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ABSTRACT

We present a new spatio-temporal representation for Gait
Recognition, which we call Gradient Histogram Energy Im-
age (GHETI). Similar to the successful Gait Energy Image
(GEI), information is averaged over full gait cycles to re-
duce noise. Contrary to GEI, where silhouettes are averaged
and thus only edge information at the boundary is used, our
GHEI computes gradient histograms at all locations of the
original image. Thus, also edge information inside the person
silhouette is captured. In addition, we show that GHEI can
be greatly improved using precise segmentation techniques
(we use a-matte segmentation). We demonstrate great effec-
tiveness of GHET and its variants in our experiments on the
large and widely used HumanID Gait Challenge dataset. On
this dataset we reach a significant performance gain over the
current state of the art.

Index Terms— Biometrics, Gait Recognition, Histogram
of Oriented Gradients, Gradient Histogram Energy Image

1. INTRODUCTION

Many current person identification systems rely on close
proximity of the subject to a sensing device and often also
require cooperation of the person to be identified. At a dis-
tance, however, many typical physiologic features, such as
fingerprint, DNA, hand, ear, retina and face, are obscured
or cannot be obtained at all. By contrast, behavior based
features such as gait features can be extracted from walking
people at a distance and without the person’s cooperation.

A multitude of gait recognition algorithms (see Table 1)
have so far been proposed. The most successful of currently
used methods are based on the Gait Energy Image (GETI) [1].
In GEI, binarized silhouettes are extracted and averaged over
full gait cycles. While this binarization and averaging re-
duces noise, it also destroys a lot of the available informa-
tion. We therefore present the Gradient Histogram Energy
Image (GHEI) which not only captures edges at the silhou-
ette boundaries, but also within the person’s silhouette. We
observe that good foreground segmentation has a significant
impact on GHEI performance. By precise segmentation of the
person from the background, recognition rates can be further
improved. Experiments are run on the widely used HumanID
Gait database [2].

2. RELATED WORK

There are two kinds of gait recognition methods: Model-
based methods model-free methods. Model-based methods
are typically very demanding and good results are hard to
achieve. Model-free methods [1][2][3]1[4]1[5]1[6][7][8] on the
other hand have shown more success in the recent past. Here,
the person identity is directly inferred from the features with-
out an intermediate person model. Most methods build on a
silhouette extraction for each frame in a gait cycle. Silhou-
ettes are either averaged (as in Gait Energy Image) [1][5][7],
or all silhouettes are used simultaneously [4][2]. Different
classifiers ranging from nearest neighbor [1] to SVM and
HMM [4] have been applied with similarly good results.

3. THE GRADIENT HISTOGRAM ENERGY IMAGE

Human walking is generally regarded as a periodic motion.
Therefore, it can be assumed that all gait information is cap-
tured within a full gait cycle. A prominent exponent of this
approach is the Gait Energy Image [1], where all informa-
tion withing a gait cycle is averaged. This kind of gait sig-
nature representation has proven to be very robust and effi-
cient. First, using background modeling, silhouettes are ex-
tracted at each frame and are tracked over time. Using a pre-
processing step, the resulting bounding boxes are then nor-
malized to have the same size. Also, persons are horizontally
aligned to be in the center of the the bounding box. Many
gait recognition methods use all silhouettes within a gait cy-
cle (e.g. by analyzing their mutual correlation). By contrast,
in Gait Energy Image, the aligned silhouettes S; within a gait
cycle are averaged and are thus compressed to a single image:
G(z,y) = 7 Zthl Si(x,y). While in this averaging step,
information is seemingly lost, it has also proven to greatly
reduce noise from imprecise foreground segmentation.

3.1. GHEI Representation

Our GHET representation therefore builds on the averaging
concept used in GEI. However, we note that in standard GET,
binary silhouettes are averaged. Since these silhouettes can
only capture edge information at the boundary, a lot of infor-
mation is being discarded. Therefore, with GHEI, we present
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Fig. 1: (a) input image; (b) foreground segmentation using
Gaussian mixture models; (c) tri-state labeling using mor-
phologic operations; (d) alpha matte; (e) coarse segmentation
based on tri-state labeling; (f) precise segmentation based on
alpha matte; (g) GHET calculated directly from input images;
(h) s-GHET calculated on coarse segmentation; (i) a-GHET
calculated on precise a-matte segmentation

a method that also captures edges inside the person’s silhou-
ette. This is done by extracting gradients at all locations and
aggregating this information into orientation histograms. The
process of GHET extraction is detailed as follows:

First, at each pixel of the tracked bounding box I, magni-
tude r and orientation € of intensity gradients are computed:
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with w(z,y) = I(zx — 1,y) — I(z + 1,y) and v(x,y) =
I(x,y — 1) — I(x,y + 1). Gradient orientations at each pixel
are discretized into 9 orientations:
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These discretized gradient orientations are then aggregated
into a dense grid of non-overlapping square image regions,
the so called cells” (each containing typically 8 x 8 pixels).
Each of these cells is thus represented by a 9-bin histogram of
oriented gradients. Finally, each cell is normalized four times
(by blocks of four surrounding cells each) leading to 9-4 = 36
values for each cell. (Details to be found in [9]).

At each frame ¢ in a gait cycle, a gradient histogram de-
scriptor hy(, j, f) is computed on the size and position nor-
malized RGB-image inside the bounding box. Here, ¢ and j
are pointing to the histogram cell at position (z,j) and f =

{1...36} is the index to the histogram bin. The GHET is then
obtained by averaging the gradient histogram representations
over a full gait cycle consisting of 7" frames:

T
HG,j ) = 72 3 helio . f) @
t=1

Each gait cycle is finally represented by a multidimensional
feature vector H (i, j, f).

In summary, the Gradient Histogram Energy Image rep-
resentation can therefore be seen as a combination of His-
tograms of Oriented Gradients (HOG) and Gait Energy Image
(GEI). The GHET leverages the averaging and noise reducing
step of GEI with the advantages of gradient histograms.

3.2. Improvement using Segmentation

First experiments with the basic GHEI showed good results.
However, we notice that background information is not fully
averaged out over one gait cycle and degrades recognition
performance. Recognition can therefore be improved using
good foreground segmentation.

For precise segmentation we use automated c-matte seg-
mentation which was previously applied to GEI [10]: Typical
foreground segmentation methods (we use Gaussian mixture
models [11]) all lead to a noisy, binary segmentation as de-
picted in Figure 1b. However, due to the nature of the image
capturing, there is a band on the silhouette which belongs par-
tially to foreground and partially to background. Thus, at each
pixel (z,y), the image I can be modeled as a linear composi-
tion of the foreground F' and the background B:

I(z,y) = a(z,y) F(z,y) + (1 — a(z,y))B(z,y) )

Here, a(z,y) is the opacity of the pixel at (z,y). F(z,y),
B(z,y) and a(z,y) are unknown. For a typical color image
with three color channels we thus have 3 +3 + 1 = 7 un-
knowns to solve for at each pixel. This is the typical matting
problem. To leverage the high number of unknowns, prox-
imity and smoothness assumptions are made. In addition, the
typical matting application has a human in the loop who has to
provide some scribbles for foreground and background, lead-
ing to the so called trimap. This map contains regions which
are definitely foreground (a(z,y) = 1), some which are def-
initely background (a(x, y) = 0) and some unknown regions
for which the matting method determines the a(z, y).

For automated gait recognition it is infeasible to have
a human in the loop. We therefore automatically generate
the trimap from the noisy foreground segmentation. We get
the definite-foreground regions (a(z,y) = 1) by eroding the
foreground segmentation with a circular structure element
with radius » = 4. The definite-background regions are
obtained by eroding the background region with the same
circular structure element. The resulting trimap is shown in
Figure Ic.
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Fig. 2: Quantitative results of GHET on the HumanID Gait
database [2] compared to standard GEI. (1) GEI (for refer-
ence); (2) basic GHETI, (3) s-GHEI with coarse segmentation,
(4) a-GHET with precise a-matte segmentation

To solve the alpha matting problem, we use closed form
matting [12]. The resulting foreground segmentation — the
alpha-matte — is depicted in Figure 1d. It can be seen that
this segmentation is superior to the initial background seg-
mentation. Holes are closed, erroneous pixels are removed
and most of all, the smooth transition from the foreground
to the background is captured. Furthermore, by F(z,y) =
I(z,y) - a(z,y) we can approximate a precise color segmen-
tation of the foreground object (see Figure 1f).

3.3. Variants

We define three variants of GHEI. In basic GHET (Figure 1g),
the HOG descriptors are calculated directly on the sequence
of color input images (Figure 1a). The segmented GHET (s-
GHET) (Figure 1h) is calculated on a coarse foreground seg-
mentation (Figure 1e) which is generated using morphologic
dilate. Here, most of the background information is removed,
but some is still present. Finally in a-GHEI (Figure 1i), the
HOG features are calculated on precise a-matte segmentation
(Figure 1f).

4. PERSON IDENTIFICATION USING GHEI

For the pattern recognition and classification part of the gait
recognition system we use the same strategy used in the GEI
system [1]. Dimension reduction is done by Principal Com-
ponent Analysis followed by Linear Discriminant Analysis
(PCA+LDA). Classification is done using nearest-neighbor.
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Fig. 3: Influence of the number of HOG cells on the average
recognition rate for a-GHEI, s-GHEI and GHEI. Baseline,
Gait Energy Image (GET) as well as Gait Dynamics Normal-
ization (GDN) (representing the current state of the art) are
plotted for reference

5. RESULTS AND COMPARISON

For performance evaluation, many databases have been
recorded. One of the most widely used databases is the
HumanID Gait database [2]. This database features video se-
quences of a total of 122 subjects, which walk perpendicular
to the camera at a distance. Twelve experiments (A to L) have
been defined to evaluate the influence of view, shoes, surface,
briefcase and clothing. Many current gait recognition meth-
ods have been applied to the HumanID Gait database which
makes it an ideal benchmark for competitive comparison.

5.1. Results of GHEI

Figure 2 shows the quantitative results of the three proposed
GHET variants compared to GEI. The GEI system is similar,
since the same classifier is used. Synthetic templates as in
[1] are not used. It can be seen that all variants of GHEI
greatly outperform the standard GEI. In fact, the basic GHE I
(with no segmentation) outperforms GETI by 38% (relative)
on average recognition rate. Using segmentation, the a-GHE T
even beats standard GET by 56%. With precise segmentation,
a-GHET is 14% better than standard GHEI. Thus, using good
segmentation is quite important for good recognition rates.

5.2. Influence of the number of HOG cells

Figure 3 shows the influence of the number of HOG cells on
the recognition rate. For a large range, all three GHE I variants
outperform the state of the art. In the range from [9 X 6] to
[6 x 3] recognition rates are approximately constant, which
shows that GHET is not very sensitive to the number of cells.
Interestingly, for person detection, similar sizes are used [9].
Thus, both detection and identification can be carried out on
the same HOG data. For our comparative evaluation we use
patches of [8 x 5].



5.3. Comparison to other methods

For performance evaluation, we compare GHEI to several
state-of-the-art results. Summarizing results are shown in Ta-
ble 1. Here, recognition rates for all twelve experiments (A to
L), as well as the weighed recognition averages are shown.

It can be seen that, in almost all of the twelve experiments,
all three variants of GHEI perform comparably to other meth-
ods or even outperform them. For simple experiments (A to
C), GHET slightly outperforms most other methods. Major
performance increases can be seen for the experiments with
surface change (exp. D to G). Also for experiments with brief-
case (H to J), GHEI greatly outperforms most other methods.
This shows that GHEI is very capable of handling surface and
briefcase changes. On the most difficult experiments (K and
L, with time and cloth variations), GHEI can achieve an aver-
age recognition rate compared to other methods.

Variations || view, surface, briefcase, time,
shoe view, view, cloth-
shoe shoe ing

Probe Set|| A| B| C| D| E| F|G| H| I| J|K| L|lavg.
Probe Size || 122[54|54]121{60(121]60|120|60|120|33|33 -

Baseline [2] || 73|78(48| 32(22| 17(17| 61|57| 36| 3| 3||41.0
IMDE [7]|| 75|83|65| 25|28| 19|16| 58|60| 42| 2| 9(/42.9
IMDE+LDA [7]| 88{86|72| 29|33| 23|32| 54|62| 52| 8|13||48.6
GEI[1]|| 89|87(78| 36|38| 20|28| 62|59| 59| 3| 6||51.0

HMM [4]| 89(88|68| 35(28| 15(21| 85|80| 58|17|15|53.5
a-GEI[10] (| 89|87|79| 30|36| 21|19| 83|69| 63| 6| 6|/53.6
GEI+Synth [1]|| 90(91|81| 56|64| 25|36| 64|60| 60| 6|15|/57.7
DATER [13]|| 89(93|80| 44|45| 25|33| 80({79| 60|18{21|(58.5
MMFA [8]|| 89(94|80| 44|47| 25|33| 85(83| 60(|27(21|[59.9

GTDA [6]|| 91]|93|86| 32|47| 21|32| 95|90| 68(16|19|/60.6
I-to-C [3]|| 93|89|81| 54|52| 32|34| 81|78| 62[12| 9||61.2
GDN [5]|| 85(89(72| 57|66| 46|41| 83|79| 52|15|24||62.8
a-GEl+face [10] || 93|85(81| 56|45| 38|31| 89|90| 82| 3| 6|/65.2

GHEI|| 98|91|87| 70|67| 30|26| 96|91| 88|12| 3/70.2
s-GHEI|| 98(93|91| 87|78| 50(43| 95|88| 85| 6| 3||76.1
o-GHEI|| 98|93(87| 94|86| 62|50 94|91| 85[12]12(/79.8

Table 1: Comparison of GHET to other methods (all rank 1):
Baseline [2]; IMage Euclidean Distance (IMED) [7]; Gait En-
ergy Image (GEI) [1]; Hidden Markov Models (HMM) [4];
Alpha Gait Energy Image (a-GEI) [10]; Discriminant Anal-
ysis with Tensor Representation (DATER) [13]; Marginal
Fisher Analysis (MMFA) [8]; General Tensor Discriminant
Analysis (GTDA) [6]; Image-to-Class Distance (I-to-C) [3];
Gait Dynamics Normalization (GDN) [5]

6. CONCLUSION AND OUTLOOK

In this work we presented a new and highly efficient fea-
ture extraction method for person identification. By taking
HOG features instead of silhouettes in the Gait Energy Image
representation, a basic pattern recognition framework easily
outperforms the current state of the art. It can be foreseen

that when combined with more sophisticated pattern recogni-
tion techniques (which have already been tested with standard
GEI), recognition rates can be improved even further. Based
on our results, we encourage researchers to replace the GEI
representation in their systems by GHEI representation. In
many cases this might lead to new and improved gait recog-
nition performance.

The limits of GHEI feature extraction have thus by far not
yet been reached. It will be interesting to see how GHETI rep-
resentation will stand the test on other databases. For example
in multi-view gait recognition, in clothing invariant recogni-
tion, or in speed invariant recognition.
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