
A MULTI-MODAL GRAPHICAL MODEL FOR ROBUST RECOGNITION
OF GROUP ACTIONS IN MEETINGS FROM DISTURBED VIDEOS

Marc Al-Hames and Gerhard Rigoll

Technische Universität München
Institute for Human-Machine Communication

Arcisstrasse 16, 80333 München, Germany
{alh, rigoll}@mmk.ei.tum.de

ABSTRACT

In this work we present a novel multi-modal mixed-state dynamic
Bayesian network (DBN) for robust meeting event classification
from disturbed videos. The model uses information from the audio
and the visual channel to structure meetings into segments. Within
the DBN a multi-stream hidden Markov model (HMM) is coupled
with a linear dynamical system (LDS) to compensate disturbances
in the visual channel. Thereby the HMM is used as driving input
for the LDS. Thus the model can handle noise and occlusions in
the video. Experimental results on real meeting data show that the
new model is highly preferable to all single-stream approaches.
Compared to a baseline multi-modal early fusion HMM, the new
DBN is 3.5%, respectively up to 6.1% better for clear and vi-
sual disturbed data, this corresponds to a relative error reduction
of 23.6%, respectively 29.9%.

1. INTRODUCTION

Meetings are social events, were people exchange information.
Often a summarization of the meeting is necessary, for example
for people not attending the meeting or to fix decisions. Nowadays
these summarizations are mainly written by a person attending the
meeting. This process is both time demanding and error-prone.

Thus it would be good, if meetings could be summarized au-
tomatically. Projects like the ICSI meeting project [1] and ”Aug-
mented Multi-party Interaction (AMI)” deal with this topic of au-
tomatic speech transcription, analysis of videos, and summariza-
tion of meetings.

A first step for the automatic analysis of the meetings is a
segmentation into meeting group action events like discussion or
presentation [2]. This structuring can then be used to produce an
agenda and a summarization of the meeting. Different approaches
for this structuring, based on hidden Markov models (HMMs) [2]
and dynamic Bayesian networks (DBNs) [3, 4] have been intro-
duced for clear data sets.

However, in real meetings the data can be disturbed in var-
ious ways: events like slamming of a door may mask the audio
channel or background babble may appear; the visual channel can
be (partly) masked by persons standing or walking in front of a
camera, or a laptop computer may stand in front of the persons.

In this work we present a novel multi-modal approach for
meeting event recognition, based on mixed-state DBNs, that can
handle noise and occlusions in all channels. The model uses audio
information to drive a linear dynamical system, that compensates
disturbances in the visual channel.

2. MEETING DATA

The data for this work was collected in the IDIAP smart meeting
room [5]. The corpus consists of 60 videos with a length of ap-
proximately 5 minutes. Each meeting has four participants and
is recorded with three cameras. All participants have a lapel mi-
crophone attached and a microphone array is placed on the table.
Thus, the corpus provides high quality audio-visual recording of
the meetings.

To investigate the influence of disturbances to the recognition
performance, the evaluation data was cluttered: The audio data
from the lapel microphones and the microphone array was dis-
turbed with a background-babble with 10dB SNR. To simulate a
person standing (or walking) between the camera and the recorded
persons, the video data was occluded with a grey bar covering one
third of the image at different positions (left, middle, and right
third of the picture). For another evaluation set, a grey cross, cov-
ering 5/9 of the video was added. In a final set, a 10dB SNR Gaus-
sian noise was added to the images. Fig. 1 shows a typical video
snapshot of the meeting data and added occlusions.

For this work 30 clean videos were used for the training of
the models. For the evaluation, the remaining 30 unknown videos
have been cluttered with one or a combination of disturbances.

3. GROUP ACTION MEETING EVENTS

In the recorded corpus each meeting has four participants:

S = {S1, S2, S3, S4}

For a first structuring of the meeting the following eight different
group actions are widely used [2, 3, 4]:

E = {ED, EM,1, EM,2, EM,3, EM,4, EN , EP , EW }

where the events Ej are

ED: Two or more persons are talking with each other.
EM,Id: The person Id is talking without being interrupted.
EN : All persons write something down.
EP : One person in front of the room gives a presentation.
EW : One person writes on the whiteboard.

Each meeting can now be modeled as a sequence of these
group actions Ej . In average each meeting in the corpus consists
of five action segments. This sequence of actions can then be used
as a rough structuring of the meeting [2].
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Fig. 1. Typical video snapshot of a meeting (a) and the same image with different kinds of occlusions added (b-e).

4. FEATURES

Feature vectors have been extracted from the audio-visual stream.
In the meeting room the four persons are expected to be at one of
six different locations: one of four chairs, the whiteboard, or at a
presentation position:

L = {C1, C2, C3, C4, W, P}

This information has been used to extract position dependent audio
and visual features.

The signals from the lapel-microphones have been used to add
speaker dependent audio features. A visual and an audio feature
stream has been formed; altogether 68 features from three modal-
ities: microphone array, lapel microphone, and visual information
have been used.

4.1. Visual features

For each of the six locations L in the meeting room a difference
image sequence IL

d (x, y) is calculated by subtracting the pixel val-
ues of two subsequent frames from the video stream. Then seven
global motion features [6] are derived from the image sequence:
The center of motion is calculated for the x- and y-direction ac-
cording to:
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The changes in motion are used to express the dynamics of move-
ments:

∆m
L
x (t) = m

L
x (t) − m

L
x (t − 1)

and
∆m

L
y (t) = m

L
y (t) − m

L
y (t − 1) (2)

Furthermore the mean absolute deviation of the pixels relative to
the center of motion is computed:
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Finally the intensity of motion is calculated from the average ab-
solute value of the motion distribution:

i
L(t) =

P

(x,y) |I
L
d (x, y, t)|

x · y
(4)

These seven features are concatenated for each time step in the
location dependent motion vector
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With this motion vector the high dimensional video stream is re-
duced to a seven dimensional vector, but it preserves the major
characteristics of the currently observed motion. Concatenating
the motion vectors from each of the six positions ~xL(t) leads to
the final visual feature vector

~xV (t) = [~xC1 , ~x
C2 , ~x

C3 , ~x
C4 , ~x

W
, ~x

P ]T (6)

that describes the overall motion in the meeting room with 42 fea-
tures.

4.2. Audio features

For each of the speakers four MFC coefficients and the energy
were extracted from the lapel-microphones. This results in a 20-
dimensional vector ~xS(t) containing speaker-dependent informa-
tion. A binary speech and silence segmentation (BSP) for each
of the six locations in the meeting room was extracted with the
SRP-PHAT measure [2] from the microphone array. This results
in a six-dimensional discrete vector ~xBSP (t) containing position
dependent information. The speaker- and the position-dependent
vectors have been concatenated

~xA(t) = [~xS(t), ~xBSP (t)] (7)

resulting in the final audio feature vector.

5. DYNAMIC BAYESIAN NETWORK MODEL

A Bayesian network (BN) is a graphical model that describes sta-
tistical dependencies between a set of variables. The variables are
marked as nodes and the dependencies between them with edges.
Dynamic Bayesian networks (DBNs) are a generalization of BNs,
they are used to describe time series: One BN represents one time
slice. Additionally edges describe the dependencies of variables
between subsequent time slices. For a given observation O with
length T the DBN is ”unrolled”: The time slices are repeated T-
times and connect through their inter-edges. Different learning and
inference methods are known for DBNs. Well known models, like
Hidden Markov Models (HMMs) [7] or linear dynamical systems
(LDS) [8] can be described within the DBN-framework.

Mixed-state DBNs are an HMM coupled with a LDS, they
have been introduced and applied to recognizing human gestures
in [9]. Here, this approach is extended to a novel multi-stream
DBN for meeting event recognition.
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Fig. 2. Multi-stream mixed-state dynamic Bayesian network model: The HMM is driving input for the LDS.

A LDS is described by three state-space equations:

~x0 = B~u0 + ~v0 (8)
~xt = A~xt−1 + B~ut + ~vt (9)
~ot = C~xt + ~wt (10)

where ~xt ist the hidden state, ~ut the driving input, and ~ot the ob-
servation of the system. A,B, and C are the state transition, the
input, and the observation matrices; ~vt and ~wt are noise terms. If
the Gaussian distribution is defined as

N (~x, ~µ, Σ) =
1

p

(2π)N |Σ|
exp

“

−
1

2
(~x − ~µ)T Σ−1(~x − ~µ)

”

the LDS can be described with probability distributions as well:

P (~x0|~u0) = N (B~u0, ~µ, Σ) (11)
P (~xt|~xt−1, ~ut) = N (~xt − A~xt−1 − B~ut, ~µ, Σ) (12)

P (~ot|~xt) = N (~ot − C~xt, ~µ, Σ) (13)

For the new DBN model, the output of a multi-stream HMM
is used as driving input ~ut for this LDS. This can be described as
a graphical model, as shown in in Fig. 2. Each row represents one
time slice. Arrows pointing down represent the dependencies be-
tween subsequent time slices. Horizontal arrows represent depen-
dencies between hidden and observed variables within one time
slice. Hidden variables are white, observed variables shadowed.
Squares mark discrete probability distributions and circles denote
continuous Gaussian nodes N (~x, ~µ, Σ).

The observed audio- and visual-features are modeled in sep-
arate streams. This streams correspond to a multi-stream HMM,
where each stream has a separate representation for the observa-
tions. However, the visual stream is directly connected to a LDS,
resulting in a mixed-state DBN. The LDS is implemented as four
Gaussian nodes, in Fig. 2 represented by the two columns on the
right (XV

t , OV
t ). Thus the LDS uses information from the audio

and the visual stream as driving input, to smooth the visual stream.
With this filtering, movements are predicted based on the previous
time-slice and on the state of the multi-stream HMM at the current
time. Thus occlusions can be compensated with the information
from all channels.

With the DBN framework, this HMM-LDS system can be de-
scribed by a joint stream probability distribution. Therefore all
HMM transition and mixture matrices, and the prior distributions
have to be defined as discrete probability distributions [7]. The
probability distributions for the LDS need to be defined according
to Eq. 11 - 13. Then the probability PA of the audio stream is:
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and the probability PV of the coupled HMM-LDS-structure for the
global motion stream:
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Each meeting event can now be described by a DBN with the
model parameters

Ej = {HA
, M

A
, H

V
, U

V
, X

V }

Given an observation O and the model parameters Ej , the joint
probability of the model is: P (O, Ej) = PA · PV

The model parameters are learned for each of the eight event
classes j with the EM-algorithm during the training phase. In [10]
an EM-algorithm based on variational inference was introduced,
that can be applied to mixed-state DBNs [9]. This algorithm can
be adapted to the multi-stream mixed-state DBN.

During the classification an unknown observation O is pre-
sented to all models Ej . Then P (O|Ej) is calculated for each
model and O is assigned to the class with the highest likelihood:

argmax
Ej∈E

P (O|Ej) (16)

Applying the Viterbi-algorithm to the model, leads to a meet-
ing event segmentation framework. This is however not the scope
of this work.



Single-modal Multi-modal
Evaluation set Audio Visual HMM DBN
a) Clear test data 83.1% 67.2% 85.2% 88.7%
b) Left occluded 40.9% 82.6% 87.8%
c) Middle occluded 44.3% 83.5% 76.5%
d) Right occluded 52.2% 85.2% 86.1%
e) Cross occluded 33.0% 79.1% 81.7%
f) Gaussian noise 42.6% 84.4% 87.8%
I) Audio disturbed 61.1% 80.9% 87.0%
II) A-V disturbed 80.0% 81.7%

Table 1. Meeting event recognition performance.

6. EXPERIMENTS AND RESULTS

The multi-stream mixed-state DBN was evaluated on the IDIAP
meeting corpus (see Sec. 2) and compared to an audio and a vi-
sual single-stream HMM, and to a multi-modal early fusion HMM.
Each single-stream HMM was trained and evaluated with only one
modality. For the early fusion HMM the frame rates of the obser-
vation streams were adjusted and concatenated to one large stream.

The models were trained with clear data from 30 videos. For
the evaluation clear and cluttered data from the remaining 30 un-
known videos have been used. In the first test set (a), the audio
and the visual channel had no disturbances. Three test sets had the
visual channel partly occluded: A grey bar covering one third of
the image was added at the left (b), the middle (c), and the right
(d). For another set (e), a grey cross was used (Fig. 1). In a final
visual disturbed set (f), Gaussian noise with 10dB SNR was added
to the visual channel. For sets (b-f) the audio channel wasn’t dis-
turbed. For comparison an audio disturbed evaluation set (I) was
included: a background-babble with 10dB SNR was added to the
audio channel. Finally, a set (II) with both the audio channel and a
third of the visual channel occluded was evaluated.

Table 1 shows the recognition results for all models. The audio
stream has a good recognition rate (83.1%) for clear data (a), while
the visual stream alone does provide less information (67.2%).
However after the senor fusion the visual stream improves the
recognition rate by 4.6% to 88.7% for the DBN model compared
to the audio-stream HMM. This effect is even stronger when the
audio channel has background babble (I). Then the recognition rate
for the audio HMM drops by 22%, while the DBN model only
drops by 1.7%. Thus, in a multi-modal system, the visual channel
provides significant information about the meeting status. When
the visual channel is partly occluded (b-e) or disturbed by Gaus-
sian noise (f), the recognition rate of the visual HMM drops in av-
erage by 24.6% compared to the clear channel (a). In comparison,
the rate for the DBN model drops by only 4.7% in average.

The multi modal DBN outperforms the multi modal HMM in
all except one case (c). For clean data the DBN improves the
recognition performance from 85.2% (HMM) to 88.7% (DBN),
this is a relative error reduction of 23.6%. For the disturbed audio
data (I), the DBN reduces the relative error by 31.9% (absolute
6.1%) compared to the HMM; for an occluded visual channel the
error reduction can be up to 29.9% (absolute 5.2%, b). In av-
erage the DBN improves the recognition rate by absolute 2.1%
compared to the early fusion HMM. As expected from the theory,
these results show, that the coupled LDS-HMM structure compen-
sates disturbances much better, then the early fusion HMM.

7. CONCLUSIONS

In this work a new multi-modal mixed-state DBN for robust meet-
ing event recognition from clear and disturbed data has been pre-
sented. The audio and the visual channel are fused in a multi-
stream HMM. Within the graphical model this HMM is coupled to
a LDS. The LDS uses both streams as driving input, to smooth the
visual stream. Thus the model can compensate visual occlusions.

The DBN was compared to single-stream HMMs and an early
fusion HMM. The DBN shows a significantly higher recognition
performance than the single-modal HMMs. Compared to an multi-
modal HMM, the novel DBN has a relative error reduction of
23.6% for clear and up to 29.9% for visual disturbed data. In
average the DBN improves the recognition rate by absolut 2.1%.

The proposed model is not limited to the recognition of meet-
ing events, but could be used for all applications where different
channels could be used to improve the visual channel.
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