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Abstract. This paper brings together two important aspects of the
human-machine interaction in cars: the psychological aspect and the en-
gineering aspect. The psychologically motivated part of this study ad-
dresses questions such as why it is important to automatically assess the
driver’s affective state, which states are important and how a machine’s
response should look like. The engineering part studies how the emotional
state of a driver can be estimated by extracting acoustic features from
the speech signal and mapping them to an emotion state in a multidi-
mensional, continuous-valued emotion space. Such a feasibility study is
performed in an experiment in which spontaneous, authentic emotional
utterances are superimposed by car noise of several car types and various
road surfaces.

1 Introduction

In recent years there has been a growing number of speech-driven applications
in the car [1]. Therefore, current research on improvements of both comfort and
safety in the car needs to pay attention to the speech interface between the driver
and the infotainment system of the car. This paper focuses on one major aspect
of the human factors: the driver’s emotion.

In a previous study it was found that matching the emotional state of the
driver and the expressiveness of a synthetic voice has a major impact on the
driving performance [2, 3]. Thus, it is necessary to automatically recognize the
emotional state of a person while driving. This led us to the following experiment:
Spontaneous emotional utterances were superimposed with car noise of several
scenarios. The emotion conveyed in these utterances was automatically estimated
using a set of 20 selected acoustic features. For the representation of the emotion,
a three-dimensional emotion space concept was applied. Thus, an emotion is
described in terms of three continuous-valued primitives (attributes), namely
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valence (positive vs. negative), activation (calm vs. excited), and dominance
weak vs. strong).

There are only a few other works on emotion recognition in the car. Jones
and Jonsson [4] presented a method to detect five emotional states of drivers in
a driving simulator. They use neural network classifiers but did not investigate
the impact of the car noise. Schuller et al. [5] also based their experiment on
driving simulator data, recognizing four different emotions using Support Vector
Machines. However, preliminary studies on emotional speech superimposed by
white noise showed that the recognition performance depends very much on the
signal-to-noise ratio [6]. Thus, we study the impact of car noise on the emotion
recognition in this paper.

The rest of the paper is organized as follows. Section 2 discusses the impact
of the driver’s emotion on the communication with the car and its importance
regarding the safety. Section 3 presents the data used for the automatic emotion
recognition experiment. Section 4 introduces the car noise conditions. Section 5
details the classification of emotions from the speech signal. Section 6 presents
the recognition results. Section 7 summarizes the study and outlines future work.

2 The Role of Emotion in Driving Experiments

No human thought or action takes place in a vacuum. Temperaments, moods,
and emotions shape how people view the world and how they react to it. Al-
though temperaments and personality traits display more stability over time,
and predict nuances of behavior, moods and emotions are easier to detect and
classify in a real-time scenario. Furthermore, emotional states are more readily
mapped to behavioral consequences.

2.1 Emotional States and Driving Behavior

In the context of driving, three distinct groups of emotional states have emerged
as states of interest. The first state is defined by a slightly positive valence and a
moderate level of arousal, closely associated with the emotional state of happy.
The optimal state, thought of as a flow state [7], involves a moderate level of
arousal, allowing for attention, focus, and productivity. A state of high arousal or
extreme positive valence can potentially lead to distraction. States of a positive
affect have also been shown to improve performance in non-driving contexts
[8–10].

The second state of interest is characterized by an extreme level negative
valence and high arousal, usually classified as anger. Frustration is distinguished
from anger by the degree of negativity and arousal. Often, frustration is referred
to as a gateway emotion that leads to anger, and ultimately to aggression and
road rage [11]. With an increasing number of vehicles on the roadways, drivers
encounter more frustration-inducing scenarios. As a result, road rage is now an
escalating problem, and is the primary cause of many accidents and driving
fatalities.

The third state is characterized by very low arousal and sometimes accompa-
nied by a slight negative valance; when broadly defined, this state encompasses
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both sadness and drowsiness. A sad or negative state degrades task performance,
and within the car this state is manifested as inattention. Similarly, a subdued
state nearly to the degree of drowsiness is quite dangerous. Drowsy driving and
falling asleep at the wheel are often responsible for fatal collisions and off-road
accidents [12, 13]. Given these implications of driving under the influence of par-
ticular emotional states, it is unquestionably important to be able to identify
such states at drivers. However, once the state of the driver is known, what is
the best strategy to improve driver emotion and optimize driving behavior?

2.2 Appropriate Responses to Driver Emotion

Previous research has experimentally tested social responses to driver emotion.
Nass and colleagues used a 2 (inducement emotion) x 2 (voice interface emotion)
between-subject factorial design [3]. Without the benefit of a naturalistic setting
and real-time assessment of driver emotion, researchers relied on the method
of using emotionally-charged clips to induce emotion [14, 15]. Two five minute
videos, one inducing the state of happy, and the other for sad/subdued were
created from a pre-tested image database. Half of the participants in the study
were induced to be happy, and the other half were sad/subdued; the effectiveness
of the inducement method was verified by self-report data from the Differential
Emotional Scale (DES) [16].

In keeping with the factorial design, half of the participants from each induce-
ment group drove through a simulated driving course while engaged in conversa-
tion with a happy voice interface; the other half interacted with the sad/subdued
voice. The voice interface was actually a series of brief questions and comments,
played at exactly the same time in the simulator for every participant. The
same female voice talent recorded both the happy and sad/subdued versions of
the script; there was no difference in content between the two versions, only a
distinction in intonation and expression.

Contrary to common beliefs that happy is always best, results from the study
showed that matching the voice emotion to the driver emotion proved more
beneficial to emotion than simply presenting all drivers with a happy voice.
This surprising result reveals the importance of designing socially appropriate
in-car voice interfaces. Drivers who were induced to be sad/subdued expected
their conversation partner to be aware of their state and respond accordingly,
in a more subdued manner. Thus, the ability to detect driver emotion is not
only helpful in predicting driver behavior, but necessary for designing smart,
adaptive, and beneficial driver interfaces.

In order to implement socially appropriate interfaces [17, 18], several hurdles
must be overcome before the technology and knowledge can be integrated in
vehicles. Future research must continue to explore the implications of address-
ing the driver with an in-car voice interface. Some first steps have been made,
but the studies that have been completed only begin to touch upon the range
of human emotional states, not to mention the effects of individual differences.
However, suitable interactions cannot occur without first an adequate classifica-
tion of emotions along the valence, activation, and dominance dimensions, as well
as a robust capability to detect such emotions. The field of psychology, among
others, provides a significant body of work to aid in distinguishing emotions.
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The work presented here further contributes to the future of intelligent in-car
interface design by demonstrating the feasibility of detecting emotions in variety
of contexts and under challenging noise conditions.

3 Data and Evaluation

For this study we used the VAM corpus, a database consisting of 947 spontaneous
emotional utterances in German, which was first used in [19]. These utterances
were recorded from 47 speakers in a talk-show on TV. The emotions arose from
spontaneous, unscripted discussions, mainly on family issues or friendship ques-
tions.

The mean utterance duration was 3.0 s. The mean Signal-to-Noise Ratio was
19.2±3.0 dB, reflecting the relatively good recording conditions of the close talk
microphones. All signals were sampled at 16 kHz and 16 bit resolution.

The emotional content was manually labeled by a group of 18 human eval-
uators. An appropriate value for each emotion primitive was assigned to each
utterance by means of the Self Assessment Manikins [20, 21]. One out of five
icons per primitive could be selected. The choice was then mapped to a scale of
[-1,+1].

The average standard deviation in the human evaluator’s ratings was 0.31,
and the average inter-evaluator correlation was 0.6. This shows moderate to high
inter-evaluator agreement for a rather difficult task of labeling spontaneous, non-
acted emotions.

4 Noise Scenario

Robust automatic speech recognition (ASR) under the influence of car noise is
still being researched [22]. Also, emotion recognition in the car is much more
demanding than in clean speech. To study the feasibility, several noise scenarios
of approx. 30 seconds were recorded in the car while driving. The microphone
was mounted in the middle of the instrument panel, which is the standard for
ASR applications in the car. The recorded noise was a superposition of several
influences: noise from the wheels/suspension, the combustion engine, interior
squeak and rattle noise, and wind noise. The influence of the signal path between
the speaker and the microphone was neglected.

4.1 Choice of Vehicles

For this study we used four different cars as itemized in Table 1. Although
the soft top of both convertibles was closed during the recordings, the interior
noise was noticeable higher than in comparable sedans. While the engine noise
dominates during the acceleration of the sportive M5, the similarly constructed 5
series Touring is more gentle and comfortable. The supermini unifies convertible,
hard suspension and sportive engine, and it thus provides the most demanding
noise scenario.
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Table 1. Choice of Vehicles.

Notation Vehicle Derivative Class

530i BMW 5 series Touring Executive Car

645Ci BMW 6 series Convertible Executive Car

M5 BMW M5 Sedan Executive Sports Car

Mini MINI Cooper S Convertible Supermini

4.2 Road Surfaces

Just as the vehicle type, the road surface affects the interior noise. We recorded
the interior noise in all cars on the following surfaces:

– Smooth city road, 50 km/h (CTY)
– Highway, 120 km/h (HWY)
– Big cobbles, 30 km/h (COB)

The lowest noise levels were found with a constant driving over a smooth city
road at 50 km/h and medium relovution. Higher noise levels were measured at
a highway drive due to the increased wind noise. The worst scenario was found
in the recordings on a road with big cobbles. The wind noise resided in lower
levels but the rough surface involved dominant wheel/suspension noise as well
as buzzes, squeaks and rattles.

4.3 Signal-to-Noise Ratio

The car noise signal of the different scenarios was chopped to fit the length of
each utterance and then overlaid additively. To determine the noise conditions
quantitatively, the Signal-to-Noise Ratio (SNR) was calculated for each utterance
in the speech database and each noise scenario,

SNR = 10 log
10

Psig

PN,car + PN,mic
. (1)

In addition to the car noise PN ,car, the recording noise PN,mic in the speech
signal was taken into account and compared to the signal power Psig. The signal
power was measured in voiced segments only, whereas the recording noise power
was measured in speech pauses only. Due to the varying signal power in the
speech recordings, and due to the varying durations of the noise segments, the
result was a Gaussian-like distribution, which is shown in Figure 1.
It can be summarized that the road surface has a major impact on the scenario.
The SNR for the CTY scenarios was best with a mean value of 11 dB. It was
followed by the HWY scenarios (4 dB) and the COB scenarios (-5 dB).

The vehicle has a minor influence. Still, the M5 and the 645Ci resulted in
2 dB better result than the 530i or the Mini for the CTY scenarios. On the
highway (HWY), the M5 outperformed the 645Ci by 2 dB and the 530i or Mini
by 3 and 4 dB, respectively. Interestingly, on the cobbled road (COB), the 645Ci
outperformed the M5 by 2 dB and the 530i or Mini by 4 and 5 dB, respectively.
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Fig. 1. Signal-to-Noise Ratio distribution in the experiment.

5 Classification

For the automatic estimation of the emotion conveyed in the speech signal, a
two-step procedure was applied. First, a set of characteristic prosodic features
was extracted from the speech signal. Second, these features were mapped to the
values of the three emotion primitives using multidimensional regression tech-
niques and a training set to determine the parameters of the regression curve.
The details of the emotion estimation system are described in [23].

5.1 Acoustic features

We used a set of 20 prosodic features selected by Sequential Forward Selection
from a total of 137 features. These features include

– pitch related features
– energy related features
– features related to duration and timing
– spectral features using Mel Frequency Cepstral Coefficients (MFCCs)

The pitch and energy related features are the statistics, such as mean value,
standard deviation, range, and quartiles of the fundamental frequency F0 and
the energy as well as their first and second derivatives, respectively. Together
with the temporal features, which are, e.g., speaking rate and mean speaking
pause duration, such characteristics describe the intonation of the utterance. The
spectral characteristics describe the sentence-dependent voice characteristics in
several subbands selected to match the perception characteristics of the human
ear. Similar feature sets were used in a number of other studies on emotion
recognition in speech [24]. All features were normalized to the range of [0,1].
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5.2 Estimation technique

As a classifier, we used kernel-based Support Vector Regression (SVR) [23].
Such method was shown to give superior results compared to other classifiers
[5, 23]. The algorithm minimizes the structural risk, in contrast to many other
classification techniques minimizing the empirical risk only [25, 26]. A radial basis
function (σ = 3.5) was used as kernel. Parameter optimization was achieved by
a grid search on a logarithmic scale and a subsequent search in the region of
minimum error. The output of the SVR consists of one real-valued estimate for
each emotion primitive [23].
We performed two different experiments for the automatic emotion estimation:

(a) train the algorithms with undisturbed speech and test them with the noisy
speech, and

(b) use noisy speech for both training and testing.

While the first method allows for a more convenient training procedure and
less effort to create training data, the latter one might provide better training
conditions to the algorithms due to the same nature of training and test data.

6 Results

All results were calculated from 10-fold cross-validation experiments. The auto-
matic emotion estimation under noise was compared to the reference given by
the human evaluators. For each scenario the mean linear error was calculated.
The accuracy of the tendency in the estimates was measured by the correlation
between the estimates and the average ratings of the human evaluators (Pear-
son’s empirical correlation coefficient).

The results for clean speech for both, training and testing, were added for
comparison as a baseline. This baseline shows that, provided acoustically good
conditions, emotion primitives estimation is possible with a mean error of 0.14
and an correlation of 0.42, 0.81 and 0.82 for valence, activation, and dominance,
respectively. While the correlation coefficient for valence is only moderate, which
is due to a very flat distribution, the emotion primitives activation and domi-
nance were estimated with high reliability in clean speech.

6.1 Experiment (a)—training with clean speech and testing with
noisy speech

The results of experiment (a) are reported in Tables 2 and 3, respectively. The
performance of the emotion estimation mainly depends on the road surface and
therefore on the SNR. In experiment (a), the mean error increased by 2% for
the CTY scenario, which is almost neglectable. For the HWY and the COB
scenarios, the mean error increased notably by 18% and dramatically by 44%,
respectively.

The correlation coefficients have to be read skeptically for valence, since the
statistical confidence was only moderate for this primitive (p ≥ 10−3). For the
statistically significant correlation coefficients, however, a moderate (CTY: -4%)
to remarkable (HWY: -14%, COB: -40%) decrease was observed.
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Table 2. Results of experiment (a)—training with clean speech and testing with noisy
speech: mean linear error. Baseline clean speech (CS) added for comparison.

Valence Activation Dominance

HWY COB CTY HWY COB CTY HWY COB CTY
530i 0.15 0.17 0.13 0.18 0.24 0.16 0.18 0.20 0.15

645Ci 0.14 0.15 0.13 0.18 0.22 0.15 0.16 0.20 0.14
M5 0.13 0.16 0.13 0.18 0.25 0.16 0.18 0.21 0.13

Mini 0.14 0.17 0.13 0.20 0.25 0.17 0.18 0.22 0.14

CS 0.13 0.15 0.14

Table 3. Results of experiment (a)—training with clean speech and testing with noisy
speech: correlation coefficient between estimates and manual emotion labels. Baseline
clean speech (CS) added for comparison.

Valence Activation Dominance

HWY COB CTY HWY COB CTY HWY COB CTY
530i (0.34)1 (0.14) (0.43) 0.74 0.52 0.79 0.67 0.50 0.76

645Ci (0.41) (0.30) (0.45) 0.75 0.57 0.81 0.70 (0.48) 0.78
M5 (0.39) (0.19) (0.46) 0.74 (0.46) 0.79 0.68 (0.40) 0.80
Mini (0.35) (0.10) (0.45) 0.69 (0.40) 0.77 0.61 (0.38) 0.76

CS (0.42) 0.82 0.81

Thus, in the CTY scenario, the emotion recognition still works fine, almost
independent of the vehicle type. On the highway (HWY) there is a notable decay
in performance, but the recognition is still feasible. There is a clearly better result
for the executive cars over the supermini in this case. On the cobbled road, the
automatic recognition is not feasible any more. In this scenario, the 6 series
convertible outperformed the other vehicles, but, still the results imply that the
recognition is hardly possible.

6.2 Experiment (b)—training and testing with noisy speech

The results of experiment (b) are reported in Tables 4 and 5, respectively. In
experiment (b), the results were better, which was probably the case because
the calculated regression hyperplane could adapt to the noise scenarios. Still,
the mean error increased by 2% and 7% for the CTY and the HWY scenarios,
respectively, which implies that in this case the emotion recognition is sill possible
with a mean error of 0.13 to 0.16. However, for the COB scenarios, the mean
error increased by 16% indicating that emotion recognition is possible, but with
a notable decay in performance. The correlation coefficients emphasize the fact
that providing noisy data at the training state is very helpful.

1 All correlation coefficients in brackets are only moderately statistically significant at
p ≥ 10−3.
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Table 4. Results of experiment (b)—both training and testing with noisy speech: mean
linear error. Baseline clean speech (CS) added for comparison.

Valence Activation Dominance

HWY COB CTY HWY COB CTY HWY COB CTY
530i 0.14 0.14 0.13 0.16 0.18 0.16 0.15 0.17 0.14

645Ci 0.14 0.14 0.13 0.16 0.17 0.16 0.15 0.16 0.14
M5 0.13 0.14 0.13 0.16 0.18 0.16 0.15 0.17 0.14

Mini 0.14 0.15 0.13 0.16 0.19 0.16 0.15 0.17 0.14

CS 0.13 0.15 0.14

Table 5. Results of experiment (b)—both training and testing with noisy speech:
correlation coefficient between estimates and manual emotion labels. Baseline clean
speech (CS) added for comparison.

Valence Activation Dominance

HWY COB CTY HWY COB CTY HWY COB CTY
530i (0.38) (0.32) (0.43) 0.79 0.73 0.81 0.75 0.69 0.79

645Ci (0.40) (0.37) 0.44 0.79 0.78 0.81 0.76 0.71 0.79
M5 0.44 (0.34) (0.43) 0.79 0.75 0.80 0.76 0.69 0.79
Mini (0.39) (0.35) 0.45 0.79 0.72 0.80 0.77 0.67 0.79

CS (0.42) 0.82 0.81

6.3 Discussion

It was found that experiment (b) gave clearly better results. In this case the
noisy speech was already provided at the training step and thus the feature rep-
resentation used for the determination of the regression hyperplane was more
significant with respect to the test data. However, for the practical application,
it is difficult to gather emotionally labeled training samples of the driver under
different noise conditions. It is much easier to provide a large set of emotional
training data if these can be gathered from clean speech. Therefore the ques-
tion is, whether the good results achieved with noisy training data could also
be achieved by a combination of providing clean speech training data and intro-
ducing filter techniques before extracting the acoustic features.

6.4 Noise reduction

A preliminary analysis of the noise signals revealed that these signals were highly
concentrated in the low-frequency bands. They almost vanished in frequency
bands above 130 Hz. However, cutting the noisy speech at 130 Hz is not rea-
sonable since the fundamental frequency of several male speakers in our corpus
were (locally) as low as 60 Hz. Therefore, we decided for a compromise and used
a highpass filter that combined a very narrow stop band of 48 Hz and a rather
wide transition band of 272 Hz. Thus, a great part of the noise was suppressed.
In the critical frequency range of [48 Hz, 130 Hz], the noise was at least damped
while still providing the crucial frequency information on the fundamental fre-
quency of the speaker. For the implementation of the filter we used a FIR filter
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Table 6. Results of emotion estimation in noisy, highpass filtered speech: mean linear
error. Baseline clean speech (CS) added for comparison.

Valence Activation Dominance

HWY COB CTY HWY COB CTY HWY COB CTY
530i 0.13 0.13 0.13 0.16 0.17 0.17 0.15 0.15 0.15

645Ci 0.13 0.13 0.13 0.16 0.17 0.16 0.15 0.15 0.15
M5 0.13 0.13 0.13 0.17 0.16 0.16 0.15 0.15 0.15

Mini 0.13 0.13 0.13 0.16 0.16 0.16 0.15 0.15 0.15

CS 0.13 0.15 0.14

Table 7. Results of emotion estimation in noisy, highpass filtered speech: correlation
coefficient between estimates and manual emotion labels. Baseline clean speech (CS)
added for comparison.

Valence Activation Dominance

HWY COB CTY HWY COB CTY HWY COB CTY
530i (0.43) 0.44 (0.43) 0.79 0.79 0.78 0.77 0.77 0.77

645Ci (0.43) 0.44 0.46 0.80 0.78 0.79 0.77 0.77 0.77
M5 0.45 0.44 (0.43) 0.79 0.79 0.79 0.77 0.77 0.77
Mini 0.45 0.44 (0.45) 0.79 0.79 0.79 0.77 0.77 0.77

CS (0.42) 0.82 0.81

of order 155 using the Parks-McClellan algorithm [27]. Such high filter order was
necessary because of the very low cut-off frequency, which was only 0.006 times
the sampling frequency.

The results of such highpass pre-processing were very promising. Tables 6
and 7 show the individual errors and correlation coefficients. The error was
almost the same as the baseline: 0.13, 0.16, and 0.15 for valence, activation and
dominance, respectively. It increased on average only by 6%, which indicates that
the automatic emotion recognition is still possible. Furthermore, it was observed
that the results now were almost the same for all vehicles. This can be explained
by the fact that the more demanding noise scenario in the Mini, for example,
was caused by more noise energy, but in the same frequency bands than with
comparable executive cars.

7 Conclusion and Outlook

This paper reports current research on the emotion in human-computer inter-
action in the car. The first part of this study stressed the fact that detecting
the driver’s emotional state is indeed important. Such knowledge reveals infor-
mation on the communication between the driver and the car instruments, and,
in addition, can be used to design the car’s answer in a way to provide best
conditions for safe driving.

We presented results of emotion recognition in the speech when the sig-
nal is superimposed by car noise. Several vehicle types and road surfaces were
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tested. The results were calculated on a continuous-valued, three-dimensional de-
scription basis for emotions consisting of the three emotion primitives valence,
activation and dominance, each normalized to [-1,+1].

The results show that although sedan and executive type cars provide 2-3 dB
better SNR than superminis, the road surface has more impact on the results
than the car type. With our speech corpus consisting of spontaneous, unscripted
emotional utterances, we observed that the automatic emotion recognition re-
sults correlated with the SNR, which was found to be 10 to 12 dB for city
scenarios, 2 to 6 dB for the highway, and -7 to -2 dB for cobbled roads. The
emotion recognition still worked fine for city and highway (only when noisy data
was provided for training already) with a degradation of 2 and 7%, respectively.
On rough cobbled roads the emotion recognition did not give acceptable results
any more.

As an improvement pre-filtering was proposed for the highly relevant case of
only clean speech training data being available. The application of a highpass
filter with cut-off frequency as low as 48 Hz led to remarkable improvements.
In this case the degradation from clean speech experiments was only 6% and
emotion recognition was feasible with error rates of 0.13, 0.16, and 0.15 for
valence, activation, and dominance, respectively.

While these results are based on a manual superposition of clean speech utter-
ances and recorded noise signals of the cars, our future work will investigate the
application of such an emotion recognition within the car in real time. Addition-
ally, the emotion recognition results might be used to formulate behavior rules
for the car’s infotainment system once they are provided as a human-in-the-loop
feedback signal.
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