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ABSTRACT

Common data-driven evaluation metrics for speech under-
standing systems are based on automatically comparing sequences
of slot–value pairs by dynamic programming (DP) matching.
However, for complex hierarchical language models sequence
matching based metrics don’t seem appropriate as they cannot
fully capture structural similarities. For this task we propose a
novel evaluation metric, the tree node accuracy. Our approach is
founded on a DP-style algorithm that computes the minimum edit
distance between pairs of ordered labeled trees and includes the
sequence matching problem as a special case. We also extended
the basic scheme for our task to support trees consisting of differ-
ent categories of tree nodes. Experiments carried out on several
semantic models confirm that the tree matching based approach
displays greater flexibility than conventional sequence matching
based metrics and is especially suited for complex hierarchical
models.

1. INTRODUCTION

The quantitative and objective evaluation of the ‘goodness’ of
speech interpretation systems, which produce some representation
of the meaning of the user’s utterances, has several goals: Firstly,
although speech interpreters are normally not used in isolation but
as a component of a larger system such as a spoken language dia-
logue system, a glass box assessment [1], i.e. measuring the per-
formance of single components, plays an important role in deter-
mining the goodness of the whole system. Secondly, the ability to
measure a component’s performance is often a vital tool in order
to purposefully improve the component during its development. A
further goal is to enable the comparison of different approaches.
However, meaning representations are not ‘standardized’ and ap-
pear with different complexities. Therefore, an evaluation metric
for speech interpretation systems must operate on a common basis
that other meaning representations can be converted to in order to
be comparable.

In [2] we introduced our One-stage Decoder for Interpreta-
tion of Natural Speech (ODINS), which directly computes a tree-
structured semantic representation from an input speech signal.
ODINS operates on a generalized uniform knowledge model con-
sisting of a hierarchy of probabilistic transition networks. In or-
der to support the development of such a knowledge model for an
airport information system application, the need for a suitable au-
tomatic evaluation procedure arose. A commonly used evaluation
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metric for speech understanding systems is the concept accuracy,
which was derived from the word accuracy metric used for speech
recognition systems evaluation [3]. The concept accuracy com-
putation is based on matching sequences of so-called ‘concepts’ in
the shape of slot–value pairs [3, 4, 1] or slot–value–communicative
function triples [5, 6]. The same minimum edit distance based
matching algorithm as for speech recognizer evaluation can be uti-
lized to find the optimum match between reference and hypothesis
concept sequences of a test corpus. The concept accuracy is then
computed from the counts of correctly and incorrectly matched
concepts. However, we think that in order to fully take the hier-
archical nature of ODINS’ output trees into account, the matching
should happen directly on the tree structure. Therefore, our goal
was to devise an evaluation method that measures to what degree
pairs of reference and hypothesis trees agree with each other.

As ODINS is able to process hierarchical models with an un-
limited number of hierarchy levels and also supports the skipping
of levels, the structure of its output trees is very variable. Thus, we
aimed to impose as little constraints on the trees to be evaluated
as possible. The two most fundamental properties of the trees are
that they are ordered (due to the sequential nature of the speech
signal) and consist of labeled nodes (the labels being e.g. semantic
categories or words). For matching this kind of trees, a number of
algorithms have been proposed (see [7] for an overview) and ap-
plied to problems such as RNA secondary structure analysis. For
our task, we selected the algorithm by Shasha and Zhang [7] be-
cause it is general, easy to understand and to implement and has
limited time and space complexity.

We utilize the tree matching algorithm to compute the best
match between reference and hypothesis trees, and then express
the accuracy of the match in a novel evaluation metric which we
call tree node accuracy. Moreover, we extended the basic tree
matching approach to support the matching of typed tree nodes.
Hence, the novel evaluation metric is generally applicable to all
speech understanding systems whose output is or can be converted
to an ordered, labeled and possibly typed tree structure. The tree
node accuracy, which was already briefly introduced in [2], can
be seen as a natural generalization of the word accuracy and the
concept accuracy. In fact, the problem of tree pattern matching
can be seen as a generalization of sequence pattern matching, as
it contains the sequential problem as a special case. Moreover,
the tree matching algorithm we will discuss in this paper is based
on the dynamic programming algorithm which is usually used for
sequence matching [8]. Therefore, we will review the sequence
matching problem in Section 3. In Section 4, we will derive the
basic tree matching algorithm, drawing analogies to the sequence
matching case. Our extension of the basic approach to typed tree
nodes will be presented in Section 5. In Section 6, reasons will be

gue
Textfeld
From: ASRU 2003, Aka Verlag, Berlin, IOS Press, Amsterdam



i 1 2 3 4 5 6
S1[i] d_i drei sieben drei von hamburg

↓ ↓ ↓ ↓ ↓
S2[j] drei zwei sieben drei nach hamburg

j 1 2 3 4 5 6

Fig. 1. Sequence matching example.

given why the tree accuracy might be a more appropriate evalua-
tion metric than the concept accuracy. Some experimental results
which support this assumption are presented in Section 7. In the
following section, we will define the novel evaluation metric.

2. DEFINITION OF TREE NODE ACCURACY

A goal of speech recognizer evaluation is to quantify how well the
recognizer’s hypotheses of a set of test utterances correspond to
the correct (i.e. hand-labeled) reference transcriptions of the test
utterances. In order to reach this goal the (optimum) correspon-
dence between pairs of hypothesis and reference utterances must
be known. The correspondence function gives rise to three types
of errors, namely substitutions, insertions and deletions of words.
The word accuracy Accw is then computed from the counts of
correct Cw , substituted Sw , inserted Iw and deleted words Dw:

Accw =
Nw − Sw − Iw − Dw

Nw

=
Cw − Iw

Cw + Sw + Dw

(1)

where Nw = Cw + Sw + Dw is the number of words in the
reference [9].

Our goal was to devise an evaluation method that measures
to what degree pairs of hypothesis trees, produced by a speech
interpretation system, and reference trees agree with each other.
Assuming that we know the optimum correspondences between
pairs of trees, the number of correct Cn, substituted Sn, inserted
In and deleted Dn tree nodes can be counted. Consequently we
define the tree node accuracy Accn analogously to Eq. (1) as:

Accn =
Cn − In

Cn + Sn + Dn

(2)

3. SEQUENCE MATCHING REVISITED

Let’s consider an example. Fig. 1 depicts a possible corre-
spondence function between a reference word sequence S1 =
[d_i, drei, sieben, drei, von, hamburg] and a hypothesis S2 =
[drei, zwei, sieben, drei, nach, hamburg]. Intuitively, the corre-
spondence function can be viewed as a transformation from S1 to
S2 that consists of three basic edit operations: Delete operations,
e.g. (1 7→ ε), insert operations, e.g. (ε 7→ 2), and map operations,
e.g. (3 7→ 3) or (5 7→ 5). In general, an edit operation is denoted
(i 7→ j), where i and j are indices 1 ≤ i ≤ |S1| or 1 ≤ j ≤ |S2|
from the symbol sequences S1 = [S1[1], S1[2], .., S1[|S1|]] or
S2 = [S2[1], S2[2], .., S2[|S2|], respectively, or the null index ε.
The edit operation (i 7→ j) is called a map operation if i 6= ε and
j 6= ε, a delete operation if i 6= ε and j = ε and an insert opera-
tion if i = ε and j 6= ε. A map operation (i 7→ j) is termed correct
if the symbols are identical (S1[i] = S2[j]), or a substitution oth-
erwise (S1[i] 6= S2[j]). Formally, the ith symbol of a sequence S

of length |S| is denoted S[i]. A sub-sequence of S that contains

consecutive elements from index i′ to index i inclusively is de-
noted S[i′..i]. Moreover, S[i..i] = S[i] and S[i′..i] = ∅ if i < i′,
where ∅ denotes an empty sequence.

By associating each edit operation with a cost, we can quan-
titatively characterize a transformation: The total cost or edit dis-
tance of the transformation is the sum of the costs of each edit
operation involved. Now, the goal of finding the best transfor-
mation can be reformulated as to find the transformation with the
minimum edit distance. We set the edit costs throughout the pa-
per according to the widely used NIST scoring software [10] to 4
for substitutions, 3 for insertions and deletions and 0 for correct
mappings.

A mapping M between two sequences S1 and S2 is defined as
an unordered set of edit operations:

M(S1, S2) = {(i1 7→ j1), (i2 7→ j2), .., (i|M| 7→ j|M|)} (3)

For the example of Fig. 1 the mapping M(S1, S2) =
{(1, ε), (2, 1), (ε, 2), (3, 3), (4, 4), (5, 5), (6, 6)}.

Any pair of map operations (i1 7→ j1) and (i2 7→ j2) with
1 ≤ i1, i2 ≤ |S1| and 1 ≤ j1, j2 ≤ |S2| of a mapping M(S1, S2)
has the following properties:

i1 = i2 ⇐⇒ j1 = j2 (one-to-one mapping) (4)

i1 < i2 ⇐⇒ j1 < j2 (symbol order preserved) (5)

The cost of a single edit operation (i 7→ j) is denoted c(i 7→
j) and usually depends only on the symbol identities, so that c(i 7→
j) = c(S1[i] 7→ S2[j]). In order to be a distance metric, c has to
meet the following conditions:

c(a 7→ b) ≥ 0 (non-negative cost) (6)

c(a 7→ a) = 0 (no cost for identity mapping) (7)

c(a 7→ b) = c(b 7→ a) (order independent) (8)

c(a 7→ c) ≤ c(a 7→ b) + c(b 7→ c) (triangle inequality) (9)

The edit distance De(M(S1, S2)) of a mapping M(S1, S2)
that transforms S1 into S2 is computed by accumulating the costs
of the single edit operations:

De(M(S1, S2)) =
X

(i,j)∈M(S1,S2)

c(i 7→ j) (10)

Now we can define the minimum edit distance Dmin
e (S1, S2)

as the edit distance of the mapping that yields the minimum value:

D
min
e (S1, S2) = min

M(S1,S2)
De(M(S1, S2)) (11)

3.1. Recursive formulation, dynamic programming algorithm

The task of computing Eq. (11) for given sequences S1 and S2

and a given cost function c is usually performed by a dynamic
programming (DP) algorithm [8]. With this algorithm, the mini-
mum edit distance is computed by accumulating the single costs
c step-by-step in a left-to-right manner. Locally, i.e. in each step,
decisions are taken to yield the least-cost path. The heart of the
algorithm is captured in a recursive formula that computes the
(minimum) accumulated cost for transforming the sub-sequence
S1[1..i] into S2[1..j] from previously computed values:

D
min
e (S1[1..i], S2[1..j]) =

min

8

<

:

Dmin
e (S1[1..i − 1], S2[1..j]) + c(i 7→ ε)

Dmin
e (S1[1..i], S2[1..j − 1]) + c(ε 7→ j)

Dmin
e (S1[1..i − 1], S2[1..j − 1]) + c(i 7→ j)

(12)
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0 0 → 3 → 6 → 9 → 12 → 15 → 18
↓ ↘ ↘ ↘

1 drei 3 4 3 → 6 → 9 → 12 → 15
↓ ↘ ↓ ↓ ↘ ↘ ↘ ↘

2 zwei 6 7 6 7 → 10 → 13 → 16
↓ ↘ ↓ ↓ ↘

3 sieben 9 10 9 6 → 9 → 12 → 15
↓ ↘ ↓ ↘ ↓ ↘

4 drei 12 13 10 9 6 → 9 → 12
↓ ↘ ↓ ↓ ↓ ↓ ↘

5 nach 15 16 13 12 9 10 → 13
↓ ↘ ↓ ↓ ↓ ↓ ↘ ↓ ↘

6 hamburg 18 19 16 15 12 13 10

Fig. 2. Dynamic programming example.

Fig. 2 illustrates the progression of the DP algorithm for the
minimum edit distance computation between the word sequences
of Fig. 1. The minimum edit distances Dmin

e (S1[1..i], S2[1..j])
are depicted as cells of a table whose columns and rows correspond
to the indices of S1 and S2, respectively. The table is processed
top-to-bottom and left-to-right. According to Eq. (12), the value of
a cell (i, j) is computed from the cells to the left (i − 1, j), to the
top (i, j−1), and to the top-left (i−1, j−1). Transitions from the
left are computed with the first term of Eq. (12) and correspond to
delete operations; ones from the top correspond to the second term
and to insertions; ones from the top-left correspond to the third
term and to correct matches if S1[i] = S2[j] or to substitutions
otherwise. The best transition corresponds to the minimum of the
three values and is depicted by an arrow. The costs for deletions,
insertions, substitutions and correct matches were set to 3, 3, 4 and
0, respectively, thus fulfilling Conditions (6) – (9).

Generally, more than one transition can result in the same op-
timum value, e.g. at cell (1, 2) both the transitions from the top
and from the top-left yield the minimal cost. Hence, a pair of se-
quences can have more than one minimum edit distance mapping.
The example of Fig. 2 has only one optimum mapping with an edit
distance of 10 (the value of the cell (|S1|, |S2|)). The optimum
mappings are retrieved by back-tracking the transitions from cell
(|S1|, |S2|) to cell (0, 0), depicted in Fig. 2 with bold-faced num-
bers. In order to allow delete and insert operations at the beginning
of the sequences, the table contains an extra column and row corre-
sponding to empty sequences ∅. The table is initialized by setting
the value of cell (0, 0) to Dmin

e (∅, ∅) = 0.

4. TREE MATCHING REVISITED

Similar to the case of sequences, the problem of finding the op-
timum match between a pair of ordered, labeled trees T1 and T2

can be tackled by determining the least-cost transformation from
T1 to T2 utilizing three basic tree editing operations, illustrated in
Fig. 3. The map operation converts a tree node i into j; a dele-
tion removes a node i and makes its children the children of its
parent k; inserting a node j makes it the child of a certain node
k and a consecutive number of k’s children become the children
of j. Similar to the sequence case, introducing a cost function for
the operations enables the definition of a minimum edit distance
criterion.

Formally, a labeled ordered rooted tree T consists of |T | la-
beled tree nodes, exactly one of them being the root node. A la-
beled tree node of T is referred to via its index i; its label is denoted
t[i]. Similar to [7], we assume in the following that the index cor-
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i j
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Fig. 3. Basic edit operations on tree nodes; a triangle depicts a
subtree of the node above it.

responds to the left-to-right postorder numbering of T , which can
be computed by performing a left-right depth search through the
tree, assigning each node a consecutive number after all of its chil-
dren have been visited. Hence, t[1] is the leftmost leaf node and
t[|T |] is the root node of T . Fig. 4 illustrates two example trees
including node labels and postorder numbers.

Similar to mappings between sequences (see Section 3), we
define a mapping M between two labeled, ordered trees T1 and T2

as an unordered set of tree edit operations:

M(T1, T2) = {(i1 7→ j1), (i2 7→ j2), .., (i|M| 7→ j|M|)} (13)

The indices i1, i2, .., i|M| and j1, j2, .., j|M| are either tree
node indices in the ranges 1..|T1| or 1..|T2|, respectively, or the
null index ε. The tree edit operation (i 7→ j) is called a map oper-
ation if i 6= ε and j 6= ε, a delete operation if i 6= ε and j = ε and
an insert operation if i = ε and j 6= ε. Fig. 4 illustrates a mapping
between two trees T1 and T2 by depicting the map operations with
gray arrows. For this example, the mapping is:

M(T1, T2) = {(1, ε), (2, ε), (3, 1), (4, 2), (ε, 3), (ε, 4), (5, 5),

(6, 6), (7, 7), (8, 8), (9, 9), (10, ε), (11, 10),

(12, 11), (13, 12), (14, 13), (15, 14)}

Any pair of map operations (i1 7→ j1) and (i2 7→ j2) with
1 ≤ i1, i2 ≤ |T1| and 1 ≤ j1, j2 ≤ |T2| of a mapping M(T1, T2)
must meet the following conditions:

i1 = i2 ⇐⇒ j1 = j2

(one-to-one mapping) (14)

i1 left sibling of i2 ⇐⇒ j1 left sibling of j2

(sibling order preserved) (15)

i1 ancestor of i2 ⇐⇒ j1 ancestor of j2

(ancestor order preserved) (16)

Similar to the mapping Conditions (4) and (5) of the se-
quence case, Condition (14) states that a node may not occur in
more than one map operation, and Condition (15) ensures that
the transformation preserves the left-to-right order. Additionally,
Condition (16) retains the top-to-bottom structure. This means
e.g. for Fig. 4 that if t1[14] = AOrigin is mapped to t2[13] =
ADestination, a descendant of AOrigin such as von may only be
mapped to a node ‘below’ ADestination. More precisely, we mean
‘below’ t2[13] in terms of structure (i.e. the descendants t2[10],
t2[11], and t2[12]) and not ‘below’ in terms of node depth (that
would allow e.g. von to be mapped to t2[7] = drei).

Similar to the sequence case, we define a cost function c(i 7→
j) for a single tree edit operation (i 7→ j). As the cost func-
tion should be a distance metric, we apply Conditions (6) – (9).
The tree edit distance Dt(M(T1, T2)) of the mapping M(T1, T2)
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Fig. 4. Mapping between labeled, ordered, rooted trees T1 and T2

with left-to-right postorder numbered nodes.

that transforms T1 into T2 and the minimum tree edit distance
Dmin

t (T1, T2) are thus expressed by:

Dt(M(T1, T2)) =
X

(i,j)∈M(T1,T2)

c(i 7→ j) (17)

D
min
t (T1, T2) = min

M(T1,T2)
Dt(M(T1, T2)) (18)

4.1. Recursive formulation

As in Section 3.1, we want to utilize a dynamic programming al-
gorithm to compute the minimum edit distance. Hence we need a
recursive formula to compute in a step-by-step, left-to-right man-
ner the accumulated costs for transforming ‘sub-structures’ from
T1 to ‘sub-structures’ from T2.

Similar to [7], we use the postorder numbering to define the
order of a tree T . A ‘sub-structure’ of a tree is thus composed
of consecutively numbered tree nodes. Generally, such a structure
does not consist of a single subtree of T but of several subtrees,
called an ordered subforest of T . The subforest is ordered in the
sense that its subtrees appear in the same order as they do in T .
Formally, T [i′..i] denotes the subforest consisting of the subtrees
of T that contain the nodes with indices i′ to i, inclusively. If
i′ > i, T [i′..i] = ∅. Fig. 5 illustrates an example for a subforest
of tree T1 of Fig. 4 that contains nodes 6..13 of T1.

The computation of forest distances is thus required as an
intermediate step for the computation of the tree distance. Our
desired formula should determine how to compute the mini-
mum distance between subforests T1[i

′..i] and T2[j
′..j] of the

trees T1 and T2. We denote this as minimum forest distance
Dmin

f (T1[i
′..i], T2[j

′..j]) or shorter Dmin
f (i′..i, j′..j). The de-

sired recursive formula should similar to the sequence case de-
termine the (minimum) forest distance from previously computed
distances and the costs for the three tree edit operations.

For delete and insert operations, the computation is equivalent
to the sequence case. The new forest distance is composed of the
old value and the cost for deletion or insertion, respectively. For
map operations, however, special care must be taken to ensure that
the formulation obeys the top-to-bottom structure of the trees (see
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ADigit
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(13)

hamburg
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Fig. 5. Ordered subforest T1[6..13] of tree T1 of Fig. 4.

Section 4). Note that the left-to-right ordering is automatically
preserved by the dynamic programming procedure. Thus we need
to decompose the forest(s) into two parts:

1. The subtree rooted at the current tree node i (or j)

2. All the other trees of the forest, located left of the current
tree node

In order to perform this decomposition, the postorder number
of the node at the ‘boundary’ needs to be known. Let T [i] denote
the subtree of T rooted at i. The index of the leftmost leaf descen-
dant of T [i] is denoted l(i). For leaf nodes, l(i) equals i. The
expression for T [i] in terms of forests is T [l(i)..i]. Thus, the part
of the forest T [i′..i] located to the left of i can be expressed as
T [i′..l(i) − 1] if i′ < l(i).

Since our ultimate goal is the computation of tree distances,
we restrict the value of the left bound i′ to be a leftmost leaf de-
scendant l(i1) of some tree node i1. Obviously, the right bound
i of the forest T [l(i1)..i] must then be a value from the set of de-
scendants desc(i1) of i1, i.e. part of the subtree rooted at T [i1].

Under the assumption that i ∈ desc(i1) and j ∈ desc(j1) we
can formulate the recursive forest distance computation similar to
[7] as:

D
min
f (l(i1)..i, l(j1)..j) =

min

8

>

>

<

>

>

:

Dmin
f (l(i1)..i − 1, l(j1)..j) + c(i 7→ ε)

Dmin
f (l(i1)..i, l(j1)..j − 1) + c(ε 7→ j)

Dmin
f (l(i1)..l(i) − 1, l(j1)..l(j) − 1)
+Dmin

f (l(i)..i − 1, l(j)..j − 1) + c(i 7→ j)

(19)

The first two terms of Eq. (19) correspond to delete and
insert operations, respectively. The third term corresponds to
a map operation and consists of the distance of the forests left
of i and j, of the distance of the subtrees rooted at i and j and
of the costs for the map operation (i 7→ j) itself. For the case
that l(i1) = l(i) and l(j1) = l(j) the forests T1[l(i1)..i] and
T2[l(j1)..j] are proper trees, so that there are no forests left of i

and j. Thus Eq. (19) can be split into two cases. Again we assume
that i ∈ desc(i1) and j ∈ desc(j1):

(Case 1) If l(i1) = l(i) and l(j1) = l(j):

D
min
f (l(i1)..i, l(j1)..j) = D

min
t (i, j) =

min

8

<

:

Dmin
f (l(i1)..i − 1, l(j1)..j) + c(i 7→ ε)

Dmin
f (l(i1)..i, l(j1)..j − 1) + c(ε 7→ j)

Dmin
f (l(i1)..i − 1, l(j1)..j − 1) + c(i 7→ j)

(20)

(Case 2) Otherwise, i.e. l(i1) 6= l(i) or l(j1) 6= l(j):

D
min
f (l(i1)..i, l(j1)..j) =

min

8

<

:

Dmin
f (l(i1)..i − 1, l(j1)..j) + c(i 7→ ε)

Dmin
f (l(i1)..i, l(j1)..j − 1) + c(ε 7→ j)

Dmin
f (l(i1)..l(i) − 1, l(j1)..l(j) − 1) + Dmin

t (i, j)
(21)



01: def compute_Dtree(T1,T2):
02: Dt = array(1,|T1|,1,|T2|)
03: LRKR1 = compute_LRKR(T1)
04: LRKR2 = compute_LRKR(T2)
05: for i1 in LRKR1:
06: for j1 in LRKR2:
07: Dtmin = compute_Dsubtree(i1,j1,Dt)
08: return Dtmin
09:
10: def compute_Dsubtree(i1,j1,Dt):
11: Df = array(l(i1)-1,i1,l(j1)-1,j1)
12: initialize_Df(Df)
13: for i in range(l(i1),i1):
14: for j in range(l(j1),j1):
15: if l(i) == l(i1) and l(j) == l(j1):
16: Df[i,j] = compute_Df1(l(i1),i,l(j1),j)
17: Dt[i,j] = Df[i,j]
18: else:
19: Df[i,j] = compute_Df2(l(i1),i,l(j1),j)
20: return Dt[i1,j1]

Fig. 6. Pseudo-Python code for minimum tree distance algorithm.

where Dmin
t (T1[i], T2[j]) or shorter Dmin

t (i, j) denotes the
minimum tree distance between the subtrees rooted at i and j, re-
spectively.

Our goal is to compute Dmin
t (T1[|T1|], T2[|T2|]) which is

equal to Dmin
t (T1, T2). As we can see from Eq. (21) this involves

the computation of the tree distances Dmin
t (i, j) for all pairs of

subtrees (T1[i], T2[j]), 1 < i < |T1|, 1 < j < |T2|. However,
some of these distances are already available from the computation
of Dmin

t (i1, j1). These are the pairs of subtrees whose roots i and
j are in the paths of l(i1) to i1 and l(j1) to j1, respectively. Thus
only the root node and all nodes with left siblings need separate
computations. Formally, this set of nodes is called the left-right
keyroots LRKR(T ) of T , and is defined as in [7] as:

LRKR(T ) = {k |6 ∃ k′ > k such that l(k′) = l(k)} (22)

For the example of Fig. 4, LRKR(T1) = {6, 8, 9, 13, 14, 15}
and LRKR(T2) = {4, 6, 8, 12, 13, 14}.

4.2. Dynamic programming style algorithm

Fig. 6 depicts some Pseudo-Python code for the minimum tree
edit distance computation with a dynamic programming style
algorithm. The main procedure is compute_Dtree(T1, T2),
where the values for Dmin

t are stored in the permanent array
Dt, which is allocated in line 02. Then the left-right key-
roots are computed for both trees via compute_LRKR(T) and
stored in ascending order. The for loops of lines 05 and 06
loop over all pairs of left-right keyroots, computing the mini-
mum tree edit distance for the subtrees rooted at i1 and i2 via
compute_Dsubtree(i1, j1, Dt). In this procedure, first a
temporary array Df for the minimum forest distances is allocated
(see line 11). The column and row indices of Df correspond to
the numbers of the nodes contained in the subtrees rooted at i1
and i2. The additional first column and row correspond to the
empty forests ∅, and are initialized in line 12 similar to Fig. 2. The
for loops of lines 13 and 14 loop over all nodes of the subtrees in
ascending order, and calculate in lines 16 and 19 the minimum for-
est distances after Equations (20) and (21), respectively. In line 17,
forest distances that correspond to tree distances are stored in the
permanent array Dt. Finally, the mapping (or mappings) leading
to the minimum tree edit distance can be constructed similar to the
sequence case by back-tracking the least-cost transitions from cell
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Fig. 7. Semantic trees of Fig. 4, redrawn to reflect the node types.

(|T1|,|T2|) to cell (0,0) of the forest distance matrix Df during the
last call of compute_Dsubtree. As [7] shows, the complexity of
this algorithm is O(|T1|× |T2|×min(depth(T1), leaves(T1))×
min(depth(T2), leaves(T2))).

5. EXTENSION TO TYPED TREES

As mentioned in the introduction, we extended the basic tree eval-
uation scheme to support trees consisting of labeled and addition-
ally typed nodes. This need arises from the structure of the seman-
tic model we employ, which consists of a hierarchy of probabilistic
transition networks [2], whose labels correspond to the node labels
of the trees that ODINS decodes. The network hierarchy is sub-
divided into a number of hierarchy levels, e.g. phonemes, words,
word classes and semantic concepts. All networks of a hierarchy
level share the same properties, which can be structural restrictions
or search parameters. Fig. 7 shows the semantic trees of Fig. 4, re-
drawn so that a horizontal line through the tree only touches tree
nodes of the same type (i.e. the hierarchy level). In Fig. 7 two im-
portant properties of the hierarchy can be seen, namely that a hi-
erarchy level may consist of several sub-levels, and that sub-levels
or even entire levels may be skipped.

We modified the cost function for the edit operations in order
to avoid that tree nodes of different types are mapped, called type
substitutions. Thus we only set the substitution cost to 4 (see Sec-
tion 3) if the types of the mapped nodes are identical. Otherwise,
the substitution cost is set to ∞. This modification has the effect
that an insertion and a deletion is always preferred over a type sub-
stitution. It is also required to ensure that the ‘dummy’ root node,
which we add to a semantic tree to yield a rooted tree and which
is assigned its own type, is always mapped to the root node of the
other tree. Note that this modification also implies that the tree
distance is no longer a distance metric in the strict sense, as the
triangle inequality (see Eq. (9)) does no longer hold.

6. COMPARISON WITH CONCEPT ACCURACY

In order to compute the concept accuracy Accc, we first have
to convert the semantic trees into sequences of slot–value pairs.
This is done by taking each leaf node as a value for the slot
given by the concatenation of its ancestor nodes. The tree of
Fig. 7 (top) would e.g. be converted to (slot,value) pairs (AFlight-
Code.AAirlineCode, d_i), (AFlightCode.AFlightNumber.ADigit,
drei), . . . , (AOrigin.APlace, hamburg), where a dot denotes a
concatenation. The resulting sequences are then matched as de-
scribed in Section 3 and the concept accuracy is computed from



# concepts 0 5 10 15 27 47

# concept sublevels 0 2 2 2 2 3
test-set perplexity 25.4 24.6 28.2 29.8 30.4 28.9

Accw 83.3% 83.4% 81.8% 81.9% 81.2% 82.9%
Accc 82.1% 82.3% 78.8% 77.3% 74.1% 58.0%
Accn 84.6% 85.9% 85.6% 85.5% 84.3% 82.6%

Accn − Accc 2.5% 3.6% 6.8% 8.2% 10.2% 24.6%

Table 1. Tree and sequence matching evaluation results for models
of different semantic complexity.

the (slot,value) pair counts similar to Eq. (1):

Accc =
Cc − Ic

Cc + Sc + Dc

(23)

Both the slots and the values of concepts must match to be counted
as correct Cc. A substitution Sc is given if only the slot matches, if
it doesn’t a deletion Dc or insertion Ic is counted. For the example
of Fig. 7 this would mean that all of the (slot,value) pairs would be
rated as insertions and deletions because none of the slots match.
Thus, the concept accuracy would be Accc = 0−6

0+0+6
= −100%,

whereas the tree node accuracy would be Accn = 9−2
9+2+3

= 50%.
This example suggests that the two approaches can produce

largely different results (which are admittedly extreme in the given
example). Although both approaches honor partially correct in-
terpretations, the tree matching approach displays greater flexi-
bility in finding correspondences between partially correct sub-
structures, whereas the concept accuracy metric always requires
fully matching ‘vertical’ interpretations. Consequently, we expect
the difference between the two evaluation metrics to be related to
the complexity of the hierarchical model.

7. EXPERIMENTAL RESULTS

Based on a hierarchically annotated set of 1446 spoken utterances
from 17 different speakers that were collected in a wizard-of-oz
setup simulating a spoken dialogue system for an airport infor-
mation system, we built 6 different hierarchical transition net-
works that incorporate varying degrees of semantic information.
The most complex hierarchical model consists of 574 words, 11
word classes and 47 semantic concepts, and speaker-independent
tied intra-word triphone HMMs with about 25k Gaussian mixture
components, trained as described in [2]. For the global sentence
model at the top of the hierarchy, backing-off bigrams were es-
timated. In order to reduce the degree of semantic information,
we deleted varying numbers of semantic concepts from the an-
notation trees, and repeated the model building procedure. Thus
all models have identical phoneme, word and word class levels,
whereas the concept levels and the global sentence models differ.
We built reduced complexity models with 27, 15, 10, 5 and 0 se-
mantic concepts. The evaluations were performed on a test set of
233 utterances from 3 different speakers which are not contained
in the training set. Table 1 displays the resulting word, tree node
and concept accuracies along with the test-set perplexities of the
different models. Note that the output trees of the least complex
model (first column of Table 1) are only composed of words and
word classes, but no semantic concepts. The bottom row contains
the absolute differences between the tree node accuracy and the
concept accuracy. The experimental data confirm our expectation,

as the two approaches’ difference continually rises with increas-
ing model complexity, from 2.5% for the model without semantic
concepts to 24.6% for the most complex model with 47 concepts
and 3 concept hierarchy sub-levels.

8. CONCLUSION

We proposed the use of tree pattern matching methods for the eval-
uation of speech interpretation systems that produce hierarchically
structured output. We reviewed the fundamental matching princi-
ple which is based on minimizing the tree edit distance, and out-
lined a suitable dynamic programming style algorithm. A mod-
ification of the cost function leads to an extension of the basic
scheme, making it applicable to typed trees. An example was
given in order to illustrate the argument that the tree node accu-
racy metric displays greater flexibility by taking the structural cor-
respondence of trees into account, whereas the concept accuracy
only rates fully matching interpretation slots as correct. We also
presented experimental data confirming that the discrepancy of the
two metrics rises with the complexity of the hierarchical model.
Hence, we conclude that the tree node accuracy is especially suited
for evaluation of speech interpretation systems that utilize complex
hierarchical models. However, in practice the appropriateness of
an evaluation metric also greatly depends on the capabilities of the
component which further processes the semantic representation.
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