
Institut für Informatik
der Technischen Universität München

Methods for the Diagnosis and
Automatic Repair of Software Systems

Christian Kern





TECHNISCHE UNIVERSITÄT MÜNCHEN
Chair for Foundations of Software Reliability and Theoretical

Computer Science

Methods for the Diagnosis and Automatic
Repair of Software Systems

Christian Kern

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität
München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Helmut Seidl

Prüfer der Dissertation:

1. Univ.-Prof. Dr. Dr. h.c. Javier Esparza

2. Prof. Keijo Heljanko, Aalto Universität / Finnland

Die Dissertation wurde am 22.02.2013 bei der Technischen Universität München
eingereicht und durch die Fakultät für Informatik am 29.05.2013 angenommen.





Abstract

Software bugs account for the majority of costs in the software development
process. In this thesis we make two contributions to the general problem of
automatically diagnosing and correcting bugs. In the first contribution, we
present a lightweight approach for repairing standard bugs in program code.
The programmer defines a catalogue of syntactic constructs she consideres er-
ror prone, together with suitable alternatives. Given a faulty program, search
techniques are applied to repair the program.

The second contribution are model-based approaches for the diagnosis of
failures in partially observable, distributed systems that trigger alarms. We
are interested in the possible behaviours that lead to an alarm as basis for
deriving an explanation for the bug. A natural formal model for concurrent
systems are Petri nets. An “unrolled” representation of such a net, its un-
folding, encapsulates all its behaviours in a compact way. A prefix of the
unfolding is used to represent the behaviours that lead to an alarm. Since
the computation of this prefix is algorithmically involved, we give a method
for computing an overapproximation that trades precision for speed. We re-
port on an implementation that constructs this prefix when the observation
sequence is known, but also present an online and forward-looking approach
and compare these approaches. Moreover, we present SAT solving methods
for producing an explanation. Finally, we focus on the Reveals relation (in-
troduced by Haar), that establishes an inevitability relation between system
events in an unfolding. This supports reasoning about the occurrences of non-
observable events purely by using the observation. We notably improve the
existing decidability result for Reveals by introducing a tractable algorithm
for deciding it. Moreover, we present a highly efficient implementation of this
algorithm.

v





Zusammenfassung

Softwarefehler sind für den Großteil der Kosten im Softwareentwicklungspro-
zess verantwortlich. In dieser Arbeit stellen wir zwei Ansätze für das Problem
der automatischen Diagnose und Korrektur von Softwarefehlern vor. Der ers-
te Beitrag ist ein leichtgewichtiger Ansatz; ProgrammiererInnen definieren
einen Katalog von syntaktischen Konstrukten, die sie für fehleranfällig hal-
ten, zusammen mit möglichen Alternativen. Um das defekte Programm zu
reparieren werden Suchmethoden verwendet.

Der zweite Beitrag sind modellbasierte Ansätze für die Diagnose von Feh-
lern in partiell beobachtbaren, verteilten Systemen, die Alarme auslösen. Als
Basis für die Fehlererklärung sind wir an den Systemverhalten interessiert
die einen Alarm auslösen. Ein natürliches Modell für nebenläufige Systeme
sind Petrinetze. Die “entrollte” Darstellung eines Netzes, seine Entfaltung,
fasst Verhalten des Netzes kompakt zusammen. Ein Entfaltungsprefix wird
benutzt um alarmauslösende Verhalten des Netzes darzustellen. Dessen Be-
rechnung ist algorithmisch sehr komplex. Daher wird eine Überapproxima-
tion, bei der Genauigkeit gegen Geschwindigkeit getauscht wird, berechnet.
Wir berechnen diesen Prefix, zum einen wenn die Beobachtungssequenz eines
Alarms schon feststeht, zum anderen vorausschauend während das System
läuft. SAT-Solving Methoden ermöglichen es, eine korrekte Fehlererklärung
von diesem Prefix abzuleiten. Im letzten Teil der Arbeit beschäftigen wir uns
mit der Reveals-Relation (siehe Haar), die eine Unausweichlichkeits-Relation
zwischen Ereignissen in einer Entfaltung definiert. Diese Relation hilft über
unsichtbare Ereignisse zu sprechen, nur unter Benutzung der sichtbaren. Wir
verbessern die Entscheidbarkeits-Ergebnisse für die Berechnung von Reveals
merklich, indem wir einen in der Praxis berechenbaren Algorithmus vorstel-
len, zusammen mit einer äußerst effizientem Implementation.

vii





Acknowledgements

First of all, I would like to thank my supervisor Javier Esparza for giving
me the opportunity to become a student at his chair. His door was always
open for me. He was taking much time for guiding me the right way and
answering any questions. Without his continuous and persistent support,
this thesis would not have been possible. His support in any way was better
than I could have ever asked for. He did a great job and I learned very much
from him, not only with respect to research.

During my research visit to Cachan in France, Stefan Schwoon was my
host. His hospitality was very kind and I felt very welcome at his research
group. He showed me new directions for my research and was a very im-
portant part for it. Thank you very much for that! In this context, I also
would like to thank Stefan Haar for giving me the great opportunity of doing
research with him. Moreover, thank you Keijo Heljanko for reviewing my
thesis. Further thanks goes to all my friends and colleagues at the chair of
Prof. Esparza for providing such a pleasant working environment. Thank
you Andreas Gaiser, Stefan Kugele, Jan Křetínský, Michael Luttenberger,
René Neumann and Maximilian Schlund, it was an honour to work with you.

My research was supported by a scholarship of the PUMA graduate
school. Thank you, Helmut Seidl, for letting me be a member of this ex-
cellent graduate school. The discussions with other members of PUMA as
well as the variety of offered lectures were very inspiring and an important
part of my research.

A very big thanks goes to my parents and my sister for their support and
love, not only during the time working on this thesis, but my whole life. Last
but not least, I want to thank you, Martina, for your everlasting support,
your trust in me and your kindness during all those years.

ix





Contents

1 Introduction 1

2 Automatic Program Repair 7
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Selecting Hotspots and Alternatives . . . . . . . . . . . . . . 10
2.3 Conflicting Hotspots . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Search Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.1 Java Pathfinder . . . . . . . . . . . . . . . . . . . . . . 13
2.4.2 Searchable Meta Program . . . . . . . . . . . . . . . . 15
2.4.3 Search Strategy . . . . . . . . . . . . . . . . . . . . . . 17
2.4.4 Efficient Data Structure for Decision Traces . . . . . . 21

2.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Diagnosis with Petri Nets 27
3.1 Diagnosis for DES . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2 Petri Net Preliminaries . . . . . . . . . . . . . . . . . . . . . . 32

3.2.1 Petri Nets . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.2 Occurrence Nets . . . . . . . . . . . . . . . . . . . . . 35
3.2.3 Branching Process and Unfolding . . . . . . . . . . . . 38

3.3 Diagnosis with Unfoldings . . . . . . . . . . . . . . . . . . . . 41

4 Reactive and Proactive Diagnosis 47
4.1 Products of Transition Systems as Model . . . . . . . . . . . . 47
4.2 Products as Petri Nets . . . . . . . . . . . . . . . . . . . . . . 52
4.3 Reactive and Proactive Unfolding Algorithm . . . . . . . . . . 56

xi



4.3.1 Analyzing the Branching Process . . . . . . . . . . . . 71
4.3.2 Implementation of the Proactive Diagnosis . . . . . . . 73
4.3.3 Case Study . . . . . . . . . . . . . . . . . . . . . . . . 75

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5 Computing the Reveals Relation 83
5.1 The “Reveals” Relation . . . . . . . . . . . . . . . . . . . . . . 85
5.2 Existing Bound for Deciding the Reveals Relation . . . . . . . 88
5.3 Improved Bound for Deciding the Reveals Relation . . . . . . 89
5.4 Computing The Reveals Relation . . . . . . . . . . . . . . . . 96

5.4.1 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . 96
5.4.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . 103

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6 Conclusion 107

List of Figures 118

List of Tables 119

List of Algorithms 121



Chapter 1
Introduction

This thesis deals with the topic whether and to what extent the task of
debugging can be automated. Debugging refers to the task of fixing bugs.
The term “bug” goes back to the year 1947, where Grace Hopper was working
on the Mark II, a relay computer. This computer was not working as specified
but the reason for this error was not some programming or wiring error. It
was a moth trapped between two relays. Hopper wrote to her log [27]: “First
actual bug being found”. Nowadays, computer systems are very reliable. It
is very unlikely that some insect is the cause for a software error. On the
other hand, software systems have become very complex. Software failures
are mainly caused by the programmer making mistakes. Still, by abuse of the
term bug, such a programming error is called a bug and the task of detecting,
finding and fixing such an error is called debugging. Debugging is a very time
intensive and tedious task and so its automation is a valuable research topic.
In this chapter, we first give an overview over our approaches and concretely
discuss our contributions.

Figure 1.1 shows the schematic overview of our general approach. We
assume a software system given as source code together with its complete
specification (most left in the figure). The system and the specification are
compiled in such a way that both are executable. We assume the system is
partially observable, i.e. we are only able to observe the systems behaviour
up to a certain degree. This additionally implies that it may be possible that
the specification cannot be completely verified.

There, diagnosis comes into play. Diagnosis subsumes monitoring, the
task of observing and recording the systems behaviour. The system emits

1



2 CHAPTER 1. INTRODUCTION

Faulty 
source code A

utom
atic

program
 repair

Software
system

Specification

Alarm

Monitored execution 
of partially observable 

system Diagnosis

Corrected 
source code

Figure 1.1: General goal

alarms, i.e. potential violations of the specification. Diagnosis is the task of
analysing the recorded system behaviour. Spurious alarms, i.e. alarms that
do not refer to violations of the specification, are sorted out and real faults
that already happened or that are in the systems futures are analysed to
find and report their cause. If the fault is projected to the systems future, it
may be possible to avoid it. Otherwise, we have a faulty piece of code that
needs to be repaired. We then deal with the question of how to automate
this task, i.e. given a faulty program together with its specification, how
one can automatically derive a correct program. This is called automatic
program repair. The output of this procedure is the corrected source code.
The software system can be updated with the repaired source code and the
whole procedure is iterated.

This thesis contains two specific contributions to this general problem,
one for program repair and one for diagnosis. The contribution for auto-
matic program repair deals with the problem directly on the code level. We
are interested in a practical approach and implementation details. This is
therefore a very technical contribution. Contrary to that, the contribution
to diagnosis concerns models of software, in particular Petri net models. As
well as in the contribution for program repair, we also introduce and discuss
algorithms together with their implementations but we additionally give a
series of theoretical results. Clearly, the model based approach is therefore
the more substantial part of this thesis.



3

For the contribution to automatic program repair, a testing based ap-
proach using an explicit model is presented. We are given a defective program
as Java source code and we simulate different program variants until we find
a correct one (with respect to the given complete program specification). We
base our implementation on the explicit state model checker JPF1 to achieve
this. An explicit model checker does not use a sophisticated model for the
software system, the states in the model are represented by a core dump of
the virtual machine that is used to execute the program. This approach is
discussed in detail in Chapter 2.

2

●

4

●3

6

1 5

Alarm

Invisible
transitions Visible

transitions

●
●

●

●
● ●

235

4 6 1

3 2

!
"
!
#$%&'

!

"

!

!
"#

System

Model (Petri Net)

Behaviour (Unfolding)

System 
Observation

Explanation
(Compatible Unfolding 

Fragment)

Figure 1.2: Approach - diagnosis with Petri nets

For diagnosis, as already mentioned, instead of considering code directly,
we consider model-based approaches. Petri nets are natural models for dis-
tributed systems. Figure 1.2 shows our approach. We are given a system

1http://javapathfinder.sourceforge.net



4 CHAPTER 1. INTRODUCTION

that is modelled as Petri net and is only partial observable. The partial ob-
servability is modelled by partitioning transitions of the net into visible and
invisible transitions. Invisible transitions are not observable whereas visible
transitions are observable and can additionally be alarms. For analysing the
possible behaviours of the system it is necessary to explore and store its state
space. Therefore, as usual when doing model checking, we have to combat the
state explosion problem. In distributed systems, different orders of transi-
tions can lead to the same state. So, for fighting the state explosion problem,
only the partial order of transitions needs to be stored. This is called partial
order compression and the unfolding of a Petri net is a well-known represen-
tation for such a partial order compressed view on the behaviour of the net.
When given the observation that leads to an alarm we want to analyse the
alarm, therefore the behaviours of the net that show the alarms observation
have to be computed and analysed. The compatible unfolding, i.e. the un-
folding that represents the behaviours of the net showing the observation, is
utilized for this purpose.

We proceed as follows. In Chapter 3 we present common preliminaries
for our approaches on this topic and give related work on Petri nets and
their unfoldings. In Chapter 4 we consider the presented general approach.
A parallel Sokoban game is used as system for a case study. The system
is modelled as product of transition systems, represented as Petri net. Its
unfolding is used as behaviour representation. We introduce a heuristically
approach for doing diagnosis while the system is running, i.e. while observ-
ing the system, the system’s unfolding is synchronized with it. Additionally,
an approach is presented not only considering the systems history but also
its possible future behaviour. This enables speculating about failures in the
systems future, but also adds the problem of removing behaviours that are
invalidated when the system progresses. We present a solution for this prob-
lem; the respective approach is called proactive diagnosis. The subsequent
Chapter 5 deals with the reveals relation, a relation supporting doing diagno-
sis using unfoldings. This non-trivial relation is, loosely speaking, formulated
as follows: “a reveals b iff, whenever a occurs, b will eventually occur or has
already occurred”. Having this relation at our disposal, from the occurrence
a we can derive the potentially invisible occurrence of b. The relation itself
was introduced by Stefan Haar. Decidability results as well as the efficient
computation of this relation are subject of this chapter.

Former versions of the contributions of this thesis were published in:



5

• Christian Kern, Javier Esparza: Automatic Error Correction of Java
Programs. FMICS 2010: 67-81 [32].

• Stefan Haar, Christian Kern, Stefan Schwoon: Computing the Reveals
Relation in Occurrence Nets. GandALF 2011: 31-44 [25].
An extended version was accepted for publication as journal article in
Theoretical Computer Science.

• Javier Esparza, Christian Kern: Reactive and Proactive Diagnosis of
Distributed Systems Using Net Unfoldings. ACSD 2012: 154-163 [14].

In Papers [32] and [14], all case studies and most of the theoretical results
were done by myself, as well as the implementations and algorithm design
for Paper [25]. The major part of proving the improved bound in [25] was
done by Stefan Schwoon and Stefan Haar. In Section 5.3 of this thesis, we
present a rewritten and much more detailed version of this proof.



6 CHAPTER 1. INTRODUCTION



Chapter 2
Automatic Program Repair

Contrary to the common opinion that most of the time (and therefore money)
in the software development cycle is spent on implementing new features,
most of the time (50% or more) is spent purely on debugging, i.e. detect-
ing and fixing bugs, as for example shown in [26] or in the extensive survey
[34]. In this chapter we deal with this question and present our heuristi-
cally approach towards solving it. Before presenting our approach, we give
an overview over the wide-ranging research fields of bug localization and
program synthesis. Our approach is located between both areas.

Bug localization (sometimes called bug interpretation) and bug fixing
have been intensively studied in the last years. For this research field we
follow the notion presented in [54]. A bug is a defect in the program code
caused by an infection. An infection is a state in some execution of the
program that differs from the state as it was intended by the developer. Such
an infection may not lead to undesired program behaviour, the program can
still fulfil its specification if, e.g. the infection does not propagate. However,
if it becomes visible to an observer (e.g. the output is wrong), we call this
a failure. The task of bug localization is therefore the task of locating the
code location that is responsible for the infection.

A program trace is the sequence of program states in a program execution,
leading from an initial state to a target state. Traces reaching an error
state are called error traces, all other traces are called successful. Several
proposals for bug localization are based on the idea of capturing differences
between error traces and successful traces of a program. Zeller [55] introduces
a technique called Delta Debugging, eliminating possible failure causes by

7



8 CHAPTER 2. AUTOMATIC PROGRAM REPAIR

automatically and iteratively testing hypothesis on the failure. This general
technique is used by Cleve and Zeller[7] to compare the intermediate program
states of error and successful traces and apply Delta Debugging to find a
minimal set of value changes in variables, transforming a successful run into
a failing run. This information is used to report possible infections to the
user.

Ball et al. [1] search for transitions occurring in multiple error traces but
no successful trace, which are suspected to be infections. Their approach
is implemented in the SLAM Toolkit [2]. Similar techniques [23] have also
found its way into the Java Pathfinder [50] model checker.

Groce et al. [22] propose a notion of distance between traces. SAT is used
as program model. Distance between two traces is defined as the number
of different assigned SAT variables that are representing program variables.
Pseudo boolean constraints are added to the SAT formula for generating a
closest pair containing a successful and an error trace using a pseudo boolean
solver. The infection(s) is/are assumed to be localized at the differences
between these traces. This approach is implemented using the CBMC [6]
model checker.

Tarantula [30] visualizes differences between successful and error traces:
program statements are colored accordingly to the ratio between how often
they are visited by successful traces, and how often by failure traces. If the
ratio “visited in a error trace” and “visited in a successful” trace is very high,
this might be an infection.

Further proposals for bug localization only use information from error
traces. Wang et al. [51] determine a causality-chain inducing the error by
applying an algorithm for computing pre-conditions to an error trace. Gries-
mayer et al. [21] consider systems with several components and propose an
iterative procedure that considers one error trace at a time and uses it to
narrow down the set of components that can be responsible for the fault.

A common advantage of all these approaches with respect to our proposal
is the absence of assumptions about the cause of the bug, compared to our
assumption that bugs are located at hotspots. However, the absence of as-
sumptions also makes automatic repair problematic, and in fact none of the
approaches above explicitly studies it.

The two approaches closest to our work present proposals for automati-
cally localizing and fixing bugs. Weimer et. al [52] assume that the bug can
be fixed by deleting, inserting or swapping instructions in the source code.



2.1. INTRODUCTION 9

Genetic algorithms are used to generate program variants, which are then
sequentially tested for being correct. Instead of applying genetic algorithms,
we generate one single meta-program embedding all variants, and explore it
using search techniques. We suspect that this approach is more adequate
for bugs requiring changing the code at several places; however, a detailed
comparison is problematic, because genetic algorithms can be tuned accord-
ing to a wide range of parameters, and is beyond the scope of this thesis.
Jobstman et al. [29, 48] reduce program repair for finding a winning strategy
in a game, and present impressive benchmarks, albeit mostly in the hardware
area. Our approach can be seen as a special case of their technique that can
be implemented on top of JPF with reasonable effort, allowing to profit from
all the algorithmic expertise embodied in it.

2.1 Introduction

Our approach follows from the observation of the debugging behaviours of
software engineers. When debugging, they often focus on “hotspots” in the
program code, i.e. code locations where bugs are likely to occur. Then they
check if a change of the code at these “hotspots” may correct the bug.

A typical example of hotspots are comparisons of integer expressions,
which are likely to lead to “off-by-one” errors, like typing x < 0 instead of x
<= 0, or for (int i = 0; i < N; i++) instead of for (int i = 0; i <
N+1; i++).

We propose to automatize this approach. Instead of manually searching
for hotspots, programmers just define a catalogue of syntactic constructs,
like for instance EXPRESSION1 < EXPRESSION2, and for each of them a set of
possible alternatives, like, for instance, EXPRESSION1 <= EXPRESSION2.

A choice at a hotspot is the decision for a specific alternative at this code
location, including the unmodified source code at this hotspot. A program
variant is derived by making a choice at each hotspot.

Furthermore, developers specify a set of test inputs, for instance by fixing
the range of input variables. Some tool can then in principle generate pro-
gram variants of the program generated by the alternatives, and test each of
them on the test inputs, until some variant passes all the tests.

A naive way of testing all variants on all test inputs is to sequentially
compile each variant and test it on all inputs. However, this approach is
highly inefficient. We propose an approach, where we first generate a meta-



10 CHAPTER 2. AUTOMATIC PROGRAM REPAIR

program Pm that can simulate all the variants of P and then run Pm in
a certain way on the set of test inputs, excluding variants along the way.
We then present an implementation of this approach on top of the Java
Pathfinder (JPF) model checker. In fact, the state exploration algorithm of
JPF turns out to exactly meet the needs of our technique.

2.2 Selecting Hotspots and Alternatives

We use syntactic code analysis to search for hotspots; code locations where
(part of) a bug could have been injected. As our implementation is based
on the Java Compiler API1, hostspots are subtrees of the parse tree of the
program.

We explain our approach by means of an example. Figure 2.1 shows part
of a sorting algorithm in Java. Assume that the hotspot heuristic in this
example extracts binary expressions combined with the less-then comparator;
i.e. all expressions of the form EXPRESSION1 < EXPRESSION2. For these two
lines of code, three expressions of this form are found, namely hotspots 1○-
3○.

Listing 1: Heuristically selected hotspots

[...]

while (i < j)

{

while (a[++i] < a[l] && i < r)

[...]

hotspots

1

2 3

Figure 2.1: Heuristically selected hotspots

For each hotspot, a changeset entry collects a set of possible alternatives,
plus the original code. A changeset collects all changeset entries for a pro-
gram.

For instance for the hotspots in Figure 2.1 we consider a
heuristic that suggests EXPRESSION1 > EXPRESSION2 as alternative to

1http://java.sun.com/javase/6/docs/jdk/api/javac/tree/index.html



2.3. CONFLICTING HOTSPOTS 11

EXPRESSION1 < EXPRESSION2. The result is the changeset displayed in Fig-
ure 2.2, i.e. a set containing a changeset entry for each hotspot.

CS = { 1○→ { i < j, i > j }, 2○→ { a[++i] < a[l], a[++i] > a[l] }
3○ → { i < r, i > r }}

Figure 2.2: Example changeset

We extract a template program, i.e. the original program where code
of each hotspot is replaced with the template. See Figure 2.3 for that. A
program variant is the result of replacing each template by one of the elements
in its corresponding changeset entry.

2.3 Conflicting Hotspots

Two hotspots are conflicting if one of them is a subtree of the other. For
instance, in Figure 2.4, hotspots 1○ and 3○ are conflicting but 1○ and 4○
are not. When heuristics produce conflicting hotspots we use Algorithm
1 to generate a changeset entry for the outermost hotspot, and use it for
producing program variants.

Our algorithm constructs a forest F with hotspots as nodes. If b○ is
a subtree of a○ in the program’s parse tree we add to F the edge ( a○,
b○) and remove all transitive edges from the graph. We then generate a new
changeset entry for each root of the forest by means of an iterative procedure.
Given an edge (v1, v2) and elements e1, e2 of the changeset entries of v1 and

[ . . . ]
while ( 1○)
{

while ( 2○ && 3○ ) ;
[ . . . ]

Figure 2.3: Template program



12 CHAPTER 2. AUTOMATIC PROGRAM REPAIR

[ . . . ]
i n t m = (a + b) < ( c + (d + a ) )
[ . . . ]

Abbildung 1: Conflicting heuristics

1
2

4

3

Figure 2.4: Conflicting heuristics

CSc = { 1○ → {a + b, a - b}, 2○ → {c + (d + a), c - (d + a)},
3○ → {(a + b) < (c + (d + a)), (a + b) > (c + (d + a))},

4○ → {d + a, d - a}}

CS1 = { 1○ → { a + b, a - b },
2○ → { c + (d + a), c - (d + a), c + (d - a), c - (d - a) },
3○ → { (a + b) < (c + (d + a)), (a + b) > (c + (d + a)) }}

Figure 2.5: Top: conflicting hotspots, Bottom: first resolution step

v2, we denote by e1[e2] the result of substituting e2 for the code of v2 in
e1. The procedure picks an edge (v1, v2) such that v2 is a leaf, and replaces
v1’s changeset entry by Merge(v1, v2) := {e1[e2] | e1 ∈ Che, e2 ∈ Che},
where Che, Che are the changeset entries of v1 and v2, respectively; then
the procedure removes v2 from the graph, removes the changeset entry of v2
from the changeset, and iterates.

Consider for example the source code in Listing 2.4 with the changeset
CSc of Figure 2.5/Top. The algorithm constructs the conflict graph G =

(V ,E ) with the set of edges E = {( 3○, 1○), ( 3○, 2○), ( 2○, 4○)} and the set
of vertices V = [ 1○− 4○]. Changeset entry 4○ is a leaf, and so its changeset
entry is merged with the changeset entry of 2○. The result is shown in
Figure 2.5/Bottom. After repeating this procedure as long as possible, we
get a merged changeset entry for program location 3○.

2.4 Search Strategy

We have described an heuristically approach for identifying “error prone”
program locations (hotspots) in a faulty program and suggesting alternatives.



2.4. SEARCH STRATEGY 13

Algorithm 1: ConflictResolution
input : Set of conflicting hotspots Hc

output: Resolved set of changeset entries R
begin

V ←− Hc;
E ←− ∅;
Directed Graph G = (V ,E );
for v1 ∈ V do

for v2 ∈ V do
if ProgramLocation(v1) ⊂ ProgramLocation(v2) then

E ←− E ∪ (v1, v2)

RemoveAllTransitiveEdges(G);
while ∃ (v1, v2) ∈ E with v2 has no outgoing edges do

v1←− Merge(v1, v2);
E ←− E \ {(v1, v2)};
V ←− V \ v2;

return changeset entries of remaining vertices V

These heuristics return a changeset containing a changeset entry (a set of
alternatives) for each hotspot. Now we show how to use the changeset to
derive a corrected program. We generate test inputs, search the space of
program variants obtained by a combination of changeset code replacements
and select those variants satisfying the specification for all test inputs. The
correctness of this set of variants can then be verified using some model
checker. Since our implementation is based on the Java Pathfinder (JPF)
model checker, we first discuss its search strategy.

2.4.1 Java Pathfinder

The JPF model checker is an explicit state model checker. Conceptually,
JPF is a virtual machine that can simulate all possible runs of a program.
Its input is a program P given as Java bytecode. Various techniques, e.g.
state compression and partial order reduction are applied to fight the state
space explosion. The state space of P is exhaustively explored using various
search techniques. In this work, we focus on JPF’s depth-first search imple-
mentation. We first discuss this approach, presented in Algorithms 2 and 3.



14 CHAPTER 2. AUTOMATIC PROGRAM REPAIR

Algorithm 2: Java Pathfinder
input : Program P
output: Is P correct?
begin

s ←− new choice point stack;
while true do

/* Program is executed until non-det. choice is
possible or an end state is reached */

;
executeProgram(P);
if endState then

if endState is errorState then return false;
else if !Backtrack(s) then return true;

else /* Non-deterministic point in execution */
choice point ←− new choice point;
choice point .doNextChoice();
s .push(choice point);

Usually, model checkers are used to analyze programs on all possible pro-
gram inputs. This is achieved by introducing non-deterministic variables
that symbolically represent value ranges. The program is verified on possible
combinations of these values. For this analysis not having to explicitly exe-
cute the program with each value combination, various symbolic techniques
have been studied and introduced.

In JPF, non-determinism is introduced either indirectly, e.g. when select-
ing the next thread that executes an action or directly, as statements in the
source code under test. The program is executed until a non-deterministic
choice is possible or the execution terminates. A stack that records made
choices is maintained. For each non-deterministic choice in the execution, a
choice point is created on top of this choice point stack, storing the dif-
ferent possibilities to continue the execution – those that have already been
explored, and the current program state.

The execution is continued using depth-first search, i.e. the first choice



2.4. SEARCH STRATEGY 15

not marked as explored is executed and marked as explored. If an error
state is reached, a program failure together with an error trace is returned.
If an end state is reached without errors, the search backtracks to the first
choice_point to a choice point stack that has at least one unexplored choice.
The program state of this choice point is restored, and the execution con-
tinues with the unexplored choice. If no backtracking is possible, the program
is declared correct.

Algorithm 3: Backtrack
input : A reference to choice point stack s .
output: Was backtracking possible?
begin

while true do
if s.empty() then

return false;

choice point ←− s .pop();
if choice point has more choices then

restore state(choice point);
choice point .doNextChoice();
s .push(choice point);
return true;

2.4.2 Searchable Meta Program

In this section, we construct the already introduced meta-program Pm . Given
Pm as input, JPF explores each program variant of program P for a given
changeset on each test input. Note that all the steps described next for
modifying the original source code are carried out automatically.

Test inputs are introduced utilizing non-deterministic choices in the
source code under test. Consider for instance the example code in Figure
2.6 that calls the method Verify.getInt(a,b). In context of JPF, this
statement is not a Java expression returning a value, instead it represents
a non-deterministic integer value within range [a, b], resolved as stated in
Section 2.4.1.



16 CHAPTER 2. AUTOMATIC PROGRAM REPAIR

int[] a = new int[Verify.getInt (1 ,5)];
for(int i=0; i!=a.length; ++i)
a[i] = Verify.getInt (0 ,50);

Figure 2.6: Test input generator

Consider again the example code in Figure 2.6. Executed in JPF, all
possible arrays a[] of size 1-5 and value entries 0-50 are explored. This piece
of code can, e.g. be used as test input generator for sorting algorithms.

We explore program variants in a similar way. Recall that a changeset
is a set of changeset entries, each of them consisting of a set of alternatives
for a single program code location. We force JPF to explore each alternative
in its depth-first search procedure. For that, we introduce a new statement:
Explore.getChoice(size, ident). In the context of JPF, this statement
represents a non-deterministic value within the integer range [0, size−1],
however, a non-deterministic value with the same identifier might get hit
more than once within the JPF execution (due to loops and recursive calls),
but the decision must be only made once. So, during the execution of the
program under test, we only create a choice_point when no choice_point
with the identifier ident exists in the choice point stack, i.e. only the first
time a non-deterministic value of this kind is hit in a path of the execution
with this identifier. In all subsequent hits, the current choice of the already
existing choice_point is just looked up and returned.

For each changeset entry we introduce an Explore method call with
ident, a unique identifier and parameter size, the number of alternatives
contained in the respective changeset entry.

The value returned by Explore determines the program alternative of the
changeset entry to be executed next. This is the motivation for only allowing
one choice_point for each identifier, created in one run of the program.
Otherwise, e.g. because of recursive calls, all variants of a changeset entry
could be exhaustively explored again. We use the “?:” operator2 to execute
the specific program variant. Its simplified syntax is:

CONDITION ? EXPRESSION : EXPRESSION

2http://java.sun.com/docs/books/jls/third\_edition/html/expressions.
html\#15.25



2.4. SEARCH STRATEGY 17

[...]
while ( Explore.getChoice(2, id1) == 1 ?

i < j : i > j )
{

while ( Explore.getChoice(2, id2) == 1 ?
a[++i] < a[l] : a[++i] > a[l] &&

Explore.getChoice(2, id3) == 1 ?
i < r : i > r )

[...]

Figure 2.7: Searchable meta program

If CONDITION evaluates to true (resp. false), the first (resp. second) ex-
pression is evaluated and its result is returned. This conditional operator is
applied recursively. Consider for example the expression

j==1 ? EXPR_1 : j==2 ? EXPR_2 : j==3 ? EXPR_3 : EXPR_0.

If variable j has value n with n ∈ [0− 3], then EXPR_<n> gets evaluated. For
every changeset entry, we replace the expression at the respective program
location by such a conditional expression. We use the return value of the
Explore function as choice for a code alternative of each program variant.
Figure 2.7 shows the code segment we obtained for the example in Figure 2.1
and the changeset in Figure 2.2. Observe that in this approach, alternatives
and hotspots must necessarily be Java Expressions.

In summary, using Explore and Verify we transform the original pro-
gram into a metaprogram Pm . On input Pm , the JPF model checker explores
the behaviour of each program variant derivable from the changeset on each
generated test input.

2.4.3 Search Strategy

We discuss how to efficiently search for a correct program using the meta
program Pm introduced in the last section. We modify JPF’s depth-first
search strategy so that it backtracks instead of terminating when it finds
an error, thus forcing a complete exploration of all test inputs and program
variants.



18 CHAPTER 2. AUTOMATIC PROGRAM REPAIR

A

id1

 

1

id2

id3

 

1

 

2

1

id3

X

1

X

2

2

2

1

id2

id1

X

1

X

2

1

id1

id3

 

1

X

2

1

 

2

2

2

id2

 

1

X

2

3

Figure 2.8: Search tree

We use a search tree to visualize the depth-first search (see Figure 2.8).
Nodes are either choice points on which we branch, or end states where we
start to backtrack. There are two different types of choice point nodes: those
generating test inputs (TC-points, displayed as dashed nodes — “ ”), and
those where we choose different program variants (PC-points, displayed as
dotted nodes — “ ”). Each program execution path ends at a leaf (grey
node). Two possible end states are possible: “X”— the execution terminated
without an error and “ ”— the execution terminated with an error. An error
is induced by one of the following events:

• An uncaught exception occurs.

• The execution takes too long — this is necessary, because infinite exe-
cutions are possible and JPF cannot detect them. We therefore restrict
the amount of instructions for each path of the execution.

• The specification is violated.

• The program exits, but the defined end state of the program has not
been reached.

A program decision is a tuple 〈PC-point, choice〉, like for example 〈id1, 2〉.
A decision trace is a set of program decisions where each PC-point occurs at



2.4. SEARCH STRATEGY 19

most once. The size of a trace is the number of tuples it contains. Each
(partial) path in the search yields such a decision trace. A complete decision
trace Tc contains a program decision for every defined PC-point, i.e. a decision
for each changeset entry. It characterizes a simulated program variant P(Tc)

within the meta-program Pm . We search for a complete trace Tc such that
P(Tc) satisfies the specification on every test input.

Assume an end state is reached by depth-first search. If it is an error
state, then its decision trace cannot be a subset of any complete trace T 1

c

such that P(T 1
c ) is the correct program, because P(T 1

c ) fails at least on one
test input. If it is a success state, then its decision trace is a candidate trace:
it could be a subset of a complete trace T 2

c such that P(T 2
c ) is a correct

program on all test inputs. This motivates storing two sets of decision traces
during the search: a set containing the candidate traces (good traces), and
another one containing the traces reaching an error state (bad traces).

Whenever an end state is reached during the depth-first search, Algorithm
4 is executed. If the end state is a success state and its decision trace does
not contain a bad trace as subset, we add it to the set of good traces. If
the end state is an error state, the extracted error trace can be shortened
if there exists a PC-point in the search path towards the error, such that
every successor of this node leads to an error state. This information is made
available when a PC-point was completely explored. Therefore, whenever we
hit an error state that is an end state, we do not add its trace to the set of
bad traces, instead we mark the actual choice of the above PC-point as bad.
When a PC-point was completely visited, we check if all its choices are marked
as bad. If this is the case, we again mark the current choice of the PC-point
above as bad. If there exists no such node above, we cannot find a correction.
If not all choices are marked as bad, the decision traces of successors that
induce an error state are stored as bad traces. This procedure is shown in
Algorithm 5.

Consider for example the search in Figure 2.8. The path <A,1>-<id1,2>-
<id2,1>-<id3,1> reaches an error state and choice 1 in id3 is marked as
bad. The path <A,1>-<id1,2>-<id2,1>-<id3,2> also reaches an error state,
so now the choices 1 and 2 in id3 are marked as bad. When backtracking,
since all choices of id3 are bad, we propagate this to id2, marking its choice
1 as bad. After id2 is completely explored, not all its choices are marked as
bad and so we add the decision trace {<id1,2>,<id2,1>} to the set of bad



20 CHAPTER 2. AUTOMATIC PROGRAM REPAIR

Algorithm 4: FinalStateReached
input: Final state f , reference to a set of good traces g , reference

to a set of bad traces b.
begin

if f is errorState then
BackTrackToProgramChoicePoint();
choice point .markCurrentChoiceBad();

else
dc ←− extractDecisionTrace();
if ∀ db ∈ b: db does not contradict dc then

g .add(dc);

decision traces.
After a bad decision trace is added, the set of good traces is updated so

that all decision traces containing the new bad decision trace are removed.
If all successor choices are marked bad and we have completely explored all
choices of the top-most PC-point, no correct candidate decision trace for a
test input was found and therefore we cannot derive a correct program and
return failure.

During the search, the set of bad traces is used to prune the search space.
Whenever we are about to visit a path whose decision trace contains as
subset a decision trace from the set of bad traces, we skip this path, because
we cannot find a good decision trace in it.

Consider again the search in Figure 2.8. Since the path <A,1>-<id1,1>
is erroneous, the decision trace Te1 ={<id1,1>} is added to the set of bad
traces after backtracking. When we explore <A,2>-<id2,2>, we observe that
its decision trace, {<id2,2>,<id1,1>}, contains Te1 as subset and so we skip
this path.

The search returns a set of candidate decision traces that may not be
complete: for some hotspot the candidates may not indicate which changeset
entry should be chosen. In this case, for each such hotspot we retain the
original program expression. Each decision trace is thus extended into a
complete trace. We then select one complete trace such that the number
of hotspots at which the selected alternative differs from the original one is
minimal. Before presenting the so obtained patch to the user, the patch is



2.4. SEARCH STRATEGY 21

checked again for correctness, using some more sophisticated testing method.

Algorithm 5: PCPointExplored
input: Program choice point p, reference to a set of good traces

g , reference to a set of bad traces b.
begin

if All choices of p are marked bad then
if ∃ prevProgramChoicePoint(p) then

p prev ←− prevProgramChoicePoint(p);
p prev .markCurrentChoiceBad();

else
exit search - no solution found;

else
forall the c ∈ choices marked as bad in p do

db ←− getDecisionTrace(c);
if @ t ∈ b with t ⊆ db then

b.add(db);
g .removeContradictingDecisionTraces(b);

2.4.4 Efficient Data Structure for Decision Traces

In this section we present an efficient data structure for storing a set of
decision traces. Basically, a decision trace is a set of elements so this data
structure holds a set of sets of elements. Using notation from set theory, a set
of sets is referred as family of sets. This data structure allows implementing
following operations efficiently:

• Add set S to (remove set S from) family of sets F. (Use case: F is a
set of decision traces, S is added/removed.)

• Extract all sets of elements from F that contain S as subset. (Use case:
F is a family of good decision traces and S is a new bad decision trace.
We remove all decision traces from F containing S .)



22 CHAPTER 2. AUTOMATIC PROGRAM REPAIR

• Check if there exists a set in F that has S as subset. (Use case: S is a
good decision trace if it does not contain any bad decision trace from
the family of bad decision traces F as subset.)

Figure 2.9 shows the representation of a family of three sets S1-S3. We store
sets in their explicit representation together with respective set sizes (Fig-
ure 2.9/left). Additionally, we store each element in a reverse lookup map,
mapping set elements to set references, stating in which sets this element
occurs (Figure 2.9/right).

S1 ( A B C D / 4 )

S2 ( A F E / 3 )

S3 ( A E / 2 )

A {S1, S2, S3}

C {S1}

E {S2, S3}

B {S1}

D {S1}

F {S2}

Figure 2.9: Data structure for family of decision traces

Adding/removing a set S to/from a family of sets F is computationally
not expensive; we have to compute the size of S and for adjusting the reverse
mapping of set elements to sets we have to iterate over it once.

To compute all sets in F that contain S as subset, we derive the cut set
of the reverse mapping (see Figure 2.9/right) of the elements contained in S .
The references to sets in the cut set are the references to the searched sets.
For the example, assume S = {A,F ,E}. The cut set of the three reference
sets ({S1, S2, S3}∩{S2}∩{S2, S3}) contains only one element: S2, so S ⊆ S2.

For checking if S contains a set from F as subset we create a mapping M ,
mapping each set in F to a counter initialized with zero for each set. For each
element in S we get a list of sets containing this element using the reverse
mapping. For each set in this list we increase the counter in M of this set by
one. After all elements from S are processed, we iterate through the entries
in the map M . If for any map entry 〈r , c〉 (r is a set, c is its counter), the
value of counter c is equal to the size of the set referenced by r , S contains
at least one set from F as subset, the set referenced by r .

For example, assume S = {A,C ,D ,E}. We apply the procedure, and we
get the map M = {S1 → 3, S2 → 2, S3 → 2} as interim result. The counter
of S3 matches the size of S3, so S3 ⊆ S .



2.5. EXPERIMENTS 23

Figure 2.10: Google Code Search™

The depth-first search iteratively adds/removes (due backtracking and
forward search) elements to/from a set of elements (decision trace) S , which
has to be checked every time for the inclusion in some set from F as sub-
set. As discussed, this allows us to efficiently prune the search. Since this
check is performed very often, it must be implemented efficiently, and so our
implementation of the procedure discussed above is iterative: whenever one
element of S is modified, the map M is adjusted by increasing/decreasing
the respective counters.

2.5 Experiments

We demonstrate the feasibility of our approach by means of an experiment
using Quicksort implementations. The implementations were obtained au-
tomatically from the web using Google Code Search™, a search engine for
source code that supports searching for different programming languages and
for regular expressions. We searched for Java implementations using typical
Quicksort signatures. See Figure 2.10 for an example of manually searching
for quicksort algorithms.

The relevant Quicksort methods, together with all dependencies, were
fetched from the obtained implementations. A specification and an adapter
was generated to supply a unique interface for executing the different sorting
algorithms. Duplicates were removed, and the compilable implementations



24 CHAPTER 2. AUTOMATIC PROGRAM REPAIR

Domain LOC #Hotspots Patch Size Time[s]
1 framwork.googlecode.com 29 7 no fix 2
2 www.cs.iastate.edu 32 10 1 524
3 geo.jm-art.cz 29 11 6 79
4 raider.muc.edu 24 7 no fix 5
5 archive.godatabase.org 27 10 1 442
6 www.jeckle.de 22 8 no fix 158
7 www.cs.indiana.edu 35 9 3 440
8 www.cse.buffalo.edu 50 16 no fix 4
9 gwt-greflect.googlecode.com 32 11 no fix 4
10 downloads.sourceforge.net 35 11 no fix 3

Table 2.1: Experimental results on Quicksort algorithms

were checked automatically for correctness, which partitioned them into two
categories: correct and defective. We obtained a total number of 174 source
files; 88 of them were parse- and compilable and the Quicksort method was
extractable with all its dependencies. Of these 88 source files, 76 were cor-
rect and 12 were defective. A closer look at the defective implementations
showed that two contained an empty Quicksort method, leaving 10 defective
implementations for our experiments.

For the search of hotspots, we focused on off-by-one errors, in which the
bounds of a loop are wrong by one unit, or a <= instead of a < comparison is
used. Therefore, our changeset C was created as follows:

• For each program location EXPRESSION1 < EXPRESSION2, we create the
changeset entry X○ → { EXPRESSION1 < EXPRESSION, EXPRESSION1
<= EXPRESSION2, EXPRESSION1 > EXPRESSION2, EXPRESSION1 >=
EXPRESSION2}, so that each comparison operator is tried as replace-
ment. The same is applied for all other possible comparison operators.

• For each program location EXPRESSION1 - EXPRESSION2, we create the
changeset entry X○ → { EXPRESSION1 - EXPRESSION2, EXPRESSION1
}. The same is applied for the “+” operator.

We apply our search strategy to changeset C on 84 test inputs (all arrays
of length three or less with entries between 0 and 3). We return a minimal
patch when it exists.



2.6. CONCLUSIONS 25

04.10.09 15:33diff

Seite 1 von 1file:///Users/christian/Documents/venice%202009/java2html_50/src_dir/Diff.html

C7C761CFB0E19D3FF19FC10CF043C6F8B.java C7C761CFB0E19D3FF19FC10CF043C6F8B_auto_corr.java
  1 import java.util.ArrayList;
  2 import java.util.Random;
  3 import java.util.Arrays;
  4 
  5 public class C7C761CFB0E19D3FF19FC10CF043C6F8B {
  6 
  7     static class sort_test {
  8 
  9         ArrayList<sort_element> tests = new ArrayList<sort_element>();
 10 
 11         public sort_test(int tests_count, int max_array_size, int max_array_elem) {
 12 +--118 lines: int seed = 5555;
130         int pivot;
131         int splitPoint;
132         if (last > first) {
133             pivot = a[first];
134             splitPoint = split(pivot, a, first, last);
135             quickSort(a, first, splitPoint - 1);
136             quickSort(a, splitPoint + 1, last);
137         }
138     }
139 
140     public static int split(int pivot, int[] a, int first, int last) {
141         int low = first;
142         int high = last;
143         while (low < high) {
144             while ((a[low] < pivot) && (low < last)) {
145                 low++;
146             }
147             while ((a[high] >= pivot) && (high > first)) {
148                 high--;
149             }
150             if (low < high) {
151                 swap(a, low, high);
152                 low++;
153                 high--;
154             }
155         }
156         return low;
157 +--  2 lines: }

  1 import java.util.ArrayList;
  2 import java.util.Random;
  3 import java.util.Arrays;
  4 
  5 public class C7C761CFB0E19D3FF19FC10CF043C6F8B_auto_corr {
  6 
  7     static class sort_test {
  8 
  9         ArrayList<sort_element> tests = new ArrayList<sort_element>();
 10 
 11         public sort_test(int tests_count, int max_array_size, int max_array_elem) {
 12 +--118 lines: int seed = 5555;
130         int pivot;
131         int splitPoint;
132         if (last > first) {
133             pivot = a[first];
134             splitPoint = split(pivot, a, first, last);
135             quickSort(a, first, splitPoint - 1);
136             quickSort(a, splitPoint, last);
137         }
138     }
139 
140     public static int split(int pivot, int[] a, int first, int last) {
141         int low = first;
142         int high = last;
143         while (low <= high) {
144             while ((a[low] < pivot) && (low < last)) {
145                 low++;
146             }
147             while ((a[high] >= pivot) && (high > first)) {
148                 high--;
149             }
150             if (low <= high) {
151                 swap(a, low, high);
152                 low++;
153                 high--;
154             }
155         }
156         return low;
157 +--  2 lines: }

04.10.09 15:33diff

Seite 1 von 1file:///Users/christian/Documents/venice%202009/java2html_50/src_dir/Diff.html

C7C761CFB0E19D3FF19FC10CF043C6F8B.java C7C761CFB0E19D3FF19FC10CF043C6F8B_auto_corr.java
  1 import java.util.ArrayList;
  2 import java.util.Random;
  3 import java.util.Arrays;
  4 
  5 public class C7C761CFB0E19D3FF19FC10CF043C6F8B {
  6 
  7     static class sort_test {
  8 
  9         ArrayList<sort_element> tests = new ArrayList<sort_element>();
 10 
 11         public sort_test(int tests_count, int max_array_size, int max_array_elem) {
 12 +--118 lines: int seed = 5555;
130         int pivot;
131         int splitPoint;
132         if (last > first) {
133             pivot = a[first];
134             splitPoint = split(pivot, a, first, last);
135             quickSort(a, first, splitPoint - 1);
136             quickSort(a, splitPoint + 1, last);
137         }
138     }
139 
140     public static int split(int pivot, int[] a, int first, int last) {
141         int low = first;
142         int high = last;
143         while (low < high) {
144             while ((a[low] < pivot) && (low < last)) {
145                 low++;
146             }
147             while ((a[high] >= pivot) && (high > first)) {
148                 high--;
149             }
150             if (low < high) {
151                 swap(a, low, high);
152                 low++;
153                 high--;
154             }
155         }
156         return low;
157 +--  2 lines: }

  1 import java.util.ArrayList;
  2 import java.util.Random;
  3 import java.util.Arrays;
  4 
  5 public class C7C761CFB0E19D3FF19FC10CF043C6F8B_auto_corr {
  6 
  7     static class sort_test {
  8 
  9         ArrayList<sort_element> tests = new ArrayList<sort_element>();
 10 
 11         public sort_test(int tests_count, int max_array_size, int max_array_elem) {
 12 +--118 lines: int seed = 5555;
130         int pivot;
131         int splitPoint;
132         if (last > first) {
133             pivot = a[first];
134             splitPoint = split(pivot, a, first, last);
135             quickSort(a, first, splitPoint - 1);
136             quickSort(a, splitPoint, last);
137         }
138     }
139 
140     public static int split(int pivot, int[] a, int first, int last) {
141         int low = first;
142         int high = last;
143         while (low <= high) {
144             while ((a[low] < pivot) && (low < last)) {
145                 low++;
146             }
147             while ((a[high] >= pivot) && (high > first)) {
148                 high--;
149             }
150             if (low <= high) {
151                 swap(a, low, high);
152                 low++;
153                 high--;
154             }
155         }
156         return low;
157 +--  2 lines: }

Figure 2.11: Example for an automatically generated patch

Table 2.1 shows our results. For each implementation, Domain denotes
the domain it was fetched from, LOC denotes the lines of code of the ex-
tracted algorithm, GT and BT denote the number of good and bad decision
traces that have been stored when the search terminates; PC-points denotes
the number of choice points that were introduced, Patch Size denotes the
number of code changes in the patch, and Time denotes the runtime of
the search algorithm in seconds. Quicksort algorithms #2 and #5 are very
similar, but not identical. Four out of ten Quicksort algorithms were fixed
fully automatically. Figure 2.11 shows an example for such an automatically
generated bugfix. All experiments were performed on an Intel Core 2 Duo
2.26GHz™ system with 3GB physical memory.

2.6 Conclusions

We have presented an approach for automatic bug fixing of Java programs
that uses search techniques to explore the behaviour of program variants
(candidates for a fix) on test inputs. The approach has been implemented
on top of Java Pathfinder (JPF), which allows to encapsulate all program
variants into one single meta-program, and using the JPF model checker to



26 CHAPTER 2. AUTOMATIC PROGRAM REPAIR

search all variants on all inputs. We have designed an efficient search strat-
egy for early pruning unsuitable variants, and we have provided an efficient
implementation with a suitable data structure.

We have tested the approach on implementations of Quicksort obtained
through an automatic web search. Under the assumption that the bug was
caused by “off-by-one” errors, four out of ten faulty implementations could
be automatically repaired.

While the idea of exploring a set of program variants using some kind
of systematic search is not new, we think that our particular design choices
have two strong points. First, our search strategy makes the approach very
suitable for finding fixes requiring multiple changes in different points of the
code. Second, our approach fits very well the functionality offered by JPF,
which greatly reduces the implementation effort and allows profiting from a
very mature tool. On the other side, we require the programmer to specify
the syntactic constructs where to look for bugs, and the alternative constructs
that can be tried for a fix, which can be too restrictive in important cases.



Chapter 3
Diagnosis with Petri Nets

In this chapter we give an introduction to diagnosis in general and diagnosis
with Petri nets in particular. Furthermore, we present related work and give
preliminaries that are utilized in later chapters. Diagnosis is a very important
and well studied research area. Besides the academic aspect, diagnosis is of
enormous practical relevance. Mainly, the importance of diagnosis becomes
visible whenever we consider systems where failures can cause huge costs or
endanger the safety of people. System components can fail due to defects
caused, e.g. by mechanical hardware degeneration or because of software
bugs. In large distributed systems like telecommunication networks, electrical
grids or manufacturing plants, it is important to detect abnormal behaviour
of the system as soon as possible – even if such an abnormal behaviour of
the system is locally restricted at first, it my propagate and affect the whole
system or the system might completely loose its ability to operate under
specified conditions. Components in critical systems, like, e.g. pilot displays
in airplanes or valves in nuclear power plants must never fail.

The books [28] and [40] provide a good overview of the important re-
search area dealing with diagnosis. SAFEPROCESS1, the technical com-
mittee on fault detection, supervision and safety for technical processes, is
an international yearly symposium of the International Federation of Auto-
matic Control2 (IFAC). In this thesis, we follow the terminology and notation
standardised by SAFEPROCESS, which is also used in [28] and [40]. Before
delving any deeper into the subject we introduce, following SAFEPROCESS,

1http://www.safeprocess.es.aau.dk
2http://www.ifac-control.org

27



28 CHAPTER 3. DIAGNOSIS WITH PETRI NETS

the most important terms.
A fault is an unwanted or unspecified behaviour of the system, like, e.g. an

electronic component that is malfunctioning because of a short circuit. Such
a fault may not have any or only temporary impact on the global system
stability. It may also be reversible. Perhaps, e.g. the device needs just to
be rewired. If the fault is permanent, e.g. because it cannot be reversed, we
have a failure, a permanent system malfunction.

Fault detection is applied to detect possible faults and to check that the
detected faults are not spurious. Following fault detection, fault diagnosis is
applied for detecting the kind and location of the fault.

Monitoring is the real-time task of observing the system and recording
information that can, e.g. be used for fault detection. This is, e.g. realized by
equipping the system with sensors that observe and register events executed
by the system. These sensors emit alarms when potential faults are detected.

While monitoring is usually a passive task, supervision is the active task of
monitoring a system and, if suspicious behaviour is detected, taking actions
to keep the system running in an operable state. This is, e.g. achieved by
automatically detecting and reversing faults. With the very general term
diagnosis we refer to the complete task involving fault detection and fault
diagnosis.

Two fundamental approaches for doing diagnosis are identified in [40].
One is having redundant components within a system. Then voting is used
to determine if a component is faulty, and, if the answer is affirmative, which
component is faulty. Because of the costs of additional hardware, this is a
very expensive approach. Nevertheless, due to its simplicity, it is a reliable
and effective approach. More relevant for us is the second approach, where
analysis methods are used for doing diagnosis. For further reading, the article
[42] extensively compares both approaches.

In most of the published work that can be found within the scope of
the analytic approach, the system is equipped with sensors. From a system
execution, data from these sensors is recorded. This recorded data is called
the system observation. The observation is utilized for doing diagnosis. We
identify two main subsidiary approaches – symptom-based and model-based
methods. With symptom-based methods, the observation is directly mapped
to faults or supervision actions, using rules, dictionaries, decision trees or
more advanced approaches like, e.g. neural networks. See, e.g. [31] for a rule
based approach and [49], [56] for neural network based approaches.



29

The oldest symptom-based method is probably range checking: directly
measurable system parameters are checked for being within a certain specified
range. Such a parameter could be, e.g. the range of the allowed input voltage
of some electronic circuit. A system not operating within its specified normal
parameters is considered faulty. See, e.g. [5], where range checking is applied
to diagnose the engines of a space shuttle. Sensors for range checking are
usually simple and cheap. If we, e.g. want to check whether the electric
input voltage of some electronic circuit component is above or below a given
trigger value, solely a voltmeter attached to the examined circuit and some
alarm device indicating a range violation is needed. As being both, reliable
and cheap, range checking is still very popular today.

For applying range checking, the value domain of the directly measurable
signal has to be partitionable into ranges that classify the measured signal
into two classes, “normal” and “abnormal”. For complex signals, this is usually
not possibly. Assume, e.g. the output voltage of an AC generator in some
power plant. If we specify its normal system behaviour with respect to its
output AC frequency, range checking cannot be applied.

This leads to model-based methods. The system is equipped with sensors
and a model of the system is created. Then, a relation between the data
of these sensors and the model is established. On the one hand, for fault
detection, the acceptable system behaviour is specified within the model. The
model is analysed to observe current or predicted specification violations. On
the other hand, for fault explanation, behaviours of the model are derived
that show the given fault and with analyzing these behaviours it is tried
to locate and explain the fault within the model. Fault explanations are
subsequently mapped backed to the real system. As the model is usually an
abstraction of the real system, one has to carefully ensure that no spurious
fault explanations are given and no spurious alarms are triggered.

The difference between these model-based methods is mainly the uti-
lized model. We distinguish between two main model categories — discrete
and continuous time system models. Both areas have been widely stud-
ied. Important representatives for the continuous case are process and signal
models. Signal models abstract, e.g. electronic signals. For our previous ex-
ample, when we are interested in the frequency of some complex AC signal,
the Fourier Transformation is a very suitable model. See, e.g. [33], where
the wavelet transformation is used for doing motor fault diagnosis. Process
models are used to model relations between input and output signals of some



30 CHAPTER 3. DIAGNOSIS WITH PETRI NETS

system. In [47], e.g. neural networks are utilized as process models.
The discrete case is dominated by discrete event system models, DES for

short. Such a model does not have notion of time, the system progresses
exclusively due to the occurrence of events. The best-known DES models are
finite state automata and Petri nets. Our approaches towards fault explana-
tion are within this area. In this chapter we therefore focus on DES models
and proceed as follows. In Section 3.1 we give an overview on related work
regarding diagnosis of systems modelled as DES. Then, in Section 3.2, we
introduce preliminaries on Petri nets and net unfoldings, where we summa-
rize well-known notation and fundamental techniques used in later Chapters
4 and 5. In Section 3.3 of this chapter, we present and summarize the work
of Stefan Haar et al. on model-based diagnosis using Petri nets and net
unfoldings; Haar’s approach is also the one we follow in this thesis.

3.1 Diagnosis for DES

In this section, we specifically discuss related work towards model-based di-
agnosis, where systems are modelled as DES. Distributed systems usually
consist of many components where each single component is itself very com-
plex. This renders observing the whole system behaviour impracticable. Sys-
tems are therefore partially observable. Usually, it is assumed that we have
an executable DES model at our disposal. Progress in the model is solely
achieved by the occurrence of events. In a DES, the occurrence of an event
is usually modelled with firing a transition and partial observability by par-
titioning transitions into visible and invisible transitions. The model maps
the system in such a way such that for each pair of system execution and the
respective model execution it holds that the observation of the system and
the sequence of visible events of the model execution are equal.

In the literature, we can identify two major problems raising in this spe-
cific area. (1) Deciding if a system is fault diagnosable and (2) applying
fault diagnosis and explanation. Problem (1) raises from the fact that we
consider partial observable systems. Failures may not be observable and can,
e.g. propagate in such a way so that all fault symptoms are hidden, so even
with infinite amount of time one can never notice the failure. We say that a
system is diagnosable if one can always tell, in finite time, whether or not a
failure has occurred. In other words, a system is diagnosable if there exist no
two (infinite) runs of a system, showing the same observation, with one run



3.1. DIAGNOSIS FOR DES 31

containing the fault and the other one not. Our work is focused on problem
(2), still approaches for problem (1) are also very closely related, so we dis-
cuss related work on both problems and additionally on work covering both
areas.

Problem (1) has been widely studied. In [35] the diagnosability of cir-
cuit systems modelled as finite state automata is considered. In [43] the
diagnosability problem was the first time introduced with respect to formal
languages. In [53], a polynomial time algorithm is presented for deciding this
problem. This is realised by creating a verifier that compares all two runs of
the system for showing the same observation, one containing a fault and the
other one not. The used technique is the computation of the product of the
model, a finite state automaton, with itself. In [36], this work is adapted to
Petri nets. The unfolding of the product of the Petri net model with itself
is utilized to solve the problem. Among the works dealing with problem (1),
this work is the most closest to ours, because in our techniques we also utilize
Petri net unfoldings. In [19], a distributed diagnoser for Petri net models is
presented that allows executing online diagnosis. A disadvantage of the con-
struction of such a verifier or diagnoser is that its size is usually worst case
double exponential in the size of the system description [20]. To tackle this
state explosion, in [20] a sat based approach is presented that translates the
problem into a SAT formula that can efficiently be solved by using state-of-
the-art SAT solvers. We also use SAT techniques for the further analysis of
the constructed fault explanation.

For problem (2), many different approaches exist that mainly differ in
the used model. In [37] the situation calculus is used as model. Given a
theory of system behaviour and a system observation, conjecturing diagno-
sis is applied to derive an explanation from the observation. Following the
already mentioned work [43], Sampath et. al. present a technique [44] for
creating a diagnoser which allows to apply diagnosis to Petri nets. In [3]
(and related papers like [18, 17]), safe nets are used as the model and partial
order techniques (unfoldings) are used to compactly represent explanations.
Following this work, we also use net unfoldings as our main technique. This
work is closest related to our work. Therefore, in Section 3.3, we go deeper
into this work and extensively discuss its foundations. Before that, we need
the knowledge of some basic notations and techniques, which are introduced
in the following section, Section 3.2.



32 CHAPTER 3. DIAGNOSIS WITH PETRI NETS

3.2 Petri Net Preliminaries

The diagnosis approaches we present in Chapters 4 and 5 utilize Petri nets
and their unfoldings as model. In this section, we therefore give a common
and extensive introduction on preliminaries for these topics. We summarize
commonly known notation and definitions on Petri nets as well as introduce
to the technique of net unfoldings, that is used for representing Petri net be-
haviours in a partial order compressed way. We proceed as follows. In Section
3.2.1 we introduce Petri nets, in particular safe Petri nets that we consider
for our approach. Then, in Section 3.2.2, we introduce occurrence nets. Oc-
currence nets are, together with other properties, acyclic Petri nets. These
nets are important for us, as unfoldings are occurrence nets and we need
to have their properties at our disposal. Then, in Section 3.2.3, we discuss
actual unfolding techniques, that are the base for our diagnosis techniques.

3.2.1 Petri Nets

A Petri net is a quadruple N = (P ,T ,F ,M0), where P and T are disjoint
sets of places and transitions, respectively. F ⊆ (P×T )∪(T ×P) is the flow
relation connecting transitions to places and vice versa. A function M : P →
N is called a marking, a functionW : F → N is called weighting andM0 is the
initial marking. A node is an element from P ∪T , an arc is an element from
F . The caption of an arc is the weight of the node. An arc with no caption
has weight 1. Figure 3.1 shows the graphical representation of a Petri net.
We have transitions a . . . f and places 1 . . . 5. The flow relation is represented
with directed arcs between nodes. For example, we have (a, 1) ∈ F , as there
is an directed arc between transition a and place 1. As there is no arc in the
other direction, we have (1, a) 6∈ F . As no arc has a caption, for all f ∈ F it
holds that W (f ) = 1. The marking function is represented by the number of
tokens (dots) in a place. In the figure we have, e.g. M (5) = 0 and M (4) = 1.
There could also be more markings in one place.

For a node x , •x := { x ′ | (x ′, x ) ∈ F } is the preset of x and x • := { x ′ |
(x , x ′) ∈ F } is the postset of x . Moreover, for any set X ⊆ P ∪T , we define
•X and X • as follows:

•X :=
⋃
x∈X

•x and X • :=
⋃
x∈X

x •



3.2. PETRI NET PRELIMINARIES 33

b

●

e

●c

d

a f

1 4

3

52

Figure 3.1: 1-safe, unweighted Petri net with transitions a . . . f and places 1 . . . 5.

In the Petri net shown in Figure 3.1, the preset of transition c is, e.g.
•c = {1, 4} and its postset is c• = {3}. For the preset of a set we have, e.g.
•(•c) =

⋃
x∈(•c)

•x = (•1) ∪ (•4) = {a, e}. Shortly, we write ••c for •(•c).
Transitions induce a firing relation between markings; let M ,M ′ be two

markings and t a transition. We write M t−→ M ′ iff for every place p ∈ •t
following conditions hold:

• M (p) ≥W ((p, t))

• M ′(p) = M (p)−W ((p, t)) if p ∈ •t \ t•

• M ′(p) = M (p) +W ((t , p)) if p ∈ t• \ •t

• M ′(p) = M (p)−W ((p, t)) +W ((t , p)) if p ∈ t• ∩ •t

Loosely speaking, the first condition assures that in M , each preplace holds
at least as many tokens as stated by the weight from that preplace to the
transition. The other three conditions are responsible for the actual effect
of “firing” t ; the amount of tokens as specified by the respective “incoming”
weights are removed from the preplaces of t and the respective amount of
tokens as denoted by the “outgoing” weights are put into the respective post-
places of t . This results in the marking M ′. We say that t is enabled in M
and that firing t leads to M ′.

Figure 3.2 shows an example for that. On the left, a Petri net with one
transition, four places and marking M is shown. Weights are given as arc
labels. It is easy to see that the first condition for firing transition t ′ holds
for all preplaces. We “apply” the three other conditions and obtain marking
M ′, shown right of the figure.



34 CHAPTER 3. DIAGNOSIS WITH PETRI NETS

3
2

3
2

1

t'●●●

●●●●

●●●●

●●

1

2

3

4

3
2

3
2

1

t'

●●●

●

●●●●

1

2

3

4

M'M

Figure 3.2: Firing of a transition

A finite sequence σ := t1 . . . tk of transitions is a run iff there exist mark-
ings M1, . . . ,Mk so that M0

t1−→ M1 · · · tk−→ Mk , where M0 is the initial
marking of the net. If such a run exists, then Mk is said to be reachable. The
set of reachable markings is denoted by R(N ).

A Petri net is k-safe iff no reachable marking puts more than k tokens
into any place. A Petri net is said to be unweighted, if W (a) = 1 for all
arcs a. All Petri nets we are interested in are 1-safe and unweighted, for
now on we may call them shortly (1-safe) nets. Figure 3.1 is such a 1-safe
and unweighted net. For shorter notation, a marking in a 1-safe Petri net is
represented as set M−1(1). In the net from Figure 3.1, we have M0 = {1, 4}.
There exists a run σ1 = baf resulting in reachable marking Mσ1 = {1, 5}.
Marking M = {1, 3} is not reachable.

It is a PSPACE-complete problem to decide whether or not a given (un-
weighted) Petri net is 1-safe, however one can easily guarantee 1-safeness by
construction [4]. Many interesting problems can be formulated using 1-safe
Petri nets as, e.g. the reachability problem in synchronized products of tran-
sition systems. Moreover, most results obtained from 1-safe Petri nets also
hold in the general case.

An infinite sequence of transitions t1t2 . . . is called a run if every prefix
of it is one. We say that a run σ is fair iff one of the following holds:

• σ is finite, and in the marking reached by σ, no transition is enabled

• σ = t1t2 . . . is infinite, where M1,M2, . . . are the markings generated by
firing σ, and there exists no pair t ∈ T and i ≥ 1 such that t is enabled
in all Mk , k ≥ i and t 6= tk for all k > i .

In other words, a fair run cannot delay firing an enabled transition forever.
For example the run σ1 = bfea(bafe)ω is a fair run whereas σ2 = bfea(ba)ω



3.2. PETRI NET PRELIMINARIES 35

is no fair run, because transition f is enabled forever, after firing the third
transition.

3.2.2 Occurrence Nets

In this section, we introduce occurrence nets, a restricted version of nets.
We are interested in their properties, as the unfolding of a net is an oc-
currence net. Therefore, we mainly summarize well-known facts, e.g. given
in [13], [15].

An occurrence net is a restricted version of a net. It is therefore also a
quadruple. The components however are renamed; places to conditions and
transitions to events. This is explainable, as the net is acyclic and so each
transition can at most fire once in a run. So a transition is an event and its
preplaces are the conditions for this event to happen. Moreover, this renam-
ing helps to avoid confusion between transitions in the net and transitions of
its unfolding. We have occurrence net O with O = (C ,E ,F ,C0).

Let a < b for two nodes a and b iff (a, b) ∈ F and a ≤ b iff a = b
or a < b. Furthermore, let < denote the transitive closure F+ and ≤ the
reflexive and transitive closure F ∗. An acyclic net is a net where ≤ is a
partial order.

We define three additional relations on the nodes in acyclic nets (with
their respective symbols): conflict relation(#), concurrency relation(co) and
causal relation (
). Fix two nodes a, b ∈ C ∪ E , then

• a 
 b iff a ≤ b or b ≤ a

• a#b iff there exist e, e ′ ∈ E such that (i) e 6= e ′, (ii) •e ∩ •e ′ 6= ∅, and
(iii) e ≤ a and e ′ ≤ b

• a co b iff ¬(a 
 b) and ¬(a#b)

Given an event e, we denote with #[e] the set of events in conflict with e
(analogous co[e] and 
 [e]). A co-set is a set of nodes pairwise in concur-
rency relation (analogous for # and 
). Furthermore, let dee := { e ′ ∈ E |
e ′ ≤ e } be the cone of e, and bec := dee \ {e} the precone of e. We now
define occurrence nets.

Definition 1 (Occurrence net). An occurrence net is an acyclic net, that
satisfies following properties:



36 CHAPTER 3. DIAGNOSIS WITH PETRI NETS

• no self conflict: ∀ x ∈ C ∪ E : ¬(x # x );

• finite cones: all events e satisfy |dee| <∞;

• no branching on conditions: all conditions c satisfy |•c| ≤ 1;

• C0 ⊆ C is the set of ≤-minimal nodes.

Note that in occurrence nets, for all pairs (a, b) of nodes exclusively one
of the three presented relations (conflict, causality or concurrency) holds. As
the “initial marking” of an occurrence net is uniquely determined by the set
of its minimal conditions with respect to ≤, the tokens of the initial marking
are usually omitted in its graphical representation. Figure 3.3 shows an
occurrence net. The initial marking is C0 = {1, 2}. Nodes d and f are both
in conflict with b (d and b compete for condition 1, f and b for condition
2), yet not with each other. Moreover, d and f are not in causal relation
(neither d ≤ f nor f ≤ d holds), so d and f are in concurrency relation.

We now define the prefix of an occurrence net. Remember from set theory
that a set is downward closed, iff for every element all smaller elements with
respect to ≤ are contained. Informally, a prefix is a downward closed “part”
of the occurrence net that contains all initial conditions as well as retains the
flow relation between contained nodes.

Definition 2 (Prefix). Let O = (C ,E ,F ,C0) be an occurrence net. A prefix
of O is an occurence net O ′ = (C ′,E ′,F ′,C0), with C ′ ⊆ C, C0 ⊆ C ′,
E ′ ⊆ E and F = (C ′ ∪ E ′)2 ∩ F, that fulfils following properties:

• If x ∈ (C ′ ∪ E ′), then ∀ y ∈ (C ∪ E ), y < x : y ∈ (C ′ ∪ E ′).

• If x ∈ E ′, then ∀ y ∈ x •, y ∈ C ′.

The first property assures that the prefix is downward closed. The second
property denotes that each event in the prefix contains all its post-conditions.
We write O ′ v O . Note that such a prefix is uniquely determined by its set
of events. A prefix is called finite if C ′ and E ′ are finite sets. We denote with
O [E ′] the unique prefix of O , whose set of events is E ′.

We say that a set S of events is conflict free if it is pairwise conflict free.
More formal: forall pairs (a, b) ∈ (S × S ), it holds that ¬(a#b). We now
define a configuration. Loosely speaking, a configuration encapsulates a set
of behaviours of the net, reaching the same marking.



3.2. PETRI NET PRELIMINARIES 37

Definition 3 (Configuration). A configuration C of occurrence net O =

(C ,E ,F ,C0) is a downward closed and conflict free set of events.

Note that in an occurrence net, the cone dee and precone bec of every
event e are configurations. This is because of the fact that event e is, by
definition of an occurrence net, not in conflict with itself and its precone is
downward closed. We say that dee is the local configuration of e. Note that
dee and bec are finite configurations.

Figure 3.3 shows an occurrence net. The set of events C1 = {a, d , c} is
a configuration, whereas S1 = {a, d , b} is not a configuration as, e.g. a#b
holds. Moreover, the set of events S2 = {a, d , f } is conflict free but it is not
a configuration as it is not downward closed.

As each configuration C is a conflict free and downward closed set of events
it follows that there exists a run σC containing all those events. Moreover,
the causal order of these events in C gives a partial order on its events and
each of its linearizations is a run. Vice versa, each run in the occurrence net
is a linearization of the partial order of some configuration of the occurrence
net. For example, in Figure 3.3, cad is a linearization of C1, which is a run.

We now define the cut of a configuration. All runs of a configuration C
“reach” the same marking Mark(C). The cut of C is this marking. Formally:

Definition 4 (Cut). Given a configuration C, Cut(C) is the set of ≤-maximal
conditions of O [C].

1 2

a b c

5 4 3

d e f

6 7 8

Figure 3.3: Occurrence net



38 CHAPTER 3. DIAGNOSIS WITH PETRI NETS

Informally, the postfix of a finite configuration is the occurrence net we
obtain by removing all nodes of the net “above” the cut of this configuration.

Definition 5 (Postfix). The postfix O/C of configuration C is the occurrence
net O/C = (C ′′,E ′′,F ′′,C ′′0 ), where C ′′ = C \ •C, E ′′ = E \ C, F ′′ =
F ∩ (C ′′ ∪ E ′′)2, and C ′′0 = Cut(C).

We now define the extension of a configuration.

Definition 6 (Extension of Configuration). If C is a finite configuration and
eext is an event so that C ∪ {eext} is a configuration then eext is an extension
of configuration C.

We write C eext
; or C eext

; C ′ for that, where C ′ is the configuration
C ∪ {eext}. Expanded to multiple events, given a set of events A =

{e1, . . . , en}, we denote with C A
; C ′ or C A

; that there exists a permuta-
tion P = 〈e ′1, . . . , e ′n〉 of the elements of A such that there exists a set of
configurations {C1 . . .Cn−1,C ′} so that C e′1

; C1 e′2
; C2 . . . Cn−1 e′n

; C ′ holds.
Informally, A is and extension to C if adding all events contained in A to C
in some order yields a configuration. We write C v C ′ if there exists a set A
such that C A

; C ′.
If C is a finite configuration and e ′ext ∈ E \ C an event such that •e ′ext ⊆

Cut(C) then e ′ext is a configuration because Cut(C) is a co-set and so e ′ext is
enabled by Mark(C). So, e ′ext is an extension of configuration C. Note that
from C x

; and C y
; we cannot derive C x∪y

; as •x ∩ •y might be non-empty.

3.2.3 Branching Process and Unfolding

A labelled occurrence net is called a branching process [9]. Branching, be-
cause we branch on conditions for representing conflicts. The unique branch-
ing process, encapsulating all behaviours of the Petri net, is called unfolding.

The unfolding of a net is, loosely speaking, the “unrolled” net. It is
an acyclic, partial order compressed, view on the net. The unfolding is
usually infinite (iff the net contains cycles). This section presents well-known
techniques how to (efficiently) create this unfolding and useful finite prefixes
of it.

Given Petri net N = (P ,T ,F ′,M0) we construct a unfolding U = (O , f ),
i.e. a tuple consisting of an occurrence net O = (C ,E ,F ,C0) and a labelling
function f : (C ∪ E ) → (P ∪ T ). Sometimes, for easier notation, we refer



3.2. PETRI NET PRELIMINARIES 39

directly to the occurrence net (U := O) and just keep in mind that it is
actually a tuple additionally holding the labelling function f .

Let S1 ⊆ (C ∪ E ) and S2 = (P ∪ T ). With the formalism f : S1 ↔ S2

we denote that f |S1 (the domain f restricted to S1) is a bijection, i.e. for
each element y with y ∈ S2 there exists at most one element x ∈ S1, so that
f (x ) = y . We are now able to formally define the unfolding of a Petri net.

Definition 7 (Unfolding). An occurrence net O = (C ,E ,F ,C0) with map-
ping f : (C ∪E )→ (P ∪T ) is the unfolding of N = (P ,T ,F ′,M0) if it is the
maximal branching process, so that following conditions hold:

• f : C0 ↔ M0

• for every e1, e2 ∈ E, if •e1 = •e2 and f (e1) = f (e2), then e1 = e2 and

• for every e ∈ E it holds that f : •e ↔ •f (e) and f : e• ↔ f (e)•.

• for every c ∈ (C \ C0), •c 6= ∅

Loosely speaking, the first condition assures that for each initial marking
we have exactly one copy of it in the unfolding. The second condition assures
that for every set of conditions we “attach” at most one copy of a matching
transition. The third condition fixes the structure of the occurrence net, i.e.
the labels of the pre-conditions and post-conditions of an event are the post-
places and pre-places of the respective transition in the Petri net. The last
condition assures that we have no conditions floating around. Each condition
except the initial ones have to have a pre-event.

Note that, as occurrence nets forbid self-conflicts (Definition 1), for every
e it holds that the conditions in •e are pairwise in co-relation, otherwise,
for two events e1, e2 ∈ •e it holds that e1#e2 or e1 
 e2 and in both cases,
e is in self-conflict. Excluding self-conflicts from the unfolding makes sense,
as those events would never be enabled by some configuration. The other
conditions of the occurrence net solely hold due to the rules of Definition 7.

Figure 3.4 shows a finite prefix of the unfolding of the net given in Figure
3.1. The labelling function is simple, only the index has to be dropped, e.g.
f (b2) = b.

We now establish the connection between a net P and its unfolding U ,
briefly summarizing the results given in [13, 15]. U mimics the behaviour
of P as follows. With every configuration C of U we associate the marking



40 CHAPTER 3. DIAGNOSIS WITH PETRI NETS

11 41

f1c1b1

21 51

a1 e1

31

12 42

c2 b2 c3 c4 d1 f2

32 33 34 35 5222

Figure 3.4: Unfolding example

Mark(C) := { f (c) | c ∈ Cut(C) }. It is well-known [13],[15] that M is a
reachable marking in N iff there exists a configuration C of U such that
Mark(C) = M . Moreover, if σ is a run corresponding to C, then f (σ) leads
from M0 to M in N . It is in this sense that U mimics the behaviour of N .

It is also well-known that for any configuration C, the postfix U /C is
isomorphic to the unfolding of the net (P ,T ,F ,Mark(C)). A prefix U ′ of
U is called complete if it “contains” every marking of N . For deciding if
a marking is reachable, it is sufficient to examine a complete prefix. More
formally:

Definition 8 (Complete Prefix). A complete prefix of net N with unfolding
U is a prefix Up of U such that for every marking M of N there exists a
configuration CM , such that CM ∈ Up and Mark(CM ) = M.

We briefly discuss how to efficiently construct a finite and complete prefix,
presenting the results of the work pioneered in [38], refined and continued in
[15]. Let U be the unfolding of net N and U ′ some prefix of U . We now
define the adequate order, which gives a partial order on configurations. This
order is used in the unfolding procedure.



3.3. DIAGNOSIS WITH UNFOLDINGS 41

Definition 9 (Adequate Order). We call ≺ an adequate order on config-
urations of U if ≺ is a well-founded partial order that satisfies following
conditions:

• For all configurations C1,C2 with C1 ⊂ C2, it holds that C1 ≺ C2.

• Let f be the mapping from Definition 7. If C1, C ′1, C2, C ′2 are configu-
rations, A and B sets of events with f (A) = f (B) so that C1 A

; C ′1,
C2 B

; C ′2 and C1 ≺ C2, then it holds that C ′1 ≺ C ′2.

Let e be some event. We write Me shortly forMark(dee). We now define
cut-off events, i.e. events that are not expanded further in the unfolding
procedure.

Definition 10 (Cuf-off event). We call e a cut-off event, if there exists
another event e ′, so that e ′ ≺ e, with Me = Me′.

Event e is said to be a possible extension of U ′ (e ∈ pe(U ′)) if there
exists a configuration C of U ′, such that C e

;. Algorithm 6 constructs a
finite complete prefix. We start with a prefix Up that contains for each place
p ∈ M0 exactly one fresh condition c, so that f (c) = p, and nothing else.
Iteratively we search for possible extensions for this prefix, and add events
to it in the order given by ≺. With “adding an event to Up”, we refer to
adding this event with all its post-conditions. Cut-off events are not further
extended.

It is easy to verify that ≺ := < defines an adequate order. Using this
order to construct a complete prefix, we can simplify our algorithm and
remove the restriction, to always only add an event minimal w.r.t. ≺, as it
is, by construction, not possible to add event x before y , if y < x .

3.3 Diagnosis with Unfoldings

In our work we follow the fault diagnosis approach presented by Haar et
al. in [3] and related papers like [18, 17]. In this section we extensively
discuss the foundations of this closely related approach. This work deals
with fault explanation using partially observable labelled Petri nets as model.
Informally, a labelled net is a net with an additional mapping λ from places
and transitions to labels.



42 CHAPTER 3. DIAGNOSIS WITH PETRI NETS

Algorithm 6: Compute complete prefix
input : Net N = (P ,T ,F ,M0)

output: Finite complete prefix Up

begin
Up ←− (C = copy of M0,E = ∅,F = ∅,C0 = C );
PEs ←− pe(Up);
Cuts ←− ∅;
while PEs 6= ∅ do

e ←− event from PEs , so that e is minimal w.r.t. ≺;
if e is cut-off then

if e 6∈ Cuts then add e to Cuts;
else

Add e to Up ;

PEs ←− pe(Up);

Add all elements from Cuts to Up ;
return Up

Definition 11 (Labelled net). A labelled net is a tuple N = (P ,T ,F , λ,M0),
where P ,T ,F and M0 are defined as in Section 3.2.1 and λ : P ∪ T → L is
a labelling function that assigns to each place and transition a label from
alphabet L.

For modelling the partial observability, the transitions of the labelled net
are partitioned into visible and invisible transitions. Invisible transitions are
labelled with the empty label ε. From a run σ of some labelled net, the
observer records the sequence O [σ], the labels of visible transitions in order
of their occurrence in the run σ. Note that this sequence of visible labels
corresponds to the sequence of events, the observer records from sensors of
the real system. We demonstrate the approach by means of an example,
as shown in Figure 3.5. Subfigure (I) shows a labelled net N with three
transitions. For simplicity, only transition labels and not transition names
are shown. Assume some concrete system execution, i.e. a run σ, where we
first observe that transition a and then transition b is fired. Further, assume
this firing triggers an alarm, so we now apply diagnosis on this possible
failure.

The approach towards diagnosis is as follows. In a first step, the observa-



3.3. DIAGNOSIS WITH UNFOLDINGS 43

●

a ²

b

●

a

b

●●

(a,a) ²

(b,b)

1

2

3

1

2

3

(a,a) ²

²

(b,b)
²

1

2
3

(I) (II) (III) (IV)

Figure 3.5: From left to right: considered system model, observation as linear net,
product of the first two, unfolding of the product.

tion is transformed into a non-branching linear net, containing a transition
for each observed label, carrying the same label. In our running example,
we have O [σ] = 〈a, b〉 and the respective linear net NO [σ] is shown in Figure
3.5/(II). In a next step we compute the synchronized product Np = NO [σ]×N ,
which is, for our running example, shown in Figure 3.5/(III), and, formally
defined as follows.

Let λ(T ) be the set of transition labels of all transitions in transition set
T and let λ−1T (l) be the set of transitions in T with label l .

Definition 12 (Product of two labelled partial observable nets). The product
N ′′ = N ×N ′ of two nets N = (P ,T ,F , λ,M0) and N ′ = (P ′,T ′,F ′, λ′,M ′

0)

is a tuple N ′′ = (P ′′ := P ∪ P ′,T ′′ ,F ′′ , λ
′′
,M0

′′
:= M0 ∪M ′

0) so that

1. For all t ∈ T ∪T ′ with λ(t) = ε, we have t ∈ T ′′, and for all t ∈ T ∪T ′
with λ(t) 6∈ λ(T ) ∩ λ(T ′), we have t ∈ T ′′.

2. For all t ∈ T ′′ from Rule 1: for all p ∈ •t we have (p, t) ∈ F ′′ and for
all p ∈ t• we have (t , p) ∈ F ′′.

3. For all labels l ∈ (λ(T ) ∩ λ(T ′)) \ ε, and each t ′ = (t1, t2) ∈ (λ−1T (l)×
λ−1T ′ (l)): let t ′ be a new transitions. We have t ′ ∈ T ′′.

4. For all transitions t ′ = (t1, t2) with t ′ ∈ T ′′ from Rule 3: for all p ∈
(•t1 ∪ •t2) we have (p, t ′) ∈ F ′′ and for all p ∈ (t1• ∪ t2•) we have
(t ′, p) ∈ F ′′.



44 CHAPTER 3. DIAGNOSIS WITH PETRI NETS

Nothing else is in F and T.

Informally, Rule 1 denotes that all transitions whose label is only con-
tained in one transition system or whose label is ε are contained in T ′′, and,
Rule 2 denotes that these transitions retain their connections to post- and
pre-conditions. With Rule 3, we add for each pair of transitions that originate
from different transition systems and carry the same label a “combined tran-
sition”, and, with Rule 4, these combined transitions retain the connections
to post- and pre-conditions of both original transitions.

In our running example we have two combined transitions. For simplicity,
we write (λ(t1), λ(t2)) instead of (t1, t2) (as we already do for normal transi-
tions), so we have transitions (a, a) and (b, b). The explanation is the set of
firing sequences of the model, showing the same observation as the system
execution. It can be constructed using the product: the set of explanations
are the firing sequences of the product reaching the last place of the linear
net (Place 3 in the example), where on combined transitions we project onto
the first element. In the example, there exists only one such firing sequence,
namely 〈(a, a), ε, (b, b)〉 that, projected, is the firing sequence 〈a, ε, b〉. So
in this example, we only have one explanation for the observation, that is
the system run. The product is not a good symbolic representation for the
explanation, as it has to be computed from the product by enumerating all
firing sequences marking Place 3. In addition, explicitly representing this set
of runs is involved, as its size explodes.

In [38], an approach was pioneered for using net unfoldings to represent
sets of firing sequences in a compact, partial order compressed way. There-
fore, the unfolding of the product is used to represent the explanation. For
our running example, the unfolding of Np = NO [σ] × N is shown in Figure
3.5/(IV).

Although this is a very reasonable approach for doing diagnosis in petri
nets, we identify following weaknesses:

1. No infinite loops on invisible events. See Figure 3.6 for an example,
where the invisible transition now can occur infinitely often in a fir-
ing sequence. The unfolding of the product therefore is also infinite.
Only considering complete finite prefixes, as considered in [16], is no
solution, as we are not interested in reachable markings, but “reach-
able” sequences. We present cut-off mechanisms, for generating finite
prefixes also for this case.



3.3. DIAGNOSIS WITH UNFOLDINGS 45

●

² a 

b

Figure 3.6: Possible loop on invisible transitions

2. The observer is always behind. Iteratively, the observer can record
labels and the nets (including the unfolding) are extended, to be “com-
patible” with the extended observation. Still, we are always behind
the system, not able to predict alarms/failures in the future of the sys-
tem. We present an approach, for proactively looking into the future
of the system and use “garbage collection” to stay compatible with the
observation.

3. No satisfying implementation. The presented approach introduces al-
gorithms, for solving the diagnosis problem, but no experimental imple-
mentation is given. Additionally to algorithms for solving the diagnosis
problem, we also report on a very efficient implementation.



46 CHAPTER 3. DIAGNOSIS WITH PETRI NETS



Chapter 4
Reactive and Proactive Diagnosis

In this chapter, we present a novel approach for doing diagnosis with Petri
nets. We consider synchronized products of transition systems as model.
Such models are very well suited, e.g. for modelling communicating processes
and can be represented as Petri nets. We present algorithms for solving the
diagnosis problem using these models. We are interested in the question if
diagnosis can be done efficiently while the system under diagnosis is run-
ning. Unfolding prefixes are used for encapsulating the system’s behaviour,
compatible with the observation of the system. Using different levels of over-
approximations, we enable an efficient computation of this prefix. We use
SAT solving methods for explaining the behaviour and compensating the in-
accuracy caused by the approximation. Furthermore, in proactive diagnosis,
we not only consider compatible behaviour of the system, but also specu-
late about the future of the system. We proceed as follows. In Section 4.1
we present products of transition systems. Their Petri net representation is
discussed in Section 4.2. Then, in Section 4.3, we discuss and evaluate our
approach using a case study. Finally, we conclude in Section 4.4.

4.1 Products of Transition Systems as Model

With our approach, we utilize synchronized products of transition systems as
system models. Such models are motivated by communicating processes in
multi-threaded environments. In such an environment, each single thread is
modelled as a finite automaton and the communication of these automatons
is modelled as synchronizations between transitions of these automatons.

47



48 CHAPTER 4. REACTIVE AND PROACTIVE DIAGNOSIS

Such models are also very well suited for modelling systems, where different
agents usually operate independently but need to be synchronized from time
to time, like, e.g. warehouse robots. Such products can be described as Petri
nets, therefore we can adapt to and follow the approach that we discussed in
Section 3.3. Moreover, we can exploit specializations of this model (compared
to Petri nets), for developing an efficient diagnosis procedure. We begin with
formally defining labelled transition systems as follows.

Definition 13. (Labelled transition system) A labelled transition system is
a tuple A = 〈S ,T , α, β, is, `〉, where

• S is a finite set of states.

• T is a finite set of transitions.

• Functions α, β : T → S associate to each transition its source and
target state, α and β, respectively.

• Initial state is ∈ S.

• ` : T → L ∪ {ε} is a labelling function assigning to each transition an
element from a set L of labels, or a special label ε, called the “empty
label”.

a

cb
d
e

f
1

33
²
3

4

s1

s2

s3 s4

s1

s2

s3 s4

(I) (II)

Figure 4.1: Left: transition system with transition names, Right: transition system
with transition labels

Figure 4.1 shows labelled transition system A1 = 〈S1,T1, α1, β1, is1, `1〉,
with S1 = {s1, s2, s3, s4}, T1 = {a, b, c, d , e, f }, functions α1 and β1: α1(a) =



4.1. PRODUCTS OF TRANSITION SYSTEMS AS MODEL 49

s1, α1(c, e) = s2, α1(d , b) = s3, α1(f ) = s4, β1(f ) = s1, β1(a, b) = s2,
β1(c) = s3, β1(d , e) = s4, initial state is1 = s1 and labelling function `1:
`1(a) = 1, `1(b, c, e) = 3, `1(d) = ε, `1(f ) = 4. Subfigure I shows this system
with its states S1 represented as circles and the transitions T1 represented
as arrows, with arrow heads and tails denoting the target β1 and source α1

functions respectively. The arrow without a source at its tail points to the
initial state of the system. Subfigure II again shows this transition system,
but instead of transitions t ∈ T1, transition labels `1(t) are shown.

We now introduce the synchronized product of transition systems, which
is defined using multiple transition systems. Assume therefore a set of tran-
sition systems A1, . . . ,An . For each transition system Ai with i ∈ {1 . . . n},
we have Ai = 〈Si ,Ti , αi , βi , isi , `i〉. Let all the Si ’s and Ti ’s be pairwise
disjoint.

To continue our running example, in addition to transition system A1, we
introduce transition system A2 = 〈S2,T2, α2, β2, is2, `2〉 with S2 = {s5, s6},
α2(g) = s6, α2(h) = s5, β2(g) = s5, β2(h) = s6, is2 = s6, `2(g) = 2 and
`2(h) = ε. Both transition systems are shown in Figure 4.2.

A1 A2

a

cb
d
e

f g h

s1

s2

s3 s4 s5

s6

Figure 4.2: Transition systems with state labels

A synchronization constraint is a set of constraints where a single con-
straint connects a set of transitions in such a way so that no two transitions
are from the same transition system. More formally:

Definition 14. (Synchronization constraint) Let T1 . . .Tn be the respective
sets of transitions contained in transition systems Ai . . .An . Further let “∗”
be a new symbol denoting idling. A synchronization constraint T is a subset
of

(T1 ∪ {∗})× · · · × (Tn ∪ {∗}) \ {(∗, . . . , ∗)}



50 CHAPTER 4. REACTIVE AND PROACTIVE DIAGNOSIS

The elements of T are called global transitions. We denote the i -th com-
ponent of t ∈ T by ti , i.e. t = (t1, . . . , tn). If ti 6= ∗ we say that Ai

participates in t. Otherwise we say that Ai does not participate in t.

A1 A2

a

cb
d
e

f g h

Figure 4.3: Transition systems with synchronization constraint

For our running example, we take the synchronization constraint T =

{(a, g), (d , h)(b, ∗), (c, ∗), (e, ∗), (f , ∗)}. This is illustrated in Figure 4.3.
State names are omitted. The dashed lines that connect arrows represent
synchronization constraints, where both transition systems participate, e.g.
(a, g). Arrows that are not connected represent constraints, where only the
transition system of the arrow participates and the other transition systems
are idling, e.g. (b, ∗). A synchronized product of transition systems is, loosely
speaking, a set of labelled transition systems with a synchronization con-
straint. More formally:

Definition 15. (Synchronized product of labelled transition systems) A
synchronized product of labelled transition systems A1, . . . ,An is a tuple
A = 〈A1, . . . ,An ,T〉 where T is a synchronization constraint for the con-
tained set of transition systems.

A global state of A is a tuple s = (s1, . . . , sn) where si ∈ Si . The initial
global state is the tuple is = (is1, . . . , isn).

In our running example, e.g. (s1, s6) is a global state. Observe that this
is also the initial global state of the system, as is1 = s1 and is2 = s6.

A step of product A is a triple (s, t, s′), where s = (s1, . . . , sn) and s′ =

(s ′1, . . . , s ′n) are global states and t is a global transition such that if s ′i = βi(ti)
and si = α(ti) if ti 6= ∗, and s ′i = si otherwise.

In our running example we have, e.g. the steps ((s1, s6), (a, g), (s2, s5))
and ((s3, s6), (b, ∗), (s2, s6)), however the later step can never occur as the



4.1. PRODUCTS OF TRANSITION SYSTEMS AS MODEL 51

global state (s3, s6) is not reachable.
We say that s enables t if there is a global state s′ such that (s, t, s′) is

a step. In our example, the state (s1, s6) enables transition (a, g) as there
exists state (s2, s5), so that ((s1, s6), (a, g), (s2, s5)) is a step.

A run of A is a sequence r = s0t1s1 · · · tmsm such that (si , ti+1, si+1)

is a step for every 0 ≤ i ≤ m − 1. Since r is completely deter-
mined by the sequence t1 . . . tm , we often identify r with it. In our run-
ning example the following sequence of transitions is, e.g. a run: rex =

〈(a, g)(c, ∗)(b, ∗)(c, ∗)(d , h)(f , ∗)〉.
The label of a global transition t = (t1, . . . , tn) is the tuple `(t) =

(`1(t1), . . . , `n(tn)), where we extend the definition of `i by setting `i(∗) = ε

for all i ∈ {1 . . . n}. In our example, we have `((d , h)) = (`1(d), `2(h)) =
(ε, ε) or `((c, ∗)) = (`1(c), `2(∗)) = (3, ε).

The set of global labels is L = (L1 ∪ {ε}) × · · · × (Ln ∪ {ε}). The label
(ε, . . . , ε) is the empty (global) label. A global transition is invisible if its label
is empty, otherwise it is visible. The observation of a run r = 〈t1 . . . tm〉 is
the word `(r) = 〈`(t1) . . . `(tm)〉 ∈ L∗, where invisible labels are omitted.

Consider the run rex , we defined in our running example. Then we have
`(rex ) = 〈(1, 2)(3, ε)(3, ε)(3, ε)(4, ε)〉. Note that |l(r)| < |r | as `((d , h)) =

(ε, ε) and with that it is invisible and omitted from the observation.
We now define the diagnosis problem we consider with respect to labelled

products of transition systems. The observer records the sequence O of labels
occurring in a concrete run. When an alarm occurrs we diagnose it using the
observation:

Definition 16 (Diagnosis problem). A run r of A is an explanation of
observation O ∈ L∗ iff `(r) = O. The diagnosis problem is, given A and O,
to compute the set of explanations of O.

For our running example, assume observation Oex = `(rex ) =
〈(1, 2)(3, ε)(3, ε)(3, ε)(4, ε)〉. Obviously, by definition, rex is an explanation
for Oex . Moreover, rex2 = 〈(a, g)(c, ∗)(b, ∗)(e, ∗)(f , ∗)〉 is also an explanation
for Oex , as `(rex2) = Oex holds.

Since O may have infinitely many explanations, the problem is usually
restricted to computing some suitable subset of explanations, which we will
discuss later. Beside the general problem, we consider two interesting special
cases:



52 CHAPTER 4. REACTIVE AND PROACTIVE DIAGNOSIS

• A labelling function is perfect, if the label of every global transition
t = (t1 . . . tn) is `(t) = 〈`1(t1), . . . , `n(tn)〉 with `i(ti) = ti for all ti 6= ∗
and i ∈ {1 . . . n}. In this case the observer gets perfect information: it
knows that an step occurred, and knows exactly which transitions of
which transition systems where involved in the step.

• A labelling function is participant perfect, if the label of every global
transition t = (t1 . . . tn) is `(t) = 〈`1(t1), . . . , `n(tn)〉 with `i(ti) 6= ε for
all ti 6= ∗ and i ∈ {1 . . . n}. This models the case that the observer
always knows which transition systems participate in a step, but not
necessarily which transitions occurred in it.

Participant perfectioness is a necessary condition for perfectioness. No-
tice that, while many labelling functions used in practice are participant
perfect, this is not always the case. In many models, sensors are modelled by
transition systems without ε-transitions, while normal transition systems are
modelled with only ε-transitions. The global label does then not necessarily
carry perfect information about which components are interacting.

In our running example, the labelling function is not participant per-
fect, as the label of global transition (d , h) is `((d , h)) = (ε, ε); both transi-
tion systems contribute to this global transition, but the empty label hides
their contribution and one cannot tell from the observation, which transi-
tion systems participate in it. Changing this labelling function so that, e.g.
`((d , h)) = (1, 1) makes this labelling function participant perfect.

4.2 Products as Petri Nets

Products of labelled transition systems can be described as safe nets. Assume
synchronized transition system A = 〈A1, . . . ,An ,T〉. We define labelled net
N = (P ,T ′,F ,M0, `

′) with `′ the labelling function as follows. Let f be a
bijection between elements of the N and A.

• For each state s in each transition system A we have a place f (s) ∈ P .
Nothing else is in P

• For each global transition t ∈ T there exists a transition f (t) ∈ T ′.
Nothing else is in T ′.



4.2. PRODUCTS AS PETRI NETS 53

• For each global transition (t = 〈t1, . . . , tn〉) ∈ T and each ti ∈
〈t1, · · · , tn〉 with ti 6= ∗, :

– we have 〈f (α(ti)), f (t)〉 ∈ F and

– we have〈f (t), f (β(ti))〉 ∈ F .

Nothing else is in F .

• For each isi in the tuple is = 〈is1 . . . isn〉, f (isi) ∈ M0 holds. Nothing
else is in M0.

• We define labels of global transitions and respective net transition to
be the same, i.e. `′(f (t)) = `(t) for each global transition t. For the
reason of simplicity, and abusing language, from this moment on we
also denote `′ by `, which should cause no confusion.

We now prove that N mimics the behaviour of A and vice-versa by using
the well-known notion of bisimulation [41], [39] adapted to our case.

Definition 17. (Bisimulation) Let S be the set of all global states s in A and
P(P) be the set of all markings of N . Let R ⊆ S×P(P) be some relation.
We say that R is a bisimulation iff whenever s ∈ S, m ∈P(P) and sRm:

• If there is a step 〈s, t, s′〉, then m t ′−→ m ′ with s′Rm ′ for some net
transition t ′.

• If m t ′−→ m ′ , then there is a step 〈s, t, s′〉 with s′Rm ′ for some transi-
tion t.

Lemma 1. (Bisimulation) The relation R = {(s,m) | (s = 〈s1 . . . sn〉) ∈
S ∧m = {f (s1), . . . , f (sn)}} is a bisimulation.

Proof. Assume step 〈s, t, s′〉. Transition f (t) is enabled if all pre-
places •f (t) are marked. By definition of flow relation F we have •f (t) =

{f (αi(ti)) | (ti 6= ∗) ∧ i ∈ {1, . . . , n}} .This is, by definition of a step, equal
to {f (si) | (ti 6= ∗) ∧ i ∈ {1, . . . , n}}. As sRm holds we have that m =

{f (s1), . . . , f (sn)} and with that •f (t) ⊆ m, so f (t) is enabled. If we fire f (t)
we get marking m ′ = (m \•f (t)) ∪ f (t)•. We have (m \•f (ti)) = {f (si) | (ti =
∗) ∧ i ∈ {1, . . . , n}} which is equal to {f (s ′i) | (ti = ∗) ∧ i ∈ {1, . . . , n}}
by definition of a step. Moreover f (t)• = {f (βi(ti)) | (ti 6= ∗) ∧ i ∈
{1, . . . , n}} = {f (s ′i) | (ti 6= ∗) ∧ i ∈ {1, . . . , n}}. Together (as the two



54 CHAPTER 4. REACTIVE AND PROACTIVE DIAGNOSIS

sets are disjoint), we have m ′ = {f (s ′i) | i ∈ {1, . . . , n}} and with that s′Rm ′

holds.
Now, assume step m t ′−→ m ′. Transition t ′ exists because

there is some global transition t = 〈t1, . . . , tn〉 so that f (t) = t ′.
With that, •t ′ = {f (αi(ti)) | (ti 6= ∗) ∧ i ∈ {1, . . . , n}} and
t ′• = {f (βi(ti)) | (ti 6= ∗) ∧ i ∈ {1, . . . , n}}. Further we have
marking m ′ = (m \ •t ′) ∪ t ′•. With that we have m ′ = {f (si) |
(ti = ∗) ∧ i ∈ {1, . . . , n}}⋃{f (β(ti)) | (ti 6= ∗) ∧ i ∈ {1, . . . , n}} =

{f (s ′i) | (ti = ∗) ∧ i ∈ {1, . . . , n}}⋃{f (s ′i) | (ti 6= ∗) ∧ i ∈ {1, . . . , n}} =

{f (s ′i) | i ∈ {1, . . . , n}}. Alltogether, there exists step 〈s, t, s′〉, with s′Rm ′.
2

● ●

a g

c *

e *

d h

b *

f *

● ●

1 2

3 ²

3 ²

4 ²

² ²

3 ²

4 ²

(I) (II)

Figure 4.4: Synchronized product as Petri net, Left: with transition names, Right:
with transition labels

To continue our running example consider Figure 4.4. The figure shows
the synchronized product A of transition systems A1 and A2 with synchro-
nization constraint T in its net representation.

Subfigure I shows then the names of the transitions, while Subfigure II
shows their labels according to labelling function `.

The diagnosis problem may be solved by constructing an automaton from
A, containing global states and global transitions as automaton states and
automaton transitions, respectively. The construction is as follows. Add the
initial global state to the automaton, then iterate: for each added state s

and step sts′, add transition s
t−→ s′ to the automaton (add s′ if it does not



4.2. PRODUCTS AS PETRI NETS 55

exist). Then, replace transitions with the respective global transition labels
and keep a reference to the global transition, for reconstructing runs later.
Empty labels are replaced by ε-transitions. The result is a non-deterministic
automaton with ε-transitions. Construct the product of this automaton with
the observation or construct the reachability graph and find the paths equal
to the observation to get the desired runs. This solution is conceptually
simple, but very inefficient for synchronized products with a high degree of
concurrency. See Figure 4.5 for the non-deterministic automaton constructed
from our running example. It represents the transition name (global transi-
tion label), with the reference to the original global transition. (4, ε)/(f , ∗),
e.g. stands for transition (4, ε), referencing global transition (f , ∗).

(s1, s6)

(s2, s5)

(s4, s5)(s1, s5)

(s4, s6) (s3, s5)

(1, 2)/(a, g)

(3, ✏)/(c, ⇤)

(3, ✏)/(b, ⇤)
✏/(d, h)

(4, ✏)/(f, ⇤)

(3, ✏)/(e, ⇤)

(4, ✏)/(f, ⇤)

Figure 4.5: Nondeterministic automaton

In concurrent systems, it has been shown that partial order representa-
tions are very effective for addressing the state explosion problem. Following
[3], we utilize the unfolding technique for representing system behaviours in
a partial order compressed way, and, more importantly, we use unfoldings to
represent alarm explanations.

The algorithms for generating such an unfolding are subject of the next
section.



56 CHAPTER 4. REACTIVE AND PROACTIVE DIAGNOSIS

4.3 Reactive and Proactive Unfolding Algo-
rithm

In this section, we present our algorithms for solving the diagnosis problem
as defined with Definition 16. Synchronized products can be represented as
Petri nets and so any set of (maximal) runs can be represented as unfolding
prefix (see Section 3.2.3). As being a very effective (partial order compressed)
representation for runs, we utilize prefixes as representation for sets of obser-
vation explanations. Loosely speaking, the problem we algorithmically solve
in this Section is the following. Given a labelled synchronized product of
transitions systems together with an observation (sequence of labels), com-
pute all explanations for this observation, represented as unfolding prefix.
For short, we call this prefix the explain prefix.

Basically, we distinguish between reactive and proactive algorithms for
solving this problem. In the reactive case, we construct the explain prefix
by iteratively adding elements to it while in the proactive case we actively
speculate about the systems future while the observation sequence is not
yet complete, which leads to computing behaviours that might get revoked
when the observation sequence grows. These behaviours then have to be
removed from the prefix in order to construct the explain prefix. Note that
reactive and proactive does not correspond to offline and online. In fact, the
reactive approach can be implemented both ways, offline and online; in the
offline case we generate the explain prefix when the observation is complete
whereas in the online case, while the system is running, we are iteratively
given the growing partial observation that is a subset of the final observation
and construct the explain prefix with the invariant that the unfolding prefix is
at each time a prefix of the explain prefix. The proactive case, however, only
makes sense when implemented online. The invariant, that the unfolding
prefix is at each time a prefix of the explain prefix is dropped, however, in
the end it has to hold that the constructed unfolding prefix and the explain
prefix are equal.

Figure 4.6 compares the two different approaches. In this example we
assume that the observer records the sequence O = 〈〈1, 2〉〈2, ε〉, 〈2, ε〉〉. We
want to diagnose that sequence, i.e. construct the respective explain prefix.
On the left the construction using the offline reactive approach is sketched.
We construct the explain prefix after the last label of the sequence has been



4.3. REACTIVE AND PROACTIVE UNFOLDING ALGORITHM 57

2

2

1

O
bs

er
va

tio
n 

Se
qu

en
ce

Proactive

Explain

Reactive

2

²

²

Figure 4.6: Comparison of reactive on proactive diagnosis

observed.
In contrast to that, on the right, the proactive diagnosis is shown. Even if

no label has yet been observed we speculate about the future of the system.
When observing a label (e.g. 〈1, 2〉), parts of the unfolding might get obsolete
and we have to remove them. This is illustrated with scissors in the Figure.
We iterate this procedure, and ideally, with the last observed label we just
have to apply this “garbage collection” for the last time to obtain the explain
prefix.

In contrast to the related work presented in Section 3.3 we construct
the explanation (unfolding) without prior synchronizing the net with the
observation sequence, as the complete sequence is not at our disposal from
the beginning on, but it is received iteratively.

Our approach is based on the net unfolding algorithm presented in Sec-
tion 3.2.3. Therefore, we recall and briefly summarize Algorithm 6 from this
section. This algorithm is a worklist algorithm. A worklist of possible ex-
tensions is maintained. Such a possible extension is an event that has not
yet been added to the prefix, but all required pre-conditions are already con-
tained and these conditions are pairwise in co-relation. We iteratively remove
events from the worklist, adding them to the prefix. Whenever an event is
added, it is added together with its post-conditions. It is then checked if



58 CHAPTER 4. REACTIVE AND PROACTIVE DIAGNOSIS

the event is a cut-off event, i.e. an event that is not expanded further. If
it is not, it is checked if new possible extensions arise from the addition of
the respective new post-conditions to the prefix. Those possible extensions
are added to the worklist. Initially, the prefix contains conditions that are
copies of the initial marking of the net and the worklist contains all possible
extensions of the those conditions.

We identify two core components of the algorithm: (1) the generation of
possible extensions pe(Up) for current prefix Up and (2) checking for cut-
off events. In the traditional algorithm, cut-offs are used to generate a finite
complete prefix containing all reachable markings. If this check (2) is removed
we have an unfolding algorithm computing the unique (possibly infinite)
prefix. This is the starting point for our algorithm. We implement (1) and
(2) to fit our needs for generating the explanation prefix. This prefix contains
all maximal runs that “generate” the observation O . At first, we address the
problem of making this notion precise.

Definition 18 (Observation and Explanation). Let ob(C) = {`(r) |
r is a realization of C} be the set of observations of a configuration C of the
unfolding. We say that C is an explanation of O if O ∈ ob(C).

Ideally, we would like a finite prefix containing all explanations of O .
However, if the reachability graph contains loops on invisible transitions, the
set of explanations can be infinite and no finite prefix exists. So we have to
lower our aim. For that, we introduce the concept of verbose and succinct
explanations.

Definition 19 (Verbose and Succinct). An explanation C of O is verbose
if it contains events e, e ′ such that [e] ⊂ [e ′] ⊆ C, ob([e]) = ob([e ′]), and
Mark([e]) =Mark([e ′]). If C is not verbose, then it is succinct.

Given a realization rr ′r ′′ of verbose explanation C of O such that r and rr ′

are realizations of [e] and [e ′], with `(rr ′r ′′) = O ; respectively the sequence
rr ′′ is a run and also satisfies `(rr ′′) = O .

A verbose explanation contains two causally dependent events so that
their local configurations produce the same local marking and have the same
observation.

An observation O may have infinitely many explanations, but only finitely
many succinct explanations. See for that the example in Figure 4.7 where



4.3. REACTIVE AND PROACTIVE UNFOLDING ALGORITHM 59

●

a b

c

●

Ï 1

2

●

a b

a b c

c a

a
Ì

Ë

a

a
Í

Î

Û

Ú

[...]

[...]

[...]

Figure 4.7: Left: Petri net representing synchronized product, Middle: Petri net
from left with labels, Right: unfolding

three nets are shown. The most left one is a Petri net, representing a syn-
chronized product of transition systems with global transitions a, b and c.
The net in the middle is its labelled representation. We have following la-
belling function `: `(a) = ε, `(b) = 1 and `(c) = 2. Assume observation
sequence O = 〈1, 2〉. Then, the unfolding prefix on the right of the figure is a
prefix of the infinite explain prefix. Events carry the name of the respective
transition. To be able to refer to certain events, some of them carry an addi-
tional Greek label. The most right “path” in the unfolding (〈b, c, a, a〉) is an
explanation, as its observation is O . However, as [α] ⊂ [β], ob([α]) = ob([β])

and Mark([α]) = Mark([β]), it is a verbose one. The same holds for pairs
of events (σ, ρ), (δ, γ) and infinitely more. Removing the successors of σ, δ
and α, we have a finite prefix containing all succinct explanations.



60 CHAPTER 4. REACTIVE AND PROACTIVE DIAGNOSIS

In general, the argument for O having only finitely many succinct expla-
nations is as follows. Each chain of invisible events in a succinct explanation
contains at most as many events as the amount of reachable markings of the
net. Assume there exists a chain of invisible events containing more markings.
Then, due to the pigeon principle, there exist two events e, e ′ in this chain
with Mark([e]) = Mark([e ′]). As this chain only contains invisible events,
we have ob([e]) = ob([e ′]). But then the explanation is not succinct, which is
a contradiction. With that, a prefix containing all succinct explanations is
finite.

On the one hand, we want to generate a prefix containing all succinct
explanations. This is formulated using O-completeness:

Definition 20 (O-completeness). An unfolding prefix is O-complete if it
contains all succinct explanations.

On the other hand, intuitively, we also would like that every configuration
of the branching process is either an explanation of O or a subset of it:

Definition 21 (O-compatibility). A configuration C is O-compatible if it
can be extended to an explanation, i.e. if some configuration C ′ ⊇ C is an
explanation of O. An unfolding prefix is O-compatible if, for each event e,
the local configuration dee is O-compatible.

Ideally, given a possible extension e ∈ pe(Up) in the procedure above, we
would like to add the check if the local configuration [e] is O-compatible with
O and extend Up with e if and only if the answer is affirmative. However,
this problem is PSPACE-hard, as shown in the following lemma.

Lemma 2. Deciding whether a configuration C is O-compatible to observa-
tion O is PSPACE-hard.

Proof. We reduce the reachability problem in 1-safe Petri nets to this
problem. The reachability problem (PSPACE-complete, see [4]) is, given
a net N = (P ,T ,F ,M0) with initial marking M0 and target marking Mf ,
to decide if there exists a run σ = t1 . . . tn , i.e. firing sequence M0

t1−→
M1 · · · tn−→ Mf . Let Mf

m and Mf
!m be the sets of places which are marked

and not marked, respectively, by Mf . We create the net N ′ = (P ′ = P ,T ′ =
T ,F ′ = ∅,M ′

0 = M0). Further, let f be a bijection on places and transitions
between N ′ and N .



4.3. REACTIVE AND PROACTIVE UNFOLDING ALGORITHM 61

For once, we add a transition treached to T ′. For each place p ′ = f (p) ∈
P ′ we add places bp′ , ap′ , sp′ to P ′, transitions enterp′ , leavep′ to T ′ and
(sp′ , treached), (bp′ , enterp′), (enterp′ , p ′), (p ′, leavep′) and (leavep′ , ap′) to F. If
p ′ ∈ Mf

!m we add sp′ to M ′
0. Further, for each t ∈ •p we add pair (f (t), p ′b)

to F ′ and for each t ∈ p• we add pair (p ′a , f (t)) to F ′. For each transition
p ′ = f (p) ∈ Mf

!m , add (sp′ , enterp′) and (leavep′ , sp′) to F. For each transition
p ′ = f (p) ∈ Mf

m , add (sp′ , leavep′) and (enterp′ , sp′) to F.
Figure 4.8 visualises this construction for two places p ′1 = f (p1) and p ′2 =

f (p2), where p1 is marked by Mf and p2 not.
Observe that transition treached can be enabled iff Mf is reachable. We

set this transition treached to be the only visible transition with `(treached) =
reached and we set observation O = 〈reached〉. The question if the empty
configuration C is O-compatible with O in the unfolding of N ′ is then the
question if Mf is reachable in N . With that, O-compatibility is PSPACE-
hard.

2

enterp0
1 enterp0

2

leavep0
1

leavep0
2

ap1
0

treached

bp1
0

sp1
0

p1
0

sp2
0

ap2
0

p2
0

bp2
0

Figure 4.8: Illustration for reducing the reachability problem to the O-
compatibility problem

So again we lower our aim, for which we need some basic notions of trace
theory [11].

Definition 22. (Dependent/Independent transitions and labels) Two global



62 CHAPTER 4. REACTIVE AND PROACTIVE DIAGNOSIS

transitions t = 〈t1, . . . , tn〉 and t′ = 〈t ′1, . . . , t ′n〉 are independent if ti 6= ∗
implies t ′i = ∗ for every i ∈ {1, . . . , n}, i.e. no transition system contributes
to both global transitions. If not they are dependent.

Similarly, two global labels ` = 〈`1, . . . , `n〉 and `′ = 〈`′1, . . . , `′n〉 are in-
dependent if `i 6= ε implies `′i = ε for every i ∈ {1, . . . , n}. If not they are
dependent.

a * * *
b* * *

b* * *

a* * *

1 ² ² ²
2² ² ²

2² ² ²
1² ² ²

Independent

Dependent

Global Transitions Labels

Figure 4.9: Dependent and independent global transitions and labels

Figure 4.9 shows an example for that. Four cells in a row illustrate a
global transition (left) or a global label (right), synchronizing transitions
or labels of four transition systems. For illustration purposes, we draw the
background of cells, with labels that are not epsilon and transitions that are
not idling, in black. Loosely speaking two labels or two global transitions are
independent if there are no two black labels in one column.

It is well-known that any two realizations of the same configuration are
meaning-equivalent. In trace theory we have a similar notion; equivalence.
We define equivalence between global transition sequences σ ≡ σ′ and obser-
vations O ≡ O ′ the same way:

Definition 23 (Equivalence). For two sequences σ, σ′ ∈ T∗ or two obser-
vations O and O ′ ∈ L∗ we write σ ≡1 σ′ or O ≡1 O ′, respectively, if
σ′ is obtained from σ by swapping two independent global transitions or O
from O ′ by swapping two independent labels, respectively. More precisely,
σ ≡1 σ

′ if σ = t1 . . . titi+1 . . . tk and σ′ = t1 . . . ti+1ti . . . tk or O ≡1 O ′ if
O = `1 . . . `i`i+1 . . . `k and O ′ = `1 . . . `i+1`i . . . `k for some index i such that
ti and ti+i or `i and `i+1 are independent, respectively.

We denote the transitive closure of ≡1 by ≡, and say that O and O ′ are
equivalent if O ≡ O ′ (the same for σ and σ′).



4.3. REACTIVE AND PROACTIVE UNFOLDING ALGORITHM 63

d* * *

a * * *
c* * *

e* * *
g* *b

d* * *

a * * *
c* * *

e* * *

g* *b d* * *

a * * *
c* * *

e* * *

g* *b
d* * *

a * * *

c* * *

e* * *

g* *b⌘1� �0= =⌘1 ⌘1

t1
t2
t3
t4
t5

Figure 4.10: Equivalence of sequences

Figure 4.10 shows an example for that. There, a sequence σ of global
transitions 〈t1, . . . , t5〉 is shown on the left, which is equivalent to the se-
quence σ′ on the right (σ ≡ σ′). We get σ′ from σ by iteratively swapping
independent global transitions.

Observe that, since local transitions can be labelled with ε, if two global
transitions are independent then their labels are independent, but the con-
verse only holds if the labelling function is participant perfect. This extends
to observations: if σ ≡ σ′, then `(σ) ≡ `(σ′), but the converse only holds for
participant perfect labellings.

With that we define O-soundness, i.e. an approximation for O-
completeness.

Definition 24 (O-soundness). A configuration C is O-sound, if for every
O1 ∈ ob(C) there is O2 ∈ L∗ such that O1O2 ≡ O.

Figure 4.11 compares O-compatibility and O-soundness. In this example
we have three global transitions t1, t2 and t3 with respective global labels
`1, `2 and `3. Let N be the net representation of some synchronized product
so that C1, Cpart and C2 are configurations of its unfolding. Events are labelled
with the respective original transition. Let O = 〈`1, `2, `3〉 be the recorded
observation. Note that the observation of the realization of Cpart is also O ,
so it is O-compatible. Moreover, C1 is O-compatible as there exists a set
of events E so that C1 E

;, i.e. C1 extended with E is a configuration, and
there exists a realization of this configuration with observation O . Here,
E solely contains the event labelled with t3. Assume that there exists no
set of events E ′ so that C2 E ′

; has observation O . Therefore, C2 is not O-
compatible. However, C2 is O-sound as its observation is 〈`2, `1〉, both labels
are independent and with choosing O1 = 〈`2, `1〉 and O2 = 〈`3〉, we have
O1O2 = 〈`2, `1, `3〉 ≡ 〈`1, `2, `3〉 = O . We now show that O-soundness is a



64 CHAPTER 4. REACTIVE AND PROACTIVE DIAGNOSIS

`1
`2
`3

a *t1

c*t2

e* *t3

b

d

1 Ï

Ï

3Ï Ï

2
Ï

Ï

t1

t2

t3

t2

t1

t1

t2

C1 Cpart C2

Labels and 
Observation:

Transitions:

Figure 4.11: Example for comparing O-soundness with O-compatibility

necessary condition for compatibility, i.e. if a configuration is not O-sound
it is also not O-compatible. The other direction must not necessarily hold,
as already shown with the counterexample from Figure 4.11.

Proposition 1. If C is compatible with O, then C is O-sound.

Proof. We need some preliminaries. We extend the notions of indepen-
dence and equivalence to sequences of global transitions.

For the proof, assume C is compatible with O , and let O1 ∈ ob(C). By the
definition of compatibility, there is a Configuration C ′ with C ′ ⊇ C such that
O ∈ ob(C ′). Let r1 be a realization of C such that `(r1) = O1. Since C ′ ⊇ C,
there is a realization r ′ = r1r2 of C ′, and so O1 is a prefix of the observation
O ′ = `(r1)`(r2) of C ′. It remains to prove O ≡ O ′.

Let r be a realization of C ′ such that `(r) = O . Then we have
r ≡ r ′. Since `(t) 6= ε implies t 6= ∗, if two global transitions t, t′ are
independent then `(t), `(t′) are also independent, and so r ≡ r ′ implies
O = `(r) ≡ `(r ′) = O ′. So C is O-sound. 2

We say that a branching process is O-sound if all its configurations are
O-sound. We provide a diagnosis algorithm that constructs an O-sound
and O-complete branching process. The algorithm itself is again a simple
modification of the standard algorithm for the construction of complete pre-



4.3. REACTIVE AND PROACTIVE UNFOLDING ALGORITHM 65

fixes. First we define O-cut-offs. We denote by pesound(Up) the set of events
e ∈ pe(Up) such that dee is O-sound.

Definition 25 (O-cut-off). An event e ∈ pesound(Up) is an O-cut-off if
there is an event e ′ < e such that Mark(e) =Mark(e ′) and ob([e]) = ob(e ′).

In the beginning of this section we already identified the two core compo-
nents of Algorithm 6: (1) computing possible extensions and (2) computing
cut-offs. The diagnosis procedure is the result of substituting pe(Up) in (1)
with pesound(Up) and the cut-off procedure in (2) with observation cut-offs.
In the rest of this section we prove the following theorem:

Theorem 1. The diagnosis procedure terminates with an O-sound and O-
complete unfolding prefix Explain.

Let us first prove termination. The diagnosis procedure terminates iff
Explain is finite (as each iteration of the while loop adds new elements to
Explain). Let length(ob([C])) be the common length of all the observations
of ob([C]). We have:

Lemma 3. For every event e of Explain length(ob([e])) ≤ |O |.

Proof. If there is an observation Ol ∈ ob(e) such that |Ol | > |O |, then
there exists no O2 ∈ L∗ such that OlO2 ≡ O , and so e 6∈ Ext(N ,CO ,O) for
every N and CO . So e is never added to Explain. 2

A sequence π = e1 . . . en of events is a path of e iff •(•e1) = ∅, en = e,
and ek−1 ∈ •(•ek) for any pair of successive events ek−1, ek . Let H(e) be the
maximal length of the paths of e. An event ek of a path of e is observable if
ob([ek ]) 6= ob([ek−1]).

Lemma 4. The paths of the events of Explain contain at most |O | observable
events.

Proof. Observe that ek is observable iff length(ob([ek−1])) >

length(ob([ek ])). As length(ob([e])) is bounded by |O | for any event
e ∈ Explain, and the observation length grows with each observable event,
we have at most |O | observable events. 2

Lemma 5. For every event e of Explain we have H(e) ≤ (|O | · R) + 1,
where R is the number of reachable global states of the product.



66 CHAPTER 4. REACTIVE AND PROACTIVE DIAGNOSIS

Proof. Let π = e1 . . . em be a path of e. Assume m > |O | ·R+ 1. Since
length([ei ]) ≤ |O | for every 1 ≤ i ≤ m, by the pigeonhole principle there
exist two events ei and ej such that i < j < m, Mark(ei) = Mark(ej ), and
ob([ei ]) = ob([ej ]). But then ej is a cut-off, contradicting that e = em is an
event of Explain. 2

In summary, we have H(e) < (|O | · R) + 1. It is well-known (see e.g.
[15]) that in any unfolding, the sets •e and e• are finite, as well the number
of events of a certain height. So Explain is finite and our construction
procedure terminates. We continue with O-soundness and O-completeness.

Lemma 6. Explain is O-sound.

Proof. Let C be an arbitrary configuration of Explain. We prove that
ob(C) contains a prefix of O . The proof is by induction on |C|. If |C| = 0

then ob(C) = ε and there is nothing to prove. If |C| > 0, then there is a
configuration C ′ and an event e 6∈ C ′ of Explain such that C = C ′ ∪ {e}.
Let C ′′ = C ′ ∩ [e]. By induction hypothesis, there exists a prefix O ′ of O
such that O ′ ∈ ob(C ′). Since e was added to Explain by the algorithm,
there also exists a further prefix Oe of O such that Oe ∈ ob([e]). Moreover,
we can choose O ′ and Oe such that O ′ = O ′′O ′1 and Oe = O ′′Oe

1 for some
O ′′ ∈ ob(C ′ ∩ [e]) and some observation sequences O ′1 and Oe

1 . We prove
that O ′′O ′1Oe

1 is an observation of C and a prefix of O . For the first part,
we observe that any two events e1 ∈ C ′ \ [e] and e2 ∈ [e] \ C ′ are concurrent.
Therefore, there exists a realization r of C in which all events of [e] \ C ′
appear after all events of C ′ \ [e]. Since `(r) = O ′′O ′1Oe

1 , we are done. For
the second part, we observe that the labels of two concurrent events are
either both empty, or distinct. Indeed, if two events e1, e2 are concurrent,
then the sets of participants and their global transitions are disjoint. So,
if their labels `1, `2 are nonempty, then there are indices i 6= j such that
`1i 6= ∅ = `2i and `1j = ∅ 6= `2j . 2

Lemma 7. Explain is O-complete.

Proof. Assume Explain is not O-complete. Then there exists a succinct
explanation C 6∈ Explain, so there exists a cut-off event ec ∈ C or there
exists an event ep ∈ C such that ep 6∈ Ext(Explain,CO ,O) (or both).
If C contains a cut-off event ec, then there exists an event e ′c such that



4.3. REACTIVE AND PROACTIVE UNFOLDING ALGORITHM 67

[e ′c] ⊂ [ec] ⊆ C, ob([ec]) = ob([e ′c]), and Mark([ec]) =Mark([e ′c]), but then C
is a verbose explanation. If C contains an event ep 6∈ Ext(Explain,CO ,O),
then there exists O1 ∈ ob([ep ]) such that for all O2 ∈ L∗, O1O2 6≡ O and
with that O 6∈ ob(C), but then C is no explanation. 2

Implementation of the Reactive Diagnosis

The core of any procedure for constructing complete branching processes is
the routine for the computation of pe(Up). Similarly, the key of the diagnosis
procedure is the routine for computing pesound(Up). Since pesound(Up) ⊆
pe(Up), we use existing procedures for computing pe(Up) [15], and for each
event e ∈ pe(Up) we check the additional condition: whether [e] is O-sound.

However, even though O-soundness is easier to check than O-
compatibility, it is still a very costly procedure. In particular, it involves
a check of the form O1O2 ≡ O for every event e, which cannot be imple-
mented very efficiently. We provide a more efficient approach that preserves
O-completeness but not necessarily O-soundness, i.e. some runs of the prefix
may be spurious explanations. It is based on the following non-trivial, but
well-known result [11, Chapter 1.5]1:

Proposition 2. Given a realization r of a configuration C, let ri denote
the projection of r onto the global transitions in which Ai participates. Two
runs r , r ′ are realizations of the same configuration C if and only if ri = r ′i
for every i ∈ {1, . . . , n}.

Consider Figure 4.12 as example for that. It shows a configuration C with
two realization “Run 1” and “Run 2”. Observe that both runs share the same
projection to transition systems T1 . . .T3, as shown on the right of the figure.
More general, every realization of C shares this projection, and each run with
this projection is a realization of C.

We exploit this proposition. Our algorithm stores for every event only
the projection of its labels to respective transition systems:

Definition 26. (Footprint and Projection) Let r be some run of a labelled
product and `(r) = 〈`(r1), . . . , `(rn)〉 the respective sequence of labels. The
tuple proj (`(r)) = 〈`(r)1, . . . , `(r)n〉 where `(r)i denotes the projection of

1In [11] the result is formulated in the terminology of Mazurkiewicz traces.



68 CHAPTER 4. REACTIVE AND PROACTIVE DIAGNOSIS

a *b c* *

e * *

h *i

d* *

* f g

a
e
h

b
d
f
i

c
g

T1 T2 T3

Configuration C 
Projection of every

run of C

a *b
c* *

e * *
d* *

* f g
h *i

a *b
c* *

e * *

d* *
* f g

h *i

Run 1

Run 2

Figure 4.12: Example for run projections. Left: configuration, Middle: runs of
configuration, Right: unique projection.

`(r) onto the labels ` = (`1, . . . , `n) such that `i 6= ε, is the projection of
`(r). The projection proj (C) of some configuration C is the unique projection
proj (`(r)) of some run r of C. We say that the footprint of observation O
is its projection proj (O). Furthermore, with proj (e) for some event e, we
denote the projection proj ([e]).

Figure 4.13 shows on the left the sequence of labels `(r) of run r in a
labelled product of 3 transition systems. We have `(r) = 〈`(r1), . . . , `(r4)〉 =
〈〈1, ε, 5〉 , 〈ε, 3, 5〉 , 〈2, ε, ε〉 , 〈2, 4, 6〉〉. The projection proj (`(r)) is shown on
the right, a tuple 〈`(r)1, `(r)2, `(r)3〉 = 〈〈1, 2, 2〉 , 〈3, 4〉 , 〈5, 5〉〉, each element
is a projection of the labels of one transition system, omitting transitions
labelled with ε.

Proposition 2 guarantees that proj ([e]) is independent of the realization.
Given an event e with immediate predecessors e1, . . . , ek , proj ([e]) can be
easily computed from proj ([e1]), . . . , proj ([ek ]). Let proj ([ei ]) = 〈σi1, . . . , σin〉
with i ∈ {1, . . . , k} and let n be the number of participating transition



4.3. REACTIVE AND PROACTIVE UNFOLDING ALGORITHM 69

1 ²
²

5
3 5
² ²2

2 4 6

1
2
2

3
4

5
5

Label sequence of run r
`(r1)

`(r2)

`(r4)

`(r3)

Projection of r
`(r)1 `(r)2 `(r)3

Figure 4.13: Example for a footprint. Left: label sequence, Right: projection.

systems. Since e1, . . . , ek are pairwise concurrent, we have proj ([e] \ {e}) =
proj ([e1] ∪ · · · ∪ [ek ]) = 〈σ′1, . . . , σ′n〉, where σ′i is the longest of σi1, . . . , σik ,
and so proj ([e]) = (σ′1 · `1, . . . , σ′n · `n), where `i is the label of the global
transition of e, if Ai participates in it, and the empty word otherwise.

We say a projection is prefix of another projection if it is one component
wise (Operator vc).

For example, Figure 4.14 shows three projections. We have proj1 vc proj2,
because 〈1, 2, 2〉 v 〈1, 2, 2, 4〉, 〈3, 4〉 v 〈3, 4〉 and 〈5, 5〉 v 〈5, 5, 6〉. Also, we
have proj2 6vc proj3, because 〈1, 2, 2, 2〉 6v 〈1, 2, 2, 3〉.

1
2
2

3
4

5
5

2

1
2
2

3
4

5
5
6

3

1
2
2

3
4

5
5
6

`(r)1 `(r)2 `(r)3 `(r)1 `(r)2 `(r)3 `(r)1 `(r)2 `(r)3

vc 6vc

proj1 proj2 proj3

Figure 4.14: Example for comparing projections; proj1 is subset of proj2 but proj2
is no subset of proj3.

Our algorithm replaces the check “is [e] O-sound?” by “is proj ([e]), com-
ponentwise, a prefix of proj (O)?” (proj ([e]) vc proj (O)). More precisely, if
we denote by peprojection(Up) the new possible extension function with this
new check, then our implementation of the diagnosis procedure is the result
of replacing pe(Up) by peprojection(Up).

The following proposition shows that the new algorithm is still O-
complete: if it excludes an event from the prefix, then the old algorithm
would have also excluded it.



70 CHAPTER 4. REACTIVE AND PROACTIVE DIAGNOSIS

Proposition 3. If proj ([e]) is not componentwise a prefix of proj (O), then
[e] is not O-sound.

Proof. Assume the contrary. There exists a component i such that
proj ([e])i 6v proj (O)i and for every O1 ∈ ob([e]) there is a O2 ∈ L∗ such that
O1O2 ≡ O . For all such O1O2 we have proj (O1O2)i = proj (O1)iproj (O2)i ,
as [e] is a configuration. Furthermore, by definition, proj (O1)i = proj (e)i ,
so proj (O1)i 6v proj (O)i and so proj (O1O2)i 6= proj (O)i , contradicting that,
since O1O2 ≡ O , all its projections must be equal. 2

Termination of the diagnosis procedure is also not affected. However,
the new Explain branching process may contain configurations that do not
correspond to an explanation. Consider the product of transition systems
informally described as follows, where q `−−−→ q ′ denotes a transition labelled
by ` with source q and target q ′. A1 has transitions t1 = q1

a−−−→ q2 and
t2 = q2

ε−−−→ q3, and A2 has a transition, t ′2 = r1
b−−−→ r2. The synchroniza-

tion constraint is {u1 = 〈t1, ∗〉 ,u2 = 〈t2, t ′2〉}. The product has one single
run r = u1u2 and `(r) = 〈`(u1), `(u2)〉 = 〈〈a, ε〉 〈ε, b〉〉. There are no ex-
planations at all for an observation O = 〈〈ε, b〉 〈a, ε〉〉. However, since the
footprint of O is proj (O) = 〈〈a, ε〉 , 〈ε, b〉〉, and the footprint of the only event
e having r as realization satisfies proj ([e]) = 〈`(u1), `(u2)〉 = 〈〈a, ε〉 , 〈ε, b〉〉,
the configuration of [e] belongs to Explain for O . The reason for this is
that the labelling function is not participant perfect: the global transition
u2 is jointly executed by A1 and A2, but its global label is 〈ε, b〉, hiding the
participation of A1. We have:

Proposition 4. If the labelling function of the product is participant per-
fect, then the branching processes Explain computed with the help of
peprojection(Up) instead of pe(Up) is O-sound and O-complete.

Proof. It suffices to prove O-soundness for every configuration [e]
of Explain; the rest is shown as in Lemma 6. By definition, proj ([e])
is componentwise a prefix of proj (O). By [11, Chapter 1.5], the set of
realizations of proj ([e]) and proj (O) according to the independence relation
on labels is completely determined by proj ([e]) and proj (O); moreover,
since proj ([e]) is componentwise a prefix of proj (O) there is a realization O ′

of proj ([e]) that is a prefix of O . Since the labelling function is participant
perfect, any two global transitions of [e] are independent iff their labels are



4.3. REACTIVE AND PROACTIVE UNFOLDING ALGORITHM 71

independent. Therefore, there is a realization r of [e] such that `(r) = O ′. 2

4.3.1 Analyzing the Branching Process

The diagnosis procedure yields a prefix Explain containing all succinct ex-
planations of the observation O , which usually corresponds to an error or
an undesirable situation. Explaining the error cause usually needs some ad-
ditional reasoning on Explain, e.g. answering queries like “what transitions
are contained in every run leading to the error?”. In our implementation we
use a SAT Solver to analyze Explain.

Algorithm 7: Branching process to CNF conversion
Data: Occurrence net O = {Events E , Conditions C}
Result: CNF Formula (each “add” adds a clause)
for c ∈ C do

ep = pre event(c)
for e ∈ post events(c) do

for e1 ∈ post events(c)\e do
add(e ⇒ ¬e1)

add(e ⇒ ep) (drop clause if ep is non-existent)
add(e ⇒ ¬c)

add(
∨
(post events(c)) ∨c ∨ ¬ep) (drop literal ¬ep if ep is

non-existent)
add(c ⇒ ep) (drop clause if ep is non-existent)

It is a well-known fact that, given some occurrence net O, one can con-
struct a boolean formula φ in linear time (see Algorithm 7 for construction),
whose set of models is isomorphic to the set of configurations of O. More
precisely, φ contains a variable xe for each event e, and C is a configuration
of Explain iff there exists an assignment that sets xe to true for all e ∈ C,
to false for all events e 6∈ C and satisfies φ. As the Explain prefix is an
occurrence net we can apply this technique for analysing this prefix.

Figure 4.15 shows an example for the construction algorithm. We apply
the algorithm on the shown occurrence net. The algorithm loops over all
conditions and adds clauses. For each condition c ∈ {c1 . . . c9}, the formula



72 CHAPTER 4. REACTIVE AND PROACTIVE DIAGNOSIS

therefore contains a conjunction of those added clauses, sat(c). Each clause
is a disjunction of literals, i.e. negated or not negated variables (the formula
(a ⇒ b) represents disjunction (¬a ∨ b)). The final CNF-formula φ is then
sat(c1)∧ . . .∧sat(c9). Each satisfying assignment represents a configuration.
For example we have the satisfying assignment c2, e1, e4, c7 = true and all
other variables set to false. This represents the configuration C = {e1, e4}
with marking M (C) = {c2, c7}.

e1 e2

e3 e4 e5 e6

c1 c2

c3 c4 c5

c6 c7 c8 c9

sat(c1):
(e1 ) ¬c1) ^
(e1 _ c1)

sat(c2):
(e2 ) ¬c2)^
(e2 _ c2)

sat(c3):
(e3 ) ¬e4) ^ (e3 ) e1) ^
(e3 ) ¬e5) ^ (e4 ) e1) ^
(e4 ) ¬e3) ^ (e5 ) e1) ^
(e4 ) ¬e5) ^ (e3 ) ¬c3) ^
(e5 ) ¬e3) ^ (e4 ) ¬c3) ^
(e5 ) ¬e4) ^ (e5 ) ¬c3) ^
((e3 _ e4 _ e5) _ c3 _ ¬e1) ^
(c3 ) e1)

sat(c5):
(e6 ) e2)^
(e6 ) ¬c2)^
((e6) _ ¬c5 _ ¬e2)^
(c5 ) e2)

sat(c4):
(e5 ) e2)^
(e5 ) ¬c4)^
((e5) _ ¬c4 _ ¬e2)^
(c4 ) e2)

sat(c6):
(c6 _ ¬e3)^
(c6 ) e3)

sat(c7):
(c7 _ ¬e4)^
(c7 ) e4)

sat(c8):
(c8 _ ¬e5)^
(c8 ) e5)

sat(c9):
(c9 _ ¬e6)^
(c9 ) e6)

Figure 4.15: Example for occurrence net to SAT formula translation

The Explain prefix usually contains many configurations satisfying
proj (C) @c proj (O), while we are interested in those satisfying proj (C) =

proj (O). So we transform φ into a formula ψ whose models are exactly these
configurations. For this, we define for each component Ai the set of events
Ei of Explain that contain an event e iff proj (O)i = proj ([e])i . Then, we
add to φ a formula φ′ expressing that the configuration must contain at least
one event of each of the sets E1, . . . ,En and let ψ = φ∧ φ′. The models of ψ
are the configurations C of Explain such that proj (C) = proj (O). For more
specific queries, we can add further clauses to ψ.



4.3. REACTIVE AND PROACTIVE UNFOLDING ALGORITHM 73

4.3.2 Implementation of the Proactive Diagnosis

We consider discrete time event systems and so we basically have no notion
of time. However, an external observer can record emitted observable sys-
tem events with respect to his global clock. This opens the possibility to
do diagnosis “online”, i.e. while the system is running. Moreover, we can
implement the approach proactively. We already introduced this concept;
Figure 4.6 compares reactive and proactive diagnosis. For short, while in
the reactive diagnosis we only explain what happened so far, in proactive
diagnosis we also speculate about the systems future. With that we might
generate behaviour that is not compatible with the final observation. After
an alarm has been observed, possibly also while observations are iteratively
received, these incompatible behaviours have to be removed.

However, designing and implementing the reactive diagnosis with garbage
collection as core component is a difficult task and subject of this section.

For efficiency reasons, we only consider the projection approximation for
generating the Explain prefix. Note that the definition of O-compatibility
(and the approximations O-soundness and projection compatibility) are
aimed at extending the prefix only with O-compatible events.

During the diagnosis we do not have complete information on the obser-
vation O . We are only given the partial observation O ′ @ O . An event that is
not O ′-compatible might be O-compatible, so we cannot use peprojection(Up)

for computing possible extensions. So we modify the criteria for accepting
events in the unfolding.

Let proj (A) = 〈proj1(A), . . . , projn(A)〉 and proj (B) =

〈proj1(B), . . . , projn(B)〉. We denote by proj (A) 1c proj (B) that for
each pair of label sequences (proji(A), proji(B)) with 1 ≤ i ≤ n, either
proji(A) v proji(B) or proji(B) v proji(A) holds.

Let t be a time variable, with t = 0 at the timepoint of the beginning of
the diagnosis and t = tf , the timepoint when an alarm is observed, i.e. the
observation is complete. The observation is growing over time, we have the
invariant O(t) v O for all timepoints t . Moreover, O(t) = O for all t ≥ tf .

We replace the check “proj (e) vc proj (O)” in peprojection(Up) by “If
t < ft then check proj (e) 1c proj (O(t)) else check proj (e) vc proj (O)”,
resulting in peproactive(Up).

Let Explainr and Explainp be the branching processes we obtain by
applying diagnosis with possible extension function peprojection(Up) and



74 CHAPTER 4. REACTIVE AND PROACTIVE DIAGNOSIS

2

2 1

21

²

4

3

4²1

²2

²2
²1

² 3

² 4

T1 T2

Dependency graph of prefix

2 4

² ²

²

Figure 4.16: Visualization of an example of the used data structure

peproactive(Up), respectively. For all sequences A and B , if proj (A) vc

proj (B), then for all B ′ v B , proj (A) 1c proj (B ′) holds. Therefore, if
proj (e) vc proj (O) then proj (e) 1c proj (O(t)) for every O(t) v O , and
so peprojection(Up) is a subset of peproactive(Up), which implies Explainr v
Explainp. So we can extract Explainr from Explainp by pruning.

For the efficient implementation of this “garbage collection”, being able
to quickly identify events of the unfolding that have to be removed is an
important issue.

The decision whether or not an event e is removed from the prefix is based
on the projection proj (e) = 〈proj1(e), . . . , projn(e)〉. We do not store this
tuple for each event explicitly, but keep a tree for each transition system Ti

where i ∈ {1, . . . , n}. A sequence proji(e) with i ∈ {1, . . . , n} is represented
as a pointer to a node in this tree, i.e. the path to this pointer in the tree is
the sequence proji(e). Additionally, a pointer in the other direction is kept
allowing us to determine all events having some given projection.

For an example, see Figure 4.16. The dependency graph shows only the
causality relation between events in an unfolding prefix. Information about
conflicts and concurrency is removed, but also not needed for this exam-
ple. The unfolding is constructed from the labelled synchronized product of
transition systems T1 and T2. Only labels of events are shown, all events



4.3. REACTIVE AND PROACTIVE UNFOLDING ALGORITHM 75

are visible except the only invisible event labelled with 〈ε, ε〉. The trees for
T1 and T2 are shown on the right and left of the dependency graph. Con-
sider the two pointers for the event e labelled with 〈ε, 4〉. They point to
nodes 1 and 4 in the trees of T1 and T2 respectively. We have the tree paths
〈ε, 2, 2, 1〉 and 〈ε, 3, 4, 4〉, where ε stands for nothing observed yet, so we have,
proj (e) = 〈〈2, 2, 1〉 , 〈3, 4, 4〉〉.

It is easy to see that with such a data structure for storing projections we
are able to efficiently prune the prefix based on a given observation. Assume
we have observed nothing yet and the current unfolding is the one shown in
Figure 4.16. If we observe O(t) = 〈〈ε, 3〉 , 〈2, ε〉〉, we can remove all events
linked by side branches of path 〈ε, 2〉 in the tree of T1, namely the leftmost
event with the label 〈1, ε〉. As there is no side branch of path 〈ε, 3〉 in the tree
of T2, nothing more is removed. If this observation is final, i.e. O = O(t),
we can additional remove the linked events of the successors of these paths.
In this case, the final prefix consists of the three topmost events with labels
〈2, ε〉 , 〈ε, ε〉 and 〈ε, 3〉.

4.3.3 Case Study

Sokoban (see e.g. [10]) is a popular puzzle game, where a single player (the
agent) pushes boxes through a maze, trying to push all boxes onto marked
target positions. As it is not allowed to pull boxes, they can get stuck in
some position, rendering the puzzle unsolvable.

We consider a slightly modified version of this puzzle game, where mul-
tiple agents are allowed, that can concurrently move to new fields and push
boxes. It can be seen as an abstract model of an Automated Guided Vehicles
system as used in warehouses. We define a playing field instance as a rectan-
gular set of two types of cells: normal cells and wall cells. In Figure 4.17, a
3× 3 instance with two wall cells (hatched cells) is shown. Agents can move
in all four directions of the compass, possibly pushing boxes. Wall cells are
not part of the playing field. Consider for example the moves in this figure.
In a first step, Agent 1 moves down and Agent 2 moves up (in parallel). Next
Agent 3 moves left and in a last step Agent 1 moves right, pushing a box.

We use diagnosis to solve the following problem. Initially, we know the
number and identities of the boxes and pushers in the field, but not their
positions. When an agent moves, a sensor tells us the identity of the moving



76 CHAPTER 4. REACTIVE AND PROACTIVE DIAGNOSIS

3

1

231

2

3

1

23

1

2

step step step

Figure 4.17: Example Sokoban instance with moves

agent and the direction of the move. At each moment in time, a sensor
can report an alarm. The task is to determine the possible initial positions
of pushers and boxes compatible with the observed sequence of moves. We
proceed as follows. First of all we present the model of the game; a product
of labelled transition systems. Then we briefly comment on its unfolding and
then discuss the used diagnosis procedure. Finally we report on results.

C1 C2 C3

C4 C5 C6

C7

r3

d1u1

r1
l1

l3

d3u3

r2
l2

r4
l4

u5 d5

d2u2

init

b

f

blockfree

Figure 4.18: Sokoban automaton example

Model

We model the game as a product of two different classes of transition systems:
a class (see Figure 4.18 right) modelling the movements of the agents or boxes,
and a class (see Figure 4.18 left) modelling a single cell of the playing field.
The labelled transition product therefore is of the form

A = 〈AA1 , · · · ,AAn ,AB1 , · · · ,ABm ,AC1 , · · · ,ACkT, `〉



4.3. REACTIVE AND PROACTIVE UNFOLDING ALGORITHM 77

and contains a transition system for each agent A1, . . . ,An , each box
B1, . . . ,Bm and each cell C1, . . . ,Ck . The global transitions of the synchro-
nization constraint T model the possible moves of the Sokoban game. We
have initialization moves, agent moves, and box moves:

• Initialize - initialize agent Aα or box Bβ to Cγ:

t =

〈
ε, . . . , ε, initCγ︸ ︷︷ ︸

AAαorABβ

, ε, . . . , ε, block︸ ︷︷ ︸
ACγ

, ε, . . . ε

〉

• Agent move - move agent Aα from cell Cβ to cell Cγ, where Cγ is to
the right of Cβ, and there is a transition rδ from state Cβ to state Cγ
in Aα: t =〈
ε, . . . , ε, rδ︸︷︷︸

AAα

, ε, . . . , ε, free︸︷︷︸
ACβ

, ε, . . . , ε, block︸ ︷︷ ︸
ACγ

, ε, . . . ε

〉

Analogous for moves in other directions.

• Box move - agent Aα at position Cβ pushes box Bρ at position Cγ to
position Cp . Cβ is the left neighbour of Cγ, which is the left neighbour
Cp . Aα has a transition rδ from state Cβ to state Cγ, and Bρ has a
transition rσ from state Cγ to state Cp :

t =

〈
ε, . . . , ε, rδ︸︷︷︸

AAα

, ε, . . . , ε, rσ︸︷︷︸
ABρ

, ε, . . . , ε, free︸︷︷︸
ACβ

, ε, . . . ,

ε, block︸ ︷︷ ︸
ACγ

, ε, . . . ε

〉

Analogous for other directions.

We now define the labelling function. For every local transition t ∈ Ti

with i ∈ {A1, . . . ,An}∪{B1, . . . ,Bm}: if t is one of rj , lj , uj , oj for some num-
ber j , then `(t) is the respective symbol from r , l , u, o. Moreover, for every
t ∈ Ti with i ∈ {C1, . . . ,Cn} we set li(t) = ε. Intuitively, the information we
obtain from the occurrence of a global transition is only the agent (and box)
participating in the transition, and the direction of movement. We do not



78 CHAPTER 4. REACTIVE AND PROACTIVE DIAGNOSIS

initA1C1 initA3C2initA2C6 initB1C5

A1∕(C1 ↓C4) A2∕(C6 ↑C3)

A1B1 ∕(C4C5 → C6 ) A3∕(C2 → C3)A2∕(C2 → C1)

1 2 3 4

5 6

7 8 9

Figure 4.19: Part of the Sokoban unfolding

obtain information about which Ci ’s participate in the global transition (this
would correspond to the sensor being able to report the current position of
the agent).

Unfolding

We now consider the unfolding of the Petri net representation of the la-
belled product. We use [A1/(C2 → C3)] to denote a global transition that
moves agent A1 from C2 to C3 (to the right), and [A1B2/(C3C4 → C5)]

for the transition where A1 at position C3 pushes box B2 at position C4

to position C5 (to the right), and [A1initC2] for the transition that initial-
izes A1 to position C2. We use a similar notation for labels. For exam-
ple `([A1/(C2 → C3)]) = [A1 →], or `([A1B2/(C3C4 → C5])) = [A1B2 →].
Figure 4.19 shows a small part of the unfolding of our running example.
The set of events { 1○, 2○, 3○, 4○} can fire in any order, resulting in the
initial positions shown in the leftmost board in Figure 4.17. If we fire
{ 1○, 2○, 3○, 4○, 5○, 6○, 7○, 8○} we get the rightmost board in Figure 4.17.
The causal order shows, that we cannot fire 8○ unless we fired 4○ and 5○.
We cannot add 9○ to this configuration, because it is in conflict with 6○.



4.3. REACTIVE AND PROACTIVE UNFOLDING ALGORITHM 79

Experiments

Our implementation of reactive and proactive diagnosis uses the Mole un-
folder [45] and the Minisat SAT-solver [12]. We use Mole to generate the
prefix. Garbage collection manipulates Mole’s data structures directly. We
also change the order of events in the possible extension queue, allowing us
to first unfold events that fulfil the check for reactive diagnosis, otherwise
almost all events are removed during garbage collection.

We apply our implementation to the Sokoban example. Table 4.1 shows
experiments2 on five random Sokoban instances. For reactive diagnosis only
the first three columns are relevant. For each Sokoban instance a few at-
tributes are given: (A) number of agents, (B) number of boxes, (W) number
of walls, (Dim) dimensions of the playing field, number of places (P) and
transitions (T) of the Petri net model. For each instance, we execute the
reactive diagnosis for three observations with lengths 3, 10 and 15, generated
randomly (random start configuration and random simulation). Reactive di-
agnosis yields each time an Explain prefix, whose number of events is shown
below the sequence length. Our algorithm can generate prefixes with tens of
thousands of events in seconds/a few minutes. The unfolding is started after
the error alarm occurs. Column 3 gives the time in seconds since the error
alarm occurs until the construction of Explain terminates.

As already discussed, we trade the construction of a prefix that only
contains compatible events for a more efficient construction that can however
produce spurious explanations. Consider for example Figure 4.20, playing
field (I), with O = 〈(A1 ←), (A1 ←), (A1 ↓), (A2 →), (A1 ↓)〉. The only initial

1 1

2

2

(III)(II)(I)

Figure 4.20: Spurious explanation example

positions from which this sequence can be observed is shown in (II). In (III)

2All experiments were realized on a Sun Fire X4600 workstation, featuring 8× Dual-
Core AMD Opteron CPUs and 64 GB memory.



80 CHAPTER 4. REACTIVE AND PROACTIVE DIAGNOSIS

Table 4.1: Running times of the re- and proactive algorithm

#Seq/#E React Pro/2s Pro/5s Pro/10s Pro/20s

Instance 1 3 0.2s 0.6s 1.7s 4.5s 8.4s
A:3 B:4
W:4
Dim:6×7
Pl:343
Tr:1592

373e +373e +373e +373e +373e
10 1.5s 1.4s 3.4s 6.2s 11.5s

2427e +2427e +2427e +2427e +2427e
15 5.7s 2.5s 2.8s 8.5s 6.2s

8397e +7615e +8103e +8397e +7991e

Instance 2 3 0.7s 0.7s 2.0s 4.6s 9.6s
A:6 B:6
W:9
Dim:8×5
Pl:532
Tr:2520

525e +525e +525e +525e +525e
10 6.3s 5.1s 4.5s 4.3s 6.1s

4543e +1423e +1796e +2569e +2387e
15 65.9s 61.7s 64.7s 65.7s 54.1s

30251e +3181e +4435e +6800e +13150e

Instance 3 3 0.3s 1.3s 4.1s 10.0s 19.1s
A:7 B:3
W:10
Dim:8×5
Pl:450
Tr:1798

381e +381e +381e +381e +381e
10 5.4s 3.4s 2.7s 4.4s 9.8s

4124e +1344e +2349e +4124e +4124e
15 421.6s 413.1s 367.4s 363.7s 387.8s

92156e +2899e +6493e +11741e +20522e

Instance 4 3 0.8s 0.9s 1.6s 3.5s 9.2s
A:6 B:5
W:10
Dim:7×9
Pl:767
Tr:5011

777e +777e +777e +777e +777e
10 21.2s 17.5s 16.3s 15.1s 15.4s

7677e +1934e +2674e +2958e +3769e
15 372.6s 379.4s 374.4s 376.9s 361.1s

68671e +2423e +3285e +4120e +6219e

Instance 5 3 1.5s 0.8s 1.9s 4.3s 10.9s
A:6 B:3
W:2
Dim:9×8
Pl:729
Tr:5622

1104e +1104e +1104e +1104e +1104e
10 121.1s 112.7s 121.0s 111.5s 114.3s

32406e +2150e +2506e +2621e +2663e
15 2991.7s 3052.9s 2896.3s 2934.7s 2960.6s

211492e +2207e +2953e +3291e +3268e



4.3. REACTIVE AND PROACTIVE UNFOLDING ALGORITHM 81

the third move of the observation sequence cannot be executed, as A2 is in the
way for A1 to move down. However, our algorithm also returns (III) because
from there, another observation O ′ is possible such that f (O) = f (O ′). This
observation is, e.g. O ′ = 〈(A1 ←), (A1 ←), (A2 →), (A1 ↓), (A1 ↓)〉. It has
the same projection to transition systems than O .

The next experiment analyzes the precision of the algorithm on our ex-
ample. For each Sokoban instance, we generate Explain and use the SAT
solving based method presented in Section 4.3.1 to compute the initial posi-
tions of all the configurations C of Explain such that f (C) =c f (O). Then,
for each initial position we check whether the observation is indeed exe-
cutable. In Table 4.2, for each Explain prefix and observations of lengths
5, 10, 20, 30, 40 and 60 respectively, we record the amount of spurious (S)
and correct (C) configurations. Most of the time, the number of correct ex-
planations exceeds the number of spurious ones. Since checking spuriousness
of an explanation is relatively fast, we conclude that the gain of efficiency
compensates for the loss in precision.
Results for proactive diagnosis are shown in Table 4.1, Columns 4-7. Each
column corresponds to a different speed of the system, in which a move
occurs (or the error alarm triggers once) every 2, 5, 10 or 20 seconds, re-
spectively. The unfolder is started at the same time as the system, and
“constructs ahead”, anticipating the next possible moves. Whenever a new
event is added, the garbage collector is invoked to remove events correspond-
ing to false guesses. For each instance and system speed we provide the time
elapsed since the error alarm is triggered until Explain is constructed, and
the number of events the proactive diagnosis is “ahead” of the reactive diag-
nosis (i.e. the number of events that the unfolder has already constructed
and are not removed later by garbage collection) when the error alarm is
triggered. The results do not support the adoption of proactive diagnosis
as the standard for the Sokoban example, although it outperforms reactive
diagnosis in a number of cases. The worst case for proactive diagnosis hap-
pens when the garbage collection from the previous round is not yet finished,
when a new observation is made. This is for example the reason why in the
first experiment, with sequence length 15, proactive diagnosis with system
speed 10 is more events ahead than proactive diagnosis with speed 20.



82 CHAPTER 4. REACTIVE AND PROACTIVE DIAGNOSIS

Table 4.2: Correct and spurious start configurations

Instance T #5 #10 #20 #30 #40 #60

A:2 B:2 W:8 Pl:179 C 37520 459 357 6 4 3
Dim:5×7 Tr:444 S 3780 76 70 3 2 1

A:2 B:3 W:2 Pl:101 C 44640 23472 42 6 6 6
Dim:4×4 Tr:278 S 4950 2880 40 0 0 0

A:2 B:3 W:5 Pl:149 C 26664 2430 672 420 60 60
Dim:6×4 Tr:371 S 3432 3300 504 336 210 0

A:3 B:3 W:7 Pl:195 C 12436 1478 92 6 6 6
Dim:3×9 Tr:438 S 6396 1806 42 42 42 0

A:2 B:1 W:5 Pl:123 C 2403 475 60 44 36 9
Dim:6×5 Tr:283 S 80 0 15 14 36 20

A:3 B:1 W:4 Pl:154 C 89880 45714 174 16 3 1
Dim:6×5 Tr:482 S 13398 6780 142 27 10 0

4.4 Conclusion

We have presented an unfolding based algorithm for the diagnosis problem,
following the ideas of [3] and have proven a soundness and completeness re-
sult: the finite prefix constructed by the presented algorithm is O-sound and
O-complete for a given observation O . Since the construction of this prefix
is algorithmically difficult, we have presented an algorithm that constructs
an overapproximation. For this, we make crucial use of our model of com-
putation: products of transition systems. While equivalent to Petri nets in
expressive power, the additional structure of these products can be put to
good use to improve the efficiency of the routine for the generation of possible
extensions.

We have implemented our algorithm, and reported on some experiments.
The unfolder is very fast (the performance of the very efficient, general pur-
pose unfolder Mole is not impaired), and yet of reasonable precision. The
presented diagnosis algorithm is connected to a SAT solver, allowing to ef-
ficiently extract information about the set of explanations. Finally, we have
implemented a proactive diagnosis algorithm that runs online together with
the system and speculates about the future of the system.



Chapter 5
Computing the Reveals Relation

In the research area of diagnosis we consider partial observable systems that
can fail. A failure is an irreversible undesired state of the system. Failures are
preceded by faults that may be reversible. Alarms indicate possible faults.
Partial observability is usually modelled using sensors attached to parts of
the system. An observer records a sequence of visible system events, the
observation. Different diagnosis problems have been studied. We identify two
major problems: (1) given the observation of a run in a partially observable
system that contains invisible faults, decide if a fault has occurred and (2)
given a partially observable system that triggers visible alarms, check if a
fault has occurred and, if the answer is positive, give an explanation for it.

In both cases we have to reason about the occurrence of invisible events
using only the given information about the occurrence of visible events. That
is where the reveals relation comes into play. We say, loosely speaking, that
event a reveals b iff, whenever a occurs, event b has already occurred or will
eventually occur. Assuming a is visible and b not, from the visible occurrence
of a we can infer the invisible occurrence b.

In Figure 5.1 we illustrate the reveals relation with an example. It shows
the playing field of a Sokoban game where agents and boxes are allowed to
move in parallel. We start with the initial situation.

Denote with 〈A(2α),Z (2β)〉 → 〈A(2β),Z (2γ)〉 the move (Move3 in the
figure) where Agent A at position 2β pushes box Z at position 3β to positions
2β and 2γ, respectively. If this move is applied, in a next step we can apply
either move 〈A(4γ),Y (5γ)〉 → 〈A(5γ),Y (6γ)〉 (Move4, not shown) or move
〈B(6α),X (6β)〉 → 〈B(6β),X (6γ)〉 (Move2). Because both moves can be

83



84 CHAPTER 5. COMPUTING THE REVEALS RELATION

¯® °

1

2

3

4

5

6 XB

Z

Y

A

Move3

¯® °

1

2

3

4

5

6 XB

Z

Y

A

¯® °

1

2

3

4

5

6 XB

Z

Y

A

Move2

¯® °

1

2

3

4

5

6 XB

Z

Y

A

Move1

Initial situation:

Figure 5.1: Example for appliance of reveals - parallel Sokoban moves

applied, Move3 does not reveal any of them. Note that we only describe
box moves and not the single agent moves needed to reach the right push
positions.

Consider a second experiment. We start again with the initial situation
and apply move 〈A(1β),Z (2β)〉 → 〈A(2β),Z (3β)〉 (Move1). This finally
renders position 4γ unreachable for any agent, however, reaching this field
is necessary to push Y to field 6γ. Move2 is the only move that can push
something to this field and no action can deactivate this move. Assuming
that an enabled move cannot be withheld forever, B will eventually push
X to this field (Move2). So, Move1 reveals Move2. Assume we only put a
sensor on field 3β and everything else is invisible. When the sensor registers
movement, we immediately know that Move2 will eventually occur or has
already occurred.

The reveals relation itself was introduced in 2009 by Stefan Haar [24]
and defined on a special kind of Petri nets; occurrence nets. Moreover,
decidability of the question “given to events a and b, does a reveal b” was
shown. However, the results cannot be used to practically compute this
relation as the derived approach has very high complexity.

In this chapter we notably improve the decidability results for reveals.
Moreover, we utilize these results to formulate and implement a practical
algorithm for actually computing this relation.

We proceed as follows. In Section 5.1, we give basic definitions and results
on the reveals relation. In Section 5.2, we improve the decidability results
for reveals. Then, in Section 5.4.1, we present the algorithm for computing
reveals. In Section 5.4.2 we show an efficient implementation for comput-
ing reveals, give experimental data on the presented decidability results and



5.1. THE “REVEALS” RELATION 85

report on experiments. Then, we conclude in Section 5.5.

5.1 The “Reveals” Relation

Recall the definition for occurrence nets in Section 3.2.2 and the definition
of a fair run in Section 3.2.1. Let x and y be events of some occurrence net.
Informally, x reveals y iff, whenever x happens in a fair run, y will eventually
happen or has already happened.

In Section 3.2.1 we defined a fair run. Informally, a fair run cannot delay
firing an enabled event forever. With that, we define reveals:

Definition 27 (Reveals). We say that x reveals y (x . y) iff any fair run
that contains event x also contains event y.

Trivially, if y < x holds for two events x and y then any fair run σ with
x ∈ σ also contains y as y has to fire before x fires. So we have x . y .

Move1
hA(1�), Z(2�)i ! hA(2�), Z(3�)i

Move3
hA(2↵), Z(2�)i ! hA(2�), Z(2�)i

hA(4�), Y (5�)i ! hA(5�), Y (6�)i
Move4

hB(6↵), X(6�)i ! hB(6�), X(6�)i
Move2

Figure 5.2: Occurrence net example for reveals

Figure 5.2 shows a simplified Petri net model (that is also an occurrence
net) of the Sokoban game from Figure 5.1. We again verify that Move1 .
Move2 holds: a run containing Move1 cannot contain Move3 because Move1
is in conflict with Move3 and no run can contain conflicting events. This run
also cannot contain Move4 because Move3 is a causal predecessor of Move4.



86 CHAPTER 5. COMPUTING THE REVEALS RELATION

So any run containing Move1 does not contain Move4. As the run is fair it
cannot delay firing an enabled event forever. Move2 is enabled by its pre-
condition and Move4 cannot consume this token and disable Move2 so Move2
has to fire eventually and is therefore contained in the run.

We now consider the slightly more complex occurrence net shown in Fig-
ure 5.3.

1

a b

4

e

9

c

6

11

g

2

5

f

10

i

14

d

12

j k

15 16

h

l

13

8

17

7

3

Figure 5.3: Example Occurrence net used for explaining reveals

Note that reveals is not a symmetric relation: because of causality we
have h . d . On the other hand, d . h does not hold because there exists a
fair run σ with d ∈ σ and g ∈ σ, but then we have h 6∈ σ.

We now consider the more involved problem “i .l?”. Assume some fair run
σ with i ∈ σ. Then, because of causality f ∈ σ holds. As f is in conflict with
g we have g 6∈ σ as no run can contain conflicting events. Initial condition 3

enables only event d , so d ∈ σ. So either g or h is contained in σ. As event
g 6∈ σ we have h ∈ σ. As l is the only event enabled by 13 and h marks 13
we have l ∈ σ. So for any run σ with i ∈ σ it holds that l ∈ σ so i . l . On
the other hand l . i does not hold as the run that contains events d , h, l , a
cannot contain i as i#a holds.

In terms of diagnosis if i is visible but l is not, we can conclude from the
occurrence of i that l also occurs.

Lemma 8. (Reveals defined with conflict sets [24]) Let O be an occurrence



5.1. THE “REVEALS” RELATION 87

net with events x , y ∈ O. We have following equality:

x . y ⇔ #[x ] ⊇ #[y ]

Proof. By definition we have the equality x . y ⇔ (x ∈ σ ⇒ y ∈ σ for
all fair runs σ). If x ∈ σ ⇒ y ∈ σ holds for all fair runs σ then #x ⊇ #y
holds. Assume the contrary: x ∈ σ ⇒ y ∈ σ holds for all fair runs σ and
¬(#x ⊇ #y). Then there exists an event z with z 6∈ #x and z ∈ #y ,
i.e. ¬(z#x ) and z#y . Then dze ∪ dxe is a configuration so there exists
a run σ′ containing z and x . By assumption, we have y ∈ σ′. But, as
z#y , this is a contradiction. If #x ⊇ #y holds then x ∈ σ ⇒ y ∈ σ holds
for all fair runs σ. Assume the contrary. Then there exists run σ′′ with
x ∈ σ′′ and ¬(y ∈ σ′′). So there exists event z with with ¬(z#x ) and
z#y , otherwise, because of the maximality of σ′′, y ∈ σ′′ holds. But this
contradicts #x ⊇ #y . 2

In our running example we have #[i ] = {g , k , j , e, c, a} and #[l ] =

{g , k , j}, so #[i ] ⊇ #[l ] holds but #[l ] ⊇ #[i ] does not. Moreover, we
now can again confirm Move1 .Move2 in Figure 5.2 as #[Move1] = {Move3,
Move4} and #[Move2] = {Move4} and with that #[Move1] ⊇ #[Move2].

A set of events in which every event reveals each other event has the
property that if one event occurs all other events inevitably also occur. Such
a set is called a facet:

Definition 28 (Facet). A set of events F is a facet iff a . b holds for all
events a, b ∈ F.

As all events of a facet occur if only one does we can summarize and
abstract it by “merging” its events into one single event. In Figure 5.3 we
can identify four facets, namely F1 = {a, c, e}, F2 = {g , j , k}, F3 = {h, l}
and F4 = {f , i}. The abstracted occurrence net is shown in Figure 5.4.

Until now, we only considered the reveals relation in finite occurrence
nets. If we consider infinite occurrence nets, deciding reveals involves consid-
ering infinite conflict sets. Decidability results and algorithms therefore are
subject of the next sections.



88 CHAPTER 5. COMPUTING THE REVEALS RELATION

1

b

9

6

2

5

14

d

3

15 16

8

17

F1

F2 F3F4

7

Figure 5.4: Facet abstraction of Occurrence net

5.2 Existing Bound for Deciding the Reveals
Relation

Let N = (P ,T ,F ,M0) be a (finite) net and let U = (C ,E ,G ,C0) be its
unfolding. We deal with the following problem: given two events x , y ∈ E
decide whether x .y holds. Remember that x .y is equivalent to #[x ] ⊇ #[y ].
Although the sets #[x ] and #[y ] can be infinite this problem is decidable, as
shown in [24]. We briefly discuss that result.

Let A and B be two arbitrary sets of elements. If A 6⊇ B then there exists
an element z such set z is contained in A but not in B , otherwise B would
be a subset of or equal to A. So z is a “witness” for the property A 6⊇ B . Let
us carry this to the problem of deciding reveals.

Definition 29 (Witness). If x does not reveal y, i.e. ¬(#x ⊇ #y), then
there exists a not-reveals witness z , such that z#y and ¬(z#x ). Shortly, we
write wit(¬(x . y), z ).

So when an event a does not reveal another event b then there exists
an event z that is a witness for this. For the presentation of the result we
need the definition of the height of an event. Informally the height of an
event e is the longest possible chain of events, with respect to <, in the local
configuration of dee.

Definition 30 (Height of event). The height H(e) of event e is defined
recursively. Let Pe be the set of pre-events •(•e). If Pe = ∅ then H(e) = 1.
Otherwise, let e ′ ∈ Pe be an event so that ∀ e ′′ ∈ Pe : H(e ′) ≥ H(e ′′). Then
H(e) = 1 +H(e ′).



5.3. IMPROVED BOUND FOR REVEALS 89

We naturally extend the definition of the height of an event to configu-
rations and prefixes: let E be the set of events of some configuration C or
some prefix O [E ]. The height of C or O [E ] is the height of an event with
maximum height in the set E . The result for the bound of reveals is now as
follows:

Lemma 9 (Bound for reveals [24]). If ¬(x . y) then there exists a reveals
witness z with bounded height.

For deciding reveals, one can then use following algorithm: let h be the
height bound for witness z , i.e. if ¬(x .y) then there exists z so thatwit(¬(x .
y), z ) and H(z ) < h. If the prefix is finite we check ¬(#x ⊇ #y) and are
done. If the prefix is not finite we construct the contained finite prefix that
only contains all events up to height h and then we proceed as in the case
for the finite prefix.

Unfortunately, the height bound of z is very huge, so it is unlikely that
an efficient algorithm can be derived. In the following section we give an im-
proved height bound that gives hope to make the reveals relation practically
computable.

5.3 Improved Bound for Deciding the Reveals
Relation

As in the previous section, let N = (P ,T ,F ,M0) be a (finite, 1-safe) net
and let U = (C ,E ,G ,C0) be its unfolding. As already discussed in the last
section, if x does not reveal y there exists a not-reveals witness z that has
bounded height. In this section we give a better bound. Roughly estimated
and informal, the height of the bound in [24] is n-times the height of the
complete unfolding prefix where n is the number of reachable markings of N
and the new bound is obtained by replacing n with the constant factor 2,
which is a huge improvement.

Recall the definition of a complete prefix in Section 3.2.3. Let U1 =

(C1,E1,G1,C01) (level-1 unfolding) be a complete prefix of U , i.e. a finite
prefix that contains for each reachable marking M of N a configuration C so
that Mark(C) = M . Let e ∈ L1 iff there exists event e ′ with e ′ 6∈ E1, e ∈ E
so that e ∈ ••e ′. Loosely speaking, L1 contains the set of events that have
successors in U but not in U1. We now define the Level-2 unfolding of net
N .



90 CHAPTER 5. COMPUTING THE REVEALS RELATION

Definition 31 (Level-2 unfolding). Let e ∈ L2 if there exists events e ′, e ′′ so
that e ′′ ∈ L1 and e ′′ < e ′ < e with Me = Me′ and e is minimal, i.e. for all
events e ′′′ < e, there exists no events e ′, e ′′ so that e ′′ ∈ L1, e ′′ < e ′ < e ′′′

and Me′ = Me′′′. Let L≤2 be the downward closure of L2 (with respect to <).
We have U2 = (U1

⋃
O [L≤2 ]).

Note that we define U2 as the union of the downward closure of O [L≤2 ]
and the prefix U1 and not as just the downward closure of O [L≤2 ], because
not all elements of the level-1 unfolding must be contained in the downward
closure of O [L≤2 ]. This is because in U1 there might exist maximal elements
with respect to <, not contained in L1.

Denote with UM the unfolding of N with initial marking M . Let UM
< be

the maximal prefix of UM that does not contain events e so that there exist
events e ′ and e ′′ with e ′ < e ′′ < e and Me′ = Me′′ .

Recall Section 3.2.2, Definition 5 for the definition of the postfix U /C of
a configuration C . As U1 is complete it contains a configuration CM for every
reachable marking M such that Mark(CM ) = M . Configuration CM has the
same marking as the minimal conditions of UM so we have the isomorphism
U /CM ∼= UM .

Lemma 10. For every reachable marking M , U2 contains (U /CM )<, an
isomorphic copy of UM

< .

U1

U2

M
CM

(U/CM
)<

U/CM

U1

U2

M
CM

(U
/C

M
)
<

e

a

b

U/CM

c

Figure 5.5: Illustration of Lemma 10



5.3. IMPROVED BOUND FOR REVEALS 91

Proof. Assume the contrary. Then there exists an event e such that
e ∈ (U /CM )< and e 6∈ U2. From e 6∈ U2 and the definition of the level-2
unfolding it follows that there exist events a, b, c with a ∈ L2, c ∈ L1,
c < b < a < e and Ma = Mb . Since a prefix is causally closed and
e ∈ (U /CM )<, for each event j ≤ e it holds that either j ∈ (U /CM )< or
j ∈ CM . As CM is contained in U1 and c ∈ L1 we have b, a, e ∈ (U /CM )<.
By definition, UM does not contain an event o so that there exists events o ′

and o ′′ with o ′ < o ′′ < o and Mo′ = Mo′′ . Then, as (U /CM )< is isomorphic
to UM and we have e 6∈ (U /CM )<, a contradiction. 2

Figure 5.5/left sketches the following Lemma and Figure 5.5/right the
assumed contrary. For further use we define κ := H(U2) to be the height of
the level-2 unfolding of U .

Lemma 11. Let C be a configuration and let e be an event with e ∈ U /C. If
H(e) < κ +H(C) then there exist two configurations C1, C2, with C ⊆ C1 ⊆
C2 ⊆ (C ∪ bec) so that Mark(C1) = Mark(C2) and H(C1) < H(C2).

Proof. U /C is isomorphic to UM , with M = Mark(C). Lemma 10
denotes that there exists an isomorphic copy (U /CM )< of UM

< such that
(U /CM )< is contained in U2. The height of e implies a chain of events j =

e1 < . . . < en = e for some event j ∈ C with n > κ. Let e ′ be the isomorphic
copy of e in U /CM . We also have such a chain of events in U /CM . Then,
H(e ′) > κ so e ′ 6∈ U2 and also e ′ 6∈ (U /CM )<.

Because e ′ 6∈ (U /CM )<, there exist events a and b with a, b ∈ (U /CM )< so
that Ma = Mb and a < b < e ′, otherwise, due to isomorphism, we have event
e ′′ with e ′′ 6∈ UM

< and e ′′ ∈ UM so that there exist no two events a ′, b ′ ∈ UM
<

with Ma ′ = Mb′ and a ′ < b ′ < e ′′. But then UM
< is not maximal, as it does

not contain e ′′, a contradiction.
Let a ′′′ and b ′′′ be the events isomorphic to a and b in C. We have

Ma ′′′ = Mb′′′ . Let C1 = C ∪ da ′′′e and C2 = C ∪ db ′′′e, then we have
C ⊆ C1 ⊆ C2 ⊆ (C ∪ bec) so that Mark(C1) = Mark(C2) and H(C1) < H(C2).
2

Recall Section 3.2.3. Given sets S1, S2 and S3 with S1 ⊆ S2 and mapping
f : S2 → S3. With f : S1 ↔ S3 we denote that that f |S1 (restriction of
the domain of f to S1) is a bijection. Let f : (C ∪ E ) → (P ∪ T ) be the



92 CHAPTER 5. COMPUTING THE REVEALS RELATION

C [ bec
e

b000 C2

C1a000

C

(U
/

C)
<



H
(C

)

Figure 5.6: Illustration of Lemma 11

function mapping f . Moreover, recall that the Cut(C) of configuration C are
the <-maximal elements, defined as (C0 ∪ C•) \ •C.

Lemma 12. For every configuration C it holds that f : Cut(C)↔ f (Cut(C)),
i.e. with (C ∪ E ) restrticted to the conditions of Cut(C), f is a bijection.

Proof. The proof is by induction. With C = ∅ we have
f : C0 ↔ M0 which is equivalent to f : Cut(C) ↔ f (Cut(C)). Assume
f : Cut(C) ↔ f (Cut(C)) holds for some configuration C and let e be an
event such that C e

;, i.e. C+1 := C ∪ e is a configuration. We have
Cut(C+1) = (Cut(C) \ •e) ∪ e•. In the net we have that f (C) marks
f (Cut(C)) with f (•e) ⊆ f (Cut(C)) and then f (e) is enabled. The net is safe
so the result of firing f (e) is (f (Cut(C)) \ f (•e)) ∪ f (e•). As, by definition
of a branching process, f : •e ↔ f (•e) and f : e• ↔ f (e•) and by induction
hypothesis f : Cut(C)↔ f (Cut(C)) we have f : Cut(C+)↔ f (Cut(C+)) 2

Lemma 13. Let a, b be conditions contained in the same configuration with
f (a) = f (b). One of the following statements holds: a < b, a = b or a > b.



5.3. IMPROVED BOUND FOR REVEALS 93

Proof. If a co b holds for two events a, b with f (a) = f (b) there has
to exist a configuration C with a, b ∈ Cut(C ). Lemma 12 implies that no
such configuration exists as otherwise f : Cut(C)↔ f (Cut(C)) would not be a
bijection. Moreover, a # b cannot hold, because that would imply that there
exist two events a ′ = •a and b ′ = •b with a#b but a and b are contained in
the configuration and with that, by definition, not in conflict. As ¬(a co b)
and ¬(a # b), a and b are causally related or equal.

2

Theorem 2 (Bound for reveals). Let x , y be events so that ¬(x . y) and let
n = max (H(x ),H(y)). Then there exists an event z such that H(z ) ≤ n + κ

and wit(¬(x . y), z ).
Proof. Let x , y be events and assume ¬(x .y), as stated in the Theorem.

Recall that if ¬(x . y) then there exists a witness z with z#y and ¬(z#x ).
Shortly we write wit(¬(x . y), z ).

Assume (x#y). Then z := x is a witness with height H(x ). As H(x ) ≤
n+κ we are done. So for now on assume ¬(x#y). Further let z be minimal,
i.e. z is an event so that wit(¬(x . y), z ) holds and for all events e < z ,
wit(¬(x . y), e) does not hold. So for all such events e, ¬(x#e) and ¬(y#e)
holds because if ¬(z#x ) no event with t < z can be in conflict with x by
definition of a conflict. Moreover, due to this minimal condition there exists
a condition b that sets z in direct conflict with y , i.e.: b ∈ •z holds, otherwise
there exists another witness e < z . So there exists a event u such that u ≤ y
with b ∈ •u and z 6= u.

We now show that dxe ∪ buc ∪ bzc, for short Cxuz , is a configuration. If
Cxuz is no configuration, there exists events k , l ∈ Cxuz , with k 6= l so that
•k ∩ •l 6= ∅. For two events of a single configuration (dxe, buc and bzc), no
such events exist. So one of the following holds:

• k ∈ dxe, l ∈ bzc. As k ≤ x , l < z and ¬(x#z ), it follows that
•k ∩ •l = ∅.

• k ∈ dxe, l ∈ buc. As k ≤ x , l < u ≤ y and, by assumption, ¬(x#y), it
follows that •k ∩ •l = ∅.

• k ∈ buc, l ∈ bzc. We chose the witness z to be minimal, so for all
events e < z it holds that ¬(e#y). As k < u ≤ y and l ≤ e < z , it
follows that •k ∩ •l = ∅.



94 CHAPTER 5. COMPUTING THE REVEALS RELATION

u

y

x

z

z

b

u

x

z'

y

1

C uxz

C uxz
n

C1

C2

C 0

C

A1

A2

1

C uxz

C uxz
n

C1

C2

C 0

C

A1

A2

n

K

Cuxz
n

C

C1

C2

Cuxz

Figure 5.7: Rough sketch of the proof of Theorem 2; there exists a condition b in
the preset of both u and z ; moreover, u < y and n = max (H(x ),H(y)). From Cuxz

we construct the smaller configuration C.

So Cxuz is a configuration. Denote with Cxuz
n ⊆ Cxuz the configuration that

contains all events of Cxuz up to height n. Further, assume H(z ) > κ + n.
The height of z and Lemma 11 implies that we have two marking equivalent
configurations C1 and C2 with Cxuz

n ⊆ C1 ⊆ C2 ⊆ Cxuz and H(C1) < H(C2).
From that it follows that there exists a set of events A2 so that C2 A2

; Cxuz

holds. AsM (C1) = M (C2), there exists a set of events A1 with f (A2) = f (A1),
so that C1 A1

; holds, and with that there exists a configuration C so that
C1 A1

; C holds. Moreover, there exists some event z ′ ∈ A1, so that f (z ′) = f (z )
and H(z ′) < H(z ).

We now show that wit(¬(x . y), z ′) holds, i.e. z ′ is also a witness, with
strictly smaller height. As C contains x and C z ′

; holds, it follows that
¬(z ′#x ). It remains to show that z ′#y holds. As A1 and A2 are isomorphic,
A2 contains a condition b ′ ∈ •z ′ with f (b) = f (b ′).

Conditions b and b ′ are both contained in C so we apply Lemma 13, and
with that, one of the following statements holds: b = b ′, b < b ′ or b > b ′.



5.3. IMPROVED BOUND FOR REVEALS 95

u

y

x

z

y

u

y

x

z

z'

u

y

x

z

z'

u

y

x

z

t

b

u

y

x

z

u

b' b

b'

b

u

y

x

z

z

u

y

x

z

z'

u

y

x

z

u

u

y

x

z

y

u

y

x

z

u

u

y

x

z

t'

u

y

x

z

y

Figure 5.8: Possible situations, as b′ 
 b.

We show that in each case we obtain z ′#y . We additionally need following
Lemma for that.

Lemma 14 (Source transitions of events z and u are different). f (z ) 6= f (u)
holds.

Proof. Assume f (z ) = f (u) holds. There must exist two conditions
c and c ′ in the presets of z and u, respectively, with H(c′) < H(c) and
f (c) = f (c ′). This is because H(z ) > n and H(u) < n, so there exists a
condition c in the preset of z with H(c) = H(z )− 1 ≥ n. As, by assumption
f (z ) = f (u), there exists a condition c′ in the preset of u with f (c ′) = f (c)
and H(c ′) < H(n). So H(c ′) < H(c). Conditions c and c ′ are in causal rela-
tion, as they cannot be in co-relation or conflict, because both are contained
in the same configuration Cxuz and are copies of the same place. Together
with the height constraint, we have c′ < c. With that, there must be some
new event t , that consumes c′ with hight strictly lesser than z . But then,
this t would be a new reveals witness, because it is in conflict with y , but
not with x . This contradicts the fact the z is the smallest reveals witness. 2

First we show that u 6∈ C. Assume the contrary, u ∈ C. Then u ∈ A1, as
u 6∈ C1 holds because of u 6∈ Cxuz and C1 ⊆ Cxuz . Because of the isomorphism
between A1 and A2 we have an event u ′′ ∈ A2 with f (u ′′) = f (u). Conditions
b ′′ ∈ •u ′′ and b ∈ •u with f (b ′′) = f (b) are contained in Cxuz as Cxuz u

; and
u ′′ ∈ A2 hold. So Lemma 13 implies that b ′′ and b are in causal relation and,
as u 6∈ Cxuz but u ′′ ∈ C xuz , we immediately get u#u ′′ for b ′′ < b, b ′′ > b and
b ′′ = b. On the other hand, we get ¬(u#u ′′) as u ′′ ∈ C xuz and Cxuz u

;. Both
cannot hold so we obtain u 6∈ C. Using this result we now show that z ′#y .
Figure 5.8 shows the cases we have to consider.

• Assume b > b ′ holds (see Figure 5.8, left). Then there exists an event



96 CHAPTER 5. COMPUTING THE REVEALS RELATION

t , so that b ′ ∈ •t and t < b. Assume z ′ = t . Then z ′ < b but then
z ′ ∈ Cxuz

n , which is not the case. So z ′ 6= t holds and with that z ′#y .

• Assume b < b ′ holds (see Figure 5.8, middle). Then there exists an
event t ′, so that t ′ < b ′ and b ∈ •t ′. As t ′ ∈ C (because t ′ < z ′) and
u 6∈ C as proven before we have t ′ 6= u with b ∈ •t ′ ∩ •u so z ′#y .

• Assume b = b ′ (see Figure 5.8, right). Lemma 14 denotes that f (z ) 6=
f (u). As f (z ) = f (z ′), we have f (z ′) 6= f (u) and so z ′ 6= u holds. By
definition b ∈ •z ′ ∩ •u, so z ′#y .

In summery, for each event z withwit(¬(x .y), z ) andH(z ) > n+κ, there
exists another event z ′, so that wit(¬(x . y), z ′) holds with H(z ′) < H(z ).
If z ′ still has greater height than n + κ we iterate the given procedure until
we find a witness with height less or equal than n + κ. 2

5.4 Computing The Reveals Relation

Section 5.2 gives decidability results for the reveals relation, i.e. decid-
ing a . b can be done by analysing the finite unfolding prefix of height
max (H(a),H(b)) + κ where κ is a constant depending on the net. In this
section we take this result and, on that foundation, present algorithms for
(1) explicitly computing the reveals relation for two events and (2) deciding
the reveals relation property for all possible pairs of a set of events. Moreover
we report on an efficient implementation and experiments.

5.4.1 Algorithms

As already mentioned we first propose an algorithm for computing the reveals
property for one concrete relation pair, i.e. deciding whether a . b for events
a and b. The algorithm is derived straight forward from the presented decid-
ability result and we believe that there is not much optimization potential
for solving this concrete problem. This is in strong contrast to deciding the
reveals property for a large set pairs of events. We derive an algorithm that
reduces the costs for the computation of the reveals property for individual
pairs of events by deciding that property on a larger set of events at once.



5.4. COMPUTING THE REVEALS RELATION 97

This is done by exploiting the fact that the relation property can be, in de-
fined limits, inherited from other events and expressed in terms of different
relations on nets that are efficiently computable. This makes also sense in
terms of diagnosis. Typically, the information “a . b” is not so valuable as
the information “a reveals all events in set A and is revealed by all events
in set B ”, so it makes sense to consider computing the reveals property be-
tween many events at once, especially if both information can be gained with
almost the same effort.

Single Pair Reveals Computation

From the proofs presented in Section 5.2 we derive a straight forward algo-
rithm for deciding x . y on events x and y contained in unfolding U . Note
that the idea for this algorithm goes back to Stefan Schwoon. Assume that
we already computed a prefix of U containing x and y . Check if ¬(x#y)
holds and if the answer is positive return ¬(x .y) and we are done. If ¬(x .y)
holds, there exists event z with H(z ) ≤ n + κ and wit(¬(x . y), z ) where
n is the maximal height of x and y . So we have to find an event z such
that ¬(z # x ) and z # y . From z # y it follows that there exists condition
b with b < y such that b ∈ •z . We mark all such conditions b as “targets”.
Further we know that events z ′ with ¬(z ′ < y) or ¬(z ′ ≥ y) are no candi-
dates for z as they are not in conflict with it. We mark these events and its
post-conditions as “dead”. We now play the following game: find an event
z so that •z contains a condition marked as target such that ¬(z#x ). So
we check each event that is not dead in the prefix for this condition and if
we find one we return that ¬(x . y) holds. Otherwise, we unfold the prefix
further not extending the prefix with possible extensions of dead conditions
and possible extensions with height greater then n + κ. This unfolding pro-
cedure necessarily terminates due to the height constraint. On adding a new
event we check if its preset contains a marked target condition and if ¬(z#x )
holds. If both is satisfied, we report that ¬(x . y) holds. If the procedure
terminates without finding such an event, we return that x . y holds.

Computing Reveals for Prefix

In this section we present an algorithm that, given a finite occurrence net
O = (C ,E ,FO ,C0), computes for all pairs (x , y) ∈ E×E the reveals relation
property, i.e. determines whether x . y holds. For short, we say we compute



98 CHAPTER 5. COMPUTING THE REVEALS RELATION

reveals on the set of events E .
Typically, we consider a net N = (P ,T ,FN ,M0) with its respective un-

folding U = (C ′,E ′,FU ,C ′0), that is an occurrence net as defined in Section
3.2.3. We want to compute reveals on E ′. In most cases, U is infinite and so
we cannot apply our algorithm to this net but to a finite prefix of it, i.e. to
an occurrence net P = (C ′′,E ′′,FP ,C ′′0 ) with P v U .

Assume ¬(x . y). Then there exists an event z so that wit(¬(x . y), z )
holds. As P v U , it is possible that although ¬(x . y) holds, no witness for
this fact is contained in P , i.e. for all z so that wit(¬(x . y), z ), z 6∈ E ′′. So
our algorithm applied to a finite prefix of U might return the spurious result
that x . y holds. On the other hand, if our algorithm returns ¬(x . y) for
two events x and y then this answer is always correct.

Moreover, Theorem 2 denotes that the answer for “does x . y hold” of
our algorithm on P is correct for pairs (x , y) ∈ E × E if the height of prefix
P is greater or equal than max (H(x ),H(y)) + κ. So if we are interested in
deciding reveals on the set of events H then we generate the maximal prefix
with height H(H ) + κ and run our algorithm on this prefix.

Now we discuss our algorithm in detail. We first introduce to ways to
iterate over all events of a finite occurrence net O = (C ,E ,FO ,C0) – bottom-
up and top-down. These iteration techniques ensure that each event is visited
exactly once. Moreover it is assumed that all <-maximal elements in O are
conditions.

• Bottom-up – An event is visited the first time if all its causal succeeding
events have been visited.
We store a counter for each event and condition, initialized to its num-
ber of post-conditions and post-events, respectively. Additionally we
maintain a working queue of events initialized empty. At the beginning
we iterate over the <-maximal conditions (conditions with counter 0).
We decrease the counter of each pre-event (if existent) and if such a
counter becomes 0 we add this event to the queue. Now, while not
empty, we iterate the following:

We pull an event from the queue and visit it. Then we iterate over
the pre-conditions of it that themselves have a pre-event. We decrease
the counter of the pre-condition and if the counter of this pre-condition
becomes 0 we additionally decrease the counter of the pre-event. If the
counter of this pre-event becomes 0 we add it to the queue.



5.4. COMPUTING THE REVEALS RELATION 99

• Top-down – An event is visited the first time if all its causal preceding
events have been visited.
The idea here is very similar to the above one. We store a counter for
each event, initialized with the amount of its pre-conditions. We also
maintain a working queue of conditions, initialized with the <-minimal
conditions (conditions without predecessors). While not empty we it-
erate the following:

We pull a condition from the queue, and, for each post-event, we de-
crease the counter of this event. If the counter of an event becomes
0 we visit that event and add all its post-conditions to the working
queue.

We now discuss the complexity of these iteration algorithms. Considering
the bottom-up algorithm, each event or condition is not added more than
once to the queue and in each step we remove one condition from the queue,
so we have at most |E | steps. In each such step we iterate over pre-conditions
and for each pre-condition we (1) decrement one (or two) counter(s) and (2)
possibly add an event to the queue. Assume (1) and (2) to be atomic. An
event can have at most |C | pre-conditions. Let n = |C |+ |E |. Then we have
a worst case running time of O(n2). Now consider the top-down iteration.
Each condition is added at most once to the queue and in each step we
remove one from it, so we have at most |C | steps. In each such step we
iterate over post-events and possibly over their post-conditions. That are at
most |C |+|E | elements. For each such element we (1) decrement a counter
and (2) possibly add a condition to the queue. Assume (1) and (2) to be
atomic. Analogous to the case above, we have a worst case running time of
O(n2).

This is the complexity result for general occurrence nets O =

(C ,E ,FO ,C0). In our work we consider finite occurrence nets (prefixes)
that are created by unfoldings of nets N = (P ,T ,FN ,C0). But then we have
a new bound on the number of post/pre-conditions, i.e. |T |, a constant.
With that, for the bottom-up algorithm we now have O(n) worst case run-
ning time. Although we cannot bound the amount of post-events of some
condition in such a way, a huge branching factor on conditions in a practical
unfolding is very unlikely so we have average running time of O(n) in this
case.

Now we present the actual reveals computation. Relations are represented



100 CHAPTER 5. COMPUTING THE REVEALS RELATION

as arrays of sets. For that assume relation R. For each pair aRb, the set R[a]
contains element b. We compute the reveals relation in three passes over the
prefix establishing the ≤-relation (a ∈ ≤ [b], iff b ≤ a), conflict-relation and
finally the reveals-relation.

The ≤-relation is established in a bottom-up iteration over the set of
events E . Algorithm 8 shows the computation of ≤ [e] for single event e.
The iteration guaranties that when visiting an event, the sets (≤ [e ′]) for
all events e ′ > e have already been computed. These sets are passed as
partial causal relation ≤ [] to the algorithm. We exploit the fact that the set
of causal successors of an event is the union of the causal successors of each
event. We return the array ≤ [] that now additionally contains the completed
set ≤ [e].

Algorithm 8: Compute causal set for event e
input : Event e, partial causal relation ≤ []

output: Set of events ≤ [e] in causal relation with event e
begin
≤ [e]←− {e};
foreach e ′ ∈ (e•)• do
≤ [e]←− (≤ [e])

⋃
(≤ [e ′]);

return ≤ [];

The conflict-relation is established in a top-down iteration over the set
of events E . We exploit the fact that event e inherits the conflicts of its
preceding events and is additionally in conflict with all causal successors of
its pre-conditions, except itself, and nothing else.

Algorithm 9 shows the computation of #[e] for single event e. We already
have computed the causal successors for each event in Algorithm 8, passed
as array ≤ [] to the algorithm. Moreover, because of the top-down iteration,
the conflict sets of all preceding events have already been computed and are
passed as partial conflict relation #[]. The array #[] is returned, additionally
containing completed set #[e].

In order to compute the reveals relation we exploit following facts:

• If x#y holds for two events x and y then event x does not reveal event
y . (Let z = x . Then we have wit(¬(x . y), z )).



5.4. COMPUTING THE REVEALS RELATION 101

Algorithm 9: Compute conflict set for event e
input : Event e, causal relation ≤ [], partial conflict relation #[]

output: Conflict set #[e] for event e
begin

#[e]←− ∅;
foreach e ′ ∈ •(•e) do

#[e]←− (#[e])
⋃
(#[e ′]);

foreach c ∈ (•e) do
foreach e ′ ∈ (c• \ e) do

#[e]←− (#[e])
⋃
(≤ [e ′]);

return #[];

• Event x reveals all events revealed by its causal predecessors. This is
because #y ⊆ #x for all y < x .

Similar to the conflict-relation the reveals-relation is computed in a top-
down iteration over the set of events E . So when computing the reveals set
for event e we have already computed .[e ′] for all preceding events e ′ < e.
Algorithm 10 shows the computation of .[e] for single event e. For each
such event e we exploit the two mentioned facts. Fact two implies that each
event revealed by an event e ′ in •(•e ′) is also revealed by e. These already
computed reveal sets are passed as partial reveals relation .[] and added
in the first “foreach” loop to .[e]. Additionally, we know that no event in
conflict with e is revealed by it. We already have computed the conflict set
of e with Algorithm 9 that is passed as array #[]. So we have a set of events
revealed by e and another set of events not revealed by e. It remains a set
of events where we do not know whether or not a contained event is revealed
by e. In the second “foreach” loop we iterate over these remaining events
and explicitly check the reveals property. It is obvious that this algorithm is
correct. The array .[] is returned, additionally containing the completed set
.[e].

Algorithm 11 summarizes the computation of reveals in one procedure.
For the following complexity consideration, assume again n = |C | + |E |.
We use in worst case space of O(3n2) = O(n2) as storing each of the three



102 CHAPTER 5. COMPUTING THE REVEALS RELATION

Algorithm 10: Compute reveals set for event e
input : Event e, conflict relation #[], partial reveals relation .[]
output: Reveals set .[e] for event e
begin

.[e]←− {e};
foreach e ′ ∈ •(•e) do

.[e]←− (.[e])
⋃
(.[e ′]);

foreach e ′ ∈ (E \ (.[e]⋃#[e])) do
if #[e] ⊆ #[e ′] then

.[e]←− (.[e]) ∪ e ′;

return .[];

Algorithm 11: Compute reveals
input : Occurrence Net O = (C ,E ,FO ,C0)

output: Reveals relation .[]
begin

foreach (bottom-up iteration) e ∈ E do
(≤ []) ← Algorithm 8 executed on input (e, ≤ [])

foreach (top-down iteration) e ∈ E do
(#[]) ← Algorithm 9 executed input (e, ≤ [], #[])

foreach (top-down iteration) e ∈ E do
(.[]) ← Algorithm 10 executed input (e, #[], .[])

return .[];



5.4. COMPUTING THE REVEALS RELATION 103

relations takes quadratic space in amount of events. Storing the queues,
as well as the set of events that are explicitly checked for reveals consumes
strictly less than quadratic space, so this is not considered here.

We iterate 3 times over O , each time iterating over k events. The iteration
has worst case running time of O(n2) and average case running time of O(n),
as already discussed before. It is easy too see that following facts hold (a set
of events is always smaller than |E |):

|{e ′ | e ′ ∈ (e•)•}| ≤ |E | for all e ∈ E
|{e ′ | e ′ ∈ •(•e)}| ≤ |E | for all e ∈ E

|{e ′ | e ′ ∈ (c• \ e), c ∈ (•e)}| ≤ |E | for all e ∈ E
|{e ′ | e ′ ∈ (E \ (.[e]⋃#[e]))}| ≤ |E | for all e ∈ E

Assume that set operations are atomic. Then, the processing of one
single event (shown in Algorithms 8 - 10) has worst case running time of
O(n). Together with the complexity result for the iteration algorithm, we
have worst case running time of O(n3) and average running time of O(n2)

for computing reveals on a finite prefix of some petri net.
So summarized, on average the complexity of computing reveals on a

finite prefix is quadratic in both, time and space.

5.4.2 Experiments

In this section we give experimental data on the height and computation
time of the level-2-unfoldings of middle-sized Petri-net benchmark instances.
Then we present an efficient implementation of the presented algorithm for
computing reveals on a given prefix and report on results.

The Level-2-Unfolding

Table 5.1 shows experiments on middle-sized safe Petri nets, taken from
the PEP framework. These instances are considered standard benchmark
instances in the Petri net community.

Name number of places and transitions is shown in the columns “Petri
net”, |P | and |T |, respective. The Petri net unfolder mole is modified to
construct the level-2-unfolding of the respective net, and “Time[s]” shows
the amount of time needed for this construction. The column with caption
“κ” shows the height of the respective “level-2-unfolding”. The columns L1[e]
and L2[e] shows the size of the “level-1-unfolding” and “level-2-unfolding” in
number of events, respectively. Remember that “κ + n” is the height up to



104 CHAPTER 5. COMPUTING THE REVEALS RELATION

which we have to unfold events, to decide reveals on events with height n.
The experiments show that the construction of this prefix is usually done in
a few seconds (except for the net “mutual”). This shows that a prefix for
deciding reveals on is practically computable. Measured in events, the “level-
2-unfolding” has on average ten times the size of the “level-1-unfolding”. The
values for κ are also very promising since it is roughly twice the number of
transitions of the net.

Table 5.1: Net statistics and computation of K

Petri net |P | |T | κ Time[s] L1[e] L2[e]

buf100 200 101 201 1.6 5051 5152
elevator 59 74 61 0.1 293 3798
gas station 30 18 19 0.1 20 30
mutual 62 67 109 19.1 497 403807
parrow 77 54 72 0.2 284 5402
peterson 27 31 26 0.1 49 621
reader writer 2 53 60 26 0.4 147 18250
sdl arq 208 234 114 0.1 199 1937
sdl arq deadlock 202 183 40 0.1 41 67
sdl example 323 471 71 0.1 132 132
sem 26 25 18 0.1 32 92

Experiments on Reveals Unfolding

We implemented the algorithms presented in Section 5.4.1. The implemen-
tation was done in Java, relying heavily on bitset operations.

A single bitset encapsulates a vector of bits. A binary relation R ⊆ A×A
is stored as a list of |A| bitsets with length |A|. Each element a ∈ A is
associated with a unique natural number g(a) ∈ [1, |A|], analogous for b. If
(a, b) ∈ R, we set the bit at position g(b) in bitset vector at list position
g(a).

Representing all relations as lists of bitsets, almost all operations neces-
sary for computing reveals (and the other relations) are expressible as logical
operations like OR and XOR between bitsets. As these operations are im-
plemented in hardware on the CPU, the whole computation is very fast.



5.5. CONCLUSION 105

We benchmarked our implementation on unfolding prefixes of sizes from
thousands to tens of thousands events. As the complete prefixes of the con-
sidered nets are very small, bigger prefixes are generated. The results are
shown in Table 5.2. Name of the net and the size of its unfolding in events is
shown in the columns “Petri net” and “Events”, respectively. For each such
prefix, we measured the computation time (in seconds) of our implementa-
tion, split into the three passes of the algorithm – ≤-relation, conflict-relation
and reveals-relation, shown in columns “post”, “conf” and “ref”, respectively.

The implementation scales very well, with computing times ranging from
a few seconds to minutes, depending on the size of the unfolding. Usually,
computing the ≤-relation takes less time than computing the conflict-relation
and computing the reveals relation takes most of the time. Nevertheless, all of
three passes are of the same order of magnitude. The experiments altogether
demonstrate that we are able to compute the reveals relation practically for
many events at once.

5.5 Conclusion

The reveals relation contributes to net diagnosis, by allowing reasoning about
invisible events and abstracting occurrence nets. The reveals problem “a.b?”
was proven to be decidable in (infinite) occurrence nets before. Neverthe-
less the derived algorithms have very high complexity, rendering practical
computation infeasible.

We contributed to solving the reveals problem in two ways:

• Theoretically: we notably improved the existing decidability result,
lifting the reveals problem from decidable to practical computable. This
is confirmed with experimental data on standard Petri net benchmark
instances.

• Practically: we showed an efficient algorithm and implementation for
deciding the reveals problem. We report on experiments, where we
actually compute the reveals relation between all events in occurrence
nets with ten of thousands of events.



106 CHAPTER 5. COMPUTING THE REVEALS RELATION

Table 5.2: Running times of computing reveals

Petri net Events post conf rev
(Time/s) (Time/s) (Time/s)

bds 1.sync 12900 0.13 0.19 0.30
buf100 17700 0.17 0.12 0.25
byzagr4 1b 14724 0.18 0.19 0.68
dpd 7.sync 10457 0.11 0.15 0.24
dph 7.dlmcs 37272 0.56 0.91 2.10
elevator75 234879 15.84 22.58 97.47
elevator 5586 0.05 0.05 0.13
elevator 4 16856 0.17 0.27 0.38
fifo20 100696 2.92 3.72 22.88
ftp 1.sync 83889 2.08 3.61 6.78
furnace 3 25394 0.29 0.47 0.95
gas station 2861 0.01 0.01 0.01
key 4.fsa 67954 1.40 2.19 4.62
parrow 85869 2.47 4.17 9.51
peterson 72829 1.60 2.54 5.23
q 1.sync 10722 0.11 0.15 0.30
q 1 7469 0.08 0.09 0.17
reader writer 2 20229 0.24 0.37 0.53
rw 12.sync 98361 2.36 5.14 6.36
rw 12 49179 0.68 1.25 1.70
rw 1w3r 15401 0.15 0.22 0.50
rw 2w1r 9241 0.10 0.11 0.25
sdl arq 2691 0.03 0.03 0.09
sem 19689 0.20 0.23 0.61



Chapter 6
Conclusion

In this chapter we discuss to which extend our objectives were fulfilled, i.e.
we summarize the presented work, discuss its weaknesses and present future
work. This thesis revolves around the question that we asked at its beginning:
“to which extend can the task of debugging be automated?”. With debugging,
we not only refer to the task of fixing a known defect of some program but also
to the task of its detection. We therefore consider the bigger cyclic activity of
monitoring a system for showing a potential failure, analysing the system to
check if the error is spurious and if not, triggering the automatic correction,
restarting the system and iterating this procedure. This approach is shown
in Figure 1.1. However, we do not present a holistic approach, but focus
on the one hand on diagnosis and on the other hand on automatic error
correction. Implementing the “glue” between these two approaches would
very likely yield another thesis.

Usually, techniques and tools originating from the research area of model
checking are not very industrial relevant. There are some positive counterex-
amples like, e.g. the Astrée Static Analyzer [8], a model checker that was
successfully used to verify tens of thousands of lines of code in the flight
controller software of the Airbus company or SAT and BDD based methods
used for chip verification, e.g. at the Intel company [46]. In mainstream
development however, when we look at static analysis tools that are heavily
used, we identify mainly lightweight tools like, e.g. the Google CodePro An-
alytix Tool1, helping the programmer to write more clean code or enforcing
basic code coverage.

1https://developers.google.com/java-dev-tools/codepro/doc/

107



108 CHAPTER 6. CONCLUSION

The approaches in this research area always get more sophisticated, from
a theoretical point of view, but even the older tools are usually not matured or
are extremely highly specialised. For the error correction part approach, we
therefore decided to base on a matured tool not utilizing some sophisticated
model of the software system. This was the reason for using Java Path Finder
as base for our implementation, using bare Java virtual machine snapshots
as model state representation. Applying search and testing techniques we
could automatically fix real-world code. Still there are some drawbacks of
this approach and there is additionally space for future work. We require
that the specification is complete. Writing a complete specification is a very
time consuming task and so it is, in most cases, an unrealistic assumption
that the programmer will take the time to give a complete specification when
trying to fix a bug. However, correcting an error fully automatically without
a specification is not possible, so a semi-automatic approach might be better
suited. Moreover, in our case study, we use a restricted catalogue of error
prone code together with alternatives. Still, with this restricted catalogue
we could fix real-world code, but it is up to future work to make experiments
with a more sophisticated catalogue, e.g. handling complex data structures
like linked lists.

For the diagnosis part of this work, we focus on distributed systems that
are partially observable. The output of this research is not a tool for code
analysis, but theoretical results and their implementations together with
practical verifications using case studies. We present two approaches, one
supporting diagnosis and one applying diagnosis in Petri net systems.

For supporting diagnosis, we present the computation of the reveals rela-
tion in Petri net unfoldings. This relation is stated as follows: “a reveals b iff
whenever a occurs b will eventually occur or has already occurred”. We con-
sider diagnosis of partial observable systems, so when a is visible and b not,
it is clearly of advantage to have this non-trivial relation at ones disposal.
This relation was introduced and shown to be decidable by Stefan Haar [3].
However, crucial for its appliance is the question how “fast” it can be de-
cided. The complexity bound for deciding it, found in [3], is very pessimistic.
Loosely speaking and simplified, for deciding “a reveals b”, we have to addi-
tional “unfold” the prefix that contains a and b n times, with n, the number
of reachable markings of the net and then we have to do computations on
this large prefix. Clearly, this cannot be implemented efficiently. We notably
reduce the complexity bound, i.e. the parameter n becomes the constant 2.



109

Then we present an efficient, bitset based algorithm, to actually decide the
relation on a set of events with almost only using bitset operations. Before
this work, it was not clear if a tractable algorithm for solving this problem
exists at all. We showed its existence, designed and implemented it and
presented benchmarks with it. This gives hope that this algorithm actually
can be used in practice. To show a practical application of the algorithm is,
however, up to future work.

For applying diagnosis, we consider the problem of, given the observation
of a partial observable system and a system alarm, deciding if the alarm is
spurious and deriving an explanation for a nonspurious alarm. Basis for the
explanation are the behaviours of the system leading to this alarm, repre-
sented as unfolding prefix. Generating this prefix is the fundamental task of
our approach. Our aim was not to generate the prefix when the observation is
complete, as this problem has already been solved by computing the product
of observation and system and unfolding that. Instead, we wanted to design
an ad-hoc unfolding algorithm, that can run in parallel to the system and
even speculates about the systems future. This approach has two fundamen-
tal benefits: (1) when an alarm is triggered, we are already (almost) finished
with the unfolding and (2) when looking into the systems future (proactive
diagnosis), we might detect possible alarms in the systems future. As the
problem of keeping the unfolding synchronous with the observation is com-
putationally complex, we introduce different levels of overapproximations for
the unfolding prefix that are more easily to compute. This adds behaviours
to the unfolding that might not be compatible with the observation. To
compensate that, we do not analyze the unfolding prefix directly but use
sat solving methods to “filter” the unfolding prefix and assure that we only
consider valid net behaviours. When doing proactive diagnosis, we addition-
ally have to deal with problem of possibly adding “garbage” to the unfolding,
i.e. future system behaviour we speculated about that is falsified later. We
present an efficient data structure for allowing fast removal of this garbage.
In an extensive case study we benchmark our implementation and justify the
mentioned overapproximation of the unfolding. We experimentally showed
that the overapproximation behaves very well with the growing observation
and contains almost only valid behaviours. We also benchmarked the speed
improvement we get when doing the diagnosis proactively. There is, in most
cases, a small speed benefit. However, this benefit is not outstanding. As
already mentioned, proactive diagnosis additionally allows detecting possible



110 CHAPTER 6. CONCLUSION

alarms in the systems future, however, this was not explored in a case study
and is still up to future work.

In summary, we presented three approaches, one for program repair and
two for diagnosis. Each approach is not pure theory, but implemented and
justified using extensive case studies. Therefore, with our presented ap-
proaches, we could contribute significantly and in various ways to the model
checking community.



Bibliography

[1] Thomas Ball, Mayur Naik, and Sriram K. Rajamani. From symptom
to cause: localizing errors in counterexample traces. In POPL, pages
97–105, 2003. (cited on p 8)

[2] Thomas Ball and Sriram K. Rajamani. The slam toolkit. In Gérard Berry,
Hubert Comon, and Alain Finkel, editors, CAV, volume 2102 of Lecture Notes
in Computer Science, pages 260–264. Springer, 2001. (cited on p 8)

[3] Albert Benveniste, Eric Fabre, Stefan Haar, and Claude Jard. Diag-
nosis of asynchronous discrete-event systems: a net unfolding approach.
IEEE Transactions on Automatic Control, 48(5):714–727, 2003. (cited on
pp 31, 41, 55, 82, 108)

[4] Allan Cheng, Javier Esparza, Jens Palsberg, and Jens Palsberg. Complexity
results for 1-safe nets. pages 326–337, 1995. (cited on pp 34, 60)

[5] III Cikanek, H. Space shuttle main engine failure detection. Control Systems
Magazine, IEEE, 6(3):13 –18, june 1986. (cited on p 29)

[6] Edmund M. Clarke, Daniel Kroening, and Flavio Lerda. A tool for checking
ansi-c programs. In Kurt Jensen and Andreas Podelski, editors, TACAS,
volume 2988 of Lecture Notes in Computer Science, pages 168–176. Springer,
2004. (cited on p 8)

[7] Holger Cleve and Andreas Zeller. Locating causes of program failures. In
Gruia-Catalin Roman, William G. Griswold, and Bashar Nuseibeh, editors,
ICSE, pages 342–351. ACM, 2005. (cited on p 8)

[8] P. Cousot. Interprétation abstraite. Technique et science informatique, 19(1-
2):3, 2000. (cited on p 107)

111



112 BIBLIOGRAPHY

[9] J.M. Couvreur, D. Poitrenaud, and P. Weil. Branching processes of general
petri nets. Applications and Theory of Petri Nets, pages 129–148, 2011. (cited
on p 38)

[10] J. Culberson. Sokoban is pspace-complete. In Fun With Algorithms, volume 4,
pages 65–76. Citeseer, 1999. (cited on p 75)

[11] V. Diekert and G. Rozenberg. The book of traces. World Scientific Pub Co
Inc, 1995. (cited on pp 61, 67, 70)

[12] N. Eén and N. Sörensson. An extensible sat-solver. In Theory and Applications
of Satisfiability Testing, pages 333–336. Springer, 2004. (cited on p 79)

[13] Joost Engelfriet. Branching processes of Petri nets. Acta Informatica,
28(6):575–591, 1991. (cited on pp 35, 39, 40)

[14] Javier Esparza and Christian Kern. Reactive and proactive diagnosis of dis-
tributed systems using net unfoldings. In ACSD, 2012. To appear. (cited on
p 5)

[15] Javier Esparza, Stefan Römer, and Walter Vogler. An improvement of McMil-
lan’s unfolding algorithm. Formal Methods in System Design, 20(3):285–310,
2002. (cited on pp 35, 39, 40, 66, 67)

[16] Javier Esparza, Stefan Römer, and Walter Vogler. An improvement of mcmil-
lan’s unfolding algorithm. Formal Methods in System Design, 20(3):285–310,
2002. (cited on p 44)

[17] Eric Fabre and Albert Benveniste. Partial order techniques for distributed
discrete event systems: Why you cannot avoid using them. Discrete Event
Dynamic Systems, 17(3):355–403, 2007. (cited on pp 31, 41)

[18] Eric Fabre, Albert Benveniste, Stefan Haar, and Claude Jard. Distributed
monitoring of concurrent and asynchronous systems. Discrete Event Dynamic
Systems, 15(1):33–84, 2005. (cited on pp 31, 41)

[19] S. Genc and S. Lafortune. Distributed diagnosis of discrete-event systems
using petri nets. Applications and Theory of Petri Nets 2003, pages 316–336,
2003. (cited on p 31)

[20] A. Grastien, J.R. Anbulagan, and E. Kelareva. Modeling and solving diagnosis
of discrete-event systems via satisfiability. In Proc. of the 18th International
Workshop on Principles of Diagnosis (DX), 2007. (cited on p 31)



BIBLIOGRAPHY 113

[21] Andreas Griesmayer, Stefan Staber, and Roderick Bloem. Automated fault
localization for c programs. Electr. Notes Theor. Comput. Sci., 174(4):95–111,
2007. (cited on p 8)

[22] Alex Groce, Sagar Chaki, Daniel Kroening, and Ofer Strichman. Error expla-
nation with distance metrics. STTT, 8(3):229–247, 2006. (cited on p 8)

[23] Alex Groce and Willem Visser. What went wrong: Explaining counterexam-
ples. In Thomas Ball and Sriram K. Rajamani, editors, SPIN, volume 2648
of Lecture Notes in Computer Science, pages 121–135. Springer, 2003. (cited
on p 8)

[24] S. Haar. Types of asynchronous diagnosability and the reveals-relation in
occurrence nets. 2009. (cited on pp 84, 86, 88, 89)

[25] Stefan Haar, Christian Kern, and Stefan Schwoon. Computing the reveals
relation in occurrence nets. In Giovanna D’Agostino and Salvatore La Torre,
editors, GandALF, volume 54 of EPTCS, pages 31–44, 2011. (cited on p 5)

[26] Brent Hailpern and Padmanabhan Santhanam. Software debugging, testing,
and verification. IBM Systems Journal, 41(1):4–12, 2002. (cited on p 7)

[27] G.M. Hopper. The first bug. Annals of the History of Computing, 3(3):285–
286, 1981. (cited on p 1)

[28] R. Isermann. Fault-diagnosis systems: an introduction from fault detection to
fault tolerance. Springer Verlag, 2006. (cited on p 27)

[29] Barbara Jobstmann, Andreas Griesmayer, and Roderick Bloem. Program
repair as a game. In Kousha Etessami and Sriram K. Rajamani, editors,
CAV, volume 3576 of Lecture Notes in Computer Science, pages 226–238.
Springer, 2005. (cited on p 9)

[30] James A. Jones and Mary Jean Harrold. Empirical evaluation of the taran-
tula automatic fault-localization technique. In David F. Redmiles, Thomas
Ellman, and Andrea Zisman, editors, ASE, pages 273–282. ACM, 2005. (cited
on p 8)

[31] C.T. Kemper, S. Lowenfeld, and M.S. Fox. Rule based diagnostic system with
dynamic alteration capability, February 10 1987. US Patent 4,642,782. (cited
on p 28)

[32] Christian Kern and Javier Esparza. Automatic error correction of java pro-
grams. In FMICS, pages 67–81, 2010. (cited on p 5)



114 BIBLIOGRAPHY

[33] K. Kim and A.G. Parlos. Induction motor fault diagnosis based on neuropre-
dictors and wavelet signal processing. Mechatronics, IEEE/ASME Transac-
tions on, 7(2):201–219, 2002. (cited on p 29)

[34] Thomas D. LaToza, Gina Venolia, and Robert DeLine. Maintaining mental
models: a study of developer work habits. In Proceedings of the 28th inter-
national conference on Software engineering, ICSE ’06, pages 492–501, New
York, NY, USA, 2006. ACM. (cited on p 7)

[35] Feng Lin. Diagnosability of discrete event systems and its applications. Dis-
crete Event Dynamic Systems, 4:197–212, 1994. 10.1007/BF01441211. (cited
on p 31)

[36] Agnes Madalinski, Farid Nouioua, and Philippe Dague. Diagnosability verifi-
cation with petri net unfoldings. KES Journal, 14(2):49–55, 2010. (cited on
p 31)

[37] S.A. McIlraith. Explanatory diagnosis: Conjecturing actions to explain ob-
servations. In PRINCIPLES OF KNOWLEDGE REPRESENTATION AND
REASONING-INTERNATIONAL CONFERENCE-, pages 167–179. MOR-
GAN KAUFMANN PUBLISHERS, 1998. (cited on p 31)

[38] Kenneth L. McMillan. Using unfoldings to avoid the state explosion problem
in the verification of asynchronous circuits. In Proc. CAV, LNCS 663, pages
164–177. Springer, 1992. (cited on pp 40, 44)

[39] R. Milner. Calculi for synchrony and asynchrony. Theoretical computer sci-
ence, 25(3):267–310, 1983. (cited on p 53)

[40] V. Palade and C.D. Bocaniala. Computational intelligence in fault diagnosis.
Springer Publishing Company, Incorporated, 2010. (cited on pp 27, 28)

[41] D. Park. Concurrency and automata on infinite sequences. Theoretical com-
puter science, pages 167–183, 1981. (cited on p 53)

[42] R.J. Patton. Fault detection and diagnosis in aerospace systems using ana-
lytical redundancy. Computing Control Engineering Journal, 2(3):127 –136,
may 1991. (cited on p 28)

[43] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D. Teneket-
zis. Diagnosability of discrete-event systems. Automatic Control, IEEE Trans-
actions on, 40(9):1555–1575, 1995. (cited on p 31)



BIBLIOGRAPHY 115

[44] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D.C.
Teneketzis. Failure diagnosis using discrete-event models. Control Systems
Technology, IEEE Transactions on, 4(2):105–124, 1996. (cited on p 31)

[45] Stefan Schwoon. The Mole tool. http://www.lsv.ens-cachan.fr/
~schwoon/tools/mole/. (cited on p 79)

[46] C.J.H. Seger, R.B. Jones, J.W. O’Leary, T. Melham, M.D. Aagaard, C. Bar-
rett, and D. Syme. An industrially effective environment for formal hardware
verification. Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on, 24(9):1381–1405, 2005. (cited on p 107)

[47] T. Sorsa, H.N. Koivo, and H. Koivisto. Neural networks in process fault
diagnosis. Systems, Man and Cybernetics, IEEE Transactions on, 21(4):815
–825, jul/aug 1991. (cited on p 30)

[48] Stefan Staber, Barbara Jobstmann, and Roderick Bloem. Finding and fixing
faults. In Dominique Borrione and Wolfgang J. Paul, editors, CHARME,
volume 3725 of Lecture Notes in Computer Science, pages 35–49. Springer,
2005. (cited on p 9)

[49] V. Venkatasubramanian and K. Chan. A neural network methodology for
process fault diagnosis. AIChE Journal, 35(12):1993–2002, 1989. (cited on
p 28)

[50] Willem Visser, Klaus Havelund, Guillaume P. Brat, Seungjoon Park, and
Flavio Lerda. Model checking programs. Autom. Softw. Eng., 10(2):203–232,
2003. (cited on p 8)

[51] Chao Wang, Zijiang Yang, Franjo Ivancic, and Aarti Gupta. Whodunit?
causal analysis for counterexamples. In Susanne Graf and Wenhui Zhang,
editors, ATVA, volume 4218 of Lecture Notes in Computer Science, pages
82–95. Springer, 2006. (cited on p 8)

[52] Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie Forrest.
Automatically finding patches using genetic programming. In ICSE, pages
364–374. IEEE, 2009. (cited on p 8)

[53] T.S. Yoo and S. Lafortune. Polynomial-time verification of diagnosability of
partially observed discrete-event systems. Automatic Control, IEEE Transac-
tions on, 47(9):1491–1495, 2002. (cited on p 31)



116 BIBLIOGRAPHY

[54] A. Zeller. Why programs fail: a guide to systematic debugging. Morgan Kauf-
mann, 2009. (cited on p 7)

[55] Andreas Zeller. Isolating cause-effect chains from computer programs. In
SIGSOFT FSE, pages 1–10, 2002. (cited on p 7)

[56] Y. Zhang, X. Ding, Y. Liu, and PJ Griffin. An artificial neural network
approach to transformer fault diagnosis. Power Delivery, IEEE Transactions
on, 11(4):1836–1841, 1996. (cited on p 28)



List of Figures

1.1 General goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Approach - diagnosis with Petri nets . . . . . . . . . . . . . . 3

2.1 Heuristically selected hotspots . . . . . . . . . . . . . . . . . . 10
2.2 Example changeset . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Template program . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Conflicting heuristics . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Top: conflicting hotspots, Bottom: first resolution step . . . . 12
2.6 Test input generator . . . . . . . . . . . . . . . . . . . . . . . 16
2.7 Searchable meta program . . . . . . . . . . . . . . . . . . . . . 17
2.8 Search tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.9 Data structure for family of decision traces . . . . . . . . . . . 22
2.10 Google Code Search™ . . . . . . . . . . . . . . . . . . . . . . . 23
2.11 Example for an automatically generated patch . . . . . . . . . 25

3.1 1-safe, unweighted Petri net with transitions a . . . f and places
1 . . . 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Firing of a transition . . . . . . . . . . . . . . . . . . . . . . . 34
3.3 Occurrence net . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4 Unfolding example . . . . . . . . . . . . . . . . . . . . . . . . 40
3.5 From left to right: considered system model, observation as

linear net, product of the first two, unfolding of the product. 43
3.6 Possible loop on invisible transitions . . . . . . . . . . . . . . 45

4.1 Left: transition system with transition names, Right: transi-
tion system with transition labels . . . . . . . . . . . . . . . . 48

117



118 LIST OF FIGURES

4.2 Transition systems with state labels . . . . . . . . . . . . . . . 49
4.3 Transition systems with synchronization constraint . . . . . . 50
4.4 Synchronized product as Petri net, Left: with transition

names, Right: with transition labels . . . . . . . . . . . . . . . 54
4.5 Nondeterministic automaton . . . . . . . . . . . . . . . . . . . 55
4.6 Comparison of reactive on proactive diagnosis . . . . . . . . . 57
4.7 Left: Petri net representing synchronized product, Middle:

Petri net from left with labels, Right: unfolding . . . . . . . . 59
4.8 Illustration for reducing the reachability problem to the O-

compatibility problem . . . . . . . . . . . . . . . . . . . . . . 61
4.9 Dependent and independent global transitions and labels . . . 62
4.10 Equivalence of sequences . . . . . . . . . . . . . . . . . . . . . 63
4.11 Example for comparing O-soundness with O-compatibility . . 64
4.12 Example for run projections. Left: configuration, Middle:

runs of configuration, Right: unique projection. . . . . . . . . 68
4.13 Example for a footprint. Left: label sequence, Right: projection. 69
4.14 Example for comparing projections; proj1 is subset of proj2 but

proj2 is no subset of proj3. . . . . . . . . . . . . . . . . . . . . 69
4.15 Example for occurrence net to SAT formula translation . . . . 72
4.16 Visualization of an example of the used data structure . . . . 74
4.17 Example Sokoban instance with moves . . . . . . . . . . . . . 76
4.18 Sokoban automaton example . . . . . . . . . . . . . . . . . . . 76
4.19 Part of the Sokoban unfolding . . . . . . . . . . . . . . . . . . 78
4.20 Spurious explanation example . . . . . . . . . . . . . . . . . . 79

5.1 Example for appliance of reveals - parallel Sokoban moves . . 84
5.2 Occurrence net example for reveals . . . . . . . . . . . . . . . 85
5.3 Example Occurrence net used for explaining reveals . . . . . . 86
5.4 Facet abstraction of Occurrence net . . . . . . . . . . . . . . . 88
5.5 Illustration of Lemma 10 . . . . . . . . . . . . . . . . . . . . . 90
5.6 Illustration of Lemma 11 . . . . . . . . . . . . . . . . . . . . 92
5.7 Rough sketch of the proof of Theorem 2; there exists a con-

dition b in the preset of both u and z ; moreover, u < y and
n = max (H(x ),H(y)). From Cuxz we construct the smaller
configuration C. . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.8 Possible situations, as b ′ 
 b. . . . . . . . . . . . . . . . . . . 95



List of Tables

2.1 Experimental results on Quicksort algorithms . . . . . . . . . 24

4.1 Running times of the re- and proactive algorithm . . . . . . . 80
4.2 Correct and spurious start configurations . . . . . . . . . . . . 82

5.1 Net statistics and computation of K . . . . . . . . . . . . . . 104
5.2 Running times of computing reveals . . . . . . . . . . . . . . . 106

119



120 LIST OF TABLES



List of Algorithms

1 ConflictResolution . . . . . . . . . . . . . . . . . . . . . . . . . 13
2 Java Pathfinder . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3 Backtrack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4 FinalStateReached . . . . . . . . . . . . . . . . . . . . . . . . . 20
5 PCPointExplored . . . . . . . . . . . . . . . . . . . . . . . . . . 21

6 Compute complete prefix . . . . . . . . . . . . . . . . . . . . . 42

7 Branching process to CNF conversion . . . . . . . . . . . . . . 71

8 Compute causal set for event e . . . . . . . . . . . . . . . . . . 100
9 Compute conflict set for event e . . . . . . . . . . . . . . . . . 101
10 Compute reveals set for event e . . . . . . . . . . . . . . . . . . 102
11 Compute reveals . . . . . . . . . . . . . . . . . . . . . . . . . . 102

121



122 LIST OF ALGORITHMS


