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ABSTRACT

Feature sets are broadly discussed within speech emotion 

recognition by acoustic analysis. While popular filter and wrapper 

based search help to retrieve relevant ones, we feel that automatic 

generation of such allows for more flexibility throughout search. 

The basis is formed by dynamic Low-Level Descriptors 

considering intonation, intensity, formants, spectral information 

and others. Next, systematic derivation of prosodic, articulatory, 

and voice quality high level functionals is performed by 

descriptive statistical analysis. From here on feature alterations are 

automatically fulfilled, to find an optimal representation within 

feature space in view of a target classifier. To avoid NP-hard 

exhaustive search, we suggest use of evolutionary programming. 

Significant overall performance improvement over former works 

can be reported on two public databases. 

1. INTRODUCTION 

In the field of multimedia retrieval there is a great interest in the 

capability to automatically segment media streams according to 

emotional. Likewise specific emotional passages within TV-

broadcasts, movies or audio-plays can be easily retrieved as 

highlights in soccer games or exciting passages in thrillers. Also, 

reliable recognition of human emotion highly is expected to highly 

enhance next generation man machine interaction in view of 

naturalness [1]. More generally applications reach from detection 

of lies to surveillance in public transport, or intelligent customer 

handling in call-centers. Looking at suited modalities, speech 

analysis is among the most promising information sources besides 

facial expressions, physiological data or context analysis. As 

special advantage speech allows a user to control the amount of 

emotion shown, and provides more comfort than wiring with 

physiological sensors or permanent camera observation. However, 

reported performances are yet to be increased considering serious 

real-life application [1, 2] – especially in critical scenarios as 

emotion aware board computers in automotive environments 

regarded herein. We therefore strive to bridge the gap between the 

commercially highly interesting multiplicity of potential 

applications and current accuracies [1, 2, 3, 4].  

Previously we compared diverse approaches to linguistic 

analysis of spoken utterances in view of emotion [5]. We also 

showed higher overall performance obtained by inclusion of such. 

However, within this work we want to focus on improvement 

considering merely the acoustic signal, to demonstrate the effects 

of genetic feature generation and selection in detail.  

In acoustic analysis feature relevance is largely discussed [1]. 

Still, it seems mostly agreed that global static features lead to 

higher accuracies compared to dynamic classification of 

multivariate time-series, as shown in our explicit comparison in 

[6]. The feature basis is mostly formed by pitch, energy, and 

duration information. Some works also include spectral 

information or formants. Recently, large feature sets are introduced 

and reduced by diverse means of feature selection as floating 

search methods and principal component based reduction [3,4,5]. 

While feature selection is a reasonable starting point, we feel that a 

systematic generation of features helps to form a broader basis to 

start from. Combined with appropriate selection, a self-learning 

feature space optimization can be established. Deterministic 

generation comes to its limits, if we aim at alterations and cross-

feature relations not considered, yet. In this respect we suggest an 

evolutionary approach to this problem: Genetic Algorithms (GA) 

have already proven successful in related fields [7]. In this work 

we therefore want to transfer this powerful tool. 

In order to demonstrate the high effectiveness of the 

suggested approach we provide results on two popular public 

databases [3], namely DES and EMO-DB. However, these corpora 

comprise only acted samples. Having our application within an 

automotive infotainment system in mind, we also chose our task 

specific EA-CAR database which contains spontaneous emotions 

in the field.  

The paper is structured as follows: Section 2 deals with 

databases used, section 3 with dynamic contour extraction, section 

4 with systematic functional derivation, section 5 with support 

vector classification. In section 6 we discuss feature space 

transformation. Finally we present obtained results in section 7 and 

draw conclusions in section 8.  

2. DATABASES 

Only sparse public databases and results on these are available in 

the field of affective computing at the time. On two of them 

several accuracies are reported, which will be used in the ongoing. 

Firstly, the Berlin Emotional Speech database (EMO-DB) [8] will 

be shortly introduced. The emotion set equals the MPEG-4 

standard consisting of anger, disgust, fear, joy, sadness and 

surprise, besides an exchange of surprise in favor of boredom and 

added neutrality. 10 German sentences of emotionally undefined 

content have been acted in these emotions by 10 professional 

actors, 5 of them female. Throughout perception tests by 20 

probands 488 phrases have been chosen that were classified as 

more than 60% natural and more than 80% clearly assignable. The 

database is recorded in 16 bit, 16 kHz under studio noise 

conditions.
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Secondly, we also chose the Danish Emotional Speech Corpus 

(DES) [9], which is proposed in a comparison of 31 corpora in [3]. 

In this database the five emotions anger, joy, sadness, surprise,

and neutrality are contained. Four professional Danish actors, two 

of them female, acted the words yes and no, 9 sentences and two 

text passages in each emotion. By phrase-wise splitting of the text 

passages 414 phrases are obtained in total. The set is recorded in 

16 bit, 20 kHz PCM-coding in a sound studio. 20 test-persons, 10 

of them female, reclassified the samples in a perception test. Their 

recognition rate was 67.32% in average. 

However, it is stated that acted and spontaneous samples highly 

differ in view of features and accuracies [4]. We therefore also use 

our EA-CAR database of spontaneous interaction turns within a 

car. These base on a user-study with 2 female and 8 male German 

test-subjects aged 23.4 a in average that controlled an infotainment 

interface by natural speech. Speech functionality was simulated by 

a wizard in the first half of an 80 min session. In the second half 

actual speech recognition and natural language interpretation 

engines were used. In total 2,022 phrases were recorded by a Yoga 

EM 240 condenser microphone in 16 bit, 11 kHz, within a genuine 

car. 45 interaction goals had to be fulfilled while driving in a 

simulation. The collected samples were labeled by three 

annotators, one female, aged 23 a to 30 a. A closed emotional set 

was used. Taking only phrases with full inter-labeler agreement 

results in 775 phrases: 225 of anger, 135 of confusion, 25 of joy, 

and 390 of neutrality. Due to its sparseness joy was excluded form 

the set. 

3. DYNAMIC BASE CONTOURS 

As a basis for feature generation we extract low-level contours of a 

whole phrase. Such global phrase-wise view is obligatory due to 

database annotations available. We use state-of-the-art 

preprocessing of the audio signal: 20 ms Hamming-windowed 

frames are analyzed every 10 ms. 

For prosodic information we extract the contours of elongation, 

intensity, and intonation. We furthermore estimate durations of 

pauses and voiced syllables. Out of the elongation we calculate the 

zero-crossing-rate. We use standard frame energy to include 

intensity information based on physical relations. Intonation is 

respected by auto-correlation-based pitch estimation. We thereby 

divide the speech signal correlation function by the normalized 

correlation function of the window function and search for local 

maxima besides the origin. Dynamic programming is used to back-

track the pitch contour in order to avoid inconsistencies and reduce 

error form a global point of view. Finally, the named durations are 

estimated based on intensity considering pause duration, and 

voiced/unvoiced parts duration for syllable length based on 

intonation.

In order to include voice quality information we also integrate 

the location and bandwidth of formants one to seven, harmonics-

to-noise-ratio (HNR), MFCC coefficients well known in speech 

processing, and a perception conform dB-corrected FFT spectrum 

as a basis for low-band energies -250 Hz and -650 Hz, spectral 

roll-off-point, and spectral flux. Formant location and bandwidth 

estimation is based on resonance frequencies in the LPC-spectrum 

of the order 18. Back-tracking is used here, as well. The HNR is 

calculated as logHNR to better model human perception. It also 

bases on the auto correlation of the input signal. The usage of 

MFCC is highly discussed, as these tend to depend too strongly on 

the spoken content. This seems a drawback, as we want to 

recognize emotion independently of the content. However, they 

have been proven successful, yet, and form a very good basis for 

the subsequent genetic generation process, as thereby inter-band-

relations will be analyzed. The further spectral features are often 

used in Music Retrieval, and are included to observe their 

relevance within this task.  

Finally, for articulatory features we calculate the spectral 

centroid. Overall, parts of these contours are comprised within the 

MPEG-7 LLD standard. Likewise, the following methods may be 

transferred in order to recognize emotion based on MPEG-7. 

4. SYSTEMATIC FUNCTIONAL DERIVATION 

In former works we showed the higher performance of derived 

functionals instead of full-blown contour classification [6]. We 

therefore use systematic generation of functionals f out of 

multivariate time-series F  by means of descriptive statistics: 

:f F

First of all the contours are smoothed by symmetrical moving 

average filtering with a window size of three, to be less prone to 

noise. Successively, speed ( ) and acceleration ( ²) coefficients are 

calculated for each base contour. Afterwards we compute linear 

momentums of the first four orders, namely mean, Centroid, 

standard deviation, Skewness and Kurtosis, as well as extrema, 

turning points and ranges. In order to keep dimensionality within 

range we decide by expert knowledge which functionals to 

calculate. Tab. 1 provides a rough overview of calculated 

functionals. Bracketed numbers represent derived contours. 

Number [#] F F+ + ² f 

Elongation 1 1 3 

Intensity 1 3 11 

Intonation 1 3 12 

Duration (2) (2) 5 

Formants 14 28 105 

MFCC 15 45 120 

HNR 1 1 3 

FFT based 5 7 17 

Sum 38 88 276 

Tab. 1: Overview Derived Acoustic Functionals. 

5. CLASSIFICATION 

Diverse machine-learning techniques are used in the field of 

emotion recognition [1,2]. In [5] we made an extensive comparison 

including Naïve Bayes, k-Nearest Neighbor classifier, Support 

Vector Machines (SVM), Decision Trees, Artificial Neural Nets, 

and construction of ensembles as MultiBoosting or StackingC. 

SVM have thereby proven the optimal choice. 

They show a high generalization capability due to a structural 

risk minimization oriented training. Non-linear problems are 

solved by a transformation of the input feature vectors into a 

generally higher dimensional feature space by a mapping function, 

the Kernel, where linear separation is possible. Maximum 

discrimination is obtained by an optimal placement of the 

separation plane between the border of two classes. The plane is 

spanned by Support Vectors.
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In general, SVM can handle only two-class problems. However, 

a variety of strategies exist for multi-class discrimination. Among 

these are popular couple-wise one-against-one decision, or one-

against-all classes decision. For more details refer to [11]. Herein, 

we use a special solution known as SVM-Trees. Thereby a layer-

wise two class decision is repetitively made until only one class 

remains. The clustering of the emotions and alignment on the 

layers significantly influences recognition performance. As a rule 

hardly separable classes should be divided at last. This can either 

be modeled by expert knowledge or automatically derived of the 

confusion matrices of another multi-class SVM approach. In our 

case a couple-wise decision is used as starting-point. Afterwards 

the classes are split in the tree shape. SVM-Trees thereby always 

outperformed the couple-wise ones. Throughout the ongoing we 

use a polynomial kernel-function.  

6. GENETIC FEATURE GENERATION 

Having irrelevant features in the acoustic vector increases 

complexity for classifiers, and thereby directly decreases 

performance in most cases. This is especially true for sparse data, 

as the aimed at emotional data. It is therefore state-of-the-art to 

avoid this by reduction of the feature set by suited methods [3,4,5]. 

Thereby also computational extraction effort is spared. In general, 

feature reduction either considers single feature relevance, mostly 

done by filter-based selection as information gain calculation, or 

optimization of a feature set as a whole. Within the latter a 

classifier is used as a wrapper, ideally the target one, and a search-

function obligatory in most cases to ensure computability. 

However, besides reduction of the feature space, also its 

expansion can lead to improved accuracy. Consider hereon the 

Kernel-trick in SVM classification. However, while an optimal 

Kernel has to be selected empirically, we aim at a self-learning 

approach to feature space transformation based on random 

injection. Especially the combination of both by a suited search 

algorithm and the target classifier, allows for self-learning 

optimization of the ideal representation within feature space. 

In order to expand the feature space we generate novel features 

based on the existing ones: Firstly, alteration of attributes by 

mathematical operations can be performed to lead to better 

representations of these. Consider hereon the standard use of 

logarithmic HNR representation. So far we only considered 

features based on single contours. By association of these we can 

secondly obtain a further number of new information as the named 

inter-band dependency. As a deterministic and systematic 

generation comes to its limits applying exhaustive search, we 

decided for GA based search through the possible feature space. 

The parallel selection of most relevant information and reduction 

is fulfilled within one pass by this GA based search. 

GA, a well-known bio-analog search method, base on 

Darwin’s survival-of-the-fittest principle of mutation and selection 

[10]. Besides single feature mutation, we also include crossing of 

parental DNA information - in our case feature crossing. GA are 

computationally expensive, but can be parallelized. 

The precondition is to have a start-set of effectually different 

individuals that represent possible solutions to the problem. In our 

case these are partitions of the acoustic feature sets carrying 

information about the underlying emotion. The partitions are 

denoted in binary coding, and are called chromosomes in terms of 

GA literature. Each chromosome consists of genes that correspond 

to single features within the partition. A feature’s gene consists of 

one bit for its activity status. The partitioning is done randomly 

throughout initialization and we obtain N=dim(x)/n individuals if x

denotes the feature vector, and n the partition size. 

By an initialization probability, set to 0.5 in our case, it is 

randomly decided which original features are chosen for one step 

of genetic generation. We decided to have a population size of 20 

individuals at a time. Next a fitness function is needed in order to 

decide which individuals survive. Thereby the aimed at classifier 

forms a reasonable basis in view of wrapper based set 

optimization. A cyclic run over multiple generations is afterwards 

executed until an optimal set is found, which forms a local 

maximum of the problem:  

Firstly, a Selection takes place, based on the fitness of an 

individual. We use common Roulette Wheel selection within this 

step. Thereby the 360° of a roulette wheel are shared proportional 

to the fitness of an individual. Afterwards the “wheel” is turned 

several times, resembling N times selecting out of N individuals. 

Selected individuals are assembled in a Mating Pool. Likewise, 

fitter individuals are selected more probably. We also ensure 

mandatory selection of the best one, known as Elitist Selection.

The subsequent Crossing of pairs is fulfilled by picking N/2

times individuals with the probability 1/N. After selection, 

individuals are put aside. Opposing traditional GA, we use a 

variable chromosome length from hereon, as we aim at generation 

of features. First we have to pick to parents in order to cross their 

chromosomes and thereby obtain new children. Thereby the 

distance between parents and children should reasonably be 

smaller than the one between parents themselves. We therefore 

choose simple Single-Point-Crossing which splits each parent 

chromosome close to its center and pastes the two halves cross-

wise to obtain two children. The fitness thereby also limits the 

total number of children an individual may produce. 

Afterwards, Mutation takes place: the state of a gene, 

respectively of a feature within a partition, is randomly changed by 

a probability of 0.5. Likewise features can be excluded from a set. 

To generate new feature we insert a random selection of an 

alteration method out of reciprocal value, addition, subtraction,

multiplication and division. Depending on the mathematical 

operation the appropriate number of features within an individual 

is selected for alteration, and the operation is performed. Thereby 

new features can be constructed by combination of original ones. 

The obtained new individuals are than appended within the 

chromosome. 

Now the Evaluation of the population is fulfilled, which 

corresponds to the fitness-test – in our case classification with the 

feature sub-sets. We use SVM on cross-validation set, as we want 

to optimize the feature space for SVM classification. At this point, 

one iteration is finished, and the algorithm starts over with the 

Selection. We decided for a maximum of 50 generations, and 40 of 

them without improvement.  

7. RESULTS 

Within this section we present results obtained by test runs on 

the described databases. As a general mean of evaluation we use j-

fold stratified cross-validation (SCV). 

In order to first demonstrate effectiveness of functional 

derivation as shown in section 4 compared to direct analysis of 

contours as shown in section 3, we exemplary pick MFCC as the 

most popular features in speech processing. As the base contours 

need dynamic modeling, we decided for common use of Hidden-
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Markov-Models (HMM). However, we apply a powerful variant – 

a hybrid Neural-Net HMM approach having a Multilayer 

Perceptron (MLP) estimate state posteriors. HMM state numbers 

and MLP architecture have been varied to find an optimum. For 

static analysis we employ SVM as the most powerful variant. Tab. 

2 verifies our former results [6], as the functionals clearly 

outperform dynamic features. 

Accuracy [%] F, HMM f, SVM 

MFCC 55.14 68.44 

MFCC+ + ² 59.26 73.77

Tab. 2: Dynamic vs. static modeling, EMO-DB, 2-fold SCV. 

Next, we want to evaluate the suggested genetic feature 

generation. To save computation time, we firstly fulfill a 

Sequential Forward Floating Search (SFFS) on each database, 

which is known for its high performance. SFFS belongs to the 

group of Hill-Climbing feature selection based on a classifier as a 

wrapper and evaluation mean of a feature set performance. Herein 

the same classifier, SVM, is likewise used to optimize the basic 

features as a set rather than finding single features of high 

performance. The search is performed by forward and backward 

steps eliminating and adding features to an initially empty set in a 

floating manner to avoid nesting effects. 

This is the point where the novel aspect of this paper starts: 

After this pre-selection of base features we start genetic search and 

generation as described in section 6. It has to be stressed that these 

parts have to be executed only during the training phase. Within 

the recognition phase the system is a conventional speech emotion 

recognition engine.  

Tab. 3 shows results on each dataset starting with the accuracies 

for the complete initial set of 276 features. Next results with the 

optimally reduced set by SFFS are shown. The features selected 

highly depend on the corpus and so does the number where 

maximum accuracy is observed of such: for DES the optimum was 

found at 99 features, for EMO-DB at 73, and for EA-CAR at 92. 

Finally, performance boost by application of the feature space 

optimization by combined genetic generation and reduction 

successive to SFFS (Gen. + Red.) is shown. 

Accuracy [%] DES EMO-DB EA-CAR 

Initial Set 65.94 84.84 68.21 

SFFS Sel. 74.15 87.50 75.08 

Genetic Gen.+Red. 76.15 88.82 77.18 

Tab. 3: Feature Space Optimization, SVM-Trees, 10-fold SCV. 

In a last test we added newly generated features of the terminal 

evolutionary set to the one obtained by SFFS. Thereby 

performance could be further increased, yet not exceeding the 

genetic generation and reduction. 

7. CONCLUSIONS 

The general principle shown in this paper could be demonstrated 

highly effective on all three databases used. Optimization of the 

feature space clearly boosted performance. However, besides mere 

reduction of complexity, also a combination with newly generated 

features led to a significant further improvement. Significance 

bases on a paired Student-T-Test and a level of =0.05.

The results presented outperform those shown in other works 

for the databases DES and EMO-DB [3,4]. Furthermore they are 

within the range of human performance, though under quite 

idealistic conditions. The accuracy on a spontaneous database, the 

EA-CAR corpus, reached similar level.  

In future research we aim at analysis of MPEG-7 LLD, multi-

task learning, and investigation on the spontaneous CEICES 

Emotional Speech Corpus [12]. 
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