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Abstract

GPU accelerated systems are heterogeneous systems characterized by a peak performance in the

order of TFlop/s obtained using a large number of cores and wide vector units. Moreover, GPUs

provide an advantageous ratio between performance and power consumption. However, reaching

high efficiency on GPUs is often a difficult task whose successful completion requires advanced

optimization techniques. In order to fit an application to GPUs, redesigning data structures

and algorithms is often necessary so that they consume less memory and become more vector

friendly. For extra performance, an empirical optimization method is required in order to cope

with non-trivial interactions between optimization parameters characteristic to GPU programs.

On heterogeneous systems, another key problem is the distribution of the computational work

among the different processors. This thesis proposes solutions to these challenges in the context

of the sparse grid technique, a numerical technique that addresses the curse of dimensionality

problem arising in high-dimensional settings such as computational steering. The performance

results presented here validate a set of advanced optimization techniques that allow for efficiently

porting sparse grid algorithms to GPUs, for improving the performance using an empirical

optimization method, and for increasing the utilization of the system using load balancing.
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Chapter 1

Introduction

This chapter presents the motivation for the use of Graphics Processing Unit (GPU) based

heterogeneous systems for accelerating parallel applications. An overview of the advanced op-

timization techniques proposed in this thesis is provided, including an empirical optimization

method and load balancing. The chapter introduces the application used for validating the

optimizations, namely a computational steering application in which high-dimensional simula-

tion data is efficiently handled using the sparse grid technique. At the end of the chapter, the

contributions of the thesis are summarized and the structure of the thesis is presented.

1.1 Motivation

Heterogeneous systems are very popular nowadays because they allow for higher processing

speeds to be achieved without sacrificing power efficiency. Their main disadvantage is that het-

erogeneous systems are difficult to program efficiently. Often, advanced optimization techniques

are required in order to achieve a high level of performance. Such techniques are proposed in this

thesis and are validated using routines critical for the performance of a computational steering

application. Since this application deals with high-dimensional simulation data that needs to

be visualized in real-time, the main requirement is to fully exploit the computational power

of GPU based heterogeneous systems. The thesis has two main directions: The first refers to

understanding and addressing some of the most important challenges of heterogeneous com-

puting, while the second is more application specific as it refers to the computational steering

application which has to be parallelized and optimized for modern hardware.

Faced with the power wall, processor architects adopted the multi-core solution in which

the computational speed of the hardware increases by replicating the execution engines (cores)

1



1.1. MOTIVATION 2

within a CPU. This allows for the power consumption to remain at an acceptable level. How-

ever, the trade-off is that programmers now have to parallelize their applications. Even more

performance and a higher Flop/s (Floating Point Operations per Second) / Watt ratio can be

obtained using general purpose accelerators, e.g. GPUs, which can generally be described as

many-core processors containing a set of so-called wimpy cores, i.e. simple in-order execution

engines that do not include speculative logic for branch prediction, cache prefetching, etc. A

notable property of accelerators is that they cannot operate independently from CPUs whose

main responsibility in this context is to offload tasks to accelerators. Often, the transistor

budget of accelerators is allocated to wide vector units. Multithreading is a rather inexpensive

technique which can provide accelerators with the means to hide the latency of the instruction

pipeline by interleaving the execution of a large number of threads per core. Given their large

number of cores and wide vector units, accelerators are not suitable for all classes of applica-

tions, especially for those that are not vectorizable or do not contain enough data parallelism.

Nevertheless, there are many applications from computer graphics and scientific computing that

harness the strengths of accelerators, thus explaining their success.

Nowadays, a typical heterogeneous system contains CPUs and GPUs. CPUs can be seen as

latency oriented processors [1] in the sense that they are optimized for efficiently executing a

serial stream of instructions. They incorporate large caches and implement techniques for branch

prediction and data prefetching. Additionally, CPUs contain complex logic (out-of-order) for

automatically extracting the Instruction Level Parallelism (ILP) from a sequence of instructions.

In contrast to CPUs, GPUs are throughput oriented [1] or massively parallel processors, making

them a perfect fit for data parallel computations. In terms of peak performance, GPUs are

generally up to two orders of magnitude faster than one CPU core. GPUs typically contain

more cores than CPUs, have wider vector units, and operate at a lower clock frequency. A GPU

has its dedicated memory which has approximately one order of magnitude more bandwidth

than the memory of the CPU but its size is rather small, e.g. up to 6 GB. The GPU memory is

separated from the CPU memory by a PCI Express (PCIe) bus whose bandwidth is lower than

the bandwidth of both the CPU memory and the GPU memory. In this respect, a GPU based

heterogeneous system can be considered a distributed memory system.

Understanding the challenges of GPUs is of high importance when porting applications to

GPUs. Most importantly, their vector nature imposes restrictions on applications. Vector based

architectures are characterized by the fact that the same operation is executed simultaneously

on multiple chunks of data, a processing model referred to as Single Instruction Multiple Data

(SIMD). Such an execution puts constraints on the placement of the data in memory, i.e. the

data must be aligned and the chunks must be consecutive words in memory. Moreover, the
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control flow is another crucial element determining the efficiency of a vector processor. In the

presence of branches, undesired situations might occur in which different operations must be

executed on different data chunks. However, this violates the SIMD requirements and cannot

be executed at once by a vector unit, meaning that the different vector operations are serialized

and during the execution of each operation, only a subset of the lanes of the vector unit is

actually utilized. In such a scenario, the obtained performance is suboptimal. From here,

one can imagine that complex data structures and recursive algorithms that are control flow

dependent, cannot be paired efficiently with GPUs. Therefore, it is essential to analyze whether

such data structures and algorithms can be replaced with more GPU friendly versions.

Memory consumption can also become a challenge on a GPU taking into account that the

GPU memory is a scarce resource. Thus, it is important that the data structures copied to

the GPU have a small memory footprint. Although the GPU memory is faster than the CPU

memory, the PCIe bus acts as a severe performance bottleneck for applications characterized

by a low ratio between GPU computation and PCIe communication.

Most GPU programs expose parameters whose values control the optimizations applied to

the code or influence the performance behavior, e.g. parameters that control multithreading,

locality, and parallelism granularity. The objective is to find the values for the optimization

parameters that maximize the performance. However, complex interactions between parameters

cannot be addressed effectively using theoretical methods, e.g. performance models. In this

context, an empirical optimization method, or search based auto-tuning, tries to find the optimal

values for the parameters by evaluating the performance for different combinations of values

assigned to the optimization parameters. In the absence of auto-tuning, a programmer is often

required to fully understand non-trivial characteristics of the GPU in order to determine the

best values of the parameters. Furthermore, hardware details are not always available. The

alternative is to use auto-tuning which employs search algorithms for exploring the optimization

space in order to improve the performance.

Load balancing is another key problem on heterogeneous systems. It refers to finding the

most efficient mapping between a parallel computation and the heterogeneous processors. In

general, load balancing on heterogeneous systems is accomplished by (over)decomposing the

computational work into many small tasks which are dynamically assigned to the CPU and the

GPU for execution. The main requirement is that algorithms must have multiple implementa-

tions, i.e. a version for the CPU and one for the GPU. When a task is assigned to a processor,

the version corresponding to that processor’s type is invoked. Task based load balancing is

affected by scheduling overheads and the grain (or task) size problem, i.e. determining the op-

timal grain size that generates sufficient parallelism without amplifying the effect of overheads,
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and makes the best use of the CPU and the GPU. Besides task based schemes, for computa-

tions that are data parallel, another load balancing scheme can be applied based on dividing

the work into two chunks, one for the CPU and another one for the GPU. The condition is that

the chunks must ensure that the CPU and the GPU finish processing at the same time. Such

a scheme can be referred to as static load balancing. Its main benefit is that it does not suffer

from the grain size problem. However, the disadvantage is that it is less adaptive, i.e. the initial

work distribution cannot be modified. Adaptivity is important for input dependent programs

and on non-dedicated systems where it is common that multiple running applications interfere

with each other.

All the techniques mentioned above, i.e. redesigning data structures and algorithms, auto-

tuning, and load balancing, are applied to the sparse grid technique [2], a numerical technique

used for building numerical approximations of high-dimensional functions. Sparse grids address

the curse of dimensionality problem, i.e. the number of grid points required by the represen-

tation of a function using a full grid depends exponentially on the number of dimensions. If a

function is sufficiently smooth, then the sparse grid approximation offers an accuracy close to

the one obtained using full grids but with considerably less points. Consequently, the sparse

grid technique provides lossy compression functionality. In a computational steering applica-

tion, sparse grids are used to compress high-dimensional simulation data. The compressed data

is stored in a database and is later decompressed for visualization at interactive rates.

Both the compression and the decompression are obtained through recursive sparse grid

algorithms. Moreover, complex key-value based data structures, e.g. hash tables and trees,

are the typical solutions used for storing the sparse grid points and their corresponding values.

Hence, in its initial form, the sparse grid technique is highly incompatible with GPUs. How-

ever, this thesis shows that by redesigning the data structures and the algorithms, an efficient

implementation of sparse grids for GPU based heterogeneous systems can be achieved.

1.2 Scientific Contribution

There are three major contributions of this thesis:

• the porting of the sparse grid technique to GPUs (Chapter 4); the GPU implementation

is based on a data structure characterized by minimal memory footprint (Chapter 3)

• an auto-tuning method for GPU programs (Chapter 5)

• load balancing schemes for data parallelism on heterogeneous systems (Chapter 6).
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The first major contribution includes a data structure for sparse grids based on a

bijective mapping. The data structure is at the core of the first GPU implementation

of the sparse grid technique, developed as part of this thesis. The bijection eliminates the

need to store the coordinates of grid points, meaning that the sparse grid is stored as a sequence

of values ordered in a special way so that the index of every value can be transformed using

the bijection into a multi-dimensional point of the grid and vice versa. The consequence is

that the memory footprint of sparse grids is minimal. This property is especially beneficial in

the context of GPUs because of their limited amount of memory, e.g. up to 6 GB. Using the

bijection based data structure, bigger problems can be solved on the GPU. In addition to the

data structure, redesigned non-recursive sparse grid algorithms are proposed together

with a comprehensive set of CPU and GPU optimizations that improve locality and make

better use of vector units. Furthermore, input specialized algorithms for sparse grids are

proposed that exploit common patterns found in the input data. Although the bijection and

the non-recursive algorithms especially address the constraints of GPUs, i.e. reduced memory

and unsupported (or inefficient) recursion, they are also advantageous for CPUs.

Second, a search based auto-tuning solution is proposed for improving the GPU op-

timized implementations of the sparse grid algorithms. The cost of auto-tuning comes in the

form of the time spent in searching for the optimal performance. Moreover, auto-tuning of-

ten deals with high-dimensional and highly unstructured search spaces which are difficult to

explore efficiently. This thesis proposes a set of optimization parameters that are exported by

the optimized GPU routines of the sparse grid technique. The parameters and their ranges are

provided as input to a search engine whose responsibility is to find the values of the parameters

that result in the best performance. In the context of auto-tuning, a contribution is represented

by search partitions, i.e. a partition groups together interdependent optimization parameters

and every partition is orthogonal to all the other partitions. In general, this results in a pruning

of the search space and does not miss the optimum provided that correct assumptions are made

regarding the dependent (or independent) parameters. In order to accelerate the auto-tuning

process, an input reduction technique is proposed that reduces the size of the input data

while ensuring that the global behavior for the initial data is captured. Auto-tuning is then

used to optimize the GPU routines using the reduced data, thus executing in less time.

The third major contribution is a load balancing solution for sparse grids. A separation

is made between sparse grid routines that allow for both the CPU and the GPU to be used

simultaneously and other routines that do not. In the latter case, the scheduling problem

is reduced to indicating the processor, i.e. CPU or GPU, that provides the best performance

depending on the input parameters. Such situations are caused by complex data access patterns
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that generate excessive communication over PCIe in order to ensure data consistency when the

CPU and the GPU are both used at the same time. Other routines engage all the heterogeneous

processors in the computation. Two load balancing schemes, dynamic and static, are employed

for addressing the data parallelism in those functions. As the dynamic approach is affected by

the grain size problem, a multi-grain load balancing algorithm is proposed: It ensures on

one hand that the fastest processor, e.g. GPU, is never idle (a situation encountered in the case

of a single grain size). On the other hand, in a multi-grain approach, the tasks have sizes that

allow for an efficient use of the CPU and of the GPU, e.g. the task size for the CPU allows for

harnessing locality at cache level, while the task size for the GPU allows for the full utilization

of cores, vector units, and multithreading. The proposed static load balancing approach

divides the work into two chunks for the CPU and the GPU based on approximations of the

execution time as a function of work for the CPU and the GPU.

Although the optimizations proposed in this thesis focus on the sparse grid technique, a

subset is also applicable to other applications, e.g. dense and sparse linear algebra, stencil

computation, direct n-body method. More precisely, the proposed techniques for auto-tuning

and load balancing can be directly transferred to other GPU programs.

The software developed as part of this work has two main components:

• The sparse grid library, fastsg, is a full implementation of the sparse grid technique,

including boundaries, dimensional truncation, and input specialized routines.

• The sparse grid benchmark, sgbench, is a simplified implementation of zero-boundary

sparse grids. It captures the performance behavior of fully functional implementations.

The motivation behind the benchmark comes from the necessity to evaluate the fastest hard-

ware for sparse grid applications without spending too much time in porting the code. Both

the library and the benchmark incorporate optimized CPU and GPU versions of sparse grid

algorithms, a search engine that contains the core functionality of auto-tuning, and a scheduler

that distributes the computational work among all the processors in a heterogeneous system.

1.3 The Structure of the Thesis

Chapter 2 describes the current processor landscape shaped by the power wall, one of the main

reasons behind the appearance of multi-core CPUs and of many-core accelerators such as GPUs.

In Chapter 3, the theory behind the sparse grid technique is detailed, including the use of sparse

grids for handling high-dimensional data in a computational steering application. Different data

structures and algorithms for sparse grids are also covered. Among the data structures, emphasis
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is placed on a bijection based data structure. Chapter 4 presents the details behind the porting of

the sparse grid technique to GPUs. Moreover, CPU and GPU optimizations are described that

allow for an efficient utilization of the memory hierarchy and of the vector units on CPUs and

GPUs. Chapter 5 describes an empirical optimization method that incorporates common GPU

optimization parameters, a search method based on partitioning the optimization parameter

space, and an input reduction technique that shortens the auto-tuning time. The central topic

of Chapter 6 is load balancing whose main objective is to combine the computational speed

of the CPU and of the GPU. Dynamic and static schemes for load balancing are explained.

Finally, Chapter 7 contains the conclusion, shows the optimization progress for the sparse grid

routines, and outlines directions for future work.
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Chapter 2

A Complex Hardware and Software

Landscape

Accelerators are special purpose processors characterized in general by a high GFlop/s rate and

a high Flop/s per Watt ratio. This makes them especially well suited for addressing the power

wall problem, i.e. nowadays, it is extremely difficult to increase the frequency of processors

while keeping their power consumption at an acceptable level. This chapter presents the power

wall and a solution to it in the form of accelerators. The differences between general purpose

CPUs and accelerators are covered. More precisely, CPUs are described as latency oriented

processors whereas accelerators are throughput oriented. The chapter provides an overview of

accelerators. Among them, emphasis is placed on Nvidia GPUs. Besides the presentation of

hardware aspects, the chapter also compares CPUs and GPUs in terms of programming models.

The challenges of GPU computing are discussed at the end of the chapter.

2.1 The Power Wall and the ILP Wall

For more than 20 years, the transistor density in a processor has doubled every 2 years. This

tendency was captured by an empirical law called Moore’s Law. Increasing the density allowed

for the performance to grow at the same rate, meaning that new generations of processors en-

abled many applications to execute two times faster than before almost for free. The 2x speedup

is the result of two essential techniques: frequency scaling and microarchitecture optimizations.

Frequency scaling is explained by Dennard’s scaling recipe [3] which states that if the area of

a transistor is decreased by a factor of 2, then the frequency, f , of the processor is increased by

1.4x, the supply voltage, V , is decreased by 0.7x, and the capacitance, C, decreases by 0.7x [4].

9
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Consider the equation for the active power of a processor:

P = C · V 2 · f. (2.1)

Assuming that the number of transistors is the same before and after shrinking, the power con-

sumption is reduced by a factor of 2. A notable aspect is that using frequency scaling, only 1.4x

more performance can be achieved. In the absence of space constraints, a new processor incor-

porates two times more transistors. In order to reach a 2x speedup, the higher transistor budget

is used to implement microarchitecture optimizations, e.g. instruction pipelining, out-of-order

execution, branch prediction, data prefetching, and multithreading. According to an empirical

rule discovered by Pollack [4], the performance resulting from microarchitecture optimizations

is the square root of the density improvement, i.e. for 2x more density, the benefit is 1.4x.

In the recent years, because of the extremely small size of transistors, there have been

diminished returns from Dennard’s rule, i.e. an improvement of 1.4x from frequency scaling

cannot be achieved anymore. The main cause is the leakage current whose influence on power

consumption was insignificant for many years. However, by aggressively shrinking the area of

the transistor, the negative effect of the leakage current is amplified significantly, thus leading

to more wasted static power which can no longer be neglected compared to the active power

of the processor. This problem is named the power wall. Besides this, microarchitecture opti-

mizations targeting Instruction Level Parallelism (ILP) have also reached their limits. Major

improvements are more difficult to obtain and are not expected to be close to the 1.4x speedup

predicted by Pollack’s rule. The ILP limitation is commonly called the ILP wall.

The power wall and the ILP wall do not mean that doubling the density of transistors in

a processor is not feasible anymore. In fact, this trend still continues. However, the power

wall does not allow for the frequency to increase at the same rate as before, i.e. 1.4x, between

consecutive generations of processors. Nevertheless, a new processor contains more transistors,

e.g. 2x, compared to one from the previous generation. Hence, the main problem refers to de-

termining the optimal allocation of the transistor budget. In the presence of the ILP wall, the

low benefit of microarchitecture optimizations does not justify the high cost in terms of transis-

tors. Improved theoretical performance can still be obtained by placing more execution engines,

the so-called cores, in a processor. The resulting multi-core design has serious implications on

software development, i.e. applications have to be parallelized in order to run efficiently on a

multi-core processor [5]. The advantage is that by doubling the number of cores per processor

every 2 years, a maximum speedup of 2x is possible without increasing the frequency.

A notable characteristic of multi-core processors is that they can be more power efficient

than single-core processors. Consider the scenario in which the same number of transistors can
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Figure 2.1: Simplified view on the architecture of a 4-core Nehalem CPU. The cache hierarchy
has 3 levels: L1 (64 KB), L2 (256 KB), and L3 (8 MB). The branch predictor provides speculative
execution. The out-of-order engine includes the schedule unit and 6 different execution units.

be used to build a single-core processor operating at a frequency f or an n-core processor (n > 1)

at a frequency f/n obtained by reducing V by the right amount. The theoretical performance is

the same in both cases. According to Eq. 2.1, the active power decreases more rapidly than the

frequency depending on the voltage, meaning that a single-core processor is more power hungry

than n cores. Nevertheless, n cores demand parallelism. Furthermore, because of the limited

transistor budget per core, the cores in an n-core processor cannot implement the complex

functionality of a single-core processor that allows it to efficiently execute serial programs.

In the rest of this thesis, CPUs refer to general purpose multi-core processors that implement

the x86 Instruction Set Architecture (ISA). The simplified architecture of an Intel Nehalem

quad-core CPU is provided in Fig. 2.1. CPUs are typically optimized with respect to latency

[1], meaning that they contain a complex multi-level hierarchy of caches and advanced logic used

for automatically extracting the parallelism from a sequential stream of instructions. Moreover,

CPUs incorporate speculative techniques for branch prediction and data prefetching. In general,

the number of cores per CPU is 1 - 4 while their frequency is 2 - 3 GHz.

2.2 Accelerators

This section provides an overview of the so-called general purpose accelerators, describes the

architecture of Nvidia GPUs, and discusses important trends related to CPUs and GPUs.
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2.2.1 General View

In contrast to CPUs, accelerators are special purpose processors. The motivation behind their

emergence is that significant improvements in both execution time and power consumption can

be achieved by customizing the hardware for specific applications. Special purpose accelerators

already exist for: Extensible Markup Language (XML) processing, network processing, encryp-

tion, and video decoding. In general, accelerators do not run an operating system (OS) and

accordingly are complementary to multi-core CPUs. Therefore, accelerator based computing

requires the presence of a CPU whose responsibility is to offload tasks to the accelerator.

The accelerators of interest in this thesis are those that can be used to improve the perfor-

mance of a wider range of programs, not only one. Examples of such accelerators include: Cell

Broadband Engine (Cell BE) [6], Graphics Processing Units (GPUs) [7] produced by Nvidia and

AMD, Intel Many Integrated Core Architecture (Intel MIC) [8], and Field Programmable Gate

Arrays (FPGA) [9]. For a comparison of different accelerators, the reader is referred to [10].

Although these accelerators are typically presented by their manufacturers as general purpose,

they can only be used efficiently by applications that match the strong points of accelerators

and are less sensitive to their weak points.

A system that contains general purpose CPUs and accelerators is called a heterogeneous

system. In order to understand the strengths and the weaknesses of accelerators, it is impor-

tant to first look at the allocation of the transistor budget in accelerators. Instead of investing

the transistors for implementing complex ILP techniques as in the case of CPUs, a strategy

characteristic to accelerators is to use the transistors to create a rather large number of cores.

The larger the number of cores, the simpler the cores. The so-called wimpy cores of an accel-

erator are in-order and do not incorporate speculative techniques. The number of cores of an

accelerator often considerably exceeds the number of cores of a CPU.

Another characteristic common to most accelerators is that they place emphasis on data

parallelism. Accordingly, they contain SIMD units that are wider than the short vector units

(4 / 8 32-bit lanes for SSE / AVX) of CPUs. In order to compensate for the lack of out-of-order

execution, some accelerators hide the latency of the instruction pipeline through interleaved

multithreading which allows for a fast context switch at every clock cycle between different

threads. The fast context switch is based on storing / restoring the state of each thread to / from

registers. In order to support the concurrent execution of a large number of threads per core,

accelerators contain proportionally large register files.

Regarding the memory access, accelerators have in general their dedicated memory which

offers a higher bandwidth than the memory of CPUs. In contrast to CPUs which contain deep

cache hierarchies, e.g. 2 levels or more, some accelerators replace the cache with an explicitly
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Figure 2.2: Simplified architecture of a 16-core Nvidia Fermi GPU. The GPU contains a fully
coherent 2-level cache hierarchy: L1 (16 or 48 KB) and L2 (768 KB). The SIMD units contain
16 lanes each. The thread block scheduler assigns thread blocks, e.g. groups of 256 threads, to
cores. The thread scheduler interleaves the execution of thread warps, i.e. groups of 32 threads.

controlled fast memory or scratchpad. Accelerators are often attached to a system via the PCI

Express (PCIe) bus whose bandwidth is significantly lower than the bandwidth of the memory

on accelerators, e.g. PCIe 2.0 provides a theoretical 8 GB/s unidirectional bandwidth while the

memory bandwidth of the accelerator can be as high as 200 GB/s.

The large number of cores, the wide SIMD units, and multithreading are characteristics

that make accelerators high throughput processors as opposed to multi-core CPUs which are

optimized for low latency processing [1]. The high throughput nature of accelerators means

that they require an abundance of parallelism in order to reach high performance.

2.2.2 A Closer Look at GPUs

GPUs are the most common type of accelerators nowadays. They are massively parallel proces-

sors capable of both graphics processing and general purpose computing. GPUs dedicate most

of their transistors to increasing the number of cores and the width of their vector units. In

order to allow for 16 to 30 cores, the GPU cores are simpler than the CPU cores. The following

discussion concentrates on the Fermi generation of Nvidia GPUs [11].

The GPU shown in Fig. 2.2 contains up to 16 in-order cores. Each core can issue two

instructions per cycle, thus feeding two 16-lanes (32 bits per lane) SIMD units. In reality, an
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instruction uses vectors of 32 × 32-bit values. The execution for the 32 values needs 2 cycles to

complete. In order to cope with the latency of memory operations and stalls in the instruction

pipeline, a core incorporates a rather large register file containing 32768 × 32-bit registers

capable of storing the context or state, i.e. instruction pointer and private variables, for up to

1536 threads. The overhead resulting from switching between threads can be neglected. Each

core also contains 4 transcendental units, called Special Function Units (SFUs), which compute

the following functions: sin, cosine, reciprocal, and square root. The SFUs are decoupled from

the SIMD units meaning that while the SFUs are busy, instructions can still be dispatched to

the available execution units. A GPU core also incorporates 16 load / store units.

The hierarchy of memories on the GPU has evolved considerably from pre-Fermi GPUs

to Fermi GPUs. A two level fully coherent cache is included in Fermi. Moreover, each core

contains 64 KB of fast memory on-chip which can be configured in two ways: (1) in a 16 / 48

KB configuration with 16 KB allocated to a scratchpad memory and 48 KB to the L1 cache,

and (2) in a 48 / 16 KB configuration for scratchpad / L1 cache. The scratchpad is memory

explicitly managed by programmers. The 64 KB per core are partitioned in 32 banks so that

consecutive 32-bit words correspond to successive banks. The maximum throughput is 32 × 32-

bit values. This throughput can be obtained when the values used by a vector operation are

distributed uniformly among the 32 banks. The L2 cache shared by all the cores has a size of

768 KB. The slowest memory on the GPU is called global memory and has a size of up to 6 GB.

A typical memory interface has a width of 384 bits and a frequency of 3.7 GHz, thus resulting

in a bandwidth of approximately 180 GB/s.

The GPU is connected to the system via a PCIe bus. A 16-lane PCIe 2.0 provides a

theoretical bandwidth of 8 GB/s per direction. Transferring the data to and from the global

memory of the GPU is done using Direct Memory Access (DMA).

2.2.3 Trends

Recently, there has been a visible trend for CPUs and accelerators to borrow characteristics

from each other. The following discussion is built around Intel CPUs and Nvidia GPUs, notable

representatives of CPUs and accelerators respectively.

First, GPUs typically have wider SIMD units than CPUs. Each core of pre-Fermi GPU is

equipped with an 8-lane (32 bits per lane) SIMD unit while in the more recent Fermi GPUs,

a core contains two SIMD units with a width of 16 lanes. For many years, Intel CPUs have

included an extension of the instruction set called Streaming SIMD Extensions (SSE) which

allows for the use of a 4-lane SIMD unit. Recent processors from Intel such as Sandy Bride

contain vector units with 8 lanes exposed to software through a vector instruction set called
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Advanced Vector Extensions (AVX). One can observe that the width of the SIMD unit of current

CPUs was upgraded to the width of the vector units found in pre-Fermi GPUs.

Second, on pre-Fermi GPUs, there were only read-only caches, i.e. the constant cache

optimized for latency and the texture cache optimized for bandwidth. In contrast, the caches of

CPUs allow for both read and write operations and are organized in a deep hierarchical structure

with 2 - 3 levels where each level provides different trade-offs between latency, bandwidth, and

size. Starting with the Fermi generation, GPUs also contain a two level cache hierarchy that

supports both load and store operations and is fully coherent.

The third point is Intel’s MIC [8] which is an x86 based accelerator. Hence, it can be

regarded as a combination between a CPU and a GPU. Similarly to GPUs, MIC is a high

throughput processor and contains more than 50 cores. Emphasis is placed on data parallelism

by equipping each core with a 16-lane vector unit. The cores are in-order with support for

4-way multithreading. In contrast, Fermi GPUs support 48-way multithreading. The memory

hierarchy includes a 2-level fully coherent cache. Similarly to GPUs, a MIC is accessed from

the CPU via PCIe.

2.3 Programming Models

This section compares OpenMP and CUDA, the two main programming models used for multi-

core CPUs and GPUs respectively. The section also contains a presentation of OpenCL, a

programming model that addresses both CPUs and GPUs.

2.3.1 The OpenMP Programming Model

In the multi-core era, emphasis is placed on Task Level Parallelism (TLP). In contrast to

ILP which is typically handled by the compiler and the CPU, TLP is the responsibility of

programmers, i.e. developers parallelize their applications using threads which provide a useful

abstraction of concurrent execution. A thread is defined as the smallest sequence of instructions

that can be scheduled by the operating system (OS) on a core of a CPU. Threads coexist within

a process, i.e. an instance of a program in execution, and share its resources, e.g. they all use

the same code and address space. However, each thread has a private program counter and

stack.

A typical challenge in the case of thread based parallel programming is given by race condi-

tions. In the presence of a race condition, the result of a threaded application is nondetermin-

istic. This problem is addressed by synchronization methods, e.g. locks and semaphores, which

help to avoid the corruption of the shared state through mutual exclusion. Incorrect usage of
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synchronization can lead to deadlocks in which two threads each request access to a resource

blocked by the other, thus both of them wait indefinitely. Another common synchronization

method on multi-core CPUs is a barrier used to ensure that no thread advances until all the

threads reach a common point in the program marked by the barrier.

On multi-core CPUs, threads can be used to implement a variety of parallel computation

models [12]: the data parallel model (tasks execute the same operations on different chunks

of data), the task graph model (dependent tasks are used to built a dependency graph which

is scheduled on worker threads), the work pool model (tasks are placed in a pool from where

they are grabbed by worker threads), the master-slave model (a boss thread distributes tasks to

worker threads), and the pipeline model (threads execute different functions and are arranged

in a sequence that defines the direction of the data flow between threads). Sometimes, complex

parallel applications require the use of more than one model, resulting in hybrid models.

OpenMP [13] is an established thread based programing model for shared memory machines,

including multi-core CPUs. It provides compiler directives, i.e. pragmas, runtime functions,

and environment variables, which allow a programmer to explicitly parallelize an application.

OpenMP is based on a fork-join model in which a master thread forks in a team of worker

threads at points in a program explicitly specified by the programmer. Such a point corresponds

to the beginning of a parallel region. A parallel region also has an end, i.e. the point where the

threads join. In general, threads are scheduled for execution on different CPU cores and their

number matches the number of cores or hardware threads.

A subset of the most important functions provided by OpenMP through pragmas is:

• creating a team of threads: #pragma omp parallel

• distributing the iteration space of a loop among threads: #pragma omp for

• synchronizing threads: #pragma omp critical (mutual exclusion), #pragma omp atomic

(atomic operation), and #pragma omp barrier (barrier)

• specifying data attributes: shared (accessed by all the threads in a team) and private

(accessed by only one thread).

The OpenMP 3.0 standard defines a task construct (#pragma omp task) which provides

extra flexibility to the programming model by allowing it to be employed for parallelizing com-

plex applications that contain pointer based data structures, e.g. trees, or recursive functions.

In such scenarios, the previous work distribution methods are impractical. At runtime, a task

is executed by the thread that encounters it or is assigned to another thread for execution.
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The library part of OpenMP provides useful routines that complement the functional-

ity of pragmas, e.g. omp get thread num returns the identifier of a thread in a team and

omp get num threads returns the size of a team. Flexible lock based synchronization is also

possible using a comprehensive set of OpenMP functions. Moreover, the environment variables

defined by OpenMP are used to control different runtime parameters, e.g. the scheduling scheme

of parallel for loops and the number of worker threads used in parallel regions.

Regarding memory consistency, OpenMP implements a relaxed consistency model in which,

for efficiency reasons, threads are not required to maintain the exact view of shared data all the

time. Instead of that, they can cache their data, thus resulting in less communication between

threads. In order to enforce consistency, the shared variables have to be explicitly flushed.

2.3.2 The CUDA Programming Model

CUDA [14] is a programming model for Nvidia GPUs. It relies on library functions and on a

C / C++ extension that allows for a convenient definition of GPU programs. An important

aspect of CUDA is that the host (CPU) code is separated from the guest (GPU) code, referred to

as a CUDA kernel. CUDA also contains routines for launching kernels to a GPU and managing

the data transfers over PCIe, between the CPU and the GPU. CUDA is Single Program Multiple

Data (SPMD) programming model in which all the cores, called Streaming Multiprocessors

(SMs), execute the same kernel. The CUDA language extension includes keywords that allow

to specify the device where a C / C++ function is executed (CPU, GPU, or both), the placement

in the memory hierarchy of the variables used in a kernel, and the launch of a kernel.

The typical scenario in CUDA is task offloading to the GPU which is done in five steps:

1. The CPU allocates memory space for the input and the output data on the GPU.

2. The CPU copies the input data to the GPU memory.

3. The CPU launches the CUDA kernel.

4. The CPU waits for the GPU to compute the output data.

5. The CPU copies the output data from the GPU memory to the CPU memory.

Hence, the role of the CPU is to manage the data movement and the kernel launch.

CUDA includes a thread based abstraction of the execution on the GPU. This makes it to

some extent similar to the parallel programming models for multi-core CPUs, e.g. OpenMP.

However, CUDA provides only a limited subset of the functionality of OpenMP, especially

for thread synchronization. The methods used to synchronize GPU threads in CUDA are
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barriers and atomic operations. Moreover, CUDA threads are more numerous than OpenMP

threads and are typically more fine granular. Another major difference between the thread

based programming models for CPUs and GPUs is that on GPUs, the threads are mainly used

to implement a data parallel computation model and it is highly impractical, if not impossible,

to obtain a realization of a more complex computation model, e.g. a task graph.

Current GPUs have up to 16 cores and each core can concurrently execute up to 1536

threads. Assuming that all the GPU cores are occupied by threads, if such a large number of

concurrent threads communicate with each other, then the scalability is significantly reduced.

Therefore, the philosophy in CUDA is to restrict the thread communication patterns for more

performance. In order to achieve this, the threads are grouped in blocks which are scheduled

each on a GPU core for execution. Each thread block has a unique identifier in a grid of blocks,

i.e. blockIdx. Furthermore, each thread has an identifier relative to its block, i.e. threadIdx.

Data sharing and synchronization via barriers are only possible within a block. Data exchange

across different blocks can only be achieved in a safe way, i.e. free from race conditions, using

atomic operations. In general, GPU programs expose a high degree of parallelism and there is

almost no communication between blocks.

The variables used in CUDA kernels belong to one of following memory spaces:

• global memory : cached memory that contains the input and output arrays allocated by

the CPU; it is persistent across kernel executions

• local memory : by default, any thread private variable declared in the kernel is stored in

local memory; physically, the local memory is part of the global memory

• shared memory : shared variables can be accessed by all the threads in the same block

• constant memory : read-only cached memory optimized for low latency; its size is 64 KB

• texture memory : read-only cache memory optimized for high bandwidth.

The maximum number of concurrent thread blocks per GPU core is limited by the register

consumption per thread and the shared memory consumption per block. Maximizing the oc-

cupancy, i.e. the number of concurrent (or active) threads per GPU is a common optimization

goal for GPU programs. The explanation is given by the fact that if more threads are running

on a core, then the positive impact of multithreading is more significant, thus improving the

ability to reduce pipeline stalls by interleaving the execution of more threads.

Each GPU core contains two 16-lane SIMD units but in CUDA, these units are not ad-

dressed explicitly. In reality, a thread maps to an SIMD lane which can be seen as a Scalar

Processor (SP). An SP contains a dispatch port through which it receives execution requests
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from an instruction dispatch unit, and two Arithmetic Logic Units (ALUs) for floating point op-

erations and integer operations. More precisely, although CUDA groups the threads in blocks,

at hardware level the threads in a block are executed in groups of 32 threads, called warps. A

warp thus denotes 32 threads that all perform the same operation on 32 chunks of data. In

CUDA, this execution model is referred to as Single Instruction Multiple Threads (SIMT).

Understanding the warp concept is essential for efficiently using the GPU. If the threads in a

warp follow different control paths because of branches, then the performance of a CUDA kernel

can be severely reduced, e.g. up to a factor of 32. Such a warp is called divergent warp. In this

case, the SIMD unit is used inefficiently because the execution of the warp is serialized so that

only the threads that execute the same operation can utilize the SIMD unit simultaneously. For

instance, if 16 threads of a warp execute an operation while the other 16 execute another one,

the time necessary for the SIMD unit to handle the entire warp is twice the time corresponding

to the scenario in which all the threads execute the same operation.

Warps are also important with regard to the different memory types of the GPU. The shared

memory (or scratchpad) on every core is divided into 32 banks. In order to use this memory

efficiently, the threads in a warp are required to access different banks so that the accesses are

uniformly distributed among banks. Another optimal scenario is when all the threads in a warp

access the same value, meaning that it is broadcast to all the threads. If two or more threads

access different addresses in the same bank, then the accesses are serialized, thus reducing the

performance. With respect to global memory, it is used efficiently if all the threads in a warp

access a contiguous and aligned memory region. This reduces the number of transactions to

global memory and allows for a higher percentage of the data transferred from global memory

to be actually used by threads as part of the computation.

2.3.3 The OpenCL Programming Model

OpenCL [15] is a framework for programming heterogeneous systems such as those containing

CPUs and GPUs. OpenCL is developed by the Khronos standardization consortium and is

adopted by Nvidia, AMD, Intel, and ARM. The main motivation behind OpenCL is the need

for a language that can be used to program a wide variety of processors. In other words,

OpenCL can be used to program both CPUs and GPUs.

OpenCL is both an Applications Programming Interface (API) and a language for expressing

parallel cross-platform applications. The language is strongly influenced by CUDA. In essence,

an OpenCL program describes the operations performed by one SIMD lane. However, in con-

trast to CUDA, which focuses on data parallelism, OpenCL also allows for task parallelism.

Moreover, it can be used to program both fine-grained parallelism as in CUDA and more coarse
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parallelism like in OpenMP. Many of the OpenCL concepts map to CUDA concepts. A CUDA

thread becomes a work item in OpenCL while a thread block is a work group. Data sharing

and synchronization is only allowed between work items within the same work group. A CUDA

kernel is called program in OpenCL which is executed by all the work items in an SPMD fashion.

Again, a separation is made between host and devices. The devices execute OpenCL programs

while the responsibility of the host is to manage the interaction with the devices, i.e. sending

commands for data transfers to and from devices, and launching programs on devices.

OpenCL describes an abstract view of devices that hardware vendors have to implement

in order to expose their processors through OpenCL. A device contains compute units and a

compute unit consists of a set of processing elements. In Nvidia terminology, a compute unit is

a Streaming Multiprocessor and a processing element is a lane of an SIMD unit, called Scalar

Processor (SP) in CUDA. On multi-core CPUs, a compute unit is a core while a processing

element is a lane of the SSE (or AVX) unit. The memory hierarchy specified in OpenCL

includes the following levels: global memory and constant memory (physically placed off-chip)

are available to all the work items, local memory (fast on-chip scratchpad memory) allows for

the data to be shared among work items in the same work group, private memory (typically

maps to register file) which contains the private variables per work item.

The OpenCL API is the interface that allows for discovering OpenCL devices and compiling

code for them at runtime. At API level, concepts such as platform, context, and work queues are

defined in order to properly manage a wide range of processors from different manufacturers: A

platform groups all the devices from the same manufacturer (Intel, Nvidia, or AMD), a context

is a handler for managing devices belonging to the same platform, whereas a work queue is

associated with a device and is used by the host to submit OpenCL commands to the device.

Regarding vectorization, which is an important topic nowadays because of the emergence

of vector processors, OpenCL offers two solutions referred to as explicit and implicit vector-

ization. In explicit vectorization, vector types enable a programmer to directly expose vector

operations to the compiler. For CPUs, the implicit vectorization approach is based on compiler

optimizations. On GPUs, implicit vectorization is achieved automatically in hardware as part

of the SIMT execution model in which a warp is merged and split depending on branches so

that an operation shared by a subset of the threads in a warp is executed in parallel.

2.4 Examples of GPU Applications

There are many applications that have already been ported to CUDA and validate the benefits

of GPUs over CPUs for certain computations. Some of these applications are briefly described
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next. The chosen applications are only a subset of the existing GPU programs and were chosen

here because of their high popularity. The applications are presented in the increasing order of

their computational intensity, starting with applications that are computationally bound, i.e.

high intensity, and finishing with memory bound applications, i.e. low intensity.

Matrix multiplication is a dense linear algebra operation that benefits significantly from the

computational power of GPUs. The algorithm discussed here is the näıve matrix multiplica-

tion characterized by O(n3) complexity where n is the number of rows and columns. Matrix

multiplication is computationally bound meaning that its performance is influenced more by

the GFlop/s rate rather than the memory bandwidth. Matrix multiplication is at the core of

benchmarks such as LINPACK used to evaluate the fastest supercomputers in the world [16].

An efficient CUDA implementation of matrix multiplication is described in [17]. The optimized

CUDA version of matrix multiplication proposed there reaches 60% of the peak performance

of Nvidia GPUs (for single precision floating point numbers) and is included in CUBLAS 2.0,

i.e. the library from Nvidia that implements the Basic Linear Algebra Subprograms (BLAS)

interface. Compared to the GFlop/s rate obtained on an Intel Core2 Quad Q6850 operating at

3 GHz, the performance measured using a GTX280 GPU is up to 4.4x better.

N-body simulations are intensively used in astrophysics for simulating the formation of

galaxies and in molecular dynamics for simulating the interaction between molecules. This is

another example of a program that benefits from the high GFlop/s rate of GPUs. Efficient

implementations for GPUs include [18, 19]. According to [18], an optimized CUDA version is

50x faster than a highly tuned serial CPU implementation. An important factor for obtaining

this speedup is the set of transcendental functions hardwired in the GPU cores which allow for

a fast computation of reciprocal and square root functions. In [19], the authors’ implementation

reaches a 100x speedup compared to the performance obtained on a single-core CPU.

The Fast Fourier Transformation (FFT) is used for solving Partial Differential Equations

(PDEs), for image processing, and for digital signal processing. A 1-dimensional FFT runs in

O(n · log(n)) time where n is the number of points for which the Discrete Fourier Transform

(DFT) is computed. CUDA implementations of FFT are detailed in [20, 21]. In [20], the

authors show that depending on the input, a GTX280 GPU is between 2.7x and 16x faster than

a quad-core AMD Phenom 9500 CPU. In [21], a GTX280 delivers a performance that is in the

range from 8x and 40x better than an Intel Core2 Extreme QX9650, i.e. a quad-core processor.

Stencil computations typically result from the discretization of Partial Differential Equations

(PDEs) using the Finite Difference Method (FDM). Stencils are also found in image processing

applications. A stencil computation is based on a pattern, i.e. the stencil, used to define the

neighbors of every cell in a discretized domain. All the values of the cells are updated according
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to an equation involving the values of the neighbor cells. Sometimes, the update of all the cells

is part of an iterative process, i.e. the update is done multiple times. Most stencil computations

are memory bound, meaning that they can make use of the high memory bandwidth of GPUs.

Efficient implementations for GPUs are described in [22, 23]. In [22], a speedup of almost 7x

is obtained on a GTX280 compared to a dual-socket system containing one AMD Barcelona

2356 quad-core CPU per socket. [23] describes a CUDA implementation that is roughly 10x

faster on a Tesla 10-series GPU than the CPU implementation measured on a quad-core Intel

Harpertown CPU.

Another application accelerated using GPUs is sparse matrix - vector (SpMV) multiplication,

an operation commonly found in iterative methods for solving PDEs. SpMV is characterized

by low computational intensity and irregular access to memory. Therefore, the GFlop/s rate of

SpMV is highly influenced by memory performance. Efficient SpMV implementations for GPUs

include [24, 25]. In [24], the authors’ implementation delivers up to 16 GFlop/s on a GTX285

which is more than 10x the performance obtained on a quad-core Intel Clovertown system. The

implementation described in [25] improves that GPU performance by up to 1.8x.

The different hardware setups used for obtaining the results presented above does not allow

for a thorough analysis of the concrete benefits of GPUs compared to CPUs. Nevertheless, there

are several observations that can be drawn. Computationally bound applications, e.g. matrix

multiplication and n-body simulations, can reach speedups of almost 2 factors of magnitude on

GPUs compared to a single-core CPU. At the opposite end, for memory bound applications, e.g.

stencil computations and SpMV, the expected speedup of GPUs relative to single-core CPUs is

roughly one factor of magnitude, i.e. based on the assumption that the GPU memory bandwidth

is approximately 200 GB/s whereas the CPU memory has a bandwidth of 20 GB/s. For more

complex applications, e.g. that are control bound and cannot use vector units efficiently, it is

difficult to formulate realistic expectations from GPUs in terms of performance.

2.5 Challenges

GPU benefits do not come for free. There are many challenges that have to be addressed before

an application obtains substantial performance on a GPU accelerated heterogeneous system.

Limited Amount of GPU Memory Nowadays, the bandwidth of the GPU memory is sig-

nificantly higher than the bandwidth of the CPU memory, e.g. 10x. However, the disadvantage

is that the GPU memory has a rather small size, e.g. 6 GB. This is an important limitation for

applications that cannot fit their input and output data in the GPU memory.
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Slow Data Transfers over PCIe The bandwidth of the PCIe bus, e.g. 8 GB/s, is rather low

compared to the GPU memory bandwidth, e.g. 200 GB/s, and the CPU memory bandwidth,

e.g. 20 GB/s. PCIe acts as a severe bottleneck especially for programs that are characterized

by a low GPU computation to PCIe communication ratio. GPU computing requires enough

computational work so that the PCIe transfer time is dominated by the GPU processing time.

Control Bound Codes Control bound codes may cause the GPU threads in a warp to follow

different control paths. In the worst case scenario, control bound applications are affected by a

slowdown of 32x assuming that all the 32 threads in a warp execute different operations.

Irregular Memory Access Patterns The optimal use of both global memory and shared

memory is achieved when all the threads in a warp access a contiguous region of memory.

At shared memory level, for maximum efficiency, the accesses generated by a warp must be

uniformly distributed among the banks of the shared memory. At global memory level, the

threads must access a 128 Byte segment aligned to a 128 Byte address boundary. In the presence

of irregular access patterns, it is difficult to meet such requirements. Irregular accesses tend to

generate bank conflicts in the shared memory and excessive traffic from the global memory to

the cache, i.e. only a fraction of every cache line is actually used in the computation.

Incompatibility with Recursion Recursion is highly incompatible with GPUs because of

the high number of concurrent threads, e.g. tens of thousands, that run at any time [26].

Providing stack space for all the threads would considerably increase the memory consumption.

Furthermore, overheads associated with recursion, e.g. saving and restoring registers, copying

parameter values on the stack, would significantly reduce the performance.

Incompatibility with Dynamic and Irregular Parallelism Dynamic parallelism in which

tasks are created during execution is not supported by GPUs. Irregular parallelism is often

affected by load imbalances, leading to undesired scenarios in which some threads in a warp

have more work to do than others (the SIMD unit is used inefficiently), some warps in a thread

are assigned longer tasks than others (multithreading is suboptimal), or some GPU cores are

busy while others are idle. Current GPUs are not adaptive enough to cope with such problems.

Complex Interactions between Performance Parameters GPU applications often ex-

pose optimization parameters that allow for a fine control of the performance behavior. In

general, the interactions between the parameters are complex and cannot be tackled using the-

oretical means, e.g. performance models. A typical example for GPUs is the trade-off between
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register consumption and concurrency, i.e. allocating more registers per thread results in an

increase of the serial performance of a thread and a decrease of the number of threads running

concurrently on each core, thus reducing the positive effect of multithreading.

Suboptimal Utilization of a Heterogeneous System Full utilization of a heterogeneous

system implies using the CPU and the GPU simultaneously. The typical interaction between

the CPU and the GPU in CUDA follows a task offloading model. However, this model focuses

only on keeping the GPU busy, i.e. while the GPU computes, the CPU is idle. Load balancing

aims at engaging both the CPU and the GPU in the computation in order to increase the

performance. In practice, this can be achieved for instance by combining CUDA and OpenMP.

All these challenges are addressed for a set of performance critical routines extracted from a

computational steering application that is based on the sparse grid technique [27]. The routines

are characterized by different processing behaviors: integer bound, computationally bound, and

memory bound. The thesis presents the porting of the sparse grid routines to GPU based

heterogeneous systems, including topics such as empirical optimizations and load balancing.

2.6 Summary

While CPUs are latency oriented processors, GPUs are throughput oriented processors contain-

ing a large number of cores with wide SIMD units. GPUs belong to the class of many-core

processors or accelerators. The main reason behind the emergence of GPUs is the power wall

problem defined as the difficulty of increasing the frequency of processors while keeping the

power consumption within acceptable limits. Two solutions are incorporated in GPUs in or-

der to cope with the power wall problem: First, their transistor budget is mainly allocated to

floating point units, and second, they are typically clocked at lower frequencies than CPUs.

In terms of peak performance, GPUs are factors of magnitude faster than CPUs. However,

the theoretical speedup is rarely transferred to applications. In order to fit the strengths of

GPUs, programs are expected to meet the following set of requirements: The type of parallelism

characteristic to the application is data parallelism, the code is vector friendly, the memory

consumption is low enough to fit the small amount of memory on the GPU (up to 6 GB), the

code is free from non-recursive functions which are either not supported or execute inefficiently,

and there is enough computational work so that the data transfers over PCIe are worthwhile.



Chapter 3

Computational Steering Using

Sparse Grids

This chapter describes the computational steering application used as a benchmark in the next

chapters. The computational steering approach is based here on the sparse grid technique,

a numerical technique particularly useful when dealing with high-dimensional problems. The

theory behind this technique is described together with its role in computational steering. For

implementing the sparse grid technique, different data structure and algorithm variants can

be employed. They are presented in this chapter in the context of heterogeneous systems. A

data structure is proposed that has a minimum memory footprint and is GPU friendly. At the

end of the chapter, the core components of a sparse grid benchmark are defined: sparse grid

hierarchization, sparse grid interpolation, and sparse vector - matrix multiplication.

3.1 A Computational Steering Scenario

In order to get a better understanding of complex phenomena simulated on supercomputers, it

is often necessary to apply slight variations to some parameters of the simulation which control

for instance the initial conditions, the boundary conditions or even the geometries of the given

problem. In a typical computational steering scenario, a user can update these parameters at

any time and his action either changes the simulation on-the-fly or triggers a new simulation.

This approach however is not always practical and may imply high costs as it requires a perma-

nent connection with a supercomputer, at least for the duration of the computational steering

process. Furthermore, depending on the simulation, the results may or may not be delivered

to the user in real-time for visualization. In order to address these challenges, in this thesis,

a different approach to computational steering is described. Instead of running a simulation

25
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Figure 3.1: Main computational steering scenario. Compressed simulation data is stored in a
database. Data is then decompressed in real-time for visualization.

for every parameter update, simulation results are obtained by interpolating precomputed sim-

ulation data stored in a database. The process is depicted in Fig. 3.1. What this actually

accomplishes is a shift of weight between simulation time and storage space, meaning that data

management techniques, e.g. sampling, compression, and decompression, gain more importance.

As computational steering usually goes hand in hand with visualization, decompression has to

be done as fast as possible in order to allow for a smooth interaction with the simulation data.

The chosen computational steering approach is not free of challenge. The parameters of the

simulation often form a high-dimensional space. At database level, a combination of parameters

identifies a simulation snapshot which is defined as the data returned by the simulation for the

given parameters. It is in most cases not feasible both with respect to space and time to obtain

a snapshot for too many combinations of parameters. Therefore, a sampling method must be

used which reduces the number of snapshots stored in the database. Moreover, the parameters

of the simulation together with the spatial dimensions (usually 3), result in a high-dimensional

space, typically with up to 10 dimensions, which is a candidate for data compression. As an

example, [28] describes the steering of the lid-driven cavity simulation (a fluid is trapped in a

cavity whose upper wall moves horizontally). There, the physical domain is 3-dimensional (3d)

while the Reynold’s number and the time are the parameters of the simulation, thus resulting

in a 5-dimensional (5d) problem.

A numerical technique that provides the functionality required by computational steering

is the sparse grid technique which is used for solving high-dimensional problems arising in

astrophysics, molecular dynamics, finance, and data mining [2, 29]. Its applicability to compu-

tational steering is presented in [28]. Sparse grids are employed for the numerical representation

and treatment of high-dimensional functions which typically suffer from the so-called curse of

dimensionality, the exponential dependency of the number of discretization points on the num-

ber of dimensions. This problem can be clearly seen in the case of the d-linear interpolation
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of a d-dimensional function. In a full grid discretization in which N points are allocated per

coordinate direction, the total number of points spent for the entire d-dimensional domain is

Nd. Hence, it is impossible to build a reasonable discretization in settings with more than 4

dimensions such as computational steering. In contrast to full grids, sparse grids need only

O(N · (log(N))d−1) points. More importantly, the accuracy is only slightly deteriorated for

sufficiently smooth functions [2]. Therefore, it can be said that the sparse grid technique offers

an advantageous cost-benefit ratio, thus making it well suited as a lossy compression scheme.

The two central algorithms of the sparse grid technique are hierarchization and interpolation.

If one sees the sparse grid technique as a compression scheme, data compression is achieved

in two steps: First, a special discretization (sampling) of the domain is applied and second,

hierarchization represents the discretized data using hierarchical basis functions. Sparse grid

interpolation can be seen as decompression. In special circumstances of interest described later

in this chapter, interpolation can be reduced to a linear algebra operation referred to as sparse

vector - matrix multiplication.

3.2 Related Work

The use of sparse grids to efficiently handle high-dimensional data in computational steering is

described in [30, 28, 31]. There, the authors study the applicability of sparse grids to certain

Computational Fluid Dynamics (CFD) simulations, including also error analysis. In [28, 31],

the authors store vectors in a sparse grid. In their approach, the dimensions of sparse grids are

the non-spatial dimensions of the simulation whereas a vector is a 3d simulation snapshot.

Dimensionally truncated sparse grids are important in computational steering as they allow

for the parameters of a simulation to be treated differently i.e. more or fewer discretization

points per dimension, depending on their importance in the sparse grid approximation. The

concept of dimensional truncation is derived from dimensional adaptivity described in [32, 33, 34]

and implemented in spinterp, a Matlab framework for sparse grid interpolation [35, 36].

Reducing the memory footprint of sparse grids without sacrificing access time is an important

objective in this chapter. The typical solutions for storing a sparse grid containing multi-

dimensional points and associated values, are key-value data structures such as hash-tables and

trees [37]. Their use for sparse grids is discussed in [38, 39, 40]. In general, hash-table approaches

are preferred because of their lower memory requirements compared to pointer based approaches

like trees. Among the data structures used for representing sparse grids in memory, a special

class is that of data structures based on a bijective mapping (or perfect hash function) described

in [41, 42, 43, 44]. Using the bijective mapping, each grid is given a unique index in a dense
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1d array containing only the sparse grid values. Since the bijection does not further increase

memory consumption, only the values of the sparse grid need to be stored, meaning that this

data structure has minimal memory consumption.

Another point addressed in this chapter is accelerating sparse grid interpolation using input

adaptation or specialization. Techniques for input adaptation are already at the foundation of

OSKI [45] and FFTW [46]. OSKI is a library for sparse linear algebra that automatically se-

lects the best data structure and algorithm given special characteristics of the input matrix, e.g.

symmetry, block and diagonal structures. FFTW is a library for computing FFT transforma-

tions. There, a problem is recursively divided into subproblems using a dynamic programming

algorithm. The smallest subproblems are solved by codelets, i.e. input specialized algorithms

for computing FFT. Input adaptive approaches also exist for sorting [47, 48] and reduction

[49]. Furthermore, general purpose frameworks have been developed that make use of machine

learning techniques for mapping input data to multiple code versions [50, 51]. For a more com-

prehensive list of input adaptive solutions, the reader is referred to [50]. In the context of the

sparse grid technique, [52] applies input adaptivity to sparse grid interpolation. Patterns in the

set of interpolation points are used to create specialized versions of interpolation characterized

by reduced complexity and lower memory requirements.

3.3 The Sparse Grid Technique

This section presents the sparse grid specific discretization of a d-dimensional domain and de-

scribes the basis functions used for the numerical representation of a generic d-dimensional

function. Furthermore, two algorithms are covered: hierarchization which computes the coeffi-

cients of basis functions and interpolation which evaluates the sparse grid at a given point.

3.3.1 The Construction of Sparse Grids

For simplification, consider the case of a generic multi-dimensional function f : Ω → R, where

Ω := [0, 1]d. An approximation for f is realized by discretizing the definition domain of f and

representing f as a sum of weighted (or scaled) basis functions.

Let l := (l1, . . . , ld) and i := (i1, . . . , id) be vectors from Nd and let xl,i := (xl1,i1 , . . . , xld,id)

denote a vector from Ω for which xlt,it := it ·2−lt , it ∈ {1, . . . , 2lt−1}, and it odd, ∀t ∈ {1, . . . , d}.
Based on this definition, both (l, i) and xl,i are equivalent identifiers of a grid point. The relation

between l and i is preserved for all the discretizations of Ω that are presented next.
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(a) Regular sparse grid, 5 refinement
levels, 129 points.
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(b) Truncated sparse grid, 5 refinement
levels, constraint vector (5, 3), 89 points.

Figure 3.2: 2d zero boundary sparse grids.

A first discretization that can be defined on Ω is the full grid, Ωf ⊂ Ω,

Ωf := {xl,i : |l|∞ ≤ n}, |l|∞ := max(l1, . . . , ld), (3.1)

where n is the refinement level of the grid. Since the number of points in Ωf is O(2nd), full

grids are impractical when tackling high-dimensional problems.

A significant reduction of the number of discretization points can be achieved through a

regular sparse grid, Ωr ⊆ Ωf :

Ωr := {xl,i : |l|1 ≤ n+ d− 1}, |l|1 :=

d∑
t=1

lt. (3.2)

A regular sparse grid is obtained by replacing |l|∞ ≤ n in the definition of the full grid with

the more restrictive |l|1 ≤ n+ d− 1. The resulting cardinality of Ωr decreases considerably to

O(2n · nd−1). A 2d regular sparse grid is depicted in Fig. 3.2a.

A dimensionally truncated sparse grid, Ωc ⊆ Ωr, for a given constraint vector c (containing

an upper limit for all the components of l) is defined as:

Ωc := {xl,i : |l|1 ≤ n+ d− 1, lt ≤ ct, t ∈ {1, . . . , d}}. (3.3)

Ωc is obtained by filtering Ωr using c, a controllable parameter which can further decrease the

cardinality of a regular sparse grid. For ct = n,∀1 ≤ t ≤ d, Ωc becomes Ωr. Fig. 3.2b is an

example of a 2d truncated sparse grid. Here, c = (5, 3) reduces the number of points from 129

to 89. For comparison, a 2d full grid with the same refinement level contains 961 points.

Approximations of the function f can be built using any of these grids. Assuming that the
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Figure 3.3: Hierarchical basis functions.

discretization is realized through truncated sparse grids, the interpolant fc : Ωc → R is

fc :=
∑

xl,i∈Ωc

αl,i · φl,i, (3.4)

where αl,i is the weight (or hierarchical coefficient) and φl,i is the hierarchical basis function

centered at the grid point xl,i stemming from the discretization. φl,i is obtained from the one-

dimensional function φl,i(x) := h(2lx − i) by means of a tensor product, where h denotes the

standard hat function h(x) := max(1− |x|, 0). Hence, the definition of φl,i is

φl,i(x) :=
d∏

t=1

φlt,it(xt). (3.5)

The restriction that f is zero on the boundary of Ω is used to simplify the descriptions. Non-zero

boundary values are addressed by adding two more basis functions φ0,0 and φ0,1 on level 0.

Fig. 3.3a depicts a hierarchy of 1d basis functions grouped according to l while Fig. 3.3b

shows the construction of 2d basis functions from 1d ones. All the basis functions with the

same l belong to a regular grid, have pairwise disjoint, equally sized supports, and cover the

entire domain. They form a basis that spans a hierarchical subspace Wl. The sparse grid space

of functions, depicted in Fig. 3.3a for the 1d case, is a sum of hierarchical subspaces:

Vc =
⊕
l

Wl, |l|1 ≤ n+ d− 1, lt ≤ ct, t ∈ {1, . . . , d}. (3.6)
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Listing 3.1 Hierarchization for 1d sparse grids. This is the building block of the d-dimensional
hierarchization algorithm.

1: function hierarchize1d(gp, leftParVal, rightParVal, l, n)
2: if l < n then
3: hierarchize1d(gp.leftChild, leftParVal, gp.val, l + 1, n)

4: hierarchize1d(gp.rightChild, gp.val, rightParVal, l + 1, n)

5: gp.val = gp.val - (leftParVal + rightParVal) / 2

Computing the α coefficients of the sparse grid approximation is referred to as hierarchiza-

tion. The α coefficients are later used to determine the value of the approximation at any point

inside the [0, 1]d domain. This is called interpolation of the sparse grid at a given point.

3.3.2 Computing the Hierarchical Coefficients

Sparse grid algorithms for hierarchization and interpolation both have a recursive nature. List-

ing 3.1 shows the algorithm for hierarchization for 1d sparse grids. The function is called using

a grid point gp located at the middle of the interval, e.g. 0.5 for the [0, 1] domain. For zero

boundary sparse grids, the initial values for leftParVal and rightParVal are 0. Otherwise, the

values are taken from the corresponding dependencies or parents on the boundary. From the

initial grid point, the algorithm descends recursively to the left and the right child. Consider

the notation (ll, li) for the level and the index of the left parent for the grid point identified by

(l, i). The relation between a child and its left parent is given by the equation:

li · 2−ll = (i− 1) · 2−l. (3.7)

Similarly, in the case of the the right parent represented by (rl, ri), the equation becomes:

ri · 2−rl = (i+ 1) · 2−l. (3.8)

In the recursive algorithm for hierarchization, the child grid points are updated before the

hierarchical parents. The stop condition is given by the refinement level. When the maximum

refinement level n is reached, the algorithm stops and returns from recursion. In effect, what

this algorithm does is a depth-first traversal of the subspaces depicted in Fig. 3.3a. The final

result is a sparse grid containing the hierarchical coefficients α.

Although it addresses the 1d case, the sparse grid algorithm from Listing 3.1 is in fact the

building block of d-dimensional hierarchization. For d dimensions, the algorithm loops over

each dimension and in each iteration t, only the grid points that satisfy the condition lt = 1
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Figure 3.4: Traversal and data dependencies in 2d sparse grid hierarchization.

and it = 1 are selected and are passed as the gp parameter to hierarchize1d. Each grid point is

identified by a pair l and i. Thus, the depth of the recursion depends on the initial grid point

since the recursive 1d hierarchization increases the t-th component of l, lt, while satisfying

the sparse grid constraints, i.e. there is an upper limit for the L1-norm of l and a constraint

vector that puts an upper bound on every component of l. The transition from 1d to multi-

dimensional hierarchization is depicted in Fig. 3.4a for the 2d case. In the figure, t first indicates

the horizontal dimension. The grid points on the vertical axis, for which lt = 1 and it = 1, are

selected as the initial grid points passed as parameters when invoking hierarchize1d. The arrows

show the direction of the recursive traversal of the sparse grid, i.e. parallel to the horizontal

axis. After the grid is updated, t is set to the vertical dimension and hierarchization traverses

the sparse grid vertically. Fig. 3.4b shows the dependencies for a grid point, emphasizing that

the algorithm jumps over grid points in order to reach the data dependencies. This indicates

that improving locality is difficult to achieve for sparse grid hierarchization.

3.3.3 Evaluating the Sparse Grid Approximation

The algorithm for 1d sparse grid interpolation is shown in Listing 3.2. In general, sparse grid

interpolation takes a point from [0, 1]d and sums up the scaled (or weighted) basis functions

evaluated at the given point. The scaling is done using the hierarchical coefficients stored in

the sparse grid. The interpolate1d algorithm performs exactly these operations. In line 2, it

evaluates the current basis function at the given point and scales the result using a hierarchical

coefficient, and in lines 5 and 6 recursively moves to the next basis function.

The algorithm already includes an optimization. One can see in Fig. 3.3a that the basis

functions corresponding to the same subspace, e.g. W4, have non-intersecting or disjoint sup-

ports, meaning that at most one basis function for each subspace has a non-zero contribution

to the interpolation. This optimization is realized in line 4, i.e. the traversal of the sparse grid
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Listing 3.2 Interpolation of a 1d sparse grid at point x.

1: function interpolate1d(x, gp, l, n)
2: res = gp.val * basis1d(gp, x)

3: if l < n then
4: if x < gp.coord then
5: res = res + interpolate1d(x, gp.leftChild, l + 1, n)

6: else
7: res = res + interpolate1d(x, gp.rightChild, l + 1, n)

8: return res

is steered towards those grid points whose associated hierarhical basis functions are non-zero

at the interpolation point (or their support includes the point). This significantly reduces the

number of basis function evaluations. As an example, in Fig. 3.3a only 4 basis functions are

actually evaluated, independent from the interpolation point.

For the general d-dimensional case, slight modifications have to be made to interpolate1d :

(1) generate recursively the l identifier of a subspace and the grid point gp whose associated

basis function actually contributes to the interpolation, and (2) replace basis1d with the d-

dimensional basis function (the product of d values returned by basis1d for all the dimensions).

3.4 Traditional Data Structures for Sparse Grids

For implementing sparse grid algorithms, key-value based data structures are typically used.

Examples includes hash-tables and tree maps. The key is the coordinate vector of a grid point

or the equivalent pair of levels and indices. The main disadvantage in this case is that the

key space often occupies more memory than the value space. More precisely, in the context of

sparse grids there is an O(d) ratio between a key and a value in terms of memory use.

An important component of the hash-table approach is the hash function. Here, it maps a

grid point to an index used to access an array of buckets. Ideally, the hash function must ensure

a uniform distribution of the keys to buckets. Moreover, the smaller the number of collisions

per bucket, the faster the access to the data stored in the hash-table. More formally, searching

in a hash-table has a cost of O(1+N/k), where N is the number of pairs added to the structure

and k is the number of buckets. Increasing the number of buckets often results in a decrease of

the number of collisions but this can create empty buckets, resulting in inefficient memory use.

In a standard tree based implementation, an ordering relation must be established for the

grid points. Then, the access to any value is done in O(log(N)). A more memory efficient

approach is a prefix tree or a trie which compresses the key space by storing the prefix shared

by multiple grid point coordinates only once. The concept is depicted in Fig. 3.5. The theoretical
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Figure 3.5: The trie data structure for a 3d sparse grid of level 3. The grid points are represented
using coordinates. The arrays are linearized binary trees. Each level of the tree corresponds to
one dimension. The access to the grid point given by l = (1, 2, 2) and i = (1, 1, 3) or equivalent
coordinates (0.5, 0.25, 0.75) is highlighted.

access time is here O(d). Hence, it does not depend on N as before.

The trie structure can exploit the sparse grid constraints, |l|1 ≤ n+ d− 1 and lt ≤ ct,∀t ∈
{1, . . . , d}, to reduce the memory footprint. The arrays in Fig. 3.5 are linear representations

of binary trees and contain pointers, except the leafs which contain the actual hierarchical

coefficients. The arrays on level t in the trie correspond to dimension t. Accessing the coefficient

associated to a grid point implies a top-down traversal of the arrays of pointers. Within each

array, a one-to-one correspondence between a grid point coordinate and a pointer is used to

indicate the next array on the path. A pointer borrows the refinement level of its respective

grid point coordinate. Moreover, all the pointers on the path to a coefficient are subject to the

same constraints as the sparse grid. In other words, the refinement level of a pointer limits the

size of all the arrays that belong to the subtree starting from it. Consequently, the size of the

arrays varies from top to bottom, resulting in a further reduction of memory consumption.

The example trie from Fig. 3.5 require 3 steps to access any leaf data. Assume that one

wants to access a value stored at the point (0.5, 0.75, 0.25) in a sparse grid. Each component

of the point triggers a jump to a child node in the tree. First, a pointer corresponding to 0.5 is

selected from the array of pointers found at the root of the tree. Second, a jump is made to the

address contained in the pointer and the procedure is repeated by choosing a second pointer for

0.25. A final jump is made from that pointer to an array containing the value for 0.75.

3.5 A Memory Efficient Data Structure

This section describes a special data structure for dimensionally truncated sparse grids based

on a bijective mapping which minimizes memory footprint. As shown next, its foundation is

built on top of two dynamic programming algorithms covered at the end of the section.
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3.5.1 The gp2idx Bijective Mapping

Data structures such as hash-tables and trees store a truncated sparse grid as a set of point-

value pairs. This is in general far from being a memory efficient solution as the key space

needs O(d) more memory than the value space. Since GPUs are equipped with a rather small

amount of memory, a large memory footprint does not allow for an efficient usage of GPUs.

Therefore, the objective is to develop a data structure that minimizes the memory footprint

without sacrificing the access time to the sparse grid data. This can be achieved using a bijection

based data structure in which only the values of the sparse grid are stored in memory, without

explicit information on the grid points associated with the values. The goal is to store the

values in a specially ordered and dense 1d array. A bijective mapping can then calculate the

index in the array for any given multi-dimensional grid point, and vice versa, given an index,

its corresponding point is returned.

The key concept behind a bijective mapping is the decomposition of a truncated sparse grid

into simple dense structures easy to linearize. Fig. 3.6 depicts such a layout for the 2d truncated

sparse grid from Fig. 3.2b. In this figure as in the rest of the chapter, the levels are counted

starting from 0 instead of 1, meaning that l ∈ {0, . . . , n − 1}d and |l|1 ≤ n − 1. There is no

modification applied to the refinement level n and the constraint vector c.

In this data layout, the coefficients of the sparse grid are stored as a sequence of dense

blocks. A block contains the values corresponding to all the grid points that share the same l.

Accordingly, the size of a block is 2|l|1 . From an implementation point of view, a block is a multi-

dimensional array, i.e. b[2l1 ] . . . [2ld ]. Each block can be uniquely identified using l which can be

referred to as block identifier. In sparse grid terms, a block maps to a hierarchical subspace.

Another dense structure built on top of blocks is the group defined as the set of blocks for

which their l vectors have the same L1-norm. Based on this definition, the unique identifier of

a group is the scalar |l|1, i.e. if |l|1 = j then the group’s identifier is j.

The bijective mapping requires that the groups and the blocks are ordered. First, the groups

are ordered ascendingly according to their identifiers. Second, within a group identified by j,

an ascending order is based on the following comparison rule between the identifiers u and v

(|u|1 = |v|1 = j) of any two blocks:

u < v ↔ ∃k : uk < vk and ∀t > k, ut = vt. (3.9)

The order allows for the definition of the bijective mapping gp2idx (and its inverse idx2gp).

The gp2idx function takes a sparse grid point represented using the pair (l, i) and returns its

corresponding position in the sparse grid’s linear representation, built using a sequence of groups



3.5. A MEMORY EFFICIENT DATA STRUCTURE 36

= +

l = (0,0)_

+ + +

l = (1,0)_ l = (0,1)_

+ + + +

l = (2,0)_ l = (1,1)_ l = (0,2)_

+ + + +

l = (3,0)_ l = (2,1)_ l = (1,2)_

+ + +

l = (4,0)_ l = (3,1)_ l = (2,2)_

Group0

Group1

Group2

Group3

Group4

idx1 = 41 idx2 = 32
idx3 = 3

Figure 3.6: Decomposition of a 2d truncated sparse grid (Fig. 3.2b) into block structures. The
point (0.875, 0.125) corresponding to l = (2, 2) and i = (7, 1) maps to index 76 (= 41 + 32 + 3)
in the linear representation of the sparse grid.

in which each group contains a sorted set of dense multi-dimensional blocks. First, gp2idx finds

the group that contains the value for a given sparse grid point. Then, it finds the block within the

group. Finally, the position of the searched value within its block is determined. Consequently,

the index returned by gp2idx for (l, i) is a sum of 3 indices:

• idx1 is the number of values in groups whose identifiers are smaller than |l|1
• idx2 is the number of values stored in blocks whose identifiers are smaller than l according

to the comparison rule from Eq. 3.9

• idx3 is the position for i within the block identified by l.

Using the notation a(d, j) for the number of blocks in the group identified by j, the total

number of values in the group is a(d, j) · 2j , since the size of a block is 2j . As idx1 counts all the

values stored in groups whose identifiers are smaller than |l|1, its equation is:

idx1 =

|l|1−1∑
k=0

a(d, k) · 2k. (3.10)

The next subsection shows that a(d, k) executes in O(d · n) time and can be obtained through

dynamic programming algorithms. Since parameters d and n normally have small values, e.g.
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Listing 3.3 Dynamic programming solution for problem 1.

1: for j = 0 to n do
2: a[1][j] = 1

3: for i = 1 to d do
4: a[i][0] = 1

5: for i = 2 to d do
6: for j = 1 to min(n, c[i]) do
7: a[i][j] = a[i][j - 1] + a[i - 1][j]

8: for j = min(n, c[i]) + 1 to n do
9: a[i][j] = a[i][j - 1] + a[i - 1][j] - a[i - 1][j - c[i]]

d ≤ 10 and n ≤ 10, a can be memorized in a lookup table in order to save processing cycles.

Consider pos(l) a function that returns the position of a block identified by l within its group.

The number of values in any block from the group is 2|l|1 . As idx2 counts the number of values

preceding the block with identifier l in its group, its value is returned by the equation:

idx2 = pos(l) · 2|l|1 . (3.11)

As presented in the next subsection, pos(l) has a complexity of O(d+ n) provided that a(d, j)

is stored in a lookup table so that the access to it is performed in O(1) time.

Let ĩt be defined as ĩt := (it− 1)/2, ∀t ∈ {1, . . . , d}. Since idx3 results from the linearization

of a dense multi-dimensional array, it is calculated using the following equation:

idx3 = (. . . (̃i1 · 2l2 + ĩ2) · 2l3 + · · ·+ ĩd−1) · 2ld + ĩd. (3.12)

3.5.2 Dynamic Programming Algorithms

The bijective mapping gp2idx includes two functions, a and pos, which are based on dynamic

programming algorithms. The first algorithm finds the number of vectors v := (v1, . . . , vd)

that contain only positive integers, subject to d + 1 constraints specified via a scalar n and a

constraint vector c := (c1, . . . , cd). Given a comparison function that orders any pair of two

vectors (resulting in a sequence), the second algorithm determines the index in the sequence for

any given vector. The two algorithms are presented in detail, including a complete description

of the problems that they solve and formal proofs for correctness.

Problem 1. Find the number of vectors v that contain positive integer components and satisfy

the constraints: (1) vt < ct,∀t ∈ {1, . . . , d} and (2) |v|1 = n, where |v|1 :=
∑d

t=1 vt.

Solution. a[d][n] calculated in Listing. 3.3.
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Proof. Let sub(v, g, h) be a notation for a vector with h− g + 1 components, that contains the

components of v between position g and position h:

sub(v, g, h) := (vg, vg+1 . . . , vh−1, vh). (3.13)

Let a(i, j) denote the number of solution vectors v with i components and |v|1 = j. It is obvious

that a(1, j) = 1 and a(i, 0) = 1 for any j ≥ 0 and i ≥ 1 respectively. Moreover, consider that

i ≥ 2 and the i-th component of a generic solution vector v is fixed. The first constraint leads to

vi ≤ min(j, ci−1). Based on the second constraint, one can write |sub(v, 1, i−1)|1 = j−vi. This

means that the number of vectors v with the i-th component fixed is equal to a(i − 1, j − vi).
Considering all the possibilities for the i-th component of v, the following recursive equation is

obtained:

a(i, j) =

mi∑
t=0

a(i− 1, j − t), mi = min(j, ci − 1), i ≥ 2, j ≥ 1. (3.14)

The combination between Eq. 3.14 and memoization leads to a dynamic programming algo-

rithm. More precisely, the algorithm is obtained by storing a(d, n) as a 2d array (d rows, n+ 1

columns) and filling it row by row in ascending order of the row index. In this iterative form,

the algorithm computes a(d, n) and has O(d ·n2) complexity. In this case, O(d ·n) results from

traversing the whole 2d array and O(n) is the theoretical time spent in the innermost loop that

calculates Eq. 3.14. As shown next, the O(d ·n2) complexity can actually be reduced to O(d ·n).

Consider the situations j < ci and j ≥ ci. By expanding and subtracting one obtains:

a(i, j)− a(i, j − 1) =

 a(i− 1, j) for j < ci

a(i− 1, j)− a(i− 1, j − ci) for j ≥ ci
(3.15)

This gives in fact a more efficient method than Eq. 3.14 for filling the 2d array a. More precisely,

for computing a(i, j), at most 3 previously calculated values are needed. Based on Eq. 3.15,

one obtains Alg. 3.3 for determining a(i, j), where 1 ≤ i ≤ d and 0 ≤ j ≤ n. The complexity of

this algorithm is O(d · n).

At this point, there is a solution for determining the number of vectors requested in the

first problem. Using the comparison rule from Eq. 3.9, the set of solution vectors is converted

into a sequence. The objective is now to find the position of a given vector in the sequence.

Calculating the position has to be fast as it is executed in the innermost part of the sparse grid

algorithms. This requirement is met through a dynamic programming algorithm that returns

the position of any vector in the sequence in O(d+ n) time.
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Figure 3.7: 3d sparse grid with non-zero boundary. The boundary of a 3d sparse grid is
composed of lower-dimensional sparse grids with zero boundary.

Problem 2. Consider a sequence of d-dimensional vectors that have the same L1-norm, n,

satisfy the constraints (1) and (2), and are ordered according to Eq. 3.9. For a vector v from

this sequence, determine its position, pos(v), in the sequence.

Solution.

pos(v) =

d∑
t=2

vt−1∑
j=0

a(t− 1, |sub(v, 1, t− 1)|1 + j) (3.16)

Proof. The central idea is to count all the vectors that are smaller than v and have the L1-norm

equal to |v|1. Let s := (s1, . . . , sd) be such a vector. According to Eq. 3.9, there must be an

i so that si < vi and sub(s, i + 1, d) = sub(v, i + 1, d), meaning that all the s’s components

after i are equal to the ones of v. Hence, the sum of s’s first i − 1 components must satisfy

|sub(v, 1, i− 1)|1 ≤ |sub(s, 1, i− 1)|1 < |sub(v, 1, i− 1)|1 + vi.

This is actually the link to the first problem. Taking into account all the possibilities for

|sub(s, 1, i−1)|1, one finds that the number of vectors smaller than v with i fixed is
∑vi−1

j=0 a(i−
1, |v|1 − |sub(v, i, d)|1 + j). Counting all the vectors smaller than v is equivalent to considering

all the possible values for i, i.e. i ∈ {2, . . . , d}. This results in Eq. 3.16.

3.5.3 Extension for Non-zero Boundary Sparse Grids

One of the assumptions made to simplify the sparse grid theory is that the functions represented

using sparse grids are zero-boundary functions. The bijective mapping can actually be extended

to cover the non-zero boundary case based on the observation that the grid points on the

boundary belong to a set of lower-dimensional zero boundary sparse grids. This is a direct

result of the fact that the sparse grids on the boundary are projections of a non-zero boundary

sparse grid on lower-dimensional hyperplanes that form the surface of the hypercube [0, 1]d.

Fig. 3.7 shows this aspect through the decomposition of a non-zero boundary 3d sparse grid

into a zero boundary 3d sparse grid followed by a sequence of zero boundary lower-dimensional

sparse grids.
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Given the layout exemplified in Fig. 3.7, the bijective mapping is applicable to any of the

lower-dimensional sparse grids. However, before invoking the bijection, it is necessary to first

indicate the sparse grid that contains a given grid point. This is done by grouping the sparse

grids according to their number of dimensions. The size of a group of sparse grids corresponding

to the number of dimensions j is 2d−j ·Cj
d, where Ck

n is the number of k-combinations from a set

of n elements. The definition of an order for the sparse grids from the same group is necessary

in order to find the sparse grid that contains the given point. Such an order can be built on top

of the comparison rule provided in Eq. 3.9. Once the sparse grid is found, gp2idx can be used

to return the index for the point in the 1d representation of the sparse grid.

3.5.4 The Case of Regular Sparse Grids

Regular sparse grids are a special type of dimensionally truncated sparse grids. Compared to

regular sparse grids, truncated sparse grids are better fitted for anisotropic multi-dimensional

functions where they may employ fewer points than regular sparse grids without sacrificing

accuracy. As presented before, in terms of parameters, regular sparse grids lack the constraint

vector which in the truncated case is used to tune the refinement level of the grid on a per

dimension basis. Besides this aspect, in the case of regular sparse grids, determining idx1 and

idx2 from the bijective mapping relies purely on combinatorics [43] as opposed to truncated

sparse grids for which combinatorics is not applicable because of the constraint vector. Re-

garding execution time, the access to the data of a regular sparse grid is done in O(d) which

is faster than the O(d + n) for the truncated case. Therefore, it is important that whenever

all the components of the constraint vector are equal, resulting in a regular sparse grid, the

implementation described in [43] is used.

3.6 Non-recursive Sparse Grid Algorithms

Non-recursive sparse grid algorithms are required by processor architectures such as GPUs where

recursion is not possible or not supported efficiently. Moreover, non-recursive implementations

are not affected by overheads caused by excessive operations involving the stack, e.g. saving

and restoring registers, copying parameter values for every invocation of a recursive function.

Furthermore, as shown in the next chapter, the non-recursive algorithms for multi-dimensional

hierarchization and interpolation also have the benefit that they simplify parallelization.
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Listing 3.4 Non-recursive multi-dimensional sparse grid hierarchization using the bijection.
Input: d, numGridPoints, sg1d[numGridPoints]. Output: sg1d[numGridPoints].

1: for t = 0 to d - 1 do
2: for j = numGridPoints - 1 downto 0 do
3: gp = idx2gp(j)

4: lp = leftParent(gp, t)

5: rp = rightParent(gp, t)

6: lv = sg1d[gp2idx(lp)]

7: rv = sg1d[gp2idx(rp)]

8: sg1d[j] = sg1d[j] - (lv + rv) / 2

3.6.1 Non-recursive Hierarchization

A non-recursive algorithm for hierarchization based on the gp2idx bijection is shown in List-

ing 3.4. The sparse grid values are stored in memory in a manner similar to the one depicted

in Fig. 3.6. What the algorithm does is to traverse the sparse grid d times, each time updating

every value based on the values of the hierarchical parents in the current dimension t. Therefore,

the outer loop iterates over the dimensions whereas the inner loop iterates over the indices of

the sparse grid points in the 1d representation of the sparse grid, i.e. the array sg1d. Notice

that the inner loop starts with the highest possible index. This is done to preserve the semantics

of the recursive algorithm in which child sparse grid points are updated before their parents.

In line 3, the index is transformed into the grid point gp represented using the (l, i) pair.

Then, gp is used to compute its dependencies in the current dimension, i.e. the left and the

right hierarchical parent, stored in the variables lp and rp respectively. Determining the left

parent, lp, in dimension t is done by leftParent(gp, t). Assume that lp is represented by the

pair (ll, li). For dimension t, the relation between the current grid point and the left parent is:

li t · 2−llt = (it − 1) · 2−lt ,
llk = lk, lik = ik, ∀k ∈ {0, . . . , d− 1} \ {t}.

(3.17)

This is actually the equation solved by leftParent(gp, t). Similarly, the right parent rp identified

through the pair (rl, ri) is calculated by rightParent(gp, t) using:

ri t · 2−rlt = (it + 1) · 2−lt ,
rlk = lk, rik = ik, ∀k ∈ {0, . . . , d− 1} \ {t}.

(3.18)

From this point on, the explanation of the algorithm is straightforward. In lines 6 and 7 the

hierarchical parents are transformed into indices using the bijection gp2idx and then their values

are obtained by indexing the sg1d array. Finally, in line 8, the value at the current position in
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Listing 3.5 Non-recursive multi-dimensional sparse grid interpolation using the bijection.
Input: d, n, a[d][n], sg1d[], m, x[m][d]. Output: r[m].

1: for j = 0 to m - 1 do
2: r[j] = 0

3: idx12 = 0

4: for g = 0 to n - 1 do
5: for b = 0 to a[d][g] - 1 do
6: l = invPos(g, b)

7: idx3 = 0

8: p = 1

9: for t = 0 to d - 1 do
10: idx3 = idx3 * 2ˆl[t] + floor(2ˆl[t] * x[j][t])

11: p = p * basis1d(l[t], x[j][t])

12: r[j] = r[j] + sg1d[idx12 + idx3] * p

13: idx12 = idx12 + 2ˆg

sg1d is updated using its old value and the values of the dependencies.

3.6.2 Non-recursive Interpolation

Listing 3.5 represents a non-recursive multi-dimensional algorithm for sparse grid interpolation.

As seen in line 6, it uses invPos, i.e. the inverse of the pos function from Eq. 3.16. Here,

interpolation is done for a set of m d-dimensional points from [0, 1]d. These points are contained

in the 2d array x[m][d]. The interpolation results are stored in the r[m] array. For every

interpolation point, the algorithm traverses the sparse grid, block by block, and computes the

contribution of each block to the result for the current interpolation point. The contribution

of a block consists in the product between a hierarchical coefficient from the block and a d-

dimensional basis function evaluated at the current interpolation point.

The j loop from line 1 of the algorithm iterates over the set of points where the sparse

grid is interpolated. The g and b loops traverse groups and blocks respectively. In line 6, the

identifier of the current block is determined. The idx12 index points to the beginning of the

current block in the array sg1d. For every interpolation point corresponding to a row of x, only

one hierarchical coefficient from the block is used. As previously mentioned, the basis functions

corresponding to a block or hierarchical subspace have pairwise disjoint supports that cover

the entire domain, meaning that only one basis function is non-zero for any given interpolation

point and accordingly, only its coefficient must be selected from the block. In the algorithm,

that coefficient is found using idx3, calculated based on l and x[j]. After the t loop, idx3 is used

to indicate the right coefficient in a standard linearization of the multi-dimensional dense array

used to represent the current block. Line 11 contains the evaluation of a linear basis function
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at component t of the current interpolation point x[j]. basis1d is defined here by:

basis1d(k, y) := 1− |2k+1 · y − b2k · yc · 2− 1|, k, y scalars. (3.19)

The results of all the evaluations of linear basis functions are multiplied and stored in p which

represents the evaluation of the d-dimensional hierarchical basis function at the current point.

In line 12, this result is further scaled by a hierarchical coefficient and then added to the other

contributions in the output array r.

3.7 fastsg, a Lightweight Sparse Grid Library

fastsg is a collection of C++ routines for the sparse grid technique. It is based on the gp2idx

bijective mapping so that applications built on top of it can benefit from the minimal memory

consumption resulting from the bijection. The main goal behind developing fastsg is to provide

a reduced set of functions for interpolating dimensionally truncated sparse grids. This func-

tionality is of high importance in the context of the computational steering scenario described

at the beginning of this chapter. Besides minimal memory consumption, another characteristic

of the fastsg library is that its contained functions run efficiently on heterogeneous systems, a

topic covered in depth in Chapter 4, Chapter 5, and Chapter 6.

Table 3.1 shows the interface to fastsg ’s functionality. The library has a triple layer design

with a clear separation between the data structure and the sparse grid algorithms, thus pro-

viding both flexibility and modularity. Hence, the first level (topmost in the table) is used for

operating efficiently with the linear representation of the sparse grid. The second level provides

access to the sparse grid functions, mainly hierarchize and interpolate. The third level contains

special purpose routines, e.g. input specialized functions that address scenarios characteristic

to computational steering (see Section 3.8 for more details).

In order to use the library, the following input parameters have to be provided: the refine-

ment level of a sparse grid through the n parameter, the constraint array c, and a function f

that can extract the data required by the sparse grid discretization from some multi-dimensional

data. The init function applies the sparse grid discretization to the multi-dimensional data pro-

vided as input. After initialization, hierarchize is invoked in order to transform the discretized

data into a representation using the hierarchical basis functions. From this point on, interpolate

can be called at any time to evaluate the sparse grid approximation at any given set of points

inside the [0, 1]d domain. For a given set of m points stored in x, the error routine returns the
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Layer Routine Description

Data structure init(d, n, c[d], f) Allocates a d-dimensional truncated
sparse grid with refinement level n and
constraint array c. Initialization is done
using the function f .

gp2idx(l[d], i[d]) Converts the grid point represented us-
ing the pair of arrays (l, i) into the cor-
responding index in the linear representa-
tion.

idx2gp(idx ) Converts the index in the linear repre-
sentation into the corresponding multi-
dimensional grid point, returned as a pair
of two arrays (l, i).

size() Returns the number of points in the trun-
cated sparse grid.

Sparse grid algorithms hierarchize() Based on f ’s values at the sparse grid
points, computes the α coefficients of the
approximation and stores them in the
sparse grid.

interpolate(x[m][d]) Returns the approximation’s values at m
d-dimensional points (stored in the matrix
x) inside f ’s domain.

error(x[m][d]) Returns the error of the sparse grid ap-
proximation, by comparing the results re-
turned by the approximation against those
returned by f .

Special purpose interpolateSha(sel[sd], x[m][d]) Special sparse grid interpolation for the
sha. pattern.

interpolateCar(xc[d], size[d]) Special version of interpolation corre-
sponding to the car. pattern.

interpolateAuto(x[m][d]) Detects patterns in the set of interpo-
lations points and calls the right func-
tion: interpolate, interpolateSha, or inter-
polateCar.

initVec(d, n, c[d], f , s) Allocates a d-dimensional truncated
sparse grid in which at each point a
vector of size s is stored.

Table 3.1: Triple-layer interface exposed by fastsg. Only the most important routines are shown.
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L2 relative error of the sparse grid approximation based on the equation:

err :=

√
m−1∑
t=0

(fc(xt)− f(xt))2√
m−1∑
t=0

f(xt)2

(3.20)

where fc represents the sparse grid approximation and xt is the t-th point in the set. One can

imagine an iterative process in which sparse grids are created using different values for n and c

until the approximation error is below a required limit.

Looking back at the computational steering application described at the beginning of this

chapter, fastsg is employed there for compressing and decompressing high-dimensional simula-

tion data provided to the library through the parameter f of init. More precisely, compression

is achieved through a combination of init and hierarchize: The input data is filtered using

init and is represented hierarchically using hierarchize. In sparse grid terminology, decompres-

sion is represented by interpolation. In the context of computational steering, the performance

of fastsg, both in terms of memory consumption and execution time, has an essential role in

ensuring a low response time for exploring and visualizing the data.

3.8 Special Features of fastsg

As the main requirements behind fastsg come from computational steering, the routines have

versions that exploit certain special scenarios that are common in practice. Therefore, a special

feature of fastsg is input specialized or input aware interpolation in which patterns in the input

data are harnessed in order to reduce the number of executed operations and consequently the

execution time. Furthermore, another feature addresses a scenario in which at every point in

the sparse grid a vector of values is stored, instead of a single value as before. This typically

results from isolating the spatial parameters from the other parameters of a simulation. The

sparse grid discretization is then applied only to the space of non-spatial parameters.

3.8.1 Input Specialized Algorithms for Interpolation

Input specialization for interpolation is based on the existence of patterns in the input data,

more precisely in the set of interpolation points. The patterns can be exploited in order to

reduce the execution time of interpolation. For computational steering, specialization is based

on two observations regarding characteristics commonly found in the set of interpolation points

represented as a matrix x (a row of x is a d-dimensional interpolation point):
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1. In order to visualize d-dimensional data, the interpolation points are actually 3d (the

spatial dimensions are variable while the non-spatial dimensions are fixed), meaning that

for each column in a set of d− 3 columns from x, the column’s components are all equal.

2. The interpolation points often result from a regular grid discretization, i.e. x is the result

of the Cartesian product of d sets of values, each corresponding to a dimension.

From this point on, (1) is referred to as sha pattern (shared value) whereas (2) corresponds

to the car pattern (Cartesian product). Each pattern is addressed by a specific interpolation

algorithm. In Table 3.1, the corresponding routines are interpolaSha and interpolateCar. The

interpolateAuto routine automatically detects the patterns. Moreover, if a pattern is found,

then its corresponding routine is invoked, otherwise the default interpolate routine is called.

The sha Pattern

Listing 3.6 represents the specialized algorithm for sha. For simplicity, it contains only the

core of sparse grid interpolation, i.e. it computes the contribution of one block resulting from

the decomposition of the sparse grid, to all the interpolation results. In other words, it is

the semantical equivalent of line 1 and lines 7 - 12 from Listing 3.5. The implementation of

this algorithm can be explicitly invoked from fastsg or can be called automatically based on a

pattern detection procedure. The detection of sha starts by traversing x and checking if there

are columns containing one value across all rows. For those columns with this property, their

index is saved in an array called sel. Let sd be the number of indices added to sel. Another

array, isel, contains the indices of the remaining columns. Thus, the detection of sha executes

in O(m · d) time. This may seem expensive but it is actually worthwhile provided that the

number of the blocks in the sparse grid is large enough.

The benefit of the sha specialized algorithm over the default interpolation algorithm from

Listing 3.5 consists in a reduction of the number of executed operations. Since there are sd

columns in x whose components share one value, a part of the product p, stored in the variable

sp, is moved outside the innermost loop from Listing 3.5 to line 5 in Listing 3.6. This results

in fewer floating point operations needing to be executed.

In order to obtain the O(m · (d − sd)) complexity seen in Listing 3.5 for the specialized

algorithm, part of the idx3 computation must also be moved outside the innermost loop from

Listing 3.5. For this to happen, the array psum is introduced. It is used to store the prefix

sums of the array l which identifies a block. Using the prefix sums, calculating idx3 becomes

a standard reduction. Moreover, the computation of sidx3 corresponding to the sd shared

dimensions is moved outside the innermost loop, thus reducing the number of iterations in that
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Listing 3.6 Special interpolation core for the sha pattern.
Input: m, d, x[m][d], l[d], b[2l[1]]...[2l[d]], sd, sel, isel. Input / output: r[m].

1: psum[d] = 0

2: psum[d - 1] = l[d - 1]

3: for t = d - 2 downto 0 do
4: psum[t] = psum[t + 1] + l[t]

5: sp = 1

6: sidx3 = 0

7: for t = 0 to sd - 1 do
8: sidx3 = sidx3 + floor(2ˆl[sel[t]] * x[0][sel[t]]) * 2ˆpsum[sel[t]]

9: sp = sp * basis1d(l[set[t]], x[0][sel[t]])

10: for j = 0 to m - 1 do
11: p = sp

12: idx3 = sidx3

13: for t = 0 to d - sd - 1 do
14: idx3 = idx3 + floor(2ˆl[isel[t]] * x[j][isel[t]]) * 2ˆpsum[isel[t] + 1]

15: p = p * basis1d(l[isel[t]], x[j][isel[t]])

16: r[j] = r[j] + sg1d[idx12 + idx3] * p

loop to d− sd and the complexity to O(m · (d− sd)).

The car Pattern

Let X be a given set of d-dimensional interpolation points. If X = C1×C2× · · ·×Cd, then the

interpolation points correspond to the car pattern. As a simplification, assume that X does not

contain duplicates. In order to detect this pattern, each column of the matrix x is traversed

and the unique values per column are counted. This is done using a tree data structure in

O(log(m!)) time per column. Subsequently, the resulting d counters, one for each column, are

multiplied. If the product equals m, i.e. the number of rows of x, then x is the result of a

Cartesian product. The complexity of car ’s detection is O(d · log(m!)). The same observation

from sha applies also here, meaning that the detection may seem expensive but is amortized by

the large number of blocks into which the sparse grid is decomposed.

Listing 3.7 represents the specialized interpolation algorithm addressing the car pattern.

This algorithm is a non-recursive Cartesian product generator with some additions described

next. Here, at data structure level, the original matrix x is replaced with a more compact xc

vector containing d vectors of different sizes. Each vector i of xc contains the unique values of

column i of x. Assuming that the vectors in xc have the same size s, then the memory consumed

by the interpolation points reduces from d · sd to only d · s floating point numbers. Regarding

complexity, Listing 3.7 which is based on the traversal of xc, executes in O(m) time.
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Listing 3.7 Special interpolation core for the car pattern.
Input: d, xc[d][maxs], l[d], b[2l[1]]...[2l[d]], size[d]. Input / ouput: r[m].

1: j = 0

2: t = 0

3: stack[0] = 0

4: p[0] = 1

5: idx3[0] = 0

6: while t >= 0 do
7: if t == d then
8: r[j] = r[j] + sg1d[idx12 + idx3[t - 1]] * p[t - 1]

9: j = j + 1

10: t = t - 1

11: else if stack[t] <= size[t] then
12: p[t] = p[t - 1] * basis1d(l[t], xc[t][stack[t]])

13: idx3[t] = idx3[t - 1] * 2ˆl[t] + floor(2ˆl[t] * xc[t][stack[t]])

14: t = t + 1

15: stack[t] = 0

16: else
17: t = t - 1

Listing 3.7 assumes a more general scenario in which the vectors of xc may contain each a

different number of values. The sizes of the vectors are stored in the array size. In Listing 3.7,

xc is represented through a d × maxs matrix, where maxs is the maximum of all the integer

values stored in the size array. Listing 3.7 uses 3 stacks: st, p, and idx3. st and its respective

index t generate the interpolation points using a Cartesian product. The meanings of p and

idx3 are the same as before (Listing 3.5) although here they are not scalars. In fact, using them

as arrays is the algorithm’s element that makes it possible to reuse the results of floating point

and integer operations, thus reducing considerably the complexity.

By applying a permutation to the dimensions, the number of operations in Listing 3.7 can

be further reduced. Such a permutation makes sense when the vectors in xc have different

sizes. The central idea is to sort ascendingly the vectors of xc according to their sizes and to

permute the dimensions according to the order. The advantage of the permutation is explained

in Fig. 3.8. Generating the Cartesian product is similar to traversing a tree in a depth-first

manner. The i-th level in the tree corresponds to the i-th vector in xc. The orientation of the

edges shows how values are traversed in xc. The number of edges directly correlates with the

number of operations executed. Fig. 3.8a and Fig. 3.8b handle the same computational work

but first without permutation and then with the permutation of xc. In Fig. 3.8a, the vectors

in xc have the lengths 4, 2, and 1. After permutation, they become 1, 2, 4. The number of

operations (edges) reduces from 31 to 13.
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(a) Operations without permutation. (b) Operations with permutation.

Figure 3.8: The positive effect of permutation on computing the Cartesian product.

3.8.2 Sparse Grids of Vectors

Another special scenario addressed by fastsg refers to sparse grids that contain vectors instead of

scalar values as before. Such a grid is created through initVec from Table 3.1. In computational

steering, this results from the separation between spatial (x, y, and z) and non-spatial simulation

parameters. There, the motivation comes from complex simulation geometries which cannot be

properly discretized using sparse grids. In such cases, the simulation data corresponding to the

same combination of non-spatial parameters is linearized and stored in a vector. Consequently,

the sparse grid discretization is only used to handle the non-spatial dimensions.

All the algorithms presented in this chapter also apply to sparse grids of vectors with a

slight modification: Scalar values are replaced with vector values. In this case, the linear

representation of the sparse grid is an array of vectors. The gp2idx bijection points to a vector.

The semantics of the vectors stored in the array, is application dependent. However, they are

treated by fastsg ’s functions as simple vector operands without a special meaning.

In computational steering scenarios, the number of points in the sparse grid tends to be

dominated by the size of the vectors stored at the points. Intuitively, this results from the fact

that obtaining simulation results for a large number of combinations of non-spatial parameters

can be prohibitively expensive. In this particular case which is rather common in practice, the

sparse grid algorithms become traditional linear algebra operations involving the multiplication

and addition of matrices and vectors. In the case of hierarchization, it becomes a sequence of

operations each involving: scaling and adding up two vectors, and subtracting their sum from a

third vector. Since some vectors are reused across operations, this means that the locality can

be improved. On the other hand, interpolation is more complex: Interpolating at one point is

equivalent to sparse vector - matrix multiplication, referred to as spvm and shown in Listing 3.8.

In Listing 3.8, ix is an array of integers used to select the grid points that contribute

to the interpolation. x contains the results from evaluating the basis functions at the given
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Listing 3.8 Sparse vector - matrix multiplication.
Input: m, p, ix[m], x[m], a[][p]. Output: y[p]

1: for j = 0 to p - 1 do
2: y[j] = 0

3: for i = 0 to m - 1 do
4: for j = 0 to p - 1 do
5: y[j] = y[j] + x[i] * a[ix[i]][j]

interpolation point. a is here the sparse grid represented as an array of vectors (or matrix) that

contain hierarchical coefficients. y is the result of the interpolation. One can notice the same

behavior of interpolation as in the scalar case: (1) only a subset of the grid points are actually

used in interpolation selected through the sparse vector ix, (2) the hierarchical coefficients from

a scale the results of basis function evaluations stored in x, and (3) the intermediary results

are reduced (summed up) in y. Emphasis is placed here on the fact that in this computational

steering scenario, the execution time is dominated by operations involving vectors and matrices.

3.9 Representative Computational Kernels

Although this chapter presents a multitude of sparse grid algorithms, three of them are sufficient

to capture the main characteristics of sparse grids for computational steering: sparse grid

hierarchization (sghierarch), sparse grid interpolation (sginterp), and sparse vector - matrix

multiplication (spvm). These are the algorithms that are discussed in the next chapters in the

context of multi-core CPUs and GPUs. They offer a mix of computational behaviors: sghierarch

is integer bound, sginterp is computationally bound, and spvm is memory bound.

The input specialized algorithms for interpolation change only slightly the general behavior

of interpolation. Therefore, optimizations developed for the most general type of interpolation

apply also to the input specialized versions. With regard to hierarchization for sparse grids

of vectors, it is memory bound and has a computational behavior similar to spvm. Therefore,

most of the optimizations proposed to spvm are also applicable to it.

3.10 Summary

This chapter describes the computational steering application whose set of routines is used as

a benchmark for evaluating the performance of heterogeneous computing. The computational

steering approach is based on storing compressed high-dimensional simulation data, e.g. 4 -

10 dimensions, in a database and decompressing it later for visualization. Lossy compression
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functionality is achieved using a numerical technique called the sparse grid technique which is

typically employed when dealing with high-dimensional problems.

A data structure is proposed for dimensionally truncated sparse grids, i.e. anisotropic sparse

grids. It minimizes memory consumption through a bijection gp2idx which maps grid points to

a set of consecutive integers. This helps to cope with the limited amount of memory on GPUs.

Using the new data structure, larger problems can be solved on GPUs.

Non-recursive algorithms are built on top of the bijective mapping gp2idx. These algorithms

are integrated in a library called fastsg. The features of fastsg include input specialized routines

for interpolation and the ability to store dense vectors of values in a sparse grid, a functionality

of high importance in computational steering scenarios that deal with complex geometries for

which the sparse grid discretization is impractical. In this context, sparse grid interpolation

reduces to a dense linear algebra operation, more precisely sparse vector - matrix multiplication.

A set of 3 computational kernels is extracted from fastsg for benchmarking GPU based

heterogeneous systems. They have different performance behaviors: sparse grid hierarchization

(sghierarch) is integer bound, sparse grid interpolation (sginterp) is computationally bound,

and sparse vector - matrix multiplication (spvm) is memory bound.



3.10. SUMMARY 52



Chapter 4

Sparse Grids on Heterogeneous

Systems

The most popular heterogeneous systems nowadays are the ones containing multi-core CPUs

and GPUs. This chapter describes optimizations for CPUs and GPUs that accelerate the

three computational kernels described in Chapter 3: sparse grid hierarchization (sghierarch),

sparse grid interpolation (sginterp), and sparse vector - matrix multiplication (spvm). On

CPUs, emphasis is placed on optimizations that improve locality, reduce the number of integer

operations, and efficiently use vector units. On the GPU side, a set of GPU specific optimizations

is applied to the codes, focusing on improving the access to data stored in different memories on

the GPU and ensuring an efficient utilization of the SIMD lanes at any time during execution.

By optimizing both the CPU and the GPU versions of the kernels, a comparison is provided

pointing to the best processor for each one of the three kernels.

4.1 Introduction

The most common accelerators these days, namely GPUs, are very different from general-

purpose CPUs. Whereas CPUs incorporate large caches and complex logic for out-of-order

execution, branch prediction, and speculation, in GPUs, most of the transistor budget is al-

located to floating point units. GPUs have in-order cores that hide pipeline stalls through

interleaved multithreading, e.g. allowing up to 1536 threads to reside and run concurrently on

one core. CPUs are generally regarded as latency oriented processors [1] because of the com-

plex techniques that they implement for extracting Instruction Level Parallelism (ILP) from a

sequential stream of instructions. At the other end, GPUs are oriented on throughput [1] as

they contain a large number of cores (e.g. 16) with wide SIMD units (e.g. 32 single precision

53
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lanes), making them ideal architectures for vectorizable codes.

Within a GPU core, a control unit creates, manages, and synchronously executes threads in

groups of 32 referred to as warps. Every instruction is synchronously broadcast to all the threads

in a warp. Nvidia refers to this execution model as Single Instruction Multiple Threads (SIMT).

If the threads in the same warp execute different instructions because of branching, then the

execution is serialized, meaning that two or more different instructions are executed sequentially.

This undesired behavior is called warp diverge and can severely reduce the performance of a

GPU program, up to a factor of 32.

The GPU’s global memory, e.g. 6 GB, is much smaller than the memory of the CPU.

However, its bandwidth is generally one order of magnitude higher. Transferring data between

memories is done over PCIe, a bus that is in some cases a serious performance bottleneck.

Flexibility and performance is provided by GPUs through a wide variety of memories: constant

cache, texture cache, shared memory, and a coherent two-level cache hierarchy introduced in

the Fermi generation of GPUs [11]. The properties of these memories vary in terms of latency,

bandwidth, and usage. The constant cache is a read-only cache whose L1 has the lowest latency

among the memories on the GPU [53]. The texture cache is also read-only and is used for

optimizing the bandwidth rather than latency, i.e. its latency is comparable to the one of the

global memory [53]. The shared memory is a low latency, read-write memory with 32 banks

which can be accessed in parallel. It is private per core and is controlled explicitly.

In the absence of out-of-order execution, GPUs employ multithreading as the means to

cope with instruction pipeline stalls, especially the latency caused by loads and stores to global

memory. Multithreading is supported through a rather large register file per core, 32K registers,

allowing for a large number of threads to run concurrently on every GPU core. An important

aspect is that the context switch between the threads running on the same core has a low cost,

meaning that the interleaved execution can be considered free from overheads.

Programming GPUs is inherently different from programming CPUs. In the case of multi-

core CPUs, OpenMP is the standard thread based programming model. Nvidia GPUs are

typically programmed using CUDA which is also based on threads, but there are some major

differences compared to OpenMP. For synchronization, CUDA only provides barriers that can

be used within a group of threads executing on the same GPU core, and atomic operations.

Furthermore, a CUDA application has a CPU and a GPU part. The CPU part is responsible

for: allocating memory on the GPU, transferring data to and from the GPU, and launching

GPU programs. Threads are grouped in blocks which typically contain 4 or 8 warps [14]. This

grouping is important as only the threads from the same block can synchronize via barriers

( syncthreads) and can share data stored in shared memory. A GPU program is in fact launched
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as a 3-dimensional (3d) grid of thread blocks. In order to identify a block within a grid, a 3d

block identifier (blockIdx ) is used. Similarly, a 3d thread identifier (threadIdx ) is used to identify

a thread within a block. Combining the block and the thread identifiers enables one to globally

identify a thread and to assign work to it.

Optimizations on CPUs typically focus on cache and vector units, SSE or AVX. In order

to improve cache reuse, loop interchange and loop tiling are standard optimizations applied

to loop nests. Efficient vectorization requires that the layout of the data in memory has to be

modified, e.g. it has to be aligned to a 16 / 32 byte boundary for SSE / AVX. More importantly,

it is often necessary that data structures are transformed so that vector operands are stored in

contiguous regions from memory. For many applications, this is usually achieved by converting

an array of structures to a structure of arrays.

On the GPU side, a first optimization is to reduce the number of branches in order to

minimize warp divergence. A second optimization is the efficient use of the memory hierarchy

including the best mapping between data structures and memories. Coalescing accesses to

global memory is another important objective. At shared memory level, data access patterns

must be tuned so that they allow for a uniform distribution of read and write requests across

all the 32 banks of the shared memory, or to one bank when all the threads in a warp access the

same address. The third optimization target is multithreading. Choosing the right thread block

size must be done so that it results in the maximization of the number of concurrent threads

that execute at any time on the GPU.

All these optimizations are applied to the three computational kernels derived from the

fastsg library. At the end of this chapter, performance results are provided showing the benefits

of GPUs over CPUs in the context of the chosen kernels.

4.2 Related work

For a detailed description of standard optimizations for GPU codes, the reader is referred to

the CUDA manual [14]. This chapter also explores the applicability to sparse grid algorithms

of other tuning techniques validated for dense linear algebra and presented in [17, 54, 55],

e.g. trading concurrency for improved register reuse (locality).

The vectorization and parallelization of sparse grid methods have typically been realized

using the combination technique [56, 57]. An implementation for GPUs is presented in [58]. In

the combination technique, the sparse grid approximation is obtained from a special superposi-

tion of smaller anisotropic regular grids. Compared to the bijection based algorithms covered in
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Chapter 3, the combination technique has the disadvantage that grid points and their respec-

tive values have to be replicated across multiple regular grids [43], thus resulting in suboptimal

memory consumption.

Optimized GPU implementations of sparse grid hierarchization and interpolation are de-

scribed in [43] for regular sparse grids and in [59] for dimensionally truncated sparse grids. In

[60], the authors present optimizations for the interpolation of adaptive sparse grids including:

the conversion of a recursive interpolation algorithm to a non-recursive form, vectorization on

CPUs, and porting to GPUs.

4.3 Optimizations for Multi-core CPUs

This section describes the main optimizations applied to sghierarch, sginterp, and spvm. The

optimizations are formulated in terms of loop transformations [61], e.g. loop invariant code

motion, loop interchange, loop tiling, and loop vectorization.

4.3.1 Sparse Grid Hierarchization on CPUs

The algorithm for sghierarch is shown in Listing 4.1. This algorithm is a slightly modified

version of the algorithm from Listing 3.4 although the semantics and the complexity is the

same as before. More precisely, the j loop iterating over the sparse grid points in Listing 3.4 is

replaced in Listing 4.1 with a sequence of 3 loops:

• The g loop iterates over groups of sparse grid points.

• The b loop iterates over blocks in the current group g.

• The k loop iterates over the sparse grid points in the current block b.

One can verify that the semantics is preserved by looking at the decomposition of a sparse grid

into groups and blocks shown in Fig. 3.6. The algorithm maps exactly to the traversal of that

decomposed sparse grid in a bottom-up manner in order to avoid destroying data dependencies.

Although this transformation may seem unnecessary, the new equivalent form of non-recursive

multi-dimensional hierarchization contains the loop nest, given by the sequence of loops t, g, b,

k, that can be transformed in order to improve the performance.

The main characteristic of this algorithms is that it is integer bound because of the expensive

invocations to the gp2idx bijection and to its inverse idx2gp in the innermost loop. Both are

based entirely on integer calculations. Using complexities to explain the nature of the algorithm,

gp2idx has O(d + n) complexity whereas the floating point operations concentrated in line 11
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Listing 4.1 Non-recursive multi-dimensional sparse grid hierarchization using the bijection.
Input: d, numGridPoints, sg1d[numGridPoints]. Output: sg1d[numGridPoints].

1: for t = 0 to d - 1 do
2: j = size()

3: for g = n - 1 downto 0 do
4: for b = a(d, g) - 1 downto 0 do
5: for k = 2ˆg - 1 downto 0 do
6: (l, i) = idx2gp(j)

7: (ll, li) = leftParent(l, i, t)

8: (rl, ri) = rightParent(l, i, t)

9: lv = sg1d[gp2idx(ll, li)]

10: rv = sg1d[gp2idx(rl, ri)]

11: sg1d[j] = sg1d[j] - (lv + rv) / 2

12: j = j - 1

of the algorithm execute in O(1) time. Therefore, a first optimization direction focuses on

decreasing the number of integer operations. As shown next, this is achieved mainly by moving

the invariant code from the innermost loop, i.e. loop k. More precisely, the optimizations target

the following points: (1) moving the computation of l shared by all the grid points within

the same block outside the innermost loop, (2) reducing the access time to the hierarchical

parents (dependencies) that reside in maximum n− 1 blocks whose indices in sg1d (the linear

representation of the sparse grid) can be determined before entering loop k, and (3) reducing

the theoretical time for calculating the index vectors i, li, and ri from O(d) (originally) to O(1).

A first optimization, called hopt1, uses the fact that all the points in a sparse grid block

have the same l. Thus, l can be computed once for an entire block which contains 2g points

(g is the L1-norm of l). In terms of code modifications, hopt1 introduces a call to invPos(g, b)

outside loop k. By doing so, line 6 has to execute only the part of idx2gp that computes the

index vector i in O(d) time, instead of invoking the whole idx2gp in O(d+ n) time.

A second optimization, hopt2, reduces the number of integer operations performed for ac-

cessing the values of the hierarchical parents. Consider the left parent in dimension t represented

by the pair of vectors (ll, li) and returned in line 7 by invoking leftParent(l, i, t). The relation

between ll and l in the innermost loop satisfies the equation:

llt < lt and llu = lu, ∀u ∈ {0, . . . , d− 1} \ t. (4.1)

Based on this equation, one can see that there can be only lt−1 blocks where the left hierarchical

parents can reside for any point in the block identified using l. The same reasoning can also

be applied to the right parent, leading to the same set of blocks where dependencies reside.



4.3. OPTIMIZATIONS FOR MULTI-CORE CPUS 58

Consequently, it makes sense to move outside the innermost loop the computation of the indices

in sg1d corresponding to the lt − 1 blocks that contain the hierarchical parents. This is in fact

hopt2. Its effect is a reduction of the number of integer operations executed in lines 9 and 10

by invoking the gp2idx bijection. After applying hopt2, what remains from gp2idx in line 9 is

the part of it that transforms the vector li to a scalar index used to access the value of the

hierarchical parent in the 1-dimensional (1d) representation of the block that contains it. This

means that the complexity is reduced from O(d+ n) to O(d) in lines 9 and 10.

For hopt2, an array parIdx is used to memorize the indices in sg1d for a number of lt blocks

that contain the hierarchical parents for the current block identified through l. In order to

simplify the final optimized algorithm, the lt-th component of parIdx is set to the index in sg1d

of the current block l. The components of parIdx are determined outside the k loop based on:

parIdxu =
|l|1−lt+u−1∑

v=0
a(d, v) · 2v + pos(pl) · 2|l|1−lt+u, ∀u ∈ {0, . . . , lt}

plt = u and plv = lv, ∀v ∈ {0, . . . , d− 1} \ {t},
(4.2)

where a is from Eq. 3.15, pos is from Eq. 3.16, and pl is the level vector of a generic hierarchical

parent. As an example, look at line 9. Using hopt2, the position in sg1d of the block containing

the left hierarchical parent in dimension t is obtained by indexing parIdx using llt. By summing

up the position of the block and the index within the block resulting from the linearization of

the vector li, the index of the left parent in sg1d is found. The same procedure is then followed

in line 10 for calculating the index in sg1d for the right hierarchical parent.

A third optimization, hopt3, exploits the fact that a generic hierarchical parent represented

using (pl, pi) shares d−1 components of its child (l, i). More precisely, only the t-th component of

pl and pi is different compared to l and i respectively. By applying hopt1 and hopt2, most of the

integer computation involving l, ll, and rl move outside the innermost loop. hopt3 complements

them by targeting the indexing done for accessing the value of a hierarchical parent within the

block that contains it. The objective is to find an O(1) method for calculating the index of the

parent in its block based on the index of the child relative to the child’s block. The index of

the child as shown in Listing 4.1 is k. The relation between k and the vectors i and l is:

k =

d−2∑
u=0

iu · 2su + id−1 (4.3)

where su :=
∑d−1

v=u+1 lv,∀u ∈ {0, . . . , d − 2}. Let lk be the index of the left parent relative to

its block. Taking into account that only the t-th component is different between l and ll, and
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between i and li, the equation used for calculating lk based on k is:

lk = (k/2lt+st) · 2llt+st + lit · 2st + k%2st . (4.4)

Using the notation rk to denote the index of the right hierarchical parent (rl, ri) relative to

its block, its equation is obtained from the equation for lk by replacing all the occurences of llt

and lit with rlt and rit respectively. Consequently, hopt3 in combination with hopt2 and hopt1

reduce the complexity of gp2idx and idx2gp in the innermost loop of Listing 4.1 to O(1).

Finally, the fourth sequential optimization, hopt4, performs a loop interchange by trans-

forming the sequence of loops from (t, g, b, k) to (t, b, g, k). The benefit of such a permutation

is two-fold: First, the reuse of the parIdx array created as part of hopt2 increases, and second,

locality at cache level is also improved. Without loop interchange, parIdx is not used at its full

potential, meaning that it is created for a block in the group g, it is used by that block, and im-

mediately discarded when moving to the next block in group g. The permutation optimization

allows for parIdx to be used by all the hierarchical parents of every child grid point in group

n− 1. Cache efficiency can be explained following the same reasoning as for parIdx.

The optimized serial version of multi-dimensional hierarchization is shown in Listing 4.2.

The mapping between optimizations and line numbers is the following:

• Line 3 results from the loop invariant code motion done in hopt1.

• hopt2 introduces lines 4 - 8 where parIdx is computed. parIdx is then used in lines 21 and

28 to reduce the number of integer operations executed when accessing dependencies.

• Lines 9 - 11, 14, 18 - 21, and 25 - 28 are created as part of hopt3. The access to dependencies

is further reduced, resulting at this point in O(1) complexity.

• hopt4 swaps the loops b and g in Listing 4.1, leading to the sequence (t, b, g, k).

The unoptimized hierarchization from Listing 3.4 does not provide possibilities for paral-

lelization because of data dependencies which are not explicitly shown in that version. One has

to avoid updating the hierarchical parents before their children. The situation changes radically

in Listing 4.1 where parallelization is realized by distributing the interations of the b loop, e.g.

across worker threads in OpenMP. A barrier is necessary after the execution of each iteration in

the g loop in order to eliminate write-after-read hazards. Finally, the optimized hierarchization

shown in Listing 4.2 is also parallelized based on decomposing the work in the b loop. This

time, a barrier is used for synchronization after the execution of each iteration in the t loop

resulting in less synchronization compared to the parallel unoptimized hierarchization based on

Listing 4.1.
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Listing 4.2 Non-recursive multi-dimensional sparse grid hierarchization using the bijection.
Input: d, numGridPoints, sg1d[numGridPoints]. Output: sg1d[numGridPoints].

1: for t = 0 to d - 1 do
2: for b = a(d, n - 1) - 1 downto 0 do
3: l = invPos(n - 1, b)

4: lt = l[t]

5: for g = lt downto 0 do
6: l[t] = g

7: parIdx[g] = groupIdx[n - 1 - lt + g] + pos(l) * 2ˆ(n - 1 - lt + g)

8: l[t] = lt

9: postfixSum = 0

10: for t0 = t + 1 to d - 1 do
11: postfixSum = postfixSum + l[t0]

12: for g = l[t] downto 0 do
13: for k = 2ˆ(n - 1 - l[t] + g) - 1 downto 0 do
14: it = (k / 2ˆpostfixSum) % 2ˆg

15: (llt, lit) = leftParent1d(g, it)

16: (rlt, rit) = rightParent1d(g, it)

17: if llt != 0 then
18: lk = (k / 2ˆ(g + postfixSum)) * 2ˆ(llt + postfixSum) +

19: lit * 2ˆpostfixSum +

20: k % 2ˆpostfixSum

21: lv = sg1d[parIdx[llt] + lk]

22: else
23: lv = 0

24: if rlt != 0 then
25: rk = (k / 2ˆ(g + postfixSum)) * 2ˆ(rlt + postfixSum) +

26: rit * 2ˆpostfixSum +

27: k % 2ˆpostfixSum

28: rv = sg1d[parIdx[rlt] + rk]

29: else
30: rv = 0

31: sg1d[parIdx[g] + k] = sg1d[parIdx[g] + k] - (lv + rv) / 2
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Listing 4.3 Non-recursive multi-dimensional sparse grid interpolation using the bijection.
Input: d, n, a[d][n], sg1d[], m, x[m][d]. Output: r[m].

1: for j = 0 to m - 1 do
2: r[j] = 0

3: idx12 = 0

4: for g = 0 to n - 1 do
5: for b = 0 to a[d][g] - 1 do
6: l = invPos(g, b)

7 for j = 0 to m - 1 do
8: idx3 = 0

9: p = 1

10: for t = 0 to d - 1 do
11: idx3 = idx3 * 2ˆl[t] + floor(2ˆl[t] * x[j][t])

12: p = p * basis1d(l[t], x[j][t])

13: r[j] = r[j] + sg1d[idx12 + idx3] * p

14: idx12 = idx12 + 2ˆg

4.3.2 Sparse Grid Interpolation on CPUs

The reference algorithm for the sginterp kernel is shown in Listing 3.5. sginterp is in general

computationally bound. Its computational intensity is strongly influenced by the input param-

eter d which controls the number of iterations in the innermost loop t: The larger d, the more

computationally bound the interpolation algorithm.

A first transformation, referred to as iopt1 and applied to the reference interpolation algo-

rithm is loop interchange. The resulting algorithm is shown in Listing 4.3. Loop interchange

modifies the sequence of loops in the nest from (j, g, b, t) to (g, b, j, t). There are two main

advantages of this transformation. The first one is related to the number of the integer opera-

tions executed as part of the invPos invocation. Without loop permutation, invPos is invoked

m times for every block. After applying the permutation, invPos is executed only once per

block and its result, l, is reused m times. The second benefit of the permutation is about cache

reuse. For a large number of interpolation points, the x matrix containing their coordinates

may dominate in size a block. This means that there is a high probability that the value from

a block needed by an interpolation point in line 13 is already loaded in the cache because of a

previous interpolation point whose corresponding value from the block maps to the same cache

line. This is not possible using the first algorithm from Listing 3.5 for which all the blocks are

accessed for one interpolation point before moving to the next interpolation point. Therefore,

the data loaded from the first blocks is evicted from the cache and cannot be reused for the

next interpolation point.

Another optimization, iopt2, applied to Listing 4.3 is the vectorization of the j loop. The
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objective is for the SIMD unit of the CPU to operate simultaneously on 4 (SSE) or 8 (AVX)

interpolations points. The theoretical speedup resulting from this optimization is 4 / 8 for

SSE / AVX. Compilers generally fail to vectorize the j loop mainly because the access to the

interpolation points is not unit-stride and the loop is not the innermost loop in the nest [62].

The unit-stride access requirement is solved by transforming the x matrix (stride-d access

when vectorizing) to a more vector friendly x̃ based on the equation:

x[j][t] = x̃[(j/4) · d+ t][j%4], (4.5)

where the number 4 assumes SSE vectorization of single precision floating point operations. For

AVX vectorization, 4 is replaced with 8. Using x̃, the access to the interpolation points in the

innermost loop t becomes unit-stride. For more efficiency, x̃ is aligned to a 128-bit / 256-bit

address boundary for SSE / AVX. Besides the conversion of x to x̃, vectorization also requires

that the scalar variables p and idx3 become arrays of size 4 / 8 for SSE / AVX.

The second requirement for vectorization (the vectorized loop must be innermost) can be

addressed by manually applying the following sequence of loop transformations:

1. strip mining the j loop resulting in the loops j0 and j1

2. applying loop distribution to loop j1 resulting in loop j10 iterating over lines 8 - 9 from

Listing 4.3, loop j11 for lines 10 - 12, and loop j12 for line 13

3. permuting the j11 and k loops so that loop j11 becomes innermost.

Vectorization can then be automatically applied to the innermost loops, especially j10 and j11.

A stronger method to enforce vectorization independent from the compiler is based on intrinsics

for SSE [63] and AVX [64]. However, the disadvantage is that the optimized code is considerably

more complex and must be modified in order to address slightly different usage scenarios such

as: using double precision instead of single precision floating point numbers and using 64-bit

integers instead of 32-bit integers.

There are two sources of parallelism in Listing 4.3 resulting from distributing the inter-

polation points across worker threads or distributing the blocks into which the sparse grid is

decomposed. In the first case, a subset of the interpolations points is assigned to each thread.

The threads then interpolate independently, making this parallelization approach embarrass-

ingly parallel. The disadvantage is exposed for a small number of interpolation points, e.g.

1, adding more cores does not help to accelerate the execution. This undesired situation is

addressed by distributing the sparse grid blocks among worker threads, meaning that each

thread computes the contribution of its assigned blocks to all the interpolation results (at all
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Listing 4.4 Sparse vector - matrix multiplication.
Input: m, p, ix[m], x[m], a[][p]. Output: y[p]

1: for j = 0 to p - 1 do
2: y[j] = 0

3: for j0 = 0 to p - 1, step bs do
4: for i = 0 to m - 1 do
5: for j1 = j0 to min(j0 + bs - 1, p - 1) do
6: y[j1] = y[j1] + x[i] * a[ix[i]][j1]

the points). Reduction is necessary at the end of the computation in order to sum up the inter-

mediary interpolation results from all the threads. Since in general, the number of interpolation

points is reasonably large, the first approach is preferred because it does not require reduction.

4.3.3 Sparse Vector - Matrix Multiplication on CPUs

The spvm kernel from Listing 3.8 is memory bound because of its low computational intensity.

More precisely, the algorithm performs one multiplication and one addition per two memory

accesses, resulting in a computational intensity of 1 flop per memory reference.

Listing 4.4 shows the optimized version spvm including a loop tiling transformation, sopt1,

applied to the j loop of the initial algorithm. In the reference spvm, the output vector y cannot

be cached and reused across the rows of the a matrix assuming that the y vector is considerably

larger than the cache. On the other hand, the central concept in Listing 4.4 is to tile a and y

so that each tile of y fits in the cache and stays there during the traversal of all the rows of a.

The benefit is improved locality since the data transferred from memory is decreased by up to

a factor of 2, resulting in a computational intensity of 2 flop per memory reference. However,

this does not necessarily lead to 2x more performance because of the indirect access to a via

the vector of integers ix. The ix vector contains the indices of the rows of a that are multiplied

with values from x and added to the output vector y. Although tiling improves the reuse of y, it

also amplifies the negative effect on performance of the unpredictable jumps between rows of a

using ix, i.e. the more tiles are used, the more jumps are made. In order to solve this trade-off,

an empirical method is employed in which the performance for different tile sizes is measured

and the tile size corresponding to the best performance is returned.

A second optimization, sopt2, for spvm is the vectorization of the j1 loop. In order to

improve the performance resulting from vectorization, a and y are both aligned to 16 / 32 byte

address boundaries for SSE / AVX. Moreover, padding is applied to all the rows of a in order

to ensure that each row satisfies the alignment requirement for efficient vectorization.

Similarly to sginterp, there are two sources of parallelism in spvm:
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1. The columns of y and the corresponding columns of a are distributed among worker

threads. This approach is embarrassingly parallel.

2. The rows of a are distributed across threads and each thread computes its own copy of y.

A reduction is necessary at the end in order to sum up the individual copies of y.

Assuming that the size of y, i.e. p, is large enough to provide work for all the processor cores

in a system, the first approach is the best as it does not require reduction. However, if the

parallelism is not enough, then the second decomposition scheme can be used to create more

parallel work at the cost of more synchronization overhead.

Since spvm is memory bound, its performance depends strongly on the memory bandwidth

of a system. Therefore, it makes sense to discuss spvm in the context of Non-Uniform Memory

Access (NUMA) systems. A NUMA system is a shared memory system composed of multiple

interconnected NUMA nodes, where a node contain at least one CPU and memory. A memory

access is said to be local if both the CPU core initiating the access and the memory serving

the request belong to the same NUMA node. A remote memory access refers to a data access

initiated from a NUMA node to the memory of another node. Compared to a local access, the

cost of a remote access is much higher. The main advantage of a NUMA system is that the

theoretical memory bandwidth scales linearly with the number of NUMA nodes. However, this

property is generally not directly transferred to applications unless they include optimizations

that minimize the number of remote memory accesses.

Assuming a NUMA system with nt cores, an implementation of spvm optimized with respect

to NUMA, is based on slicing the a matrix vertically in nt equal submatrices. Each submatrix

is assigned to a worker thread. The thread then invokes the serial version of spvm using its

submatrix. In order to ensure that a thread and its paired submatrix are placed on the same

NUMA node, the following steps are executed:

1. Threads are pinned to CPU cores so that there is one thread per core.

2. Each thread allocates memory space for its submatrix and copies its corresponding slice

from a to it. The first touch policy ensures that the submatrix is placed in the local

memory of the NUMA node that contains the CPU core to which the thread is pinned.

3. Each thread computes a slice from y by invoking spvm on its local submatrix.

The performance of the NUMA aware spvm is affected by the initial overhead resulting from

copying slices from a to the local memories of each NUMA node. However, in computational

steering, the distribution of a across NUMA nodes is reused for multiple calls to spvm using
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different vectors x and ix. This means that the costs associated with changing the data layout

are amortized, making the optimization worthwhile.

4.4 Optimizations for GPUs

This section describes the porting of sghierarch, sginterp, and spvm to GPUs. Aspects such as

GPU specific parallelization and optimizations are covered in detail.

4.4.1 Sparse Grid Hierarchization on GPUs

The GPU version of sghierarch is based on Listing 4.2. Similarly to the parallelization for

multi-core CPUs, the GPU parallelization is based on distributing the iterations of the b loop

among thread blocks. The first thread from each thread block is designated as the master

thread for its thread block. The master executes lines 3 - 8 where the arrays l and parIdx are

computed. These arrays are shared by an entire thread block. The concurrent access to them

is handled using a barrier inserted in the code using the syncthreads function. The barrier

ensures that the threads do not access sparse grid values until l and parIdx are computed by

the master. A second barrier is necessary after each iteration of the g loop in order to eliminate

write-after-read hazards in which the hierarchical parents (dependencies) are updated before

their children. Each thread identified by threadIdx.x within a thread block of size blockDim.x

updates only the values whose index relative to the sparse grid block containing them, idx3,

satisfies the equation:

threadIdx.x = idx3%blockDim.x. (4.6)

By doing so, the read and write accesses to the sg1d array stored in global memory are coalesced.

An important aspect of the GPU implementation of sghierarch is the mapping between data

structures and the memories of the GPU. As already mentioned, the linear representation of

the sparse grid, sg1d, is stored in global memory. At the foundation of invPos, there is a matrix

a of size d · n from Eq. 3.15. Since a is read-only and rather small, e.g. 100 integer values, it is

placed in constant memory whose L1 cache has the lowest latency among all the memories on

the GPU, except registers [53]. Taking into account that the arrays l and parIdx are accessed

by all the threads in a thread block, they are placed in shared memory, a fast on-chip memory

through which threads in the same thread block can communicate.

By storing only l and parIdx in shared memory for each thread block, the shared memory

consumption is rather low. Therefore, it makes sense to configure the shared memory so that

only 16 KB are used for the explicitly controlled memory where l and parIdx are stored, and

48 KB are used for the L1 cache. By increasing the size of the L1 cache, the number of conflict
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cache misses is reduced and the reuse of values corresponding to hierarchical parents is improved,

thus resulting in a faster access to data dependencies.

4.4.2 Sparse Grid Interpolation on GPUs

The parallelization of sginterp on GPUs is based on distributing the set of interpolation points

among threads, i.e. each GPU thread interpolates the sparse grid at one point. Thus, the code

executed by every thread for its assigned interpolation point is based on Listing 4.3 in which m is

replaced with 1, meaning that the j loop disappears. Similarly to sghierarch for GPUs, the first

thread from every thread block is designated as the master thread responsible for computing

the l vector for the entire thread block by invoking invPos. Synchronization is necessary to

protect l since the concurrent access pattern for l corresponds to one writer multiple readers,

i.e. the master writes to l, then all the threads in the thread block use l in the computation

from lines 8 - 12. In order to address this concurrency related aspect, barriers are used so that

the master thread waits at a barrier until all the threads no longer need the current l, and the

threads wait at another barrier until the master updates l.

On GPUs, an important optimization direction is to use the different memories efficiently.

As discussed in the context of sghierarch, invPos is based on accessing a matrix a of size d · n.

Since this matrix is read-only, it is stored in constant memory, a fast cached memory. The l

vector shared by an entire thread block is placed in shared memory. Consider that the size of

a thread block is blockDim.x which represents also the number of interpolation points handled

by a thread block. There are two possibilities for storing the subset of interpolation points

allocated per thread block: in shared memory or in registers.

First, the subset of interpolation points per thread block is placed in shared memory. The

copy of the subset from global memory to shared memory is performed using coalesced load

accesses. This is achieved by involving all the threads from the thread block in the copy opera-

tion and by ensuring that each thread accesses global memory using a stride of size blockDim.x.

If a standard copy is done between global and shared memory (the same as memcpy), then

the d-dimensional points are stored in shared memory consecutively. Using such a data layout,

there is a high risk that the accesses to the subset of points from shared memory generate

bank conflicts. In order to understand this problem, one needs to remember that the shared

memory is divided into 32 banks and successive 32-bit words map to consecutive banks. For

optimal performance, the shared memory accesses from a warp have to be distributed evenly

among all the banks or have to refer to the same address from one bank. Whenever the size

of an interpolation point, or d, is even, bank conflicts occur. Intuitively, this problem can be

explained using an extreme example. For d = 32, the components at position t ∈ {0, . . . , d− 1}
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of all the interpolation points for a thread block are stored in the same bank. Consequently,

all the accesses to the points are serialized, thus severely reducing the performance. In fact,

slowdown factors of different sizes can be seen whenever d is even.

A solution to the bank conflict problem is to pad each interpolation point so that the

distance measured in banks between any two successive interpolation points is an odd number.

More precisely, this is done by allocating d+ 1 values in shared memory for every interpolation

point whenever d is even. Let wx be a 2d array with 32 rows and d columns representing the

interpolation points that are assigned to a warp and are stored in shared memory. Without loss

of generality, assume that the starting address of wx in shared memory corresponds to bank 0.

The index of the bank where wx[j][t] resides is then given by (j · d+ t)%32, where 32 represents

the number of shared memory banks. It is straightforward to prove that for any odd d, there

cannot be two numbers, u, v ∈ {0, . . . , 31} and u 6= v, so that (u · d)%32 = (v · d)%32. This

translates to the fact that an odd d eliminates the possibility that any two rows of wx start at

the same bank. Furthermore, since all the threads in a warp access the columns of wx in the

same order (the t loop from Listing 4.3), the distance d between values accessed by successive

threads is preserved. Thus, there are no bank conflicts generated by any of the accesses to wx.

The main disadvantage of padding is that it increases shared memory consumption. In fact,

the smaller an even d, the higher the shared memory requirements. For d = 2, approximatively

1.5 times more shared memory is used compared to the case without padding. On the other

hand, for d = 10, padding accounts for approximatively 9% of shared memory consumption. For

GPUs, the consumption of shared memory is inversely proportional to the number of concurrent

threads that can be executed on one GPU core. A low number of concurrent threads per core

limits the ability of multithreading to reduce the instruction pipeline latency, e.g. resulting

from loads and stores to global memory.

There is another solution for eliminating bank conflicts that does not suffer from the limi-

tations of padding, i.e. it does not increase shared memory consumption. Let bx be a 2d array

stored in shared memory. It contains the interpolation points for a thread block. Let gx be the

part from x paired with bx. gx is stored in global memory. The same data layout modification

required by SSE / AVX is also applicable here and is based on the equation:

gx[j][t] = bx[(j/32) · d+ t][j%32]. (4.7)

By using bx, the access to a component t of an interpolation point is served by the bank

identified by off + threadIdx.x%32, where off is the bank where bx starts in shared memory and

threadIdx.x is the identifier of a thread relative to its thread block. The result of threadIdx.x%32

is the identifier of a thread within its respective warp. Consequently, all the threads in a warp
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accessing the t-th component of their interpolation points are served by different banks.

The register file on each GPU core is rather large, i.e. it contains 32K 32-bit registers. It

is obviously the fastest memory of the GPU and because of its size, it can even store more

values than shared memory. A limitation of registers is that they cannot be used to share

data among threads as opposed to shared memory. However, since an interpolation point is

private per thread, it makes sense to consider a set of registers as a storage solution for an

interpolation point. A brute force method to achieve this is by replacing all the components of

an interpolation point with variables. The disadvantage is that one has to implement multiple

versions of sginterp for different values of d, i.e. the size of an interpolation point. A better

approach is to use an array to store the interpolation point per thread and to provide the

compiler with information necessary for handling the array using registers. Let xs be an array

of size d containing the interpolation point assigned to a thread. In order to enable the compiler

to store / use xs to / from registers, the following requirements need to be met:

1. The size of xs must be known at compile time. This is done by declaring the array using

a size represented by a constant positive integer.

2. All the loops where xs is indexed using the loop variable must be completely unrolled so

that subsequently, xs’s components are addressed using numerical constants. In CUDA,

complete unrolling is achieved by inserting the directive #pragma unroll before a loop.

Provided that these conditions are fulfilled, multiple optimized GPU versions of sginterp using

registers can be trivially generated by specializing for different values of d, e.g. for d from 1 to

10, using C++ templates for which d is a parameter.

4.4.3 Sparse Vector - Matrix Multiplication on GPUs

Porting spvm to GPUs is achieved with little effort by assigning to each thread the computation

of one value from the output vector y. Since the spvm kernel has low computational intensity,

an observation is necessary: In computational steering, the initial cost of transferring the matrix

a from Listing 4.4 is amortized by a large number of invocations of the spvm version for GPUs.

Therefore, a more important aspect is the transfer of the input vectors x and ix from the CPU

to the GPU, and the output vector y from the GPU to the CPU. In order to accelerate the data

copy, page pinned memory is used for allocating these vectors on the CPU side. In general,

data is transferred from / to the GPU using DMA in two steps. For instance, in the case of a

data copy from the CPU to the GPU, the data is first copied to a memory region where DMA

can be used, then the data is copied from that region to GPU’s memory. Using page pinned

memory, the first step is no longer necessary, thus resulting in better performance.
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4.5 Evaluation

This section presents the performance numbers resulting from the optimizations detailed in

this chapter. The goal is to indicate the most suitable processor, CPU or GPU, in a given

heterogeneous system for all the computational kernels, i.e. sghierarch, sginterp, and spvm.

4.5.1 Experimental Setup

The measurement data corresponds to a dual-socket system with one Quad-core Intel Nehalem

E5630 CPU per socket. Each CPU is clocked at 2.53 GHz and supports 8 hardware threads

via Hyperthreading. The CPU part is complemented by an Nvidia Quadro 6000 GPU which

operates at 1.15 GHz, has 16 cores with 32 SIMD lanes per core.

On the software side, the compilation is done using gcc 4.4.5. For the compilation of the

GPU code, CUDA 4.2 is used. All the kernels operate with single precision floating point

numbers. Page pinned memory is used on the CPU for allocating the data structures for all the

computational kernels. The measurements include data transfers over PCIe according to the

requirements of the computational steering application described in Chapter 3:

• The execution time for sghierarch includes the transfer of the sparse grid’s linear repre-

sentation, sg1d from the CPU to the GPU, and vice versa.

• The execution time for sginterp includes the transfer of the set of interpolation points x

from the CPU to the GPU and of the interpolation results r from the GPU to the CPU.

• The execution time for spvm includes the transfer of the input vectors x and ix to the

GPU and of the output vector y from the GPU.

4.5.2 Sparse Grid Hierarchization

Fig. 4.1a depicts the sequential performance of sghierarch on the CPU. In this section, the

refinement level of all the sparse grids is 10. Three versions of sghierarch are displayed in the

graph: the recursive version, the non-recursive version, and the optimized implementation. One

can see than the recursive version and the non-recursive version are almost on par. For smaller

values of d, the recursive sghierarch is faster than the non-recursive sghierarch. This happens

because the recursive version requires only half of the number of read accesses to the sparse grid

(and half of the invocations to the bijection idx2gp) compared to the non-recursive version. The

smaller number of calls results from the use of a stack which allows for a top-down traversal

of the sparse grid. During the traversal, the value of each hierarchical parent is retrieved only

once and is propagated through the stack for updating all its children. A notable point is that
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(c) GFlop/s rate of 2 CUDA versions of sghierarch com-
pared to the OpenMP version (8 threads) for different
number of dimensions, d ∈ {1, . . . , 10}.

Figure 4.1: Performance of sparse grid hierarchization, sghierarch, on a heterogeneous system.

the recursive version is considerably more difficult to optimize. The optimized sghierarch is

up to 18.4x faster than the non-recursive sghierarch. The graph also shows a performance gap

between the optimized sghierarch and the other two versions which expands with the number

of dimensions, meaning that the 18.4x speedup further increases for more than 10 dimensions.

Fig. 4.1b is the scalability graph for sghierarch, more precisely the GFlop/s rate depending

on the number of threads. In the performance tests, the threads are mapped to the CPU cores of

the system according to the next scheme: For a number of threads between 1 and 8, the threads

are assigned one per core, whereas for more than 8 threads, Hyperthreading is evaluated by

pinning 2 threads per core. The best speedup relative to the sequential version is 4.4x and is

obtained for 8 hardware threads. Hyperthreading, i.e. using 16 threads, is not beneficial in this

case, i.e. for d = 10, it reduces the speedup from 4.4x to 3.9x.
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In Fig. 4.1c, the CUDA version of sghierarch is compared to the OpenMP version for dif-

ferent numbers of dimensions. CUDA initial corresponds to the non-recursive algorithm from

Listing 4.1 while CUDA optimized is the CUDA implementation of Listing 4.2. The performance

difference between the optimized CUDA version and the OpenMP version varies depending on

the number of dimensions, i.e. for d ≤ 3, the GPU is on par with the CPU and for d between

4 and 10, the speedup of the GPU relative to the CPU increases from 1.3x to 1.9x.

4.5.3 Sparse Grid Interpolation

Fig. 4.2a shows the sequential performance for 4 versions of sginterp: recursive, non-recursive, a

version optimized for cache efficiency (cache opt), and a version vectorized using SSE intrinsics

(vector opt). The number of interpolation points is here 104. The vectorized sginterp is up to

12.6x faster than the recursive implementation.

The scalability of the OpenMP version of sginterp is shown in Fig. 4.2b for 16 · 104 inter-

polation points. For d = 10, the speedup relative to the sequential version is 7.6x and 9.7x

for 8 and 16 threads respectively. Consequently, in contrast to sghierarch, Hyperthreading has

a positive effect on the GFlop/s rate of sginterp, meaning that there are pipeline stalls that

cannot be addressed effectively by the compiler. As it can be seen in the graph, the benefit is

consistent across all the tested numbers of dimensions, i.e. d ∈ {4, 6, 8, 10}.
Fig. 4.2c depicts the performance of sginterp on the GPU compared to the OpenMP version

executed using 16 threads. The number of interpolation points is 2 · 106. In the CUDA sha

version, the set of interpolation points is stored in shared memory whereas in CUDA regs, the

interpolation points are placed in the register file. For d = 10, the speedup relative to the

performance obtained on the CPU is 4.5x and 7.6x for CUDA sha and CUDA regs respectively.

CUDA regs has the disadvantage that for d ∈ {1, . . . , 10}, 10 versions of sginterp for the different

values of d are created, e.g. at compile time based on C++ templates.

4.5.4 Sparse Vector - Matrix Multiplication

Fig. 4.3 shows the sequential performance of spvm. The input matrix a has 250 rows and 106

columns, thus encapsulating the behavior of a computational steering application in which the

number of rows significantly smaller than the number of columns. In the figure, the vectorized

version of spvm is up to 2.9x faster than the initial unoptimized spvm.

The scalability results for spvm are presented in Fig. 4.3b. OpenMP initial corresponds

to the parallelization of spvm without the optimization for improving the locality at NUMA

node level. OpenMP numa opt includes this optimization. The speedup of OpenMP numa

opt relative to the sequential performance is 3.5x obtained for 8 and 16 threads, meaning that
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Figure 4.2: Performance of sparse grid interpolation, sginterp, on a heterogeneous system.

Hyperthreading has no effect here. In contrast, OpenMP initial is only 2.4x obtained for a

non-intuitive number of threads, i.e. 6. For 8 threads, OpenMP initial provides a speedup of

2.1x, thus being slower than 6 threads. Notice that between 1 and 4 threads, the two OpenMP

versions of spvm deliver the same performance. However, starting with 5 threads, the cores

on the second NUMA node of the system are used and the difference in terms of performance

between OpenMP initial and OpenMP numa opt is obvious. This happens because OpenMP

initial generates considerably more remote memory accesses than OpenMP numa opt.

Fig. 4.3c depicts the GFlop/s rate of the CUDA version of spvm and the GFlop/s rate of

the OpenMP version. For spvm, the GPU is between 1.8x and 2.9x faster than the CPU.
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Figure 4.3: Performance of spvm on a heterogeneous system.

4.6 Summary

This chapter describes optimizations for CPUs and GPUs applied to three computational ker-

nels: sparse grid hierarchization (sghierarch), sparse grid interpolation (sginterp), and sparse

vector - matrix multiplication (spvm). The kernels are extracted from the computational steer-

ing application described in Chapter 3. More precisely, they represent the performance hotspots

of the application. Their processing behavior is diverse: sghierarch is integer bound, sginterp

is computationally bound, whereas spvm is memory bound.

For sghierarch, the CPU optimizations concentrate on reducing the number of integer oper-

ations and improving the locality whereas on the GPU, the tuning strategy is based on finding

the best matching between data structures and the GPU’s memories, i.e. shared memory, L1
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cache, constant memory. On the CPU, sginterp is optimized with respect to cache reuse and

vector units. An important point here is the use of a vector friendly layout for the set of interpo-

lation points applicable to both the CPU and the GPU. On the GPU, the interpolation points

can either be stored in shared memory or in registers. Similarly to the optimized sginterp, the

tuned spvm for the CPU includes optimizations for cache reuse and vector units. The OpenMP

version of spvm is NUMA aware and reduces the number of remote memory accesses.

On the CPU side, the speedup factors resulting from the sequential optimizations applied to

sghierarch, sginterp, and spvm are 18.4x, 12.6x, and 2.9x respectively, compared to the initial

unoptimized versions. All the OpenMP versions of the kernels scale on a NUMA system with

2 NUMA nodes and 4 cores (8 hardware threads) per node, i.e. the speedups relative to the

serial optimized versions are 4.4x (sghierarch), 9.7x (sginterp), and 3.5x (spvm). The CUDA

versions are 1.9x, 7.6x, and 2.9x faster than the OpenMP versions for the three kernels.



Chapter 5

An Empirical Optimization Method

for GPUs

Given the diversity and complexity of current processors, considerable effort is invested in

optimizing applications for each individual hardware. In order to achieve optimal performance,

advanced knowledge about the hardware is needed but such information is often not available.

Furthermore, tuning an application for a given hardware typically implies dealing with trade-

offs difficult to analyze using purely theoretical methods. In order to cope with such challenges

an empirical optimization method, also referred to as search based auto-tuning, aims at finding

the optimal values for a set of optimization parameters usually exposed by a programmer for

a given application. By doing so, auto-tuning shifts the weight from the programmer to an

automatic search in a potentially high-dimensional space. This chapter describes optimization

parameters for GPU programs. Additionally, reducing the auto-tuning time is another point

tackled here. Although these aspects are studied in the context of the sparse grid technique,

towards the end of the chapter their applicability to a wider range of applications is explained.

5.1 Introduction

Relying solely on compilers for optimizing programs rarely results in optimal performance. Even

if an expert programmer manages to get the most from a specific processor, it often happens

that the same percentage of the peak performance is not obtainable across different processors.

This is called the performance portability problem. The empirical optimization of applications

or search based auto-tuning, alleviates this problem to some extent. It implies generating and

evaluating code variants corresponding to different values assigned to a set of optimization

parameters exported by the application to a search engine. Optimization parameters may

75
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Listing 5.1 View on typical central loop of auto-tuning.

1: Searcher searcher(searchSpace)
2: while searcher.notFinished() do
3: nextPoint = searcher.next()
4: metricValue = compileExecuteMeasure(nextPoint)
5: searcher.update(nextPoint, metricValue)
6: return searcher.optimum()

control the data structure or algorithm to use, or may refer to loop transformations, e.g. loop

tile factor, loop unroll factor, loop interchange, etc. The objective is to identify the variant

that provides the best performance. In this way, less knowledge about the underlying hardware

is needed. Trade-offs difficult to analyze statically can also be managed efficiently using auto-

tuning. Moreover, auto-tuning can help to achieve performance portability, allowing for an

easier fitting between software and hardware. Despite its name, auto-tuning is not in general

completely automatic and requires the programmer to manually define optimization parameters

that are worthwhile to be considered for the search. In most auto-tuning solutions, the main

loop of auto-tuning is similar to the one displayed in Listing 5.1.

Auto-tuning is at the foundation of several high-performance numerical libraries including:

ATLAS [65] for dense linear algebra, OSKI [66] for sparse linear algebra, FFTW [67] for

Fast Fourier Transforms (FFT), and SPIRAL [68] for signal processing. Frameworks have also

been developed in order to make auto-tuning more general-purpose. They aim at simplifying

the method for parameterizing a given code. Since for numerical codes in particular, loop

nests are the central point for improving the performance, some frameworks [69, 70, 71] aim

at providing a fine control over loop transformations, e.g. they are flexible source-to-source

compilers. On the other hand, other frameworks address the problem of searching the optimum

in unstructured and potentially high-dimensional spaces resulting from the definitions of the

optimization parameters. In this case, brute-force search is impractical or even impossible.

For this reason, stochastic (e.g. Simulated Annealing) or heuristic search methods (e.g. Nelder-

Mead) are typically employed [72]. In addition to this, pruning the search space can also simplify

the search.

A characteristic of auto-tuning is that a considerable amount of time is often needed to

measure the performance of a code variant. Consider a generic objective function f that executes

in a few cycles (no memory references). On processors clocked at frequencies in the order of

1GHz, minimizing f across a space of 109 points is rather cheap in terms of time, e.g. 1s. In

the auto-tuning context, let g be the execution time which depends on a set of optimization

parameters. Evaluating g at one point generally implies compiling a code variant and executing
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it. Assuming the same cardinality of the search space as before, i.e. 109, and only 1s for

compilation and execution, a brute-force search needs 11574 days to finish. More powerful

search algorithms are of great help here but even then it is advantageous to reduce the time

necessary to evaluate g.

In this chapter, auto-tuning of GPU programs is studied, including a set of optimization

parameters that can be seen as common to a wide set of GPU applications and that provide

the means to control: the thread block size, the thread granularity, and the amount of paral-

lelism. A technique called input reduction is then used to tune these parameters while ensuring

that the duration of auto-tuning also drops significantly. Relative to input reduction, search

space pruning and search algorithms are complementary concepts which are also covered in this

chapter.

5.2 Existing Approaches for Auto-tuning

ATLAS [65], OSKI [66], FFTW [67], and SPIRAL [68] are notable libraries that make use of

auto-tuning for improving their performance across different CPUs. With respect to GPUs,

examples that validate auto-tuning include: matrix - matrix multiplication [73], sparse matrix -

vector multiplication [25], stencil computation [22], and 3d FFT [20]. Motivated by the success

of application centered auto-tuning, general purpose frameworks have emerged, their main goal

being to provide more flexibility and simplicity to auto-tuning. These frameworks typically fall

in one of the following categories:

1. tools that simplify the definition of optimization parameters, e.g. ranges and constraints,

and provide search methods that approximate the optimum in a high-dimensional space

2. tools that provide source-to-source compilation functionality, i.e. the programmer specifies

high-level parametrized loop transformations and the tools transform the code accordingly.

In the first category, Atune-IL [74] and ISAT [75] are pragma based auto-tuning solutions.

They allow for a simple specification of the search space and automatize the generation and

evaluation of code variants. Both are tools that provide only core functionality for auto-tuning,

lacking the flexibility necessary for expressing constraints among different optimization param-

eters. Without constraints, pruning the search space is more limited. Active Harmony [76]

includes a language for specifying optimization parameters and constraints among them. A

major strength of this tool comes from the parallel search method called Parallel Rank Order

(POR) built around the Nelder-Mead search algorithm. Orio [71] provides multiple methods

of search including Nelder-Mead and Simulated Annealing. The search strategy used in Orio
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involves two stages: In a first stage, a global optimization method is used (e.g. Nelder-Mead)

whereas the second stage refines the neighborhood of the optimum returned by the first stage

using a local optimization method (e.g. hill climbing). Other features of Orio include the

possibility to specify constraints and to execute auto-tuning across different input parameters.

The second category tools address the compilation aspect of auto-tuning by providing the

means to control parameters of loop transformations, resulting in most cases in source-to-source

compilation. These tools complement the functionality of the frameworks in the first category.

xlanguage [69] is a C preprocessor controlled through special pragmas placed in the source

code for interfacing loop transformations, e.g. loop tiling, loop unrolling, loop permutation.

In order to obtain a complete auto-tuning solution, a search engine has to be connected to

xlanguage. The engine iteratively updates the loop transformation parameters. A similar source-

to-source compiler is POET [70] which includes a scripting language for parameterizing loop

transformations. The interaction with POET is achieved through scripts which define the loops

transformed during the tuning process. An external search engine is again required for enabling

auto-tuning. Another example of a source-to-source compilation tool is CHiLL [77] which is used

by Active Harmony to transform loops. Compiler techniques can also be applied and controlled

using the ROSE compiler infrastructure (a library and associated tools) [78] as shown in [79]

where auto-tuning is studied in the context of a stencil computation.

A notable framework that incorporates both loop transformations and search methods is

described in [80]. The authors propose a compiler integrated auto-tuning solution capable of

performing automatically the entire sequence of operations required by auto-tuning: generation

of parameterized loops, search space pruning, and program execution and measurement.

An extension of CHiLL for GPUs is presented in [81]. It automatically transforms annotated

C code into CUDA code. In [82, 83] the authors describe auto-tuning of GPU programs taking

into account the input dependency problem in which the optimization parameters depend on

input parameters. The approach presented in [82] is based on pragmas which are used for spec-

ifying parameter ranges. In [83] the authors describe an auto-tuning solution for transforming

code written in the language defined in [84] into optimized CUDA code.

The work described in this chapter differs from most auto-tuning approaches in that here

the emphasis is on reducing the time spent measuring a code variant. Moreover, general opti-

mization parameters for GPU programs are presented in combination with a method of pruning

the resulting search space. These concepts are studied in a new context given by the sparse grid

algorithms introduced previously in the thesis.
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5.3 Auto-tuning Optimizations

5.3.1 Overview

Auto-tuning an application can be very time consuming since it often implies searching in

a high-dimensional space for the point that optimizes a chosen metric, e.g. minimizes the

execution time or maximizes the GFlop/s rate. A challenge comes from the fact that the search

has exponential complexity relative to the number of optimization parameters. In order to

accelerate auto-tuning, one can explore the following three areas:

1. Advanced search algorithms address the exponential complexity of auto-tuning. Com-

monly used algorithms are Simulated Annealing and Nelder-Mead.

2. Less execution time means decreasing the time needed for measuring the performance of

the program for different values assigned to the optimization parameters.

3. Search space pruning reduces the set of candidate points to a manageable size. Here, a

set of values for each optimization parameter is specified. Orthogonal sets of parameters,

referred to as partitions, can further reduce the cardinality of the space since this allows

to replace the Cartesian product with a union of smaller subspaces.

Although the contributions of this chapter touch all the three points, emphasis is placed on 2

and 3. For a list of general search algorithms for auto-tuning the reader is referred to [72].

5.3.2 Search Space Pruning Using Partitions

Space pruning can be achieved by restricting the sets of values for the optimization parameters

and by specifying constraints among parameters. Besides this, this section introduces the

concept of partitions through which one can split a high-dimensional search space into multiple

lower-dimensional subspaces. Partitioning can significantly reduce the complexity of the search

and this often leads to orders of magnitude fewer points in the search space.

Consider a 2d search space built from the optimization parameters p0 ∈ R0 and p1 ∈ R1. The

minimization of the execution time using full search translates to the exploration of the Cartesian

product, Scart = R0×R1. In this situation, the cardinality of Scart is |Scart | = |R0|·|R1|. Instead

of forming the search space by means of a Cartesian product, one could consider the search space

Sortho = (R0×{c1})∪({c0}×R1), where c0 ∈ R0 and c1 ∈ R1. The cardinality of Sortho decreases

to |Sortho | = |R0|+ |R1|. Performing full search on this second space is called orthogonal search

[72]. Although orthogonal search may miss the optimum, examples in which the method is used

include the ATLAS library [65]. In orthogonal search, the search for the optimum value of one

optimization parameter is performed while keeping the others fixed.
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Partitions allows for the creation of orthogonal sets of optimization parameters. Hence,

one has the possibility to create hierarchical algorithms: orthogonal between partitions whereas

any algorithm can be used inside a partition. Consider the parameters p0 ∈ R0, p1 ∈ R1,

p2 ∈ R2, and p3 ∈ R3. By analyzing the correlations between the parameters, one can create

the partitions: (p0, p1) and (p2, p3), e.g. meaning that there is a strong correlation between p0

and p1 (and between p2 and p3) whose tuning cannot be done independently. For example, p0

and p1 could be interdependent parameters that control the cache utilization. p2 and p3 could

control the parallelism. In this example, p0 and p1 are minimized first and the search space is

R0×R1 while p2 and p3 have fixed values. Second, the best values found for p1 and p2 are used

when searching for the best p2 and p3 in the search space R2×R3. The main benefit lies in the

reduced complexity of the final search space. Instead of the initial 4d space, partitions replace

this space with two 2d search spaces.

Partitions have several requirements. First, there must be an order in which they are pro-

cessed. Second, values for the fixed parameters have to be set. Third and most important,

dependency relations between parameters have to be set from which the partitions are derived.

In general, this can be achieved by using application specific knowledge. Auto-tuning solutions

realize part of this functionality using constraints: In [76], optimization parameters are consid-

ered orthogonal by default. They become dependent if they appear in the same expression used

as a constraint for pruning the search space. However, in this case, the order is not explicit and

there is no definition for the fixed parameters. Consequently, partitions are complementary to

constraints and provide more flexibility for fine tuning the search method.

Using partitions, one can build hybrid search methods placed between search methods that

explore the Cartesian product with an exponential cardinality, and orthogonal search which

traverses a space with a cardinality that depends linearly on the number of dimensions. Aggres-

sively splitting a high-dimensional search space into multiple lower-dimensional search spaces

can even make it feasible to perform full search on the resulting search subspaces. This is in

general not possible on the initial space.

5.3.3 Representative Execution Sampling by Reducing Input Data

This section focuses on reducing the size of the input data so that the execution time for a code

variant decreases. This technique can be referred to as input reduction. The goal is to extract

a representative sample of a program’s execution in order to estimate a characteristic of the

entire execution, e.g. a performance metric such as time or GFlop/s rate. The benefit of input

reduction for auto-tuning is that a smaller input data typically results in a faster execution of a

code variant. The main requirement is that the execution of the program using the reduced input
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data must approximate the execution for the original data. Moreover, reducing the input data

must avoid situations in which effects irrelevant for the global behavior gain more importance.

The problem of reducing the input data for auto-tuning is expressed in Eq. 5.1. Here, b and

s are vectors containing the input parameters, b refers to the parameters generating the initial

or the big size problem while s refers to the parameters corresponding to the reduced input

data or the small size problem. T is the objective function or the performance metric that is

optimized through auto-tuning. Without loss of generality, assume that T is the execution time.

In order for the input data reduction to be effective, one has to determine a transformation from

b into s so that Ts for the small data is less than Tb across all (or most) of the values assigned

to the optimization parameters contained in p. In general, this requirement is not difficult to

achieve. In fact, the real challenge comes from the last line in the equation which requires

that the optimization parameters that minimize Ts, i.e. the small problem, provide also a good

approximation for the minimum value of the initial Tb function.

Ts(p) < Tb(p), ∀ p
Tb(argmin

p
(Ts)) ' min(Tb)

(5.1)

5.4 Auto-tuning of GPU Programs

5.4.1 Input Reduction for GPU Programs

Challenges

There are four major risks that can affect the effectiveness of input data reduction on GPUs:

(1) insufficient parallelism, (2) tail effects, (3) losing the computational character, and (4)

measurement noises. These aspects are discussed next.

First, GPUs are massively parallel processors on which tens of thousands of threads run con-

currently at any time. Therefore the small input data must ensure that a GPU is fully utilized,

including both the Streaming Multiprocessors (SMs) and multithreading. This requirement

comes from the observation that when a GPU program processes big data, most of the time the

GPU is fully utilized and this is the behavior that must be captured by the reduced input data.

Second, GPU programs processing small input data can be affected by tail effects [85] which

occur when the input data generates an amount of parallel work that is not a multiple of the

maximum number of active (concurrent) threads, a number that depends highly on the CUDA

kernel and the GPU. Note that this situation may occur even when the first requirement is

satisfied. In this case, a tail effect can be observed when the last group of active threads are
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executed on the GPU. Sometimes the number of threads in this last group does not allow for a

full utilization of the GPU’s resources. Especially for small input data, a tail effect can consume

a considerable amount of time which together with a low utilization of resources can have a

significant negative impact on performance. In general, a GPU program that processes big data

is executed as a sequence of waves of threads or iterations in which all except the last iteration

utilize the entire GPU. Thus, a tail effect does not capture the global behavior of the program.

In order for the input data reduction to be effective, tail effects have to be eliminated.

Third, the computational character of the program has to be preserved. In some cases,

aggressively reducing the input data can result in less potential for data reuse and accordingly

optimizations targeting locality lose their effectiveness. The size of the data must be large

enough so that locality optimizations in particular can be properly explored. Note that this

also implies that the reduction of the input data depends on the optimization parameters.

Intuitively, this means that the reduced input data is not fixed but changes with the values

assigned to the optimization parameters during the auto-tuning process.

Fourth, at a reduced scale, the effects of the optimizations can be hidden behind mea-

surement noises, e.g. interference from other processes, which for the initial big data are not

detectable. One advantage of GPUs in this context is that GPU programs are provided with

a strong isolation, i.e. programs typically execute one at a time on a GPU, meaning that

interference from other GPU programs is significantly reduced.

Full Utilization of the GPU

In order to use the input data reduction technique with GPU programs, it is necessary first to

determine the minimal amount of work necessary to fully utilize the GPU. This work can be

referred to as active work. The active work keeps busy an entire GPU and can be correlated to

the maximum number of active threads. The relation between work and threads ensures both

that the GPU’s SMs are occupied and that multithreading is fully used to hide the pipeline

latency. Simply ensuring the utilization of all the SMs without considering multithreading is

often not sufficient for obtaining high performance on GPUs. Since GPUs are in-order processor

architectures, multithreading is important as it provides the means to hide the instruction

pipeline latency, e.g. arising from accesses to global memory. Multithreading on GPUs allows

for inexpensive switching between thread warps at every clock cycle. Provided that the warps

are independent, switching results in a better exploitation of the execution units within an SM.

The maximum number of active threads on the GPU depends on the register consumption,

Rk, and the shared memory consumption, Sk, per thread block. Based on these two parameters,

one can calculate the maximum number of active blocks, Bgpu , that can run on the GPU at any
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moment of time. This number can be obtained by traversing one by one the equations shown

below (see [14] for a detailed explanation of the equations). The description of the parameters

used in the equations is given in Table 5.1. Bsize is the size of the thread block and is set by the

programmer. Its value is typically 128 or 256. The parameters Wsize, Gt, Gs, Rsm, Ssm, Cblock,

and Mgpu are properties of the GPU.

Wblock = ceil1

(
Bsize

Wsize
, 1

)
(5.2)

Rblock = ceil (Rk ·Wsize , Gt) ·Wblock (5.3)

Sblock = ceil (Sk, Gs) (5.4)

Both the register and the shared memory consumption, Rblock and Sblock, act as constraints for

the maximum number of active blocks per SM, Bsm. The minimum computed in Eq. 5.5 ensures

that the resulting Bsm blocks can get all the resources needed for execution.

Bsm = min

(
Rsm

Rblock
,
Ssm
Sblock

, Cblock

)
(5.5)

The result of this sequence of equations is Bgpu (Eq. 5.6) which can be used to compute the

active work and the size of the reduced input data. In order to avoid tail effects, the size of the

reduced input data must be chosen so that the amount of work is a multiple of Bgpu .

Bgpu = Mgpu ·Bsm (5.6)

The optimization parameters often affect the register and shared memory consumption per

kernel. The implication is that the maximum number of active threads changes across different

values for the optimization parameters. Since the input data is reduced according to the max-

imum number of active threads, the input data’s size also varies across different values for the

optimization parameters, which is an important observation.

Input Reduction Assumptions and a GPU Model

There are two central assumptions at the foundation of the input reduction technique tech-

nique: First, the threads are homogeneous, and second, all the threads that occupy the GPU

at any time, start and finish simultaneously. Provided that these two requirements are met, a

performance model for GPUs can be built.

Many GPU applications are characterized by a uniform parallel work which means that

1ceil(x, y) is x rounded-up to the closest multiple of y.
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Parameter Description Values

Wblock Num. of warps per block -

Bsize Num. of threads per block -

Wsize Num. of threads per warp 32

Rblock Num. of registers per block -

Rk Num. of registers used by kernel -

Gt Register allocation granularity 64

Sblock Shared mem. per block -

Sk Shared mem. used by kernel -

Gs Shared mem. allocation granularity 128

Bsm Num. of active blocks per SM -

Rsm Max. registers per SM 32 K

Ssm Max. shared mem. per SM 16 KB / 48 KB

Cblock Constraint for num. of active blocks per SM 8

Bgpu Num. of active blocks for entire GPU -

Mgpu Num. of SMs 15

Table 5.1: CUDA parameters with descriptions and default values for an Nvidia Fermi GPU.

the threads handle the same amount of work. These threads can thus be called homogeneous

threads, a common type of threads encountered mostly in data parallel applications. From this

point on, it is assumed that the thread scheduler per SM is round-robin and at every clock

cycle it switches between thread warps even if they are from different thread blocks. Under

these conditions, if the threads are homogeneous then it is expected that they execute in the

same amount of time. More importantly, threads that execute in parallel (on different SMs) or

concurrently (on the same SM) are also expected to finish executing at almost the same time.

In general, the threads composing a warp execute instructions in a lock-step fashion, i.e. an

instruction is broadcast to the entire thread warp and every thread executes that instruction.

Threads in a warp cannot execute different instruction at the same clock cycle but different

warps are not affected by this limitation. Thread blocks running on different SMs can also

execute different instructions. This actually makes GPUs a more flexible SIMD processor.

Nevertheless, in the case in which the GPU threads are homogeneous, since threads process

the same work, one can assume a lock-step model of execution that applies to the entire GPU,

virtually making the GPU a huge SIMD processor.

If the lock-step model is extended to the entire GPU, then threads scheduled for execution on

the GPU are executed in iterations, meaning that thread blocks are logically grouped together

in waves and the waves are executed one after another, in different iterations. Moreover, during

each iteration, a wave occupies the entire GPU. The number of threads required to fully occupy

the GPU is Bgpu . Hence, the execution time of a kernel can be obtained by summing up
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Figure 5.1: Execution profile of sginterp for different number of threads.

the execution time of all the iterations. Empirically, it can be shown that the first iteration

consumes slightly more time than the rest which have approximately the same execution time.

In reality, the execution profile of a CUDA kernel is often similar to the one depicted

in Fig. 5.1a. This graph is obtained by launching only one kernel using different number of

threads starting with 256 in steps of 256, and measuring the execution time. The marks on the

horizontal axis denote multiples of the number of threads that fully occupy the GPU. The first

iteration finishes at 20480 which represents the number of threads that fully occupy the GPU in

this particular situation. So far in the discussion, the GPU is seen as a huge SIMD processor but

this is invalidated by the the small steps seen from 4096 to 20480 (threads). Based on the initial

model, the execution time of one thread is the same as the execution time of 20480 threads,

an intrinsic characteristic of SIMD processing. On the other hand, this behavior can only be

observed from 256 to 4096. In this case, the execution of one thread block of size 256 takes the

same time as the execution of 16 thread blocks since they execute in parallel on different SMs.

In Fig. 5.1a, the steps have different heights. Every time a new iteration is started, the steps

are bigger than before. Within an iteration, adding more thread blocks per SM, e.g. moving

from 4096 to 8192, helps multithreading to reduce the pipeline latency, resulting in smaller steps.

Based on these observations, a GPU can be modeled as a huge multithreaded SIMD processor. In

general, in order to obtain an accurate execution profile of a CUDA kernel, i.e. time as a function

of the number of threads, both characteristics have to be modeled: SIMD and multithreading.

However, depending on the situation, the requirements can be more relaxed, e.g. for a large

number of threads, it is less important what happens within an iteration.

Another characteristic of the profile shown in Fig. 5.1a is that it has a periodic behavior:

The profile of an iteration appears over and over again, in every subsequent iteration. This
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is important when one tries to accurately approximate tail effects. The exact behavior of one

iteration is of less importance when the kernel is executed by a number of threads in the order

of 106, which ensures that the GPU is fully utilized. In this case, tail effects have a limited

impact as they occur after 40 iterations of full utilization of the GPU.

Fig. 5.1b depicts three methods for approximating the execution time of a GPU kernel as a

function of the number of threads. The dashed blue line assumes that the GPU is a huge SIMD

processor without multithreading. The continuous red line considers in addition the effect of

multithreading which is modeled using a linear function, e.g. from 256 to 20480. Finally, for

completeness, the dashed yellow line is the simplest approximation which would correspond to

a very fast low latency processor that executes the threads one by one. The first approximation

provides an upper bound for the execution time, the third provides a lower bound, whereas the

second is the closest to the real time. In theory, given the previous assumptions, at most 3

points are required to build these approximations: P0, P1, and P2.

It is important to notice that whenever the number of threads is a multiple of 20480, the

approximations behave all the same. If it is not a multiple and the kernel executes in 10

iterations, then the difference between the approximations can be up to 10%. In order to explain

this situation, imagine that only one thread executes in the last iteration. When the GPU is

modeled as a huge SIMD processor, the execution is the same as if the GPU is fully occupied,

i.e. the execution time for one thread is the same as for 20480 threads. However, when the

GPU is modeled as a low latency processor, the execution time can be neglected for one thread

compared to 20480 threads. Consequently, the difference between the two approximations can

be up to 10% for 10 iterations and is inversely proportional with the number of iterations.

For input reduction, the benefit of using the approximation comes from the fact that in-

stead of executing an initial work that translates for instance to 106 threads, a smaller work is

processed, necessary for determining the execution time for P0, P1, and P2. Looking again at

Fig. 5.1b, the amount of work measured in threads required for calculating P0, P1, and P2 is:

20480 + 20736 + 40960 = 82176. 20736 corresponds to a number of threads that occupies the

entire GPU in the first iteration while only one thread block (256 threads) is executed in the

second iteration. Compared to 106 threads, this means that auto-tuning can be accelerated up

to 10x since there is less work done for evaluating each code variant. It is important to note that

this speedup can be further improved by using different methods for obtaining the execution

profile. Up to this point only one has been discussed, i.e. executing the kernel multiple times

for different number of threads. The time measurements are in this case done using CUDA

events which offer a resolution of 0.5 µs.

A more efficient but more intrusive method of discovering Fig. 5.1a relies on instrumenting
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the kernel using the clock instruction which reads the number of cycles from a counter local for

each SM. In this case, by knowing the start time and end time for each thread, the same graph

from Fig. 5.1a can be built and this requires the kernel to be executed only once using 40960

threads (a 2x speedup compared to the previous method). In this approach, the graph from

Fig. 5.1a is sampled by every thread block, i.e. in steps of 256 threads. Moreover, this allows

for a more accurate approximation to be obtained which offers a better view on tail effects.

5.4.2 Optimization Parameters for GPU Programs

Parameter Description

The use of auto-tuning for exploring GPU optimizations is motivated by complex interactions

and trade-offs between GPU optimization parameters which are difficult to treat theoretically.

Besides optimization parameters that are application specific, there are parameters with a more

general purpose character applicable to a wide range of GPU applications. Some of them are

discussed next together with their interactions.

A common optimization parameter [14] is the thread block size (bs). It affects the oc-

cupancy metric which measures the GPU utilization in terms of number of threads. GPUs

have a hardware limit for the number of concurrent threads, e.g. 1536 per SM, and the rec-

ommendation is to be as close as possible to that number so that multithreading can provide

the best performance. The impact of bs goes beyond that. The parallelism and the scheduling

of blocks on SMs is also influenced by the thread block size especially for rather small data

which translates to a small number of threads. In this case, large thread blocks can result in

the processing’s taking place on a subset of the SMs, meaning the GPU is underutilized. In

contrast, if the thread blocks are small then there are more blocks that can be placed by the

GPU’s scheduler on different SMs, resulting in better performance.

Another optimization parameter is the thread granularity or the number of work units per

thread (pt). The importance of this parameter has already been stressed in [17, 54]. In order

to understand thread granularity, one can imagine a one-to-many relation between a thread

and multiple components in the output data computed on the GPU. Increasing the thread

granularity is often done in order to improve the ILP and the locality at register or shared

memory level. Therefore, in terms of resources it translates to more register and / or shared

memory consumption per block. There is a trade-off between pt and bs, or in other words

between locality and multithreading. More precisely, the thread block size is chosen so that

the occupancy is maximized. Increasing pt often results in the occupancy’s being reduced. For

example, at 33% occupancy (512 threads from the limit of 1536 threads) a GPU can still make

use of the maximum 63 registers allocatable per thread, leveraging locality at register level.
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Moreover, with regard to parallelism, if the parallel work is insufficient for feeding the GPU,

then the trade-off between pt and bs has to be explored again since more parallelism can be

obtained by experimenting with both parameters.

An optimization parameter essential in scenarios that suffer from insufficient coarse-grained

parallelism is the work granularity or the size of a work unit (wu). In this case the goal is to

make the parallelism more fine-grain by tuning wu. This parameter is already exposed in some

CUDA programs [18]. The wu parameter controls the many-to-one relation between threads

and the component of the output computed on the GPU. The trade-off is that locality can be

affected and an extra reduction step is necessary to combine the contribution from multiple

threads. There are multiple options for reduction: by launching a reduction kernel, by using

the shared memory, or by using atomic memory operations from CUDA. It is assumed next

that the reduction is done using atomic operations. wu is complementary to the pt parameter,

e.g. the former controls the parallelism while the latter controls the locality. They can even

coexist resulting in a many-to-many relation between threads and output entries.

Partitioning the Search Space

There are two situations of interest when analyzing the dependencies between optimization

parameters: First, there is enough coarse-grained parallel work to occupy the entire GPU and

second, the initial work is insufficient to fill the GPU.

In the first case, there is no reason to generate more parallel work using wu. Therefore, wu

is said to be inactive and is discarded from the search. Here, it is common to search for the best

pt while keeping bs fixed, followed by the reversed situation in which pt is set to the previously

found best value and the best bs is searched for. This often results in low occupancy, meaning

that there are fewer threads per SM to hide instruction pipeline latencies using multithreading.

Consequently, such an orthogonal search puts more emphasis on locality and ILP per thread.

[17, 54] provide evidence for the benefit of this strategy in the context of dense linear algebra

but there are no guarantees regarding its applicability to all GPU applications or to the next

generations of GPUs. In order to fully explore the trade-off between multithreading and locality,

bs and pt have to be considered interdependent.

In the second case, wu is active and is used to create more parallelism. bs and pt can also

influence the parallelism to some extent. Compared to large thread blocks, small blocks can

provide a better utilization of the SMs. Assume that a GPU has to process parallel work for

1024 threads. A thread block of size 1024 uses only one SM. 8 thread blocks of size 128 each

can be scheduled to 8 SMs, resulting in the usage of more SMs. Regarding pt, it is inversely

proportional to the number of threads. Hence, decreasing pt can also help to increase the
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Figure 5.2: Search algorithm. It stops when two successive values for pt decrease the perfor-
mance.

amount of parallelism. Consequently, there is a connection between these parameters given

by the fact that increasing the parallelism can be achieved by tuning all of them. However,

wu usually depends more strongly on pt since pt controls the number of threads (inversely

proportional) and wu is activated when that number is not large enough to occupy the entire

GPU. In terms of search partitions, this means that pt and wu should be in the same partition.

Depending on the strategy followed, e.g. giving priority to locality instead of multithreading, bs

can be placed in a different partition, splitting the original 3d search space into two subspaces

with fewer dimensions, i.e. a 2d space built from pt and wu, and a 1d space for bs.

Searching for the Best Parameter Values

For searching in the optimization space composed of bs, pt, and wu, a variant of hill climbing

is employed. The central concept is shown in Fig. 5.2 for determining the best value for the

pt parameter. The search starts with pt = 1 and progresses towards points that improve the

performance, here GFlop/s. The search for the best pt often translates to finding the value that

makes the best use of the fast memory, e.g. register file or L1 cache. If a given pt leads to this

capacity’s being exceeded, then pt + 1 and pt + 2 should also result in performance degradation.

Therefore, the stop condition of the algorithm is satisfied when one or more successive points

do not improve the best GFlop/s already found. This is depicted in Fig. 5.2.

Listing 5.2 contains the search algorithm. The algorithm contains a loop nest with three

loops which indicate a 3d search. It is worthwhile noting that the optimization parameters and

the input reduction technique are in fact complementary to any search method. The search

method discussed here is customized for the three optimization parameters presented in this

chapter. With regard to partitions, in Listing 5.2 bs, pt, and wu are all placed in one partition,
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Listing 5.2 Search method. bs, pt, and wu are dependent. The search space is 3d. wu is
activated only when the parallel work is insufficient to occupy the GPU (line 6).

1: for bs = 32 to 1024, step 32 do
2: pt = 1

3: qpt.reset()

4: while (pt <= m) do
5: wu = n

6: if (m / (pt * bs) < B_gpu(bs, pt)) then
7: qwu.reset()

8: while (wu >= 1) do
9: g = measure_gflops(bs, pt, wu)

10: res_map.add((bs, pt, wu), g)

11: qwu.push(g)

12: if (qwu.is_full()) and (qwu.first() == qwu.max()) then break
13: wu = wu / 2

14: qpt.push(qwu.max())

15: else
16: g = measure_gflops(bs, pt, wu)

17: qpt.push(g)

18: res_map.add((bs, pt, wu), g)

19: if (qpt.is_full()) and (qpt.first() == qpt.max()) then break
20: pt = pt + 1

21: return res_map.max() // ((best_bs, best_pt, best_wu), gmax)

meaning that they are considered dependent. qpt and qwu are circular buffers. They contain

the GFlop/s for consecutive pt / wu and are used to implement the stop condition in which

the search for the best pt / wu ends if the maximum capacity of the buffer is reached and the

oldest GFlop/s (stored in the first position) is not surpassed. The first method returns the

oldest GFlop/s value in the buffer whereas max returns the maximum GFlops/s in the buffer.

In practice, the maximum capacity of qpt and qwu is set to 2.

The integration of wu in the search algorithm follows an activation rule that takes into

account the utilization of the GPU. This rule is shown in line 6 of Listing 5.2. It is not necessary

to search for wu if there is enough parallelism. As previously discussed, the role of wu is to

increase the parallelism so that the GPU is fully occupied. An observation is here worthwhile.

In general, having more threads working on the same output component implies that reduction

has to be executed on the GPU. When activated, the search for wu is the same as the one

used for searching for pt, displayed in Fig. 5.2. This is explained by the fact that decreasing

wu increases the parallelism up to the point where the overhead resulting from reduction does

not allow for the performance to be improved. Furthermore, sometimes a small wu reduces the

locality, i.e. when a piece of data is reused wu times. Whenever this situation occurs, increasing

the parallelism can no longer improve the performance.
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Listing 5.3 Search method using partitions. pt and wu form the first partition. bs is in the
second partition. The initial search space is divided into: 2d (pt and wu) and 1d (bs).

1: bs = 512 // fixed

2: ... ... ... // same as before

3: ((fixed_bs, best_pt, best_wu), g) = res_map.max()

4: for bs = 32 to 1024, step 32 do
5: g = measure_gflops(bs, best_pt, best_wu)

6: res_map.add((bs, best_pt, best_wu), g)

7: return res_map.max() // ((best_bs, best_pt, best_wu), gmax)

A second search algorithm evaluated in this chapter is shown in Listing 5.3. Here, bs is

placed in a separate partition from pt and wu. Hence, in a first stage (line 1) in which bs = 512,

the best values for pt and wu are searched for. In line 2, the search method executes the same

operations as in lines 2 - 19 from Listing 5.2. A second stage (line 4) uses the best values found

for pt and wu, i.e. best pt and best wu, in order to find the best value for bs. A notable aspect

in this case is that the original 3d search space is split into 2 lower-dimensional search spaces: a

2d one for pt and wu, and a 1d one for bs. This search method gives priority to locality rather

than multithreading by searching first for the best pt and afterwards for the best bs.

5.5 Evaluation

This section focuses on evaluating the theory described before in the context of sparse grid

routines. Two routines play a central role here: sparse grid interpolation (sginterp) and sparse

vector - matrix multiplication (spvm). In contrast, the third sparse grid operation described in

this thesis, sparse grid hierarchization (sghierarch) has less potential of being optimized using

auto-tuning. On the other hand, as it is shown at the end of this chapter, from applying auto-

tuning to sginterp and spvm, lessons can be derived that are useful in a wider context, e.g.

dense linear algebra, stencil computation, and direct n-body method.

5.5.1 Experimental Setup

The hardware setup used in the experiments is the following:

• sysA: a system containing a Quad-core Intel Nehalem i7-920 (2.67 GHz, 8 hardware

threads) and an Nvidia GTX480 (1.4 GHz, 15 cores, 32 SIMD lanes / core)

• sysB : a dual-socket system, one Quad-core Intel Nehalem E5630 per socket (2.53 GHz, 8

threads) and an Nvidia Quadro 6000 (1.15 GHz, 16 cores, 32 SIMD lanes / core).
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Figure 5.3: Simplification of sginterp. It shows how the output vector C results from the
matrices A, B, and L. foo is O(d) and accesses one value from a B’s row and one row from L.

Both GPUs are based on the Nvidia Fermi architecture.

For compilation, the gcc compiler is used, version 4.5.2 on sysA and 4.4.5 on sysB. The GPU

part of the code uses Nvidia’s CUDA version 4.2 on sysA and sysB. Both case studies from this

chapter, sginterp and spvm, operate with single precision floating point numbers.

5.5.2 Sparse Grid Interpolation

Description

As shown before in the thesis, sginterp has an optimized GPU implementation which is part of

a memory efficient numerical library, called fastsg, for interpolating high-dimensional functions.

That implementation is used here as the reference for performance. The objective is to improve

the performance by exploring the auto-tuning parameters previously described, i.e. bs, pt, and

wu, and to accelerate the auto-tuning process by reducing the input data.

A simplified view on the computation performed by sginterp is provided in Fig. 5.3. More

information on the central loop nest of interpolation is shown in Listing 5.4 which references

the foo functions from Listing 5.5. m, d, n, and l are the input parameters. The input data

is given by A, a matrix of size m (rows) × d (columns), and B, a matrix of size n × 2l. The

output array is C, a row-vector of size m. In sparse grid terms, A contains the coordinates of

the d-dimensional points where the compressed data is interpolated, B contains the compressed

data, while L is an n × d matrix of integers in which every row is unique. C contains the results

of the interpolation for each point (row) in A. Computing every component of C needs one row

from A and exactly one value from each row in B. The computational intensity, i.e. the number

of floating point operations per global memory reference, of sginterp is rather high since foo

detailed in Listing 5.5 executes 6 ·d floating point operations and d is typically between 4 to 10,
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Listing 5.4 Main loop nest of sginterp. Initially C is all 0.

1: for i = 0 to m - 1, step pt do // A tiles

2: for j = 0 to n - 1, step wu do // B tiles

3: for jj = j to min(j + wu, n) - 1 do // inside a B tile

4: for ii = i to min(i + pt, m) - 1 do // inside an A tile

5: C[ii] += foo(A[ii], B[j], L[j]) // O(d) ops, 1 global mem. reference

Listing 5.5 Details on foo function.

1: w = 1, x = 0 // w is float, x is int

2: for k = 0 to d - 1 do
3: f = floor(2ˆrowL[k] * rowA[k])

4: x = 2ˆrowL[k] * x + f // int ops.

5: w *= max(1 - abs(2ˆ(rowL[k] + 1) * rowA[k] - f * 2 - 1), 0) // float ops.

6: return w * rowB[x]

e.g. in computational steering [28]. In the same computational steering application, m tends to

be in the order of 106. In general, n is in the order of 104 while l is in the order of 10.

Optimization Parameters

The parallelization of the loop nest from Listing 5.4 using CUDA is done by distributing the

iterations of the first 2 loops across GPU threads. It is worthwhile observing that whenever

wu < n, multiple threads work on the same output component, meaning that reduction is

necessary after each thread finishes its computation. The threads are grouped in thread blocks

of size bs, where bs ∈ {32, 64, 96, 128, . . . , 1024} (32 values). Each row of L is stored in shared

memory. Thus, each row of L is shared among all the threads in a block. Barriers are required

to synchronize the access to L, i.e. threads need to wait until the the current row of L is copied

from global to shared memory. Note that in practice L can be either be stored in global memory

or can be computed on-the-fly using Eq. 3.16.

There are two aspects that influence the optimal bs. First, a small bs implies that there

are more copies of a row of L since there is one row of L in shared memory per thread block.

Thus, in oder to optimize shared memory consumption, a large bs is preferred. Second, a large

bs means there are more threads waiting at the barriers used for synchronizing the access to

L which can result in a reduced throughput of the instruction pipeline. In this case, smaller

thread blocks are preferred. Consequently, it is not clear which option is the best, i.e. small or

large thread block, and auto-tuning can be used to explore this trade-off.

The parallelization scheme applied to Listing 5.4 results in each thread’s working on a tile of

size pt ×d from A to compute a number of pt values from C. Using the terminology introduced
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before, pt allows to control the one-to-many relation between threads and output components

of C. The pt parameter has a double role. First, it allows for a better reuse of every row from

L and of every row from B. Second, it can saturate the register file or the L1 cache if this is not

achieved in the case in which one thread computes one component from C. A high consumption

of registers per thread without generating register spilling can improve the locality and the ILP

within a thread, resulting in better performance.

The range for pt is {1, . . . ,m} (m values). In practice however, a better alternative is given

by pt ∈
{

1, . . . ,

⌊
m

Mgpu · bs

⌋}
. This rejects those situations in which the locality achieved

through a large pt, e.g. pt = m, reduces the amount of parallel work up to the point where it is

insufficient to feed a number of Mgpu SMs. Based on common input parameter values found in

computational steering scenarios, the set of values for pt has a cardinality in the order of 103.

From an implementation’s point of view, pt and d are template parameters ensuring that

the thread’s tile from A and the corresponding tile from C are stored in registers whenever the

value of pt · (d+ 1) does not result in the register limit’s per thread being exceeded. Otherwise,

if the two tiles exceed the register limit then they are stored in global memory which is cached

on GPUs which contain a two level cache hierarchy.

In general, the parameters bs and pt cannot be explored in isolation from each other without

discarding the trade-off between multithreading and locality. Looking only at bs and ignoring

pt, the best performance is usually found for the bs that maximizes occupancy, meaning that

all the SMs and multithreading are fully utilized. However, this typically does not allow for

locality to be harnessed to its full extent, e.g. high occupancy usually means that fewer registers

are available per thread for improving the locality at register level. Consequently, a straight-

forward orthogonal search [72] implies that priority is given to either multithreading or locality.

For instance, [17, 54] show that focusing on locality rather than multithreading provides the

best performance for dense linear algebra.

The wu parameter is in the range wu ∈ {1, . . . , n
4
,
n

2
, n} (log2 n values). In those cases in

which m is small and cannot fully occupy the GPU, i.e. m/(bs · pt) < Bgpu , additional sources

of parallelism have to be searched for. Looking only at Fig. 5.3, the solution to this problem

is the following: (1) slicing the B matrix horizontally in tiles of shape wu × 2l, (2) assigning

to each thread a tile from A and a tile from B, and (3) reducing in C the contributions of

the threads that process the same tile from A. It is important to note that more parallelism

can also be obtained by decreasing pt but at the cost of reduced locality and by decreasing

bs at the cost of underutilized multithreading. In this regard, if reduction is fast, using wu

for generating more parallelism is the best solution. It is worth reiterating that wu becomes
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activated, i.e. wu < n, only if the amount of parallel work is insufficient to occupy the entire

GPU, i.e. m/(bs · pt) < Bgpu .

Input Reduction

Based on typical values assigned to the input parameters, the cardinality of the search space to

explore for sginterp is in the order of 105. In this situation, the auto-tuning problem is more

complex since the input parameters, i.e. m, n, d, and l also influence the optimizations and the

best values for the optimization parameters:

• m affects the amount of parallel work as discussed before,

• n affects the reuse of a tile from A, e.g. for a smaller n, the overhead of loading a tile

from A into registers / L1 cache has a stronger negative impact on performance,

• d affects the computational intensity and the tiling of A in registers / L1 cache, e.g. a

smaller d allows for more rows of A to be included in one tile (a larger pt),

• l affects the reuse of each row of B, e.g. a smaller l improves the cache hit ratio.

This means that in the context of sginterp the auto-tuning problem is in fact 7-dimensional.

In order for the performance to be portable across input parameters, auto-tuning has to be

performed across different values for the input parameters. In this case, accelerating auto-

tuning by reducing the input data gains even more importance.

In the context of sginterp, the input reduction technique means finding a vector s =

(mr, nr, dr, lr) derived from the initial input parameters b = (m,n, d, l) so that Eq. 5.1 is satis-

fied. The transformation from b to s is built around an approximation of the execution time as

a function of the number of threads which has been described previously in the chapter.

Assuming that m � Bgpu · bs · pt , then wu = n and the number of launched threads

is given by m/(bs · pt). According to Eq. 5.6, m can then be reduced to m0 = Bgpu · bs ·
pt (ensures full utilization of the GPU) and m1 = 2 · Bgpu · bs · pt . Both m0 and m1 are

needed for the construction of the 2-point linear approximation depicted in Fig. 5.1. Therefore,

mr ∈ {Bgpu · bs · pt , 2 ·Bgpu · bs · pt} . For a more accurate approximation, at least 3 points

are required. If the initial m is in the order of 106 (a typical value in computational steering

scenarios), m0 and m1 can be factors of magnitude smaller. It is important to note that mr

depends on the optimization parameters, meaning it varies across different values for bs and pt.

In the case of insufficient parallelism, i.e. m < Bgpu ·bs, wu < n and the number of launched

threads is m · (n/wu). Let p = m · (n/wu). Similar to the other case, p can also be reduced to

pr ∈ {Bgpu · bs · pt , 2 ·Bgpu · bs · pt} .
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Figure 5.4: Bilinear interpolation at (m,n) using the values of the execution time at: (m0, n0),
(m0, n1), (m1, n0), and (m1, n1).

The n parameter also provides the means to reduce the input data. Accordingly, wu is

also scaled down to wur so that n/wur = nr/wu, where nr is the reduced n. In other words,

the work per thread is reduced. The typical values for n are in the order of 104. The main

challenge with reducing n is that in combination with reducing m, the chances to reach the

resolution limit of the timing method increase significantly. Note that in general, for common

data sets from computational steering, m is expected to be reduced by a factor of 10 while

n can be reduced by a factor of 103. Overall, the execution time decreases proportionally by

approximately 104 times, meaning that in some scenarios it is in the order of ms or even less.

In general, the timing resolution is assumed to be close to 0.5 µs. In this context, reducing n

must be done so that for the smallest nr, the execution time does not fall below 0.1 ms, i.e. 100

times the timer’s resolution.

Besides ensuring that nr is large enough relative to the timing resolution, two values, n0

and n1, are actually needed in order to build a linear approximation of the execution time as

a function of n. In other words, nr ∈ {n0, n1}. Two values ensure that one-time effects, e.g.

initializing data and writing results, do not scale when moving from nr to n for estimating the

execution time for n. The value of n0 must be chosen so that it satisfies the timer resolution

constraint. Then, n1 = 2 · n0. If one combines the reduction of m with the reduction of n

and uses linear approximations in both cases, then the execution time is approximated using

bilinear interpolation. Hence, 4 points are needed: (m0, n0), (m0, n1), (m1, n0), and (m1, n1).

The interpolation process is shown in Fig. 5.4. The arrows denote the order of the operations.

The remaining two parameters, d and l, are not reduced since they are in general in the

order of 10 and more importantly they have a strong influence on the computational behavior
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(a) GFlop/s rate of auto-tuned sginterp on sysA.
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(b) GFlop/s rate of auto-tuned sginterp on sysB.

Figure 5.5: Performance of sginterp after auto-tuning on sysA and sysB.

d Best bs Best pt # of variants

4 64 7 184
5 64 6 174
6 64 5 161
7 128 5 140
8 128 4 128
9 128 4 118
10 128 4 116

Table 5.2: Best values for bs and pt resulting from auto-tuning. The best value found for wu is
n. The same values are obtained on both sysA and sysB.

and on the optimizations, i.e. bs and pt depend highly on d and l.

Results

The size of the work done in sginterp, i.e. the number of rows of A, m (the number of interpo-

lation points), is set to 2 · 106. l (the refinement level of the sparse grid), is 10. The number of

columns of A, d, (the number of dimensions), is in the range 4− 10.

By applying the search method from Listing 5.2, the results shown in Fig. 5.5 are obtained.

In the legend, auto-tuning slow refers to the version of auto-tuning without input reduction and

partitions. Initial is the version of sginterp without auto-tuning. This version is used as the

performance reference. The best values for the optimization parameters are shown in Table 5.2.

One point to mention here is that the best value for wu is n, meaning that wu is inactive

and the amount of parallel work is in general enough to feed the entire GPU. An observation

resulting from the experiments is that even for an m in the order of 105, wu is still n. wu is
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typically activated when m is below this threshold.

A second point worthwhile noting is that the input parameter d influences the best value

for pt and bs. For instance, for d = 4, the best performance corresponds to pt = 7 while for

d = 10, the best pt is 4. The trend is that pt decreases when d is increased.

A third point is that the best value for pt can be calculated accurately provided that the

following information is available: the number of registers used by the kernel and the number of

registers available on the GPU. If the number of registers used by the kernel for pt = 1 is known,

then it becomes possible to estimate the number of registers used for any pt and subsequently

to determine the value for pt that results in the best utilization of the register file. Since this

static method matches the auto-tuning results, the conclusion is that it is not worthwhile on

sysA and sysB to store the tiles from A in the L1 cache.

Table 5.2 also includes the number of code variants that are evaluated during the auto-

tuning process. The numbers show that approximately 0.1% of the initial 3d search space (with

a cardinality in the order of 105 points) is actually explored by the search method.

The input reduction technique has two forms: auto-tuning red0 and auto-tuning red1. The

first one reduces only m, whereas the second one also incorporates the reduction of n. An

observation regarding the first form is that simply building the 2-point linear approximation

of the execution time shown in Fig. 5.1 is not enough for obtaining a relative error below 1%

compared to the execution time measured for the initial work. In order to address this issue, the

implementation uses the linear least squares method in order to fit to a line a set containing more

than two points. Consequently, auto-tuning red0 exposes a parameter that controls the number

of points used by the linear least squares method for building a linear approximation. On the

tested systems, an empirically found value for this parameter that satisfies the requirement

for an error below 1% is 5. auto-tuning red1 includes auto-tuning red0 and has two extra

parameters, n0 and n1, for controlling the reduction of n. These two parameters are used as

shown in Fig. 5.4. In the experiments, n0 and n1 are set to 1 and 10 respectively.

Fig. 5.6 shows the performance of the best code variant returned by different versions of the

auto-tuning method. The performance is measured in GFlop/s and the measurements are done

on sysA. Auto-tuning ortho refers to the implementation of Listing 5.3. It includes auto-tuning

red0 and auto-tuning red1. For d = 9, auto-tuning ortho returns a code variant that performs

better than the one returned by auto-tuning red1. In theory, this situation should not occur

since the points traversed by auto-tuning ortho are a subset of the points traversed by auto-

tuning red1. In reality however, auto-tuning red1 may return a false optimum predicted using

the linear approximation described before. The false optimum is in most cases close in terms

of GFlop/s to the real optimum obtained through auto-tuning slow. This situation is mainly
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Figure 5.6: Impact of auto-tuning optimizations on the performance of sginterp on sysA.

System
Auto-tuning red0 Auto-tuning red1 Auto-tuning ortho

Min. Max. Avg. Min. Max. Avg. Min. Max. Avg.

sysA 4x 17x 10x 84x 6800x 2514x 846x 42279x 21426x
sysB 6x 12x 8x 153x 1969x 999x 1594x 16777x 10379x

Table 5.3: Speedup of auto-tuning optimizations relative to auto-tuning time.

caused by a small execution time whose effect is explained next.

A small execution time in the order of 1 ms generates serious problems. An important

challenge comes from the resolution of the timer. All the measurements included in this chapter

rely on CUDA events which in theory have a resolution of 0.5 µs. In reality however, measuring

the execution time of a kernel 100 times reveals on the tested systems that the standard deviation

is approximately 0.02 ms. If the input data is reduced so that the execution time is smaller than

1 ms, the 0.02 ms can severely affect the comparison between different code variants generated

during the optimized auto-tuning process. A more accurate but also more intrusive method

for measuring the performance can be implemented using the clock instruction within a CUDA

kernel. This gives access to a counter local to each SM which is incremented at every clock

cycle. An implementation of this method is provided by [86].

Fig. 5.7 provides an aggregate view on the performance measured using optimizations, i.e.

input reduction and search partitions, on sysA and sysB. The numbers are averaged for d in

the range from 4 to 10. For every value of d auto-tuning is executed 5 times. The results show

that there is only a slight difference of less than 5% between the GFlop/s rate for the best

optimization parameters returned by auto-tuning ortho compared to auto-tuning slow. This

suggests that for sginterp, auto-tuning can give priority to the improvement of the locality

rather than to the exploration of the trade-off between locality and multithreading.
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Figure 5.7: Impact of the optimizations on auto-tuning on sysA and sysB. The speedup is
calculated relative to the GFlop/s rate measured for the initial sginterp without auto-tuning.

Table 5.3 shows the benefits of the optimizations relative to the auto-tuning time measured

for auto-tuning slow. Min and max correspond to d = 1 and d = 10 respectively. This table

proves that fast auto-tuning can be achieved at the cost of only a slight decrease in the GFlop/s

rate shown in Fig. 5.7. As a concrete example, on sysA, for d = 10 auto-tuning slow needs 470 s

to complete while the optimizations decrease this duration to 16 s for auto-tuning red0, 70 ms

for auto-tuning red1, and 8 ms for auto-tuning ortho.

5.5.3 Sparse Vector - Matrix Multiplication

Description

The computation done in spvm is depicted in Fig. 5.8. In linear algebra terms, the result y

is the inner product between an n-vector x with m non-zero components and A, an n-vector

of vectors of size p. The vector of integers ix is used to select only those rows from A that

correspond to the non-zero values stored in x. The selected rows are multiplied each with one

value from x, and the results are subsequently summed up in y. This computational behavior

is characterized by low computational intensity, making spvm a memory bound routine.

In computational steering, the A matrix typically contains 109 values and the size of each

row, p, has approximately 106 or more elements. The number of rows of A, n, is in the order of

102. The number of selected rows from A is generally smaller than 102.

Optimization Parameters

In the parallelization scheme used for spvm on GPUs, each thread computes one component of

the output vector y. Hence, each thread handles exactly one column from the matrix A.
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Figure 5.8: Computation done in spvm. It shows how the output vector y results from x and
A. Only the green rows are used and are selected through the integer vector ix.

Listing 5.6 Main loop nest of spvm. Initially y is all 0.

1: for i = 0 to p - 1, step pt do // y tiles

2: for j = 0 to m - 1, step wu do // A tiles

3: for jj = j to min(m + wu, m) - 1 do // inside an A tile

4: for ii = i to min(p + pt, p) - 1 do // inside an y tile

5: y[ii] += x[jj] * A[ix[jj]][ii]

In Listing 5.6, the optimization parameters for spvm are displayed. The pt parameter

controls the locality, allowing a thread to compute pt components of the output vector. The

wu parameter controls the horizontal slicing of the matrix A. More precisely, wu is inversely

proportional to the number of slices. Each thread thus computes the contribution on y of pt

columns in a slice. By doing so, more parallel work is created by choosing wu so that wu < m.

The same observations from sginterp apply also here. First, increasing the amount of parallel

work using wu requires reducing (summing up) the contributions from multiple threads that

work on the same components of y. Second, wu should only be activated when the pair bs and

pt does not allow for the GPU to be fully occupied, i.e. when p/(bs · pt) < Bgpu(bs, pt) , where

Bgpu comes from Eq. 5.6.

The ranges for the optimizations parameters are the following:

• bs ∈ {32, 64, 96, 128, . . . , 1024} (32 values)

• pt ∈ {1, . . . , bp/(Mgpu · bs)c} (approximately 103 values)

• wu ∈ {1, . . . ,m/4,m/2,m} (log2m values, approximately 10 in practice).

The methods used to explore the resulting 3d search space are the same as the methods described

for sginterp, shown in Listing 5.2 and Listing 5.3. Listing 5.3 is based on the assumption that
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(a) GFlop/s rate of auto-tuned spvm on sysA.
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(b) GFlop/s rate of auto-tuned spvm on sysB.

Figure 5.9: Performance of auto-tuned version of spvm.

the search for the best bs is orthogonal to the search for the best pair pt and wu. Hence, pt

and wu form together a search partition whereas bs is placed in another partition.

Input Reduction

Input reduction for spvm is applied to the input parameters p and n. Reducing p is equivalent to

reducing the number of threads that execute on the GPU. The reduction of n affects the amount

of work processed within a thread. Similarly to sginterp, the execution time is approximated

as a function with two parameters: the number of components in the output vector y and the

number of selected rows from A. The method is depicted in Fig. 5.4 is which for spvm the two

optimization parameters in the figure are replaced by p and m.

Results

Fig. 5.9 shows the performance of spvm across different configurations of the sparse vector: from

25 non-zeros to 250 non-zeros using a step size of 25. The initial version denotes the version of

spvm for which there is one component of y computed per thread. The auto-tuned version is

1.6x faster than the initial version on sysA, and 1.4x faster on sysB.

The best values for the optimization parameters shown in Table 5.4a is consistent across

different values for m only on sysA. The best bs is 96 whereas the best pt is 8. On sysB, the

best values for the optimization parameters shown in Table 5.4b depend on the values of the

input parameters. On both systems, the best value found for wu is m and the discussion is the

same as for sginterp. First, this result confirms that there is enough parallelism to keep the

entire GPU busy. Second, the reduction done for wu < m adds more overhead to the execution.
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Size of x Best bs Best pt # of variants

25 96 8 289
50 96 8 291
75 96 8 284
100 96 8 288
125 96 8 282
150 96 8 283
175 96 8 282
200 96 8 291
225 96 8 287
250 96 8 283

(a) The best values for bs and pt on sysA.

Size of x Best bs Best pt # of variants

25 416 3 285
50 192 4 270
75 128 10 322
100 128 10 304
125 448 10 309
150 128 10 312
175 128 10 321
200 128 10 323
225 128 10 306
250 448 10 307

(b) The best values for bs and pt on sysB.

Table 5.4: The best values for bs and pt resulting from auto-tuning on sysA and sysB. The best
value for wu is n on both systems.
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Figure 5.10: Impact of auto-tuning optimizations on the performance of spvm on sysA.

In Fig. 5.10 a comparison in terms of GFlop/s is shown between the best code variants

returned by different versions of auto-tuning. Auto-tuning slow refers to the implementation

of Listing 5.2 without input reduction. Auto-tuning red0 includes the reduction of p whereas

auto-tuning red1 incorporates the reduction of both p and m. Auto-tuning ortho is the imple-

mentation of Listing 5.3 in combination with input reduction applied to p and m. One can see

in Fig. 5.10 that the GFlop/s rate differs only slightly across auto-tuning methods. The fact

that auto-tuning ortho is almost on par with auto-tuning slow validates the design choice made

in Listing 5.3, i.e. higher priority is given to locality in comparison to multithreading. More

precisely, the best pt is searched for prior to the search for the best bs.

Fig. 5.11 provides an aggregate view on the speedup obtained on sysA and sysB using auto-

tuned versions of spvm resulting from different auto-tuning methods. Here, the speedup is

relative to the GFlop/s rate and is calculated as an average across different input data. For



5.6. OTHER EXAMPLES 104

sysA sysB
0.00

0.50

1.00

1.50

2.00

2.50

1.
61
x

1.
39
x1.

52
x

1.
34
x1.

53
x

1.
35
x1.

53
x

1.
36
x

Auto-tuning slow
Auto-tuning red0
Auto-tuning red1
Auto-tuning ortho

System

S
p

e
e

d
u

p

Figure 5.11: Impact of auto-tuning optimizations on performance. The speedup is relative to
the GFlop/s rate.

System
Auto-tuning red0 Auto-tuning red1 Auto-tuning ortho

Min. Max. Avg. Min. Max. Avg. Min. Max. Avg.

sysA 1.5x 4.5x 2.2x 1.7x 20.2x 10.4x 54.9x 1017.5x 404.4x
sysB 1.2x 1.4x 1.3x 1.5x 14.3x 7.8x 31.1x 404.8x 208.4x

Table 5.5: Impact of auto-tuning optimizations on auto-tuning time. Speedup is here relative
to the duration of auto-tuning without optimizations.

each input data, auto-tuning is performed 5 times. The graph shows that there is a relative

difference of no more than 5% between the performance of the best code variant found by auto-

tuning slow and any other auto-tuning version. Looking at Table 5.5, one can see the benefits

obtained in return for the 5% loss in performance. The min and max columns correspond to

m = 25 and m = 250 respectively. In absolute numbers, for m = 250, the auto-tuning time

is decreased as follows: Initially, auto-tuning slow needs 2.16 s to complete, auto-tuning red0

executes in 500 ms, auto-tuning red1 executes in 120 ms, and auto-tuning ortho returns in 3 ms.

5.6 Other Examples

There is a wide range of applications that can benefit from the lessons covered in this chapter,

including: matrix - vector multiplication, stencil computation, and direct n-body method. These

examples can all expose the optimization parameters previously discussed: bs, pt, and wu. In

fact, bs is an inherent parameter of CUDA programs.

In matrix - vector multiplication, A ·x = y, the näıve parallelization is that one thread block

processes one row of the matrix. In order to improve the locality, one tries to increase the reuse

of x. For this, a thread block can work on pt rows from A. If the number of rows underutilizes
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the GPU, more parallelism can be created by slicing A vertically and having each thread block

working on one slice. In this case, the slicing is controlled through wu.

Stencil computations can be done on 2d or 3d domains, can result from finite difference or

from image processing, but in general, the parallelization scheme on GPUs is for each thread

to traverse / update the matrix (in the case of a 2d domain) from top to bottom. This means

that by default, each thread computes one column of the matrix. Similarly to spvm, the pt

parameter controls the number of columns that are updated by each thread with the objective

of increasing the locality. wu controls the horizontal slicing of the matrix as before.

In the direct n-body method, all the interactions, i.e. O(n2), between the bodies of the

system are computed at every iteration. In this context, pt allows one thread to update the

positions of pt bodies, meaning that the thread computes the interactions between its bodies

and all the rest. Using wu, the parallelism can be increased whenever the number of bodies

is insufficient to fully occupy the GPU. More precisely, each thread computes in this case the

interactions between its bodies and only a subset of wu bodies from the rest.

The input reduction technique can be applied to all these examples in order to shorten

the auto-tuning time. Note that input reduction does not restrict one to the search space

composed of bs, pt, and wu. In fact, the search space can also be built around other optimization

parameters. Input reduction requires that the input parameters export their dependency on

the number of threads and that the threads are homogeneous.

5.7 Summary

This chapter proposes techniques for accelerating the auto-tuning of GPU codes. The central

point is an input reduction technique in which the input parameters are reduced so that the

execution time is significantly decreased but the global behavior is preserved. The technique

is used to accelerate the auto-tuning of sparse grid interpolation and sparse vector - matrix

multiplication. Especially for sparse grid interpolation, the benefits in terms of auto-tuning

time are considerable, e.g. 103x, while the loss in GFlop/s rate does not exceed 5% compared

to the unoptimized auto-tuning method. In addition to input reduction, general optimization

parameters for GPU codes are described in detail. Search partitions are also discussed in the

context of search space pruning using correlations between optimization parameters.
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Chapter 6

Load Balancing on Heterogeneous

Systems

Obtaining high performance on heterogeneous systems implies that the CPU and the GPU are

used to process work that matches their specific strong points. This translates in either executing

a given routine on the CPU or on the GPU and often this decision depends on the nature of

the input data. In other cases, both the CPU and the GPU can be used simultaneously for

processing the work. In this context, load balancing is of high importance and one can employ

a static or a dynamic scheme for avoiding idle computation resources. In order to achieve

load balancing, multi-version routines optimized for the CPU and the GPU are a primary

requirement. This chapter describes load balancing techniques that improve the performance of

the computational steering application described in Chapter 3. More precisely, load balancing is

applied to the central three routines of this applications: sparse grid hierarchization (sghierarch),

sparse grid interpolation (sginterp), and sparse matrix vector multiplication (spvm).

6.1 Introduction

Heterogeneous systems containing multi-core CPUs and accelerators enables one to reach higher

computational speeds while keeping power consumption at acceptable levels. The most common

accelerators nowadays, GPUs are very different in both purpose and characteristics compared

to CPUs. Whereas CPUs incorporate large caches and complex logic for out-of-order execution,

branch prediction, and speculation, GPUs contain significantly more floating point units. They

have in-order cores that hide pipeline stalls through multithreading. Thus, up to 1536 CUDA

threads can run concurrently on one GPU core, called Streaming Multiprocessor (SM). Accord-

ing to [1], CPUs can be referred to as latency oriented processors with complex techniques used

107
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for extracting Instruction Level Parallelism (ILP) from a sequential stream of instructions. In

contrast, GPUs are throughput oriented processors, containing a large number of cores (e.g. 16)

with wide SIMD units (e.g. 32 lanes), making them ideal architectures for vectorizable codes.

While any application can be executed on CPUs, not all programs can be ported to GPUs or

deliver better performance on GPUs. This makes GPUs special purpose processors as opposed

to CPUs which have a general purpose character.

Programming heterogeneous systems is a tedious task. One has to map the parts of an

application for execution on a CPU and / or on a GPU. This mapping has to be dynamic so

that it can adapt to different heterogeneous systems characterized by different ratios between

the computational speed of the GPU and the one of the CPU. Offloading a routine for execution

on the GPU can result in a situation in which the GPU is busy computing and during this time

the CPU is idle. This makes sense if the CPU’s performance for a given routine and system is

not comparable with the one delivered by the GPU. Nevertheless, portability problems occur

on other systems that are more balanced, e.g. contain more CPU cores. Here, the contribution

of the CPU to the performance cannot be neglected. In order to achieve both performance and

portability, heterogeneous programs must be able to adapt the mapping between routines and

processors according to the underlying system.

There are two main requirements for writing programs for heterogeneous systems. First, in

order to support a wide range of heterogeneous systems in a portable way, a developer should

provide multiple versions of a function for each processor type available in the system. For

multi-core CPUs, OpenMP is the de facto programming model. Nvidia GPUs on the other

hand are best programmed using CUDA [14]. OpenCL [15] targets both CPUs and GPUs

but even in this case, in order to achieve optimal performance, multiple versions are necessary.

Second, adequate distribution of the work between the CPU and the GPU plays a crucial role

in obtaining portable performance. This helps to avoid having idle processors.

In this chapter, load balancing is applied to the computational steering application described

in Chapter 3. The goal is to accelerate the routines in this application, i.e. sghierarch, sginterp,

and spvm, by exploiting the full computation power of heterogeneous systems. This can be

achieved if the computation is distributed between the CPU and the GPU. A typical realization

of load balancing relies on a dynamic approach in which the work is (over)decomposed at

runtime into tasks of a fixed size (grain size). The tasks are grabbed for execution by the CPU

and the GPU. Here, a challenge is represented by the scheduling’s overhead which restricts the

grain size. Moreover, the so-called grain size problem refers to finding a task size that is optimal

with respect to both the CPU (e.g. a multiple of the tile size used for cache blocking) and the

GPU (e.g. a multiple of the maximum number of concurrent threads). Dynamic load balancing
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is compared to a static approach in which the work is distributed at the beginning of the

computation taking into account the computational speeds of the heterogeneous components.

This approach lacks the problems of dynamic load balancing but it is less adaptive on a non-

dedicated system shared by multiple running applications. More importantly, it cannot cope

with situations in which the parallelism is irregular. Moreover, determining the speeds of

the CPU and of the GPU poses further challenges as they generally vary across systems and

applications, and even across different values assigned to the input parameters.

6.2 Existing Load Balancing Solutions

One of the notable examples of numerical libraries that include load balancing for heterogeneous

systems is MAGMA [87]. In MAGMA, the goal is to provide routines for dense linear algebra

that exploit the full computation power of modern systems that contain multi-core CPUs and

GPUs. In this chapter, the work follows the same philosophy as MAGMA in the sense that load

balancing is used to improve the performance of the fastsg library described in Chapter 3.

The frameworks described in [88, 89, 90, 91, 92, 93] are more general purpose and cope with

heterogeneity by incorporating a runtime system that provides various options for load bal-

ancing by scheduling tasks. Most scheduling schemes are based on greedy algorithms in which

scheduling decision are not revisited as opposed to more expensive approaches based on back-

tracking. Besides load balancing, these solutions also aim at simplifying the management of data

transferred to / from the GPU over PCIe. Since nowadays heterogeneous systems are typically

distributed memory systems, coherence is software controlled. Although the terminology varies

across frameworks, the principles are the same, borrowed from instruction scheduling in modern

out-of-order processors: Tasks can be executed once their input dependencies are satisfied, not

necessarily in the order in which they were submitted to the runtime system. Moreover, some

frameworks also implement techniques such as speculation and register renaming. Therefore,

the frameworks share in general the following properties:

• There are multiple implementations of a task for each type of processor.

• The arguments of a task have one of the attributes: read, write, or read-write.

• The arguments are logically (not physically) placed in a shared memory space.

• The tasks are launched asynchronously and their order together with their arguments

implicitly form a Dependency Acyclic Graph (DAG).

• As soon as tasks in the DAG become ready for execution, they are either inserted in a

central queue or in the individual queues of the processors.
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• Data is moved automatically as required by the chosen schedule.

At the core of StarPU [88] and StarSs [91], there is the task concept. A feature of StarPU is

that it uses a history based model [94] for estimating the execution time which allows for better

scheduling decisions to be made as part of a Heterogeneous Earliest Finish Time (HEFT) scheme

[95]. Harmony [89] is similar to StarPU and StarSs but in addition it allows for asynchronous

control structures and speculation (branch prediction). Anthill [92] is a data-flow framework

in which a program is written as a composition of filters that transform and pass data to each

other. Merge [90] applies the map-reduce paradigm to heterogeneous computing, providing also

load balancing across multiple types of processors.

The Qilin framework [93] differentiates itself from the rest of the frameworks presented

here through the fact that it does not use tasks. By reducing its scope to data parallelism,

load balancing is achieved in Qilin through data partitioning. Hence, the work is divided into

two pieces of different sizes which are assigned to the CPU and the GPU and are inversely

proportional to the predicted execution time for the CPU and the GPU.

In task based programming, choosing the best performing grain size is often challenging. In

this chapter, two approaches are used in order to tackle this problem: (1) multi-grain dynamic

load balancing in which there are two grain sizes, for the CPU and the GPU, which are adjusted

according to the remaining unprocessed work, and (2) static load balancing which means in the

chapter that the computation is divided into two work pieces whose sizes are proportional to

the computational speeds of the CPU and the GPU for the given computation.

6.3 Considerations

6.3.1 Multi-versioning

Multi-versioning is an essential requirement for coping with heterogeneity. Although there are

programming languages, e.g. OpenCL, which can be used to program both CPUs and GPUs, the

two types of processors are radically different. For most routines, it is still necessary to optimize

them individually for each type of processor. Therefore, the same function (algorithm) often has

multiple implementations or versions. For instance, the CPU version is tuned for the best use of

caches and vector units and may use OpenMP for parallelization. On the other hand, the GPU

version implemented in CUDA typically includes optimizations that maximize the utilization of

the GPU (occupancy, register file, etc.), coalesce the accesses to the global memory of the GPU,

eliminate or reduce bank conflicts at shared memory level, minimize the number of branches

that result in divergent warps, and make proper use of the flexible memory hierarchy found on
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the GPU (register file, L1 cache / shared memory, constant memory, texture memory, global

memory).

A first reason behind multi-versioning is portability. In general, when programming acceler-

ators an offloading approach is employed in which the GPU is seen as a co-processor for specific

tasks. In this context, a simple scheme is to create a mapping between each routine and the

type of processor on which it performs the best, i.e. the execution time is minimized. Even if

the GPU seems to be the best option for a given routine on a specific heterogeneous system,

the situation may change on another system. It is thus important to provide a fallback solution

to cover either the case in which there is no GPU on the second system or the case in which

there is a different ratio between the computational speed of the GPU and the one of the CPU.

Using only the best processor type for a given routine is a scheme that in general limits the

amount of parallelism in a heterogeneous system. The risk is in fact that some computation

resources may be idle as each routine is executed by only one type of processor, e.g. the CPU is

idle while the GPU executes a GPU friendly routine. The solution is to move from offloading to

full distribution of the computation performed by a routine. In such a scheme the main challenge

is realizing the cooperation between the CPU and the GPU for computing each routine. Since

this cooperation implies that data is exchanged over PCIe between the memory of the CPU

and the one of the GPU, simultaneously using the CPU and the GPU is not always feasible for

every function of an application, e.g. when data access patterns are complex and suffer from

lack of locality, thus they cannot be predicted at the time when the computation is distributed

to the CPU and the GPU. This situation is described in this chapter for sghierarch. The other

two kernels, sginterp and spvm, allow for the distribution of the computation and the data.

6.3.2 Assigning Work to Processors: to-one and to-all

The work performed by some routines cannot be distributed across a heterogeneous system,

e.g. because of too much communication over PCIe which might be necessary in order to keep

the data consistent. In this case, a heterogeneous system is often underutilized and the GPU acts

as a coprocessor. In the rest of the chapter, this method of assigning work to a heterogeneous is

referred to as to-one since the work is processed within one processor domain which is defined

as the set of processors that share the same memory space. In this context, the PCIe bus can be

seen as separator between the CPU domain and the GPU domain. As a more concrete example,

to-one is explained for the sghierarch routine.

In the sghierarch routine, the sparse grid is stored in memory as a 1-dimensional (1d) dense

array x. The sparse grid is characterized by a number of dimensions and a refinement level, d and

l respectively. In a loop that iterates from 1 to d, each value of the sparse grid is updated using
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Figure 6.1: Simplification of sghierarch. It shows how the vector y is computed in iteration i,
where i is from 1 to d. The marked components are used for the calculation of y[j].

the current value and two dependencies from the same sparse grid. For simplicity and without

loss of generality, consider that the indices of the dependencies are stored in two matrices with

d rows, lidx and ridx. In reality however, these matrices are not stored in memory but their

values are computed on-the-fly, i.e. lidx and ridx are in fact functions executed entirely on-chip

without referencing memory (they execute approximately l operations, where l is typically in

the order of 10). Thus, a simplified version of the update performed in sghierarch consists in

the operation y[j] = x[j]− (x[lidx [i][j]] + x[ridx [i][j]])/2, where j iterates over all the values in

y for every i in the range from 1 to d. y, x, lidx and ridx have the same number of columns,

i.e. the number of points of the sparse grid. This computation is displayed in Fig. 6.1. For

completeness, note that after every i-th iteration, y swaps with x. Hence, the final result is x.

The parallelization of the computation from Fig. 6.1 is achieved on a shared memory system

by distributing the components of y across threads. On distributed memory systems such as a

heterogeneous system containing CPUs and GPUs, there are two problems of high importance:

(1) the indirection done through the arrays lidx and ridx and (2) the swap between y and x after

each iteration i. Distributing the computation of y across the CPU and the GPU means that

the entire x must be kept consistent in both memories, of the CPU and of the GPU, since it is

not possible to transfer to the GPU only that part from x actually needed by the computation

assigned to the GPU. This results from the fact that the exact components of x needed by the

GPU are not known at the time when the distribution is performed but only during the actual

computation. Simultaneously using the CPU and the GPU for sghierarch requires in fact that

the entire y is exchanged over PCIe after each iteration i in order for the data needed in the next

iteration to be consistent. More precisely, the GPU is sent the part of y previously updated
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by the CPU. Reversely, the CPU receives the updated part of y from the GPU. Performing

such transfers over PCIe is inefficient. Note that the bandwidth of PCIe is typically one order

of magnitude less than the bandwidth of the GPU memory. Therefore, for efficiency reasons,

sghierarch cannot involve in its computation all the processors in a heterogeneous system. A

better alternative is a to-one scheme of assigning the computation to only one type of processors

that share a physical memory space.

In contrast to the to-one work assignment, to-all means that the computation involves all

the processors in a heterogeneous system. This applies to the sginterp and the spvm functions.

For sginterp, interpolation points are distributed across processors and each processor returns

the results for its assigned points. The sparse grid is copied entirely in the memory of the GPU.

In the case of spvm, each processor computes a part of the output vector. More details are

provided further in the chapter. For now, it is worthwhile mentioning that the memory access

patterns in these two routines are regular and do not pose the difficulties of sghierarch for which

an entire array has to be exchanged over PCIe to achieve the required consistency.

6.4 Task Based Scheduling for Heterogeneous Systems

6.4.1 Dynamic Task Based Scheduling

In dynamic task based scheduling schemes, the work is (over)decomposed into chunks whose

number is ideally significantly larger, e.g. orders of magnitude, than the number of processors

in the system. An abundance of work chunks allows the computation resources to be assigned

an amount of work proportional to their processing speeds, i.e. the faster a processor, the more

work it gets. In a dynamic scheme, scheduling is performed during execution, meaning that

the tasks are scheduled no sooner than when their dependencies are satisfied. For this reason,

dynamic scheduling targets especially the case of non-deterministic tasks defined as tasks whose

duration is not known or cannot be estimated prior to execution time. This is the most general

situation for scheduling and occurs for instance when the tasks are data sensitive or incorporate

a complex control flow, i.e. if-statements whose conditions cannot be predicted before execution.

Dynamic scheduling can also cope with the volatile conditions of a non-dedicated system.

The difficulty to estimate the duration of the tasks in the dependency graph, a directed

acyclic graph (DAG), adds more complexity to the scheduling problem. General heuristics are

often based on list based scheduling [96]. In list scheduling, the tasks are assigned priorities

which provide an order relation for available tasks (ready for execution) which can be assigned

to processors. As soon as the tasks become available, they are scheduled in the order of their

priorities. The priority of a task can be given by its distance to a terminal task in the DAG or
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(a) Using a global task queue. (b) Using multiple queues and a dispatcher.

Figure 6.2: Dynamic load balancing schemes.

by its number of successors.

Dynamic scheduling has many forms: It can use a single queue or multiple queues, can be

centralized or decentralized, can be triggered by an underloaded processor (receiver initiated)

or by an overloaded processor (sender initiated). For a more comprehensive view of dynamic

load balancing schemes, the reader is referred to [97].

Fig. 6.2 depicts dynamic scheduling using a single queue and multiple queues. In Fig. 6.2a,

ready tasks whose dependencies are all satisfied, are pushed to the task queue. From the queue,

a task is grabbed by a worker thread which executes the task either on the CPU or on the GPU.

After the execution of the task completes, a signal is sent to the DAG in order to mark that

the data needed by the successors of the task in the DAG is now available. This is done by

incrementing a counter per task which initially has the value 0. The task becomes ready when

the counter matches the number of dependencies, i.e. parent tasks. If all the dependencies of a

child task in the DAG are satisfied then it is inserted at the back of the task queue.

From an implementation point of view, a task is defined as a collection of input data, output

data, and a multi-version function. If a task is extracted from the queue by a CPU worker,

then the CPU routine is invoked. Otherwise, the GPU worker calls the GPU routine. Since

the CPU and the GPU have non-coherent memories, sometimes the input data needs to be

transferred over PCIe in order to ensure consistency. In most task based frameworks, the data

copy to / from the GPU is managed transparently by a runtime system.

The single queue design has the disadvantage that the worker threads access concurrently

one task queue. The needed synchronization is a source of overhead especially for fine-grained

tasks. Furthermore, the contention’s negative impact on performance is proportional to the

number of workers. In a design based on multiple queues, after a task becomes ready it is
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routed to one of the queues by a dispatcher component. A random scheme can be used for

routing. A variation is to combine random with a computational speed proportionate selection

of workers, i.e. the higher the speed of a processor, the higher the probability that its queue is

selected as destination. In a work stealing [98] based scheduling scheme, if a worker executes a

pop operation on an empty queue then it becomes a thief, chooses a victim worker from which

it steals one or more tasks. The decentralized design allows in this case for improved scalability.

6.4.2 Scheduling Deterministic Tasks

Deterministic tasks are defined as tasks whose duration can be estimated accurately before

execution [96]. In a heterogeneous system, this implies that for every task the execution time is

known for both the CPU and the GPU routines associated with the task. Using the execution

time and the data transfer time over PCIe, the DAG can be scheduled statically, prior to

execution time. The advantage is that better schedules can be built but this requires a dedicated

system. In contrast to dynamic scheduling, there is no queue contention in this case. Each

worker processes the tasks assigned to it by a non-backtracking scheduling heuristic. A worker

communicates the completion of a task to workers whose tasks are children of the finalized task.

In [88, 99] the authors use HEFT scheduling for assigning (deterministic) tasks to processors.

They employ a history based approach [94] for estimating the duration of tasks. The history can

be built during calibration runs and is used to feed a regression model that approximates the

execution time of a task on different types of processors, e.g. CPU and GPU, as a function of

the task size. The task size is a scalar value calculated through a linearization of the parameters

of a task. The selection of a queue where a task is submitted is controlled by the equation:

i = argmin
k

(tqk + tej,k + tdj,k), (6.1)

where j refers to the current task, k is the identifier of a queue (or worker) and is used to iterate

over all the queues (workers), tq is the time when the queue is expected to become empty, te

is the estimated duration of the task on processor k, and td is the time necessary to transfer

the input data needed by the task to processor k. After the best destination queue i is chosen,

tq i is updated to tq i := tq i + tej,i + td j,i. It is worthwhile mentioning that td j,k is 0 if the input

data already resides in the memory of processor k. The data copy over PCIe takes place only

when the input data of the task is in the memory of the CPU and the chosen worker is a GPU

worker, or vice versa. The data consistency across the PCIe border can be achieved through a

software implementation of the Modified Shared Invalid (MSI) protocol as shown in [88].
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6.4.3 The Grain Size Problem

Choosing the optimal grain (or task) size is a well-known problem in scheduling [96]. It revolves

around the trade-off between parallelism and locality. A small grain size results in a larger

number of tasks which allows for more processors to be used in the computation. However, the

cost is increased overhead in the form of communication delay and scheduling time. In the case

of heterogeneous systems, the problem is described in [99] for LU decomposition. There, the

authors decrease the task size towards the end of the computation in order to allow for both

the CPU and the GPU to process tasks simultaneously, i.e. the objective is to avoid having

idle processors. In [100], the problem in further refined, focusing on the implications of the

grain size on the optimizations applied to the CPU and the GPU implementations of a given

algorithm. Consequently, there are three main aspects that have to be taken into account when

dealing with the grain size problem on heterogeneous systems: (1) parallelism, (2) scheduling

and communication overheads, and (3) constraints because of specific optimizations targeting

the CPU and the GPU.

With regard to parallelism, the grain size must ensure that all the processors can take part

in the computation. Hence, a lower limit for the number of tasks is given by the number of

processors. The number of tasks needs to exceed considerably this limit, e.g. factors of magni-

tude, in order to provide the scheduler with the flexibility necessary to cope with heterogeneous

tasks, heterogeneous processors, and the volatile conditions of a non-dedicated system. Pro-

vided that the number of tasks is set by the programmer, its value can then be used to estimate

the maximum grain size per task type.

In order to maximize parallelism, the grain size must be minimized so that there are more

tasks, but this typically creates unacceptable scheduling and communication delays. The re-

duction of these overheads puts a lower limit on the grain size defined as the minimal task

size for which the execution time of the task dominates, e.g. more than 100x, the duration of

queue operations used in the schemes shown in Fig. 6.2. Similarly, the execution time of the

task must also dominate the PCIe communication time. This is often accomplished by avoiding

that the data transfers become latency bound. In other words, reducing the scheduling and

the communication delays requires that the grain size is increased. Note that a too large grain

size reduces the parallelism and is more prone to situations in which the slow processor grabs

the last task although the fastest processor is about to finish its current task and its processing

speed is considerably higher. In this scenario, the fastest processor is idle towards the end of

the computation. The more coarse granular the tasks, the more severe the negative impact on

the performance.

Another point that needs consideration is the correlation between the grain size and the
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Figure 6.3: The constraints influencing the selection of the optimal grain size.

optimizations applied to the CPU and the GPU versions of a function executed by a task.

As an example, a highly tuned CPU routine may include optimizations for caches, e.g. cache

blocking. For optimal performance, the grain size preferred by the CPU should allow for the

best exploitation of caches. This often translates to setting the grain size so that the size of the

data processed by the task is a multiple of the optimal cache block (or considerably larger than

the optimal cache block which reduces parallelism). The same observation applies also for the

GPU routine, i.e. the grain size should ensure that the number of GPU threads is a multiple of

the maximum number of active threads, Bgpu from Eq. 5.6.

Since GPUs are typically faster than CPUs, the effect of not fitting the grain size to the

GPU optimizations is more severe. If the grain size is not a multiple of Bgpu , then there is a tail

effect that can significantly reduce the performance of the GPU. Assume that the grain size is

chosen so that the GPU routine is executed using (n−1) ·Bgpu +r homogeneous threads, where

r � Bgpu . The first (n − 1) · Bgpu threads fully occupy the GPU. The tail effect results from

the execution of the last r threads which cannot fill the entire GPU, thus reducing the speed of

the GPU to fs, a fraction of s, e.g. s/16. Consequently, the average speed of the GPU is given

by savg = ((n − 1) · s + fs)/n. The worst case scenario corresponds to n = 1. The increase of

n, e.g. resulting from the increase of the grain size, limits the impact of fs, i.e. the tail effect.

Another solution that completely eliminates the tail effect is to ensure that r = 0.

In some situations, the grain sizes preferred by the CPU and the GPU, gcpu and ggpu respec-

tively, do not match. Moreover, most task based frameworks for heterogeneous programming do

not efficiently support this scenario, meaning that the grain size is most of the time a constant

scalar for all the tasks of the same type (the same multi-version function). Ideally, the grain

size should be set to SCM (gcpu , ggpu), where SCM is the smallest common multiple. This can

result in tasks that are too large and if the computation is not abundant, then the parallelism

is reduced. Another approach is to prioritize by setting the grain size to either gcpu or ggpu de-

pending on which type of processor is the fastest for the given task, i.e. the CPU or the GPU.

The consequence is that the slower processor may no longer operate at full efficiency. This can

have a significant negative impact on the performance of a heterogeneous system especially if

the performance of the CPU is close to the performance of the GPU and the preferred grain

sizes are radically different.
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Fig. 6.3 shows all the restrictions resulting from parallelism, scheduling and communication

overheads, and optimizations. The parallelism generates an upper limit for the grain size rep-

resented through gmax . The lower limit, gmin , results from the minimization of the scheduling

and data transfer delays. Finally, gcpu and ggpu are the grain sizes preferred by the optimized

CPU and GPU routines respectively. The two candidates for the best grain size are located in

the interval [gmin , gmax ]. If the GPU is faster than the CPU, then priority is given to 2 · ggpu .

6.5 Scheduling Data Parallelism on GPU Based Systems

In a data parallel model, concurrent tasks execute similar or identical operations on data items

that together form the initial data. In general, a data parallel computation contains a sequence

of data parallel stages interleaved with synchronization phases [12]. Achieving load balancing

for data parallelism on multi-core CPUs can be done efficiently using a uniform data partitioning

in which each worker thread processes the same amount of data. This decomposition scheme

cannot be employed on heterogeneous systems because of the different characteristics of GPUs

compared to CPUs. In the presence of heterogeneity, data parallelism can still be managed

using a task graph but this approach suffers from the grain size problem discussed before, thus

leading to a suboptimal utilization of one type of processor. This section describes dynamic

and static scheduling solutions for data parallelism that overcome the task size problem.

6.5.1 Heterogeneous Dynamic Scheduling for Data Parallelism

On homogeneous processors the benefit of dynamic scheduling of data parallelism is given by

the ability to cope with non-deterministic tasks and to adapt to the variable conditions of

a non-dedicated system. OpenMP provides dynamic scheduling for assigning to threads the

independent iterations of a for loop using #pragma omp for schedule(dynamic). Reductions

are also allowed. The iteration space of the loop is divided into chunks which are dynamically

assigned to threads, i.e. when a thread finishes its chunk, it is dynamically assigned a new one.

A straightforward scheme that provides this functionality is shown in Fig. 6.2a. The parameter

exposed by dynamic scheduling is the chunk size, the same as the grain size.

On heterogeneous systems, a single grain size often cannot result in the best utilization of

both the CPU and the GPU. Moreover, in the absence of an abundance of parallelism, a slow

processor can grab a task near the end of the computation while the fast processor is about to

finish its current task. In this case, the fast processor is idle, a situation that should be avoided

in order to reach optimal performance. These two observations lead to a first requirement that

has to be satisfied by the dynamic scheduling of a data parallel computation on heterogeneous
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Listing 6.1 Dynamic scheduling. Scope: one CPU worker and one GPU worker, global queue.

1: α = t_cpu / t_gpu // assume GPU faster than CPU

2: stop = false; stream = 0

3: while not stop do
4: if cpu_worker() then // CPU worker

5: lock.acquire()

6: if queue.size() >= g_cpu + ceil(α) * g_gpu then
7: w_cpu = queue.pop(g_cpu)

8: else
9: w_cpu = queue.pop(min(ceil(α−1 * g_cpu), g_cpu, queue.size()))

10: lock.release()

11: stop = (w_cpu == 0) // true if empty queue

12: if not stop then cpu_routine(w_cpu)
13: else // GPU worker

14: lock.acquire()

15: w_gpu = queue.pop(min(g_gpu, queue.size()))

16: lock.release()

17: stop = (w_gpu == 0) // true if empty queue

18: if not stop then
19: sync(stream)

20: gpu_routine(w_gpu, stream)

21: stream = (stream + 1) % num_streams

systems: The CPU and the GPU routines must process their optimal or preferred grain sizes

whenever the amount of remaining work permits it. The second requirement is that the fast

processor should not wait for the slow processor to finish a task. This can be achieved by scaling

down the grain size for the slow processor. These requirements are addressed in Listing 6.1.

Listing 6.1 depicts a grain size aware load balancing algorithm for data parallelism. For

simplicity but without loss of generality, the case of one CPU core and one GPU is considered.

Furthermore, it is assumed that the GPU is faster than the CPU for the given computation.

Load balancing is based on a single queue scheme in which when a worker finishes its task, it

immediately grabs a new task from the queue. The parameter of the pop(n) routine does not

only extracts a task from the queue but also creates a task of size n.

Four main parameters control the behavior of load balancing: t cpu (1), the time necessary

to execute the grain size preferred by the CPU, g cpu (2), and t gpu (3), the time taken by

the execution of g gpu (4) on the GPU. t cpu and t gpu are obtained in a calibration step

performed prior to execution and are used to scale down g cpu. Besides them, num streams

controls the overlapping of GPU computation and PCIe communication. The assumption that

the GPU is faster than the CPU does no imply that t gpu < t cpu but rather that g gpu/t gpu >

g cpu/t cpu (computational speeds). The variables w cpu and w gpu represent the current task

sizes which may differ from the preferred grain sizes depending on the status of the queue, i.e.
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abundant work or almost empty. Provided that the remaining unprocessed work in the queue

is abundant, wcpu = gcpu and wgpu = ggpu .

The scaling down of the grain size of the slow processor, w cpu, is triggered by the status

of the queue, i.e. the remaining unprocessed work. The objective is to avoid that the fast

processor, here the GPU, is idle at any time. This gives the condition of the if-statement from

line 6. More precisely, line 6 checks if there is enough work so that the slow processor, the CPU,

can process its preferred grain size, g cpu, and during this time the GPU is guaranteed to be

busy. While the CPU executes g cpu, the GPU can execute approximately α · g gpu, where α

is defined in line 1. Hence, the condition is that the remaining work in the queue is bigger than

g cpu + dαe · g gpu. If the work in the queue is insufficient for this condition to hold, g cpu is

scaled down in line 9. The reason behind multiplying α−1 · g cpu is to ensure that the duration

of w cpu is on par with w gpu, i.e. the GPU does not wait for the CPU to finish.

The scheduling algorithm from Listing 6.1 ensures both that the preferred grain sizes are

used whenever there is enough parallel work in the queue, and that both processors are in use

at any time. The case of multiple CPU cores and GPUs is addressed by multiplying g cpu and

g gpu with the number of CPU cores and the number of GPUs respectively.

An optimization applied to Listing 6.1 is the overlapping of PCIe communication and com-

putation. This is shown in lines 19 - 21. Typically, gpu routine copies input data to the GPU,

launches a CUDA kernel, and copies output data to the CPU. Current Nvidia GPUs [11] sup-

port the parallel execution of a CUDA kernel, a data copy to the GPU, and a data copy from

the GPU. This is depicted in Fig. 6.4. Hence, while a kernel processes the current input data,

the next input data is simultaneously transferred to the GPU, and a previous output data is

copied to the CPU. In CUDA, the overlapping of data transfers and computation is realized

using streams which allow for operations submitted to different streams to execute concurrently.

In Fig. 6.4, overlapping enables the GPU to work almost continuously. In this theoretical

example, the execution using 3 streams can be up to 3x faster than when 1 stream is used. In

the case of load balancing, every time a GPU worker extracts a task from the queue, a stream

is chosen in a round-robin manner, the worker waits for the operations (data copy to GPU,

kernel execution, and data copy from GPU) of the previous task sent to that stream to finish,

and subsequently submits the operations corresponding to the new task to the stream.

6.5.2 Heterogeneous Static Scheduling for Data Parallelism

Static scheduling for data parallelism is realized by decomposing the data into chunks whose

number equals the number of worker threads. On homogeneous systems, workers execute the

same operations on chunks of equal sizes. In OpenMP, static scheduling can be used to distribute
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Figure 6.4: The benefits of using 3 streams in the GPU worker thread. i / o means data copy
to / from the GPU. c refers to computation done by the GPU.

the iterations of a for-loop among threads. However, this simple form of scheduling is not

possible on heterogeneous systems due to the different computational speeds of the processors.

In the presence of heterogeneity, one expects that the faster a processor, the larger its chunk is.

On heterogeneous systems, the chunk sizes are directly proportional to the processing speeds

(for a given routine) or inversely proportional to the execution time. Consider that the execution

time of a generic work of size wc on the CPU is tcpu(wc) while the GPU executes the same

amount of work in tgpu(wc) time. Assuming that an arbitrary wa is decomposed into two

partitions, wcpu for the CPU and wgpu for the GPU, the execution time is given by thet =

max(tcpu(wcpu), tgpu(wgpu)). For optimal performance, the goal is to find wcpu and wgpu that

together minimize thet . Since wgpu = wa − wcpu , this translates to determining:

wcpu = argmin
w

max(tcpu(w), tgpu(wa − w)) (6.2)

Here, tcpu(w) and tgpu(wa − w) are not actually known. They can still be approximated from

tcpu(wc) and tgpu(wc). Therefore, tcpu(w) = (w/wc) · tcpu(wc) and tgpu(w) = (w/wc) · tgpu(wc).

In these conditions, the equations for calculating wcpu and wgpu are:

wcpu =
wa

1 + β

wgpu =
wa

1 + β−1

(6.3)

where β = tcpu(wc)/tgpu(wc). In order to determine the amount of work per CPU core, wcpu

is then divided to the number of cores, ncpu . The same procedure is followed for deciding the

work assigned to a GPU in a multi-GPU system containing ngpu identical GPUs.

In general, choosing the right value for wc is not an easy task as it must ensure that the

approximation of the execution time must be accurate for all the values of wa. The difficulty

results from the fact that the time is not linear relative to work but is an increasing function

containing steps, especially on the GPU because of the large number of cores and the wide
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Figure 6.5: Static load balancing resulting from the intersection of two linear functions.

SIMD units (see Fig. 5.1 from Chapter 5). Determining wc must take this aspect into account,

e.g. by sampling at the end of a step. Otherwise, a tail effect may occur that limits the ability

to capture the global behavior of the execution time depending on work.

In order to address tail effects, one can increase wc based on the observation that the larger

the value of wc, the lower the impact of a tail effect. The disadvantage is that the duration of the

calibration phase needed for obtaining the execution time for wc, also increases. In this regard,

a better approach relies on replacing wc with two parameters, one for the CPU, wccpu , and

one for the GPU, wcgpu . The objective is to completely eliminate tail effects. As an example,

the value of wccpu is chosen in accordance to the best cache utilization on the CPU while the

value of wcgpu ensures that the number of launched GPU threads is a multiple of the maximum

number of active threads, Bgpu from Eq. 5.6.

The parameters wccpu and wcgpu are used for approximating tcpu(w) and tgpu(w) using linear

functions of work. Intuitively, these functions should pass through the point (0, 0) signifying that

when the work is 0, the execution time is also 0. However, this assumption is not always valid as

it excludes overheads that occur only once, at the beginning and at the end of the computation,

and that do not scale with work, e.g. data transfers. Therefore, in order to improve the quality

of the linear approximations, at least two points for each type of processor must be used, more

precisely the execution time measured for {wccpu , 2wccpu} and {wcgpu , 2wcgpu} for the CPU and
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the GPU respectively. The resulting linear functions are then given by:

tcpu(w) =

γcpu︷ ︸︸ ︷
tcpu(2wccpu)− tcpu(wccpu)

wccpu
·w +

δcpu︷ ︸︸ ︷
2 tcpu(wccpu)− tcpu(2wccpu)

tgpu(w) =
tgpu(2wcgpu)− tgpu(wcgpu)

wcgpu
· w︸ ︷︷ ︸

γgpu

+ 2 tgpu(wcgpu)− tgpu(2wcgpu)︸ ︷︷ ︸
δgpu

(6.4)

In this context, the solution of Eq. 6.2, wcpu , is determined for a given work wa by intersecting

tcpu(w) with tgpu(wa −w) as depicted in Fig. 6.5. The highlighted lines from Fig. 6.5 form one

function whose minimization results in wcpu . Hence, the equations for wcpu and wgpu are:

wcpu =
δgpu − δcpu + γgpu · wa

γcpu + γgpu

wgpu =
δcpu − δgpu + γcpu · wa

γcpu + γgpu

(6.5)

In theory, if wcpu ≤ 0, then wgpu = wa, i.e. the GPU executes the entire work while the CPU

is idle. A situation more common in practice corresponds to wcpu ≥ wa, meaning that the

CPU computes the whole work, i.e. wcpu = wa, while the GPU is idle. Such a scenario can be

generated when there is a low computation to PCIe communication ratio. In order to calculate

the work assigned to one CPU core and one GPU, wcpu and wgpu are divided by ncpu (the

number of CPU cores) and ngpu (the number of GPUs) respectively.

6.5.3 Comparison

In dynamic scheduling of data parallelism on heterogeneous systems, choosing the right grain size

is of high importance. In order to allow for the best utilization of both the CPU and the GPU,

the grain size is replaced by two grain sizes, one for each type of processor, meaning that the

CPU and the GPU have different grain sizes. In general, the grain sizes must result in optimal

utilization of the cache of the CPU and of the massive parallelism (cores and multithreading)

of the GPU. Moreover, if the grain sizes are too small, then the performance is drastically

reduced by synchronization and data transfer overheads. If the grain sizes are too large, then

load balancing cannot be achieved as the fast processors can be idle while waiting for the slow

processors to finish. The input parameters of a program often influence the performance ratio

between the CPU and the GPU, and the optimal grain sizes. Hence, dynamic scheduling needs
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to be input aware. A first advantage of dynamic scheduling is that it addresses the scenario of

non-deterministic tasks which can only be assigned to processors at runtime. Another advantage

is that dynamic scheduling adapts to the variable conditions of a non-dedicated system. Third,

it allows for overlapping the PCIe transfers with the computation done on the GPU. Fourth,

an MSI protocol can be used to automatically overcome the limited memory on the GPU, i.e.

data transfers are managed transparently by a runtime system. Data on the GPU is evicted

automatically whenever there is not enough free memory for copying the data needed for the

execution of the current task.

In contrast to the dynamic approach for scheduling, heterogeneous static scheduling of data

parallelism does no suffer from the grain size problem. The data is decomposed prior to execu-

tion into chunks, one per processor. The size of a chunk is proportional to the computational

speed of the processor to which it is assigned. Regarding the dependency on input, the parame-

ters of static scheduling need to be recalibrated whenever new input parameters are presented to

the program. A primary disadvantage is that static scheduling cannot adapt to a non-dedicated

heterogeneous system on which there can be multiple running programs. Moreover, overlapping

PCIe communication with processing on the GPU is not a direct benefit and can be achieved

by dividing the chunks into smaller pieces although this introduces the grain size problem.

Similarly, coping with the small amount of memory on the GPU needs to be explicitly handled.

6.6 Evaluation

This section describes the performance results obtained using the load balancing techniques

covered in this chapter. Three case studies are presented: sghierarch, sginterp, and spvm.

6.6.1 Experimental Setup

With regard to the experimental setup, the results are obtained on a dual-socket system con-

taining 4 Intel Nehlaem cores (2.53 GHz) per socket. Hyperthreading is enabled. The CPUs are

complemented by a Quadro 6000 GPU containing 16 cores operating at a frequency of 1.15 GHz.

Each GPU core incorporates a 32-lane single precision SIMD unit.

On the software side, gcc 4.4.5 is used for compiling the host code while for the GPU part

CUDA 4.2 is used. Similarly to the setup from Chapter 4 and Chapter 5, sghierarch, sginterp,

and spvm operate with single-precision floating point numbers. StarPU 4.0 is used as the

reference implementation of dynamic task based scheduling. From the multitude of scheduling

algorithms, the one used in the tests is a HEFT algorithm that relies on history and performance

modeling for approximating the duration of a task on the CPU and on the GPU.



125 CHAPTER 6. LOAD BALANCING ON HETEROGENEOUS SYSTEMS

Figure 6.6: The dependency task graph for sghierarch.

6.6.2 Sparse Grid Hierarchization

In terms of tasks, sghierarch’s computation can be represented as shown in Fig. 6.6. Each task

consists in updating a subset of values from the linear representation of a sparse grid. One

can see there that the computation is done in d iterations. However, after each iteration, the

modified data has to be made available to all the tasks in the next iteration. On a heterogeneous

system, this implies that the entire data has to moved over PCIe: The CPU needs the data

updated by the tasks assigned to the GPU whereas the GPU is sent the data modified by

the CPU. Given the low computational intensity of sghierarch, such a data transfer severely

decreases the performance of the routine. Consequently, the dependency graph together with

the low computational intensity do not allow for a to-all mapping between the tasks of sghierarch

and the heterogeneous processors, the CPU and the GPU.

For sghierarch, the question is whether the GPU is the best processor across all combina-

tions of input parameters. Intuitively, the larger the d parameter, the smaller the impact of

transferring the data over PCIe. More precisely, the data is first copied from CPU memory to

GPU memory. On the GPU, sghierarch writes to each location d times and reads each value

2 · d times. This makes the transfer over PCIe more worthwhile for a larger d.

In a to-one mapping between the computational load of sghierarch and the processors, the

objective is to determine a map that specifies for different values assigned to the input param-

eters which version of sghierarch, for the CPU or for the GPU, delivers the best performance.

For some applications, such a map can be determined by means of a performance model that

includes the PCIe transfer costs and an approximation of the execution times on the CPU and

on the GPU. Since sghierarch is characterized by a rather complex memory access pattern, it

is difficult to create an accurate approximation of the execution time depending on the input

parameters. Therefore, one can employ an empirical method in which sghierarch is executed

on the CPU and on the GPU for different input parameters, and for each parameter the ratio

between the performance of the GPU and the one of the CPU is saved in the map.

In the case of sghierarch, the two input parameters are the number of dimensions, d, and
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Figure 6.7: The to-one map for sghierarch. It contains the ratio between the GFlop/s on GPU
and on CPU. For the highlighted cells, the GPU is at least 0.95x slower than the CPU.

Figure 6.8: The task graph for sginterp. This decomposition is also applicable to spvm.

the refinement level, l. An example of a to-one map used for deciding which processor to use,

is depicted in Fig. 6.7. In this figure, d and l are in the range from 1 to 10. For the highlighted

entries, the CPU is faster than the GPU. In general, for sghierarch, the GPU outperforms the

CPU but there are situations as seen in Fig. 6.7 in which the CPU is up to 1.53x faster than

the GPU. The map can be built once at installation time or can be created on demand.

6.6.3 Sparse Grid Interpolation

The DAG for sginterp is depicted in Fig. 6.8. Each task refers to interpolating at some subset of

points. The reduction tasks results from the division of the sparse grid in blocks (see Fig. 3.6).

The division creates more fined-grained parallelism at the cost of the synchronization needed

for reduction (sum). A task computes the contribution of a subset of the sparse grid blocks

to the interpolation results for a subset of the interpolation points. Subsequently, all tasks

interpolating at the same subset of points are reduced. The task graph for sginterp allows for

a to-all distribution of the computation across all the processors in a heterogeneous system.

For an abundance of interpolation points, a task computes the contribution of all the blocks

for a subset of interpolation points, meaning that the reduction is no longer required. For now,

consider that the coarse-grained parallelism is enough and reduction is not needed.
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Figure 6.9: GFlop/s rate obained using StarPU as a function of grain size.

The performance of a task based implementation of sginterp is depicted in Fig. 6.9. The

number of interpolation points is 2 · 106. StarPU is used for scheduling the work inside the

heterogeneous system, across 8 CPU cores and 1 GPU. The StarPU implementation is a wrapper

around the optimized version of sginterp for CPUs and the auto-tuned version of sginterp for

GPUs. One can notice that the achieved GFlop/s rate depends highly on the grain size. This

is in fact the grain size problem previously described. For d = 8, failing to determine the best

grain size may result in a performance drop of up to 23%. The best performance is found for

a grain size of 32768 and for multiples of this grain size. The larger the grain size, the less the

impact of choosing a grain size. Nevertheless, one cannot ignore the benefits of a small grain size

as this ensures more parallelism, thus a more efficient load balancing even for smaller problems.

A notable aspect in Fig. 6.9 is that the best grain size is not invariant across different input

parameters. This is explained by the interaction between the grain size and the optimization

parameters for the two versions of sginterp, optimized for the CPU and for the GPU.

In Fig. 6.10a, the GFlop/s rate of the CPU version is shown as a function of the grain size.

Only one CPU core is used. The grain size interacts in this case with an optimization targeted

at better cache usage. The grain size directly affects a loop interchange transformation applied

to the CPU version of sginterp. A grain size of 512 is sufficient for the performance of the CPU

version to get close to the maximum GFlop/s rate achieved for a much larger grain size.

The dependency of the GPU’s GFlop/s rate on the grain size is depicted in Fig. 6.10b. As

shown in Chapter 5, the GPU optimization parameters also depend on the input parameters,

especially on the d parameter. The consequence is that the minimal work necessary to fully

occupy the GPU varies, especially for different values of the d parameter. Therefore, if this
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(a) GFlop/s rate of the CPU version of sginterp for
different grain sizes.
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(b) GFlop/s rate of the CUDA version of sginterp de-
pending on the grain size.

Figure 6.10: GFlop/s rate as a function of grain size.

aspect is not taken into account when choosing the optimal grain size, then a tail effect may

occur, meaning that every time the GPU worker executes a task, either not all the SMs are

engaged in the computation or multithreading is not fully harnessed. This is the main cause for

the performance variation seen for different grain sizes. One can notice that the GFlop/s rate

as a function of grain size obtained using StarPU is almost identical to the GFlop/s depicted

for the GPU. This happens because for the given system and input parameters, the largest

contribution to the performance comes from the GPU.

Regarding load balancing, the fact that the grain size preferred by the CPU is 512, hence

rather small, is an advantage for load balancing since it eliminates conflicts with the grain size

preferred by the GPU, which is up to two orders of magnitude larger. The optimal grain sizes

for the GPU are shown in Table 6.1 for different values of d. In other words, setting the grain

size for load balancing to the grain size preferred by the GPU does not sacrifice the performance

of the CPU version of sginterp. The method for finding the optimal grain size for the GPU

is based on determining the minimal number of threads that fully occupy the GPU, Bgpu in

Eq. 5.6, and multiplying it by the number of interpolation points processed per GPU thread.

Since this method does not involve benchmarking, it has minimal overhead.

It is important to observe based on Table 6.1 that for d = 4 and for 2 · 106 interpolation

points, only 35 tasks are created. Intuitively, this does not look like overdecomposition on a

system with 16 CPU workers (16 hardware threads) and 1 GPU worker. Moreover, in such

a scenario, the GPU, in the role of the fastest processor, may have to wait for the CPU to
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d Best grain size

1 16384
2 16384
3 16384
4 57344
5 49152
6 40960
7 40960
8 32768
9 32768
10 32768

Table 6.1: The best grain sizes for the GPU version of sginterp for different values of d.

finish its tasks at the end of the computation. For optimal performance, having the GPU in

an idle state should be avoided. There are three solutions to this problem: (1) to create more

parallelism at the cost of more synchronization (from reduction tasks), (2) to employ the multi-

grain algorithm from Listing 6.1, and (3) to use static load balancing in which there is no grain

size problem. Point 3 requires linear approximations of the execution time as functions of the

number of interpolation points as shown in Eq. 6.2. Regarding static load balancing for sginterp,

the dependency of the GPU optimization parameters on the input parameter d requires that

the linear approximation is also a function of d. Hence, the approximation has to be rebuilt

whenever sginterp is invoked using a new d.

Fig. 6.11 depicts the performance of sginterp on the benchmarked system. The GFlop/s

rate is measured for different number of dimensions, d. The number of interpolation points used

in the performance tests is 2 · 106. Three major load balancing schemes are tested:

• StarPU heft : StarPU’s HEFT scheduling which uses execution history and includes a

model of the PCIe bus which is used to estimate the duration of data transfers.

• dyn, dyn str, dyn str multi : dynamic load balancing implemented using OpenMP. The

str attribute means that 3 CUDA streams are used for overlapping the GPU computation

with PCIe communication. multi means that there are 2 different grain sizes, i.e. one

preferred by the CPU and one preferred by the GPU, controlled as shown in Listing 6.1.

• sta: static load balancing implemented using OpenMP based on Eq. 6.2.

The max line refers to the sum between the GFlop/s rate measured when the CPU handles the

entire work by itself and the GFlop/s rate measured for the GPU only case. No tasks are used

for max, only the optimized versions of sginterp which execute the work in one iteration.
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Figure 6.11: Load balancing of sginterp.

The most inefficient load balancing schemes are here dyn and dyn str. There is no notable

difference between the two schemes for d > 3. However, for d ≤ 3, the stream based load

balancing scheme, dyn str, outperforms the more basic dyn. This is explained by the fact that

for small values for d, sginterp tends to be more sensitive to memory performance, thus the

PCIe transfer has more impact on the execution. The str optimization focuses exactly on hiding

the PCIe overhead. Both these schemes are affected by the problem of an idle GPU. Since the

number of tasks rarely exceeds 100 (only for d from 1 to 3) and the tasks are rather large since

they have to fully occupy the GPU, there is a high probability that at some point during the

computation the GPU worker is idle while the CPU workers are busy executing their assigned

tasks. This undesired situation does not occur with dyn str multi and StarPU. The graph shows

that for sginterp’s work, the dyn str multi scheme performs the best from the dynamic schemes,

even better than StarPU. However, it is still rather far from the max performance.

The sta scheme is the closest to max. More precisely, its performance reaches approxima-

tively 98% of the maximum performance obtained using max. Static load balancing is in fact the

only scheme that beats the performance of the auto-tuned GPU version of sginterp for d > 3.

6.6.4 Sparse Vector - Matrix Multiplication

The same dependency graph from sginterp shown in Fig. 6.8 can also be used to explain the

computation done in spvm. A task operates in this case on a tile from the output vector. For

more parallelism, the matrix is divided horizontally into tiles. In this way, a task gets a vector

tile from the output vector and a matrix tile from the input matrix. The task computes the

contribution of the matrix tile on its assigned part from the output vector. In this decomposition

scheme, more than one tasks may operate on the same tile of the output vector. Therefore,

their individual contributions have to be reduced (summed up) by a reduction task.
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In the tests presented next, the size of the output vector is 106 while the input matrix

contains 250 rows, each of size 106. The sparse input vector contains a number of non-zeros in

the range from 25 to 250 with a step of 25. It is assumed that the matrix can be transformed and

distributed across memories, on different NUMA nodes or on the GPU, before the computation.

This is in accordance with the conditions in a computational steering application in which

the same matrix is used to compute the output vector for different sparse vectors. The load

balancing schemes applied to sginterp are also applied to spvm.

The spvm kernel is memory bound. Since the benchmarked system is a NUMA system,

improving the memory locality at a NUMA node level plays an important role. Moreover, hiding

the overheads of data transfers over PCIe by overlapping computation and communication can

also improve the performance considerably. In order to increase the efficiency of the transfers

over PCIe, the experiments use page locked memory on the CPU side in order to decrease the

number of memory copies. Without this optimization, the data is first copied to a page locked

memory region and from there is transferred via DMA to the memory of the GPU.

When distributing the work in spvm using a dynamic load balancing scheme, spvm is de-

composed into tasks. In order to execute efficiently on the CPU, experiments show that the

grain size should be a multiple of 8192 which ensures the best cache utilization because of a

loop blocking transformation. On the GPU side, the preferred grain size is 143360 which is the

minimal work that ensures full utilization of both the SMs on the GPU and of multithreading.

Assuming that the input matrix is not tiled horizontally in order to create more parallelism,

there are only 7 tasks to distribute, i.e. a rather small number. If all the tasks are assigned

to the CPU workers, then the execution is inefficient since the GPU is idle. Creating more

parallelism comes at the cost of synchronization and since the size of the sparse vector is small,

e.g. up to 250, the synchronization can severely decrease the performance. Moreover, a dynamic

scheme poses additional NUMA related challenges. In order to achieve the best performance

with respect to memory bandwidth, the input matrix must be local to each of the CPU workers.

This can be accomplished by having multiple copies of the input matrix, one per NUMA node.

Moreover, another complete copy must be stored on the GPU.

In contrast to dynamic load balancing, a static scheme uses the memory more efficiently from

a memory consumption point of view. In this case, for each worker, CPU or GPU, it is known

prior to execution the exact tile of the output vector assigned to it. Since the computation of a

tile needs only the corresponding part of the input matrix, the matrix is sliced vertically which

ensures that a worker thread and its associated slice are placed on the same NUMA node’s

memory. Using a combination of thread pinning and first touch policy, the input matrix can be

divided across NUMA nodes and the GPU so that no extra copies of the matrix are necessary.
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Figure 6.12: Load balancing of spvm.

Fig. 6.12 depicts the performance for different load balancing schemes. The small number

of tasks causes dyn, dyn str, and StarPU to perform the worst. This is caused by the fact that

the work is assigned to CPU workers and during the execution, the GPU is idle.

As seen in the graph, the dyn str multi scheme based on Listing 6.1 provides a better

performance than the sta scheme. The multi-grain load balancing is in fact even faster than

the expected max performance, computed by summing up the GFlop/s rate obtained for the

CPU only execution and the GFlop/s rate for GPU only. This result is a direct consequence of

the 2 CUDA streams used for overlapping the PCIe communication with computation on the

GPU. Note that for determining max, the auto-tuned CUDA implementation of spvm does not

include overlapping of GPU computation and PCIe communication.

6.7 Other Examples

The load balancing schemes described in this chapter can be applied to a wider range of appli-

cations, especially to those that contain data parallelism. Examples include: matrix multiplica-

tion, stencil computation, and direct n-body method. In order to achieve the best performance,

the grain size problem has to be addressed. However, the employed scheme depends highly on

the given problem and the input parameters. In a rather big problem, i.e. with numerous large

tasks, the impact of the grain size is less significant.

For matrix multiplication, A × B = C, both dynamic and static scheduling are suitable

solutions on a heterogeneous system. If tasks are created by splitting the matrices both hori-

zontally and vertically, then it becomes more difficult to implement Listing 6.1. In a multi-grain

dynamic scheme in which workers grab tasks from a central queue, the tiling of the matrices

and the creation of tasks is done during the actual execution. Two different types of tasks are
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generated, for the CPU and the GPU, operating with tiles of different sizes. The sizes must be

chosen in such a way that both the CPU and the GPU are used efficiently during the execution

of a task. On the CPU, the task size must allow for the best cache utilization, an important

optimization in matrix multiplication. On the GPU, the goal is to fully occupy the GPU, SMs

and multithreading, during the execution of every task. Static load balancing is more straight-

forward: A is partitioned horizontally according to Eq. 6.2, the entire B is copied to GPU

memory, C is divided horizontally according to the splitting of A. The main advantage here is

the elimination of the grain size problem. The disadvantages are more memory consumption

due to the mirroring of B and no overlapping of communication and computation.

Stencil computation is in general memory bound. It usually involves multiple iterations

during which the data is updated. This has a high implication on the load balancing scheme

that should be used. Tasks are created by dividing the initial matrix into smaller submatrices

structured in such a way that the boundaries are distinct vectors separated from the core. The

idea is that only the boundaries have to be transferred over PCIe between iterations. If StarPU’s

HEFT scheduler is used, then the computation involves only the CPU since the PCIe transfer

costs are too high in comparison to the execution time on the GPU and the scheduler does

not look in the future to estimate the reuse of the data copied to the GPU and the transfer of

the boundaries, not the core (except the last iteration). A solution to this is to manually copy

the matrix to the GPU before the first iteration in the stencil computation so that the initial

transfer does not affect later scheduling decisions. In fact, all the dynamic schemes previously

described are impractical for addressing stencil computation. In this context, the best choice

in this context is static load balancing in which the matrix is partitioned horizontally. The

transfers over PCIe are in this case minimized, an important aspect for stencil computation.

The direct n-body method is computationally bound which means that all the load balancing

schemes described in the chapter are applicable and should be efficient. It is assumed that

the computation has more than one iterations, i.e. the bodies move multiple times. A task

computes the interaction between two subsets of bodies. A reduction is necessary to sum up the

contributions of the tasks that have a common subset of bodies. From this point, the discussion

is similar to the one for sginterp. The primary grain size used in a StarPU implementation is

given by the grain size preferred by the fastest processor, in general the GPU. A multi-grain

dynamic load balancing approach also considers the grain size for the CPU which is set according

to the cache optimization applied to the direct n-body method. For static load balancing, the

bodies are divided into two subsets, one for the CPU and one for the GPU, according to the time

measured on each of the two processors. The positions of the bodies must be consistent across

PCIe. In order to achieve this, after each iteration of the n-body method (the new positions
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of all the bodies are updated), the positions of the bodies are exchanged over PCIe, the CPU

sends its data to the GPU and vice versa.

6.8 Summary

The central point of this chapter is load balancing on heterogeneous systems composed of CPUs

and GPUs. The main problem comes from the difficulty of reaching a high level of performance

in the presence of heterogeneity using task based frameworks such as StarPU. First, the grain

size or task size has a significant impact on performance. In order to choose the right grain size,

one has to carefully study the interaction between the grain size and synchronization overheads,

parallelism, and optimizations. This chapter describes an algorithm for load balancing that

allows for the use of multiple grain sizes (Listing 6.1), one grain size that matches the CPU

optimizations and one that is set according to the GPU optimizations. For data parallelism, a

static load balancing scheme is proposed which eliminates the grain size problem.

Choosing between dynamic and static load balancing depends on the system and on the

application. If the tasks are non-deterministic or the system is non-dedicated, then a dynamic

approach based on tasks is a suitable fit as there are no guarantees about the load in the

system, e.g. if the GPU becomes busy because of an external application, the load balancing

scheme should adapt. If the system is dedicated and the tasks are deterministic, then dynamic

load balancing can still be a better solution than the static one because of the overlapping

between PCIe communication and GPU computation as shown for spvm. However, this rule is

not general as it is invalidated in the case of sginterp for which the best performance, 98% of

the maximum, is achieved by a static approach. The overlapping between communication and

computation can also be achieved for the static approach although it introduces the grain size

problem characteristic to task based load balancing.

The use of a to-all distribution of the work in which all the processors are engaged in

the computation, is not always feasible. This is the case for sghierarch for which the low

computational intensity and the communication requirements eliminate the possibility of using

the CPU and the GPU simultaneously. Therefore, a to-one mapping is used in which depending

on the input, the fastest processor is chosen for handling the entire work.



Chapter 7

Conclusion and Future Work

7.1 Sparse Grids on Heterogeneous Systems

This thesis tackles the problem of how to best exploit modern heterogeneous system such as

those containing multi-core CPUs and GPUs. The sparse grid technique is a numerical technique

that serves as a test application for exploring different optimization methods.

The sparse grid algorithms are the core of a computational steering application in which

high-dimensional simulation data is stored in a database using a form of lossy compression and is

afterwards decompressed for visualization. There are three main components of high importance

for this application: sparse grid hierarchization (sghierarch), sparse grid interpolation (sginterp),

and sparse vector - matrix multiplication (spvm). These components together with different

variations created for more flexibility and performance, are incorporated in a numerical library,

fastsg, and a benchmark, sgbench, which are proposed in this thesis.

One of the focus points of this thesis is how to best address the challenges of GPUs. GPUs

are multithreaded many-core processors (16 cores) with wide SIMD units, e.g. up to 32 single-

precision lanes. They have a limited amount of memory, e.g. less than 6 GB. Consequently,

from the performance point of view, GPUs are nearly incompatible with control dependent codes

and complex (key-value based) data structures such as hash-tables and trees which generally

consume a lot of memory and often do not allow for an efficient use of SIMD units by violating

the requirements for compact and aligned memory accesses.

7.2 Optimization Strategy

In their initial form, sghierarch and sginterp make use of hash-tables or trees, and are recursive.

Therefore, in order to efficiently port sghierarch and sginterp to GPUs, a redesign of the data

135
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structure and algorithms is necessary. As a response to this requirement, a bijective map is

proposed which minimizes the memory footprint, thus allowing for larger problems to be handled

by GPUs. Moreover, a contribution of this thesis is a set of non-recursive sparse grid algorithms

that are more efficient and are compatible with GPUs which do not support recursion efficiently.

The thesis describes a search based auto-tuning method and optimization parameters com-

mon for GPU codes. It also presents the interactions between them which are exploited by

search methods based on partitions, a concept proposed in this thesis. The optimization pa-

rameters control the size of a thread block, the amount of work per thread, and the parallelism

granularity. Emphasis is placed on decreasing the auto-tuning time by employing an input

reduction technique in which an initial computational work is reduced without sacrificing too

much the performance associated to the found optimization parameters. Within this technique,

special attention is given to tail effects which are generated by insufficient parallelism towards

the end of the computation on the GPU. Another important aspect of input reduction consists

in a model of the execution on the GPU for homogeneous threads. As part of this model,

GPU threads are grouped in waves which fully occupy a GPU. All the threads in a wave have

a synchronized start and stop time. Therefore, the execution time of a GPU program can be

approximated based on the number of waves and the duration of a wave.

A common question on heterogeneous systems is whether the CPU and the GPU can be

simultaneously used for handling a given computational work. Different static and dynamic load

balancing schemes are described in the context of data parallelism which is characteristic to the

three sparse grid kernels. Dynamic task based load balancing which is included in heterogeneous

programming frameworks such as StarPU, is common these days as it provides several important

advantages: automatic transfer of data over PCIe, overlapping of data transfers with execution

on GPU, and a software controlled memory consistency protocol which automatically manages

data allocation on the GPU, data copy to / from the GPU, and data eviction from the GPU,

thus allowing to overcome to some extent the limited amount of memory on the GPU.

An important problem of task based load balancing is how to choose the best task size (or

grain size). A too small of a grain size may generate too much overhead and may not allow for

the most efficient utilization of the CPU and the GPU. A too large of a grain size may not allow

for the optimal distribution of the work among the processors. Moreover, the CPU and the

GPU may have different preferred grain sizes that match their specific optimizations. In order

to cope with this problem, a multi-grain dynamic load balancing algorithm is proposed which

aims at keeping the fastest processor, e.g. the GPU, busy at any moment of time. Moreover,

the algorithm allows for the overlapping of PCIe communication with computation on the GPU.

Another load balancing option is a static scheme in which the work is divided into two chunks,



137 CHAPTER 7. CONCLUSION AND FUTURE WORK

for the CPU and for the GPU. The sizes of the chunks are calculated based on approximations

of the execution time for the CPU and the GPU.

7.3 Summary of Performance Results

Fig. 7.1a, Fig. 7.1b, and Fig. 7.1c provide a concentrated view on the performance numbers

presented in Chapter 4, Chapter 5, and Chapter 6. Emphasis is placed here on the impact of

the optimizations described in this thesis for sghierarch, sginterp, and spvm. For CPUs, one can

see that speedups of 86.4x, 106.3x, and 11.1x can be achieved. Multithreading is nowadays a

characteristic of both CPUs and GPUs. The graphs show that only for sginterp, Hyperthreading

is actually beneficial. For all the computational kernels, the GPU is faster than 8 CPU cores,

providing speedups of 1.89x (sghierarch), 7.57x (sginterp), and 2.61x (spvm) compared to the

corresponding vectorized and parallelized versions for the CPU. The GPU speedups relative

to one CPU core correlate with other highly optimized GPU codes for matrix multiplication,

n-body simulation, sparse matrix - vector multiplication, e.g. roughly one order of magnitude

speedup for memory bound programs (spvm) assuming a 10x higher memory bandwidth of

GPUs compared to CPUs, and up to two orders of magnitude for computationally bound

programs (sginterp) assuming a 100x higher theoretical performance of GPUs.

By using auto-tuning for the GPU implementations of sginterp and spvm, the performance

is further improved as depicted in the graphs, i.e. the auto-tuned versions are 1.3x faster than

the optimized versions without auto-tuning. The results presented in Chapter 5 show that input

reduction can decrease the auto-tuning time by up to a factor of 103 for sginterp and up to 10

for spvm while the performance is on average 98% and 96% of the performance corresponding

to the optimization parameters found without input reduction.

The best load balancing scheme for sginterp is the static one while for spvm the best perfor-

mance is returned by the dynamic multi-grain approach. In the case of sghierarch, the necessity

to transfer the data back and forth over PCIe does not allow for the simultaneous use of the

CPU and the GPU. Therefore, a to-one mapping is used in which only the best processor is

chosen for execution based on its performance measured for the given input parameters.

7.4 Future Work

7.4.1 Optimization Techniques

The empirical optimization method proposed in this thesis, i.e. GPU optimization parameters,

partition based search method, input reduction technique, is expected to be applicable to a
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numbers are computed relative to the initial serial versions of the kernels. Tested system:
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wider set of applications. Incorporating the auto-tuning method in a framework would help to

apply it more easily to other programs and to test its validity in a wider scope.

The proposed load balancing schemes are also applicable to other data parallel applications.

By extracting the load balancing component from fastsg, a lightweight library could be created

for testing to which extent the dynamic and static scheduling schemes described in this thesis

can help other programs to improve their utilization of a heterogeneous system.

7.4.2 Enhanced Sparse Grid Functionality

Regarding the sparse grid technique, an important question is whether the data structures and

algorithms proposed in this thesis can help to improve the performance of fully adaptive sparse

grids characterized by more challenging sparsity patterns. Addressing those patterns using

the data structure and algorithms from this thesis would imply storing zeros and performing

unnecessary computations. The challenge is to determine in which conditions such an approach

is more efficient in terms of space and time than using hash-tables and recursive functions which

are common components of fully adaptive sparse grid implementations.

The future work includes implementing MPI versions of the sparse grid routines in the fastsg

library. This would allow for the execution on a cluster of GPU accelerated heterogeneous

systems. The objective would be achieving scalability while preserving the easy-to-use interface

of fastsg. Nevertheless, algorithms characterized by complex data access patterns such as sparse

grid hierarchization pose serious challenges for the porting of the library to clusters.
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