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Abstract

We present a large-scale study on classification of linguistic
and non-linguistic vocalizations including laughter, vocal noise,
hesitation and consent on four corpora amounting to 46h of
spontaneous conversational speech. We consider training and
testing on speaker-independent subsets of single corpora (intra-
corpus) as well as inter-corpus experiments where models built
on one or more corpora are evaluated on a disjoint corpus. Our
results reveal that while inter-corpus performance is consider-
ably lower than comparable intra-corpus results, this effect can
be countered by data agglomeration; furthermore, we observe
that inter-corpus classification accuracies indicate suitability of
corpora for building generalizing models.

1. Introduction

Recognizing paralinguistic information, such as the emotion or
intent, of the dialog partners is considered to be vital for human-
machine interaction resembling natural human-human conver-
sations. Notably, non-linguistic vocalizations such as laughter
or sighs are one of the most important channels for conveying
such paralinguistic information, as they can be decoded very
robustly by humans [1]. Hence, it is crucial for affect-sensitive
technical systems to recognize such vocalizations robustly, and
to discriminate them from linguistic vocalization, i.e., spoken
words. In this study, we present a generic, purely data-based
approach for discrimination of five different classes of non-
linguistic and linguistic vocalizations, in contrast to many stud-
ies focusing on detection of a single type of vocalization such
as laughter [2]. Furthermore, we extend previous studies on
data-based vocalization classification, such as [3-5], which are
limited to evaluation within single corpora, i.e., intra-corpus
evaluation, by adding an inter-corpus perspective. Such inter-
corpus testing, taking into account different acoustic conditions
or conversation domains, is highly relevant: When building au-
dio recognition systems for real-life use, training data matching
the specific application scenario might not be available. Con-
sequently, inter-corpus testing has been widely addressed in the
field of automatic speech recognition, e. g., in [6]. Besides, in
the non-linguistic vocalization domain similar evaluation proto-
cols have been followed in [7] for a binary classification task (to
tell apart laughter from speech), indicating notable performance
differences due to varying recording conditions.

Motivated by these first results, we now present a large-
scale study on intra- and inter-corpus classification of linguis-
tic vocalizations, including four corpora of spontaneous speech
(cf. Section 2) for a total of 46h of speech. Following pre-
vious inter-corpus studies in emotion recognition such as [8]
we also address training data agglomeration for inter-corpus
testing, to answer whether there really is ‘no data like more

data’. The consideration of large-scale, speaker-independent,
inter-corpus evaluation on the one hand comes with some re-
strictions on the other hand: First, we limit this study to clas-
sification of pre-segmented data, as detection of non-linguistic
events in naturalistic speech recordings can be very challeng-
ing even in homogeneous conditions [4, 7]; second, as differ-
ent labeling schemes have to be unified given that some classes
(e. g., coughing) are sparsely or not at all annotated in some
corpora, we decided to define a rather coarse five-class task to
discriminate segments corresponding to: words (linguistic vo-
calization); laughter; vocal noise including breathing, sighing or
coughing; non-verbal consent (‘mhm’); and filled pauses (‘um’,
‘uh’). Classifier parameterization and experimental protocols
are described in Section 3 before presenting and discussing re-
sults in Sections 4 and 5.

2. Databases

In the following we describe our evaluation databases of spon-
taneous speech. Their language is English, yet featuring various
accents and dialects (see below).

2.1. AVEC subset of the SEMAINE database

As a first spontaneous speech database, we selected the official
corpus of the 2011 Audio/Visual Emotion Challenge (AVEC)
[9], which is part of the SEMAINE corpus [10] (http://semaine-
db.eu). For the AVEC corpus conversations between humans
and operators pretending to be emotionally intelligent virtual
agents were recorded. Operators were instructed to create a
conversation as natural as possible while playing emotionally
stereotyped ‘characters’ and restraining to stock phrases keyed
to the user’s emotional state, simulating no full language under-
standing. Audio was recorded at 48 kHz with 24 bits per sam-
ple. Transcribed non-linguistic vocalizations include laughter,
sighs and breathing. The partitioning used in this study con-
forms to the Challenge [9]: The training partition contains 31
recording sessions, while the development and test partitions
contain 32 sessions. Only the user’s speech is considered. All
subjects speak English fluently, with about 3/4 of the subjects
being native speakers, with a prevalence of Irish background.

2.2. TUM AVIC

Secondly, we used the “TUM AVIC” corpus [11] which has also
been the basis for the Affect Sub-Challenge of the Interspeech
2010 Paralinguistic Challenge [12]. In the scenario setup, an
experimenter plays the role of a product presenter and leads
the subject through a commercial (car) presentation. The sub-
ject’s role is to listen to and actively interact with the experi-
menter considering his/her interest in the addressed topics. We
exclusively use speech data recorded by the lapel microphone



corpus | len[h] | laugh hesit. cons. v.noise word total | #subj. | accent/dialect | scenario
AVEC 6.8 356 1175 41 97 35842 37511 17 Irish human-agent conv.
AVIC 23 294 1204 344 1290 16441 19573 21 German product present.
Buckeye 26 | 1874 5594 939 20504 231422 260333 40 | Columbus, Ohio interview
COSINE 11 | 3267 984 374 1313 70585 76523 37 various U.S. multi-party conv.

Table 1: Four spontaneous (English) speech corpora: length (len) of considered recordings; number of instances in each of the
‘laugh(ter)’, ‘hesit(ation)’, ‘cons(ent)’, ‘v(ocal) noise’ and ‘word’ classes; number of subj(ects); prevalent accent / dialect of subjects;

and recording scenario.

(44.1kHz, 16bit) as in the Challenge. 21 subjects took part
in the recordings, three of them Asian, the remaining Euro-
pean. The language throughout experiments is English, and all
subjects are non-native, yet very experienced English speakers,
most of them with a German background. The mean age of the
participants is 29.9 years. The total recording time is 10.4 h; in
this study, we only use the subjects’ turns (2.3 h). Non-linguistic
vocalizations have been explicitly labeled in the transcriptions
using markers for breathing, consent (‘mhm’”), hesitation (‘um’,
‘uh’), laughter, and coughing as well as other human noise. As
in [12], the speech data from the 21 speakers were split into a
training, development, and test set in a speaker independent way
trying to achieve the best possible balance with respect to gen-
der, age, and ethnicity and following roughly a 40 / 30 / 30 %
partitioning.

2.3. Buckeye

The third and largest spontaneous speech corpus considered in
this study is the Buckeye corpus [13], which contains recordings
of interviews with 40 subjects who are natives of Central Ohio.
Interviews were conducted in a small seminar room. The speech
of the subjects was recorded with a head mounted microphone
while the interviewer did not wear a microphone. Thus, only
the subject’s speech is intellegible in the recordings, and we
only use that data in this study (roughly 26 h out of 38 h). It was
found that the formality of the interview dissipated quickly into
a friendly conversation [13]; thus, the speech is highly sponta-
neous and contains a variety of non-linguistic vocalizations. Lo-
cations of laughter and vocal noise are marked, and filled pauses
and backchannels are transcribed phonetically. As the authors
of the corpus do not prescribe an experimental setup, we follow
the partitioning from our previous study [4] on non-linguistic
vocalizations to divide the corpus into a training, development,
and test set, stratified by age and gender.

2.4. COSINE

Finally, the rather novel COSINE corpus [14] was taken into
account as an example of multi-party conversations recorded
in real world environments. The recordings were captured on
a wearable recording system so that the speakers were able
to walk around during recording. Since the participants were
asked to speak about anything they liked and to walk to various
noisy locations, the corpus consists of natural, spontaneous, and
highly disfluent speaking styles partly masked by indoor and
outdoor noise sources such as crowds, vehicles, and wind. The
recordings were captured using multiple microphones simulta-
neously, however, to match most application scenarios, we ex-
clusively used speech recorded by a close-talking microphone
(Sennheiser ME-3). We used all ten transcribed sessions, con-
taining 11.40h of pairwise conversations and group discussions.
All 37 speakers are fluent, but not necessarily native English
speakers covering a broad range of United States accents. Each

speaker participated in only one session and the speakers’ ages
range from 18 to 71 years (median 21 years). Laughter and
vocal noise segments are marked in the transcription. For our
experiments, we split the corpus according to the recommen-
dation of the corpus’ authors into a test set (sessions 3 and 10,
1.81 h of speech) and training set (remaining eight sessions).

3. Experimental Setup
3.1. Preprocessing and Class Definition

To subdivide the corpora in word-like units for analysis, we
used forced alignment segmentations of the databases by tri-
phone Hidden Markov Models (HMMs) except for the Buckeye
corpus which is delivered with a more advanced, yet fully auto-
matic word-level segmentation [13]. Then, in order to perform
inter-corpus experiments, corpus-specific mappings of word-
like units in the transcriptions to the five classes words (lin-
guistic vocalization), non-verbal backchannels indicating con-
sent, filled pauses (hesitation), vocal noise, and laughter, were
defined. In particular, for the AVIC database we unified the
coughing, other human noise, and breathing classes to the vocal
noise class; in the AVEC database, breath and sigh were unified
to the vocal noise class. In the three corpora (all except AVIC)
where consent and hesitation are transcribed phonetically with-
out using special markers, we considered the segments labeled
as ‘mhm(mm)’, ‘aha’, ‘um-hum’, ‘um-hmm’, ‘mm-hmm’ or
‘aha’ as consent, and those labeled as either ‘em’, ‘eh(h)’, ‘um’
or ‘uh’ as hesitation. While segments where laughter and vocal
noise coincide with speech are annotated explicitly in Buck-
eye and COSINE, we considered them as ‘words’ for the pur-
pose of this studys; first, for consistency with the two other cor-
pora where this phenomenon is not taken into account in the
transcription; second, since such segments contain linguistic in-
formation which might be decoded by a speech recognizer in
a second step. We removed all segments with a length below
100 ms, as such short segments often indicate alignment errors.
The resulting number of instances per class in each of the four
corpora is shown in Table 1. As expected, classes are heavily
unbalanced; furthermore, it is notable that the ‘consent’ class
is highly underrepresented in the AVEC corpus, probably due
to the recording scenario designed to elicit strongly emotional
responses from the user instead of simple backchanneling.

3.2. Classifier Setup

We considered isolated HMMs exclusively in this study, assign-
ing the class corresponding to the model with the maximum
likelihood (ML): Since there are no transitions between mod-
els, the a-priori class probabilities do not affect the decision,
accounting for the class imbalance. We chose a strictly lin-
ear left-right topology with eight emitting states. HMMs were
trained by six initial Expectation-Maximization (EM) iterations,
after which additional Gaussian mixtures were added consecu-
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Figure 1: Intra-corpus classification: Accuracy (Acc.) and unweighted average recall (UAR) in speaker-independent training and
testing on AVEC (a), AVIC (b), Buckeye (c) or COSINE (d). Train / test partitioning according to Section 2.
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Figure 2: Pair-wise inter-corpus classification: UAR [%] in training on either AVEC (a), AVIC (b), Buckeye (c) or COSINE (d), and

testing on each of the three remaining corpora.

tively and re-estimated during four EM iterations, until the final
models had eight Gaussian mixtures per state. We measured
classification accuracy for each number of mixtures separately,
as shown below. As features, we extracted the Mel frequency
cepstral coefficients (MFCCs) 1-12 along with energy and their
first and second order deltas from 26 Mel filter banks span-
ning 20-8 000 Hz. Notably, following [3], we did not employ
cepstral mean normalization as this technique seems to require
longer units of analysis, such as speaker turns, to perform ro-
bustly.

3.3. Intra- and Inter-Corpus Classification

We compared performance of intra-corpus classification with
inter-corpus classification. For the former, we trained models
on the defined training and development sets of each of the four
corpora, then evaluated on the test set, thereby strictly enforc-
ing speaker independence—in case of AVEC, we trained on
the training and evaluated on the development set since non-
linguistic vocalizations are extremely scarce in the test set. For
the latter, two scenarios were considered: Pairwise inter-corpus
classification, i.e., selecting one (complete) corpus for train-
ing and another for testing, and a leave-one-corpus-out (LOCO)
strategy where for each testing corpus the remaining three cor-
pora were jointly used as training material.

4. Results

Our experiments are evaluated in terms of accuracy and un-
weighted average recall (UAR) of the five classes; the first cor-
responds to a system’s rate of correct classifications while the
second reflects its ability to discriminate the classes.
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Figure 3: Leave-one-corpus-out (LOCO) inter-corpus classifi-
cation: UAR [%] in training on the union of three corpora and
testing on the remaining one.

4.1. Intra-Corpus Classification

As an indicator of how challenging the proposed five-class task
is on each of the four speech corpora, we show the performance
of intra-corpus classification in Figures 1a through 1d. It can be
seen that an increased number of Gaussian mixtures per state
constantly increases accuracy—mainly due to an increased re-
call of the majority ‘word’ class, but at the expense of lower
recall of the minority classes—for instance, recall of consent
drops down to zero for the AVIC corpus at 8 mixtures. Thus,
accuracy stands in contrast to UAR, which appears to be opti-
mal at a low (< 3) number of mixtures except for the Buck-
eye corpus (where more training data for the ‘smaller’ classes
is available). The latter is also the corpus with highest overall
UAR (82.9 % on average over 1-8 mixtures). At the other end
of the scale we find the AVEC corpus (67.1 % average UAR),
which can be attributed to data sparsity.



Teston | pair-wise | LOCO

AVEC 49.6 61.4
AVIC 514 67.4
Buckeye 62.0 74.9
COSINE 54.8 72.8

Table 2: Pair-wise and LOCO inter-corpus classification: Ex-
pected UAR [%] for four different testing corpora.

4.2. Inter-Corpus Classification

This picture of ‘difficulty’ of the corpora does not change when
adding the inter-corpus perspective: Again, it is clearly vis-
ible that recognition on Buckeye performs best, followed by
COSINE, AVIC and finally AVEC—this ranking is consistent
throughout all iterations of our pair-wise inter-corpus experi-
ments, involving four different training corpora and 1-8 Gaus-
sian mixtures per HMM state, as shown in Figures 2a through
2d. Thus, apparently the corpora that can be classified most ro-
bustly also deliver the best generalizing models as indicated by
inter-corpus testing. In particular, in Figures 2a, 2b and 2d we
have evidence that it is not the sheer size of the Buckeye cor-
pus that makes it suitable for building robust models (2c), but
rather its prototypicality—indicated by high classification per-
formance on Buckeye when training with other corpora.

Furthermore, the intra-corpus accuracies obtained on the
corpora are clearly correlated with the ability to build general-
izing models from them; this effect cannot be simply attributed
to the different sizes of the databases, since similar results are
obtained by training on either AVIC or COSINE (Figures 2b,
2d); in contrast, this could be due to effects of recording noise
in COSINE. Finally, although results are not directly compa-
rable, the general picture is that the inter-corpus classification
performance is considerably lower than the intra-corpus one,
with a result of 74.1 % UAR (training on Buckeye, testing on
COSINE, 7 mixtures) as an upper bound. Notably, there seems
to be a large ‘incompatibility’ between AVIC and AVEC, as the
UAR drops below 30 % when training on AVEC and testing on
AVIC.

On the contrary, evaluation in a LOCO fashion (Figure 3)
yields much more stable results, avoiding the above-mentioned
performance drop, with a lower bound of 60.0 % UAR (testing
on AVEC with 1 mixture). Overall, this kind of evaluation cor-
roborates the results as to which corpora are ‘easiest’ to classify,
but also demonstrates the benefit of data agglomeration.

The latter is corroborated by the statistical perspective on
inter-corpus classification which is given in Table 2: In reality,
it is unknown which training data and which classifier param-
eterization (here, the number of mixtures per HMM state) are
optimal for some unlabeled test data. Thus, we compare the
expected UAR on each of the four corpora considered, when
selecting an arbitrary number of mixtures between 1 and 8, and
(a) an arbitrary (disjoint) corpus—corresponding to pair-wise
inter-corpus evaluation—or (b) the union of the three remain-
ing corpora, cf. LOCO evaluation. From Table 2, it can be seen
that agglomeration of training corpora as done in LOCO evalua-
tion delivers significant gains over single-corpus training for all
of the test corpora considered (p < 0.001 according to a z-test).

5. Conclusions

In a large-scale evaluation on four spontaneous speech corpora,
we have demonstrated that inter-corpus discrimination of non-
linguistic vocalizations in spontaneous speech is a challenging

task: Generally, when using single corpora for training, one
would expect a drastic decrease in performance compared to
intra-corpus evaluation. It is promising, though, that through
data agglomeration, this phenomenon can be mitigated to some
extent, and that classification performance on a corpus seems to
be a proxy for its ability to build generalizing models, which is
hard to predict in practice. Interesting directions for future re-
search can be found in semi-supervised learning: In a first step,
intra-corpus data could be included via unsupervised adaptation
of the agglomerated data sets; next, co-training with unlabeled
spontaneous speech from the internet could be investigated. Fi-
nally, data agglomeration to alleviate cross-cultural effects in
vocalization classification should be considered.
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