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ABSTRACT
This proposal describes a novel approach for handling partly
occluded gestures in the feature domain with gesture spe-
cific Kalman-Filters. An estimation of the Kalman-Filter
parameters using artificial neural networks is introduced.
The approach is demonstrated and evaluated on data from a
meeting scenario and can be generalized to all gesture based
problems concerning partial occlusions.

1. INTRODUCTION

The automated analysis of meetings has become focus of
interest for some EU funded projects like the MultiModal
Meeting Manager (M4) [1]. The meeting recording, auto-
mated generation of transcriptions, representation and of-
fline browsing of meetings are goals of such projects [2].
Single tasks out of this area are for example tracking the
focus of attention [3] and multimodal recognition of group
actions [4]. These group actions can be derived by interpre-
tation of single person actions like nodding, raising a hand
or speaking and laughing. One approach to recognize such
person actions is to calculate global motion features from
difference images in regions of interest around meeting par-
ticipants. After a temporal segmentation step the feature
segments are classified with the help of a Hidden-Markov-
Model (HMM) framework [5][6]. A detailed description
of this action recognition system for unoccluded actions is
given in [7]. Problems in recognition of single person ac-
tions arise, when parts of the performed action are partially
occluded by objects like a desk, or if actions of one person
are superimposed by actions of another person because of
overlapping action regions. A method for handling partly
occluded body gestures in the feature domain with a hand
designed Kalman-Filter was already presented in [8]. In the
following sections a novel extended approach with action
specific Kalman-Filters is presented and compared to a sin-
gle Kalman-Filter approach.

2. FEATURE EXTRACTION

Person actions are always coupled with motion, which can
be easily spatially segmented by building the differences

between subsequent frames. Out of this difference images
a feature vector xk containing global motion features like
center of mass, change of center, variance and intensity of
motion is calculated for each time step k and each action re-
gion. The result is one feature stream X = x1,x2, . . . ,xk

for every person participating the meeting.

3. SYSTEM OVERVIEW

As shown in figure 1 each calculated feature stream X is
fed into a system of N action specialized Kalman-Filters
K1, K2, ..., KN . The process to determine the parameters
of the Kalman-Filters is briefly described in section 5. Each
Kalman-Filter modifies the feature stream according to its
system model and alters the feature sequence to be more
likely to the underlying action. This leads to the modified
feature streams X1,X2, . . . ,XN, which are scored by their
according Hidden-Markov-Model. The model M with the
highest production probability is chosen.

Fig. 1. System Overview.

4. OCCLUSIONS

To simulate artificial occlusions, parts of the action region
are camouflaged by black boxes. Examples out of the six
different types of tested occlusions are given in figure 2.
The inserted occlusions result in a deranged feature stream.

5. COMPENSATION OF OCCLUSSIONS

To compensate occlusions in the feature domain a model
in that domain has to be created. A simple but still suffi-
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Fig. 2. Examples out of six evaluated types of occlusions.
Unsymmetric (a) and symmetric (b) occlusions have been
generated to simulate different occlusion scenarios.

cient model for a process generating the feature vectors is
the stochastic linear dynamic system. The system is defined
by the equations

xk+1 = Axk + w (1)
yk = Cxk + v (2)

with w and v as zero mean random variables with their co-
variance matrices

Q = cov (w) (3)

and

R = cov (v) . (4)

Using a Kalman-Filter, we now compensate occluded data
with a model acquired from unoccluded data. The parame-
ters for the Kalman-Filter are the matrices A, C, Q and R.
For a further reference on the Kalman-Filter see [9].

The Kalman-Filter is applied in two setups:

One global model. A single filter K for all N actions is ap-
plied to the feature stream. The filtering step is done
before the temporal segmentation to avoid perturba-
tions caused by the initialisation of the Kalman-Filter.
The segments are then classified by the HMMs.

N action specific models. For each action a specific filter
Ki, i ∈ {1, 2, . . . , N} is applied to the feature stream.
As result there are now N sequences each altered by
a different filter. Again each action sequence is seg-
mented and fed into the HMM modeling that action.

Note, that in both cases the HMMs are trained with unoc-
cluded data only.

5.1. Parameter Estimation

The most important step in using a Kalman-Filter is the es-
timation of the filter parameters (i.e. the matrices A, C, Q
and R). Our approach is to learn them using the training
data. The data consist of the segmented sequences of fea-
ture vectors yk from the unoccluded training set and the cor-
responding feature vectors from the occluded training set.
When training a global model, data from all actions is used
to learn one set of filter parameters. In the case of a specific
model for each action, only the data corresponding to that
action is used.

Before the training, discrete derivatives of each of the
seven features are added to the sequences. This leads to the
extended sequences

xk =





























y
(1)
k

y
(2)
k
...

y
(1)
k − y

(1)
k−1

y
(2)
k − y

(2)
k−1

...

...





























(5)

The purpose is to make the models more precise. Tests have
been run adding derivatives up to the fifth order. Adding
just the first derivative however yielded the best results.

The matrix A is being learned from the extended, unoc-
cluded training sequences using an adaptive linear network.
As inputs pi and targets ti consecutive feature vectors are
used (i.e. pi = xunocc

k−1 and ti = xunocc
k ). A is trained in or-

der to minimize the squared error ei over all learning sam-
ples i.

ei = (ti − Api)
T

(ti − Api) (6)

A = argminA

(

∑

i

ei (A)

)

(7)

Figure 3 shows two examples of trained matrices A for
two different actions. The diagonal structure accommodates
the fact, that the features have been chosen to be indepen-
dant of each other. Additionally it can be seen that different
actions result in different system models in the feature do-
main.

The Matrix C is left constant:

C = [1; 0; · · · ] . (8)

Q is acquired by computing the covariance matrix of the
prediction error.

Q = cov (ti − Api) (9)



Fig. 3. Visualisation of two trained matrices A of two differ-
ent system models for two different actions. Bright squares
mean high absolute values in the matrices A.

R is determined by computing the covariance matrix of dif-
ferences between feature vectors from the occluded and the
unoccluded data.

R = cov (tocc
i − CApi) (10)

with tocc
i = yocc

k

6. RESULTS

To measure the improvements for different occlusion types
we use the relative error reduction (RER) with respect to the
unoccluded data. The absolute improvement in recognition
rates fails to measure the improvement on different occlu-
sions, because the possible absolute improvement can be
much higher for large occlusions than for small occlusions.
The RER against unoccluded data is given by

RER =
rimp − rocc

runocc − rocc

· 100% (11)

with

runocc : recognition rate of original method on
unoccluded data set

rocc : recognition rate of original method on
occluded data set

rimp : recognition rate of improved method on
occluded data set

In table 1 the recognition rate of the two configurations
of the system is compared. The results stem from the cross-
occlusion shown in figure 2b, because some of the other
occlusions only lead to a relative recognition rate reduction
of 1%.

As shown in table 1 both, the global model and the ac-
tion specific model yield significant results. Here the action
specific model beats the global model in terms of perfor-
mance. However there are constellations where the global
model outperformes the action specific models. Further sim-
ulations have to be run to analyze this issue. Another fact

Recognition Method Recognition Rate RER
Unoccluded data 81.9 -
Occluded data 51.7 -
global model 62.4 35.5

action specific models 66.4 48.8

Table 1. Relative improvement rates for N = 6 different
actions deranged with the occlusion shown in figure 2b.

that should be noticed is the impact on unoccluded data.
When adapting the covariance matrix R to unoccluded data
instead of occluded data, there is little to no influence on
the classification results. However, when adapting R to oc-
clusions, the filtering of unoccluded actions results in a de-
creasing recognition rate.

7. CONCLUSIONS AND OUTLOOK

A promising approach for reconstruction of deranged fea-
ture streams with Kalman-Filters has been presented. In a
meeting scenario first results show an outperforming gain in
relative error reduction in case of occlusions of single per-
son actions. The application of artificial neural networks for
parameter estimation of the Kalman-Filters allows easy ex-
pansion to nonlinear systems which is part of ongoing work.
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