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ABSTRACT

In this work we present an audiovisual approach to the recog-
nition of spontaneous interest in human conversations. For a
most robust estimate, information from four sources is com-
bined by a synergistic and individual failure tolerant fusion.
Firstly, speech is analyzed with respect to acoustic prop-
erties based on a high-dimensional prosodic, articulatory,
and voice quality feature space plus the linguistic analysis
of spoken content by LVCSR and bag-of-words vector space
modeling including non-verbals. Secondly, visual analysis
provides patterns of the facial expression by AAMs, and of
the movement activity by eye tracking. Experiments base
on a database of 10.5h of spontaneous human-to-human con-
versation containing 20 subjects in gender and age-class bal-
ance. Recordings are fulfilled with a room microphone, cam-
era, and headsets for close-talk to consider diverse comfort
and noise conditions. Three levels of interest were annotated
within a rich transcription. We describe each information
stream and a fusion on an early level in detail. Our experi-
ments aim at a person-independent system for real-life usage
and show the high potential of such a multimodal approach.
Benchmark results based on transcription versus automatic
processing are also provided.
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1. INTRODUCTION

Knowledge of a communication partner’s interest possesses
great potential in many commercial applications. Similar
to the work introduced in [9] we are likewise interested in
curiosity detection e.g. for topic switching, in infotainment
systems or customer service systems. In order to quan-
tify a persons’s interest we introduce three levels of interest
(LOI) reaching from LOI=0 representing disinterest, indif-
ference, and neutrality over LOI=1 standing for light interest
to LOI=2 representing strong interest. As audiovisual pro-
cessing is known to be superior to each single modality [8]
[4], we propose to combine features derived from acoustic
and linguistic analyses, as well as facial expression analy-
sis basing on Active Appearance Models (AAM) and activ-
ity modeling. The paper is structured as follows: after a
short description of collection of spontaneous interest data
in sec. 2 we describe acoustic and linguistic speech process-
ing in sec. 3, Active Appearance Models in sec. 4, Activity
Estimation in sec. 5, multimodal information stream inte-
gration on an early feature level and experimental fusion
results in sec. 6 and a concluding discussion in sec. 7.

2. SPONTANEOUS INTEREST DATA

In order to overcome today’s mostly acted audiovisual
databases , and due to lack of a set dealing with interest,
we decided to record a database named AVIC (Audiovisual
Interest Corpus) in the ongoing. In the scenario setup, an
experimenter and a subject are sitting on both sides of a
desk. The experimenter plays the role of a product presen-
ter and leads the subject through a commercial presenta-
tion. The subject’s role is to listen to explanations and topic
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presentations of the experimenter, ask several questions of
her /his interest, and actively interact with the experimenter
considering his/her interest to the addressed topics without
respect to politeness. Visual and voice data is recorded by
a camera and two microphones, one headset and one far-
field mic, in this situation. After the final recording the
AVIC database shows the following parameters and statis-
tical figures: image resolution: 720 x 576, frame rate: 25
fps progressive, color resolution: 24 Bit, encoder: DV, audio
sampling rate: 44100 Hz, audio quantization: 16 Bit, left au-
dio channel: lapel microphone, right audio channel: far-field
microphone. 21 subjects (10 of them female) took part, 3 of
them Asian, the others European. The language throughout
experiments is English, and all subjects are very experienced
English speakers. 3 age categories were defined during spec-
ification phase (<30 a, <40 a, >40 a) for balancing. The
mean age of male subjects resembles 32.7 a, the mean age
of female subjects accordingly 30.1 a. The total recording
time for males resembles 5:14:30 h, for females 5:08:00 h.
By age categories the recording times are 4:40:40 h for <30
a, 4:10:20 h for <40 a, 1:31:30 h for >40 a. Likewise, a to-
tal of 10:22:30 h was recorded. In order to acquire reliable
labels of LOI, the entire video material was segmented in
speaker and sub-speaker turns and subsequently labeled by
4 male annotators, independently. Figure 1 shows the cor-
responding annotation workflow. The LOI is annotated for
every sub-speaker turn. In order to get an impression of a
subject’s character and behaviour before the annotation of
a person starts, the annotators had to watch approximately
5 minutes of a subject’s video. This helps to find out the
range of intensity, the subject expresses her/his curiosity.
For annotation, every sub-speaker turn has to be viewed
at least once to find out the LOI displayed by the subject.
5 LOI were distinguished in the first place: 1 - Disinter-
est (subject is bored listening and talking about the topic,
very passive, does not follow the discourse), 2 - Indifference
(subject is passive, does not give much feedback to the ex-
perimentert”’s explanations, unmotivated questions if any),
3 - Neutrality (subject follows and participates in the dis-
course, it can not be recognized, if she/he is interested or
indifferent in the topic), 4 - Interest (subject wants to dis-
cuss the topic, closely follows the explanations, asks some
questions), 5 - Curiosity (strong wish of the subject to talk
and learn more about the topic). For automatic processing a
fusion of these LOIs to a Master LOI was automatically ful-
filled. We introduced the following scheme of different cases
of Inter Labeler Agreement (ILA) and confidence bounds:

e Same rating by all annotators: ILA 100%;
Master LOI := LOI of majority

e Same rating by 3 of 4 annotators: ILA 75%;
Master LOI := LOI of majority

e Same rating by 2 annotators: ILA 50%
> If other 2 annotators agree:
Master LOI := “2” (undefined)
> If other 2 annotators disagree:
Master LOI := mean LOI.
In this case an additional confidence measure C' is de-
rived from the standard deviation o of the LOI over
all annotators: C =1—0.5-0.

Additionally, the spoken content and nonverbal interjections
have been labeled. These interjections are breathing, con-
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Figure 1: Annotation workflow.

firmation, coughing, hesitation, laughter, long pause, short
pause and other human noise. This additional labeling ef-
fort shall demonstrate the potential of such events within
higher semantic analysis. Summarized, overall annotation
contains subspeaker- and speakerturn segments in msec res-
olution, spoken content, non-verbals, individual annotator
tracks, and Master LOI with confidence in XML-format pro-
vided by use of ANVIL [6]. The following table 1 shows the
amount of sub-speaker turns (SS-Turns) per master LOI de-
pending on the chosen ILA and the bound of confidence C.
An LOI of “?” indicates the “undefined class”, i.e. no LOI
could be assigned to these samples with the desired confi-
dence. The database comprises 12,839 sub-speaker turns.

Table 1: Distribution of sub-speaker turns over LOI
1-5 and ILA (I) with confidence (C).

SS-Turns [#] | 1 2 3 4 5 «pr
I=50%, C >0 |19 383 3602 5386 305 3144
I=50%, C > 0.5 | 19 362 3339 5316 305 3498
I=50%, C > 0.6 | 19 261 2832 4603 305 4819
I=75% 19 185 2226 3741 305 6363
1=100% 4 19 417 960 25 11414

As too few items for LOI 1 and 2 have been seen, these
were clustered together with LOI 3, and the LOI scale was
shifted to LOI 0-2. In order to increase the amount of these
low occurence LOIs, further methods of master LOI deriva-
tion from the annotator specific LOI will be investigated,
if promising for training and evaluation purposes. Overall,
the AVIC database is a multimodal data collection of unseen
size, quality, realness, and focus, providing un-acted multi-
modal data for affective computing and especially curiosity
detection in human dialogs.

3. SPEECH PROCESSING

3.1 Acoustic Analysis

With respect to the quasi-stationary nature of a speech
signal, firstly a pre-processing by windowing the signal with
a Hamming-window function is fulfilled. The signal of in-
terest is likewise split into successive 20 ms frames, win-



dowed every 10 ms. In order to obtain a better represen-
tation in view of LOI content, feature contours contain-
ing information about intonation, intensity, harmonic struc-
ture, formants, and spectral development and shape are ex-
tracted. In detail these are: pitch based on time-domain cal-
culation by auto-correlation function (ACF), window func-
tion normalization and Dynamic Programming (DP) for glo-
bal cost minimization, energy by frame-based signal-energy
computation, formants’ 1-5 amplitude, bandwidth, and fre-
quency based on 18 LPC spectrum and DP, Mel-Frequency-
Cepstral-Coefficients (MFCC) 1-16, spectral flux, 47 semi-
tone-band interval emphasis and harmonic characteristic ba-
sed on 1024-point DFT-spectrum, Harmonics-to-Noise Ra-
tio (HNR) based on ACF in the time-domain, window func-
tion normalization, shimmer and jitter of periodic parts, and
19 VOC19-coefficients. Secondly, the derivation of speed
and acceleration regression coefficients based on these Low-
Level-Descriptors (LLD) is fulfilled as further information.
By LLD analysis a classification by means of dynamic mod-
eling is already feasible. Yet, basing on our past experience
and in accordance with the common practice in the field [10]
[4] [8], we decided for a further processing step: In a third
stage, statistical functionals f are applied to the LLD in
order to project the multivariate time-series F' on a static
feature vector [7] and thereby become less dependent of the
spoken phonetic content:

f:F—R' (1)

A systematic generation by calculation of moments, extreme
values, and further shape characteristics out of each time
series on a phrase basis leads to more than 5k features aim-
ing at broad coverage of prosodic, articulatory and speech
quality attributes. In detail the 18 functionals are: extreme
values, extreme value positions, range, mean, centroid, stan-
dard deviation, quartiles, quartile ranges, 95% roll-off-point,
Kurtosis, Skewness, and zero-crossing-rate. The idea thereby
is not to extract all these features for the actual LOI detec-
tion, but to form a broad basis for self-learning feature-space
optimization. In first tests on acoustic features a 10-fold
stratified cross validation (SCV) is used. Thereby diverse
microphone set-ups are considered. These are close-talk
(CT), distant-talk (DT), and mixed channel (MC). Features
have been reduced by Information Gain Ratio to 1k. As clas-
sifier SVM were chosen with a polynomial Kernel-function.
88.1% mean accuracy is observed for CT, 87.8% for DT, and
87.6% for MC within the discrimination of LOI 0 vs. LOI
2. Likewise rather insignificant influence of microphone po-
sitioning in the database can be named.

3.2 Linguistic Analysis

Beyond the analysis of acoustic properties of a speech sig-
nal, also the spoken content may carry cues in respect of
a speaker’s interest, and the combination of both analyses
could be shown highly effective in past related works in the
field of speech-based emotion recognition. [10] [11]. The
precondition of linguistic analysis is to obtain the spoken
content out of an audio-file. Within this work once man-
ual annotations have been employed to obtain an impres-
sion of performance under idealistic speech recognition con-
ditions, and once a state-of-the-art MFCC and HMM-based
tri-phone Large-Vocabulary Continuous Speech Recognition
(LVCSR) engine was used. For linguistic analysis a vector-
space-representation popular in the field of document re-
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trieval known as Bag-of-Words (BOW) has been chosen [5].
The motivation here fore is the effective fusibility of ob-
tained linguistic features within the acoustic features and
later video-based ones on an early level [11]. Likewise, loss of
information is postponed to the final decision process allow-
ing for the utmost decision basis. A term w; within a phrase
Y ={wi, - ,wi, - ,wg} with S = |3| is thereby projected
onto a numeric attribute x; : w; — x;. The precondition is
to establish a vocabulary © = {w1, - ,wj, -+ ,wy} with
V = |B)| of terms of interest. In a first approach these are all
different terms contained in the annotation of the data-set
of interest. Throughout feature extraction a value for each
term in © is calculated: Either 0 in case of no occurrence in
the actual phrase, or 1 in case of a binary attribute’s type,
respectively its term frequency of occurrence (TF) for com-
mon BOW representation. A number of further refinement
approaches exist as normalization to the phrase length, the
inverse frequency of occurrence in the data-set known as In-
verse Document Frequency (IDF), or logarithmic transform
(log) to compensate linearity. Thereby an offset-constant
¢ = 0.5 is chosen, as many zero-occurrence cases will be ob-
served. Our final per-term feature is calculated as follows
and proved superior throughout evaluation to the named
alternatives:

TF (w;, Z)) 2)

TiogTF,i = log (C + =
A drawback of this modeling technique is the lack of word
order consideration. Still, great flexibility is obtained in
comparison to e.g. class-based (back-off) N-Grams. In gen-
eral, vocabularies will show too high a dimensionality (> 1k
terms) and contain many redundancy in view of the aimed
at LOI detection. Similar to acoustic feature reduction as
described in the next subsection, two standard techniques
in linguistic analysis are therefore employed to reduce com-
plexity: stopping and stemming. The first method directly
reduces the vocabulary by eliminating terms of low rele-
vance. This is realized based on Shannon’s information as
described in the ongoing. Stemming on the other hand clus-
ters morphological variants of terms belonging to the same
lexeme, i.e. having the same stem. Thereby the hit-rate
of such clusters is directly boosted while reducing complex-
ity at the same time. However, danger of over-stemming
exists, i.e. clustering of terms that possess different mean-
ings in view of LOI. We decided for an Iterated Lovins
Stemmer (ILS), here fore, which bases on context-sensitive
longest match stemming - a slight enhancement of the very
traditional approach to stemming. Table 2 shows the 18
most relevant lexemes after ILS stemming and IGR-FS stop-
ping. The final vocabulary size thereby is 639 lexemes in-
stead of 1,485 terms. Using linguistic features only, max-
imum mean accuracy within 10-fold SCV, optimal feature
type and SVM reached 79.4% accuracy for the full blown
LOI analysis based on annotation and 84.2% for discrimi-
nation of LOI 0 and LOI 2. Using LVCSR a drop to 69.8%
is observed for LOI 0-2. 29.1% of the phrases led to no
LVCSR output, as these sub-speaker-turns only consist of
non-verbals or are too short. Still, no recognition was used
as extra information. One of the main differences of an-
notation versus LVCSR thereby is the included annotation
of non-verbals, interjections or events as described within
the database section (sec. 2). While the table above shows
the high ranking of four of these events (in italics, as de-



scribed in database section) on the ranks 1, 2, 8, and 9,
a reduction of all such only led to an absolute accuracy
drop of 1.9% having the same setup as described earlier:
10-fold SCV, SVM and LOI 0-2. Still, this might be of in-
terest considering their automatic recognition within future
work. Within linguistic experiments test-runs employing ac-

Table 2: Top 18 lexemes after stemming and IGR-
FS based stopping. Stems are marked by *

Rank [ Stem | IGR Rank | Stem | IGR
1 cough. | 0.2995 10 a 0.0308
2 laugh. | 0.1942 11 that | 0.0305
3 yeah [ 0.0514 12 car 0.0275
4 oh 0.0474 13 *hav | 0.0263
5 *ver 0.0358 14 is 0.0258
6 if 0.0358 15 I 0.0252
7 *th 0.0337 16 *s 0.0230
8 h.noise | 0.0325 17 and | 0.0219
9 hesit. | 0.0323 18 it 0.0219

tual LVCSR and annotation-based runs have been fulfilled.
Firstly, table 3 provides minimum term frequencies within
the set and clearly speaks for problems arising when using a
real LVCSR engine: more terms of single occurrence are ob-
served than actually contained in the vocabulary when using
real LVCSR. This comes, as words are partly misrecognized
and matched on diverse further terms in the engine vocab-
ulary. Otherwise, this diffusion by word errors also leads
to fewer observations of the same terms: Already at a mini-
mum TF of 2 within the database the annotation based level
overtakes. Yet, BOW relies on high TF within a data-set.
This can partly be repaired by stemming - assuming that
phonetic mismatches lead to confusions within a lexeme.

Table 3: Term numbers at diverse minimum TF
levels, annotation-based (left) and LVCSR-based
(right).

Min. TF | Annotation LVCSR
Terms [#] Terms [#]
1 1,485 1,568
2 645 351
5 277 109
10 149 51
20 98 20
50 48 8

3.3 Feature Space Optimization

So far, we extracted acoustic features, as described in
sec. 3.1, and linguistic features as described in sec. 3.2.
These are combined in one feature space by simple con-
struction of an acoustic-linguistic super-vector. In order to
save extraction effort and likewise reduce high complexity
throughout the succeeding classification process, features of
high individual information are pre-selected by fast Infor-
mation Gain Ratio (IGR) calculation and feature selection
(FS) of attributes with high IGR (IGR-FS). This method
bases on Shannon’s information and is suited to find fea-
tures of high individual relevance. Yet, redundancy of corre-
lated, yet individually effective ones is not filtered thereby.
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The reduced set, obtained by elimination of all zero IGR
features, is de-correlated and further compressed by appli-
cation of Sequential Forward Floating Search (SFFS) [12].
This leads to an optimal set as a whole and the overall min-
imum number of features [11]. SFFS employs a classifier’s
accuracy, ideally the target one, as optimization criterion.
Herein, powerful Support-Vector-Machines (SVM) are used
to ensure high quality throughout selection (SVM-SFFS).
SFFS is a Hill-Climbing search, and allows for forward and
backward search steps in order to cope with nesting effects.
A search function is needed, as exhaustive search becomes
NP-hard having such high dimensionality. In figure 2 an
overview over the combined acoustic and linguistic process-
ing is depicted. As final classifier SVM with a polynomial
Kernel and pair-wise multi-class discrimination is chosen.

4. ACTIVE-APPEARANCE-MODELS

4.1 Introduction

Active Appearance Models (AAM) are statistical models
derived from example images of an object class [2], i.e. faces
in this case. AAMs assume that the appearance of a face
can be described by its two-dimensional shape and its tex-
ture within the hull of the shape. Thereby, the shape is
defined as the relative position of a set of landmarks, disre-
garding Euclidean transformations and scaling on the entire
shape. The statistical analysis of the shape variations, tex-
ture variations and their combination is usually performed
by the Principal Component Analysis (PCA). This allows
for a compact representation of the obtained variance by a
very small set (< 100) of main components. Now, the ap-
pearances of the training objects as well as a great variety
of unseen object instances can be synthesized by a linear
combination of the main components. In the application
phase of an AAM, the coefficients of the linear combination
have to be optimized with respect to a maximal similarity
between the original object and the artificial object appear-
ance, synthesized by the AAM. These optimized coefficients
constitute a precise representation of the analyzed face and
contain the relevant information about the face properties
such as facial expressions and head pose.

4.2 Data Preparation

The statistical analysis via PCA requires a set of shapes
and corresponding textures to build a shape model, a tex-
ture model and finally a combined model. First, the training
images p; € P with 0 < ¢ < p have to be manually anno-
tated, producing a set of p corresponding landmark vectors
si € S with s; being the ith landmark vector defined as the



concatenation of all landmark coordinates

Si = (20, Y0, 1, Y1y -+ -y T(n/2)—1> Yin/2)—1) (3)

See figure 3 for an example annotation with n/2 = 72 land-
marks. These shape vectors are arranged in the shape matrix

S=[so|s1]| - |sp_1] €R™* (4)

Additionally the mean shape s is defined as the mean of all
shape vectors in S. The shapes are aligned and normalized
to each other in order to remove Euclidean transformations
and scaling and minimizing the variance to the deformation
of the shapes. The texture within the annotated shape of
each training image is warped to fit the mean shape s. For
generation of the texture model, we store the obtained set
of textures t; € 7 as vectors column-wisely in the texture
matrix

T=Tto|ts] - |tp-1] eR (5)

where c is the total number of pixels in each texture multi-
plied by the number of channels x. For grayscale textures
x = 1, for interleaved RGB color textures x = 3. It is sug-
gested to eliminate the texture variance caused by bright-
ness and contrast disparities in the images. Further let t be
defined as the mean of all textures in T.

4.3 AAM Generation

The first step of building an AAM is the independent ap-
plication of a Principal Component Analysis (PCA) to the
aligned and normalized shapes in S and the shape-free tex-
tures in T, thus generating a shape and a texture model.
Finally these two models are combined to one Active Ap-
pearance Model which comprehends the correlated shape
and texture variations contained in the training images [3].

4.3.1 Shape Model

The shape model is built by applying a (PCA) to the
shape matrix S, i.e. an Eigenvalue Decomposition of the
Covariance Matrix over all shapes s;. The obtained Eigen-
vectors constitute the shape basis Wy, whereas basis vectors
are sorted in descending order of the corresponding Eigen-
value As;. Information reduction is achieved by only se-
lecting the top rs “most important” basis vectors, discard-
ing those which correspond to principal axes bearing low
variance of the data. Evaluations showed throughout that
the remaining basis vectors should explain 98% of the total
shape variance. Since the size of the Eigenvalue \s; indi-
cates the variance explained by the ith Eigenvector, rs can

Figure 3: Two-dimensional annotation of a face with
72 landmarks
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The same method is applied for the texture and combined
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Figure 4: Effect of the first shape model components

combination
s =35+ Wshg (7)

whereas hg contains the shape coefficients that control the
deformation of the shape model. Note that a zero coefficient
vector relates to the mean shape 5. As Wy defines an or-
thonormal basis, the new representation of the known shape
si in the new basis can be obtained by

hs; ~ W2 (s; —§) (8)

4.3.2 Texture Model

The texture model is built by applying a PCA to the tex-
ture matrix T, resulting in the texture basis Wy, whereas
basis vectors are sorted in descending order of the corre-
sponding Eigenvalues A¢;. Again, the first r+ are used while
the “least important” basis vectors of Wy are discarded. A
new texture t can be synthesized in the shape-free space by

t =T+ Wihe 9)

with h¢ containing the texture coefficients used to deform the
texture model. Note that a zero coefficient vector relates to
the mean texturet. As W defines an orthonormal basis, the
new representation of the known texture t; can be obtained
by

he; & W (t; — t) (10)

4.3.3 Combined Model

To generate the combined Active Appearance Model, shape
and texture correlations are recovered from the so far inde-
pendent shape and texture models. Let c¢; be the ith vector
which contains the concatenated shape and texture coeffi-
cient vectors hs; and hg; for each of the 0 < i < p training
samples

() w



E is a diagonal matrix of reasonable weights to equalize unit
differences between the shape and the texture model. As
Cootes and Taylor [3] suggest, a simple approach is to set
E = ¢I where q is the ratio of the total intensity variation
of the textures to the total shape variation. The vectors
c; form the matrix of concatenated coefficient vectors C =

[co| ... | cp—1] which can be written as
[ EWST[S — 517
C= W T[T —t17) (12)

where 17 is the vector containing all ones and 1 € R" or 1 €
R¢ respectively. Since the shape coefficients hg; and texture
coefficients hy; are already mean-free, so is C. Another PCA
is applied to the matrix C producing the combined basis
W, whereas basis vectors are sorted in descending order
of the corresponding Eigenvalue Ac;, again discarding the
“least important” basis vectors. A coefficient vector ¢ can
be synthesized by evaluating

¢ = Weh, (13)

where he contains the AAM coefficients. As the matrix W
can be split into the shape and texture relevant parts Wes
and Wct

WCS
we=| W | (1)
it is possible to express a new shape s and texture t directly
as function of he by combining eq. 12 with eq. 7 and 9
which finally leads to these synthesis rules for a shape and

a corresponding texture:

S = § —|— Qshc 5 QS = WSE_lwcs (15)
t=t+Qhe , Q¢=WWqc (16)
-3.0 std. dev. mean 3.0 std. dev.

1st principal
component

2nd principal
component

Figure 5: Effect of the first two combined model
components of an AAM

4.4 AAM coefficient optimization

The AAM coefficient optimization can roughly be under-
stood as a standard multi-variate optimization problem with
the goal to minimize the energy of the difference image r(v)
between this synthesized face and the currently analyzed
face. This constitutes the error measure with respect to
the AAM coefficient vector v comprising h. and the co-
efficients for translation, rotation, and scale for the shape
plus brightness and intensity for the texture. Due to the
high complexity of the face synthesis, a runtime optimized
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Gauss-Newton gradient descent method by an offline gradi-
ent prediction is applied [2]. Therefore the following steps
have to be conducted: definition of an error energy function
E (r(v)), estimation of the Jacobian J = % of the differ-
ence function r(v), as well as calculation of the predictor
matrix R = (J7J)7'J7 used during the coefficient search.
The update of the coefficient vector in iteration 7 follows

v(i+1) = v — aRr(v?) (17)

using the step width «. The algorithm terminates when
E (r(v)) does not further decrease between iterations. The
final value of the error energy serves as confidence measure
for the performed AAM analysis. In order to map the AAM
results on sub-speaker turn basis, only the coefficient vector
of the video frame with the lowest final E (r(v)) is added to
the feature space of the early fusion with the other modali-
ties.

5. ACTIVITY ESTIMATION

Apart from facial expressions, which are addressed by the
Active Appearance Model analysis, the level of Activity is
considered, herein, as a criterion for the description of the
emotional state of a person. In the scenario of the AVIC
database the activity shall be estimated by a compact de-
scription of the body-, and especially head-movements of
the subject over a short video sequence. Since skin-color or
Viola-Jones based head localization provides rather rough
information about the position and the size of the person’s
head, we utilize the optimized performance of our eye lo-
calization algorithms. The derivation of the eye positions,
i.e. the speed and direction of the movement of the eyes,
and of the eye distance, i.e. change in length and angle of
the connecting line between the eyes, are our basic features
to describe the person’s motion activity. The first measure
of the overall motion activity is the mean value. However,
homogenous motion is perceived as less active than heteroge-
nous motion, although both could lead to the same average
value of the derivatives of eye positions and eye distance over
a video clip. Therefore the variance of the motion values
should carry important information for activity estimation.
On the same account the maxima of each of the motion vec-
tor magnitudes are also part of the activity vector. Table 4
lists all examined measures of activity.

Table 4: Features for the estimation of activity.
Index | Description

0-2 eye position delta (maximum, max. X, max. y)
4-6 eye position delta (mean, mean x, mean y)
8-10 | eye position delta (variance, var. x, var. y)
3,7,11 | eye distance delta (max., mean, var.)

12 eye position delta (rel. # frames > threshold)

Since head and eye position data is derived from the preced-
ing automatic localization tasks and thus not always reliable,
a set of conditions must be met for the data to make it into
the activity feature vector:

e If the confidence (contained in the metadata for each
region of interest (ROI) Type) is less or equal to 0 for
an eye position, the respective eye data are marked as
invalid. This eliminates samples where the eye location
could not be determined.



e To avoid wrong tracking results, the change in eye po-
sition between two successive frames may not exceed
a certain threshold. If the threshold is exceeded, the
respective eye position is marked as invalid.

The Head- and Eye-Localization Module outputs have shown
to be noisy quite often. Thus, the eye positions are addi-
tionally smoothed over the last three time steps. This of
course requires the last three coordinates for the respective
eye to be valid. To finally receive a valid derivative of the eye
position, two successive smoothed positions of an eye must
exist. For the derivative of the eye distance, two successive
smoothed values must exist for both eyes.

For the evaluation of the calculated measures of activity, it
is mandatory to compare the different image sequences with
each other. However, this may not be possible in all cases.
For example, different dimensions of the head in the image
(originating from different video resolutions) should not in-
fluence the resulting measures of activity. Thus, all values
are calculated in relation to the dimensions of the head ROI
provided by the head localizer.

The activity vector should give a quantitative statement for
the head-motion in closeup views. In the next step the ac-
tivity vector was used to recognize the level of interest (LOI)
of the analyzed person. It is supposable, that there exists
a strong correlation between this two values. Since finally
a multi-modal fusion of AAM analysis, activity estimation,
and speech analysis is planned, we assume that the single
activity features contribute to a improved LOI recognition
performance. Best classification results were obtained with
the following configuration: SVM with polynomial kernel
with exponent 5 [1]. A feature selection (feature indices 8,12
and 9,10 left out) caused a small but significant increase of
performance.

6. MULTIMODAL FUSION

Two main types of multi-modal fusion exist: early- and
late-fusion. Both types combine different modalities of data.
In the case of late-fusion, a classification is performed for
each modality separately. The results of each modality are
fused to a final class-prediction accuracy. During early fu-
sion, the feature spaces of all modalities are merged into one
feature space. This space is classified within a single clas-
sification process. In the evaluation of LOI recognition on
the AVIC database, we focus on early fusion, as it saves all
available information for the final decision process, allows for
combined feature space optimization, and due to the highly
unbalanced datasets. For the late-fusion, this latter problem
occurs twice: first, during the training of the classifiers for
each information stream, and second, during the fusion of
the class-prediction accuracy of the modality classifiers to
the final LOI.

All four feature groups introduced in sections sec. 3, sec. 4,
and sec. 5, namely acoustic, linguistic, AAM, and activity
features, were intentionally projected onto the sub-speaker-
turn level. This was realized by multivariate time-series
analysis for acoustic and activity features, while linguistic
features reasonably have to operate on this level at mini-
mum, and AAM features were selected from one best frame
match, as described. Likewise, no further synchronization
effort is needed at this point, and fusion is realized by a
simple super-vector construction.

Next, we present a number of experimental results for di-
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verse multimodal setups. Linguistic analysis bases on LVCSR
output in the ongoing, and is always handled together with
acoustic features as Audio. For testing, the AVIC database
was split into 3 stratified and subject disjunct test and train-
ing sets: as 21 subjects are contained, 7 subjects were used
per test set, and accordingly 14 per training set. No sub-
ject belongs to more than one set during one run. Likewise,
a 3-fold subject independent SCV (SI-SCV) is performed.
Table 5 shows the number of sub-speaker turns for each class

[#] | o 1 2 Overall
before fusion

Test set 1 771 951 41 1703
Test set 2 1086 1665 83 2834
Test set 3 860 1348 124 2332
Training set 1 | 1946 3013 207 5166
Training set 2 | 1571 2299 165 4035
Training set 3 | 1797 2616 124 4537
after fusion

Test set 1 130 404 27 561
Test set 2 116 663 44 823
Test set 3 67 686 99 852
Training set 1 | 183 1349 143 1675
Training set 2 | 197 1090 126 1413
Training set 3 | 246 1067 71 1384

Table 5: Number of sub-speaker turns for each LOI
in the different data sets, database AVIC.

before and after fusion. As not all modalities are present at
a time (here: often no speech, especially in the case of bore-
dom, that is LOI 0), only the considerably lower number
of instances after fusion can be used for multimodal evalu-
ation in the ongoing. However, note that a real-life system
profits from multimodality also with respect to such partial
lack of modalities. Also note that the number of instances
among classes for training are highly unbalanced. Therefore
we also consider uniformly distributed training sets obtained
by random down-sampling. In tables 6 and 7 different fea-
ture spaces are evaluated. Table 6 shows the recall-rates of
each class for training performed on unbalanced data. Note
that in every training set, LOI 1 is pre-dominant. Table 7
shows the recall-rates of each class for training performed
on uniformly distributed data by random down-sampling.
SVM with a polynomial kernel in constant parameteriza-
tion are thereby used throughout. As can be seen, use of

Accuracy [%] | 0 1 2 |RR CL F
unbalanced

Full space 473 872 36.8 | 77.7 57.1 65.8
Audio+Acti. | 454 93.0 329 | 81.8 57.1 67.3
Audio+AAM | 46.5 88.1 395 | 786 58.0 66.7
A AM+ Acti. 227 920 009 | 754 385 51.2

Table 6: Results early fusion. Recall values for the
reduced set LOI 0-2, overall mean - weighted by in-
stance number (RR) and non-weighted (CL), and
the harmonic mean F=2 RR CL/(RR+CL). Unbal-
anced training. SVM, FS, database AVIC, 3-fold
SI-SCV.

balanced training sets leads to a significantly more satisfy-
ing result with respect to balance among recall rates. Look-
ing at table 7 to find the best possible combination of the



available modalities, the combination of audio and activity
features after individual pre-selection of features prevails.
This super-vector has a size of 109. When AAM feature in-
formation is fused with the audio features and the activity
features, the recall value of all classes decreases. This comes,
as complexity for the classifier is raised without provision of
significantly novel and valuable information. The best single
modality is clearly audio. Yet, all possible combinations of
modalities do not satisfyingly solve the problem of LOI 0 and
LOI 2 being discriminated more easily than each one from
LOI 1. However, in many applications a discrimination of
boredom vs. interest may be sufficient. The confusion ma-

Accuracy [%] | 0 1 2 | RR CL F
uniformly distributed training

Full space 75.3 555 59.3 | 586 634 60.9
Audio+Acti. | 79.2 60.2 73.5|63.9 71.0 67.3
Audio+AAM | 71.5 56.8 60.6| 59.1 63.0 60.1
AAM+Acti. | 664 373 419 | 41.7 485 448
Audio 70.0 594 753 ] 621 682 65.0
Activity 58.0 35.7 389 | 39.1 442 415
AAM 71.1 208 65.4 | 31.2 524 39.1

Table 7: Results early fusion. Recall values for
the reduced set LOI 0-2, overall mean - weighted
by instance number (RR) and non-weighted (CL),
and the harmonic mean F=2 RR CL/(RR+CL).
Training uniformly distributed. SVM, FS, database
AVIC, 3-fold SI-SCV.

trix of the best result of early fusion of audio and activity is
shown in table 8, to further illustrate this problem.

[%] classified as > | 0 1 2
early fusion
0 79.2 165 4.3
1 21.7 60.2 18.1
2 3.3 232 73.5
Table 8: Confusion matrix of the best early fu-

sion (audio and activity) using the reduced LOI set
0-2. Training uniformely distributed. SVM, FS,
database AVIC, 3-fold SI-SCV.

7. DISCUSSION AND CONCLUSIONS

The summary of the results of sec. 6 leads to this five key
points: early fusion seems to be a promising approach with
respect to high accuracies and combined feature space opti-
mization. The training data must be uniformly distributed
and random sampling seems a reasonable solution. Best
single modality is audio by a combination of acoustic and
linguistic feature information, which can be processed in
real-time on a state-of-the art desktop. Combination of the
modality audio and the information stream activity achieves
better results than the single modalities, and is still real-time
capable. Yet, Active-Appearance-Models could not help to
further increase the accuracy. Overall, spontaneous inter-
est could be detected subject independently in human con-
versation by the proposed audiovisual processing. Also, an
early feature level fusion of acoustic, but as special novum
also linguistic features with vision-based features and fully
automatic processing could be demonstrated. Yet, future
works will have to deal with improved discrimination of the
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subtle difference of the border class between strong inter-
est and boredom. Further interesting topics will be inves-
tigation of individual segmentation for each modality in an
asynchronous manner and shifting from a classification to a
regression approach.
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