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Abstract

An idealized yet economically plausible relation between the “fair” risk-neutral
premium rate of a credit default swap (CDS) and the risk-neutral default
rate (intensity) of the underlying reference entity is established in this thesis.
Therefore, central results on credit risk modelling within the intensity-based
framework and on modelling time series by means of (Lévy-driven) continuous-
time autoregressive moving-average (CARMA) processes are reviewed. In
particular, the technique of recovering the noise process, i.e. isolating the
background-driving Lévy process of an invertible CARMA process, is brought
into focus.

Within the scope of an extensive practical model evaluation, historical pre-
mium rates of CDS on several European and North American reference issuers
are used in order to determine the optimal CARMA polynomial degrees, to
demonstrate the noise recovery and finally to identify the most suitable (para-
metric) distribution law of the approximated background-driving noise.



Zusammenfassung

In dieser Thesis wird ein idealisierter – dennoch ökonomisch plausibler – Zusam-
menhang zwischen der “fairen” risikoneutralen Prämie eines Credit Default
Swaps (CDS) und der risikoneutralen Ausfallrate (Intensität) der dieser zugrun-
deliegenden Referenzobligation hergestellt. Dazu werden zentrale Erkenntnisse
aus dem Bereich der Kreditrisikomodellierung mithilfe des intensitäts-
basierten Ansatzes und der Zeitreihenmodellierung durch (Lévy-getriebene)
zeitstetige, autoregressive Moving-Average-Prozesse (CARMA-Prozesse)
vorgestellt. Insbesondere wird die Rückgewinnung des Hintergrundprozesses,
d.h. der isolierten Darstellung des treibenden Lévy-Prozesses, näher beleuchtet.

Im Rahmen einer umfassenden, praktischen Auswertung werden historische
Quotierungen von CDS-Prämien auf mehrere europäische und nordamerikanis-
che Referenzschuldner herangezogen, um die für die Daten optimalen CARMA-
Polynomgrade zu bestimmen, die Schätzung des Lévy-Prozesses zu veran-
schaulichen und schließlich die am besten passende (parametrische) Verteilung
für die resultierenden Lévy-Inkremente zu identifizieren.
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4.3.2 Histogram plots of the Lévy increments recovered from CAR(1) . . . . . . . . . 62
4.3.3 (Log-)Histograms and qq-plots for the fitted noise distributions (1/4) . . . . . . 66
4.3.4 (Log-)Histograms and qq-plots for the fitted noise distributions (2/4) . . . . . . 67
4.3.5 (Log-)Histograms and qq-plots for the fitted noise distributions (3/4) . . . . . . 68
4.3.6 (Log-)Histograms and qq-plots for the fitted noise distributions (4/4) . . . . . . 69
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Nomenclature

Global Abbreviations

càdlàg right continuous with left limits
(French: continue à droite, limitée à gauche)

CDS credit default swap(s) (sg./pl.)

iid independent and identically distributed

sde stochastic differential equation

1 Introduction

(Ω,F ,F, P ) Filtered probability space endowed with the default-free market filtration
F := {Ft}t≥0 and probability measure P

(Ω,F ,F, Q) Filtered probability space endowed with the default-free market filtration
F := {Ft}t≥0 and martingale measure Q

r Risk-free short rate process r := {rt}t≥0 considered for a riskless investment
(bank account)

D(·, ·) Risk-free discount factor given by D(s, t) := exp{−
´ t
s
rudu}, s, t ≥ 0

E[·] (= EQ[·]) Expectation (with respect to the martingale measure Q)



Nomenclature x

2 Credit risk modelling

τ , H Default time τ and its natural filtration H := {Ht}t≥0 (default filtration)

(Ω,G,G, Q) Filtered probability space endowed with the enlarged filtration G := F ∨ H
and martingale measure Q

F , F̄ F-conditional default probability F := {Ft}t≥0 and survival probability F̄ :=
{F̄t}t≥0 of the default time τ

Γ, γ F-hazard process Γ := {Γt}t≥0 and F-intensity process γ := {γt}t≥0 of the
default time τ

Π, Π̃ Risk-neutral price process of a defaultable (Π̃ := {Π̃t}t≥0) and a default-free
(Π := {Πt}t≥0) contingent claim

Π̃R
C̃

Risk-neutral price process of a defaultable bond continuously paying the
coupons C̃ := {C̃t}t≥0 with recovery fraction R ∈ [0, 1] and unit notional
amount Ñ := 1

ΠC Risk-neutral price process of a default-free bond continuously paying the
coupons C := {Ct}t≥0 with unit notional amount N := 1

Y , Ỹ Par yield of a defaultable (Ỹ := {Ỹt}t≥0) and a default-free (Y := {Yt}t≥0)
bond, continuously paying coupons

S∗ Par yield spread S∗ := {S∗t }t≥0 of a defaultable continuously paying coupon
bond over a default-free (otherwise equivalent) bond, given by S∗t := Ỹt − Yt,
t ≥ 0

C∗ Par premium C∗ := {C∗t }t≥0 of a (continuously paying) CDS

3 Continuous-time linear processes

L, W (Two-sided) Lévy process L := {Lt}t∈R and (two-sided) Brownian motion
W := {Wt}t∈R



Nomenclature xi

∆L(h) Discretely sampled increments of the Lévy process L (of step size h > 0)
given by ∆L(h)

t := Lth − L(t−1)h, t ∈ R

Bj, Dj Discrete-time (Bj) and continuous-time (Dj) backshift operators of degree
j ∈ N

γy, ρy Autocovariance function (ACVF) and autocorrelation function (ACF) of a
(covariance) stationary process y

φ, ϑ Autoregressive (φ) and moving-average (ϑ) polynomials of a discrete-time
ARMA process

α, β Autoregressive (α) and moving-average (β) polynomials of a continuous-time
ARMA (CARMA) process

A, B Companion matrices of a CARMA process with characteristic polynomials
α, β given by its state-space representation (A) and of the inverted state
equation (B)

g, gx Real-valued kernel function of a stationary CARMA process and the vector-
valued kernel function of its state vector process x

4 Appropriate models for CDS premia

T Finite time index set T := {1, ..., T ∗} of discrete observations for some T ∗ ∈ N

ŷ Discrete observations ŷ := {ŷt}t∈T\{1} of (first-order) log-differenced CDS
premia given by ŷt := logC∗t − logC∗t−1, t ∈ T \ {1}

ξ Parameter vector ξ := (α1, ..., αp, β0, ..., βq, σ)> of a CARMA(p,q) process;
the admissible set is denoted by Ξ ⊂ Rp+q+1 × (0,∞)

θ Parameter vector θ of the respective parametric distribution family with d

parameters; the admissible set is denoted by Θ ⊂ Rd

` Likelihood function of the respective parameter vector ξ or θ



Nomenclature xii

BIC Bayesian information criterion (based on the log-likelihood log `)

AICC Akaike information criterion corrected for finite sample sizes (based on the
log-likelihood log `)



Preface

“[...] however, the proper test of a theory is not the realism of its assump-
tions but the acceptability of its implications [...]” (Sharpe (1964))

Among the spectrum of various financial risks that a participant on capital markets—like a
bank or insurance company—has to bear, credit risk is certainly one of the most important.
It encompasses several hazards such as a company’s partly or total failure or delay to comply
promised payments contractually agreed with its counterparty. When risks like these even-
tuate, we call these events default, bankruptcy or insolvency. Actually, financial instruments
traded on capital markets are always defaultable. For example, depending on the credit
quality of (the issuer of) a corporate or governmental bond, the chance that the the total
notional amount, including interests, is repaid to the investor at the bond’s maturity may be
higher or lower compared to other issuers—however, in most cases it may be doubted that
the probability is really 100%.

Economists and mathematicians have studied the magnitude, intensity, probability as well as
causes and impacts of defaults for more than 50 years. During this period, the development of
theoretical fundamentals for describing and modelling the structure of credit risk always went
hand in hand with the evolution and growth of global financial markets. With credit default
swaps (CDS), the early 1990s have spawned probably the most influential, but also most
quickly inflating credit derivatives. Primarily invented for protection against the default of a
third party (like insurance contracts)—however, only available for over-the-counter trading—
CDS rapidly evolved into mighty instruments for speculation during the recent 10–15 years
as they are allowed to be bought (sold) in arbitrary amount without the necessity for the
buyer (seller) to have any risky position in the reference entity (unlike classical insurance
contracts). Regulators are only lagging behind with baffling, limiting and standardizing the
capabilities of these instruments. Despite the loss in popularity that CDS suffered in recent
years, as they are regarded as to be responsible for (or at least to have significantly fueled)
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the subprime mortgage crisis in the United States during 2004–2008, their influence in the
current European sovereign debt crisis since 2010 has still been large, especially for hedging
against (but also speculating on) rising or falling default risk of financial institutions and
governments across Europe.

From a modelling point of view, CDS also exhibit the key advantages of being able to isolate
credit risk—which in other financial securities is often connected with various different risk
factors such as interest rate risk or liquidity risk: The premium of a CDS contract serves
as a good quantifier of pure risk of the corresponding reference issuer’s insolvency, because
market participants raise (reduce) the premia they charge for newly issued contracts as soon
as their expectations about his creditworthiness change into the negative (positive).

This thesis involves mathematical modelling aspects for describing the valuation of credit-
risky financial instruments with certain contingent claim structures and illustrates the con-
cepts especially by means of bonds and CDS. Furthermore and what is of greater interest,
an introduction to continuous-time extensions to classical (i.e. discrete) linear time series
modelling is given in order to provide useful and practical tools for describing the temporal
patterns that are typical for CDS. The gap is then bridged by a very idealized framework
established in this thesis in which the (risk-neutral) premium dynamics can be approximated
with a very simple intensity-based expression.

This thesis is organized as follows: Chapter 1 gives a brief introduction into key concepts
of risk-neutral valuation of contingent claims without default risk, in order to provide a
basis for Chapter 2 in which the valuation concept is extended to account for credit risk in a
certain manner by the hazard process (in general) or intensity-based approach (in particular).
The theory described there consists largely of the results of Bielecki, Jeanblanc and
Rutkowski arisen from many of their cooperative works (references given in the chapter)
during the late 1990s through the early 2000s. Two credit risky instruments—bonds and
CDS—are chosen representatives by means of which the theory is illustrated in a more
concrete context.

Chapter 3 is a compact excursus into the world of modelling continuous-time linear time
series, which will be used for applications in the practical part of this thesis. Its theory is
mainly based on results of Brockwell and Davis, who are also authors of seminal discrete
time series textbooks (references given in the chapter). They extend the theory of well-known
and widespread discrete ARMA (autoregressive moving-average) models to the continuous
time domain, resulting in the many-faceted class of (Lévy-driven) CARMA models. As a
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central aim of this thesis, methods of and conditions for recovering the background-driving
Lévy process from (the sampled version of) a CARMA process are introduced.

After having presented the ideas of the Chapters 2 and 3, we will have a stochastic process
observable and sufficiently appropriate for time series analysis on the one hand (the CDS
premium process) and the necessary tools on the other hand (CARMA processes).

The practical part of this thesis, Chapter 4, describes the subsequent working stages that we
were following during the phase of data analysis: from data acquisition and quality checks
to finding and estimating appropriate models out of the CARMA class as well as recovering
the background-driving noise process. This recovered noise process is put to further analysis
in order to identify a suitable parametric distribution.

Chapter 5 concludes this thesis with an outlook to further topics and a brief summary.



Chapter 1.

Introduction

For introductory purposes, some key concepts of mathematical finance are briefly reviewed
in order to establish a basis for the risk-neutral valuation of default-free claims. In Chapter
2, this will be extended to defaultable claims in a special modelling framework.

1.1. The default-free market

Let (Ω,F ,F, P ) be a filtered probability space endowed with the filtration F := {Ft}t≥0

satisfying the “usual conditions” that is, F is assumed to be complete and right-continuous.
The probability measure P is referred to as the physical measure. In this thesis, F is rep-
resenting the default-free market information which will become clear in the next chapter,
when we add credit risk into the setting.

We define the (default-free) money market account modelled by a stochastic process S(0) :=
{S(0)

t }t≥0 solving the stochastic differential equation (sde)

dS
(0)
t = S

(0)
t rtdt,

where the positive and F-adapted stochastic process r := {rt}t≥0 is called short rate. It is
well-known that this sde has the solution

S
(0)
t = exp

{ˆ t

0
rsds

}
, t ≥ 0, (1.1)

assuming S(0)
0 = 1 without loss of generality.
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Suppose our market contains N ≥ 1 different assets in addition to the money market account.
Stating the price S(i) of some asset i ∈ {0, ..., N} relatively to the price S(j) of another asset
j ∈ {0, ..., N} is a very general form of discounting. In that context, asset j is called
numéraire, reference asset or simply basis. We will focus on the risk-free money market
account as the numéraire of our choice (j = 0) for specific reasons clarified after the following
definition.

Definition 1.1. (Discount factor and discounted price process) Let S(i) := {S(i)
t }t≥0

denote the price process of asset i ∈ {0, ..., N}. Then:

(i) For some fixed s ≥ 0, the process {D(s, t)}t≥0 defined by

D(s, t) := S(0)
s

S
(0)
t

= exp
{
−
ˆ t

s

rudu

}
, t ≥ 0,

is called discount process or discount factor from the viewpoint of time s.

(ii) The process S̄(i) := {S̄(i)
t }t≥0 defined by

S̄
(i)
t := S

(i)
t

S
(0)
t

= D(0, t)S(i)
t , t ≥ 0,

is called discounted price process of asset i.

Note that, in the special case i = 0, the discounted price process of the bank account is
always S̄(0)

t = D(0, t)S(0)
t = S

(0)
0 = 1 for every t ≥ 0. For s ≤ t, the discount factor

0 < D(s, t) ≤ D(t, t) = 1 serves as the present value of one monetary unit at time s. For
s > t, one speaks of compounding since D(s, t) = D(t, s)−1 > 1 is interpreted as the future
worth of a risk-free investment of one monetary unit at time t.

Furthermore, observe that we have D(s, t)D(t, T ) = D(s, T ) for every 0 ≤ s ≤ t ≤ T . We
will frequently make use of these simple rules lateron.

Definition 1.2. (Risk-neutral pricing measure) Let Q denote a probability measure on
(Ω,F), equivalent to P (in symbols Q ∼ P ), i.e. every P -nullset is a Q-nullset and vice
versa. Then Q is called martingale measure, or risk-neutral pricing measure if for every
asset i ∈ {0, ..., N} the discounted price process S̄(i) is an F-martingale with respect to Q,
i.e. EQ[S̄(i)

t | Fs] = S̄(i)
s for every 0 ≤ s ≤ t and every i ∈ {0, ..., N}.
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Remark 1.3. It is not trivially guaranteed that an equivalent martingale measure Q always
exists if we start modelling from the physical probability measure P . However, throughout
the rest of this thesis, we take the existence of such a measure Q as our starting point,
especially in order to ensure that the market is arbitrage-free.1

From now on, we turn to the risk-neutral world and work henceforth on the probability space
(Ω,F ,F, Q).

Notations 1.4. (Abbreviations)

(i) Whenever there is no risk of confusion, we omit the subscripted symbol Q when taking
expectations EQ [·] and write E [·] equivalently.

(ii) For properties holding Q-almost surely, we will write “Q-a.s.” or simply “a.s.”.

(iii) For measurability of some (real-valued) random variable X with respect to a σ-field A
we use the notation X ∈ A for short.

1.2. Risk-neutral valuation in the default-free case

A debt claim arising from a payment X whose amount is possibly unknown a priori but
depending on contractually agreed events (or realizations of stochastic processes adapted
to the market filtration F) is called contingent claim. Determining the fair price of such a
contingent claim at some time s ≥ 0 in a risk-neutral world means taking expectations of
(functionals of) X conditional on the information Fs with respect to the pricing measure Q.

Using that each S̄(i) is a martingale under Q, we obtain

S(i)
s = S̄(i)

s

D(0, s) = E
 S̄

(i)
t

D(0, s) | Fs

 = E
[
D(0, t)
D(0, s)S

(i)
t | Fs

]
= E

[
D(s, t)S(i)

t | Fs
]

(1.2)

for each 0 ≤ s ≤ t and every i ∈ {0, ..., N}. This natural martingale pricing relation (1.2) is
summarized in the following result on the pricing of arbitrary default-free contingent claims:
1 Formally, a no-arbitrage condition can be phrased as follows: There exists no such portfolio with present

value zero today (t = 0), that has a non-negative value almost surely at a later time t > 0 and a positve
value with probability greater than zero. This condition even ensures the equivalence of the absense of
arbitrage and the uniqueness of a martingale measure. For a comprehensive introduction to arbitrage
pricing theory in the context of mathematical finance, we refer to the seminal textbook of Föllmer and
Schied (2011), Chapter 1.
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Proposition 1.5. (Risk-neutral valuation of default-free contingent claims) For
some starting date s ≥ 0 and a time interval [s, s+ T ] of length T > 0, denote a contingent
claim due at time s + T by an Fs+T -measurable integrable random variable X. Then, its
risk-neutral price process Π := {Πt}t≥0 is given by

Πt = E [D(t, s+ T )X | Ft] = E
[
e−
´ s+T
t ruduX | Ft

]
, t ≥ 0. (1.3)

Note that Π is indeed a martingale on [s, s+ T ] with Πs+T = X and can therefore itself be
considered as a discounted price process.

In the next chapter, we generalize this formula in a framework extended by credit risk. Both
theory and applications of credit risk modelling are main subject of Chapter 2.



Chapter 2.

Credit risk modelling

For pricing securities within a complete, arbitrage-free market without default risk we need
to calculate expectations of some discounted payoff structure with respect to the risk-neutral
probability measure Q, conditional on the default-free market information F := {Ft}t≥0, as
was briefly shown in the introduction. The term “without default risk” particularly refers
to the terminal payoff at a prespecified maturity date s + T represented by a (from the
creditor’s point of view) Fs+T -measurable, integrable random variable X, without taking
into account the chance of a default event (or some more general credit event, for instance,
the obligor’s fail to meet some due payment.). For a defaultable financial instrument living
on the finite time horizon [s, s+ T ], the terminal payoff depends on whether the obligor has
defaulted within this interval or not. In the simplest case, the value of the claim immediately
reduces to zero as soon as default has occurred at some time before s+T . That is, the payoff
should be of the form X1{τ>s+T}, where τ denotes the random default time of the obligor.
Additionally, recovery payments, only payed if and when default has occurred before or at
s+ T , may also be regarded, such that the complete payoff structure should be of the form

X1{τ>s+T} +R1{τ≤s+T}

provided that default has not already occurred before s.

This contingency on credit risk requires additional modelling techniques introduced in the
following such that we will be able to price defaultable contingent claims, i.e. contingent
claims that might not be (fully) met due to some failure to pay on the obligor’s side. To
this end, there are generally two main paths we can follow: the stuctural or the reduced-
form approach. Structural models make use of fundamental economic or company-specific
business variables to define the default time τ endogenously as the firm value’s first time
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to exceed a certain (deterministic or stochastic) threshold, called default point. The firm
value is calculated as the present value of the company’s assets, whereas the default point is
structurally depending on the company’s liabilities. The first and most famous models date
back to Merton (1974) as well as Black and Cox (1976). In contrast to that, reduced-form
models introduce a rather exogenous definition of τ ; due the lack of easily comprehensible
economic foundations as in the former approach, the latter is more sophisticated yet more
involved. However, from the modelling point of view, the reduced-form approach brings
along a wider range of possibilities. For this reason, this thesis is devoted to an extensive
overview on this approach—while the structural approach will not be further treated.

Within the reduced-form framework, the predominantly and most often used terms of the
hazard process and its associated intensity (or hazard rate) process are introduced and at
the end, a risk-neutral valuation formula similar to (1.3) of Proposition 1.5 is established
additionally accounting for defaultability.

Afterwards, the theoretical basis is explained by means of two popular examples of financial
instruments with defaultable claims, in particular bonds and credit default swaps (CDS). In
this context, important notions such as yield (spread) or credit spread are conceptualized in
order to get the reader familiar with the key object that we are exploring in further detail
in Chapter 4: the fair premium of a CDS.

2.1. The reduced-form approach

In this setting, the default event is introduced as the first jump of some indicator process
and the required calculation methods for pricing, that is, taking expectations w.r.t. to an
enlarged filtration G, are derived from the properties of this counting process.1

2.1.1. Extension of the market filtration

Recall that the filtration F := {Ft}t≥0 of the probability space (Ω,F ,F, Q) previously in-
troduced in Chapter 1 describes the flow of information over time that can be extracted
from observable default-free market data such as the short rate process r. What cannot

1 The following results are mainly based on the textbook of Bielecki and Rutkowski (2002), Chapters
4–6 and 8.
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be extracted from F is the information whether (and if so, when) an obligor, e.g. a specific
company or country, has defaulted. To this end, we first introduce an enlarged σ-field F ⊆ G
and an enlarged filtration G := {Gt}t≥0 with Ft ⊆ Gt for every t ≥ 0, and then extend the
probability space (Ω,F ,F, Q) to (Ω,G,G, Q). Hence, valuation of credit-risky contingent
claims especially means taking expectations of the discounted terminal payoff conditional on
the extended filtration G. To model the dynamics of default information, we fill the “gap”
between F and G by means of the following terms.

Definition 2.1. (Default time and default indicator) Consider a non-negative random
variable τ on (Ω,G) with properties Q(τ = 0) = 0 and Q(τ > t) > 0 for any t > 0. Then τ

is called default time and the right-continuous increasing process H := {Ht}t≥0 defined by
Ht := 1{τ≤t}, t ≥ 0, is called the (associated) default indicator process.

Additionally, we set up the following notations to complete the extended framework.

Notations 2.2. (Default filtration and enlarged filtration)

(i) The default filtration H := {Ht}t≥0 denotes the natural filtration of the indicator process
H, that is Ht := σ(Hu : 0 ≤ u ≤ t) = σ({τ ≤ u} : 0 ≤ u ≤ t) indicates whether (and if
so, when) τ happened at some time before t ≥ 0.

(ii) The filtrations H and F are now considered as “complementary” sub-filtrations of G in
the sense that Gt := Ft ∨Ht := σ(Ft ∪Ht) for every t ≥ 0 (we refer to this in symbols
as G = F ∨H).2 All filtrations are assumed to satisfy the usual conditions.

Thus, all information available to the investor is now represented by G, containing default-
free (F) and default information (H).

Remark 2.3. Note that, by construction, H is the smallest possible filtration such that τ
is a stopping time. Since H ⊂ G, τ is a G-stopping time as well but not necessarily an F-
stopping time. We are not considering the case H ⊂ F (i.e. G = F) where τ is an F-stopping
time by nature. For more details, see Bielecki and Rutkowski (2002), Chapters 5–6.

Furthermore, we will make use of the following simple finding without proof for verifications
of later results.
2 Of course, the term “complementary” shall not be confused with the classical set theoretical term “disjoint”.

Given H and G, the equaility Gt = Ft ∨Ht does not necessarily yield a unique filtration F (and we do not
claim that) nor do H and F have to be independent.
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Lemma 2.4. For given t ≥ 0 and any event A ∈ Gt one can find an event B ∈ Ft such that
the equality A ∩ {τ > t} = B ∩ {τ > t} holds true. Thus, for any random variable X ∈ Gt
we find a random variable Z ∈ Ft such that

1{τ>t}X = 1{τ>t}Z, t ≥ 0. (2.1)

Hence, every Gt-measurable random variable concides with an Ft-measurable random vari-
able on [0, τ ]. Within the scope of this thesis, we focus on the probably most frequently
applied class of reduced-form credit risk models, namely the hazard process approach.

2.1.2. Hazard process approach

First, let F := {Ft}t≥0 and F̄ := {F̄t}t≥0, defined for t ≥ 0 by

Ft := E
[
1{τ≤0} | Ft

]
= Q(τ ≤ t | Ft), (2.2)

F̄t := 1− Ft = Q(τ > t | Ft), (2.3)

denote the (F-conditional) default respectively survival probability processes of τ . Obviously,
F (F̄ ) is a bounded, non-negative submartingale (supermartingale). Let us consider the case
F̄t > 0 for every t ≥ 0 throughout the rest of this thesis. Now we are able to introduce the
hazard process of τ .

Definition 2.5. (Hazard process) The process Γ := {Γt}t≥0 defined by Γt = − ln F̄t,
t ≥ 0, is called F-hazard process of τ .

One of the major goals in this enlarged filtration framework is now to derive calculation
techniques for expectations E[Y | Gt] in terms of expectations conditional on Ft involving
functionals of τ and Γ. The following lemma yields an essential building block to this.

Lemma 2.6. (Key Lemma) Let Y denote a G-measurable random variable and let X :=
E[Y | Gt]. Then, for every t ≥ 0, we have

1{τ>t}X = 1{τ>t}Z (2.4)

with
Z := E[1{τ>t}Y | Ft]

Q(τ > t | Ft)
= eΓtE[1{τ>t}Y | Ft].
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Proof. Fix some arbitrary t ≥ 0 and use equation (2.1) from Remark 2.4. Taking expecta-
tions on both sides conditional on Ft, t ≥ 0 fixed, we obtain

E
[
1{τ>t}Y | Ft

]
= E

[
1{τ>t}E [Y | Gt] | Ft

]
, since Ft ⊆ Gt,

= E
[
1{τ>t}Z | Ft

]
, by definition of X and Remark 2.4,

= Z E
[
1{τ>t} | Ft

]
︸ ︷︷ ︸

Q(τ>t|Ft)

= Z e−Γt

almost surely for some Z ∈ Ft. Solving for Z we get the desired result.

As direct consequences of Lemma 2.6, we summarize some further results without proof, only
mentioning that 1{τ>t} = 1{τ>t}1{τ>s} and 1{s<τ≤t} = Hs(1 −Ht) = Ht −Hs for 0 ≤ s < t

are useful tricks for their verifications:

Corollary 2.7. Let 0 ≤ s < t. Then,

(i) for every G-measurable random variable Y we have

E
[
1{τ>t}Y | Gs

]
= 1{τ>s}e

ΓsE
[
1{τ>t}Y | Fs

]
, (2.5)

and E
[
1{s<τ≤t}Y | Gs

]
= 1{τ>s}e

ΓsE
[
1{s<τ≤t}Y | Fs

]
, (2.6)

(ii) for every Ft-measurable random variable Y we have

E
[
1{τ>t}Y | Gs

]
= 1{τ>s}E

[
eΓs−ΓtY | Fs

]
. (2.7)

In some valuation cases, the size of the contingent claim is unknown before default and
revealed immediately after default has occured at τ . Therefore, the following lemma is also
of particular interest.

Lemma 2.8. Let t ≥ 0. If Z = {Zt}t≥0 is an F-predictable (bounded) process, then

E [Zτ | Ft] = E
[ˆ ∞

0
ZudFu | Ft

]
(2.8)

and E [Zτ | Gt] = 1{τ≤t}Zτ + 1{τ>t}e
ΓtE

[ˆ ∞
t

ZudFu | Ft
]

(2.9)
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Proof. We prove the first equation (2.8) only for processes Z of the form Zt := 1(s,v](t)εs for
some elementary F-predictable process ε = {εt}t≥0. From Corollary 2.7 (ii), we have

E [Zτ | Ft] = E
[
1(s,v](τ)εs | Ft

]
= E

[
E
[
1(s,u](τ)εs | F∞

]
| Ft

]
= E [εsQ(s < τ ≤ v | F∞) | Ft]

= E [εs(Fv − Fs) | Ft]

= E
[
εs

ˆ v

s

dFu | Ft
]

= E
[ˆ ∞

0
ZudFu | Ft

]

and, by applying the Monotone Class Theorem3, this result extends to the even more general
class of càdlàg F-adapted processes, i.e. processes having right-continuous sample paths with
left limits, as argued by Jeanblanc and Rutkowski (2000a,b,c).

The second equation (2.9) follows by applying the first equation (2.8) with Z̃τ := 1{τ>t}Zτ

combined with the Key Lemma 2.6:

1{τ>t}E [Zτ | Gt] = 1{τ>t}e
ΓtE

[
Z̃τ | Ft

]
= 1{τ>t}e

ΓtE
[ˆ ∞

0
Z̃udFu | Ft

]

= 1{τ>t}e
ΓtE

[ˆ ∞
t

ZudFu | Ft
]
.

On the other hand, 1{τ≤t}E [Zτ | Gt] = 1{τ≤t}Zτ holds naturally true for any F-predictable
process Z.

Remark 2.9. The proof of Lemma 2.8 extends to G-predictable processes because any G-
predictable process coincides with an F-predictable process on the set [0, τ ]. As mentioned in
the proof, it even extends to the more general class of càdlàg F-adapted processes, though it
does not extend to the class of càdlàg G-adapted processes (evident if we consider Zt := Ht,
t ≥ 0, as example)!

3 see for instance Protter (2004), Theorem 8 in Part I, Chapter 2
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2.1.3. Intensity-based approach

From now on, we will follow the intensity-based approach which is a special case of the hazard
process approach discussed in the previous section. We assume that the conditions of the
following definition are satisfied throughout the rest of this thesis.

Definition 2.10. (Intensity process) Assume that there exists an F-progressive process
γ := {γt}t≥0 with the following properties:

(i) γ is positive.

(ii)
´ t

0 γsds <∞ a.s. for any t ≥ 0.

(iii) F̄t = Q(τ > t | Ft) = exp
{
−
´ t

0 γsds
}

for any t ≥ 0.

Then γ is called F-intensity process of τ , or simply intensity of τ .

Comparing Definition 2.5 and Definition 2.10 (iii), one immediately sees that the hazard
process Γ can be recovered by Γt =

´ t
0 γsds, t ≥ 0.

One of the most practical intuitions behind the concept of an intensity is the following: From
Definition 2.10 (iii), we can approximate the probability of default within an infinitesimally
small time interval (t, t+dt] by Q(t < τ ≤ t+dt | Gt) ≈ 1{τ>t}γtdt. That is, the probability of
defaulting between t and t+ dt is (approximately) proportional to the length of the interval
(t, t+ dt] with growth rate γt. Hence, γ is also often called the default or hazard rate in this
credit risk modelling context. We will use all terms equivalently.

Next, we restate the results of Lemmata 2.6 and 2.8 by means of the intensity process γ:

Corollary 2.11. (Key Lemma, intensity-based approach) Let t ≥ 0. Then

(i) For any G-measurable random variable Y we have

E
[
1{τ>t}Y | Gt

]
= 1{τ>t}e

´ t
0 γsdsE

[
1{τ>t}Y | Ft

]
,

(ii) If Z is an F-predictable (bounded) process, then

E [Zτ | Ft] = E
[ˆ ∞

0
Zuγue

−
´ u
0 γsdsdu | Ft

]
,

and E [Zτ | Gt] = 1{τ≤t}Zτ + 1{τ>t}E
[ˆ ∞

t

Zuγue
−
´ u
t γsdsdu | Ft

]
.
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Corollary 2.7 is similarly expressed in terms of γ using/replacing eΓtby e
´ t
0 γsds.

We conclude this section with another important relation between the F-hazard or F-intensity
process and the so-called H-compensator of the default time τ :

Definition 2.12. (Compensator of the default time τ) An H-compensator A := {At}t≥0

of the default time τ is an H-predictable, right-continuous and increasing process with A0 = 0
such that the process M := {Mt}t≥0 given by Mt := Ht − At, t ≥ 0, is an H-martingale.

Proposition 2.13. (Uniqueness of the compensator) The process A := {At}t≥0 is the
(unique) H-compensator of the default time τ if and only if

At = Γτ∧t =
ˆ t

0
γu(1−Hu)du, t ≥ 0. (2.10)

Moreover, the process M := {Mt}t≥0 given by Mt := Ht − At = Ht − Γτ∧t, t ≥ 0, is even a
G-martingale.

Proof. First, let A be defined as in equation (2.10). Then it is obvious that A0 = Γ0 = 0
and that A is right-continuous and increasing, since it adopts the same properties from the
hazard process Γ. Secondly, t 7→ t ∧ τ is a continuous, H-adapted process which implies
H-predictability of A.

If we show the last assertion, i.e. that H − A is a G-martingale, of course, this implicitly
verifies that H − A is an H-martingale as well and that A is the desired compensator.

Therefore, let 0 ≤ s < t and define Zu := Γu∧t − Γu∧s for u ≥ 0. Then, using Corollaries 2.7
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and 2.11, and the fact that Zτ = (Γτ∧t − Γτ∧s) = 0 on {τ ≤ s}, this yields

E [(Ht −Hs)− (At − As) | Gs]

= E [Ht −Hs | Gs]− E [Zτ | Gs]

= 1{τ>s}e
ΓsE

[
1{s<τ≤t} | Fs

]
− 1{τ≤s}Zτ − 1{τ>s}e

ΓsE
[ˆ ∞

s

Zuγue
−Γudu | Fs

]

= 1{τ>s}e
ΓsE

[
e−Γs − e−Γt −

ˆ t

s

(Γu − Γs)γue−Γudu− (Γt − Γs)
ˆ ∞
t

γue
−Γudu | Fs

]

= 1{τ>s}e
ΓsE

[
e−Γs − e−Γt −

ˆ t

s

ΓudFu + Γs
ˆ t

s

dFu − (Γt − Γs)
ˆ ∞
t

dFu | Fs
]

= 1{τ>s}e
ΓsE

[
e−Γs − e−Γt −

ˆ t

s

ΓudFu + Γs(Ft − Fs)− (Γt − Γs)(1− Ft) | Fs
]

= 1{τ>s}e
ΓsE

[
e−Γs − e−Γt −

ˆ t

s

ΓudFu − Γse−Γs + Γte−Γt | Fs
]

One can observe, that the terms within the above expectation indeed sum up to zero, by
applying the product rule to

ˆ t

s

ΓudFu = ΓtFt − ΓsFs −
ˆ t

s

FudΓu

= Γt(1− e−Γt)− Γs(1− e−Γs)−
ˆ t

s

dΓu︸ ︷︷ ︸
Γt−Γs

+
ˆ t

s

e−ΓudΓu︸ ︷︷ ︸
e−Γs−e−Γt

= Γte−Γt − Γse−Γs + e−Γs − e−Γt .

The opposite direction follows immediately by the uniqueness of the Doob-Meyer decompo-
sition which states that the supermartingale H has the unique represenation H = M + A

with a local H-martingale M and the (indeed unique) H-compensator A of τ .4

Notations 2.14. In this section, we have adopted the notation of the F-hazard (F-intensity)
process in terms of the Greek letter Γ (γ). This is consistent with the textbook of Bielecki
and Rutkowski (2002), which this section is mainly based on. It is, however, important
to mention that the authors therein accurately differ between several hypotheses concerning
the constellation of the filtrations G, F and H, among others. In our context, we adopt the
most frequently assumed situation of F ( G such that τ is not an F-stopping time in general
as well as uniqueness γ which is related to the process F being continuous and increasing.

4 see, for example, Protter (2004), Part III, Chapter 3
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For more details on this and further general cases to see the difference between the F-hazard
process denoted as above by Γ and the (F,G)-martingale hazard process denoted by Λ, we
refer the interested reader to the papers of Jeanblanc and Rutkowski (2000a,b,c), for
instance.

Before turning to applications of credit risk modelling in the intensity-based framework, we
give a short yet central result as an analogy to formula (1.3) of Proposition 1.5.

2.1.4. Risk-neutral valuation in the defaultable case

Similar to the results on risk-neutral valuation in the default-free case (Proposition 1.5
in Chapter 1) and the techniques derived in the reduced-form approach (Sections 2.1.2
and 2.1.3), we end up here at a risk-neutral pricing formula for contingent claims now
additionally involving default risk. Note that our market filtration with respect to which we
take conditional expectations is now G = F ∨H.

Theorem 2.15. (Risk-neutral valuation of defaultable contingent claims, intensity-
based approach) For some starting date s ≥ 0 and a time interval [s, s+T ] of length T > 0,
denote a defaultable contingent claim due at time s+ T by Y := X 1{τ>s+T} for some Fs+T -
measurable integrable random variable X. Then, its risk-neutral price process Π̃ := {Π̃t}t≥0

is given by

Π̃t := E [D(t, s+ T )Y | Gt] = 1{τ>t}E
[
e−
´ s+T
t ru+γuduX | Ft

]
, t ≥ 0. (2.11)

Proof. Applying Corollary 2.11 (i) immediately verifies equation (2.11).

As one might observe, the present value of Y , discounted with D(t, s+T ) = exp
{´ s+T

t
rudu

}
at the short rate r = {rt}t≥0, is equivalent to the present value of X, discounted at a
higher rate consisting of r + γ. We will see what this higher “premium” means in the
context of the next section, when we turn our attention to applications of this formula to
(defaultable) contingent claims specified by the contractual structure of some important
financial instruments.
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2.2. Financial instruments subject to default risk

In this section, we apply the techniques from the previously introduced intensity-based frame-
work on pricing credit risky securities and derivatives. In doing so, we focus on bonds and
so-called credit default swaps (CDS) which are also commonly understood as insurance con-
tracts against the default risk of a reference obligation. Especially in the first decade of the
21st century, they gained an essential and meaningful role in the credit derivatives market
and became a central topic to financial researchers and mathematicians as well.

For this section, recall the reduced-form framework within the probability space (Ω,G,G, Q)
endowed with the filtration G = F ∨ H and risk-neutral pricing measure Q. Furthermore,
assume that an F-intensity process γ of the default time τ exists (uniquely).

2.2.1. Defaultable bonds

Bonds are debt securities between two parties: The bond holder (investor or buyer) and
the bond issuer (obligor or seller) both of which can be corporations, banks or governments.
The holder invests a certain amount of money to the bond issuer today who in turn promises
a future a priori fixed payment, called notional (or nominal, principal, face value, par value),
at a fixed maturity date. Moreover, the bond issuer commits himself to pay periodically a
constant (fixed) or a time-varying (floating) fraction of the notional, called coupon. Beyond
the standard contractual items of bonds, such as the size of the face value and coupons as well
as maturity and payment dates, we do not discuss more complex attributes in further detail.
We only mention that—within a standardized framework—there are far more possibilities of
structuring bonds such as exchangeability to shares of the issuer’s or a third party’s common
stock (convertible vs. exchangeable bonds) and classification by liquidation priority/credit
rating (senior vs. subordinated bonds, investment-grade vs. high-yield bonds) etc. which
we will neglect within the scope of this thesis.

We find bonds amongst the most popular financial instruments not only in terms of simplicity
of their properties but also in terms of historical meaning and development of the markets
they are traded on. As they are standardized securities, buying and selling takes primarily
place at auctions but also secondarily on over-the-counter markets (bonds can be resold
during their lives).

The goal is now to price bonds, that is, to calculate their present value which equals the
amount of money the buyer has to invest today in order to get back the notional amount
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after the remaining time to maturity. On the other hand, concerning credit risk, the investor
is also facing the possibility that the obligor might fail to meet the agreed redemption of
the notional at maturity or to pay his regular coupon obligations. We assume the credit-
worthiness of the issuer to be already fully reflected in the price of the bond, regardless of
what its credit rating might be.

Before stating some formal results, think of the possibility that the obligor fails to repay the
face value up to a certain (but not the total) amount. That is, he manages to pay back a
particular fraction of the agreed notional amount, called recovery of face value (RFV ).5 For
different modelling purposes but also with regards to different prudential and bankruptcy
court regulations, one can assume the recovery fraction to denote the current value of an
otherwise equivalent but default-free bond (recovery of treasury, RTV )6 or the current (or
instantaneous “pre-default”) market value of the considered bond itself (recovery of market
value, RMV )7. The distinction between these aspects is not subject of our considerations
here; we will only focus on the RFV assumption as it is also the implicitly assumed in CDS.
For a good theoretical overview, we refer the interested reader to Duffie and Singleton
(1999) or Uhrig-Homburg (2002).

Assume a defaultable bond, issued at time s ≥ 0 (“today”), committing the obligor to pay a
floating coupon, denoted by an F-predictable non-negative process C̃ = {C̃t}t≥0, continuously
during the life [s, s+T ] of the bond and to repay the notional Ñ to the investor at maturity
s + T . Without loss of generality, we consider unit notional amounts Ñ = 1. Furthermore,
let τ denote the obligor’s random default time at which he stops every payment, including
coupons if τ ∈ [s, s+T ]; this is referred to as credit event. Instead of losing the full notional,
assume that the investor receives at least the recovery fraction R ∈ [0, 1] of the unit notional
amount. Of course, R is unknown before τ in general. However, since the determination
of recovery claims on a defaulted bond by prudential authorities might even extend over
several years after the credit event, implicit or explicit data for recovery rates are difficult
to find. Therefore we suggest that R does neither depend on the short rate {rt}t≥0 nor on
the default time (hence on its hazard rate {γt}t≥0) nor on time at all. Instead, we claim the
(albeit simplifying) assumption of a constant recovery rate.8

5 as first described by Brennan and Schwartz (1980) and Duffee (1998)
6 as first described by Jarrow and Turnbull (1995)
7 as first described by Duffie and Singleton (1999)
8 More concretely, for theorists as well as practitioners, it is convenient to classifiy credit-risky instruments

into different seniorities S ∈ {secured, senior-unsecured, subordinated, ...} and assume fixed levels R =
R(S), decreasing in S, of recovery at default for all bonds within the same seniority. Recent works that
relax these assumptions and model R as another Fτ -measurable random variable besides the short and
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Then, the discounted cashflows dcfRC̃(s, s+ T ) of the bond are summarized as follows:

dcfRC̃(s, s+ T ) :=
ˆ s+T

s

D(s, u) C̃u 1{τ>u}du

+ D(s, s+ T )1{τ>s+T}

+ D(s, τ)R1{τ≤s+T} (2.12)

where D(·, ·) denotes the discount factor from Definition 1.1 with respect to the short rate
r = {rt}t≥0.

By applying the reduced-form techniques provided in the previous section, especially The-
orem 2.15, we obtain the following risk-neutral pricing result within the intensity-based
framework:

Proposition 2.16. (Risk-neutral price of a defaultable bond, intensity-based) De-
note by γ = {γt}t≥0 the hazard rate of the bond issuer’s default time τ . Then, in the
intensity-based framework, the price of the above defaultable coupon bond with unit notional
and given constant recovery R ∈ [0, 1], denoted by Π̃R

C̃
(s, s+T ), is the conditional expectation

of the discounted future cashflows dcfRC̃(s, s+ T ) from equation (2.12), i.e.

Π̃R
C̃(s, s+ T ) = E

[
dcfRC̃(s, s+ T ) | Gs

]
= 1{τ>s}

ˆ s+T

s

E
[
C̃ue

−
´ u
s rt+γtdt | Fs

]
du

+ 1{τ>s} E
[
e−
´ s+T
s rt+γtdt | Fs

]

+ 1{τ>s}R

ˆ s+T

s

E
[
e−
´ u
s rt+γtdtγu | Fs

]
du. (2.13)

For the bond price of a default-free issuer (equivalently, of a default-free bond) denoted
by ΠC with corresponding coupon process C := {Ct}t≥0 (and unit notional N = 1), one

hazard rates (with possible dependence structures) have been done by Pan and Singleton (2008) and
Schläfer and Uhrig-Homburg (2009), to name but a few.
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similarly obtains that9

ΠC(s, s+ T ) = E
[ˆ s+T

s

D(s, u)Cu du | Gs
]

+ E [D(s, s+ T ) | Gs]

=
ˆ s+T

s

E
[
Cue

−
´ u
s rtdt | Fs

]
du

+ E
[
e−
´ s+T
s rtdt | Fs

]
.

Remark 2.17. It might be worth indicating that the price ΠC of a default-free bond can be
rewritten in terms of the price of a defaultable bond with same coupon process C := {C}t≥0

and recovery R = 1, i.e. ΠC = Π̃1
C which means explicitly that

ΠC(s, s+ T ) = E
[ˆ s+T

s

D(s, u)Cu du | Gs
]

+ E [D(s, s+ T ) | Gs] (2.14)

= Π̃1
C(s, s+ T ) = E

[ˆ s+T

s

D(s, u)Cu 1{τ>u} du | Gs
]

+ E
[
D(s, s+ T )1{τ>s+T} | Gs

]
(2.15)

+ E
[
D(s, τ)1{τ≤s+T} | Gs

]
. (2.16)

Note that these two bonds arise from two different obligors (with different creditworthinesses),
one that might default at a random time τ and one other that will never default (his de-
fault time is virtually equal to infinity)—but their prices are identical: The idea behind
this modification is to decompose the above terms of the default-free bond price formula
(in particular, the present value of the redemption payment, line (2.14)) into the present
values of redemption at maturity s + T (this corresponds to no default of the defaultable
issuer, line (2.15)) and of redemption at τ (this corresponds to default of the defaultable
issuer, line (2.16)). This “complification” of the simple default-free bond price formula will
be useful in the next section, when we try to reproduce a CDS contract synthetically by
selling a defaultable bond and buying a default-free bond in order to obtain a fair insurance
premium against default.
9 This is done by considering γt := 0 ⇒ Γt = 0 ⇒ F̄t = Q(τ > t | Ft) = e−0 = 1 for every t ≥ 0, i.e. the

issuer pays everything back and can almost surely never default.
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Remark 2.18. It should be stressed at this point that assuming a continuous payment
schedule (just as continuous discounting) is an idealized but very useful consideration for
both illustrating the applied techniques and approximating reality, where actually fixed
(discrete, e.g. monthly or quarterly) payment periods and discrete (or linear) discounting
are conventional. Because of these benefits, we remain in this idealized setup.

Next, we are interested in quantifying the credit quality of a defaultable bond in terms of
a premium relative to a default-free bond. Therefore, as a measure, we want to use its
so-called par yield spread. We mainly follow the ideas of Levy (2009) and Cecchetti and
Di Cesare (2012), who formalize the concepts assuming constant short and hazard rates
which we claim to be, however, also valid in our more general context.

Definition 2.19. (Par yield) Let Π̃R
C̃

denote the price of a defaultable coupon bond asso-
ciated with its coupon process C̃ = {C̃t}t≥0 and recovery rate R. Then, the (continuously
payed) par yield is defined as the coupon Ỹ := {Ỹt}t≥0 for which the bond price is equal to
its par value, i.e. the par condition

Ñ = 1 = Π̃R
Ỹ (s, s+ T ) (2.17)

is satisfied. Similarly, Y := {Yt}t≥0 denotes the par yield of a default-free bond with par
condition ΠY (s, s+T ) = 1 = N . In the intensity-based framework, we obtain more concretely
that10

Ỹt = rt + (1−R)γt, t ≥ 0, (2.18)

Yt = rt, t ≥ 0, (2.19)

The solutions (2.18) and (2.19) are very plausible from an economical perspective in so far
as bonds whose coupons are equal to their discount rates are said to be “selling at par”.
Otherwise, if the coupons C̃ are below (above) the par yield Ỹ , the bond is said to be
“selling at a discount” (“selling at a premium”).11

Remark 2.20. Observe that the par yields are independent of the tenor T of a bond in this
context! Hence, we can treat the par yield as equal to the short rate plus (1−R) times the
10 This can be easily checked using

ˆ s+T

s

e−
´ u

s
rt+γtdt(rs + γs)ds = −

ˆ s+T

s

d(e−
´ u

s
rt+γtdt) = 1− e

´ s+T
s

rt+γtdt.

11 Furthermore, for constant coupons, the par yield equals the so-called yield to maturity, as well, see Cec-
chetti and Di Cesare (2012).
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hazard rate at the corresponding infinitesimally small time instant. Remember that this is
only an idealized assumption.12

Since we are claiming non-negative hazard rates in our considerations, Ỹt ≥ Yt always holds
true for all t ≥ 0. The difference Ỹ −Y , which is then always non-negative, is called the par
yield spread and has a specific interpretation:

Definition 2.21. (Par yield spread) For a defaultable and a default-free coupon bond
with prices Π̃R

C̃
and ΠC and corresponding coupon rates C̃ and C and par yields Ỹ and Y ,

respectively, the par yield spread S∗ := {S∗t }t≥0, or simply spread, between these bonds is
defined by

S∗t = Ỹt − Yt, t ≥ 0, (2.20)

which is obviously equal to
S∗t = (1−R)γt, t ≥ 0, (2.21)

in the intensity-based framework.

Remark 2.22. (Credit spread) The default-free bond is usually called reference or bench-
mark bond in the context of Definition 2.21. The lower the credit quality of the defaultable
bond compared to the reference bond with par yield y = r and the lower his (expected)
recovery rate R, the higher becomes his default intensity and therefore the additional yield
premium S∗ = (1 − R)γ the investor is charging on top of r for taking on credit risk. For
this intuitive reason, the par yield spread of a bond can be referred to as its credit spread.13

Finally, claiming that Ỹt ≥ Yt, t ≥ 0, does indeed make sense (otherwise, an interpretation
of a negative premium would correspond to a negative default intensity which is senseless).
Notice at this point that, since the par yields do not depend on the maturity of the bond,
neither does the respective spread!

Remark 2.23. Although in practice, there is profound empirical evidence and broad eco-
nomical agreement that a bond’s spread over a reference bond does not only consist of a
credit component but is also influenced by liquidity, taxation and optionality components
that are specific to the respective bond market or contract14, we assume a frictionless, com-
plete market, without transaction costs and other restrictions such as to short sellings and
we neglect all determinants of the yield spread other than related to credit risk.
12 For the sake of completeness and practical relevance, some formulas for constant coupon bonds are attached

in Appendix A.1, which are more commonly used in practice.
13 As we will see lateron in Section 2.2.2, this equals to the par premium chosen for a CDS contract on the

same bond.
14 see Longstaff, Mithal and Neis (2005) and references therein
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Next, we consider derivatives on credit-risky bonds. As a very prominent representative the
so-called credit default swap is discussed, which can be considered as an insurance against
(or bet on) a default of a reference issuer. We will see that the premium of such an insurance
contract coincides with to the credit spread S∗ over a reference bond in our framework.

2.2.2. Credit default swaps

Like bonds, credit default swaps (CDS) are financial contracts between two parties for a
specific time interval [s, s + T ] to exchange cashflows. In contrast, CDS are not securities:
They are (credit) derivatives, since the cashflows during the life of the contract depend on a
third party’s obligation, called reference obligation or reference entity (normally a bond).

The protection buyer of a CDS usually seeks for a compensation by exactly the amount
L := 1−R that is expected to be lost at the default of the reference obligation—which is in
turn expected to repay only the fraction R ∈ [0, 1) of its notional value. On the other hand,
the protection seller is charging him a premium that is again, for the sake of generality,
assumed to be payed continuously and denoted by an F-predictable non-negative process
C∗ := {C∗t }t≥0.15

Hence, at the conclusion of a CDS contract at time s ≥ 0 (“today”), the two parties agree
upon the following subjects:

1. The reference entity (a concrete issuance by a particular third party)

2. The tenor T , such that the date of expiry (maturity date) is s+ T

3. The compensation payment L ∈ (0, 1] as a fraction of the reference obligation’s (unit)
notional amount that is payed when the reference issuer fails to meet his commitments.

Preliminarily, this is all we have to know about when it comes to determining the fair CDS
premium {C∗t }t≥0. In the following, we want to illustrate how it can be obtained by the
theory introduced in the sections before.

A first approach is based on Duffie (1999), who describes a no-arbitrage argument by
replicating the cashflows of a CDS contract with selling a defaultable bond and buying a
15 Albeit in practice, CDS premia are usually payed at scheduled points in time, e.g. quarterly or semi-

annualy, similarly to the aforementioned coupons of bonds. For a treatment of the following formal steps
in a constant premium context, see Appendix A.2.
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default-free bond, which is in general void of any modelling assumptions with respect to the
reference entity’s default time τ . The second approach, actually based on the first, yields
a more concrete formula for {C∗t }t≥0 assuming the intensity-based framework introduced in
Section 2.1. In this thesis, we neglect “counterparty risk”, i.e. the possibility that either the
protection buyer or the protection seller themselves could fail to meet the agreed payments
(premia and loss compensation, respectively), such that the premia only consist of credit
risk components for the underlying reference entity.16

The fair CDS premium based on no-arbitrage arguments

CDS were initially developed for isolating credit risk that is immanent in a defaultable
obligation (such as a bond) and transferring it to another party who is willing to be financially
liable for a compensation of a potential loss. This is basically comparable to an insurance
against default. The position that is actually left after “re-selling” the isolated default risk,
should be the present value of an otherwise equivalent riskless investment, though with a
smaller interest, reduced by the premium for the insurance.

This rather heuristic consideration is what we want to formalize in the following: Consider a
defaultable bond with price Π̃R

C̃
(s, s+T ), recovery rate R and corresponding coupon process

C̃ and a default-free bond trading at par, i.e. with price ΠY (s, s + T ) = 1 such that its
coupon equals the par yield, C = Y . Recalling that ΠY = Π̃1

Y (see Remark 2.17), consider
a portfolio consisting of a short position in the defaultable bond and a long position in the
default-free bond. This results in the formal calculation

− dcfRC̃(s, s+ T )

+ dcf1
Y (s, s+ T )

= −
(ˆ s+T

s

D(s, u) C̃u 1{τ>u}du + D(s, s+ T )1{τ>s+T} + D(s, τ)R1{τ≤s+T}

)

+
(ˆ s+T

s

D(s, u)Yu 1{τ>u}du + D(s, s+ T )1{τ>s+T} + D(s, τ)1{τ≤s+T}
)

= −
ˆ s+T

s

D(s, u) (C̃u − Yu)1{τ>u}du + D(s, τ) (1−R)︸ ︷︷ ︸
L

1{τ≤s+T} (2.22)

16 For modelling approaches accounting for additional counterparty risk, see Hull and White (2001) for
instance.
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for the discounted cashflows of this portfolio.

We notice that the resulting cashflows replicate those of a CDS contract from the protection
buyer’s point of view, if we set the premium to C∗ = C̃ − Y .17 The first term in line
(2.22) describes the accumulated discounted cashflows of premia until maturity or default,
whichever comes first. This is called the premium leg of the CDS contract (negative (positive)
cashflow for the protection buyer (seller)). The second term is the discounted compensation
at default—in case this event occurs before maturity—and is called the protection leg of the
CDS (positive (negative) cashflow for the protection buyer (seller)).

The premium is called “fair” if the two opposed discounted cashflows are equal in terms of
present values, that is,

E
[ˆ s+T

s

D(s, u)C∗u 1{τ>u}du | Gs
]

= LE
[
D(s, τ)1{τ≤s+T} | Gs

]
. (2.23)

We refer equation (2.23) to as the par CDS condition. This implies that the short position
in the defaultable bond and the long position in the default-free bond have to cancel out, as
well. As a consequence,

ΠY (s, s+ T ) = 1 = Π̃R
C̃(s, s+ T )

must hold true. Since this means that the defaultable bond is also traded at par, its coupon
is also equal to the corresponding par yield and hence

C∗t = C̃t − Yt = Ỹt − Yt = S∗t , t ≥ 0, (2.24)

which is the par yield spread S∗ as introduced in Definition 2.21 in the previous section.

This result suggests to use the par yield spread, which we assume to be a credit spread (i.e.
it is not determined by other components) as the fair premium for a CDS contract.18

In reality one can observe a difference between the par yield spread of a bond and the pre-
mium of a CDS on the same bond. The difference B∗ := C∗−S∗ is referred to as CDS/bond
basis in the literature and has been subject to many empirical surveys that test the hypoth-
esis of B∗ = 0 (also called zero CDS/bond basis hypothesis), see, for example, studies of

17 Otherwise, if C∗ 6= C̃ − Y , there would be arbitrage opportunities.
18 Recall that we have already used the term “premium” for the par yield spread in our interpretation as an

additional interest charged for taking on default risk in Remark 2.22. So eventually this turns out to be
consistent with the word “premium” in the context of CDS.
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Longstaff, Mithal and Neis (2005), Ericsson, Jacobs and Oviedo (2009), Blanco,
Brennan and Marsh (2005) Nashikkar, Subrahmanyam and Mahanti (2011), Bai
and Collin-Dufresne (2011), Levy (2009), Fontana (2011) and Zhu (2006). All of
them can either confirm empirically an approximate parity “CDS premium≈ credit spread”
or find discrepancies due to economical reasons based on the properties of specific contracts
or market characteristics. Another survey on the CDS/bond basis is provided by Hull,
Predescu and White (2004). In contrast to the rest, they subtract CDS premia from cor-
porate bond yields and draw conclusions about the benchmark interest rate. Comprehensive
comments on this topic are also available in Mahanti, Nashikkar and Subrahmanyam
(2007), who argue that

“...the advent of the CDS market makes it possible to isolate default risk in cor-
porate bonds issued by a certain issuer without relying too heavily on a particular
model of credit risk and a specific parameterization, since a direct reading of the
market’s pricing of credit risk is available. [...] since CDS contracts price de-
fault risk explicitly, they are a good benchmark for the pure credit risk of the
firm [...] It must be noted that most corporate bonds issued by firms tend to be
fixed-rate bonds, and thus, this equivalence does not hold exactly. More impor-
tantly, as shown by Longstaff et al. (2005), the pure corporate bond spread is
a biased measure. [...] This is particularly true when there are frictions in the
arbitrage mechanism between the CDS contract and the bond [...]” (ib. Section
4.2, page 12)

Furthermore, see also Hull and White (2000), pages 14–18, for comments on the (idealized)
approximation of the CDS premium by the credit spread of its reference entity.

As brought up before, we stick with these idealized assumptions as we are lateron only
interested in modelling the time series behaviour of the spreads, anyway (as will be clear in
Chapters 3 and 4).

Intensity-based valuation of CDS contracts

So far, we have not used any model assumption with regards to the default time τ of the
reference entity. Treating both sides of the par CDS condition (2.23) separately, we first
obtain the present values PL(C∗; s, s + T ) and DL(L; s, s + T ) of the premium leg and the
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default leg, namely

PL(C∗; s, s+ T ) := E
[ˆ s+T

s

D(s, u)C∗u 1{τ>u}du | Gs
]

= 1{τ>s}

ˆ s+T

s

E
[
C∗u e

−
´ u
s rt+γtdt | Fs

]
du

and

DL(L; s, s+ t) := LE
[
D(s, τ)1{τ≤s+T} | Gs

]
= L1{τ>s}

ˆ s+T

s

E
[
e−
´ u
s rt+γtdtγu | Fs

]
du,

respectively. Then, claiming the par CDS condition to hold, i.e. PL(C∗; s, s + T ) =
DL(L; s, s+ t), yields that

C∗t = (1−R)γt, t ≥ 0, (2.25)

and we are back in equation (2.24) with the intensity-based credit spread C∗t = S∗t (2.21).

Concluding comments

Altogether, we have seen how prices of (non-)defaultable bonds and fair premia of CDS on
such bonds are determined and how they are economically and formally interrelated.

As pointed out in Longstaff, Mithal and Neis (2005), pages 7–8, CDS contracts are
characterized by

1. lower sensitivity to liquidity and supply/demand pressures,

2. theoretically unbounded supply (in terms of notional and availability of contracts and
their “generic” nature) and

3. equal conditions for taking up positions of either a buyer or a seller, respectively,

in contrast to bonds.

Furthermore, CDS prices are proven to reflect new credit information on the reference issuer
more rapidly than bond prices do.

In practice, CDS contracts usually agree on a premium C∗ = {C∗t }t≥0 ≡ const that is
fixed instead of floating. In the basic literature about pricing CDS, such as Schönbucher
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(2003), Martin, Reitz and Wehn (2006), Duffie and Singleton (2009), Bielecki
and Rutkowski (2002), to name but a few, pricing formulas also follow this assumption.
In Appendix A.2, we have collected modifications of the above formulae to the constant
premium assumption that result in equations (A.1), (A.2) and (A.3) for the CDS spread
C∗ = C∗(s, s+ T ) which do depend on the tenor T and can be found in the aforementioned
literature. Of course, they reflect reality far better, however, these are much more useful for
instance if we want to calibrate a term structure of hazard rates to a given term structure of
CDS premia on a specific day s ≥ 0. This means primarily replicating market equilibrium,
i.e. to find the intensities implicitly assumed to get the given observed premia quoted by
traders. For such purposes, deterministic intensity functions (most often piecewise constant
or linear) are assumed. Then, the “local intensities” are stepwise identified, given all other
quantities such as the discount factors (calculated from appropriate observable proxies for
the short rate), the recovery rate (often assumed to be R = 40%, hence L = 60%) and the
premia C∗(s, s + T1), ..., C∗(s, s + TN) for the corresponding tenors T1 < ... < TN . This is
usually referred to as bootstrapping, see, for example, Luo (2005), Chan-Lau (2006) and
especially Martin, Reitz and Wehn (2006), Chapter 4, for extensive descriptions of this
procedure. The idea of concatenating bootstrapped intensities on a day-by-day basis might
be a starting point but is questionable from the point of view of a stochastic process/time
series concept, though.

But this is not within the scope of this thesis. Instead, we try to fit a tractable yet sufficiently
realistic time series model to describe the behaviour of several historical series of C∗i =
{C∗it }t≥0 on a daily basis for different reference entities i ∈ {1, ...,M}, M ∈ N, observed at
a large time horizon [0, T ∗], T ∗ > 0, all with a common fixed contract maturity T > 0, see
Chapter 4.

Nevertheless, as a conclusion, it is worth mentioning that—be it a constant or a floating
coupon (payed continuously or discretely)—one can convince oneself that all concepts coin-
cide if one assumes constant intensities γt ≡ γ ∈ [0,∞). Then, for example, formulas (A.1)
and (A.3) of Appendix A all lead to a constant CDS premium independent of the tenor T
and short rate r (be it stochastic or not!), since

C∗(s, s+ T ) = (1−R)
´ s+T
s

E
[
e−
´ u
s rtdt | Fs

]
e−γ(u−s)γdu´ s+T

s
E
[
e−
´ u
s rtdt | Fs

]
e−γ(u−s)du

= (1−R) γ,

(given τ > s) and all other terms cancel out.

It has been argued with several justifications now that the realism is not lost and the time-
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varying approximation (2.25) is still valid though idealized within our framework. The
following chapter is attended to provide the theoretical basis of a special class of stochastic
processes that the premium process C∗ = {C∗t }t≥0 of equation (2.25), and therefore implicitly
the hazard rate, is tried to be modelled with. Afterwards, the idea will be applied in Chapter
4 and tested on real data in order to investigate how credit risk can appropriately be modelled
by these concepts.



Chapter 3.

Continuous-time linear processes

In classical time series analysis, linear models for discrete-time processes such as autoregres-
sive moving-average (ARMA) models have been applied to a wide range of practical problems
in physics, engineering, finance and many more areas for several decades. In academic lit-
erature, recent works have focussed on so-called CARMA (continuous-time ARMA) models,
trying to derive a continuation of the classical ARMA theory. With the seminal works of
Brockwell (2001, 2004) as well as Brockwell and Lindner (2009), a foundation for fur-
ther investigations and applications of CARMA processes was provided, emphasizing several
advantages over their discrete-time counterparts, for instance, their ability to model high-
frequent (nearly continuous) observations or irregularly spaced samples of a continuously
modelled process, respectively.

In this chapter, we begin with a short motivation in Section 3.1, before formally more
correct definitions and representations of (Lévy-driven) CARMA processes are following
in Section 3.2. In order to get familiar with similarities and differences to the concepts of
discrete-time ARMA modelling, necessary and sufficient conditions for stationarity, causality
and invertibility are stated in Section 3.3. Especially the latter enables us to recover the
background-driving process, in general a Lévy process, at least approximately, from discrete
observations of CARMA processes—not quite so trivial as in the traditional ARMA case.

The intrinsic aim of the following sections is to provide a basis for practical applications in
Chapter 4. There, we will make use of the manifold possibilities of the class of CARMA pro-
cesses and apply the methods presented in this chapter to observations of the CDS premium
time series introduced in Chapter 2. For readers interested in further topics, an overview on
recent developments in the literature concludes this chapter (Section 3.4).
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3.1. Motivation

The classical representation of an ARMA(p,q) process X = {Xt}t∈Z with the (equidistant)
time domain Z is stated in terms of their characteristic polynomials φ and ϑ by

φ(B)Xt = ϑ(B)εt, t ∈ Z, (3.1)

where B denotes the backshift operator, defined by BjXt = Xt−j, and ε = {εt}t∈Z is a white
noise process1, also called the innovation process or simply noise. Usually, φ and ϑ are
polynomials of degrees p, q ∈ N ∪ {0}, respectively, and parametrized with the coefficients
φ1, ..., φp and ϑ1, ..., ϑq as

φ(z) := 1− φ1z − ...− φpzp,

ϑ(z) := 1 + ϑ1z + ...+ ϑqz
q, z ∈ C.

Therefore, equation (3.1) can be explicitly rewritten to

Xt =
p∑
j=1

φjXt−j +
q∑

k=1
ϑkεt−k + εt, t ∈ Z.

In the following, a continuous-time counterpart of (3.1) is derived, i.e. on the time domain
R. To this end, the noise process ε = {εt}t∈Z is replaced by a (two-sided2) Lévy process
L = {Lt}t∈R, i.e. a process with L0 = 0, independent stationary increments, càdlàg sample
paths and being continuous in probability.

However, before we can present a formal definition, first of all, the continuation from the
backshift operator B has to be reconsidered:

Definition 3.1. (Continuous-time backshift operator) Let y = {yt}t∈R denote an arbi-
trary continuous-time process. Then the continuous-time backshift operator D, notationally
used as y(j)

t := Djyt, j ≥ 0, is defined by the following “symbolical” rules:

y
(0)
t = yt, y

(1)
t dt = dyt, and y

(j)
t = Dy

(j−1)
t for all j ≥ 2.

1 This means that all εt, t ∈ Z, are uncorrelated with zero mean and constant variance σ2, usually denoted
by ε ∼ WN(0, σ). If, for instance, the law is standard normal, then we shall write ε ∼ N (0, 1) and all εt,
t ∈ Z, are independent and identically distributed (iid); for a comprehensive introduction to traditional
linear discrete-time modelling, we refer to Brockwell and Davis (1991, 2002).

2 Usually a Lévy process is defined on the non-negative real half-line [0,∞) as time domain. The extension
to the whole real line R is easily obtained by defining Lt = 1[0,∞)(t)L

(1)
t + 1(−∞,0)(t)L

(2)
−t− for two usual

independent Lévy processes L(1) = {L(1)
t }t≥0 and L(2) = {L(2)

t }t≥0.
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One is easily inclined to treatD as the differential operatorD = d
dt

. Since not every stochastic
continuous-time process is differentiable—in particular Brownian motions are well-known to
be nowhere differentiable—this shall only be thought of for notational convenience.3 Later,
however, we will adopt an alternative notation in the context of the state-space representation
of a CARMA(p,q) process, which treats D more carefully.

Example 3.2. (Continuous-time counterpart of AR(1)) As a first motivating example,
think of an AR(1) process with Gaussian noise ε ∼ N (0, σ2) given by

(1− φB)Xt = εt, t ∈ Z, (3.2)

whose comparable continuous-time counterpart CAR(1) might take the following form (with
a slightly different polynomial paramtrization):

(D + α)yt = DWt t ∈ R,

where W = {Wt}t∈R denotes a standard Brownian motion. With Definition 3.1, this is
equivalent to writing

dyt + αytdt = dWt

which is the sde defining the famous Ornstein-Uhlenbeck (OU ) process.4 It is a well-known
result that every solution yt satisfies the Markovian relations

yt = e−α(t−s)ys +
ˆ t

s

e−α(t−u)dWu, ∀s ≤ t ∈ R. (3.3)

This process is known to be stationary if and only if α > 0 and y0 is independent of {Wt}t≥0

having the same distribution as
´∞

0 e−αudWu, which is N (0, 1
2α). To convince oneself that

CAR(1) and AR(1) are closely related not only with respect to their notational similarity,
consider a discretely sampled version ŷ = {ŷt}t∈Z of the OU process y = {yt}t∈R observed
on the time grid Z, which can be written as

ŷt = φŷt−1 + εt, t ∈ Z,

with φ = e−α and εt =
´ t
t−1 e

−α(t−u)dWu which yields a Gaussian noise sequence ε ∼ N (0, σ2)
with appropriate σ2, leading us back to equation (3.2). However, as e−α > 0, AR(1) processes

3 For this reason, we have avoided the term “differential operator” for D and named it “continuous-time
shift operator”.

4 Uhlenbeck and Ornstein (1930)
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with φ ≤ 0 cannot be discretely sampled versions of CAR(1) processes.5

Next, we systematize this derivation to a general result that encompasses all CARMA(p,q)
processes with orders p, q ∈ N, q < p.

3.2. Definition and state-space representation

Consider two integers p, q ∈ N with q < p and (real-valued) constants α1, ..., αp and β0, ..., βq

which define the coefficients of the (complex-valued) polynomials

α(z) := zp + α1z
p−1 + ...+ αp, (3.4)

β(z) := β0 + β1z + ...+ βqz
q, z ∈ C, (3.5)

with βq = 1 to avoid ambiguity.

Throughout this thesis, we consider only Lévy processes L = {Lt}t∈R with E[L1] = 0 and
E[L2

1] = 1.

Definition 3.3. (Lévy-driven CARMA(p,q) process) Let D denote the shift operator
from Definition 3.1 and let σ > 0 be a constant. Then, a (zero-mean, complex-valued)
process y = {yt}t∈R is called (Lévy-driven) continuous-time autoregressive moving-average
process of orders p and q or simply CARMA(p,q) process if it is solving the formal p-th order
sde,

α(D)yt = σβ(D)DLt, t ≥ 0, (3.6)

or, more explicitly,

y
(p)
t + α1y

(p−1)
t + ...+ αpyt = σ

(
L

(q+1)
t + βq−1L

(q)
t + ...+ β0L

(1)
t

)
, t ≥ 0. (3.7)

The associated Lévy process L is called the background-driving (noise) process.

Due to the lack of differentiability, the “DjLt” do not exist in the usual sense. Therefore,
an equivalent definition getting along without a shift operator D as on the right-hand side
5 In that case, the AR(1) process is not stationary, anyway. This theoretical problem is commonly referred

to as the embedding problem, which shall not be discussed in this thesis. For comprehensive treatments, we
refer to Brockwell (1995), Brockwell and Brockwell (1999), Thornton and Chambers (2011)
as well as Cochrane (2012), for instance.
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of equations (3.6) or (3.7) is known as the state-space representation of a CARMA process,
which is notationally less convenient but formally more precise and has several advantages
for further considerations.

Definition 3.4. (State-space representation of a CARMA(p,q) process) A (zero-
mean, complex-valued) CARMA(p,q) process y = {yt}t∈R can also be defined by the obser-
vation equation

yt = σb>xt, t ∈ R, (3.8)

where the state vector process x = {xt}t∈R with xt = (xt, x(1)
t , ..., x

(p−1)
t )> ∈ Cp, t ∈ R,

satisfies the state equation
dxt = Axtdt+ 1pdLt, (3.9)

which is a first order multivariate sde with

A :=



0 1 0 . . . 0
0 0 1 . . . 0
... ... ... . . . ...
0 0 0 . . . 1
−αp −αp−1 −αp−2 . . . −α1


∈ Rp×p, 1p :=



0
0
...
0
1


, and b :=



β0

β1
...

βp−2

βp−1


∈ Rp,

such that βq = 1 and βj = 0 for every q < j ≤ p. The pair of equations (3.8) and (3.9) forms
the state-space representation of y = {yt}t∈R and is equivalent to the formal p-th order sde
(3.6) introduced in Definition 3.3.

Remark 3.5. The matrix A in Definition 3.4 is called companion matrix (of the CARMA
process y). Its characteristic and minimal polynomials coincide with the polynomial α in
(3.4) (such that its eigenvalues are the roots of α).

Remark 3.6. Every solution xt of the state equation (3.9) satisfies the relations

xt = eA(t−s)xs +
ˆ t

s

eA(t−u)1pdLu, ∀s ≤ t ∈ R, (3.10)

similarly to the univatiate Ornstein-Uhlenbeck result (3.3) in our motivating Example 3.2.
The matrix exponential eM is well-defined for every square matrix M ∈ Cp×p by traditional
series expansion eM := ∑∞

n=0
Mn

n! , with the convention that M0 = Ip, the (p × p)-identity
matrix and the stochastic integral in (3.10) is a special case of integration with respect
to semimartingales.6 Due to the fact that the increments of L are independent, we can
furthermore infer that (3.10) represents a Markovian process x.
6 see for instance Protter (2004), Part II
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Because y = {yt}t∈R is a linear combination of the marginal state processes x(j) = {x(j)
t }t∈R,

0 ≤ j ≤ p− 1, of the vector process x = (x, x(1), ..., x(p−1))>, stationarity of y is tantamount
to stationarity of x. In the following, we discuss several conditions that are necessary and
sufficient for xt to be a stationary solution of (3.9)/(3.10).

3.3. Stationarity

Before we establish a connection between traditional ARMA and the newer CARMA con-
cepts regarding stationarity, let us briefly recall the definitions of some related terms.

Definition 3.7. (Stationarity) A stochastic process y = {yt}t∈R is said to be (strictly)
stationary if its finite-dimensional distributions are invariant with respect to time shift, that
is, for any n ∈ N and any finite time grid {t1 < ... < tn} ⊂ R, the joint law of (yt1 , ..., ytn)>

is identical to that of (yt1+s, ..., ytn+s)> for any s ≥ 0.

Thus, stationarity particularly implies that all moments of the finite-dimensional distribution
are invariant under time shift, especially this yields E[yt] = const for every t ∈ R and the
invariance of autocovariance and autocorrelation (as far as the respective moments exist):

Definition 3.8. (Autocovariance and autocorrelation) Let y = {yt}t∈R denote a sta-
tionary stochastic process with finite second moments. Then, its

(i) autocovariance function (ACVF) is defined by

γy(s) := Cov(yt, yt+s) ≡ Cov(y0, ys), s ∈ R,

independently of t ∈ R,

(ii) autocorrelation function (ACF) is defined by

ρy(s) := γy(s)
γy(0) , s ∈ R. (3.11)

If the finite-dimensional distribution of y exhibits a time-shift invariance only up to the
second moments, then y is referred to as weak or covariance stationary.
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As the autocorrelation function ρy is just a simple linear correlation coefficient, it quantifies
the linear dependence of a time series on its past values. It is natural to expect that |ρy(s)| ≤
1 = ρy(0) is decreasing as s is increasing.7 We will make use of ACF plots (ρy(s) against s)
lateron in order to a priori detect (covariance) stationarity patterns in our data in Chapter
4.

For traditional ARMA processes, stationarity conditions are closely related to the roots of
the corresponding characteristic polynomials φ and ϑ. As we will see in the following, it is
the similar case with their continuous-time counterparts.

Denote by λ1, ..., λr, r ≤ p, and µ1, ..., µs, s ≤ q the (distinct) roots of the polynomials α
and β in (3.4) and (3.5), respectively, such that they can be factorized into

α(z) =
r∏
i=1

(z − λi)m(λi), z ∈ C,

β(z) =
s∏
i=1

(z − µi)m(µi), z ∈ C,

with m denoting the multiplicity of each root. Moreover, let

Rα := {λ ∈ C : α(λ) = 0} = {λ1, ..., λr} and Rα
± := {λ ∈ Rα : <(λ) ≷ 0} ⊂ Rα,

Rβ := {µ ∈ C : β(µ) = 0} = {µ1, ..., µs} and Rβ
± := {µ ∈ Rβ : <(µ) ≷ 0} ⊂ Rβ,

denote the sets of the roots of α and β (with positive and/or negative real parts, respectively).
This will be of further importance in the next sections.

Now we are ready to concentrate our attention to stationarity of CARMA processes.

3.3.1. Necessary and sufficient conditions

Throughout this section, we will successively collect various assumptions with regards to the
roots of the CARMA α and β, starting with the following which we will assume to hold for
the rest of this thesis, without loss of generality and without mentioning it explicitly.

Condition 3.9. The characteristic CARMA polynomials α and β have no common zeroes,

7 In particular, an iid white noise sequence is expected to have zero correlation for lags s > 0.
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i.e. Rα ∩Rβ = ∅. In this case, the (meromorphic) function

z 7→ β(z)
α(z) = (z + µ1)m(µ1) · · · (z + µs)m(µs)

(z − λ1)m(λ1) · · · (z − λr)m(λr)
, z ∈ C,

has singularities exactly at the points of Rα.

According to Brockwell and Lindner (2009), Theorems 3.3 and 4.2, existence and
uniqueness of a strictly stationary solution x of the state equation (3.9) is equivalent to
E[(log |L1|)+] <∞ and the following condition:

Condition 3.10. All zeroes λ1, ..., λr of α lie outside the imaginary axis, that is, the real
parts are either strictly positive or strictly negative (i.e. Rα = Rα

±).

A given stationary solution of (3.9) is proven to be uniquely representable as

xt =
ˆ ∞
−∞

gx(t− u)dLu, t ∈ R,

where the Cp-valued kernel function gx is expressible by gx(t) = eAt1p, t ∈ R.

We embed this result for a CARMA process in the following statement.

Proposition 3.11. (Stationarity of a CARMA process) The CARMA(p,q) process y
given by equations (3.8) and (3.9) is stationary if and only if Condition 3.10 is satisfied and
E[(log |L1|)+] <∞. In this case, y can be uniquely represented by

yt =
ˆ ∞
−∞

g(t− u)dLu, t ∈ R, (3.12)

with C-valued kernel function

g(t) := σb>gx(t) = σb>eAt1p, t ∈ R.

This can be written in one of the two equivalent forms

g(t) = σ

2πi

ˆ
ζ

etz
β(z)
α(z)dz, t ∈ R, (3.13)

= σ
∑
λ∈Rα±

Resz=λ
(
ezt
β(z)
α(z)

)
, t ∈ R. (3.14)
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In line (3.13), ζ is denoting a simple closed curve within the complex plane encircling all
roots λ ∈ Rα

±, whereas in line (3.14), Resz=λ(f(z)) denotes the residue of the function f at
z = λ, that is

Resz=λ
(
ezt
β(z)
α(z)

)
:= 1

(m(λ)− 1)!

[
dm(λ)−1

dzm(λ)−1

(
(z − λ)m(λ)ezt

β(z)
α(z)

)]
z=λ

(3.15)

for any root λ ∈ Rα
±.

Proof. See Brockwell and Lindner (2009), Theorem 3.3 (for the case under Condition
3.9 as we assume here w.l.o.g.) and Theorem 4.2 for the more general case of α and β

possibly having common zeroes.

One can furthermore show that the autocovariance functions of x and y can be given by

γx(s) = Cov(xt+s,xt) = eA|s|Σ,

and
γy(s) = Cov(yt+s, ys) = σ2b>e|s|AΣb, (3.16)

respectively, for s ∈ R where

Σ := Var(xt) =
ˆ ∞

0
[gx(u)]2 du =

ˆ ∞
0

eAu1p1>p eA>udu.

We will come back to further simplifications of equations (3.14) and (3.16) in the context of
the following section.

3.3.2. Causality and invertibility

In a discrete time linear modelling setup, an ARMA(p,q) process X = {Xt}t∈Z defined
by (3.1) is called causal if its autoregressive polynomial φ has only roots outside the unit
circle. In that case, X admits an MA(∞) representation with respect to the white noise
sequence ε = {εt}t∈Z.8 Moreover, X is said to be invertible if the roots of the moving-average
polynomial ϑ lie outside the unit circle. In that case, the noise ε can be isolated with an
AR(∞) representation with respect to X.
8 A special case of the Wold representation, see for instance Brockwell and Davis (2002), Section 2.6 for

more detailed basics.
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Similar to the discrete-time case, one asks for CARMA counterparts of the terms causality
and invertibility and respective characterizing conditions with respect to the roots of the AR
polynomial α and the MA polynomial β.

Before stating formal definitions, observe that one can decompose the residual representation
(3.14) of the kernel function g into

g(t) = σ
∑
λ∈Rα−

Resz=λ
(
ezt
β(z)
α(z)

)
1(0,∞)(t)− σ

∑
λ∈Rα+

Resz=λ
(
ezt
β(z)
α(z)

)
1(−∞,0)(t), t ∈ R,

i.e. we take the sums separately on Rα
− and Rα

+. This will be of further use in what follows.

Causality of a CARMA process

In general, a stationary process y = {yt}t∈R given by the representation (3.12) is said to be
causal if the integral at time t is zero on future paths of L, i.e. (slightly more formally) y
is independent of the σ-field generated by {Lu : u > t}. The following definition formalizes
this for (the kernel function of) a stationary CARMA process.

Definition 3.12. (Causality) The Lévy-driven continuous-time stationary process y =
{yt}t∈R with kernel function g is said to be causal if its integral representation (3.12) is equal
to

yt =
ˆ t

−∞
g(t− u)dLu, t ∈ R, (3.17)

which is equivalent to g being zero on (−∞, 0]. For the particular CARMA cases (3.13) and
(3.14), we obtain

g(t) = σ

2πi

ˆ
ζ

eλt
β(λ)
α(λ)dz1(0,∞)(t)

= σ
∑
λ∈Rα−

Resz=λ
(
ezt
β(z)
α(z)

)
1(0,∞)(t), t ∈ R, (3.18)

for the kernel function.

Finally, we can conclude from (3.18) that the following condition for causality of a stationary
CARMA process is necessary and sufficient:

Condition 3.13. All roots of α have strictly negative real parts, i.e. Rα = Rα
−.
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Of course, the causality condition g ≡ 0 on (−∞, 0] is valid in a more general setup beyond
the CARMA context. Condition 3.13, however, is a special characterizing condition only for
causality of CARMA processes. Notice further that causality (Rα = Rα

−) is stronger than
(i.e. sufficient for) stationarity (Rα = Rα

±).

Invertibility of a CARMA process and recovery of the background driving noise

The notion of invertibility in the context of CARMA processes was first mentioned in
Brockwell (2001), Remark 7, in a comparable manner to the term of causality and the
corresponding notion well-known from discrete-time linear modelling. Very similar to Con-
dition 3.13, though, the following assumption to the roots of the MA polynomial β is made
there:

Condition 3.14. All roots of β have strictly negative real parts, i.e. Rβ = Rβ
−.

We formalize a definition of invertibility as, for instance, Ferrazzano and Fuchs (2013),
Definition 3.1, do:

Definition 3.15. (Invertibility) The stationary CARMA process y = {yt}t∈R given by
(3.8) and (3.9) is said to be invertible if Condition 3.14 is satisfied.

Invertibility of a CARMA process y is not as trivial as with ARMA processes. It goes
back to the minimum phase spectral factorization, which we do not dicuss at this point; for
further specifics, see Sayed and Kailath (2001). Condition 3.14 enables us to isolate the
background driving Lévy process L in terms of past paths of y. Before explaining this in
more detail, we want to summarize the characteristics of a CARMA process with respect to
Conditions 3.10, 3.13 and 3.14 and state another particular assumption to the autoregressive
roots which is of particular interest. Afterwards, the main steps of the recovery scheme of
Brockwell, Davis and Yang (2007, 2011) will be presented and key concepts discussed
so far will be illustrated by CAR(1) and CARMA(2,1).
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The conditions for stationarity, causality and invertibility introduced in this section are
summarized in the following box.

Stationarity is given if and only if Condition 3.10 is satisfied, i.e. Rα = Rα
±. In the

discrete-time ARMA context, this corresponds to the condition that the roots of the
AR polynomial φ are outside or inside the unit circle.

Causality is defined by Condition 3.13, i.e. Rα = Rα
−. In the discrete-time ARMA context,

this corresponds to the condition that the roots of the AR polynomial φ lie outside the
unit circle. The resulting (stationary) continuous-time or discrete-time ARMA process
then only depends on past paths of the background driving/white noise process.

Invertibility is defined by Condition 3.14, i.e. Rβ = Rβ
−. In the discrete-time ARMA

context, this corresponds to the condition that the roots of the MA polynomial ϑ
lie outside the unit circle. The background driving/white noise process can then be
isolated (recovered).

The next example illustrates the meaning of each of these conditions by the simplest repre-
sentative of the CARMA class:

Example 3.16. (CAR(1) process) As motivated in Example (3.2), the CAR(1) process
(or OU process) is given by the differential equation

(D + α1)yt = σDLt,

whose equivalent state-space representation (3.8)–(3.9) is

yt = σxt,

with dxt = −α1xtdt+ dLt,

with the p(= 1)-dimensional state process x = {xt}t∈R. Its solution admits the Markovian
representation

yt = e−α1(t−s)σxs︸︷︷︸
ys

+ σ

ˆ t

s

e−α1(t−u)dLu, ∀s ≤ t ∈ R. (3.19)

Since the autoregressive polynomial of the process is of the form α(z) = z + α1 with single
root λ = −α1, Conditions 3.10 and 3.13 respectively correspond to the cases λ 6= 0 (α1 6= 0)
and λ < 0 (α1 > 0). Under Condition 3.13, the stationary OU process y = {yt}t∈R is causal
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and takes the integral form

yt = σ

ˆ t

−∞
e−α1(t−u)dLu, t ∈ R,

with kernel function g(t) = σeλt1[0,∞)(t) = σe−α1t1[0,∞)(t).

Remark 3.17. (Inverting a CAR(1) process) In the CAR(1) context, invertibility in
terms of the roots of the moving-average polynomial β(z) ≡ 1 (Condition 3.14) is not
meaningful. Brockwell, Davis and Yang (2007), however, treat this special case of
approximating the Lévy noise process out of a discretely observed OU process, which is
described as follows:

1. They use Lemma 2.1 of Eberlein and Raible (1999) combined with an argument of
Pham (1977) for Gaussian noise recovery in order to get the Lévy noise recovered by

Lt = 1
σ

(
yt − y0 + α1

ˆ t

0
yudu

)
(3.20)

= Ls + 1
σ

(
yt − ys + α1

ˆ t

s

yudu

)

for every s, t ∈ [0, T ] with s ≤ t.

2. For the iid increments ∆L(h) = {∆L(h)
t }t∈R of the Lévy noise process of step size h > 0,

this has the form

∆L(h)
t := Lth − L(t−1)h = 1

σ

(
yth − y(t−1)h + α1

ˆ th

(t−1)h
yudu

)
, t ∈ [0, T ]. (3.21)

3. The discrete version of this formula is then replaced by estimators for the OU param-
eters α1 and σ and the observations of y (equidistantly spaced by h). Furthermore,
the integral on the right-hand side is approximated by (y(t−1)h + yth)/2 (trapezoidal
rule). Conditional on the known parameters and observations, this yields a finite set
of iid Lévy increments which may be subject to further analysis, e.g. estimation of an
appropriate distribution.

Applications of this relatively easy procedure to real credit market data are, among other
analyses, summarized in Chapter 4. We will later see that equations of the form (3.20) will
be of greater interest in the recovery of higher order CARMA(p,q) noises.
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From now on, we will restrict ourselves to the special case of roots λ ∈ Rα
± only with multi-

plicity one which will turn out to have very interesting and useful consequences afterwards.

Condition 3.18. All (distinct) zeroes λ1, ..., λr of α have unit multiplicity, i.e. r = p and
α(z) = (z − λ1) · · · (z − λp).

For p > 1, the case of possibly multiple zeroes can also be covered by this condition when
artificially considering such roots as distinct but close and converging to each other.

Remark 3.19. (Decomposition of a CARMA(p,q) process) Under Condition 3.18, the
complex residue in (3.15) simplifies to eλtβ(λ)/α′(λ) with the usual first derivative α′ and, in
the context of Proposition 3.11, the kernel g of the stationary CARMA process y = {yt}t∈R
given by (3.8) and (3.9) can be written as

g(t) = σ
∑
λ∈Rα±

eλt
β(λ)
α′(λ) , t ∈ R. (3.22)

such that the integral representation (3.12) takes the simple form

yt = σ
∑
λ∈Rα±

β(λ)
α′(λ)

ˆ ∞
−∞

eλ(t−u)dLu, t ∈ R.

This is a weighted sum (linear combination) of p different but dependent CAR(1) processes
(see Example 3.16) all driven by the same Lévy process! Furthermore, the ACVF of y from
equation (3.16) simplifies to

γy(s) = σ2 ∑
λ∈Rα±

eλ|s|
b(λ)b(−λ)
a′(λ)a(−λ) , s ∈ R.

As a direct consequence of Remark 3.19, the problem of recovering the background driving
Lévy process from a higher-order CARMA(p,q) process can be reduced under Condition 3.18
to the CAR(1) case in Remark 3.17, yielding p different but equivalent equations of the form
(3.20), as we will see in the following.

We want to agree upon the validity of Condition 3.18 in addition to Conditions 3.10, 3.13
and 3.14 throughout the rest of this thesis, especially this is assumed for the practical
implementations in Chapter 4. Using Remarks 3.17 and 3.19, one immediately obtains
a useful concept of recovering (the increments of) the Lévy noise process from CARMA
processes of arbitrary orders. As mentioned before, Brockwell (2001) briefly described
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such a recovery scheme, which is conceptualized more formally in the collaborative works
of Brockwell, Davis and Yang (2007, 2011). Their arguments base on some useful
observations, reflected in the following:

Remark 3.20. (Inverting a CARMA(p,q) process) Assume that we have observed
a continuous path of a CARMA(p,q) process y on the interval [0, T ] and the coefficients
α1, ..., αp and β0, ..., βq are already determined (e.g. by estimation) with appropriately chosen
p and q ≥ 1.

1. The first key idea is that the observation equation (3.8) can be “inverted” yielding a
CAR(q) process denoted by xq = {xqt}t∈[0,T ] with

dxqt =
(
Bxqt + 1

σ
1qyt

)
dt, (3.23)

where xq = {(x(0)
t , ..., x

(q−1)
t )>}t∈[0,T ] is the vector of the first q components of x and

B :=



0 1 0 . . . 0
0 0 1 . . . 0
... ... ... . . . ...
0 0 0 . . . 1
−β0 −β1 −β2 . . . −βq−1


∈ Rq×q and 1q :=



0
0
...
0
1


∈ Rq,

with B := −β0 and 1q := 1 if q = 1. Note that—similarly to the state-space repre-
sentation (3.8)–(3.9) of y in terms of x—the reverse is now established for x in terms
of y, with a background driving process involving the observable y instead of L. The
first q components of x solving (3.23) satisfy the relations

xqt = eBtxq0 + 1
σ

ˆ t

0
eB(t−u)1qyudu, t ∈ [0, T ],

whereas the remaining parts are obtained recursively by x(j) = Dx(j−1), q ≤ j ≤ p− 1.
By construction, the eigenvalues of B are the same as the roots of the polynomial β.
Its role changes to that of an autoregressive polynomial in this inverted CAR(q) setting
such that Condition 3.14 actually ensures causality (hence stationarity) of the inverted
CAR(q) process xq.

2. The second step is to use the canonical state vector y := {(y1,t, ..., yp,t)>}t∈[0,T ] given
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by

yt = σ

ˆ t

−∞
g(t− u)dLu, t ∈ [0, T ],

with vector-valued kernel function

g(t) :=
(
β(λ1)
α′(λ1)e

λ1t, ...,
β(λp)
α′(λp)

eλpt
)>

, t ∈ [0, T ].

The components of y are the CAR(1) processes already introduced in Remark 3.19
and hence sum up to the original CARMA(p,q) process y, i.e.

yt = y1,t + ...+ yp,t, t ∈ [0, T ].

This canonical state vector y (itself driven by L which is aimed to be recovered) can be
re-expressed in terms of x determined by means of y (using the above representation
(3.23)) by using the relation

yt = β(D)R−1xt, t ∈ [0, T ], (3.24)

where D := diag(λ1, ..., λp) and R := (λi−1
j )i,j=1,...,p is the matrix of the right eigenvec-

tors of A, see Brockwell, Davis and Yang (2011), Remark 4.

3. Finally, in case of distinct zeroes λ1, ..., λp of α (Condition 3.18), combining Remarks
3.17 and 3.19 yields p equivalent representations of L in terms of any of the components
of y, namely

Lt = α′(λj)
σβ(λj)

(
yj,t − yj,0 − λj

ˆ t

0
yj,udu

)
, 1 ≤ j ≤ p, (3.25)

= Ls + α′(λj)
σβ(λj)

(
yj,t − yj,s − λj

ˆ t

s

yj,udu

)

for any s, t ∈ [0, T ] with s ≤ t.9

4. Finally, one can choose any arbitrary j in equation (3.25) and discretize it in order to
approximate L. We end up at a discretized scheme for the iid Lévy increments, similar
to Remark 3.17.10

9 This is obtained similarly to equation (3.20) combining Lemma 2.1 of Eberlein and Raible (1999) and
arguments by Pham (1977) as pointed out by Brockwell, Davis and Yang (2011).

10 As the most computationally feasible choice Brockwell, Davis and Yang (2011) recommend an index
j (if there is any) for which λj has no imaginary part.
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Notice that, in the case of p > 1 and q = 0, we directly start with x
(0)
t = 1

σ
yt, t ∈ [0, T ],

instead of the more involved inverted relations (3.23) and proceed at step 2., equation (3.24),
after having determined the remaining components of the vector x by x(j) = Dx(j−1), 1 ≤
j ≤ p− 1. The simplest case p = 1 and q = 0 has already been studied in Remark 3.17.

We review the key steps in the following example:

Example 3.21. (CARMA(2,1) process) For the sake of simplicity, assume that σ = 1.
In this case, y is given by the formal 2nd order sde

(D2 + α1D + α2)yt = (β0 +D)DLt,

or the equivalent state-space representation

yt = β0xt + x
(1)
t ,

dxt = x
(1)
t dt,

dx
(1)
t = (−α2xt − α1x

(1)
t )dt+ dLt,

which is solved by

yt = (β0, 1)eA(t−s)

 xs

x(1)
s

+
ˆ t

s

(β0, 1)eA(t−u)

 0
1

 dLu, ∀s ≤ t ∈ R. (3.26)

In our notation, the characteristic polynomials are of the form α(z) = z2 + α1z + α2 and
β(z) = β0 + z. Then, the (possibly complex-valued) roots of α are generally satisfying
λ = −(α1± ᾱ)/2 with ᾱ :=

√
α2

1 − 4α2. Condition 3.10 (stationarity) corresponds to <(α1±
ᾱ) 6= 0 and Condition 3.13 (causality) is equivalent to <(α1 ± ᾱ) > 0 which is given if

either α2
1 < 4α2 ∧ α1 > 0, (3.27)

or α2
1 ≥ 4α2 ∧ α1 > ᾱ. (3.28)

Furthermore, Condition 3.14 (invertibility) is satisfied if the single (real-valued) root µ = −β0

is negative, i.e. β0 > 0. In case of Condition 3.18 (non-multiple roots) which is fullfilled if
and only if α2

1 6= 4α2 in (3.28), we may divide by ᾱ and the matrix exponential eAt in (3.26)
has the explicit expression

eAt = e−
α1
2

2ᾱ

 (α1 + ᾱ)e ᾱt2 − (α1 − ᾱ)e− ᾱt2 2
(
e
ᾱt
2 − e− ᾱt2

)
2α2

(
e−

ᾱt
2 − e ᾱt2

)
(α1 + ᾱ)e− ᾱt2 − (α1 − ᾱ)e ᾱt2

 , t ∈ R. (3.29)
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Hence, the kernel function of the stationary integral representation (3.26) can be written as

g(t) = (β0, 1)>eAt

 0
1


= 1
ᾱ

[(
β0 −

1
2(α1 − ᾱ)

)
e−

1
2 (α1−ᾱ)t −

(
β0 −

1
2(α1 + ᾱ)

)
e−

1
2 (α1+ᾱ)t

]
.

In terms of the two distinct zeroes λ1 6= λ2 (Condition 3.18), g can further be simplified using
Remark 3.19: First calculating α′(z) = 2z + α1, then observing that α′(λ) = ±ᾱ, yields

g(t) = (w1e
λ1t + w2e

λ2t)1(0,∞)(t), t ∈ R,

which turns out to be the weighted sum of two OU kernels g1(t) = eλ1t1(0,∞)(t) and g2(t) =
eλ2t1(0,∞)(t). Controlling for the weights, one can easily check that

w1 = β(λ1)
α′(λ1) = β0 + λ1

ᾱ
= 1
ᾱ

(
β0 −

1
2(α1 − ᾱ)

)
, (3.30)

w2 = β(λ2)
α′(λ2) = −β0 + λ2

ᾱ
= − 1

ᾱ

(
β0 −

1
2(α1 + ᾱ)

)
. (3.31)

Remark 3.22. (Inverting a CARMA(2,1) process) Assume that we have observed a
CARMA(2,1) process y continuously on the interval [0, T ]. Applying Remark 3.20 for p = 2
and q = 1, we must determine x = (x(0), x(1))> whose first component is given by the inverted
CAR(1) relation (3.23),

x
(0)
t = e−β0tx

(0)
0 +

ˆ t

0
e−β0(t−u)yudu, t ∈ [0, T ], (3.32)

which is causal if and only if β0 > 0 (Condition 3.18) and the second component is recursively
obtained by

x
(1)
t = Dx

(0)
t = −β0x

(0)
t + yt, t ∈ [0, T ]. (3.33)

Given (continuous) samples of {yt}t∈[0,T ] with known CARMA coefficients α1, α2, β0 such that
all Conditions 3.10, 3.13, 3.14 and 3.18 are satisfied and starting values x0 = (x(0)

0 , x
(1)
0 )>,

one obtains the canonical state vector y = {(y1,t, y2,t)>}t∈[0,T ] consisting of the two CAR(1)
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components from Remark 3.19 by equation (3.24), namely

yt = β(D)R−1xt, t ∈ [0, T ],

= β

 λ1 0
0 λ2

 1 1
λ1 λ2

−1 x
(0)
t

x
(1)
t


= 1
λ1 − λ2

 β0 + λ1 0
0 β0 + λ2

  −λ2 1
λ1 −1

 x
(0)
t

x
(1)
t


= 1
λ1 − λ2

 −λ2(β0 + λ1) β0 + λ1

λ1(β0 + λ2) −(β0 + λ2)

 x
(0)
t

x
(1)
t


= 1
ᾱ

 (1
2(α1 + ᾱ)β0 − α2)x(0)

t + (β0 − 1
2(α1 − ᾱ))x(1)

t

(−1
2(α1 − ᾱ)β0 + α2)x(0)

t − (β0 − 1
2(α1 + ᾱ))x(1)

t

 .
Inserting the two components (3.32) and (3.33) above yields two equivalent representations
from (3.25) for the recovered Lévy process,

Lt = 1
w1

(
y1,t − y1,0 + 1

2(α1 − ᾱ)
ˆ t

0
y1,udu

)
, t ∈ [0, T ],

= 1
w2

(
y2,t − y2,0 + 1

2(α1 + ᾱ)
ˆ t

0
y2,udu

)
, t ∈ [0, T ],

with weights w1 and w2 as expressed in equations (3.30) and (3.31).

Beyond the standard parametric approach of Brockwell, Davis and Yang (2007, 2011)
for the retrieval of the background driving process presented above, several extending as
well as alternative procedures were proposed recently as of the draft stadium of this thesis
(early 2013). One generalization to multivariate CARMA (MCARMA) processes can be
found in works by Schlemm (2011) and Brockwell and Schlemm (2013). The recovery
idea is mainly based on the univariate procedure. Nevertheless, the crucial limitation behind
these approaches is the dependence on a priori correctly determined degrees p and q such
that the observed process is required to be (p− q − 1)-times differentiable. For this reason,
especially if p (q) is chosen too high (low), misspecification of the model can lead to analytical
problems due to the lack of necessary derivatives. In order to compensate this limitation,
Ferrazzano and Fuchs (2013) established a different strategy based on the discretely
sampled version of a CARMA(p,q) process which is shown to be an ARMA(p,p− 1) process.
Their advantage lies in the fact that the orders p and q do not have to be specified a priori,
however, at the cost of closed-form expressions for the approximating Lévy increments that
are only available for p ≤ 2 because of too involved calculations.
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All these works draw upon the behaviour of discrete observations of a continuously modelled
process on a finite time horizon. Therefore, one has to be aware of that the recovered Lévy
process (or its iid increments) are only determined up to a certain accuracy which also
depends on the step size h > 0. It has been shown though in Brockwell, Ferrazzano
and Klüppelberg (2012a,b) that in the limiting case, as the step size of the discrete
observation grid becomes infinitesimally small (h↘ 0), the approximating Lévy increments
converge to the real ones, for which reason CARMA models are of particular interest in
estimation of high-frequency data.

3.4. Further topics and references

In this last technical chapter, the most important aspects on continuous-time linear modelling
were presented in order to provide a theoretical basis for the recovery approaches to be
applied to real credit derivatives prices in the next chapter.

Many applications of CARMA processes consider the special case of L being a subordina-
tor, i.e. a non-decreasing Lévy processes (hence with non-negative increments). Together
with a non-negative kernel function g, this results in non-negative CARMA processes and
appropriate candidates for modelling variates that only live on the positive real half-line, for
instance, stochastic volatility. One famous example is the subordinator-driven OU process
first applied by Barndorff-Nielsen and Shephard (2001) to volatility modelling.

In the more general setting of a real-valued Lévy process, as is the case in this thesis,
applications of CARMA models to high-frequential observations such as in electricity markets
(Bernhardt, Klüppelberg and Meyer-Brandis (2008) and Garćıa, Klüppelberg
and Müller (2011)) and wind turbulence (Brockwell, Ferrazzano and Klüppelberg
(2012a,b)) were studied extensively in recent years. In that context, “high-frequential” is
most often referred to as a higher observation rate than once per second.

In the following chapter, the concepts presented on the previous pages are brought together
in order to find appropriate CARMA models for discretely (daily) observed premia of CDS
on several North American and European reference obligors.



Chapter 4.

Appropriate models for CDS premia

Now we have collected all the basic concepts and tools such that we might search for and
choose a suitable model to describe the time series behaviour of CDS premium rates making
use of the CARMA class. Before turning to first appropriate proposals, we briefly turn
our focus to an exploratory description of the data that will be subject to further technical
analyses afterwards.

4.1. Exploratory analysis

4.1.1. The corporate CDS market

Within the credit derivatives markets, CDS have evolved into the most important instru-
ments for buying and selling insurance against default of a reference issuer. At their trading
launch in the early 1990s, only banks were predominantly the most active participants. As
CDS contracts are exclusively traded over-the-counter, hence not on standardized exchange
markets, it is still hard to measure exactly the size of the global markets in terms of, for
example, liquidity or market capitalization. According to data assessed semi-annually by the
Bank for International Settlement (BIS), CDS started to play a significant role around the
turn of the millennium, when the size of notional amounts outstanding1 grew rapidly from
approximately $300 billion in late 1998 to $6 trillion in 2004 within only six years. During
the next 3–4 years, the exponential extension of the market (fueled by speculators, among

1 This is the sum of all notional values of each currently outstanding CDS contract.
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other factors) reached its temporary high point at 2007/2008, the same time when the re-
cent US subprime crisis peaked, with almost $60 trillion of notional outstanding. Since 2009,
it has been decreasing again ending up at around $25 trillion reported in early 2012.2 In
contrast to that, the global bond markets, having existed far longer, showed an exponential
growth in the long-term between 1989 ($15.4 trillion) and 2011 ($99.5 trillion).3

4.1.2. CDS names subject to our analysis

The fastest way to get a good overview of the evolution of the most actively traded CDS
names is considering CDS indices and their respective members. There are two particu-
lar families of indices we take a closer look at in the following, namely the iTraxx Europe
and the CDX North America, both provided by Markit Group Ltd and certain subsidiaries.
Both iTraxx and CDX are themselves tradable yet completely standardized securities—In
contrast to their ordinary single name members, they are traded on exchanges. For instance,
they are used to hedge or transfer credit risk positions on a portfolio of defaultable obligors.
The index levels are calculated on a daily basis as simple equally weighted averages of the
CDS premia of their respective members (125 names in each index, the composition being
updated twice every year4). Hence, they might also be used as benchmarks or leading indi-
cators to reflect the performance in credit quality of an entire region (in this case, developed
countries of Europe on the one hand and North America on the other hand). The standard
versions of both indices only contain reference issuers that are rated investment grade (that
is, AAA–BBB) though there are also related high-yield indices containing only speculative
grade issuers (BB and lower), for instance. Figures 4.1.1–4.1.3 illustrate the absolute and
relative composition of each of the two indices with respect to industry sector, country of
domicile and current long-term issuer credit rating as of November 6, 2012.5

From these figures, one can easily read off that the European index has a much higher
ratio of banks and other financial corporates (such as insurance companies) with together 36
2 Vause (2010)
3 For an extensive overview on the development of the CDS markets compared in terms of liquid-

ity/market capitalization, consider for instance periodical statistical reports of the BIS, available online
at www.bis.org/publ. For the evolution of the global bond market compared to that of the CDS market,
see Kushma, Class and Kurzweil (2012).

4 For the current membership lists, see the Credit Index Annexes page on Markit’s website www.markit.com;
at the time of download, November 6, 2012, the latest index rolls were series 18 (iTraxx) and 19 (CDX)
respectively, see also Section 4.1.3 below.

5 Credit ratings are categorical ranks, obtained from a one-to-one mapping from the set of disjoint sub-
intervals of historical default probabilities in [0, 1) in ascending order (the best grade AAA corresponds to
the lowest sub-interval in [0, 1)).

http://www.bis.org/forum/research.htm
http://www.markit.com/en/products/data/indices/credit-and-loan-indices/index-annexes/annexes.page?
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Figure 4.1.1.: Percental and absolute composition by industry sector and country of
domicile of the iTraxx Europe Series 18 as of November 6, 2012. (Own
graphics, resources: Reuters/Markit)
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Figure 4.1.2.: Percental and absolute composition by industry sector of the CDX
North America Series 19 as of November 6, 2012. The countries of
domicile are United States (123 companies) and Canada (2 companies).
(Own graphics, resources: Reuters/Markit)

Figure 4.1.3.: Absolute composition of the iTraxx and CDX indices by long-term
issuer credit rating as of November 6, 2012. (Own graphics, resources:
Reuters/Markit)
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reference entities (29%) than the North American index with only 25 financial institutions
in total (20%), while the CDX consists of more service and manufacturing companies (69
in total or 56%) than the iTraxx (51 in total or 40%). In view of the ratings, the credit
quality of the iTraxx companies is higher compared to CDX: The ratio between entities rated
A-/A3 or above/below is 54:46 for Europe and 39:61 for North America. However, note that
credit ratings only reflect a snapshot of the respective date, in contrast to sector and country
belongings which are constant in time (within each fixed membership composition). Thus,
the ratings composition might have changed by now.

Concerning the data availability, Thomson Reuters6, one of the leading (financial) news
agencies and data suppliers, was chosen as our primary data source for historical daily end-
of-day prices from the 250 members of the iTraxx and CDX. As there are credit default swaps
for different tenors, whereas our idealized framework assumes independence of the contracts’
maturity7, the most liquid (and therefore, probably best covered and most reliable) tenor
T = 5 years was selected.

Next, an extensive description of the quality and quantity of the data is given, before ap-
propriate models are tried to be estimated on them in Section 4.2.

4.1.3. Descriptive summary

In total, 250 data sets were downloaded on November 6, 2012, ranging from January 2,
2002 to November 5, 2012 with 2,830 days of possible observations (excluding weekends and
holidays). Table 4.1.1 illustrates the coverage ratio of each index staggered by the k-th upper
order statistic for several values of k ∈ {1, ..., 125}.8

At first glance, one can immediately infer from each line of Table 4.1.1 that the iTraxx
entities have a higher coverage than those of the CDX index, as is also reflected by the
overall average (last line of the table). The average coverage ratio among those companies
with 50% or above (that is, ≥1,415 observations) amounts to 92.9% for the iTraxx and 84.7%
for the CDX companies, respectively (second to last line of the table). Conversely, only 10
iTraxx and 23 CDX companies have a lower coverage. From those, only four companies in
6 In particular, the software product Thomson Reuters Eikon with CreditViews and its interface for Microsoft

Excel was used to retrieve the historical quotes.
7 Recalling Chapter 2, we ended up at the model C∗t = (1 − R) γt, t ≥ 0, which was independent of the

tenor T .
8 The coverage ratio is calculated as the total number of observations divided by the maximum number of

possible observations (2,830 in this case).
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iT
ra

xx
k 10 25 50 75 100 115 125
quantile

(
125−k

125

)
2,821 2,804 2,744 2,695 2,311 1, 415 = 2,830

2 0
avg.num.obs 2,822 2,817 2,800 2,773 2,719 2,627 2,492
avg.cr 99.7% 99.6% 99.0% 98.0% 96.1% 92.9% 88.1%

C
D

X

k 10 25 50 75 100 102 125
quantile

(
125−k

125

)
2,647 2,580 2,487 2,265 1,594 1, 415 = 2,830

2 0
avg.num.obs 2,688 2,641 2,586 2,522 2,415 2,396 2,142
avg.cr 95.0% 93.4% 91.4% 89.2% 85.4% 84.7% 75.7%

Table 4.1.1.: Average number of observations (avg.num.obs) and coverage ratios
(avg.cr in percent) of the iTraxx Europe and CDX North America rang-
ing from January 2, 2002 to November 5, 2012 (2,830 days of maximum
possible observations). For each line, both are calculated conditional
on “num.obs≥ k-th upper order statistic of the num.obs”. The last line
gives the overall (unconditional) avg.num.obs and avg.cr.

each index have less than 1,000 observations within the considered time range. To ensure a
high data quality, these eight time series have been excluded, prior to any further analysis,
resulting in 242 single-name CDS time series in total.

It might be worth mentioning that the yearly coverage ratios are increasing in the case of
iTraxx, as is illustrated by Figure 4.1.4. This is, however, not the case with CDX which
exhibits a first rapid growth phase in 2002–2005, followed by a decrease in 2006–2008 and—
similarly to iTraxx—a quite constant almost perfect coverage in the latest period 2009–2012.

Now we turn to the quantitative aspects for the rest of this chapter.

4.2. Model selection

Denote by T := {1, ..., T ∗ = 2830} the discrete time grid of step size h = 1 day on which
the corresponding CDS premia {C∗t }t∈T are observed. From the modelling point of view,
in order to fit a model to observations, we require them to be sampled from a stationary
process. First, consider the historical index levels9 of iTraxx and CDX which are plotted

9 Note that, since the series members are updated every six months, the actual iTraxx and CDX indices
that are observable and tradable in reality can only be downloaded for these short periods. Thus, these
are calculated as equally weighted averages of the CDS premia of the corresponding members at each day
by hand for the entire period 2002–2012 ignoring the fact that, in the past, the index composition might
have been completely different from what it is currently.
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Figure 4.1.4.: Yearly coverage ratios for iTraxx Europe and CDX North America in
the period 2002–2012

together in Figure 4.2.1. Note that the standard quotation unit of CDS is basis points [bp]
with 1 bp = .01% = .0001.

4.2.1. Turning to log-differences

Taking first-order differences of the logarithms of a non-stationary process (log-differences,
{log(C∗t ) − log(C∗t−1)}t∈T\{1}) has proved in many applications before to be an appropriate
transformation for obtaining a possible sample of a stationary random process. That this
transformation was necessary to be applied to our data, as well, was indeed confirmed by
Dickey-Fuller stationarity tests which could not reject the hypothesis of non-stationarity for
the index levels but for the log-differences it could. Figures 4.2.1–4.2.4 contain the time
series and the ACF10 plot of the iTraxx index levels and their respective log-differences,
which clearify very well the effects of log-differencing. We transfer these insights from this
index to every single-name CDS series, since the typical patterns of the time series behaviour
are quite similar for all.

Thus, our studies presented in the following sections base solely on the log-differences of

10 Recall Definition 3.8 for the ACF.
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Figure 4.2.1.: Time series plot of the index levels of iTraxx Europe and CDX North
America in the period 2002–2012

Figure 4.2.2.: Sample ACF plot of the index levels of iTraxx Europe
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Figure 4.2.3.: Time series plot of the log-differenced index levels of iTraxx Europe
and CDX North America in the period 2002–2012

Figure 4.2.4.: Sample ACF plot of the log-differenced index levels of iTraxx Europe
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each time series whose discretely sampled versions are henceforth denoted by

ŷt := log(C∗t )− log(C∗t−1), t ∈ T,

with the slightly modified time grid T := {1, ..., T ∗ − 1 = 2829}. Note that by calculating
log-differences, each contiguous block of missing values in the CDS time series generates one
additional missing value within the log-differenced time series. We accept losing information
in favor of gaining possible samples from a stationary time series, though.

The aim of the following analyses is first to choose several continuous-time processes y :=
{yt}t∈R from the CARMA class introduced in Chapter 3 and to identify the most appropriate
candidates in the sense that the log-differences ŷ := {ŷt}t∈T are approximate samples of y
on the discrete time grid T.

As the primary aid for our quantitative analyses, the open-source programming environment
R (R Development Core Team (2012)) is used together with several foreign libraries,
all of them freely available at www.R-project.org. In particular, the estimation procedure
of the CARMA parameters is done with the friendly assistance of the R-package ctarma by
Tómasson (2012). It allows estimation approaches on either a frequency domain or a time
domain based level. The latter is done by (exact) maximum likelihood (ML) whose goodness
of fit can be measured by the Bayesian information criterion (BIC), defined by

BIC(ξ) = −2 log `(ξ) + (p+ q + 1) log(T ∗ − 1)

where the log-likelihood function log `(ξ) is the objective function of the maximization prob-
lem

max
ξ∈Ξ

log `(ξ) = max
ξ∈Ξ

T ∗−1∑
t=2

l(ŷt | ŷt−1, ξ)

with respect to the parameter vector ξ containing all coefficients of the AR and MA polynomi-
als as well as σ > 0 and lying in the set of admissible values denoted by Ξ ⊂ Rp+q+1×(0,∞).
The functions l(ŷt | ŷt−1, ξ), t ∈ T\{1}, are the conditional log-likelihoods obtained by using
the Kalman-filter (for further details consider Tómasson (2011) for instance).

The BIC is minimized if and only if the (log-)likelihood function is maximized—it will be
used as our main criterion by which the appropriate choice of the degrees p and q will be
decided in Section 4.2.2. Although the tools and techniques provided by this package are
admittedly written for and based on Gaussian driving processes11, we treat the resulting
11 For theoretical and numerical aspects regarding the simulation as well as estimation of Gaussian CARMA

http://www.R-project.org/
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estimates as “pseudo-ML” estimates such that we allow for background driving processes
different from Brownian motion. The recovery results are then discussed and further analyzed
in Section 4.3.

Remark 4.1. As an aside, recall that as the parametrization of a CARMA(p,q) process,
including σ, we chose the parameter vector ξ := (α1, ..., αp, β0, ..., βq, σ)> with variable β0

and fixed βq = 1. In contrast to this, the routines of ctarma base on the parametrization
ξ′ := (α′1, ..., α′p, β′0, ..., β′q, σ′)> with fixed β′0 = 1 and variable β′q. We might switch from our
original parametrization to that of Tómasson (2011) and back by dividing both sides of the
CARMA sde (3.7) (or each component of ξ, ξ′) by β0 and β′q, respectively. To avoid these
calculations, we henceforth state the resulting output in terms of ξ′.

Remark 4.2. Furthermore, it is worth mentioning that the routines of ctarma are designed
in such a way that the admissible parameters ξ′ := (α′1, ..., α′p, β′0, ..., β′q, σ′)> satisfy the
conditions of causality and invertibility, that is, the validity of Conditions 3.13 and 3.14 is
ensured with respect to the zeroes of the polynomials α and β, respectively, see also the
package manual of Tómasson (2012).

4.2.2. Estimation results and the choice of p and q

Among all possible CARMA(p,q) candidates for p + q ≤ 2 and q < p, we choose that
model exhibiting the least BIC value and most plausible parameter estimates (in terms of
magnitude) and at the same time lowest possible standard errors. Table 4.2.1 gives a brief
summary on how many times which model was optimal. For a complete tabular overview, we
refer to the web address mediatum.ub.tum.de/node?id=1140434 where several appendices
are located.

Model CAR(1) CAR(2) CARMA(2,1)
Number of optimal BICs 135 43 64

Table 4.2.1.: Number of optimal BICs for each CARMA(p,q) candidate with p+q ≤ 2
and q < p. The numbers sum up to 242, the final number of analyzed
time series.

According to that, more than half of the examined companies (135) fit optimally to a CAR(1)
process, whereas the rest of the companies is sharing the other two models (43 CAR(2) and

processes, see Tómasson (2011), for Lévy-driven CARMA processes, see Todorov and Tauchen (2006).
For alternative estimation methods such as least squares and their asymptotic properties see Brockwell,
Davis and Yang (2011).

https://mediatum.ub.tum.de/node?id=1140434
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BERKSHIRE COMCAST
LL 2531.4193 2592.6106
BIC -5048.8600 -5171.2352

Estimate (Std.error) Estimate (Std.error)
α̂1 0.6087 (0.0234) 0.8936 (0.0435)
σ̂ 0.0298 (0.0004) 0.0322 (0.0003)

DAIMLER DEUTSCHE
LL 5336.6493 4961.2195
BIC -10657.4174 -9906.5506

Estimate (Std.error) Estimate (Std.error)
α̂1 1.3659 (0.0478) 1.5346 (0.0498)
σ̂ 0.0615 (0.0004) 0.0743 (0.0004)

Table 4.2.2.: Excerpt of the CAR(1) estimation results, including the selection cri-
teria LL (log-likelihood) and BIC, the parameters estimates of α̂1 and
σ̂ and their standard errors. The respective companies are: Berkshire
Hathaway, Comcast, Daimler, Deutsche Bank.

64 CARMA(2,1), respectively). Comprehensive details on the estimation results can be
found at the aforementioned online resource.

We proceed our investigations with the CAR(1) cases and try to find an answer of what
law (the increments of) the background driving processes are following. To this end, they
need to be approximated using the recovery methods presented in Chapter 3, in particular
Remark 3.17. To conclude, Table 4.2.2 gives a brief overview on the estimated parameters
for some picked companies. The full summary is available online as well.

4.3. The background driving process for CAR(1)

The aim of the next step is to illustrate the recovery scheme of Brockwell, Davis and
Yang (2007, 2011) of the background driving (noise) process by the CAR(1) examples.

Recall the recovery formula (3.21) from Remark 3.17 for the increments of the background
driving Lévy process. We replace the corresponding CAR(1) parameter α1 as well as the
volatility parameter σ by their corresponding (maximum likelihood) estimates α̂1 and σ̂

found in Section 4.2.2 and the CAR(1) process y by its discretely observed sample ŷ. Finally,
setting h = 1 and approximating the Riemann integral by the trapezoidal rule, the recovery
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formula simplifies to

∆̂Lt := 1
σ̂

(
ŷt − ŷt−1 + α̂1

ˆ t

t−1
ŷudu

)

≈ 1
σ̂

(
ŷt − ŷt−1 + α̂1

2 (ŷt−1 + ŷt)
)
, t ∈ T, (4.1)

yielding a set of approximate samples ∆̂L := {∆̂Lt : t ∈ T} that is known from Brockwell,
Davis and Yang (2007, 2011) to be iid samples of the Lévy increments ∆L. Checking the
ACF plots in Figure 4.3.1 indicates that all remaining autocorrelation is filtered out to the
greatest extent.

Thus, the remaining unknown is the distribution law of ∆L. Figure 4.3.2 contains exemplary
histograms of the Lévy increments recovered from CDS log-differences by the above scheme
(4.1). It can be observed that the distribution to be estimated is quite symmetric around
zero and both the left as well as the right-hand tails are unbounded yet relatively heavy. We
proceed with a set of candidates of possible parametric distributions that will be subject to
further estimations and compared by goodness of fit afterwards.

We review briefly some well-known parametric families that are chosen to be candidates for
the distribution of ∆L.

4.3.1. Possible candidates for the noise distribution

Hypothesis 4.3. The recovered iid Lévy increments {∆̂Lt}t∈T are samples of one of the
following five distribution laws, each with unbounded support R:

1. Normal distribution, given by the density function

f1(x;µ, σ) := 1
σ
√

2π
exp

{
−(x− µ)2

2

}
, x ∈ R,

where the parameters µ ∈ R and σ ∈ (0,∞) are location and scale parameters, respec-
tively.

2. Student’s t-distribution, given by the density function

f2(x; ν) :=
Γ(ν+1

2 )√
νπΓ(ν2 )

(
1 + x2

ν

)− ν+1
2

, x ∈ R,
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Figure 4.3.2.: Histogram plots of the Lévy increments recovered from the estimated
CAR(1) models for the log-differenced CDS premium time series. The
respective companies are: Berkshire Hathaway, Comcast, Daimler,
Deutsche Bank. The histogram bars are shaded as a grey area and
the kernel density estimate is plotted red solid lines.
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where the parameter ν ∈ (0,∞), called (number of ) degrees of freedom, is a shape
parameter and Γ is the gamma function.

3. Laplace distribution, given by the density function

f3(x;α, β, µ) :=


1

α+β exp
{
−x−µ

α

}
, if x ∈ (−∞, µ],

1
α+β exp

{
−x−µ

β

}
, if x ∈ [µ,∞),

where the notation is adapted by Scott (2009) in the R-package HyperbolicDist.
The parameters α, β ∈ (0,∞) are shape parameters, µ ∈ R is a location parameter.
The Laplace distribution is actually a two-sided mixture of exponential distributions
with intensity parameters α (for the lower, left-hand tail) and β (for the upper, right-
hand tail), respectively.

4. Normal inverse Gaussian (NIG) distribution, given by the density function

f4(x;α, β, δ, µ) :=
α δK1

(
α
√
δ2 + (x− µ)2

)
π
√
δ2 + (x− µ)2

exp {δγ + β(x− µ)} , x ∈ R,

where the notation is based on Barndorff-Nielsen (1977) and implemented in the
R-package fBasics by Wuertz and Rmetrics core team (2012). The parameters
are

a) α ∈ (0,∞): shape parameter for tail heaviness,

b) β ∈ R with |β| ∈ (0, α): skewness/asymmetry parameter,

c) δ ∈ [0,∞): scale parameter,

d) µ ∈ R: location parameter.

and γ :=
√
α2 − β2. The function K1 is the modified Bessel function of the second

kind. This distribution is a Normal variance-mean mixture with inverse Gaussian
mixing density, see Barndorff-Nielsen (1997) for details.

5. α-stable distribution which is not expressible in an analytical way (except for certain
parameter values). It is parametrized by

a) α ∈ (0, 2]: shape parameter for stability/tail heaviness,
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b) β ∈ [−1, 1]: skewness/asymmetry parameter,

c) γ ∈ (0,∞): scale parameter,

d) δ ∈ R: location parameter.

In general, the support equals R—however, in the special case α = 1 and β = ±1, it is
bounded by µ from below (if β = 1) and from above (if β = −1). The normal (α = 2),
the Cauchy (α = 1, β = 0) and the Lévy (α = 1

2 , β = 1) distribution all belong to the
α-stable class. Since the density has no explicit expression, numerical approximations
have to be used.12

While the distributions in 2.–4. are special cases of the class of generalised hyperbolic (GH)
distributions that are characterized by semi-heavy tails, the class of α-stable distributions
(5.) is a completely heavy tailed class, except for the normal distribution, which is the only
light tailed distribution in this class.13

For each of the above five distribution laws, a maximum likelihood estimation is performed
by maximizing the log-likelihood function log `i(θi) given explicitly by

log `i(θi) := log
(
T ∗−1∏
t=1

fi(∆̂Lt | θi)
)

=
T ∗−1∑
t=1

log
(
fi(∆̂Lt | θi)

)

each in terms of the corresponding density fi(· | θi), i ∈ {1, ..., 5}, with parameters collected
in the vector θi of length ki lying in the admissible set denoted by Θi ⊂ Rki . Note that f5

has no closed-form expression, hence its numerical approximation is used in R.

The most suitable model is then selected by the AICC (Akaike information criterion, cor-
rected for finite sample sizes). This performance measure is calculated by means of the
log-likelihood by

AICCi(θi) := 2ki + 2ki(ki + 1)
T ∗ − ki − 2 − 2 log `i(θi), i ∈ {1, ..., 5}.

Like the BIC used for comparison of the goodness of fit of the CARMA parameters, the
optimal model is attained at the minimum as well.

12 For further details see Nolan (2009) who also provides a program called STABLE, available at
http://academic2.american.edu/∼jpnolan/stable/stable.html.

13 In light of the properties that were detected already at first glance, the normal distribution was only added
for comparison purposes.

http://academic2.american.edu/~jpnolan/stable/stable.html
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4.3.2. Estimated parameters and goodness of fit

Table 4.3.1 confirms our conjectures that the tails being observed are too heavy in order to
be appropriately described by the normal or even Student’s t-distributions (i ∈ {1, 2}). Only
the NIG distribution (i = 4) is nearly able to capture the behaviour of the extreme events.
In all of the 17 cases, where either the Laplace or the α-stable distribution (i ∈ {3, 5}) is
optimal, the estimation of the NIG estimation failed due to unresolved numerical reasons.
In any other of the 118 cases, however, the NIG is clearly proven to be most appropriate
across-the-board. For the previously picked exemplary companies, this is shown in (log-
)histograms and quantile-quantile plots put together in Figures 4.3.3–4.3.6 for distributions
i ∈ {3, 4, 5}. They contain the corresponding log-likelihood/AICC values as well as the
estimated parameters of each distribution. More detailed tabular comparisons and plots are
available at the aforementioned online resource.

Distribution i = 1 2 3 4 5
Number of optimal AICCs 0 0 5 118 12

Table 4.3.1.: Number of optimal AICCs for each distribution candidate from Hypoth-
esis 4.3. Recall that the total number of analyzed CAR(1) time series
was 135.

Finally, one might summarize an apparently appropriate model for the CDS premium rates
C∗ = {C∗t }t≥0 as follows:

C∗t = (1−R) γt = (1−R) γ0 e
´ t
0 ysds, t ≥ 0,

where y = {yt}t∈R is an OU process driven by NIG distributed Lévy noise, i.e.

dyt = −α1ytdt+ σdLt, ∆L ∼ NIG(α, β, δ, µ).

The following chapter concludes this thesis with an outlook to questions that one can pick
up on for further research and practical applications, followed by a summary.
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Figure 4.3.3.: (Log-)Histograms and quantile-quantile plots for fitted distributions of
the recovered CAR(1) Lévy noise. The respective company is: Berk-
shire Hathaway.
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Figure 4.3.4.: (Log-)Histograms and quantile-quantile plots for fitted distributions
of the recovered CAR(1) Lévy noise. The respective company is:
Comcast.
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Figure 4.3.5.: (Log-)Histograms and quantile-quantile plots for fitted distributions
of the recovered CAR(1) Lévy noise. The respective company is:
Daimler.
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Figure 4.3.6.: (Log-)Histograms and quantile-quantile plots for fitted distributions
of the recovered CAR(1) Lévy noise. The respective company is:
Deutsche Bank.



Chapter 5.

Conclusions

5.1. Outlook

A brief outlook to possible extensions and further research topics, from different theoreti-
cal/modelling as well as practical/methodical aspects is following.

1. Multivariate dependencies:

a) We have only considered each single name CDS on its own without taking de-
pendence effects into account—which are obviously immanent, though: Just
recall Figure 4.2.1 containing the very similar time series plots of iTraxx and
CDX. To modell the dependence structure, one has different choices: For exam-
ple, one can assume that all log-differences as a whole are observations from a
vector-valued multivariate CARMA (MCARMA) process (see Brockwell and
Schlemm (2013), for instance). Alternatively, one might fit each single process
separately in a first step and model the joint distribution of the Lévy noises re-
covered from each individual CDS in a second step (for example using copulas1).

b) Building different sub-portfolios—such as by industry sector, country of domicile
or credit rating—instead of looking at all time series at once would lead to a
different yet possibly more accurate view on the dependence structures.

1 For a comprehensive introduction see Nelsen (2006)
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2. Volatility clustering:

Log-differencing has been proven to be a sufficient transformation in order to obtain
a sample path of a presumably stationary stochastic process. Nevertheless, recalling
Figure 4.2.3, one might consider groupings of several subsequent extremal log-difference
values followed by groupings of values of relatively low magnitude as a sign of volatility
clustering. To take this characteristic into additional account, a stochastic volatility
modelling approach like (the continuous-time counterpart of) GARCH is one of the
most often implemented applications for this.

It is important to mention that the data basis predominantly described by CAR(1)
processes in an apparently appropriate way is two-part, though: For the majority, the
noise recovery procedure eliminates the correlation of the approximated Lévy incre-
ments both on the increments’ level (∆̂L) as well as on the squared increments’ level
(∆̂L

2
). This is commonly interpreted as an actually iid noise term. On the other hand,

for some data fits, a linear process turns out to be non-sufficient. For example, the
ACF plots of the ∆̂L-levels exhibit zero correlation (see Figure 4.3.1), whereas the cor-
responding ∆̂L

2
-autocorrelations are still significantly high for several lags (see Figure

5.1.1). At this point, modelling the volatility stochastically is more appropriate, so our
basic model probabibly still needs some little refinements.

3. Estimation methods:

a) Within the scope of this thesis, only the noise recovery schemes of Brockwell,
Davis and Yang (2007, 2011) have been illustrated for the CAR(1) case. One
could either proceed correspondingly with the higher order cases as theoretically
described in Remark 3.20 or try out the most recent methods introduced in Fer-
razzano and Fuchs (2013) or Brockwell and Schlemm (2013), to get an
extensive comparison between these estimation methods.

b) Furthermore, alternative parameter estimation methods in addition to the max-
imum likelihood approach used here for CARMA and the noise distributions are
conceivable.

4. Risk management aspects:

a) Instead of the one-day log-differences, probably longer time horizons are of more
interest (e.g., 30 or 90 trading days or even one year) for modelling stress scenarios.
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To this end, one has to consider the h-day log-difference which is equal to the sum
of h subsequent one-day log-differences, i.e.

logC∗t − logC∗t−h =
h−1∑
j=0

(
logC∗t−j − logC∗t−j−1

)
, t ≥ 0,

resulting in h-step iid noise increments and corresponding quantiles if one repeats
the analyses on these variables.

b) Finally, from estimated log-differences of the CDS premia, one could draw conclu-
sions on the behaviour of the probabilities of default (PDs) which we have already
introduced theoretically in section 2.1 by equation (2.2), namely

Ft := E[1{τ≤0} | Ft] = Q(τ ≤ t | Ft), t ≥ 0,

which are in the intensity-based framework equal to

Ft = 1− exp
{
−
ˆ t

0
γsds

}
, t ≥ 0,

see Definition 2.10 (iii). Within our idealized assumptions resulting in a CDS
premium C∗ given by C∗t = (1−R)γt = S∗t , t ≥ 0, its log-differences are trivially
equal to those of the default rate γt. Then, we are not very far from being able to
infer direct consequences on the process {Ft}t≥0. Nevertheless, this would require
successive integration/summation of the log-differences (modelled by CARMA
process), then application of the exponential function in order to recover {γt}t≥0

first and then integration and exponentiation again to end up finally at {Ft}t≥0

which might be analytically anything but simple.

5.2. Summary

We have explored the theoretical properties and statistical behaviour of CDS premia over
time. In the mostly theoretical chapters, the basic variable of interest, the continuously
payed par premium C∗ = {C∗t }t≥0 of a credit default swap contract, was mathematically
derived to satisfy a simple yet idealized parity when neglecting other factors than credit risk
determining the credit spread S∗ = {S∗t }t≥0 of a bond.
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To be able to apply statistical methods to (discrete observations of) this continuous-time
premium process, we have introduced and made use of powerful techniques for modelling
continuous-time linear time series by CARMA processes, extending the traditional discrete-
time ARMA processes to infinitesimally small time steps. In this class of processes, the
popular Ornstein-Uhlenbeck process is also contained as the simplest representative whose
discrete counterpart is a classical autoregressive process of order one (AR(1) process). For
the past two decades, these concepts have been enhanced and refined resulting in defini-
tions and conditions for causality and invertibility (almost) analogously to the discrete-time
theory. Nevertheless, we have learned that retrieving the background-driving (Lévy) pro-
cess is less trivial. There are, however, several noise recovery approaches across the most
recent literature, which base on the discrete samples of a CARMA process. One of the main
goals of this thesis was to demonstrate a particular recovery scheme and to investigate the
distributional properties of the resulting noise in order to derive several practical conclusions.

In the empirical part of this thesis, we focused on the discrete (daily) observations of CDS
premia C∗ = {C∗t }t≥0 on numerous European and North American reference issuers across
different industry sectors and (investment grade) rating classes. However, on the premium
level, they do not exhibit stationarity patterns required for a correct estimation. Since, in
contrast, their log-differences do so—i.e. the non-stationarity hypothesis could be rejected—
they have been chosen as the main subject of further considerations. In a second step,
after the log-difference transformation, the data have been fitted via maximum likelihood
to a set of possible CARMA(p,q) candidates. According to our primary selection criterion,
CAR(1) seems predominantly to do best. The aim of the third step was to illustrate the
noise recovery by means of a subset of time series that CAR(1) was optimally fitting to. The
resulting iid noise samples have then further been explored: Among several contemplable
parametric distribution families, the normal inverse Gaussian (NIG) has turned out to fit
the entire empirical probability mass most suitably.



Appendix A.

Constant coupons and CDS premia

In the following sections, several formulae of the prices of constant-coupon bonds (as well
as par yield spread) and premia of constant-premium CDS are put together, each of them
in continuously paying and discreteley paying form. The latter is additionally broken down
into immediately payed recovery/compensation (as assumed in this thesis) and payments
postponed to the subsequent coupon date.

A.1. Constant coupon bonds

Each of the following lines starts with the model-free ansatz which is then further calculated
within the intensity-based framework introduced in Chapter 2.

A.1.1. Continuously paying

Model-free framework:

ΠC(s, s+ T ) = C E
[ˆ s+T

s

D(s, u)du | Fs
]

+ E [D(s, s+ T ) | Fs]

= C

ˆ s+T

s

E
[
e−
´ u
s rtdt | Fs

]
du + E

[
e−
´ s+T
s rtdt | Fs

]
,
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Intensity-based framework:

Π̃C̃,R(s, s+ T ) = C̃ E
[ˆ s+T

s

D(s, u)1{τ>u}du | Gs
]

+

+ E
[
D(s, s+ T )1{τ>s+T} | Gs

]
+

+ RE
[
D(s, τ)1{τ≤s+T} | Gs

]
= C̃ 1{τ>s}

ˆ s+T

s

E
[
e−
´ u
s rt+γtdt | Fs

]
du+

+ 1{τ>s} E
[
e−
´ s+T
s rt+γtdt | Fs

]
+

+ R1{τ>s}

ˆ s+T

s

E
[
e−
´ u
s rt+γtdtγu | Fs

]
du.

Using that ΠC = Π̃C,1 for any defaultable issuer with random default time τ and intensity
{γt}t≥0 we obtain as coupon spread in general and par yield spread in particular:

⇒ C̃ − C = 1{τ>s}
Π̃C̃,R − ΠC + (1−R)

´ s+T
s

E
[
e−
´ u
s rt+γtdtγu | Fs

]
du´ s+T

s
E
[
e−
´ u
s rt+γtdt | Fs

]
du

,

⇒ S∗ := Ỹ − Y = 1{τ>s}
(1−R)

´ s+T
s

E
[
e−
´ u
s rt+γtdtγu | Fs

]
du´ s+T

s
E
[
e−
´ u
s rt+γtdt | Fs

]
du

.

A.1.2. Discretely paying {s = u0 < ... < uk = s+ T}

Model-free framework:

ΠC(s, s+ T ) = C
N∑
k=1

∆uk E [D(s, uk) | Fs] + E [D(s, s+ T ) | Fs]

= C
N∑
k=1

∆uk E
[
e−
´ uk
s rtdt | Fs

]
+ E

[
e−
´ s+T
s rtdt | Fs

]
,
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Intensity-based framework:

Π̃C̃,R(s, s+ T ) = C̃
N∑
k=1

∆uk E
[
D(s, uk)1{τ>uk} | Gs

]
+

+ E
[
D(s, s+ T )1{τ>s+T} | Gs

]
+

+ RE
[
D(s, τ)1{τ≤s+T} | Gs

]

= C̃ 1{τ>s}

N∑
k=1

∆uk E
[
e−
´ uk
s rt+γtdt | Fs

]
+

+ 1{τ>s} E
[
e−
´ s+T
s rt+γtdt | Fs

]
+

+ R1{τ>s}

ˆ s+T

s

E
[
e−
´ u
s rt+γtdtγu | Fs

]
du.

Using that ΠC = Π̃C,1 for any defaultable issuer with random default time τ and intensity
{γt}t≥0 we obtain as coupon spread in general and par yield spread in particular in the
intensity-based framework:

⇒ C̃ − C = 1{τ>s}
Π̃C̃,R − ΠC + (1−R)

´ s+T
s

E
[
e−
´ u
s rt+γtdtγu | Fs

]
du∑N

k=1 ∆uk E
[
e−
´ uk
s rt+γtdt | Fs

] ,

⇒ S∗ := Ỹ − Y = 1{τ>s}
(1−R)

´ s+T
s

E
[
e−
´ u
s rt+γtdtγu | Fs

]
du∑N

k=1 ∆uk E
[
e−
´ uk
s rt+γtdt | Fs

] .

A.1.3. Recovery payment postponed to next coupon date

Equivalent to assuming that τ is not a continuous random variable but lives on the grid
{u1, ..., uk}.

Intensity-based framework:
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Π̃C̃,R(s, s+ T ) = C̃ 1{τ>s}

N∑
k=1

∆uk E
[
e−
´ uk
s rt+γtdt | Fs

]
+

+ 1{τ>s} E
[
e−
´ s+T
s rt+γtdt | Fs

]
+

+ R1{τ>s}

N∑
k=1

E
[
e−
´ uk
s rtdt

(
e−
´ uk−1
s γtdt − e−

´ uk
s γtdt

)
| Fs

]
.

Using that ΠC = Π̃C,1 for any defaultable issuer with random default time τ and intensity
{γt}t≥0 we obtain as coupon spread in general and par yield spread in particular in the
intensity-based framework:

⇒ C̃ − C = 1{τ>s}
Π̃C̃,R − ΠC + (1−R) ∑N

k=1 E
[
e−
´ uk
s rtdt

(
e−
´ uk−1
s γtdt − e−

´ uk
s γtdt

)
| Fs

]
∑N
k=1 ∆uk E

[
e−
´ uk
s rt+γtdt | Fs

] ,

⇒ S∗ := Ỹ − Y = 1{τ>s}
(1−R) ∑N

k=1 E
[
e−
´ uk
s rtdt

(
e−
´ uk−1
s γtdt − e−

´ uk
s γtdt

)
| Fs

]
∑N
k=1 ∆uk E

[
e−
´ uk
s rt+γtdt | Fs

] .

A.2. Constant premium CDS

Each of the following lines starts with the model-free ansatz for the par CDS condition,
see equation (2.23), which is then further calculated within the intensity-based framework
introduced in Chapter 2.

A.2.1. Continuously paying

Par CDS condition:

C∗ E
[ˆ s+T

s

D(s, u)1{τ>u}du | Gs
]

= (1−R) E
[
D(s, τ)1{τ≤s+T} | Gs

]
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Intensity-based framework:

⇔ C∗ = C∗(s, s+ T ) = (1−R)
E
[
D(s, τ)1{τ≤s+T} | Gs

]
E
[´ s+T
s

D(s, u)1{τ>u}du | Gs
]

= (1−R)1{τ>s}

´ s+T
s

E
[
e−
´ u
s rt+γtdtγu | Fs

]
du´ s+T

s
E
[
e−
´ u
s rt+γtdt | Fs

]
du

(A.1)

= S∗

A.2.2. Discretely paying {s = u0 < ... < uk = s+ T}

Par CDS condition:

C∗
N∑
k=1

∆uk E
[
D(s, uk)1{τ>uk} | Gs

]
= (1−R) E

[
D(s, τ)1{τ≤s+T} | Gs

]

Intensity-based framework:

⇔ C∗ = C∗(s, s+ T ) = (1−R)
E
[
D(s, τ)1{τ≤s+T} | Gs

]
∑N
k=1 ∆uk E

[
D(s, uk)1{τ>uk} | Gs

]
= (1−R)1{τ>s}

´ s+T
s

E
[
e−
´ u
s rt+γtdtγu | Fs

]
du∑N

k=1 ∆uk E
[
e−
´ uk
s rt+γtdt | Fs

] (A.2)

= S∗

A.2.3. Compensation payment postponed to next premium date

Par CDS condition:

C∗∆uk
N∑
k=1

E
[
D(s, uk)1{τ>uk} | Gs

]
= (1−R) E

[
D(s, τ)1{τ≤s+T} | Gs

]
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Intensity-based framework:

⇔ C∗ = C∗(s, s+ T ) = (1−R)
E
[
D(s, τ)1{τ≤s+T} | Gs

]
∑N
k=1 ∆uk E

[
D(s, uk)1{τ>uk} | Gs

]
= (1−R)1{τ>s}

∑N
k=1 E

[
e−
´ uk
s rtdt

(
e−
´ uk−1
s γtdt − e−

´ uk
s γtdt

)
| Fs

]
∑N
k=1 ∆uk E

[
e−
´ uk
s rt+γtdt | Fs

]
(A.3)

= S∗
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