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Abstract. We address the problem of segmentation and recognition of sequences
of multimodal human interactions in meetings. These interactions can be seen as
a rough structure of a meeting, and can be used either as input for a meeting
browser or as a first step towards a higher semantic analysis of the meeting. A
common lexicon of multimodal group meeting actions, a shared meeting data
set, and a common evaluation procedure enable us to compare the different ap-
proaches. We compare three different multimodal feature sets and four modelling
infrastructures: a higher semantic feature approach, multi-layer HMMs, a multi-
stream DBN, as well as a multi-stream mixed-state DBN for disturbed data.

1 Introduction

Recordings of multi-party meetings are useful to recall important pieces of information
(decisions, key-points, milestones, etc.), and eventually share it with people who were
not able to attend those meetings. Unfortunately, watching raw audio-video recordings
is tedious. Therefore an automatic approach to extract high-level information could
facilitate this task.

In this paper we address the problem of recognising sequences of human interaction
patterns in meetings, with the goal of structuring them in semantic terms. Our aim is
to discover repetitive patterns into natural group interactions and associate them with a
lexicon of meeting actions or phases (such as discussions or monologues). The detected
sequence of meeting actions will provide a relevant summary of the meeting structure.
The investigated patterns are inherently group-based (involving multiple simultaneous
participants), and multimodal (as captured by cameras and microphones).

Automatic modelling of human interactions from low-level multimodal signals is
an interesting topic for both theoretical and practical reasons. First, from the theoreti-
cal point of view, modelling multichannel multimodal sequences provides a particular
challenging task for machine learning techniques. Secondly, from the application point
of view, automatic meeting analysis could add value to the raw data for browsing and
retrieval purposes.
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Starting from a common lexicon of meeting actions (section 2) and sharing the same
meeting data-set (section 3), each site (TUM, IDIAP and UEDIN) has selected a spe-
cific feature set (section 4) and proposed relevant models (section 5). Then a common
evaluation metric (section 6) has been adopted in order to compare several experimental
setups (section 7).

2 Action Lexicon

Two sets of meeting actions have been defined. The first set (lexicon 1, defined in [8])
includes eight meeting actions, like discussion, monologue, or presentation. The mono-
logue action is further distinguished by the person actually holding the monologue (e.g.
monologue 1 is meeting participant one speaking). The second set (lexicon 2, defined
in [15]) comprehends the full first set, but also has combinations of two parallel actions
(like a presentation and note-taking). The second set includes fourteen group actions.
Both sets and a brief description are shown in table 1.

Table 1. Group action lexicon 1 and 2

Action Lexicon Description
Discussion lexicon 1 and 2 most participants engaged in conversations

one participant speaking
Monologue lexicon 1 and 2 continuously without interruption

Monologue+ contained only one participant speaking continuously
Note-taking in lexicon 2 others taking notes
Note-taking lexicon 1 and 2 most participants taking notes

one participant presenting
Presentation lexicon 1 and 2 using the projector screen

Presentation+ contained only one participant presenting using
Note-taking in lexicon 2 projector screen, others taking notes

one participant speaking
White-board lexicon 1 and 2 using the white-board

White-board+ contained only one participant speaking using
Note-taking in lexicon 2 white-board, others taking notes

3 Meeting Data Set

We used a public corpus of 59 five-minute, four-participant scripted meetings [8]. The
recordings took place at IDIAP in an instrumented meeting room equipped with cam-
eras and microphones4. Video has been recorded using 3 fixed cameras. Two cameras
capture a frontal view of the meeting participants, and the third camera captures the
white-board and the projector screen. Audio was recorded using lapel microphones at-
tached to participants, and an eight-microphone array placed in the centre of the table.

4 This corpus is publicly available from http://mmm.idiap.ch/



4 Features

The investigated individual actions are multimodal, we therefore use different audio-
visual features. They are distinguished between person-specific AV features and group-
level AV features. The former are extracted from individual participants. The latter are
extracted from the white-board and projector screen regions. Furthermore we use a
small set of lexical features. The features are described in the next sections, for details
please refer to the indicated literature.

From the large number of available features each site has chosen a set, used to train
and evaluate their models. The complete list of features, and the three different sets
IDIAP, TUM, UEDIN are listed in table 2.

4.1 Audio features

MFCC: For each of the speakers four MFC coefficients and the energy were extracted
from the lapel-microphones. This results in a 20-dimensional vector xS(t) containing
speaker-dependent information.

A binary speech and silence segmentation (BSP) for each of the six locations in the
meeting room was extracted with the SRP-PHAT measure [8] from the microphone
array. This results in a six-dimensional discrete vector xBSP(t) containing position de-
pendent information.

Prosodic features are based on a denoised and stylised version of the intonation con-
tour, an estimate of the syllabic rate of speech and the energy [5]. These acoustic fea-
tures comprise a 12 dimensional feature vector (3 features for each of the 4 speakers).

Speaker activity features rely on the active speaker locations evaluated using a sound
source localisation process based on a microphone array [8]. A 216 element feature
vector resulted from all the 63 possible products of the 6 most probable speaker loca-
tions (four seats and two presentation positions) during the most recent three frames
[5]. A speaker activity feature vector at time t thus gives a local sample of the speaker
interaction pattern in the meeting at around time t.

Further audio features: From the microphone array signals, we first compute a speech
activity measure (SRP-PHAT). Three acoustic features, namely energy, pitch and speak-
ing rate, were estimated on speech segments, zeroing silence segments. We used the
SIFT algorithm to extract pitch, and a combination of estimators to extract speaking
rate [8].

4.2 Global motion visual features

In the meeting room the four persons are expected to be at one of six different locations:
one of four chairs, the whiteboard, or at a presentation position. For each location L in
the meeting room a difference image sequence IL

d (x,y) is calculated by subtracting the
pixel values of two subsequent frames from the video stream. Then seven global motion



Table 2. Audio, visual and semantic features, and the resulting three feature sets.

Description IDIAP TUM UEDIN
head vertical centroid X

head eccentricity X
right hand horizontal centroid X

Visual right hand angle X
right hand eccentricity X
head and hand motion X

Person- global motion features from each seat X
Specific SRP-PHAT from each seat X
Features speech relative pitch X X

speech energy X X X
Audio speech rate X X

4 MFCC coefficients X
binary speech and silence segmentation X

individual gestures X
Semantic talking activity X

mean difference from white-board X
mean difference from projector screen X

Visual global motion features from whiteboard X
global motion features from projector screen X

Group SRP-PHAT from white-board X
Features SRP-PHAT from projector screen X

Audio speaker activity features X
binary speech from white-board X

binary speech from projector screen X

features [16] are derived from the image sequence: The centre of motion is calculated
for the x- and y-direction, the changes in motion are used to express the dynamics of
movements. Furthermore the mean absolute deviation of the pixels relative to the centre
of motion is computed. Finally the intensity of motion is calculated from the average
absolute value of the motion distribution. These seven features are concatenated for
each time step in the location dependent motion vector. Concatenating the motion vec-
tors from each of the six positions leads to the final visual feature vector that describes
the overall motion in the meeting room with 42 features.

4.3 Skin-colour blob visual features

Visual features derived from head and hands skin-colour blobs were extracted from the
three cameras. For the two cameras looking at people, visual features extracted consist
of head vertical centroid position and eccentricity, hand horizontal centroid position,
eccentricity, and angle. The motion magnitude for head and hand blobs were also ex-
tracted. The average intensity of difference images computed by background subtrac-
tion was extracted from the third camera. All features were extracted at 5 frames per
second, and the complete set of features is listed in table 2. For details refer to [15].



4.4 Semantic features

Originating from the low level features also features on a higher level have been ex-
tracted. For each of the six locations in the meeting room the talking activity has been
detected using results from [7]. Further individual gestures of each participant have
been detected using the gesture recogniser from [16]. The possible features were all
normalised to the length of the meeting event to provide the relative duration of this
particular feature. From all available events only those that are highly discriminative
were chosen which resulted in a nine dimensional feature vector.

5 Models for Group Action Segmentation and Recognition

5.1 Meeting segmentation using semantic features

This approach combines the detection of the boundaries and classification of the seg-
ments in one step. The strategy is similar to that one used in the BIC-Algorithm [14].
Two connected windows with variable length are shifted over the time scale. Thereby
the inner border is shifted from the left to the right in steps of one second and in each
window the feature vector is classified by a low-level classifier. If there is a different
result in the two windows, the inner border is considered a boundary of a meeting event.
If no boundary is detected in the actual window, the whole window is enlarged and the
inner border is again shifted from left to the right. Details can be found in [13].

5.2 Multi-stream mixed-state DBN for disturbed data

In real meetings the data can be disturbed in various ways: events like slamming of a
door may mask the audio channel or background babble may appear; the visual channel
can be (partly) masked by persons standing or walking in front of a camera. We there-
fore developed a novel approach for meeting event recognition, based on mixed-state
DBNs, that can handle noise and occlusions in all channels [1, 2]. Mixed-state DBNs
are an HMM coupled with a LDS, they have been applied to recognising human ges-
tures in [10]. Here, this approach has been extended to a novel multi-stream DBN for
meeting event recognition.

Each of the three observed features: microphone array (BSP), lapel microphone
(MFCC) and the visual global motion stream (GM) is modelled in a separate stream.
The streams correspond to a multi-stream HMM, where each stream has a separate rep-
resentation for the features. However, the visual stream is connected to a LDS, result-
ing in a mixed-state DBN. Here the LDS is a Kalman filter, using information from all
streams as driving input, to smooth the visual stream. With this filtering, movements
are predicted based on the previous time-slice and on the state of the multi-stream
HMM at the current time. Thus occlusions can be compensated with the information
from all channels. Given an observation O and the model parameters E j for the mixed-
state DBN, the joint probability of the model is the product of the stream probabilities:
P(O,E j) = PB ·PM ·PG. The model parameters are learned for each of the eight event
classes j with a variational learning EM-algorithm during the training phase. During the
classification an unknown observation O is presented to all models E j. Then P(O|E j)
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Fig. 1. Multi-layer HMM on group action recognition.

is calculated for each model and O is assigned to the class with the highest likelihood:
argmaxE j∈E P(O|E j). Applying the Viterbi-algorithm to the model, leads to a meeting
event segmentation framework. The mixed-state DBN can therefore easily be combined
with other models presented in this work.

5.3 Multi-layer Hidden Markov Model

In this section we summarise the multi-layer HMM applied to group action recognition.
For a detailed discussion, please refer to [15].

In the multi-layer HMM framework, we distinguish group actions (which belong
to the whole set of participants, such as discussion and presentation) from individual
actions (belonging to specific persons, such as writing and speaking). To recognise
group actions, individual actions act as the bridge between group actions and low-level
features, thus decomposing the problem in stages, and simplifying the complexity of
the task.

Let I-HMM denote the lower recognition layer (individual action), and G-HMM de-
note the upper layer (group action). I-HMM receives as input audio-visual (AV) features
extracted from each participant, and outputs posterior probabilities of the individual ac-
tions given the current observations. In turn, G-HMM receives as input the output from
I-HMM, and a set of group features, directly extracted from the raw streams, which are
not associated to any particular individual. In the multi-layer HMM framework, each
layer is trained independently, and can be substituted by any of the HMM variants that
might capture better the characteristics of the data, more specifically asynchrony [3],
or different noise conditions between the audio and visual streams [6]. The multi-layer
HMM framework is summarised in figure 1.

Compared with a single-layer HMM, the layered approach has the following ad-
vantages, some of which were previously pointed out by [9]: (1) a single-layer HMM
is defined on a possibly large observation space, which might face the problem of over-
fitting with limited training data. It is important to notice that the amount of training
data becomes an issue in meetings where data labelling is not a cheap task. In contrast,
the layers in our approach are defined over small-dimensional observation spaces, re-
sulting in more stable performance in cases of limited amount of training data. (2) The
I-HMMs are person-independent, and in practice can be trained with much more data
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Fig. 2. Multistream DBN model (a) enhanced with a “counter structure” (b); square nodes repre-
sent discrete hidden variables and circles must be intend as continuous observations

from different persons, as each meeting provides multiple individual streams of training
data. Better generalisation performance can then be expected. (3) The G-HMMs are less
sensitive to slight changes in the low-level features because their observations are the
outputs of the individual action recognisers, which are expected to be well trained. (4)
The two layers are trained independently. Thus, we can explore different HMM com-
bination systems. In particular, we can replace the baseline I-HMMs with models that
are more suitable for multi-modal asynchronous data sequences. The framework thus
becomes simpler to understand, and amenable to improvements at each separate level.

5.4 Multistream DBN model

The DBN formalism allows the construction and development of a variety of models,
starting from a simple HMM and extending to more sophisticated models (hierarchical
HMMs, coupled HMMs, etc). With a small effort, DBNs are able to factorise the inter-
nal state space, organising it in a set of interconnected and specialised hidden variables.

Our multi-stream model (bottom of figure 2) exploits this principle in two ways:
decomposing meeting actions into smaller logical units, and modelling parallel feature
streams independently. We assume that a meeting action can be decomposed into a
sequence of small units: meeting subactions. In accordance with this assumption the
state space is decomposed into two levels of resolution: meeting actions (nodes A) and
meeting subactions (nodes SF). Note that the decomposition of meeting actions into
meeting subactions is done automatically through the training process.

Feature sets derived from different modalities are usually governed by different
laws, have different characteristic time-scales and highlight different aspects of the
communicative process. Starting from this hypothesis we further subdivided the model
state space according to the nature of features that are processed, modelling each fea-
ture stream independently (multistream approach). The resulting model has an indepen-
dent substate node SF for each feature class F , and integrates the information carried
by each feature stream at a ‘higher level’ of the model structure (arcs between A and
SF ,F = [1,n]). Since the adopted lexicon 1 (section 2) is composed by 8 meeting ac-



tions, the action node A has a cardinality of 8. The cardinalities of the sub-action nodes
S are part of parameter set, and in our experiments we have chosen a value of 6 or 7.

The probability to remain in an HMM state corresponds to an inverse exponential
[11]: a similar behaviour is displayed by the proposed model. This distribution is not
well-matched to the behaviour of meeting action durations. Rather than adopting ad
hoc solutions, such as action transition penalties, we preferred to improve the flexibility
of state duration modelling, by enhancing the existing model with a counter structure
(top of figure 2). The counter variable C, which is ideally incremented during each
action transition, attempts to model the expected number of recognised actions. Action
variables A now also generate the hidden sequence of counter nodes C, together with
the sequence of sub-action nodes S. Binary enabler variables E have an interface role
between action variables A and counter nodes C.

This model presents several advantages over a simpler HMM in which features are
“early integrated” into a single feature vector: feature classes are processed indepen-
dently according to their nature; more freedom is allowed in the state space partitioning
and in the optimisation of the sub-state space assigned to each feature class; knowledge
from different streams is integrated together at an higher level of the model structure;
etc. Unfortunately all these advantages, and the improved accuracy that can be achieved,
are balanced by an increased model size, and therefore by an increased computational
complexity.

6 Performance Measures

Since group meeting actions are high level symbols and their boundaries are extremely
vague. In order to evaluate results of the segmentation and recognition task we used
the Action Error Rate, a metric that privileges the recognition of the correct action
sequence, rather than the precise temporal boundaries. AER is defined as the sum of in-
sertion (Ins), deletion (Del), and substitution (Subs) errors, divided by the total number
of actions in the ground-truth:

AER =
Subs+Del+ Ins

Total Actions
×100% (1)

Measures based on deletion (Del) and insertion (Ins) and substitution (Subs) are also
used to evaluate action recognition results.

7 Experiments and Discussions

7.1 Higher semantic feature approach

The results of the segmentation are shown in table 3 (BN: Bayesian Network, GMM:
Gaussian Mixture Models, MLP: Multilayer Perceptron Network, RBF: Radial Basis
Network, SVM: Support Vector Machines). Each row denotes the classifier that was
used. The columns show the insertion rate (number of insertions in respect to all meet-
ing events), the deletion rate (number of deletions in respect to all meeting events), the
accuracy (mean absolute error) of the found segment boundaries in seconds and the



Table 3. Segmentation results using the higher semantic feature approach (BN: Bayesian Net-
work, GMM: Gaussian Mixture Models, MLP: Multilayer Perceptron Network, RBF: Radial
Basis Network, SVM: Support Vector Machines). The columns denote the insertion rate, the
deletion rate, the accuracy in seconds and the classification error rate (using lexicon 1 in Table 1).

Classifier Insertion (%) Deletion (%) Accuracy Error (%)
BN 14.7 6.22 7.93 39.0
GMM 24.7 2.33 10.8 41.4
MLP 8.61 1.67 6.33 32.4
RBF 6.89 3.00 5.66 31.6
SVM 17.7 0.83 9.08 35.7

recognition error rate. In all columns lower numbers denote better results. As can be
seen from the tables, the results are quite variable and heavily depend on the used clas-
sifier. These results are comparable to the ones presented in [12]. With the integrated
approach the best outcome is achieved by the radial basis network. Here the insertion
rate is the lowest. The detected segment boundaries match pretty well with a deviation
of only about five seconds to the original defined boundaries.

7.2 Multi-stream mixed-state DBN for disturbed data

To investigate the influence of disturbance to the recognition performance, the evalua-
tion data was cluttered: the video data was occluded with a black bar covering one third
of the image at different positions. The audio data from the lapel microphones and the
microphone array was disturbed with a background-babble with 10dB SNR. 30 undis-
turbed videos were used for the training of the models. The remaining 30 unknown
videos have been cluttered for the evaluation.

The novel DBN was compared to single-modal (audio and visual) HMMs, an early
fusion HMM, and a multi-stream HMM. The DBN showed a significant improvement
of the recognition rate for disturbed data. Compared to the baseline HMMs, the DBN
reduced the recognition error by more than 1.5% (9% relative error reduction) for dis-
turbed data. It may therefore be useful to combine this approach with the other models
presented in this work, to improve the noise robustness. Please refer to [1, 2] for detailed
recognition results, as well as a comprehensive description of the model.

7.3 Multi-layer hidden Markov model

Table 4 reports the performance in terms of action error rate (AER) for both multi-layer
HMM and the single-layer HMM methods. Several configurations were compared, in-
cluding audio-only, visual-only, early integration, multi-stream [6] and asynchronous
HMMs [3]. We can see that (1) the multi-layer HMM approach always outperforms
the single-layer one, (2) the use of AV features always outperforms the use of single
modalities for both single-layer and multi-layer HMM, supporting the hypothesis that
the group actions we defined are inherently multimodel, (3) the best I-HMM model is
the asynchronous HMM, which suggests that some asynchrony exists for our task of
group action recognition, and is actually well captured by the asynchronous HMM.



Table 4. AER (%) for single-layer and multi-layer HMM (using lexicon 2 in Table 1).

Method AER (%)
Visual only 48.2
Audio only 36.7

Single-layer HMM Early Integration 23.7
Mutli-stream 23.1

Asynchronous 22.2
Visual only 42.4
Audio only 32.3

Multi-layer HMM Early Integration 16.5
Multi-stream 15.8

Asynchronous 15.1

7.4 Multistream DBN model

All the experiments depicted in this section were conducted on 53 meetings (subset of
the meeting corpus depicted in section 3) using the lexicon 1 of eight group actions. We
implemented the proposed DBN models using the Graphical Models Toolkit (GMTK)
[4], and the evaluation is performed using a leave-one-out cross-validation procedure.

Table 5 shows experimental results achieved using: an ergodic 11-states HMM, a
multi-stream approach (section 5.4) with two feature streams, and the full counter en-
hanced multi-stream model. The base 2-stream approach has been tested in two different
sub-action configurations: imposing

∣

∣S1
∣

∣ =
∣

∣S2
∣

∣ = {6 or 7}. Therefore four experimen-
tal setups were investigated; and each setup has been tested with 3 different feature sets,
leading to 12 independent experiments. The first feature configuration (“UEDIN”) as-
sociates prosodic features and speaker activity features (section 4.1) respectively to the
stream S1 and to S2. The feature configuration labelled as “IDIAP” makes use of the
multimodal features extracted at IDIAP, representing audio related features (prosodic
data and speaker localisation) through the observable node Y 1 and video related mea-
sures through Y 2. The last setup (“TUM”) relies on two feature families extracted at the
Technische Universität München: binary speech profiles derived from IDIAP speaker
locations and video related global motion features; each of those has been assigned
to an independent sub-action node. Note that in the HMM based experiment the only
observable feature stream Y has been obtained by merging together both the feature
vectors Y 1 and Y 2. Considering only the results (of table 5) obtained within the UEDIN
feature setup, it is clear that the simple HMM shows much higher error than any other
multi-stream configuration. The adoption of a multistream based approach reduces the
AER to less than 20%, providing the lowest AER (11%) when sub-action cardinalities
are fixed to 7. UEDIN features seem to provide a higher accuracy if compared with
IDIAP and TUM setups, but it is essential to remember that our DBN models have been
optimised for the UEDIN features. In particular sub-action cardinalities have been in-
tensively studied with our features, but it will be interesting to discover optimal values
for IDIAP and TUM features too. Moreover overall performances achieved with the
multistream approach are very similar (AER are always in the range from 26.7% to



Table 5. AER (%) for an HMM, and for a multi-stream (2 streams) approach with and without the
“counter structure”; the models have been tested with the 3 different feature sets (using lexicon 1)

Model Feature Set Corr. Sub. Del. Ins. AER
UEDIN 63.3 13.2 23.5 11.7 48.4

HMM IDIAP 62.6 19.9 17.4 24.2 61.6
TUM 60.9 25.6 13.5 53.7 92.9
UEDIN 86.1 5.7 8.2 3.2 17.1

2 streams
(
∣

∣SF
∣

∣ = 6
)

IDIAP 77.9 8.9 13.2 4.6 26.7
TUM 85.4 9.3 5.3 6.8 21.4
UEDIN 85.8 7.5 6.8 4.6 18.9

2 streams
(
∣

∣SF
∣

∣ = 6
)

+ counter IDIAP 79.4 10.0 10.7 4.3 24.9
TUM 85.1 5.7 9.3 6.4 21.4
UEDIN 90.7 2.8 6.4 1.8 11.0

2 streams
(
∣

∣SF
∣

∣ = 7
)

IDIAP 86.5 7.8 5.7 3.2 16.7
TUM 82.9 7.1 10.0 4.3 21.4

11.0%), and all my be considered promising. The TUM setup seems to be the configu-
ration for which switching from a HMM to a multistream DBN approach provides the
greatest improvement in performance: the error rate decreases from 92.9% to 21.4%. If
with the UEDIN feature set the adoption of a counter structure is not particularly effec-
tive, with IDIAP features the counter provides a significant AER reduction (from 26.7%
to 24.9%). We are confident that further improvements with IDIAP features could be
obtained by using more than 2 streams (such as the 3 multistream model adopted in [5]).
Independently of the feature configuration, the best overall results are achieved with the
multistream approach and a state space of 7 by 7 substates.

8 Conclusions

In this work, we have presented the joint efforts of the three institutes (TUM, IDIAP
and UEDIN) towards structuring meetings into sequences of multimodal human inter-
actions. A large number of different audio-visual features have been extracted from
a common meeting data corpus. From this features, three multimodal sets have been
chosen. Four different approaches towards automatic segmentation and classification of
meetings into action units haven been proposed. We then deeply investigated the three
feature sets, as well as the four different group action modelling frameworks:

The first approach from TUM exploits higher semantic features for structuring a
meeting into group actions. It thereby uses an algorithm that is based on the idea of the
Bayesian-Information-Criterion. The mixed-state DBN approach developed by TUM
compensates for disturbances in both the visual and the audio channel. It is not a seg-
mentation framework but can be integrated into the other approaches presented in this
work to improve their robustness. The multi-layer Hidden Markov Model developed
by IDIAP decomposes group actions as a two-layer process, one that models basic in-
dividual activities from low-level audio-visual features, and another one that models
the group action (belonging to the whole set of participants). The multi-stream DBN



model proposed by UEDIN operates an unsupervised subdivision of meeting actions
into sequences of group sub-actions, processing multiple asynchronous feature streams
independently, introducing also a model extension to improve state duration modelling.

All presented approaches have provided comparable good performances. The AER
are already promising, but there is still space for further improvements both in the fea-
ture domain (i.e.: exploit more modalities) and in the model infrastructure. Therefore in
the near future we are going to investigate combinations of the proposed systems to im-
prove the AER and to exploit the complementary strengths of the different approaches.
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