
TUM
TECHNISCHE UNIVERSITÄT MÜNCHEN
INSTITUT FÜR INFORMATIK

Technischer
Technische Universität MünchenInstitut für InformatikBericht

Ernst W. Mayr and Jeremias Weihmann

TUM-I1325

Results on Equivalence, Boundedness,
Liveness, and Covering Problems of
BPP-Petri Nets

Results on Equivalence, Boundedness, Liveness, and

Covering Problems of BPP-Petri Nets

Ernst W. Mayr Jeremias Weihmann

March 29, 2013

Abstract

Yen proposed a construction for a semilinear representation of the reachability set of
BPP-Petri nets which can be used to decide the equivalence problem of two BPP-PNs in
doubly exponential time. We �rst address a gap in this construction which therefore does
not always represent the reachability set. We propose a solution which is formulated in
such a way that a large portion of Yen's construction and proof can be retained, preserving
the size of the semilinear representation and the doubly exponential time bound (except
for possibly larger values of some constants). In the second part of the paper, we propose
very e�cient algorithms for several variations of the boundedness and liveness problems of
BPP-PNs. For several more complex notions of boundedness, as well as for the covering
problem, we show NP-completeness. To demonstrate the contrast between BPP-PNs and a
slight generalization regarding edge multiplicities, we show that the complexity of the classical
boundedness problem increases from linear time to coNP-hardness. Our results also imply
corresponding complexity bounds for related problems for process algebras and (commutative)
context-free grammars.

1 Introduction

There is a long tradition of investigating nontrivial subclasses of Petri nets. The reason is not
only that many problems of Petri nets have a lower complexity for a number of restricted classes
than for general Petri nets but also that the behavior of general Petri nets is still not very well
understood. A non primitive recursive algorithm for the reachability problem was given by Mayr
[13]. Since then, not much progress was made on the journey of �nding a primitive recursive
algorithm. In this paper, we investigate a subclass of Petri nets calles Basic Parallel Processes
Petri nets (BPP-PNs, also known as communication-free Petri nets). The Petri nets of this class
are characterized by the simple topological constraint that each transition has exactly one input
place (connected by an edge with multiplicity 1). This class is closely related to both Basic Parallel
Processes, a subclass of Milner's Calculus of Communicating Systems (CCS, see, e.g., [1, 2]), as
well as (commutative) context-free grammars (see, e.g., [8, 3]).

The strong topological constraint on BPP-PNs limits the computational power of these nets in
the sense that they are unable to model synchronizing actions since the �reability of a transition
only depends on exactly one place. Esparza [3] showed that the reachability problem of BPP-PNs
is, nevertheless, NP-hard. Furthermore, he showed that the problem is in NP. Both results together
yield an alternative proof for the NP-completeness of the uniform word problem for commutative
context-free grammars (as shown earlier by Huynh [8]).

Another proof for NP-membership, based on canonical �ring sequences, was given by Yen
[20]. In addition, he proposed an exponential time construction for a semilinear representation of
the reachability set of BPP-PNs. He then used this semilinear representation to argue that the
equivalence problem for BPP-PNs has a doubly exponential time bound.

In section 3, we address a gap in this construction. We show that, in general, the construction
actually computes a proper superset of the reachability set. We then show how to �x the construc-
tion in such a way that most parts of Yen's argumentation can be retained while maintaining the

1

size and running time bounds of the original construction (in the sense that all speci�ed constants
stay the same).

For some notions of boundedness and liveness of BPPs/BPP-PNs ([11, 14, 15], also see [16])
and for �niteness of context-free grammars ([4]), polynomial time algorithms are already known.
In addition to these, we also investigate a number of other variations of the boundedness, the
covering, and the liveness problem for BPP-PNs in sections 4 and 5. For two variants of the
boundedness problem, and for the covering problem, we show NP-completeness. Using, among
other things, results from section 3, we can decide most of the remaining problems very e�ciently in
linear time. These algorithms are also applicable to related problems of BPPs and (commutative)
context-free grammars.

Linear time algorithms not only make these problems tractable in practice but also show that
BPP-PNs are too restricted if we are searching for classes of Petri nets where these problems
are hard. Further variations and generalizations of BPP-PNs need to be investigated in order to
mark the boundary where these problems cease to be easy. As a �rst example, we show that the
classical boundedness problem becomes coNP-hard if we slightly weaken the restriction on the
multiplicities of edges from places to transitions in BPP-PNs.

2 Preliminaries

Z, N0, and N denote the sets of all integers, all nonnegative integers, and all positive integers,
respectively, while [a, b] = {a, a + 1, . . . , b} $ Z, and [k] = [1, k] $ N. For two vectors u, v ∈ Zk,
we write u ≥ v if u(i) ≥ v(i) for all i ∈ [k], and u > v if u ≥ v and u(i) > v(i) for some i ∈ [k].
When k is understood, ~a denotes, for a number a ∈ Z, the k-dimensional vector with ~ai = a for
all i ∈ [k].

A Petri net N is a 3-tuple (P, T, F) where P is a �nite set of n places, T is a �nite set of m
transitions with S ∩ T = ∅, and F : P × T ∪ T × P → N0 is a �ow function. A marking µ (of N)
is a function P → N0. A pair (N,µ0) such that µ0 is a marking of N is called a marked Petri net,
and µ0 is called its initial marking. We will omit the term �marked� if the presence of a certain
initial marking is clear from the context.

Throughout this paper, n and m will always refer to the number of places and transitions of
the Petri net under consideration. For a transition t ∈ T , •t (t•, resp.) is the preset (postset, resp.)
of t and denotes the set of all places p such that F (p, t) > 0 (F (t, p) > 0, resp.). Analogously, •p
and p• are de�ned for the places p ∈ P .

A Petri net naturally corresponds to a directed bipartite graph with edges from P to T and
vice versa such that there is an edge from p ∈ P to t ∈ T (from t to p, resp.) labelled with w if
0 < F (p, t) = w (if 0 < F (t, p) = w, resp.). The label of an edge is called multiplicity. If a Petri
net is visualized, places are usually drawn as circles and transitions as bars. If the Petri net is
marked by µ, then for each place p the circle corresponding to p contains µ(p) so called tokens.

For a Petri net N = (P, T, F) and a marking µ of N , a transition t ∈ T can be applied at µ
producing a vector µ′ ∈ Zn with µ′(p) = µ(p)− F (p, t) + F (t, p) for all p ∈ P . The transition t is
enabled at µ or in (N,µ) if µ(p) ≥ F (p, t) for all p ∈ P . We say that t is �red at marking µ if t
is enabled and applied at µ. If t is �red at µ, then the produced vector µ′ is a marking, and we

write µ
t−→ µ′.

Intuitively, if a transition is �red, it �rst removes F (p, t) tokens from p and then adds F (t, p)
tokens to p. An element of T ∗ is called a transition sequence, an element of T∞ is called an
∞-transition sequence. For the empty sequence σ = () of transitions, we de�ne µ

σ−→ µ. For a

nonempty transition sequence σ = (t1, . . . , tk), we write µ0
σ−→ µk if there are markings µ1, . . . , µk−1

such that µ0
t1−→ µ1

t2−→ µ2 . . .
tk−→ µk.

The Parikh map Ψ : T ∗ → Nm0 maps a transition sequence σ to its Parikh image Ψ[σ] where
Ψ[σ](t) = k for a transition t if t appears exactly k times in σ. A Parikh vector is simply an
element of Nm0 (hence each Parikh vector is the Parikh image of some transition sequence). For a
Parikh vector Φ we write t ∈ Φ if Φ(t) > 0, and t ∈ σ if t ∈ Ψ[σ].

2

If there is a marking µ′ such that µ
σ−→ µ′, then we say that σ (the Parikh vector Ψ[σ], resp.) is

enabled at µ and leads from µ to µ′. For a marked Petri net (N,µ0), we call a transition sequence
that is enabled at µ0 a �ring sequence, and we say that a marking µ is reachable if there is a
�ring sequence leading to µ. Analogously, an∞-transition sequence σ is enabled at µ if each �nite
pre�x of σ is enabled at µ. If σ is enabled at µ0, we call σ an ∞-�ring sequence. The reachability
set R(N,µ0) of (N,µ0) consists of all markings µ of N for which there is a �ring sequence σ such

that µ0
σ−→ µ. We say that a marking µ can be covered or µ is coverable if there is a reachable

marking µ′ ≥ µ.
The displacement ∆ : Nm0 → Zn0 maps Parikh vectors Φ ∈ Nm0 onto the change of tokens at

the places p1, . . . , pn when applying transition sequences with Parikh image Φ. That is, we have
∆[Φ](p) =

∑
t∈T Φ(t) · (F (t, p)− F (p, t)) for all places p. Accordingly, we de�ne the displacement

∆[σ] of a transition sequence σ by ∆[σ] := ∆[Ψ[σ]]. A Parikh vector or a transition sequence
having nonnegative displacement at all places is called a nonnegative loop since, immediately
after being �red, the loop is enabled again. A nonnegative loop having positive displacement at
place p is a positive loop (for p).

Sometimes it is convenient to only consider those places and transitions that are relevant w.r.t.
a given set of transitions or a Parikh vector. For a Petri net P = (P, T, F, µ0), and a set D of
transitions, the Petri net PD consists of all transitions t ∈ D, all places p ∈

⋃
t∈D(•t∪ t•), and the

�ow function F and initial marking µ0 restricted to these subsets of transitions and places. For a
Parikh vector Φ we de�ne PΦ := PD where D = {t | t ∈ Φ}.

In the case of BPP-PNs the strongly connected components (SCCs) are also of major interest.
The directed acyclic graph obtained by shrinking all SCCs to super nodes while maintaining
the edges between distinct SCC as edges between the corresponding super nodes is called the
condensation (of the graph). We call an SCC C a top component (bottom component, resp.) if it
has no incoming (no outgoing, resp.) edges in the condensation. For two not necessarily distinct
SCCs C1, C2, we write C1 ≥ C2 if there is a path from C1 to C2 in the condensation.

An important concept in the analysis of Petri nets are traps. A subset T ⊆ P of places is a
trap if •t ∩ T 6= ∅ implies t• ∩ T 6= ∅, i.e., every transition that removes a token from T also adds
a token to T . Once a trap is marked, it cannot be unmarked by �ring a transition.

Some marked Petri nets have reachability sets that are semilinear. A set S ⊆ Nn0 is semilinear
if there is a �nite number of linear sets L1, . . . , Lk ⊆ Nn0 such that S =

⋃
i∈[k] Li. A set L ⊆ Nn0

is linear if there is a �nite number of vectors b, p1, . . . , p` ∈ Nn0 such that L = L(b, {p1, . . . , p`})
where L(b, {p1, . . . , p`}) := {b+

∑
i∈[`] aipi | ai ∈ N0, i ∈ [`]}. The vector b is the constant vector

of L while the vectors pi are the periods of L. A semilinear representation of a semilinear set S is
a set consisting of k pairs (bi, {pi,1, . . . , pi,`i}), i ∈ [k], such that S =

⋃
i∈[k] L(bi, {pi,1, . . . , pi,`i}).

If two Petri nets allow the construction of semilinear representations of the respective reachabil-
ity sets within a certain time bound, then not only many problems that are in general undecidable
are decidable for this class but time bounds can be given as well. For example, the equivalence
problem of (conveniently encoded representations of) semilinear sets is in ΠP

2 [7, 9]. This implies
that the equivalence problem for that class, i.e., the question if two Petri nets of the class have
the same set of reachable markings, is decidable in exponential time w.r.t. the combined time to
construct the semilinear sets.

When we talk about the input size, a �reasonable� encoding/description is assumed. We specif-
ically assume that every number is encoded in binary representation. Furthermore, we assume
for convenience that a Petri net is encoded as an enumeration of places p1, . . . , pn and transitions
t1 . . . , tm followed by an enumeration of the edges with their respective edge multiplicities. A vec-
tor of Nk0 is encoded as a k-tuple. If we regard a tuple as an input (e.g. a marked Petri net), then
it is encoded as a tuple of the encodings of the particular components. All running times given in
later sections assume the random-access machine (RAM) as the model of computation.

3 The Equivalence Problem of BPP-Petri Nets Revisited

In this section we consider the equivalence problem of BPP-PNs.

3

De�nition 3.1 (Equivalence problem of BPP-PNs). Given two BPP-PNs P and P ′, are R(P)
and R(P ′) equal?

In [20], Yen proposed a construction for a semilinear representation of the reachability set
of BPP-PNs. The obtained representation has exponential size in the size of the BPP-PN. The
author used the fact that the equivalence problem of semilinear sets is in ΠP

2 (see [7, 9]) to show a
double exponential time bound for this problem. The construction of the semilinear representation
is contained in the proposed proof of the following theorem.

Theorem 3.2 ([20], Theorem 5). Let P = (P, T, F, µ0) be a BPP-Petri net of size s. For some

�xed constants c1, c2, d1, d2, d3 independent of s, we can construct in DTIME(2c2s
3

) a semilinear

reachability set R(P) =
⋃
ν∈B L(ν, ρν) whose size is bounded by O(2c1s

3

), where

1. B is the set of reachable markings with no component larger than 2d1s
2

, and

2. ρν is the set of all ϑ ∈ Nk such that

(a) ϑ has no component larger than 2d2s
2

, and

(b) ∃ σ, σ1, σ2 ∈ T ∗, ∃ marking µ1,

(i) µ0
σ1−→ µ1

σ2−→ ν,

(ii) µ1
σ−→ µ1 + ϑ,

(iii) |σ|, |σ1σ2| ≤ 2d3s
2

.

We show that there are BPP-PNs such that the constructed semilinear set contains markings
that are not reachable. Consider the BPP-PN P with initial marking µ0 = (1, 0, 0, 0) of Figure 1.
The marking ν = (0, 0, 0, 1) is reachable.

p1

p2 p3

p4

t1

t2

t3

t4

t5

2
t6

2

Figure 1: A counter example for the con-
struction proposed in Theorem 3.2.

In particular we have µ0
t1−→ µ1 = (0, 1, 0, 0)

t2−→ ν as

well as µ0
t3−→ µ′1 = (0, 0, 1, 0)

t4−→ ν. Notice that we
can safely and w.l.o.g. assume ν ∈ B since we can
blow up the size of the net by adding unrelated places.

Now observe that µ1
t5−→ µ1 +ϑ where ϑ = (0, 1, 0, 0),

as well as µ′1
t6−→ µ′1 + ϑ′ where ϑ′ = (0, 0, 1, 0). As

before, we can safely assume |t1t2|, |t3t4|, |t5|, |t6| ≤
2d3s

2

. Therefore, we �nd ϑ, ϑ′ ∈ ρν . But then, the
unreachable marking (0, 1, 1, 1) is in L(ν, ρν). Hence,
the constructed semilinear set S :=

⋃
ν∈B L(ν, ρν)

cannot equal R(P).
The inclusion R(P) ⊆ S is proven correctly in

[20]. Our goal is to repair the construction in such
a way that we can more or less completely reuse the
proof given for this direction. Our �rst step is to
show that there is a certain subclass of BPP-PNs for
which the other direction S ⊆ R(P) is also true. To this end, observe that the crucial property of
the net of Figure 1 that makes this net a counter example is that ν is reachable by the two �ring
sequences t1t2 and t3t4 which have di�erent Parikh images. We will later show that the restriction
to those BPP-PNs having the nice property that any two �ring sequences leading to the same
marking have the same Parikh image yields a variation of this theorem which is correct.

Before we can prove such a theorem, we �rst need some observations about enabled Parikh
vectors and nonnegative loops in BPP-PNs.

Lemma 3.3. Let P = (N,µ0) be a BPP-PN. A Parikh vector Φ is enabled in P if and only if

(a) µ0 + ∆[Φ] ≥ ~0, and

(b) each top component of PΦ has a marked place.

4

Proof. This Lemma is a variation of Theorem 3.1 of [3] which is better suited for our purposes.
The theorem states that Φ is enabled if and only if (a) holds and if, within PΦ, each place can be
reached from a marked place.

Lemma 3.4. Let P = (P, T, F, µ0) be a Petri net, σ = σ1 · · ·σk ∈ T k a �ring sequence in P, and
let µi, i ∈ [k], be de�ned by µ0

σ1−→ µ1
σ2−→ . . .

σk−→ µk. Then, for each place p of PΨ[σ], there is an
i ∈ [0, k] such that p is marked in µi.

Proof. Each place p of PΨ[σ] is in the pre- or postset of some transition σi. If p ∈ •σi, then p must
be marked in µi−1. If p ∈ σi•, then p is marked in µi.

Lemma 3.5. Let Φ be a nonnegative loop of a BPP-PN P = (P, T, F), and let C1, . . . , Ck, k ≥ 1,
denote the top components of PΦ. Then Φ can be split into nonnegative loops Φ1, . . . ,Φk, k ≤ n,
such that

(a) Φ =
∑k
i=1 Φi, and

(b) the only top component of PΦi is Ci.

Proof. For Φ = ~0, the lemma is obviously true, hence we assume Φ > ~0. We show that we can
extract Φ1 from Φ. By iteratively applying this procedure, we obtain the nonnegative loops of
interest. PΦ1 will contain C1 and all nodes that are reachable from C1. Since it is possible that
�ring a transition t of an SCC C with C ≤ C1, C2 and C 6= C1, C2 exactly Φ(t) times requires
tokens coming from C1 and C2, PΦ1

and PΦ−Φ1
will in general not be disjoint.

We �rst note that a top component of PΦ always contains a transition since otherwise there
would be a transition of Φ that removes tokens from the component but no transition that adds
tokens to it, a contradiction to Φ being a nonnegative loop. Let Φ′ = Φ and Φ1 = ~0. By moving
a transition t from Φ′ to Φ1 we mean setting Φ′(t) := Φ′(t)− 1 and Φ1(t) := Φ1(t) + 1.

We start with a top component C1 of PΦ, and move each transition t ∈ C1 exactly Φ′(t) times
from Φ′ to Φ1. Then we iterate the following process:

(i) If ∆[Φ1](p) > 0 for a place p and p = •t for a transition t ∈ Φ′, then we move t from Φ′ to
Φ1.

(ii) Otherwise, if there is a top component of PΦ′ that is not a top component of PΦ, we move
each transition t of this component exactly Φ′(t) times from Φ′ to Φ1.

The procedure ends when none of these two cases is applicable.
We �rst prove that at each step of the procedure the only top component of PΦ1 is C1. After

the �rst step this is obviously true since we completely move C1. Assume this holds for `−1 steps.
If the `-th step is of case (i), then it holds after ` steps since the only nodes that are possibly added
to the induced graph PΦ1

by moving t are t and t• which can be reached by the place •t which is
already part of PΦ1

before moving t. If the `-th step is of case (ii), then the moved component C
was originally created by moving a transition t such that t• and C share a place. This shows that
PΦ1 has only one top component after the last step of the procedure.

Observe that the top components of PΦ′ are exactly C2, . . . , Ck. The reason is that C1 is moved,
C2, . . . , Ck remain untouched, and (ii) ensures the moving of all newly created top components.

Now, we show that ∆[Φ1] ≥ ~0 holds at each step of the procedure. After the �rst step, i.e., after
moving the top component, this holds since otherwise Φ wouldn't be a nonnegative loop. Suppose
this holds after `− 1 steps. If the `-th step is of case (i), then it obviously still holds after that.

Suppose, the `-th step is of case (ii), where C is the new top component that is moved during
this step. Consider the situation immediately before the `-th step. Let ΦC be de�ned by ΦC(t) =
Φ′(t) if t ∈ C, and ΦC(t) = 0 otherwise. Our goal is to show that ∆[ΦC] ≥ ~0 since this and the
induction hypothesis imply ∆[Φ1 + ΦC] ≥ ~0, i.e., after moving all transitions of C in the `-th step,
the resulting Parikh vector is a nonnegative loop.

First notice that for all places p /∈ C we have ∆[ΦC](p) ≥ 0. (This follows from the fact that
C is a transition induced SCC, implying •t ∈ C for all t ∈ C.)

5

Consider a place p ∈ C. By the induction hypothesis, we have ∆[Φ1](p) ≥ 0. ∆[Φ1](p) > 0
cannot occur since otherwise the `-th step would be of case (i) (applied to a transition t ∈ C
having p = •t). Thus, we have ∆[Φ1](p) = 0.

Now, observe that for all t ∈ Φ′ having t• ∈ C we have t ∈ ΦC since C is a top component.
This implies ∆[ΦC](p) ≥ ∆[Φ′](p). Combining all these observations we obtain

∆[ΦC](p) = ∆[Φ1 + ΦC](p) ≥ ∆[Φ1 + Φ′](p) = ∆[Φ](p) ≥ 0.

Now, we show that Φ′ is a nonnegative loop at the end of the procedure. Let p be a place, and
consider the situation after the last step. If ∆[Φ1](p) > 0, then there is no transition t ∈ Φ′ having
•t = p since otherwise (i) would be applicable, and the procedure wouldn't have stopped, yet. This
implies ∆[Φ′](p) ≥ 0. If ∆[Φ1](p) = 0, then ∆[Φ′](p) ≥ 0 follows from ∆[Φ1 + Φ′] = ∆[Φ] ≥ ~0. As
shown above, the case ∆[Φ1](p) < 0 cannot occur.

Since •t 6= ∅ for all transitions t, each top component of PΦ contains at least one place. This
implies k ≤ n, concluding the proof.

Lemma 3.6. Let P = (P, T, F, µ0) be a BPP-PN, and Φ, ϑ Parikh vectors such that ϑ is a
nonnegative loop, and Φ and Φ + ϑ are enabled. Then, for each �ring sequence α such that PΦ

is a subnet of PΨ[α], there are transition sequences α1, . . . , αk+1 and nonnegative loops τ1, . . . , τk,
k ≤ n, such that

(a) α = α1 · · ·αk+1,

(b) ϑ = τ1 + . . .+ τk,

(c) Pτi , i ∈ [k], has exactly one top component, and this top component is the i-th top component
of Pϑ using a properly chosen numbering of the top components, and

(d) τi, i ∈ [k], is enabled at marking µi where µ0
α1···αi−−−−→ µi.

Proof. Consider the decomposition of ϑ by Lemma 3.5 into nonnegative loops τ1, . . . , τk, k ≤ n,
such that ϑ =

∑k
i=1 τi, and the i-th top component Ci of Pϑ is the unique top component of Pτi .

Let i ∈ [k]. Assume that Ci and PΦ are disjoint. Then, Ci is a top component of PΦ+ϑ, and
Ci is marked at µ0 by Lemma 3.3 since Φ + ϑ is enabled at µ0. Therefore, by the same lemma, τi
is enabled at µ0.

Now, assume that Ci and PΦ are not disjoint, i.e., they share a place p. Since PΦ is a subnet
of PΨ[α], Lemma 3.4 implies that there are transition sequences α′, α′′ such that α = α′ · α′′ and
p is marked at µ′ where µ0

α′−→ µ′. Therefore, by Lemma 3.3, τi is enabled at µ′ .
We conclude that, by splitting the sequence α at appropriate positions, there are transition

sequences α1, . . . , αk+1 such that α = α1α2 · · ·αk+1, and µ0
α1−→ µ1 · · ·

αk−−→ µk
αk+1−−−→ µ, and

τi is enabled at µi where we assume w.l.o.g. that the top components of Pϑ are conveniently
numbered.

Having collected and proven these observations, we can show the following restricted variation
of Theorem 3.2.

Theorem 3.7. Let P = (P, T, F, µ0) be a BPP-Petri net of size s such that for all �ring
sequences τ, τ ′ leading to the same marking Ψ(τ) = Ψ(τ ′) holds. For some �xed constants

c1, c2, d1, d2, d3 independent of s, we can construct in DTIME(2c2s
3

) a semilinear reachability set

R(P) =
⋃
ν∈B L(ν, ρν) whose size is bounded by O(2c1s

3

), where

1. B is the set of reachable markings with no component larger than 2d1s
2

, and

2. ρν is the set of all ϑ ∈ Nk such that

(a) ϑ has no component larger than 2d2s
2

, and

(b) ∃ σ, σ1, σ2 ∈ T ∗, ∃ marking µ1,

6

(i) µ0
σ1−→ µ1

σ2−→ ν,

(ii) µ1
σ−→ µ1 + ϑ,

(iii) |σ|, |σ1σ2| ≤ 2d3s
2

.

Proof. Assume B 6= ∅, and let ν ∈ B, and µ ∈ L(ν, ρν) be arbitrarily chosen. Our goal is to show
that µ is reachable. W.l.o.g. let ρν = {ϑ1, . . . , ϑ`}. By de�nition, there are a1, . . . , a` ∈ N0 such

that µ = ν +
∑`
i=1 aiϑi. For ϑi, i ∈ [`], let σi,1 denote the sequence σ1 as de�ned in the theorem.

Since all �ring sequences leading to ν have the same Parikh image Φν , PΨ[σi,1] is a subnet of PΦν .
Let α be some �ring sequence having Parikh image Φν , and let µj , j ∈ [|α|], be de�ned by

µ0
α1···αj−−−−→ µj . By applying Lemma 3.6 to Ψ[σi,1], θi, and α for all i ∈ [`], we �nd that for any

partial loop of any θi there is a j ∈ [0, |α|] such that the partial loop under consideration is enabled

at µj . Therefore, the Parikh vector Ψ[α] +
∑`
i=1 aiϑi leading to µ is enabled at µ0.

We can use this theorem and corresponding construction in a mediate way to construct a
semilinear representation of R(P) in exponential time for every BPP-PN P. For that we need the
following de�nition.

De�nition 3.8 (Parikh extension). Let P = (P, T, F, µ0), P = {p1, . . . , pn}, T = {t1, . . . , tm} be
a Petri net. The Parikh extension Pe = (P e, T, F e, µe0) of P is obtained by adding an unmarked
place p∗i for each transition ti such that F (ti, p

∗
i) = 1.

Figure 2 illustrates the Parikh extension of the net of Figure 1. If we �re a �ring sequence
σ, µ′0

σ−→ µ1, in the Parikh extension Pe, then the new place p∗i , i ∈ [m], counts how often the
transition ti is �red. In other words, the projection of µ1 onto the new places equals Ψ[σ]. Hence,
for each marking µ reachable in Pe all �ring sequences leading to µ have the same Parikh image.
This allows us to prove the next theorem. We remark that the concept of the Parikh extension is
closely related to the concept of extended Parikh maps used in [12] for persistent Petri nets.

p1

p2 p3

p4

p∗1 p∗3

p∗2 p∗4

p∗5 p∗6
t1

t2

t3

t4

t5

2
t6

2

Figure 2: The Parikh extension of the net of Figure 1.

Theorem 3.9. Let P = (P, T, F, µ0) be a BPP-Petri net of size s. For some �xed constants

c1, c2, d1, d2 independent of s, we can construct in DTIME(2c2s
3

) a semilinear representation of

the reachability set R(P) whose size is bounded by O(2c1s
3

) where no component of any constant

vector is larger than 2d1s
2

and no component of any period is larger than 2d2s
2

.

Proof. We compute the Parikh extension Pe of P. First notice that Pe is a BPP-PN. Since all
�ring sequences of Pe leading to the same marking have the same Parikh image, we can apply
the construction given in [20], which is correct for Pe by Theorem 3.7, in order to obtain the
semilinear representation SL(Pe) of R(Pe). Now notice that a marking µ is reachable in P if and
only if there is a marking µ′ that is reachable in Pe such that the projection of µ′ onto the places
of P equals µ (to see this, simply apply the same �ring sequence). Therefore, the projection of
SL(Pe) onto the places of P yields the semilinear representation SL(P) of R(P).

7

The running time of this projection is linear in the size of SL(Pe). In turn, the size of Pe is
linear in the size of P. Hence, the constants c1, c2, d1, d2 may be larger for this theorem than for
Theorem 3.7 but all speci�ed constants (like the cube of s3) are not increased.

In the next sections we investigate several variations of the boundedness, and the liveness
problem for BPP-PNs. In addition we show that the covering problem is NP-complete for BPP-
PNs.

4 Boundedness Problems for BPP-PNs

We �rst de�ne the concepts of boundedness we are interested in.

De�nition 4.1. Let P = (P, T, F, µ0) be a Petri net, and R ⊆ P . A place p ∈ P with p /∈ R is

(i) empty-R-unbounded if, for all k ∈ N, there is a reachable marking µ ∈ R(P) such that
µ(p) ≥ k and µ(r) = 0 for all r ∈ R.

(ii) unbounded if p is empty-∅-unbounded.

(iii) unbounded on an ∞-�ring sequence σ if, for all k ∈ N, there is a �nite pre�x of σ leading to
a marking µ such that µ(p) ≥ k.

(iv) persistently unbounded if, for all reachable markings µ ∈ R(P), p is unbounded in the Petri
net (P, T, F, µ).

For a set R ⊆ P , a set S ⊆ P with S ∩R = ∅ is

(iv) (placewise) empty-R-unbounded if some place (all places, respectively) of S are empty-R-
unbounded.

(v) (∞-)unbounded if S contains a place that is unbounded (on an ∞-�ring sequence, respec-
tively).

(vi) placewise (∞-)unbounded if all places of S are unbounded (on an ∞-�ring sequence, respec-
tively).

(vii) simultaneously unbounded if, for all k ∈ N, there is a reachable marking µ ∈ R(P) such that
µ(p) ≥ k for all p ∈ S.

(viii) simultaneously ∞-unbounded if there is an ∞-�ring sequence σ such that, for all k ∈ N,
there is a �nite pre�x of σ leading to a marking µ satisfying µ(p) ≥ k for all p ∈ S.

We remark that, for a place, �universally unbounded� implies �persistently unbounded� which
implies �unbounded on an ∞-�ring sequence� which implies �unbounded�. Further, by Lemma 3.2
of [12] a set S ⊆ P of places is simultaneously unbounded on some∞-�ring sequence if and only if
there is an∞-�ring sequence σ such that all places p ∈ S are unbounded on (the same sequence) σ.
Hence, this on �rst sight weaker characterization yields another de�nition for the same concept.

4.1 Concepts of Non-Simultaneously Unboundedness and Related Prob-

lems

In this subsection we investigate concepts of unboundedness where the places under consideration
are not required to be simultaneously (∞-)unbounded, and provide e�cient algorithms for the
corresponding decision problems. In addition, e�cient algorithms for related problems for Basic
Parallel Processes and (commutative) context-free grammars are proposed.

Lemma 4.2. Let P = (P, T, F, µ0) be a BPP-PN, and p ∈ P a place. Then the following are
equivalent.

8

1. p is unbounded.

2. There is a �ring sequence σ leading to a marking µ and a positive loop τ enabled at µ such
that ∆[τ](p) > 0.

3. p is unbounded on some ∞-�ring sequence.

4. There are strongly connected components C1, C2, C3, C4 of P such that

(a) p ∈ C4,

(b) C1 ≥ C2 ≥ C3 ≥ C4,

(c) C1 contains a marked place, and

(d) C2 contains a transition t with •t ∈ C2 and
∑
p′∈t•∩(C2∪C3) F (t, p′) ≥ 2.

Proof. 1 ⇒ 2: By de�nition, there is an in�nite sequence of enabled Parikh vectors (Φ′1,Φ
′
2, . . .)

such that ∆[Φ′i](p) < ∆[Φ′i+1](p), i ∈ N. It is easy to see that this sequence contains an in�nite
subsequence (Φ1,Φ2, . . .) such that Φi ≤ Φi+1, i ∈ N (see, e.g., Lemma 4.1. of [10]). In particular,
we have ∆[Φ1](p) < ∆[Φ2](p), i.e., there is a positive loop ϑ such that ∆[ϑ](p) > 0 and Φ1+ϑ = Φ2.
Since both Φ1 and Φ2 are enabled, we can apply Lemma 3.6 to Φ1, ϑ and some �ring sequence α
having Parikh image Φ1. Let α1, . . . , αk+1 and τ1, . . . , τk be de�ned as in the lemma. Then we

have ∆[τi](p) > 0 for some i ∈ [k]. Let τ := τi. For µ0
α1···αi−−−−→ µ, τ is enabled at µ, concluding

the proof.
1 ⇒ 4: We continue where the proof for 1 ⇒ 2 ended. Let C ′2 be the unique top component

of PΨ[τ], and C
′
4 the SCC of PΨ[τ] containing p. Since τ is enabled at µ, by Lemma 3.3 there are

places p1 and p2 such that p1 is marked at µ0, P contains a path from p1 to p2, p2 is contained in
C ′2, and µ(p2) > 0. De�ne C1 as the SCC of P containing p1.

Since τ is a nonnegative loop, C ′2 contains a transition. If there is a transition t of C
′
2 such that∑

p′∈t•∩C′2
F (t, p′) ≥ 2, then simply de�ne C ′3 = C ′2. Now, assume that such a transition doesn't

exist. Then, we have C ′4 6= C ′2 since the total number of tokens in C ′2 cannot increase by �ring τ .
In particular, there is a path (p2, t, p3, . . . , p) from C ′2 to C ′4 where p3 /∈ C ′2. Let C ′3 be the SCC of
PΨ[τ] containing p3. If t

• ∩ C ′2 = ∅, then τ decreases the number of tokens at C ′2, a contradiction
to τ being a nonnegative loop. Therefore, t• ∩C ′2 6= ∅, and we obtain

∑
p′∈t•∩(C′2∪C′3) F (t, p′) ≥ 2.

Now, let Ci for i ∈ [2, 4] be the SCC of P containing C ′i, and observe that C1, . . . , C4 satisfy the
properties (a)�(d).

2⇒ 3: p is unbounded on the ∞-�ring sequence στ∞.
3⇒ 1: This follows immediately from the de�nitions.
4 ⇒ 1: To mark •t, we �rst �re along a path starting at a marked place of C1 and ending

at •t. Then we �re k ∈ N times along a cycle containing t. After that, at least k tokens can be
transferred to p.

p1

p2

Figure 3: {p1, p2}
is simultaneously
unbounded but not
simultaneously-∞-
unbounded.

We remark that a Petri net is unbounded if and only if there is a �ring
sequence σ, a marking µ, and a positive loop ϑ such that µ0

σ−→ µ, and
ϑ is enabled at µ (see [10]). Lemma 4.2 states that the same principle
holds for single places of a BPP-PN. In general, however, this is not true.
We further note that (in contrast to, e.g., persistent Petri nets, see [12])
this concept doesn't hold for sets of places of BPP-PNs, i.e., a set S ⊆ P
of places of a BPP-PN is not necessarily simultaneously ∞-unbounded
if it is simultaneously unbounded. An example is given in Figure 3.
We can use the characterization provided by Lemma 4.2 to give e�cient
algorithms for certain boundedness problems.

Theorem 4.3. Given a BPP-PN P = (P, T, F, µ0) and sets S1, . . . , Sk ⊆
P of places, we can determine in linear time which sets are

(a) (∞-)unbounded in P.

9

(b) placewise (∞-)unbounded in P.

Proof. We give a linear time algorithm that works in six steps.

1. Using Tarjan's modi�ed depth-�rst search [19], we �nd the strongly connected components of
P.

2. By investigating all SCCs, we determine all SCCs that contain a marked place. We call these
components C1-components.

3. Using a DFS on the shrunken graph we determine all SCCs that contain a place and are
reachable by a C1-component. We call these components C2-components.

4. We determine all SCCs C that are either C2-components and contain a transition t satisfying∑
p∈t•∩C F (t, p) ≥ 2, or that are reachable by a single edge emanating from a transition that

is contained in a C2-component. We call these components C3-components.

5. Then we use a DFS in the shrunken graph to determine all SCCs that are reachable from a
C3-component. These SCCs are called C4-components. By Lemma 4.2, all places contained in
C4-components are (∞-)unbounded.

6. Now we simply check for (a) if each Si, i ∈ [k], contains a place p that is in some C4-component.
For (b) we check for each Si, i ∈ [k], if each place of Si is in some C4-component.

Notice that each of these steps can be performed in linear time.

De�nition 4.4 (Boundedness problem for BPP-PNs). Given a BPP-PN P, are all places of P
bounded?

Corollary 4.5. The boundedness problem for BPP-PNs is decidable in linear time.

Proof. Apply Theorem 4.3 to the set of all places.

We remark that in [11] was shown that boundedness of Basic Parallel Processes can be decided
in polynomial time.

Interestingly, a slight relaxation of BPP-PNs leads to a class of nets for which the boundedness
problem is coNP-hard.

Theorem 4.6. Let multiplicity generalized BPP-PNs be the Petri net class consisting of all Petri
nets P = (P, T, F, µ0) which satisfy |•t| = 1 for all t ∈ T . The boundedness problem for multiplicity
generalized BPP-PNs is coNP-hard.

Proof. We reduce 3-SAT in logspace to the unboundedness problem which is the complement of the
boundedness problem. The reduction is illustrated in Figure 4. A similar reduction was used by
Esparza [3] to show the NP-hardness of the reachability problem for BPP-PNs. Let C1∧C2∧. . .∧C`
be a formula in 3-CNF with k variables x1, . . . , xk and ` clauses C1, . . . , C`.

We create a BPP-PN P as follows. Each variable is represented by a place containing one
token, and each clause Cj is represented by a place cj containing 3 tokens. For each variable xi,
there are two transitions xi and xi representing the truth assignment of xi where xi (xi, resp.)
puts a token to place cj if the literal xi (xi, resp.) is contained in Cj .

Then, there is a counting place p which counts how many clauses are satis�ed. If clause Cj is
satis�ed by an assignment, cj contains at least 4 and at most 6 tokens which allows us to transfer
exactly one token from cj to p. If Cj is unsatis�ed, cj contains 3 tokens, and we cannot transfer
any token to p.

Therefore, P is unbounded if and only if p is unbounded if and only if all ` clauses can be
satis�ed. This shows the NP-hardness of the unboundedness problem and therefore the coNP-
hardness of the boundedness problem.

In order to decide the next variation of the boundedness problem in linear time, we need some
observations about traps in BPP-PNs.

10

c1 c2p

x1 x1 x2 x2 x3 x3

4 4

` `+1

Figure 4: The formula C1 ∧C2 = (x1 ∨ x2 ∨ x3)∧ (x1 ∨ x2 ∨ x3) can be satis�ed if and only if this
BPP-PN is unbounded.

Lemma 4.7. Let P = (P, T, F, µ0) be a BPP-PN and R ⊆ P be a set of places. The trap Q ⊆ R
of maximum cardinality w.r.t. R can be determined in linear time.

Proof. Apply the following procedure. Let Q′ := R. While there is a transition t ∈ T such that
•t ∈ Q′ and t• ∩ Q′ = ∅, remove •t from Q′. Let Q denote the resulting set. Q must be a trap
since otherwise the procedure wouldn't have stopped. Furthermore, Q is maximal w.r.t. inclusion
since the procedure can't remove a place from a maximal trap. There is exactly one maximal trap
w.r.t. inclusion which therefore is a maximum trap.

We can implement the procedure in linear time as follows. We use two arrays A and N , and
a list L, as well as a collection Q. The collection Q is initialized with the set R. The array A has
length |T | and A[i] is initialized with |ti• ∩R|. The array N has length |P | and N [i] is initialized
with an empty list if pi /∈ R, and otherwise with a list of all transitions tj such that tj ∈ •pi. The
list L is initialized with all transitions ti having

•ti ∈ Q and A[i] = 0. It's not hard to see that
these data structures can be initialized in linear time.

Now, as long as L is not empty, we do the following. First, we pop some transition ti from the
list, and let pj = •ti. Then, if pj ∈ Q, we remove pj from Q, and, for each tk contained in the list
stored at N [j], we decrease A[k] by 1, and add tk to L if A[k] = 0 after the decreasing step.

When L is empty, Q ⊆ R is the trap of maximum cardinality w.r.t. R. The running time of
this procedure is linear.

Lemma 4.8. Let P = (P, T, F, µ0) be a BPP-PN, and R ⊆ P be a subset of places such that no
set Q ⊆ R is a trap. Then, there is a �ring sequence σ leading to a marking where no place of R
is marked such that ∆[σ](p) ≥ 0 for all p /∈ R.

Proof. By de�nition, if a set Q ⊆ P is not a trap, then there is a transition t with •t ∈ Q and
t• ∩ Q = ∅. De�ne the transitions t1, . . . , t|R| and the sets R0, . . . , R|R|+1 recursively as follows.
We start with R1 = R. Given Ri for i ∈ [|R|], then ti is a transition with •ti ∈ Ri and ti•∩Ri = ∅,
and Ri+1 = Ri−•ti. In other words, R|R| $. . . $ R1, and we can successively empty R|R|, . . . , R1

by �ring the transitions t|R|, . . . , t1 each an appropriate number of times. Since these transitions
don't remove tokens from places outside of R, the displacement of the �ring sequence at these
places is nonnegative.

Lemma 4.9. Let P = (P, T, F, µ0) be a BPP-PN, and Q ⊆ R ⊆ P be the trap of maximum
cardinality w.r.t. R. Then there is a �ring sequence σ leading to µ with µ(p) = 0 for all p ∈ R if
and only if all places of Q are unmarked.

Proof. �⇒�: If Q is marked, then R will always be marked, regardless of the transitions �red.
�⇐�: Notice that R′ := R \ Q doesn't contain a trap by the maximality of Q. Consider the

BPP-PN P ′ which emerges from P by removing Q and all transitions incident to Q. R′ also

11

doesn't contain a trap w.r.t. P ′. By Lemma 4.8, R′ can be emptied in P ′. Therefore, R can be
emptied in P.

These observations enable us to prove the following theorems.

Theorem 4.10. Given a BPP-PN P = (P, T, F, µ0) and a place p ∈ P , we can decide in linear
time if p is persistently unbounded.

Proof. We use the terminology of Lemma 4.2. Let C4 be the SCC containing p. For the marking
µ′0 having exactly one token at each place, we determine the set R ⊆ P of all places contained
in SCCs C1 for which SCCs C2 and C3 exist such that C1, C2, C3, and C4 satisfy the properties
mentioned in Lemma 4.2. By this lemma, p is unbounded at each marking µ such that there is a
place r ∈ R with µ(r) > 0.

Therefore, p is not persistently unbounded if and only if there is a marking reachable from µ0

where no place of R is marked. By Lemma 4.9, we only have to determine if the maximum trap
Q ⊆ R w.r.t. R is marked. By Lemma 4.7, this can be done in linear time.

Theorem 4.11. Given a BPP-PN P = (P, T, F, µ0) and two disjoint sets S,R ⊆ P of places, we
can decide in linear time if S is (placewise) empty-R-unbounded.

Proof. Let Q ⊆ R denote the maximum trap w.r.t. R. Consider the BPP-PN P ′ which emerges
from P by removing Q and all transitions incident to Q. S is (placewise) empty-R-unbounded in
P if and only if S is (placewise, respectively) unbounded in P ′ and Q is unmarked in P since, by
Lemma 4.8, we can empty all places of R \ Q without decreasing the number of tokens at other
places. By Theorem 4.3, these conditions can be checked in linear time.

Another useful Lemma can be proven in a similar way as Theorem 4.11.

Lemma 4.12. Let P = (P, T, F, µ0) be a BPP-PN, and Q ⊆ R ⊆ P be the maximum trap w.r.t.
R. Then, there is a �ring sequence leading to a marking where no place of R is marked if and
only if Q is not marked. Furthermore, this can be decided in linear time.

Esparza et al. [4] provided a generic algorithm deciding in quadratic time if the language
of a given context-free grammar is �nite. In the same paper, they mentioned that a careful
implementation of the algorithm in [6] could possibly achieve linear time. Using our results,
we can decide a generalization of the �niteness problem of commutative and non-commutative
context-free grammars in linear time.

Theorem 4.13. Given a (commutative) context-free grammar G = (V, T, P, S) and a set U ⊆ T
with variables V , terminal symbols T , productions P (free commutative monoids in the case of
commutative grammars), and start variable S ∈ V , we can decide in linear time if L(G)[U] is
�nite. L(G)[U] denotes the set of all words x ∈ U∗ for which a word y of the language L(G) of G
exists such that x is obtained by deleting all symbols from y which are not in U .

Proof. We de�ne a BPP-PN as follows. Variables and terminal symbols are represented by places,
where X̃ denotes the place corresponding to X ∈ V ∪ T . A production X → Y1Y2 · · ·Yk, where
X ∈ V and Yi ∈ V ∪ T is represented by a transition t such that X̃ = •t, and F (t, Ỹi) equals
the number of occurrences of Yi in Y1 · · ·Yk. The initial marking contains a token at place S̃.
Let Ũ denote the set of places that correspond to the terminal symbols of U . Further, let Ṽ
be the set of places corresponding to variables. L(G)[U] is in�nite if and only if the set Ũ is
empty-Ṽ -unbounded. By Theorem 4.11, this can be decided in linear time. Note that for non-
commutative c.f. grammers, this reduction does not take the order of symbols on the right-hand
side of productions into account which is irrelevant for this problem.

An advantage of our algorithm compared to the one in [6] is that it does not require the gram-
mar being in Chomsky normal form. In [4], the authors also provided linear time algorithms for the
emptiness problem and the problem of �nding nullable variables of context-free grammars. Our
results provide alternative linear time algorithms for these problems as well as for corresponding
problems of commutative context-free grammars.

12

Theorem 4.14. Given a (commutative) context-free grammar G = (V, T, P, S), we can decide in
linear time if L(G) is empty.

Proof. Consider the same BPP-PN as in Theorem 4.13. Then L(G) = ∅ if and only if Ṽ cannot
be emptied. By Lemma 4.12, this can be decided in linear time.

Theorem 4.15. Given a (commutative) context-free grammar G = (V, T, P, S), we can �nd in
linear time all variables X ∈ V for which the empty word ε is in L(GX) where GX is the (com-
mutative) context-free grammar (V, T, P,X).

Proof. Consider the same BPP-PN as in Theorem 4.13. Then, by Lemma 4.12, ε ∈ L(GX) if and
only if Ṽ ∪ T̃ can be emptied in the net where the only marked place is X̃. By the same lemma,
this applies to exactly those places X̃ ∈ Ṽ which are not part of the maximum trap w.r.t. Ṽ ∪ T̃ .
By Lemma 4.7, all such places and therefore the set of all nullable variables can be found in linear
time.

In the same way, the zero reachability problem which, in general, is as hard as the reachability
problem (see [5]), is decidable in linear time for BPP-PNs.

Theorem 4.16. Given a BPP-PN P = (P, T, F, µ0), we can decide in linear time if the zero
marking (0, . . . , 0) is reachable.

Proof. The zero marking is reachable if and only if P can be emptied. By Lemma 4.12, this can
be decided in linear time.

4.2 Simultaneously Unboundedness and the Covering Problem

In this subsection, we consider the covering problem as well as boundedness problems where we
ask if many places are simultaneously (∞-)unbounded.

De�nition 4.17 (SU). Given a BPP-PN P = (P, T, F, µ0) and a subset S ⊆ P of places, is S
simultaneously unbounded?

De�nition 4.18 (S-∞-U). Given a BPP-PN P = (P, T, F, µ0) and a subset S ⊆ P of places, is
S simultaneously ∞-unbounded?

De�nition 4.19 (Covering problem for BPP-PNs (covering)). Given a BPP-PN P, and a mark-
ing µ of P, is there a reachable marking µ′ ≥ µ?

In order to prove the next theorems, we need the following corollary which is an immediate
consequence of Lemma 2 of [20].

Corollary 4.20. Let P = (P, T, F, µ0) be a BPP-PN with m = |T | and largest edge multiplicity
W , and let µ be a reachable marking. Then there is a �ring sequence σ = π1α1π2α2 · · ·πmαm
leading from µ0 to µ such that, for all i ∈ [m], πi is a nonnegative loop, and αi satis�es −mW ≤
∆[αi](p) ≤ mW for all p ∈ P .

Theorem 4.21. SU and S-∞-U are NP-complete even if we restrict the input to BPP-PNs P =
(P, T, F, µ0) with |t•| = 1 and F (t, t•) ≤ 2 for all t ∈ T .

Note that a further restriction to F (t, t•) = 1 leads to S-Systems, a subclass of BPP-PNs,
which are always bounded.

Theorem 4.22. The covering problem for BPP-PNs is NP-complete.

Proof. For two problems A and B let A ≺log B denote the existence of a logspace many-one
reduction from A to B.

We �rst show the NP-hardness of SU and S-∞-U by showing 3-SAT ≺log SU and 3-SAT ≺log

S-∞-U.

13

x1 x1 x2 x2 x3 x3

2 2 2 2 2 2

c1 c2

Figure 5: The formula C1 ∧ C2 = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) can be satis�ed if and only if
{c1, c2} is simultaneously (∞-)unbounded.

Given a formula F in 3-CNF over the variables x1, . . . , xk and clauses C1, . . . , C`, we construct
a BPP-PN such that a certain subset S = {ci | i ∈ [`]} of places is simultaneously (∞)-unbounded
if and only if F can be satis�ed. An example is illustrated in Figure 5 (cf. the reduction in the
proof of Theorem 4.6).

Next, we show covering ∈ NP by reducing covering in logspace to the reachability problem.
We modify P by adding, for each p ∈ P , a transition tp having F (p, tp) = 1. Call the resulting
BPP-PN P ′. Notice that a marking µ can be covered in P if and only if µ can be covered in P ′ if
and only if µ is reachable in P ′.

Now, we show SU ∈ NP and that covering is NP-hard by showing SU ≺log covering. Again
consider the net P ′. Let W be the largest edge multiplicity of P ′. De�ne the marking µ by
µ(p) = µ0(p) + (n + m)2W + 1 if p ∈ S, and µ(p) = 0 otherwise. Notice that µ has polynomial
encoding size.

Assume that S is simultaneously unbounded in P. Then µ is coverable in P ′. Now, as-
sume that µ is coverable in P ′, i.e., µ is reachable in P ′. In accordance with Corollary 4.20,
let π1α1 · · ·πn+mαn+m be a �ring sequence of P ′ leading from µ0 to µ. Then −(n + m)2W ≤∑
i∈[n+m] ∆[αi](p) ≤ (n + m)2W for all p ∈ P . Hence, each place p ∈ S has some i such that

∆[πi](p) > 0. Therefore, for each k ∈ N, the marking µ′k reached in P ′ by the �ring sequence

π
(n+m)2W+k
1 · α1 · · ·π(n+m)2W+k

n+m · αn+m satis�es µ′k(p) ≥ k for all p ∈ S. By removing all transi-
tions from this �ring sequence that are not part of P, we obtain a �ring sequence of P leading to
a marking µk of P with µk(p) ≥ k for all p ∈ S. Therefore, S is simultaneously unbounded in P.

It remains to be shown that S-∞-U ∈ NP. To this end, we will describe a nondeterministic
procedure accepting if and only if the given set S ⊆ P is simultaneously ∞-unbounded. Suppose,
the latter is the case. Then there is an∞-�ring sequence on which S is simultaneously unbounded.
A similar argument as in the proof of Lemma 4.2 shows that there are transitions sequences σ, τ
such that στ∞ is an ∞-�ring sequence and τ is a positive loop having ∆[τ](p) ≥ 1 for all p ∈ S.

By Lemma 3.3, τ is enabled at exactly those markings µ where all top components of Pτ are
marked. Therefore, there is a marking µ∗ such that each place has either zero or one tokens and
such that τ is enabled at µ∗. We will use the existence of µ∗ later.

Let D ∈ Zn×m be the displacement matrix of P, i.e., the i-th column of D equals ∆[ti].
Consider the system DΦ ≥ 0 of linear diophantine inequalities. Obviously, the set L of nontrivial
nonnegative integral solutions of this system equals the set of nonnegative loops having at least
one transition. Now, consider the system (D,−In)y = 0 having the set L′ of nontrivial solutions
where In is the n×n-identity matrix. The set of projections of the elements of L′ onto the �rst m
components equals L. By Theorem 1 of [18], this system has a set H(D,−In) of minimal solutions
(called the Hilbert basis) having the following properties:

(i) Each nontrivial solution can be expressed as a linear combination of the elements ofH(D,−In)
with nonnegative integral coe�cients.

14

(ii) Each element of H(D,−In) has a component sum of at most (mW + 2)n.

W.l.o.g., we assume n,m,W ≥ 1. Let Lmin = {Φ1, . . . ,Φr} ⊆ L denote the projection of
H(D,−In) onto the �rstm components. From (ii) we immediately obtain r ≤ ((mW + 2)n + 1)

n ≤
(2mW)cn

2

for some constant c > 0.
Since τ is a nonnegative loop, we can write Ψ[τ] =

∑
i∈[r] aiΦi for suitable ai ∈ N0. Now,

de�ne a′i := min{ai, 1} and Φ :=
∑
i∈[r] a

′
iΦi. For each p ∈ S, we have ∆[τ](p) > 0, implying

the existence of an i with ai > 0 and ∆[Φi](p) > 0. Therefore, Φ is a nonnegative loop with
∆[Φ](p) > 0 for all p ∈ S. Furthermore, by Lemma 3.3, Φ is enabled at µ since PΦ = PΨ[τ]. (ii)

and r ≤ (2mW)cn
2

imply that the largest component of Φ is at most (2mW)dn
2

for some constant
d > 0. Therefore, the encoding size of Φ is polynomial.

Now, we can describe the nondeterministic procedure which accepts if and only if S is simulta-
neously unbounded on some ∞-�ring sequence: We guess µ∗ and Φ in polynomial time and check
nondeterministically and in polynomial time if µ∗ can be covered and if Φ is enabled at µ∗.

This completes the proof.

We note that it can be decided in linear time if the set P of all places is simultaneously
(∞-)unbounded. This is the case if and only if all top components C contain a marked place and
a transition t with

∑
p∈t•∩C F (t, p) ≥ 2. Hence, the problems SU and S-∞-U are hard only if the

input set S satis�es 1 < |S| < |P |.

5 Liveness Problems for BPP-PNs

Many di�erent notions of liveness can be found in literature. We are mainly interested in the
following.

De�nition 5.1. Let P = (P, T, F, µ0) be a Petri net. A transition t is

• L0-live or dead if there is no �ring sequence containing t.

• L1-live or potentially �reable if it isn't dead.

• L2-live or arbitrarily often �reable if for each k ∈ N there is a �ring sequence containing t
at least k times.

• L3-live or in�nitely often �reable if there is an∞-�ring sequence containing t in�nitely often.

• L4-live or live if t is potentially �reable at each reachable marking.

A subset S ⊆ T of transitions is called Lx-live, x ∈ [0, 4], if all transitions of S are Lx-live.

The concepts of L0, . . . , L4-liveness are referred to in [17]. Notice, that Li-liveness implies
Lj-liveness, where 4 ≥ i ≥ j ≥ 1. Using the results of Section 4, we can e�ciently solve many
decision problems involving these notions of liveness.

Theorem 5.2. Given a BPP-PN P = (P, T, F, µ0) and sets S1, . . . , Sk ⊆ T of transitions, we can
determine in linear time which sets are

(a) L0-live. (b) L1-live. (c) L2-live. (d) L3-live.

Proof. Consider the Parikh extension Pe = (P e, T, F e, µe0) of P (see De�nition 3.8). A transition
ti is not L0-live i� ti is L1-live i� for the SCC Ci containing p

∗
i there is a marked SCC C such

that Ci ≤ C (see Lemma 3.3). Hence, we can answer (a) and (b) in linear time by computing Pe,
collecting the SCCs of Pe and investigating the found SCCs in a similar fashion as in Theorem 4.3.

For (c) and (d) notice that ti is L2-live i� p
∗
i is unbounded i� p∗i is unbounded on some∞-�ring

sequence (see Lemma 4.2) i� ti is L3-live. Hence, we simply apply the algorithm of Theorem 4.3
to Pe and the sets S∗1 , . . . , S

∗
k , where S

∗
i = {p∗j | tj ∈ Sj}.

15

Corollary 5.3. Given a BPP-PN P = (P, T, F, µ0), we can decide in linear time, if (a transition
t of) P is

(a) L0-live. (b) L1-live. (c) L2-live. (d) L3-live.

Theorem 5.4. Given a BPP-PN P = (P, T, F, µ0) and a transition t ∈ T , we can decide in linear
time if t is L4-live.

Proof. As before, consider the Parikh extension Pe = (P e, T, F e, µe0) of P. It is easy to see that a
transition ti is L4-live i� p

∗
i is persistently unbounded.

In [14], Mayr showed that L4-liveness is decidable in polynomial time for Basic Parallel Pro-
cesses. Our results imply a quadratic time algorithm.

Corollary 5.5. Given a BPP-PN P = (P, T, F, µ0), we can decide in quadratic time, if P is
L4-live.

In the same paper, other interesting notions of liveness were investigated, namely the partial
deadlock reachability problem and the partial livelock reachability problem. For both problems
polynomial time algorithms were proposed for PA-processes in general. Using our results, linear
time algorithms can be given for BPPs/BPP-PNs.

Theorem 5.6 (deadlock). Given a BPP-PN P = (P, T, F, µ0) and a set S of transitions, we can
decide in linear time if there is a reachable marking µ such that µ(•t) = 0 for all t ∈ S.

Proof. Let R =
⋃
t∈S
•t. By Lemma 4.7, we determine in linear time the maximum trap Q ⊆ R

w.r.t. R. By Lemma 4.9, R can be emptied if and only if Q is unmarked which can be checked in
linear time.

Theorem 5.7 (livelock). Given a BPP-PN P = (P, T, F, µ0) and a set S of transitions, we can
decide in linear time if there is a reachable marking µ such that for all markings µ′ reachable from
µ, we have µ′(•t) = 0 for all t ∈ S.

Proof. We introduce a counting place p and an edge from each transition t ∈ S to p. A marking
µ as de�ned in the lemma exists if and only if p is not persistently unbounded. By Theorem 4.10,
this can be decided in linear time.

6 Conclusion

We showed in conjunction with [20] that the equivalence problem is decidable in doubly exponential
time. Furthermore, we investigated several boundedness and liveness problems for BPP-PNs. For
some of them, as well as for the covering problem, NP-completeness was shown. For most of the
other problems, linear time could be achieved implying linear time algorithms for many problems
in related areas. Open problems include:

• Is the equivalence problem complete for some known complexity class?

• Are the problems SU and S-∞-U decidable in polynomial time for sets S of constant size?

• How do the complexities of the reachability and the covering problem, and of variations
of the boundedness and liveness problem behave if we consider di�erent generalizations of
BPP-PNs?

Acknowledgements. We thank Javier Esparza for many helpful discussions.

16

References

[1] S. Christensen. Distributed bisimularity is decidable for a class of in�nite state-space systems.
In W. Cleaveland, editor, CONCUR '92, volume 630 of Lecture Notes in Computer Science,
pages 148�161. Springer Berlin / Heidelberg, 1992.

[2] S. Christensen, Y. Hirshfeld, and F. Moller. Bisimulation equivalence is decidable for basic
parallel processes. In E. Best, editor, CONCUR'93, volume 715 of Lecture Notes in Computer
Science, pages 143�157. Springer Berlin / Heidelberg, 1993.

[3] J. Esparza. Petri nets, commutative context-free grammars, and basic parallel processes.
Fundamenta Informaticae, 31(1):13�25, 1997.

[4] J. Esparza, P. Rossmanith, and S. Schwoon. A uniform framework for problems on context-
free grammars. EATCS Bulletin, 72:169�177, October 2000.

[5] M. Hack. The recursive equivalence of the reachability problem and the liveness problem for
Petri nets and vector addition systems. In Switching and Automata Theory, 1974., IEEE
Conference Record of 15th Annual Symposium on, pages 156 �164, oct. 1974.

[6] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages and Compu-
tation. Addison-Wesley, 1979.

[7] D. T. Huynh. The complexity of semilinear sets. In J. de Bakker and J. van Leeuwen, editors,
Automata, Languages and Programming, volume 85 of Lecture Notes in Computer Science,
pages 324�337. Springer Berlin / Heidelberg, 1980.

[8] D. T. Huynh. Commutative grammars: The complexity of uniform word problems. Informa-
tion and Control, 57(1):21 � 39, 1983.

[9] D. T. Huynh. A simple proof for the sum upper bound of the inequivalence problem for
semilinear sets. Elektronische Informationsverarbeitung und Kybernetik, pages 147�156, 1986.

[10] R. M. Karp and R. E. Miller. Parallel program schemata. Journal of Computer and System
Sciences, 3(2):147 � 195, 1969.

[11] A. Ku£era. Regularity is decidable for normed PA processes in polynomial time. In V. Chan-
dru and V. Vinay, editors, Foundations of Software Technology and Theoretical Computer
Science, volume 1180 of Lecture Notes in Computer Science, pages 111�122. Springer Berlin
/ Heidelberg, 1996.

[12] L. H. Landweber and E. L. Robertson. Properties of con�ict-free and persistent Petri nets.
J. ACM, 25:352�364, July 1978.

[13] E. W. Mayr. An algorithm for the general Petri net reachability problem. In Proceedings of
the thirteenth annual ACM symposium on Theory of computing, STOC '81, pages 238�246,
New York, NY, USA, 1981. ACM.

[14] R. Mayr. Tableau methods for PA-processes. In D. Galmiche, editor, Automated Reasoning
with Analytic Tableaux and Related Methods, volume 1227 of Lecture Notes in Computer
Science, pages 276�290. Springer Berlin / Heidelberg, 1997.

[15] R. Mayr. Decidability and Complexity of Model Checking Problems for In�nite-State Systems.
PhD thesis, Technische Universität München, 1998.

[16] R. Mayr. On the complexity of bisimulation problems for basic parallel processes. In U. Mon-
tanari, J. Rolim, and E. Welzl, editors, Automata, Languages and Programming, volume 1853
of Lecture Notes in Computer Science, pages 329�341. Springer Berlin / Heidelberg, 2000.

17

[17] T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the IEEE,
77(4):541 �580, apr 1989.

[18] L. Pottier. Minimal solutions of linear diophantine systems : bounds and algorithms. In
R. Book, editor, Rewriting Techniques and Applications, volume 488 of Lecture Notes in
Computer Science, pages 162�173. Springer Berlin / Heidelberg, 1991.

[19] R. Tarjan. Depth-�rst search and linear graph algorithms. SIAM Journal on Computing,
1(2):146�160, 1972.

[20] H.-C. Yen. On reachability equivalence for BPP-nets. Theoretical Computer Science, 179(1-
2):301 � 317, 1997.

18

