight, a VMI framework that focuses on bridging the semantic gap
independent of the application at hand. Our tool creates a complete view of the guest
kernel, is decoupled from the introspection task itself, and remains flexible enough to
be applicable for digital forensics, intrusion detection, malware analysis, and kernel
debugging.

Our implementation required addressing several engineering challenges when analyzing
a system as complex as the Linux kernel. The solutions have been incorporated in
InSight which has resulted in an extremely powerful and flexible VMI framework that
offers several interfaces including a scripting engine for further automation of complex
tasks.

Finally, we offered evidence of InSight’s power and flexibility by outlining several suc-
cessful applications of InSight within our research group. We share our framework as an
open source tool [ins] with other researchers to enable the fast and intuitive development
of new VMI and forensic approaches.
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Chapter 7
Extracting Semantic Knowledge through
Static Code Analysis

In the previous chapter, we introduced or VMI framework, InSight. So far, we have
described functionality that is based entirely on knowledge about the types as they are
declared in the source code. The only exception to that rule is the heuristics for handling
doubly-linked lists and hash tables, which we described in Section 6.2.3.

However, we already demonstrated the limitations of an approach that is based only
on static type information in Section 5.2.3 and 5.2.4: The manifold instances of dynamic
pointer and type manipulations as well as runtime dependencies which can be found in
the source code of the Linux kernel—and, without a doubt, in any other OS kernel
with comparable complexity—render this knowledge incomplete and sometimes even
misleading. It is this incompleteness that demands a significant amount of domain
knowledge from users which require access to kernel objects in the deepest corners of
the system’s memory.

Our framework allows users to incorporate their expert knowledge on usages of cer-
tain data types into their VMI program code. With this supplemental information,
InSight already supports some interesting applications, such as the examples shown in
Section 6.3. Considering InSight in the terminology of our VMI model as illustrated in
Figure 6.1 on page 68, one could rightfully argue that such an approach basically applies
part of the semantic knowledge µ within the application-specific aggregation or classi-
fication components [[a]] and [[d]], rather than the VGC [[gλ,µ]] where it belongs. Since
we strive towards full automation of our methods and reducing the required domain
knowledge, it is our goal to constraint the semantic knowledge to the VGC as much as
possible.

The heuristics for linked lists that we originally integrated into InSight were a first
attempt to cope with the type usage of pointers that differs from their declaration.
The heuristics make certain assumptions about the general usage of ‘list_head’ and
‘hlist_node’ fields embedded in data structures. This approach works well for many
instances of linked lists for which the assumptions hold, but inevitably leads to false
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kernel objects when the assumptions are wrong. Consequently, it does not solve the
problem from the user’s perspective, since he now has to know for which data structures
and fields the list assumptions hold.

For a generic solution to this problem, the following observation is important: Even
though the symbol information only describes the declared types and variables, all dy-
namic type usages are evident within the source code. In other words, if we can identify
type usages within the source code and extract their semantics, we can augment the
static type information and effectively re-create this dynamic behavior within our VGC.

In this chapter, we describe a novel approach for identifying dynamic pointer manip-
ulation in full C source code. We call this method the used-as analysis. In contrast to
a points-to analysis [And94], it focuses on type usages instead of pointer locations. The
used-as analysis reveals usages of structure or union fields and global variables in type
contexts that differ from their declared types. In addition, it allows one to extract the
pointer arithmetic that is performed to transform a pointer value to a target address.
Needless to say, our approach requires the source code of the OS in order to analyze it.
With full access to the complete code of the kernel and all core components, our analysis
technique can be applied to any operating system that is written in C.

We have implemented this analysis technique as an extension to InSight to further im-
prove its accuracy and coverage when reading kernel objects from memory. In applying
the used-as analysis to the kernel sources, our VGC establishes extended type relations
and captures pointer arithmetic that the kernel would perform at runtime. This infor-
mation supplements the kernel debugging symbols InSight has been using so far, thus
extending the semantic knowledge µ of the software architecture. With this extension,
InSight is now able to automate the retrieval of objects referenced by differently typed
pointers, pointers stored as integer types, and generic pointers such as ‘void*’. In addi-
tion, InSight performs arithmetic operations on the pointer value to transform a source
value to a target address, for example, by adding a type specific offset or applying a bit
mask with bitwise logical operations.

Chapter overview. This chapter describes our static code analysis and its integration
into InSight. First, we propose the used-as analysis for full C code in Section 7.1, which
is essentially a type-centric extension of Andersen’s points-to analysis. After establishing
some symbols and notations, we describe the two steps of our analysis: the points-to
analysis and the used-as analysis. In Section 7.2, we describe the implementation of
the aforementioned analysis as an extension to our existing tool, InSight. Section 7.3
introduces the type rule engine, which serves as a management interface for the extended
type relations and allows the user to extend the type knowledge even further with his
own expertise. The application of our extension in Section 7.4 illustrates the elegance
and simplicity of the resulting view generation process. We complete this chapter with
an overview of related work in the field of pointer analysis in Section 7.5, and summarize
our contributions in Section 7.6.
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7.1 Static Code Analysis

In static code analysis, the points-to analysis, according to Andersen [And94], tries to
answer the question, “which set of locations might a particular variable point to?” This
method considers assignment statements and function invocations to keep track of the
memory locations a pointer variable might hold. This kind of analysis tends to be tricky
for the C programming language because of the constructs that this language supports,
such as multi-level pointers, the address operator ‘&’, and function pointers.

Since pointers are tied to variables which only exist within a certain scope (which may
also be the whole program in case of global variables), this type of analysis is rather
data-flow driven and a points-to set is only valid within a pointer’s scope. A variant of
this method [HT01] has already been applied to identify kernel objects of the Windows
kernel using an inter-procedural points-to analysis [CCL+09].

Recalling the motivation for our work from Section 5.2.3, the goal of our analysis is
to identify dynamic pointer manipulations that are performed either for fields of data
structures or for global variables. Suppose we construct the graph of kernel objects
starting from all global variables and find an object of a certain type by following a
pointer field from another object. This newly discovered object is not bound to any
control flow context or scope, such as a function or lexical block. For the purpose of our
analysis, it resides in the global scope whether it was originally allocated on a heap, on
a stack, or originated from a static data segment. So when we access a field of an object
of a certain type, two questions arise:

1. Is this type’s field used as a pointer to an object of a type that differs from its
declaration?

2. How do we need to transform the value of this field in order to retrieve the object’s
address?

It is exactly these two questions that our used-as analysis will answer.

7.1.1 Used-As vs. Points-To Analysis

The approach of Carbone et al. [CCL+09] is based on the assumption that the actual
data type stored in a pointer location is used at least once in some assignment statement
within the inter-procedural control flow of the pointer variable. As we have explained
before, the objects read from memory do not have a particular context or scope. As
a consequence, all possible program points using this pointer type must be considered
when such a pointer is encountered. We exploit this observation as follows.

We use a method similar to a field-sensitive flow-insensitive points-to analysis. The
key difference is that our analysis establishes used-as relations between structure or
union fields as well as global variables on the one hand, and data types on the other.
That is, it identifies all types that a pointer or an integer type is used as. In addition,
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it records all static pointer arithmetic that is applied in such situations to retrieve the
target address from a source pointer. These related types together with their pointer
arithmetic represent the candidate types that have to be considered when following
the field of an object or reading a global variable from memory. Such an approach
contrasts with the conservative pointer treatment of a static type system, for example,
as performed by a compiler. However, completeness of the generated view is crucial
during introspection. Consequently, we find it justified to over-approximate the view
and consider all possible interpretations of a pointer at the cost of possible ambiguities.

Our approach has several advantages over traditional points-to analysis approaches.
First, it only requires an intra- instead of an inter-procedural analysis, leading to reduced
complexity. This is due to the fact that our analysis needs to find a type usage only
once per type, not once per pointer variable.

Second, our analysis works on the abstract syntax tree (AST) of full (preprocessed) C
code—including many GCC extensions—and does not perform any preliminary trans-
formation steps. In contrast, many points-to analysis algorithms require the source code
to be transformed into simplified statements [ALSU07], such as three-address code or
single-static assignment [And94, Ste96, Das00, HT01, PKH07], or they work on some
compiler-specific medium level representation of the code [CCL+09].

Third, the used-as analysis detects type usages not only in assignment statements,
but in all other expressions that might change a pointer’s type, such as type casts or
return statements. The following example illustrates the importance of this difference
for our goal.

Example 7.1 Consider the following code fragment:

1 struct A { /* ... */ };

2 struct B { void *data; };

3

4 struct A *pa = malloc(sizeof(struct A));

5 void *p = malloc(sizeof(struct B));

6 ((struct B*)p)->data = pa;

When this code is transformed into simplified statements, line 6 would introduce one or
more temporary variables. The result of the transformation could look as follows:

6 /* was: ((struct B*)p)->data = pa; */

7 struct B *tmp1 = (struct B*)p;

8 tmp1->data = pa;

Since traditional points-to analyses are variable-specific rather than type-specific, there
are basically two possible outcomes for a points-to analysis of line 6 or of the simplified
statements in lines 7 and 8:

• If the points-to analysis is field-insensitive, the analysis considers all assignments
to fields as assignments to the variable itself. Thus, it would conclude that both
‘tmp1’ and ‘p’ point to the ‘struct A’ object ‘pa’, which is clearly not the case.
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• If the points-to analysis is field-sensitive, the analysis would catch the type usage
in the assignment for the introduced temporary variable ‘tmp1’ of type ‘struct
B*’ but would not propagate it to variable ‘p’, since ‘p’ is of a different type and
not even a ‘struct’ or a ‘union’.

In contrast, the used-as analysis correctly handles such situations and recognizes both
runtime type usages in the original as well as in the simplified code: first, that variable ‘p’
is cast to type ‘struct B*’, and second, that field ‘data’ of type ‘struct A’ is assigned
a ‘struct A*’ object. Note that while the first usage is bound to variable ‘p’, the second
usage is bound to type ‘struct B’ and will be considered any time this field of an object
of this particular type is accessed. N

Finally, most points-to analysis algorithms ignore pointer arithmetic — that is, the
calculation of a variable’s address using an arithmetic expression which might involve the
address, value, or pointed-to address of another variable. The only exception here is the
KOP system [CCL+09], which supports adding a type-specific offset to a pointer location,
but nothing more complex. Our approach overcomes this limitation and supports full
C arithmetic expressions to transform a source value into a target address. In fact, our
analysis has revealed usages of all sorts of pointer arithmetic in the Linux source code,
including modulo division, bitwise logical operations (i. e., application of bit masks), and
bit shifts.

7.1.2 Notation and Symbols

As already mentioned in the previous section, our analysis works on the AST of full C
source code. This leads to a more complicated formal notation of the deduction rules of
our algorithm. In this section, we introduce the notation and symbols we are using for
the description.

7.1.2.1 Symbol Transformations

Our algorithm starts from symbols representing variables and analyzes the expression
and the type context in which they are used by traversing the AST. In its context, a vari-
able may undergo several transformations within the expression, such as dereferencing
or a field access. We denote a list of transformations for a symbol with T = τ1, τ2, . . . , τk
and use ε to represent an empty list. To express that variable x is transformed by list T ,
we write 〈x, T 〉, where the transformations τi in T are applied from 1 to k. A complete
overview of all symbol transformations is given in Table 7.1.

Example 7.2 Consider the following code fragment:

1 (*f());

2 return &x[2]->y.z;
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Description Example Notation

Field access x.y 〈x, .y〉
Array access x[3] 〈x, [3]〉
Address operator &x 〈x,&〉
Dereferencing *x 〈x, ∗〉
Arrow operator x->y 〈x, ∗, .y〉
Function invocation f() 〈f,

�
〉

Function return return x 〈x, �〉

Table 7.1: Symbol transformations and their corresponding formal notation.

The first line results in the transformation 〈f,
�
, ∗〉 while the second line is expressed as

〈x, [2], ∗, .y, .z,&, �〉. N

7.1.2.2 Expressions

In order to handle runtime pointer arithmetic correctly, it is important to consider full
C expressions. We abbreviate an arbitrary legal C expression involving only variable
‘x’ and compile-time constant values as e(x). Note that this expression might contain
symbol transformations to x. This is fine as long as the transformations are irrelevant
and helps to abbreviate the notation. In particular, if T 6= ε, we can construct e′ from
e such that e(x) = e′(〈x, T 〉). In that case, e(x) is just a more concise representation of
e′(〈x, T 〉). Thus, we prefer the former notation unless the actual transformations T are
important in a particular context.

The following example illustrates the relation between expressions and transforma-
tions.

Example 7.3 Given the C expression ‘(x->y + 3) * 4’, we can see this expression as
e1(v) = (v+3) ·4. Thus, we can denote it with e1(〈x, ∗, .y〉). However, the same code can
also be written as expression e2(v) = (〈v, .y〉+ 3) · 4, resulting in the notation e2(〈x, ∗〉).
Finally, the expression can also be transformed to e3(v) = (〈v, ∗, .y〉 + 3) · 4, so we can
write e3(x). N

7.1.3 Step 1: Points-To Analysis

The used-as analysis is type-centric rather than variable-centric. As a consequence, the
used-as relations are only relevant for two types of symbols: global variables of types
that allow them to hold a pointer value and structure fields of these types. However,
such symbols are often assigned to local variables before the actually interesting type
usage occurs. Thus, we first perform a field-sensitive, intra-procedural, and control flow
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7.1 Static Code Analysis

insensitive points-to analysis of the source code. This allows us to trace the type usage to
the variables and types of interest across multiple statements. We use the inference rules
listed in Figure 7.1 to derive the complete points-to map as explained in the remainder
of this section.

7.1.3.1 Initialization

We examine all assignment and return statements in the source code and initialize the
points-to map according to the assign and return rules. Note that for the left-hand
side of an assignment (i. e., an lvalue1), the assign rule records all transformations that
are applied to this symbol in a given statement. Keeping track of the transformations
is important for three reasons:

1. By considering the address and star operators, we can distinguish between the
values of ‘&x’, ‘x’, and ‘*x’. They also enable us to resolve indirect assignments
through pointer variables, such as in ‘x = &y; *x = z;’.

2. Through the field and array access transformations, we achieve field sensitivity for
structures and arrays.

3. The pointer analysis is intra-procedural in nature; that is, it does not consider
the pointer assignments as they flow into function parameters and back through
return statements. However, we keep track of global variables that are used within
functions and are returned to the caller by means of the function call and function
return transformations.

Each 〈x, T 〉 actually maps to a set of possible locations. For the sake of readability of
the notation, we only write 〈x, T 〉 7→ e(y) to express that e(y) belongs to the points-to
set of 〈x, T 〉 (instead of using the less concise notation 〈x, T 〉 ⊇ {e(y)}).

The following example demonstrates the application of the assign and return rules
during the initialization:

Example 7.4 Given the code fragment below:

1 int *x, y[4], *z;

2 int f() { return *x; }

3 y[1] = z + 2;

4 x = y[1] * 3;

The initialization for this code results in the following points-to set:
(1) return, line 2: 〈f, ε〉 7→ 〈x, ∗, �〉
(2) assign, line 3: 〈y, [1]〉 7→ 〈z, ε〉+ 2
(3) assign, line 4: 〈x, ε〉 7→ 〈y, [1]〉 · 3 N

1An “lvalue” is a value that has an address and can be assigned to.
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(assign) 〈x, T 〉 = e(y) |= 〈x, T 〉 7→ e(y)

(return) type f() { return e(x); } |= 〈f, ε〉 7→ 〈e(x), �〉

(trans)
〈x, Tx〉 7→ ey(〈y, Ty〉) 〈y, Ty〉 7→ ez(z)

〈x, Tx〉 7→ ey(ez(z))

(star-1)
〈x, Tx〉 7→ ey(〈y, Ty,&〉) 〈x, Tx, ∗〉 7→ ez(z)

〈y, Ty〉 7→ ez(z)

(star-2)
〈x, Tx〉 7→ ez(〈z, Tz,&〉) 〈y, Ty〉 7→ ex(〈x, Tx, ∗〉)

〈y, Ty〉 7→ ez(〈z, Tz〉)

(call-func)
〈x, Tx〉 7→ ef (〈f,

�
〉) 〈f, ε〉 7→ 〈ey(y), �〉

〈x, Tx〉 7→ ef (ey(y))

(call-ptr)
〈x, Tx〉 7→ 〈y, Ty,

�
〉 〈y, Ty〉 7→ 〈f,&〉

〈x, Tx〉 7→ 〈f,
�
〉

Figure 7.1: Inference rules for the pointer analysis that is performed as part of the used-
as analysis. The operator |= describes relations that are derived directly from source code
statements.
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7.1.3.2 Transitivity

After the initialization, the trans rule allows us to derive transitive points-to relations.
In order to retain field sensitivity, the rule requires that the same transformations Ty
are applied to y on the left and right-hand side.

Example 7.5 We continue Example 7.4 and apply the transitivity rule to the previous
points-to set:
(4) trans, (2), (3): 〈x, ε〉 7→ (〈z, ε〉+ 2) · 3 N

Note that for inferring transitive relations, we required that x 6= y∨Tx 6= Ty. That is,
we disallow recursive expressions. For this reason, we only consider regular assignments
during initialization and ignore all arithmetic assignments, such as ‘x += y’, as they are
inherently recursive. For the used-as analysis step, we only need to encounter each type
usage once per type. Consequently, the non-recursive nature of the points-to analysis
step has no effect on the resulting used-as relations.

7.1.3.3 Indirect Assignments

The rules star-1 and star-2 handle indirect assignments to and from pointer variables,
respectively. The next example illustrates their usage:

Example 7.6 Consider the following three assignments:

1 p = &x;

2 *p = y;

3 z = *p;

The rules star-1 and star-2 handle the indirect assignments in line 2 and 3. To derive
that z points to y, we simply apply the trans rule again:
(1) assign, line 1: 〈p, ε〉 7→ 〈x,&〉
(2) assign, line 2: 〈p, ∗〉 7→ 〈y, ε〉
(3) assign, line 3: 〈z, ε〉 7→ 〈p, ∗〉
(4) star-1, (1), (2): 〈x, ε〉 7→ 〈y, ε〉
(5) star-2, (1), (3): 〈z, ε〉 7→ 〈x, ε〉
(6) trans, (2), (3): 〈z, ε〉 7→ 〈y, ε〉 N

7.1.3.4 Function Invocations

Functions can be invoked in two ways: through the function name, or through a function
pointer. For our analysis, function calls are only of interest if they return a reference to
a global variable that undergoes a type usage later on. We handle both cases as follows.

If a function that returns a variable in its body is called in some place, the call-
func rule derives the points-to relation between the expression being returned and the

97



7 Extracting Semantic Knowledge through Static Code Analysis

variable that receives the function’s return value. For function pointers, the rule call-
ptr transforms the call of the function pointer into a call of the function that it points
to. The following example shows their application:

Example 7.7 The code lines below define a function as well as a function pointer, both
of which are invoked afterwards:

1 int *x, *y, *z;

2 int* f() { return x; }

3 int* (*pf)() = &f;

4 y = f();

5 z = pf();

The function pointer ‘pf’ points to function ‘f’. The inference rules derive the following
points-to set from this code:
(1) return, line 2: 〈f, ε〉 7→ 〈x, �〉
(2) assign, line 3: 〈pf, ε〉 7→ 〈f,&〉
(3) assign, line 4: 〈y, ε〉 7→ 〈f,

�
〉

(4) assign, line 5: 〈z, ε〉 7→ 〈pf,
�
〉

(5) call-func, (1), (3): 〈y, ε〉 7→ 〈x, ε〉
(6) call-ptr, (2), (4): 〈z, ε〉 7→ 〈f,

�
〉

(7) call-func, (1), (6): 〈z, ε〉 7→ 〈x, ε〉 N

7.1.3.5 Deriving the Transitive Closure

After initializing the points-to map using the assign and return rules, we apply the
other rules listed in Figure 7.1 repeatedly. When no more new relations can be derived,
the transitive closure of the points-to map has been found.

Since our rules allow arbitrary C expressions on the right-hand side to be mixed with
symbol transformations which are chained to nested expressions, situations can arise
where the combined expression has no equivalent in C. For example, all relations result-
ing from the return rule are actually only useful as intermediate results and require
further combination with other rules to produce new points-to relations. Consequently,
we remove all relations without valid C equivalences from the points-to set once the
transitive closure is found.

7.1.4 Step 2: Establishing Used-As Relations

In order to establish the used-as relations, we compare the type each global variable or
structure field is used as to its declared type. For this comparison, we also take the
points-to map into account that has been generated in the first step to detect indirect
type usages by means of local variables. A type usage may occur in the context of:

98



S
ta
ti
c
C
od
e
A
na
ly
si
s

7.1 Static Code Analysis

Listing 7.1: Various usage patterns that establish a used-as relation between field ‘data’
of ‘struct B’ and ‘struct A*’.

1 struct A { int value; struct A *next; };

2 struct B { void *data; }

3

4 struct A* func1(struct A *a) { return a; }

5

6 struct A* func2() {

7 struct B b;

8 struct A a = { 42, b.data }; // struct initializer

9 struct A *pa = b.data; // pointer initializer

10 pa = b.data; // assignment

11 a = *((struct A*)b.data); // dereference (*)

12 ((struct A*)b.data)->value++; // dereference (->)

13 pa = func1(b.data); // function parameter

14 return b.data; // return statement

15 }

• assignment statements,

• initializers,

• pointer dereferencing after type casts,

• function parameters, and

• return statements.

An example for each of these usages is given in Listing 7.1. For all of the cases shown
in the code fragment, our used-as analysis comes to the same conclusion: Field ‘data’ of
‘struct B’ having type ‘void*’ is in fact used as a pointer of type ‘struct A’ with no
additional pointer arithmetic. This relation is stored in the type information for ‘struct
B’ and will be considered whenever the field ‘data’ of such an object is accessed.

Special care needs to be taken for the types of global variables and for structures that
are embedded in other structures. The type usages of such objects are specific to their
context, which is the variable name for global variables or the embedding data structure
for nested structures. The next example illustrates the underlying problem.

Example 7.8 Consider the listing in Example 5.2 on page 56 once again. The field
‘list’ in line 4 is defined as an embedded ‘struct list_head’ within structure ‘module’.
Listing 5.2 on page 59 shows how the Linux kernel uses this field to iterate over the list
of loaded kernel modules. In a nutshell, the relevant code lines that constitute the
interesting type usage can be summarized as follows:
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1 struct list_head modules, *__mptr;

2 struct module* mod;

3 __mptr = modules.next;

4 mod = (struct module*)((char*)__mptr -

5 offsetof(struct module, list));

The field ‘next’ of global variable ‘modules’ is first assigned to a temporary variable in
line 3. Then, ‘list.next’ is cast to ‘char*’ in line 4 before a specific offset is subtracted
and the resulting address is cast to ‘struct module*’ again.

This example includes two context specific pointer usages: one for field ‘next’ of
variable ‘modules’ and one for field ‘list.next’ within ‘struct module’. It is obvious
that the respective pointer manipulations are valid only within the same usage context.
If we were to apply the used-as relation as seen for ‘list.next’ to all other fields or
variables of type ‘struct list_head’, we would essentially mix up all types that are
arranged in doubly linked lists, leading to impractically high numbers of candidate types
to consider. N

Our implementation correctly handles such situations and considers the usage context
when evaluating used-as relations (see Section 7.2.2). This results in variable and type
context-sensitive used-as relations, which reduces ambiguities and vastly improves the
type accuracy for locating kernel objects. Note that we intentionally ignore type usages
that occur outside of any context. For example, consider a pointer ‘void* p’ that is
cast to some type ‘foo*’. Without anchoring this used-as relation to the context of a
global variable or a data structure or union, we would come to the conclusion that every
pointer of type ‘void*’ might be used as a pointer of type ‘foo*’, which is clearly not
what we want.

7.2 Implementation

We have implemented the proposed used-as analysis as an extension to our VMI frame-
work InSight (see Chapter 6). This tool uses the debugging symbols of the inspected
kernel to locate global variables in the kernel’s address space and derive the layout of
data structures. The extended type information gathered from the used-as analysis now
augments the static type information and thus the semantic knowledge µ of the soft-
ware architecture. Since the external view-generating component [[gλ,µ]] depends on this
knowledge as illustrated in Figure 6.1, this extension allows InSight to consider all pos-
sible pointer interpretations of any field or variable that occurs anywhere in the kernel’s
source code.
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7.2.1 Source Code Level Analysis

The consolidated type information extracted from the debugging symbols builds the
initial knowledge base for InSight. To capture the dynamic pointer manipulations of the
kernel, InSight parses the kernel’s source code in a second step, performs the used-as
analysis, and builds an extended type graph from the collected information to reflect
such dynamic manipulations. Through this combination of debugging symbols and static
code analysis, InSight achieves a high object coverage and type accuracy.

The Linux kernel comes with a highly sophisticated build system based on the GNU
‘make’ utility. Depending on the kernel configuration and system environment, the
build system selects proper compiler parameters, macro definitions, and include paths
to compile the source files. In order to avoid having to mimic this complex system, we
instead use a small wrapper script for the GNU C compiler that stores the preprocessed
source files during compilation in a separate directory. Thus, we recompile the guest
kernel with debugging symbol generation enabled and set our wrapper script as the
compiler to be used. This assures that the code being compiled exactly corresponds to
the code that InSight analyzes later on.

In our experience, the used-as analysis of almost 230 million lines (6.4 GB) of prepro-
cessed C code of a Linux 2.6.32 kernel takes less than three hours on a standard PC
equipped with a CPU of type Intel Core 2 Quad Q9550 (2.83 GHz) and 12 GB of RAM.

7.2.2 Applying Used-As Relations

The used-as relations found by our analysis are integrated into the type database of
InSight. As a result, all interfaces that InSight provides benefit from the additional
semantic knowledge. Each used-as relation consists of:

• a source global variable or field within a data structure (the context type),

• a target type (the used-as type), and

• a C expression describing the transformation from the source value to the target
address.

The expression typically includes a reference to a variable x, as we have previously
denoted with e(x). Recall that internally, kernel objects are represented as Instance
objects. Instances basically consist of a virtual address (where the object resides in
memory) and an associated type. If that type is a ‘struct’, a ‘union’, or an array,
its fields or elements can be accessed to derive further instances. Whenever a global
variable v or a field m of a data structure is accessed, the following steps are performed:

1. The type database is queried for used-as relations of the accessed variable or field.
If no such relations exist, an instance of the defined type of v or m, respectively,
is returned.
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2. For all used-as relations, the context of the current instance is tested for compati-
bility with the context of variable x within expression e(x).2 The context includes
the variable name of v (for global variables) and the data type of v or m, respec-
tively. If more than one compatible relation is found, this ambiguity is handled as
follows:

2.1 If exactly one of the used-as relations is context specific with respect to vari-
able v, that relation is selected.

2.2 If exactly one used-as relation has a larger context than all other relations,
that relation is selected. The context size is determined by the number of
fields which are accessed in e(x), starting from the context type — that is,
the type of x.

2.3 If none of the previous steps selected a single relation to use, the pointer usage
of the variable or field is ambiguous and cannot be resolved automatically. In
that case, an instance of its defined type is returned.

3. If exactly one used-as relation was selected, the expression e(x) is evaluated to
derive the target address, where x is substituted with the current instance. If no
errors occur during the evaluation (e. g., null pointer dereference, page not present,
division by zero, etc.), then a new instance of the target type at the evaluated
address is created; otherwise, an error is returned.

4. The memory area claimed by the new instance is compared to the area occupied
by the instance of variable x. If the areas overlap, the new instance is discarded
and an instance of the field’s defined type is returned; otherwise, the new instance
derived from the evaluation is returned.

The strategy for resolving ambiguities described in step 2 guarantees that the con-
text of specific type usages is preserved. This approach counters potential problems as
outlined in Example 7.8.

The test for memory overlaps in step 4 is especially important for linked lists: The
‘next’ and ‘prev’ fields of an empty list structure point to the structure itself, as shown
in Figure 5.2 on page 57. If a global variable of type ‘struct list_head’ is empty, the
instance derived from applying a used-as relation might result in a non-existing object
that seems to embed the global variable. The overlap test detects such situations and
returns the originally defined type instead. Given that the instance for variable x was
valid, this fall-back solution always produces the correct result.

In our experiments, typically less than 0.5% of all types had fields with ambiguous
used-as relations. In other words, 99.5% of all data structures can be handled in a
completely automated way. While this high number sounds promising, it does not allow

2In fact, the compatibility tests are performed only once when the symbols are loaded and the result
is stored in a hash table to minimize the overhead at runtime.
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the conclusion that our semantic view of the kernel’s memory is correct to the same
degree. Unfortunately, there are still a number of open problems that lead to a higher
uncertainty than the previously stated numbers indicate. We describe some of these
problems in the remainder of this section and approaches for addressing them in the
section that follows.

Legal usage of declared types. If a field has exactly one used-as relation, the algorithm
described above chooses this type instead of the originally defined type. However, this
does not always correspond to the way the kernel uses this type. Consider the definition
of ‘struct page’ in Listing 5.4 on page 63 once more. The field ‘mapping’ in line 17
is defined as ‘struct address_space*’, but in some situations this pointer points to
a ‘struct anon_vma’ object. The kernel distinguishes these two types by testing the
least significant bit of the pointer address. If it is set, the field points to an ‘anon_vma’
object, otherwise it points to an object of the declared type ‘address_space’. Before the
pointer is dereferenced, the two least significant bits of the address are always masked.
Due to the control flow insensitive nature of the used-as analysis, this technique does
not support the identification of the condition in which the type usage occurs.

Code obfuscation. The Linux kernel provides a special macro ‘RELOC_HIDE’ which
uses inline assembler instructions to assign a source pointer to a target variable. The
sole purpose of this macro is to obfuscate the relation between source and target for
the compiler in order to prevent certain optimizations that the compiler would apply
otherwise. This obfuscation affects InSight’s source code analysis in the exact same way
as a compiler, leading to an incomplete view.

Unions. In Section 5.2.4, we already explained the problematic ‘union’ data type.
Upon closer inspection, a union is not much different from ambiguous used-as relations:
each union field represents a viable choice; however, only one is correct, and we can-
not decide which field is valid without additional context information. As a matter
of fact, most unions are embedded within ‘struct’ types that carry the required con-
text information, which is used by the kernel to determine the correct type at runtime.
With a control flow sensitive analysis, we probably could identify the relevant context
information automatically.

Per-CPU variables. On the x86 architecture, Linux supports multiple CPUs with sym-
metric multiprocessing (SMP). This feature also introduces so-called per-CPU variables
into the kernel. As the name suggests, these variables provide one unique instance for
each CPU in the system [CRKH05]. Any variable or field of a structure with a pointer
type can be used as a per-CPU variable; they do not require any special type or other-
wise indicative definition. What makes accessing these variables difficult is the fact that
the per-CPU variable does not actually point to a valid object. Instead, an additional
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CPU specific offset has to be added to the address. The offset is stored in the global
array ‘__per_cpu_offset[i]’, where i is the index of the respective CPU. This offset is
non-null for all SMP kernels, even if only one CPU is available to the system.

Dynamic arrays. Some pointers are used as arrays of dynamic size, as discussed in
Section 5.2.4. The number of elements for the array and thus the amount of allocated
memory are determined at runtime. Sometimes the length of an array is stored in
another variable; other times the end of an array is defined by a special terminating
element (for example, a string is represented as an array of ‘char’ values, where the end
of the string is marked by a the value 0).

Ambiguous used-as relations. Finally, there is still the approximately 0.5% of data
structures having fields with ambiguous used-as relations. Even though this number is
quite low, it does not imply that only 0.5% of all kernel objects are affected by this
problem. In our experience, only one field in a critical data structure that we cannot
resolve automatically can be enough to hide a large number of further objects that are
accessible only though this particular field.

7.3 Type Rule Engine

The approach for applying used-as relations as described in the previous section works
well in many cases, but also has its limitations. First and foremost, the control flow
insensitive nature of our analysis leads to the application of type usages without consid-
ering the conditions under which they were originally discovered, as discussed above. In
addition, the generic approach for deriving new instances has proven to be too inflexible
in order to cope with the wide variety of dynamic pointer manipulations that can be
found in the code of the Linux kernel. If there is one conclusion that we can draw from
our experience with Linux, it is that this highly complex piece of software is simply not
well-suited for “one-fits-all” solutions.

In order to address the remaining challenges and support more flexible application
of used-as relations, we added a type rule engine to InSight. The engine serves as the
central database and management interface for the additional knowledge about type
usages. The type rules themselves are specified in the extensible markup language
(XML) [BPSM+97] and are automatically generated for all identified used-as relations;
however, they can also be supplied by the user. In summary, the engine comes with the
following advantages for our VMI framework:

1. The type rules allow the specification of used-as relations of variables and fields as
before, with an arbitrary C expression to calculate the target address from a source
pointer. However, through the usage of the human-readable XML format for their
definition, this knowledge is much more transparent and easier to understand from
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a user’s perspective. He can easily inspect all the rules that are generated during
the source code analysis. Most importantly, the user can now add, delete, and
modify type rules as he sees fit to cover special cases.

2. A user can assign priorities to type rules. Rules with higher priority take prece-
dence over rules with lower priority of the same context size. This process allows
one to manually resolve ambiguous used-as relations.

3. In addition to the used-as relations as described in Section 7.2.2, the type rule
engine also supports rules that execute JavaScript code to retrieve the instance for
a field or a variable. With this powerful extension, all the exceptional cases that
have been listed in the previous section can be handled.

In other words, the type rule engine allows the user to modify and extend the seman-
tic knowledge µ of the inspected operating system using a standardized interface. This
knowledge is then transparently applied by the VGC to the benefit of all VMI appli-
cations built upon our framework. As a consequence, the rule engine allows InSight to
remain generic, in that it does not include OS- or architecture-dependent code to cope
with sophisticated pointer manipulations, but at the same time, it supports handling
of such cases through specific type rules. All manually contributed expert knowledge is
centralized in reusable type rules. For better maintainability, each rule can specify the
exact hardware architecture, OS family, and kernel version it supports. In the remainder
of this section, we describe the usage of type rules in InSight and how they can help to
address the open issues.

7.3.1 Expression Rules

Every type rule consists of a filter part and an action part. The filter defines the context
in which the rule applies. Supported filter criteria are the data type, the type name, the
variable name, and so on. A complete list of possible filters is given in Table 7.2.

The action defines what happens when an instance matches the filter. The “expres-
sion” action corresponds exactly to the used-as relations introduced in the previous
section: It specifies a source type, a target type, and an expression in C syntax to
calculate the target address from a source pointer or an integer type of pointer size.

Example 7.9 The complete specification of an expression type rule can is given in
Listing 7.2. It shows a rule that allows one to follow the ‘list.next’ field of an instance
of type ‘struct module’ to access the next element within the list of ‘module’ objects.
This rule was automatically generated during source code analysis of a 32-bit Linux
guest. N

Note that a rule’s name and description only have an informative character for the
user and are irrelevant for our further discussion.
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Listing 7.2: Example of an expression type rule that specifies how to access the next element
within the list of ‘struct module’ objects. For better readability, we omitted the mandatory
encoding of the character “>” as an XML entity.

1 <typeknowledge version="1">

2 <rules>

3 <rule priority="2">

4 <name>module.list.next</name>

5 <description>

6 ((struct module *)->list.next - 4) => (struct module *)

7 </description>

8 <filter>

9 <datatype>struct</datatype>

10 <typename>module</typename>

11 <members>

12 <member>list</member>

13 <member>next</member>

14 </members>

15 </filter>

16 <action type="expression">

17 <sourcetype>struct module *src</sourcetype>

18 <targettype>struct module *</targettype>

19 <expression>src->list.next - 4</expression>

20 </action>

21 </rule>

22 </rules>

23 </typeknowledge>
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Filter name Description

datatype Matches the actual data type, e. g., ‘Union’, ‘UInt32’, etc.

filename Matches binary file a global variable belongs to, e. g., ‘vmlinux’ for
the kernel itself or ‘snd.ko’ for module “snd”.

members Matches one or more levels of (nested) fields, specified as a list of
‘member’ elements. Each field may be further refined with ‘datatype’,
‘typename’ and ‘size’ attributes as described in this table.

size Matches the type size.

typename Matches the type name, either by a literal match, by a wildcard
expression, or by a regular expression.

typeid Matches type internal type ID, which might be required for anony-
mous or ambiguous structures.

variablename Matches the variable name, either by a literal match, by a wildcard
expression, or by a regular expression.

Table 7.2: Supported type filter criteria for specifying type rules. One or more of these
filters have to be specified within the ‘filter’ element.

7.3.2 Script Rules

The expression rules are human readable and the specification of a priority helps to
resolve several ambiguities. However, the expression action is static and cannot dynam-
ically adapt to the context, as it would be required to resolve unions, for instance. To
fill this gap, we introduce script type rules.

Script rules differ from expression rules only in their ‘action’ element. This action
can either specify a file name containing JavaScript code and the name of a function
within that file that should be called, or it may contain inline script code. The code is
executed when the rule’s filter matches a variable or a field and receives the triggering
instance and the accessed fields as arguments. The following return values are allowed:

• If the rule returns the boolean value ‘false’, then the script action is ignored and
an object of the variable’s or field’s defined type is returned.

• If the rule returns a valid instance object, that instance is used as the object
represented by the field or variable being accessed.

• If the rule returns an array of instance objects, that field or variable is considered
to be an array of the given length with the given objects as elements.

• If the rule returns an invalid (null) instance, the field or variable is considered to
be inaccessible.
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The following example illustrates how script rules can be employed to disambiguate a
‘union’ field embedded within a structure.

Example 7.10 Consider Listing 7.3 which shows a script rule with inline code. In
order for an instance of type ‘struct sysfs_dirent’ to match the rule, two consecutive
field accesses are required. The first is an anonymous field (line 8) which happens to be
the union in question, the second field uses the special wildcard ‘match="any"’ (line 9)
which matches any field within the anonymous structure.

Two arguments are passed to the code in the ‘arguments’ array when it is executed:
the first is the instance that matched the filter (line 13), the second is an array of (nested)
fields that were accessed to match the filter (line 14). The fields are given as numeric
identifiers, making them definite even for anonymous fields.

In order to decide which of the union fields is valid, the rule inspects the field
‘s_member’ of the embedding ‘sysfs_dirent’ structure. The value of this field is re-
trieved in line 15 and tested in line 27 to see if it matches the flag required for the field
being accessed. If the correct flag is set, the rule returns ‘false’ to indicate that the
defined type should be used as-is; otherwise, an invalid instance is returned to effectively
forbid access to the wrong union field. N

It is not necessary to resolve all unions with script rules, even though it would be
possible.3 However, for some key data structures, this step is required in order to make
further objects available that are only accessible over this path. The ‘sysfs_dirent’
structure shown in the previous example is such a key data structure as it organizes
the entire sysfs file system hierarchy. With only this one handcrafted rule, we can
correctly identify thousands of objects within this hierarchy and make them available to
all applications using our VMI framework.

We use further script type rules to handle many of the special cases we described in
Section 7.2.2, such as per-CPU variables, the ‘page’ structure, radix tree nodes, and the
closely related ‘idr’ and ‘idr_layer’ structures.

Another useful application for script rules is global variables belonging to kernel mod-
ules. A kernel module can be loaded to an arbitrary memory location at runtime; thus,
its global variables are not located at fixed addresses. The debugging symbols contain
only the offset of each variable relative to the base address of its segment. In order to
give access the global variables of loaded kernel modules, we have created a special type
rule that locates the base address of the corresponding segment for any loaded module
and corrects the variable’s address automatically. If the module is not loaded, the rule
returns an invalid instance to indicate that this variable is currently not accessible. Due
to the expressiveness of the type rule filters and the script code, one rule is sufficient to
handle the variables of all kernel modules in a uniform way.

3The Linux kernel 2.6.32 of the Debian distribution used for most of our experiments contains a total
of only 147 unions (not considering the data types of all kernel modules), so we consider creating
manual rules for each of these data types a feasible task.
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Listing 7.3: Example of a script type rule that resolves the anonymous union within ‘struct
sysfs_dirent’ based on the flags stored in the ‘s_flags’ field. For better readability, we
omitted the mandatory encoding of special characters as XML entities.

1 <rule priority="101">

2 <name>sysfs_dirent.{s_dir,s_symlink,s_attr,s_bin_attr}</name>

3 <description>Resolve sysfs entry type in union</description>

4 <filter>

5 <datatype>struct</datatype>

6 <typename>sysfs_dirent</typename>

7 <members>

8 <member></member>

9 <member match="any" />

10 </members>

11 </filter>

12 <action type="inline">

13 var dirent = arguments[0];

14 var members = arguments[1];

15 var flags = dirent.s_flags.toUInt32();

16 var elem = dirent.Member(members[0]).Member(members[1]);

17

18 // Types as defined in <fs/sysfs/sysfs.h>

19 var sysfs_types = new Object({

20 s_dir: 0x1,

21 s_attr: 0x2,

22 s_bin_attr: 0x4,

23 s_symlink: 0x8

24 });

25

26 // If flag is set corresponding to name, the instance is valid

27 if (flags & sysfs_types[elem.Name()])

28 return false;

29 else

30 return new Instance();

31 </action>

32 </rule>
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7.3.3 Operating System Filters

Hand-written type rules are usually created to address a specific issue in the view gen-
eration process for a distinct OS. For example, all the previously shown type rules are
designed for Linux guests. But even within the same OS family, things tend to change
between hardware architectures or kernel versions. Thus, it is important to be able
to specify which hardware architecture, OS family, and kernel version is targeted by a
particular rule.

For the type rule engine, this can be achieved by specifying OS filter criteria for one
or several rules. Table 7.3 lists all possible OS filters that can be used for type rules.
They are added as attributes to the ‘typeknowledge’, ‘rules’ or ‘rule’ element of the
XML specification. Any attribute appearing on a deeper nesting level overrides the same
attribute on a higher level, as the next example illustrates.

Example 7.11 Consider the following specification for type rules:

1 <typeknowledge version="1.0">

2 <rules os="linux" minosversion="2.6">

3 <rule>...</rule>

4 <rule minosversion="2.6.16">...</rule>

5 <rule>...</rule>

6 </rules>

7 </typeknowledge>

The ‘rules’ element in line 2 specifies the target OS for the enclosed rules to be a Linux
kernel of version 2.6 or greater. This is the effective OS filter for the rules in lines 3
and 5. The ‘rule’ element in line 4 further refines the kernel version to be at least 2.6.16.
The requirement for the Linux OS family for this rule, however, is inherited from the
enclosing ‘rules’ element. N

With the help of OS filters, the user can write type rules as generic as possible and

Filter name Description

architecture Specifies the system architecture of the targeted guest OS, for exam-
ple, ‘x86’, ‘x86_pae’, or ‘amd64’.

os Specifies the targeted operating system family, such as ‘linux’ or
‘windows’.

minosversion Specifies the minimum OS version that is compatible with a rule.

maxosversion Specifies the maximum OS version that is compatible with a rule.

Table 7.3: Supported OS filter criteria for type rules. The filters are specified as attributes
to the ‘typeknowledge’, ‘rules’ or any ‘rule’ element.
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at the same time be architecture and version specific where this is required without
affecting view generation for all other guests.

7.4 Application

The most versatile interface of our framework is the scripting engine. We introduced its
basic functionality in Section 6.2.5. With the additional coming knowledge in the form
of used-as relations and type rules, accessing and using kernel objects becomes even
more easy and intuitive.

Example 7.12 The following listing shows how to print a list of loaded kernel modules
for a Linux guest, similar to the way that the standard tool ‘lsmod ’ does:

1 var head = new Instance("modules");

2 var m = head.next; // modules.next used as struct module

3 while (m.MemberAddress("list") != head.Address()) {

4 println(m.name, m.args);

5 m = m.list.next; // module.list.next used as struct module

6 }

N

In direct comparison with the JavaScript code given in Example 6.7 on page 84 which
performs the same task, this version is much more compact and easier to read. The
most important improvement, however, is the fact that this code does not require any
more expert knowledge from the user about the expected types and how the lists work
internally. All pointer arithmetic and type casts are done transparently behind the
scenes. The user can focus on the actual introspection task without having to deal with
manual address calculations. In addition, the less manual pointer arithmetic the code
contains, the more portable it is across different kernel versions and system architectures.

7.5 Related Work

The used-as analysis introduced in this chapter is similar to an intra-procedural, field-
sensitive, control flow insensitive points-to analysis. In fact, the first step of our analysis
involves a traditional points-to analysis on full C source code. In the following, we
describe some well-known algorithms for points-to analysis followed by a discussion of
how our used-as analysis is different.

In his PhD thesis, Andersen [And94] moves away from the established alias analysis
for pointers and introduces a constraint-based pointer analysis algorithm. His algorithm
approximates the locations a pointer variable may point to by a set of abstract pointer
locations which are also intra-procedural, field-sensitive, and control flow insensitive. To
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derive this points-to set, he defines a set of type inference rules based on the standard
semantics of the C programming language. The type inference rules are then applied
to the initial set repeatedly until the transitive closure of all locations for each pointer
variable is found. This algorithm produces fairly precise points-to sets but does not scale
well for large programs.

Steensgaard [Ste96] proposes a unification-based, inter-procedural pointer analysis al-
gorithm. The focus of this algorithm is a low algorithmic complexity which is almost
linear in the size of the program, as opposed to exponential worst-case run-time of An-
dersen’s algorithm4. This low run-time complexity comes at the cost of less precise
points-to sets. In contrast to Andersen’s approach, this algorithm not only infers loca-
tions for pointer variables, but also types of values in these locations. The algorithm
treats all assignments as bi-directional. That is, for every assignment ‘x = y’, the algo-
rithm unifies the points-to sets of ‘x’ and ‘y’ and concludes that both variables might
point to the same set of locations. When a variable might point to several locations, all
locations are restricted to hold values of the same type. In other words, the algorithm
does not allow that the same variable might point to objects of different types.

In order to achieve better accuracy with some added algorithmic complexity, Das
extends Steensgaard’s unification-based approach to a “one level flow” algorithm [Das00].
The idea is to avoid unification of pointer locations at the first level within the points-
to graph while unifying the pointer locations in derived pointer locations. Instead, he
introduces directional flow edges between points-to sets at the first level. For example,
the assignment ‘x = y’ introduces a flow edge from the pointer target node of ‘y’ to the
pointer target node of ‘x’. This solution improves the precision compared to Steensgaard;
however, the pointer locations related by flow edges are still restricted to point to values
of the same type.

Heintze and Tardieu [HT01] describe a context-insensitive variation of Andersen’s al-
gorithm. Compared to Andersen, their algorithm reduces the runtime complexity by
implementing dynamic transitive closure. For their analysis, the authors maintain the
points-to graph in a pre-transitive state. If information about a particular node in
the graph is required, they compute the required data on the fly. Through a sophisti-
cated combination of graph reachability information, cycle elimination, and information
caching, their algorithm scales well to “millions of lines of C code in a second”, according
to the authors. This constrained-based approach uses only four deduction rules for com-
puting the points-to set, which are essentially simplified versions of our assign, trans,
star-1, and star-2 rules defined in Figure 7.1 on page 96. Since the application of
their algorithm is different from ours, they do not require deduction rules for handling
return statements and function (pointer) invocations.

Pearce et al. [PKH07] propose a field-sensitive, flow-insensitive pointer analysis tech-
nique. Their approach is comparable to the work of Heintze and Tardieu, however it

4However, Steensgaard claims that the complexity of Andersen’s algorithm for real-world programs
typical is approximately O(n4) rather than O(exp(n)), where n is the program size.
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is able to handle function invocations and function pointers. Similar to Andersen, they
achieve field sensitivity by treating each field of a data structure as a unique variable,
leading to an improved accuracy compared to Heintze and Tardieu.

Much more work has been published in the field of pointer analysis (e. g., [CWZ90,
WL95, SH97, FFSA98, YHR99, HL07]). In general, they all follow the basic method of
either Andersen or Steensgaard and improve on different features such as performance,
scalability, context sensitivity, control flow sensitivity, or precision. However, all of the
approaches mentioned so far differ from our used-as analysis in one important aspect:
they were not developed with pointer arithmetic in mind as it is used in highly opti-
mized kernel code. For example, none of the constrained-based approaches based on
Andersen’s analysis provides deduction rules for arithmetic expressions with pointers.
The unification-based algorithms following Steensgaard’s idea even constrain pointer
variables to only point to objects of the same type. However, the examples given in
Chapter 5 illustrate that algorithms with this limitation are not applicable for the code
we analyze: a field of type ‘void*’ is often used as a pointer to different types of ob-
jects depending on the context. Another major difference is the nature of our analysis:
while the other approaches try to approximate the locations a pointer might point to,
we are instead interested in the type of that pointer location. In addition, we allow
more complex transformations from a source pointer to a target location; that is, we not
only consider direct assignments, indirect assignments and transitive relations, but also
support complete C expressions to compute the target address.

The KOP system introduced by Carbone et al. [CCL+09] is the most closely related
work to our used-as analysis. In fact, this work was the inspiration for our used-as
analysis. Their algorithm is an extension of the work done by Heintze and Tardieu [HT01]
and uses the same four deduction rules. However, they allow some limited pointer
arithmetic — their deduction rules support adding an integer offset value to a pointer
address in the assignment statement. The other three rules consider this offset when
deriving new pointer locations from the intermediate set. While this approach represents
a step into the right direction, it is insufficient in our experience; our used-as analysis of
the entire Linux kernel reveals that complex arithmetic expressions involving bit shifts
and bitwise logical operations to calculate the target address are not uncommon in kernel
code.

7.6 Summary

We have presented an analysis technique to capture dynamic pointer and type manip-
ulations in full C source code. In contrast to the rather data-flow-oriented points-to
analysis, our analysis is type-centric and establishes used-as relations between global
variables, structure fields and pointer types. In order to support the complete emulation
of dynamic pointer manipulations, our approach also extracts any pointer arithmetic
that is performed to yield the target address from a pointer value and supports arbi-
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7 Extracting Semantic Knowledge through Static Code Analysis

trary C expressions. The implementation of this kind of analysis in our VMI framework,
InSight, augments the type information it was already using.

In order to support type usages that require even more context information, we added
a type rule engine to our framework that enables the user to specify additional semantic
knowledge in the form of XML type rules. The rule engine allows us to address cases
which cannot be resolved automatically based on the source code analysis, such as
union fields or per-CPU variables. The type knowledge can be expressed in the form
of small JavaScript programs that are executed for triggering objects. This code is
able to dynamically resolve fields and variables as they are accessed using more context
information than the source code analysis provides. These rules represent a centralized
database of expert knowledge that is transparently available to all applications based on
our framework.

With these extensions, InSight is now able to consider all feasible interpretations of
a field or variable, leading to vastly improved coverage and accuracy when performing
introspection tasks.
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Chapter 8
Evaluation

The goal of this work is to generate a view of a guest OS’s state running inside a VM that
is as close to the guest internal view as possible. A VGC that is capable of generating
such a view is said to be full state applicable (see Section 3.3.1). In Chapter 6 and 7,
we describe our approach for generating views with full state applicability from the
hypervisor level. For all of our methods, we strive for a high degree of automation and
accuracy. In this chapter, we evaluate the performance of our VMI framework, InSight,
with regard to several aspects. The results of our evaluation provide evidence for the
effectiveness and efficiency of our approach.

Chapter overview. One key performance indicator for InSight is how much kernel
memory it can identify correctly and how many objects it misses. The details and results
of the object coverage test can be found in Section 8.1. To illustrate the impact of the
different knowledge sources that can be used, we repeat the evaluation with varying
configurations. We demonstrate the effectiveness of VMI-based malware analysis and
detection in Section 8.2. Here, InSight is used to analyze the changes applied by several
rootkits and to detect hidden processes and network connections. We summarize our
achievements in Section 8.3 along with our concluding remarks.

8.1 Kernel Object Coverage and Accuracy

The probably most important aspect for a VMI framework that is supposed to bridge
the semantic gap is the “completeness” of the view that it generates. With the complete
semantic knowledge at hand, a perfect understanding of the kernel memory, and no
side effects from inspecting a running system caused by interrupting a “guest-atomic”
operation1, in theory the generated view can be as complete as the view within the guest

1That is, an operation that is executed without interruption within the guest, but still can be inter-
rupted by the hypervisor.

115



8 Evaluation

itself.
In this section, we evaluate how much memory occupied by kernel objects InSight

correctly identifies when building the kernel object graph for a Linux operating system.
The graph is built by starting at the global variables of the kernel and following all array
elements, structure fields and pointers to further objects within the kernel address space.
While this approach works well for constructing the graph, we have to solve a different
problem first: How do we verify an object once we found it? We describe our method
for validation in the following.

8.1.1 Validating Kernel Objects

We use three different ways to validate the objects that we find: the slab caches of the
Linux kernel, type invariants, and validation heuristics. Of these three mechanisms,
the slab cache validation is the most reliable one. Unfortunately, this mechanism is not
available to InSight in a productive environment due to its high run-time overhead. Thus,
we only use it to assess the end result of each experiment; however, this information is
not considered during construction of the object graph itself (i. e., the graph itself is in
no way affected by the slab data). In contrast, the other two mechanisms only rely on
architectural knowledge of the guest OS as well as on information collected as part of
the used-as analysis. As a consequence, the latter two mechanisms are always available
to InSight, in particular when generating views of a productive VMs.

8.1.1.1 Validation using Slab Caches

The Linux kernel provides several functions for allocating continuous memory areas
internally. Most allocations are done through the slab allocator [BC05].2 It is designed
for frequent allocations and deallocations of kernel objects of the same type. Each of
these types is managed in its dedicated slab cache to avoid memory fragmentation. Less
frequently used types are allocated through a call to the kernel function ‘kmalloc()’.
This function serves memory requests only in geometrical sizes, that is, sizes that are
powers of 2. The ‘kmalloc()’ function itself uses several slab caches to satisfy the
memory requests, one for each power 2i, 3 ≤ i ≤ k, where k depends on the total
amount of physical memory (typically 13 ≤ k ≤ 17).

In order to use the slab caches to validate objects, we can keep book of all slab
allocations and deallocations at runtime. Even though this approach incurs a significant
performance overhead, it provides us with precise lists of allocated kernel memory at
a given point of execution. For object specific caches, we expect to find the exact
same objects at the same memory locations in the kernel graph as well as in the slab

2In the meanwhile, Linux provides three different implementations for the slab allocator on the Intel
architecture and allows to select one at compile time. We already briefly touched upon one im-
plementation, namely the SLUB allocator, in Example 5.7 on page 64. They all provide the same
functionality and interface, so our discussion is not affected by the selected implementation.
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8.1 Kernel Object Coverage and Accuracy

caches. Other heap allocated objects without a type-specific cache cannot be identified
directly. However, if we find such an object in generic slab space for serving ‘kmalloc()’
allocations of the appropriate size, we take this as a strong indicator that the object is
valid.

8.1.1.2 Validation with Type Invariants

Another possible way to validate objects is based on invariants for data structures. This
approach is based on the observation that some fields with numeric types are only ever
assigned a fixed set of constant values during regular operation. If these fields and
the corresponding sets are known, we can test each such field against its value set and
invalidate objects for which the invariants do not hold. This approach has been used in
work related to detecting kernel-level attacks [BGI08, DGSTG09, WZS11].

For our evaluation, we use object invariants to validate the objects that we find, but
not for the purpose of malware detection.3 When InSight parses the kernel sources
to extract the used-as relations, it also records the values assigned to each individual
‘struct’ or ‘union’ field. If a field is always set to compile-time constant values, we
consider the set of all assigned values as invariant for that field. During construction of
the kernel object graph, we ignore all objects that violate their type’s invariants.

8.1.1.3 Heuristics for Object Validation

In addition to the slab caches and the type invariants, we use several heuristics to
determine the validity of an object. The following tests are performed per object:

1. The object must be located in one of the well-known memory areas used by the
Linux kernel (cf. Section 6.2.2.1).

2. The object must be accessible, that is, the page table entry for its address must
be valid (cf. Section 6.2.2.3).

3. If the object represents a function pointer, it has to point into an executable
memory area.

4. If the object represents a pointer, it must point into one of the well-known memory
areas used by the Linux kernel.

5. If the object is of type ‘struct list_head’, its ‘next’ field must point to another
‘struct list_head’ object whose ‘prev’ field must point back to the current ob-
ject. The same must be true when first following the ‘prev’ field and then the
‘next’ pointer back to the current object.

3We consider adding API functions to make the invariant checking mechanism available as part of the
VMI framework for future releases of InSight.
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6. If the object represents a data structure:

a) If the object is not embedded within another object, its address must be
aligned to a four byte boundary.

b) If the object has a ‘struct’ type, all fields have to pass these tests recursively.

c) If the object has a ‘union’ type, one field has to pass these tests recursively.

Each test has an associated penalty that is added when the test fails. The resulting
penalties of all individual tests are combined along with the rating of the “parent” object
into one rating for the current object.4 The end result is a score in the real interval [0, 1].
It is a measure for the plausibility that an object of the given type at the given location
is valid. When the object graph is constructed, we disregard all objects with a score
below a certain threshold and do not follow any of its pointers anymore.

8.1.2 Test Environment

For our experiments, we use two different virtual machines. Both VMs run an installed
Debian Linux distribution [deb], one is using the Intel IA-32 architecture (“i686”, PAE
disabled) and the other the AMD64 (Intel 64) architecture. Both machines are running
a kernel of version 2.6.32-5, where the suffix “5” is a Debian-specific version number.
Each machine is assigned a single CPU, 512 MB of RAM, and 20 GB of virtual hard disk
space. The host machine is equipped with an Intel Core2 Quad (Q9550) CPU running
at 2.83 GHz and 12 GB RAM.

We simulate a web server scenario and install the mail transfer agent Exim, the web
server Apache with PHP5 support, and the relational database system MySQL within
both guests.

8.1.3 Experiments

All experiments are performed on guest physical memory snapshots of the respective VM
stored on the local disk. First, we take a snapshot of each machine in idle state after it
has completed its boot sequence and started all services (called “i686” and “AMD64”
in the results). In addition, we create a high load on the 32-bit VM and take another
snapshot (called “i686 HL”). The load consists of intense local file operations as well as
parallel HTTP requests to the web server that delivers web pages from a Wiki system
written in PHP.

For each memory snapshot, we build the kernel object graph several times while
applying different knowledge sources. The graph is constructed using a breadth-first-
search. A node in the graph describes a continuous memory area within the virtual

4The rating of the parent is multiplied with the intermediate rating of the current object. As a
consequence, the rating of a new object can never be better than the rating of the parent. Global
variables use a parent rating of 1.
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8.1 Kernel Object Coverage and Accuracy

address space claimed by an object of known type. For ‘struct’, ‘union’, or array
types, only one node is created for the occupied memory region, even if they contain
nested structures or arrays. However, we inspect each field or array element recursively
and follow all pointers to further objects that are contained in nested types.

With regard to unions, we always consider all fields (unless a script rule is active
that explicitly disambiguates the union, as shown in Example 7.10 on page 108). If
several union fields have a pointer type, all pointers are followed and the resulting
objects are added as children of the union’s node. This results in potentially overlapping,
contradicting, or invalid objects within the virtual address space. In other words, the
generated graph represents an over-approximation of the true memory layout. In such
cases, the plausibility score that is calculated per object as described in Section 8.1.1.3
often reveals the valid union field.

In the first experiment, we use only the types as defined in the debugging symbols of
the kernel without considering any used-as relations. This represents the basic feature
set of InSight is described in Chapter 6, but without the list-specific heuristics discussed
in Section 6.2.3.1. The corresponding experiment is entitled “no rules” in the results.

In the next experiment, called “used-as”, we add the used-as relations to the type
rule engine as they are parsed from the kernel sources as described in Section 7.1. The
used-as analysis results in 9 530 type rules for the 32-bit guest and 9 512 type rules for
the 64-bit guest. We do not modify any type relations or adjust the corresponding rules’
priorities; rather, we use the automatically generated rules as-is.

Finally, we add a total of 64 hand-written rules to the set of generated rules. These
rules incorporate our knowledge of the kernel and are necessary to handle several of
the dynamic pointer manipulations that cannot be resolved completely with our used-as
analysis, as discussed at the end of Section 7.2.2. All of these manually created rules have
high priorities to override any conflicting rule from the set of auto-generated rules. This
experiment is entitled “used-as + manual” and leverages all features of our framework
to increase object coverage and accuracy.

In order to better quantify the effect of the hand-written rules, we perform an addi-
tional control experiment where we abstain from applying the used-as relations and only
use the manually created rules as knowledge source. This configuration is simply called
“manual”.

To measure the quality of the generated graph, we use the slab cache validation
schemes described in Section 8.1.1. All objects found are compared to the objects
allocated in the slab caches.

8.1.4 Results

Figure 8.1 shows the time required to construct the complete kernel object graph for
each of the aforementioned experiments. The build time shows a strong variation among
all experiments. The graph is built in almost 20 minutes for the 32-bit images and no
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Figure 8.1: Time required to build the kernel object graph for each experiment.

more than 35 minutes for the 64-bit image. When the manually created type rules are
used, the build time decreases to approximately 5 minutes for all snapshots.

The coverage and accuracy results for all three memory snapshots are listed in Ta-
ble 8.1. We discuss these numbers with regard to the coverage of objects and correctness
of the object graph in the following. These numbers also help to explain the variation
in the build time.

8.1.4.1 Slab Object Coverage

The overall object coverage of the resulting kernel map is reflected in the amount of slab
cache memory we can identify correctly. For our experiments, these objects represent the
only “ground truth” for allocated memory we can compare our results to. As previously
mentioned, some object types are allocated in generic memory areas and do not have a
distinct slab cache. For those objects, we can only verify that the memory is currently
in use, but we cannot say precisely which type of object is stored there. However, in our
snapshots 80 to 87 percent of all slab memory is allocated by objects with known types,
that is, the generic slab space accounts for no more than 20 percent in all experiments.
Thus, the given slab object coverage for known types serves as a good metric for the
overall coverage of objects in the kernel address space.

An object in the slab caches counts as found if the kernel graph contains an object of
the exact same type at the exact memory address as an object in a type-specific cache. In
the memory snapshots we use, the total amount of slab allocated memory varies between
4 529 kB and 6 990 kB depending on the system load and architecture. Of this memory,
only between 10.5 and 20.9 percent is identified correctly if only the defined types are
considered. These numbers are visualized as the red bars in Figure 8.2. When using the
semantic knowledge derived by the used-as analysis, up to 46.9 percent of the memory
can be properly identified (the green bars). This corresponds to improvements by factors
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Figure 8.2: Coverage of slab cache memory for all experiments. This represents the values
in the right-most column of Table 8.1.

between two and three, subject to which snapshot is used. With the additional semantic
knowledge expressed in the hand-written type rules, the memory coverage rises to values
between 96.6 and 99.1 percent (blue). In other words, almost the entire slab allocated
memory can be identified correctly when all knowledge is taken into account. If only the
hand-written rules are applied without the used-as rules, the results (yellow) are only
slightly worse compared to the previous experiment. In Section 8.1.5, we discuss these
numbers in greater detail.

8.1.4.2 Overall Object Validity

Another important performance indicator for our VGC is the correctness of the generated
object graph. Table 8.1 shows the total amount of memory claimed by all objects
found, by global variables, by valid objects, by invalid objects, as well as the amount
of memory held by objects whose validity cannot be decided. These categories require
some explanation.

We consider an object to be valid if it either is contained in a type-specific slab cache,
or if it is embedded within a slab object. Conversely, we consider an object to be invalid
if it overlaps with a slab object or a global variable and is not embedded within that type.
For example, suppose we find an object of type ‘struct list_head’ which falls into the
memory area of a slab object. Let us assume this object is a ‘task_struct’. Now, if
the newly found object is located at the offset of any of the fields with type ‘list_head’
within ‘task_struct’, such as ‘tasks’, ‘sibling’, or ‘children’, the object is counted
as valid, otherwise it counts towards the invalid objects. Also, for types that do have
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Figure 8.3: Decision function for the validity of an object found in kernel space.

a dedicated slab cache, we require that objects of that type are contained in the cache
and count all such objects not found in the cache as invalid. In addition, any object is
considered invalid that overlaps with the code section of a function.

Furthermore, we use the type invariants for ‘struct’ objects (cf. Section 8.1.1.2) to
validate data structures. In our experience, they are very useful to identify invalid or
uninitialized objects. However, an objects whose type invariants hold is not necessarily
valid. Thus, we still consider the validity of such an object to be undecided even in the
presence of valid invariants. The whole process of deciding on the validity of an object
is depicted in Figure 8.3.

The results for the overall object validity from Table 8.1 are visualized in Figure 8.4.
The amount of memory for global variables is constant for each architecture, however
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Figure 8.4: Visualization of the objects’ validity within the generated kernel object graph
for each experiment (cf. Table 8.1). The global variables (“globals”) always count towards
the valid objects.

it slightly increases when the manual type rules are considered. This is due to a hand-
written script rule which allows us to access the global variables of loaded kernel modules,
as described in Section 7.3. When comparing the experiments using no type rules and
using the rules resulting from the used-as analysis, the amount of memory for valid
objects increases by a factor between two and three. This is in accordance with the
previous observations about the slab object coverage. In addition, more memory is
classified as undecided or invalid. While this increase is only small for the “i686” and
“AMD64” snapshots, it is significant for the snapshot taken under high system load.

When adding the 64 manual type rules to the knowledge pool while building the
object graph, we not only identify even more memory correctly. At the same time,
the amount of undecided memory is vastly reduced and the number of invalid objects
is dropping close to zero. Similar to the slab coverage test, the experiments that rely
on the hand-written rules alone do not perform substantially worse compared to the
all-knowledge configurations. As already mentioned, we discuss these observations in
Section 8.1.5 and also explain why at first glance the results seem to be more influenced
by the hand-written rules then by the type knowledge derived from the used-as analysis.

Figure 8.5 visualizes the reconstructed layout of the kernel address space for the dif-
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(a) no rules (b) used-as

(c) used-as + manual (d) objects in slab caches

Figure 8.5: Visualization of the kernel address space for the different sets of type knowl-
edge applied to the “i686 HL” snapshot. The top left corner represents the PAGE_OFFSET

(0xC000 0000), the lower right corner marks the end of the address space (0xFFFF FFFF).
Memory cells containing code are drawn in blue, cells with valid, invalid, and undecided
kernel objects drawn in green, red, and gray, respectively. Global variables also appear as
gray squares. As a point of reference, (d) only shows global variables, code sections, and the
objects stored in the slab caches. The similarity between (c) and the “ground truth” in (d)
are obvious.
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ferent sets of type rules applied to the “i686 HL” snapshot. As a point of reference, the
memory that is used by global variables and given out by slab caches is shown in (d) as
gray and green squares, code sections are drawn in blue.5 This represents the “ground
truth” that we can rely on to verify our results. The memory layout according to the
kernel object graph built by InSight with different sources of knowledge are depicted in
(a), (b), and (c). The squares in green, red, and gray represent the memory occupied by
valid, invalid, and undecided objects, respectively. In (a) and (b), the high number of
invalid objects lets the number of valid objects appear small in comparison and distorts
the overall picture. In contrast, the similarities between (c) and (d) are obvious and do
not require further explanation.

8.1.5 Discussion

The coverage test in Figure 8.2 shows that the type knowledge derived from the used-as
analysis significantly improves the results without depending on human experts. Com-
pared to the baseline of using only the declared types, the automatically generated type
rules increase the slab coverage by a factor of almost three for the “i686 HL” snapshot.
Since only a small fraction of the slab allocated memory can be identified without ad-
ditional semantic knowledge, these numbers give evidence of the prevalence of dynamic
pointer and type manipulations throughout the Linux kernel. This observation empha-
sizes the necessity for view-generating methods that go beyond using the debugging
symbols and some hard-coded offsets.

Taking a closer look at the overall object validity in Figure 8.4, however, it becomes
apparent that the used-as knowledge does not help to reduce the amount of invalid ob-
jects at all. This is not surprising as our approach considers all possible interpretations
of a pointer within its type or variable context, leading to an over-approximation of can-
didate types. The number of invalid objects also correlates to the variation in the build
time, shown in Figure 8.1. While the validation heuristics introduced in Section 8.1.1
helps to disambiguate many cases with multiple interpretations for one pointer, it is far
from perfect and fails to classify lots of invalid objects correctly.

In summary, our results illustrate the potential of a completely automated approach
such as our used-as analysis on one hand, but also its limitation on the other hand:
with a total of 46.9 percent of identified slab memory in the best case, the used-as
knowledge has substantially improved the coverage, but we are still missing large areas
of slab allocated memory. What is worse, the additional knowledge does not help us to
reduce the extent of invalid objects. This limitation is due to the fact that the kernel
contains even more complex code constructs that hide objects from a VGC other than
straightforward pointer arithmetic and type casts. We already examined several of such
cases in Section 7.2.2.

5Note that in this visualization, objects of global variables are drawn as gray squares as opposed to
Figure 8.4 where memory occupied by global variables is represented in blue.
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8.1 Kernel Object Coverage and Accuracy

An additional limitation of our analysis stems from the fact that it requires a type
context to establish a used-as relation. Recall that a pointer usage is anchored to the
context of either a global variable or a (nested) field of a data structure, but not to a
control flow point, scope, or function. The reason for this is that we access the objects
by starting at global variables and following their pointer fields; we do not have enough
information to link an object to the scope or code in which it was initially allocated or
most recently used. Nevertheless, some crucial pointer usages occur without a proper
field or variable context, which leads our used-as analysis to ignore them. Most notably,
the Linux virtual file system (VFS) casts pointers of generic inode structures directly
to file system specific specializations of this data structure. As a consequence, these
specialized inodes are lost to InSight even though they resemble a significant portion of
slab allocated memory in our experiments.

In order to improve the slab memory coverage, we examined the usage of several data
types that InSight was missing at the source code level, including the inodes and their
specializations. For the inodes, we identified a way to reliably determine the specific
inode type based on context information within the generic inode itself. This knowledge
is now expressed as a set of type rules which retrieve the file system specific inode
whenever a generic inode pointer is dereferenced.

To reduce the number of invalid objects, we took a closer look at the types that
account for the largest portions of invalid memory and identified the source pointer
field where InSight assumes a wrong type for the first time on this path. As it turns
out, many problems are caused by objects that the Linux kernel uses for various search
trees, for example, the ‘radix_tree_node’, the ‘prio_tree_node’, or the ‘idr_layer’
structure. In contrast to node fields that need to be embedded in data structures, such as
‘list_head’ or ‘hlist_node’, the search trees typically use the same node type for inner
nodes and leaves likewise. The inner nodes point to further nodes of the tree whereas the
leaves point to those objects that are actually stored within the tree. Usually, the tree
nodes include some special field that is used by the kernel to distinguish between inner
nodes and leave nodes. As discussed previously, this kind of conditional pointer usage
cannot be captured by our used-as analysis. Thus, we created a number of script rules
that take the context information within the tree nodes into account to discriminate
between inner nodes and leaves.

Writing type rules for InSight’s rule engine is easy and a pragmatic way to further
narrow the semantic gap, as our experiments demonstrate. With only 64 hand-written
rules, we are able to interpret the slab cache memory almost completely. At the same
time, the memory claimed by invalid objects is reduced to only 0.3 percent in the worst
case. This clearly shows the power and flexibility of our rule engine and the importance
of incorporating user-supplied semantic knowledge in a generic, reusable way.

Note that the experiments which only use the set of manual rules for each snapshot
also achieve very good results. This is due to the fact that several of these rules are based
on type knowledge that was originally revealed by our used-as analysis. To improve the
object coverage and minimize invalid objects, many hand-written script rules override
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existing expression rules to make better use of the context information, as described
previously. In other words, thanks to our efforts to improve the results and leverage
all possibilities of the type rule engine, the set of manual rules contains part of the
knowledge previously discovered by our used-as analysis.

8.1.6 Comparison to KOP

Since the KOP system [CCL+09] shares some similarities with InSight and is able to build
the object graph for a Windows kernel, we are interested in comparing the coverage and
accuracy of both systems. According to the authors, KOP achieves an object coverage of
over 99 percent for a Windows Vista guest. However, KOP makes use of specific features
and architectural knowledge of Windows to reach these numbers, as described below.
InSight also achieves a slab cache coverage of over 99 percent in the best case when
using the combination of automatically derived and hand-written type rules. When
abstaining from any type knowledge that involved an OS expert, the slab coverage in
our experiments only gets close to 50 percent. The authors of KOP do not conduct any
comparable experiment that relies on knowledge obtained solely from their source code
analysis.

Apart from the degree of automation, the most obvious difference between the ex-
periments performed with KOP and InSight is the guest operating system that is being
analyzed. In the following, we take a closer look at the differences between the guest
OSs and the techniques of KOP and InSight.

First of all, the number of symbols in both experiments differs significantly. For KOP,
the authors state that the Windows kernel and 63 loaded drivers use 24 423 distinct
data types and 9 629 global variables. The Linux kernel used for our evaluation contains
12 055 distinct data types and 19 548 global variables, not considering any modules.
When all modules are taken into account as we did for our experiments, we end up with
73 456 types.6 The source code analysis of KOP identifies a total of 4 914 type casts
while our analysis reveals 9 530 used-as relations in the Linux sources. Thus, we see the
complexity of our experiments much higher than the ones performed by KOP.

Second, KOP uses Windows specific domain knowledge to verify the objects and
disambiguate multiple candidate types while it constructs the kernel object graph. By
querying information from the memory management system of Windows, KOP can
check the size and alignment of objects based on the pool allocation sizes. With this
information, the system is able to automatically select the correct candidate type for
unions or ambiguous type casts with high probability, as their results give evidence. In
addition, the pool allocation blocks enable KOP to reliably identify dynamic arrays:
when a pointer points at the beginning of an allocated memory area that is larger than
the object size, that memory is assumed to contain a dynamic array of the area’s size.

6Recall that the global variables of module are not accessible without the help of a hand-written script
rule.
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The information from the pool allocation corresponds approximately to the infor-
mation we use for slab cache validation described in Section 8.1.1.1. Unfortunately,
collecting this information for a Linux system introduces a tremendous performance
overhead, making it impractical to rely on for building the object graph. The highly
efficient slab cache implementation used by Linux, namely the SLUB allocator, does not
collect the same accounting information than the Windows pool allocator. Since the
SLUB allocator completely loses awareness of the exhausted memory pages it has been
using for allocations [Cor07], there is no efficient way to correlate a virtual address to
its object type or allocation size.

Finally, we have identified several instances of dynamic pointer and type manipulations
in Section 7.2.2 or conditional type usage in Section 8.1.5 which simply cannot be covered
by neither the analysis performed by InSight nor by KOP. As the authors of KOP do
not mention similar problems in their work and the results of their evaluation does
not indicate otherwise, we can only conclude that such unorthodox implementation
techniques are not as prevalent in the Windows kernel as they can be found in the Linux
source code.

8.2 Detecting System-Level Attacks

InSight is a view-generating component which is design—but not limited—to detect
attacks that happen at the kernel level within the guest. To demonstrate the effectiveness
of our framework for this particular VMI application, we use InSight to analyze the effects
of six different rootkits for Linux, five of which are publicly available, one developed as
a proof-of-concept in our research group. The following experiments are based on work
done by Vogl and Kittel with InSight [Vog10, Kit10].

8.2.1 Test Environment

There are only few rootkits publicly available for Linux, most of which have been design
for rather old version of the 2.6 kernel series. As a consequence, we had to use an older
Linux distribution than for the coverage tests. We set up an Ubuntu 6.06 server (32-bit)
in a virtual machine with 256 MB of RAM which comes with a Linux 2.6.15 kernel. Since
the distribution’s kernel contains hardening patches that would prevent the installation
of several rootkits, we installed the original Linux kernel of the same version without
any Ubuntu-specific modifications within the guest.

8.2.2 Experiments

The rootkits used for our experiments are listed in Table 8.2. They leverage different
techniques for installing themselves into the kernel and for hooking kernel functions to
provide their stealth services. Most come in the form of a loadable kernel module (LKM)
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Rootkit Installation Hooking technique Source

adore-ng kernel module virtual file system [Ste]
EnyeLKM kernel module interrupt handler, system call handler [Gar07]
IntoXonia-NG kernel module system call table [S_4epen08]
Mood-NT /dev/kmem system call table [Fal06]
override kernel module system call table [Als06]
Y kernel module system call table [Vog10]

Table 8.2: Rootkits used for our experiments

and remove themselves immediately from the list of kernel modules after they have been
loaded by manipulating the ‘next’ and ‘prev’ pointers of the embedded ‘list_head’ field,
as described in Section 2.4.1.2. This allows the rootkits to stay completely functional
while disappearing from the output of informative tools such as ‘lsmod ’. The only
exception here is the Mood-NT rootkit which injects itself into the system using the
device node ‘/dev/kmem’. This device node allows direct read and write access to the
kernel memory for the user “root” and is used by the rootkit to perform the required
manipulations to the kernel’s state. As a result, this rootkit can install itself even into
kernels for which module loading was disabled.

In order to hide information from the legitimate user, all rootkits alter the control flow
of certain kernel functions as depicted in Figure 2.4 on page 18. By hooking the system
calls for reading directory contents, for example, a rootkit can filter the return value and
exclude certain files within a directory, thus hiding them. While four rootkits directly
overwrite function pointers in the system call table with pointers to their own code,
EnyeLKM applies detour patches to the interrupt and the system call handler. Adore-
ng hooks the VFS of the Linux kernel to filter the output. The VFS describes file systems
within the file system hierarchy as objects with file system specific access functions to
perform operations on the file system, such as reading and writing of files. These access
functions are available as function pointer fields within the object describing the VFS
component. It is these function pointers that are changed by adore-ng to point to its
own code. In comparison to the other rootkits, these are the hooks that are placed most
deeply within the control flow. The Y rootkit was created within our research group to
demonstrate DKOM-based process hiding which none of the other rootkits supported.

We installed each of the rootkits individually in a clean VM image as described in the
previous section. Each rootkit was then used to hide a process within the system, which
was a simple remote shell using the ‘netcat ’ utility. If the rootkit supported hiding of
network connections, the TCP port that ‘netcat ’ was listening on was also hidden.

To perform the detection, we took one snapshot of the guest physical memory before
the rootkit was loaded, after it has been loaded, and one more time after the remote
shell was listening on the specified TCP port. We then used InSight to find evidence for
the existence of the rootkit, of the hidden process, and of the listening TCP socket.
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8.2.3 Results

In all cases, we were able to detect the remote shell that was hidden by the rootkit.
This result is not surprising since all network sockets that accept connections must be
known to the kernel and are organized in global hash tables. For example, the TCP
connections are kept in the variable ‘tcp_hashinfo’. The socket descriptors within that
data structure are linked to the ‘task_struct’ of the process that opened the socket,
which was the ‘netcat ’ binary in our case. This is a good example for the limitations of
DKOM, as already argued in Section 2.4.1: in order to keep the remote shell functional,
the process must be able to receive and send network packets. As a consequence, a rootkit
cannot remove all references to the process descriptor from the kernel state; instead, it
has to omit those that are needed to facilitate the kernel-to-user-space transportation of
I/O data.

The hooks that a rootkit places within the system are also straightforward to detect.
In order to verify the integrity of the system call table, we use two different approaches.
During normal operation of the system, the system call table does not change. When
several sequential memory snapshots are available, we can compare the function pointers
in the table between each two consecutive states and raise a red flag as soon as we detect
any changes. In case only one guest state is available, we can verify that each entry in
the table points to the entry of a known kernel function. If we find an entry that
points into an unknown memory area, the table has been tampered with. Using the
latter approach, we can also detect the hooks that adore-ng places within the virtual file
system: We expect all function pointers for the file system specific access functions of
all VFS objects to point to known kernel (or module) functions. If this is not the case,
it must be the result of some malicious action. In contrast to the previously described
hooking techniques, the detour patches applied by EnyeLKM are not directly reflected
within kernel objects. Here, we have to verify the integrity of the corresponding handler
functions by comparing the (binary) function code or a hash value of this code between
consecutive states.

Detecting the rootkit itself is more difficult than detecting the modifications it applies
to the kernel state. The LKM-based rootkits are not equally sophisticated in hiding
their own tracks. For example, EnyeLKM, IntoXonia-NG, override, and Y remove their
own ‘module’ object from the ‘modules’ list, but only adore-ng unregisters itself also
from the ‘sysfs ’ file system. That is, the former rootkits leave artifacts in the tree of
‘sysfs_dirent’ objects whose root is stored in the ‘sysfs_root’ variable. By walking
this tree, we can find references to the ‘module’ objects of these rootkits. However, this
is not possible for adore-ng. This rootkit successfully covers its tracks and completely
removes all direct pointers to its ‘module’ object. This is possible because the corre-
sponding LKM only consists of callback functions which are invoked as the events occur;
in contrast to a process, it does not need to be scheduled or wait for I/O operations.
The only residues of adore-ng’s module are the function pointers that point into the
module’s code section. The situation is similar for the Mood-NT rootkit. Here, we can
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successfully detect the inserted hooks that point to code of the rootkit. Since Mood-NT
injects itself using the special device ‘/dev/kmem’, the installation of this rootkit does
not leave any further artifacts within the kernel’s state.

8.3 Summary

In this chapter, we have evaluated our VMI framework, InSight, according to its intended
purpose. The most crucial aspect for a view-generating component is the ability to create
a view of the low-level system state of the guest that contains the kernel objects as the
guest OS sees them. To give evidence of the good object coverage and accuracy that
InSight provides, we used different knowledge sources to construct the graph of kernel
objects for different memory snapshots. We verified our results by comparing them to
the objects managed in the slab caches of the Linux kernel.

Our experiments have shown that the knowledge derived by our used-as analysis
without any human intervention helps to increase the coverage of identified slab cache
memory by factors between two and three, leading to a coverage of almost 50 percent
in the best case. However, the results have also demonstrated the limitations of a fully
automated approach based on a static code analysis. By adding only 64 hand-written
rules to InSight’s type rule engine, we were not only able to push the slab cache coverage
to over 99 percent. At the same time, we could drastically reduced the number of invalid
objects close to zero. These results illustrate that a combination of automatically derived
and hand-written added semantic knowledge is a good compromise between automation
and manual effort.

One of the typical use cases for our VMI framework is malware detection. To demon-
strate the usefulness of InSight for this kind of application, we installed six different
rootkits in a Linux guest and analyzed the induced changes within the guest physi-
cal memory. In all cases, we were able to identify the remote shell and the network
connection that were hidden by each rootkit. We also could reproduce the hooking
mechanisms that the rootkits installed to facilitate their stealth services. For four out of
the five LKM-based rootkits, we were able to find links to the original ‘module’ object
describing the rootkit binary. For one LKM-based and the kmem-based sample, we only
found the corresponding code sections but could not conclude which binary it belonged
to. These findings show the effectiveness of VMI-based malware detection using our
framework even when the attacks target the deepest corners of a system.
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Chapter 9
Conclusion and Future Work

With system virtualization, we can benefit from new ways of countering the thread of
compromised systems and detecting system-level attacks. The hypervisor plays a key
role for system virtualization as it provides the virtual hardware interface capable of
running an entire guest operating system. The virtual machines execute in isolation of
the host system and the hypervisor. Even in the event of total compromise of the guest
OS, the hardware resources of the host remain in full control of the hypervisor [SN05].
This feature provides the foundation for a technique called virtual machine introspection
(VMI), the act of inspecting and interposing a virtual machine’s state from the hypervisor
level in isolation from the guest.

The introduction of VMI in the original work of Garfinkel and Rosenblum [GR03]
opened a whole new area of research. One reason for the broad interest in this topic is
the increasing ubiquity of system virtualization in every-day computing [Ros04, RG05].
Through its application on desktops [RW10], on servers [KKL+07, Chi07], on mobile
devices [Hei08, ABK09, BBD+10], and in cloud computing [VRMCL08, AFG+10], it
clearly lends itself to adding security functionalities to the hypervisor in all of these
scenarios.

Most research in this field still proposes rather straightforward application of the VMI
paradigm for intrusion detection systems and system monitors [PCL07, PCSL08, SSG08,
XJZ+10, SWJX11], intrusion prevention systems [JKDC05, SLQP07, RJX08, RRXJ09,
WJCN09], tools for forensic or malware analysis [HN08, MFPC10, RX10, DGPL11],
application-aware firewalls [SG08], and kernel-level debuggers [FPMM10]. However, we
begin to see work that uses virtualization features for performing VMI in completely
new ways, for example, to isolate code within a VM [SLCL09, GDXJ11], to execute
guest processes in isolation of the VM [SWJX11, VKSE13], to automatically create
view-generating components [DGLZ+11], or to use specific hardware features to trace
in-guest events [PSE10, PSE11, VE12].
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9.1 Contributions

One challenge that all VMI approaches have to face is the semantic gap [CN01], which
describes the hypervisor’s lack of inherent knowledge to interpret the low-level data that
compromises the state of the guest OS. As a consequence, all VMI approaches have in
common that they apply some sort of semantic knowledge to the guest’s low-level state
to derive a meaningful view of that state which is then used according to the scenario.

In Chapter 3, we have introduced a formal model that allows one to describe VMI
approaches in a universal way. Based on the kind of semantic knowledge that is used,
we can reason about the properties of the resulting system, such as hardware or software
portability, the binding nature of the knowledge, or full state visibility and applicability.
Using our model, we have identified three fundamental patterns to generate views from
the guest’s state, namely the out-of-band delivery, the in-band delivery, and the deriva-
tive pattern. Most of the time, these patterns are used in combination to benefit from
different properties. To this date, we were able to describe any VMI approach we came
across with our model and used it successfully in Chapter 4 to categorize and compare
related work in this field.

Full state applicability is one of the properties that a VMI approach can possess. It
combines the facts that the view-generating function not only has access to the entire
state of the guest, but also has potential access to the semantic knowledge that is
required to interpret that information. We have argued that in order to achieve this
property, view generation has to combine the out-of-band delivery pattern together with
the derivative pattern, that is, it has to run completely isolated from the guest and apply
both hardware knowledge λ and software knowledge µ to the state. When the full state
is applicable, the resulting view potentially reflects any activity that is carried out at
any level of the hardware/software stack within the virtual machine, both benign and
malicious. This is a very strong property, especially for detecting kernel-level attacks,
for example, such as performed by rootkits.

For this reason, Chapter 5 has investigated on the challenges that a view-generating
component has to overcome in order to apply the full state and to generate detailed
views with a high coverage of state information. First, we have taken a look at all parts
of the state information and identified the guest physical memory as the most difficult
one to interpret. Then, we have detailed how a view of the memory can be generated
and what semantic information is required in order to do so. The examples of real-world
kernel code that we have given indicate that dynamic pointer and type manipulations
are prevalent in highly efficient C code. We have shown that, for these examples, the
semantic knowledge used by most out-of-band delivery VMI approaches is insufficient
to bridge the semantic gap when full state applicability is desired.

In Chapter 6, we have introduced our VMI framework, InSight, at the first stage
of its evolution. InSight has been one of the first tools that focuses on stand-alone
view generation with full state applicability instead of applying just enough manually
maintained expert knowledge for a given use-case. This allows our framework to support
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a broad spectrum of applications. With its rich set of interfaces, including a JavaScript
engine for fast and safe development of new VMI approaches, InSight is well suited for a
wide variety of introspection tasks, such as intrusion detection, digital forensics, secure
monitoring, and kernel debugging.

While InSight was already useful and has been successfully applied within our research
group at this stage [Kit10, Vog10], it required the inclusion of expert knowledge on a per-
application basis to handle the dynamic pointer and type manipulations occurring in the
kernel. In an attempt to automate the collection of semantic knowledge, we looked into
approaches that perform source code analysis, foremost into the area of pointer and alias
analysis [And94, Ste96, HT01, PKH07]. In this course, we have proposed a new analysis
technique for full C source code based on the points-to analysis of Andersen [And94],
which we call used-as analysis. This analysis is described in Chapter 7 and consists
of two steps: first, a points-to analysis similar to Andersen’s analysis, and, second, a
type-centric analysis that establishes used-as relations between data types. The used-as
relations describe which global variables or fields of data structures are used as types
that contradict their defined type and how a source value has to be transformed to derive
a target pointer.

We have implemented this kind of analysis as an extension to InSight to augment the
semantic knowledge it has been using before. With this extension, our view-generating
component is able to cope with type casts and perform the required pointer arithmetic
to reveal kernel objects hidden behind ‘void*’ pointers, generic lists, and even integer
values holding a memory address. However, even with this major step towards achieving
full state applicability, the used-as analysis has not been able to resolve type usages that
depend on further context information or runtime behavior, such as dynamic arrays,
per-CPU variables, unions, or other type ambiguities. This kind of dynamic behavior
requires a dynamic solution. To address this issue, we have further enhanced InSight
and added a type rule engine to the framework that allows the flexible and centralized
specification of expert knowledge about data types and their usage within the kernel.
By defining type rules in an XML format, the user can now guide the resolution of
types and pointers depending on context and runtime information. For example, he can
specify which field of a union is valid in a given situation. In other words, the user can
now easily extend InSight’s semantic knowledge on the fly in a generic, reusable way,
independent of the application at hand.

In Chapter 8, we have evaluated the performance of our framework with different sets
of available semantic knowledge, which corresponds to the evolutionary steps during
the course of its development. Our experiments have shown how the object coverage
and accuracy of InSight have been increasing with every extension, beginning with the
semantic knowledge contained in the debugging symbols over the used-as relations to
the type rule engine with manually created rules. With all knowledge combined, we have
been able to increase the object overage to over 99 percent in the best case and still 97
percent in the worst case. At the same time, the number of invalid objects has dropped
drastically to a value close to zero. In addition, the hand-written type rules have helped
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to speed up the process of building the whole graph of kernel objects substantially. By
using InSight to identify various real-world kernel rootkits in running Linux systems, our
view-generating component has proven to be useful for VMI-based security applications
such as detecting system-level attacks, one of the intended use cases for our framework.

9.2 Future Research Directions

So far, our research has brought forward new ways of collecting semantic knowledge
about an operating system and resulted in InSight, an elaborated and useful framework
for building VMI applications. In this section, we outline some possible research direc-
tions to continue our work and to go forward towards bridging the semantic gap with
full state applicability.

First of all, there are some worthwhile extensions of InSight that would mostly require
implementation work, such as adding support for Windows guests by implementing a
reader for debugging symbols in Microsoft’s PDB format. Due to the closed source
nature of the Windows kernel, we would not be able to analyze the source code, thus
lacking the semantic knowledge resulting from the used-as analysis. As a consequence,
more type rules would need to be created manually; however, this only emphasizes the
importance and flexibility of InSight’s type rule engine. Further improvements on the
implementation could be achieved by replacing the current C parser that is employed for
the used-as analysis with a more advanced compiler infrastructure, such as the LLVM/-
Clang framework [LA04]. In addition, the type invariants that are already available
internally should be made available via InSight’s interfaces to even better support secu-
rity applications such as intrusion detection. Finally, it would be interesting to explore
the possibilities of InSight on embedded hardware platforms with virtualization support,
such as systems equipped with the ARM Cortex-A15 processor [ARM12].

Another area for future research is the improvement of the used-as analysis to extract
semantic knowledge with richer context information from the source code. This topic
requires the solution of some interesting algorithmic challenges. To achieve a higher
precision for the initial points-to set in the first step of our algorithm, the points-to
analysis could be extended to model control flow sensitive pointer locations. This ex-
tension would also allow us to address an open problem in the second step, namely the
lack of runtime context information for the used-as relations. By making the used-as
analysis itself control flow sensitive, we could potentially detect runtime dependencies
that we are currently missing. For example, we could identify the data fields that are
tested before a particular field of an embedded union is accessed, thus automatically
disambiguating the union. Or we could detect dynamic arrays and the corresponding
length field based on their usage within the program’s control flow. This could also lead
to more specific type invariants for better validation of the kernel objects that we find.
In summary, such an extension provides the potential for the next evolution in bridging
the semantic gap.
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With all this semantic information at hand, the externally generated view of a guest
system’s state can be almost as complete as the guest’s internal view. However, the
most notable difference is that external view generation is not dependent on the guest’s
cooperation and its examination does not interfere with the observed system — both
properties which are extremely useful for security applications. When such a precise
view is available to event-based monitoring approaches with a feedback channel to the
guest OS, plenty of new possibilities open up, from hypervisor-based policy enforcement
over application sandboxing to malware removal tools. A complete understanding of the
state of an introspected system, that is, successfully bridging the semantic gap, is the
key enabler for new VMI-based security applications.
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