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Abstract
In-car intoxication detection from speech is a highly
promising non-intrusive method to reduce the accident
risk associated with drunk driving. However, in-car noise
significantly influences the recognition performance and
needs to be addressed in practical applications. In this
paper, we investigate how seriously the intrinsic in-car
noise and background music affect the accuracy of intoxi-
cation recognition. In extensive test runs using the official
speech corpus of the INTERSPEECH 2011 Intoxication
Challenge, realistic car noise and original popular music
we conclude that stationary driving noise as well as mu-
sic introduce a significant downgrade when acoustic mod-
els are trained on clean speech only, which can partly be
alleviated by multi-condition training. Besides, exploit-
ing cumulative evidence over time by late decision fusion
appears to be a promising way to further enhance perfor-
mance in noisy conditions.

1 Introduction
It is generally known that drunk driving is the cause for
many traffic accidents worldwide. In addition to law en-
forcement, information technology can play an important
role in solving this problem: In contrast to the legally
binding blood and breath samples, non-invasive and non-
intrusive monitoring of the driver can be used to recognize
alcohol intoxication pre-emptively (i.e., before an accident
has happened), and warn drivers accordingly. Technical
systems for driver monitoring include face and gesture de-
tection and identification [1], or physical sensors [2].

However, these often require expensive surveillance
equipment that is not found in today’s cars. In contrast,
due to the increasing amount of in-car speech interfaces,
detection of driver intoxication based on the speech sig-
nal to detect drivers’ intoxication state becomes more and
more feasible and interesting. In [3], the Alcohol Lan-
guage Corpus (ALC) of genuine intoxicated speech is pre-
sented. In the INTERSPEECH 2011 Speaker State Chal-
lenge (SSC) [4], benchmark results for binary classifica-
tion (below/above 0.5 per mill of blood alcohol concen-
tration) are given, reaching up to 65.9 % unweighted av-
erage recall using brute forced acoustic features and Sup-
port Vector Machines (SVMs). These benchmark results,
nevertheless, do not take into account a realistic car envi-
ronment, which includes intrinsic noise (engine noise, road
friction sounds, etc.) as well as non-intrinsic noise gener-
ated mainly by passengers and entertainment systems, such
as playback of music.

In this paper, we address two questions: The first one
is how seriously these noises affect the system. The sec-
ond one is whether there are some methods to mitigate the
noise influence and promote the robustness of intoxication
detection system in car. In the field of automatic speech

recognition (ASR), acoustic model adaptation is widely
used for fitting various acoustic environments [5, 6]. How-
ever, to the best of our knowledge, such techniques have
not been investigated yet for general speaker state recog-
nition. In this paper, we rely on multi-condition training
which is straightforward to integrate into discriminatively
trained models such as SVMs and has delivered promising
results for ASR tasks in non-stationary noise [7]. Addition-
ally, we exploit the strategy proposed in [8] for collecting
cumulative evidence in the form of utterance level deci-
sions to gain a more robust classification of ‘medium-term’
speaker states such as intoxication. The crucial question is
whether this method generalizes to the in-car acoustic en-
vironment.

In the following, Section 2 introduces three databases
corresponding to intoxicated speech (ALC), in-car driv-
ing noise, and MTV music database. The selection of ex-
tracted feature sets and classifier follows in Subsection 3.1.
After giving a brief overview of the experimental setup in
Subsection 3.2, models adapted to multiple in-car acoustic
environments are investigated in Subsection 3.3. Further,
the classification by the ‘cumulative evidence’ strategy is
evaluated in Subsection 3.4. Finally, Section 4 draws the
conclusions.

2 Databases
2.1 Alcohol Language Corpus
The ALC [3] contains 38 hours of genuine alcohol intox-
icated and sober speech. For our experiments, as for the
2011 SSC, we use a gender balanced subset of the ALC
with 154 speakers (77 male, 77 female). Speakers are
within the age range of 21 to 75 years and were selected
to ensure a balance of German dialects. The corpus is sub-
divided into training, testing and development partitions
guaranteeing speaker independence. Table 1 shows these
partitions in detail.

Table 1: Partitions of ALC. Spk.: number of speakers;
‘NAL’: number of recordings from speakers with BAC 6
0.5 per mill; ‘AL’: recordings from speakers with BAC >
0.5 per mill

# Spk. NAL AL ∑

Train 60 3 750 1 650 5 400
Develop 44 2 790 1 170 3 960
Test 50 1 620 1 380 3 000
Train+Develop 104 6 540 2 820 9 360
Train+Develop+Test 154 8 160 4 200 12 360

To create the corpus, speakers were recorded at self-
chosen blood alcohol concentrations (BACs) ranging from
0.28 to 1.75 per mill. The intoxicated speech material in
the ALC was obtained by a speech test which the speakers



were asked to perform immediately after taking a blood
sample. Since the speech test did not last longer than 15
minutes, it is ensured that the BAC throughout the speech
test remains roughly equal to the measured BAC before
the test. At least two weeks after the intoxicated speech
test, each speaker returned to undergo a second recording
in sober condition. The sober recordings were chosen to
be roughly twice as long as the intoxicated recordings.

Three different speech styles are part of each ALC
recording: read speech, spontaneous speech, and com-
mand & control. The three partitions of the ALC corpus
are mixed with additive driving noise as well as random
segments of the MTV Music Database (cf. Subsection 2.3
and 3.2).

2.2 In-Car Driving Noise
To simulate realistic in-car intoxication recognition, we
consider different types of interior car noises. In-car driv-
ing noises are mainly generated by wind, the engine, wheel
friction, pounding or relative movement of car compo-
nents, etc. The driving noise used in this paper was
recorded in a MINI Cooper convertible1 which presents a
‘worst case scenario’ regarding driving noise compared to
other types of vehicles.

Since the road surface has strong influence on the char-
acteristics of interior driving noise, we consider three kinds
of road surfaces (smooth city road, highway, big cobble)
with corresponding typical velocities. The lowest noise
level is encountered when driving on a smooth city (CTY)
road at 50 km/h; a medium noise level is measured for
a highway (HWY) drive at 120 km/h; and the worst and
loudest sound in interior of a car is provoked by a road
with big cobbles (COB) at a velocity of 30 km/h.

2.3 MTV Music Database
As an example of realistic music that is likely to be en-
countered in the car, we use the MTV corpus of popular
music. This corpus consists of 200 songs from the collec-
tion ‘Twenty Years on MTV‘ covering the years from 1981
to 2000 as well as various genres from hip-hop to country
music, and featuring male as well as female singers. To
guarantee the independence of music added to the training,
testing and development parts of ALC speech, and thus
prevent overadaptation, the whole song set is divided into
three sets with 100, 50 and 50 songs corresponding to the
three partitions of ALC.

3 Experiments and Results
3.1 Feature Extraction and Classifier
The acoustic feature vectors correspond to the INTER-
SPEECH 2011 Speaker State Challenge feature set [4]
with 4 368 features generated by extracting 60 low-level
descriptors (LLD) and applying 39 functionals, extracted
by our feature extraction toolkit openSMILE. The set of
60 LLDs includes 4 energy related, 50 spectral related, 5
voice related LLDs, and the F0 contour. Further, the first
order delta regression coefficients of the LLDs are com-
puted. For the details of LLDs and functionals, please refer
to [4]. As classifiers, SVMs with linear kernel, complexity
of 0.05, and training by Sequential Minimal Optimization

1Thanks to Martin Wöllmer for providing the driving noise corpus.

(SMO) are chosen in our experiments. The WEKA toolkit
is used as in the challenge baseline.

3.2 Experimental Setup
In order to investigate the influence of in-car driving noises
and musical sounds on drivers’ intoxication state detec-
tion, three acoustic scenarios are considered: 1) clean ALC
speech; 2) ALC speech overlaid by in-car driving noise; 3)
ALC speech combined with in-car driving noise and back-
ground music.

For the second scenario, the original volume of the in-
car intrinsic noise caused by driving is added to the ALC
speech. Thus, three variants of the corpus are generated,
each mixed with one of three different types of in-car driv-
ing noise (COB, HWY, CTY). Figure 1 displays the (fitted
Gaussian) distributions of speech-to-noise ratios (SNRs)
when driving on cobble, highway and city road surfaces.
The mean SNRs for these three noise types are roughly
-35, -15, and 5 dB, respectively. Note that despite these
very high noise levels, the speech is still audible since
the car noise is mostly limited to low frequency ranges.
For the third scenario, we take into account four levels of
speech-to-music ratio (SMR): 20, 15, 10, and 5 dB. Note
that these ratios are calculated after adding driving noise,
as it is likely that a driver would adjust the music volume
according to velocity and surface. Therefore, twelve per-
mutations of car noise and music noise levels exist. Over-
all, 16 (1+3+12) variants of the ALC are obtained corre-
sponding to the scenarios 1–3, respectively.

Figure 1: Gaussian distribution of SNRs when driving on
three road surfaces: cobble (COB), highway (HWY), city
(CTY)
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3.3 Acoustic Model Training
In accordance with the 2011 SSC evaluation procotol, re-
sults are evaluated in terms of unweighted accuracy (UA),
which is simply the average of the recalls of the ‘AL’ and
‘NAL’ classes. Corresponding to the 2011 SSC baseline,
our first acoustic model is only trained on the clean train-
ing and development sets (9 360 utterances) without any
distortion by any type of intrinsic in-car noise and back-
ground music. Figure 2 (a) depicts the unweighted accu-
racies (UAs) with this baseline model when testing on 16
test sets with different acoustic situations (cf. Subsection
3.2). The best performance (66.2 % UA) can be observed
in case of testing on clean data only. However, from Fig-
ure 2 (a), one can see that the model classifies with almost
chance level accuracy (near 50 % UA) when testing on sets
containing any type of noise.

In order to adapt to various in-car acoustic environ-
ments, multi-condition training is considered to improve
the robustness of models. In our experiments we employ
the following two multi-condition training strategies:



Figure 2: Unweighted accuracy (UA) for binary intoxica-
tion states (AL / NAL) classification training on 3 acous-
tic models: (a) Baseline model; (b) Adaptive model A:
training with in-car driving noise adaptation; (c) Adap-
tive model B: training with in-car driving noise and back-
ground music. SMR: speech-to-music ratio. Testing in 16
conditions: clean; with driving noise only (cobble, city,
highway at SMR=∞); driving noise and music (SMR < ∞).
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(b) Adaptive model A
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(c) Adaptive model B
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1) Adaptive model A: training on clean (scenario 1)
and in-car driving noise data (scenario 2);

2) Adaptive model B: training on clean (scenario 1),
in-car driving noise (scenario 2), and additive background
music data (scenario 3).

It is ensured that all training sets have equal size
by random down-sampling of the multi-condition training
sets. More precisely, the training set for building adaptive
model A is defined by randomly selecting 9 360 utterances
equally and without overlap from the train and develop-
ment partitions of the four corpora from scenario 1 and
scenarios 2. Consequently, 2 340 utterances are selected
from each condition (clean, CTY, HWY, and COB noise).
Analogously, the training set for building adaptive model

B is defined by random selection of 9 360 utterances from
the train and development partitions of all 16 corpora from
scenarios 1–3. Hence, 585 utterances are selected from
each corpus, so that the SNR levels in training are bal-
anced. Therefore, the acoustic model A aims to adapt to
in-car noise, and acoustic model B tries to eliminate the in-
fluences of both intrinsic noise and music. Instead of train-
ing and testing on ‘matched condition’ with single type of
in-car noise, the multi-condition trained models are more
connected to a realistic application where the acoustic con-
ditions change frequently.

Figures 2 (b) and (c) display the performance for intox-
ication state classification based on the above mentioned
two adaptive acoustic models (A and B). As is evident from
Figure 2 (b), most of the UAs are significantly improved
when testing on any kind of noise, as compared to Figure
2 (a). For example, the UAs rise up to 63.5 %, 61.2 % and
60.5 % from 50.0 % when testing on data only overlaid by
one of the CTY, HWY, and COB noise types, respectively.
This can be explained by the fact that adaptive model A in-
cludes more distortion information caused by driving—as
the training set is of equal size as for the baseline, it cannot
be simply attributed to more training data. However, the
performance degrades seriously as soon as music is added
at lower SMRs. To alleviate this problem, employing adap-
tive model B seems reasonable. From Figure 2 (c), it can be
seen that the performance is significantly2 enhanced by up
to six percent absolute (from 53.4 %, 51.9 %, and 52.2 % to
56.1 %, 57.8 % and 57.6 % UA for CTY, HWY and COB)
in case of testing on data at an SMR of 5 dB.

However, from Figure 2 (b) and (c), one can notice that
the UAs for testing on the clean set are significantly lower
than the baseline result (from 66.2 % to 63.7 % for adaptive
model A; to 60.8 % for adaptive model B). Therefore, we
can conclude that the enhanced performance of the multi-
condition models in noisy conditions comes at the price of
degradations on clean data.

Still, considering the average performance across all
test conditions (which is roughly the ‘expected perfor-
mance’ in realistic conditions), model A and model B sig-
nificantly outperform baseline model without any adapta-
tion, as their average UAs across the 16 test scenarios are
59.9 % and 59.4 % in comparison to 52.0 %. Furthermore,
it can be seen that while the performance on model B is
more stable across SNRs than model A, its overall perfor-
mance is lower. A general trend is that the COB noise type
affects the performance most seriously, followed by HWY
noise and CTY noise, which corresponds to their SNRs (cf.
Figure 1) and matches previous studies on ASR in these
conditions [9].

3.4 Fusing Utterance Level Decisions
As discussed above, model ‘adaptation’ for multiple
acoustic environments is somewhat effective to overcome
the impact of in-car noise on intoxication state detection.
It can be argued, however, that the performance is still not
sufficient for realistic applications. Thus, in the following,
we continue to investigate the strategy of fusing utterance
level decisions along the time axis, as presented in [8], to
profit from temporal ‘smoothing’ of classifier decisions in
a ‘session’ where the speaker BAC is assumed to be con-
stant.

2As a rule of thumb for the ALC test set, improvements/degradations
of above 2.5 % absolute are significant at the 5 % level according to a
one-tailed z-test.



Figure 3: Unweighted accuracy (UA) for binary intoxica-
tion (AL / NAL) classification when testing on speech set
overlaid by COB noise at SMR = 10 dB vs. number of fused
utterance level decisions (3–29) from two adaptive acous-
tic models (cf. Subsection 3.3).
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As done in [8], for each speaker the unweighted major-
ity vote is taken over N randomly selected utterances from
each of the alcoholized and non-alcoholized sessions3 to
determine a decision for each session; then, the session
level UA is computed. The parameter N is chosen as an
odd number from {3, . . . ,29} to suit for majority voting.
Further, 30 iterations of the experiments are performed for
reducing the effect of statistical fluctuations.

In the following, we take the test case of SMR = 10 dB
with COB noise type out of the 16 possible cases as an
example. Figure 3 shows the UA distribution for majority
votes over an increasing number of utterance level deci-
sions. Both adaptive model A (Fig. 3 (a)) and B (Fig. 3
(b)) are employed to alleviate the noise influence, as dis-
cussed in the above subsection. The baseline mean UAs
of 59.9 % / 59.4 % for adaptive model A / B are roughly
equal to the expected UAs measured on session level when
randomly picking a single utterance per session.

For both models, the performance can be increased by
2.5 % and 1.7 % absolute by fusing three utterances. Fur-
ther, for model A, the expected mean UA can be constantly
improved by accumulating utterance level decisions. The

3Note that random selection is used since the ALC utterances are spo-
ken out-of-context.

best performance is achieved at 66.2 % mean UA, N = 25.
The trend line is similar to the result in the clean case [8].
However, for model B, the improvement is not obvious for
N > 3. By testing all other possible sets (not displayed), we
find that for increased noise levels, the improvement by the
majority voting strategy will be less and less. In turn, this
probably indicates that the predictions of multi-condition
trained models are less consistent.

4 Conclusions and Future Work
We have investigated the influence of driving noise and
background music on the accuracy of automatic alcohol in-
toxication recognition from speech. In a large scale study
we have demonstrated that the accuracy severely degrades
when we use the baseline acoustic model trained on clean
data in mismatched conditions. To enhance the robustness
of possible vehicle-mounted systems and mitigate perfor-
mance degradation, we investigated multi-condition train-
ing and majority voting along the time axis. Such fusion
corresponds to possible in-car applications with long-term
observation of the driver rather than, e. g., a single alcohol
test when starting the car. In the result, 66.2 % UA can be
expected by combining both strategies in adverse acous-
tic conditions (SMR of 10 dB and additional noise from a
cobble road). Future work should focus on noise-robust
and context-sensitive recognition architectures such as re-
current neural networks.
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