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Abstract

The effective handling of overlapping speech is at the Bmit
of the current state of the art in speaker diarization. This p
per presents our latest work in overlap detection. We report
the combination of features derived through convolutiva-no
negative sparse coding and new energy, spectral and veicing
related features within a conventional HMM system. Overlap
detection results are fully integrated into our top-dowaridia-

tion system through the application of overlap exclusiod an
overlap labeling. Experiments on a subset of the AMI cor-
pus show that the new system delivers significant reductions
missed speech and speaker error. Through overlap exclusion
and labelling the overall diarization error rate is showrine
prove by 6.4 % relative.

Index Terms: speech overlap detection, convolutive non-
negative sparse coding, speaker diarization

1. Introduction

The detection and handling of overlapping speech is stilka m
jor challenge in speaker diarization [1] and, indeed, in fisid
of automatic language processing [2]. Speaker diarizatysa
tems aim to determine “who speaks when” but, while overlap-
ping speech is typical in uncontrolled, spontaneous caaver
tions, current state-of-the-art speaker diarization esyst are
generally capable of detecting only a single active spedkan-
sequently, intervals with multiple active speakers canritoumte
directly to diarization error. In addition, overlappingegeh can
lead to speaker model impurities which indirectly conttéto
diarization error through degraded clustering perforneanc

Several different systems have been proposed to handle
overlapping speech in the context of speaker diarizatiamj-H
bregts et al. [3] use speech data around speaker turns to cre-
ate show-specific models of overlapping speech. With simila
models of non-overlapping speech these are subsequestly us
to detect intervals of overlap and to identify or label cimitt-
ing speakers. Boakye et al. [4] propose an HMM-based ap-
proach to overlap detection which uses models of overlappin
and non-overlapping speech trained on external data, &hile
lenak et al. [5] explored the use of prosodic features witima s
ilar HMM-based classifier.

Our previous work reports the use of convolutive non-
negative sparse coding (CNSC) for detecting overlapping
speech [6]. CNSC is used to project intervals of mixed speech
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onto speaker-specific bases; base activations are usetetd de
overlap. This approach was extended and improved in [7pusin
enhanced features and optimized CNSC parameters. While the
approach successfully combines the advantages of mixed pat
tern decomposition due to non-negative constraints and pow
erful representation and noise robustness due to spargggcod
overlap/non-overlap classification is unrealisticallsadic since

it lacks any form of duration modelling.

The contributions of this paper are three-fold: first, we re-
port the use of CNSC base activations within an HMM frame-
work, which inherently includes duration modelling. Sedpn
we introduce new energy, spectral and voicing related featu
which are well-suited to overlap detection. Third, we diser
the integration of overlap detection into a full speakerrida
tion system and demonstrate improved performance through
overlap exclusion and labeling.

The remainder of this paper is structured as follows: the
CNSC-based approach to overlap detection is describeccin Se
tion 2; new energy, spectral and voicing related featuresrar
troduced in Section 3; overlap detection and labeling éxper
ments are reported in Section 4; conclusions and perspsctiv
are reported in Section 5.

2. Convolutive Non-Negative Sparse
Coding for Overlap Detection

This section describes the general approach to CNSC base
learning and overlap detection.

2.1. Convolutive Non-Negative Sparse Coding

Non-negative sparse coding (NSC) [8] is an approach to fepre
sent non-negative, multi-variate data as a linear comioinatf
lower rank bases. Only additive combinations are allowes du
to the imposition of non-negative constraints.

With NSC, a non-negative matrik € RJZMOXJV
sented as:

is repre-

D~WH 1)
whereW € Ry , andH € Rz, are the bases and base
activations respectively. These are learned such thatethe r
larised least square error between the original mddriand the
recomposition {V H) is minimised according to:

(W, 1) = argmin | D = WHI[& +AY_Hij,  (2)
iJ
where is a regularization parameter which controls the spar-
sity of the resulting representation. Our work involves a-co



volutive variant, referred to as convolutive NSC (CNSC), [9] Feature win. size KL score
where the decomposition takes the form:

Energy & spectral (27)

P-1 s MFCC 1-12 60 0.01-0.06
D= Z W, H, (3) loudness (auditory model based) 60 0.29
p=0 zero crossing rate 25 0.04
where P is the convolution range. The column shift operators energy in band 250 - 650 Hz 25 0.98
p— pe - energy in band 1 kHz - 4 kHz 25 1.15
- and”: shlftp columns ofH to the r!ght and left respec- 25 % spectral roll-off point o5 0.03
tively. The learning of bases and activations together ratreg 50 % spectral roll-off point 25 0.02
to Eq. (2) is a non-convex optimization problem and is solved 75 % spectral roll-off point 25 0.02
by iterative update rules presented by other authors in [10] 90 % spectral roll-off point 25 0.01
spectral flux 25 0.43
2.2. CNSC-based Features spectral entropy o5 0.02
To compute CNSC features for overlap detection, b&Eeare spectral variance 25 0.00
learned for each speaker in an audio document using spectral spectral skewness 25 0.02
magnitude features extracted from segments of preferably p spectral kurtosis 25 0.06
(non-overlapping) speech. The base patterns for each epeak psychoacoustic sharpness 25 0.00
are then concatenated together to create a global beSis spectral harmonicity ad 0.09
which spans the spectral patterns of all speakers. Spetag Voicing related (6)
nitude features across the whole audio document are then de- Fp (subharmonic summation (SHS) 60 0.03
composed at the frame level according to Eq. (2) Wit kept followed by Viterbi smoothing)
fixed and onlyH being updated to minimise the optimisation probability of voicing 60 0.18
criterion. jitter 60 0.08
The activationsd and base$V’ can be used to separate and shimmer (local) 60 0.11
reconstruct each speaker’s activity and hence to detectesag jitter (delta: “jitter of jitter”) 60 0.02
of overlapping speech. Since, however, baseare normalised logarithmic Harmonic-to-Noise Ra- 60 0.01
and thus activations o reflect speaker energy, we use the tio (logHNR)
activationsH on their own to detect overlap. The energy for CNSC-based (2)
speaker during framej is estimated according to: energy ratio 20 0.05
E,(s) = Z Hy; (4) CNSC energy 40 0.28

i€ls

wherel; represents the speaker-specific rowsiinor the acti-
vations for speakes. Due to erratic overlap/non-overlap clas-
sifications, speaker activation energies calculated aEgpef4)
are smoothed with a moving average filter and used to compute
two frame-level features for overlap detection.

The first feature is the energy ratfoR and is estimated for
framej as follows:

Table 1: Candidate features with window sizes and score of
the KL divergence based feature selection on the trainihg se
Selected features are indicated in bold.

of our diarization system. Whereas our previous work inves-
tigated the simple thresholding of the normalized energip ra
ER and total energyET to detect overlap, this paper reports
E;(82) 5 their use as additional features in an HMM-based overlap de-
E;(31) ®) tection system.

ER; =

wheres; denotes the speaker with tih highest energy. The 3. Additional Features and Feature
energy ratio reflects the difference in activation energytfie ' .

two speakers who are deemed to be most active in the given Selection

frame. For overlapping segments we expect the ratio to be
nearer to unity while for non-overlapping segments theorati
should be nearer to zero. Since overlapping speech segments
typically have more energy (they comprise speech from multi
ple speakers) we also estimate the total enéigypy summing

Eq. (4) across all speakess= S:

In addition to the two CNSC-based features described abeve w
also consider new energy, spectral and voicing related fest
which are well-suited to overlap detection. They are a subse
of the AVEC2011 audio feature set [11] and are extractedgusin
the open-source openSMILE toolkit [12]. The resulting 36-ca
didate features, including CNSC and baseline MFCC features
B = Z E,(s) (6) are I!stqd in Taple 1. A.II features are computed everyn20
with indicated window sizes.

We use a Kullback-Leibler (KL) divergence-based feature
To normalise the total energy across different recorditigs, selection approach similar to that reported by Zlebwl. [13]
mean over all the speech frames in the respective recorsing i to identify features most pertinent to overlap detectiorhe T
subtracted fromi;, resulting in the normalised total energy  discriminant value of each featufeis computed according to:

seS

ET: f
B =B =0 2 B " dy = Doy || ap), ®)
J€Tsp
where f is a regularization factor tuned on held-out develop- where D(- || -) is the KL divergencepy is the distribution

ment data and/,, denotes all speech frames in the recording, of featuref for overlap frames, andy is the distribution over
determined by the speech activity detection (SAD) compbnen all frames. The KL divergenc®(p || ¢q) of two probability



distributionsp andq is computed as
p(z) 4

Pwll))= [ payn i

Under the assumption of Gaussian distributed features with
meany and variance 2, Eq. (9) can be computed as:

p(z)In x. 9)

2 2

4 op + (1p — pq) 1
D —lopg%a L T \Hp —He) 2
(g 0g0p+ 207 3

(10)

KL divergence scores for all features are also displayedain T
ble 1 and show that a small selection are particularly weitiesl

to overlap detection. Scores for loudness, the two speetral
ergy features, spectral flux, kurtosis, harmonicity, ptolits of
voicing, jitter, shimmer and the two CNSC features (illastd

in boldface in Table 1) are all higher than those for MFCC fea-
tures. The energy-related features give the highest seehéch

is somewhat expected, since the signal energy should bedh goo
indicator of overlap. Jitter is a measure of fluctuationsun-f
damental frequency while shimmer is a measure of amplitude
variability and it is thus of no surprise that they are alsodjo
indicators of overlap. Accordingly, all of these features ased
together with standard MFCCs as additional inputs to an HMM
overlap classifier. The feature set is augmented with fikkor
regression coefficients and is normalized, using the statief

the training data only, to have zero mean and unity variance.

4. Experiments

We report an assessment of our new overlap detection system
using a subset of the AMI meeting corpus.

4.1. HMM Overlap Detection System

Experiments were conducted using an HMM classifier similar
to that reported in [4]. There are three models correspanidin
non-speech, non-overlapping speech and overlapping lspeec
Each model has three states and observations are modeked wit
a multivariate Gaussian Mixture Model (GMM) with diagonal
covariance matrices. Due to unbalanced training data each m
ture in the speech model has 256 components, while those in
both the nonspeech and overlap models have 64 components.
Models are trained with an iterative mixture splitting tetue

with successive re-estimation. Transitions from non-spee
to overlapping speech are forbidden, as are self-transitio
e.g. from overlapping speech to overlapping speech. The log
likelihood transition penalty from speech to overlappipgech
(also referred to as the overlap insertion penalty OIP) nedu

to control the trade off in precision and recall performance

4.2. Overlap Handling

Overlap handling is achieved with two setups which corragpo
to different OIPs applied during HMM decoding. First, deéet
intervals of overlapping speech are excluded from the zhari
tion clustering process to reduce speaker model impurities
this approach, a high overlap detection recall is desirextder
to detect and discard as much overlapping speech as possible
Second, overlap labeling is applied by labelling a second
speaker in the diarization output for all intervals of dételc
overlapping speech. While this can reduce missed speaker ti
it can also introduce false alarms and thus high precisiole-is
sirable. One of two approaches is used to determine the sec-
ond speaker where either the GMM likelihoods (LLKs) or the

Test set
EN2003a EN2009b ES2008a ES2015d
IN1008 IN1012 1S1002c 1S1003b
1S1008b TS3009¢c

Table 2: Meetings from the AMI evaluation dataset used fer th
tests

CNSC energies according to Eq. (4) are summed up over the de-
tected overlap segment. The speaker with the highest summed
score (or the second highest, if the speaker with the highest
score is already that detected by the baseline system) iis the
added as a second speaker.

4.3. Experimental Setup

A selection of 40 meeting recordings is used for training
whereas all evaluation work is conducted with the the same te
files used in previous work by other authors [14]. The list of
meetings in the evaluation/test set is displayed in Tablén2.

all cases we considered only the single-channel, far-figldd m
crophone recordings. On average the amount of overlapping
speech is in the order of 20%.

CNSC bases are first learned for each speaker in the stan-
dard diarization system output (which is regarded as pure
speech). The algorithm described in Section 2 is applied to
magnitude spectra computed for 40 ms windows with a window
shift of 20ms. CNSC speaker activations are calculated with
speaker bases of siZé = 35, a convolutional range aP = 4
and a sparseness parametek 6f 0.05. The factorf in Eq. (7)
was tuned on held-out development data and s¢t+01.2.

Overlap detection performance is assessed using averaged,
frame-level precision and recall statistics. In additie,report
the overlap detection error (E), which is defined as the sum of
false alarm and missed overlap times divided by the referenc
overlap time. This measure is a good indicator for the ptessib
improvement in DER through overlap handling. For overlap ex
clusion the OIP is set to zero, while for overlap labeling@if
is set to -100. In the following we thus report overlap detect
performance for each set of features using both OIP valugs. T
speaker diarization system used for all experiments regdre-
low is the top-down LIA-EURECOM system reported in [15].
Finally, so that all results are independent of speechisctie-
tection, we used reference speech/nonspeech segmestition
all cases.

4.4, Overlap Detection Results

Table 3 shows overlap detection results for each of therdiffe
ent system setups. Results reported in [14] for an HMM-based
system with MFCC and other features are illustrated in tts fir
line for high recall (left) and high precision (right) setuhey

are slightly better than those for our previous CNSC-baged s
tem [7]. The last three lines in Table 3 show results for our
new system using only baseline MFCC features, the same sys-
tem with additional AVEC2011 features and then with addi-
tional CNSC features. In all cases, for the high recall setup
OIP = 100 whereas for the high precision setGd P = 0.

The use of AVEC2011 features leads to a substantial improve-
ment in precision and error over our own MFCC baseline but a
drop in recall. The inclusion of CNSC features brings furthe
significant improvements to recall performance which isthe
comparable to previous work [14, 7] but with significantlyt-be
ter precision and also the lowest error.



System P R E|P R E

MFCC[14] 055 040 - | 064 024 -
CNSC[7] 055 031 - |064 023 -
O 3 O

e 0 -100
0 - -|045 050 1.18 054 026 0.96
0 O - |06l 024 091 086 0.13 0.89
0 O O|066 031 085 082 023 0.82

Table 3: Overlap detection results on the test set, comgarin
previously published results with our HMM system with vari-
ous features. For each system, two different precision ¢P) v
recall (R) operating points with their respective overlagped-
tion error (E) are shown, depending on the OIP.

System Miss FA SpkE DER Imp.
Baseline [15] 150 0.0 182 332
+Exclusion 150 0.0 17.7 327 +15
+Labeling LLK 116 06 20.1 323 +2.7
+Labeling CNSC 116 06 196 319 +4.0
+Exc. + Lab. LLK 116 06 194 316 +4.8
+Exc. + Lab. CNSC 116 0.6 189 311 +6.4

Table 4: Influence of overlap handling (applying either tser
exclusion or overlap labeling or both) for our test set, singw
the missed speaker error (Miss), false alarm error (FARlspe
error (SpkE), diarization error rate (DER) and relative ioye-
ment in DER over the baseline. Overlap labeling is performed
using either LLK scores or CNSC energy scores.

4.5, Diarization Results

The best setup using MFCCs, AVEC2011 and CNSC features
was then used to integrate overlap handling into our fuliiziza

tion system [15]. The high recall setup was used for overap e
clusion whereas the high precision setup was used for gverla
labeling.

Results are presented in Table 4. For the baseline sys-

tem overlapping speech is shown to contribute 15 % to missed

speech whereas there are no false alarms due to the use of ref-

erence speech/non-speech transcriptions. With a speaker e
of 18.2 % a baseline DER of 33.2 % falls marginally to 32.7 %
(1.5 % relative improvement) when overlap exclusion is used
to reduce clustering impurities. On its own (without exclu-
sion) overlap labeling has a slightly larger impact on perfo
mance. The DER improves by 2.7 % relative when labelling is
performed using LLK scores and by 4.0 % relative for CNSC
scores. With small increase in false alarms, the averagsechis
speech rate falls to 11.6 % whereas there is a small incraase i
speaker error due to erroneous labeling. When used in additi
to overlap exclusion, LLK and CNSC based overlap labeling
approaches give relative improvements of 4.8 % and 6.4 % re-
spectively.

5. Conclusions

This paper reports our successful efforts to advance the sta
the art in speech overlap handling for speaker diarizatikin.
shows how CNSC and new energy, spectral and voicing related

features can be coupled with MFCC features and integrated
into an HMM-framework to improve diarization performance
through overlap exclusion and labelling.

The two tasks require different operating points in over-
lap detection. Whereas overlap exclusion requires high re-
call, labeling requires high precision. Compared to our own
MFCC baseline system energy, spectral and voicing relaied f
tures bring improvements in precision whereas CNSC festure
bring improvements in recall. Since recall rates remainadog
missed speaker rates remain high, there is still signifigaten-
tial to improve speaker diarization performance. Futurekwo
should concentrate on improved recall performance and we be
lieve that CNSC-based approaches warrant further attentio
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