
REDUCED COMPLEXITY AND SCALING FOR ASYNCHRONOUS HMMS
IN A BIMODAL INPUT FUSION APPLICATION

Marc Al-Hames and Gerhard Rigoll

Technische Universität München
Institute for Human-Machine Communication

Arcisstrasse 16, 80333 München, Germany
{alh, rigoll}@mmk.ei.tum.de

ABSTRACT

The Asynchronous Hidden Markov Model (AHMM) can model the

joint likelihood of two observation sequences, even if the streams are

not synchronised. Previously this model has been applied to audio-

visual recognition tasks. The main drawback of the concept is its

rather high training and decoding complexity. In this work we show

how the complexity can be reduced significantly with advanced run-

ning indices for the calculations. Yet, the AHMM characteristics and

its advantages are preserved. The improvement also allows a scal-

ing procedure to keep numerical values in a reasonable range. In an

experimental section we compare the complexity of the original and

the improved concept and validate the theoretical results. Then the

model is tested on a bimodal speech and gesture user input fusion

task: Compared to a late fusion HMM an improvement of more than

10% absolute recognition performance has been achieved.

1. INTRODUCTION

The Hidden Markov Model (HMM) is a popular statistical tool, that

has been applied successfully to a wide range of problems, espe-

cially automatic speech recognition [1]. The Asynchronous Hidden

Markov Model (AHMM) [2] is an extension of this concept that can

model the joint likelihood of two potentially asynchronous observa-

tion streams. It is related to Input-Output HMMs [3], but only very

loosely connected to the homonymous concept proposed in [4].

The AHMM addressed in this work is used to learn and model

the likelihood of two observation streams describing the same event

class. The model has been applied successfully to various audio-

visual recognition tasks, like speech recognition [2], person identifi-

cation [5], or meeting analysis [6]. It can generalise the connection

between the streams, even if they are not synchronised. This is the

advantage of the AHMM compared to other multi-modal Markov

models, like early fusion or coupled HMMs. The main drawback

of the concept is its high complexity for both training and decoding.

For long sequences the model can become computational infeasible.

In this work we apply advanced running indices during the cal-

culations. This way the complexity can be reduced to a high degree.

On the other hand the developed method is still mathematical ex-

act, as only unnecessary points will be omitted. With this improved

procedure the AHMM concept can be applied to a wider range of

problems, where e.g. the streams are very long or have a very high

degree of asynchronity. Furthermore the new indices also allow the

development of a straightforward scaling procedure similar to scal-

ing in standard HMMs [1]. Thus numerical values can be kept in a

reasonable range during calculations.

One problem with a very high time asynchronity between dif-

ferent channels are multimodal systems [7]. They are designed,

such that the human-machine interaction is more natural and more

intuitive for the user. Several input devices can be used either syn-

chronous or sequentially. Furthermore users may switch between the

different devices to achieve the same system reaction. The challenge

of these systems is to fuse the different inputs - both in time and be-

tween the different channels - to meaningful commands. Especially

the bimodal combination of speech and gesture has been deeply in-

vestigated in the last 20 years. One famous example is Bolt’s ”Put-

that-there” system [8]. Several approaches for the fusion process

have been developed since then, among them rule-based, statistical,

and hybrid methods [7, 8, 9, 10].

Most of these methods require a large domain knowledge to ac-

tually model the problem. In the experimental section of this work

we will show how the AHMM can be applied to the problem of bi-

modal speech and gesture input fusion, without using domain knowl-

edge. This way the system can easily be extended to different input

devices or applications.

2. THE ASYNCHRONOUS HMM

The AHMM is used to model the joint likelihood p(�x, �y) of two

observation sequences �x with length T , and �y with length S. Without

loss of generality it is assumed that S ≤ T (if �y is longer than �x an

extension of the concept is necessary). The joint likelihood can of

course not be calculated directly, as it is intractable.

Therefore two hidden variables are introduced: the first variable

qt = 1 . . . N is synchronised with the stream �x and identical to the

state in standard HMMs. The total number of states in the model

is denoted as N . In the AHMM concept it is assumed, that a state

always emits a symbol from the stream �x at each time step t. Fur-

thermore each state qt = i can with the probability ε(i, t) at the same

time emit a second symbol from the stream �y. The hidden variable

τt = 0 . . . S models the alignment between �x and �y. Whenever a

state emits a symbol from stream �y, the alignment variable τt is in-

cremented, until all symbols from �y have been emitted and τt = S.

This can be represented in a three dimensional trellis, as shown

in Fig. 1 (left). The two axis time t and state q are identical to

those from HMMs. The axes s represents the alignment between

the streams. In each time step t one symbol from �x is emitted. This

corresponds to move one step right in the trellis. If a state also emits

a symbol from �y, the movement is one step right and one step up.

As a state always emits a symbol from �x a movement up without a

movement right is not possible. The model can of course in each step

jump to any of the states from the state axes (for an ergodic model).
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Fig. 1. 3D trellis (left) with time t, alignment s, and state q. 2D

projection of this trellis (right), where the state axis is omitted. The

2D trellis shows the region that has to be calculated. Only points in

this area can actually lead to a valid path through the model.

The AHMM can then be parameterised with five distributions:

• The initial state distribution: πi = P (q1 = i)

• The state transition distribution: Aji = P (qt+1 = i|qt = j)

• The probability of emitting two symbols in a state. For sim-

plification, the time index will be omitted in this distribution:

εi = P (τt = s|τt−1 = s − 1, qt = i)

• The emission distributions for a single symbol P (�xt|qt = i)
and for a pair of symbols P (�xt, �yt|qt = i).

As with standard HMMs, the emission distributions can be modelled

discretely or continuously (e.g. with a mixture of Gaussians).

2.1. Likelihood computation

To compute the joint likelihood p(�x, �y|λ) of two streams, a forward

procedure has been developed in [2]. At first this forward procedure

shall be recapitulated in detail without the borders for the running

indices. The forward path variable is defined as:

α(i, s, t) = p(qt = i, τt = s, �xt, �ys)

The model can start with either emitting one or two symbols in the

first step. The initialisation step therefore is:

α(i, 0, 1) = [1 − εi] · πi · p(�x1|qt = i) (1)

α(i, 1, 1) = εi · πi · p(�x1, �y1|qt = i) (2)

As long as none of the symbols from �y have been emitted (s = 0),

the induction step is:

α(i, 0, t + 1) =

[1 − εi] · p(�xt+1|qt+1 = i)
NX

j=1

p(qt+1 = i|qt = j) · α(j, 0, t)

(3)

If a symbol from �y has already been emitted (s > 0), the induction
step becomes:

α(i, s + 1, t + 1) =

εi · p(�xt+1, �ys+1|qt+1 = i)

NX

j=1

p(qt+1 = i|qt = j) · α(j, s, t)

+[1 − εi] · p(�xt+1|qt+1 = i)
NX

j=1

p(qt+1 = i|qt = j) · α(j, s + 1, t)

(4)

Finally the termination with the likelihood of the observations is:

p(�x, �y|λ) =
NX

j=1

α(j, S, T ) (5)

The original AHMM algorithm does not explicitely state the bor-

ders for the running indices i, s, and t in the forward path calculation.

But the model complexity is given as O(N 2ST ). Each induction

step approximately requires N summations. Therefore the original

complexity is derived, if the forward variable α in Eq. (3) and (4)

is calculated for each combination of 1 ≤ i ≤ N , 1 ≤ t ≤ T ,

and 0 ≤ s ≤ S. Fig. 1 (right) shows the AHMM trellis, where the

state axis is omitted. In this representation the algorithm corresponds

to calculating each point within the (s, t)-plane (and of course one

plane for each state i). However this is not necessary.

In Fig. 1 (right) the initialisation step is represented with the

two black circles: the model can only start with emitting one, or two

symbols. The termination step Eq. (5) requires, that all symbols from

�x (t = T ) and all symbols from �y (s = S) have been emitted. In

Fig. 1 this point is represented with the black square. Consider first

the region marked I in Fig 1. At each time step t a symbol from �x is

emitted, and with the probability εi a second symbol from �y. Thus

the model can at no time had emitted more symbols from �y than from

�x, or mathematically s ≤ t; but in the first region s > t. With the

original forward procedure the values in this region are calculated

and will in general be α > 0, but they will never be reused for the

termination step. The calculation of points in region I is therefore

not required. Now consider region II. Again recapitulate that the

model in each time step emits a symbol from �x, it will never emit

only a symbol from �y. It is therefore not possible to move only up,

but only right, or right-up in the trellis. From the points in region II

the termination point can therefore not be reached anymore. Again

the original algorithm calculates the points in this region, but they

will not be reused for the termination step. Thus the calculation of

points in region II is not required. In summary only points in the

grey region in Fig. 1 can actually end up in the termination point.

Thus it is only necessary to calculate the α-values in this region.

This can be used to derive advanced limits for the running in-

dices in the forward procedure. The α-values in Eq. (3) then only

have to be calculated for:

1 ≤ i ≤ N and 1 ≤ t ≤ T − S (6)

and the α-values in Eq. (4) only have to be calculated for:

1 ≤ i ≤ N, 1 ≤ t ≤ T , and (7)

max(0, t − (T − S)) ≤ s ≤ min(S, t)

The same technique can be applied to Viterbi-decoding and to the

backward calculation (Sec. 2.4).

2.2. Complexity

The original AHMM algorithm [2] complexity is O(N2ST ), where

again N is the number of total states in a fully connected ergodic

model and T and S the lengths of the two observation streams. This

can become quickly computational infeasible if the streams are too

long. In [2] it is suggested to force the alignment between �x and �y,

such that |t − T
S
| < k, with k some constant indicating the max-

imum allowed stretching between the two streams. Then the com-

plexity of the model is reduced to O(N 2Tk). This however narrows

the search space to a high degree and therefore limits the advantages
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of the AHMM concept. This is applicable for audio-visual recogni-

tion problems, where the asynchronity between the audio and visual

stream can indeed be assumed to be limited to a couple of frames.

Yet, for other problems this is not practical, as the two streams may

have a strong asynchronity that can furthermore vary from sample to

sample. Thus a fixed stretching factor can not be determined.

With the proposed improvement in this work only points in the

forward- and backward-path, that will actually be reused in later

steps, are calculated. Thus unnecessary calculations are avoided.

Yet the result will still be exact, as the omitted points will never lead

to a valid path through the trellis. Using this advanced procedure,

the calculation time of the AHMM can be reduced to

O(N2[TS − S2 + T ])

Depending on the length of the two streams, the reduction of nec-

essary calculations compared to the original algorithm is between 0
(if S = 1) and N2T 2 (if T = S). In the worst case one sequence

has double the length of the other (T = 2S). Then the maximum

number of calculations for the optimised procedure is N 2(T2

4
+ T ).

Yet in this case the optimised procedure still requires N 2 T2

4
less

calculations than the original procedure. At the same time the exact

likelihood result is achieved, and no restriction of any kind on the

asynchronity between the streams is set. This advanced procedure

can therefore be applied to a wider range of problems.

2.3. Scaling

Despite the reduction in complexity, the new running indices for t
and s in the forward path calculation Eq. (1) - (5), also allow a sim-

ple and exact scaling procedure. This enables a computation of the

model without numerical problems [1]. An exact scaling is not pos-

sible for the original calculation procedure. To derive scaling values

for each time step t all α(i, s, t) values in the (q, s)-plane have to

be summed up after each time step. In the original algorithm some

of these values are α > 0, but they will never lead to a valid path

through the model. Thus, if they are still be summed up for the

scaling procedure, the final complete likelihood is effectively mul-

tiplied with probabilities that have no influence on the observation

likelihood P (�x, �y|λ). Therefore the final derived likelihood value

P o(�x, �y|λ) will be to low compared to the exact P (�x, �y|λ). This

can only be avoided, if just the valid points are summed up. Yet,

this leads to the procedure proposed in this work. However, the error

made by the wrong scaling has no influence on recognition results, as

it is systematic among all models. But it is not mathematical correct,

and the correct observation likelihood can never be calculated.

This can be avoided with the running indices introduced in this

work. Here only α-values that will indeed result in a valid path

through the model are calculated. For each time step t all valid α-

values, according to Eq. (7) are calculated. If the highest calculated

alignment s in the time step t is referred to as st, the scaling coeffi-

cient can be calculated as:

s(t) =
1

Pst

s=0

PN

i=1
α(i, s, t)

(8)

Then the scaling procedure is like in usual HMMs [1]: The scaling

has to applied after each time step and all α values at time t are

scaled according to α̃(i, s, t) = s(t) · α(i, s, t). In the next time

step the α-values are now calculated with α̃ instead of α. Finally the

exact log-likelihood of an observation can be calculated as

log P (�x, �y|λ) =
TX

t=1

log s(t) (9)

With the proposed indices in this work we can therefore apply

an exact scaling procedure to the AHMM and keep the numerical

values in a computational reasonable range.

2.4. Viterbi Decoding and EM Training

A Viterbi decoding and an Expectation-Maximisation (EM) training

algorithm for the AHMM have been derived in [2]. The Viterbi de-

coding is similar to the forward path calculation, but the summations

are replaced by maximisations. Then the best state-sequence and the

best alignment of the two streams can be obtained with backtracking.

For the EM-algorithm, the maximisation step is identical to the

one in standard HMMs. For the expectation step a backward variable

β and two parts of the forward variable are required: namely, where

a state emits only one symbol α0, resp. two symbols α1. They are

derived in the same fashion as the forward path and described in [2].

Yet, again the running indices can be improved with Eq. (6) and

(7), both for the Viterbi procedure and for the expectation step during

EM. Thus the improvements proposed in this work reduce both the

complexity of training and decoding.

3. EXPERIMENTS

To investigate the actual difference in complexity between the orig-

inal and the optimised method proposed in this work, both versions

have been implemented. The required CPU ticks for decoding have

been measured for different combinations of stream lengths. Fig. 2

shows an exemplary result of the required decoding time for both ap-

proaches. In this example the AHMM has five ergodic hidden states

and discrete output probabilities. The length of the �x stream has been

fixed to T = 250, the length of the �y stream has been varied between

1 and 250. In general, the measurements validate the theoretical re-

sult, but there is one minor difference: In theory the complexity of

the optimised strategy should always be less, or at least equal to

the original strategy. However for very short �y sequences, where

S/T < 0.05, the advanced strategy can lead to a slightly higher de-

coding complexity. The advanced strategy requires to calculate the

running indices for each induction step. This produces an overhead

with a fixed number of calculations, with less than a couple of thou-

sand CPU ticks. It has only an influence, when the decoding time is

very small anyway. Thus this overhead has no practical impact.

Optimised method

Original method
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In a second experiment the optimised AHMM has been applied

to the problem of fusing bimodal speech and mouse-gesture input.

Our system uses 11 words in the speech stream and 10 mouse ges-

tures. Both streams combined form 25 higher level system com-

mands. The information from both channels is required to form a

valid command. Each command can furthermore be generated with

different combinations of speech and/or gesture. Our data set com-

prehends samples from 1872 bimodal system commands. Each com-

mand can either be synchronous, partly overlapping or sequential.

The data set is split into 1240 samples for training and verification

and 632 samples for test. The test samples are partly from unknown

and partly from known persons. From the speech stream 12 MFCCs

plus the energy and the ∆ and ∆∆ were extracted. This set was

then discretised with a codebook size of 100 symbols. The recog-

nition rate for the isolated words in the audio stream with a discrete

HMM is 92.48%. For the gesture stream, one of eight possible di-

rections is stored whenever the mouse is moved. The recognition

rate for the individual gestures is 89.90% with a discrete HMM.

Then the AHMM has been applied to recognise system com-

mands: One AHMM for each command has been trained with the

bimodal data. For comparison an early and a late fusion HMM have

been trained as well. For the early fusion the sample-rates of the two

streams have been adjusted and both streams concatenated to one

large feature stream. For the late fusion, both streams were classified

with individual HMMs and the recognition results later fused with a

multiplication of the N-best-lists. Fig. 3 shows an exemplary align-

ment between the two streams, as well as the alignment obtained by

early fusion and the AHMM. Both gesture and speech start at t = 0,

then the gesture ends at t = 24 and the word is continued. The

AHMM does not match this alignment perfectly, as it in this exam-

ple emits the gesture stream slower; but the general characteristic

of the bimodal input is preserved. The early fusion HMM can not

model this alignment. It simply emits two symbols in each step.

This has an impact on the performance of the early fusion HMM:

several configurations have been tested, but the concept was not able

to generalise the high asynchronity in the data. The achieved system

command recognition rates are only slightly better than guessing.

With the late fusion the data can be modelled much better. Several

combinations of individual HMMs with different states have been

tested. The recognition rates reach up to 67.19% percent. This

is outperformed by the AHMM: The capability to model the asyn-

chronity leads to a system command recognition rate of 77.62%.

Thereby AHMM decoding can be performed in real-time. The main

results for the late fusion and the AHMM are summarises in Tab. 3.

AHMM
States Rate

5 73.66%

10 77.08%

25 77.62%

Late Fusion HMM
Word Stat. Gesture Stat. Rate

10 5 64.20%

10 10 60.86%

15 5 67.19%

Table 1. Recognition results for the AHMM and a late fusion HMM.

For the late fusion different combinations of states for both the word

and the gesture HMM have been tested.

4. CONCLUSION

In this work we improved the AHMM concept by introducing ad-

vanced running indices for the forward and backward calculations.

Only necessary points in the trellis are actually calculated. This way

the complexity of both coding and decoding has been reduced sig-

nificantly. Yet, the achieved result is still exact. With the proposed

improvement we then derived a scaling procedure for the AHMM

that keeps numerical values in a computational reasonable range.

In an experimental section we validated the theoretical reduc-

tion in complexity. Then the AHMM has been applied to the task of

combined speech and gesture input. The AHMM outperforms a late

fusion HMM by more than 10%. However the absolute recognition

performance is not sufficient for an application. Further improve-

ments - especially on the features - are required.

Yet the results in this work show, that the AHMM can not only

be applied to audio-visual recognition problems, but also to tasks

where the streams can show a very high degree of asynchronity.
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