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ABSTRACT

This work describes a powerful demonstrator of a video-
based approach for detecting and classifying dynamic head
gestures. The head of the user is localized via a combination
of color- and shape-based segmentation. For a continuous
feature extraction, we use a template matching of the nose
bridge in combination with selected features derived from
the optical flow. The core classification unit consists of dis-
crete Hidden Markov Models (DHMMs). We extensively
tested the system in two different domains (desktop Virtual-
Reality and automotive environment). In the current state
of development, six different gestures can be classified with
an overall recognition rate of 97.3% in the VR, and 95.5%
in the automotive environment, respectively. The approach
works absolutely independent from the image background
and additional gesture types can easily be integrated.

1. INTRODUCTION

The development of user interfaces has become a signifi-
cant factor in the software design process. Growing func-
tional complexity and mostly restriction to purely tactile
interaction required extensive learning periods and adapta-
tion by the user to a high degree, which significantly in-
creased user frustration. To overcome these limitations, var-
ious new interaction paradigms have been introduced in the
course of time. Multimodal interfaces currently resemble
the latest step in this development. They enable the user to
freely choose among multiple input devices, provide essen-
tial means to resolve recognition errors of individual com-
ponents, and thus lead to systems that can be worked with
easily, effectively, and above all intuitively[1]. Besides speech
input, the use of gestures provides an interesting alternative
for people with certain disabilities. For example, in an au-
tomotive environment, head gestures allow control of the

in-car devices without losing eye-focus on the street. Hence
head gestures offer a highly effective input alternative, as
the hands can still be used to drive the car.

This contribution illustrates a robust algorithm along with
a real-time demonstrator for video-based recognition of dy-
namic head gestures. The implemented module has been
extensively tested in two different domains: a desktop ori-
ented Virtual-Reality application (DVA) and the operation
of various infotainment applications in an automotive envi-
ronment (AIA). The long-term goal of the research effort
is to use the head gesture module as an integral part of an
domain-invariant multimodal system architecture.

1.1. Related work

Many research groups have contributed significant work in
the field of video-based head gesture recognition. In a sys-
tem developed by Morimoto[2], movements in the facial
plane are tracked by evaluating the temporal sequence of
image rotations. These parameters are processed by a dy-
namic vector quantization scheme to form the abstract in-
put symbols of a discrete HMM which can differentiate be-
tween four head gestures (yes, no, maybeandhello). Based
on the IBM PupilCam technology, Davis[3] proposed a real-
time approach for detecting user acknowledgments. Motion
parameters are evaluated in a finite state machine which in-
corporates individual timing parameters. Using optical flow
parameters as primary features, Tang[4] applies a neural
network to classify ten different head gestures. The ap-
proach is quite robust with regard to different background
conditions. Tang obtained an average recognition rate of
89.2% on a workstation processing 30 frames per second.

1.2. Gesture vocabulary

Before designing specific algorithms, we analyzed and cate-
gorized different types of natural dynamic head movements
and determined the set of recognizable gestures. As an im-
portant result of a dedicated offline analysis of the video ma-
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terial, we found out that the majority of gestures (96.39%)
has exclusively been composed of rotational movements[5].
Thus, we exclusively consider head gestures that consist of
one or a combination of head rotations.

Since the recognition module is to be implemented in
various contexts, we define two sets of possible head ges-
tures. The first set (GS1) contains six gestures: moving
the headleft and right (rotation around theyaw-axis), up
anddown(rotations around thepitch-axis), and bending the
head left and right (rotation around thecurl-axis). Addition-
ally, by combining basic movements, two compound ges-
tures are evaluated headnoddingand headshaking. The vo-
cabulary of the second set (GS2) is designed to exclusively
support user acknowledgment decisions. Thus, we reduced
it to the gestures headnoddingand headshaking.

2. COLOR-BASED SEGMENTATION

Based on the excellent overview given in[6], we experi-
mented with various techniques. Since a fundamental re-
quirement of our approach is real-time processing capabil-
ity, we propose a color-based segmentation approach, be-
cause it is rotation- and scale-invariant, and the calculation
is very fast. Moreover, this method does not require any
kind of initialization, and has proved to be highly robust
with regard to arbitrary motion in the background. The in-
dividual steps of the segmentation process are visualized by
the two sequences shown in figure 1.

Given in the standard size of 382x288 pixels, the input
image is in standard RGB color format, with each channel
composed of 8 bit (figure 1(a)). To differentiate between
skin color and background, the image is converted to the
YCbCr color space by the following expression: Y

Cb
Cr

 =

 0.299 0.587 0.114
−0.169 −0.331 0.5
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 R
G
B
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Since different skin types mostly differ in the luminance
component and not with regard to the hue value, theY -
channel can be neglected in the following. Concerning the
CbCr-plane, skin colors only cover a small fraction. For
each of the color vectors, the probability of belonging to
human skin can be estimated. To simplify the color dis-
tribution, we use an approximation by the following Gaus-
sian function. For specifying the individual parameters, the
mean value~m was calculated (whereE denotes the expec-
tation value):

~m = E{~xi} with ~xi =
(

Cr
Cb

)
and the covariance matrix

C = E{(~xi − ~m)(~xi − ~m)T }

on the basis of 42 random user skin samples~xi. To filter
out non skin-color areas, the histogram of theCbCr part of
the input image is multiplied with the Gaussian distribution
calculated by:

p(Cr,Cb) = exp[−0.5(~xi − ~m)T C−1(~xi − ~m)].

The resulting histogram is used to project the color image
onto a gray-value image (figure 1(b)), in which each skin
color value is represented by a gray-value according to the
probability specified by p(Cr,Cb). Afterwards, this gray-
value image is binarized differentiating between potential
skin colors and background (figure 1(c)).

Moreover, we apply a sequence of morphological filters
on the binary image. First, aclosingwith a small ellipse
eliminates small particles that have occurred due to noise.
Then, anopeningwith a medium-sized rectangle tries to
cover dark areas like in the eyes. For each blob, poten-
tially occurring leaks will be filled. These leaks can often
be found near to the eyes. As they are not skin-colored, they
have a negative influence on the correct segmentation of the
whole face region. The result of these morphological filters
are shown in figure 1(d). Finally, a closing with a longish
bigger ellipse removes all areas which do not have the cor-
rect size (figure 1(e)). By a bounding boxR around the
best-fitting ellipse, the position of the potential head candi-
date is specified (figure 1(f)).

3. TEMPLATE MATCHING

To further improve the quality of the segmentation result,
we additionally apply a template matching algorithm. There-
fore, a striking, invariableregion of interest(ROI) in the
facial plane has to be identified. A basic requirement for
a robust tracking of this ROI should be the independence
of special faces. Taking the center of the eyes as ROI re-
sults in misclassifications when the user blinks. In this case,
the eyes fuse with the rest of the face to one single blob.
Moreover, the mouth drops out as a potential ROI, since
it changes its form during talking. Therefore, we concen-
trate on the nose bridge as the key feature. For enlarging
the matching criteria, we use a symmetric template includ-
ing the nose bridge, the area of the eyes, and parts of the
eye-brows.

For each of these head candidates, we calculate a mea-
sure of how good the template matches the current image
regionR. This is done by determining the match quality
of the template and the input image column by column and
row by row. The result of this match depends both on the
quality of the template and the special kind of the matching
algorithm. We use the standard gray-level correlation

c(x, y) =
∑

(u,v)∈R

t(u, v)b(x + u, y + v),
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Fig. 1. Individual steps of the segmentation process: the input image given in standard RGB format with a size of 382x288 pixels (a),
skin-color information coded in a gray-value image (b), binarized image due to a certain threshold differentiating between potential areas
of skin-color and background (c), result of a sequence of morphological filters to improve the segmentation result (d), final closing with a
longish ellipse to identify potential head candidates (e), and marking head regions in the original input image (f).

where the templatet(x, y) is defined overR andb(x, y) de-
notes the input image. We relate the individual gray-values
to the medium gray-value and normalize them by their stan-
dard deviation. Using the gray-scale correlation instead of
the sum of absolute gray-scale differences, changes in the
light conditions can easily be handled.

If the resulting match value is below a certain thresh-
old, the head candidate will not be accepted as a potential
position of a head. If more than one candidate exceeds the
threshold, the best correlation candidate is taken for further
processing. This can be seen in the lower series of images
in figure 1, where the right candidate is preferred.

The native segmentation phase is exited, if a head candi-
date is found. All further calculation steps are done within
the region found as a result of the native segmentation pro-
cess. In case the area gets to small or no blob is found any-
more, the search is extended to the complete image. This
principle guarantees for an integral robust localization of the
head and a fast tracking of the head regions in the image.

4. CONTINUOUS FEATURE EXTRACTION

The tracking module calculates the spacio-temporal move-
ments of head candidates in the image sequences and pro-
vides the basic data for the subsequent classification pro-
cess. We apply a hybrid combination of the Averaged Op-
tical Flow (AOF) and the continuous template matching of
the nose bridge. Hence, the template matching is used to
estimate the position of the nose bridge in the tracked face
region. The optical flow calculates motion vectors of certain
areas of interest in subsequent images. The approach tries
to find solutions to the known flow equation∇I ·~v+It = 0.
Hence,I = I(x, y, t) denotes the luminance, which de-
pends of the local coordinatesx, y, and the timet. More-

over, ~v = (dx
dt ; dy

dt )T represents the vectored velocity of
the head movement. For calculating~v, the standard Lucas-
Kanade algorithm[7] is used. For reasons of system per-
formance, we apply this local method instead of techniques
operating on the whole image (e.g. theHorn-Schunkalgo-
rithm). In common implementations, the AOF is usually
computed over a rectangle containing the whole head. Yet,
we have found out that the bounding box around the head
region in itself is sometimes not sufficient for adequate clas-
sification results. Concerning rotations of the head in the
image plane (yaw- and pitch-axis), the resulting bound-
ing box does not change significantly. This especially holds
for segmentation results that cover bigger parts of the body.
A nod of the user could not be detected, because the total
movement is completely enclosed in the primary rectangle.
Thus, the result of the segmentation is only used to restrict
the search area for the extraction of the features. We apply
the AOF technique to detect rotational movements around
the nose bridge. For this purpose, the face is separated into
two halves each bounded by a rectangle. In our approach,
we use the already localized nose bridge as an approxima-
tion for an element on the vertical symmetry axis of the face.
With respect to this point, the position of two 40x40 pixel
squares are calculated. For each half of the face, the AOF is
separately calculated. As an effect of the implementation,
we get two competing outputs for the AOF for each side
of the face. Concerning the gesture setsGS1 andGS2, the
AOF of the left and the right side of the face make for al-
most identical results. Thus the two redundant features are
supposed to confirm each other. The nose bridge is used
as an origin of the local coordinate system of the rectangles
bounding the face halves. In combination with the relative
movement of the nose bridge, we are able to distinguish be-
tween horizontal movements of the user and head shaking
itself. With horizontal movements, the AOF is zero, as the



offset generated by the movement is compensated by the
offset of the relative coordinate system.

As a third feature, we use the difference vector of the
nose bridge between two frames. Based on the template
matching outlined in section 3, we can establish a local
Cartesian coordinate system with its zero point in the lower
left corner of the rectangleR (see figure 1(f)). Letj be an
integer indexing each frameF of a video sequence. For
thej-th frameFj , let the center of the template be denoted
by ~cj . Referring to the previous frameFj−1, we can ex-
press the motion of the nose bridge by the difference vec-
tor ~dj = ~cj − ~cj−1. This vector is transformed into a po-
lar representation using the absolute value‖~dj‖2 and the
phaseϕ. Let dj,1 be thex-component anddj,2 denote the
y-component of~dj , then the phase can be calculated via

ϕj =

{
0 , if dj,1 = 0
arctan(dj,2

dj,1
) else

Using ϕj and‖~dj‖2, we can specify the direction and the
speed of the head motion for each frame. These three fea-
tures provide the basis for the classification process that is
described in the subsequent section.

5. CLASSIFICATION

Modeling head gestures, a fundamental aspect is tolerance
of small divergences regarding the temporal run and the du-
ration. In the field of stochastic approaches, Hidden Markov
Models very well cope with molding on time variant pat-
terns. In addition, they show a robust behavior on small
breaks during a gesture, which are likely to appear when
the head moves through the inflection point within a ges-
ture. In the current implementation, we use Discrete Hidden
Markov Models (DHMMs) composed of five states for the
classification of head gestures. As mentioned in[8], DHMMs
in general take more parameters, but the calculation is eas-
ier in the recognition process. The generation of the discrete
symbols that are fed into the DHMMs can be split up into
two steps. First the optical flow and the arithmetic mean is
computed over the regions which are in close vicinity to the
nose bridge. Then, both vectors as well as the speed vec-
tor of the nose bridge, whose position has been determined
by a template matching, are discretized to integer values be-
tween 0 and 5. Hence the symbol 0 representsno movement.
The symbols 1 to 4 are generated by applying the mapping
scheme sketched in figure 2.

If θ = 0◦, the two dimensional space is symmetrically
partitioned into four motion sectors (from the viewpoint of
the camera). In different test runs, we varied the partition
types by applying different values forθ. Additional expla-
nations can be found in section 7.

Fig. 2. Mapping scheme forϕ (viewpoint: camera)

As the discrete pixel movements range between zero and
three pixels, a more subtle distinction is not suggestive. The
symbolss1, s2, ands3 are canonically coded into a value
representing the final symbol, using the known formulas1+
5s2 + 52s3. The classifier evaluates the symbol sequences
and puts out a probability vector for each DHMM. Finally,
the result is returned in terms of ann-best list.

6. SPOTTING

In the current state of development, the recognition process
is automatically triggered, when any kind of head move-
ment is detected. For this purpose, the absolute value of dif-
ference vector of the nose bridge (see section 4) is evaluated.
If two head gestures directly follow one another, a number
of five or more idle frames must be detected between these
two gestures to separate them. Otherwise, the recognition
process continues, which consequently leads to wrong re-
sults. The improvement of the segmentation between sin-
gle gestures is part of current work. Hence we are about
to implement a technique proposed in [9], which applies an
improved normalized Viterbi algorithm for a continuous ob-
servation of the HMM output scores. This approach allows
for an integrated spotting and classification at a time.

7. EVALUATION

The recognition module system has been implemented on
an Intel Pentium IV machine with 512KByte cache and 1
GByte memory under the Linux operating system (Kernel
2.4.20). We have evaluated both the time performance and
the recognition rates in the various domains. A single input
frame is composed of an RGB image with 288x384 pixels.

7.1. Test environment and procedure

The approach has been evaluated in two different applica-
tion domains. One test series was run under optimized con-
ditions in the computer-vision laboratory of the institute.
We shielded the environment from glares of the sun, and



G↓ H→ Up Down Left Right Shake Nod

Up 96.3 0.4 0.1 0.1 0.6 2.5
Down 0.5 96.1 0.2 0.2 0.2 2.8
Left 0.2 0.1 98.0 0.8 0.8 0.1
Right 0.1 0.1 0.5 96.6 1.9 0.8
Shake 0.1 0.3 1.4 1.0 97.0 0.2
Nod 1.3 2.5 0.1 0.3 0.2 95.6

Table 1. Recognition rates with regard to gesture setGS1 in
the VR (G: actual head gesture, H: HMM gesture modeling)

used a flicker-free light. The scene background was native
consisting of different objects. During the data collection,
the test subjects sat on a chair in front of a camera (distance
60cm). They had to interact in different desktop-VR scenar-
ios, using head gestures of both test setsGS1 andGS2.

In the second test series, we focused to evaluate head
gestures under preferably realistic conditions. The test do-
main was an automotive environment in a driving simulator.
Driving the test car in the simulation, the trial participants
had to perform head gesture interaction with different in-car
infotainment devices. Yet, we did not consider any influ-
ences of artificial vibrancies or forces implicated by bumps,
curves, or braking. The camera, which had the same sample
rate as in the VR-desktop environment, was positioned on
the dash board over the steering wheel with an approximate
distance of 45 cm. To simulate alternating light conditions,
we shaded the laboratory, and used a set of spotlights.

In both test environments, a set of gestures with moving
objects in the background were evaluated. The video data
was captured. In case subsequent gestures have been made,
they were not manually segmented in order to analyze sys-
tem behavior with respect to the prototypical spotting.

7.2. Results

We used a total of 153 video sequences of ten different test
subjects, and 120 sequences of eight subjects in the auto-
motive environment. The training corpus for the DHMMs
has consisted of 32 selected symbol sequences. It contained
gestures of four persons of different skin colors and one
person wearing glasses. We have used the Baum-Welch
method for the training. The data for test and training has
been strictly disjoint.

Tables 1 to 3 show the recognition results. In both do-
mains, a strong affinity between direction related gestures
(up, down, nod, andleft, right, shake, respectively) could be
observed. This effect has been aggravated, when the ges-
tures are made very quickly. Then, the resulting symbol se-
quence corresponding to the gesture has contained too few
elements, so no good match for an DHMM has been found.

Particularly, the good recognition rates for the reduced
set G2 have been due to the training corpus containing a

G↓ H→ Up Down Left Right Shake Nod

Up 95.2 1.2 0.3 0.3 0.2 2.8
Down 1.9 94.5 0.4 0.3 0.1 2.8
Left 0.2 0.6 95.0 2.2 1.1 0.9
Right 0.5 0.7 1.2 94.2 3.1 0.3
Shake 0.3 0.3 2.2 2.5 93.9 0.8
Nod 1.5 3.0 0.5 0.2 0.6 94.2

Table 2. Recognition rates with regard to gesture setGS1

in the automotive environment

G↓ H→ Shake Nod

Shake 98.2 2.2
Nod 1.8 97.8

G↓ H→ Shake Nod

Shake 96.8 3.9
Nod 3.2 96.1

Table 3. Recognition rates with regard to gesture setGS2

in the VR (left) and the automotive environment (right)

great variety of gestures of different durations. Consider-
ing all types of gestures, the performance is better in the
VR-desktop scenarios than in the automotive environment,
where head movements often were less distinct. This partic-
ularly happened in cases the subjects did not have a frontal
view into the camera. In 20 evaluated test sequences, the
head of the test participant was initially rotated by approx-
imately 40◦. In some cases, blinking or even moving the
pupils have had a negative impact on the computation of
the AOF, which has consequently lead to misclassifications.
Moreover, we have observed that the AOF is more likely
to be error-prone to bad light conditions than the template
matching algorithm and the feature extracted from it.

8. DEMONSTRATION PLATFORM

To evaluate the individual parameters and to demonstrate
the usefulness of our head recognition system, we designed
and implemented a dedicated graphical user interface (GUI)
as the primary front-end to the control several basic func-
tionalities. The GUI mainly consists of four areas (see fig-
ure 3): the main window and three output windows for
showing different stages of preprocessing and classification.

The main window(1) serves for adjusting the individual
parameters, coordinating specific input sources and select-
ing the classification approach. Concerning the initial de-
fault settings for the preprocessing stage, the search region
is set toδx = 3px, δy = 3px (px: pixels) with regard to
1/8 of the image size (384x288 px), the skin color thresh-
old (SC) is 2. Moreover, the initial values for the semi-axes
(a; b) of the ellipsoidal structuring elements are:(22; 16)
for the head structuring element (MO1), (2; 2) for the noise
structuring element (MO2), and(5; 5) for the eye structur-
ing element (MO3). The confidence for accepting a head
candidate is 0.7 by default. Concerning the tracking algo-



Fig. 3. A screenshot of the demonstrator GUI

rithm, the block size in which the AOF is computed, is a
40x40 px rectangle. Moreover, the default threshold for ac-
cepting the nose bridge template is 0.7. All parameters can
be individually adjusted during an offline evaluation.

The three output windows are structured, as follows.
The main output windows(2) shows the video source and
marks relevant regions in the image. A segmented head is
framed by a red bounding box, the center of the nose bridge
is shown by a green cross and the search region for the nose
bridge is indicated by a green rectangle. Concerning the
AOF in the two halves of the face, the resulting vectors are
visualized by blue arrows. The second output window(3)
shows the result of the skin-color segmentation and the last
window(4) visualizes the result of the morphological filters
applied to the input image that identifies the set of potential
head candidates.

9. CONCLUSION AND FUTURE WORK

Head gestures offer strong potential for an intuitive, effi-
cient, and robust human-machine communication. They rep-
resent an interesting input alternative, especially in environ-
ments, where tactile interaction is difficult or error-prone.
We discussed an HMM-based approach for video-based head
gesture recognition and described a real-time demonstrator
to be used in different application scenarios.

The existing system offers various extension possibili-
ties. In a current approach, the head gesture recognition unit
is to be coupled with a natural speech recognizer, using an
early feature fusion. This allows for further improvement
of the overall recognition rates and benefits from the fact
that many user inputs (especially confirmation and nega-
tion) areredundantly linked (i.e. temporally overlapping).
In a late semantic fusion approach based on a client-server
architecture[10], the output of the head gesture recognition
unit is combined in a central integration unit. Applying con-
text knowledge, the integrator can dynamically vary the vo-
cabulary of the head gesture recognizer. If, for example, in
a system dialogue a yes-no answer is expected, the system

could instruct the recognizer to load configurationGS2, as
other input does not make sense in this system context. By
this, we expect a remarkable improvement of the recogni-
tion rate and time performance.
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