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Abstract

Linear solvers are the motor for many computer simulations that are based on partial
differential equations (PDEs). For a wide range of problems, multigrid solvers belong
to the most efficient ones. Their convergence rate is mostly independent of the mesh
size of the underlying problem discretisation, and thus they have optimal complexity.

During the last two decades, there has been a strong focus on algebraic multi-
grid, which can easily employ accurate unstructured grids and is very robust. But
increased accuracy requirements, complex models, and huge amounts of data from
engineering, scientific or, e.g., medical applications require the use of supercom-
puters. Their architecture forces researchers to rethink their algorithms and data
handling. For example, algebraic multigrid suffers from a serious performance de-
crease on parallel architectures, due to high setup costs and communication over-
head, unstructured data access, indirect addressing, and a large memory footprint.
Therefore, the less robust geometric multigrid is now reconsidered. For the data,
spacetrees have turned out to not only provide fast data access but also an efficient
structure for performing the computations.

This work combines the advantages of geometric and algebraic multigrid. It de-
fines the solver on a geometrically coarsened structured grid, but instead of geomet-
ric multigrid operations the much more robust BoxMG by Dendy using operator-
dependent intergrid transfer operators and Petrov-Galerkin coarse-grid operators is
used. The solver is implemented on a spacetree as underlying data- and computa-
tional structure, ensuring efficient data handling, data locality, and low communi-
cation overhead. It is integrated into and parallelised in the PDE solver framework
Peano, which has a small memory footprint and is very memory-efficient. This
results in a robust solver that is tailored to high performance computers.






Zusammenfassung

Lineare Loser sind der Motor fiir viele Computersimulationen, die auf Partiellen
Differentialgleichungen (Partial Differential Equations, PDEs) basieren. Fiir eine
Vielzahl von Problemen gehoéren Mehrgitterloser zu den effizientesten Losern. Thre
Konvergenzrate ist meist unabhéngig von der Gitterweite der zugrundeliegenden
Problem-Diskretisierung. In diesem Sinne haben sie optimale Komplexitét.

Wiéhrend der letzten beiden Jahrzehnte bestand eine starke Fokussierung auf al-
gebraisches Mehrgitter, das problemlos mit unstrukturierten Gitter umgehen kann
und sehr robust ist. Jedoch erfordern erhéhte Genauigkeitsanforderungen, kom-
plexe Modelle und riesige Datenmengen aus Ingenieurs-, Wissenschafts- oder Medi-
zinanwendungen die Verwendung von Grofsrechnern. Deren Architektur fithrt dazu,
dass Wissenschaftler ihre Algorithmen und die Datenverwaltung und - verarbeitung
iiberdenken miissen. Algebraisches Mehrgitter, z.B., erfahrt auf parallelen Architek-
turen einen ernsthaften Leistungseinbruch. Dieser liegt in hohen Setup-Kosten,
Zusatzkosten fiir die Kommunikation, unstrukturiertem Datenzugriff, indirekter Ad-
ressierung und einem hohen Speicherverbrauch begriindet. Infolgedessen wird seit
einiger Zeit das weniger robuste geometrische Mehrgitter wieder in Betracht gezo-
gen. Als Datenstruktur haben sich Spacetrees bewéhrt, da sie nicht nur schnellen
Datenzugriff gewéahrleisten, sondern auch eine effiziente Rechenstruktur darstellen.

Diese Arbeit kombiniert die Vorteile von geometrischem und algebraischem Mehr-
gitter. Sie definiert den Loser auf einem geometrisch vergroberten Gitter, anstelle
von geometrischen Mehrgitteroperationen wird jedoch das viel robustere BoxMG
von Dendy, welches operator-abhéngige Intergrid-Transfer-Operatoren und Petrov-
Galerkin-Grobgitteroperatoren verwendet, eingesetzt. Der Loser wird auf einem
Spacetree als zugrundeliegende Daten- und Rechenstruktur implementiert, wodurch
eine effiziente Datenverarbeitung, Datenlokalitdt und geringe Kommunikationskosten
gewihrleistet sind. Er wird in das PDE-Loser-Framework Peano, das einen gerin-
gen Speicherverbrauch hat und sehr speichereffizient ist, integriert und darin par-
allelisiert. Dadurch erhalten wir einen robusten Loser, der die Anforderungen von
Hochleistungsrechnern erfiillt.
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1 Introduction

1.1 Motivation and Objective

Computer simulations of blood flow in the vessels, tsunamis approaching a coast
line, the heating process of a piece of metal, supernovae and galaxies have one thing
in common: The underlying processes are mostly modelled by partial differential
equations (PDEs). But the model alone is not enough for a simulation. In order
to make stars and planets move and blood and water flow, we need solvers for the
PDEs. They are in this sense the “motor” of the simulation.

There are two important critical point in today’s scientific computing and com-
putational science world: Memory and computational complexity. On the one hand
the — for example scientific, engineering, or medical — problems that are aimed to be
solved on computers are becoming larger and larger, increasing the amount of data
to be handled and thus the need for supercomputers. On the other hand, super-
computers have only a restricted memory capacity per core, and memory access is
expensive. Hence, effort has to be taken in order to organise the data in such a way
that the inter-core communication is kept low and the memory access is as efficient
as possible. In addition, the methods used for solving a problem have to be scalable
in terms of numbers of iterations needed to solve a problem with a large number of
unknowns.

These issues are directly connected to energy consumption. We cannot simply
build bigger and faster computers and thus getting more and more efficient. The
heat produced by the processors (and the therefore required cooling facilities, which
also need a lot of energy) and the energy needed for the computations and — even
more — for the memory operations limit the capacities of nowadays computer ar-
chitectures. In order to overcome this, the architectures will have to be completely
redesigned [64]. Hardware specialists are working on architectures with lower energy
consumption and intelligent cooling systems. The “Green500 list” [40, 84] provides
a ranking of the 500 most energy-efficient supercomputers — the awareness for the
energy issue increases. However, changing the architectures and with that improving
their energy efficiency is not the only working point for this issue. We also have to
work on the way we use parallel computers.

“It is widely recognized [.. .| that emerging constraints on energy consumption will
have pervasive effects on HPC; power and energy consumption must now be added
to the traditional goals of algorithm design, viz. correctness and performance.” is
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stated in the 2010 report of the Advanced Scientific Computing Advisory Committee
(ASCAC) of the U.S. Department of Energy [2]. And: /... ] memory will become the
rate-limiting factor along the path to exascale, and investments should accordingly be
made in designing algorithms with reduced memory requirements. Eramples where
this work is appropriate include [...| algorithmically scalable matriz-free methods
(e.g., multigrid) for sparse systems of equations [...[” [2].

In her keynote speech at the 36th International Symposium on Computer Archi-
tecture (ISCA) in 2009, Yelick pointed out “Ten Ways to Waste a Parallel Computer”.
Two of them were “Run bad algorithms” and “Don’t rethink your algorithms” [110].

In order to reach for new insights and develop new technologies we need su-
percomputers. But we should not “waste parallel computers”. Instead, we should
carefully design algorithms that are efficient on these special architectures. Paral-
lelisation does not only mean: Rewrite your code using MPI, OpenMP or something
like that. This would not exploit the capabilities of supercomputers. Additionally,
one has to work on the algorithms themselves, and make use of existing efficient
algorithms that fit to the computer architecture that is available.

Tuning algorithms to specific problems, geometries, and architectures is a task
that scientific computing specialists might be willing to take. Application specialists,
and therefore the users of the software packages containing the algorithms, however,
demand software which is usable as a black box and solves not only a single problem
efficiently, but is robust for a large class of problems.

This thesis focuses on the design, assembling and implementation of multigrid
methods in order to obtain robust algorithms that run efficiently on high perfor-
mance computers. We concentrate on solving the convection-diffusion equation and
the diffusion equation with variational coefficients as model problems. Of course,
the algorithms are also applicable to other problems.

For a wide range of simulation problems, multigrid (MG) solvers belong to the
most efficient solvers of the underlying linear or even non-linear systems. Their
convergence rate is mostly independent of the mesh size of the problem discretisa-
tion, and thus they have optimal complexity in terms of number of operations per
unknown.

There are two main groups of multigrid solvers: While geometric MG methods,
which are the original MG methods and usually use structured grids, define the
coarse grid and the intergrid transfer operators in a purely geometric manner, al-
gebraic multigrid (AMG) does not need to know about the geometry at all, and
usually only considers the system matrix of the PDE. AMG can easily use very
accurate, unstructured meshes for the discretisation and is robust for a wider range
of problems.

Currently, a shift is happening in the research community for multigrid solvers.
After having concentrated research mostly on algebraic multigrid and unstructured
problems since more than twenty years ago, for some years now structured and semi-
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structured approaches have been re-considered, and this trend is increasing (see, e.g.,
[47, 13, 66]). The reason lies in modern high performance computing architectures:
Unstructured data access and high communication overhead, indirect addressing,
high setup costs and a large memory footprint decrease the performance of AMG
solvers on supercomputers significantly. Therefore, the gain in using an exact un-
structured discretisation and algebraic multigrid methods vanishes as compared to
solvers working with structured data resolution.

Our objective is to design an algorithm that combines the advantages of both
approaches. It should be robust and efficient for a large range of applications, and at
the same time have good parallelisation properties. The algorithm shall be designed
in a way that it can use spacetrees (a generalisation of quadtrees/octrees) both
as data structure and as computational structure, in order be able to handle huge
amounts of data in an efficient way, and support adaptive grids. It shall be possible
to integrate the algorithm in a state-of-the-art spacetree framework, making use of
memory-efficient data storage and traversal properties and parallelisation facilities.

In order to achieve these goals, we chose a way in-between the pure geometric
and the pure algebraic multigrid: the BoxMG method by Dendy, which is defined
on geometrically coarsened, structured grids, but uses operator-dependent inter-
grid transfer operators and Petrov-Galerkin coarse-grid operators, making it much
more robust than geometric multigrid. We shall test and improve the efficiency
and robustness of the BoxMG solver on a multigrid hierarchy that uses coarsening
by a factor of three, as this coarsening factor is required by our target framework.
For supporting a spacetree implementation, we develop a solver that applies and
stores both the system operator and the intergrid transfer operators in a matrix-free
element-wise manner, ensuring data locality and low communication overhead on
parallel computers. An additional challenge that comes along with this approach is
finding a suitable smoother: On spacetrees, damped Jacobi is usually the smoother
of choice, as other smoothers cannot easily cope with the locality paradigm. How-
ever, for many applications it does not yield satisfying efficiency and degrades the
robustness of a multigrid smoother on a structured grid. Therefore, more power-
ful alternatives for damped Jacobi shall be tested in this thesis. Finally, we shall
integrate our solver into the target framework and test its parallel behaviour.

With this approach we take a wholistic view on the solver software. While keep-
ing the main focus on the efficient PDE solver, we take into account the various
additional requisites that are posed to the software: efficiency in the data adminis-
tration, in the data traversal scheme, and sequential as well as parallel performance.
All these demands determine the design of our algorithms.
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1.2 Related Work

Matrix-free parallel PDE solvers based on spacetree/octree grids are currently an
active field of research. The following listing is not complete. We present here some
examples of recent work in order to demonstrate the state-of-the-art in this field and
to show were the contributions of this thesis lie.

The software framework Peano [100] for parallel adaptive PDE solvers on space-
trees is based on work of Giinther [48|, Pogl [77] and Krahnke [65]. In its current
form it was mainly developed by T. Weinzierl {99, 101]. The underlying idea of
using a special data structure (here: stacks) for a memory-efficient parallel PDE
solver on spacetrees is similar to the hash map approach introduced by Griebel and
Zumbusch some years earlier [47] but goes further in optimising data locality and
cache-usage. In 99|, Weinzierl presents results for a matrix-free parallel geomet-
ric multigrid solver in the Peano framework. That work was the motivation and
starting point for developing a multigrid solver that does not suffer from the ro-
bustness shortcomings of geometric multigrid solvers and at the same time has the
parallelisation advantages of a structured-grid approach. The achieved algorithm is
integrated into the Peano framework, and we use Peano’s spacetree structure and
parallelisation environment in order to test the parallel behaviour.

With the geometric multigrid library Dendro [29], Sampath and Biros as well
present a matrix-free parallel geometric multigrid method on octrees [81]. They also
use structured grids, but apply a Petrov-Galerkin coarse grid operator instead of
re-discretising the operator on the coarse grid. Their method was later integrated
into the pdest framework (Burstedde et al. [26]), which uses a “forest of octrees”,
i.e., a collection of octrees, where each octree represents an adaptive structured grid,
but the overall grid is unstructured. In that work [91], a geometric multigrid solver
is used for the octrees, with an AMG solver on the coarsest grid. Parallel results
are given for a conjugate gradient solver preconditioned by the multigrid solver.

Another parallel matrix-free geometric multigrid preconditioner was presented re-
cently by Flaig and Arbenz [41]. The idea of combining structured and unstructured
grids is also implemented in the Hierarchical Hybrid Grid (HHG) solver [14], which
uses regular structured grids in each cell of an unstructured overall grid. Here as
well, parallel results are presented for geometric multigrid, e.g. in [13, 44]. As soft-
ware framework providing libraries for matrix-free PDE solving we want to mention
deal.ii [11, 10|, which offers a geometric multigrid implementation, too.

Although we present results only for the integration of our algorithm into Peano,
the integration into frameworks such as pdest or HHG as solver on the structured
meshes is straightforward, and we would expect that also here a considerable im-
provement of the robustness and efficiency can be achieved.

Improved robustness for parallel multigrid methods was also the aim of the work
of Bader [5]. He uses recursive substructuring [82, 60| as domain decomposition
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method, which likewise results in a tree structure, and combines geometric multi-
grid with the Petrov-Galerkin coarse grid operator. In order to obtain a coarse
grid system that is able to cope with strongly convection-dominated flows, he intro-
duces additional unknowns at the coarse cell boundaries. This extension leads to an
optimal coarse grid for this special type of problems.

To summarise, the multigrid method presented in this thesis combines and ex-
tends the following features, which are only partly covered by the approaches de-
scribed above: First, we use operator-dependent restriction and prolongation
as defined by Dendys BoxMG method. This improves the robustness of the solver
compared to pure geometric multigrid solvers, for example for problems with jump-
ing diffusion coefficients. Second, and this is similar to some of the cited methods,
we develop a spacetree-based, matrix-free method that stays in a strictly lo-
cal, cell-wise diction and defines not only the system operator, but also restriction
and prolongation (for arbitrary prolongation and restriction operators) in such a
way. The Petrov-Galerkin coarse-grid operator is computed by a product of these
local cell operators. Third, we develop and test variants of smoothers that are
applicable on spacetrees and at the same time powerful enough to handle challeng-
ing problems. And fourth, we integrate and parallelise our method in a framework
that implements the spacetree traversal in a memory-efficient way and provides
an interface for parallelisation.

Further references for the topics handled in this thesis will be given in the respec-
tive chapters.

1.3 Thesis Structure

This thesis is structured as follows: In Chap. 2, we introduce the basics of multigrid
methods and describe the methods that we use in more detail, especially Dendys
BoxMG. Chap. 3 gives a brief overview about spacetrees and spacetree grids, and
how they can be used as data and computational structure for simulations. We
also discuss the restrictions, benefits and special requirements of a spacetree-based
multigrid implementation. The design and prototypical testing in Matlab of the
components of our multigrid algorithm is described in Chap. 4. Two prototypes
are developed: The first implements the BoxMG method for coarsening by a factor
of three (as required by the target framework Peano) for nonsymmetric problems.
A finite-differences discretisation that can easily switch between first- and second-
order is introduced, and we report on the numerical robustness and efficiency of the
method for the convection-diffusion equation, also for the challenging recirculating
flow problem. The second prototype already implements the multigrid operators in
the way required by the spacetree, but not the spacetree itself. The intergrid transfer
operators are defined in a way that their evaluation is a matrix-vector product, just
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as for the system operator. This yields an elegant formulation of the computation
of the Petrov-Galerkin coarse grid operator. Different smoothers are examined in
order to find a powerful relaxation that can be implemented efficiently on a space-
tree. Here, also a variant of the hybrid smoothers used in parallel computing is
introduced. The principles and methods developed with the second prototype can
be directly integrated into the Peano framework. We introduce the main principles
of this framework and the parallelisation of our algorithms in Chap. 5. Results of
the target implementation and parallelisation results for shared memory as well as
distributed memory are presented. Chap. 6 summarises the outcome of the thesis
and its conclusions, and gives an outlook to possible extensions and questions raised
by this work.
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Multigrid methods were introduced in the 1960s by Fedorenko and Bakhvalov [38,
39, 9] and further developed in the 1970s by Brandt [16, 17| and Hackbusch [49,
50| independently from each other. In the following decades, multigrid methods
have been extended and improved by different groups. Some of the first books and
monographs on multigrid methods which appeared in the 1980s are [90, 19, 51].

In this chapter we briefly introduce the most important multigrid principles and
methods. A comprehensive guide to multigrid methods with a lot of useful references
is [95]. As a beginners tutorial we would recommend [24]. [108] is a short paper that
introduces the main idea and concepts of multigrid in a very comprehensible way.

2.1 The Multigrid Principle

Multigrid methods provide fast numerical solvers for discretised linear (especially
elliptic) and even nonlinear partial differential equations (PDEs). In this work, we
consider partial differential equations Au = f on a two-dimensional domain ) € R?
and use a regular Cartesian grid for discretisation.! We call A our system operator,
f the right-hand side, and u the unknown. The discretised equation is written as
Ay = f* with mesh width h = 1/(n — 1) and n the number of discretisation
points. Here, A" is a matrix, and u" and f" are vectors. The discretised domain,
i.e. the grid, is denoted as Q.

The basic idea of multigrid methods is the following (see, e.g., [95]): Using a stan-
dard relaxation/smoothing method such as Jacobi or Gauss-Seidel (see Sec. 2.1.1)
as a solver for the problem given by a discretised elliptic PDE on Q", we observe
that the error e" = u" — @ (with u” being the exact solution to the discretised
problem and @" the current approximation to u") becomes smooth after some re-
laxation steps, but its maximum and absolute value only slowly decrease. In terms
of error frequencies this means: High-frequency error components are eliminated,
but low-frequent components remain (smoothing property). Yavneh referred to this
effect in his paper [108]| as “Relazation [...]| irons out the wrinkles but leaves the
fat.” The remaining smooth error can be respresented well on a coarser grid, e.g.,
QO = Q2 (approzimation property). In addition, it appears “wrinkled” again on

1)

!The fundamentals, though, are also applicable to Q € RY with higher (d > 2) or lower (d
dimension, and multigrid is also applicable on, e.g., triangular or unstructured grids.
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the coarse grid as the term “wrinkled” (i.e., high-frequency) has to be seen relative
to the mesh width. Thus, further parts of the error can be reduced efficiently (and
for a lower cost, as we have less grid points) by relaxation on the coarse grid. This
way we can descent to coarser and coarser grids, e.g. Q% Q% .. Q! (with Q!
containing only one grid point, for example), and step-by-step eliminate the error
components of all frequencies.

In the remainder, we always talk about discretised equations and omit, for better
readability, the superscript h, except where we use it to distinguish between the
grids in the multigrid hierarchy.

How to realise the idea described above in practise? For knowing the error of our
solution guess we have to know the solution — and then our problem would already
be solved. Additionally, the error becomes smooth, not the solution itself, therefore
the solution might not be well approximated on the coarse grid. What equation can
we solve on the coarse grid that will help us reducing the error without knowing it?
The residual, which is defined as r = f — Au, is for linear problems directly related
to the error by A (residual equation):

Ae=r, (2.1)

as Ae = A(u — u) = Au— At = f — Au = r if A is linear. Therefore, the approx-
imation property is also fulfilled for the residual. Instead of applying relaxation to
Au = f we can equivalently relax the residual equation with initial guess e = 0. By
doing this on the coarse grid, we receive an approximation € of the error which we
can use to correct the fine grid equation (coarse grid correction). In order to use
the residual from the fine grid for the residual equation on the coarse grid and the
error approximation from the coarse grid for correcting the fine grid solution, we
have to define appropriate intergrid transfer operators for restriction from the fine
grid to the coarse grid (denoted as operator R) and prolongation from the coarse
grid to the fine grid (denoted as operator P). Possible choices for restricton and
prolongation operators are discussed in Sec. 2.1.2.

This principal idea can be applied recursively, and we obtain the multigrid V-cycle
as given in Alg. 2.1 (see also Fig. 2.1a). A V-cycle with v, pre-relaxation steps (i.e.,
smoothing steps before restriction) and v,,s post-relaxation steps (i.e., smoothing
steps after prolongation) is referred to as V(vpre, Vpost) cycle.

The four multigrid operations relaxation, restriction, prolongation and solving can
be arranged and recursively nested in various ways in order to obtain multigrid cycles
with different convergence behaviour. Fig. 2.1 shows four multigrid schemes that
are frequently used in praxis. The FMG-cycle is something special here: We do not
only use the correction scheme, but in addition we get ourselves a good initial guess
by solving the coarse grid problem and prolong its solution to the next finer level.
Then we do a V-cycle here, prolong the solution up again, and so forth, until we do
one last V-cycle starting from the finest level. This is a quite effective scheme. In
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Figure 2.1: Standard multigrid cycles on four grid levels. Filled circles stand for
smoothing, empty circles for solving the coarse grid problem; arrows
pointing downwards are for restriction, arrows pointing upwards for pro-
longation. Double-headed arrows in the FMG-cycle stand for prolonga-
tion of the approximation to the solution.
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Algorithm 2.1 Multigrid V-Cycle for the Correction Scheme

function V-CYCLE(A", @", f", Vpre, Vpost)
if ), ==, then
Solve AMuh = fh.
else
Relax A"a" = f" v, times.
Compute fine grid residual: r" « f* — Ahay,.
Restrict the residual to the next coarser level: 7 « Rr".
Solve residual equation on the coarse grid by recursion:
e + V-CYCLE(A#, 0, 7 vpre, Vpost)-
Correct the current approximation on the fine grid: @* « @" + Pé".
Relax A"y, = f" vpoq times.
end if
return "
end function

order to choose the best scheme for a given problem, one has to look at the trade-
off between benefit (in terms of efficiency and robustness) and effort (in terms of
number of operations needed until convergence).

In the following sections we will have a brief look at the above mentioned multigrid
components (relaxation, intergrid transfer operators, coarse grid problem) and their
possible realisations.

2.1.1 Relaxation

The choice of the relaxation (or smoothing) method is a crucial decision for a (ge-
ometric) multigrid solver. The two most common methods are Gauss-Seidel and
(damped) Jacobi iteration. Both use the idea of eliminating the residual in every
grid point £ and in iteration step ¢ by applying the correction:

@) _ G, L o
U =uy e,
k k Ak k

with ag, the diagonal element of A in line k, and r, = fip — Apus the respective

residual. The difference is that for the Gauss-Seidel method the residual is updated
immediately with the new u,(jﬂ):

k—1 n
T]E:Z) = fk — Z akjuyﬂ) — Z akjug.z),
7=1 ji=k

10



2.1 The Multigrid Principle

whereas in the Jacobi method the residual is computed in the beginning and not
updated during the iteration:

n

r,(:) = fr — Z akju§-i).

j=1
Written in matrix form, the iteration reads:

with M = D, (D4 = diagonal matrix of A) for Jacobi and M = Lo+ Dy (La =
lower triangular matrix of A) for Gauss-Seidel.

Gauss-Seidel iterations will usually converge faster, as they use the updated in-
formation immediately. On the other hand, for Jacobi iterations the update at one
grid point does not depend on the others, what makes it easy to parallelise. 2

Depending on the start error, Jacobi tends to overshoot in the correction: A
negative error can become positive instead of small. This can often be avoided by
introducing a damping factor w < 1.0 for the correction:

u,(fﬂ) = u,(f) + wi : r,(f).
gk

For Gauss-Seidel the opposite is true: The correction is often too small, such that
an overrelaxation by a factor w > 1.0 improves the convergence. Gauss-Seidel with
overrelaxation is called successive overrelaxation (SOR). An important note is that
good solvers are not necessarily good smoothers: For multigrid, it is important that
the high error frequencies are eliminated quickly, not the overall error (i.e., the error
becomes smooth but not necessarily small). High frequencies are, in this context,
those which cannot be represented correctly on the next coarser grid. The optimal
damping or overrelaxation parameter and the smoothing factor (i.e., the worst factor
by which high frequency error components are reduced per relaxation step [95]) can
be determined by looking at the different frequencies in relation to the mesh width
h (smoothing analysis) and the coarsening factor. We do not explain the analysis
here but refer to the literature, e.g. [95] and references therein.

There are many variants even in these two basic smoothers. For example, in-
stead of the lexicographic order of traversing the grid, red-black Gauss-Seidel uses a
checkerboard pattern: First, all “red” grid points are processed, then all “black” grid
points. This results in a different behaviour with improved convergence for certain
types of problems. In addition, this scheme is easy to parallelise. The update of all
“red” grid points (and then the “black” ones, resp.) can be done in parallel, as they
do not depend on each other.

2In Sec. 4.3.4 we will see that there are circumstances in which Jacobi is much cheaper to imple-
ment than Gauss-Seidel.

11



2 Multigrid Methods

Another variant are line smoothers. Here, the residual of a whole grid line is
eliminated at once. The convergence is thus improved, but of course this is more
expensive than point-wise smoothing, as a whole tridiagonal system of equations has
to be solved. The line equivalent to red-black Gauss-Seidel is also called “zebra” line
relaxation. Line smoothers can be regarded as a special type of block smoothers,
which operate at m x m blocks of the domain and eliminate the residual there in
one step by a direct solver.

Other smoothers that are sometimes used for multigrid are, e.g., Incomplete Lower
Upper factorisation (ILU) [53, 106, 85] and Sparse Approximation Inverse (SPAI)
smoothers [56, 93|. Again, the trade-off between benefit and effort has to be consid-
ered for the choice of the relaxation method for a specific problem.

2.1.2 Intergrid Transfer Operators

Intergrid transfer operators transfer information between the grid levels of the multi-
grid hierarchy. The operator for the transfer from a coarse grid to the next finer
grid is called prolongation or interpolation, the operator for the transfer from a fine
grid to the next coarser grid is called restriction.

The standard prolongation operator used for multigrid is (bi)linear interpolation.
In one dimension for seven fine grid points and coarsening by two (i.e., the mesh
width between two grid levels differs by a factor of two, h — 2h), this is how the
prolongation matrix looks:

(2.2)

N | —

SO OO N
SO RN = OO
NN RO O OO

Here, three coarse grid points contribute to seven fine grid points (see also Fig. 2.2a).
For a fine grid point at the same location as a coarse grid point, the value is
simply copied to the fine grid. For a fine grid point at position k£ in between
two coarse grid points, each of these coarse grid point contributes one half of its
value: uf = 0.5 (ufl_; +uf’,,). In stencil notation, this corresponds to the stencil
P = % [ 1 21 } , which reflects the contribution of a coarse grid point to the three
nearest fine grid points.

In this work, we stick to the stencil notation for both the intergrid transfer oper-
ators and the system matrix, as this is also the way how the operators are applied
in our implementations.
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fine grid

coarse grid ' ' '

(a) Prolongation by linear interpolation.

fine grid

coarse grid

(b) Restriction by full weighting.

fine grid | | | |

coarse grid

(c) Restriction by injection.

Figure 2.2: Examples for 1D intergrid transfer operators for coarsening by a factor
of two.
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2 Multigrid Methods
In two dimensions, the stencil for bilinear interpolation is:

P =

)

1
2
1

NI V)

1
1
1 2
1
i.e., a coarse grid point contributes to nine fine grid points. For coarsening by a
factor of three, the 2D bilinear interpolation stencil reads:

12321
24642
P=-{36096 3],
Y12 46 42
12321

i.e., a coarse grid point contributes to 25 fine grid points.

We can apply the same stencils as above with inverted direction as restriction
operators, resulting in full weighting (see Fig. 2.2b). In matrix notation this would
mean that R = PT. Instead of a slim and tall matrix as in 2.2, we receive a wide and
short matrix. Application of the one-dimensional matrix then means computing the
weighted average of the adjacent fine grid values in order to receive the restricted
value for the respective coarse grid vertex.

An alternative to full weighting is injection: There, we simply use the stencil
R = [ 1 } This means that the value of the coarse grid point is copied from the
corresponding fine grid point at the same location (shown in Fig. 2.2¢c).

Bilinear interpolation works quite well if we want to prolong something that is
smooth — as the residual should hopefully is after relaxation. However, if the prob-
lem we want to solve contains, for example, jumps in the coefficients, or a singularity,
bilinear intergrid transfer operators might not be able to transport the information
correctly onto the next grid level. For example, bilinear interpolation can lead to a
pollution effect, i.e., the coarse grid correction is influenced by the wrong diffusion
coefficients. The same is true for the residual if full weighting is used as restric-
tion. Therefore, for this kind of problems it is necessary to take the problem (i.e.
the system operator) into consideration when defining prolongation and restriction.
This is done in algebraic multigrid methods (see Sec. 2.2.6). Another example for
operator-dependent multigrid is described in Sec. 2.3. Additionally, we have to take
care that the system operator itself is represented well on the coarser level. This is
subject of Sec. 2.1.3.

2.1.3 The Coarse Grid Problem

It is very important to take care that we solve the correct problem on the coarse
grid — otherwise the coarse grid correction does not make sense. Therefore, we do
not only have to transfer the residual correctly, but also the system matrix.
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2.2 Appearances of Multigrid

The geometric approach for bringing the operator to the next coarser grid level
is rediscretisation. This means that we simply discretise the continuous operator A
with a wider mesh size H, e.g. H = 2h. Again there are, however, certain problems,
as problems with discontinuous coefficients where the jumps are not located on
coarse grid lines, when rediscretisation is not sufficient to receive good convergence
rates [3, 95]. The point where the coefficient jump appears might shift on the coarse
grid, or the jump can even “get lost”. Moreover, one might not be able to simply
rediscretise the problem, as the underlying geometry is not known (see Sec. 2.2.6)
and/or an unstructured mesh is used. In these cases, the Galerkin coarse grid
operator is used. It is defined as follows:

A = pPT AP,

We apply first the system operator A" to the prolongation P, and then the restriction
operator, defined as the transposed of the prolongation operator P, to the result.
A generalisation is the Petrov-Galerkin coarse grid operator, where the restriction
operator R is no longer fixed to be the transposed of P:

AH = RA"P.

However, a Galerkin approach with bilinear interpolation and full weighting as
restriction is often not sufficient for a jumping coefficient problem, as the resulting
coarse grid operator might not represent the fine grid problem well. In this case,
operator-dependent intergrid transfer operators as mentioned in the previous section
are necessary.

The solution of the coarse grid problem on €2; can either be done by a direct solver
or (if the coarse grid is coarse enough) by applying enough relaxation steps to solve
the problem exactly.

2.2 Appearances of Multigrid

From the previous section one might already guess that there is not “the” multigrid
method, in fact there is a wide variety of methods. In this section we will point
out different appearances of multigrid methods without going in further details, as
those are not the topic of this thesis. This is not an exhaustive listing of methods
— the intention is just to give an idea of the width of the field of multigrid and to
introduce some more important aspects. We do not touch, for example, advanced
methods as multigrid for systems of equations (see |95] and references therein).

2.2.1 Coarsening Factors

So far, in our examples we have mostly used a coarsening factor of two, meaning
that, when going from the fine grid to the coarse grid, we select every other point
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along every coordinate direction: H = 2h. This coarsening factor is by far the
most popular one. There are, however, some reasons that can lead to using larger
coarsening factors. In [35], it is argued that by coarsening by a factor of three for
cell-centred discretisations (i.e., the unknowns lie on the cell centres instead of on the
vertices of the grid) one receives naturally a nested hierarchy of grids. This means
that the unknowns on the coarse grid will lie at the same positions as on the fine grid,
i.e. the coarse grid unknowns can be regarded as a subset of the fine grid unknowns
(if we do not take the level into account). For coarsening by a factor of two, this is
only the case for vertex-centred discretisations. Another reason for coarsening by a
larger factor than two could be parallelisation, where a bigger coarsening factor and
therefore less levels in the multigrid hierarchy means less communication. On the
other hand, larger intergrid transfer operators will be needed, what again increases
the communication [109]. A third reason for other coarsening factors may be that
the coarsening factor is determined by the application or software framework in
use. This is the case for the Peano framework [100] which we use for our target
implementation (see Chap. 5). Here, coarsening by a factor of three is an inherent
property of the underlying spacetree (see Chap. 3) and therefore of all implemented
algorithms. It is important for the choice of the coarsening factor to keep in mind
that the error must still be approximated well on the coarse grid — meaning that we
do not “lose” frequencies due to a too big mesh width, or we have aliasing effects,
because the error frequencies are misinterpreted due to the discretisation on the
coarse grid — and that the intergrid transfer operators do not become inefficiently
large.

In this thesis, we describe our algorithms in a general manner and give examples
for coarsening by a factor of two as well as for a factor of three. Our implementations
and experiments, however, employ coarsening by a factor of three.

2.2.2 Alternatives to the Correction Scheme

The correction scheme (CS) as given in Alg. 2.1 is only one possible way to apply
the multigrid principle. In particular, it only works for linear problems, as the linear
residual equation Eq. 2.1 is in general not true for nonlinear A. Recall from Sec. 2.1
that we used Ae = A(u — u) = Au— Au = f — Ad = r, with r being the residual, u
the exact solution and u the current approximation to the solution, for deriving the
linear residual equation. If A is nonlinear, the second equality does generally not
hold. Therefore, the nonlinear residual equation

Au—Au=r (2.3)

has to be used. In addition, we need nonlinear smoothers, such as nonlinear Gauss-
Seidel relaxation |76].
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Multigrid methods for nonlinear problems are Newton multigrid (i.e. a Newton
method for the outer iteration and multigrid for the inner iteration, see, e.g. [24])
and the Full Approximation Scheme — also called Full Approximation Storage —
(FAS) (explained, for example, in [17]). FAS can be seen as a generalisation of CS.
In addition to the restriction of the residual, we also have to transfer the current
approximation of the solution, 4, to the coarse grid (see Eq. 2.3). The coarse grid
problem to be solved is therefore A7y = r# + AH#H | This means that we receive
a full approximation of the solution on the coarse grid. For the correction of the
fine grid approximation, we then have to compute the coarse grid approximation of
the error, éz = v — @, and transfer that back to the fine grid.

An efficient variant to FAS is the Hierarchical Transformation multigrid (HT-MG)
method [45]. Another interesting note is that Griebel showed in [46] that applying
Gauss-Seidel to a system of hierarchical bases is equivalent to a correction scheme
V-cycle.

2.2.3 Adaptive Multigrid

In order to improve the efficiency of multigrid methods, it often makes sense not
to use a regularly refined grid (i.e. with the same grid spacing everywhere), but to
adaptively refine only those regions more where it is necessary. This might be at the
boundary of the geometry in the simulation, or due to the behaviour of the solution
(e.g. at singularities).

For Brandt, adaptive grids were the starting point for his Multilevel Adaptive
Technique (MLAT) [16, 17|, and therefore for his multigrid idea. In the eighties,
the Fast Adaptive Composite-Grid method (FAC) [52, 67] was developed as an
alternative to the MLAT approach. The main difference between the two is their
hierarchy of grids: MLAT is working on the subdomain with a regular grid per level
(on the finest level, the subdomain with the finest resolution is processed, then the
finest subdomain is coarsened and the next-coarser subdomain is processed etc.).
As on the subdomain with the coarser resolution we have no finer grid “above”, and
therefore no correction equation available, the correction scheme does not work that
easily. The Full Approximation Scheme, which was described in Sec. 2.2.2, provides
the full approximated solution on every level and is the method of choice to use
for MLAT. FAC works on the composite grids, which means that every grid level
is adaptive. In contrast to MLAT, we have to take special care of the so-called
“hanging nodes”, i.e. the vertices at the interface between two resolution levels.

In 78], Riide presents a mathematical theory for fast and robust adaptive mul-
tilevel methods and also shows how to realise those methods in an efficient imple-
mentation.
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2.2.4 Multigrid as Preconditioner

We have discussed so far the application of multigrid as a stand-alone solver. Multi-
grid methods are even more popular as preconditioners for Krylov subspace meth-
ods, such as the conjugate gradient (CG) [55] or the generalized minimal residual
(GMRES) [79] method — multigrid people sometimes call this “acceleration of multi-
grid” by these methods, although it is more intuitive and common to look at it
the other way around: MG methods accelerate the Krylov subspace methods. The
accelerated multigrid is often much more robust than using multigrid alone (see e.g.
[4, 74, 88, 95| and references therein). Thus, less effort has to be put into optimising
the single multigrid components for a special type of problem, and even a weaker
version of multigrid such as additive multigrid (see Sec. 2.2.5) can be used. How-
ever, Krylov subspace methods are dependent on the mesh width of the problem
discretisation, and therefore on n, the number of unknowns of the problem. By a
multigrid preconditioner, this dependence can be reduced, and often even the same
optimal O(n) complexity can be reached — but with a quite large constant, what
makes the preconditioned methods less efficient for really big problems than pure
(optimised) multigrid methods.

2.2.5 Additive vs. Multiplicative Multigrid

Multigrid methods as described above are also called multiplicative multigrid, in
contrast to additive multigrid (see [12| and references therein). The difference be-
tween the two is that in additive multigrid the residual is computed from the un-
smoothed u, but the coarse grid correction is added to the smoothed u. Therefore,
the smoothing can be performed on an all grid levels in parallel. This approach
results in an additive iteration matrix. Obviously, this method is advantageous for
parallelisation, but other than that, additive multigrid cannot compete with the
multiplicative version (see [12] for a detailed comparison) and is at most applied as
a preconditioner. A popular example is the BPX preconditioner [15] (with the name
stemming from the initials of the authors).

2.2.6 Geometric vs. Algebraic Multigrid

Another, for this thesis most important, distinction in multigrid methods is that be-
tween geometric and algebraic multigrid (AMG). Pure geometric multigrid methods
define their coarse grid problem with regard to the underlying geometry: They do
a geometric coarsening of the fine grid (taking every other grid point, for example),
define geometric intergrid transfer operators (as described in Sec. 2.1.2), and mostly
use rediscretisation for the construction of A¥ (see Sec. 2.1.3). Pure algebraic multi-
grid methods, in contrast, usually do not consider the geometry at all. They only
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work with the entries of the system matrix. Thus, AMG is able to easily cope with
unstructured grids.

As always, there is also a way in between these two extreme directions. One
example is BoxMG, as described in Sec. 2.3. It is interesting to note, however, that
comparatively few people take the middle-way so far (maybe with the exception of
geometric multgrid that uses Galerkin coarse grid operators).

Below, we briefly describe the AMG principles. For a detailed description, we
refer to the literature, e.g. [87, 24, 88, 37|.

The original AMG method was developed in the eighties [20, 86, 21, 89|. It
introduced three basic principles for AMG:

e The black box principle stands for the fact that one can use the MG solver
as a black box — you only need to give in the system matrix, the right-hand
side, and an initial guess, and do not have to bother about the geometry or
anything else.

e Algebraic smoothness of the error is defined by the convergence properties
of the smoother. The error is algebraically smooth per definition if it is reduced
slowly by the smoothing operator. An algebraically smooth error can look
quite “rough” in a geometric sense.

e Operator-dependent coarsening and intergrid transfer operators has
the meaning that the choice of coarse grid points as well as the prolongation
P and the restriction R depend on the entries of the system matrix.

Additionally, the concept of strength of connections, i.e. a measure for determin-
ing how strong a matrix entry depends on another, was defined. Based on this and
the observation that the algebraically smooth error varies slowly in the direction
of strong dependence, classical AMG uses heuristics for selecting the coarse grid
points. The smooth error characterisation is then used to receive the prolongation
operator.

In contrast to geometric multigrid, where the coarsening strategy, the intergrid
transfer operators and often also the coarse grid operators are fixed and the smoother
has to be chosen in an optimal way, in AMG only the smoother (which is often
a simple point Gauss-Seidel) is fixed and the rest is computed from the system
operator. This means that we have an extensive setup phase which mostly dominates
the computational costs. On the other hand, the resulting method is usually more
robust than geometric MG methods.

A very popular AMG method is Smoothed Aggregation [96, 98, 97, 22, 23|. Here,
the fine grid points are clustered to disjoint aggregates, according to their strength
of connection. A tentative piece-wise constant prolongator P is then defined by the
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aggregates (i.e., IBZ-J- = 1 if point 7 belongs to aggregate j) and improved by smooth-
ing with damped Jacobi relaxation (see Sec. 2.1.1). Such, the actual prolongation
operator is received as P = (I —wD ™ 1A)P.

2.3 BoxMG

The so-called “Black Box Multigrid” (BoxMG) was introduced by Dendy in 1982 [30]
and is based on work of Alcouffe et al. [3]|. It has shown to yield robust and efficient
multigrid solvers. During the last decades, the BoxMG method was extended for a
large class of problems (see, e.g., [31, 34, 32, 33, 71, 35, 66)|).

We call BoxMG a geometric-algebraic hybrid as it has properties of both kinds
of multigrid methods: As in geometric multigrid, a structured grid and geomet-
ric coarsening are used. For the intergrid transfer operators, on the other hand,
operator-dependent restriction and prolongation are defined and the coarse grid op-
erator is computed in a (Petrov-)Galerkin way (see Sec. 2.1.3). The idea is, similar
as in AMG (see previous section), that the user only needs to provide the fine grid
discretisation of the problem and the right-hand side. The problem is then solved
in a “black box”, without the need of tuning the algorithm to the problem and the
underlying geometry (as it is necessary in geometric multigrid in order to receive
satisfying performance). However, the geometric structured grid approach implies
that special care has still to be taken for the smoother.

Recently, MacLachlan et al. investigated the relationship between BoxMG and
AMG in detail [66] and pointed out that, under a certain point of view, BoxMG can
be seen as a special case of classical AMG (with the definition of “strong connections”
being a geometric question instead of an algebraic one). In [104], Wienands and
Kostler presented a framework for the construction of prolongation operators in
which the BoxMG method was recovered as a special case.

2.3.1 The BoxMG Prolongation Operator

As mentioned above BoxMG defines the intergrid transfer operators dependent on
the system operator, and uses the Petrov-Galerkin principle to compute the coarse
grid operators.

In the following, we describe BoxMG for two-dimensional problems, however, the
principle is also applicable for three dimensions, see [32].

BoxMG for Coarsening by Two

Let us first consider the standard approach, i.e., for coarsening by a factor of two.
The following description partly follows [35] and [88].
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The idea of BoxMG can be theoretically derived from the standard coarse-fine
splitting (see, e.g., [88]). For defining prolongation, we want to use information
about the relationship between the variables on the fine grid (in terms of the system
operator A"), and especially how variables on coarse grid positions influence the
other variables. For that purpose we split the discretised domain Q" into two disjoint
subsets: Q" = C"UF". C" consists of those variables which are at the same position
as coarse grid variables, Qf and F" = Q" \ C". The equation system A"u" is
reordered such that we have blocks of F-variables influenced by F-variables (Ayy),
F-variables influence by C-variables (A.f), C-variables influenced by F-variables
(Af.), and C-variables influenced by C-variables (A..). With this we can write the

system in the form
A A u f
h,h _ ff fe P - f] — fh
v ) -1

and the prolongation and restriction operator as

P:[ZC],R:[ITC I (2.4)
with I7. being the intergrid transfer operator from coarse grid variables to fine grid
variables on non-coarse grid positions and /.. the intergrid transfer operator from
coarse grid variables to fine grid variables on coarse grid positions. If we define
I.. = 1, i.e., the values for fine grid variables on coarse grid positions are copied
from the coarse grid, and Iy, = —A;}A fe, and if AJTJ} exists, the Galerkin coarse grid
operator is the Schur complement: A7 = CH = — A, — AcfAJT}A fe, and we receive
a direct method. This method, however, requires inverting A;; and A%.

[ e ek by
—Q’Y OL OL OL
.’Y .L .’Y
—07 OL OL OL
.C .’Y .C 2 2l ¢
Tt

Figure 2.3: Fine grid point types for BoxMG prolongation for coarsening by two
(left) and three (right). ¢ points coincide with the coarse grid.

In order to avoid this, A;fl is approximated in a cheaper way. Therefore, the
BoxMG approach splits the fine grid points in F” again into v points (:= fine grid
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points on coarse grid lines) and ¢ points (:= fine grid points in the middle of coarse
grid cells) — see Fig. 2.3. In block-form, the system A"u" = f" can now be written
as

ALL AL’Y ALC uL fL
A= A, A | A w, | = f | =M (2.5)
ACL AC’Y ‘ACC UC fC

To get an efficient method, the influence of ¢ points to v points is neglected and ~
points are interpolated from ¢ points only. That way. we receive an operation that
stays locally in a coarse grid cell without using information from adjacent cells. 3
Formally we get:

ALL AL'y ALC u, fL
Al =10 A Al | |uw | =] L | =" (2.6)
ACL A07 ‘Acc Ue .fc
Eq. 2.4 then becomes
I,
P:[Ii},R:[foc Ig;} (2.7)
with
- A, A, 17T A -~
Ji = w Sy e _ _A_lA . 9.
==l 3] 5] - e

by inverting the homogeneous equation associated with the upper block of A, in
Eq. 2.6. R R R

Now the question is: How can we define A,, and A,. such that A is close to A?
The BoxMG method collapses the two-dimensional stencils belonging to v points
to one-dimensional stencils by integrating (i.e., summing up) over the dimension
perpendicular to the corresponding coarse grid line. This approach assumes that
the error varies along the coarse grid line and is constant in direction perpendicular
to that line.

We use compass-notation for 9-point stencils on the fine grid:

-NW —-N —-NFE
A" j)=1 -w O -E |,
-Sw -5 -—-SE

with (4, 7) being the position on the grid.

3This gives us a method that perfectly fits an element-wise setting as described in the next
chapters.
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For a v point on a horizontal (x-)line, u., for example, the collapsed stencil is

A

A.=[-W O -E], (2.9)
with
W=W+SW+NW, O=0-S—Nand E=E+SE+NE . (2.10)

The computation of the interpolation weights in practice happens in three steps,

with steps 2 and 3 using the result of the previous one(s):
1. ¢ points u. get the interpolation weight 1 (injection):
uly = 1ufl. (2.11)

2. 7 points are interpolated from the corresponding ¢ points using Eq. 2.9 and
2.11. For a v point on a horizontal line, again, we get:

Tk Tk

o Wugy + Eugg
ulo = _
O

(2.12)

3. Interpolation weights for ¢ points x, are derived from the corresponding c
points and v points using the full stencil and Eqgs. 2.11 and 2.12:

S NWulyy + Nu];N + NEuy N Wu',;W + Eufy‘E
° .9 . o (2.13)
SWugsw + Suyg + SEuggy
o :

The prolongation is defined as R = PT and the coarse grid operator in a Galerkin
way: AT = PTA"P. With this scheme, it turns out that for the 9-point Laplace
operator, BoxMG constructs a bilinear prolongation operator (see Sec. 2.1.2), and
with that the Laplace operator is reobtained on the coarse grid. This provides a
perfect test case for a BoxMG code.

Two enhancements to this algorithm are proposed in [31, 35]:

First, the result of a Jacobi step is added along with the prolongation by u/ <«
w4+ Puf +%. This generally improves the convergence at a small cost, because
the numerator in the last term is the old residual, which has already been computed
before the coarse grid correction is applied.

Second, a heuristic switch, motivated by experience, is proposed for the diagonal

weight O of A, in Eq. 2.12:
- {6 O > (1 + min( E7 + E)

diag(A,,) =< _ o .
8(dn) W+E O0<(1+min(Z EYW+E)

This switch is said to improve the convergence for mixed or Dirichlet boundary
conditions. In the case of a zero sum operator, i.e. O = W + E (e.g. for pure
diffusion problems at inner points), this switch is, of course, unnecessary.
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BoxMG for Nonsymmetric Problems

For nonsymmetric problems, it is proposed in [31] to use A% =~ = 1[A" 4 (A")7]
for the construction of P as described in the previous section, and (A")T for the
construction of R. This choice is motivated by two general principles for intergrid
transfer operators: First, for a positive-definite system operator A, the resulting
operators should reduce to those given in the standard approach as described in the
previous section. Second, if A; has an upstream bias, the restriction R should have
a downstream bias. This second principle is cited from [18|. Several alternatives for
the choice of P and R are tested in [31], with the one given above resulting in the
best convergence rates and being most robust.

For smoothing, the robust Kaczmarz relaxation [62] which is also applicable to
equation systems which have non-diagonally-dominant (and therefore not positive-
definite) system operators is recommended in [31]. The main idea of this relaxation
method is that, for solving Au = f we define ©v = ATy and solve AATy = f
instead, as AAT is p(()_?itive—deﬁnite. The update rule for relaxing the kth row in A

(i+1) _ (9) ATy,
1S u = U, + .
k k Zl A%jl

BoxMG for Coarsening by Three

We will now look at BoxMG on a grid that is coarsened by three, which is a gener-
alisation of the approach described before (see [35]). Reasons for using a coarsening
factor three rather than two are discussed in Sec. 2.2.1.

Again, the fine grid points are split into ¢, v and ¢ points (see Fig. 2.3). Eq. 2.5
remains the same for the coarse-fine splitting, and, as before, we eliminate the
connections from ¢ to v points and receive Eqgs. 2.6, 2.7 and 2.8.

However, the dimensionalities of AW and A,, have changed: AW is a block diagonal
matrix with each block a 2 x 2 matrix (instead of a diagonal matrix), and also 4,
is block diagonal (instead of diagonal) with each block a 4 x 4 matrix.

As before, the stencils for v points are collapsed by averaging the stencil entries
perpendicular to the coarse grid line (see Egs. 2.9 and 2.10). Instead of one equation
with one unknown (which can be inverted directly by hand) we now receive for
~ points two equations with two unknowns, and for ¢ points four equations with
four unknowns. By solving the equations in the same order as before, and using
the results of the previous steps for the current step, we receive the interpolation
weights.

The enhancements described in the coarsening-by-two section can be adopted.

24



3 Spacetrees as Data and
Computational Structure

In science and engineering, the simulation models nowadays become more and more
accurate, and due to that very complex, and the amount of data that has to be
processed in a simulation increases. In order to be able to efficiently apply PDE
solving methods such as multigrid, one has to define a suitable way how to organise
and access the data. One way that proved to be efficient for this purpose are
spacetrees. The hierarchical structure of spacetrees mirrors the grid hierarchy in
multigrid methods. This makes spacetrees a perfect fit as a data (and as we will
see in Sec. 3.2 also as a computational) structure for multigrid. In order to benefit
from spacetrees, however, it is important to store the tree data structure in a way
that has small memory demand, allows an efficient tree traversal and is, in the best
case, cache- and memory-efficient in terms of data access (see, e.g. [47, 43, 101]).

3.1 Spacetrees and Spacetree Grids

A spacetree [43] is a hierarchical data structure represented by a tree. The root of the
tree represents the complete data domain, which is then subsequently divided into
smaller domains on each tree level. A k? (space)tree is a spacetree in d dimensions
for which each domain is divided into k% domains of equal size on the next level. !
A 22 spacetree, also called quadtree, with the corresponding spacetree grid is shown
in Fig. 3.1 in the upper row, the row below shows a 32 spacetree. The 3D equivalent
to a quadtree, a 23 spacetree, is called an octree.

In Alg. 3.1 we formalise the recursive construction of a spacetree. It is called with
SPACETREE(root), with the root being one node that contains the complete data
domain, for example the geometry of the simulated scenario. This domain is refined
(e.g. by bi- or tripartitioning). If the maximum refinement level is not yet reached,
the method is called for each subdomain that is not resolved sufficiently, i.e. these
subdomains are refined further.

By that algorithm, we receive an adaptively refined spacetree grid (as in Fig. 3.1
and already briefly discussed in Sec. 2.2.3): Its refinement level at a certain point
in the domain depends on how “interesting” that point is, i.e., how complicated the

IThe original definition of k% trees also allows the subdomains to be of different size.
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3 Spacetrees as Data and Computational Structure

Algorithm 3.1 Spacetree Construction

function SPACETREE(node n)
refine n
if maximum refinement level is reached then
return
else
for all children ¢ of n do
if ¢ is not resolved sufficiently then
SPACETREE(c)
end if
end for
end if
end function

geometry is there, for example. We only resolve that parts of the domain further
where it is necessary. Another refinement criterion could be the behaviour of the
solution at that point: Does it differ a lot from that at the neighbouring points
(then we should refine further), or is it very smooth (then a finer resolution is not
necessary)? Several other refinement criteria can be found in literature. In contrast,
a regularly refined grid has the same resolution and therefore the same spacetree
depth on the whole domain.

Spacetrees enable fast data access and access to the parents, children, and (de-
pending on the implementation) sometimes also the siblings of a vertex. We choose
an approach where the data is accessed in an element-wise manner, with each ele-
ment being a cell of the spacetree grid, and represented by one node of the spacetree.
The structure can be efficiently stored as linearised bit-code, with each bit standing
for a tree node and stating whether it is a leaf or not [43]. For defining a linear
order for the nodes (and thus also for the data located at the nodes), the traversal
scheme of the tree has to be fixed. Here, space-filling curves, as described in the
next section, have turned out to have some useful properties.

3.2 Spacetrees as Computational Structure Using
Space-Filling Curves

By using spacetrees as computational structure we mean that the computations
are performed directly on the tree — instead of loading the data from the tree into
separate data structures in order to do the computations —, exploiting its structure.
That way, an elegant recursive formulation of algorithms is possible and one is easily
able to cope with adaptive grids. As pointed out in the previous section, we want
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3.2 Spacetrees as Computational Structure Using Space-Filling Curves

=

Figure 3.1: Spacetrees (left) for a bisected (top) and trisected (bottom) adaptive
grid, and the corresponding spacetree grids (right). We use lexicograph-
ical ordering of the grid cells and a Cartesian coordinate system.

to store the spacetree structure and the data efficiently in a linearised form. The
data located at the tree nodes has therefore to be processed in a sequential manner
by doing a spacetree traversal. If we do a depth-first traversal of the spacetree and
define a fixed order of traversing the children of a node, we get a space-filling curve
(see, e.g. [80, 6]). A space-filling curve is a surjective and continuous mapping from
a 1D interval to an interval in a higher dimension. 2 We will here look only at 2D
space-filling curves on squares.

The structure of the grid and the order in which the children of a node are visited
correspond to different types of space-filling curves. In Fig. 3.2, we show three
examples in 2D:

e the z-curve, which is often used used for quadtree grids and results from the so-
called Morton order, which is defined from the bits of the binary presentation
of the cell coordinates,

e the Hilbert curve, which also is defined for quadtree grids,
e and the Peano curve, which is defined for 3% (tripartitioned) spacetree grids.

There is a number of other space-filling curves, also, for example, for triangulated
grids (the Sierpinski curve, see [6]), and many of them can be extended to 3D.

2The continuity property might be fulfilled only in a special mathematical sense, for example for
the z-curve as given below. See [80, 6] for a detailed mathematical discussion.
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3 Spacetrees as Data and Computational Structure
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Figure 3.2: The first two iterations of the z-curve resulting from Morton order (top),
the first three iterations of a variant of the Hilbert curve (middle) and
the first two iterations and an adaptive version of a variant of the Peano
curve (bottom).

A detailed introduction to spacetrees and space-filling curves with applications in
scientific computing can be found in [6].

In Alg. 3.2 we give a general formulation for the construction of a space-filling
curve. The three example curves given above result from different basic patterns for
the traversal, and how these are transformed (i.e. scaled, rotated or mirrored) and
connected upon refinement. The algorithm defines the traversal of an adaptive grid
if for one domain only part of the subdomains are refined further.

One important difference between the z-curve and the Hilbert and Peano curve
is the so-called “connectedness”, which means that two subsequently visited cells
share at least one edge. This implies that there are no jumps over cells in the curve,
as between the eighth and the ninth visited cell in the middle of the right-hand
z-curve in Fig. 3.2. Connectedness is one of the key properties required to enable a
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3.2 Spacetrees as Computational Structure Using Space-Filling Curves

Algorithm 3.2 Construction of a Space-filling Curve

function SPACEFILLINGCURVE(domain d, splitting factor f, pattern p, transfor-
mation t)
Split d into f equal subdomains s.
Based on t, define a new transformation ¢ of p for each s.
Use transformed p to order all s.
for all s do
if s has to be refined then
SPACEFILLINGCURVE(s, f, p, 1).
end if
end for
end function

cache- and computationally efficient stack-based implementation of the traversal of
an adaptive grid, as described in [48, 77, 65, 68, 99, 101] for the Peano curve and
discussed in [6] for various other curves. The main idea is the following: When a
vertex is touched for the first time during the traversal, its data is put on one of
several temporary input data structures. If the vertex is touched for the last time,
its data is put on one of several temporary output data structures. It turns out
that the order of processing the vertices for the first time is exactly inverse to the
order of processing them for the last time. This becomes clear when looking at the
Peano or Hilbert curve in Fig. 3.2. Therefore, stacks are the natural choice as a
data structure. It turns out that with this approach, good spatial and temporal
data locality is achieved. These locality properties are the key to cash efficiency (see
[101] and references therein).

When doing computations on a spacetree using a traversal with space-filling curves
as described above and staying in a strict local (i.e., we have no information from
other cells), cell-wise mode, one has some restrictions on which other nodes are
(easily) accessible. Fig. 3.3 shows this for one node in the spacetree (see also [6]).
There are direct connections from a node/grid cell to its parent and to its children,
meaning that they are visited in a row during a traversal and hence lie in the
memory in a sequential order. Therefore, in an implementation it is easily possible
to have them accessible at the same time and thus exchange information between
them without loss of memory efficiency. Also, if we allow all children of a node to be
accessible at the same time, a child can access its siblings. But we see that we cannot
directly access the neighbours of a tree node/grid cell. The issue with this property
becomes especially remarkable in the middle of the domain: The four adjacent cells
sharing the middle vertex are not directly connected by edges in the spacetree. This
means that we have no direct access from one cell to the neighbouring cell, and in
the depth-first traversal defined by a space-filling curve there may lay several other
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3 Spacetrees as Data and Computational Structure

cells between them. That has to be taken into account when designing algorithms
on spacetree grids.

AN B

Figure 3.3: The green highlighted spacetree node/spacetree grid cell has direct con-
nections only to its parent and its children (highlighted in red), i.e.,
during a traversal, they are visited in a row.

One advantage of spacetrees is that they provide an intrinsic domain decompo-
sition for parallelisation: Each processor receives a subtree of the spacetree. In
order to allow an efficient information exchange at the processor boundaries, the
space-filling curve should fulfil the connectedness property as explained above. In
addition, staying in a strict cell-wise, local notation for the algorithm turns out to
have big advantages when going to parallel architectures, as the need for informa-
tion from other processors — and therefore the need for expensive inter-processor
communication — is reduced.

In the next chapters we describe how to design a robust and efficient, parallelisable
multigrid algorithm on spacetree grids, and discuss in detail what implications the
cell-wise traversal has on the algorithm.
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4 Geometric-Algebraic Multigrid
on Spacetrees — Algorithm
Prototyping

By algorithm prototyping we mean that we test our ideas and design the algorithms
in an environment that allows us easy and fast implementation and testing of single
building blocks before integrating the algorithms into the target framework.

For this thesis, we did the algorithm prototyping in Matlab. It allows us to de-
couple the algorithms from the framework structure and the single components from
each other, in kind of a unit testing idea [42]. Thus, it is also possible to compare our
methods to methods without the restrictions we receive from the underlying space-
tree and the element-wise principle in the target framework, so that we can analyse
the benefits and drawbacks of such a spacetree-based implementation. At the same
time, by designing the algorithm such that it meets exactly the requirements of the
target framework, the integration into this framework is straightforward.

Later we used the prototyping codes to verify the target implementation and to
generate test cases for it. Such, the overhead for keeping the codes consistent paid
off.

Two main prototyping codes were developed: Prototype 1, described in Sec. 4.2,
completely ignores any spacetree ideas and locality properties and was used to test
the robustness and efficiency of the chosen BoxMG method for coarsening by a fac-
tor of three and hard, nonsymmetric problems. Prototype 2, described in Sec. 4.3,
uses cell-wise operators and local smoothers as required by a spacetree-based imple-
mentation, but it is still not implemented on a spacetree. So we can, for compar-
isons, apply also smoothers that are not feasible in a strict cell-wise implementation.
Chap. 5 finally brings the developed methods to the target framework with its strict
spacetree principles.

4.1 Requirements
The following demands are posed to the desired algorithm: robustness and effi-

ciency for a wide range of problems, suitability for parallelisation, and suitability
for integration into a state-of-the-art spacetree-based software framework.
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4 Geometric-Algebraic Multigrid on Spacetrees — Algorithm Prototyping

In the following sections we develop a suitable algorithm and test its properties.
All implementations will be for coarsening by a factor of three, as this is required in
the target platform. The principles, however, apply also to other coarsening factors
and will be illustrated both for a factor two and a factor three.

The first requirement is tested and improved in a general setting in Prototype 1.
Here, we combine several methods, mostly developed by Dendy, in order to receive
a multigrid method for coarsening by three which can also cope with nonsymmetric
problems. In addition, we make some observations about the discretisation using
finite differences.

The fulfilment of the second and the third requirement are reached in Prototype
2. The parallelisability and suitability for a spacetree implementation is brought in
by the cell-wise operators and the development and testing of suitable smoothers.
It turns out that the choice of a good smoother in a spacetree setting is not trivial,
and at the same time it is crucial for maintaining the robustness and efficiency of
the BoxMG method.

The fulfilment of the parallelisation requirement is finally tested in Chap. 5, when
the methods developed in Prototype 1 and 2 are implemented and parallelised in
the target framework.

4.2 Nonsymmetric BoxMG With Coarsening by
Three

The robustness of the BoxMG method for coarsening by two was already shown,
mostly by Dendy et al., in several papers [30, 31, 34, 32, 33, 71, 66|, including
for nonsymmetric problems. Dendy and Moulton showed that the approach can be
extended to coarsening by three multigrid [35] and is, using a red-black line (“zebra”)
smoother, robust also for problems with jumps in the coefficients.

In [109], we showed that by combining the approaches from [31] (BoxMG for
nonsymmetric problems) and [35] (BoxMG for coarsening by a factor of three) (see
Sec. 2.3) with a powerful symmetric line Gauss-Seidel smoother, we get a coarsening-
by-three multigrid solver which is able to handle also nonsymmetric problems and
the very challenging recirculating flow problem. In addition, we introduced a new
notation for the finite-difference discretisation of the problem, which contains an
artificial diffusion parameter that allows us to switch easily between first and second
order discretisation in order to demonstrate the behaviour of our multigrid solver
for different discretisation orders.

The following sections follow partly [? 109] in a revised version.
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4.2 Nonsymmetric BoxMG With Coarsening by Three

4.2.1 Convection-Diffusion Equation

Our model problem for Prototype 1 is the two-dimensional convection-diffusion equa-
tion written in flux form as follows:

Au = =V - (eVu) + (au), + (bu), = f, (x,y) € Q, (4.1)
u, =k, or u=gq, (z,y) € 00.

Here, € > 0 is the diffusion coefficient and a(z,y) and b(z, y) are the point-wise con-
vection velocities in the x and y direction, respectively. The given functions f(x,y)
and g(x,y) (or k(x,y)) are the right-hand side forcing and the boundary condition,
respectively, and u,, denotes the derivative of u in the direction normal to the bound-
ary. Our variable is u(x,y), which describes, for example, the concentration of a
passive tracer in a fluid.

This equation becomes very challenging for convection-dominated problems, i.e.,
if € is very small, as in this case the system operator is highly nonsymmetric. If a # b
the problem is anisotropic, what makes it hard to solve for geometric multigrid with
point-wise smoothers and standard-coarsening (see, e.g., [95]).

The problematic part of the convection-diffusion equation is the convection part.
Therefore, we will have a closer look at this part in the following sections.

4.2.2 Discretisation

We discretise our problem at the cell-centers of a Cartesian grid, using central differ-
ences for the Laplacian (diffusion term) and an upstream discretisation for the first
derivatives (convection terms). We test both first order and second order upstream
discretisations, as explained below. We denote by h the mesh size of the discrete
problem, A"u" = f*. In our discussion, h is assumed to be uniform, but in our
implementation we allow distinct and variable mesh-sizes in the x and y directions.

In order to obtain the possibility to change between first and second order dis-
cretisation, we rewrite the convection operator in the following way: In [109], we
show that any consistent near-neighbour upstream discretisation of a 2D convection
operator A.pn, = a0y + b0, (assuming, without loss of generality, non-negative a and
b) can be written in the form

Afony = Ag + c(h) D", (42)
where c(h) is a free parameter,
1 0 0 0 1 0 00
Al =—| —a+b a+b 0|, and D"=— | -1 1 0
2h h?
—a—b a—-0b 0 1 -1 0
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4 Geometric-Algebraic Multigrid on Spacetrees — Algorithm Prototyping

The operator A% can be interpreted as a second order accurate discretisation of
Acony With respect to the location (x — %,y — %), where (z,y) is the centre of the
stencil. The operator D" is a second order accurate approximation to the mixed
second derivative at the same point. This means that Eq. 4.2 can be interpreted as
a second order accurate discretisation of the operator ad, + b9, + c(h)0,,, centred at
(x—2,y—2). The term ¢(h)ds, can be considered as an anisotropic artificial diffusion
which, for consistency, must vanish as h — 0. Note that choosing c(h) = %(a +b)h
yields the standard first order upstream stencil, which is known to be stable for

convection-dominated problems:

1 0 0 0
Affom) = 7 —a a+b 0
0 -b 0

Choosing c¢(h) = 0 yields a second order accurate compact upstream discretisation.
Note that in this case the operator contains large positive off-diagonal terms, and
yet we shall see that our solver handles this operator quite well.

Having these two possible choices for ¢(h) at hand, we can easily switch between
a first and a second order discretisation of the convection part in Eq. 4.1. From the
analysis given in [109], it turns out that any upstream discretisation of A, of the
form written in Eq. 4.2 can be called stable if c(h) is positive, neutrally stable if
c(h) =0, and unstable if c¢(h) is negative.

4.2.3 Intergrid Transfer Operators and Coarse Grid Problem

The coarse grid operators are constructed using the Petrov-Galerkin method (see
Sec. 2.1.3). For the intergrid transfer operators and the coarse grid problem, we
have again a look at the convection part of the operator, as the diffusion part is
expected to be unproblematic. In our experiments in Sec. 4.2.5 we will see that this
is the case also for non-constant coefficients.

By direct computation it is found that the nonsymmetric BoxMG algorithm for
an upstream discretisation of the convection operator A.,,, and coarsening by three
yields the following prolongation and restriction operators in the constant coefficient
case:

12321 00000
24642 00000
P=-136963|, R=|1110 0
Y12 464 2 11100
12321 11100

These P and R produce a coarse grid discretisation that is a second order accurate
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approximation to the fine grid convection operator (also by direct computation):

[AL,.] = 9([AF] + c(h)[DM]) (4.3)
0 0 0 0 0 0
—a—b a—-0 0 1 -1 0

where H = 3h is the coarse-grid mesh-size. The operators are of appropriate accu-
racy for achieving fast convergence with a V-cycle (see [107]). In addition, we see
that, as we appeal to coarser and coarser grids, the relative value of ¢(h) in Eq. 4.2
tends monotonically to zero, as c(h) stays the same in the coarse grid Eq. 4.3 as
in the fine grid Eq. 4.2. Therefore, it can be concluded that a stable upstream
discretisation stays stable after coarsening.

4.2.4 Relaxation

We already stressed that, due to the structured grid structure, the robustness and
efficiency of BoxMG depends a lot on the smoother that is used.

In [31], the “safe” but slow Kaczmarz relaxation was proposed as appropriate
smoother for nonsymmetric problems (see also Sec. 2.3.1). In order to improve the
efficiency, we use symmetric z- and y-line Gauss-Seidel (see Sec. 2.1.1) and show
that this also yields a robust method for nonsymmetric problems. By symmetric
x/y-Gauss-Seidel we mean that we go over lines of constant y/x, first in ascending
and then in descending x/y direction, and eliminate the residuals along each line
simultaneously. This requires solving tridiagonal linear systems. Line Gauss-Seidel
is commonly used for convection-dominated convection-diffusion problems and for
high-Reynolds number flows (see, e.g., [102] and references therein).

Stability of Relaxation

By the Fourier analysis in [109], line Jacobi relaxation is found to be non-divergent
for stable upstream discretisations, i.e., for ¢(h) > 0, of a convection operator A.ony
with constant coefficients. An analysis of line Gauss-Seidel relaxation for the same
case shows that if the relaxation is carried out in downstream ordering, then it
is a stable marching process, which naturally yields an exact solver in the case of
pure upstream convection. On the other hand, when it is carried out in upstream
ordering (the “wrong” direction) it remains nondivergent. These results hold for any
c(h) > 0. Together with the observations about the coarse grid operator given in
Sec. 4.2.3 it can be concluded that symmetric line Gauss-Seidel, with line relaxation
carried out in alternating directions, can be expected to yield a robust smoother for
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this problem, despite the fact that the matrices are not M-matrices.! As line Gauss-
Seidel is known to be robust for pure diffusion problems, adding the diffusion part
should not hurt the robustness. This is also confirmed for first order discretisation
by the two-grid analysis (see |95, 103] for details of this type of local Fourier analysis)
in [109] for the constant coefficient convection-diffusion problem.

These results hold for coarsening by a factor of three, but an analysis for the
coarsening-by-two case is expected to yield comparable results, as the coarsening
factor is no essential feature in the analysis.

In our experiments in the next section, also the non-constant coefficient case is
considered and our method is shown to be robust also there.

4.2.5 Numerical Experiments

To show the discretisation accuracy, robustness, and convergence behaviour of our
approach, we present numerical results for several scenarios. In Fig. 4.1, the stream-
lines of the different problem setups are shown. The domain in the following numer-
ical examples is Q = [—3, ] x [—3, 3]. In all these tests we use a V(1, 1) cycle with
one symmetric x-line Gauss-Seidel pre-relaxation and one symmetric y-line Gauss-
Seidel post-relaxation. Unless stated otherwise, we coarsen down to a 9 x 9 grid
and use a direct solver there. The notation ||.|| refers to the Iy norm. We start
with a random initial guess and impose a zero right-hand side. (This choice has no
effect on the asymptotic convergence behaviour.) The iteration is stopped when the
residual norm ||ry|| = ||f* — A"ul|| is reduced by at least a factor of 10%. Here, i
denotes the iteration number. In addition to the number of iterations needed for
reaching this goal, we track the convergence factor p, which is defined as p := %,

after each iteration 7. pyeqn stands for the (geometric) mean convergence factor:

e n HrendH
pmean N HT.OH .

Accuracy of Discretisation

First, we test whether the discretisation switch for the convection part as described
in Sec. 4.2.2 yields the expected accuracy.
Table 4.1 (left) displays the accuracy of the discrete solution with ¢(h) = 0 and

c(h) = 1(a + b)h for the convection equation (e = 0) with constant coefficients
a =1 and b = 0.5. The inflow boundary conditions are g(—0.5,y) = % Yy,

and g(z,—0.5) = 0 Vz, while at the outflow boundaries homogeneous Neumann
conditions are imposed. We denote by e the difference between the discrete solution

!An M-matrix is a non-singular square matrix with all off-diagonal entries < 0 and all real
eigenvalues positive. Most proofs for the convergence behaviour of a smoother only hold for
M-matrices.
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Figure 4.1: Streamlines for the loop-segment, recirculating-flow, and jumping-
diffusion coefficient problems.

and the exact analytical solution to the differential equation, sampled on the grid,
with €4, denoting the maximum norm of this error, ||e||.

We also check the accuracy for a problem in which a and b depend on the loca-
tion (z,y). We use a = 8y(3 — z%) and b = —8z(% — y?) (see streamlines for the
loop-segment problem in Fig. 4.1), imposing the same inflow boundary condition as
above at the left-hand boundary, g(—0.5,y) = % Yy, homogeneous Neumann
conditions at the outflow boundary, g, (x, —0.5) = 0 Vz, and homogeneous Dirichlet
conditions at the remaining two boundaries. For ¢ — 0, the solution u” at the
outflow boundary should exactly equal u” at the inflow boundary. Therefore we
compute €pmqee = |[uf, — ul .||o as a measure of accuracy. The results are shown in
Table 4.1 (right).

For both problems we see that the error with the second order discretisation,
c(h) = 0, is almost exactly proportional to h?, whereas for c(h) = 1(a + b)h it is
proportional to h as expected.

Constant Coeflicients Loop Segment
e=0,a=1,b=0.5 e=0
1/h || emae (1% order) | epae (27 order) || 1/h || €mae (1% order) | €pae (27 order)
27 0.2788 0.0108459 27 0.1587 0.0025276
81 0.1249 0.0011998 81 0.0623 0.0002803
243 0.0466 0.0001337 || 243 0.0220 0.0000311
729 0.0161 0.0000149 || 729 0.0075 0.0000035

Table 4.1: Maximal discretisation error for first order c(h) =

5(a+b)h and second

order c¢(h) = 0 discretisation, both for the constant coefficient and the
loop segment problem.
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Robustness and Efficiency of the Multigrid Solver

The following numerical experiments demonstrate the robustness and the conver-
gence behaviour of our multigrid solver.

Constant Coefficients and Loop Segment As in the previous subsection we
consider the convection-diffusion equation with constant and non-constant coeffi-
cients. For assessing the convergence behaviour of our multigrid solver we use the
geometric-mean convergence factor ppeqn. Figure 4.2 shows pieqn @s a function of
the diffusion coefficient with the first order and second order accurate discretisations
for various mesh resolutions. For the first order discretisation the convergence fac-
tors are uniformly excellent. For the second order discretisation the convergence is
still excellent over a wide range of diffusion coefficients, with some deterioration oc-
curring for certain values of €, which gets worse as the grid is refined. As expected,
the convergence rates are excellent in the strongly viscous case, and in the other
extreme — the strongly convective regime — the relaxation becomes a stable direct
solver.

Jumping Coefficients Next, we introduce jumps in the diffusion coefficient for the
case of constant convection coefficients by sharply increasing the diffusion in one or
more circular regions (see the right-hand panel of Figure 4.1 for the streamlines and
positions of the jumps). The rest of the setup remains as before. Tab. 4.2 shows
the results for e = 10? in one or five circles, respectively, and € = 10~* in the rest of
the domain — a jump by six orders of magnitude. This experiment is motivated by
heat flow problems where the property of the conductive material varies in certain
regions due to imperfections or embedded materials. See Secs. 2.1.2 and 2.1.3 for
an explanation why these kind of problems are so challenging for pure geometric
multigrid methods.

As expected for BoxMG methods, the solver that we use appears to be robust.
Again, the solver shows better convergence behaviour for the first order discretisation
than for the second order discretisation, however, less significantly so. Interestingly,
there is no deterioration with the mesh size for the single-jump case. That means
that the solver is able to cope with this problem perfectly.

Closed Characteristics The next problem that we consider is a flow with closed
characteristics, i.e., recirculating flow. For the convection coefficients we use a =
sin(my)cos(mx) and b = cos(my)sin(mx) and we apply homogeneous Dirichlet bound-
ary conditions on all boundaries. The streamlines are shown in Figure 4.1 (middle).
This problem is particularly challenging, as we have no starting point and no end
point, and therefore the relaxation cannot “push” the error out of the domain, and
in the middle of the domain we have a stagnation point, i.e. the velocity of the flow
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Figure 4.2: The mean convergence factor pc.. as a function of the diffusion co-
efficient € for the constant coefficient problem with convection coeffi-
cients ¢ = 1 and b = 0.5, and the loop-segment problem, both with
c(h) = 1(a + b)h (first order discretisation, left) and c(h) = 0 (second
order discretisation, right). Note the considerable difference of the con-
vergence factor for first and second order discretisation (scale of y-axis).
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one jump five jumps
e=10"*10%],a=1,0=0.5 e=10"*10%],a=1,0=0.5
1/h || # cycles Prmean 1/h || # cycles Prmean
27 || 10 (11) | 0.145 (0.182) 27 8 (12) | 0.090 (0.208)
81 11 (13) | 0.187 (0.233) 81 13 (17) | 0.239 (0.323)
243 9 (10) | 0.121 (0.156) 243 16 (17) | 0.306 (0.332)
720 [ 8(9)]0.093 (0.126) | [ 729 | 21 (22) | 0.411 (0.426)

Table 4.2: The constant coefficient problem with one or five jumps by a factor 10°
in the diffusion coefficient in circular regions of radii 1/27. The numbers
in parentheses show results for the second order discretisation, c¢(h) = 0.

is zero. Our results for first and second order discretisation can be seen in Tabs. 4.3
and 4.4. The solver yields excellent convergence behaviour for a diffusion coefficient
¢ down to nearly 10~° for the first order discretisation, and nearly 10~ for the second
order discretisation. In this setup we only coarsen down to a 27 x 27 grid and use
a direct solver there. If we coarsen further, then already for e = 10~ the behaviour
in the second order discretisation case is erratic, with occasional divergence. This
behaviour can be traced to the formation of very poor operators in the vicinity of
the central stagnation point on very coarse grids. In Tab. 4.3 we can observe that
for the second order discretisation and a rather small ¢, i.e. € = 107, the two-grid
cycle yields rather bad convergence. The three-grid cycle is already significantly
better, and with four grids again an improvement is reached. The reason for this
behaviour becomes clear when looking at the discretised equation: The convection
term contains the factor %, whereas the diffusion term contains the factor # The
smaller the mesh width A is, the more dominant becomes the diffusion term, and
the better is the convergence behaviour of the solver for the second order discretised
equation. This effect is not that dominant for the less exact first order discretisa-
tion, as we can see in Tab. 4.3. The first order discretisation is more robust than
the second order discretisation, and the results are excellent even for small ¢ and

very fine grids, also when we coarsen down to 9 x 9.

e= 10" e= 1073
1/h || # cycles Pmean | | 1/h || # cycles Pmean
L[ 4 (74) | 0.009 (0.779) | | 81 7(8) | 0.050 (0.098)
243 | 7 (20) | 0.062 (0.390) | | 243 7(8) | 0.072 (0.083)
729 | 9 (14) | 0.122 (0.266) | | 729 7 (7) | 0.069 (0.069)

Table 4.3: Convergence rate results for the recirculating flow problem with vary-
ing mesh sizes. The numbers in parentheses refer to the second order
discretisation.
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4.2 Nonsymmetric BoxMG With Coarsening by Three

1/h =243

€ #Cycles Pmean
10° 7 (7) | 0.059 (0.059)
1071 7 (7) | 0.060 (0.059)
1072 7(7) | 0.063 (0.062)
102 7 (8) [ 0.072 (0.083)
10~ 7 (20) | 0.062 (0.390)
1075 |[ 9 (>200) | 0.125 (0.926)
105 [[ 20 (DIV) | 0.400 (DIV)
107 [[59 (DIV) | 0.730 (DIV)

Table 4.4: Convergence rate results for the recirculating flow problem and a variety
of diffusion coefficient values €. The numbers in parentheses show results
for the second order discretisation. If the method converges slowly we
calculate p,eqn after 200 V-cycles.

Comparison to Galerkin Approach To conclude this part, we compare the non-
symmetric BoxMG solver employing the Petrov-Galerkin approach, to the more
common approach of Galerkin coarsening (comparisons of BoxMG to a solver us-
ing bilinear interpolation and full weighting as restriction are shown in Sec. 4.3.6).
To this end we perform numerical tests with two Galerkin variants (i.e., P = RT).
In the first case, we employ the restriction operator of the nonsymmetric BoxMG
solver, which tends to the upstream restriction in the convection-dominated regime,
and its transpose as the prolongation. In the second case, we employ the prolonga-
tion operator of the nonsymmetric BoxMG solver, which is based on the symmetric
part of the operator, and its transpose as the restriction. As we can see in Tab. 4.5,
the first alternative, denoted as Galerkin 1, yields stable coarse grid operators, but
slow convergence in intermediate € regimes, where convection is dominant but the
diffusion is still not negligible. The second choice, denoted as Galerkin 2, on the
other hand, yields unstable coarse grid operators in the convection-dominated (small
€) regime, and hence divergence. The convergence behaviour for these two choices is
explained in [109] by the sum of the orders of restriction and prolongation: Yavneh
found in [107], that this sum has to be at least three for getting a good coarse
grid correction for smooth characteristic components (i.e., components which are
much smoother in the characteristic direction than in the direction orthogonal to
it) in the case of first order discretisation. For our first alternative for the intergrid
transfer operators the sum is two, as both operators are first order. Therefore, we
receive poor coarse grid correction in the convection-dominated regime, but we have
stable upstream schemes on the coarse grid and therefore still get convergence. In
the second case, both operators are second order and we get a sum of four, but
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1/h=243,a=1,b=05

BoxMG Galerkinl Galerkin2
Pmean Pmean Pmean

10° || 5.79-1072 | 5.78 - 1072 | 5.79 - 102
107! || 5.86-1072 | 5.86- 1072 | 5.86 - 1072
1072 || 5.70-1072 | 6.55- 1072 | 5.79 - 1072

107 [[381-10 2 [ 1.51-10 ! DIV

10 7][6.10- 10 [ 3.80-10 7 DIV

107 [[7.05-107° [ 7.01- 10" DIV

10 9.71-107 [ 7.03-10°° DIV
1/h = 243

€| Ptan | Prcan | Piacan

10% || 6.00-1072 | 5.93-1072 | 5.90 - 1072
1071 | 5.98-107% | 5.87-1072 | 5.94- 107
10721 6.35-107% | 1.14- 107! | 6.21- 1072

1073 ] 1.16-107' | 5.51-10°! DIV
1074 || 1.50- 1071 | 7.04 - 10~ DIV
10~° || 5.01-107"' [ 7.36- 107! DIV
1076 [ 5.51-1071 [ 6.97-1071 DIV

Table 4.5: Convergence rate results for the constant coefficient (top) and the recircu-
lating flow problem (bottom) for various diffusion coefficients. The second

BoxMG

) shows the mean convergence factor for our algorithm,

the third column (pGalerkinl) for P = RT with upstream R, and the last

Pmean
Galerkin2

) for R = PT and P created with the symmetric part

of A. In all three cases we use ¢(h) = 0.5h(a + b) (standard first order

upstream), and we coarsen down to 9 x 9.
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4.3 Element-by-Element Multigrid and BoxMG

the coarse grid operators get more and more unstable in the convection-dominated
regime if we coarsen, resulting in divergence. For our nonsymmetric BoxMG solver,
the sum is exactly three in the convection-dominated regime, and we have shown
(see Sec. 4.2.3) that we get stable coarse grid operators in the convection-dominated
regime. Therefore, our solver is robust and yields excellent convergence factors.

4.3 Element-by-Element Multigrid and BoxMG

We now move some steps towards the target implementation on a spacetree by
developing a method that already fulfils the basic requirement: The operations
have to be implemented in a strict cell-wise (i.e., element-by-element) manner. The
BoxMG method naturally fits very well to this principle, as the intergrid transfer
operators are defined in such a way, that no information outside the respective coarse
grid cell is used.That means, that we only need a node and its children from the
spacetree to be available at the same time (see Sec. 3.2). But two challenges have
to be overcome for our solver: First, the Petrov-Galerkin coarse grid operator for
arbitrary prolongation and restriction operators has to be computed in this cell-wise
setting, and second, a suitable smoother has to be found that is both as local as
necessary and as powerful as possible. The resulting code is our second prototype,
Prototype 2.

Element-by-element finite element methods were introduced in the eighties [58, 57,
105, 94|. The basic idea is to define the operations in an element-based manner, i.e.,
an operator is applied on a single element at a time and only uses information locally
available from that element, and these local parts are then accumulated. Already
in the beginning, part of the motivation behind was to get algorithms that are easy
to parallelise: You do not have one big operator that has to be stored and that is
applied in one expensive sequential step, but a lot of small, maybe distributedly
stored, operators that can be applied in parallel. In comparison to applying the
whole operator as one matrix, or applying it row-wisely as stencils which are located
at the vertices, the element-wise approach has also the advantage that no ghost-cell
layers at the processor boundaries are needed. This concept during the last years
was combined with spacetrees as underlying structure in order to achieve efficient
matrix-free methods (see, e.g., [99, 81, 41]).2
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Figure 4.3: The nine-point Laplace stencil (left column) is split into its cell-wise
components (middle column). If this is done for all vertices of a cell (in
this example, the stencil is assumed to be the same on all vertices), we
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Figure 4.4: Assembling of the cell-based prolongation operator for one fine grid cell

in a bisected (left) and trisected (right) coarse grid cell. The prolonga-
tion operators located at the four coarse grid vertices are the same in
this example. The respective values from the prolongation operator are
highlighted in each step. If a coarse grid vertex does not influence a fine
grid vertex the corresponding value is 0.
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4.3.1 The Cell Operators

The element-by-element principle used in this work is illustrated for 2D in Figs. 4.3
and 4.4: The cell-based system operator A..; and intergrid transfer operators P..y
and R..; are derived from the stencil operators of all vertices belonging to the cell.
This results in 2P x 2P matrices. For A, this was already described before, e.g. in
[99]. We define now a splitting for the intergrid transfer operators in a manner that
makes a cell-wise application and an elegant computation of the Galerkin coarse
grid operator possible for arbitrary P and R (see below).

Similar to A, the values of the intergrid transfer operators have to be scaled — see
Fig. 4.5. One can equivalently transfer the operators back from cell representation
to vertex representation. For that, of course all respective cell operators are needed
(i.e., one vertex operator is assembled from several — in 2D four — cell operators).

The evaluation of such a cell operator is a matrix-vector product (MatVec) — in
2D, for example, a 4 X 4 matrix times a 4 X 1 vector (ug, containing the values
of the four vertices of a cell). We receive a vector containing the contributions
to the vertices belonging to the cell. In order to get the result on a vertex, the
corresponding vector entries of all adjacent cells have to be accumulated: For A..,
the stencil is split and put on the adjacent cells of the central vertex (see Fig. 4.3).
A row of A, contains the weights for the operator centred at a vertex, a column
contains the weights of all four operators touching a vertex in that cell. Therefore,
we can simply sum up all four (= 2P) vector entries of the result vectors Agetcen
of the four (= 2P) adjacent cells to get the new value of the central vertex. Instead
of nine values, as with the standard vertex-based nine-point stencil, we now have to
sum up sixteen (= 2P x 2P ) values.

For the intergrid transfer operators P..; and R, the operator splitting is not as
intuitive as for Ay, because we have to think in two levels, the coarse and the fine
grid. A vertex does not directly influence its neighbours, but the respective vertices
at the next coarser or finer level. That means in practice that for the intergrid
transfer the corresponding nodes of two spacetree levels have to be available.

P..; contains in a row the contribution weights of all coarse grid vertices to one
fine grid vertex. In a column, for one coarse grid vertex the contribution weights
to all fine grid vertices of the fine grid cell are stored. For R, this holds in a
transposed way: In a row, a coarse grid vertex is fixed, a column corresponds to
a fixed fine grid vertex. If R = PT (in matrix notation, equivalent to R = P in
stencil notation), then R.;; = PL,. For the prolonged value of a fine grid vertex, the

cell*
respective entries of Pr.ojUcoarse—cenr; Which can be viewed as located on the vertices of

2The term “matrix-free” is used for methods that do not store the system matrix as one big global
matrix, although in fact also these methods store the whole operator implicitly, distributed over
the domain. It is also used for methods where the matrix is in fact not stored. Jacobian-free
Newton-Krylov methods, for example, just store an approximation of the matrix-vector product
that they need. See [63] and references therein for further information.
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Figure 4.5: The cell-based prolongation operator has to be scaled according to the
number of cells adjacent to one vertex. This is not necessary when using
it for the computation of the Petrov-Galerkin coarse grid operator, as we
compute A# = RA"P in a cell-wise manner and A", is already scaled
accordingly (see Fig. 4.3).

the fine grid cell, of the four adjacent cells of the vertex are added up. These are four
summands: We only sum up those values which lie directly on the respective vertex.
The accumulation for the stencil application was already done with the MatVec.
To get the restricted value for a coarse vertex, we first accumulate the results of
Reeiitt ine—cen for all fine grid cells that are covered by the restriction stencil on the
vertices of the coarse grid cell. Then again, the vertex value is received as the sum
of the four values at that vertex.

To summarise, we store the system operator as stencil at the fine grid vertices
and the intergrid transfer operators as stencils at the coarse grid vertices. For
application, the cell operators are assembled from those stencils. The unknowns u
and the right-hand sides f are stored at the vertices. We now discuss the following
alternatives to this scheme:

1. storing u and f in 4 x 1 vectors at the cells,

2. storing P and R cell-wisely as P..; and R..; at the fine grid cells,
3. storing P and R as 4 x 1 vectors at the fine grid vertices,

4. not storing P and R at all, but re-compute them everytime from A,
5. and implementing prolongation and restriction vertex-wisely.

The considerations 2 and 3 are valid in a similar manner also for A.

Alternative 1: Using the cell-wise operators, we seem to be able to do a whole
multigrid cycle in cell-view. So one might ask why we do not only store and process
vectors at cells instead of accumulating the vertex values. When talking about
restriction and prolongation, this would work. We can also compute the Galerkin
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Pvertex:%(o 6 0 3)

Pvertem:%(G 0 3 0)

\ 4

Figure 4.6: For the highlighted fine grid vertex on the coarse cell boundary, the
respective lines in the prolongation operator matrices contain the same
values, but not in the same order, as the numbering of the coarse grid
vertices is different.

operator completely cell-wisely (see Sec. 4.3.2). But when applying the system
stencil, for example in smoothing, information has to be transferred through the
grid. In cell-view, the value at the bottom left vertex in Fig.4.3, for example,
does only affect the other three vertices of that cell (and itself). But in order to
let information go to the top right vertex, e.g., information has to be exchanged
between the cells in the next step. This is why the values for u (and also for the
right-hand side f when doing the restriction of the residual) are accumulated and
stored at the vertices.

Alternatives 2 and 3: At first sight, storing P and R at the coarse grid vertices
seems to be unnecessary: Why not storing them as 4 x4 cell operators on the fine grid
cells, or as vectors of length four on the fine grid vertices? Storing them on the fine
grid cells is possible and can be done without restrictions. The obvious drawback,
however, is, that we store the values redundantly: One vertex contribution from the
original operator P or R has to be stored in four different cell operators. Now one
could argue that if we stored the values as vectors on the fine grid vertices, we could
simply assemble the cell operators from them without having this redundancy. This
would work for the vertices inside a coarse grid cell. The problem for vertices at
the coarse cell boundaries, however, is shown in Fig. 4.6: As the numbering of the
coarse grid vertices is different in the two coarse grid cells, the two respective coarse
grid vertex contributions have the the positions 2 and 4 in the left hand cell, and 1
and 3 in the right-hand cell. That means the order of the values in a vector at a fine
vertex should be different depending on whether we regard the fine grid vertex as
belonging to the left- or right-hand cell. If we would store this additional information
somehow, or introduce some kind of rule (we always store the values in the order
given by the left-hand cell, for example), the treatment of this boundary cases would
cause an overhead that would annihilate the benefit of this data structure.
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Alternative 4: Especially for the implementation on supercomputers, where we
have restricted memory per core, but a lot of computing power ®, one might decide
to not store P and R at all, but, if possible, recompute them on-the-fly every time
for the fine grid cells inside a coarse grid cell. For the operator-dependent intergrid
transfer operators defined by BoxMG, this is easily possible — see Sec. 4.3.3.

Alternative 5: By using the information transfer between the grid levels, the
intergrid transfer operators could also be implemented in a vertex-wise manner, with
the parent distributing/collecting the respective fractions to/from the children. As
discussed in Chap. 3, the spacetree allows us to directly access all children of a
node. This means that we have one coarse grid cell with all its children (i.e., four
resp. nine fine grid cells) available. We could then update the (fine for prolongation,
coarse for restriction) vertices according to the intergrid transfer operators on the
four coarse vertices. For prolongation, the contributions of all four coarse vertices
have to be accumulated on the fine vertex. For restriction, the value at a coarse
vertex is valid when all four adjacent cells of a coarse vertex have been processed and
the respective contributions of the fine vertices have been accumulated. However,
that way we have to take care not to accumulate the values from vertices lying on
the coarse cell boundary twice (or four times for a coarse vertex), and the elegant
implementation of the Petrov-Galerkin principle as described in the next section
would not be possible.

4.3.2 Element-by-Element Petrov-Galerkin

The Petrov-Galerkin coarse grid operator computation can completely be done cell-
wisely, as shown in Alg. 4.1 for one coarse grid cell. The input parameters for the
algorithm are the fine grid system operators and the intergrid transfer operators
of all fine grid cells inside the respective coarse grid cell in cell representation, the
output is the coarse grid operator in cell representation. As pointed out above,
one can easily transfer the operators on the grid from one representation to the
other. Therefore, if we want to compute A.purse On a vertex from Acourse—cenr, We
need Acoarse—cen from the four adjacent cells.

We can see in Alg. 4.1, that by defining the cell operators as given above, we keep
the form A pgrse = R - Afine - P for the Petrov-Galerkin coarse grid operator in cell
representation.

30n modern supercomputers, the overall memory and the number of cores is increasing, but the
memory per core stagnates. This is on the one hand due to runtime issues — the bigger the
memory is, the slower is the memory access —, on the other hand due to energy issues — holding
data in the memory needs more energy than doing computations. In addition, communication
and parallelisation facilities like MPI [72] also need a lot of memory.
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Algorithm 4.1 Cell-Wise Petrov-Galerkin

function PETROV'GALERKIN(Afinefcells7 Pfinefcellsa Rfinefcells)
Acoarse—cen = Matrixdx4(zeros)
for all fine grid cells fc do
Acoarse—cell += Rfc : Afc : Pfc
end for
return Acoarsefcell
end function

4.3.3 Element-by-Element BoxMG

For the computation of the BoxMG intergrid transfer operators as described in
Sec. 2.3, we need two spacetree levels available: the coarse grid cell and its chil-
dren. This is all we need for solving the respective equation system. Due to the
stencil collapsing at the coarse-cell boundaries, we do not need any information
from neighbouring cells. Therefore, the BoxMG algorithm is perfectly suited for
implementation on a spacetree (Chap. 3).

The intergrid transfer operators can be computed in a setup phase and stored
either as 5 x 5 stencil on the coarse grid vertices (then we have to assemble the cell
operators every time for restriction and prolongation, and also for the computation
of the (Petrov-)Galerkin coarse grid operator) or as 4 x 4 cell operator on the fine
grid cells — see Sec. 4.3.1. However, due to memory considerations (especially on
supercomputers) or in dynamically adaptive simulations, it might make sense not to
store them permanently, but recompute the operators every time we enter a coarse
grid cell (and go down to its children), and discard them when we leave the cell.
That way, we never have the full five-times-five intergrid transfer stencils available,
but only the four three-times-three parts that overlap the active coarse grid cell.

4.3.4 Smoothers for Element-by-Element Multigrid

Finding a suitable smoother (Sec. 2.1.1) is not trivial for strict cell-wise spacetree
multigrid. In Sec. 3.2, we already mentioned the impact of the spacetree structure
(when staying in strict cell-wise manner) on the way of doing computations. One
issue were the restrictions posed on the information transfer: From a given node in
the tree, only direct access to its parent and its children (and maybe its siblings) is
possible. If two or more neighbouring cells in the spacetree grid share one vertex, we
do not know in which order the cells are traversed, and there might lie several cells
in between in the order of traversal. When applying one of the cell-wise operators
described in the previous section, without further information (e.g. a counter which
keeps track of the number of “visits” of a vertex), only at the end of a complete
traversal of the spacetree grid we can be sure that all adjacent cells of a vertex were
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visited and their cell operators were applied, and therefore the vertex holds a valid
value. This makes it often necessary to do several traversals in order to perform an
algorithm, what makes some algorithms almost unfeasible: For a point Gauss-Seidel
smoother, which is one of the most popular smoothers for multigrid, we would need
to do an extra traversal for the update of every value, as always the most “up-to-
date” residual is needed, and the residual at a vertex is “outdated” as soon as one
of the neighbouring vertices is updated. Therefore, the residual r = f — Au has to
be recomputed after every update, and this requires the application of the system
operator stencil. To apply A on u at a vertex in a cell-wise setting, however, we
need to visit all adjacent cells of that vertex — also those which lie “behind” it in the
current traversal.

A point Jacobi smoother is easy to implement on spacetrees, as the residual is
computed once in advance at every vertex and then used unchanged during the
traversal. We can therefore either do the Jacobi smoothing in two traversals (one for
the residual computations and one for the updates), or in one traversal by tracking
whether already all adjacent cells at a vertex where visited and doing the smoothing
update as soon as the value at the vertex is valid. Because of the use of the “outdated”
residuals, however, Jacobi smoothing is often not efficient enough for challenging
problems.

An “affordable”, but not cheap, alternative would be red-black Gauss-Seidel with
four colours, as we use a nine-point stencil. This smoother needs one Jacobi smooth-
ing iteration per colour. Red-black Gauss-Seidel is a better smoother than Jacobi,
but we would need four times as many traversals.

Line relaxation, as used in [35] and [109], is again not feasible on spacetrees, as a
tridiagonal system has to be solved for each line, and we therefore need all involved
vertices to be accessible at the same time (or a lot of traversals for doing it somehow
else).

When examining this problem, one can observe that we have a situation that is
somehow related to the situation when looking for a smoother on a parallel com-
puter: We only have restricted communication possibilities and therefore have to
find a smoother that acts more or less locally. In a parallel setting using domain de-
composition, the inner part of a subdomain can exchange information easily, but at
the domain (i.e., processor) boundaries information exchange is expensive and only
possible in a restricted manner (for example once per grid traversal). On a space-
tree, the subdomain where information exchange is easily possible is defined by the
children of a node, or, more exactly in terms of the spacetree grid, by the inner fine
grid vertices of a coarse grid cell. The fine grid vertices on coarse cell boundaries
already need information from the neighbouring coarse cell when applying the sten-
cil for smoothing. Having these similarities in mind, it makes sense to have a look
at the literature dealing with parallel smoothers, see e.g. [1, 69, 70, 27, 7, 8] and
references therein. Obviously, parallel smoothing is still an open field of research.
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4 Geometric-Algebraic Multigrid on Spacetrees — Algorithm Prototyping

One approach that is often considered in this context are hybrid (Gauss-Seidel)
smoothers.

Hybrid Gauss-Seidel smoothers perform Gauss-Seidel relaxation in the inner part
of the domain where communication is possible —i.e., on a processor or, in our case,
in the interior of a coarse cell. On the boundaries, Jacobi updates are performed.
Note that this will reduce to a block-Jacobi smoother if we do a lot of Gauss-Seidel
iterations at the inner points. These smoothers do not always yield convergence,
especially if the system operator matrix is not diagonal dominant and the blocks are
rather small [7, 1]. Still, hybrid Gauss-Seidel smoothers are considered to be robust
and efficient in most practical cases [7].

In the case of spacetree grids, the blocks on which Gauss-Seidel relaxation can be
performed are very small. For coarsening by a factor of two, only the single point in
the middle of the coarse grid cell is guaranteed to already hold a completely updated
value when leaving the coarse grid cell, for coarsening by a factor of three, the four
interior points. We will see in our experiments, however, that the hybrid smoother
for coarsening by a factor of three yields some improvement as compared to a Jacobi
smoother.

Combining the hybrid smoothing idea with the scheme used for the computation of
the BoxMG intergrid transfer operators, we propose the following relaxation scheme
which can be applied on a spacetree (see also Fig. 2.3 for nomenclature of the points):

e First, perform Jacobi smoothing on the ¢ points (fine grid points lying on
coarse grid positions) and «y points (fine grid points lying on coarse grid lines).
This step uses the precomputed residual at all respective vertices.

e Relax 7 points with the residual computed with the collapsed (1D) stencil (as
in Eq. 2.9) in a Gauss-Seidel manner, i.e., using the updated values from the
¢ points and maybe the v point at that coarse grid line updated before.

e Perform Gauss-Seidel relaxation on the ¢ points (fine grid points in the interior
of coarse grid cells) using the updated values at the ¢ and v points and maybe
the ¢« points of that cell updated before.

We call this scheme a “box smoother”, as it works on a box-shaped domain and it
uses the BoxMG idea of collapsed stencils at v points. It differs from the standard
hybrid approach in that we do an additional “kind-of-Gauss-Seidel" step at the ~
points. An alternative would be to leave out the Jacobi step at the v points, but
in that case we would disregard the information about the “real” residual (i.e., the
residual computed with the 3 x 3 stencil) that we have anyway. The scheme can be
applied in two grid traversals: First, the residual is computed for all vertices, then
the smoothing is performed for all coarse grid cells. As all sixteen vertices of the
coarse grid cell have to hold valid values for the residual (i.e., all their adjacent cells
have to be visited) before a coarse grid cell can be processed it does not make sense
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to apply the scheme in one traversal. In order to avoid to do the update at the ~y
points twice and at the ¢ points four times, i.e., for every adjacent coarse grid cell,
we either have to track whether a point was already updated during the traversal
(by a bit flag, e.g.), or we simply divide the « update by two and the ¢ update by
four.

In [35], a similar scheme was proposed and called “pattern relaxation”. In contrast
to our scheme, they propose to solve the ¢ and v system directly in a block Gauss-
Seidel manner after doing the update at the ¢ points, and they do no additional
Jacobi step at the v points. They report that the convergence rates of a V(1, 1)
cycle lies in between those of a V(1, 1) and a V(2, 2) cycle with red-black point
Gauss-Seidel as smoothing method.

By traversing the grid along the space-filling curve first in one direction and then
in the other, we can get a symmetric smoother.

Another type of smoothers often discussed for parallel applications are polynomial
smoothers, as e.g. Chebyshev smoothers (see |7, 1] and references therein). Here,
the update rule u**' = u* + p(A) (b — Au*), with p(A) = >, ;A7 is used. The
choice n = 0 reduces this rule to the Jacobi smoother. The computation of the
coefficients a;, however, is based on an estimation of the eigenvalues of A, what
makes these type of smoothers again unattractive for our purposes.

4.3.5 Diffusion Equation

Considering the fact that we cannot easily use line smoothers or similar on spacetrees
(see discussion above), we ease our model problem from Sec. 4.2.1 a bit. We test
our Prototype 2, which implements the cell-wise operators as described above, using
the two-dimensional Poisson equation with variable coefficients:

0*u 0*u
u, =k, or u=yg, (x,y) € 0N.

Here, € = (o, 5) and « and [ are the diffusion coefficients in the = and y direction,
respectively. The given functions f(z,y) and g(z,y) (or k(x,y)) are the right-hand
side forcing and the boundary condition, respectively, and u,, denotes the derivative
of u in the direction normal to the boundary. Our variable is u(x, y), which describes,
for example, for a fixed point in time the heat expansion in a material which may
have different diffusion properties in x and y direction, or the charge in a conductive
material. In our experiments, we use an isotropic problem, i.e. in terms of the
diffusion part of Eq. 4.1, ¢ = a = 3, and impose different patterns of jumps in the
diffusion coefficients (see Fig. 4.7). This is enough to pose some difficulties for pure
geometric multigrid using bilinear interpolation and full weighting as restriction —
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see explanation in Secs. 2.1.2 and 2.1.3 and the comparison of BoxMG intergrid
transfer operators and bilinear interpolation in Fig. 4.10.

We discretise our problem at the vertices of a Cartesian grid, using finite elements.
The coarse grid operators are constructed using the Galerkin method (see Sec. 2.1.3),
i.e., Af = PTA"P. The implementation is for a Petrov-Galerkin method, however,
we use R = PT in our experiments.

4.3.6 Smoother Experiments

We now present results for a BoxMG solver with the cell-wise operators as described
above. The results are for multigrid with coarsening by a factor of three. We did
not implement the spacetree data structure and traversal by a space-filling curve
for this prototype, and therefore can easily do comparisons of different smoothers,
including Gauss-Seidel relaxation. However, as all underlying principles for a space-
tree implementation and a respective traversal are implemented, the integration into
such a framework is straightforward, as we will see in Chap. 5.

The domain in the following experiments is {2 = [0, 1] x [0, 1]. We show results for
V-cycles with different smoothers and different numbers of pre- and postsmoothing
steps. We coarsen down to a 3 x 3 grid and solve the problem exactly there. As
before, we start with a random initial guess and impose a zero right-hand side.
Again, the iteration is stopped when the I, residual norm ||r;|| = || f* — A"u?||, with
i denoting the iteration number, is reduced at least by a factor of 108. The number
of iterations needed for reaching this goal and the geometric mean p,,cq, of the
convergence factor p (see Sec. 4.2.5) is tracked. If more than 200 V-cycles are needed
for meeting the stopping criterion, we report the convergence factor after 200 cycles.
If not denoted otherwise, results are given for the BoxMG implementation. Bilinear
interpolation /full weighting comparative measurements are explicitly declared as
such.

The scenarios used in the experiments are shown in Fig. 4.7: A simple Poisson
problem with diffusion coefficient equal to one in the whole domain, a problem
with a vertical jump of a factor 10% in the diffusion coefficient, and a “minimal
checkerboard-like configuration, also with a jump of a factor 103. Finally we have
the layer problem, where the diffusion jump by a factor 107! is in a vertical layer of
width h. In all these problems, an additional difficulty occurs for multigrid methods
using bilinear interpolation/full weighting when the jump is not exactly at 1/3, but
shifted, for example, by h, such that the coarsening happens across the discontinuity.

Convergence Behaviour

Finding the optimal damping parameter w for the relaxation method is a critical
task. Instead of doing a complex smoothing analysis (see, e.g., [95]), we simply do
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e=1 e = 1000 e=1

e=10"10

€ = 1000 e=1

e=1 e = 1000

Figure 4.7: Diffusion coefficients for the homogeneous Poisson problem (top left), the
coefficient jump problem (top right), the shifted minimal checkerboard
problem (bottom left) and the layer problem (bottom right).
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an exhaustive search for the optimal damping factor in a reasonable interval (we
chose [0.5,2.0] in the most cases, as this turned out to be the interval for which
convergence could be obtained for all experiments and a clear minimum lay within
the limits). We use a step width of 0.05 for stepping through the interval and apply
the BoxMG solver for each choice of w.

Fig. 4.8 shows the convergence behaviour for the simple Poisson problem and the
coefficient jump problem on a 27 x 27 grid. We can observe that the solver shows, as
expected, an excellent convergence rate. The optimum for the homogeneous Poisson
problem lies at w = 1.0 for V(2,2) cycles with a Jacobi smoother, w = 1.1 for V(1,1)
cycles with Gauss-Seidel, and at w = 1.15 for V(2,2) Gauss-Seidel cycles. In Tab. 4.6,
we see that we get the desired multigrid convergence that is independent of the mesh
width h (except of a sometimes slightly better convergence of the two-grid cycle, i.e.,
at the 9 x 9 grid). As we know, BoxMG results in bilinear interpolation and full
weighting for restriction for the homogeneous Poisson equation, so the same results
hold for using the standard geometric multigrid method with bilinear interpolation.

| GSV(L,1),w=11 | | GSV(2,2Jw=11 | | JacV(2,2)w=10 |
L/h || # cycles | pmean L/h || # cycles | pmean 1/h || # cycles | pmean
9 8 [ 0.0863 9 5[0.0193 9 9]0.1072
27 10 | 0.1387 27 6 | 0.0381 27 9]0.1219
81 10 | 0.1506 81 6 | 0.0401 81 9 [ 0.1190
243 10 | 0.1482 243 6 | 0.0398 243 9]0.1147
729 10 [ 0.1475 729 6 | 0.0395 729 9[01114

Table 4.6: The number of V-cycles for meeting the stopping criterion and average
convergence factor p,,eqn for the homogeneous Poisson problem. We used
Gauss-Seidel with the optimal w = 1.1 for the V(1,1) cycles (left) and for
the V(2,2) cycles (middle), and Jacobi V(2,2) cycles (right) with w = 1.0.

The situation is not that ideal for the coefficient jump and the checkerboard
problem, as shown in Tab. 4.7. Here, a clear deterioration with an increasing number
of levels is visible. There is basically no improvement from the BoxMG method
compared to the bilinear interpolation counterpart. If we examine the intergrid
transfer stencils, we see, that actually BoxMG again results in something very similar
to bilinear interpolation. But still, we get satisfying convergence for a V(2,2) cycle
and Gauss-Seidel smoother.

Fig. 4.9 shows that the choice of the optimal damping parameter does not only
depend on the smoother we use, but also on the mesh width (and thus the number
of levels in the multigrid setting). Therefore, the measurements in Tab. 4.7 do not
reflect the optimal convergence behaviour of the method. Nevertheless, the minima
do not lie on a horizontal line in Fig. 4.9 — and this is what would be the ideal case for
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Figure 4.8: The average convergence factor peq, (left) and the number of V-cycles
for meeting the stopping criterion (right) for the Poisson problem with
diffusion coefficient ¢ = 1.0 (top) and for the coefficient jump problem
problem, both on a 27 x 27 grid.

|

GSV(1,)w=12 | |

GSV(2,2)w=12

|

|

Jac V(2,2) w=1.1

|

L/h || # cycles | pmean L/h || # cycles | pmean L/h || # cycles | pmean
9 8 | 0.0955 9 51 0.0138 9 8 | 0.0892
27 10 | 0.1524 27 6 | 0.0453 27 12 | 0.2039
81 52 1 0.7016 81 26 | 0.4915 81 70 | 0.7682

Table 4.7: The number of V-cycles for meeting the stopping criterion and aver-
age convergence factor p,e.n for the coefficient jump problem. We used
Gauss-Seidel with the optimal w = 1.2 for the V(1,1) (left) and the V(2,2)

(middle) cycles and w = 1.1 for the Jacobi V(2,2) cycles (right).
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4 Geometric-Algebraic Multigrid on Spacetrees — Algorithm Prototyping

a multigrid solver. We notice that the optimal overrelaxation factor w increases with
a decrease of the mesh width, and therefore with the deterioration of the multigrid
convergence.

1 : ! 200 —
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Figure 4.9: The average convergence factor ppeqn (left) and the number of iterations
(right) for the coefficient jump problem solved by a V(2,2) Gauss-Seidel
multigrid for different mesh widths h.

A comparison between BoxMG intergrid transfer operators and bilinear interpo-
lation/full weighting is shown in Fig. 4.10. The coefficient jump problem and the
minimal checkerboard problem are “shifted”, i.e. the jump is shifted by A from 1/3
(for the checkerboard in both coordinate directions.). We can see that BoxMG shows
better convergence rates and is stable for a higher number of grid levels. Especially
for the layer problem, the solver using bilinear interpolation shows a strong deteri-
oration with decreasing mesh width. As explained in Secs. 2.1.2 and 2.1.3, this is
because bilinear interpolation and full weighting can lead to a pollution effect — the
correction of a fine grid point (or the residual at a coarse grid point, respectively) is
influenced by wrong diffusion coefficients — and due to coarse grid operators which
do not represent the fine grid problem appropriately.

The results given above underline the fact that the choice of the smoother affects
the robustness and efficiency of the solver substantially. The Gauss-Seidel smoother
is much more robust than Jacobi, but, as we have discussed in Sec. 4.3.4, is no
option for the target implementation on a spacetree. Therefore, we test the hybrid
smoother and the alternative relaxation scheme proposed in Sec. 4.3.4.

Smoother Variants for Spacetrees

We examine three smoother variants in this chapter (see Fig. 2.3 for nomenclature
of the points):
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Figure 4.10: The average convergence factor peq, (left) and the number of iterations
(right) for three of our model problems solved by a V(2,2) Gauss-Seidel
multigrid for different mesh widths h. The solid lines show the result for
a BoxMG solver, the dotted line for a solver using bilinear interpolation
and full weighting as restriction.
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e a 4 x 4 block Jacobi, where we do a Jacobi update (using the precomputed
residual) at ¢ and 7 points and doing a block Gauss-Seidel step for the ¢ points,
i.e., solve the inner 4 x 4 system directly using the updated values at the ¢ and
7 points,

e a hybrid Gauss-Seidel smoother as used in parallel multigrid (see Sec. 4.3.4),
which does a Jacobi update at the ¢ and v points (using the precomputed
residual) and one Gauss-Seidel sweep, using the updated values at the ¢ and
~ and points and maybe the ¢ points which were already updated before, at
the ¢ points,

e and a “box smoother”, which is the same as a hybrid smoother, except that
we do an additional Gauss-Seidel step with collapsed stencils at the v points
after the Jacobi step there (see Sec. 4.3.4 for detailed description).

All these smoother can be applied in two traversals: The first for computing the
residual at all vertices, and the second for performing the update per coarse grid
cell. For all three variants we have to take care not to do the update twice/four
times for ¢ and v points (see Sec. 4.3.4).

For the box smoother, we need three damping parameters w: w) for the Jacobi
on ¢ and v points, w® for the Gauss-Seidel on ¢ points, and w® for the Gauss-Seidel
on v points. For the classical hybrid variant we need two w: w® for Jacobi and w®
for Gauss-Seidel. For the block Jacobi, only one damping parameter is needed. We
compare our smoothers to a point Gauss-Seidel and a point Jacobi. The goal is that
one of the smoothers given above, which are all easy to implement on a spacetree,
results in convergence rates which are better than the Jacobi V-cycle and in the
ideal case comparable to those of the Gauss-Seidel V-cycle.

In Fig. 4.11 we show an example for the convergence behaviour of our multi-
grid solver with a hybrid smoother when it is ap;;hed to the homogeneous Poisson
problem. The minimum lies at w( 35 = 1.0 and w,,

Tab. 4.8 shows the results for a V(2 2) cycle Wlth dlfferent smoothers, applied to
our problem configurations from Fig. 4.7. In some cases the optimal convergence
factor was not received by a single w,,, but for a range of ws. In these cases, we
list this range. We did again an exhaustive search for the optimal w with a step

width of 0.05 for w € [0.5,2.0]. For the box smoother, we took wf);t and wépl from

the hybrid smoother and did the exhaustive search only for wopt In our experiments
it turned out that the best results for the box smoother are received by applying
the box smoother only on the finest grid and the hybrid smoother on the coarser
grids, therefore the results in Tab. 4.8 are for this scheme. We observe several
facts: First, the three block-type smoothers beat the Gauss-Seidel smoother only
for the homogeneous Poisson problem. Second, interestingly, the hybrid smoother
yields better results than the block Jacobi smoother (recall that the hybrid smoother
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Figure 4.11: The average convergence factor p,,ecq, for different damping parameters
for a hybrid smoother in a V(2,2) cycle applied to the homogeneous
Poisson problem. The values for p,,cen > 0.2 were cut off.

would result in a block Jacobi if we did enough Gauss-Seidel steps for the ¢ points
to solve the inner 4 x 4 system exactly). This behaviour was already shown in
[7]. Third, by applying the box smoother on the finest grid, we can improve the
convergence factor of the hybrid smoother for almost all problems. Only for the
shifted jump problem, the damping factors are so small that we assume that the
improvement is in the range of the variance due to the random initial conditions.
Considering this variance, we also have to keep in mind that the optimal p and w
given in the tabular are no exact values, but vary due to the initial conditions. In
order to receive reliable results for pp,cqn and wep:, we should repeat our experiments
very often with different random initial conditions, and then take the average of all
received values. In this work, we do not aim to give exact values here, but results
that let us compare the different smoothers.

Although the box smoother on the finest level gives some additional improvement
compared to the pure hybrid smoother, we stay with the hybrid smoother for the
next experiments. Here, we apply the hybrid smoother to our test problems for
different mesh widths h. The results are shown in Tab. 4.9. We see that there is a
deterioration of the convergence with the decreasing h, but the convergence factor
and the number of iterations until the stopping criterion is met remain satisfying.
Comparing these results to those in Fig. 4.10, we conclude that the stability of the
method with the hybrid smoother is for these examples comparable to that with the
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’ Homogeneous Poisson

Smoother || min(# cycles) | min(pmean) wf,;l wé?t wg
Jacobi 8 0.0931 | 1.05 - -
Gauss-Seidel 6 0.0361 | 1.1 - -
Block Jacobi 5 0.0241 | 1.0 — —
Hybrid 5 0.0184 1.0 1.3 —

Box 5 0.0113 1.0 1.3 | 0.65-1.0

’ Shifted Jump

[ONINe) ®3)

Smoother || min(# cycles) | min(pmean) | Wopt | Wopr Wopt
Jacobi 8 0.0878 | 1.05 - -
Gauss-Seidel 6 0.041 | 1.2 - -
Block Jacobi 8 0.0962 | 1.1 - -
Hybrid 7 0.0800 | 1.15 | 1.5 -

Box 7 0.0770 | 1.15 | 1.5 0.0-0.25

’ Shifted Minimal Checkerboard

Smoother || min(# cycles) | min(pmean) wéﬁ wéﬁ w(()z%
Jacobi 9 0.1070 | 1.1 —
Gauss-Seidel 7 0.0629 | 1.35 -
Block Jacobi 9 0.1224 | 1.55 -
Hybrid 8 0.0940 | 1.15| 1.5 -
Box 8 0.0802 | 1.15| 1.5 | 0.6
’ Layer ‘
Smoother || min(# cycles) | min(pmean) wf,zl,l wgf,)t wg’,l
Jacobi 9 0.1168 | 1.05 — -
Gauss-Seidel 6 0.0453 | 1.2 — —
Block Jacobi 8 0.0879 | 1.15 — —
Hybrid 7 0.0650 1.1 |1.45 -
Box 7 0.0563 1.1]1.451|1.15

Table 4.8: Comparison of a V(2,2,) cycle with different smoothers for the homoge-
neous Poisson problem, the shifted jump problem, the shifted minimal
checkerboard problem, and the layer problem, all on a 27 x 27 grid.
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Gauss-Seidel smoother. By trading additional work in terms of pre- and postsmooth-
ing steps or another multigrid cycle (see Sec. 2.1) with better convergence, we could
improve the behaviour of each method further.

’ Homogeneous Poisson ‘

1/h mln(# CYCIQS) min(pmean) w((y;})% w(()???f

9 4 0.0085 | 1.0 ] 1.25
27 5 0.0184 | 10| 1.3
81 6 0.0268 | 1.05 | 1.35

’ Shifted Jump

1/h || min(# cycles) | min(pmean) wglljl w(g?,%
9 5) 0.0123 | 1.05| 1.3
27 7 0.0800 | 1.15 | 1.5
81 34 0.5777 | 1.35 | 1.85

’ Shifted Minimal Checkerboard ‘

1/h | min(# cycles) | min(pmean) w,ﬁ}}t w((,?,zg

9 5 0.0125 | 1.0 | 1.25
27 8 0.0940 | 1.15 | 1.5
81 21 0.4080 | 1.3 ] 1.7

’ Layer ‘
1/h || min(# cycles) | min(pmean) wg,% wg%

9 D 0.0123 | 1.05 | 1.25
27 7 0.0650 | 1.1 | 1.45
81 12 0.2117 | 1.0 1.65

Table 4.9: Minimal number of V-cycles for reaching the stopping criterion, conver-
gence factors ppean, and optimal damping parameters w for a V(2,2) cycle
with a hybrid smoother for different mesh widths h.

4.3.7 Conclusion for Spacetree-Based Implementations

We now come back to the question of benefits and drawbacks of the spacetree-based
implementation of our multigrid solver that was mentioned in the beginning of this
chapter.

We showed that the BoxMG method enables us to build robust operator-dependent
intergrid transfer operators for geometrically coarsened structured grids. Building
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these operators can easily be done in a strictly local, cell-wise spacetree setting. Also
the construction of Petrov-Galerkin coarse grid operators with arbitrary prolonga-
tion and restriction is possible in this setting. The critical component on structured
spacetree grids, however, is the smoother. Here, the locality paradigm prevents the
application of, for example, line smoothers and Gauss-Seidel smoothers, and thus
reduces the robustness and efficiency compared to solvers which can apply this kind
of smoothers. In addition, the convergence behaviour of the smoother is strongly
influenced by the damping factor. The optimal damping/overrelaxation factor w,
though, depends on the problem and also the number of levels in the multigrid
hierarchy. Thus, a robust “black box” smoother can hardly be achieved without a
preceding determination of the optimal w. Here, either methods as described in [69]
have to be applied, or an w that is known to yield good results in most cases has to
be chosen.

It is worth noting that the three block-type smoother variants benefit from the
coarsening factor three that we use. Coarsening by a factor of two and the resulting
quadtree structure (with only four children per node, see Sec. 3.1) would yield
“smoothing blocks” with only nine instead of sixteen vertices, and only one vertex
in the interior of such a block where Gauss-Seidel smoothing can be performed. We
expect that this affects the efficiency and effectivity of the smoothers considerably.

The benefits of the spacetree approach in terms of efficient data administration and
traversal, and suitability for adaptivity and parallelisation were already discussed in
Chap. 3. In the next chapter, we will see how our algorithm from Prototype 2 can
be integrated into and parallelised in the target framework.
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In the previous chapter, we designed and tested a hybrid algebraic-geometric multi-
grid algorithm for spacetrees that has improved robustness and efficiency as com-
pared to state-of-the-art spacetree multigrid implementations due to operator-de-
pendent intergrid transfer operators and a hybrid Gauss-Seidel smoother. Now we
turn to the target framework Peano in order to implement and parallelise our solver
there. We first describe the PDE solver framework Peano, its basic principles and
the implications for the implementation. Then we present some details of the im-
plementation of the hybrid MG solver in Peano, the parallelisation both in a shared
memory and a distributed memory version, and runtime results on a supercomputer.

5.1 Peano Framework

The software framework Peano [100] for parallel adaptive PDE solvers on spacetrees
is based on work of Giinther (48], Pogl [77] and Krahnke [65]. In its current form it
was mainly developed by T. Weinzierl [99, 101].

Peano uses tripartitioned spacetree grids and, as the name suggests, the Peano
curve for the (strict cell-wise) spacetree traversal (see Chap. 3). For details con-
cerning the stack approach and other characteristics of the framework, we refer
to [99, 101] and take the point of view of a user of the given spacetree traversal
infrastructure.

As such, we first have to define what kind of infrastructure we need. This can be
done in definition files, where we specify the data structures for the cells, vertices,
and the global state (which can include global variables as, for example, the cur-
rent grid level of the multigrid solver, the residual norm, etc.), and a specification
file, where we define basic read and write functions for the cell, vertex and state
classes and specify the required mappings and adapters (which will be explained
below). The Peano Prototyping Tool PDT (former called PeProt), which is based
on the Data Structure Generator DaStGen [25], then generates the whole basic class
infrastructure needed for plugging into the spacetree traversal.

65
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The traversal itself is hidden away in the kernel, which we as Peano users basically
do not need to (and should not) touch. The only thing we need to take care of is
our solver, and maybe extension of our cell, vertex, and state classes. Therefore, we
implement the cell-wise operators as described in Sec. 4.3.1. Now we have to apply
the solver to the data on the spacetree vertices during the traversal.

For this purpose, several events are defined at the spacetree traversal, for example
when a vertex is created, when we enter or leave a cell, when a vertex is touched for
the first or the last time, and so forth. Fig. 5.1 shows as an example the order of
events during a traversal of a simple two-level 1D spacetree. The recursive extension
to multiple levels is straightforward. The order of the individual algorithmic steps
reflected by the events is prescribed by properties of a depth-first spacetree traversal.

We now have to define which operations have to be done at which events. Here,
the mappings and adapters mentioned above come into play: An adapter is a class
with functions providing plug-in points at the events during the spacetree traversal.
In these event functions we have to specify the tasks which shall be executed at
that event. An adapter run needs one spacetree traversal. Of course, we have
to take care of the order of the execution of the different operations, and of the
dependencies between the tasks. Before we can, e.g., apply smoothing at a vertex,
the residual has to be computed completely, and therefore the system operator as
to be applied to all adjacent cells of a vertex (see also Sec. 4.3.1). We can be
sure that this has happened when touchVertexLastTime is called for the vertex,
therefore the smoothing can take place after completing the residual computation in
that event in the same adapter. However, we cannot prolong the correction to the
next finer level in the same adapter, as we do not know when all vertices involved
in the prolongation have been processed. Hence, we still need several adapters for a
(multiplicative) multigrid cycle, and therefore several spacetree traversals.

As a realisation of the separation of concerns software pattern, in order to make
the code more clear, and to make it possible to execute different stages of a solver
separately, an adapter is split into several mappings which are each dedicated to
one single task (such as smoothing, computing the residual, restriction, ...). That
way it is also possible to use mappings in various adapters, and code duplication is
avoided.

When integrating a (multigrid) solver into Peano, there is a number of practical
issues to consider concerning the events: First, as a vertex is uniquely defined by its
position and its level in the spacetree, there might exist vertices at the same position
at different levels. For each, touchVertexFirstTime etc. is called. Second, whether
at one level first enterCell and the associated events are called for all cells at that
level and then the leaveCell block, or the enterCell block and the leaveCell block
for one cell, and then the same for the next cell etc., is not specified and can both
happen. We do not have any information from adjacent cells or about the order
they are accessed, we only know the order of events for one local cell. Therefore, the
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[createBoundaryVertex | createlnnerVertex]
for all resp. vertices: touchVertexFirstTime
I I [createCell]

enterCell

descend

[createBoundaryVertex | createlnnerVertex|
for all resp. vertices: touchVertexFirstTime
I I % { [createCell]
enterCell

[createBoundaryVertex | createInnerVertex]
for all resp. vertices: touchVertexFirstTime
} I I { [createCell]
enterCell

[createBoundaryVertex | createInnerVertex]
for all resp. vertices: touchVertexFirstTime
} % { { [createCell]
enterCell

leaveCell
for all resp. vertices: touchVertexLastTime

‘ [destroy Vertex]

leaveCell
for all resp. vertices: touchVertexLastTime
} I I { [destroy Vertex]

leaveCell
for all resp. vertices: touchVertexLastTime
} % { { [destroy Vertex]

ascend

leaveCell

{ { for all resp. vertices: touchVertexLastTime
[destroy Vertex]

TS

Figure 5.1: A simple 1D example for the order of (sequential) events during the
spacetree traversal. At the beginning of the traversal beginlteration and
at the end endlteration is called. Parallel events and events concerning
hanging vertices are omitted. Square brackets stand for events which
only occur during the setup/cleanup phase or in an adaptive setting.
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order in Fig. 5.1 can be internally exchanged in any manner that fulfils the constraint
that for one cell the enterCell block is executed before the leaveCell block. Third,
there is a number of parallelisation-specific events which are not listed in Fig. 5.1.
We explain the parallelisation-related issues in Sec. 5.3. The events dealing with
hanging nodes on an adaptive grid are not considered here. Additionally, we have to
take into account that the signature of the events varies. That means that we do not
have access to the same data in all events. For example, in touch VertexFirstTime
and touch VertexLastTime, we only have access to one vertex and the coarse vertices
of the parent cell, whereas in enterCell and leaveCell we have access to the four
vertices of the cell and the parent cell with its vertices. In ascend and descend we
have access to a coarse cell (including vertices) and all its children. Therefore, the
event in which an operation shall be executed has to be chosen carefully. These
issues are directly related to the discussion about locality and communication in the
spacetree in Sec. 3.2.

There are several reasons for the variable order of cells in the traversal and of
the events: The simplest is that, due to the properties of the stack approach (see
Sec. 3.2), the grid is traversed along alternating directions along the space-filling
curves, i.e., the direction is inverted after each traversal. Additionally, it changes due
to the colouring in shared memory parallelisation (see Sec. 5.3.1). And finally, Peano
does an internal recursion unrolling on regular patches, which are then traversed
level-wisely. All these internal processes lead to the fact that the information that
we have is very local, and we cannot rely on the exact order of events that happen
outside the current cell.

In the following section we show for the multigrid V-cycle how this concept of
events, adapters and mappings can be implemented.

5.2 Sequential Hybrid Multigrid in the Peano
Framework

We present the design of a sequential BoxMG solver in Peano which is equivalent
to the solver described in Sec. 4.3 (using a Jacobi or hybrid smoother).

5.2.1 Implementation of the Multigrid V-Cycle

For implementing a multigrid V-cycle, we need basically the following operations
(see also Sec. 2.1): Computing the residual, smoothing, restricting the residual to
a coarser level, prolonging the correction to a finer level, solve the equation on the
coarsest grid exactly. In addition, we have to construct the coarse grid operators
and the intergrid transfer operators. For inspecting the convergence behaviour,
we need to compute the global residual norm, and of course we have to setup the
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’ Task \ Mapping \ Events

Setup experiment Setup Experiment createlnnerVertex,
create Boundary Ver-
tex

Compute vertex residual ComputeResidual leaveCell

Accumulate global residual | ComputeResidual touch VertexLastTime,
endlteration

Smooth Smooth touch VertexLastTime

Compute Galerkin coarse | ComputeGalerkin- leaveCell

grid operator CoarseGridOperator

Compute BoxMG restric- | ComputeBorMG- ascend

tion operator Restriction

Compute BoxMG prolonga- | ComputeBoxMG- descend

tion operator Prolongation

Restrict residual Restrict leaveCell

Prolong correction Prolong leaveCell

Table 5.1: Tasks in the solver with the corresponding event mappings and the events
in which the main operations (disregarding initialisation etc.) of these
tasks take place.

experiment in the beginning, i.e., discretise our problem, initialise the variables u
and the right-hand sides f on the grid, and so forth.

In Tab. 5.1, we list the tasks needed in the element-wise BoxMG multigrid imple-
mentation, the respective mappings in Peano, and the events in which their main
operations (disregarding initialisation etc.) are implemented. We notice that the
cell-wise operators are, obviously, implemented in leaveCell (enterCell would also
be possible). The computation of the BoxMG intergrid transfer operators needs all
the children of one spacetree node, therefore it has to be implemented in ascend or
descend. From a shared memory parallelisation point of view it is better to choose
leaveCell or enterCell instead of ascend or descend, if possible. In the first case,
up to four cells in a coarse grid cell can be processed in parallel if 2° colouring on
the fine grid is used (see Sec. 5.3.1), whereas in the latter case, 2P colouring has
to be applied to the coarse grid in order to avoid data races. Within each colour,
the nine subcells then are processed sequentially. Thus, the concurrency is smaller
compared to 2P colouring on the fine level. For the accumulation of the global
residual and for the smoothing, the contributions of the application of the cell-wise
system operator to all adjacent cells have to be made before, therefore these tasks
have to be executed in touchVertexLastTime. However, the signature of this event
does not provide access to the global state, which holds also the global residual.
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5 Geometric-Algebraic Multigrid on Spacetrees — Target Implementation

Therefore, we have to do the accumulation on an additional global residual variable
in the mapping, and write this variable to the the global state in endlteration, where
the state is available. !

In this example, we study a Jacobi smoother. For a hybrid smoother as described
in Sec. 4.3.4, the operations have to be performed in ascend or descend in order to
be able to do the Gauss-Seidel update on the inner points of a 3 x 3 cell patch. In our
implementation, we do the complete smoothing update in these events. A variant
would be doing the Jacobi update at the ¢ and ~ points in touch VertexFirstTime or
touch VertexLast Time, and the Gauss-Seidel update of the v and ¢ points in ascend.
In this case, however, we would have to determine for the Jacobi step whether a
point is a ¢ point or a v point at that level. This would theoretically be possible,
but it induces a runtime overhead due to case distinctions. A second variant would
be changing the smoother such that we do Jacobi smoothing for all points (including
¢ points) and then the Gauss-Seidel update only at v and ¢ points. The advantage
of these variants would be that we would not need an additional preceding traversal
for the computation of the residual to be sure that the correct residual is available
at the c and v points. However, we will see in Sec. 5.3.2 that we need an additional
traversal for the correct computation of the residual, anyway, if we do distributed
memory parallelisation. Both variants are not implemented in our solver.

A naive version of the multigrid solver embeds each mapping in one adapter. For
the execution of each adapter we need one spacetree traversal. We implemented our
multigrid V-cycle (see also Fig. 2.1a) as a state automaton with states RESTRICT,
PROLONG, PRESMOOTH, POSTSMOOTH and SOLVE (the last one meaning
solving exactly on the coarsest level). Each state corresponds to one stage in the
multigrid cycle and determines which adapters are executed next. In addition, we
need the state variable activeLevel, which holds the current level in our grid hierar-
chy. It determines the level where we have to smooth /restrict /prolong, and whether
we are already on the coarsest or the finest level (and therefore, in which state we
have to switch). A multiplicative multigrid (see Sec. 2.2.5) cycle is inherently se-
quential regarding the sequence of grid levels, therefore we cannot perform one task
at all levels simultaneously. Instead, we have to do at least one spacetree traversal
for each level, both when we go up and when we go down in the V-cycle. Naturally,
the spacetree traversal starts at the root of the tree, and thus also the event sequence
starts at the coarsest grid level. In multigrid, most cycles (including the V-cycle that
we use for our solver) start at the finest level. Hence, for the first smoothing step
we have to traverse the tree down to the leaves and perform smoothing there, after
restriction we have to go to the second-deepest level, etc..

In [99], so-called “tree-cuts” were introduced in order to enhance the performance
of a tree traversal in a multilevel setting. The idea is that finer grid levels can be

IThat the state is only available in beginlteration and endlIteration has internal reasons concerning
the parallelisation.
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“cut off”, i.e. are not included into the tree traversal, when working on a coarse level.
They then can be added again level by level when going to finer levels. Thus, for
grids with a large number of unknowns (where the administrative overhead becomes
negligible), almost linearly an improvement of the runtime by a factor of nine per
level could be achieved. Unfortunately, this feature is not yet available in current
Peano versions. 2

The experimental setup as well as the computation of the coarse grid and intergrid
transfer operators has to be done only once in a non-adaptive setting where the
system operator does not change during execution time. We can do the computation
of the coarse grid and intergrid transfer operators during the first V-cycle in the
PRESMOOTH stage (the computation of the prolongation operator could also be
done in the POSTSMOOTH stage, however, we will put the two mappings for the
computation of the prolongation and the restriction operator in the same adapter
later on). The residual computation has to be done before each smoothing step, and
again before the residual is restricted. All in all, for this straightforward approach
we would need the following number of spacetree traversals for the first V(1,1) cycle
(and for all V-cycles in an adaptive setting):

setup residual + presmooth residual + postsmooth intergrid transfer operators
P —_— —_— —_—

t="1+ 2.0-1) + 2-(0-1) + 2.0-1 (5.1)
Galerkin operator  residual -+ restrict prolong solve coarsest level

+ EZ_:T) + 2-(I-1) +(-1)+ 73

—1410-(I—1)+2-s,

with ¢ being the number of traversals, [ being the number of levels in the grid
hierarchy and s being the number of smoothing iterations used on the coarsest
level to solve the problem there exactly. In the experiments, we use s = 10 Jacobi
iterations as solver on the 3 x 3 level.

Note that the number of traversals does not directly yield a conclusion for the
runtime of the algorithm, as the runtime per traversal is not constant and depends
on the number of levels, the operations performed per traversal, and so forth.

As mentioned in the previous section, we can eliminate spacetree traversals by
putting mappings together in an adapter whenever the dependencies allow that.
For example, we define the adapters computeResidualAndSmooth, computelntergrid-
TransferOperators (combining compute BoxMGRestriction and compute BoxM G Pro-
longation) and computeResidualAndCoarseGridOperatorAndSmooth. Alg. 5.1 shows
the resulting (simplified) code snipped for the state-machine realised as switch-case
construct. The adapters are written in italic. Such, we obtain for the first V-cycle

2Currently, an improved version of tree-cuts, allowing to cut off subtrees in single subdomains in
adaptive settings, is developed.
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Algorithm 5.1 Multigrid State-Machine for V(1,1) Cycle

activeLevel = finest level
switch state do
case PRESMOOTH
computelntergrid Transfer Operators
computeResidual AndCoarse GridOperatorAndSmooth
state = RESTRICT
case RESTRICT
computeResidual
restrict
activeLevel = activeLevel - 1
if activeLevel == coarsestLevel then
state = SOLVE
else
state = PRESMOOTH
end if
case SOLVE
for number of iterations needed to solve exactly do
computeResidual AndSmooth
end for
state = PROLONG
case PROLONG
prolong
activeLevel = activeLevel + 1
state = POSTSMOOTH
case POSTSMOOTH
computeResidual AndSmooth

if activeLevel == finestLevel then
break

else
state = PROLONG

end if

end switch

72



5.2 Sequential Hybrid Multigrid in the Peano Framework

a complexity of
t=14+6-(l—1)+s.

If we do not need to recompute the intergrid transfer operators in a static setting,
we safe another (I — 1) traversals for the next V-cycles.

If we assume at least two presmoothing steps, we can merge another smoothing
step into the adapter which computes the intergrid transfer operators.

Other adapter merging strategies are proposed in [99]. They, however, focus on
purely geometric multigrid. We will stay with the approach given above, as its
simplicity will make the parallelisation more or less straightforward later on.

5.2.2 Results for Sequential Implementation

We perform test runs on one island of the SuperMUC (see [92|) which is a Sandy
Bridge-EP system with eight cores per processor, two processors per node and 512
nodes per island. Thus, we have sixteen physical threads and 32 logical threads when
using hyperthreading. The SuperMUC consists of eighteen islands. The subsytem
used for our experiments has two GByte memory per core and 256 kByte RAM (L2
cache), a peak performance of 3.185 PFlop/s, and a clock speed of 2.7 GHz.

In Tab. 5.2 we compare the runtimes of an adapter performing Jacobi smoothing
to the two adapters (residual computation and smoothing update) performing hybrid
smoothing (see Sec. 4.3.4). In addition, we compare these runs to the runs of an
adapter doing both the residual computation and the hybrid smoothing update
(without caring about whether the residual is already correct everywhere). This
last adapter is just for “fairness” reasons when comparing the hybrid smoother to
the Jacobi adapter. We could also have made a comparison of the hybrid smoother
update with the Jacobi update without residual computation. We see that the
ComputeResidual AndHybridSmooth adapter is always slightly slower than the Jacobi
(ComputeResidualAndSmooth) adapter. Recalling that in the Jacobi adapter we
only do one update per vertex in touchVertexLastTime, whereas for the hybrid
smoother we update the ¢ points four times and the 7 points two times in ascend (or
descend), this runtime increase is reasonable. When looking at the runtimes of the
two adapters which do the hybrid smoothing in practise, the difference becomes more
significant. The variants for the implementation of the hybrid smoother as described
in Sec. 5.2, which would allow to do the whole update in one traversal, might be
worth considering for a sequential or shared memory implementation. However,
as already mentioned in that section, we will need an extra adapter run for the
computation of the residual, anyway, when doing distributed memory parallelisation
(see Sec. 5.3.2). In Tab. 5.2 it also becomes apparent that a run of an adapter doing
residual computation and a smoothing update does not take significantly longer
than a run of the pure residual computation adapter. This shows again (see also,
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Table 5.2: Runtimes per unknown for a hundred sequential smoother adapter runs
for a Jacobi and a hybrid smoother. The hybrid smoothing is done in two
adapter runs in order to ensure the use of the correct residual, however, for
comparison, the runtime of an adapter doing both residual computation

74

|

’ Jacobi
Adapter # Unknowns | Timels|/Vertex
ComputeResidual AndSmooth 6,400 3.72-1074
ComputeResidual AndSmooth 58,564 2.55-1074
ComputeResidual AndSmooth 529,984 2.74-107*

Hybrid Smoother

|

Adapter # Unknowns | Time|s|/Vertex

ComputeResidual 6,400 3.57-107%
HybridSmooth 6,400 3.08-1074
ComputeResidual AndHybridSmooth 6,400 4.10-1074
ComputeResidual 58,564 2.54-1074
HybridSmooth 58,564 2.08-107*
ComputeResidual AndHybridSmooth 58,564 3.02-107*
ComputeResidual 529,984 3.02-1074
HybridSmooth 529,984 2.34-107*
ComputeResidual AndHybridSmooth 529,984 3.34-1074

and hybrid smoothing update is also given.



5.2 Sequential Hybrid Multigrid in the Peano Framework

e.g., [99, 101]) that simulations in the Peano framework are memory-bound rather
than compute-bound: The time needed for loading the data etc. for a spacetree grid
traversal dominates the computational time.
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Figure 5.2: Runtimes per unknown on the finest level for a hundred iterations of
the adapters of the V-cycle (left) and comparison of combined and pure
adapters (right). We omit the adapter for pure residual computation
and refer to Tab. 5.2 for its runtimes.

Next, we perform a hundred iterations on the finest level for the adapters of the
V-cycle as given in Alg. 5.1. The results are given in Fig. 5.2. Two levels means
that the finest level is a 3 x 3 grid and we have four inner points and therefore four
unknowns, for three levels it is a 9 x 9 grid with 64 unknowns, and so forth. For
better readability, we omit the pure residual computation adapter (from Tab. 5.2 we
can see that its runtimes are always a bit longer than those of the Jacobi adapter).

The runtime of the “slowest” adapter, i.e., that performing Jacobi smoothing and
computation of the Petrov-Galerkin coarse grid operators, differs by a bit less than
a factor of 2.5 from the “fastest” adapter, i.e., that doing the computation of the
intergrid transfer operators. In the right-hand plot of Fig. 5.2, we compare the run-
times of the pure operator computations adapters with adapters doing an additional
Jacobi smoothing. In Sec. 5.2.1 we already pointed out that for a V-cycle with two
or more presmoothing steps, we can combine an additional smoothing step with the
computation of the intergrid transfer operators. The runtime of the Jacobi smooth-
ing adapter is given as reference. Again it becomes apparent (especially for the
computation of the intergrid transfer operators) that the additional computational
load is almost negligible in comparison to the overhead due to data loading and so
forth.

As expected, in all experiments the administrative overhead becomes much smaller
for a sufficient large number of vertices. For less than five levels, this overhead
dominates the runtime. Up to between five and six levels (i.e., 6,400 and 58,564
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unknowns), the runtime per unknown goes down, and then it approximately stag-
nates.

5.3 Parallelisation

In this section, we discuss the parallelisation of our multigrid implementation in
Peano. For a general overview of parallel multigrid methods we refer to [59, 27, 70].
Parallel smoothers are also discussed in [1, 7, 8|.

5.3.1 Shared Memory Parallelisation

Peano offers shared memory parallelisation due to OpenMP [75], Intel Threading
Building Blocks (Intel TBB) [61], and Cobra |28, 54]. For the present experiments,
we used TBB.? The three different approaches, however, can be exchanged via a
compile switch.

Peano realises functional and data decomposition. While the functional decom-
position makes different tasks such as geometry updates of cells and vertex load
phases run in parallel, the important gain in concurrency stems from parallel data
processing.

The data decomposition approach realised in Peano so far is a 2° colouring on
regular grids (with D being the dimension). In [36], it is shown that by identification
of regular patches in adaptive grids, it can also be applied in an adaptive setting.
The grid cells are coloured in such a way that there are no two adjacent cells of the
same colour at a vertex (see Fig. 5.3). Following the idea of red-black Gauss-Seidel,
Peano runs through the 2” colours sequentially. For each colour, the active adapter
(and its mappings) are copied up to p times, with p being the number of threads
available. The cells of this colour then are distributed among these adapter copies
following the well-known fork-join multithreading pattern for parallel fors: All the
adapter instances for one colour are executed in parallel, event by event. When all
colours are processed, the properties of the adapter copies are merged. See [36] and
[73] for more details.

Using this method, the results in the fine grid vertices are accumulated as usual,
just like in the sequential case, and the threads do not interfere with each other.
Data races arising from cell events accessing the same vertices are avoided a priori.
As a user who wants to implement a multigrid solver, we only have to take care
of the TBB setup, of initialising the threads correctly in the copy constructor, and
the merging of global variables. In the present work, this is of relevance for the
overall residual norm, which has to be merged in an additional merging step. For

3We decided to use TBB as Cobra is not freely available, and current OpenMP versions yield bad
runtimes for nested parallel sections, as they are inherent in Peano.
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==
B

Figure 5.3: 1D examples for six fine grid cells in two coarse grid cells with a 2P
colouring (top left) and a 6° colouring (bottom right). We observe that
2P colouring is not sufficient if fine grid cells need writing access to coarse
grid vertices (top right and bottom left).

this, the event merge With WorkerThread is provided, where the residuals computed
from the different mapping instances/threads have to be summed up. Here, it is
important to keep in mind how the global residual norm is computed from the
single residuals at vertex positions (k, j): As we use the [y norm, the residual norm
in one iteration step i is ||r|| = ||f" — Arul|| = \/Zm(ﬁ(k’,j))?- Practically, this
means that in touch VertexLastTime, we accumulate the squared local residuals to a
global variable. In the end, we take the square-root of the accumulated residuals. If
we have two threads in a parallel setting, both have accumulated part of the residual.
Therefore, we can only take the square-root after having merged both threads, i.e.,
after summing up both parts of the residual on the global variable.

During the implementation of the (shared memory) parallel version of our multi-
grid solver, it turned out that the 2” colouring approach is not sufficient for our kind
of multigrid solver. For the restriction, the computation of the coarse grid operators,
and the computation of the intergrid transfer operators, we write the result on the
coarse grid vertices in enterCell or leaveCell. A problem implied directly by the
2P colouring is illustrated in Fig. 5.3: Although no two fine grid cells of the same
colour can access a fine grid vertex at the same time, it can happen that two equally
coloured cells access the same coarse grid vertex. In the worst case, the following
data race is possible: Two mappings read the value at the coarse grid vertex. Then,
both compute their update, accumulate it to the value they received, and one after
the other writes the new value back. However, the update of the mapping that
writes back first will get lost, as it is not considered for the update of the second
mapping. In order to avoid this kind of situation, the fine grid cells in neighbouring
coarse grid cells (i.e., coarse grid cells which share a vertex) all must have different
colours. This results in a 6 colouring, as shown for 1D in Fig. 5.3. Of course, this
yields a lower concurrency level, as the number of cells that can be processed in
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parallel goes down significantly.

Results for Shared Memory Parallelisation

We perform test runs on one node of the SuperMUC. As before, we perform a
hundred iterations on the finest level for the Poisson problem for an adapter that
does a pure Jacobi smoothing, an adapter that does Jacobi smoothing and computes
the coarse grid operator, and an adapter that does Jacobi smoothing and computes
the intergrid transfer operators.

For the Jacobi adapter, 2P colouring is used, as no communication between two
levels happens. The Galerkin adapter needs 6 colouring. For the intergrid grid
transfer adapter, a 2P colouring on the coarse grid is applied. As the computation
of the intergrid transfer operators happens in ascend and descend, where we have
a coarse grid cell and all its children available, the maximal concurrency level is
equivalent to a 6 colouring on the fine grid with only 2P colours in total. In
the Galerkin computation, we have more colours and therefore more “phases” to
run through, whereas in the BoxMG computation, we have a higher workload per
colour /phase.

The results are shown in Fig. 5.4 in two variants: with and without so-called
“tree splits”. By splitting the tree into subtrees, parallel loading and storing of the
corresponding parts of the grid data is enabled (see [83]). As the realisation is
subject to other work (as before, we only use this feature that is provided by the
framework), we will here not go into further details, but just show the differences
in the results. In both versions, a clear speedup can be observed up to sixteen
processors. For hyperthreading (more than sixteen processors), the overhead is so
big that there is no further performance improvement. It is common knowledge that
hyperthreading for PDE solvers is of limited value. We can see that the tree splits
improve the scaling behaviour considerably. For the no-tree-splits version, we get
a speedup of about 2.4 for the intergrid transfer operator adapter when going from
one to 32 threads (with hyperthreading), in the tree split version this factor almost
doubles to 4.56 (see also Tab. 5.3).

There are two interesting effects that we can observe in the results for the run
without tree splits: First, for the Jacobi smoother, the performance decreases when
using more than sixteen threads, i.e., when using hyperthreading (as sixteen is the
number of physical threads per node). Second, for all adapters, there is a small
runtime degradation when going from eight to ten threads. As we have eight cores
per processor and two processors per node, we assume that his can be considered
a Non-Uniform Memory Access (NUMA) effect: As soon as a processor accesses
“foreign” memory, i.e., memory of another processor, the performance decreases. But
when going to twelve processors, the foreign-memory-access penalty is compensated
by the greater computing power. It would be interesting to see whether the same
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Figure 5.4: Scaling results for TBB parallelisation with 4,778,596 unknowns without
(left) and with (right) tree splits.

behaviour can also be observed for other problem and solver types.

In Tab. 5.3, the speedups as quotient between the runtime when using one thread
and the runtime when using 32 threads and hyperthreading are listed for different
numbers of levels (and therefore numbers of unknowns on the finest level), with and
without tree splits. In accordance with the previous results in Fig. 5.4, the Jacobi
adapter yields better results for sixteen threads than with hyperthreading switched
on. Again, the improvement due to the tree splits becomes apparent. We also
see that satisfying scaling results are only achieved starting from six levels, which
corresponds to 58,564 unknowns. This is probably due to the concurrency level:
For 2P colouring, n/2P = n/4 cells and for 6° colouring, at most n/6° = n/36
cells (with n being the number of cells) can be processed in parallel. Therefore,
taking into account the parallelisation overhead (including task management, task
deployment, task communication, global barriers, work stealing, and so forth), only
for a rather large number of cells we get an improved runtime due to the TBB
parallelisation. Furthermore, the results highlight the impact of the computational
workload on the speedup: The best results are achieved by the adapter that does the
computation of the intergrid transfer operators. Here, several equation systems have
to be solved per coarse grid cell. In comparison, the computation and the update in
the Jacobi smoother yield a rather small workload. We expect better scaling when
the computational workload increases (e.g., for a 3D problem).

5.3.2 Distributed Memory Parallelisation

The distributed memory parallelisation in Peano is realised with the Message Passing
Interface (MPI) [72]. Naturally, things become a bit more complicated when dealing
with distributed memory, as now no longer the whole data domain is available for all
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’ No Tree Splits ‘

# Levels || Jacobi | Galerkin | BoxMG
2 1.01 0.99 0.99
3 1.00 1.00 1.00
4 1.01 0.99 1.00
5 0.95 0.95 0.95
6 1.17 1.14 1.53
7 1.80 1.63 2.20
8 1.35 1.72 2.40

’ Tree Splits ‘

# Levels || Jacobi | Galerkin | BoxMG
2 1.01 1.01 1.00
3 1.01 1.01 1.00
4 0.80 1.07 0.85
5 1.18 0.98 1.05
6 2.03 2.33 2.05
7 3.46 3.69 4.37
8 4.31 4.52 4.56

Table 5.3: Speedups for the pure Jacobi adapter, Jacobi plus computation of
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Galerkin coarse grid operators, and Jacobi plus computation of BoxMG
intergrid transfer operators. We show results for runs without (top) and
with (bottom) tree splits. The speedup is computed as quotient between
the runtime when using one thread and the runtime when using 32 threads
with hyperthreading. For the pure Jacobi adapter, a better speedup can
be observed without hyperthreading (see Fig. 5.4).
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processors (also called “ranks” in MPI). Similar to the shared memory parallelisation,
Peano takes care of the underlying domain decomposition and load balancing tasks
in the spacetree (see [99]), but we have to make sure that application-specific data
is merged and distributed at the right places and at the right time.

vy

Figure 5.5: 1D example for the domain decomposition approach. The two subdo-
mains (green and blue) are assigned to different processors. The vertex
at the subdomain boundary which is adjacent to both subdomains is
dublicated. After each iteration, information has to be exchanged be-
tween the processors for this vertex.

The main idea of Peano’s domain decomposition is that vertices are duplicated at
the subdomain/processor boundaries such that each processor holds its own copy.
The cells as well as the subpartitions of the spacetree are not overlapping. After
completing a traversal, each processor receives copies of all vertices also held by
other processors, i.e., those along the parallel boundary, for data exchange. This
principle is illustrated for a simple 1D example in Fig. 5.5. For such a domain
decomposition, at least three ranks are needed in Peano: Rank 0, the global master
rank, is responsible for input and output, the traversal, “administrative” tasks, such
as dynamic load balancing (which we do not use in our experiments) and the global
state variables. Peano induces a tree topology on the MPI ranks, i.e., each rank
besides rank 0 is a worker rank for another rank and responsible for a multiscale
subdomain. In turn, each rank can deploy subtrees of its spacetree to other ranks.
In this case, the other rank is its worker, and the local master rank still holds a copy
of the remote subtree’s root locally.

There are two types of communication for distributed memory parallelisation in
Peano: Asynchronous and synchronous. Asynchronous communication means that
the data is merged only for the next traversal. One rank does not wait for infor-
mation from other ranks until it continues its computations. This is realised as
non-blocking communication in MPI. Synchronous communication means that the
data is merged in the same traversal. In MPI, this is realised as blocking communi-
cation.

In Peano, the realisation of these concepts is as follows: At the processor bound-
aries, two ranks send each other the vertex they share, such that each can merge
the vertex data from the other rank to its own vertex data. This is a “Point-to-
Point” communication between two worker ranks. It is asynchronous: One rank
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Figure 5.6: The domain decomposition on a spacetree is implied by its subtrees.
Here, we show an example with five ranks. The blue rank has only rank
0 (black) as master and is itself local master of the green and the magenta
rank. The yellow rank has the green rank as local master. “Broadcast”
communication will go from black to blue, then to green and magenta,
and then from green to yellow. “Reduce” communication will go the
other way around.

does not wait until it receives the vertex data from the vertex counterpart at the
other rank, but the traversal is continued, and only at the beginning of the next
traversal, the local and neighbour information is merged. The synchronous com-
munication always happens between master and worker rank and is completed in
the same traversal. Here, we have three types in Peano: Collective communication
from the global master to all ranks, indicating, for example, which adapter has to
be used next, “broadcast” processes (a global variable is send to all workers, e.g.),
which are realised in a Point-to-Point manner as communication along the tree from
each local master to its worker, and “reduce” processes, the counterpart to “broad-
cast”, where the global master rank collects data from the workers and merges it into
the global variables. This is also realised as Point-to-Point communication between
worker and local master along the tree. In Fig. 5.6, we show an example for an
domain decomposition with five ranks on a spacetree, and explain what we mean by
“communication along the tree”.

For the Peano user, a number of additional events that provide communication
plug-in points is available in the mappings. We do not cover the whole sequence of
events here, but discuss some events as examples in order to give an idea about the
issues one has to deal with when doing distributed memory parallelisation in Peano.
Please refer to the documentation and the Wiki at [100] for a detailed explanation
of the parallel communication events.
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For our cell-wise multigrid implementation, at first the event merge WithNeigh-
bour, which is responsible for merging the vertex values at the domain/processor
boundaries, is important. This event is called before touchVertexFirstTime. In
addition, for the computation of the overall average residual p,,eqan, Wwe have to im-
plement merge WithWorker in the state class. When merging the global residual
computed by two ranks we have to add up the contributions of the different ranks
before we take the square-root, just as before. At the domain boundary, however,
there is something missing: Recall that the residual norm in one iteration step i is
l|ril| = [|f* — AMul|| = \/Zk’j(ri(k:,j))?, with (k,7) the positions of the vertices
in the grid. When computing the residual at a vertex as described in Sec. 5.2.1,
we accumulate the contributions of the adjacent cells in leaveCell and write the
squared vertex residual to the global residual in touchVertexLastTime. Let us call
the contribution from the four adjacent cells on a 2D grid ¢q, ¢, ¢3, and ¢4, with
ri(k,j) = ¢1 + ca + c3 + ¢4. If the vertex at grid point (k, j) lies at a boundary, we
have written, for example, a? := (¢; 4 ¢3)? to the global residual norm from one (e.g.
the “green”) rank and b* := (cy + ¢4)? from the other (the “blue”) rank. However,
a?+0* # (a+b)? = a® + 2ab + b*, ie., 2ab = 2(c; + c3)(ca + ¢4) is missing. This
contribution has to be added in merge WithNeighbour to the global mapping residual
and then written to the global state residual in endlteration (see Sec. 5.2.1). As this
is done by both ranks, each only has to add ab = (¢ + ¢3)(ca + ¢4) to the global
residual. If more than two ranks are adjacent, the mapping on each rank will add
the respective contribution automatically that way. Due to this asynchronous com-
munication, the residual at the processor boundaries is not correct until the next
iteration starts — for every residual computation it lags behind the residual in the
rest of the domain.

At some points in our multigrid algorithm, we must have two levels available, e.g.
for the intergrid transfer operations and for computing the coarse grid operators.
As discussed before, Peano provides access to the coarse grid cell in several events.
However, if we are for example in leaveCell and want to access a coarse grid vertex
which lies on another rank — in Fig. 5.6, this is the case if the root of the green
or of the magenta subtree is our current fine grid cell, and the root of the blue
subtree is our current coarse grid cell —, we do not receive a valid value here and
also writing does not yield the expected result. Thus, we have to catch this case
by asking whether the coarse grid cell is held by the same rank. If not, we have to
plug into communication events between master and worker: merge WithMaster has
the same signature as leaveCell, so we just can do here what we wanted to do there.
Multiscale algorithmic steps are computed on the rank holding the responsibility
for the coarse data. This works if we want to alter the (coarse grid) data on the
master, as for restriction and the computation of the coarse grid operators. For the
prolongation, similar issues arise.
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ascend and descend have to be treated carefully if some of the children belong to
another (worker) rank. In Fig. 5.6, we have this situation for the green and the ma-
genta subtree root in the blue rank and for the yellow subtree root in the green rank.
In this case, both master and worker hold copies of the cell (including refinement
information and so forth) similar to parallel boundary subdomain vertices. But we
manually have to ensure that PDE-specific data such as stencils are kept consistent
by the respective mappings.

Another challenge lies in the fact that communication is not possible anytime, but
only at fixed points during the traversal. These points underlie restrictions posed
by the asynchronous communication described above. For domain decomposition,
synchronising this communication (i.e., let each node wait until it has the infor-
mation from all neighbouring ranks) would lead to a sequential execution of the
tasks. As said before, mergeWithNeighbour is not called at the end of the vertex
processing, i.e., after touchVertexLastTime, but at the beginning of the vertex pro-
cessing in the next traversal, i.e., before touchVertexFirstTime. This means that
we basically need an additional traversal for merging all the data by asynchronous
communication at the processor boundaries. Accordingly, we have to implement
merge mappings — mappings were only the merging events are implemented such
that the relevant data is merged at the boundary vertices. These mappings can now
be put together in adapters with other mappings, with the goal that we have to do
as little as possible additional spacetree traversals.

Let us look again at the example of residual computation and smoothing. We
know that at the processor boundaries only at the beginning of the next traversal
the correct residual is available. Therefore, the adapter computeResidual AndSmooth
does not work any longer and has to be splitted into something like computeResidual
and mergeResidualAndSmooth. The computing of the residual, however, can be
combined again with a merge of the values from the previous operation (for example
restriction), and so forth.

Alg. 5.2 shows how Alg. 5.1 has to be extended in order to realise the parallel
version of the V(1,1) cycle. As we can see, there are a lot more adapters involved.
We count again the spacetree traversals needed. By looking at the cases in Alg. 5.2
we obtain:

SETUP STARTCYCLE PRESMOOTH POSTSMOOTH RESTRICT PROLONG SOLVE

A /'/\ Ve - ~\ Ve - N Ve - ~\ /_/H /'/\

t= "1 + 4 +4-(1-2)+ 2-(I-1) +2-(I-1)+ (I—-1) + 2-5
=14+9-(1—-1)+2-s,

as before with ¢ being the number of traversals, [ being the number of levels in the
grid hierarchy, and s being the number of smoothing iterations used on the coarsest
level to solve the problem there exactly. These are still (I — 1) traversals less than
in the naive sequential implementation considered in Eq. 5.1.
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Results for Distributed Memory Parallelisation

We did our experiments for distributed memory parallelisation again on the Super-
MUC.

For the first experiment, we use 96 MPI ranks on 12 nodes. We run a hundred
Jacobi smoothing iterations (consisting of runs of the adapters computeResidual and
mergeResidual AndSmooth — see Alg. 5.2) on the grid at level eight for different buffer

Algorithm 5.2 Multigrid State-Machine for Parallel V(1,1) Cycle

activeLevel = finest level
switch state do
case STARTCYCLE
computelntergridTransferOperators
mergelntergrid Transfer OperatorsAndComputeCoarse GridOperator
mergeCoarse GridOperatorAndComputeResidual
mergeResidual AndSmooth
state = RESTRICT
case PRESMOOTH
mergeRestrictAndComputelntergrid Transfer Operators
mergelntergrid Transfer OperatorsAndComputeCoarse GridOperator
mergeCoarse GridOperator AndComputeResidual
mergeResidual AndSmooth
state = RESTRICT
case RESTRICT
computeResidual
mergeResidual AndRestrict
activeLevel = activeLevel - 1

if activeLevel == coarsestLevel then
state = SOLVE
else
state = PRESMOOTH
end if
case SOLVE

mergeRestrictAndComputeResidual

mergeResidual AndSmooth

for number of iterations needed to solve exactly do
computeResidual
mergeResidual AndSmooth

end for

state = PROLONG
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Algorithm 5.2 Multigrid State-Machine for Parallel V(1,1) Cycle (continued)

case PROLONG
prolong
activeLevel = activeLevel + 1
state = POSTSMOOTH

case POSTSMOOTH
mergeProlongAndComputeResidual
mergeResidual AndSmooth

if activeLevel == finestLevel then
break

else
state = PROLONG

end if

end switch

sizes. Due to a very simple load balancing balancing (that is beyond the scope of
this work), an overlap of one cell with the boundary is needed. That results in
two additional cells per coordinate axis for a square domain. Therefore, level eight
has 2,890,000 unknowns, which are duplicated at the parallel subdomain bound-
aries. The buffer size is the number of vertices at the the domain boundaries which
are clustered before they are sent in an asynchronous communication step. If the
buffer size is one, a copy of a vertex is sent to neighbouring ranks immediately af-
ter touchVertexLastTime is called for this vertex. For a larger buffer size, multiple
vertices are first collected in an additional buffer of the given size. At the end of
the traversal or whenever the buffer is full, the whole buffer is sent to all neigh-
bours. This way, latency impact is reduced at cost of fewer data exchanges with
increased data cardinality. The only global communication is the algorithm control
and the reduction of the residual. We do these measurements in order to determine
a reasonable buffer size to use.

In Tab. 5.4, we can see how the performance of the Jacobi smoother depends on
the buffer size. The runtime comprises the whole communication and data merging
of both adapters. Then, the average is taken of the runtime of both adapters in
all hundred iterations. The best performance is achieved for a buffer size around
768, i.e., 768 vertices are collected and send in a bunch. This value is used for all
subsequent experiments. Looking at the number of vertices at the boundaries, a
buffer of this size means that all vertices are collected before they are sent, i.e., no
vertices are send in the background. Assumably, this would change with a higher
computational workload.

Next, we once more run Jacobi smoothing, split into the two adapters comput-
eResidual and mergeResidualAndSmooth. The runs are performed on different grid
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levels, i.e., for different numbers of unknowns and for different rank/node config-
urations. Again, an overlap is used, and unknowns are duplicated at the parallel
subdomain boundaries.

In Tabs. 5.5 and 5.6, the runtimes and speedups on level eight are shown. Ex-
periments for smaller problem sizes yield similar insight but come along with higher
noise and overhead. Experiments for bigger problem sizes do not fit into the mem-
ory of a single SuperMUC node and thus require additional discussion on well-suited
scaling and its impact in order to allow a comparison of runtimes.

An efficiency, i.e., speedup relative to the number of working MPI ranks, of around
fifty percent is obtained in this example. We also see that it makes some difference
how the tasks are distributed on the nodes. From textbook knowledge, we expect
that communication between ranks assigned to the same node (i.e., sharing a com-
mon memory) is faster than inter-node communication, as the MPI realisation can
handle such data exchange efficiently. Such an expectation suggests that the run-
times are the better the more ranks share a node. This expectation does not fit
directly to our experimental results. Neither are the differences significant, nor is
there a clear trend to an optimal rank-to-node assignment. A detailed analysis of
the reasons is beyond the scope of this work. We just note that a performance
degradation often comes into play when we assign more than two ranks per node.
There might be correlations to the NUMA effects we already observed for shared
memory parallelisation (see Sec. 5.3.1) or the fact that each processor is equipped
with input/output devices of its own.

In Tabs. 5.7 and 5.8, we present runtime and speedup results for an adapter doing
the intergrid transfer operator computation, and an adapter doing Jacobi smoothing
and coarse grid operator computation (including parallel merges). The results are
again for a fine grid of level eight. We see that the efficiency is similar to that of the
Jacobi adapters: Again, the maximum efficiency reached is around fifty percent.

Analysing the load balancing and communication for the MPI ranks, it turns out
that, although the load balancing is theoretically perfect in terms of the balance of
the tree structure of the ranks, it does not take into account that the handling of the
parallel subdomain boundary vertices is more expensive (due to merges) than the
handling of other vertices. This has the effect that the ranks that are responsible
for the subdomains at the boundary of the whole domain finish their work very fast,
but the rank responsible for the centre of the domain needs much longer. Thus,
the “fast” ranks have to wait for the “slow” rank for communication. For a higher
computational workload, the administrative overhead at the subdomain boundaries
would become less dominant, and therefore, this effect would become less significant.

In order to improve the parallel efficiency of simulations in the Peano framework,
it might be worthwhile to study this behaviour in more detail, and to include the
communication patterns into the load balancing process. As the present work only
intends to use the parallelisation infrastructure of Peano, this is subject to other
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work.

When comparing the results of this work with up-to-date parallel multigrid im-
plementations, one should also keep in mind that we include the computation of
the coarse grid operators and intergrid transfer operators into the runtime measure-
ments. These tasks are for algebraic multigrid usually hidden away in a setup phase.
But if one aims for solving dynamically adaptive problems, the recomputation of
the operators becomes necessary, and therefore these computations have to be in-
cluded into the runtime discussion. We showed that in our implementation, the
additional operator computation increases the runtime of the other components, as
the smoother, only by a small factor.
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’ Jacobi ‘
Buffer Size | Time |[s]

48 78.06

64 80.80

96 75.82
128 86.15
160 84.41
192 82.79
224 82.23
256 83.18
384 61.08
512 61.54
640 60.98
768 59.55
896 60.79
1024 60.61
1280 60.20
1536 60.59
1792 61.37
2048 61.33
2304 61.06
2560 61.40
2816 60.30
3072 59.90
3328 60.96
3584 60.38
3840 60.21
4096 59.88

5.3 Parallelisation

Table 5.4: Runtimes of a hundred Jacobi smoothing iterations on a grid at level
eight for different buffer sizes. Measurements with a buffer size of 32 and
smaller ran into a timeout, i.e. individual processors had to wait more

than 120 seconds.
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’ computeResidual ‘
Worker Ranks | Nodes | Tasks/Node || Time [s| | Time [s]/Unknown | Speedup
1 1 1 518.065 0.0002 1.0
1 1 2 018.418 0.0002 0.9993
1 2 1 519.403 0.0002 0.9974
3 1 4 409.214 0.0001 1.2660
3 2 2 435.386 0.0002 1.1899
3 4 1 431.235 0.0001 1.2014
7 1 8 151.971 5.25-107° 3.4090
7 2 4 152.068 5.25-107° 3.4068
7 4 2 151.615 5.24-107° 3.4170
7 8 1 152.531 5.27-107° 3.3965
9 1 10 98.4291 3.40-107° 5.2633
9 10 1 94.8550 3.27-107° 5.4617
15 1 16 87.0087 3.00-107° 5.9542
15 8 100.531 3.47-107° 5.1533
15 4 4 90.2456 3.11-107° 5.7406
15 8 2 89.0646 3.07-107° 5.8167
15 16 1 93.9838 3.24-107° 5.5123
19 2 10 95.0762 3.28-107° 5.4489
19 10 2 95.0293 3.28-107° 5.4516
31 2 16 81.498 2.81-107° 6.3568
31 4 8 73.4493 2.53-107° 7.0534
31 8 4 75.7137 2.61-107° 6.8424
31 16 2 79.1297 2.72:107° 6.5470
31 32 1 83.8835 2.89-107° 6.1760
39 4 10 74.9587 2.58-107° 6.9113
39 10 4 64.5914 2.22.107° 8.0206
63 4 16 16.8722 5.80-107° 30.7052
63 8 8 15.9732 5.49-107° 32.4334
63 16 4 15.9005 5.46-107° 32.5818
63 32 2 15.6592 5.38-107° 33.0837
63 64 1 25.7467 8.84-107¢ 20.1216
79 8 10 16.1229 5.53-107° 32.1322
79 10 8 15.3009 5.25-107° 33.8585
127 8 16 16.2726 5.57-107° 31.8366
127 16 8 14.9439 5.11-107° 34.6673
127 32 4 15.1203 5.17-107¢ 34.2629
127 64 2 14.9072 5.10-107¢ 34.7527
127 128 1 14.8106 5.07-1076 34.9793

Table 5.5: Runtimes and speedups of a hundred residual computation iterations on
a grid at level eight for different rank /node configurations.
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’ mergeResidual AndSmooth ‘

Worker Ranks | Nodes | Tasks/Node || Time [s| | Time [s]/Unknown | Speedup
1 1 1 374.214 0.0001 1.0
1 1 2 375.753 0.0001 0.9959
1 2 1 375.59 0.0001 0.9963
3 1 4 302.146 0.0001 1.2385
3 2 2 305.992 0.0001 1.2230
3 4 1 301.493 0.0001 1.2412
7 1 8 113.783 3.93-107° 3.2888
7 2 4 111.642 3.86-107° 3.3519
7 4 2 110.264 3.81-107° 3.3938
7 8 1 111.327 3.84:107° 3.3614
9 1 10 75.8111 2.62-107° 4.9361
9 10 1 73.5338 2.54-107° 5.0890
15 1 16 68.5318 2.36-107° 5.4604
15 8 76.7127 2.65-107° 4.8781
15 4 4 71.5165 2.47-107° 5.2326
15 8 2 65.1934 2.25-107° 5.7401
15 16 1 73.4484 2.53-107° 5.0949
19 2 10 73.3653 2.53-107° 5.1007
19 10 2 72.7358 2.51-107° 5.1449
31 2 16 69.4056 2.30-10° 5.3017
31 4 8 61.4844 2.12:10~° 6.0863
31 8 4 59.9939 2.07-1075 6.2375
31 16 P 65.5109 9.26-10° 5.7122
31 32 1 61.9214 2.13.107° 6.0434
39 4 10 58.6273 2.02-10°° 6.3829
39 10 4 51.7720 1.78-10°5 7.2281
63 4 16 15.1646 5.21-10°° 24.6763
63 8 8 13.9206 47810 26.8820
63 16 4 14.0333 4.82.10°6 26.6661
63 32 2 13.7028 4711076 97.3003
63 64 1 21.7658 7.48-10° 17.1928
79 8 10 14.5609 5.00-10~° 25.6999
79 10 8 13.9961 4.80-10°6 26.7370
127 8 16 15.2577 5.22.10°0 94.5262
127 16 8 13.1757 4.51-107 98.4018
127 32 4 13.5878 4651076 97.5404
127 64 p 13.5968 4651076 97.5222
127 128 1 13.5368 4.63-10°6 97.6442

Table 5.6: Runtimes and speedups of a hundred Jacobi update iterations on a grid
at level eight for different rank/node configurations.
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|

computelntergrid Transfer Operators

|

Worker Ranks | Nodes | Tasks/Node | Time [s| | Time [s|/Unknown | Speedup
1 1 1 738.7840 2.56-10~* 1.0000
1 1 2 1404.7100 4.86-10~* 0.5259
1 2 1 1414.4600 4.89-10~* 0.5223
3 1 4 1113.0200 3.85-107* 0.6643
3 2 2 1175.9300 4.07-1074 0.6287
3 4 1 1155.9700 4.00-1074 0.6396
7 1 8 408.9730 1.41-107% 1.8101
7 2 4 414.2570 1.43-107* 1.7870
7 4 2 411.3070 1.42-107* 1.7998
7 8 1 412.5780 1.42-1074 1.7943
9 1 10 159.8880 5.52-107° 4.6315
15 1 16 134.6760 4.64-107° 5.5041
15 2 8 146.2480 5.04-107° 5.0686
15 4 4 142.2710 4.91-107° 5.2103
19 2 10 144.0450 4.96-107° 5.1491
31 2 16 131.9980 4.54-107° 5.6266
31 4 8 116.8570 4.02-107° 6.3556
31 8 4 136.2300 4.69-107° 5.4518
39 4 10 188.5980 6.49-107° 3.9403
63 4 16 40.6201 1.40-107° 18.3224
63 8 8 39.6569 1.36:107° 18.7674
79 8 10 45.5196 1.56:107° 16.3649
127 8 16 38.6299 1.32:107° 19.3353

Table 5.7: Runtimes and speedups of a hundred iterations of the computation of
the intergrid transfer operators on a fine grid at level eight for different

rank /node configurations.
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5.3 Parallelisation

|

Jacobi + Galerkin

|

Worker Ranks | Nodes | Tasks/Node | Time [s| | Time [s|/Unknown | Speedup
1 1 1 895.0750 3.10-10~* 1.0000
1 1 2 1630.2200 5.64-10~% 0.5491
1 2 1 1641.1400 5.68-10~* 0.5454
3 1 4 1293.0300 4.47-1074 0.6928
3 2 2 1348.5100 4.66-1074 0.6643
3 4 1 1347.7300 4.66-1074 0.6646
7 1 8 472.0180 1.63-10~* 1.9001
7 2 4 475.8630 1.64-10~* 1.8847
7 4 2 475.9180 1.64-10~* 1.8845
7 8 1 477.3180 1.65-1074 1.8790
9 1 10 177.2460 6.12-107° 5.0618
15 1 16 155.5120 5.36-107° 5.7750
15 2 8 170.0270 5.86-107° 5.2820
15 4 4 163.1100 5.63-107° 5.5060
19 2 10 167.6070 5.78-107° 0.3614
31 2 16 155.4730 5.35-107° 5.7876
31 4 8 135.5250 4.66-107° 6.6395
31 8 4 158.4800 5.45-107° 5.6778
39 4 10 219.0400 7.53-107° 4.1104
63 4 16 45.3971 1.56:107° 19.8626
63 8 8 45.0715 1.55-107° 20.0061
79 8 10 51.9492 1.78:107 17.3730
127 8 16 44.3180 1.52-107° 20.4191

Table 5.8: Runtimes and speedups of a hundred iterations of Jacobi smoothing and
the computation of the coarse grid operators on a fine grid at level eight
for different rank /node configurations.
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6 Conclusion and Outlook

In this work, we developed a multigrid solver that combines the following properties:
robustness and efficiency, suitability for parallelisation, and suitability for integra-
tion into a state-of-the-art spacetree-based software framework. The approach cho-
sen is a combination of geometric and algebraic multigrid, with operator-dependent
BoxMG intergrid transfer operators, (Petrov-)Galerkin coarse grid operators and a
structured grid. The solver was designed and implemented in a cell-wise, strictly lo-
cal manner in order to keep the communication overhead low on parallel computers.
It was then integrated into and parallelised in the PDE solver framework Peano. All
implementations were done for coarsening by a factor of three. The principle ideas,
however, are also applicable for coarsening by other factors.

The BoxMG method without the restrictions posed by a cell-wise spacetree based
implementation was found to be efficient and robust for coarsening by a factor of
three also for challenging problems such as the convection-dominated convection-
diffusion equation, jumping diffusion coefficients and recirculating flow problems.
However, to achieve this level of robustness, line smoothers were required. These
are not feasible in a strictly local spacetree setting, as well as point Gauss-Seidel
smoothers. As multigrid solvers on structured grids highly depend on the smoother
in use, we tested different alternatives to the Jacobi relaxation which is usually
applied on spacetrees, but suffers from robustness and efficiency deficiencies. By
using block-smoother-like hybrid smoothers, as often used in parallel multigrid, and
a variant called “box smoothing”, we could achieve some improvement in efficiency
and robustness. The efficiency of a point Gauss-Seidel smoother, though, could not
be reached. This leads to the conclusion that, for a spacetree setting, hard problems
as those mentioned above might require to ease the locality paradigm, for example
by allowing access to nodes of more than two levels of a subtree at once. Thus,
the blocks on which Gauss-Seidel or a similar efficient smoother can be performed
would be increased. If the locality paradigm has to be preserved, it still remains
unclear whether it is possible to realise more robust and efficient smoothers, though
the present work already took a step towards that direction. For coarsening by a
factor of two, the proposed smoother would probably yield a smaller improvement,
as the “blocks” in the interior of a coarse grid cell where Gauss-Seidel smoothing can
be applied would consist of only one vertex.

For the multigrid solver, we could show that the BoxMG approach improves the
robustness on a structured grid a lot compared to using bilinear interpolation and
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6 Conclusion and Outlook

full weighting as restriction.

The integration of the designed algorithm into the Peano framework is more or
less straightforward if the paradigms of the framework are followed carefully. The
parallelisation, both for shared and distributed memory, requires special care for the
computation of global information, such as the global residual norm. For distributed
memory parallelisation, the information exchange at the domain boundaries has to
be performed accurately, and the multilevel communication in intergrid transfer
operations and in the computation of coarse grid operators poses some challenges.
All in all, the usage of Peano paid off as many technical details (such as spacetree
traversal, parallelisation, etc.) are hidden from the solver component. Peano’s ar-
chitecture and software paradigm could be proved to be a step towards maintainable
and usable high performance computing software for state-of-the-art numerics. On
the other hand, many improvements of the Peano framework were triggered due to
the present work, and the underlying software’s maturity has been improved due to
the implementations of the presented solver.

Future tests for more complicated problems on bigger machines will reveal whether
the present work is a step towards massively parallel state-of-the-art multigrid
solvers.

Next steps that could be taken include the extension of our solver to adaptive
grids. In the spacetree setting, this is straightforward, and also Peano offers the
respective infrastructure. For this, it is a natural choice to switch from the correction
scheme used in this work to a full approximation storage scheme, for example due
to Griebel’s Hierarchical Transformation Multigrid.

As noted in [109], the BoxMG scheme for coarsening by a factor of three can also
be extended to 3D, as already done for coarsening by a factor of two in [32]. The
number of v and ¢ systems to be solved would increase in this case, and the points
in the inner part of a 3D cell, called x points in [109], would require to solve an
additional 8 x 8 system.

Another step that could be taken is testing the performance of our solver as a
preconditioner, for a example for a conjugate gradient solver. Furthermore, an ex-
tension to hybrid parallelisation, i.e., the combination of shared and distributed
memory parallelisation, should be straightforward in Peano, given the parallel im-
plementations we developed in this work.

While the extensions to 3D and adaptive settings are straightforward, the full
potential of the present approach will in particular reveal for problems where the
coarse grid systems change frequently. As such, dynamically adaptive problems and
non-linear operators are of special interest. Our experiments have revealed that the
permanent recomputation of the coarse grid systems is affordable with relatively low
additional costs which pay off for such settings. Also the treatment of systems of
PDESs might be interesting, as the algorithm can afford to increase the computational
workload significantly without a significant runtime penalty. Such systems arise from
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complex PDEs, but also from stochastic problems where multiple runs for equal or
similar operators have to be performed in parallel.
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