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Abstract 

Acoustic Emissions (AE) are stress waves initiated by sudden strain releases within a solid body. These 

can be caused by internal mechanisms such as crack opening or propagation, crushing, or rubbing of 

crack surfaces. One application for the AE technique in the field of Structural Engineering is Structural 

Health Monitoring (SHM). With piezo-electric sensors mounted to the surface of the structure, stress 

waves can be detected, recorded, and stored for later analysis. An important step in quantitative AE 

analysis is the estimation of the stress wave source locations. Commonly, source location results are 

presented in a rather deterministic manner as spatial and temporal points, excluding information about 

uncertainties and errors. Due to variability in the material properties and uncertainty in the mathematical 

model, measures of uncertainty are needed beyond best-fit point solutions for source locations. This paper 

introduces a novel holistic framework for the development of a probabilistic source location algorithm. 

Bayesian analysis methods with Markov Chain Monte Carlo (MCMC) simulation are employed where all 

source location parameters are described with posterior probability density functions (PDFs). The 

proposed methodology is applied to an example employing data collected from a realistic section of a 

reinforced concrete bridge column. The selected approach is general and has the advantage that it can be 

extended and refined efficiently. Results are discussed and future steps to improve the algorithm are 

suggested. 
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1 Introduction 

1.1 Background on Acoustic Emission 

Acoustic Emission (AE) is the ‘term used for transient elastic waves generated by the release of energy 

within a material or by a process’ [1]. A stress wave is generated, traveling from the source origin away to 

the surface of the body where it can be recorded by sensors. This process is irreversible and therefore not 

repeatable. Other terms include ‘stress wave emission’ or ‘nano-seismic activity’. Within the family of 

non-destructive testing methods, AE has its own special place because it is a passive technique. AE are 

stress waves produced by a spontaneous internal dynamic process such as crack initiation and propagation 

or internal material fracture. The source location and mechanism is therefore unknown and is the subject 

of investigation. An introduction to the many applications in AE research can be found for example in [2, 

3]. Subsequently, the terms Acoustic Emission (or AE) and stress wave are used interchangeably. 

 

In infinite elastic solids, two types of waves, sometimes referred to as modes, exist. The first is called 

compression, or primary (p-) wave where the particles move in the direction of the wave. The second is 

called shear, or secondary (s-) wave with particle motion perpendicular to the direction of the propagating 

wave. With the introduction of boundaries, a third wave type, the surface, or Rayleigh (R-) wave exists. 

Between the three wave mode velocities cp, cs, and cR, the following relationship is true [4]: 

 p s Rc c c   (1) 

The p-wave velocity in an isotropic, homogeneous and elastic body can be calculated as: 
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where E is the dynamic Modulus of Elasticity in N/m
2
,  the material density in kg/m

3
, and  Poisson’s 

Ratio [4]. Typical average values for the p-wave velocity cp and Poisson’s Ratio  for vintage bridge 

reinforced concrete range from 3.5 to 4.5 m/ms (140 to 180 in./ms ) and 0.25 to 0.3, respectively [5]. 

 

Stress waves emitted from AE sources are usually recorded by a network of piezo-electric sensors 

mounted to the surface of the specimen. The analog signal is intensified by an amplifier and digitized to 

enable hard disk storage. AE data is normally not acquired continuously, since that would produce 

enormous data files which would be difficult to analyze and interpret. Instead, pre-selected criteria are 

used to trigger the system for individual burst signals from which p-wave arrival times as well as 

qualitative wave form parameters are then extracted [2]. 
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The first important step in quantitative AE analysis is the estimation of spatial and temporal parameters of 

the stress wave source. Typically only the p-wave arrival times are employed because they represent the 

first, undisturbed arrival of a stress wave and are thus the easiest to deduce. If at least four sensors detect a 

discrete stress wave signal it can be identified as an AE event and spatial and temporal parameters of the 

stress wave source can be estimated. An AE event is defined as the ‘physical phenomenon giving rise to 

acoustic emission’ [1]. Fig. 1 illustrates a typical recorded transient stress wave signal recorded at sensor 

k. The first arrival of the stress wave, or p-wave arrival time, is enlarged and stretched in time for better 

clarity. The source occurrence time is unknown and denoted as t0. For the arrival time of the p-wave, two 

values are shown: ta[k],man denotes the arrival time picked manually, and ta[k],auto by some automated 

picking method. A denotes the maximum signal amplitude. Depending on the method employed and the 

signal-to-noise ratio of the waveform, an off-set t from the manual pick will be inherent in the detected 

arrival times and is often unavoidable.  

 

The first crucial step for any reliable AE source location estimation is the accurate deduction of the p-

wave arrival times from each sensor in the network. In the present work, a picker based on the Akaike 

Information Criterion (AIC) was employed as described in [6]. This method has proven reliable and 

accurate in picking arrival times from stress waves [5, 7]. 

 

 

Fig. 1. AE burst signal example with enlarged p-wave arrival at sensor k 

 

In sections 1.2 and 1.3, the basics of traditional source location algorithms as well as a short literature 

review of earlier probabilistic approaches are presented, respectively. 
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1.2 Traditional Source Location Algorithms 

Traditional methods shall be defined as deterministic methods that do not directly take into account 

variability of parameters, i.e. locations of sensors, p-wave velocity, p-wave arrival times, etc. are assumed 

as constants, i.e. deterministic. If the source hypocenter and sensors are modeled as dimensionless points 

and the travel path of the stress wave is assumed as a straight line between source and sensor, and the p-

wave velocity cp assumed as constant and known for all travel paths, the following general relationship, 

sometimes referred to as arrival time function, for one event can be derived: 

 
[ ]

0 0 0 0 [ ] 0( , , , )   
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where t0 is the event source time and x0, y0, and z0 are the event source coordinates. The signal travel 

distance d[k] between source and sensor locations is calculated as: 

 2 2 2

[ ] [ ] 0 [ ] 0 [ ] 0( ) ( ) ( )k k k kd x x y y z z       (4) 

The Cartesian coordinates of sensor k are denoted with x[k], y[k], and z[k]. To solve for the four unknowns 

x0, y0, z0, and t0, time arrivals ta[k] from at least four sensors must be detected. Most commonly, this non-

linear inverse problem is solved by employing iterative algorithms based on Geiger’s method [8]. A 

summary of existing deterministic schemes can be found for example in Ge [9, 10]. Examples of 

successfully implemented source location algorithms in the area of concrete research can be found in [11, 

12]. These algorithms provide a covariance matrix of source coordinates as an estimate of uncertainty if 

arrival times from at least five sensors are available. From that, principal standard deviations can be 

deduced that give a measure of inconsistency in the several measured arrival times. This approach does 

not account for all intrinsic uncertainties and errors in the model and systematic errors can only be revealed 

when the true source location is known, but this is usually not the case for AE applications. 

 

1.3 Bayesian Probabilistic Source Location Algorithms 

In earthquake source location, probabilistic methods have been employed for many years [13-15]. 

Tarantola and Valette [13] presented a probabilistic formulation to solve nonlinear inverse problems with 

a finite number of parameters, such as the recovery of hypocenter source locations. A Bayesian approach 

was suggested to combine experimental observation of data, prior information of parameters, and the 

theoretical relationship. The idea is to incorporate errors and uncertainties by assigning probability 

density functions (possibly non-Gaussian) to parameters as well as theoretical relationships. An example 

with actual observed arrival time data is presented for 11 stations (or sensor locations). The spatial 

coordinates of the stations were modeled as deterministic and all parameters Gaussian distributed. The 

velocity model of the medium was assumed as uniform. The resulting depth plot showed that two local 
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maxima could be found. Reported were expected values and standard deviations of the source location 

coordinates. 

 

In Lomax et al. [14], a Bayesian probabilistic approach to locate earthquake sources was presented, which 

is alternatively based on: 1) locally directed Metropolis-Gibbs sampling (a Markov Chain Monte Calro 

(MCMC) technique) and 2) an exhaustive global grid search method. Both approaches are able to deal 

with non-uniform velocity models, i.e. layers with different material properties. Solutions are given as 

probability density functions in four dimensions, i.e. three spatial and the temporal. It is pointed out that 

only in this manner a complete understanding of the uncertainties of a location result can be gained. The 

performance of the proposed non-linear probabilistic source location algorithms are then compared to 

traditional linear schemes using synthetically generated arrival times. 

 

Based on the above methods, a first approach to account for the probabilistic nature of AE source 

parameters was undertaken by Schechinger [7]. Therein, an adapted version of a computer program called 

NonLinLoc was used [16] which is based on the methods described in [14]. The mode of the posterior 

distribution corresponding to the point of maximum likelihood was used as estimator for the source 

location. Non-homogeneous material models that allow the existence of a nonlinear velocity field can be 

implemented as well. Model parameters cannot be estimated based on observations but must be specified 

by the user. 

 

None of the previous work on probabilistic source location algorithms for AE has considered applying a 

Bayesian approach for estimating the model parameters of the algorithms using observed data. In the 

present paper, such an approach and its numerical implementation is presented. In chapter 2, a 

background on statistical modeling using Bayesian analysis is presented. Sources of uncertainty are 

explored and listed. Chapter 3 develops and explains the methodology for the proposed probabilistic 

source location algorithm. The framework is applied to an example and results visualized. A summary 

and conclusions are presented in chapter 4. 

 

2 Statistical Modeling Using Bayesian Analysis Methods 

2.1 Concepts of Bayesian Analysis 

Bayesian analysis is the framework for assessing uncertainties and errors in the present study. Consider an 

event A that describes the parameters of interest and an event B that describes the observation (data). 

Bayes’ rule describes how the probability of A changes upon observation of B: 
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where  Pr |A B  is the (updated) posterior probability of event A given B;  Pr |B A  is the probability of 

observing B given A and is known as the likelihood;  Pr A  is the probability of A before observing B, 

also called prior probability;  Pr B  represents a normalizing scalar. This rule can now be applied to a 

random variable X having the PDF  |fX x θ  with distribution parameters θ . In order to account for 

uncertainties in the parameters θ , they are modeled as random variables Θ . Once events are observed 

that provide information about the random variable X, this new knowledge can be used to update the joint 

distribution of Θ  by using Eq. 5 as follows: 

  
 

 0

0

|
| 

L
f f

c
Θ Θ

θ x
θ x θ  (6) 

where  0|fΘ θ x  represents the posterior distribution of Θ conditioned on observed outcomes x0 of the 

random variable X,    0 0| |L fXθ x x θ  is the likelihood function of parameters θ  for observed 

realizations x0, c is a normalizing constant that enforces the area underneath the posterior distribution to 

be equal to 1 and is defined as the m-fold integral: 

    0 1|  
 

 

  mL f d dΘx θ θ  (7) 

where m is the number of parameters and  fΘ θ  is the prior distribution for Θ  before additional 

knowledge is gained. 

 

Once the posterior distribution  0|fΘ θ x  for the parameters is obtained, it can be incorporated in a 

general predictive joint distribution of the form: 

      0 0 1| | |  
 

 

  X X Θx x x θ θ x mf f f d d  (8) 

to predict future events X based on knowledge from past observed realizations x0.  

 

The difficulty in Bayesian inference lies in computing the integrals required for the evaluation of the 

constant c (Eq. 7) and the computation of the predictive distribution (Eq. 8) for which analytical solutions 

exist only in special cases. Numerical methods using Markov Chain Monte Carlo (MCMC) simulation 

techniques represent a powerful method to address this problem and are introduced in the following 

section. 
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2.2 The Numerical Approach 

In the present study, MCMC simulation is employed to perform Bayesian inference. An introduction to 

these methods can be found in [17]. Using MCMC, it is possible to directly sample from posterior 

distribution (Eq. 6) without knowing the proportionality constant c. This is achieved by defining the 

samples as a Markov Chain whose stationary distribution is equal to the sought posterior distribution 

 0|fΘ θ x . After a sufficient number of steps, the chain becomes independent of its initial state 0θ  and 

converges to this stationary distribution. The sampling of 1iθ  conditioned on iθ  is based on the Gibbs 

sampling technique, a special form of the Metropolis-Hastings algorithm [18]. The computer program 

utilized for the present study is called WinBUGS and available free from the internet [19]. In the present 

study, WinBUGS was employed to (1) estimate the model parameters based on observed experimental 

data and to (2) predict future events using newly available data as explained in sections 3.2 and 3.3, 

respectively. 

 

2.3 Experimental Data 

The proposed methods are demonstrated using a calibration experiment of a large size reinforced concrete 

specimen as illustrated in Fig. 2 using pencil lead breaks (PLB) applied to the surface. Five replicate 

PLBs to initiate stress waves were performed on 76 x 76 mm (3 x 3 in.) grids on the front x-y and top x-z 

face, and the bottom of the pull-out rebar, and are shown as grey crosses in Fig. 2(a). Note that the 

majority of PLBs lie within or close by the sensor array. Sources far away from the sensor array are 

typically not well constrained and errors in the input parameters are amplified [5]. It can thus be expected 

that the variability of the prediction will be larger for sources outside the sensor array, but this uncertainty 

can be consistently quantified using the Bayesian method. PLBs represent a common means to produce 

highly repeatable stress wave sources in AE [1]. Eight piezo-electric resonant-type AE sensors with peak 

response frequencies of 150 kHz were deployed non-symmetrically on four faces of the specimen and are 

shown as yellow cylinders in Fig. 2(a). These sensors have a frequency range of approximately 50 to 500 

kHz and have been found to work well for concrete specimens of specimens with this size [5, 20]. Sensor 

location coordinates are listed in Table 1. 
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Fig. 2. View of reinforced concrete test specimen:  

(a) Graphical model (semi-transparent to visualize embedded reinforcing bars) 

(b) Photo showing sensors 3 and 4 (bottom x-z face) and 5 and 6 (back x-y face) 

 

The test specimen represents a full-scale reinforced concrete section of a bridge bent cap column with 

dimensions lz x ly x lx = 610 mm x 610 mm x 1.83 m (24 in. x 24 in. x 6 ft). This specimen was originally 

designed to determine the ultimate anchorage force of the embedded ø 35 mm (#11) reinforcing bar 

aligned with the y-axis [21]. The embedment length of this bar was 406 mm (16 in.). Other steel 

reinforcing bars are shown in blue (Fig. 2(a)) for reference. All reinforcing bars were Grade 60 (fy = 414 

MPa) and the average concrete compressive strength was found to be 28.0 MPa (4060 psi). 

 

Table 1. Sensor locations 

Sensor x y z Location on face 

[-] [mm] [in.] [mm] [in.] [mm] [in.] [-] 

1 -216 -8.5 457 18.0 302 11.9 front x-y 

2 178 7.0 432 17.0 302 11.9 front x-y 

3 -229 -9.0 0 0.0 25 1.0 bottom x-z 

4 229 9.0 0 0.0 25 1.0 bottom x-z 

5 -254 -10.0 394 15.5 -311 -12.3 back x-y 

6 216 8.5 178 7.0 -311 -12.3 back x-y 

7 394 15.5 613 24.1 -254 -10.0 top x-z 

8 -356 -14.0 613 24.1 178 7.0 top x-z 

 

For computational efficiency, 31 PLB locations were selected and included in the regression analysis. The 

total number of observed p-wave arrival times ta included was therefore: 31 locations x 5 PLBs per 

location x 8 sensors = 1240. 
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2.4 Model and Parameter Uncertainties 

Any modeling of a physical phenomenon includes uncertainties on the true nature of a problem and model 

parameters are known only to a certain degree. This is also observed in the present problem. As an 

example, the specimen is assumed to be isotropic and homogeneous, but reinforced concrete is a 

composite material consisting of cement, aggregates, and embedded reinforcing steel, each constituent 

having significantly different wave propagation properties. In the present work, the specimen was 

modeled as a homogeneous isotropic elastic bulk solid. Homogeneity is assumed because the specimen 

size is large compared to the biggest constituents, i.e. the aggregates. The assumption of isotropy is 

justified by the fact that the reinforcing bars are local elements and rather small. Also, numerical 

simulation of wave propagation has shown that typical reinforcing bar diameters do not change the stress 

wave propagation characteristics significantly transverse to the reinforcing bar [7]. This was also 

investigated and verified experimentally by Lovejoy [20]. Along their length, however, reinforcing bars 

may act as wave guides and result in a faster apparent p-wave velocity in some cases. This is not yet 

accounted for in the present paper but will be investigated in the future. Furthermore, it is assumed that 

the p-wave mode is non-dispersive due to the specimen geometry. Although some dispersion may be 

present due to the concrete’s constituents, it is reasonable to neglect this effect due to the fact that the 

wave travel path lengths for each sensor are comparable. The dispersive effect would have a similar 

distortion effect on all measured p-waves and therefore cancel out. 

 

Fig. 3 shows a generic test specimen and visualizes the most important parameters involved in estimating 

stress wave source locations. Indices are assigned as follows and impose a distinct hierarchy in the model: 

 i for pencil break locations (1 to 31) 

 j for the event at each location (1 to 5) 

 k for the sensors (1 to 8) 

 

In Table 2, the most important parameters are listed and an attempt to classify their variability into 

epistemic (epi) or aleatory (ale) uncertainty is undertaken [22]. Epistemic uncertainties are those 

associated with limited knowledge of the problem. They can be decreased by for example refining the 

mathematical model or gathering more information about a process. Aleatory uncertainties arise because 

of the inherent randomness in a system and are irreducible. These include for instance material properties 

that were determined through sample tests. The parameters in Table 2 were ranked subjectively, 

according to their importance based on experience and observation. 
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Fig. 3. Generic test specimen with parameters (only one sensor shown for clarity) 

 

 

Table 2. Most important parameters present in source location estimations 

Parameter Type Description 

p-Wave arrivals, ta[i,j,k] Ale Accuracy of determination dependent on: 

       - Signal-to-noise ratio of recorded signal 

       - Wave travel path and attenuation characteristics 

  Arrival time picking errors t may be a function of: 

       - Wave travel path length, d[i,j,k] 

       - Wave incident angle, [i,k] 

       - Maximum signal amplitude, A[i,j,k] (observed) 

p-Wave velocity, cp[i,k] epi Function of material properties, micro-cracks: 

       - Modulus of Elasticity, E 

       - Material density,  

       - Poisson’s Ratio, 
     - Anisotropic behavior, e.g. due to reinforcing steel 

     - Dispersion due to the constituents 

Wave travel path, d[i,k] ale/ 

epi 

Can deviate from straight line due to macro-cracks, voids, 

specimen geometry, etc. 

Sensor locations, x[k] epi Measurement errors, inexact placement 

Source characteristics ale Type, spatial and temporal dimensions 

Location scheme epi      - Sensitivity of location with respect to sensors 

       - Errors in the source location scheme 

Sensor characteristics epi Sensitivity, resonant behavior 
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From a Bayesian point of view, there is no fundamental difference between these types of variable, i.e. 

they are all regarded and treated as random quantities. However, it is still important to know which model 

parameters are present and irreducible and which can be influenced by improving the mathematical model 

or including more observations. 

 

3 Model Formulation and Implementation 

The development of a probabilistic stress wave source location algorithm to predict source location 

parameters in full probabilistic form based on Bayesian analysis consists of the following steps: 

1. Formulation of inference model 

2. Estimation of model parameters using Bayesian inference 

3. Implementation of predictive model 

4. Model validation 

 

In the succeeding four sections, these steps are described in detail. A simple probabilistic model is 

implemented and used to demonstrate the potential of the proposed framework. 

 

3.1 Formulation of Inference Model 

Based on the uncertainties described in section 2.4, a basic probabilistic model for the estimation of stress 

wave source locations was developed. The general relationship between source parameters and sensors is 

the arrival time function as stated in Eq. 3 and illustrated in Fig. 5. This function is now restated taking 

into account uncertainties in the model parameters and errors. The slowness sp was used as the descriptor 

for the motion of the p-wave rather than velocity cp and is defined as: 

 
1

p ps c   (9) 

 

Variability in the model is assumed to be associated with the basic source location parameters, which are 

the p-wave slowness sp, the observed arrival times ta, and the event time t0. Note that not all parameters 

vary with each index i, j, k. There is only one event time t0 per AE event, i.e. for a group of eight sensors, 

and thus it does not vary with k. The arrival times ta[i,j,k] are normalized for each event, i.e. the arrival 

times for the first-hit-sensor are 0.0. The wave propagation characteristics were assumed to be the same 

for each PLB at a specific location and sp and d are therefore not updated with j. The travel distance d is 

modeled as a deterministic parameter and calculated from the ‘known’ source and sensor locations using 

Eq. 4. The central model equation is based on Eq. 3 and can be stated as follows: 

 [ , , ] 0[ , ] [ , ] [ , ] [ ]  a i j k i j p i k i k kt t s d  (10) 
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where  is an error term modeled as a Gaussian random variable with zero mean and standard deviation 

[k], i.e. it is assumed that the error is a function of the sensor. Alternatively, this probabilistic model can 

be written as: 

  [ , , ] 0[ , ] [ , ] [ , ] [ ] ~ N , a i j k i j p i k i k kT t s d  (11) 

 

The model parameters that were estimated and used to predict future events are the following: 

 Mean of the p-wave slowness, 
ps   

 Standard deviation of the p-wave slowness, 
ps  

 Event time, 0[ , ]i jt  

 Standard deviation of the observed arrival times, [ ] k  

 

The first two parameters are global parameters, i.e. they do not vary with any of the indices i, j, or k. In 

the MCMC algorithm, instead of the standard deviation , the precision  is used and defined as the 

inverse of the variance  2
: 

 
2    (12) 

 

The software WinBUGS allows for a graphical representation of the probabilistic model which is 

illustrated in Fig. 4. Round nodes correspond to random variables and square nodes to constants. 

Observed nodes are shown in grey. The four model parameters listed above require specification of prior 

distributions as described in section 2.1; the selected distributions are listed in Table 3. Normal (N) 

distributions with low precisions are assigned as priors to random variables that represent means, and 

Uniform (U) distributions with extensive intervals as priors to random variables that represent standard 

deviations. The selected distributions are weakly informative priors. 
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Fig. 4. Graphical representation of inference model (screenshot from WinBUGS) 

 

 

Table 3. Description of nodes used in inference model 

Parameter WinBUGS identifier Unit Node type Description/ Prior distributions 

ps  mu_sp [ms/m] Stochastic N(0.25, 1.0) 

ps  sig_sp [ms/m] Stochastic U(0.0, 100) 

ps  tau_sp [(ms/m)
-2

] Logical 
2

p ps s    

0t
  mu_t0 [ms] Stochastic N(-0.05, 1.0) 

[ ] k  sig_eps[k] [ms] Stochastic U(0.0, 100) 

[ ] k  tau_eps[k] [ms
-2

] Logical 
2

[ ] [ ]   k k  

0[ , ]i jt  t0[i,j] [ms] Stochastic N(
0t

 , 1.0) 

[ , ]p i ks  sp[i,k] [ms/m] Stochastic N(
ps , 

ps ) 

[ , ]i kd  d[i,k] [m] Constant Calculated using Eq. 4, observed 

[ , , ]at i j k  mu_ta[i,j,k] [ms] Logical Eq. 10 

[ , , ]a i j kt  ta[i,j,k] [ms] Stochastic N( [ , , ]at i j k , [ ] k ), observed 
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3.2 Estimation of Model Parameters Using Bayesian Inference 

The model described in section 3.1 is implemented in WinBUGS and the analysis executed to estimate the 

posterior distributions of all model parameters. The number of model simulation updates was selected 

based on convergence criteria presented in Congdon [23]: a total of 220,000 were generated of which the 

first 20,000 samples were discarded to account for the so-called ‘burn-in time’. Of the remaining 200,000 

samples, every 10
th
 sample was picked, producing a final set of 20,000 samples. This process is called 

thinning and ensures minimal autocorrelation between the samples. Fig. 5 shows kernel density estimates 

for the model parameters.  

 

 

Fig. 5. Kernel density estimates for model parameters, units see Table 4 

 

The estimated average p-wave velocity cp (determined from node 
ps  by Eq. 9) was 3.89 m/ms (153 

in./ms) which is physically meaningful and comparable to values found in earlier studies by the first 

author [5]. The mean event time 
0t

  was estimated to be approximately -0.06 ms which is reasonable as 

well, considering the size of the test specimen. Also, standard deviations for errors in time arrivals [ ] k  

range from approximately 0.001 to 0.005 ms. Finally, R- and P-matrices were computed containing the 

correlation coefficients  and p-values, respectively, to test for correlation between the model parameters. 
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No significant correlation was found, i.e. all model parameters were essentially statistically independent 

which indicates that the selected model is not over-parameterized. 

 

Continuous probability distributions were subsequently fitted to each estimated parameter based on the 

highest log-likelihood value and are summarized in Table 4. Also, listed are simulation sample means x  

standard deviations s, coefficients of variation . . .
s

C oV
x

, and the Monte Carlo standard error of the 

mean (MC error). As can be observed, the mean 
ps  and the precision 

ps  of the p-wave slowness were 

found to be well described by the Normal (N) and Gamma (Gam) distributions, respectively. The mean 

event time 
0t

  was found to be Normal (N) distributed and the precisions of the arrival time 

measurements 
[ ] k

 followed a Gamma (Gam) distribution. These fitted probability distributions can now 

be employed for the prediction of source location parameters once new observed time arrivals become 

available. 

 

Table 4. Statistics of estimated (posterior) model parameters and fitted posterior distributions 

Parameter Unit Posterior sample statistics Fitted distributions 

  x  s CV MC error  

ps  [m/ms] 0.257 0.00227 0.009 5.61E-5 N(0.257, 194,000) 

ps  [(m/ms)
 -2

] 3,744 372.0 0.099 2.79 Gam(102, 0.0272) 

0t
  [ms] -0.0607 0.0796 1.31 6.24E-4 N(-0.0607, 158) 

[1]  [ms
-2

] 557,000 84,700 0.152 571 Gam(43.6, 7.83E-5) 

[2]  [ms
-2

] 257,000 35,400 0.138 284 Gam(52.7, 2.05E-4) 

[3]  [ms
-2

] 1.07E+6 197,000 0.184 1400 Gam(30.1, 2.82E-5) 

[4]  [ms
-2

] 585,000 90,600 0.155 641 Gam(42.2, 7.22E-5) 

[5]  [ms
-2

] 513,000 76,900 0.150 554 Gam(45.1, 8.76E-5) 

[6]  [ms
-2

] 585,000 89,900 0.154 600 Gam(42.8, 7.31E-5) 

[7]  [ms
-2

] 79,300 10,400 0.131 70.9 Gam(57.7, 7.28E-4) 

[8]  [ms
-2

] 40,900 5,270 0.129 39.2 Gam(60.3, 0.00148) 

 

It should be understood that this probabilistic model is a simplified model because phenomena such as 

wave scattering, attenuation, and changing boundary conditions that will increase and complicate the 

travel path are modeled as one common uncertainty in the system, which limits the predictive power of 

the model. The authors intend to include additional model parameters and error terms in the future that 

can address each phenomenon individually. One way to approach the issue of changing boundary 
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conditions is by updating the model parameters through additional estimations from time to time, e.g. 

when deterioration occurs such as cracking, which can be detected by this algorithm. 

 

3.3 Implementation of Predictive Model 

Based on Eq. 7, a predictive model was implemented. It is based on the same probabilistic model as 

presented in section 3.1 and visualized in Fig. 6. For this model, subscript i corresponds to the predicted 

location and k to the sensor. The estimated model parameters presented in Table 4 were assigned as 

priors. Observed nodes, or known parameters are shown in grey. 

 

 

Fig. 6. Graphical representation of prediction model (screenshot from WinBUGS) 

 

Once new p-wave time arrivals ta[i,k] are observed and available, the source location parameters t0, x0, y0, 

and z0 can be estimated using this predictive model. The specified priors used in this study are listed in 

Table 5. The prior for the event time t0 is readily available from the parameter estimation (see Table 4) 

and the priors for the spatial coordinates x0, y0, and z0 were selected based on the geometrical boundaries 

of the specimen and the knowledge that the events lie on the front x-y face. A distance of 5 mm is added 

to each boundary coordinate to account for measurement uncertainties. This value is based on the authors’ 

observation and experience in the laboratory on how accurate a specimen of this size can be constructed 

and its dimensions subsequently determined. 
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Table 5. Description of source location parameters and priors 

Parameter WinBUGS name Unit Node type Specified priors Lower, upper bounds 

0t  t0[i] [ms], [ms
-2

] Stochastic N(-0.06, 160) - 

0x  x0[i] [m] Stochastic U(-0.92, 0.92) - 

0y  y0[i] [m] Stochastic U(-0.005, 0.618) - 

0z  z0[i] [m], [m
-2

] Stochastic N(0.302, 10,000) (-0.316, 0.307) 

 

In order to validate the predictive model, a series of 22 PLBs that had not previously been used in the 

model parameter estimation, were employed and are presented in detail in section 3.5. An example of the 

solution obtained for one selected event (number 5) is illustrated in Fig. 7: all four source location 

parameters are available with their PDFs. 

 

 

Fig. 7. Example of kernel density estimates for predicted source location parameters, units see Table 5 

 

For the updating process, the same principles as described in section 3.2 were employed. It should be 

noted that the solution does not need to follow any conventional parametric PDF but can be quite 

complex, or sometimes multi-modal. In section 3.4, means are presented to efficiently visualize such 

solutions and determine an optimal point solution. 

 

3.4 Visualization of Source Location Parameters 

The visualization of the simulated source location parameters is based on methods used in data mining for 

multi-dimensional density estimations. A summary of the concepts can be found in [24]. In order to 

enhance interpretation of the complex solution data, a 3-D scatter plot was generated with each data point 

in a color according to the density of the region in which that point is located. The density value for each 
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data point was estimated by evaluating a Gaussian-type kernel at the Euclidian distances to all other 

spatial points in the data set. The width of that kernel was defined in terms of standard deviations of the 

Gaussian- type kernel 
k  and set to the following value: 

 
ˆ

3
k

s
   (13) 

where ŝ  is the mean sample standard deviation of the three spatial coordinates. This value was 

determined by trial and error. Smoothed and weighted intensity values for each data point were computed 

and then employed into a 3-D scatter plot to greatly enhance interpretation and understanding of the 

potentially complex solution space. A color map was assigned that shows low- and high-density regions 

in blue and red, respectively. These intensities can be converted into probability densities by applying the 

normalizing constant c as introduced in section 2.1. An example for the data set presented in Fig. 7 is 

illustrated in Fig. 8(a). As suggested by other researchers, the mode of the predicted source location 

parameters may be selected as optimal point solution representation [7, 14]. The 3-D (or spatial) mode 

can readily be determined by picking the sample point with the highest computed intensity. In addition to 

that, the temporal data can be included. In order to estimate the 4-D (or hyperspace) mode, the so-called 

mean-shift algorithm was implemented [25]. With this general and non-parametric method, modes and 

clusters of complex feature spaces can be explored and a common application is in image processing for 

detecting and selecting similar features (shapes, colors) in photos. In this study, the mean-shift method 

was used to estimate the optimal point for all solution parameters (x0, y0, z0, and t0) simultaneously, i.e. the 

4-D mode, as is shown by the white pentagram in Fig. 8. For reference, the 3-D spatial mode is shown as 

well as a white circle. As can be observed, the difference between the two optimal solutions is minor for 

this particular event. 
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Fig. 8. Example of visualization of source location parameter results: 

(a) 3-D scatter plot of spatial samples with 3-D (white circle) 4-D mode (white pentagram) 

(b) Kernel density estimate for t0 

(c) Tabulated results for 4-D mode estimated by mean-shift algorithm 

 

3.5 Model Validation 

In order to validate the proposed probabilistic prediction model, a set of 22 PLB events on the front x-y 

face of the specimen that had not previously been used in the model parameter estimation were evaluated. 

The obtained probabilistic source location predictions are illustrated in Fig. 9 wherein 2000 samples are 

shown for each solution. Each true PLB location is shown with a black ‘+’. The 3-D and 4-D modes are 

shown as white circles and pentagrams, respectively. It can be observed that the predicted locations are 

generally accurate, i.e. the estimated 3-D and 4-D modes are close to the true PLB location for most of the 

PLBs. Deviations occur for locations that are towards the boundaries of the sensor array. Also, it can be 

observed that the predictions are usually not Normal (N) distributed, which is revealed by the present 

source location algorithm. 
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Fig. 9. Probabilistic source location predictions for 22 PLBs on x-y front face 

(+ = PLB locations,  = 3-D mode,  = 4-D mode) 

 

Fig. 10 illustrates the prediction deviations in terms of the Euclidian distance between predicted (i.e. 

modes of the posterior PDF) and true PLB location. The results for a traditional prediction algorithm as 

presented in section 1.2 are also included for comparison. The deterministic parameters used for the 

traditional algorithm were 3.89 m/ms for the wave velocity cp, the observed mean arrival times ta[i,j,k], and 

the measured sensor location coordinates (see Table 1). The total computation time for one event, 

including sampling, kernel evaluation, and visualization, is on the order of 50 s on a standard PC with an 

Intel I7 core processor. It can be observed that, generally, the mean solution of the traditional algorithm 

produces similar results to the mode of the probabilistic solution. In a majority of cases, the probabilistic 

predictions are slightly better but also provide insight into the source parameters. The larger errors for 

points 1 and 19 show that the present probabilistic algorithm does not provide improved predictions in the 

mean for all cases, in particular if the deterministic prediction uses the mean of the posterior distribution 

obtained with the presented method, as done here. However, the proposed probabilistic method has the 

benefit of providing an improved measure for the uncertainty of the prediction. 
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Fig. 10. Prediction deviations, absolute distance between predicted and true locations 

 

The mis-predictions are assumed to be caused by local effects that depend on the individual signal travel 

paths and therefore are difficult to account for. Such local effects can be associated to voids in the 

concrete matrix or nearby steel reinforcing bars that interfere with the propagating stress wave. One way 

to address this issue could be to include only part of the observed arrival times in the prediction, i.e. 

arrival times that appear to be outliers are omitted. This could be done by trial and error. Another way 

could be to incorporate a correction term  in the probabilistic model that can account for path 

dependency. This is planned for future work and may be used to employ additional information such as 

the signal strength or the angle at which the stress wave arrives at the sensor to further enhance the 

probabilistic model. 

 

4 Summary and Conclusions 

A novel framework for the development of a probabilistic algorithm to estimate stress wave (or AE) 

source locations is presented. Bayesian analysis methods in conjunction with Markov Chain Monte Carlo 

simulation were employed to first estimate model parameters using observed data from an experiment, 

and then to predict source location parameters of future observations in fully probabilistic form. The 

implemented probabilistic model accounts for variability in the wave propagation characteristics, the 

measured arrival times, and the event time. Bayesian inference was found to be a powerful and flexible 

method that can estimate parameters based on a large amount of observed data. All distribution and other 

parameters were estimated with their full posterior probability distributions. It was shown that predictions 

based on estimated parameters employing newly observed arrival times can be performed and produce 

acceptable results, even with a relatively basic model. Temporal and spatial source location parameters 

are available in full probabilistic form and 3-D or 4-D modes determined by kernel density estimation 

methods can be used as optimal point location results. Extension of the presented probabilistic model is 

possible by including a correction term to account for other uncertainties. The authors are currently 

working on improving the presented model formulation and include additional information in form of the 
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maximum signal amplitude (as shown in Fig. 1). First preliminary results are promising as they indeed 

produce slightly more accurate predictions. 
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