
TECHNISCHE UNIVERSITÄT MÜNCHEN

Lehrstuhl für Rechnertechnik und Rechnerorganisation /
Parallelrechnerarchitektur der Technischen Universität München

Ensemble-based Programming for Scientific
Applications

Haowei Huang

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität
München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Nassir Navab

Prüfer der Dissertation:

1. Univ.-Prof. Dr. Hans Michael Gerndt

2. Univ.-Prof. Dr. Dieter Kranzlmüller

Ludwig-Maximilians-Universität München

Die Dissertation wurde am 27. März 2013 bei der Technischen Universität München
eingereicht und durch die Fakultät für Informatik am 25. Mai 2013 angenommen.

1

Abstract

Nowadays, HPC systems are widely used for accelerating different kinds of calculation-
intensive irregular applications, e.g., molecular dynamics (MD) simulations, astrophysics
applications, irregular grid applications, and so on. As the scalability and complexity
of current HPC systems keeps growing, it is difficult to parallelize these applications in
an efficient fashion due to irregular communication patterns, load imbalance issues, dy-
namic characteristics, and many more. Current parallel programming approaches start
from the global computation and break it up into blocks mapped onto the hardware.
Developers need to implement and optimize irregular applications for hierarchical struc-
ture the architectures including the data partitioning, local computations, exchanging
information and reallocating data, which are tricky and time-consuming.

This dissertation presents an ensemble-based programming scheme, on which program-
mers are able to implement parallel scientific applications in a fine granular and SPMD
(single program multiple data) fashion. Its main objective is to facilitate programmers’
work in implementing and optimizing scientific applications. Different from current pro-
gramming models starting from the global data structure, this programming scheme
provides a high-level and object-oriented programming interface that supports writing
applications by focusing on the finest granular elements and their interactions. The pro-
gramming interface is implemented on different types of concrete machines namely se-
quential, shared memory, and distributed memory machines. Its implementation frame-
work takes care of the implementation details e.g., the data partition, automatic EP
aggregation, memory management, data communication, and so on.

This programming scheme can be applied to multi-body application, irregular grid ap-
plication, and regular grid application areas as well. The experimental results show that
the ensemble-based implementations of multi-body and irregular applications are a bit
slower than the manual implementations using C++ with OpenMP or MPI. However,
it improves the programming productivity in terms of the source code size, the coding
method, and the implementation difficulty. Compared to current parallel programming
models, the ensemble-based programming scheme manages the granularity of computa-
tion, data distribution, communication and load balance for irregular applications with
reasonable overhead.

Keywords: High-Performance Computing, Parallel Programming Model, Irregular Ap-
plications, High-Level Programming, Ensemble-based Programming, MPI, OpenMP

i

Zusammenfassung

Die Arbeit stellt ein neues paralleles Programmierparadigma vor. Anwendungen werden
in diesem Ensemble-basierten Paradigma als feingranulare parallele Objekte mit einer
SPMD-artigen Verarbeitung spezifiziert. Das Ziel ist, eine höhere Produktivität durch
eine abstrakte Darstellung der feingranularen Objekte und ihrer Interaktionen zu erre-
ichen. Das Programmierparadigma wurde für sequentielle Rechner und parallele Rechner
mit gemeinsamem und verteilten Speicher implementiert.

iii

Acknowledgments

This dissertation would not have been possible without the help and support of my
principal supervisor, Professor Dr. Michael Gerndt, not to mention his advice and
unsurpassed knowledge of parallel programming. I would like to express my deepest
gratitude to him for his excellent guidance, caring, patience, and providing me with an
excellent atmosphere for doing research. The good support from my second supervisor,
Professor Dr. Dieter Kranzmueller, has also been invaluable. I am very grateful for his
help and useful advices to my thesis submission.

In addition, I should express my deepest respect to Professor Dr. Arndt Bode. He is
always very kind of helping me with any administrative issues. He was patiently engaged
in guided tours to the LRZ and academia exchange programs for many times even if he
is always very busy. I am extremely grateful.

I would like to thank Dr. Kraja Fisnik, Dr. Houssam Haitof who let me know a lot of
practical skills and writing technics beyond the textbooks. My thesis writing would not
have been possible without their helps.

I would also like to thank my colleagues in our chair, Josef Weidendorfer, Ventsislav
Petkov, Marcel Meyer, Andreas Hollmann, Alin Murarasu, Robert Mijakovic, Isaias A.
Compres Urena for guiding my research for the past several years and helping me to
develop the background of my research area.

I want to thank my parents for bring me into this world. They were always supporting
me and encouraging me with their best wishes. Finally, I would like to thank my wife,
Yaxian Zhou. She was always there cheering me up and stood by me through the good
times and bad.

v

Contents

Abstract i

Zusammenfassung iii

Acknowledgments v

1. Introduction 1
1.1. Overview of Current HPC Systems . 1
1.2. Different Programming Approaches and Challenges 1
1.3. Regular Applications and Irregular Applications 3
1.4. Ensemble-based Programming Approach 4
1.5. Implementation Framework of Ensemble-based Programming 6
1.6. Main Contributions . 7
1.7. Dissertation Structure . 7

2. Parallel Architectures and Programming Models 9
2.1. Overview . 9
2.2. Parallel Architectures . 11

2.2.1. Shared Memory Architectures . 11
2.2.2. Distributed Memory Architectures 12
2.2.3. Hybrid Architectures . 12
2.2.4. Heterogeneous Architectures with CPU and GPU 14

2.3. Programming Different Parallel Architectures 14
2.3.1. Overview . 14
2.3.2. Programming Shared Memory Architectures 15
2.3.3. Programming Distributed Memory Architectures 17
2.3.4. Programming Hybrid Architectures 18
2.3.5. Programming Heterogeneous Architectures with CPU and GPU . 19

2.4. Summary . 19

3. Parallel Application Areas 21
3.1. Overview . 21
3.2. Linear Algebra . 21
3.3. Regular Grid Applications . 22

3.3.1. 2D Heat Distribution . 22

i

Contents

3.3.2. Cellular Automaton . 22
3.4. Irregular Grid Applications . 23
3.5. Adaptive Grid Applications . 23
3.6. Multi-body Applications . 24

3.6.1. Cosmological Simulation . 24
3.6.2. Molecular Dynamics Simulation . 25

3.7. Summary . 26

4. Related Work 27
4.1. Overview . 27
4.2. Parallel Programming Languages and Libraries 27

4.2.1. High Performance Fortran (HPF) 27
4.2.2. Global Arrays (GA) . 28
4.2.3. TBB . 28
4.2.4. PARTI / CHAOS Library . 28
4.2.5. Charm++ . 29
4.2.6. UPC (Unified Parallel C) . 29
4.2.7. OpenCL (Open Computing Language) 30

4.3. Domain-Specific Languages . 30
4.4. Summary . 31

5. Ensemble-based Programming 33
5.1. Overview . 33
5.2. Machine Model . 33

5.2.1. Overview . 33
5.2.2. Fine Granular Processors (FGPs) 34
5.2.3. Control Processor (CP) . 35
5.2.4. Interactions between the CP and FGPs 36

5.3. Programming Paradigm . 37
5.3.1. Overview . 37
5.3.2. Elementary Points . 38
5.3.3. Ensemble . 39
5.3.4. Master Thread . 43

5.4. Programming Interface . 44
5.4.1. Overview . 44
5.4.2. An Object-Oriented Programming Approach 44
5.4.3. Overview of a Running Example 45
5.4.4. Template Hierarchy . 46
5.4.5. ElementaryPoint and its Derived Templates 47
5.4.6. Ensemble and its Derived Templates 49
5.4.7. Topology and its Derived Templates 55

5.5. Example: An MD Simulation . 59

ii

Contents

5.6. Summary . 63

6. Implementation Framework 65
6.1. Overview . 65
6.2. Mapping to Sequential Machines . 66

6.2.1. Overview . 66
6.2.2. Ensemble Management . 66
6.2.3. Topology Management . 70

6.3. Mapping to Shared Memory Machines with OpenMP 72
6.3.1. Overview . 72
6.3.2. Ensemble Management . 73
6.3.3. OpenMP Support on NUMAs . 73
6.3.4. Topology Management . 80

6.4. Mapping to Distributed Memory Machines with MPI 81
6.4.1. Overview . 81
6.4.2. Storage of Elementary Points . 82
6.4.3. Implementations of Ensemble Operations 83
6.4.4. EP Distribution and Communication Management 85
6.4.5. Topology Management . 92
6.4.6. Communication Optimization . 97

6.5. Summary . 98

7. Experimental Results 99
7.1. Overview . 99
7.2. Experimental Platform . 99
7.3. Irregular Grid Applications . 100

7.3.1. Overview . 100
7.3.2. Data Sets . 101
7.3.3. Sequential Comparison . 101
7.3.4. OpenMP Comparison . 102
7.3.5. MPI Comparison . 105
7.3.6. Summary for Irregular Grid Applications 109

7.4. Molecular Dynamics Simulation . 109
7.4.1. Overview . 109
7.4.2. Sequential Comparison . 109
7.4.3. OpenMP Comparison . 110
7.4.4. MPI Comparison . 112

7.5. Summary . 113

8. Conclusion and Future Work 115
8.1. Ensemble-based Programming Approach 115

iii

Contents

8.2. Programming Scheme . 115
8.2.1. Machine Model . 115
8.2.2. Programming Paradigm . 116
8.2.3. Programming Interface . 116

8.3. Implementation Framework . 117
8.4. Evaluation . 118
8.5. Future Work . 118

A. Appendix 121
A.1. Compiler Commands and Options . 121
A.2. Full Declaration of Template Hierarchy . 121

A.2.1. ElementaryPoint . 121
A.2.2. Topology . 123
A.2.3. Ensemble . 124

A.3. Ensemble-based Programs . 129
A.3.1. Irregular Grid Program . 129
A.3.2. Molecular Dynamics Program . 132

A.4. Acronyms . 138

Bibliography 141

iv

List of Figures

1.1. Irregular applications . 4

2.1. Hierarchy of Flynn’s taxonomy and parallel architectures 10
2.2. UMA architecture . 12
2.3. Distributed memory architecture . 13
2.4. Hybrid architecture . 13
2.5. Heterogeneous architecture . 14
2.6. OpenMP execution model . 17
2.7. MPI collective operations . 18
2.8. Hybrid MPI/OpenMP execution . 19

5.1. Machine model . 34
5.2. Fine Granular Processor . 35
5.3. Control Processor . 36
5.4. Programming paradigm . 38
5.5. Shadow copies . 39
5.6. Ensemble . 40
5.7. Topology of four EPs . 41
5.8. Shadow copy updates . 42
5.9. Organization of the template hierarchy . 46

6.1. Overview of the implementation framework 65
6.2. Ensemble implementation object . 67
6.3. Shadow copies of four EPs . 68
6.4. Optimized arrangement of the shadow copies 69
6.5. Organization of neighbor EP list . 70
6.6. Id-based graph and neighbor list . 72
6.7. EP partition on NUMAs . 75
6.8. EP storage based on reallocation . 76
6.9. EP re-indexing . 77
6.10. The storage of EPs and their shadow copies 78
6.11. Overview of MPI mapping . 81
6.12. MPI mapping of parallel operation . 84
6.13. MPI mapping of collective operation . 86

1

List of Figures

6.14. Cell classification . 87
6.15. Communication between sub domains . 88
6.16. Redundant communication (cutoff) . 89
6.17. Redundant communication (empty cells) 89
6.18. Cell-based graph . 90
6.19. Cell partition . 91
6.20. Communication pattern based on irregular cell partitioning 92
6.21. Movement of an EP within a subdomain 94
6.22. Movement of an EP cross subdomains . 94
6.23. Local EPs and SC organization . 95
6.24. EP distribution based on graph partitioning 96
6.25. Communication reduction . 97

7.1. Execution time of sequential programs . 102
7.2. Execution time of OpenMP programs (Grid64) 103
7.3. Execution time of OpenMP programs (Grid128) 104
7.4. OpenMP speedup curves on Grid64 and Grid128 104
7.5. Ensemble-based re-indexing . 105
7.6. MPI speedup curves (Block vs. METIS) 106
7.7. MPI comparison using 1 process . 107
7.8. Execution time comparison with MPI . 108
7.9. Speedup curve comparison with MPI . 108
7.10. Execution time of sequential MD programs 110
7.11. Execution time of OpenMP MD programs 111
7.12. Speedup curves of OpenMP MD Programs 111
7.13. Execution time of MPI MD programs . 112
7.14. Speedup curves of MPI MD programs . 113

2

1. Introduction

1.1. Overview of Current HPC Systems

Nowadays, high-performance computing (HPC) is currently experiencing very strong
growth in all computing sectors. Many HPC systems are widely used for acceler-
ating different kinds of calculation-intensive applications including quantum physics,
weather forecasting, climate research, oil and gas exploration, molecular dynamics, and
so on[1][2][3][4]. These systems typically consist of a large number of processors or ac-
celerators as well as hundreds of terabytes of memory. The processors and memories
are organized in nodes which can be small like in the IBM Blue Gene[5][6] with two
embedded processors and little memory, or powerful with Intel Xeon[7] processors and
GPGPUs as accelerators coupled by highly scalable and efficient inter-connections. The
peak performance of current HPC systems is up to a few peta (1015) FLOPS (floating
point operations per second) according to the TOP500 list released in November 2012[8].
The next generation exascale (1018) computing capability systems are scheduled to be
deployed in around 2018. The major challenge for building exascale systems is power
consumption, so new highly power efficient technologies both on hardware and software
have to be exploited in achieving exascale computing[9][10].

Among current supercomputers in the TOP500 list, a series of Blue Gene systems by
IBM have led for several years. A Blue Gene/Q system called Sequoia[11] was ranked
as the world’s fastest supercomputer in June 2012. It consists of 1.6 million processor
cores and 1.6 PB of memory running at 20.1 PFLOPS peak, 16.32 PFLOPS sustained
(Linpack[12][13]). In addition, as the price-performance of graphics processing units
(GPUs) has improved, general purpose GPU (GPGPU) computing has become a hot
research topic and a number of petaflops heterogeneous supercomputers such as Tianhe-
1A[14]and Nebulae[15] have constructed relying on them. These systems are tuned to
score well on specific benchmarks like Linpack, but the overall applicability is limited
unless significant effort is spent to tune the applications towards it.

1.2. Different Programming Approaches and Challenges

As the scalability and complexity of current HPC systems keep growing, it is a night-
mare for the developers to program these supercomputers in terms of balancing the

1

Chapter 1 Introduction

computational load among processors, manipulating the hierarchical memory architec-
ture, managing communication and synchronization among processors, and so on. Mul-
tiple parallel programming interfaces, platforms, and libraries are designed to program
such supercomputers and utilize their computing power efficiently. The major program-
ming interfaces are OpenMP[16][17], MPI[18][19][20], and CUDA[21][22]. OpenMP is a
portable, scalable model that provides programmers with a simple and flexible interface
mainly for parallelizing loops by a number of threads on shared memory systems. MPI
instead is a standard library for communication among processes. It allows program-
mers to specify processes accessing private data structures in order to collocate data
and computation in compute nodes of distributed memory systems. CUDA is a com-
puting engine and programming model that supports parallel fine-grained computation
on Nvidia GPGPUs and interactions between CPUs and the GPGPUs.

These parallel programming approaches start from the global computation and break it
up into blocks, which are mapped across different units of execution (UEs). The UEs can
be threads, processes, or light weight CUDA threads depending on the description of the
hardware. These programming approaches are based on domain decomposition, which
divides the global computational domain of an application into multiple subdomains.
Each UE is responsible for the computation of a subdomain. Ideally, the execution of
the application can obtain a linear speedup if all the UEs execute computation on its
own subdomain in parallel independently. However, in order to achieve good speedup,
programmers have to take care of many challenging implementation aspects including
data distribution and mapping, computational load balance, memory overhead, synchro-
nization and communication among UEs, and so on.

Data distribution and mapping among UEs has a major impact on computational load
balance and communication costs among different UEs. An optimal data distribution
balances the computational load and minimizes the communication among UEs. For
example, a block or cyclic distribution can be efficient for parallelizing regular grid appli-
cations. The computational load balance is a key aspect that influences the performance
of parallel programs significantly, since the execution time of a program is determined
by the slowest UE. In addition, for adaptive applications, the computational load varies
throughout the evolution of the solution, which needs further data redistribution in order
to keep load balancing.

Current parallel systems consist of a hierarchical memory architecture, which means that
accessing a lower layer imposes typically higher latency and lower bandwidth. Therefore,
it is important to have good locality in the computation and require memory optimiza-
tions. For example, blocking iterations is applied on the loop level to optimize cache
behavior. Memory reallocation and array re-indexing are applied for irregular applica-
tions in order to reduce non-local accesses among sockets on a single computing node. In
addition, communication optimization can improve the memory locality among different
nodes with independent address space.

2

1.3 Regular Applications and Irregular Applications

In most practical applications, UEs are not able to execute independently, there must
be synchronization and communication among UEs. Synchronization refers to the idea
that multiple UEs are to join up at a certain point to reach an agreement or commit to a
certain sequence of actions. Communication happens when different UEs exchange data
for their local computation. On shared memory systems, the communication among
UEs is done by accessing shared variables, while on distributed memory systems, it is
handled by explicit message passing.

Programming productivity is decreasing because of the growing complexity of supercom-
puters and parallel applications. For example, MPI is a portable and efficient library that
can be ported on almost all types of supercomputers. However, the users have to manage
all the implementation details including data distribution, balancing computational load,
explicit communication among processes using MPI operations, synchronization among
processes, and many more. It is usually time consuming and error-prone to implement
and optimize MPI programs. Instead, OpenMP is much easier to program, but it is only
portable on shared-memory systems, and its support for aggregating tasks is limited to
the block-based loop scheduling strategies.

In addition, a large number of high-level programming models have been developed
to improve the programming productivity and implementation efficiency as well, e.g.,
High Performance Fortran (HPF)[23][24], Charm++[25][26][27], and Threading Build-
ing Blocks (TBB)[28][29]. All these high-level programming approaches are designed to
obtain better programming productivity using higher level abstraction or automatic par-
allelization. In HPF, programmers can express data distributions and the compiler is re-
sponsible for generating appropriate message passing programs with MPI automatically.
Although programming in HPF was much easier for application developers, the perfor-
mance of many applications, especially irregular grid applications, was not as good as
expected. Charm++ is a parallel object-oriented programming language based on C++.
Charm++ provides message-driven objects that encapsulate computation and commu-
nication in a proper granularity. However, it is still the programmers’ task to manage
the granularity of these objects in order to achieve excellent performance. TBB is a
C++ template library developed for writing programs that take advantage of multi-core
processors. It allows programmers to avoid some complications arising from manipu-
lating threads. Instead TBB abstracts access to multiple processors by allowing the
operations to be treated as "tasks", which are allocated to individual cores dynamically
by its run-time engine.

1.3. Regular Applications and Irregular Applications

Applications with regular computational models are called regular applications, e.g., lin-
ear algebra computation, matrix to matrix calculations, matrix-based iterations, and so
on. For example, a CFD (computational fluid dynamics) solver is a typical computational

3

Chapter 1 Introduction

kernel for simulating many scientific problems[30][31]. The parallel implementation of
such applications is to decompose the whole matrix into multiple sub-matrices in a block-
wise fashion. Each UE is responsible for the computation of a sub-matrix and requires
boundary information from neighbor sub-matrices. The storage layout of the data in
the memory is typically continuous and the memory access pattern is relatively regu-
lar. Thus, regular applications can be efficiently parallelized with current programming
approaches.

On the other hand, irregular applications are relatively difficult to parallelize in an ef-
ficient and scalable fashion due to irregular communication patterns, load imbalance
issues, and dynamic characteristics, and so on. Figure 1.1 presents the status of an N-
body cosmological simulation[32] and an airplane simulation based on irregular grids[33].
N-body simulations[34] and irregular grid-based simulations are typical irregular appli-
cations. For example, a molecular dynamics (MD) simulation[35] is a form of N-body
computer simulation in which molecules interact with other molecules within a certain
domain for a period of time. The molecules may move in the domain according to the
interactions with others, which changes their storage layout and communication pattern
during execution.

Figure 1.1.: Irregular applications

Irregular applications are difficult to implement and optimize on distributed memory
systems in terms of decomposing the computational domain, managing irregular commu-
nication patterns among processes, and manipulating data migration among processes,
maintaining computational load balance, and so on. In addition, the performance is not
ideal because of non-continuous memory access patterns, array indirect accessing, and
inefficient memory locality, and etc.

1.4. Ensemble-based Programming Approach

This dissertation presents an ensemble-based programming scheme, on which program-
mers are able to implement parallel scientific applications in a fine granular and SPMD

4

1.4 Ensemble-based Programming Approach

(single program multiple data) fashion. The major objective is to improve the pro-
gramming productivity. Different from current programming models starting from the
global data structure, this programming scheme provides a programming interface that
supports writing applications by focusing on the finest granular elements and their in-
teractions. These fine granular elements are organized as an ensemble, which manages
the elements, their topologies, and high-level operations. By using the high-level opera-
tions explicitly, developers can control the actions of the elements including communica-
tion, synchronization, parallel operations, and so on. The ensemble-based programming
scheme consists of an abstract machine model, programming interface, and implementa-
tion framework ported on sequential, shared memory, and distributed memory systems.

The machine model is an abstract architecture consisting of a control processor (CP)
and a large number of fine granular processors (FGPs). The execution model of the
machine is similar to the SIMD model. The CP issues a “single instruction”, which
represents a specific parallel operation on FGPs. Multiple FGPs then perform coarse-
grained computations specified by the programmers in parallel.

The programming interface supports an object-oriented programming (OOP) approach
implemented in C++ to specify the software entities including elementary points (EPs),
the ensemble, and topologies. It consists a template hierarchy formed of multiple prede-
fined C++ class templates. The top level of the template hierarchy includes three base
templates namely ElementaryPoint, Ensemble, and Topology. These templates have de-
rived templates targeting to three application areas, i.e., multi-body, irregular grid, and
regular grid applications. It can be extended to other application areas by adding new
domain-specific templates into the template hierarchy. User-defined entities with local
attributes and operations can be defined as C++ classes derived from the templates.
The master thread is expressed in the main function of an ensemble-based program us-
ing C++ syntax. It controls the behavior of the EPs in the ensemble by calling high-level
operations defined in the template hierarchy.

In order to implement scientific data parallel applications, ensemble-based programming
primarily includes defining the EPs, specifying the EPs’ topologies, inserting the EPs
and the topologies into the ensemble, creating the master thread that manages the com-
putation and communication of the EPs using predefined high-level operations, and so
on. Take an MD simulation as an example. A programmer defines local attributes
and computation on the level of molecules and specifies the topologies according to the
interaction of the molecules. After the molecules and topologies are inserted into the
ensemble, the programmer can apply high-level ensemble operations to manage commu-
nication and parallel operations of the molecules automatically.

5

Chapter 1 Introduction

1.5. Implementation Framework of Ensemble-based
Programming

The basic idea of the ensemble-based implementation framework is to aggregate fine
granular EPs into appropriate blocks that are bound to threads or processes based on
the description of the hardware. The EP-to-EP communication is coarsened to the
communication among blocks accordingly. The implementation framework consists of
machine-specific libraries, i.e., a sequential library, an OpenMP-based library, and an
MPI-based library. They are currently designed for both multi-body and irregular grid
applications. A platform-independent and ensemble-based program can be translated
into different executables by linking these libraries with different compiler commands
and options. The executables run on different target machines including sequential,
shared memory, and distributed memory machines.

The sequential library is a standard OOP implementation of the programming interface.
Both the communication and parallel operations of the EPs in the ensemble are handled
by a single-threaded process. It is designed to demonstrate the basic implementation of
the programming interface on one process.

The OpenMP-based library implements the programming interface on top of OpenMP.
It translates an ensemble-based program to an OpenMP program that is executed on
NUMAs. The communication and parallel operations of EPs in the ensemble are done by
multiple threads in parallel. The computation of a group of EPs is aggregated and bound
to a single thread and the communication among EPs is handled by accessing the shared
memory. In order to minimize non-local access, the OpenMP-based library employs an
EP reallocation strategy combined with re-indexing for irregular grid applications.

The MPI-based library implements the programming interface in C++ with MPI. It em-
ploys optimized EP distribution strategies to distribute computational workload across
multiple processes. The communication among processes is optimized by aggregating fine
granular communication among EPs into coarser MPI messages. The communication
pattern among EPs is determined by topologies, which are managed by the MPI-based
library automatically. For multi-body applications, the MPI-based library employs both
the domain decomposition and the parallel linked cells (PLC) algorithm for EP distri-
bution and communication management; while for irregular grid applications, it applies
graph partitioning algorithms to achieve optimal EP distribution and communication
efficiency.

We ported the implementation framework on SuperMUC[36], the petascale supercom-
puter at LRZ (Leibniz Supercomputing Centre) in Germany, and tested it with irregular
applications including an irregular grid application and an MD simulation. The ex-
perimental results show that the execution of these applications on the implementation
framework is a bit slower than the manual implementations using C++ with OpenMP

6

1.6 Main Contributions

or MPI. However, it improves the programming productivity in terms of the source code
size, the coding method, and the implementation difficulty. Compared to current parallel
programming models, the ensemble-based programming scheme manages the granular-
ity of computation, data distribution, communication and load balance for irregular
applications with reasonable overhead.

1.6. Main Contributions

The main contributions of this dissertation are presented as follows:

1. This dissertation introduces a straightforward and efficient programming scheme.
It is a fine granular and ensemble-based programming scheme, which is different
from standard programming approaches starting from the global data structures.
Based on this ensemble-based programming interface, programmers only focus on
specifying EPs and their topologies without worrying about data distribution or
communication.

2. The ensemble-based programming interface is implemented in an OOP fashion. It
consists of the template hierarchy having domain-specific templates for irregular
grid application and multi-body application areas. It is feasible to extend the
programming interface to support other application areas by adding new domain-
specific templates into the template hierarchy.

3. The ensemble-based program is platform-independent. It can be translated to the
codes run on different types of architectures by linking to different domain-specific
template libraries. The aggregation of the EPs’ communication and computation
is done by the programming scheme automatically according to the descriptions of
different architectures.

4. An implementation framework of the ensemble-based programming is ported on
SuperMUC, and irregular grid and multi-body applications have been tested on the
framework. The experimental results show that the ensemble-based programming
approach can be implemented on standard systems including sequential, shared
memory, and distributed memory systems. The implementation overhead origi-
nating from ensemble-based programming is reasonable and acceptable compared
to manual implementations using MPI or OpenMP.

1.7. Dissertation Structure

The rest of this dissertation is organized as follows: chapter 2 introduces different types
of parallel architectures, i.e., shared memory, distributed memory, hybrid, and hetero-
geneous architectures. Additionally, multiple standard programming interfaces and li-
braries are designed to utilize the computing power of such architectures. Pthreads,

7

Chapter 1 Introduction

OpenMP, MPI, and CUDA are discussed in this chapter; chapter 3 mainly introduces
parallel application areas, which are roughly classified into regular and irregular applica-
tions. Regular applications include linear algebra calculations and regular grid compu-
tations. Irregular applications mainly include irregular and adaptive grids applications,
N-body simulations, MD simulations, and so on; chapter 4 introduces related work on
other state-of-art parallel programming models. For example, programming models like
HPF, TBB, Charm++ are designed to provide a higher level programming environment
to the developers; chapter 5 presents the specification of the ensemble-based program-
ming scheme. It introduces an abstract machine model, the programming paradigm, the
programming interface, and the template hierarchy. At the end of this chapter, a pseudo
ensemble-based code of a simple MD simulation is demonstrated in order to show the
productivity of the ensemble-based programming; chapter 6 presents the implementation
framework of the ensemble-based programming. It demonstrates this programming ap-
proach can be implemented on different systems including a sequential, shared memory,
and distributed memory system; in chapter 7, we choose an irregular grid application
and an MD simulation to evaluate on the implementation framework on SuperMUC.
The experimental results show that the overhead originating from the ensemble-based
programming is acceptable compared to the manual implementations; chapter 8 gives
the conclusion of this dissertation and future work.

8

2. Parallel Architectures and Programming
Models

2.1. Overview

Parallel architectures are now ubiquitous in different kinds of mainstream parallel sys-
tems, e.g., desktops, servers, supercomputers, and so on. The computer architectures
are typically classified by Flynn’s taxonomy proposed by Michael J. Flynn[37] based on
the number of concurrent instructions and data streams available in the architectures.
These classes are Single Instruction Single Data stream (SISD), Single Instruction Multi-
ple Data streams (SIMD), Multiple Instruction Single Data stream (MISD) and Multiple
Instruction Multiple Data streams (MIMD). Their definitions are showed as follows:

1. SISD: It is an architecture that exploits no parallelism in either instructions or
data streams. A uni-processor system like an old PC is a typical SISD architecture,
which is not quite often used nowadays.

2. SIMD: It is an architecture that exploits multiple data streams against a single
instruction stream to perform operations that are parallelized. For instance, vector
machines or GPGPUs are typical representatives of SIMD architectures.

3. MISD: It currently doesn’t exist.

4. MIMD: It is an architecture that consists of multiple processors simultaneously
execute different instructions on different data is a MIMD architecture. Almost all
current parallel systems or supercomputers are MIMD architectures.

In this chapter, four different types of parallel architectures belonging to SIMD and
MIMD are described based on the classification system. These parallel architectures
are:

1. Shared memory architecture: It is an architecture with a global shared memory,
physically distributed or not, where all processors have full access.

2. Distributed memory architecture: It is an architecture where there is no global
shared memory. Each node in distributed memory architectures has its own private
memory and use explicit message passing for communication among nodes.

3. Hybrid architecture: It consists of clusters of nodes with separate address spaces.
Each node is a shared memory architecture with a number of processors connected
with a global shared memory.

9

Chapter 2 Parallel Architectures and Programming Models

4. Heterogeneous architecture: It is a parallel computing platform with different types
of computational units including CPUs, GPGPUs, or other accelerators.

The hierarchy of Flynn’s taxonomy and different kinds of architectures is shown in
Figure 2.1.

Computer Architecture

SISD SIMD MISD MIMD

GPU

Distributed Memory
Architecture

Shared Memory
Architecture

Hybrid
Architecture

UniProcessor

Figure 2.1.: Hierarchy of Flynn’s taxonomy and parallel architectures

With respect to programming these parallel architectures, there are many program-
ming platforms and libraries designed to efficiently utilize their computing power. In
this chapter, four basic programming platforms are introduced, i.e., Pthreads, OpenMP,
MPI, and CUDA. Pthreads and OpenMP are parallel programming libraries, which rep-
resent thread-based and directive-based programming approaches. Pthreads is a POSIX
standard for threads and an API for creating and manipulating threads. OpenMP is
an API that supports shared memory multi-threaded programming in C, C++, and
Fortran. MPI is a parallel library designed for explicit communication among processes.
It is implemented on both distributed memory architectures and shared memory archi-
tectures. CUDA is a parallel computing architecture developed by Nvidia for graphics
processing and scientific computing on GPUs. It can be applied as a programming
platform on heterogeneous architectures with CPUs and GPUs.

The rest of this chapter is organized as follows: Section 2.2 introduces four different
parallel architectures namely the shared memory architecture, distributed memory ar-
chitecture, hybrid architecture, and heterogeneous architecture with CPUs and GPUs;
Section 2.3 introduces programming such architectures using four basic parallell program-
ming platforms, which are Pthread, OpenMP, MPI, and CUDA. Section 2.4 summarize
these architectures and parallel programming platforms introduced in the chapter.

10

2.2 Parallel Architectures

2.2. Parallel Architectures

2.2.1. Shared Memory Architectures

MIMD architectures based on Flynn’s taxonomy consist of two classes according to
their memory organization. One class of MIMD architectures is called shared memory
architecture. The shared memory architecture has a global shared memory, which can
be accessed by all processors in the architecture. The processors are connected using
buses or point-to-point networks. The communication among processors is established
by writing to and reading from shared locations in the memory.

The global shared memory is either physically shared or distributed among processors.
If the global shared memory is physically shared, the processors in the architecture
have the same access time to the memory. If the global shared memory is physically
distributed, the memory access time depends on the memory location relative to proces-
sors. According to the access time, shared memory architectures can be divided into two
categories, which are Uniform Memory Access (UMA) architectures and Non-Uniform
Memory Access (NUMA) architectures.

• UMA: All processors in the UMA architecture physically share the global shared
memory uniformly.

• NUMA: All processors in the NUMA architecture share the global shared memory,
but the access time to the memory is non-uniform.

2.2.1.1. UMA

One class of shared memory architectures is the UMA, which is also called a Symmetric
Multiprocessor (SMP). The UMA has global shared memory among processors, which
have the same access time to the shared memory. Based on the UMA architecture,
programmers do not need to distribute data structures among processors. Multiple
processors symmetrically access data in the global shared memory and execute on the
data in parallel, which accelerates the execution of programs.

However, increasing the number of processors increases contention for the memory, and
the processor to memory bandwidth becomes a limiting bottleneck. Thus, traditional
shared memory architectures do not scale well to a large number of processors, which
may typically have saturation problems beyond 8 or 16 processors. Current multi-core
processors are based on the UMA architecture. Its basic structure is shown in Figure 2.2.

2.2.1.2. NUMA

The other class of shared memory architectures is called the NUMA architecture. The
NUMA architecture has a global shared memory among processors like UMA does, but

11

Chapter 2 Parallel Architectures and Programming Models

Global Shared Memory

CPU CPU CPU CPU

Figure 2.2.: UMA architecture

the memory is physically distributed among the processors in the architecture. The
access time to the global shared memory depends on the memory location relative to
processors. A processor can access its own local memory faster than non-local memory,
which is local to another processor.

The global shared memory is uniformly addressable from all processors, but some blocks
of memory are physically more closely associated with some processors than others. This
reduces the memory bandwidth bottleneck and allows systems with more processors.
However, the access time from a processor to a memory location can be significantly
different depending on how "close" the memory location is to the processor.

To mitigate the effects of non-uniform accesses, each processor has a cache, along with
cache coherency protocols to keep cache entries coherent. Hence, another name for
these architectures is a cache coherent Non Uniform Memory Access architecture (cc-
NUMA). Logically, programming a ccNUMA architecture is the same as programming
an UMA/SMP, but to obtain good performance, programmers need to be more careful
about locality issues and cache effects.

2.2.2. Distributed Memory Architectures

The distributed memory architecture is a message passing architecture that uses scalable
point-to-point networks to exchange data. There is no global shared memory among all
processors, since each processor has its private memory address space and can only ac-
cess its own local memory. It means that communication and synchronization among
processors is performed by message passing. As a result, communication is not trans-
parent, programmers must explicitly program all the communication between processors
according to certain data distribution. This is because all system resources, like memo-
ries, disks, and so on, are distributed and only private to the local processor. Distributed
memory architectures can scale to large numbers of processors using scalable networks.

2.2.3. Hybrid Architectures

The hybrid architecture is a cluster of nodes with separate address spaces, in which each
node is a shared memory architecture with a number of processors. The distributed

12

2.2 Parallel Architectures

MemoryCPU

MemoryCPUMemory CPU

Memory CPU

Scalable Network

Figure 2.3.: Distributed memory architecture

nodes in the hybrid architecture are connected by scalable networks. Each node has its
private memory and can only access its own local memory. The communication among
processors within a node is created by writing to and reading from shared memory loca-
tions, while the communication between nodes is established by explicit message passing.
Programmers have to use communication operations to exchange data between nodes.
Figure 2.3 shows the structure of a hybrid architecture. For example, SuperMUC[36] is a
hybrid architecture supercomputer, which is based on the Intel Xeon processor nodes and
consists of more than 150,000 cores with a peak performance of about 3 Peta FLOPS.

Memory

CPU CPU CPU CPU

Memory

CPU CPU CPU CPU

Memory

CPU CPU CPU CPU

Scalable Network

Memory

CPU CPU CPU CPU

Figure 2.4.: Hybrid architecture

13

Chapter 2 Parallel Architectures and Programming Models

2.2.4. Heterogeneous Architectures with CPU and GPU

The heterogeneous architecture is a parallel computing platform with different types
of computational units. A computational unit can be a general-purpose processor, a
special-purpose processor, or custom accelerators, e.g., a Digital Signal Processor (DSP),
an Application Specific Integrated Circuit (ASIC), a Field Programmable Gate Array
(FPGA), or a GPGPU.

In this chapter, the heterogeneous architecture with CPUs and GPUs is introduced.
A CPU usually consists of two to eight thread-based cores, while a GPU consists of
hundreds of multi-threading, in-order and single-instruction issued streaming cores that
share the control and instruction cache with other cores. The CPU is responsible for basic
executional functionalities, memory management, and triggering computational work-
load on the GPUs. The GPU is an accelerator that handles computing tasks assigned by
the CPU, which would take longer time to perform on the CPU. With specialized hard-
ware and software support, GPUs can handle computations not only for graphics, but
also general computations that are typically done by CPUs. These types of GPUs are
called GPGPUs. The heterogeneous architecture obtains better performance for some
applications, since the GPGPUs can accelerate calculation-intensive and time consum-
ing applications running on the CPU. The heterogeneous architecture with a CPU and
a GPU is shown in Figure 2.5.

Memory

CPU CPU CPU CPU

ALU

C
o

n
tr

o
l L

o
gi

c ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

Global Memory

GPU

Figure 2.5.: Heterogeneous architecture

2.3. Programming Different Parallel Architectures

2.3.1. Overview

This section describes how to program the parallel architectures introduced in Section 2.2
in order to utilize their computing power efficiently. Multiple programming models,

14

2.3 Programming Different Parallel Architectures

platforms, and libraries are designed to support specifying threads, processes, and their
interactions, e.g., sharing data among threads within a process, communication among
processes, and so on. In this section, we introduce some basic parallel programming
models and libraries extensively applied on shared memory architectures, distributed
memory architectures, hybrid architectures, and heterogeneous architectures.

2.3.2. Programming Shared Memory Architectures

On a shared memory architecture, the parallel UEs are threads, which share the global
memory. In order to accelerate parallel applications on such architecture, multiple
threads within one process are created and spawned on different cores automatically.
Programmers are responsible for specifying threads and their interactions using thread-
based programming interfaces like Pthreads or OpenMP.

On the other hand, the parallel UEs on shared memory architectures can also be
processes. The communication among the processes is specified by MPI, which is a
language-independent protocol as well as an implementation for inter-process communi-
cation. MPI is briefly discussed in this subsection and details of MPI will be described
in Subsection 2.3.3 based on the scenario of distributed memory architectures.

2.3.2.1. Pthreads

Pthreads[38] are defined as a set of C/C++ language programming types and procedure
calls implemented with the pthread.h header file and a thread library. There are around
100 standard Pthreads procedures, which are responsible for thread management, creat-
ing and joining threads, mutex condition and synchronization between threads, and so
on. It allows programmers to specify multiple threads of execution scheduled across dif-
ferent cores in order to gain speedups. Typically, creating threads requires less overhead
than forking new processes on a shared memory system.

As it is shown in Listing 2.1, this simple code creates 4 threads with the pthread_create()
routine. Each thread prints a "Hello World!" message, and then terminates with a call to
pthread_exit(). These threads are executed in parallel by multiple cores, which shorten
the execution time compared to a sequential execution.

Listing 2.1: A sample Pthreads program
#include <pthread . h>
#include <stdio . h>
#define NUM_THREADS 4

void ∗PrintHello (void ∗threadid) {
// Spec i f y what a thread does

15

Chapter 2 Parallel Architectures and Programming Models

long tid ;
tid = (long) threadid ;
printf ("Hello World! It’s thread #%ld!\n" , tid) ;
pthread_exit (NULL) ;

}

int main (int argc , char ∗argv []) {
//Create a thread array
pthread_t threads [NUM_THREADS] ;
int rc ;
long t ;
for (t=0; t<NUM_THREADS ; t++){

printf ("In main: creating thread %ld\n" , t) ;
//Run a l l the threads
rc = pthread_create(&threads [t] , NULL , PrintHello , (void ∗)t)

;
i f (rc) {

printf ("ERROR; return code from pthread_create() is %d\n" ,
rc) ;

exit (−1) ;
}

}
// Exi t thread l i b r a r y
pthread_exit (NULL) ;

}

2.3.2.2. OpenMP

OpenMP[39] is a standard API that supports the development of parallel applications on
shared memory architectures ranging from standard desktops to supercomputers. It uses
a portable and scalable model that provides programmers with flexible directive-based
interfaces. OpenMP is combined with C, C++, and Fortran to create a multi-threading
programming language. It is the goal of OpenMP’s creators to make OpenMP easy for
application developers to handle.

OpenMP is based on the assumption that the UEs are threads that share a global
address space. The execution model of OpenMP is based on the fork/join programming
paradigm. As can be seen from Figure 2.6, an OpenMP program starts with a single
master thread and forks additional threads to form a team of threads at certain points
where parallel execution is desired. A section of code that execute by the team of threads
is called a parallel region. At the end of a parallel region, the threads wait until the full
team arrives and joins back together. At that point, the original master thread continues
until the next parallel region or the end of the program.

16

2.3 Programming Different Parallel Architectures

Parallel Region

F
O
R
K

Master Thread

Parallel Region

J
O
I
N

F
O
R
K

J
O
I
N

Figure 2.6.: OpenMP execution model

The parallelism is exploited by parallel loops using OpenMP compiler directives. The
compiler generates code to execute the iterations of the loops in parallel according to
the directives. Each thread is responsible for the computation of a subset of iterations.
The thread creation and management are done by the OpenMP runtime system auto-
matically.

OpenMP programs tend to work efficiently on SMPs because of their uniform memory
access pattern. However, it is less efficient on ccNUMA without special optimizations,
since its underlying programming model does not include a notion of non-uniform mem-
ory access time.

2.3.2.3. MPI

MPI is typically designed for distributed memory architectures, it can also be applied
as a programming interface on shared memory architectures. The basic UEs are MPI
processes. The global shared memory is logically partitioned among MPI processes, each
of which keeps its own logical memory. The communication between MPI processes can
be done by copying data in the global shared memory rather than transferring messages
between processes. Although forking new processes usually requires more overhead than
creating threads on shared memory architectures, multi-process program can achieve
good performance, since it avoids expensive locks and synchronization among threads
and maintains the data locality.

2.3.3. Programming Distributed Memory Architectures

The UEs on distributed memory architectures are processes. Each process keeps its inde-
pendent memory space on a single processor and the communication among processes is
handled by the underlying parallel architectures. MPI is a standard programming inter-
face for distributed memory architectures. MPI is a set of library routines provided for

17

Chapter 2 Parallel Architectures and Programming Models

process management, message passing, and some collective communication operations.
It is a standard programming library used in Fortran, C and C++.

The central construct in MPI is point-to-point communication. Its semantics is that
one process packages information into a message and sends this message to another
process. The other process receives the message and puts it into the allocated local
memory for local computations. Except for this simple point-to-point message passing,
MPI includes routines to synchronize processes, collective operations among a group of
processes, e.g., scattering and gathering data across a group of processes, and many
more. Figure 2.7 shows the semantics of different MPI collective operations including
broadcast, reduction, scatter and gather operations.

1 3 5 8

17

Broadcast Reduction

Scatter Gather

Figure 2.7.: MPI collective operations

The major drawback of MPI is the programming productivity, since MPI programs are
usually difficult to implement and optimize. Experienced programmers have to take
care of all the implementation details including data distribution, explicit inter process
communication using MPI operations, synchronization among processes, and so on.

2.3.4. Programming Hybrid Architectures

As described in Subsection 2.2.3, a hybrid architecture consists of nodes with separate
address spaces, each node is a shared memory architecture with several powerful CPUs.
Neither OpenMP nor MPI is an ideal programming paradigm for hybrid architectures.
OpenMP is only portable on a single node and doesn’t support inter-node communica-
tion. Additionally, a single node might not be able to run as many processes as cores
because of memory size restriction on the node. The solution is hybrid programming
in which OpenMP is used on each shared memory node and MPI is applied among the
nodes. Communication only happens among nodes, which reduces the number of mes-

18

2.4 Summary

sages and improves the communication efficiency. This works well, but it requires the
programmer to work with two different programming models within a single program.
The execution model of hybrid OpenMP/MPI programming is shown in Figure 2.8.

MPI Process OpenMP Thread

Message Passing

P0

OpenMP

P1

OpenMP

Figure 2.8.: Hybrid MPI/OpenMP execution

2.3.5. Programming Heterogeneous Architectures with CPU and GPU

In modern scientific computing applications, programs often exhibit a rich amount of
data parallelism allowing many arithmetic operations performed in a simultaneous man-
ner. OpenMP can only exploit data parallelism with tens of threads due to thread man-
agement overheads and cache coherence hardware requirements. Therefore, CUDA[40]
with the simple thread management mode is designed to harvest a large amount of
data parallelism on Nvidia GPGPUs. CUDA achieves much higher scalability with sim-
ple, low-overhead thread management and no cache coherence hardware requirements.
CUDA is easy to learn, so programmers who have MPI and OpenMP background can
handle it quickly. Especially, many of the performance optimization techniques are
common among these models. Programmers can use C with CUDA extensions and
certain restrictions (C CUDA) to code scientific applications. Many highly scalable
applications[41][42][43] fit well into the simple thread management model of CUDA and
thus enjoy the scalability and performance.

2.4. Summary

This chapter gives an overview of some mainstream parallel architectures, i.e., the shared
memory, distributed memory, hybrid, and heterogeneous architecture. These architec-

19

Chapter 2 Parallel Architectures and Programming Models

tures are ubiquitous and most of current supercomputers are built based on them. Four
major programming interfaces and libraries are designed in order to program such par-
allel architectures namely Pthreads, OpenMP, MPI, and CUDA. These programming
interfaces are widely used on almost all kinds of parallel architectures. In addition, some
specialized and high-level programming approaches will be discussed in Chapter 4.

20

3. Parallel Application Areas

3.1. Overview

This chapter introduces parallel application areas including linear algebra, regular grid,
irregular grid, adaptive grid applications, and multi-body applications. Linear algebra
includes calculations between matrices and vectors, which are typical regular compu-
tational models. In order to solve ordinary differential equations (ODEs) and partial
differential equations (PDEs), the finite element method (FEM) discretizes a compu-
tational domain into grids of elements, which are roughly classified into irregular and
adaptive grids. In addition, the other mainstream application area is N-body applica-
tions, e.g., astrophysics, cosmological simulations and MD simulations.

The rest of this chapter is organized as follows: Section 3.2 introduces the overview
of linear algebra calculations; Section 3.3 describes regular grid applications including
the 2D heat distribution based on Jacobi kernel and cellular automaton; Section 3.4
introduces irregular grid applications based on the FEM; Section 3.5 introduces adaptive
grid applications; Section 3.6 describes the basic theory of N-body applications and some
typical parallelization algorithms for cosmological and MD simulations.

3.2. Linear Algebra

Linear algebra plays an important role in many scientific domains and application areas.
It constitutes kernel operations for computations not only in computer science, but also in
natural science, engineering, and computer graphics[44][45][46]. In the supercomputing
area, a well-known benchmark called Linpack[47] has been used for evaluating high-
performance systems since 1970s. It includes all the typical linear algebra problems,
e.g., vector-vector operations called DAXPY, matrix multiplications, matrix eigenvalue
problems, least-squares solutions of linear systems of equations, and so on.

Take the matrix multiplication as an example, it is a classical linear algebra calcula-
tion in many scientific areas. A parallel matrix multiplication takes advantage of the
computing power of parallel computers to improve its performance. The fundamental
idea of a parallel implementation is to distribute the computational load across available
UEs and maintain the communication among the UEs. It is assumed that the number
of blocks distributed among the UEs determines the computational load of the UEs.

21

Chapter 3 Parallel Application Areas

Therefore, the matrices have to be divided into blocks of almost equal size in different
ways, which are row-wise, column-wise and square block-wise decomposition. Based on
these decomposition methods, the communication pattern among processes is regular
and relatively easy to specify by programmers. There are a lot of publications about
parallelizing matrix multiplication like [48][49][50].

3.3. Regular Grid Applications

A regular grid is an N-dimensional Euclidean domain consisting of elements with regular
shape. Each element is addressed by its coordinate in the domain, e.g., (i, j) in a 2D
domain and (i, j, k) in a 3D domain. Regular grid applications are based on regular
grids. They usually update the state of the elements in the domain iteratively according
to a deterministic neighborhood. Each element in a regular grid is able to access its
neighbor elements by referencing their coordinates.

In the computational science community, there are a lot of regular grid applications in-
cluding an ocean circulation model[51], computational electromagnetics simulations[52],
image-processing applications[53], 3D heat distribution based on the Jacobi iteration[54],
and so on. This section briefly describes a 2D heat distribution and cellular automaton[55].

3.3.1. 2D Heat Distribution

The 2D heat distribution is solved with the Jacobi kernel. It updates the values of the
points on a regular grid according to a certain neighbor relation. The update function
computes the arithmetic mean of a point’s neighbors. The neighbors of point (i, j)
are the points (i, j − 1), (i, j + 1), (i − 1, j), (i + 1, j), which are called Von Neumann
neighborhood[56]. The value of aij at iteration step N + 1 is calculated according to the
values of its “neighbors” at iteration step N , it is described as follows:

aN+1
ij = 0.25 ∗ (aN

i(j−1) + aN
i(j+1) + aN

(i−1)j + aN
(i+1)j)

The iterative computation stops only when either the number of iterations has reached
the maximum number or the residual of aij between two time steps is smaller than a
certain threshold.

3.3.2. Cellular Automaton

A cellular automaton consists of a number of cells based on a regular grid. Each cell has
its own attributes, e.g., the coordinates, the local states, and so on. The local attributes
of a cell are updated according to its neighbor cells kept at certain locations of the
regular grid. Take a 2D grid as an example. The neighbors of cell (i, j) can be cells

22

3.4 Irregular Grid Applications

(i−1, j−1), (i−1, j), (i−1, j+1), (i, j−1), (i, j+1), (i+1, j−1), (i+1, j), (i+1, j+1),
which are called Moore neighborhood[57]. Similar to the Jacobi method, all the cells
update their local attributes iteratively from an initial state. The local attributes of a
cell at time step N + 1 are determined by the attributes of its neighbors at time step
N according to user-defined computational rules. Typically, the computational rules are
the same for the entire cells and do not change during their evolution.

3.4. Irregular Grid Applications

Irregular grids are widely used to represent complicated domains. Irregular grids are
different from regular grids, where the connectivity between elements must be explicitly
defined. It is more flexible to define complex shapes using irregular grids because they
have no constraints on their arrangement. However, the interconnection of the elements
has to be explicitely defined.

In the scientific computing area, PDEs are used to describe the underlying dynamics
of a wide variety of applications including heat dissipation, electro-dynamics, fluid dy-
namics, and so on[58][59]. The FEM is an important numerical technique for finding
approximate solutions to PDEs. In simple terms, FEM is a method for dividing up a
complicated problem into small ones that can be solved. Its central idea is to discretize a
complicated domain into an irregular grid of many individual elements. The local values
of the elements are updated iteratively according to certain computational rules and the
topology. Different from regular grids, the neighbor elements cannot be referenced by
their indices but through one level of indirect accessing the topology. This characteristic
prevents automatic compiler strategies and makes irregular grid applications relatively
difficult to parallelize.

3.5. Adaptive Grid Applications

An adaptive grid can be regular or irregular grids with adaptiveness. The granularity
of the elements in an adaptive grid usually changes during the evolution of a solution.
It may start with a base coarse grid. As the solution proceeds, if the regions require
more resolution by the parameters characterizing the solution, finer and finer sub grids
are added in a certain fashion to increase the accuracy of the solution. Take a car crash
simulation as an example, the areas near the crash require more computation than other
parts. Thus, the granularity of elements in such key areas could be much finer than
those in minor areas in order to get more accurate results.

The SAMRAI (Structured Adaptive Mesh Refinement Application Infrastructure) li-
brary [60] is a framework for exploring application, numerical, parallel computing,
and software issues based on regular structured adaptive grids. Its major objective

23

Chapter 3 Parallel Application Areas

is to support computational physics algorithm research for adaptive methods on high-
performance computing platforms.

Richard I. Klein has used adaptive mesh refinement (AMR) to model a collapsing giant
molecular cloud core[61]. This model manages the AMR of 3-D self-gravitational hydro-
dynamics problems by employing multiple irregular grids at multiple levels of resolution.
These grids can be automatically and dynamically added and removed as necessary to
maintain the adequate resolution.

3.6. Multi-body Applications

Multi-body applications (N-body) include numerous application areas, such as astro-
physics, molecular dynamics, plasma physics, and so on[62][63]. A classical N-body
kernel simulates the evolution of a system of many bodies according to their force in-
teractions. The simulation is an iterative method that proceeds over a large number
of time steps. Within each time step, the force on the bodies is computed and all the
bodies move in the simulation domain according to the equations of motion. From the
motion of the bodies, a variety of useful microscopic and macroscopic information can
be extracted. This method is deterministic, since the state of a molecule system is de-
termined at any time if the initial state of the bodies is specified. A typical N-body
simulation method is based on the Newton’s second law and the equations of motion:

−→
F = m−→a

4S = 4v0t+−→a t2

where −→F is the force exerted on a body, m is its mass and −→a is its acceleration, 4S is
its displacement within a time step, v0 is its initial velocity and t is the time length of a
time step. Integration of the equations of motion determine the accelerations, velocities
and displacements of the bodies as they vary in each time step. If all pairwise forces are
computed directly, this requires O(N2) operations at each time step.

3.6.1. Cosmological Simulation

Cosmological simulations are based on the N-body kernel with all pairwise interactions
between the bodies. It is very expensive to compute such simulations if the number
of bodies is enormous. Thus, a lot of approximation methods are used to improve
the computational efficiency[64]. Josh Barnes and Piet Hut published a paper and
presented a classical approximation using a tree-structured hierarchical algorithm[64].
It scales the computational complexity from O(N2) to O(N logN). Many researchers

24

3.6 Multi-body Applications

have applied tree-based algorithms to cosmological simulations. For example, the fast
multipole method (FMM)[65] introduced by Greengard and Rokhlinis a mathemati-
cal technique that was developed to speed up the calculation of long-ranged forces.
The multipole tree algorithm[66] introduced by John Board and William Elliott is a
multipole-accelearted algorithm. Parallel multipole tree algorithm developed by the sci-
entific computing group at Duke University is a hybrid of the Barnes-Hut and multipole
method[67]. GADGET[68][69] is a freely available framework for cosmological N-body
simulations on distributed memory systems. It uses an explicit communication model
implemented with the standardized MPI communication interfaces. The code can be
run on almost all current supercomputers.

3.6.2. Molecular Dynamics Simulation

The MD simulation is commonly used for simulating the properties of liquids, solids, and
molecules[70]. It is a special case of N-body simulations with an approximation based
on distance between molecules. Each of the N atoms or molecules in the simulation is
treated as a mass point and Newton’s equations are integrated to compute their motion.
The molecule-to-molecule force mainly consists of the bonded force and non-bonded
force. For simplicity, we discuss the non-bonded force only, since the cost of computing
the non-bonded force dominates the computational load. Among different models of
describing non-bonded force, the Lennard-Jones potential[71] is a simple mathematical
model that approximates the non-bonded interaction between a pair of molecules. It
is often used to describe the properties of gases. A form of the potential was proposed
in 1924 by John Lennard-Jones. The expression of the L-J potential is mathematically
described as follows:

VLJ = 4ε
[(

σ

r

)12
−
(
σ

r

)6
]
.

where ε is the depth of the potential well, σ is the finite distance at which the molecule
potential is zero and r is the distance between molecules. Then the force can be calcu-
lated by the following expression:

FLJ(r) = − ∂

∂r
VLJ(r) = 4ε

(
12σ

12

r13 − 6σ
6

r7

)
.

The LJ-potential is used extensively in MD simulations even though more accurate
potentials exist. To save computational time, the LJ-potential is often truncated at a
cut-off radius distance of rc, where i.e., at rc the LJ-potential, VLJtrunc , is almost equal
to 0. Beyond rc, the truncated potential is set to zero. The truncated LJ-potential is
defined as follows:

25

Chapter 3 Parallel Application Areas

VLJtrunc(r) =
{
VLJ(r)− VLJ(rc) for r < rc

0 for r > rc

Then the truncated LJ force based on the cut-off radius is described as follows:

FLJtrunc(r) =
{
FLJ(rc)− FLJ(r) for r < rc

0 for r > rc

Based on the truncated LJ force equation, the non-bonded interactions of molecules
beyond a certain cut-off radius can be neglected and the computational time scales as
O(N) forN molecules better than O(N2) with pairwise distance calculations.

There are three typical ways to parallelize MD simulations on distributed memory
systems[72], which are the atom decomposition[73], force decomposition[74], domain
decomposition [75][76][77], and hybrid methods[78]. The simplest way of parallelizing
MD simulations is to assign subsets of molecules to different processes. This method is
called the atom decomposition method. Each process is responsible for the computation
of the local molecules. This method can guarantee that all the processes keep almost
the same computational load but the communication complexity is O(N). The force
decomposition is based on decomposing the force matrix, which keeps the interactions
of all the molecules. The computational load among processes is almost equal, but the
communication overhead is still not as good as expected. The domain decomposition is
to decompose the spatial simulation domain into sub domains. Each processor is respon-
sible for the computation and communication of the molecules within a subdomain. The
communication complexity is O(N/P) for cut-off radius based MD simulations, which
is the best among all the decomposition methods. However, the computational load
among processes may not be balanced, since it is determined by the distribution of the
molecules and their movement patterns.

3.7. Summary

In this chapter, we roughly classify parallel applications into regular applications and ir-
regular applications. Regular applications include linear algebra calculations and regular
grid applications. These applications have relatively regular computational models and
communication patterns among UEs on distributed memory systems. Additionally, there
are irregular applications including FEM based on irregular grids and adaptive grids,
N-body simulations, and MD simulations. These applications are difficult to implement
and optimize in terms of defining computation, communication, data management, and
so on. This dissertation mainly focuses on the iterative method on regular and irregular
grids, as well as MD simulations with a cut-off radius.

26

4. Related Work

4.1. Overview

There are a variety of parallel programming approaches, ranging from standard parallel
programming languages to high-level programming environments, e.g., automatic loop
parallelization, task-based generic OOP approaches, cross-platform interfaces for hetero-
geneous architectures, domain specific languages (DSLs), and so on. This chapter briefly
introduces high-level parallel programming interfaces namely HPF, GA, TBB, PARTI
/ CHAOS library, Charm++, UPC, and OpenCL. In addition, we also describe DSLs,
which are designed and implemented for specific application areas, e.g., MD simulations,
CFD solvers, stencil codes, and so on.

The rest of this chapter is organized as follows: Section 4.2 introduces the overview
of some high-level parallel programming languages and libraries; Section 4.3 introduces
DSLs designed and optimized for specific application areas;

4.2. Parallel Programming Languages and Libraries

4.2.1. High Performance Fortran (HPF)

HPF[24] is a high-level and data parallel programming model based on Fortran. The
main objective of HPF is to provide convenient programming support for scalable parallel
systems with an emphasis on data parallelism. In HPF, programmers can express data
distributions with a single memory view, and the HPF compiler is responsible for the
actual distribution of data and communication among processors. The most important
construct in HPF is FORALL, which supports parallel loops. The semantics of the
FORALL construct is that multiple processes execute a certain operation on different
subsets of arrays in parallel.

Although programming in HPF is much easier for application developers, its support for
irregular applications is not very efficient. These applications usually need at least one
level of array indirection, whose information can only be obtained at runtime rather than
compile time. This prevents the HPF compiler from generating efficient code. Some tech-
niques were developed trying to determine data distributions automatically[79][80][81],
but these techniques are still not as effective as expected due to limitations in the infor-
mation available at compiler time.

27

Chapter 4 Related Work

4.2.2. Global Arrays (GA)

The GA toolkit[82] provides a shared memory programming environment in the context
of distributed memory systems. It provides high-level array data structures called global
arrays to support parallel operations on these arrays. Developers can directly program
global arrays as if they are stored in shared memory. The details of data distribution and
mapping, data migration and accessing are encapsulated in the data structures. GA can
be ported both on massively-parallel distributed memory and scalable shared memory
systems as well. Similar to HPF, the major drawback of GA is the support for irregular
applications.

4.2.3. TBB

TBB[28][83] offers a task-based and object-oriented programming environment for paral-
lel programming of multi-core systems. It is a template library that helps programmers
to take advantage of multi-core processor performance without having to be thread
experts. Different from data parallel programming, TBB supports task parallel pro-
gramming that allows developers to encapsulate computational loads into tasks. Based
on TBB, programmers need to specify tasks in an application, and the TBB task sched-
uler is responsible for mapping these tasks onto concrete threads and managing thread
operations including the synchronization, load balancing, cache optimization, and so on.
In addition, The TBB library automatically creates and manages a thread pool, and it
does dynamic load balancing of parallel work.

The major restriction is that TBB cannot be ported on distributed memory architectures.
Based on standard C++ without extensions, the template-based approach of TBB is
flexible and easy to extend. However, programmers need to have strong background on
STL[84][85][86] generic programming and task parallelism, which is quite different from
data parallel programming.

4.2.4. PARTI / CHAOS Library

It is difficult to parallelize sparse or irregular problems on distributed memory systems,
since the patterns of data access and communication of such problems can only be
obtained at runtime. The PARTI/CHAOS library[87][88] is designed to support efficient
execution of irregular problems on distributed memory systems. It adds a pre-compute
step, called an inspector, before the actual computation happens. The inspector step
is responsible for arranging local and remote data, generating communication patterns
among processes, translating remote indices to local ones, and so on. The ensemble-based
implementation framework reuses this method for the irregular data distribution, the
memory arrangement for local and non-local data, and management of communication

28

4.2 Parallel Programming Languages and Libraries

among processes on distributed memory systems. Details of the implementation will be
discussed in Chapter 6.

In addition to the PARTI / CHAOS library, other runtime compilation methods were
developed for a variety of irregular applications including irregular CFD solvers, adaptive
grid applications, direct simulation Monte Carlo (DSMC) codes, MD simulations, and
so on[89][90][91].

4.2.5. Charm++

Charm++ is a parallel object-oriented programming language based on C++. It is
designed to enhance programming productivity by providing a high-level abstraction of a
parallel program while delivering good performance on a variety of underlying platforms,
e.g., shared memory architectures, distributed memory architectures, even GPGPUs. A
scalable and portable parallel MD application called NAMD[92][93] is implemented with
Charm++. It can scale to hundreds of cores for typical simulations and beyond 200,000
cores for highly scalable simulations.

A Charm++ program is formed of a number of cooperating message-driven objects
called chares. A chare is a C++ object with special language extensions. It has local
attributes, member functions, and special functions called entry methods, which are used
for communication among chares. Chares that are organized into indexed data structures
like arrays or groups are mapped onto threads or processes. The communication among
chares is specified by remote access to entry methods. The mapping of chares onto
threads or processes is transparent to programmers, and the runtime system is able to
change the mapping dynamically due to measurement-based load balancing.

Charm++ is easy to program, and portable to different architectures. It applies an
automatic aggregation strategy to bind active objects to a single thread or process. The
performance improvement mainly originates from efficient asynchronous communication
and dynamic load balancing by the runtime system. However, the granularity of the
chares is still managed by the users, since the communication among chares has great
impact on the performance of applications.

4.2.6. UPC (Unified Parallel C)

In computer science, a partitioned global address space (PGAS) combines the perfor-
mance and data locality features of distributed memory programming with the pro-
grammability and simplicity features of shared-memory programming. In order to im-
prove the data locality, the shared memory address space is logically partitioned into
different portions, which are local to different processes. There are some PGAS lan-
guages like UPC[94], Co-array Fortran[95], Titanium[96], Fortress[97][98], Chapel[99],
and X10[100].

29

Chapter 4 Related Work

UPC[94] is an extension of C designed for large-scale parallel systems, including shared
memory systems as well as distributed memory systems. The execution model of UPC
is based on SPMD. It provides standard library functions to move data between shared
and private spaces in the partitioned global address space.

4.2.7. OpenCL (Open Computing Language)

OpenCL[101][102] is an unified programming model for heterogeneous platforms consist-
ing of CPUs, GPGPUs, or other accelerators. There is a remarkable similarity between
the key features of OpenCL and CUDA except that OpenCL is more generic for different
types of platforms, while CUDA is only for Nvidia GPUs. OpenCL is a cross-platform
programming language, which means that programmers can write OpenCL applications
once and run them on any OpenCL-compliant hardware. An OpenCL program con-
sists of a host program and kernels. The host program manages a command queue for
each device, while the kernels are code executed on OpenCL devices. Similar to CUDA,
OpenCL provides APIs for general programming for the host and interfaces for writing
kernels. The shared memory between the host and OpenCL devices is managed by the
runtime system of an OpenCL implementation.

OpenCL is based on the fine granular programming approach. The kernel of OpenCL
is an atomic function that performs a computation on each element of an application
domain. The kernels are mapped onto light-weighted threads of devices, which are
executed in parallel. For example, a kernel can be an arithmetic operation between two
elements of a matrix, or a value update of a single point in a regular grid, and so on.
This fine granular approach is also the basic idea of the ensemble-based programming
scheme.

In addition, it is worth designing platform-independent or cross-platform programming
models, since they can improve the programming productivity and utilize the comput-
ing power of different parallel systems. However, it is still a challenge to design and
implement cross-platform models due to the increasingly complicated and specialized
hardware and software of parallel architectures.

4.3. Domain-Specific Languages

A domain-specific language (DSL) is a type of programming language designed for spe-
cific application domains. Compared to general programming languages, DSLs are ef-
ficient and easy to use for the application developers for solving a particular type of
problems on different computing platforms, e.g., general purpose computing systems,
and specialized systems like GPGPUs and FPGAs.

MDL[103], developed by Trevor Cickovski, Chris Sweet, etc., is a DSL for MD simu-
lations. It provides an abstraction of MD-specific entities and algorithms in a simple

30

4.4 Summary

fashion, which helps domain experts to prototype MD simulations without knowing the
details of computer languages. Its programming interface is based on Python[104], which
supports better error-checking and debugging compared to general purpose and other
scripting languages.

Liszt[105] is a DSL for solving PDEs on irregular (unstructured) grids. It adds domain
knowledge into the high-level language, and the compiler is responsible to map Liszt
codes to run on a range of parallel architectures including shared memory architectures,
and heterogeneous architectures with CPUs and GPGPUs. For example, it introduces
language extensions for specifying mesh elements, sets of elements, their topological
relationships, and parallel loops to express parallelism.

Wang Luzhou and Kentaro Sano[106] presented a DSL for stencil computation (DSLSC).
Programmers can implement stencil computations by specifying mathematical interac-
tions between elements instead of writing explicit operations based on general languages.
Its compiler is able to generate parallelized stencil codes mapped on processing elements
of FPGA-based systolic computational-memory arrays (SCMAs).

The Berkeley autotuner[107],focuses on optimizing the performance of stencil kernels
by automatically selecting tuning parameters. In order to minimize runtime overhead
on current shared memory architectures, it examines a wide variety of optimizations
including NUMA-aware allocation, multilevel blocking, loop unrolling and reordering,
prefetching, and so on.

The Pochoir[108] stencil compiler allows a programmer to write a simple specification of
a stencil in a domain-specific stencil language embedded in C++. The Pochoir compiler
then translates the stencil code into high-performing Cilk[109][110] code that employs
an efficient parallel cache-oblivious algorithm. It automatically produces a highly opti-
mized, cache-efficient, parallel implementation according to simple functional specifica-
tion written by the application developers. Pochoir achieves a substantial performance
improvement over a straightforward loop parallelization for typical stencil applications,
such as the 2D heat equations and Conway’s game of Life application[111].

4.4. Summary

This chapter introduces some high-level parallel programming languages for current par-
allel architectures and some runtime libraries for irregular problems. The major charac-
teristics of these programming models are to enhance the programming productivity and
combine the advantages of various programming models. According to the description
of these programming models, we can see that it is still challenging to build a parallel
programming model or interface that is high-level, platform-independent, and efficient
as well.

31

Chapter 4 Related Work

The ensemble-based programming tries to combine the major advantages of the high-
level programming models and runtime strategies described in this chapter. Similar to
HPF and GA, the ensemble-based programming approach provides a shared memory pro-
gramming view, but can be implemented on distributed memory platform. In order for
the extensibility, it applies the template-based OOP approach like TBB and Charm++
do. The ensemble-based programming starts from the basic points, which fits the idea
of OpenCL and CUDA proposed. However, OpenCL and CUDA support programming
concrete light weight threads in a fine granular fashion, while our programming model
aggregates fine granular entities and map them to CPU threads or processes automati-
cally. The irregular support of the ensemble-based programming reuses the idea of the
PARTI/CHAOS library in order to manage the data storage and communication among
processes efficiently on distributed memory systems.

32

5. Ensemble-based Programming

5.1. Overview

This chapter introduces the ensemble-based programming scheme, which mainly includes
the machine model, the programming paradigm, and the programming interface. In ad-
dition, an MD simulation as a running example is presented to explain ensemble-based
programming. The machine model is an abstract SPMD architecture that consists of
a control processor and multiple distributed fine granular processors. In order to pro-
gram this machine, we introduce the programming paradigm, which consists of software
entities including elementary points (EPs), topologies, and the ensemble. Based on the
programming paradigm, the object-oriented programming interface is introduced. It
maintains a template hierarchy that supports specifying the software entities described
in the programming paradigm. Different application areas including multi-body, irregu-
lar grid and regular grid applications are supported by the programming interface.

The rest of this chapter is organized as follows: Section 5.2 introduces the ensemble-
based abstract machine model; Section 5.3 introduces the programming paradigm defined
on top of the machine model; Section 5.4 describes the object-oriented programming
interface; Section 5.5 introduces the ensemble-based implementation of a simple MD
simulation.

5.2. Machine Model

5.2.1. Overview

The machine model of the ensemble-based programming is an abstract architecture
that is composed of Fine Granular Processors (FGPs) and a Control Processor (CP).
Figure 5.1 gives an overview of the abstract machine model. The machine model is dif-
ferent from a concrete architecture with CPUs, main memory, and I/O devices. It is
a simple and fine-granular hardware platform, which hides optimizations such as cache
optimizations, data locality, and communication overlapping, and so on. These optimiza-
tions are taken into account in the implementation of the mapping from the machine
model to concrete architectures, e.g., sequential architectures, shared memory architec-
tures, and distributed memory architectures as well. The objective of designing the

33

Chapter 5 Ensemble-based Programming

machine model is to provide an easier and more straightforward parallel programming
platform compared to current programming interfaces

FGP

FGP

FGP

FGP

FGP

FGP

FGP

FGP

FGP

FGP

FGP

FGP

FGP

FGP

FGP

FPG

FGP

FGP

FGP

FGP

FGP

FGP

FGP

FGP

FGP

FGP

FGP

FGP

FGP

FGP

FGP

FGP

FGP

FGP

FGP

FPG

FGP

FGP

FGP

FGP

Ensemble-based Machine Model

C
o

n
tr

o
l P

ro
ce

ss
o

r

Figure 5.1.: Machine model

The FGPs are distributed on the machine and each FGP has its own local memory and a
Local Processing Unit (LPU). The local memory in a FGP keeps local information of the
FGP. The LPU in the FGP can perform coarse-grained application-specific computations
on the data in the local memory. The CP consists of main memory, a Local Processing
Unit (LPU) and a Control Unit (CU). The main memory keeps local data of the CP.
The LPU in the CP is responsible for managing a single-threaded global control flow.
The CU is an interface that triggers parallel operations of the FGPs in the machine.
The execution model of the machine is similar to SIMD. It means that the CP issues a
“single instruction” representing a specific parallel operation on FGPs; multiple FGPs
then perform coarse-grained computations in parallel. This section mainly introduces
main components of a FGP, details of the CP, and interactions between the CP and
FGPs.

5.2.2. Fine Granular Processors (FGPs)

Most of the computational workload of an application is accomplished by FGPs in the
machine model. The FGPs are distributed on the machine and each FGP is an abstract
computational processor that consists of local memory and a LPU. The local memory
stores the local data of the FGP. The LPU performs coarse-grained computations on the
data in the local memory. It is not supported that a FGP accesses data of another FGP
directly, since the FGPs are logically distributed. The communication between FGPs
is established by point-to-point communication, which is controlled by the CP globally.
In addition, coarse-grained computations executed on the LPU are triggered by the CP.
The basic structure of a FGP is showed in Figure 5.2 and details of the components in

34

5.2 Machine Model

the FGP are described as follows:

1. Local memory: The local memory primarily stores application-specific data for
local computation. It also stores information from remote FGPs, which is obtained
by communication among FGPs. The local data can be directly accessed by the
LPU.

2. LPU: The LPU is responsible for local computations on the data in the local
memory. Application-specific coarse-grained computations can be executed on
the LPU locally. The computations executed on the LPU of the participating
FGPs asynchronously. The LPU is typically different from a computational unit
in SIMD machines, which only performs fine grained computations, e.g., add, sub-
tract, multiply and other simple arithmetic computations. In addition, input and
output (I/O) operations can be processed by the LPU if I/O is implemented in a
distributed fashion.

Local Memory

LPU

Fine Granular Processor

Figure 5.2.: Fine Granular Processor

5.2.3. Control Processor (CP)

The CP consists of main memory, a LPU and a CU. The main memory stores some local
data and global information related to FGPs in the machine. The LPU is responsible
for managing the global control flow, which is sequentially executed and in a single-
threaded fashion. The CU can perform parallel operations triggered by the global control
flow. These parallel operations control communication and computation of FGPs on the
machine. Basic components of the CP are shown in Figure 5.3. Details of the components
are described as follows:

1. Main memory: The main memory stores local data and some global information
about FGPs in the machine. For example, input data and results obtained from
the computation of FGPs are local data, while some application-specific global
data and data dependence information are global information.

2. LPU: The LPU is responsible for managing a global control flow, which mainly
includes input and output (I/O) operations, local computations, and parallel oper-

35

Chapter 5 Ensemble-based Programming

ations that control the FGPs on the machine. The global control flow is sequentially
executed in a single-threaded fashion. For example, reading input data into the
main memory and writing results to devices are typically I/O operations that are
done by the LPU; the parallel operations that executed on the CU are triggered
by the global control flow.

3. CU: Parallel operations that control behaviors of the FGPs on the machine are
instructed by the global control flow and run on the CU. The parallel operations
execute on the CU in a synchronous fashion. The semantics of synchronous parallel
operations is that the next control operation on FPGs starts only when all the
FGPs involved in the previous operation are accomplished.

Main Memory

Control Processor

CU
Control Operation

LPU

Figure 5.3.: Control Processor

5.2.4. Interactions between the CP and FGPs

There are several interactions between the CP and the FGPs on the machine. The CP
controls the FGPs and the FGPs perform certain operations based on parallel opera-
tions executed on the CU in the CP. For example, the CU can issue a communication
operation, which leads to communication among all the FGPs or a subset of FGPs in
the machine following their dependences; the CP can also issue a parallel computation
or collective operation on FGPs, which leads to a parallel computation or collective
operation of the participating FGPs. The details of these interactions and some other
interactions between the CP and the FGPs are described as follows:

1. Explicit communication among FGPs: The communication among FGPs arises
when some FGPs require information from other FGPs for their local computa-
tions. The communication among FGPs is done by sending and receiving that
are triggered by the CP explicitly, and the participating FGPs can exchange their
local information. After the communication is accomplished, the remote data is
assumed to be available in the local memory of the FGPs.

36

5.3 Programming Paradigm

2. Parallel computation of FGPs: The global computation operation that is trig-
gered by the CP can start the computation of FGPs in the form of parallel oper-
ations. The LPU in each FGP performs the computation on its local memory in
parallel. Thus the participating FGPs update their local data concurrently and
asynchronously.

3. Collective operation of among FGPs: The collective operation that is executed on
the CU triggers a collective operation on a set of FGPs in the machine model. All
the participating FGPs start the operation cooperatively to get collective results.
The results can be either returned to the main memory of the CP or kept in the
local memory of the FGPs.

4. Collective operation between CP and FGPs: It is not supported that FGPs can
access the main memory of the CP, but the CP can access the local memory of
FGPs in the machine by an explicit collective operation between CP and FGPs.

5.3. Programming Paradigm

5.3.1. Overview

The machine model consisting of a CP and multiple FGPs provides an ensemble-based
programming platform. In order to program the platform, the programming paradigm
on top of the machine model is introduced in this section. The programming paradigm
is an abstraction of the machine model. It mainly consists of software entities, relations
among the entities and a mapping from the entities to the machine model. In this section,
three major software entities and their relations are introduced, which are Elementary
Points (EPs), the ensemble, and the master thread.

The programming paradigm is based on a fork-join model. As it is shown in Figure 5.4,
the execution starts with the master thread that triggers parallel operations on a set of
EPs in the ensemble. An EP represents a basic computational object in the domain of
an application, which is mapped to a single FGP in the machine model. It is primarily
composed of local attributes and local operations. The ensemble is a software container
that keeps all the EPs and their topologies. It is mainly responsible for data parallel
workloads. The behaviors of the ensemble and the EPs in the ensemble are controlled by
the master thread, which is stored in the main memory of the CP in the machine model.
The master thread is sequentially executed on the LPU in the CP. It triggers parallel
operations, update operations, and collective operations on the EPs in the ensemble.
All these operations are blocking operations. It means that they terminate after all the
constituent parts finished. In addition, the major tasks of the master thread include
I/O operations, initialization work, local computations, and so on. Details of EPs, the
ensemble, and the master thread are described in this section.

37

Chapter 5 Ensemble-based Programming

EP
EP

EPEP

EP EP

EP

EP
EP

Ensemble

M
as

te
r

Th
re

ad

Fork

Join

Fork

Join

EP

EP

Figure 5.4.: Programming paradigm

5.3.2. Elementary Points

An EP is a software entity that represents the finest granular computational object in
the domain of an application. Each EP is mapped to a single FGP in the machine
model. For example, a particle or molecule in molecular dynamics simulations, a grid
point in heat dissipation simulations and a celestial body in cosmological simulations
can be represented as an EP.

An EP has local attributes and local operations. Local attributes represent application-
specific characteristics of the EP. Local operations can read and write local attributes
as well as read attributes of other EPs. If an EP requires data of other EPs for local
operations, it has to access the data in shadow copies of the other EPs locally. Explicit
communication operations can copy local attributes of EPs into their shadow copies
located on the FGP of the receiving EP. These communication operations are triggered
by update operations, whose communication patterns are specified in form of a topology.
Details of local attributes, local operations, and shadow copies are described in the
following subsections.

Local Attributes

Local attributes of an EP keeps application-specific information that is specified by pro-
grammers. The local attributes are stored in the local memory of the FGP that the
EP is located on. An EP usually has local attributes including basic types of data,
data arrays or complicated data structures as to describe characteristics of the single
EP. For example, the mass information, the position information, the velocity informa-

38

5.3 Programming Paradigm

tion, or domain-specific properties are typical local attributes of an EP in a multi-body
simulation.

Shadow Copies

A shadow copy is a remote copy of an EP. It is located on remote EPs that require data
of the EP. As it is shown in Figure 5.5, two EPs (EP1 and EP2) that are located on two
FGPs. EP1 has a shadow copy of EP2. Thus, EP1 can access EP2’s data locally if the
data are copied into the shadow copy of EP2 by explicit communication operations. The
shadow copy of EP2 is read only to EP1.

EP1 EP2EP2

FGP of EP1 FGP of EP2

Requires Date

EPEP Original Data Shadow Copy

Figure 5.5.: Shadow copies

Local Operations

Local operations are usually coarse-grained and application-specific. They are used to
update local attributes of a single EP according to certain algorithms. They are specified
by programmers and triggered by the master thread in form of parallel operations. All
the participating EPs perform local operations asynchronously after the required data
are already available in the EPs. The input of local operations is local attributes and the
data in shadow copies of remote EPs, while the output of the local operation is written
back into the EP’s local attributes. The data in shadow copies of remote EPs cannot be
modified by local operations.

5.3.3. Ensemble

The ensemble is a software container that stores a set of EPs and manages their informa-
tion, communication, computation, and so on. The main constituents in the ensemble

39

Chapter 5 Ensemble-based Programming

The set of EPs

Topologies

High-Level Operations

Ensemble

Managing EPs

Managing Topologies

Parallel Operations

Shadow Copy Updates

Collective OperationsTopology(n)

…

Topology(2)

Topology(1)

EP1 EP2 EPn… ...

Figure 5.6.: Ensemble

are a set of EPs, topologies, high-level operations for managing EPs and topologies, par-
allel, shadow copy update, and collective operations. The basic structure of the ensemble
is shown in Figure 5.6.

The ensemble keeps the information of the set of EPs and manages the EPs based on the
information. A topology describes communication patterns of all the EPs or a subset
of the EPs in the ensemble. Multiple topologies can be kept in the ensemble in order
to maintain communication patterns of different subsets of EPs. The operations for
managing EPs and topologies are used for inserting, removing, and organizing the EPs
and the topologies in the ensemble. The parallel, shadow copy update and collective
operations are triggered by the master thread and performed on the EPs.

Operations for Managing EPs and Topologies

EPs can be inserted into and removed from the ensemble by using an operation for
managing EPs. After the EPs have been inserted into the ensemble, topologies can be
created based on the EPs. An operation for managing topologies is primarily responsible
for inserting and removing topologies.

40

5.3 Programming Paradigm

Topologies

A topology defines communication patterns resulting from the need for the information
of a set of EPs in the ensemble. The EPs can exchange their status based on certain
topologies. A topology of four EPs is shown in Figure 5.7. The topology in the figure
determines the EPs (EP1, EP2, EP3, and EP4) and their relations, which describe de-
pendency information among them. For example, EP1 requires data from EP2, EP3, and
EP4 for its local computation, and EP2 requires data from EP1 and EP4 for its local
computation.

EP1

EP3

EP2

EP4

EPs’ Dependency Topology

EP1 EP2 EP3 EP4

EP2 EP1 EP4

EP3

EP4

EP1 EP4

EP1 EP2 EP3

Figure 5.7.: Topology of four EPs

The ensemble is able to manage multiple topologies, which keep communication patterns
of different sets of EPs in the ensemble. The topologies are used to guide shadow copy
update and parallel operations on the EPs. For example, the ensemble can update the
shadow copies of a set of EPs based on a certain topology, and then the local data of
each EP are copied into its shadow copies on remote EPs depending on the topology.
According to the topology shown in Figure 5.7, the local data of EP2, EP3, and EP4

need to be copied into their shadow copies located on the FGP of EP1. In addition,
topologies can be updated during the entire execution of irregular applications, e.g.,
molecular dynamics simulations and irregular grid applications.

The programming paradigm supports different types of topologies, i.e., rootTopology,
subTopology, and baseTopology. The definitions and relations of these topologies are
described below.

1. rootTopology: A root topology is a topology that manages the communication
pattern of all the EPs in the ensemble.

2. subTopology: Top1 is a sub topology of Top2 if and only if Top1 keeps a sub set of
Top2 ’s EPs and maintains the same communication pattern in Top2. A topology
can have multiple sub topologies.

3. baseTopology: Top1 is a base topology of Top2 if and only if Top2 is a sub topology
of Top1. Any topology can only have a single base topology. The communication
pattern of a base topology can be reused by its sub topologies.

41

Chapter 5 Ensemble-based Programming

Update Shadow Copy

EP

EP

EP

EP

EP
EP

EP

EP

EP

EP

EP

EP
EP

EP

EP

EP

EP

EP

EP
EP

EP

Local Access

EPEP EPLocal EP SC of remote EP SC of remote EP available

Figure 5.8.: Shadow copy updates

Shadow Copy Update (SC-update) Operations

A SC-update operation is executed on a set of EPs in the ensemble. It can be performed
on different subsets of EPs in the ensemble by specifying different topologies. In addition,
a SC-update operation can update not only full status of EPs but also partial status
of EPs. As it is shown in Figure 5.5, an EP has multiple SCs of remote EPs. At the
beginning, there are no data available in these shadow copies before the SC-update
operation is executed. Once a SC-update operation is performed, the data of remote
EPs are copied into the EP’s shadow copies. Then, the SCs are available and can be
accessed by the EP locally.

In order to improve the efficiency of the SC-update operation, all the EPs involved in the
operation update their shadow copies in parallel. Thus, after the SC-update operation
is accomplished, all the shadow copies of the participating EPs are available and all the
EPs can access data in these shadow copies for their local operations.

Parallel Operations

Parallel operations are controlled by the master thread to trigger parallel local operations
of EPs. The participating EPs in a parallel operation perform a certain local operation
in parallel. This is similar to a SIMD execution fashion. It means that multiple coarse-
grained operations execute in parallel when a single instruction is issued by using the
interfaces.

Collective Operations

The EPs involved in a collective operation perform a certain communication collectively.
Different types of collective operations are supported in the ensemble. Results of the

42

5.3 Programming Paradigm

collective operation can be returned either to the EP or to the master thread. There are
two major types of collective operations in terms of the ways of returning results. These
collective operations are described as follows:

1. Local returning: It supports that results of a collective operation are written back
to the participating EPs.

2. Global returning: It supports that results are written back to the master thread
that is executed on the CP in the machine model.

5.3.4. Master Thread

The master thread is executed on the CP in a fork-join fashion. It is responsible for
globally managing the ensemble-based program written to implement a scientific ap-
plication. The major tasks of the master thread include performing I/O, creating the
ensemble and topologies, creating and initializing EPs, managing topologies in the en-
semble, local computations, and triggering parallel operations, and so on. These tasks
are described as follows.

1. The master thread is responsible for I/O operations including getting data from
input files and writing results to output files. Usually, the input data that are
obtained by the master thread can be used for creating EPs or topologies. In
addition, the I/O can be accomplished by EPs in a fine granular and distributed
fashion, but it is not discussed in this section.

2. The master thread can create the ensemble by using different specifications, e.g.,
the application type, the number of EPs, the number of topologies, and so on.
The ensemble is kept during the entire execution of the program after it is created
by the master thread. In this work, we restrict the paradigm to code with just a
single ensemble for an application. The extension to the programming paradigm
that supports multiple ensembles is discussed in future work.

3. A number of EPs are created depending on the description of EPs and input data.
The master thread is responsible for creating EPs and inserting them into the
ensemble by using the operations for managing EPs.

4. As it is described in Subsection 5.3.3, the ensemble can keep multiple topologies.
The master thread takes care of creating topologies and inserting topologies into
the ensemble.

5. One of the major tasks of the master thread is to trigger parallel operations on
the ensemble’s EPs. Once a parallel operation is issued, the participating EPs
can perform a certain operation in parallel asynchronously. Parallel operations are
executed in a blocking fashion, which means that the next parallel operation starts
only when the previous operation is done by the participating EPs.

43

Chapter 5 Ensemble-based Programming

5.4. Programming Interface

5.4.1. Overview

This section introduces the programming interface of the machine model described
in Section 5.2. The programming interface supports an object-oriented programming
(OOP) approach implemented in C++ to specify the software entities described in
Section 5.3, including elementary points, the ensemble, and topologies. The program-
ming interface is easy to use because its host language is standard C++ without any
extensions. In addition, it consists of a template hierarchy that supports specifying the
software entities in an OOP fashion. The template hierarchy current supports multi-
body, irregular grid, and regular grid applications, and other application areas can be
supported by extending the template hierarchy. For clarity, the template hierarchy
is explained with a concrete MD simulation as an running example. Details of the
ensemble-based implementation of the MD simulation are described in this section.

5.4.2. An Object-Oriented Programming Approach

The object-oriented programming (OOP) approach is based on objects, which are data
structures consisting of data fields and methods. Developers create objects together with
their interactions to design applications. For example, objects can inherit characteristics
from other objects, or access data of other objects for local computation. Programming
techniques may include features such as data abstraction, encapsulation, modularity,
polymorphism, and inheritance. The entities described in Section 5.3 can entirely be
defined as objects based on the OOP approach. For example, an elementary point
consisting of local data and local operations can be specified by objects with attributes
and member functions. The interactions between objects are defined as member function
calls.

Many modern programming languages now support OOP, at least as an option. For ex-
ample, C++, Java[112] and Smalltalk[113] are three of the widely used OOP languages.
C++ is one of the most popular programming languages that perform OOP. It is im-
plemented on a wide variety of hardware and operating system platforms. It introduces
OOP features to C by adding object oriented features, such as classes, templates, virtual
functions, inheritance, and so on. Therefore, the host language of the ensemble-based
programming interface is C++, which is a popular OOP language that most program-
mers are currently working with. Programmers can write ensemble-based programs with
the support of the programming interface by using standard C++ syntax. This charac-
teristic improves the programmability, since there is no need for programmers spending
additional time on new programming features beyond C++.

One of the advanced OOP features in C++ is the template[114]. It is a powerful tool that
can be used for generic programming, template meta-programming, code optimization,

44

5.4 Programming Interface

and so on. C++ supports both function and class templates, which can be parameterized
by types, compile-time constants, or other templates. C++ templates are implemented
by instantiation at compile-time. To instantiate a template, compilers substitute spe-
cific arguments for a template’s parameters to generate a concrete function or class.
The template-based programming approach can widely use for designing C++ libraries.
For example, the STL is a C++ software template-based library. It applies compile-time
polymorphism that is more efficient than traditional run-time polymorphism. In order to
improve the programming productivity and reusability, the programming interface con-
sists of a template hierarchy for specifying the software entities described in Section 5.3
including elementary points, their topologies, and the ensemble. Concrete classes derive
from those class templates to implement application-specific functionalities. The tem-
plate hierarchy is easy to reuse and extend. It helps library developers to add new class
templates into the template hierarchy to support new application areas.

5.4.3. Overview of a Running Example

In this section, a molecular dynamics (MD) simulation is presented as a running example,
which helps to explain how to program with the template hierarchy. An ensemble-based
MD program primarily consists of a main function and three active entities, i.e., a set
of molecules, a topology, and an ensemble of molecules. A molecule is a fine granular
element in the MD simulation domain. It includes attributes and member functions that
perform computations according to the equations of movement described in Chapter 2.
The ensemble is a container of the set of molecules. It consists of operations that can
be triggered by the main function to perform certain operations on the molecules in
the ensemble. The topology describes relationships and communication patterns of the
molecules in the ensemble. The main function implements a master thread that controls
the behavior of these active entities. Its major steps are described as follows:

1. Creating the ensemble of molecules;

2. Creating multiple molecules and inserting them into the molecule ensemble;

3. Creating topologies of the molecules and inserting the topologies into the molecule
ensemble;

4. Triggering parallel operations on the molecules in the ensemble, e.g., exchanging
data based on topologies, parallel operations, reducing certain attributes, and so
on.

The behavior of a molecule primarily consists of these steps, e.g., initialization, forceCal-
culation, integration, and updateLocation. All the molecules in the simulation domain
behave in this way. The steps from the 2nd to the 4th usually execute iteratively for
a large number of time steps. The pseudo code of the implementation details will be
presented in the following subsections respectively.

45

Chapter 5 Ensemble-based Programming

1. initialization: The molecule is created and initialized with input data.

2. forceCalculation: The molecule can get its neighbor molecules and calculate forces
or energies exerted between them based on certain algorithms.

3. integration: The attributes of the molecule are calculated and integrated according
to the equations of motion.

4. updateLocation: The molecule moves to a new location with the updated attributes,
which can be used for computations of the next iteration.

5.4.4. Template Hierarchy

The template hierarchy supports specifying the software entities described in the pro-
gramming paradigm. It starts from three top-level base templates, which are Elemen-
taryPoint, Ensemble, and Topology. These base templates have derived templates called
application-specific templates, which support multi-body, irregular grid, and regular grid
applications. User-defined entities with local attributes and operations can be defined
as C++ classes derived from the application-specific templates. The support for other
application areas can be extended by adding new application-specific templates into the
template hierarchy.

The organization of the template hierarchy is shown in Figure 5.9. Details of Elemen-
taryPoint, Ensemble, Topology, and the application-specific templates are described in
following subsections. To make the consistency of the terminologies in this subsection,
we use lowercased words to represent the objects instantiated by classes. For example,
“elementary point” means the object instantiated from ElementaryPoint, and “ensem-
ble” means the object instantiated from Ensemble.

MultiBodyEP

ElementaryPoint

IrrGridEP

ReGridEP

MultiBodyEnsemble

IrrGridEnsemble

ReGridEnsemble

MultiBodyTopology

IrrGridTopology

ReGridTopology

Ensemble Topology
Base Template

Application-Specific Template

Multi-Body

Irregular Grid

Regular Grid

Figure 5.9.: Organization of the template hierarchy

46

5.4 Programming Interface

5.4.5. ElementaryPoint and its Derived Templates

In the template hierarchy, the base templates for creating elementary points are Elemen-
taryPoint and its derived templates namely MultiBodyEP, IrrGridEP, and ReGridEP.
These templates have multiple predefined attributes and functions. They are base tem-
plates for creating user-defined classes in different application areas. The header files
with full declaration of these templates are attached in the Appendix.

ElementaryPoint has two attributes, id and ensemblePointer. It has getter and setter
functions for reading and writing these attributes. In addition, get address functions
defined by programmers are presented in this section. An outline of the template’s
definition is shown in Listing 5.1. Details of the attributes and functions are described
as follows:

Listing 5.1: Elementary Point
template<class Ensemble>
class ElementaryPoint {
protected :

//The i d e n t i f i e r
unsigned long id ;

//The Ensemble po in t e r
Ensemble∗ensemblePointer ;

public :
// De fau l t Constructor
ElementaryPoint () ;

// De fau l t Des t ruc tor
virtual ~ElementaryPoint () ;

//Get the i d e n t i f i e r
inl ine unsigned long getId () ;

// Set the i d e n t i f i e r
inl ine void setId (unsigned long id) ;

//Get the Ensemble po in t e r
inl ine Ensemble∗getEnsemble () ;

// Set the Ensemble po in t e r
inl ine void setEnsemble (Ensemble∗ensemblePointer) ;

} ;

1. id: It is an unsigned long integer, which is used to distinguish elementary points.
It is read and written by programmers using predefined setter and getter functions.
Programmers have to guarantee that different elementary points have different ids.

47

Chapter 5 Ensemble-based Programming

2. ensemblePointer : the Ensemble pointer can be used by elementary points to call
high-level operations defined in Ensemble. For example, a molecule can get its
neighbor list from the ensemble for local computations by specifying ensemble-
Pointer ->getNeighbors().

3. Getter and setter functions: These functions are used to get and set predefined
attributes in ElementaryPoint.

4. Get address functions: These functions are public member functions in application-
specific classes derived from ElementaryPoint in order to return addresses of at-
tributes in the classes. They can be used as parameters of the operations defined
in Ensemble. A get address function is defined in such a format in Listing 5.2. The
way of using this function will be discussed in the next subsections.

Listing 5.2: Get address function
//A1 i s an a t t r i b u t e o f an e lementary po in t
//The DataType i s the data type o f a t t r i b u t e A
DataType∗GetAddressA1{

return &(this−>A1) ;
}

MultiBodyEP and ReGridEP

The derived templates, MultiBodyEP and ReGridEP, provide additional attributes used
for the elementary points in multi-body and regular grid applications. MultiBodyEP
provides position and ReGridEP has coordinate as their attributes. These attributes are
described below.

1. position: It keeps the spatial location of a multi-body EP in the domain of an
application. The data type and the dimension of position are template param-
eters to create a MultiBodyEP class. For example, it can keep two-dimensional
or three-dimensional floating point or double precision floating point values. The
value of position changes if multi-body EPs move in the simulation domain during
execution.

2. coordinate: It stores the coordinates of ReGridEP objects in a multi-dimensional
regular domain. The data type is integer. The dimension of coordinate is a tem-
plate parameter to create ReGridEP classes. Usually, the coordinates of ReGridEP
objects don’t change during the entire execution of regular grid applications.

The Running Example

Our running example, the MD simulation, belongs to the multi-body application area.
Molecule is derived fromMultiBodyEP. The declaration ofMolecule and the way of creat-
ing molecules are shown in Listing 5.3. The attribute list in the figure typically consists of

48

5.4 Programming Interface

basic data types or compound data structures, e.g., integer values, floating point values,
arrays, vectors, and so on. The member functions primarily perform application-specific
computations and update values of the attributes in molecules, e.g., initialization, force-
Calculation, integration, and update, which are described in Subsection 5.4.3. In addition,
programmers can create molecules or molecule pointers by using constructors defined in
Molecule with a parameter list.

Listing 5.3: Declaration of Molecule and molecule creation
//The d e c l a r a t i on o f c l a s s Molecule
class Molecule : public MultiBodyEP {

// A t t r i b u t e L i s t
public :

// De fau l t Constructor
Molecule () ;

//Constructor wi th parameter l i s t
Molecule (Attribute List) ;

// I n i t i a l i z i n g parameters o f the molecu le
void initialization (Parameter List) ;

// c a l c u l a t e the f o r c e s e xe r t ed on the molecu le
void forceCalculation (Parameter List) ;

// update l o c a t i o n s by i n t e g r a t i n g equa t ions o f movement
void integration (Parameter List) ;

} ;

// crea t e a molecu le wi th a a t t r i b u t e l i s t
Molecule molecule (Attribute List) ;

// crea t e a molecu le po in t e r wi th a a t t r i b u t e l i s t
Molecule∗moleculePointer = new Molecule (Attribute List) ;

5.4.6. Ensemble and its Derived Templates

Ensemble and its derived templates are used to create the ensemble of an application.
Ensemble has two template parameters, EP and Top. EP is user-defined class derived
from the application-specific templates of ElementaryPoint. Top can be MultiBody-
Topolgy, IrrGridTopology, or ReGridTopology. The full declaration of Ensemble and its
derived templates is attached in the Appendix. An outline of Ensemble’s definition is
shown in Listing 5.4. In this subsection, we use the term “EP” to represent an object
of a user-defined class derived from one of the derived templates of ElementaryPoint.

49

Chapter 5 Ensemble-based Programming

The term “ensemble” represents an object instantiated fromMultiBodyEnsemble, IrrGri-
dEnsemble, or ReGridEnsemble.

Listing 5.4: An outline of Ensemble
template<class EP , class Topology>
class Ensemble
{
protected :

vector<EP> EP_Set ;
vector<Topology∗> Topology_Set ;
unsigned long numOfEP ;
unsigned short numOfTop ;

public :
Ensemble (int ∗argc , char ∗∗∗argv) ;

Ensemble (int ∗argc , char ∗∗∗argv , unsigned long numOfEPs) ;

~Ensemble () ;

unsigned long getNumOfEPs () ;

unsigned short getNumOfTops () ;

void insertEP (EP∗ep) ;

void removeEP (EP∗ep) ;

void insertTopology (Topology∗topology) ;

void removeTopology (Topology∗topology) ;

void removeTopology (unsigned short topId) ;

Topology∗ getTopology (unsigned short topId) ;

vector<EP∗>& getNghbs (EP∗current , Topology∗topology) ;

void update (Topology∗topology) ;

template<typename GetOperation>
void update (GetOperation getOp , Topology∗topology) ;

template<typename Operation>
void parallel (Operation op) ;

template<typename GetOperation>
void allReduceOp (GetOperation getOp , int reduceOp) ;

50

5.4 Programming Interface

template<typename GetOperation>
void reduceOp (GetOperation getOp , in reduceOp , void∗ result) ;

virtual void finalize () ;
} ;

The attributes in Ensemble are shown as follows:

1. EP_Set: It stores all the EPs in the ensemble. Once an EP is created, it can be
inserted into EP_Set by using insertEP.

2. numOfEPs: It is an unsigned long integer, which keeps the number of EPs stored
in the ensemble.

3. Topology_Set: It stores multiple topology pointers. After a topology was created,
it can be inserted into Topology_Set.

4. numOfTops: It is an unsigned short integer, which keeps the number of topology
pointers stored in Topology_Set.

Ensemble predefines a group of operations that can be called in the main function in
order to control the behaviors of the EPs in the ensemble. Details of the operations are
described as follows:

1. Constructor: It is mainly responsible for constructing the ensemble by input pa-
rameters argc, argv, and other application-specific parameters. For example, if the
high-level operations of Ensemble are implemented on distributed memory sys-
tems with MPI, the constructor has to call MPI_Init() internally passing argc and
argv. In addition, programmers should provide the overall number of EPs to the
constructor.

2. getNumOfEPs: It is used to get the number of EPs stored in the ensemble.

3. getNumOfTops: It is used to get the number of topologies kept in the ensemble.

4. getTopology: It is used to return a topology pointer stored in Topology_Set.

5. insertEP: Programmers can use it to insert EPs into the ensemble. The parameter
of insertEP is a pointer to an EP.

6. removeEP: It is used to remove EPs from the ensemble. Programmers can either
provide a pointer or an identifier of an EP to remove it from the ensemble.

7. insertTopology: It inserts a topology into the ensemble by providing its pointer.

8. removeTopology: It is used to remove a topology from the ensemble by providing
the address or identifier of a topology.

9. update: As described in Subsection 5.3.3, update triggers SC-update operations,
which supports exchanging the complete information as well as partial information

51

Chapter 5 Ensemble-based Programming

of EPs in the ensemble. The update with a topology pointer as its parameter
exchanges the complete information of EPs based on the topology. The update
with a get address function and a topology pointer as its parameters only exchanges
partial information of EPs according to the topology. The get address function can
be passed as a parameter of update in such a way, which is shown in Listing 5.5.

Listing 5.5: update with GetAddress Function
//Provide a member func t i on GetAddressA1
update (mem_fun_ref(&Molecule : : GetAddressA1) , &topology) ;

The function GetAddressA1 is passed as a parameter of update by using the func-
tion adapter mem_fun_ref defined in C++ STL[115]. mem_fun_ref converts a
member function to a standard function object, which can be used as a parameter
of this operation.

10. parallel: It triggers member functions of EPs to execute in parallel. The template
parameter is a function object adapted from a member function of Elementary-
Point. For example, a Molecule class has a member function called forceCalcula-
tion, which calculates the forces exerted on a molecule by other molecules. As it is
shown in Listing 5.4, programmers can execute forceCalculation of the molecules
in parallel by using this operation.

11. allReduceOp: It provides collective reduction operations that return the result in
all the involved EPs. There are different types of calculations supported by this
operation. The type of calculations is a integer value, which is a parameter of
the interface. For example, the calculation type is accumulation means that an
attribute of the involved EPs is accumulated and the result is written back to the
attribute of the EPs respectively. GetOperation is a get address function, which is
used to specify a specific attribute of EPs. The basic format of these operation is
shown in the program listing in Listing 5.4.

12. reduceOp: It supports collective operations to return a result to the main function.
The type of collective calculations and an address of the result have to be specified
as parameters of this operation. Its basic format is shown in the programming list
in Listing 5.4. All the other formattings of this operations are presented in the
Appendix.

13. getNghbList: This operation is called by an individual EP as to get a list of its
neighboring EPs from the ensemble based on a topology. After it is accomplished,
the EP can access data in the neighbor list for local computations. The full dec-
laration of these forms is presented in the Appendix.

14. finalize: It is responsible for terminating the work of the ensemble. This operation
has to be called at the end of the main function.

52

5.4 Programming Interface

The derived templates of Ensemble inherit the attributes of Ensemble and implement its
operations. They are used to create application-specific ensembles directly by specifying
the same application type of topologies. For example,MultiBodyEnsemble<MultiBodyEP,
MultiBodyTopology> can only be created by specifying MultiBodyTopology and Multi-
BodyEP as its template parameters. It is used to create the ensemble for multi-body
applications.

MultiBodyEnsemble

MultiBodyEnsemble has ElementaryPoint, Topology, Dimension, and DataType as its
template parameters. ElementaryPoint must be a class derived from MultiBodyEP.
Topology must be specified by MultiBodyTopology. Dimension is a unsigned short in-
teger, typically two or three, that depicts the dimension the spatial domain of Multi-
BodyEnsemble. DataType is the data type of lower and upper bounds of the simulation
domain. It can be a C++ supported data type, i.e., a double floating point, a single
floating point, or a long double floating point. MultiBodyEnsemble has domainLower
and domainUpper as its attributes, which have to be provided to the constructor of
MultiBodyEnsemble.

1. domainLower : It keeps lower bounds of the simulation domain in multiple dimen-
sions using a specified data type. The lower bounds of the domain are usually
0.0.

2. domainUpper: It keeps upper bounds of the simulation domain in multiple dimen-
sions using a specified data type.

IrrGridEnsemble

IrrGridEnsemble is a derived template of Ensemble. It has ElementaryPoint and Topol-
ogy as its template parameters. ElementaryPoint must be a class that is derived from
IrrGridEP, and Topology is specified by IrrGridTopology.

ReGridEnsemble

ReGridEnsemble is a derived template of Ensemble; it has ElementaryPoint, Topology,
and Dimension as its template parameters. ElementaryPoint must be a class that is
derived from IrrGridEP, and Topology must be specified by IrrGridTopology. Dimension
is a unsigned short integer that depicts the dimension of the coordinates of EPs stored
in the ReGridEnsemble object.

53

Chapter 5 Ensemble-based Programming

The Running Example

As it is shown in Subsection 5.4.3, the main function of the MD simulation is responsible
for creating moleculeEnsemble, initializing moleculeEnsemble with input parameters,
inserting molecules into moleculeEnsemble, updating shadow copies of the molecules
in moleculeEnsemble, triggering forceCalculation function of the molecules in forms of
parallel operations, and so on. All these basic steps are coded in the following way,
which is shown in Listing 5.6.

Listing 5.6: An outline of the main function
#include "Ensemble.h"
#include "Molecule.h"
int main (int argc , char∗∗argv) {

// crea t e a moleculeEnsemble , the fo rmat t ing o f MultiBodyTopology
// as a temp la te parameter w i l l be d i s cu s s ed in the f o l l ow i n g

su b s e c t i on s
MultiBodyEnsemble<Molecule , MultiBodyTopology <... > >

moleculeEnsemble (argc , argv , NUM_OF_MOLECULE) ;

// crea t e mu l t i p l e mo lecu les and i n s e r t them in to the
moleculeEnsemble

for (Number of molecules)
{

Molecule∗molecule = new Molecule (Parameter List) ;
moleculeEnsemble . insertEP (molecule) ;

}

// crea t e a Topology
Topology∗topology = new Topology (cut_off) ;

//shadowCopyUpdate and pa r a l l e l E x e c u t i o n execu te many i t e r a t i o n s
for (Number of Iterations) {

// update shadow cop i e s o f Molecu les
moleculeEnsemble . update (topology) ;

// p a r a l l e l e xecu t i on on Molecu les
moleculeEnsemble . parallelExecution (mem_fun_ref(&Molecule : :

forceCalculation) , topology) ;
}

// f i n i a l i z i n g the moleculeEnsemble
moleculeEnsemble . finalize () ;

return 0 ;
}

54

5.4 Programming Interface

5.4.7. Topology and its Derived Templates

Topology is used to create topologies, which keep the communication patterns of EPs in
the ensemble. It has three application-specific templates, MultiBodyTopology, IrrGrid-
Topology, and ReGridTopology. The topologies are created by using predefined con-
structors in the template hierarchy. The declaration of Topology is shown in Listing 5.7.
Topology has predefined attributes and operations. Details of the attributes are described
below.

1. id: It is a short integer value used to distinguish topologies stored in the ensemble.
The id of the root topology is always 0, while the ids of sub topologies are from 1
to N.

2. numofEPs: It stores the number of EPs managed by a topology.

3. ensemblePointer : It can be used to reference the ensemble, since a topology needs
some information from the ensemble for local operations.

4. isRootTop: It is a bool value that depicts whether the current topology is a root
topology defined in Section 5.3.3.

5. baseTopPtr : It is a Topology pointer. If a topology is a sub topology of another
one, the pointer references to its base topology.

The predefined operations are shown as follows:

1. initialization: It initializes the internal data structures of Topology for the next
operations.

2. createNeighborList: If the topology is the root topology, it creates the neighbor
EP list for the EPs, which can be reused by its sub topologies.

3. updateTopology: It rebuilds a new topology according to the runtime information
or the information specified by the users.

Listing 5.7: Declaration of Topology
#include "Ensemble.h"

template <class EP>
class Topology<EP> {
protected :

unsigned long id ;
unsigned long numOfEP ;
bool isRootTop ;
Topology<EP>∗baseTopPtr ;
Ensemble<EP , Topology<EP> >∗ ensemblePointer ;

public :
// De fau l t cons t ruc t o r
Topology () ;

55

Chapter 5 Ensemble-based Programming

// I n i t i a l i z e the curren t t opo l o gy
void initialization () ;

//Create the ne ighbor l i s t f o r the EPs
void createNeighborList () ;

// I n i t i a l i z e the curren t t opo l o gy
void updateTopology () ;

} ;

Programmers can create topologies by using the predefined constructors of the application-
specific templates directly. The application area of a topology and the ensemble should
be the same. For example, a MultiBodyTopology<Molecule, 3, double> class is a template
parameter of MultiBodyEnsemble to create a MultiBodyEnsemble<Molecule, MultiBody-
Topology<Molecule, 3, double> > class. The full declaration of Topology and its derived
templates is presented in the Appendix. Details of the Topology’s derived templates are
described in the following subsections.

MultiBodyTopology

MultiBodyTopology is used to create topologies for multi-body applications. It has Ele-
mentaryPoint, Dimension, and DataType as its template parameters. ElementaryPoint
can be one of the three derived templates of ElementaryPoint defined in Subsection 5.4.5.
Dimension is an unsigned short integer. It specifies the dimension of the simulation do-
main. DataType is the data type of cutOffRadius. It can be a C++ supported data
type, i.e., a double floating point, a single floating point, or a long double floating point.
MultiBodyTopology has cutOffRadius as its attribute, which can be specified by pro-
grammers. cutOffRadius is a threshold of spatial distance of two EPs. Each of the EPs
requires local data of the other one if their distance is smaller than cutOffRadius. If the
value of cutOffRadius equals to -1, each EP requires data of all the other EPs in the
ensemble. In addition, MultiBodyTopology has an updateTopology function, since topolo-
gies of a multi-body application change during execution. The communication pattern
of the EPs is recalculated by calling updateTopology explicitly. Multi-body topologies
can be created by calling predefined constructors, which are shown in Listing 5.8.

The constructors and some functions of IrrGridTopology are presented in Listing 5.9.
Details of these functions are described as follows:

1. Constructor of the root topology with cutOffRadius: It constructs the root topol-
ogy based on a cut off radius. In addition, the topology id, number of EPs,
ensemble pointers have to be specified.

2. Constructor of a sub topology with a group of EP indices: It is used to create a
sub topology by mainly specifying a vector of EP indices and its base topology.

56

5.4 Programming Interface

3. updateTopology: It rebuilds a new topology according to the updated locations of
all the EPs in the ensemble.

Listing 5.8: Declaration of MultiBodyTopology
template<class EP , unsigned short Dimension , typename DataType>
class MultiBodyTopology : public Topology<EP>{

//Constructor wi th cutOffRadius , dLower , dUpper
MultiBodyTopology (unsigned topId , DataType cutOffRadius , unsigned

long numOfEPs , MultiBodyEnsemble<EP , MultiBodyTopology<EP ,
Dimension , DataType> , Dimension , DataType>∗
multiBodyEnsemblePtr) ;

//Constructor wi th cutOffRadius , dLower , dUpper , s u b s e t o f EPs
MultiBodyTopology (unsigned topId , vector<unsigned long>

subIndices , unsigned long numOfEPs , MultiBodyTopology<EP ,
Dimension , DataType>∗baseTopPtr , MultiBodyEnsemble<EP ,
MultiBodyTopology<EP , Dimension , DataType> , Dimension , DataType
>∗multiBodyEnsemblePtr) ;

// update the t opo l o gy wi th a cutOf fRadius
void updateTopology () ;

}

IrrGridTopology

IrrGridTopology keeps the communication pattern of a set of EPs in the ensemble by
using id-based undirected graphs. An undirected graph typically consists of vertices
and edges. The vertices represent ids of EPs in the ensemble and the edges represent
their interactions. There is an edge between two vertices if and only if both EPs require
information of the other one. Usually the graphs are sparse graphs, which mean that
the number of EPs is much larger than their interactions.

The Compressed Sparse Row (CSR) format is a widely used scheme for storing and
representing sparse graphs. In this format the adjacency structure of a graph with n
vertices and m edges is represented using two arrays xadj and adjncy. The xadj array is
of size n + 1 whereas the adjncy array is of size 2m (this is because for each edge between
vertices v and u we actually store both (v, u) and (u, v)). The adjacency structure of
the graph is stored as follows. Assuming that vertex numbering starts from 0 (C++
style), then the adjacency list of vertex i is stored in adjncy starting at index xadj[i] and
ending at (but not including) index xadj[i+1] (i.e., adjncy[xadj[i]] through and including
adjncy[xadj[i+1]-1]). That is, for each vertex i, its adjacency list is stored in consecutive
locations in adjncy, and xadj is used to point to where it begins and where it ends.

The adjacency list format is another representation of id-based sparse graphs. In an
adjacency list representation, each node in the graph keeps a list of all other nodes

57

Chapter 5 Ensemble-based Programming

which it has an edge to. For example, EP0 requires data of EP1 if and only if EP1 is
kept in the EP0 ’s node list, which is called a neighbor list. The advantage of this format
is that it is flexible to operate on a graph, e.g., inserting nodes, inserting directed or
undirected edges, removing nodes, removing edges, and so on.

The constructors and some functions of IrrGridTopology are presented in Listing 5.9.
Details of these functions are described as follows:

1. Constructor with CSR: It supports constructing the root topology with a CSR
format graph. In addition, the topology id, number of EPs, ensemble pointers
have to be specified.

2. Constructor with an adjacency list: It can be used to create a root topology by
specifying ids of EPs and their neighbor list in an adjacency list format rather than
the CSR format.

3. Constructor of a sub topology with a group of EP indices: It is used to create a
sub topology by mainly specifying a vector of EP indices and its base topology.

4. addEP: It adds an EP into the topology by specifying the id of the EP.

5. removeEP: It removes an EP from the topology by specifying the id of the EP.

6. addLink: It adds a link between two EPs by providing the ids of the starting EP
and the ending EP.

7. removeLink: It removes an link between two EPs by providing the ids of the
starting EP and the ending EP.

8. updateTopology: It rebuilds a new topology according to the updated relations
between edges and points. For example, the user may add EPs or links to the
topology, and when the updateTopology is called, the updated topology will be
available.

Listing 5.9: Declaration of IrrGridTopology
template <class EP>
class IrrGridTopology : public Topology<EP>{

//Constructor wi th CSR format to c r ea t e a roo t Topology
IrrGridTopology (unsigned topId , unsigned long∗ xadj , unsigned

long∗ adjncy , unsigned long numOfEPs , unsigned long numOfEdges
, IrrGridEnsemble<EP , IrrGridTopology<EP , Dimension , DataType>,
Dimension , DataType>∗ irrGridEnsemblePtr) ;

//Constructor wi th a ne ighbor l i s t i n d i c e s
IrrGridTopology (unsigned topId , vector<vector<unsigned long> >

adjListIndices , unsigned long numOfEPs , IrrGridEnsemble<EP ,
IrrGridTopology<EP , Dimension , DataType>, Dimension , DataType>∗
irrGridEnsemblePtr) ;

58

5.5 Example: An MD Simulation

//Constructor wi th a sub s e t o f ne ighbor l i s t s and a sub s e t o f
i n d i c e s

IrrGridTopology (unsigned topId , vector<unsigned long> subIndices ,
unsigned long numOfEPs , IrrGridTopology<EP , Dimension , DataType

>∗baseTopPtr , IrrGridEnsemble<EP , IrrGridTopology<EP , Dimension ,
DataType>, Dimension , DataType>∗irrGridEnsemblePtr) ;

//Add an EP re f e r ence in t o the t opo l o gy
void addEP () ;

//Remove an EP re f e r ence from the topo l o gy
void removeEP () ;

//Add a l i n k between two EPs in to the topo l o gy
void addLink () ;

//Remove a l i n k between two EPs in to the t opo l o gy
void removeLink () ;

// update the t opo l o gy accord ing to the r e v i s e d in format ion
void updateTopology () ;

} ;

ReGridTopology

ReGridTopology is used to create topologies for regular grid applications, which usually
do not update during execution. It has neighborStencil as an attribute. The constructors
both with the CSR format and with an adjacency list are supported by ReGridTopology.
In addition, ReGridTopology objects are created based on a stencil, which is specified by
users. For example, if neighborStencil is a set of {0, -1, 1} and {-1, 0, 1}, the coordinates
of a regular grid point {a, b, c}’s neighboring points are {a, b-1, c+1} and {a-1, b, c+1}.
Details of ReGridTopology are not discussed in this chapter.

5.5. Example: An MD Simulation

To implement the MD simulation based on the programming interface described in
Section 5.4, programmers can write a program that mainly consists of two parts, the
definition of molecules and the main function. The definition of molecules is specified
by the class Molecule with local attributes and member functions. Molecule is used to
generate a large number of molecules, which are defined as EPs. The main function

59

Chapter 5 Ensemble-based Programming

is executed as a master thread that controls these EPs by using operations defined in
Ensemble.

Parts of the declaration of Molecule are shown in Listing 5.10. The code from line 9
to line 12 specifies the individual attributes of a molecule. From line 15 to line 16, the
constructor is defined to create molecules by providing a list of input parameters related
to the attributes. The forceCalculation is a member function, which requires data from
other molecules. Therefore, the programmer defines a vector of molecule pointers, which
stores the neighbor molecules returned from the ensemble by using getNghbList defined
in Ensemble. The input of getNghbList is the current molecule pointer and the root
topology defined based on the cut-off radius. After the neighbor list is returned, all
the data in the neighbor molecules can be accessed for local computation. In line 26,
an iterator of the molecule vector is defined to traverse the molecules in the vector.
The integration function is used to update local attributes in Molecule. It just requires
local information of the current molecule without calling functions defined in Ensemble.
Programmers are free to define these member functions according to certain algorithms.

Listing 5.10: Declaration of Molecule
1 #include <vector>
2 #include <i t e r a t o r >
3 #include "Ensemble.h"
4 #include "Topology.h"
5
6 class Molecule :
7 public MultiBodyEP<MultiBodyEnsemble<Molecule ,
8 MultiBodyTopology<Molecule , 3 ,double>>,3,double> {
9 double mass ;

10 double initialVelocity [3] ;
11 double velocity [3] ;
12 double accelaration [3] ;
13 public :
14 //Constructor wi th l o c a l a t t r i b u t e s
15 Molecule (unsigned long id , double mass ,
16 double initialVelocity [3] , position [3]) ;
17
18 // I n i t i a l i z i n g parameters o f the molecu le
19 void init (. . .) ;
20
21 // c a l c u l a t e the f o r c e s e xe r t ed on the molecu le
22 void forceCalculation (. . .) {
23 //The code below i s wr i t t en by programmers to
24 // implement s p e c i f i c a l go r i t hms
25 std : : vector<Molecule∗> nghbMolecules ;
26 std : : vector<Molecule ∗>:: iterator nghbMoleculesIter ;
27 nghbMolecules = this−>ensemblePtr−>getNghbList

60

5.5 Example: An MD Simulation

28 (this , this−>ensemblePointer−>
getTopology (0)) ;

29 for (nghbMoleculesIter = nghbMolecules . begin () ;
30 nghbMoleculesIter != nghbMolecules . end () ;

nghbMoleculesIter++){
31 //Computation between l o c a l a t t r i b u t e s and data in

ne ighbor Molecu les ;
32 }
33 } ;
34
35 // update l o c a l a t t r i b u t e s
36 void integration (. . .) ;
37 } ;

The main function is written to implement the master thread. It primarily consists of
instantiating molecules, creating the ensemble of the molecules, inserting the molecules
into the ensemble, creating a topology of the molecules, triggering parallel operations
on the molecules, and so on. The main function is shown in Listing 5.11, and its major
parts are explained as follows:

1. Lines 13 and 14, the main function creates an mdEnsemble by specifying argc and
argv, the lower and upper bounds of the domain, and the overall number of EPs.

2. Lines 20 to 27, it instantiates a large number of molecules by calling the Molecule’s
constructor with the data obtained from input files. After the molecules are cre-
ated, they are inserted into the ensemble by specifying their pointers. These tasks
are iteratively executed in a for loop until all the molecules were successfully in-
serted.

3. Lines 30 to 33, the main function creates the root topology by specifying the cutoff
radius and inserts it into the ensemble.

4. In line 36, a parallel operation is called. The parameter of the parallel operation is
the member function init defined inMolecule. It triggers all the molecules managed
by mdTopology to execute the function init in parallel.

5. Lines 39 to 51, it specifies a single simulation step, including communication,
parallel computation, and an update operation. This simulation step is executed
for many time steps. The main function triggers update to exchange data among
the molecules based on the cut-off radius topology. Then, the molecules execute
forceCalculation on local attributes and data obtained from other molecules as
well. After forceCalculation is done, each molecule executes integration in parallel
to update, for example, velocity, acceleration, position, and so on according to
local information. The molecules move to new locations in the context of the
MD simulation, which may change the communication pattern of the molecules.

61

Chapter 5 Ensemble-based Programming

Therefore, the current topology needs to be updated by calling updateTopology
explicitly.

Listing 5.11: The main function of an MD simulation
1 #include "MultiBodyEnsemble.h"
2 #include "MultiBodyTopology.h"
3 #include "Molecule.h"
4
5 //The macro d e f i n i t i o n o f the number o f mo lecu le s
6 #define NUM_OF_MOLECULE 1024
7
8 //The macro d e f i n i t i o n o f the number o f i t e r a t i o n s
9 #define NUM_OF_ITER 128

10
11 int main (int argc , char∗∗argv) {
12 // crea t e the ensemble wi th Molecule , MultiBodyTopology , domain

bounds
13 MultiBodyEnsemble<Molecule , MultiBodyTopology<Molecule , 3 , double

> >
14 mdEnsemble (argc , argv , domainLower , domainUpper

, NUM_OF_MOLECULE) ;
15
16 //Read data from input f i l e s and i n i t i a l i z e
17 // v a r i a b l e s e . g . i , mass , i n i t i a l V e l o c i t y , p o s i t i o n
18
19 // crea t e mo lecu le s and i n s e r t them in to the ensemble
20 Molecule∗molecule ;
21 for (int i=0;i<NUM_OF_MOLECULE) {
22 //mass , i n i t i a l V e l o c i t y , p o s i t i o n can be ob ta ined from input

f i l e s
23 molecule = new Molecule (i , mass , initialVelocity , position) ;
24
25 //molecu le s are i n s e r t e d in t o the mlEnsemble
26 mdEnsemble . insertEP (molecule) ;
27 }
28
29 // crea t e a topo l o gy wi th Molecule , c u t o f f rad ius i s assumed to be

2.0
30 MultiBodyTopology<Molecule , 3 , double> mdTopology (2 . 0) ;
31
32 // i n s e r t the t opo l ogy in to the ensemble
33 mdEnsemble . insertTop(&mdTopology) ;
34
35 // Pa r a l l e l e xecu te i n i t i a l i z a t i o n o f a l l mo lecu les in the

mlEnsemble
36 mdEnsemble . parallel (mem_fun_ref (Molecule : : init) , &mdTopology) ;
37

62

5.6 Summary

38 //Communication and computation happens i t e r t i v e l y
39 for (int i=0;i<NUM_OF_ITER ; i++){
40 //Communication o f a l l mo lecu le s in the mlEnsemble
41 mdEnsemble . update(&mdTopology) ;
42
43 // Pa r a l l e l e xecu te f o r c eCa l c u l a t i on o f a l l mo lecu les in the

mdEnsemble
44 mdEnsemble . parallel (mem_fun_ref (Molecule : : forceCalculation) , &

mdTopology) ;
45
46 // Pa r a l l e l e xecu te i n t e g r a t i o n o f a l l mo lecu les in the

mdEnsemble
47 mdEnsemble . parallel (mem_fun_ref (Molecule : : integration) , &

mdTopology) ;
48
49 //Update the t opo l o gy f o r next i t e r a t i o n s
50 mdTopology−>updateTopology () ;
51 }
52
53 return 0 ;
54 }

The ensemble-based program is straightforward and easy to write based on the program-
ming interface. Programmers only focus on defining EPs (molecules in the MD simula-
tion) and the master thread that controls them. The definition of EPs is specified as a
C++ class, which typically consists of application-specific attributes and member func-
tions. The communication pattern of the EPs is specified as a topology, which is managed
by Topology in the template hierarchy automatically. The master thread is responsible
for manipulating communication and computation of EPs by using the high-level inter-
faces defined in Ensemble. The ensemble-based program is platform-independent. It can
be run on different target machines based on different implementations of the template
hierarchy. The topic of implementations will be discussed in the next chapter.

5.6. Summary

In this chapter, main components of the ensemble-based programming are introduced
including an abstract SPMD architecture, the programming paradigm, and the object-
oriented programming interface. The machine model is a fine granular architecture
consisting of a CP and multiple FGPs, which are responsible for parallel computations.
Based on the machine model, the programming paradigm is described. The program-
ming paradigm includes the main software entities, the elementary point, topology, and
ensemble, which are key components that support fine-granular programming. Accord-
ing to the programming paradigm, we build the programming interface consisting of a

63

Chapter 5 Ensemble-based Programming

template hierarchy applied to implement these software entities in an OOP approach.
The template hierarchy has some base class templates and application-specific templates
for different application areas including multi-body, irregular grid, and regular grid appli-
cations. For clarity, an MD simulation, as a running example, is used to help explaining
how to program with the template hierarchy. To sum up, the specification of ensemble-
based programming can be mapped on the concrete C++ programming platform. Thus,
it can be implemented on concrete systems, including sequential, shared memory, and
distributed memory systems. The implementation framework of the ensemble-based
programming will be described in Chapter 6.

64

6. Implementation Framework

6.1. Overview

In this chapter, we present the implementation framework that implements the pro-
gramming interface on different types of machines, i.e., sequential, shared memory, and
distributed memory machines. The framework is currently designed for both multi-
body and irregular grid applications. The support for regular grid applications and
other application areas can be extended by adding new implementation libraries into
the framework.

As it is shown in Figure 6.1, the framework consists of machine-specific libraries including
a sequential library, an OpenMP-based library, and an MPI-based library. An ensemble-
based program can be compiled and linked to executables by these libraries with different
compiler commands and options. The compiler commands and options are presented in
the Appendix.

Sequential Library OpenMP-based Library MPI-based Library

Implementation Framework

Executable on
Sequential Machine

Executable on
Distributed Machine

Executable on Shared
Memory Machine

Ensemble-based Program

CC CC+OpenMP CC+MPI

Figure 6.1.: Overview of the implementation framework

The sequential-based library provides a standard OOP implementation of the program-
ming interface on sequential machines. Both the communication and parallel operations
of the EPs in the ensemble are handled by a single-threaded process. It demonstrates
the basic implementation of programming interface on one process.

65

Chapter 6 Implementation Framework

The OpenMP-based library implements the programming interface on top of OpenMP.
It translates an ensemble-based program to an OpenMP program executed on shared
memory machines. The OpenMP library aggregates the computation of a group of EPs
and binds it to a single thread. The parallel operations of the EPs in the ensemble are
done by multiple threads in parallel. In addition, the topology can lead to optimized
storage of the EPs and their shadow copies to keep the threads access local data on
NUMAs more frequently.

The MPI-based library implements the programming interface in C++ with MPI. It
employs both the domain decomposition and efficient graph partitioning algorithms to
achieve optimal EP distribution and communication for multi-body and irregular grid
applications. The communication between the processes is done by aggregating fine
granular communication among EPs into coarser MPI messages to improve the efficiency
of communication. The communication pattern among EPs is managed by the MPI-
based library automatically.

The rest of this chapter is organized as follows: Section 6.2 introduces the implemen-
tation strategy of the sequential library; Section 6.3 describes the implementation and
optimization of the OpenMP-based library on UMA and NUMA machines; Section 6.4
introduces the MPI-based library in terms of the EP distribution, communication opti-
mization, topology management, and so on.

6.2. Mapping to Sequential Machines

6.2.1. Overview

This section presents the implementation of the sequential library to demonstrate how
the ensemble-based programming interface is mapped on sequential machines. An ensemble-
based program can be executed on sequential machines by linking to the sequential li-
brary. The entities defined in the programming interface are implemented in standard
C++. The implementation of the sequential library includes the management of the
ensemble, storage of EPs and their shadow copies, protection of “Fetch before Store” se-
mantics, implementation of high-level Ensemble operations, management of topologies,
and so on. In this section, the term “ensemble” and “topology” are used to represent the
implementation objects of Ensemble and Topology defined in the programming interface.

6.2.2. Ensemble Management

There is only a single ensemble generated to implement the programming entity Ensemble
defined in the programming interface. The ensemble is globally controlled by the master
thread specified in the main function of an ensemble-based program. The overview of

66

6.2 Mapping to Sequential Machines

the Ensemble implementation object is shown in Figure 6.2. It not only keeps memory
space for storing EPs and their shadow copies (SCs) but also the references to the
topologies, which maintain the access patterns between the EPs and their SCs. All the
high-level Ensemble operations are implemented in C++, i.e., updating EPs’ shadow
copies, getting neighbor EPs, parallel execution of EPs’ member functions, collective
operations of EPs, and so on.

… ...

EP_Set

SC_EP_Set

EP EP EP

SC SC SC… ...

Ensemble Implementation Object

&Root Topology

Top_Ref_Set

… ...

&Topology1

&TopologyN

Implementation of High-Level Operations

Figure 6.2.: Ensemble implementation object

Storage of Elementary Points

The ensemble keeps a C++ vector named EP_Set for storing the EPs. The vector is a
generic container that supports dynamic insertion and removal of EPs efficiently. The
type of the elements in the vector is EP, which is an user-defined class derived from the
application-specific templates in the template hierarchy, MultiBodyEP or IrrGridEP.
Based on the C++ vector, the EPs are stored in EP_Set following a linear sequence so
that the ensemble is able to directly reference the EPs in EP_Set by their indices.

“Fetch before Store” Semantic Protection

In many scientific applications, the iterative computation of an EP is dependant on its
neighbor EPs. Meanwhile, the EP’s local information is required by its neighbor EPs
as well. If the EP updates its local attributes before its neighbor EPs fetch them, the
neighbor EPs will get “updated” information rather than the “original” information that
they are supposed to get. The “Fetch before Store” problem happens in such a scenario.
To efficiently avoid this problem, the ensemble stores EPs and their SCs separately in
EP_Set and SC_EP_Set. Parallel operations can only modify the EPs in EP_Set, and

67

Chapter 6 Implementation Framework

the SCs in SC_EP_Set are updated by SC-Update operations and read-only afterwards.
Additionally, the getNghbList operations return the references to the SCs in SC_EP_Set
rather than EP entities, which avoid redundant EPs-to-EPs memory copying as well.

Storage of EPs’ Shadow Copies

As it is shown in Figure 6.3, each EP has a number of shadow copies based on the simple
topology specified by the undirected graph. For example, EP1 has three SCs, i.e., EP0,
EP2 and EP3. It means that if a SC-Update operation is called, data in EP0, EP2 and
EP3 need to be copied into the memory space of EP0’s shadow copies. However, there
is some storage duplication if the SC-Update operation is called, since all the EPs copy
their data into SCs of other EPs. As we can see from Figure 6.3, EP2 as a SC of EP0,
EP1, and EP3 are stored three times, which is definitely not efficient in terms of memory
utilization.

SCs of EP0

EP1 EP2 EP0 EP2 EP3

EP0 EP1 EP3

SCs of EP1

SCs of EP2 SCs of EP3

EP1 EP2

EP2

EP0 EP1

EP3

Figure 6.3.: Shadow copies of four EPs

In fact, all the SCs are read-only copies, which are only stored once but accessed for
multiple times. Therefore, in the sequential implementation, the ensemble globally stores
the SCs of the EPs in a C++ vector called SC_EP_Set. Similar to EP_Set, SC_EP_Set
is a generic C++ vector with the type of EP. As it is shown in Figure 6.4, EP1 as a SC
of EP0, EP2, and EP3 is only stored once in the ensemble rather than three times. This
strategy can save a lot of memory space for storing the SCs if there are a large number
of EPs stored in the ensemble.

According to the separate storage strategy, the size of SC_EP_Set equals to the size
of EP_Set. Both the complete and partial information of the EPs can be copied into
SC_EP_Set when a SC-Update operation is called, since the memory space for storing
the SCs is fully allocated in SC_EP_Set.

68

6.2 Mapping to Sequential Machines

EPs: EP0 EP1 EP2 EP3

SCs: EP0 EP1 EP2 EP3

Figure 6.4.: Optimized arrangement of the shadow copies

getNghbList Operations

After an SC-Update operation was called, each EP can get its neighbor EPs by calling
the getNghbList operation, which returns the pointers to the EPs in SC_EP_Set based
on the topology specified in the getNghbList operation. For example, the neighbor
EPs of EP1 are EP0, EP2 and EP3, which means that EP1 can get the addresses of
SC_EP_Set[0], SC_EP_Set[2], and SC_EP_Set[3] as its neighbor EPs by calling the
getNghbList operation. Then, EP1 can go through the neighbor list and get neighbor
EPs’ data for its local computation.

SC-Update Operations

The SC-Update operations are based on the topologies specified by the programmers.
A SC-Update operation according to the root topology copies all the EPs in EP_Set
into SC_EP_Set by a serial for loop. Each EP_Set[i] is copied into SC_EP_Set[i]
respectively. A SC-Update operation according to a sub topology only updates the
shadow copies of the EPs maintained by the sub topology. It tracks its base topology
and gets the access pattern. It triggers a memory-to-memory copy from a subset of EPs
in EP_Set to EP_SC_Set.

Parallel Operations

In the ensemble, parallel operations are implemented by for loops that go through all
the EPs or a subset of EPs in EP_Set and trigger execution of their member functions.
These operations are executed sequentially by a single-threaded process. The pseudo
code of the implementation of a parallel operation is shown in Algorithm 6.1.

69

Chapter 6 Implementation Framework

Algorithm 6.1 Pseudo code of parallel operation

template <typename Operation>
template <class Topology>
void p a r a l l e l (Operation op , Topology∗ topo logy){

for (the EPs in topology)
op (EPs) ;

}

6.2.3. Topology Management

There are two types of topologies for multi-body and irregular grid applications namely
multi-body topologies and irregular grid topologies. A multi-body topology is created
by specifying a cut off radius, while an irregular grid topology is created by defining an
id-based graph of EPs. According to the specified information, the sequential library
manages the root topology, which keeps the neighbor EP list for all the EPs in the ensem-
ble. The neighbor EP list is organized in two dimensional dynamic array implemented
by C++ vectors. As can be seen from Figure 6.5, each row of the array is a vector of
EP pointers, which are the addresses of the neighbor EPs of the EPs in EP_Set. Each
EP in the ensemble is able to get its neighbor EPs from the topology directly.

EP Index EP_Set

0

1

2

3

n-2

n-1

EP* EP* EP* EP*

EP*

EP*

EP*

EP* EP*

EP*

EP* EP*

EP*

.

.

.

… …

… …

EP

EP

EP

EP

EP

EP

Neighbor EP List

Figure 6.5.: Organization of neighbor EP list

70

6.2 Mapping to Sequential Machines

MultiBodyTopology

The implementation of the multi-body topology is based on the linked cells (LC) algo-
rithm, which works by subdividing the domain of a multi-body application into regular
cells with an edge length equals to the cut-off radius specified in the root topology. The
cut-off radius is a distance threshold that determines the interaction of two EPs. The
root multi-body topology maintains a neighbor list for all the EPs in EP_Set according
to the linked cells list. Based on the neighbor list, each EP can access its neighbor EPs
in SC_EP_Set by referencing their indices.

Based on the LC algorithm, each cell represents a regular spatial domain with coordi-
nates, e.g., [x, y] or [x, y, z] depending on the dimension of the simulation domain. It has
neighbor cells that are closely located to itself with coordinates like [x, y-1], [x, y, z-1],
[x+1, y, z-1], and so on. Each cell keeps addresses of the EPs that are spatially located
in its spatial domain. The creation of the neighbor list in the topology is described in
Algorithm 6.2.

Algorithm 6.2 Linked Cells (LC) algorithm
//an EP is kept in Cell_ep
1. Get the coordinate of Cell_ep
2. Calculate coordinatess of Cell_ep’s neighbor cells

if the id of Cell_ep is [x,y,z], it has 26 neighbor cells in a 3D domain
Cell_ep’s neighbor cells are called nghbCells

3. Get neighbor cells nghbCells
Their coordinates are [x±1, y±1, z±1]

4. Return EP pointers kept in the nghbCells
5. Determine the distances between the EPs in nghbCells, and EP
6. If the distance < cut-off Radius: Keep the EP pointers in EP_neighbors

else ignore
7. Build neighbor EP list using these EP pointers

A multi-body topology can be updated by calling the updateTopology operation, since
the EPs in the domain may move during execution. Therefore, the linked cells list as
well as the neighbor list has to be recomputed according to the updated EPs’ spatial
information. The access patterns of the EPs are then changed accordingly.

IrrGridTopology

An irregular grid topology maintains the id-based graph of EPs, which typically consists
of vertices and undirected edges. The vertices represent identifiers of the EPs in EP_Set
and the edges represent EP-to-EP interactions. Two EPs require data from each other
if and only if there is an edge connecting them. According to the id-based graph, the
irregular grid topology generates a neighbor list of identifiers of EPs, which presents

71

Chapter 6 Implementation Framework

the identifiers of the EPs’ neighbor EPs. The neighbor EP list in the root topology
can be built according to the neighbor list of identifiers. As it is shown in Figure 6.6,
the irregular grid topology is specified by a CSR format representation. Based on the
representation, an id-based undirect graph is created in the irregular grid topology. For
example, the fourth line of the neighbor list in Figure 6.6 represents that the neighbor
EPs of EP3 are EP1, EP2, EP4, and EP5, which are stored in the memory location
SC_EP_Set[1], SC_EP_Set[2], SC_EP_Set[4], and SC_EP_Set[5].

xadj: [0, 2, 5, 8, 12, 14, 16]
adjncy: [1, 2, 0, 2, 3, 0, 1, 3, 1, 2, 4, 5, 4, 5, 3, 4]

CSR Format Graph

Id-based Graph Neighbor List

0: [1, 2]
1: [0, 2, 3]
2: [0, 1, 3]
3: [1, 2, 4, 5]
4: [3, 5]
5: [3, 4]

0 1

2 3 4

5

Figure 6.6.: Id-based graph and neighbor list

6.3. Mapping to Shared Memory Machines with OpenMP

6.3.1. Overview

This section presents the OpenMP-based library, which implements the programming
interface on shared memory machines in C++ with OpenMP. By linking to the OpenMP-
based library, an ensemble-based program is translated into an executable run by mul-
tiple threads. Similar to the implementation of the sequential library, all the entities in
the programming interface are stored in the shared memory space and implemented in
C++. In this section, the term “ensemble” and “topology” are used to represent the
implementation objects of Ensemble and Topology on shared memory machines.

OpenMP uses a fork-join model of parallel execution, which meets the design approach
of the ensemble-based machine model. The master thread defined in the machine model
can be directly mapped to the OpenMP master thread. When the master thread in
the machine model encounters high-level Ensemble operations that need to be executed
in parallel, the master thread creates a thread team composed of itself and some addi-
tional threads to implement these operations. The OpenMP-based library manages the

72

6.3 Mapping to Shared Memory Machines with OpenMP

parallel execution of multiple threads, and programmers don’t need to take care of the
multi-threading programming environment explicitly. After the Ensemble operations are
accomplished, the master thread continues controlling the EPs in the ensemble sequen-
tially. All the other threads in the team are shut down and wait to be summoned to join
other teams for next Ensemble operations.

This section presents the management of the entities in the programming interface, i.e.,
ElementaryPoint, Ensemble, and Topology. In addition, this subsection mainly highlights
the implementation and optimization of the OpenMP-based library on NUMA machines
in terms of exploiting parallelism, synchronization of the thread team, machine-specific
memory optimization, and so on.

6.3.2. Ensemble Management

Similar to the sequential library, there is only a single Ensemble implementation object
during execution of an ensemble-based program. The ensemble is globally controlled
by the master thread specified in the main function of the ensemble-based program. It
maintains shared memory space for storing the EPs, their shadow copies, and references
to the topologies. On shared memory machines, the communication among EPs is done
by memory to memory copying or remote memory accesses from sockets to sockets. The
high-level Ensemble operations are implemented in C++ with OpenMP.

6.3.3. OpenMP Support on NUMAs

As described in previous chapters, shared memory machines are typically classified into
UMA and NUMA machines. On UMAs, the processors that share a connection to the
global shared memory have the same access time to the shared memory. The imple-
mentation of the OpenMP-based library on UMAs is similar to the implementation of
the sequential library except that it applies OpenMP to parallelize the for loops using
OpenMP directives. This is not discussed in this section.

The other type of shared memory machines is NUMA, which has a global shared mem-
ory among processors like UMA does, but the memory is physically distributed among
different sockets in the machine. Although all the CPUs on the sockets share the mem-
ory within a node, the accesses to CPUs’ local physical memory are much faster than
the non-local accesses to remote physical memory of other CPUs. This means that
the memory overhead has dramatic effects on the performance of the OpenMP-based
implementation on NUMAs. Since most modern powerful nodes are based on NUMA,
this subsection will discuss details of the OpenMP-based library on NUMAs in terms
of the storage of EPs, management of EP’s shadow copies, implementation of high-level
Ensemble operations, and so on.

73

Chapter 6 Implementation Framework

Reallocation and Re-indexing to Manage EPs and their Shadow Copies

The ensemble stores all the EPs in a dynamic array named EP_Set, which is a generic
array that supports dynamic insertion and removal of EPs. It is implemented as a
dynamic EP array rather than a C++ vector, since the dynamic array is more flexible
and efficient than the vector-based data structure in terms of manipulating the threads
on NUMAs.

Based on the semantics of the machine model, EPs are inserted into the ensemble by
using the insertEP operation executed sequentially. On NUMAs, the OpenMP-based
library implements the insertEP operation by the master thread. This means that all the
EPs are initially stored in the physical memory of the socket that is running the master
thread. It is not efficient that the threads residing on other sockets have to access the
EPs by non-local memory accesses when the ensemble-based program is executed by
multiple threads. Therefore, the OpenMP-based library applies a reallocation strategy
to distribute EPs across different physical memory of the sockets to reduce non-local
EP accesses. The objective of the EP reallocation strategy is to guarantee that all the
threads are able to mostly reference the EPs in their local physical memory.

The OpenMP-based library employs METIS[116] to distribute the EPs, since typical
block-wise or round-robin decomposition methods are not efficient for irregular grid ap-
plications. METIS is a fundamental library, which consists of a number of executable
programs and APIs to handle irregular data partitionning, e.g., the graph partition-
ing, mesh partitioning, matrix reordering tasks, and so on. To simplify the discus-
sion, we present an irregular grid example on a two sockets NUMA. As it is shown in
Figure 6.7, the id-based graph represents the topology of eight EPs, which need to be
distributed on two different sockets by EP reallocation according to the partition array
[0, 1, 0, 1, 1, 0, 0, 1] generated from METIS. As can be seen from the figure, EP0, EP2,
EP5, and EP6 are stored in the memory of Socket#0, the rest EPs are stored in the
physical memory of Socket#1. It is assumed that this distribution generated by METIS
guarantees that an equal number of EPs are stored in the memory of the two sockets
and the number of non-local accesses is minimized.

In general, the OpenMP-based library applies an array called indirection to determine
different threads to touch different sections of EP_Set in parallel. The indirection array
is generated from the output of METIS. It keeps the identifiers of the EPs in EP_Set.
The size of an array is numEP/numSocket while the number of sockets is numSocket
and the number of EPs in EP_Set is numEP (if numEP is divisible by numSocket).
The indirection array is organized in such a way. The the first numEP/numSocket ele-
ments of the indirection array (indices from 0 to numEP/numSocket−1) stores the iden-
tifiers of EPs stored in the physically memory of socket#0. The second numEP/numSocket
elements (indices from numEP/numSocket to 2 ∗ numEP/numSocket − 1) stores the
identifiers of EPs stored in the physical memory of socket#1, and so on and so forth.

74

6.3 Mapping to Shared Memory Machines with OpenMP

EP5

EP6

EP4

EP2

EP1

EP7

EP3

EP0

Neighbor List

0: [2, 6]
1: [3, 4, 5, 6]
2: [0, 5, 6, 7]
3: [1, 4, 6, 7]
4: [1, 3, 7]
5: [1, 2]
6: [0, 1, 2, 3]
7: [3, 4]

Pa
rti
tio
n

METIS Output
[0, 1, 0, 1, 1, 0, 0, 1]

S1

S0

Figure 6.7.: EP partition on NUMAs

To simplify the discussion, we assume that there is only one thread is running on a single
socket (multiple threads on a socket can be implemented by the OpenMP thread affinity).
A simple example of EP reallocation is shown in Figure 6.8. The EPs are initially stored
in Buf_EP, which is located in the physical memory of socket#0 after the insertEP
operations are accomplished. During the EP reallocation, thread 0 is reponsible for the
loop iteration space form 0 to 3, while thread 1 takes care of the iteraction index from
4 to 7. According to the indirection array, thread 0 touches elements [0, 2, 5, 6], while
thread 1 touches elements [1, 3, 4, 7]. Then, both threads residing on the two sockets
touch different sections of the reserved EP_Set and initialize it by the EPs stored in the
Buf_EP. EP_Set is distributed across the physical memory of the two sockets based
on the “first touch” policy of memory. Additionally, once EP_Set was initialized by
multiple threads, the memory space of Buf_EP can be freed.

The pseudo code of the EP reallocation is shown in Algorithm 6.3. As it is shown in
the algorithm, the EP reallocation is implemented by a OpenMP parallel construct by
multiple threads according to the array indirection generated from the output of METIS.

The major disadvantage of the EP reallocation according to the indirection array is the
problem of the indirect accessing to EPs. As can be seen from Algorithm 6.4, a parallel
operation is triggered on the EPs in EP_Set (the type of OpenMP loop scheduling
is based on chunk). The indirection array is referenced to access the EPs in order to
guarantee that all the threads work on the data in their local physical memory. Each
thread needs to access the indirection array to reference EP_Set, since the EPs are
already reallocated according to the indirection array. The indirect accessing happens

75

Chapter 6 Implementation Framework

Socket#1

Memory

NUMA architecture with 2 sockets

METIS Output
[0, 1, 0, 1, 1, 0, 0, 1]

Buf_EP: EP0 EP1 EP3 EP4EP2 EP6 EP7EP5

EP_Set:

Memory

Socket#2

Socket#1

Memory

EP_Set:

Socket#2

EP0 EP2 EP6EP5 EP_Set: EP1 EP4EP3 EP7

Reallocation

NUMA architecture with 2 sockets

Memory

Indirection
[0, 2, 5, 6, 1, 3, 4, 7]

Figure 6.8.: EP storage based on reallocation

Algorithm 6.3 The EP reallocation

void r e a l l o c a t i o n (){
EP ∗EP_Set = (EP∗) mal loc (numOfEPs ∗ s izeof (EP)) ;

#pragma omp p a r a l l e l for
for (i =0; i<numOfEPs ; i++)

EP_Set [i] = Buf_EP [i n d i r e c t i o n [i]] ;
f r e e (Buf_EP) ;

}

everytime when a parallel operation is called, which is really expensive and affects the
execution performance significantly.

In order to avoid frequent accesses to the indirection array, the OpenMP-based library
applies an EP re-indexing method. This method renumbers the indices of the EPs
from 0 to n-1 after the EP reallocation is done. According to the partitionning out-

76

6.3 Mapping to Shared Memory Machines with OpenMP

Algorithm 6.4 parallel operation based on indirection

template <typename Operation>
template <class Topology>
void p a r a l l e l (Operation op , Topology∗ topo logy){
#pragma omp p a r a l l e l for

for (i =0; i<numOfEPs ; i++)
op (EP_Set [i n d i r e c t i o n [i]]) ;

f r e e (Buf_EP) ;
}

put of METIS, we create indexOrigin2New and indexNew2Origin arrays to manage the
re-indexing translation. The indexOrigin2New array is used for the translation from
orignial indices to new indices, while indexNew2Origin is used for the translation from
the new indices back to orignial indices. Both indexOrigin2New and indexNew2Origin
are organized in such a way. The indexNew2Origin array and the indirection array
described above have the same organization. The indexOrigin2New array is generated
from indexNew2Origin according to the rule:

indexOrigin2New[indexNew2Origin[i]] = i;

As it is shown in Figure 6.9, the original EPs’ indices [0, 2, 5, 6, 1, 3, 4, 7] are translated to
their new indices [0, 1, 2, 3, 4, 5, 6, 7]. According to the rull above, the indexNew2Origin
array is: [0, 2, 5, 6, 1, 3, 4, 7], while the indexOrigin2New array is [0, 4, 1, 5, 6, 2, 3, 7]. After
the EP reallocation and the re-indexing are accomplished, the Ensemble operations can
directly reference EPs in EP_Set by their new indices without referencing indirection.

Socket#1

Memory

EP_Set:

Socket#2

EP0 EP6EP5 EP_Set: EP1 EP4EP3 EP7

NUMA architecture with 2 sockets

Memory

New_Index: New_Index:0 1 2 3 4 5 6 7

0 2 5 6 1 3 4 7Init_Index: Init_Index:

EP2

Figure 6.9.: EP re-indexing

Additionally, the distribution of EP_Set is the same as the distribution of in SC_Set,
which stores the SCs of the EPs. SC_Set is stored across different physical memory

77

Chapter 6 Implementation Framework

following the EP reallocation and re-indexing strategy. Based on this SC allocation
strategy, most EPs in EP_Set can get their shadow copies in SC_Set locally. Remote
memory accesses only happen when a few local EPs require data from the EPs stored
in remote physical memory. The overview of the storage of the EPs and their shadow
copies is shown in Figure 6.10. According to the “new” neighbor list, each EP can
properly access its neighbor EPs SC_Set in mostly by local memory accesses.

Socket#1

Memory

EP_Set:

Socket#2

EP0 EP3 EP6EP5 EP_Set: EP1 EP4EP2 EP7

NUMA architecture with 2 sockets

Memory

New_Index: New_Index:0 1 2 3 4 5 6 7

EP0 EP3 EP6EP5 EP1 EP4EP2 EP7SC_Set: SC_Set:

Figure 6.10.: The storage of EPs and their shadow copies

Both EP_Set and SC_EP_Set are stored in different physical memory according to
the EP reallocation and re-indexing strategy described above. SC-Update operations
are implemented by multiple threads using parallel constructs in OpenMP. The first
SC-Update operation according the root topology will trigger all the threads to initialize
EP_SC_Set respectively and store it into different local physical memory of the sockets.
After the SC-Update operation is accomplished, the EPs in EP_Set can get their shadows
copies mostly by local memory accesses. The pseudo code of a SC-Update operation
according to the root topology is shown Algorithm 6.5.

Algorithm 6.5 EP_SC_Set initialization

template <typename Operation>
template <class Topology>
void update (Operation op , Topology∗ topo logy){
i f (topo logy==root){

#pragma omp p a r a l l e l for
for (i =0; i<topology−>numOfEPs ; i++)

SC_EP_Set [i] = EP_Set [i] ;
}
}

Although the memory-to-memory copying from a physical memory to other physical

78

6.3 Mapping to Shared Memory Machines with OpenMP

memory is expensive and increase the memory overhead, the OpenMP-based library
employs the EP reallocation and re-indexing strategy in order to reduces the number
of non-local memory accesses during execution. The EP reallocation and re-indexing
strategy is handled only once, but the information generated from the strategy can be
reused for a long period of time. It is assumed to achieve better performance especially
for scientific irregular applications.

Parallel Operations

The parallel operations of EPs’ member functions are implemented by parallel constructs
of OpenMP. A number of threads are created by OpenMP directives when a parallel
operation is triggered. Each thread is responsible for the execution of a subset of EPs’
member functions. As it is shown Algorithm 6.6, the OpenMP parallel for goes through
the EPs in EP_Set and trigger parallel execution of their member functions specified
by the programmers.

Algorithm 6.6 Pseudo code of parallel operation

template <typename Operation>
template <class Topology>
void p a r a l l e l (Operation op , Topology∗ topo logy){
#pragma omp p a r a l l e l for

for (i =0; i<topology−>numOfEPs ; i++)
op (EP_Set [i]) ;

}

Getting Neighbor EPs

The ensemble implements the getNghbList operation, which is called to return neighbor
EPs of an individual EP. As described in previous sections, the getNghbList operation
returns a vector of pointers to the neighbor EPs in SC_Set according to the topology
specified in the operation. The major steps of the implementation are presented as
follows:

1. Get the EP’s “original” index and translate it to its “new” index;

2. Find the “new” indices of its neighbor EPs in the “new” neighbor list generated
from the root topology;

3. Return a vector of pointers to the neighbor EPs in SC_Set according to their
“new” indices.

Usually, the getNghbList operation is called by a parallel operation, and implemented by
multiple threads. Each thread is responsible for the getNghbList operation of a subset
of EPs in the ensemble. On NUMAs, the implementation of the getNghbList operation
is combined with the EP reallocation and re-indexing scheme, which guarantees that

79

Chapter 6 Implementation Framework

most of the EPs can get their neighbor EPs in the local physical memory where they
are stored.

Collective Operations

Collective operations are implemented similar to the implementation of parallel opera-
tions by parallel constructs in OpenMP. Take a reduction operation as an example, it
is implemented by an OpenMP reduction construct. The implementation of a collective
operation is shown in Algorithm 6.7.

Algorithm 6.7 Pseudo code of collective operation

template <typename GetOperation>
template <class Topology>
void reduceOp (GetOperation getOp , Topology∗ topology , int reduceType , double∗ r e s u l t){
#pragma omp p a r a l l e l for r educt i on (reduceType : var)

for (i =0; i<topology−>numOfEPs ; i++)
var = var [reduceType] (∗ getOp (EP_Set [i])) ;

∗ r e s u l t = var ;
}

6.3.4. Topology Management

Similar to the sequential library, a multi-body topology is created by specifying a cut
off radius for multi-body applications, while a multi-body topology is created by speci-
fying an id-based graph for irregular grid applications. The topologies include the root
topology and its sub topologies, which are shared among all the OpenMP threads on a
shared memory machine. The topology management on shared memory machines is not
discussed in details in this sub section.

MultiBodyTopology

Similar to the sequential library, a multi-body topology is based on the linked cells (LC)
algorithm as well. The neighbor EP list in the root multi-body topology is created based
on the LC algorithm.

IrrGridTopology

An irregular grid topology manages the communication pattern of the EPs in EP_Set by
keeping an id-based graph. The irregular grid topology generates the indexOrigin2New
and indexNew2Origin by using METIS. The neighbor EP list in the root irregular grid
topology is created based on the EP reallocation and EP re-indexing strategies described
in previous subsections.

80

6.4 Mapping to Distributed Memory Machines with MPI

6.4. Mapping to Distributed Memory Machines with MPI

6.4.1. Overview

The MPI-based library in the framework is designed to implement the programming
interface on distributed memory machines by a number of processes. The overview of
the mapping from the machine model to a distributed memory machine is shown in
Figure 6.11. In this section, the term “ensemble” and “topology” are used to represent
implementation objects of Ensemble and Topology that are distributed across different
processes.

EP EP EP EP

EP EP EP EP

EP EP EP EP

EP EP EP EP

Ensemble

M
as

te
r

Th
re

ad

Machine Model

EP EP

EP EP

Ensemble

M
as

te
r

Th
re

ad

Process 3

EP EP

EP EP

Ensemble

M
as

te
r

Th
re

ad

Process 2

EP EP

EP EP

Ensemble

M
as

te
r

Th
re

ad
Process 0

EP EP

EP EP

Ensemble

M
as

te
r

Th
re

ad

Process 1

Scalable Network
Mapping

Distributed Memory Machine

Figure 6.11.: Overview of MPI mapping

The master thread controls the communication and computation of all the EPs in the
machine model. As the machine model is mapped on a distributed memory machine,
the master thread is duplicated across all the processes based on a SPMD fashion. Each
process keeps an ensemble, which stores a subset of the EPs in the ensemble, shadow
copies of the EPs, and references to topologies, and so on. Each master thread manages
the computation and communication of a local ensemble. The computation is handled
by each process locally, while the communication is done by MPI among processes.
Compared to the sequential and OpenMP-based library, it is more complicated for the
MPI-based library to implement Ensemble on distributed memory systems in terms of

81

Chapter 6 Implementation Framework

the EP distribution, management and distribution of topologies, communication among
processes, and so on.

The entities described in the programming interface namely ElementaryPoint, Ensemble,
and Topology, are implemented in a distributed fashion. The high-level Ensemble op-
erations are implemented by the processes controlled by the duplicated master threads.
For example, the parallel operations as well as the collective operations triggered on the
EPs in the ensemble are translated into local operations done by each process respec-
tively. The SC-Update operations are implemented by local memory-to-memory and
communication among processes for exchanging remote EPs.

The mapping from the machine model to a distributed memory machine can keep the
semantics of the programming interface and exploit parallelism of ensemble-based pro-
grams. All the low-level mapping details are handled by the MPI-based library auto-
matically.

6.4.2. Storage of Elementary Points

The EPs are stored in a C++ vector named loc_EP_Set. The EPs in loc_EP_Set are
referenced by the process using their local indices. Each process keeps different subsets
of the EPs in the ensemble according to an EP distribution, which is determined by the
root topology and decomposition algorithms.

The EPs are inserted into the ensemble sequentially by the master thread, and each
process gets the EPs and stores them into its loc_EP_Set according to an initial EP
distribution strategy, e.g., block wise, round robin, or other types of regular distribu-
tion. After the root topology is inserted into the ensemble, all the processes trigger a
collective communication to get an optimal EP distribution determined by the output of
METIS. The EP distribution generated from METIS balances the computational load
and communication efficiency among processes for irregular applications.

Topologies of multi-body applications can be updated during execution, which may cause
changes of the EP distribution. The EPs in loc_EP_Set can be sent to or received from
other processes according to a new EP distribution. Take an MD simulation based on
domain decomposition as an example, the EPs in loc_EP_Set change if the EPs move
out of local domains.

Storage of EPs’ Shadow Copies

The storage of SCs is determined by the EP distribution, the communication pattern
among processes, and the root topology as well. On distributed memory machines,
the SCs of the EPs in loc_EP_Set are stored in loc_SC_Set, which is kept in each
process. loc_SC_Set is implemented as a C++ vector. It consists of SCs of local EPs

82

6.4 Mapping to Distributed Memory Machines with MPI

loc_SC_Set and SCs of EPs that are located in remote processes. All these SCs of
remote EPs are received from remote processes and copied into loc_SC_Set so that
each EP in loc_EP_Set can directly get its neighbor EPs in loc_SC_Set by using the
getNghbList operation.

The topology is responsible for maintaining the SCs and translates the remote indices
into local ones automatically. For instance, an EP requires a SC of a remote EP. It is
received from a remote process and copied into loc_SC_Set. The global index of an EP
is translated into its local index that can be referenced by the local process directly.

6.4.3. Implementations of Ensemble Operations

SC-Update

In the MPI-based library, a SC-Update operation not only copies the EPs from loc_EP_Set
to loc_SC_Set, but also triggers communication among processes according to a topol-
ogy specified in the operation. The implementation of local memory-to-memory copying
from loc_EP_Set to loc_SC_Set is the same as the sequential library. In addition, a
SC-Update operation triggers communication among a group of processes according to
certain topologies and EP distribution algorithms, since the EPs in loc_EP_Set also
require SCs of EPs located in remote processes. After a SC-Update operation is accom-
plished, the EPs in the receive buffer are updated to loc_SC_Set and can be referenced
by the local process using their local indices. Details of the communication scheme
among processes for both multi-body and irregular grid applications will be described
in the following subsections.

getNghbList

A getNghbList is a local operation implemented on each process. It only references local
EPs stored in loc_SC_Set, since it is assumed that remote EPs are already obtained
by SC-Update operations from remote processes. A getNghbList operation is called to
return the pointers to the EPs that are stored in loc_SC_Set according to the topology
specified in the operation. The major steps of the implementation of a getNghbList
operation are described below:

1. An EP pointer and a topology pointer is provided to the getNghbList operation;

2. The id of the EP is obtained and translated into a local index;

3. It is decided whether the provided topology is the root topology;

4. If yes, return the neighbor EPs in the topology according to the local index. The
neighbor EPs are a vector of EP pointers, which is already generated in the topol-
ogy after SC-Update is called;

83

Chapter 6 Implementation Framework

5. If not, go to the base topology of the provided topology and get the neighbor EPs
according to Step 4.

After the getNghbList operation is accomplished, each individual EP can access its neigh-
bor EPs in the return vector of EP pointers for local computation.

Parallel Operations

The parallelism is exploited by multiple processes executing EPs’ member functions in
parallel. Each process executes a for loop that goes through all the EPs in loc_EP_Set
and triggers sequential execution of the EPs’ member functions by the process. A par-
allel operation is accomplished by all the involved processes, since the data from remote
processes are copied into the shadow copies by calling SC-Update operations. The im-
plementation of a parallel operation is shown in Figure 6.12.

Ensemble

Parallel Operation

EP EP EP EP EP EP EP EP

Process0

Ensemble

EP EP

Local Operation

Process1

Ensemble

EP EP

Local Operation

Process2

Ensemble

EP EP

Local Operation

Process3

Ensemble

EP EP

Local Operation

Mapping

Figure 6.12.: MPI mapping of parallel operation

A parallel operation based on the root topology triggers indentical operations on each
process. It goes through all the EPs in loc_EP_Set by a for loop, and triggers execution
of the EPs’ certain member functions. The pseudo code of the operation on a single
process is shown in Figure 6.12.

Algorithm 6.8 Parallel operation implemented on a single process

template <typename Operation>
template <class Topology>
void p a r a l l e l (Operation op , Topology∗ topo logy){

for (i =0; i<EP_Set . s i z e () ; i++)
op (EP_Set [i]) ;

}

A parallel operation based on a sub topology triggers the execution of a subset of EPs’
member functions by multiple processes. Each process determines whether there are

84

6.4 Mapping to Distributed Memory Machines with MPI

some EPs within the sub topology stored in its loc_EP_Set by checking the glo2Loc
array. This array translates EPs’ global indices to their local indices in the process
(glo2Loc[global] = -1 if and only if the EP with index global is not stored in the process).
The implementation of a parallel operation on a single process is shown in Algorithm 6.9.
As can be seen from the pseudo code, the parallel operation is implemented by calling a
for loop that goes through all the sub-indices of the EPs in the sub topology. It deter-
mines whether an EP is locally stored in loc_EP_Set, and triggers a certain operation
on the EP. It is not recommended to use a parallel operation according to a sub topology,
since the indirect array access is necessary in the operation, which is not efficient.

Algorithm 6.9 parallel operation based on a sub topology

template <typename Operation>
template <class Topology>
void p a r a l l e l (Operation op , Topology∗ sutTop){

for (i =0; i<subTop−>s u b I n d i c e s () . s i z e () ; i ++){
// i f the s p e c i f i e d
i f (g lobalToLocal [topology−>s u b I n d i c e s () [i]] == −1)

continue ;
else

op (EP_Set [glo2Loc [topology−>s u b I n d i c e s () [i]]]) ;
}

}

Collective Operations

A collective operation of EPs is translated into local collective operations and collective
operations among MPI processes. Each process is responsible for a collective operation
of the EPs in loc_EP_Set. Different processes cooperate in the collective operations.
For example, broadcast and reduction operations can be implemented efficiently. The
overview of the translation of a collective operation is shown in Figure 6.13. A collective
operation is triggered on the EPs in the ensemble, it is translated to a hierarchical
collective operation among processes and local EPs within a single process.

6.4.4. EP Distribution and Communication Management

On distributed memory machines, the EPs are distributed across different processes. The
EP distribution can significantly affect the implementation efficiency of the programming
interface in terms of the computational load balance and communication overhead. In
principle, there are typically two major objectives that an EP distribution strategy needs
to satisfy. The first objective is to keep almost an equal amount of EPs stored in each
process to keep the equal computational workload. The second one is to minimize the
volume of communication among processes when triggering SC-Update operations. Typ-
ical block-wise or round-robin EP distribution algorithms can’t satisfy these objectives
especially for multi-body applications and irregular grid applications.

85

Chapter 6 Implementation Framework

Ensemble

Collective
Operation

EP EP EP EP EP EP EP EP

Ensemble

EP EP

Collective

Ensemble

EP EP

Collective

Ensemble

EP EP

Collective

Ensemble

EP EP

Collective

Collective
Operation

Collective Operation Mapping

Figure 6.13.: MPI mapping of collective operation

Therefore, the MPI-based library employs METIS to partition the EPs according to
the root topology specified by the programmers. METIS[116] primarily applies either
the multi-level recursive bisection or the multi-level k-way partitioning paradigms to
partition irregular graphs. Both these methods are able to produce high quality par-
titions. After the partitioning by METIS is accomplished, a collective communication
among all the processes is triggered to get a target EP distribution from the initial EP
distribution. The target EP distribution is kept during execution of an ensemble-based
program, and changed only when a global redistribution is triggered. According to the
EP distribution and the root topology, the communication among processes is managed
by the MPI-based library automatically when a SC-Update operation is called.

EP distribution of Multi-body Ensembles

The EP distribution across different processes is based on the combination of the domain
decomposition method and the parallel linked cells (PLC) algorithm, which is a parallel
version of the linked cell algorithm. The domain decomposition method is applied to
spatially partition the domain of a multi-body application into a number of subdomains.
Each process is responsible for the computation and communication of the EPs located
in a subdomain. The computation of EPs is handled locally, while the communication

86

6.4 Mapping to Distributed Memory Machines with MPI

among processes is determined by the linked cells. The PLC algorithm is combined
with the domain decomposition method in order to manage the EP distribution and the
communication pattern among processes.

As it is shown in Figure 6.14, the regular subdomain is subdivided into three types of
cells, e.g., inner cells, boundary cells, and halo cells according to their spatial location.
The pointers to the EPs located in the sub domain are kept in inner cells and boundary
cells. Halo cells keep the pointers to the EPs that are received from other sub domains.

Local Sub Domain

Local Inner Cell

Local Boudary Cell

Local Halo Cell

Figure 6.14.: Cell classification

Based on the domain decomposition and the PLC algorithm, each process maintains a
sub domain formed by a set of linked cells described above. The pointers to the EPs
in loc_EP_Set are kept in the inner cells and boundary cells, while the pointers to the
EPs received from remote processes are kept in halo cells. According to the linked cells,
each EP in is loc_EP_Set is able to reference its neighbor EPs for local computation.

Each process only communicates with its certain neighbor processes rather than all the
other processes when a SC-Update operation is called. It improves the communication
efficiency significantly and the complexity of communication among processes has re-
duced apparently. Figure 6.15 illustrates the communication scheme between two sub
domains in the context of a 2D domain. As can be seen from this figure, the 2D domain
is partitioned into two regular sub domains that are maintained by two processes. Both
the processes maintain a subdomain formed by local inner cells, boundary cells, and halo
cells for keeping the pointers of the local EPs and EPs received from remote processes.
While a SC-Update operation is triggered, each processe sends EPs located in boundary
cells to the other instance and stores the received EPs in loc_SC_EP_Set, which is
managed by halo cells. Then, each EP is able to reference its neighbor EPs in the local
process for computation.

Both the advantages and disadvantages of the combination of the PLC algorithm and
domain decomposition method are described as follows:

87

Chapter 6 Implementation Framework

Sub Domain Sub Domain

Local Boundary Cell

Local Inner Cell

Local Halo Cell

Communication between sub domains

Partitioning

Domain

Figure 6.15.: Communication between sub domains

1. Based on the PLC algorithm, each process can easily manage its local EPs and
remote EPs. For example, the process is able to determine the neighbor EPs of an
EP by referencing the linked cells. The process can also receive EPs from remote
processes and save them into appropriate location according to the linked cells.

2. The PLC algorithm manages the movement of EPs efficiently. If an EP moves
from one cell to another cell, the local process can change the communication
accordingly. If the other cell is in the region that belongs to a remote process, a
point-to-point communication is triggered between two processes.

3. The communication among processes is easily determined by linked cells especially
for multi-body applications with a cut-off radius.

4. The communication efficiency might be worse than the fine granular communica-
tion efficiency because of redundant communication. As it is shown in Figure 6.16,
three EPs are sent from the boundary cells of P0 to halo cells of P1 according to the
PLC algorithm. However, only the EP in green is really needed by the target EP.
It increases the communication overhead among processes, since the MPI-library
coarses the communication pattern among EPs to communication pattern among
a group of EPs in cells.

5. Based on the PLC algorithm, the communication between two processes might be
more than necessary, since regular cubics are not standard cycles. As can be seen
from Figure 6.17, three EPs in a boundary cell of P0 are sent to a halo cell of P1
according to the PLC algorithm. However, there are no EPs in P1’s boundary cells,

88

6.4 Mapping to Distributed Memory Machines with MPI

P1P0

Cut-off

EP Sending

Cut-o
ff

Cut-off

Boundary Cell Inner Cell

Halo Cell

Figure 6.16.: Redundant communication (cutoff)

which mean that there is no computation happened based on the EPs received from
P0. These EPs on P0 are unnecessarily sent to P1. It increases the communication
overhead among processes.

Cut-off

EP Sending

Cut-off

Boundary Cell Inner Cell

Halo Cell

P0 P1

Figure 6.17.: Redundant communication (empty cells)

In spite of these disadvantages described above, the PLC algorithm is a relatively efficient
algorithm for managing EPs in terms of the EP distribution, communication patterns

89

Chapter 6 Implementation Framework

of EPs, movement of EPs, and so on. Therefore, we integrate the PLC algorithm and
domain decomposition method into the MPI-based library.

Optimized EP Distribution of Multi-body Ensembles

Typically, the block-wise domain decomposition with linked cells is not flexible for multi-
body applications in terms of load balancing, since EPs are not always evenly distributed
in the simulation domain during runtime. It cannot guarantee that each process keeps
an equal number of EPs according to the regular block-wised domain decomposition.
Although the communication pattern among processes is regular, the load unbalancing
problem cannot be avoided. Therefore, the MPI-based library applies an irregular cell-
based decomposition algorithm using METIS in order to optimize communication among
processes. The major steps of the algorithm are described below:

1. In principle, process 0 is responsible for the EP distribution using METIS, it
collects the identifiers and coordinates of all the EPs from other processes.

2. Process 0 creates a cell-based graph according to the coordinates of the EPs. As can
be seen from Figure 6.18, the 2D global domain is represented as a linked cell list
with 16 cells. According to the organization of the cells and their communication
scheme, a cell-based graphis organized in such a grid-based fashion. A vertex of
this graph is a cell with size of the cut-off radius and maintains of a number of EPs.
An edge represents the communication between two cells. The weight of a vertex
in the graph is the number of EPs. The weight of an edge is the communication
volume between the two cells that are connected by the edge.

12 13 14 15

8 9 10 11

4 5 6 7

0 1 2 3

Domain Cell-based Graph

12 13 14 15

8 9 10 11

4 5 6 7

0 1 2 3

Cell in the domain

Vertex representing a cell

Figure 6.18.: Cell-based graph

90

6.4 Mapping to Distributed Memory Machines with MPI

3. Process 0 applies METIS to partition the cell-based graph, and the cell partition
result is generated in an array named cell partition array. An example is shown in
Figure 6.19, process 0 keeps the sub domain consisting of cell 0, cell 1, and cell 4.
The shape of sub domains is irregular because the EPs are not evenly distributed
in the global domain and each cell maintains a different number of EPs. The cell-
based partitioning by METIS can obtain a balanced EP distribution and guarantee
that the communication among processes is already optimized.

C12 C13 C14

C8

C4

C9 C10

C5 C6

C15

C11

C7

C0 C1 C2 C3

C12 C13 C14

C8

C4

C9 C10

C5 C6

C15

C11

C7

C0 C1 C2 C3

C12 C13 C14

C8

C4

C9 C10

C5 C6

C15

C11

C7

C0 C1 C2 C3

C12 C13 C14

C8

C4

C9 C10

C5 C6

C15

C11

C7

C0 C1 C2 C3

Cell Partition Result from METIS
[0, 0, 1, 1, 0, 1, 1, 3, 2, 3, 3, 3, 2, 2, 3, 3]

Process0 Process1 Process2 Process3

Figure 6.19.: Cell partition

4. Process 0 broadcasts the result of cell-based partitioning to all the other involved
processes so that each process keeps the decomposition information of the cells.

5. According to the result of cell-based partitioning, each process is able to deter-
mine the communication scheme with its neighbor processes. As it is shown in
Figure 6.20, process 0 needs to send cell 1 to process 1, and send its cell 4 to pro-
cess 1, process 2, process 3 respectively. In addition, process 0 keeps cell 2, cell
5, cell 6, cell 8, and cell 9 as its halo cells. Among the halo cells, cell 2, cell 5,
and cell 6 are from process 1, cell 8 and cell 9 are from process 2 and process 3
respectively.

This optimized EP distribution algorithm is based on the PLC algorithm and domain
decomposition method. It generates a balanced EP distribution and optimizes the com-
munication among processes. According to the result of cell partitioning, each process
is able to manage the neighbor EP list and the communication scheme with its neighbor
processes deterministically.

91

Chapter 6 Implementation Framework

C12 C13 C14

C8

C4

C9 C10

C5 C6

C15

C11

C7

C0 C1 C2 C3

C12 C13 C14

C8

C4

C9 C10

C5 C6

C15

C11

C7

C0 C1 C2 C3

C12 C13 C14

C8

C4

C9 C10

C5 C6

C15

C11

C7

C0 C1 C2 C3

C12 C13 C14

C8

C4

C9 C10

C5 C6

C15

C11

C7

C0 C1 C2 C3

Process0 Process1 Process2 Process3

Local Inner Cell Local Boudary Cell

Local Halo Cell Irrelevant Cell

Figure 6.20.: Communication pattern based on irregular cell partitioning

EP Distribution of Irregular Grid Ensembles

The EP distribution for irregular grid applications is to partition all the EPs into mul-
tiple subsets according to the result of partitioning the id-based graph specified in the
root topology. As it is described in the previous chapter, the vertices of the id-based
graph represent identifiers of the EPs and the undirected edges represent EP-to-EP
communication. The partitioning of the id-based graph is accomplished by the METIS
library, which guarantees that each process keeps almost an equal amount of EPs and
the communication among all the processes is minimized. After the id-based graph is
partitioned into K sub graphs (K is the number of processes), each process gets a set of
identifiers and stores the EPs with these identifiers. The edge-cuts among different sub
graphs represent communication among processes.

6.4.5. Topology Management

Both MultiBodyTopology and IrrGridTopology implementation objects are managed by
the MPI-based library in terms of the communication pattern of EPs, the communication
among processes, creation of neighbor EP list for getNghbList operations, and so on. In
addition, the MPI-based library is responsible for the update of both the multi-body
and irregular grid topology during execution. The topology is managed in a distributed
fashion. Each process keeps the root topology, which maintains the neighbor EP list
for all the local EPs. The neighbor EP list is organized in two dimensional dynamic
array described in Section 6.2. It keeps the addresses of the neighbor EPs of the EPs in
loc_EP_Set so that each EP in loc_EP_Set is able to get its neighbor EPs from the
local topology.

92

6.4 Mapping to Distributed Memory Machines with MPI

Creation of MultiBodyTopology

The generation of the neighbor EP list in the multi-body topology is based on the PLC
algorithm. This algorithm is presented in Algorithm 6.10 illustrating that how a single
process generate neighbor EP list based on the linked cells. The assumption is that
the communication is already accomplished so that all the EPs are available in inner,
boundary, and halo cells of all the processes.

Algorithm 6.10 Creation of neighbor EP list
1. Forall ep in local process

1) Get cell id localidCell of ep
2) Get ids of neighbor cell localidCell
3) Get neighbor cells localNghbCells
4) Get EPs in the localnghbCells and determine whether the distance between the EPs

in localNghbCells and ep is smaller than the cut-off radius
5) If yes, put the address of EP
5) Create neighbor EPs for ep

End for
2. updateTopology() and go to Step 1

Each process keeps a root multi-body topology, which manages the neighbor EP list for
all the local EPs according to the linked cells. It maintains the communication patterns
of the EPs in loc_EP_Set in the local process. In addition, the multi-body topology
keeps a pointer to the Ensemble implementation object so that it can directly reference
the EPs in loc_EP_Set. The EPs in loc_EP_Set can get its neighbor EPs by going
through its neighbor cells and referencing the EPs in loc_SC_Set.

MultiBodyTopology Update

The multi-body topology is updated by monitoring the runtime information automati-
cally, e.g., location of the EPs, number of EPs kept in each process, and so on. Typically,
the root multi-body topology has to be updated during execution, since the spatial lo-
cation of EPs can be updated by local computation. This leads to changes of EPs’
communication pattern, and the multi-body topology updates the neighbor EP list ac-
cordingly. The multi-body topology is updated mainly under three circumstances, which
are described as follows:

1. An EP moves within a sub domain from an inner cell to other local cells. As can
be seen from Figure 6.21, the EP in cell i0 might move to cell b1 or cell i2, since
local computation may update its spatial location. If the EP moves to an inner
cell i2, it can get its neighbor EPs in boundary cells b1, b2, b3, and inner cells i1,
i2, i3, i5, i6, i7. If the EP moves to an boundary cell b1, it can get its neighbor
EPs in inner cells i0, i1, i2, boundary cells b0, b1, b2, and halo cells h0, h1, h2.

93

Chapter 6 Implementation Framework

b0 b1

i0 i1

i4 i5

b2 b3

i2 i3

i6 i7

Local Linked Cells

h0 h1 h2 h3

Local Boundary Cells

Local Inner Cells

Local Halo Cells

Movement of EP

b1

i1

i5

b2 b3

i2 i3

i6 i7

b0 b1

i0 i1

i4 i5

b2

i2

i6

b0 b1

i0 i1

b2

i2

h0 h1 h2

Figure 6.21.: Movement of an EP within a subdomain

2. An EP moves within a sub domain from a boundary cell to a halo cell. As it is
shown in Figure 6.22, the EP in boundary cell b1 moves to the local halo cell h3,
which causes communication between process 0 and process 1. Process 0 needs
to send it to process 1, which stores it in the local boundary cell b1. After the
migration of the EP is done, it can get its neighbor EPs in inner cells i0, boundary
cells b0, b1, b2, and halo cells h0, h1, h2, h3, h4 in process 1.

b0 b1

i0 b2

Process 0

h3

h4

h0 h1 h2

b1 b2

b0 i0

h1

h0

h2 h3 h4

Process 1

Send EP
Local Boundary Cells

Local Inner Cells

Local Halo Cells

Movement of EP

Send EP

Figure 6.22.: Movement of an EP cross subdomains

3. In case of a significant load imbalance among processes, all the EPs in the ensemble
needs to be redistributed, and the MultiBodyTopology implementation object on
each process needs to be updated accordingly. The runtime system of the MPI-
based library monitors the number of EPs that are kept in each process. If a process
has much more EPs than the other processes, the EP redistribution step is trig-
gered automatically and the root multi-body topology is updated. Both the global

94

6.4 Mapping to Distributed Memory Machines with MPI

redistribution among all the processes and partial adaption between neighbor pro-
cesses are supported by the MPI-based library. The global redistribution triggers
a collective communication operation, which redistributes all the EPs across dif-
ferent processes according to the output of METIS. The global redistribution can
get an optimal EP distribution that both the load balancing and communication
are already optimized by METIS. However, the global redistribution is expensive
because all the processes have to involve in the communication. Apart from the
global redistribution, the partial adaption merely triggers a communication be-
tween two neighbor processes and both processes exchange EPs and cell-based sub
domains accordingly. The partial adaption can guarantee that both processes get
an equal amount of EPs by cell-based partial adjustment, but the communication
among all the processes is not yet optimized.

Creation of Irregular Grid Topology

Similar to the multi-body topology, each process keeps the root irregular grid topology,
which maintains the neighbor EP list for the EPs in loc_EP_Set according to the id-
based graph and EP distribution as well. Each process only keeps its local EPs and
shadow copies of the EPs that are stored in remote processes. The memory organization
of local EPs and their SCs in a single process is shown in Figure 6.23. The organization
reuses the idea of the PARTI/CHAOS library[87]. The shadow copies of local EPs
are allocated in the memory as an array, the SCs of remote EPs are stored after the
local shadow copies with the indices from n to n + m (the overall number of remote
shadow copies is m+ 1). The m+ 1 remote copies are organized following the sequence
of process ids from process i to process i + j (j is the overall number of neighbor
processes). Therefore, the accesses to the SCs of remote EPs are transformed to the
accesses to the SCs stored in loc_SC_Set.

EP0 EP1 EPn-1 EPn EPn+1 EPn+2 EPn+3 ... EPn+m...

Local Eps: EP0 EP1 EPn-1

Local SCs:

Pi Pi+1 Pi+j...

Remote EP copies

Figure 6.23.: Local EPs and SC organization

95

Chapter 6 Implementation Framework

A simple example of a data distribution and the communication pattern among processes
is shown in Figure 6.24. There are eight EPs that are distributed across four processes.
Take process 2 as an example, it has to receive EPs from all the other processes and the
SCs are organized as described above. Then, a global index to local index translation
needs to be implemented in order to reference the neighbor EPs of the local EPs. Each
process manages a translation table to handle this index transformation.

P2 Local Neighbor List

Global Index
3: [1, 4, 6, 7]
6: [0, 1, 2, 3]

Local Index
0: [4, 5, 1, 6]
1: [2, 4, 3, 0]

Index Translation

METIS Output
[0, 1, 0, 2, 3, 1, 2, 3]

Storage of EPs and SCs

EP3 EP6 EP0 EP2 EP1 EP4 EP7

Local EPs P0 P1 P3

EP3 EP6EP_Set:

0 1 2 3 4 5 6

SC_EP_Set:

Local Index:

The Root Topology of EPs

EP5

EP6

EP4

EP2

EP1

EP7

EP3

EP0

P0

P3

P1

P2

Figure 6.24.: EP distribution based on graph partitioning

IrrGridTopology Update

The irregular grid topology is updated by revising the structure of the id-based graph
by calling the Ensemble operations, e.g., addNode, addEdge, and so on. All the changes
of the id-based graph are accepted by the root irregular grid topology when an update-
Topology operation is called. Then, a new neighbor EP list is created and will be reused
in the next computational steps. Typically, although the creation of a new neighbor
EP list is expensive, the newly created neighbor EP list can be reused for a long period
of time until the next updateTopology operation is called. This scheme is efficient and
managed by the MPI-based library automatically.

96

6.4 Mapping to Distributed Memory Machines with MPI

6.4.6. Communication Optimization

On distributed memory machines, the fine granular communication pattern among EPs
has to be transformed to coarse granular communication among processes to avoid the
too many small messages problem. It improves the communication efficiency signifi-
cantly. Different communication optimizations are applied in the implementation of the
MPI-based library. Details of the optimizations are shown below:

1. Aggregated send receive buffer management: Each process keeps an aggregated
send and receive buffer for storing all the EPs that need to be sent to or received
from its neighbor processes. The EPs in loc_EP_Set are copied into the aggreated
send buffer, while EPs received from remote processes are stored in the aggregated
receive buffer.

2. Communication reduction: A group of EPs usually require the same EP as one
of their shadow copies for local computation. Based on this context, if the EP is
located on a remote process, it has to be sent to the processes that keep the EPs.
As it is shown in Figure 6.25, the EPs are distributed on process 0 and process 1
(EP0, EP1, and EP3 are located on process 0, while EP2, EP4, EP5, and EP6 are
located on process 1). Based on this EP distribution, both EP1 and EP3 require
EP4 as their shadow copies, and EP4 has to be sent from process 1 to process
0. The communication reduction can guarantee that EP4 is sent only once rather
twice as the topology specifies. It is the process 0’s responsibility to manage the
access pattern to EP4 by EP1 and EP3. This communication reduction strategy
can reduce the communication volume significantly.

EP2

EP4

EP6

EP5

EP0

EP3

EP1

Proc1

Proc0

Figure 6.25.: Communication reduction

97

Chapter 6 Implementation Framework

3. Communication coalescing: A process collects many EPs destined for the same
process into a single message, which is stored in the aggregated send buffer. This
optimization is called communication coalescing. The objective of communication
coalescing is to reduce the number of message startups in order to avoid the “too
many short messages” problem, since there is a substantial latency associated with
message passing on many distributed memory machines.

4. Automatic adjustment of communication patterns according to the update of
topologies: For multi-body and irregular grid applications, the communication pat-
tern is usually irregular and adaptive. The changes of the communication pattern
can be monitored by the processes when the topology is updated. The communi-
cation pattern can be adjusted accordingly based on the runtime information, i.e.,
spatial locations of EPs or changes of the id-based graphs, and so on.

6.5. Summary

The implementation framework implements the programming interface on different types
of architectures. An ensemble-based program can be translated to different executables
for target machines by linking to the machine-specific libraries. The major advantages
of the framework are described as follows:

1. The programming interface can be implemented on different architectures based
on a high-level programming approach. The source code of an ensemble-based
program can run on the architectures without being revised.

2. On sequential and shared memory machines, the memory overhead is automat-
ically optimized. The implementation framework preserves the semantic of the
programming interface and achieves efficient memory utilization.

3. On distributed memory machine, communication among processes is handled by
the MPI-based library, the programmers don’t have to define low-level communica-
tion operations. The high-level Ensemble operations are implemented by a number
of processes cooperatively.

4. Although the creation of the root topology is expensive, the implementation frame-
work can efficiently reuse the high-level topology information for a long period of
time until the next updateTopology is called.

98

7. Experimental Results

7.1. Overview

This chapter presents the experimental results of two irregular applications implemented
by a manual program and an ensemble-based program. Both programs are tested on a
sequential, shared memory, and distributed memory system on SuperMUC. The major
objective of the experiments is to show that the implementation framework can be
efficiently applied to scientific applications including irregular grid applications and MD
simulations. We compare the performance of both programs in order to find out the
major overheads originating from the implementation framework.

The rest of this chapter is organized as follows: Section 7.2 introduces the experimental
platform including the hardware and software environment; Section 7.3 compares the
performance and scalability of two implementations of an irregular grid application;
Section 7.4 compares the implementations of an MD simulation on the experimental
platform.

7.2. Experimental Platform

The experimental platform is SuperMUC[36], which is a new supercomputer at Leibniz-
Rechenzentrum (Leibniz Supercomputing Centre) in Garching near Munich. With a
peak performance of more than 3 petaflops, SuperMUC is one of the top 10 supercom-
puters in the Top500 list. It has more than 155.000 processor cores in 9400 compute
nodes and 300 terabytes of memory.

The experiment platform uses the fat nodes on SuperMUC. A fat node is based on
the Intel Westmere-EX processor[117]. It is a shared memory NUMA machine with
four sockets, each of which has one Intel Xeon Processor E7-4870 processor and 64
GB of memory. The processor has 10 cores running at the frequency 2.4GHz with a
peak performance of 9.6 GFlops. Each fat node has 40 processor cores and 256 GB of
memory, and its peak performance is 384 GFlops. The operating system on the nodes
is Suse Linux Enterprise Server, and the compiler currently used in the implementation
framework is the Intel compiler with OpenMP support. The MPI-based library of the
implementation framework uses IBM MPI.

99

Chapter 7 Experimental Results

7.3. Irregular Grid Applications

7.3.1. Overview

In order to test the performance and scalability of the implementation framework for
irregular grid applications, we compare the execution time of a manual irregular gird
implementation and an ensemble-based one. The manual program is implemented in
C++, and parallelized with OpenMP and MPI on a shared memory node as well as
a distributed memory system. The ensemble-based program is implemented by the
sequential, OpenMP-based, and MPI-based library of the implementation framework on
the same target systems.

The computational kernel of the programs is a simplified version of the FIRE benchmark[118],
which is a general purpose computational fluid dynamics program package. It was de-
veloped specially for computing compressible and incompressible turbulent fluid flows
as encountered in engineering environments. The benchmark consists of the solver of
the resulting linear equation system. The computational domain is discretized on an
irregular grid with a finite volume approach.

We use three different irregular grid data sets to evaluate the program. One of these data
sets is called Cojack from the FIRE benchmark. In order to evaluate the scalability of
the implementation framework, we build two larger data sets called Grid64 and Grid128.
They reprensent 3D cubic grids with 262, 144 and 2, 097, 152 points. They have regular
geometrical shape, but the connectivity of points in the grids is specified by a neighbor
list.

The computational kernel is an iterative kernel. The local values of a point at a time step
are determined by the values of its neighbor points at its previous time step according
to certain computational rules. The connectivity of points in the grids is described by
a 2D array called a neighbor list. To simplify the experiments, each point only keeps
a double floating point value as its local value, and the computational rule is a simple
arithmetic mean operation. The local value of a point at time step N + 1 is calculated
by the arithmetic means of the local values of its neighbor points and its own local value
at time step N . The maximum number of the iterations N is set to 128. The iterative
operation is mathematically described as follows:

valueN+1 = 1
numOfNeighbors+1(

∑i=numOfNeighbors
i=1 Neighbor[i].valueN + valueN)

After the arithmetic mean operation, there is a reduction operation on the local value of
all the points. The reduction is a simple geometrical mean operation, and the result of
this operation is returned to the master thread globally. The geometrical mean operation
is mathematically described as follows:

reduceResult =
√∑i=numOfP oints

i=1 Point[i].value2

100

7.3 Irregular Grid Applications

The computation is a simlified version from FIRE code including a local computation
and global reduction operation. In the evaluation, we only present the execution time of
the communication and iterative kernel computation. The evaluation of other sections,
e.g., I/O, initialization, and data distribution are ignored.

7.3.2. Data Sets

We choose two classes of irregular grids as test data sets. In such data sets, each point
only requires data from its near neighbor points rather than randomly selected points
in the grid.

Cojack Data

The Cojack data set represents a specific shape in the FIRE benchmark. It consists
of 318, 044 points, each of which has 6 nearest neighbor points. The neighborhood
information is kept in an input file.

3D Cubic Grids

In order to test the scalability of the implementation framework, we build Grid64 and
Grid128, which are 3D cubic grids with the size of 64 × 64 × 64 and 128 × 128 × 128.
The number of points in each grid is 262, 144 and 2, 097, 152. Each point has 26 near-
est neighbors based on the Moore neighborhood[57]. Although the data sets represent
regular cubic grids, the accesses of neighbor points require one level of array indirection.

7.3.3. Sequential Comparison

In this subsection, we compare the execution time of the manual sequential program
and the ensemble-based program implemented on a single CPU. Both programs are
compiled by the Intel compiler with O3 optimization. Their execution time is shown
in Figure 7.1. As can be seen from this figure, the ensemble-based program is around
10-30% slower than the manual sequential program on the three data sets. The overhead
of the ensemble-based programming mainly originates from two factors. The first one is
the branch in the implementation of the getNghbList operation defined in Ensemble. A
topology pointer is a parameter of this operation, and its implementation has to decide
whether this topology is the root topology or a sub topology. This branch takes some
execution time, since this operation is called by all the EPs in the ensemble for a large
number of times. The second factor is the memory overhead. In the implementation
of the ensemble-based program, each point has to reference the ensemble and get its
neighbor points from the root topology in the ensemble. It causes much more level 2

101

Chapter 7 Experimental Results

and level 3 cache accesses than the manual program. From the information of the CPU’s
hardware counters, the ensemble-based implementation causes more than twice as many
cache misses as the manual program.

Cojack Grid64 Grid128

Manual Sequential Program 1.57 4.03 32.24

Ensemble‐based Program 2.18 4.41 37.7

0

5

10

15

20

25

30

35

40

Ex
ec

u
ti

o
n
 T

Im
e
 (S

ec
o

n
d

s)

Sequential Implementation Comparison

Figure 7.1.: Execution time of sequential programs

7.3.4. OpenMP Comparison

In this subsection, the execution time and speedup of the two programs are presented
in order to test the scalability of the ensemble-based implementation on a shared mem-
ory system. The manual irregular grid program is parallelized by OpenMP, while the
ensemble-based program is implemented by the OpenMP-based library. In order to sim-
plify our discussion, only the data sets Grid64 and Grid128 are used. In this subsection,
we only evaluate the execution time of the computation step excluding the reduction
operation.

The execution time of both programs on Grid64 using 2, 4, 8, 16, 32 threads is shown
Figure 7.2. This figure tells that both programs scale well up to 32 threads and the
ensemble-based program has relatively constant executional overhead using different
number of threads. Then, we increase the data size to Grid128 with more than 2 million
points. The execution time of the two programs on Grid128 is shown in Figure 7.3.
This figure tells that neither of the programs scale well when the number of threads
is increased to 32. The main reason is that non-continuous memory accesses cause a
large number of L2 and L3 cache misses especially when the number of threads running

102

7.3 Irregular Grid Applications

on a single socket increases. The time for memory accesses rather than the arithmetic
calculations dominates the overall execution time.

In order to test the scalability, we present the speedup curves on Grid64 and Grid128
using 2, 4, 8, 16, 32 threads in Figure 7.4. From this figure, we can see that the ensemble-
based program scales well on Gird64 by using up to 32 threads. However, the scalability
on Gird128 is not as good as expected. It means that without special optimization, it is
difficult to get good speedup when irregular grids becomes larger and larger.

1T 2T 4T 8T 16T 32T

Manual OpenMP Program 3.85 1.93 0.97 0.49 0.27 0.17

Ensemble‐based Program 4.32 2.33 1.06 0.59 0.31 0.21

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Ex
ec

u
ti

o
n
 T

im
e

(s
ec

o
n

d
s)

OpenMP Implementation Comparison
(Grid64)

Figure 7.2.: Execution time of OpenMP programs (Grid64)

103

Chapter 7 Experimental Results

1T 2T 4T 8T 16T 32T

Manual OpenMP Program 31.68 17.1 9.03 4.66 2.8 3.39

Ensemble‐based Program 36.9 21.9 11.5 5.99 3.59 3.94

0

5

10

15

20

25

30

35

40

Ex
e

cu
ti

o
n
 T

im
e
 (s

e
co

n
d

s)

OpenMP Implementation Comparison
(Grid128)

Figure 7.3.: Execution time of OpenMP programs (Grid128)

1T 2T 4T 8T 16T 32T

Manual OpenMP Program(Grid64) 1.00 1.99 3.97 7.86 14.26 22.65

Ensemble‐based OpenMP Program(Grid64) 1.00 1.85 4.08 7.32 13.94 20.57

Manual OpenMP Execution(Grid128) 1.00 1.85 3.51 6.80 11.31 9.35

Ensemble‐based OpenMP Program(Grid128) 1.00 1.68 3.21 6.16 10.28 9.37

0.00

4.00

8.00

12.00

16.00

20.00

24.00

Sp
p

ed
u

p

OpenMP Speedup Comparison (Grid64 && Grid128)

Figure 7.4.: OpenMP speedup curves on Grid64 and Grid128

Therefore, the OpenMP-based library of the implementation framework applies the
re-indexing and data reallocation strategy to improve the performance on large ir-
regular grids. It distributes all the EPs across different sockets of a shared memory

104

7.3 Irregular Grid Applications

node with the METIS-based optimal EP distribution algorithm. In addition, threads
are also evenly distributed across different sockets by setting the environment variable
GOMP_CPU_AFFINITY. From the experimental result shown in Figure 7.5, we can
see that the ensemble-based program implemented by the OpenMP-based library with
the re-indexing and reallocation strategy scales well up to 32 threads and achieves much
better performance than the ensemble-based implementation without re-indexing.

1T 2T 4T 8T 16T 32T

Ensemble‐based OpenMP
(No Reindexing)

31.43 20.75 11.11 6.35 4.6 5.77

Ensemble‐based OpenMP
(Reindexing)

16.67 8.88 4.18 2.21 1.32 1.19

0

5

10

15

20

25

30

35

Ex
e

cu
ti

o
n
 T

im
e

(s
e

co
n

d
s)

Ensemble‐based Reindexing Comparison

Figure 7.5.: Ensemble-based re-indexing

7.3.5. MPI Comparison

On a distributed memory system, the manual irregular grid program is parallelized in
C++ with MPI, while the ensemble-based program is implemented by the MPI-based
library of the framework. The execution time of these two programs is evaluated in order
to test the performance and scalability of the MPI-based library on distributed memory
systems.

First of all, we compare the speedup of two manual MPI programs based on the block
and METIS decomposition method. The block decomposition is to decompose the point
set into multiple subsets according to the indices of the points. For example, points
[0, 1, 2, ..., P −1] are assigned to process 0, points [P, P +1, P +2, ..., 2P −1] are assigned
to process 1, and so on and so forth (P = N/numOfProcesses). The METIS decompo-
sition is to decompose the point set according to graph-based algorithms with optimized
communication among different subsets. The speedup curves of the two MPI programs

105

Chapter 7 Experimental Results

is shown in Figure 7.6. This figure tells that the METIS decomposition leads to better
scalability and performance especially when the number of processes is more than 64.
The major reason is that the METIS decomposition can obtain efficient communication
among processes especially for irregular grids. Thus, it is worth integrating METIS into
the MPI-based library of the framework. The METIS library is efficient and doesn’t
take much time on decomposing millions of points.

1P 2P 4P 8P 16P 32P 64P 128P 256P

Block Distribution 1.00 1.99 3.91 6.88 12.09 22.14 34.48 46.14 15.38

METIS Distribution 1.00 1.97 3.97 6.83 12.79 26.38 46.25 78.51 105.50

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Sp
ee

d
u

p

Manual MPI Comparison (Block vs. Metis)

Figure 7.6.: MPI speedup curves (Block vs. METIS)

Then, we compare the execution time of the manual MPI program based on METIS
decomposition and the ensemble-based program using different numbers of processes.
The execution time of the two programs using one process is shown in Figure 7.7. This
figure shows that the execution of the MPI-based library is around 30% slower than
the sequential library, since there are some branch statements added into the MPI-
based library. For example, the implementation of the getNghbList operation needs to
guarantee that the pointer of an EP provided to the operation is a local EP, which
increases the overhead but detects possible errors automatically.

106

7.3 Irregular Grid Applications

Cojack Grid64 Grid128

Manual MPI Program 1.67 4.13 33.1

Ensemble‐based Program 2.71 5.7 44.78

0

5

10

15

20

25

30

35

40

45

50

Ex
e

cu
ti

o
n
 T

im
e

(S
e

co
n

d
)

MPI Comparison using 1 process

Figure 7.7.: MPI comparison using 1 process

The comparison between the manual MPI program using METIS and the ensemble-
based implementation is shown in Figure 7.8. This figure tells that with 20-30% of
overhead compared to the manual MPI implementation, the MPI-based library can get
good performance while the number of processes increases. Based on the execution time
of both programs using one process, the speedup curves of these two programs are shown
in Figure 7.9. From this figure, we can see that the ensemble-based program scales well
up to 256 processes. Compared to the MPI program based on METIS, the ensemble
based program can obtain comparative performance and its overhead is stable while
using different numbers of processes.

107

Chapter 7 Experimental Results

1P 2P 4P 8P 16P 32P 64P 128P 256P

Manual MPI Program(METIS) 33.1 17.1 8.51 4.94 2.64 1.28 0.73 0.43 0.31

Ensemble‐based Program 44.78 22.92 12.25 6.81 3.75 1.89 1.08 0.64 0.53

0

5

10

15

20

25

30

35

40

45

50

Ex
e

cu
ti

o
n
 T

im
e

(s
e

co
n

d
s)

MPI Implementation Comparison (Grid128)

Figure 7.8.: Execution time comparison with MPI

1P 2P 4P 8P 16P 32P 64P 128P 256P

Manual MPI Program(METIS) 1.00 1.94 3.89 6.70 12.54 25.86 45.34 76.98 106.77

Ensemble‐based Program 1.00 1.95 3.66 6.58 11.94 23.69 41.46 69.97 84.49

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Sp
ee

d
u

p

MPI Speedup Comparison (Gird128)

Figure 7.9.: Speedup curve comparison with MPI

108

7.4 Molecular Dynamics Simulation

7.3.6. Summary for Irregular Grid Applications

In this section, we compared the execution time of the manual C++ program and
ensemble-based program for an irregular grid application on different data sets. Both
programs are implemented on a sequential, shared memory, and distributed memory
system. The experimental results show that with reasonable execution overhead, the
ensemble-based implementation framework achieves acceptable performance on the ir-
regular grid application. Meanwhile, it is easier and straightforward to implement the
irregular application using the ensemble-based programming, which reduces so much
programming overhead. For example, the MPI program requires nearly 1, 000 lines of
code, while the ensemble-based program only has less than 200 lines including high level
operations like updateShadowCopy, parallel operation, and so on.

7.4. Molecular Dynamics Simulation

7.4.1. Overview

In order to test the implementation framework for multi-body applications with a trun-
cated approximation, we compare the performance of the manual MD program and
the ensemble-based program on a sequential, shared memory, and distributed memory
system. The computational kernel of the MD programs is based on the truncated LJ po-
tential formula, and the simulation domain is a 3D cubic domain. Each molecule in the
domain keeps a randomly generated position and interacts with its neighbor molecules
located within the cut-off radius region. The positions of all the molecules are updated
according to the molecule-to-molecule interactions and the equations of motion.

In the experiments, the number of the molecules is set to 64K (65, 536), and 128K (131, 072),
the number of iteration steps is 8. The cut-off radius is set to 1, the size of the simu-
lation domain is 8 × 8 × 8. It is extremely time-consuming for such MD simulations if
the number of molecules is 64K to 128K, thus we set a small number to the number
of iterations in order to evaluate the programs in a reasonable period of time. We only
present the execution time of the communication and iterative kernel computation. The
evaluation of other sections, e.g., I/O, initialization, and data distribution are ignored.

7.4.2. Sequential Comparison

In this subsection, we evaluate the performance of an MD program based on the linked
cell algorithm and the ensemble-based program on a sequential machine. The execution
time of the two programs is shown in Figure 7.10. This figure tells that the ensemble-
based program is around 15% slower than the basic sequential program. The major
overhead is the creation of the neighbor list in the root topology. Different from irregular

109

Chapter 7 Experimental Results

grid applications, the creation of the neighbor list is triggered by calling updateTopology
operations in each time step because of the non-predictive movement of the molecules in
the simulation domain. This operation is relatively expensive with memory overhead and
more execution time as well. However, once the neighbor list is created, each molecule
is able to access its neighbor molecules directly and efficiently.

32K 64K 128K

Manual MD Program 8.66 32.3 129

Ensemble‐based MD Program 9.96 36.93 147.6

0

20

40

60

80

100

120

140

160

Ex
e

cu
ti

o
n
 T

im
e(

Se
co

n
d

s)
Sequential Implementation Comparison

Figure 7.10.: Execution time of sequential MD programs

7.4.3. OpenMP Comparison

In this subsection, we evaluate the performance of the basic OpenMP program and the
ensemble-based program on a single node on SuperMUC. The execution time of these
two programs is shown in Figure 7.11, and the speedup curves are shown in Figure 7.12.

110

7.4 Molecular Dynamics Simulation

1T 2T 4T 8T 16T 32T

Manual OpenMP Program 136.7 116.6 67.5 34.8 18.4 11.5

Ensemble‐based Program 156.6 137.6 120 79.5 42.9 33

0

20

40

60

80

100

120

140

160

180
Ex

e
cu

ti
o

n
 T

im
e
 (s

e
co

n
d

s)

OpenMP Implementation Comparison
(128K)

Figure 7.11.: Execution time of OpenMP MD programs

1T 2T 4T 8T 16T 32T

Manual OpenMP Program 1.00 1.17 2.03 3.93 7.43 11.89

Ensemble‐based OpenMP Program 1.00 1.14 1.31 1.97 3.65 4.75

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

Sp
p

e
d

u
p

OpenMP Speedup Comparison (128K)

Figure 7.12.: Speedup curves of OpenMP MD Programs

From the results shown in these figures, we can see that the overhead of the ensemble-
based program becomes higher and higher when the number of threads increases. The
overhead mainly originates from two aspects. The first one is the creation of the neighbor

111

Chapter 7 Experimental Results

list is not as efficient as expected because of its vector-based data structure. The second
one is the parallel operation that doesn’t scale very well because of memory bandwidth of
the nodes on SuperMUC. Different from irregular grid applications, each molecule in an
MD simulation usually has hundreds of neighbor molecules, which greatly increases the
memory overhead. The discussion of thread distribution was already presented in the
experimental results of irregular grid applications, so we don’t repeat it in the subsection.

7.4.4. MPI Comparison

On a distributed memory system, the manual MD program is written in C++ with
MPI, while the ensemble-based program is implemented by the MPI-based library of
the implementation framework. In order to balance the computational load, the manual
program uses METIS to decompose the molecules according to the linked cells. The
MPI-based library integrates METIS automatically. We compare the execution time of
both programs in order to evaluate the performance and scalability of the MPI-based
library on distributed memory systems. The data set used is 128K. The execution time
of both programs is shown in Figure 7.13, and the speedup curves are shown Figure 7.14.

1P 2P 4P 8P 16P 32P 64P 128P 256P

Manual MPI Program 129.7 62.1 35.9 20.5 9.67 4.29 2.61 1.78 1.77

Ensemble‐based Program 160.8 83.3 44.1 24.2 12.3 6.33 3.69 2.48 2.86

0

20

40

60

80

100

120

140

160

180

Ex
e

cu
ti

o
n
 T

im
e
 (s

e
co

n
d

s)

MPI Implementation Comparison (128K)

Figure 7.13.: Execution time of MPI MD programs

112

7.5 Summary

1P 2P 4P 8P 16P 32P 64P 128P 256P

Manual MPI Program 1.00 2.09 3.61 6.33 13.41 30.23 49.69 72.87 73.28

Ensemble‐based Program 1.00 1.93 3.65 6.64 13.07 25.40 43.58 64.84 56.22

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

Sp
e

ed
u

p

MPI Speedup Comparison (128K)

Figure 7.14.: Speedup curves of MPI MD programs

From the experimental results shown in these figures, the ensemble-based program scales
as well as the manual MPI program. The execution time of one process is a bit larger
than the sequential implementation because of the branches used to decide local and
non-local EPs. This overhead keeps constant when the number of processes increases.

The major advantage of the ensemble-based programming is the productivity. It is
really difficult to implement an MD simulation using MPI. For exmple, the manual
MPI program has almost 3,000 lines of code, which takes care of all the implementation
details including, the data decomposition, communication among processes, migrating
molecules between processes, and so on. However, the ensemble-based program only has
a few hundred of lines. It mainly consists of the definition of the molecule including fine
granular local attributes and operations. The main function contains three high-level
operations namely update, parallel, and updateTopology. The experimental results show
that the ensemble-based program is only a bit slower than the MPI program. It means
the ensemble-based programming paradigm is relatively efficient and easy to use.

7.5. Summary

The ensemble-based implementation framework can be applied to implement irregular
grid applications and MD simulations. The experimental results show that with reason-
able and acceptable overhead, it reduces a large number of lines of code and improves

113

Chapter 7 Experimental Results

the programming productivity especially for these irregular applications. The implemen-
tation framework manages the root topology with a neighbor list of all the EPs based
on C++ vectors and pointers. It implements the high-level operations efficiently on a
sequential, shared memory, and distributed memory system on SuperMUC.

114

8. Conclusion and Future Work

8.1. Ensemble-based Programming Approach

The ensemble-based programming approach is applied to implement parallel scientific
applications in a fine granular and SPMD fashion. Its major objective is to improve the
programming productivity and make parallel programming easier and more straightfor-
ward. Different from current programming approaches starting from the global data
structure, the ensemble-based approach is based on specifying the finest granular ele-
ments and their interactions. These fine granular elements are organized as an ensemble,
which manages the elements, their topologies, and high-level operations. By using the
high-level operations explicitly, programmers can control the actions of the elements
including the communication, synchronization, parallel operations, and so on.

The ensemble-based programming approach tries to combine the major advantages of
current programming models and runtime strategies. Similar to HPF and GA, the
ensemble-based programming approach provides a shared memory programming view,
and can be implemented on distributed memory platforms. It applies the template-based
OOP approach like TBB and Charm++ in order for the flexibility and extensibility. The
support for irregular grid applications reuses the idea of the PARTI/CHAOS library and
manages the data storage and communication among processes efficiently on distributed
memory systems.

8.2. Programming Scheme

8.2.1. Machine Model

The ensemble-based machine model is different from a concrete architecture with CPUs,
main memory, and I/O devices. It is a simple and fine-granular platform, which hides
optimizations such as cache optimizations, data locality, communication overlapping,
and so on. The ensemble-based machine model is an abstract architecture consisting of
a control processor (CP) and a large number of fine granular processors (FGPs). The
execution model of the machine is similar to SIMD. The CP issues a “single instruction”,
which represents a specific parallel operation on FGPs. Multiple FGPs then perform
user-defined coarse-grained computations in parallel.

115

Chapter 8 Conclusion and Future Work

8.2.2. Programming Paradigm

The programming paradigm is designed on top of the machine model in order to program
such an abstract architecture. It consists of software entities and their relations. The
software entities are Elementary Points (EPs), the ensemble, topologies, and the master
thread. An EP represents the finest granular computational object in the domain of an
application. Each EP is mapped to a single FGP in the machine model. Multiple EPs
are formed into an ensemble with their relations kept in a topology. A topology defines
communication patterns resulting from the need for the information of a set of EPs in
the ensemble. The EPs can exchange their local attibutes based on certain topologies.
The ensemble is a software container that stores a set of EPs and manages their informa-
tion, communication, computation, and so on. The main constituents in the ensemble
are a set of EPs, topologies, high-level operations for managing EPs and topologies,
parallel operations, shadow copy update, and collective operations. The master thread
is executed on the CP in a fork-join fashion. It is responsible for globally managing the
ensemble-based program. The major tasks of the master thread include performing I/O,
creating the ensemble and topologies, creating and initializing EPs, managing topologies
in the ensemble, local computations, and triggering parallel operations, and so on.

8.2.3. Programming Interface

The programming interface is based on the object oriented programming approach in
C++. It supports the mapping from the software entities, i.e., EPs, the ensemble, and
topologies, to concrete C++ objects. It consists of a template hierarchy with predefined
class templates. The top level of the template hierarchy includes three base templates
namely ElementaryPoint, Ensemble, and Topology. These templates have derived tem-
plates called application-level templates, which target to three application areas, i.e.,
multi-body, irregular grid, and regular grid applications. The user-defined software en-
tities with local attributes and operations can be defined as C++ classes derived from
the application-level templates. In addition, the template hierarchy is flexible and can
be extended to support other application areas by adding new application-specific tem-
plates into the template hierarchy. The master thread is expressed in the main function
of an ensemble-based program using C++ syntax. It controls the behavior of the EPs
in the ensemble by calling high-level operations defined in Ensemble.

Based on the programming interface, the ensemble-based programming primarily in-
cludes defining the EPs, specifying the EPs’ topologies, inserting the EPs and the topolo-
gies into the ensemble, creating the master thread that manages the computation and
communication of the EPs using high-level operations, and so on.

116

8.3 Implementation Framework

8.3. Implementation Framework

The basic idea of implementation framework is to aggregate fine granular EPs into ap-
propriate blocks based on the description of the hardware. The blocks are then bound to
threads or processes. The EP-to-EP communication is coarsened to the communication
among blocks. For different types of architectures, the implementation framework con-
sists of machine-specific libraries namely a sequential, an OpenMP-based, and an MPI-
based library. They are implemented on sequential, shared memory, and distributed
memory systems respectively. The implementation framework currently supports both
multi-body applications and irregular grid applications. A platform-independent and
ensemble-based program can be translated into different executables by linking these
libraries with different compiler options. The implementation framework currently sup-
ports multi-body and irregular grid applications. Regular grid applications can usually
be implemented and optimized by static compiler extensions. Thus, the support for
regular grid applications is not implemented in the framework.

The sequential-based library is a standard OOP implementation. Both the communica-
tion and parallel operations of the EPs in the ensemble are handled by a single-threaded
process. It is designed to demonstrate the basic implementation of the programming
interface on a single process.

The OpenMP-based library implements the programming interface on top of OpenMP.
It translates an ensemble-based program to an OpenMP program executed on shared
memory systems. The communication and parallel operations of EPs in the ensemble
are done by multiple threads in parallel. The computation of a group of EPs is aggre-
gated and bound to a single thread and the communication among EPs is handled by
accessing the shared memory. In order to minimize non-local accesses on NUMA nodes,
the OpenMP-based library employs EP reallocation strategy combined with re-indexing
method for irregular grid applications.

The MPI-based library implements the programming interface in C++ with MPI. It
employs optimized EP distribution strategies based on the METIS library to distribute
computational workload across multiple processes. The communication among processes
is optimized by aggregating fine granular communication among EPs into coarser MPI
messages. The communication pattern among EPs is determined by topologies, which
are managed by the MPI-based library automatically. For multi-body applications,
the MPI-based library employs both the domain decomposition and the parallel linked
cells (PLC) algorithm for EP distribution and communication management, while for
irregular grid applications; it applies graph partitioning algorithms to achieve optimal
EP distribution and communication efficiency.

117

Chapter 8 Conclusion and Future Work

8.4. Evaluation

The ensemble-based implementation framework is ported on SuperMUC[36], the peta-
scale supercomputer at LRZ (Leibniz Supercomputing Centre) in Germany. We imple-
ment an irregular grid and an MD program based on different data sets in order to test
the performance and scalability of framework on different types of systems including
a sequential, shared memory, and distributed memory system. The experimental re-
sults show that the execution of then ensemble-based programs is a bit slower than the
standard implementations using C++ with OpenMP or MPI. On a sequential machine,
the execution overhead of the framework is around 10%-30% for both applications. On
a distributed memory machine, the re-indexing and reallocation strategy integrated in
the OpenMP-based library achieves good performance and speedup. On a distributed
memory machine, the executional overhead is around 30% using different number of
processes.

Therefore, with acceptable and reasonable overhead, the ensemble-based programming
improves the programming productivity in terms of the source code size, the coding
method, and the implementation difficulty. Take the MD simulation as an example,
the standard MPI program has almost 3,000 lines of code, which takes care of all the
complicated implementation details. However, the ensemble-based program only has a
few hundred of lines with the definition of molecules and the main function that is re-
sponsible for triggering high-level ensemble operations defined in the template hierarchy.
Compared to current parallel programming models, the ensemble-based programming
scheme manages the granularity of computation, data distribution, communication and
load balance for irregular applications efficiently.

8.5. Future Work

The ensemble-based programming scheme is only a prototype that supports two applica-
tion areas with a single ensemble and multiple topologies. The topologies are organized in
a two-level hierarchy, which consists of only a single root topology and its sub topologies.
In the future work, it is possible to extend the specification to support and multiple en-
sembles with a more complicated topology hierarchy. The programming interface needs
to provide specifications to support defining relations between ensembles.

In this dissertation, we present basic implementations of the programs without detailed
optimizations to different types of architectures. In order to improve the efficiency of the
implementation framework, application oriented and architecture oriented optimization
strategies can be integrated into the framework in the future. For example, efficient
algorithms for building neighbor list can be implemented in the framework to get better
performance for MD simulations.

118

8.5 Future Work

The template hierarchy is currently designed for multi-body and irregular grid applica-
tions. The support for other application areas can be implemented by adding application-
specific templates into the template hierarchy. One possible extension of the support
for adaptive grid applications. The ensemble needs to support dynamic insertion and
deletion of EPs at runtime. The topologies in the ensemble need to be updated by
appropriate algorithms when the interaction of EPs changes.

The implementation framework is currently ported on three types of architectures in-
cluding sequential systems, and parallel system like shared memory and distributed
memory systems. Porting the implementation framework on heterogenous architectures
with CPUs and GPUs is an interesting and challenging topic. In addition, the support
for hybrid architectures can also be exploited in the future in order to take advantages
of hybrid programming with MPI and OpenMP.

119

A. Appendix

A.1. Compiler Commands and Options

On sequential machines, the implementation framework applies a standard C++ com-
piler and the sequential library to translate the ensemble-based program into an exe-
cutable. On shared memory machines, it translates the program into an executable by a
standard C++ compiler with OpenMP. On distributed memory machines, the program
is compiled to a multi-process executable with MPI. TableA.1 presents the compiler
commands and required options to generate executables for different target machines.

Compiler Command Required Options
Sequential g++ / icpc ——

Shared Memory g++ / icpc -fopenmp
Distributed Memory mpicxx / mpiCC ——
Table A.1.: Basic compiler commands and required options

Besides to the basic compiler commands and options, users need to specify the location
of header files when compiling the source files of the master thread and fine granular
entities. In addition, it is necessary to specify the location of a machine-specific library
and -l option when linking all the object files to an executable. The additional compiler
options are presented in TableA.2.

Header Location Library Location Linking
Sequential -I ../Seq/include -L ../Seq/lib -lseq_e
Shared -I ../OpenMP/include -L ../OpenMP/lib -lopenmp_e

Distributed -I ../MPI/include -L ../MPI/lib -lmpi_e
Table A.2.: Machine-specific compiler options

A.2. Full Declaration of Template Hierarchy

A.2.1. ElementaryPoint

121

Chapter A Appendix

Listing A.1: Full declaration of ElementaryPoint
#ifndef ELEMENTARYPOINT_H_
#define ELEMENTARYPOINT_H_

#include <iostream>

using namespace std ;

template<class Ensemble>
class ElementaryPoint {

protected :
// I d e n t i f i e r
unsigned long id ;

//Ensemble po in t e r
Ensemble∗ensemblePointer ;

public :
// De fau l t cons t ruc t o r
ElementaryPoint () ;

//Constructor wi th id
ElementaryPoint (unsigned long id) ;

//Constructor wi th id , ensemble po in t e r
ElementaryPoint (unsigned long id , Ensemble∗ensemblePointer) ;

//Constructor wi th Ensemble po in t e r
ElementaryPoint (Ensemble∗ensemblePointer) ;

// De fau l t d e s t r u c t o r
virtual ~ElementaryPoint () ;

//Get the id o f ElementaryPoint
inl ine unsigned long getId () ;

// Set the id o f ElementaryPoint
inl ine void setId (unsigned long id) ;

//Get the Ensemble po in t e r o f ElementaryPoint
inl ine Ensemble∗getEnsemble () ;

// Set the Ensemble po in t e r o f ElementaryPoint
inl ine void setEnsemble (Ensemble∗ensemblePointer) ;

} ;

122

A.2 Full Declaration of Template Hierarchy

#endif /∗ ELEMENTARYPOINT_H_ ∗/

A.2.2. Topology

Listing A.2: Full declaration of Topology
#ifndef TOPOLOGY_H_
#define TOPOLOGY_H_

#include <iostream>
#include <vector>

using namespace std ;

template<class EP>
class Topology {
protected :

// id o f the topo l ogy
unsigned short id ;

//Number o f EPs
unsigned long numOfEPs ;

//The s e t o f EPs ’ i d e n t i f i e r s
vector<unsigned long> idSetOfEP ;

//A tag shows whether i t i s a sub topo l o gy
bool isRootTop ;

// I f a t opo l o gy i s a sub topo logy , a po in t e r to i t s roo t t opo l o gy
Topology<EP>∗ baseTop ;

public :
// De fau l t cons t ruc t o r
Topology () ;

// De fau l t d e s t r u c t o r
virtual ~Topology () ;

//Get the po in t e r o f the base t opo l ogy
Topology<EP> ∗getBaseTop () const ;

//Get the id
unsigned short getId () const ;

123

Chapter A Appendix

//Get the id s e t o f EPs
vector<unsigned long> getIdSetOfEP () const ;

//Get isRootTopology
bool getIsRootTop () const ;

//Get number o f EPs
unsigned long getNumOfEPs () const ;

// Set the po in t e r o f the base t opo l o gy
void setBaseTop (Topology<EP> ∗baseTop) ;

// Set number o f EPs
void setNumOfEPs (unsigned long numOfEPs) ;

// update opera t ion
virtual void updateTopology () ;

} ;

A.2.3. Ensemble

Listing A.3: Full declaration of Ensemble
#ifndef ENSEMBLE_H_
#define ENSEMBLE_H_

#include <iostream>
#include <vector>

using namespace std ;

template<class EP , class Topology>
class Ensemble {
public :

/∗ ∗∗
∗ Construc tors and Des truc tor
∗∗ ∗/

//Constructor
Ensemble () ;

//Constructor wi th command arguments
Ensemble (int ∗argc , char ∗∗∗argv) ;

//Des t ruc tor
virtual ~Ensemble () ;

124

A.2 Full Declaration of Template Hierarchy

//Number o f EPs
unsigned long numOfEPs ;

//Number o f Topo log ies
unsigned short numOfTops ;

//Local s e t o f EPs
vector<EP> EP_Set ;

//Topology Set
vector<Topology∗> topPtrSet ;

/∗ ∗∗
∗ F ina l i z a t i o n
∗∗ ∗/

// F i na l i z a t i o n
virtual void Finalize () ;

/∗ ∗∗
∗ I n s e r t an EP in to the Ensemble
∗ Remove an EP from the Ensemble
∗∗ ∗/

// In s e r t an Elementary Point in t o the Ensemble
virtual void insertEP (EP∗ep) ;

//Remove an EP from the Ensemble
virtual void removeEP (EP∗ep) ;

//Remove an EP from the Ensemble
virtual void removeEP (unsigned long id) ;

/∗ ∗∗
∗ I n s e r t a Topology in t o the Ensemble
∗ Remove a Topology from the Ensemble
∗∗ ∗/

// In s e r t a Topology in to the Ensemble
virtual void insertTopology (Topology∗topology) ;

//Remove a Topology from the Ensemble
virtual void removeTopology (Topology∗topology) ;

//Remove a Topology from the Ensemble
virtual void removeTopology (unsigned short id) ;

/∗ ∗∗
∗ Pa r a l l e l Execut ion

125

Chapter A Appendix

∗∗ ∗/
// Pa r a l l e l e xecu t i on o f a l l e lementary po in t s in the ensemble
template<typename Operation>
void parallel (Operation op) ;

// Pa r a l l e l e xecu t i on o f a l l e lementary po in t s in the ensemble
template<typename Operation>
void parallel (Operation op , Topology∗topology) ;

/∗ ∗∗
∗ Get Ne ighborLi s t Operat ions
∗∗ ∗/

//Get ne i gh bo rL i s t o f the curren t Elementary Point
virtual vector<EP∗>& getNghbPtrs (EP∗current) ;

//Get ne i gh bo rL i s t o f the curren t Elementary Point
virtual vector<EP∗>& getNghbPtrs (EP∗current , Topology∗topology) ;

/∗ ∗∗
∗ Updating Shadow Copies
∗∗ ∗/

//Update shadow cop i e s us ing a g iven Topology
virtual void update (Topology∗topology) ;

//Update the shadow cop i e s o f s p e c i f i c p r o p e r t i e s o f a l l
e lementary po in t s in the Ensemble

template<typename GetOperation>
void update (GetOperation getOp , Topology∗topology) ;
/∗ ∗∗
∗ Al lReduct ion Operat ions on a l l the
∗ Elementary Points in the Ensemble
∗∗ ∗/

/∗ Co l l e c t i v e opera t ion on a s p e c i f i c proper ty us ing prede f ined
opera t i ons and

∗ put the r e s u l t to the the same proper ty p l ace
∗ −−−−−−− reduceOpt (A. proper ty) = A. proper ty −−−−−−−−−−
∗/

template<typename GetOperation>
void allReduceOp (GetOperation op , int reduceOpType) ;

/∗ Co l l e c t i v e opera t ion on a s p e c i f i c proper ty us ing user de f ined
opera t i ons and

∗ put the r e s u l t to the same proper ty p l ace
∗ −−−−−−− (user Defined) reduceOpt (A. proper ty) = A. proper ty
−−−−−−−−−−

∗/

126

A.2 Full Declaration of Template Hierarchy

template<typename GetOperation , typename ReduceOperation>
void allReduceOp (GetOperation getOp , ReduceOperation reduceOpType

) ;

/∗ Co l l e c t i v e opera t ion on a s p e c i f i c proper ty us ing prede f ined
opera t i ons and

∗ put the r e s u l t to the p l ace o f another proper ty
∗ −−−−−−− reduceOpt (A. propertyGet) = A. propertyPut −−−−−−−−−−
∗/

template<typename GetOperation , typename PutOperation>
void allReduceOp (GetOperation getOp , PutOperation putOp , int

reduceOpType) ;

/∗ Co l l e c t i v e opera t ion on a s p e c i f i c proper ty us ing user de f ined
opera t i ons and

∗ put the r e s u l t to the p l ace o f another proper ty
∗ −−−−−−− (user Defined) reduceOpt (A. propertyGet) = A.

propertyPut −−−−−−−−−−
∗/

template<typename GetOperation , typename PutOperation ,
typename ReduceOperation>

void allReduceOp (GetOperation getOp , PutOperation putOp ,
ReduceOperation reduceOpType) ;

/∗ Prede f ined c o l l e c t i v e opera t ion on a prede f ined opera t ion
between the f i r s t proper ty and

∗ the second proper ty then put the r e s u l t to the p l ace o f
another proper ty

∗ −−reduceOpt [(EP. p r op e r t yF i r s t) optBetween (EP. propertySecond)
] = EP. proper ty −−

∗/
template<typename GetFirstOperation , typename GetSecondOperation ,

typename GetOutPut>
void allReduceOp (GetFirstOperation getFirst , GetSecondOperation

getSecond ,
int opBetween , int reduceOpType , GetOutPut getOutPut) ;

/∗ User de f ined de f ined c o l l e c t i v e opera t ion on a user de f ined
opera t ion between the f i r s t proper ty

∗ and the second proper ty then put the r e s u l t to the p l ace o f
another proper ty

∗ −−reduceOpt [(EP. p r op e r t yF i r s t) optBetween (EP. propertySecond)
] = EP. proper ty −−

∗/
template<typename GetFirstOperation , typename GetSecondOperation ,

127

Chapter A Appendix

typename OperationBetween , typename Operation , typename
GetOutPut>

void allReduceOp (GetFirstOperation getFirst , GetSecondOperation
getSecond ,

OperationBetween opBetween , Operation op , GetOutPut
getOutPut) ;

/∗ ∗∗
∗ Reduction Operat ions on a l l the
∗ Elementary Points in the Ensemble
∗ and s t o r e the r e s u l t to a s p e c i f i c p l a ce
∗∗ ∗/

/∗ Co l l e c t i v e opera t ion on a s p e c i f i c proper ty us ing prede f ined
opera t i ons and

∗ put the r e s u l t to the a user s p e c i f i e d p l ace
∗ −−−−−−− reduceOpt (A. proper ty) = r e s u l t −−−−−−−−−−
∗/

template<typename GetOperation>
void reduceOp (GetOperation op , int reduceOpType , void∗ result) ;

/∗ Co l l e c t i v e opera t ion on a s p e c i f i c proper ty us ing user de f ined
opera t i ons and

∗ put the r e s u l t to a user s p e c i f i e d p l ace
∗ −−−−−−− (user Defined) reduceOpt (A. proper ty) = r e s u l t
−−−−−−−−−−

∗/
template<typename GetOperation , typename ReduceOperation>
void reduceOp (GetOperation op , ReduceOperation reduceOpType , void
∗ result) ;

/∗ Prede f ined c o l l e c t i v e opera t ion on a prede f ined opera t ion
between the f i r s t proper ty and

∗ the second proper ty then put the r e s u l t to a user s p e c i f i e d
p l ace

∗ −−reduceOpt [(EP. p r op e r t yF i r s t) optBetween (EP. propertySecond)
] = r e s u l t −−

∗/
template<typename GetFirstOperation , typename GetSecondOperation>
void reduceOp (GetFirstOperation getFirst , GetSecondOperation

getSecond ,
int opBetween , int reduceOpType , void∗ result) ;

/∗ User de f ined de f ined c o l l e c t i v e opera t ion on a user de f ined
opera t ion between the f i r s t proper ty

∗ and the second proper ty then put the r e s u l t to the p l ace o f
another proper ty

128

A.3 Ensemble-based Programs

∗ −−reduceOpt [(EP. p r op e r t yF i r s t) optBetween (EP. propertySecond)
] = r e s u l t −−

∗/
template<typename GetFirst , typename GetSecond , typename

OperationBetween ,
typename ReduceOperation>

void reduceOp (GetFirst getFirst , GetSecond getSecond ,
OperationBetween opBetween , ReduceOperation reduceOpType ,
void∗ result) ;

/∗ ∗∗
∗ Get Operat ions
∗∗ ∗/

// ge t Topology po in t e r
Topology∗ getTopPtr (unsigned short topId) const ;

// ge t Topology po in t e r s e t
vector<Topology∗>& getTopPtrSet () ;

// ge t G loba lS i z e
unsigned long getGlobalSize () ;

// ge t l o c a l s e t o f e lementary po in t s
vector<EP>& getEP_Set () ;

} ;

#endif /∗ ENSEMBLE_H_ ∗/

A.3. Ensemble-based Programs

A.3.1. Irregular Grid Program

The point definition is shown in Listing A.4.

Listing A.4: Point Definition
#include "Point.h"

Point : : Point () {
this−>id = 0 ;
this−>buffer = 0 ;

}

Point : : Point (int id) {
this−>id = id ;

129

Chapter A Appendix

this−>buffer = 0 ;
}

Point : : Point (int id , double value) {
this−>id = id ;
this−>value = value ;
this−>buffer = 0 ;

}

Point : : Point (int id , double value , Ensemble<Point , Topology<Point> >∗
pEnsemble) {
this−>id = id ;
this−>value = value ;
this−>buffer = 0 ;
this−>pEnsemble = pEnsemble ;

}

Point : : ~ Point () {
// TODO Auto−generated d e s t r u c t o r s tub

}

int Point : : getId () {
return this−>id ;

}

double Point : : getValue () {
return this−>value ;

}

void Point : : setEnsemble (Ensemble<Point , Topology<Point> >∗ pEnsemble)
{
this−>pEnsemble = pEnsemble ;

}

Ensemble<Point , Topology<Point> >∗ Point : : getEnsemble () {
return this−>pEnsemble ;

}

void Point : : localCompute () {
double sum = this−>value ;
for (int i = 0 ; i

< pEnsemble−>getNghbs (this , pEnsemble−>getTopSet () [0]) .
size () ; i++) {

sum
+= pEnsemble−>getNghbs (this , pEnsemble−>getTopSet ()

[0]) [i]−>getValue () ;

130

A.3 Ensemble-based Programs

}
i f (pEnsemble−>getNghbs (this , pEnsemble−>getTopSet () [0]) . size ()

!= 0)
sum = sum

/ (pEnsemble−>getNghbs (this , pEnsemble−>getTopSet ()
[0]) . size ()

+ 1) ;
this−>value = sum ;

}

void Point : : print () {
cout << " id: " << this−>id << " value: " << this−>value << endl ;

}

The main function of the irregular program is shown in Listing A.5.

Listing A.5: Main function of irregular grids
#include <map>
#include <vector>
#include <iostream>
#include <algorithm>
#include <sys / time . h>
#include "Point.h"

#define FINAL_ITER_STEP 128

#include "Ensemble.h"
#include "Topology.h"

using namespace std ;

double dispEllapsedTime (struct timeval startTime) ;
void non_dupInsert (int in , vector<int>& dupVec) ;
unsigned long cellIndexOf3DIndex (int xIndex , int yIndex , int zIndex) ;
/∗ ∗∗
∗ Main Function
∗∗ ∗/

int main () {
double start_time , end_time ;
struct timeval startTv ;
/∗ ∗∗
∗ Ensemble Creat ion
∗∗ ∗/

Ensemble<Point , Topology<Point> > pointEnsemble ;
/∗ ∗∗
∗ I n s e r t EPs in t o the Ensemble
∗∗ ∗/

131

Chapter A Appendix

Point∗ point ;
for (int i = 0 ; i < NUM_OF_POINT ; i++) {

point = new Point (i , double (i / 1000) , &pointEnsemble) ;
pointEnsemble . insert (point) ;

}
/∗ ∗∗
∗ c r ea t e the roo t t opo l o gy
∗∗ ∗/

Topology<Point> pointTop (NUM_OF_POINT , nghbList , &pointEnsemble) ;
/∗ ∗∗
∗ I n s e r t the roo t t opo l o gy in t o the Ensemble
∗∗ ∗/

pointEnsemble . insertTopology(&pointTop) ;

start_time = dispEllapsedTime (startTv) ;
for (int iter = 0 ; iter < FINAL_ITER_STEP ; iter++) {

/∗ ∗∗
∗ update Shadow copy Operat ions
∗∗ ∗/

pointEnsemble . update (pointEnsemble . getTopSet () [0]) ;
/∗ ∗∗
∗ Pa r a l l e l Operat ions
∗∗ ∗/

pointEnsemble . parallel (mem_fun_ref(&Point : : localCompute) ,
pointEnsemble . getTopSet () [0]) ;

}
end_time = dispEllapsedTime (startTv) ;
cout << "elapse time is: " << end_time − start_time << endl ;
pointEnsemble . finalize () ;
return 0 ;

}

double dispEllapsedTime (struct timeval startTime) {
struct timeval endTime ;
gettimeofday(&endTime , NULL) ;
int diff_usec = endTime . tv_usec − startTime . tv_usec ;
int diff_sec = endTime . tv_sec − startTime . tv_sec ;
double ellapsed_time = diff_sec + (diff_usec / 1000000 .0) ;
return ellapsed_time ;

}

A.3.2. Molecular Dynamics Program

The molecule definition is shown in Listing A.6.

132

A.3 Ensemble-based Programs

Listing A.6: Molecule Definition
#include "Molecule.h"
#include "Macros.h"

Molecule : : Molecule () {
this−>id = 0 ;
this−>mass = 0 ;
for (int i = 0 ; i < 3 ; i++) {

this−>position [i] = 0 . 0 ;
this−>velocity [i] = 0 . 0 ;
this−>force [i] = 0 . 0 ;
this−>accelerate [i] = 0 . 0 ;

}
}

Molecule : : Molecule (int id , double mass , double position [3] , double
velocity [3] ,

Ensemble<Molecule , Topology<Molecule> >∗ pEnsemble) {
this−>id = id ;
this−>mass = mass ;
for (int i = 0 ; i < 3 ; i++) {

this−>position [i] = position [i] ;
this−>velocity [i] = velocity [i] ;
this−>force [i] = 0 . 0 ;
this−>accelerate [i] = 0 . 0 ;

}
this−>pEnsemble = pEnsemble ;

}

Molecule : : ~ Molecule () {
// TODO Auto−generated d e s t r u c t o r s tub

}

double Molecule : : getPositionNdim (int dimension) {
return this−>position [dimension] ;

}

double∗ Molecule : : getPosition () {
return this−>position ;

}

int Molecule : : getId () {
return this−>id ;

}

void Molecule : : setEnsemble (Ensemble<Molecule , Topology<Molecule> >∗

133

Chapter A Appendix

pEnsemble) {
this−>pEnsemble = pEnsemble ;

}

void Molecule : : requestNghbs () {
vector<Molecule∗> myNghbs ;
myNghbs = pEnsemble−>getNghbs (this , pEnsemble−>getTopSet () [0]) ;

}

void Molecule : : localCompute () {
for (int i = 0 ; i < pEnsemble−>getNghbs (this , pEnsemble−>

getTopSet () [0]) . size () ; i++) {
interact (pEnsemble−>getNghbs (this , pEnsemble−>getTopSet () [0])

[i]) ;
}
updateLocation () ;
limitVelocity () ;
wrapAround () ;

}

void Molecule : : interact (Molecule∗mp) {
double rx , ry , rz , r , fx , fy , fz , f ;
// computing base va l u e s
rx = position [0] − mp−>position [0] ;
ry = position [1] − mp−>position [1] ;
rz = position [2] − mp−>position [2] ;
r = sqrt (rx ∗ rx + ry ∗ ry + rz ∗ rz) ;

// i f (r < 0.000001 | | r >= DEFAULT_RADIUS)
i f (r < 0.000001 | | r > CUT_OFF_RADIUS)

return ;

f = A / pow (r , 12) − B / pow (r , 6) ;
force [0] = f ∗ rx / r ;
force [1] = f ∗ ry / r ;
force [2] = f ∗ rz / r ;

// updat ing p a r t i c l e p r o p e r t i e s
force [0] += fx ;
force [1] += fy ;
force [2] += fz ;

}

void Molecule : : updateLocation () {
// app l y ing k i n e t i c equa t i ons
accelerate [0] = force [0] / MASS ;

134

A.3 Ensemble-based Programs

accelerate [1] = force [1] / MASS ;
accelerate [2] = force [2] / MASS ;

velocity [0] = velocity [0] + accelerate [0] ∗ DELTA ;
velocity [1] = velocity [1] + accelerate [1] ∗ DELTA ;
velocity [2] = velocity [2] + accelerate [2] ∗ DELTA ;

limitVelocity () ;

position [0] = position [0] ;
+velocity [0] ∗ DELTA ;
position [1] = position [1] ;
+velocity [1] ∗ DELTA ;
position [2] = position [2] ;
+velocity [2] ∗ DELTA ;

force [0] = 0 . 0 ;
force [1] = 0 . 0 ;
force [2] = 0 . 0 ;

}

void Molecule : : limitVelocity () {
// i f (f a b s (p . vx ∗ DEFAULT_DELTA) > DEFAULT_RADIUS) {
i f (fabs (velocity [0]) > MAX_VELOCITY) {

// i f (p . vx ∗ DEFAULT_DELTA < 0.0)
i f (velocity [0] < 0 . 0)

velocity [0] = −MAX_VELOCITY ;
else

velocity [0] = MAX_VELOCITY ;
}
// i f (f a b s (p . vy ∗ DEFAULT_DELTA) > DEFAULT_RADIUS) {
i f (fabs (velocity [1]) > MAX_VELOCITY) {

// i f (p . vy ∗ DEFAULT_DELTA < 0.0)
i f (velocity [1] < 0 . 0)

velocity [1] = −MAX_VELOCITY ;
else

velocity [1] = MAX_VELOCITY ;
}
// i f (f a b s (p . vy ∗ DEFAULT_DELTA) > DEFAULT_RADIUS) {
i f (fabs (velocity [2]) > MAX_VELOCITY) {

// i f (p . vy ∗ DEFAULT_DELTA < 0.0)
i f (velocity [2] < 0 . 0)

velocity [2] = −MAX_VELOCITY ;
else

velocity [2] = MAX_VELOCITY ;
}

135

Chapter A Appendix

}

void Molecule : : wrapAround () {
i f (position [0] < 0 . 0)

position [0] += DOMAIN_X ;
i f (position [1] < 0 . 0)

position [1] += DOMAIN_Y ;
i f (position [2] < 0 . 0)

position [2] += DOMAIN_Z ;

i f (position [0] > DOMAIN_X)
position [0] −= DOMAIN_X ;

i f (position [1] > DOMAIN_Y)
position [1] −= DOMAIN_Y ;

i f (position [2] > DOMAIN_Z)
position [2] −= DOMAIN_Z ;

return ;
}

The main function of the MD program is shown in Listing A.7.

Listing A.7: Main function of MD simulation
#include <sys / time . h>
#include <map>
#include <vector>
#include <iostream>
#include <algorithm>
#include "Molecule.h"
#include "Macros.h"

#include "Ensemble.h"
#include "Topology.h"

using namespace std ;

double dispEllapsedTime (struct timeval startTime) ;
/∗ ∗∗
∗ Main Function
∗∗ ∗/

int main (int argc , char ∗∗argv) {
double start_time , end_time ;
struct timeval startTimeval ;
double domainMin [3] = { 0 , 0 , 0 } ;
double domainMax [3] = { DOMAIN_SIZE , DOMAIN_SIZE , DOMAIN_SIZE } ;
/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ Ensemble Creat ion
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

136

A.3 Ensemble-based Programs

Ensemble<Molecule , Topology<Molecule> > moleculeEnsemble(&argc , &
argv ,

domainMin , domainMax) ;
/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ I n s e r t EPs in t o the Ensemble
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

Molecule∗ molecule ;
double position [3] ;
double velocity [3] = { 0 , 0 , 0 } ;
for (int i = 0 ; i < NUM_OF_PARTICLE ; i++) {

for (int dim = 0 ; dim < 3 ; dim++) {
position [dim] = ((double) (rand () % RAND_MAX) / RAND_MAX)

∗ DOMAIN_SIZE ;
}
// cout << end l ;
molecule = new Molecule (i , i , position , velocity , &

moleculeEnsemble) ;
moleculeEnsemble . insertEP (molecule) ;

}
/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ Topology Creat ion
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

Topology<Molecule> moleculeTop (0 , CUT_OFF_RADIUS , &
moleculeEnsemble) ;

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ I n s e r t Topo log ies in t o the Ensemble
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

moleculeEnsemble . insertTopology(&moleculeTop) ;

start_time = dispEllapsedTime (startTimeval) ;
for (int iter = 0 ; iter < FINAL_STEP ; iter++) {

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ update shadow copy Operat ions
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
moleculeEnsemble . update(&moleculeTop , moleculeEnsemble .

getTopSet () [0]) ;
/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ Pa r a l l e l Operat ions
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

moleculeEnsemble . parallel (mem_fun_ref(&Molecule : : localCompute
) ,

moleculeEnsemble . getTopSet () [0]) ;
/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ update t opo l o gy
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

moleculeEnsemble . getTopSet () [0]−>update () ;

137

Chapter A Appendix

}
end_time = dispEllapsedTime (startTimeval) ;
cout << "elapse time is: " << end_time − start_time << endl ;
moleculeEnsemble . finalize () ;
return 0 ;

}

double dispEllapsedTime (struct timeval startTime) {
struct timeval endTime ;
gettimeofday(&endTime , NULL) ;
int diff_usec = endTime . tv_usec − startTime . tv_usec ;
int diff_sec = endTime . tv_sec − startTime . tv_sec ;
double ellapsed_time = diff_sec + (diff_usec / 1000000 .0) ;
return ellapsed_time ;

}

A.4. Acronyms

FLOPS: Floating Point Operations Per Second)

HPC: High Performance Computing

SISD: Single Instruction Single Data stream

SIMD: Single Instruction Multiple Data streams

MISD: Multiple Instruction Single Data stream

MIMD: Multiple Instruction Multiple Data streams

UMA: Uniform Memory Access

SMP: Symmetric Multi-Processor

NUMA: Non Uniform Memory Access architecture

ccNUMA: Non Uniform Memory Access architecture

GPU: Graphics Processing Unit

GPGPU: General Purpose Graphics Processing Unit

DSP: Digital Signal Processor

ASIC: Application Specific Integrated Circuit

FPGA: Field Programmable Gate Array

MPI: Message Passing Interface

Pthreads: POSIX Threads

138

A.4 Acronyms

OpenMP: Open Multi Processing

OpenCL: Open Computing Language

CUDA: Compute Unified Device Architecture

API: Application Programming Interface

CPU: Central Processing Unit

HPF: High Performance Fortran

GA: Global Arrays

TBB: Threading Building Blocks

UE: Unit of Execution

EP: Elementary Point

MD: Molecular Dynamics

CFD: Computational Fluid Dynamics

FEM: Finite Element Method

FEA: Finite Element Analysis

LJ-potential: Lennard-Jones potential

SAMRAI : Structured Adaptive Mesh Refinement Application Infrastructure

139

Bibliography

[1] J. Board, J.A., Z. Hakura, W. Elliott, D. Gray, W. Blanke, and J. Leathrum, J.F.,
“Scalable implementations of multipole-accelerated algorithms for molecular dy-
namics,” in Scalable High-Performance Computing Conference, 1994., Proceedings
of the, may 1994, pp. 87 –94.

[2] D. Boyd and S. Milosevich, “Supercomputing and drug discovery research,”
Perspectives in Drug Discovery and Design, vol. 1, pp. 345–358, 1993. [Online].
Available: http://dx.doi.org/10.1007/BF02174534

[3] E. Clementi, S. Chin, G. Corongiu, J. Detrich, M. Dupuis, D. Folsom, G. Lie,
D. Logan, and V. Sonnad, “Supercomputing and super computers: for science
and engineering in general and for chemistry and biosciences in particular,” in
Spectroscopy of Inorganic Bioactivators, ser. NATO ASI Series, T. Theophanides,
Ed. Springer Netherlands, 1989, vol. 280, pp. 1–112. [Online]. Available:
http://dx.doi.org/10.1007/978-94-009-2409-3_1

[4] K. Kremer, “Supercomputing in polymer research,” in High-Performance
Computing and Networking, ser. Lecture Notes in Computer Science, W. Gentzsch
and U. Harms, Eds. Springer Berlin Heidelberg, 1994, vol. 796, pp. 244–253.
[Online]. Available: http://dx.doi.org/10.1007/BFb0020381

[5] J. Moreira, “Blue Gene: A massively parallel system,” in Computational Science
ICCS 2001, ser. Lecture Notes in Computer Science, V. Alexandrov, J. Dongarra,
B. Juliano, R. Renner, and C. Tan, Eds. Springer Berlin Heidelberg, 2001, vol.
2073, pp. 10–10. [Online]. Available: http://dx.doi.org/10.1007/3-540-45545-0_8

[6] Padua, “Blue Gene/P,” in Encyclopedia of Parallel Computing, D. Padua, Ed.
Springer US, 2011, pp. 175–175. [Online]. Available: http://dx.doi.org/10.1007/
978-0-387-09766-4_2409

[7] P. Gepner, D. Fraser, and M. Kowalik, “Second generation quad-core intel
Xeon processors bring 45 nm technology and a new level of performance to
HPC applications,” in Computational Science ICCS 2008, ser. Lecture Notes
in Computer Science, M. Bubak, G. Albada, J. Dongarra, and P. Sloot, Eds.
Springer Berlin Heidelberg, 2008, vol. 5101, pp. 417–426. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-69384-0_47

[8] Dongarra, “Top500 list,” Jun. 2010. [Online]. Available: http://www.top500.org/
lists/2012/06/

141

http://dx.doi.org/10.1007/BF02174534
http://dx.doi.org/10.1007/978-94-009-2409-3_1
http://dx.doi.org/10.1007/BFb0020381
http://dx.doi.org/10.1007/3-540-45545-0_8
http://dx.doi.org/10.1007/978-0-387-09766-4_2409
http://dx.doi.org/10.1007/978-0-387-09766-4_2409
http://dx.doi.org/10.1007/978-3-540-69384-0_47
http://www.top500.org/lists/2012/06/
http://www.top500.org/lists/2012/06/

Chapter A Bibliography

[9] T. Agerwala, “Keynote: Challenges on the road to exascale computing,” in
High Performance Embedded Architectures and Compilers, ser. Lecture Notes in
Computer Science, E. J. M. B. Seznec, Andress, M. Martonosi, and T. Ungerer,
Eds. Springer Berlin Heidelberg, 2009, vol. 5409, pp. 1–1. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-92990-1_1

[10] T. Scogland, B. Subramaniam, and W.-c. Feng, “The green500 list: escapades to
exascale,” Computer Science - Research and Development, vol. 1, pp. 1–9, 2012.
[Online]. Available: http://dx.doi.org/10.1007/s00450-012-0212-6

[11] IBM, “Blue Gene/Q: by co-design,” Computer Science Research and
Development, vol. 1, pp. 1–9, 2012. [Online]. Available: http:
//dx.doi.org/10.1007/s00450-012-0215-3

[12] J. Dongarra, “The Linpack benchmark: An explanation,” in Supercomputing,
ser. Lecture Notes in Computer Science, E. Houstis, T. Papatheodorou, and
C. Polychronopoulos, Eds. Springer Berlin Heidelberg, 1988, vol. 297, pp.
456–474. [Online]. Available: http://dx.doi.org/10.1007/3-540-18991-2_27

[13] M. Louter-Nool, “Linpack routines based on level 2 blas,” The Journal
of Supercomputing, vol. 3, pp. 331–349, 1989. [Online]. Available: http:
//dx.doi.org/10.1007/BF00128169

[14] X.-J. Yang, X.-K. Liao, K. Lu, Q.-F. Hu, J.-Q. Song, and J.-S. Su, “The
Tianhe-1A supercomputer: Its hardware and software,” Journal of Computer
Science and Technology, vol. 26, pp. 344–351, 2011. [Online]. Available:
http://dx.doi.org/10.1007/s02011-011-1137-8

[15] N.-H. Sun, J. Xing, Z.-G. Huo, G.-M. Tan, J. Xiong, B. Li, and C. Ma, “Dawning
nebulae: A petaflops supercomputer with a heterogeneous structure,” Journal of
Computer Science and Technology, vol. 26, pp. 352–362, 2011. [Online]. Available:
http://dx.doi.org/10.1007/s11390-011-1138-3

[16] O. A. R. Board, “OpenMP Application Program Interface,” OpenMP,
Specification, 2011. [Online]. Available: http://www.openmp.org/mp-documents/
OpenMP3.1.pdf

[17] B. Chapman, G. Jost, and R. v. d. Pas, Using OpenMP: Portable Shared Memory
Parallel Programming (Scientific and Engineering Computation). The MIT Press,
2007.

[18] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra, MPI-The Com-
plete Reference, Volume 1: The MPI Core, 2nd ed. Cambridge, MA, USA: MIT
Press, 1998.

[19] P. S. Pacheco, Parallel programming with MPI. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 1996.

142

http://dx.doi.org/10.1007/978-3-540-92990-1_1
http://dx.doi.org/10.1007/s00450-012-0212-6
http://dx.doi.org/10.1007/s00450-012-0215-3
http://dx.doi.org/10.1007/s00450-012-0215-3
http://dx.doi.org/10.1007/3-540-18991-2_27
http://dx.doi.org/10.1007/BF00128169
http://dx.doi.org/10.1007/BF00128169
http://dx.doi.org/10.1007/s02011-011-1137-8
http://dx.doi.org/10.1007/s11390-011-1138-3
http://www.openmp.org/mp-documents/OpenMP3.1.pdf
http://www.openmp.org/mp-documents/OpenMP3.1.pdf

Bibliography

[20] W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable Parallel Programming
with the Message-Passing Interface. Cambridge, MA: MIT Press, 1994.

[21] N. Corporation, NVIDIA CUDA Compute Unified Device Architecture -
Programming Guide, 2007. [Online]. Available: http://developer.download.nvidia.
com/compute/cuda/1_0/NVIDIA_CUDA_Programming_Guide_1.0.pdf

[22] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel programming
with cuda,” Queue, vol. 6, no. 2, pp. 40–53, Mar. 2008. [Online]. Available:
http://doi.acm.org/10.1145/1365490.1365500

[23] R. Schreiber, “An introduction to HPF,” in The Data Parallel Programming
Model, ser. Lecture Notes in Computer Science, G.-R. Perrin and A. Darte,
Eds. Springer Berlin Heidelberg, 1996, vol. 1132, pp. 27–44. [Online]. Available:
http://dx.doi.org/10.1007/3-540-61736-1_41

[24] K. Kennedy and C. Koelbel, “High Performance Fortran 2.0,” in Compiler
Optimizations for Scalable Parallel Systems, ser. Lecture Notes in Computer
Science, S. Pande and D. Agrawal, Eds. Springer Berlin Heidelberg, 2001, vol.
1808, pp. 3–43. [Online]. Available: http://dx.doi.org/10.1007/3-540-45403-9_1

[25] L. V. Kale and S. Krishnan, “Charm++: a portable concurrent object oriented
system based on c++,” SIGPLAN Not., vol. 28, no. 10, pp. 91–108, Oct. 1993.
[Online]. Available: http://doi.acm.org/10.1145/167962.165874

[26] L. V. Kale, B. Ramkumar, A. B. Sinha, and A. Gursoy, “The CHARM Parallel
Programming Language and System: Part I – Description of Language Features,”
Parallel Programming Laboratory Technical Report #95-02, vol. 1, pp. 1–15, 1994.

[27] L. V. Kale, B. Ramkumar, A. B. Sinha, and V. A. Saletore, “The CHARM Parallel
Programming Language and System: Part II – The Runtime system,” Parallel
Programming Laboratory Technical Report #95-03, vol. 1, pp. 1–14, 1994.

[28] Intel, “TBB (Intel Threading Building Blocks),” in Encyclopedia of Parallel
Computing, D. Padua, Ed. Springer US, 2011, pp. 2029–2029. [Online]. Available:
http://dx.doi.org/10.1007/978-0-387-09766-4_2080

[29] G. Russell, P. Keir, A. Donaldson, U. Dolinsky, A. Richards, and C. Riley,
“Programming heterogeneous multicore systems using threading building blocks,”
in Euro-Par 2010 Parallel Processing Workshops, ser. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2011, vol. 6586, pp. 117–125. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-21878-1_15

[30] C. Ierotheou, C. Forsey, and U. Block, “Parallelisation of a novel 3d
hybrid structured-unstructured grid cfd production code,” in High-Performance
Computing and Networking, ser. Lecture Notes in Computer Science,
B. Hertzberger and G. Serazzi, Eds. Springer Berlin Heidelberg, 1995, vol. 919,
pp. 831–836. [Online]. Available: http://dx.doi.org/10.1007/BFb0046722

143

http://developer.download.nvidia.com/compute/cuda/1_0/NVIDIA_CUDA_Programming_Guide_1.0.pdf
http://developer.download.nvidia.com/compute/cuda/1_0/NVIDIA_CUDA_Programming_Guide_1.0.pdf
http://doi.acm.org/10.1145/1365490.1365500
http://dx.doi.org/10.1007/3-540-61736-1_41
http://dx.doi.org/10.1007/3-540-45403-9_1
http://doi.acm.org/10.1145/167962.165874
http://dx.doi.org/10.1007/978-0-387-09766-4_2080
http://dx.doi.org/10.1007/978-3-642-21878-1_15
http://dx.doi.org/10.1007/BFb0046722

Chapter A Bibliography

[31] S. Krajnovic, “CFD applications for high performance computing: Minisymposium
abstract,” in Applied Parallel Computing. State of the Art in Scientific Computing,
ser. Lecture Notes in Computer Science, B. Kagstrom, E. Elmroth, J. Dongarra,
and J. Warniewski, Eds. Springer Berlin Heidelberg, 2007, vol. 4699, pp.
167–167. [Online]. Available: http://dx.doi.org/10.1007/978-3-540-75755-9_20

[32] V. Springel, S. D. M. White, A. Jenkins, C. S. Frenk, N. Yoshida, L. Gao,
J. Navarro, R. Thacker, D. Croton, J. Helly, J. A. Peacock, S. Cole, P. Thomas,
H. Couchman, A. Evrard, J. Colberg, and F. Pearce, “Simulations of the
formation, evolution and clustering of galaxies and quasars,”
nat, vol. 435, pp. 629–636, Jun. 2005. [Online]. Available: http://dx.doi.org/10.
1038/nature03597

[33] CGNS, “CFD general notation system,” Jun. 2010. [Online]. Available:
http://en.goldenmap.com/CGNS#

[34] S. J. Aarseth, Gravitational N-Body Simulations. Cambridge University Press,
2003. [Online]. Available: http://dx.doi.org/10.1017/CBO9780511535246

[35] S. P. Molner, “The art of molecular dynamics simulation (rapaport, d. c.),”
Journal of Chemical Education, vol. 76, no. 2, p. 171, 1999. [Online]. Available:
http://pubs.acs.org/doi/abs/10.1021/ed076p171

[36] LRZ, “SuperMuc petascale system,” Jun. 2012. [Online]. Available: https:
//www.lrz.de/services/compute/supermuc/systemdescription/

[37] M. J. Flynn, “Some computer organizations and their effectiveness,” Computers,
IEEE Transactions on, vol. C-21, no. 9, pp. 948 –960, sept. 1972.

[38] B. Nichols, D. Buttlar, and J. P. Farrell, Pthreads programming - a POSIX standard
for better multiprocessing. O’Reilly, 1996.

[39] M. Sato, “OpenMP: parallel programming API for shared memory multiproces-
sors and on-chip multiprocessors,” in System Synthesis, 2002. 15th International
Symposium on, oct. 2002, pp. 109 –111.

[40] D. Luebke, “CUDA: Scalable parallel programming for high-performance scientific
computing,” in Biomedical Imaging: From Nano to Macro, 2008. ISBI 2008. 5th
IEEE International Symposium on, may 2008, pp. 836 –838.

[41] D. Zlotrg, N. Nosovic, and A. Huseinovic, “Utilizing cuda architecture for improv-
ing application performance,” in Telecommunications Forum (TELFOR), 2011
19th, nov. 2011, pp. 1458 –1461.

[42] N. Karunadasa and D. Ranasinghe, “Accelerating high performance applications
with CUDA and MPI,” in Industrial and Information Systems (ICIIS), 2009 In-
ternational Conference on, dec. 2009, pp. 331 –336.

144

http://dx.doi.org/10.1007/978-3-540-75755-9_20
http://dx.doi.org/10.1038/nature03597
http://dx.doi.org/10.1038/nature03597
http://en.goldenmap.com/CGNS#
http://dx.doi.org/10.1017/CBO9780511535246
http://pubs.acs.org/doi/abs/10.1021/ed076p171
https://www.lrz.de/services/compute/supermuc/systemdescription/
https://www.lrz.de/services/compute/supermuc/systemdescription/

Bibliography

[43] W. Wei and Y. Huang, “CUDA framework for turbulence flame simulation,” in
Electronics and Signal Processing, ser. Lecture Notes in Electrical Engineering,
W. Hu, Ed. Springer Berlin Heidelberg, 2011, vol. 97, pp. 791–796. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-21697-8_101

[44] A. Heck, “Linear algebra: Applications,” in Introduction to Maple. Springer
US, 1993, pp. 435–467. [Online]. Available: http://dx.doi.org/10.1007/
978-1-4684-0519-4_18

[45] D. Scott, “The performance of linear algebra algorithms on Intel parallel
supercomputers,” in Parallel Computing on Distributed Memory Multiprocessors,
ser. NATO ASI Series, F. zguener and F. Eral, Eds. Springer Berlin Heidelberg,
1993, vol. 103, pp. 143–150. [Online]. Available: http://dx.doi.org/10.1007/
978-3-642-58066-6_7

[46] F. Hehl, J. Fleischer, M. Steinhauser, G. Weiglein, J. Vermaseren, C. Heinicke,
I. Kotsireas, E. Schruefer, Y. Obukhov, S. Tertychniy, T. Wolf, G. Baumann,
A. Dolzmann, T. Sturm, V. Weispfenning, L. Lambe, J. Apel, I. Heckenberger,
A. Schueler, W. Koepf, K. Gatermann, T. Beth, K. Homann, A. Klappenecker,
J. Mueller-Quade, A. Nueckel, M. Roggenbach, V. Strehl, K. Behnke, K. Roesner,
J. Grabmeier, M. Clausen, F. Kurth, P. Kovacs, L. Gonzalez-Vega, A. Dress,
H. Melenk, B. Waits, P. Drijvers, J. Berry, T. Graham, J. Sharp, S. Townend,
A. Watkins, N. Boston, D. Fowler, and O. Gloor, “Applications of computer
algebra,” in Computer Algebra Handbook, J. Grabmeier, E. Kaltofen, and
V. Weispfenning, Eds. Springer Berlin Heidelberg, 2003, pp. 163–260. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-55826-9_3

[47] J. Dongarra, S. for Industrial, and A. Mathematics, LINPACK Users’ Guide,
ser. Miscellaneous Bks. Society for Industrial and Applied Mathematics, 1979.
[Online]. Available: http://books.google.de/books?id=AmSm1n3Vw0cC

[48] C. Loan, M. Kilmer, and D. O¡¯Leary, “Matrix decompositions: Linpack and
beyond,” in G.W. Stewart, ser. Contemporary Mathematicians, M. E. Kilmer
and D. P. O Leary, Eds. Birkhuser Boston, 2010, pp. 27–44. [Online]. Available:
http://dx.doi.org/10.1007/978-0-8176-4968-5_4

[49] H. Stokes, “Matrix operations using Linpack,” in Management and Office
Information Systems, S.-K. Chang, Ed. Springer US, 1984, pp. 415–434. [Online].
Available: http://dx.doi.org/10.1007/978-1-4613-2677-9_24

[50] W. F. Tichy, R. Ass, and W. F. Tichy, “Parallel matrix multiplication on the
connection machine,” In Proceedings of the Conference on Scientific Applications
of the CM, Tech. Rep., 1988.

[51] M. Beare, “The southampton - east anglia (sea) model: A general purpose
parallel ocean circulation model,” in High-Performance Computing, R. Allan,

145

http://dx.doi.org/10.1007/978-3-642-21697-8_101
http://dx.doi.org/10.1007/978-1-4684-0519-4_18
http://dx.doi.org/10.1007/978-1-4684-0519-4_18
http://dx.doi.org/10.1007/978-3-642-58066-6_7
http://dx.doi.org/10.1007/978-3-642-58066-6_7
http://dx.doi.org/10.1007/978-3-642-55826-9_3
http://books.google.de/books?id=AmSm1n3Vw0cC
http://dx.doi.org/10.1007/978-0-8176-4968-5_4
http://dx.doi.org/10.1007/978-1-4613-2677-9_24

Chapter A Bibliography

M. Guest, A. Simpson, D. Henty, and D. Nicole, Eds. Springer US, 1999, pp.
337–346. [Online]. Available: http://dx.doi.org/10.1007/978-1-4615-4873-7_36

[52] J. S. Shang, “Computational electromagnetics,” ACM Comput. Surv., vol. 28,
no. 1, pp. 97–99, Mar. 1996. [Online]. Available: http://doi.acm.org/10.1145/
234313.234357

[53] G. Roth, J. Mellor-Crummey, K. Kennedy, and R. G. Brickner, “Compiling stencils
in high performance fortran,” in Proceedings of the 1997 ACM/IEEE conference on
Supercomputing (CDROM), ser. Supercomputing ’97. New York, NY, USA: ACM,
1997, pp. 1–20. [Online]. Available: http://doi.acm.org/10.1145/509593.509605

[54] Y. Che, Z. Wang, X. Li, and L. Yang, “Locality optimizations for jacobi iteration
on distributed parallel systems,” in Parallel and Distributed Processing and
Applications, ser. Lecture Notes in Computer Science, J. Cao, L. Yang, M. Guo,
and F. Lau, Eds. Springer Berlin Heidelberg, 2005, vol. 3358, pp. 91–104.
[Online]. Available: http://dx.doi.org/10.1007/978-3-540-30566-8_15

[55] P. Letourneau, Statistical Mechanics of Cellular Automata with Memory, ser.
Canadian theses. University of Calgary (Canada), 2006. [Online]. Available:
http://books.google.de/books?id=0wqZIxcBmh4C

[56] MathWorld, “Von Neumann neighborhood,” Jun. 2012. [Online]. Available:
http://mathworld.wolfram.com/vonNeumannNeighborhood.html

[57] ——, “Moore neighborhood,” Jun. 2012. [Online]. Available: http://mathworld.
wolfram.com/MooreNeighborhood.html

[58] J. Rai and P. Xirouchakis, “Fem-based prediction of workpiece transient
temperature distribution and deformations during milling,” The International
Journal of Advanced Manufacturing Technology, vol. 42, pp. 429–449, 2009.
[Online]. Available: http://dx.doi.org/10.1007/s00170-008-1610-6

[59] Y. Deshayes, Y. Ousten, and L. Bechou, “Three-dimensional techniques for
fem simulations in laser modules and their applications,” in MEMS/NEMS,
C. Leondes, Ed. Springer US, 2006, pp. 1746–1835. [Online]. Available:
http://dx.doi.org/10.1007/0-387-25786-1_43

[60] A. M. Wissink, R. D. Hornung, S. R. Kohn, S. S. Smith, and N. Elliott, “Large
scale parallel structured AMR calculations using the SAMRAI framework,” in
Proceedings of the 2001 ACM/IEEE conference on Supercomputing (CDROM),
ser. Supercomputing ’01. New York, NY, USA: ACM, 2001, pp. 6–6. [Online].
Available: http://doi.acm.org/10.1145/582034.582040

[61] R. I. Klein, “Star formation with 3-d adaptive mesh refinement: the collapse
and fragmentation of molecular clouds,” Journal of Computational and Applied
Mathematics, vol. 109, no. 12, pp. 123 – 152, 1999. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0377042799001569

146

http://dx.doi.org/10.1007/978-1-4615-4873-7_36
http://doi.acm.org/10.1145/234313.234357
http://doi.acm.org/10.1145/234313.234357
http://doi.acm.org/10.1145/509593.509605
http://dx.doi.org/10.1007/978-3-540-30566-8_15
http://books.google.de/books?id=0wqZIxcBmh4C
http://mathworld.wolfram.com/vonNeumannNeighborhood.html
http://mathworld.wolfram.com/MooreNeighborhood.html
http://mathworld.wolfram.com/MooreNeighborhood.html
http://dx.doi.org/10.1007/s00170-008-1610-6
http://dx.doi.org/10.1007/0-387-25786-1_43
http://doi.acm.org/10.1145/582034.582040
http://www.sciencedirect.com/science/article/pii/S0377042799001569

Bibliography

[62] M. Russell, G. Allen, G. Daues, I. Foster, E. Seidel, J. Novotny, J. Shalf, and G. von
Laszewski, “The astrophysics simulation collaboratory: A science portal enabling
community software development,” Cluster Computing, vol. 5, pp. 297–304, 2002.
[Online]. Available: http://dx.doi.org/10.1023/A%3A1015629422149

[63] S. Wan, P. Coveney, and D. Flower, “Molecular dynamics simulations,”
in Immunoinformatics, ser. Methods in Molecular Biology, D. Flower,
Ed. Humana Press, 2007, vol. 409, pp. 321–339. [Online]. Available:
http://dx.doi.org/10.1007/978-1-60327-118-9_24

[64] A. Pai, Y.-i. Choo, and M. Chen, “Distributed tree structures for N-body
simulation,” in Languages, Compilers and Run-Time Systems for Scalable
Computers, B. Szymanski and B. Sinharoy, Eds. Springer US, 1996, pp. 307–310.
[Online]. Available: http://dx.doi.org/10.1007/978-1-4615-2315-4_28

[65] E. Darve, “The fast multipole method: Numerical implementation,” Journal of
Computational Physics, vol. 160, no. 1, pp. 195 – 240, 2000. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0021999100964519

[66] J. A. Board, W. D. Elliott, W. T. Rankin, and Z. S. Hakura, “Scalable Variants
of Multipole-based Algorithms for Molecular Dynamics Applications,” in Parallel
Processing for Scientific Computing, 1995, pp. 295–300.

[67] W. Rankin and J. Board, J.A., “A portable distributed implementation of the
parallel multipole tree algorithm,” in High Performance Distributed Computing,
1995., Proceedings of the Fourth IEEE International Symposium on, aug 1995, pp.
17 –22.

[68] V. Springel, N. Yoshida, and S. D. M. White, “GADGET: a code for collisionless
and gasdynamical cosmological simulations,” New Astron, 2001.

[69] V. Springel, “The cosmological simulation code GADGET-2,” Monthly Notices of
the Royal Astronomical Society, vol. 364, 2005.

[70] G. Luckhurst and N. Veracini, The Molecular Dynamics of Liquid Crystals,
ser. NATO ASI series. Ser. C. : Mathematical and physical sciences.
Kluwer Acad. Publ., 1994. [Online]. Available: http://books.google.de/books?id=
JMUDH1tzh-0C

[71] J. E. Jones, “On the determination of molecular fields. I. from the variation
of the viscosity of a gas with temperature,” Proceedings of the Royal Society
of London. Series A, Containing Papers of a Mathematical and Physical
Character, vol. 106, no. 738, pp. pp. 441–462, 1924. [Online]. Available:
http://www.jstor.org/stable/94264

[72] S. Plimpton, “Fast parallel algorithms for short-range molecular dynamics,”
JOURNAL OF COMPUTATIONAL PHYSICS, vol. 117, pp. 1–19, 1995.

147

http://dx.doi.org/10.1023/A%3A1015629422149
http://dx.doi.org/10.1007/978-1-60327-118-9_24
http://dx.doi.org/10.1007/978-1-4615-2315-4_28
http://www.sciencedirect.com/science/article/pii/S0021999100964519
http://books.google.de/books?id=JMUDH1tzh-0C
http://books.google.de/books?id=JMUDH1tzh-0C
http://www.jstor.org/stable/94264

Chapter A Bibliography

[73] W. Smith, “Molecular dynamics on hypercube parallel computers,” Computer
Physics Communications, vol. 62, pp. 229 – 248, 1991. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0010465591900975

[74] D. Okunbor and R. Murty, “Parallel molecular dynamics using force
decomposition,” in Computational Molecular Dynamics: Challenges, Methods,
Ideas, ser. Lecture Notes in Computational Science and Engineering, P. Deuflhard,
J. Hermans, B. Leimkuhler, A. Mark, S. Reich, and R. Skeel, Eds.
Springer Berlin Heidelberg, 1999, vol. 4, pp. 483–494. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-58360-5_29

[75] M. Laradji, S. Toxvaerd, and O. Mouritsen, “Spinodal decomposition in
three-dimensional binary fluids: A large-scale molecular dynamics simulation,”
in Computer Simulation Studies in Condensed-Matter Physics IX, ser. Springer
Proceedings in Physics, D. Landau, K. Mon, and H.-B. Schuettler, Eds.
Springer Berlin Heidelberg, 1997, vol. 82, pp. 150–155. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-60597-0_16

[76] G. Fox, “Domain decomposition in distributed and shared memory environments,”
in Supercomputing, ser. Lecture Notes in Computer Science, E. Houstis,
T. Papatheodorou, and C. Polychronopoulos, Eds. Springer Berlin Heidelberg,
1988, vol. 297, pp. 1042–1073. [Online]. Available: http://dx.doi.org/10.1007/
3-540-18991-2_62

[77] A. Eeciolu, Srinivasan, “Domain decomposition for particle methods on the
sphere,” in Parallel Algorithms for Irregularly Structured Problems, ser. Lecture
Notes in Computer Science, A. Ferreira, J. Rolim, Y. Saad, and T. Yang, Eds.
Springer Berlin Heidelberg, 1996, vol. 1117, pp. 119–130. [Online]. Available:
http://dx.doi.org/10.1007/BFb0030102

[78] J. C. Phillips, G. Zheng, S. Kumar, and L. V. Kalé, “NAMD: biomolecular
simulation on thousands of processors,” in Proceedings of the 2002 ACM/IEEE
conference on Supercomputing, ser. Supercomputing ’02. Los Alamitos, CA,
USA: IEEE Computer Society Press, 2002, pp. 1–18. [Online]. Available:
http://dl.acm.org/citation.cfm?id=762761.762810

[79] K. Kennedy and U. Kremer, “Automatic data layout for distributed-memory
machines,” ACM Trans. Program. Lang. Syst., vol. 20, no. 4, pp. 869–916, Jul.
1998. [Online]. Available: http://doi.acm.org/10.1145/291891.291901

[80] J. Ramanujam and P. Sadayappan, “Compile-time techniques for data distribu-
tion in distributed memory machines,” Parallel and Distributed Systems, IEEE
Transactions on, vol. 2, no. 4, pp. 472 –482, oct 1991.

[81] K. Kennedy and U. Kremer, “Automatic data layout for high performance
Fortran,” in Proceedings of the 1995 ACM/IEEE conference on Supercomputing

148

http://www.sciencedirect.com/science/article/pii/0010465591900975
http://dx.doi.org/10.1007/978-3-642-58360-5_29
http://dx.doi.org/10.1007/978-3-642-60597-0_16
http://dx.doi.org/10.1007/3-540-18991-2_62
http://dx.doi.org/10.1007/3-540-18991-2_62
http://dx.doi.org/10.1007/BFb0030102
http://dl.acm.org/citation.cfm?id=762761.762810
http://doi.acm.org/10.1145/291891.291901

Bibliography

(CDROM), ser. Supercomputing ’95. New York, NY, USA: ACM, 1995. [Online].
Available: http://doi.acm.org/10.1145/224170.224495

[82] J. Nieplocha, M. Krishnan, B. Palmer, V. Tipparaju, R. Harrison, and
D. Chavara-Miranda, “Global Arrays: Parallel programming toolkit,” in
Encyclopedia of Parallel Computing, D. Padua, Ed. Springer US, 2011, pp.
779–787. [Online]. Available: http://dx.doi.org/10.1007/978-0-387-09766-4_403

[83] J. Reinders, Intel Threading Building Blocks, 1st ed. Sebastopol, CA, USA:
O’Reilly & Associates, Inc., 2007.

[84] D. R. Musser and A. Saini, The STL Tutorial and Reference Guide: C++ Pro-
gramming with the Standard Template Library. Redwood City, CA, USA: Addison
Wesley Longman Publishing Co., Inc., 1995.

[85] P. Pirkelbauer, S. Parent, M. Marcus, and B. Stroustrup, “Runtime concepts for
the C++ Standard Template Library,” in Proceedings of the 2008 ACM symposium
on Applied computing, ser. SAC ’08. New York, NY, USA: ACM, 2008, pp.
171–177. [Online]. Available: http://doi.acm.org/10.1145/1363686.1363734

[86] C++, “An introduction to the STL/CLR library,” in Foundations of C++/CLI.
Apress, 2008, pp. 333–381. [Online]. Available: http://dx.doi.org/10.1007/
978-1-4302-1024-5_12

[87] R. Das, Y. shin Hwang, M. Uysal, J. Saltz, and A. Sussman, “Applying the CH-
PAOS/PARTI library to irregular problems in computational chemistry and com-
putational aerodynamics,” in Mississippi State University, Starkville, MS. IEEE
Computer Society Press, 1993, pp. 45–56.

[88] J. Saltz, R. Ponnusamy, S. D. Sharma, B. Moon, Y. shin Hwang, M. Uysal, and
R. Das, “A manual for the CHAOS runtime library,” 1995.

[89] R. Ponnusamy, J. Saltz, A. Choudhary, Y.-S. Hwang, and G. Fox, “Run-
time support and compilation methods for user-specified irregular data distri-
butions,” IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYS-
TEMS, vol. 6, no. 8, pp. 815–831, 1995.

[90] R. Ponnusamy, J. Saltz, and A. Choudhary, “Runtime compilation techniques for
data partitioning and communication schedule reuse,” in PROCEEDINGS OF
THE 1993 ACM/IEEE CONFERENCE ON SUPERCOMPUTING. ACM, 1993,
pp. 361–370.

[91] S. D. Sharma, R. Ponnusamy, B. Moon, Y.-S. Hwang, R. Das, and J. Saltz, “Run-
time and compile-time support for adaptive irregular problems,” 1994.

[92] L. Kale, M. Bhandarkar, R. Brunner, N. Krawetz, J. Phillips, and A. Shinozaki,
“NAMD: A case study in multilingual parallel programming,” in Languages and
Compilers for Parallel Computing, ser. Lecture Notes in Computer Science, Z. Li,

149

http://doi.acm.org/10.1145/224170.224495
http://dx.doi.org/10.1007/978-0-387-09766-4_403
http://doi.acm.org/10.1145/1363686.1363734
http://dx.doi.org/10.1007/978-1-4302-1024-5_12
http://dx.doi.org/10.1007/978-1-4302-1024-5_12

Chapter A Bibliography

P.-C. Yew, S. Chatterjee, C.-H. Huang, P. Sadayappan, and D. Sehr, Eds.
Springer Berlin Heidelberg, 1998, vol. 1366, pp. 367–381. [Online]. Available:
http://dx.doi.org/10.1007/BFb0032705

[93] L. Kale, A. Bhatele, E. Bohm, and J. Phillips, “NAMD (NAnoscale Molecular
Dynamics),” in Encyclopedia of Parallel Computing, D. Padua, Ed. Springer
US, 2011, pp. 1249–1254. [Online]. Available: http://dx.doi.org/10.1007/
978-0-387-09766-4_505

[94] T. El-Ghazawi and L. Smith, “UPC: Unified Parallel C,” in Proceedings of the 2006
ACM/IEEE conference on Supercomputing, ser. SC ’06. New York, NY, USA:
ACM, 2006. [Online]. Available: http://doi.acm.org/10.1145/1188455.1188483

[95] I. Chivers and J. Sleightholme, “Coarray Fortran,” in Introduction to
Programming with Fortran. Springer London, 2012, pp. 459–469. [Online].
Available: http://dx.doi.org/10.1007/978-0-85729-233-9_30

[96] K. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit, A. Krishnamurthy,
P. Hilfinger, S. Graham, D. Gay, P. Colella, and A. Aiken, “Titanium: A high-
performance Java dialect,” in In ACM, 1998, pp. 10–11.

[97] fortress, “Fortress language specification,” 2008.

[98] G. Steele, “Parallel programming and parallel abstractions in fortress,” in
Functional and Logic Programming, ser. Lecture Notes in Computer Science,
M. Hagiya and P. Wadler, Eds. Springer Berlin Heidelberg, 2006, vol. 3945, pp.
1–1. [Online]. Available: http://dx.doi.org/10.1007/11737414_1

[99] chaple, “Chapel language specification,” 2005.

[100] V. Saraswat, “X10: Concurrent programming for modern architectures,” in
Programming Languages and Systems, ser. Lecture Notes in Computer Science,
Z. Shao, Ed. Springer Berlin Heidelberg, 2007, vol. 4807, pp. 1–1. [Online].
Available: http://dx.doi.org/10.1007/978-3-540-76637-7_1

[101] R. Karrenberg and S. Hack, “Improving performance of OpenCL on CPUs,” in
Compiler Construction, ser. Lecture Notes in Computer Science, M. O Boyle,
Ed. Springer Berlin Heidelberg, 2012, vol. 7210, pp. 1–20. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-28652-0_1

[102] J. Kim, S. Seo, J. Lee, J. Nah, G. Jo, and J. Lee, “OpenCL as a programming
model for GPU clusters,” in Languages and Compilers for Parallel Computing,
ser. Lecture Notes in Computer Science, S. Rajopadhye and M. Mills Strout,
Eds. Springer Berlin Heidelberg, 2013, vol. 7146, pp. 76–90. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-36036-7_6

[103] T. Cickovski, C. Sweet, and J. A. Izaguirre, “MDL, a domain-specific language for
molecular dynamics,” in Proceedings of the 40th Annual Simulation Symposium,

150

http://dx.doi.org/10.1007/BFb0032705
http://dx.doi.org/10.1007/978-0-387-09766-4_505
http://dx.doi.org/10.1007/978-0-387-09766-4_505
http://doi.acm.org/10.1145/1188455.1188483
http://dx.doi.org/10.1007/978-0-85729-233-9_30
http://dx.doi.org/10.1007/11737414_1
http://dx.doi.org/10.1007/978-3-540-76637-7_1
http://dx.doi.org/10.1007/978-3-642-28652-0_1
http://dx.doi.org/10.1007/978-3-642-36036-7_6

Bibliography

ser. ANSS ’07. Washington, DC, USA: IEEE Computer Society, 2007, pp.
256–266. [Online]. Available: http://dx.doi.org/10.1109/ANSS.2007.26

[104] Python, “Python programming language,” Jun. 2012. [Online]. Available:
http://www.python.org/

[105] Z. DeVito, N. Joubert, F. Palacios, S. Oakley, M. Medina, M. Barrientos, E. Elsen,
F. Ham, A. Aiken, K. Duraisamy, E. Darve, J. Alonso, and P. Hanrahan, “Liszt:
a domain specific language for building portable mesh-based PDE solvers,” in
Proceedings of 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis, ser. SC ’11. New York, NY, USA: ACM, 2011,
pp. 9:1–9:12. [Online]. Available: http://doi.acm.org/10.1145/2063384.2063396

[106] W. Luzhou, K. Sano, and S. Yamamoto, “Domain-specific language and compiler
for stencil computation on FPGA-based systolic computational-memory array,”
in Reconfigurable Computing: Architectures, Tools and Applications, ser. Lecture
Notes in Computer Science, O. Choy, R. Cheung, P. Athanas, and K. Sano,
Eds. Springer Berlin Heidelberg, 2012, vol. 7199, pp. 26–39. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-28365-9_3

[107] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker,
D. Patterson, J. Shalf, and K. Yelick, “Stencil computation optimization and
auto-tuning on state-of-the-art multicore architectures,” in Proceedings of the
2008 ACM/IEEE conference on Supercomputing, ser. SC ’08. Piscataway,
NJ, USA: IEEE Press, 2008, pp. 4:1–4:12. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=1413370.1413375

[108] Y. Tang, R. A. Chowdhury, B. C. Kuszmaul, C.-K. Luk, and C. E.
Leiserson, “The Pochoir stencil compiler,” in Proceedings of the 23rd
ACM symposium on Parallelism in algorithms and architectures, ser. SPAA
’11. New York, NY, USA: ACM, 2011, pp. 117–128. [Online]. Available:
http://doi.acm.org/10.1145/1989493.1989508

[109] C. Leiserson, “Programming irregular parallel applications in Cilk,” in
Solving Irregularly Structured Problems in Parallel, ser. Lecture Notes in
Computer Science, G. Bilardi, A. Ferreira, R. Luling, and Rolim, Eds.
Springer Berlin Heidelberg, 1997, vol. 1253, pp. 61–71. [Online]. Available:
http://dx.doi.org/10.1007/3-540-63138-0_6

[110] C. E. Leiserson, “The Cilk++ concurrency platform,” in Proceedings of
the 46th Annual Design Automation Conference, ser. DAC ’09. New
York, NY, USA: ACM, 2009, pp. 522–527. [Online]. Available: http:
//doi.acm.org/10.1145/1629911.1630048

[111] C. Lukacs and E. Tarján, Mathematical games. Barnes & Noble Books, 1996.
[Online]. Available: http://books.google.com.hk/books?id=OImRoZBt2McC

151

http://dx.doi.org/10.1109/ANSS.2007.26
http://www.python.org/
http://doi.acm.org/10.1145/2063384.2063396
http://dx.doi.org/10.1007/978-3-642-28365-9_3
http://dl.acm.org/citation.cfm?id=1413370.1413375
http://dl.acm.org/citation.cfm?id=1413370.1413375
http://doi.acm.org/10.1145/1989493.1989508
http://dx.doi.org/10.1007/3-540-63138-0_6
http://doi.acm.org/10.1145/1629911.1630048
http://doi.acm.org/10.1145/1629911.1630048
http://books.google.com.hk/books?id=OImRoZBt2McC

Chapter A Bibliography

[112] L. Li, “The Java language,” in Java: Data Structures and Programming.
Springer Berlin Heidelberg, 1998, pp. 57–102. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-642-95851-9_2

[113] A. Bundy and L. Wallen, “Smalltalk,” in Catalogue of Artificial Intelligence
Tools, ser. Symbolic Computation, A. Bundy and L. Wallen, Eds. Springer
Berlin Heidelberg, 1984, pp. 123–124. [Online]. Available: http://dx.doi.org/10.
1007/978-3-642-96868-6_236

[114] D. Abrahams and A. Gurtovoy, C++ template metaprogramming: concepts, tools,
and techniques from Boost and beyond, ser. C++ in-depth series. Addison-Wesley,
2005. [Online]. Available: http://books.google.de/books?id=wbNQAAAAMAAJ

[115] P. Plauger, The C++ standard template library. Prentice Hall, 2001. [Online].
Available: http://books.google.de/books?id=ELJQAAAAMAAJ

[116] G. Karypis and V. Kumar, MeTis: Unstrctured Graph Partitioning and
Sparse Matrix Ordering System, Version 2.0, 1995. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.38.376

[117] Intel. (2011) Intel Xeon processor E7-4870. [Online]. Available: http:
//ark.intel.com/products/53579/Intel-Xeon-Processor-E7-4870-(30M-Cache-2_
40-GHz-6_40-GTs-Intel-QPI)

[118] F. J, I. Bericht, M. Gerndt, and M. Gerndt, “Parallelization of the AVL FIRE
benchmark with SVM-Fortran,” 1995.

152

http://dx.doi.org/10.1007/978-3-642-95851-9_2
http://dx.doi.org/10.1007/978-3-642-95851-9_2
http://dx.doi.org/10.1007/978-3-642-96868-6_236
http://dx.doi.org/10.1007/978-3-642-96868-6_236
http://books.google.de/books?id=wbNQAAAAMAAJ
http://books.google.de/books?id=ELJQAAAAMAAJ
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.38.376
http://ark.intel.com/products/53579/Intel-Xeon-Processor-E7-4870-(30M-Cache-2_40-GHz-6_40-GTs-Intel-QPI)
http://ark.intel.com/products/53579/Intel-Xeon-Processor-E7-4870-(30M-Cache-2_40-GHz-6_40-GTs-Intel-QPI)
http://ark.intel.com/products/53579/Intel-Xeon-Processor-E7-4870-(30M-Cache-2_40-GHz-6_40-GTs-Intel-QPI)

	Abstract
	Zusammenfassung
	Acknowledgments
	Contents

	1 Introduction
	1.1 Overview of Current HPC Systems
	1.2 Different Programming Approaches and Challenges
	1.3 Regular Applications and Irregular Applications
	1.4 Ensemble-based Programming Approach
	1.5 Implementation Framework of Ensemble-based Programming
	1.6 Main Contributions
	1.7 Dissertation Structure

	2 Parallel Architectures and Programming Models
	2.1 Overview
	2.2 Parallel Architectures
	2.2.1 Shared Memory Architectures
	2.2.2 Distributed Memory Architectures
	2.2.3 Hybrid Architectures
	2.2.4 Heterogeneous Architectures with CPU and GPU

	2.3 Programming Different Parallel Architectures
	2.3.1 Overview
	2.3.2 Programming Shared Memory Architectures
	2.3.3 Programming Distributed Memory Architectures
	2.3.4 Programming Hybrid Architectures
	2.3.5 Programming Heterogeneous Architectures with CPU and GPU

	2.4 Summary

	3 Parallel Application Areas
	3.1 Overview
	3.2 Linear Algebra
	3.3 Regular Grid Applications
	3.3.1 2D Heat Distribution
	3.3.2 Cellular Automaton

	3.4 Irregular Grid Applications
	3.5 Adaptive Grid Applications
	3.6 Multi-body Applications
	3.6.1 Cosmological Simulation
	3.6.2 Molecular Dynamics Simulation

	3.7 Summary

	4 Related Work
	4.1 Overview
	4.2 Parallel Programming Languages and Libraries
	4.2.1 High Performance Fortran (HPF)
	4.2.2 Global Arrays (GA)
	4.2.3 TBB
	4.2.4 PARTI / CHAOS Library
	4.2.5 Charm++
	4.2.6 UPC (Unified Parallel C)
	4.2.7 OpenCL (Open Computing Language)

	4.3 Domain-Specific Languages
	4.4 Summary

	5 Ensemble-based Programming
	5.1 Overview
	5.2 Machine Model
	5.2.1 Overview
	5.2.2 Fine Granular Processors (FGPs)
	5.2.3 Control Processor (CP)
	5.2.4 Interactions between the CP and FGPs

	5.3 Programming Paradigm
	5.3.1 Overview
	5.3.2 Elementary Points
	5.3.3 Ensemble
	5.3.4 Master Thread

	5.4 Programming Interface
	5.4.1 Overview
	5.4.2 An Object-Oriented Programming Approach
	5.4.3 Overview of a Running Example
	5.4.4 Template Hierarchy
	5.4.5 ElementaryPoint and its Derived Templates
	5.4.6 Ensemble and its Derived Templates
	5.4.7 Topology and its Derived Templates

	5.5 Example: An MD Simulation
	5.6 Summary

	6 Implementation Framework
	6.1 Overview
	6.2 Mapping to Sequential Machines
	6.2.1 Overview
	6.2.2 Ensemble Management
	6.2.3 Topology Management

	6.3 Mapping to Shared Memory Machines with OpenMP
	6.3.1 Overview
	6.3.2 Ensemble Management
	6.3.3 OpenMP Support on NUMAs
	6.3.4 Topology Management

	6.4 Mapping to Distributed Memory Machines with MPI
	6.4.1 Overview
	6.4.2 Storage of Elementary Points
	6.4.3 Implementations of Ensemble Operations
	6.4.4 EP Distribution and Communication Management
	6.4.5 Topology Management
	6.4.6 Communication Optimization

	6.5 Summary

	7 Experimental Results
	7.1 Overview
	7.2 Experimental Platform
	7.3 Irregular Grid Applications
	7.3.1 Overview
	7.3.2 Data Sets
	7.3.3 Sequential Comparison
	7.3.4 OpenMP Comparison
	7.3.5 MPI Comparison
	7.3.6 Summary for Irregular Grid Applications

	7.4 Molecular Dynamics Simulation
	7.4.1 Overview
	7.4.2 Sequential Comparison
	7.4.3 OpenMP Comparison
	7.4.4 MPI Comparison

	7.5 Summary

	8 Conclusion and Future Work
	8.1 Ensemble-based Programming Approach
	8.2 Programming Scheme
	8.2.1 Machine Model
	8.2.2 Programming Paradigm
	8.2.3 Programming Interface

	8.3 Implementation Framework
	8.4 Evaluation
	8.5 Future Work

	A Appendix
	A.1 Compiler Commands and Options
	A.2 Full Declaration of Template Hierarchy
	A.2.1 ElementaryPoint
	A.2.2 Topology
	A.2.3 Ensemble

	A.3 Ensemble-based Programs
	A.3.1 Irregular Grid Program
	A.3.2 Molecular Dynamics Program

	A.4 Acronyms

	Bibliography

