
 I

TECHNISCHE UNIVERSITÄT MÜNCHEN

Dr. Theo Schöller-Stiftungslehrstuhl für Technologie- und

Innovationsmanagement

IP Modularity in Software Products and

Software Platform Ecosystems

Josef Waltl

Vollständiger Abdruck der von der Fakultät für Wirtschaftswissenschaften

der Technischen Universität München zur Erlangung des akademischen

Grades eines Doktors der Wirtschaftswissenschaften (Dr. rer. pol.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Stefan Minner

Prüfer der Dissertation: 1. Univ.-Prof. Dr. Joachim Henkel

2. Univ.-Prof. Dr. Oliver Alexy

Die Dissertation wurde am 24.01.2013 bei der Technischen Universität

München eingereicht und durch die Fakultät für Wirtschaftswissenschaften

am 12.02.2013 angenommen.

 II

Life is like riding a bicycle. To keep your balance you must

keep moving.

Albert Einstein (1879 - 1955)

 III

Acknowledgements

First of all, I would like to thank Prof. Dr. Joachim Henkel for his outstanding

support as a thoughtful supervisor. His enthusiasm and energy for the research on IP

modularity were always inspiring to me and guided me throughout my whole

dissertation.

This research project would never have been successful without the support from the

researched software companies. For SugarCRM I would like to thank Elena Annuzzi,

Nick Halsey, John Mertic and Clint Oram. For Salesforce.com the credits go to Kimia

Poursaleh and for SAP special thanks goes to Dr. Karl-Michael Popp for his excellent

support and all the effort he put into our joint research. I would also like to acknowledge

the interview partners in a company whose name has to be kept undisclosed for the

excellent support and the willingness to share their insights, despite the additional effort

to control each statement for non-disclosure of confidential company information.

Furthermore sincere thanks are due to the team of the Dr. Theo Schöller Chair of

Technology and Innovation Management for the inspiring time and the pleasant

cooperation.

Special credits go to Christoph Krauß and Kristina Schreiner for their help in data

collection and their valuable comments on my analysis results.

Finally, this dissertation would not have been possible without the never-ending

support from Marianne, Josef , Martin and Claudia.

 IV

Table of Contents

1 Introduction ..13

2 The concept of IP modularity...17

2.1 The basics of design...17

2.2 Modularity in technical systems ..19

2.3 IP modularity ...23

3 Research methodology ...28

3.1 Selection of a hybrid research approach ..28

3.2 Case study research..30

3.2.1 Case design ...34

3.2.2 Case interviews ...44

3.2.3 Case analysis ...47

3.3 Quantitative research ...55

3.3.1 Orientation ..55

3.3.2 Study design and execution...57

3.3.3 Analysis...59

3.4 Conclusion ...60

4 IP modularity in software products ..61

4.1 Software products – design and business models ..61

4.2 Outgoing IP modularity in software products..66

4.3 Incoming IP modularity in software products ...80

4.4 The effects of outgoing and incoming IP modularity in software products85

4.5 Conclusion ...89

5 IP modularity in software platform ecosystems ...90

5.1 Software platform ecosystems ...91

5.2 IP modularity in an open source software platform ecosystem95

5.3 IP modularity in a proprietary software platform ecosystem...........................105

5.4 Effects of IP modularity in open and proprietary software ecosystems110

5.5 Conclusion ...112

6 The impact of IP modularity on platform attractiveness..114

6.1 Platform attractiveness for ecosystem partners..115

6.2 The impact of IP modularity on platform attractiveness – analysis results121

6.3 Conclusion ...134

7 Conclusion..136

 V

Appendices..138

Bibliography..157

 VI

List of Appendices

Appendix A – Final coding scheme (Case 2) ..138

Appendix B – Final coding scheme (Case 4) ..139

Appendix C – Approval process for third-party software (Case 4)...........................140

Appendix D – Final coding scheme (Case 11) ..141

Appendix E – Final coding scheme (Case 9) ..142

Appendix F – 1. Platform provider setting..143

Appendix G – 2. Complementor setting ..145

Appendix H – 3. Platfrom attractiveness variables..151

Appendix I – Factor analysis..154

Appendix J – Correlation analysis..155

Appendix K – Extended hypotheses tests..156

 VII

List of Figures

Figure 1 – Design structure (based on Baldwin and Clark, 2000)18

Figure 2 – Design structure matrix of a mug (based on Baldwin and Clark, 2000)18

Figure 3 – DSM-partitioning example (based on Eppinger et al., 1994, p. 3)................19

Figure 4 – Rationales for modular design (based on Henkel, 2011)...............................22

Figure 5 – Optimized value appropriation as rationale for modularization24

Figure 6 – IP incompatibility ..25

Figure 7 – Methodological fit (based on Edmondson and McManus, 2007)29

Figure 8 – Hybrid research process...30

Figure 9 – Qualitative research process (based on Yin, 2009)34

Figure 10 – Research framework ..35

Figure 11 – Case study research design (based on Yin, 2009, p. 46)38

Figure 12 – Generic case selection matrix ..39

Figure 13 – Final case selection matrix...41

Figure 14 – Interview guideline for software product and platform providers...............43

Figure 15 – Interview guideline for ecosystem partners...43

Figure 16 – Case pairs for cross-case analysis..53

Figure 17 – Quantitative research process ..55

Figure 18 – Platform attractiveness model..56

Figure 19 – Sample description...59

Figure 20 – Software requirements ...62

Figure 21 – Business model types (Popp, 2011, p. 27)...64

Figure 22 – IP lessor compatible software licenses ..65

Figure 23 – Schematic structure of the engineering software (Case 2)67

Figure 24 – IP modular engineering software (Case 2) ..68

Figure 25 – Adapted research framework...70

Figure 26 – Intended effects (Case 2) ...71

Figure 27 – Intended effects checklist matrix (Case 2)...73

Figure 28 – Comparison of intended and real effects (Case 2).......................................77

Figure 29 – Checklist matrix of real effects (Case 2) ...79

Figure 30 – Data management software (Case 4) ...80

Figure 31 – Intended effects (Case 4) ...82

Figure 32 – Intended effects checklist matrix (Case 4)...83

Figure 33 – Comparison of intended and real effects (Case 4).......................................84

 VIII

Figure 34 – Extended software requirements model...86

Figure 35 – Real effects of outgoing and incoming IP modularity (Case 2 and 4).........87

Figure 36 – Holdup risk from incoming and outgoing IP modularity88

Figure 37 – Platform architecture (based on Baldwin and Woodard, 2009)92

Figure 38 – Platform-mediated network (based on Eisenmann et al., 2009)..................93

Figure 39 – Schematic architecture overview (Case 11) ...97

Figure 40 – Build process to separate IP (Case 11) ...98

Figure 41 – Intra- and inter-platform effects (Case 11) ...101

Figure 42 – Intended effects checklist matrix (Case 11)...104

Figure 43 – IP modularity in SAP NetWeaver PI (Case 9)...106

Figure 44 – Intra- and inter-platform effects (Case 9) ..108

Figure 45 – Intra- and inter-platform effects checklist matrix (Case 9)109

Figure 46 – Platform attractiveness model (identical with Figure 18)..........................116

Figure 47 – Sample description (identical with Figure 19)...123

Figure 48 – Platform attractiveness calculation..123

 IX

List of Tables

Table 1 – Long list of possible research cases ..40

Table 2 – Interviewee role description..45

Table 3 – List of case interviews...46

Table 4 – Secondary data sources ...47

Table 5 – Initial coding scheme ..48

Table 6 – Hierarchy levels of IP modularity ..99

Table 7 – Ecosystem comparison..122

Table 8 – Cronbach’s alpha tests ..124

Table 9 – Exploratory factor analysis ...125

Table 10 – Descriptive statistics ...126

Table 11 – OLS regression: Platform attractiveness...130

Table 12 – OLS regression: Return on investment ...131

Table 13 – Hypotheses tests..132

 X

List of Abbreviations

AGPL Affero GPL

APIs Application Programming Interfaces

BSD Berkeley Software Distribution

CDO Chief Development Officer

CEO Chief Executive Officer

CIO Chief Information Officer

CRM Customer Relationship Management

CTO Chief Technology Officer

DSM Design Structure Matrix

FOSS Free- and Open Source Software

GNU GNU’s Not Unix

GPL GNU General Public License

IP Intellectual Property

IPRs Intellectual Property Rights

ISV Independent Software Vendor

JAR Java Archive

MIT Massachusetts Institute of Technology

OLS Ordinary Least Squares

OSS Open Source Software

SaaP Software as a Product

SaaS Software as a Service

SCRM SugarCRM

SFDC Salesforce.com

SI System Integrator

VIF Variance Inflation Factor

VP Vice President

 11

Zusammenfassung

Die Arbeit untersucht die Auswirkungen einer modularen Softwarearchitektur, die

durch die Optimierung von Wertaneignungsmechanismen entstanden ist (IP

Modularität), auf Softwareprodukte und Softwareplattform-Ökosysteme. Ein System ist

IP-modular, wenn die internen Modulgrenzen so gezogen werden, dass die jeweiligen

Module ausschließlich Elemente enthalten, die in Bezug auf geistige Eigentumsrechte

identisch behandelt werden können. Diese Rechte können in Form von Lizenzrechten,

Urheberrecht aber auch informell, zum Beispiel durch Geheimhaltung von Quellcode, in

Erscheinung treten.

Die Ergebnisse dieser Dissertation basieren auf einer detaillierten qualitativen

Fallstudienanalyse von Softwareprodukten und -plattformen sowie einer quantitativen

Studie in zwei Plattform-Ökosystemen.

Durch das Aufzeigen eines direkten Zusammenhanges von IP-modularer Produkt-

oder Plattformarchitektur mit dem entsprechenden Geschäftsmodell zur Wertaneignung

erweitern die Ergebnisse der Arbeit die bestehende Literatur zu IP Modularität.

Es wird gezeigt, dass eine IP-modulare Architektur eine partielle Offenheit erlaubt, die

verteile Wertschöpfung begünstigt. Zusätzlich wurde die frühe Berücksichtigung von

Anforderungen mit Bezug auf geistiges Eigentum in der Anforderungsanalyse

(Requirements Engineering) von Softwaresystemen als wesentlicher Treiber zur

Verhinderung von zeit- und kostenaufwändigen Re-Modularisierungen identifiziert.

Die Ergebnisse der quantitativen Studie zeigen, dass die Ausprägungen IP-modularer

Plattformarchitekturen, durch die Möglichkeit zu größerer Offenheit, bei gleichzeitiger

Sicherstellung der Wertaneignung, die Plattformattraktivität für Designer

plattformspezifischer Zusatzapplikationen erhöhen können.

Zusammenfassend zeigt die Arbeit die Verbindung von Management geistigen

Eigentums, Softwarearchitektur und der jeweiligen Geschäftsmodelle von

Softwareprodukt oder -plattform Anbietern auf.

 12

Abstract

 This dissertation examines the impact of Intellectual Property (IP) modular

architecture on software products and software platform ecosystems. A software system

is IP modular when its module boundaries separate parts of a system that have to be

treated differently with respect to IP. The IP status is then homogeneous within each

module, but may differ between modules. IP rights can be formal IP such as licensing

contracts or copyright, but also informal IP like keeping the source code secret.

The presented results in this dissertation are based on a detailed qualitative case

study analysis of two software products and two software platforms and on a

quantitative study of two software ecosystems.

The results extend the existing literature on IP modularity by demonstrating a direct

association between IP modular product or platform architecture and the related

business models. The analysis also shows that the early consideration of IP-related

requirements in the requirements engineering process of software systems can prevent

costly and time-consuming re-modularizations.

The quantitative analysis in two software ecosystems shows that IP modular platform

architecture, which can allow increased openness while still maintaining value

appropriation, can increase a platform’s attractiveness for complementors.

To summarize, this dissertation demonstrates the connections between IP

management, software architecture and the respective business models of software

product or platform providers.

 13

1 Introduction

This dissertation explores the implications of the new concept of Intellectual

Property (IP) modularity (Henkel and Baldwin, 2010, 2011) for the software product

and software platform ecosystems domain. A system is IP modular when the module

boundaries separate the parts that need to be treated differently with respect to IP. The

IP status is accordingly homogeneous within each module, but it can differ between

modules. IP rights can be formal IP, such as licensing contracts or copyright, but they

can also be informal IP, such as keeping source code secret. This research endeavor

focuses exclusively on the software domain because IP is the core asset of each software

business, and the modularity of software systems can be adapted to a variety of

requirements.

 More broadly, this dissertation links research on IP modularity with research

concerning software platforms (Gawer and Cusumano, 2002; West, 2003; Boudreau,

2010), multi-sided markets (Eisenmann et al., 2006), software ecosystems (Jansen and

Cusumano, 2012), software business models (Osterwalder, 2004; Weill et al., 2005) and

software requirements engineering (Wiegers, 2003; Chung and do Prado Leite, 2009).

To motivate the research on IP modularity Henkel and Baldwin (2010) consider,

among others, the case of the video game Counter-Strike (Jeppesen and Molin, 2003).

When the software publisher Valve Software released the video game Half-Life in

1998, it divided its codebase into two different modules. Valve Software put the game

engine under a proprietary license and kept its source code secret, whereas it made the

remaining application source code available to users under a broad license that allowed

users to modify and share the code. Within approximately one and a half years of the

original release of Half-Life, users generated the game Counter-Strike, which surpassed

the success of the original game and created significant additional revenue for Valve

Software, given that Counter-Strike players had to license and reuse the Half-Life game

engine. This example shows the potential benefits that IP modular design could have for

companies in the software domain, where module boundaries are flexible and

technological entry barriers for value co-creators are low.

Already initial interviews in the early stages of this research project with industry

practitioners have revealed that IP modular design is of special relevance in software

platforms, which by nature face the challenge of optimizing value creation in the whole

ecosystem of complementors and value appropriation for the platform providers. The

 14

exchange with managers from software platform companies confirmed the link between

their IP modular platform designs and their business strategies; the managers also

confirmed the need for a better understanding of these IP mechanisms on a more

conceptual level.

In the software domain, there are many examples of IP modularity, but little is

known about the exact reasoning that led to those IP modular designs. To my

knowledge this dissertation presents the first empirical study to shed light on the effects

of IP modularity in the software domain. The main research objective of this

dissertation is formulated as follows:

Research objective: What are the effects of IP modularity on software products and

software platform ecosystems?

This dissertation aims to answer the main research objective through three different

perspectives. First, there is the perspective of the providers of software products.

Second, there is the perspective of the providers of software platforms. Third, there are

the complementors who generate additional applications for software platforms. Based

on these perspectives, the structure of this dissertation is as follows:

Section 2 introduces IP modularity as the main theoretical concept of this

dissertation. This section also presents the basics of system design and introduces the

concept of modularity and the main drivers of modularizing technical systems. The

section concludes by presenting IP modularity in software systems with concrete

examples.

Section 3 presents the research methodology applied in this dissertation. First, in

section 3.1 a hybrid research approach is identified as the most suitable method, given

the current progress in the research field. In section 3.2 a detailed description of the case

study methodology builds a solid methodological foundation for the in-depth qualitative

research conducted in this dissertation. This section not only describes the applied

research methodology, but it also guides the reader through the case selection process.

A thorough understanding of this section is therefore vital for the interpretation of the

case results. Finally, section 3.3 describes the quantitative analysis.

Section 4 addresses IP modularity from the perspective of a software product

provider. First, the section presents the basics of software product design and software

business models. The analysis of an engineering software case for outgoing IP

modularity and of a data management software case for incoming IP modularity build

 15

the empirical foundation to answer the research questions regarding IP modularity in

software products:

 Why are software products modularized with regard to IP considerations?

 How do the intended effects of IP modular product design relate to the real

effects?

Finally, in this section, a cross-case comparison of the identified effects uncovers the

similarities of both cases and leads to the formulation of additional propositions about

the impact of IP modular software product design.

Section 5 uncovers the impact of IP modular design on software platform design

from a software platform provider’s perspective. Based on a review of the core concepts

of software platforms and related ecosystems, two case studies on popular software

platforms form the empirical basis to answer the research questions of this section:

 Why are software platforms modularized with regard to IP considerations?

 How does IP modular platform design influence the cooperation between

platform providers and complementors?

The findings from the first case on SugarCRM confirm prior findings by Henkel and

Baldwin (2010) and lead to the formulation of the research hypotheses for later

quantitative tests. The second case on SAP NetWeaver PI suggests how the IP modular

design can increase the attractiveness of a proprietary software platform. Finally, the

cross-case analysis uncovers the common effects of IP modular platform design on

platform development, platform attractiveness for complementors and platform

attractiveness for end-users.

Section 6 follows up on the findings of the previous section with a quantitative

research approach. It tests the findings from the qualitative case analysis on the levers of

platform attractiveness. In this section, the perspective switches from the platform

providers to the complementors. The analysis aims to answer the following research

question:

 How does IP modularity influence the attractiveness of a software platform from

a complementor’s perspective?

 16

The analysis is based on a platform attractiveness model1 that describes the variables

that influence the platform attractiveness in the platform provider setting and in the

complementor setting. With reference to the qualitative findings from Section 5 and

propositions on outgoing IP modularity from Henkel and Baldwin (2010) two

hypotheses are formulated and tested with a regression analysis.

Finally, Section 7 draws conclusions for two target audiences. The first audience is

the scientific community, for which this dissertation embeds the results in the broader

discussion on related streams of research and makes suggestions for further research.

The second audience are practitioners, such as general managers in software companies,

ecosystem managers or software architects, for whom the managerial implications of IP

modular design are discussed.

All results presented in this dissertation are based on my own work unless stated

otherwise. All results from other researchers are carefully referenced. However, it is my

deepest belief that creative ideas do not only sparkle in the mind of a single researcher.

To reflect this belief and to recognize the efforts of my co-authors in earlier publications

on the topic and other members of the research community to critically review my

results, I purposely use “we” to present the results of this dissertation.

1 The model is based on the Master’s thesis of Schreiner (2012) that I initiated and supervised. For the
analysis in this dissertation the original model was adapted and simplified.

 17

2 The concept of IP modularity

In this chapter we introduce the concept of IP modularity as the central topic of this

dissertation. We start with a basic description of design and introduce modularity as a

design concept. Subsequently, we show the impact of modular design on value

appropriation with a special focus on the software domain. Finally, we present IP

modularity as a means to combine the benefits of modularity with the goal of value

appropriation.

2.1 The basics of design

To understand modular design, it is important to first understand the basics of design.

According to Baldwin and Clark, design is a complete description of an artifact

(Baldwin and Clark, 2000, p. 21). The artifact can be a physical object or, as in the

context of this dissertation, a virtual object such as a software source code. The design

specifies all parameters of an artifact. All interdependencies between the design

parameters define the design structure of an artifact (Baldwin and Clark, 2000, p. 21).

This design structure can be visualized with a tool named design structure matrix

(DSM), invented by Steward (Steward, 1981) and refined by Eppinger (Eppinger,

1991). The use of design structure matrices can be illustrated with the simple example

of the design of a mug (Baldwin and Clark, 2000, p. 21). The design parameters are

named from P1 to P10, and the interdependencies are displayed with X marks in the

DSM. These marks refer to an is input to relationship and mean that the specification of

one column design parameter affects the design of the corresponding row design

parameter (Eppinger, 1991, p. 285).

Figure 1 a) shows such a hierarchical relationship in the mug example. The

manufacturing process influences the possible height but not vice versa. For the design

process of the mug, this influence implies that manufacturing process can be specified

first, regardless of the height. Once the manufacturing process is defined, the height

cannot be chosen without restrictions. The design process is strictly sequential.

 18

a) Hierarchy P3 P4 b) Interdependence P1 P2

Manufacturing process P3 ▪ Material P1 ▪ X

Height P4 X ▪ Tolerance P2 X ▪

Figure 1 – Design structure (based on Baldwin and Clark, 2000)

If the design parameters mutually depend on each other, the relationship is

interdependent as shown in Figure 1 b). Here, the material and the tolerance depend on

each other. A change in the specification of one parameter requires the designer to adapt

the specification of the other parameter. Design parameters can also be fully

independent from one another, as in the case of the height and tolerance in the mug

example. The full design structure matrix of the mug example is shown in Figure 2

which presents an input-output table of design parameter choices (Baldwin and Clark,

2000, p. 41).

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Material P1 ▪ X X X X X X

Tolerance P2 X ▪ X X X X X X

Manufacturing process P3 X X ▪ X X X X X

Height P4 X ▪ X X X

Vessel Diameter P5 X X X ▪ X X X

Width of Walls P6 X X X X X ▪ X X

Type of Walls P7 X X X X X ▪ X X

Weight P8 X X X X X X ▪ X

Handle Material P9 X X X X X ▪ X

Handle Shape P10 X X X X X ▪

Figure 2 – Design structure matrix of a mug (based on Baldwin and Clark, 2000)

For the design process, it is optimal if all marks are below the diagonal. The matrix is

then called lower triangular, and the design process can be strictly sequential (Eppinger,

1991, p. 285). In this case, the designer can specify one design parameter after another

without cycles in the design process.

 19

Unfortunately, in reality this lower triangular form is rarely found. Thus, the DSM

has to be reordered to bring as many marks as possible below the diagonal or in blocks

around the diagonal. With this reordering, the design structure can be brought toward

the lower triangular form, and the design process becomes more sequential (Steward,

1981; Eppinger, 1991). Figure 3 shows an example of this reordering process.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P2 P3 P1 P11 P12 P10 P6 P9 P5 P4 P8 P7

P1 ▪ X P2 ▪

P2 ▪ P3 X ▪

P3 X ▪ P1 X ▪

P4 ▪ X X X P11 X X ▪

P5 ▪ X X X P12 X X ▪ X X B1

P6 X ▪ X P10 X X X X ▪ X

P7 X ▪ X P6 X X ▪

P8 X X ▪ X X P9 X X X ▪

P9 X X ▪ X P5 X X ▪ X B2

P10 X X X ▪ X X P4 X X X ▪

P11 X X ▪ P8 X X X X ▪

P12 X X X X ▪ P7 X X ▪

Unpartitioned DSM Partitioned DSM

Figure 3 – DSM-partitioning example (based on Eppinger et al., 1994, p. 3)

Within this re-arranged design structure matrix, the two blocks B1 and B2 can be

identified. B2 is dependent on the input of B1; however, B1 does not depend on B2.

By re-arranging these design parameters, the building of blocks and the resulting

input relationships, the basics for modular design are laid. Following-up on this

example, the next section will present the details of modular systems design.

2.2 Modularity in technical systems

“In a world of change, modularity is generally worth the cost.” (Langlois, 2002,

p. 24)

In the previous section, the two blocks B1 and B2 emerged from the partitioning of

the design process (see Figure 3). These blocks show strong interdependencies within

themselves but no interdependencies among each other (Steward, 1981, p. 72; Eppinger

et al., 1994, p. 3). This relationship of strong coupling within elements and loose

coupling across elements makes up modularity; or, as Baldwin and Clark describe:

 20

“A Module is a unit whose structural elements are powerfully connected among

themselves and relatively weakly connected to elements in other units. Clearly

there are degrees of connection, thus there are gradations of modularity.”

(Baldwin and Clark, 2000, p. 63)

Modularity is essential to the design of complex systems, considering that we have

limited mental capabilities and can only process sub-segments of such systems at a time

(Baldwin and Clark, 2000, p. 63). A modular system can only be superior over an

integral system if its modularization is precise, unambiguous, and complete (Baldwin

and Clark, 1997, p. 86).

The modularization of a system is based on a set of visible design rules across the

whole system and hidden design parameters within each module. The visible design

rules are fixed throughout the whole design process and limit the degrees of freedom a

designer has. In contrast, the hidden design parameters increase the efficiency within the

design process because they prevent unnecessary cycles (Baldwin and Clark, 1997, p.

86).

The visible design rules itself comprise of architecture, interfaces and integration

protocols (Baldwin and Clark, 2000, p. 77).

First, the architecture specifies the modules of a system, built upon the primary

purpose of each module. The architecture maps the modules in the design structure to

the different functions of a product (Ulrich, 1995, p. 422).

Second, the interfaces define how these modules work together. The interfaces can

be of physical nature similar to a hinge that connects a car door to the car body or, as is

more relevant for this dissertation, of virtual nature (Ulrich, 1995, p. 422). Those virtual

interfaces in the software domain describe the possible interactions among software

modules. These interfaces can be manifold from simple function calls in object-oriented

programming to sophisticated Application Programming Interfaces (APIs) across

several software technologies.

Third, the integration of all modules into a functioning system needs to be tested with

a defined integration protocol. Therefore, each module is tested against a defined

standard that ensures conformity to its design rules (Baldwin and Clark, 1997, p. 86).

Hidden design parameters do not affect the modular system beyond the borders of a

specific module. They describe the information that is not visible outside the module

and therefore can be chosen late in the design process (Baldwin and Clark, 1997, p. 85).

 21

In general, a module should hide as much information as possible to provide for a

flexible inner structure. This concept of information hiding (also named black box

concept) is of special relevance for the generation of complex software systems (Parnas,

1972, p. 1056; Yourdon and Constantine, 1979, p. 22). Software engineers generate

modules that can be fully integrated into larger systems without knowledge of the inner

operations of these modules. In addition to making a module’s inner design more

flexible, information hiding ensures that IP is kept within the boundaries of a module.

If the described design rules are followed, modularity provides a number of benefits:

Single modules can be changed without the need of changing other modules (Ulrich,

1995, p. 423; Baldwin and Clark, 1997, p. 85). In that case modularity enables

concurrent or asynchronous development of complex systems (Eppinger et al., 1994, p.

1; Ethiraj et al., 2008; LaMantia et al., 2008, p. 5). Modularity also increases the

flexibility to customize or alter a system (Schilling, 2000, pp. p. 312; Langlois, 2002, p.

24).

However, modularity does not come free of cost. Compared to an integral system,

additional efforts are required to define the design rules, the architecture and the test of

the entire system (Langlois, 2002, p. 23). Additionally, the modules may not work

together properly in a poorly designed system. Nevertheless, modularity entails

enormous flexibility for designers and users of a modular system (Baldwin and Clark,

1997, p. 85). As stated in the beginning of this section, as long as a system is subject to

change, modularity is generally worth the additional cost (Langlois, 2002, p. 24).

The modular structure of virtual systems can much easier be adapted throughout their

lifetime than in physical systems (Parnas et al., 1985). Thus, software systems can

easier be re-modularized ex-post, even if this typically entails additional cost and risks.

The decision for or against such a modular design is a managerial choice that can have a

significant impact on a product’s business performance. Therefore, the modular product

design is a constant element of managerial decisions in software companies

(MacCormack et al., 2006, pp. 1027–1028).

Modularity generates option value (the right but not an obligation) to adapt an

architecture (Baldwin and Clark, 2006, p. 1126). This option allows managers in

software companies to consider opening-up a product for other partners and generating

a platform or to implement open source software (OSS) business models. Recent

research shows that modularity is of special importance for OSS projects and can attract

developers to join a project (Lerner and Tirole, 2002, p. 220; Baldwin and Clark, 2006,

p. 1116).

 22

Figure 4 shows that the ideal modular design is always a compromise between

different rationales. Distributed development and flexibility in design are the two most

common rationales software architects have to balance.

Distributed R&D

Rationale Corresponding “ideal” modular design

Design flexibility

Resulting modular design

Figure 4 – Rationales for modular design (based on Henkel, 2011)

Distributed R&D refers to the requirement of having several modules whose

development can be split up across geographically different R&D facilities

(MacCormack et al., 2006, p. 1027). Vice versa, recent research shows that distributed

software development organizations are more likely to produce modular designs. This

phenomenon is named mirroring hypothesis (Sanchez and Mahoney, 1996).

Modularity keeps complex software flexible. It allows a designer to change a subset

of modules and re-use other modules to adapt a product to new requirements. In

addition, customers benefit from modularity because they can mix and match modules

that best satisfy their needs (Baldwin and Clark, 1997, p. 85, 2000, p. 59).

 23

2.3 IP modularity

A designer of a complex software system significantly invests before being able to

appropriate returns from his innovation. In his fundamental work on value

appropriation, Teece (1986) shows that firms often fail to appropriate value from their

innovations while customers, immitators and other industry players benefit.

As described in the previous chapter, modularity allows different parties to work on

modules independently. These parties can be various R&D departments within a firm

but also other organizations. As such, modular architecture enables the splitting of

innovation across firms, eventually resulting in an overall higher innovation activity

within the whole domain (Sanchez and Mahoney, 1996, p. 74). However, modular

systems also entail the risk of imitation of modules by third-party providers (Baldwin

and Clark, 1997, p. 86; Ethiraj et al., 2008).

Baldwin (2007, pp. 179–180) exemplifies this risk of an innovator failing to profit

from innovation with IBM’s introduction of the System/360. By modularizing a former

integral system, IBM triggered the development of substitutes for some of the IBM

System/360 modules by other companies. These companies could supply IBM

customers with peripheral devices with a better price-performance ratio than that of

IBM’s own products, resulting in a lower value that IBM could appropriate from its

innovation. Even worse, IBM lost control of the platform, and the biggest value share

was appropriated by its complementors.

The right strategy for value appropriation is of special relevance for software

platform providers that face the conflict between value appropriation and value creation

in their ecosystem (Cusumano, 2010, p. 43). Further details on IP modularity in

software platform ecosystems will be presented in Section 5.

This tension of value creation and value appropriation could be managed with the

concept of IP modularity as introduced first by Henkel and Baldwin (Henkel and

Baldwin, 2010, 2011). For this dissertation, we define a modular software system as

follows:

“IP modular software system: A software system is IP modular if its technical

module boundaries coincide with the boundaries of parts defined by

homogeneous IP rights. These IP rights not only comprise formal IP such as

patents, copyrights and licensing contracts but also informal IP such as secrecy

 24

(realized, e.g., by not disclosing a program’s source code).” (Waltl et al., 2012,

p. 95)

This definition introduces IP management to optimize value appropriation as an

additional rationale for the modularization of a software system. Figure 5 shows a case

where value appropriation is the dominant criterion for the modularization of a software

system (illustrated with the bold line in the resulting modular design). For the research

purposes of this dissertation, we focus on such cases to learn more about the decision-

making rationale.

Rationale Corresponding “ideal” modular design

Design flexibility

Resulting modular design

Distributed R&D

Optimized
value appropriation

Figure 5 – Optimized value appropriation as rationale for modularization

Intellectual property is the core asset of software product companies because their

business model is based on allowing customers to use their IP for a certain

compensation (Popp, 2011, p. 27). Many modern software systems are highly dependent

on externally developed components because it is not economically efficient to develop

everything in-house. Thus, modern software systems comprise of own developed IP but

also of third-party IP.

 25

To illustrate IP modularity, we can imagine a software system that is modularized

based on a certain rationale such as distributed R&D or flexibility as shown in Figure 6

a).

 Outgoing IP: code that can be shared with customers or complementors

 Differentiating IP: code that differentiates the software system from competition

 Incoming IP: third-party code (licensed-in or open source)

B

a) non IP modular b) IP modular

B

B B

CC C C

A

A

AB B

B

B B

CC C C

A

A

AB

A

C

B

Differentiating
IP

Outgoing
IP

Incoming IP

Figure 6 – IP incompatibility

In the non IP modular case shown above the system consists of linked elements of

which each carries a certain IP status of Outgoing IP, Differentiating IP or Incoming IP

(Henkel and Baldwin, 2010, p. 10). Outgoing IP could be code that can be shared with

customers or complementors to improve cooperation. Differentiating IP is code that

differentiates the software system from competing systems that is essential for a

company’s business model and motivates customers to pay for the software system.

Incoming IP is coming from third-parties, which could be licensed-in or open source

code. We call such modules that include elements with different IP status IP

incompatible.

This IP incompatibility can lead to strategic disadvantages. For example, if the

source code of all artifacts labeled with A should be provided to a customer or a

complementor, two modules are affected. As shown in Figure 6 a), the release of all A

would also include B artifacts. By releasing B artifacts, a company would restrict its

options to appropriate value for these elements that differentiate its offering from

 26

competition. Likewise, if the third-party IP marked with C should be exchanged in the

non-IP modular case, two modules would be affected.

Modular software design with regard to IP can prevent the described risks. Figure 6

b) illustrates an IP modular software design with homogeneous IP statuses within each

module. All artifacts with Differentiating IP (B) are clustered within a separate module.

The example also allows us to introduce the difference between incoming IP and

outgoing IP as first described by Henkel and Baldwin (2010):

“With incoming IP […] the IP under consideration is owned by some party

external to the focal firm. The owner of the IP has determined the IP status of

the knowledge under consideration, and the focal firm must accept the bundle of

rights and possibilities it has been granted.

With outgoing IP, the focal firm owns the IP under consideration, and is free to

award to each element the IP status it finds most advantageous.” (Henkel and

Baldwin, 2010, p. 12)

Henkel and Baldwin (2010) analyze the theoretical conditions under which IP

modularity is beneficial and thus, assuming rational behavior on behalf of system

architects, most likely to be observed. In particular, they derive propositions for

incoming and outgoing IP (Henkel and Baldwin, 2010, pp. 19–21) :

Proposition 1: [Value Co-creation] The greater the potential for value co-creation in

the surrounding ecosystem, the more advantageous is outgoing IP modularity. Module

boundaries should go between the open and proprietary IP.

Proposition 2: [Distributed Co-creators] The more distributed, numerous, and

anonymous the co-creators of value, the more advantageous is outgoing IP modularity.

Proposition 3: [Complexity] The more complex the downstream system, the more

advantageous is outgoing IP modularization. The module boundaries should separate

the IP that helps to integrate the focal component into the system from that which

contributes to the component’s internal performance.

 27

Proposition 4: [Customization] The greater and more varied the need for downstream

adaptations, the more advantageous is outgoing IP modularization. The module

boundaries should separate the IP that serves as the basis for modification from the IP

supporting the proprietary “core” modules.

Proposition 7: [Holdup Risk] Incoming IP modularity is advantageous when the focal

firm faces the risk of holdup from suppliers of incoming IP. The module boundaries

should go between the firm’s own IP and the incoming IP.

These propositions are the starting point for the case study research in this

dissertation as presented in the following sections.

 28

3 Research methodology

This section describes the applied research methodology. Based on the research

goals, we identify the optimal research approach. We provide a detailed description of

all steps in the applied research approach and use concrete examples for illustration.

Section 3.1 addresses the principals of selecting the appropriate research

methodology for management field research. Section 3.2 provides a detailed description

of the qualitative approach employed for case study research – which is the core source

of insight for this dissertation. Finally, Section 3.3 provides an overview of the methods

used for quantitative hypotheses-testing applied for this dissertation.

3.1 Selection of a hybrid research approach

As described in the previous section, there is little empirical evidence on the concept

of IP modularity in general and even less on IP modularity in software systems.

Therefore, to our knowledge, this dissertation is the first empirical study to identify the

strategic implications of IP modularity for software products and platforms.

Because of the novelty of this research field, selecting the appropriate research

approach is highly important. Edmondson and McManus (2007) note that

methodological fit is a key quality criterion in management field research that must be

considered prior to the start of a research project. This type of fit is defined as internal

consistency among the various elements of a research project, such as the research

question and methodology.

In general, management field research can be divided into three categories that

correspond to different types of theory. First, nascent field research focuses on

completely new topics. In this type of research, primarily qualitative methods are

applied to generate new theory (Eisenhardt, 1989, p. 536). Second, intermediate

research aims to extend existing theory through the utilization of a mix of qualitative

and quantitative methods. Third, mature research focuses on testing and detailing

established theories using quantitative methods.

According to Edmondson and McManus (2007), methodological fit follows a mean

tendency for these three types of theory and the type of data to be researched (see Figure

7).

 29

Nascent Intermediary Mature

Quantitative

Hybrid

Qualitative

Theory

Data

Focus of this
research project

Figure 7 – Methodological fit

(based on Edmondson and McManus, 2007)

As for this research project, a mature scientific literature exists for each of the

relevant research fields (modularity, platforms, value appropriation and software

business models). We enter uncharted territory in combining these research fields with

the new concept of IP modularity (Henkel and Baldwin, 2010, 2011). In particular, there

is no existing theory on the impact of IP modularity on software products, platforms and

platform ecosystems. Therefore, this research project can be categorized as research

located between nascent and intermediary field research. It has a strong focus on

qualitative research methods followed by first tests of the identified hypotheses through

the use of quantitative methods. Edmondson and McManus (2007) describe the benefit

of such a hybrid approach for scientific insight and rigor as follows:

“The combination of qualitative data to help elaborate a phenomenon and

quantitative data to provide preliminary tests of relationships can promote both

insight and rigor.” (Edmondson and McManus, 2007, p. 1165)

Applying this research approach, we begin with a detailed analysis of existing

research in the focus research fields to derive basic research questions. Based on this

analysis, the effects of IP modularity on software products and platforms are analyzed

using qualitative methods. Finally, the effects of IP modularity on software platform

 30

attractiveness for providers of complementary software products are verified using

quantitative methods (Mahoney, 2006, p. 230). Figure 8 shows the applied hybrid

research process, which includes initial qualitative and subsequent quantitative analysis.

Analysis
Study design and

execution
Orientation

Cross-case
analysis

Within-case
analysis

Coding

InterviewsDesign

Q
u

al
it

at
iv

e
Q

u
a

n
ti

ta
ti

v
e

Hypotheses

Analysis

Result alignment

Figure 8 – Hybrid research process

For our novel research field, the qualitative research facilitates shaping of the

research hypotheses that are tested using quantitative analysis. Finally, the results of

hypotheses-testing are aligned with the expected results obtained from the initial

qualitative analysis.

3.2 Case study research

Having identified qualitative research approaches as most suitable for the initiation

of the research endeavor, the appropriate method must be chosen. The literature on

qualitative research lists five methods: experiment, survey, archival analysis, history

and case study (Yin, 2009, p. 8). The selection is based on the research question type,

the degree of control over behavioral events and the degree of focus on contemporary

events.

Given the research objectives of this dissertation, the case study method is identified

as the best fit, as the research questions begin with “how” and “why” (see Section 1)

and we have no control over the contemporary real-life events we study. Using this

selection logic, we adhere to the work of Yin (2009), who describes a case study as

follows:

 31

“1. A case study is an empirical inquiry that investigates a contemporary

phenomenon in depth and within its real-life context, especially when the

boundaries between phenomenon and context are not clearly evident.

2. The case study inquiry copes with the technically distinctive situation in which

there will be many more variables of interest than data points, and as one result

relies on multiple sources of evidence, with data needing to converge in a

triangulating fashion, and as another result benefits from the prior development

of theoretical propositions to guide data collection and analysis.” (Yin, 2009, p.

18)

Case studies are becoming increasingly popular in management field research and

information systems research (Dubé and Paré, 2003, p. 599). This trend has manifested

itself in an increasing number of scientific publications in high-quality journals based

on case study research in the last decade (Bansal and Corley, 2011, p. 234). One of the

reasons for this growing popularity is that case study research is one of the best manners

of generating novel theory that bridges the gap between qualitative evidence and

mainstream deductive research (Eisenhardt and Grabner, 2007).

In its essence, a case study attempts to illuminate decisions. The final result reveals

why particular decisions were made, how they were implemented, and the results of

these decisions (Yin, 2009, p. 17). Case study research can be employed for various

purposes: to provide description, to test theory and to generate new theory (Eisenhardt,

1989, p. 535). In the context of this dissertation, we focus on the generation of new

theory that extends the existing research on IP modularity in the software domain.

Generating high-quality case study research is not trivial, and quality evaluation does

not follow clear rules. However, a set of best practices has emerged in recent years.

First, published papers follow a consistent structure (Pratt, 2009, pp. 858–861; Bansal

and Corley, 2011, p. 234) . Typically, the sections are as follows: introduction, literature

review, methods, findings and discussion. Second, there is an increasing tendency to

code data. Third, the findings are illustrated through the use of detailed tables, graphs,

diagrams and organizing figures. Finally, propositions are increasingly applied to

display the study’s theoretical contribution. The final report should be written in a

concise manner and should read like a well crafted story (Pratt, 2009, pp. 858–861) . In

addition, best practices are described best by Eisenhardt and Grabner (2007, p. 30):

 32

“[…] challenges can be mitigated through precise language and thoughtful

research design: careful justification of theory building, theoretical sampling of

cases, interviews that limit informant bias, rich presentation of evidence in

tables and appendixes, and clear statement of theoretical argument.”

(Eisenhardt and Grabner, 2007, p. 30)

Additionally, pitfalls such as reinventing the wheel and providing no significant

contribution to existing theory can diminish the quality of a case study. These hurdles

can be overcome by clearly pinpointing which theoretical conversations are affected by

the results of the study and the current status of these conversations (Pratt, 2009). How

the researcher engaged with the phenomenon of interest must be fully transparent, and

evidence for the conclusions must be provided (Bansal and Corley, 2011, p. 236).

Deficiencies in methodology and rigor are critical for any type of social science

research. These deficiencies are particularly problematic in qualitative case studies

because they form the starting point for further quantitative research. Additionally,

recommendations for practitioners regarding real-life management situations could lose

relevance without rigor. Therefore, four criteria for ensuring validity and rigor in case

study research should be followed, best described by Gibbert et al. (2008, pp. 1466–

1469) and Yin (2009, pp. 40–45) and presented in the following paragraphs.

Internal validity is achieved when the research conclusion can be defended with

compelling logical reasoning and plausible arguments. A clearly communicated

research framework and constant comparison of the empirically identified patterns with

those predicted can increase internal validity. We ensure internal validity through the

use of a detailed description of the applied research framework.

During the data collection phase, construct validity must be considered. Construct

validity is defined as the extent to which a study investigates what it claims to

investigate. Researchers must identify the correct operational measures for the concepts

that are studied (Yin, 2009). Furthermore, the triangulation of results through the use of

data from multiple data collection methods is a measure to ensure construct validity

(Gibbert et al., 2008, pp. 1466–1469) . In this qualitative research, we endeavor a rich

set of secondary data sources (see Table 4), such as company internal documents,

analyst reports and field notes, which complement the data obtained from case

interviews.

 33

External validity measures to what extent the findings can be generalized beyond the

concrete context of the study. Case studies can provide a good basis for analytical

generalization when results are derived using cross-case comparison. Additionally,

researchers should provide a clear rationale for case selection and describe the case

context in as much detail as possible (Gibbert et al., 2008, p. 1468). In this dissertation

we ensure external validity with a clear case selection approach as shown in Figure 13.

A case study’s reliability can be increased when all research steps are displayed in a

highly transparent manner such that subsequent researchers can draw the same

conclusions when they replicate the study. We ensure the reliability by providing all

relevant data in the appendix of this dissertation. Following that a replication of the

analysis is likely to lead to identical outcomes (Yin, 2009).

The literature provides a number of methods of generating novel theory from case

study findings. The most fundamental method is grounded theory research, as

introduced by Glaser and Strauss (2008). The basis for this method is the continuous

comparison of data and theory, beginning with data collection. New theoretical

categories emerge solely from evidence and an incremental approach to case selection

and data gathering (Eisenhardt, 1989, p. 534). Grounded theory is best suited to gaining

an understanding of the process how actors construct meaning out of intersubjective

experience (Suddaby, 2006, p. 636). To identify patterned relationships between social

actors, it is important to elevate data to a conceptual level through the use of a focused

research process. The application of a grounded theory approach leads to a detailed case

study description but does not entail the formulation of concrete testable hypotheses

(Glaser and Strauss, 2008).

As our research is based on preexisting theory, we apply a positivist research

approach (Eisenhardt, 1989, p. 546; Eisenhardt and Grabner, 2007; Dubé and Paré,

2003; Gephart, JR., 2004, p. 456). Through the contrasting of preexisting

understandings, as well as observations made during concrete cases we want to further

elaborate existing theory (Greenwood and Suddaby, 2006, p. 33).

To conclude this section, we argue that in management field research, case studies

are a powerful tool for the generation of novel theory. However, the generation of high-

quality case study reports is not trivial and is susceptible to criticism with regard to a

number of possible pitfalls (Bansal and Corley, 2011). Thus, in this dissertation, a series

of measures are taken to ensure quality in the derived results. The research process

 34

follows a three-phase process consisting of design, interviews and analysis (see Figure

9):

Cross-case
analysis

 Identification of
cross-case
patterns

 Theory
development

 Verification of
findings using
the existing
literature

 Assessment
Matrix
generation

 Identification of
case-specific
conclusions

Within-case
analysis

Coding

 Definition of
initial coding
scheme

 Interview
coding

 Coding
refinement

 Interviewee
identification

 Interview
execution and
transcription

 Identification of
secondary data
sources

Interviews

 Case study
design

 Interview
design

Design Analysis

Figure 9 – Qualitative research process (based on Yin, 2009)

This process is based primarily on the work of Yin (2009), Eisenhardt (1989) and

Miles and Huberman (1994). The following sections provide a detailed description of

this process and its application in this dissertation.

3.2.1 Case design

As an initial step in the research process, the case design is specified. This

specification provides a logical plan for progressing from the initial research questions

to their corresponding answers. During this step, the research questions, possible

propositions and the unit of analysis are defined (Yin, 2009, p. 27). Additionally, the

research cases are identified based on a selection logic derived from the research topics.

Case study design

At the least, the basic research questions must be broadly specified at the beginning

of a qualitative research endeavor. Throughout the research process, the research

questions are adapted and finalized based on additional findings through the use of an

iterative process (Eisenhardt, 1989, p. 536). It is common to derive these initial research

questions from the existing literature.

 35

The basic research questions (see Section 1) of this dissertation are formulated based

on prior research on IP modularity (Henkel and Baldwin, 2010, 2011) and software

platform ecosystems (West, 2003; Gawer, 2009; Eisenmann et al., 2009; Boudreau,

2010; Cusumano, 2010) but are phrased in an open way to prevent the development of

result bias from unilateral questioning:

Research topic one (see Section 4): IP modularity in software products

 Why are software products modularized with regard to IP considerations?

 How do the intended effects of IP modular product design relate to the real

effects?

Research topic two (see Section 5): IP modularity in software platform ecosystems

 Why are software platforms modularized with regard to IP considerations?

 How does IP modular platform design influence the cooperation between

platform provider and complementors?

Research topic three (see Section 6): The impact of IP modularity on platform

attractiveness

 How does IP modularity influence the attractiveness of a software platform from

a complementor’s perspective?

We apply the following research framework to generate new theory on the effects of

IP modularity in software products and software platform ecosystems (see Figure 10).

Intended effects
of IP modularity

Other effects
of IP modularity

IP modularity
Real effects

of IP modularity

A

B

C D

Figure 10 – Research framework

 36

The arrows in Figure 10 show how the elements influence each other. The

characteristics of an IP modular system (C) are influenced by intended (A) and other

effects (B). The real effects (D) are influenced by the characteristics of the IP modular

system (C).

Beginning from this point, the overall goal for research topic one and two is to

generate cause and effect propositions with regard to IP modularity. For research topic

one in the incoming IP modularity case we also aim to verify Henkel and Baldwin’s

holdup proposition (Henkel and Baldwin, 2010, p. 26):

Proposition 7: [Holdup Risk] Incoming IP modularity is advantageous when the focal

firm faces the risk of holdup from suppliers of incoming IP. The module boundaries

should go between the firm’s own IP and the incoming IP.

While studying research topic three, the effects of IP modularity on software

ecosystem complementors, basic case study propositions guide us through the research

(Yin, 2009, p. 28). We base our research on Henkel and Baldwin’s (2010) four

propositions with regard to outgoing IP modularity (Henkel and Baldwin, 2010, pp. 19–

21) :

Proposition 1: [Value Co-creation] The greater the potential for value co-creation in

the surrounding ecosystem, the more advantageous is outgoing IP modularity. Module

boundaries should go between the open and proprietary IP.

Proposition 2: [Distributed Co-creators] The more distributed, numerous, and

anonymous the co-creators of value, the more advantageous is outgoing IP modularity.

Proposition 3: [Complexity] The more complex the downstream system, the more

advantageous is outgoing IP modularization. The module boundaries should separate

the IP that helps to integrate the focal component into the system from that which

contributes to the component’s internal performance.

Proposition 4: [Customization] The greater and more varied the need for downstream

adaptations, the more advantageous is outgoing IP modularization. The module

boundaries should separate the IP that serves as the basis for modification from the IP

supporting the proprietary “core” modules.

 37

After defining the basic research questions and identifying the primary research

propositions, the research cases must be defined. The overall goal is to select cases that

allow for generalization of the findings beyond the specific case. Drawing an analogy to

quantitative hypotheses-testing, we can think of all possible cases that can answer the

basic research questions as a population. This concept of a population facilitates

formation of the boundaries for the generalization and applicability of the emerging

theory (Yin, 2009, p. 15).

In a case study research project, a sample is drawn from this population. In contrast

to quantitative research, a random selection is neither necessary nor preferable. Cases

are chosen so that theoretical saturation can be achieved. When theoretical saturation

occurs, the addition of one more case would not result in more insight regarding the

identified theory. Additionally, the selection of polar cases can facilitate the

identification of findings that can be generalized (Eisenhardt, 1989, p. 537). There is no

fixed number of cases that should be included in a research project. The number of

cases required to generate robust findings depends on what the researcher wants to

answer (Pratt, 2009, p. 856). Eisenhardt (1989, p. 545) is more concrete and states that

four to ten cases is sufficient for the generation of excellent results.

The third component of a case study research design is the unit of analysis. The exact

definition derives from the primary research questions and can be an event, an entity or

a single person (Yin, 2009, p. 29). For the qualitative research portions of this

dissertation, we define the unit of analysis as follows:

Unit of analysis: A specific software product or platform whose modular structure is

influenced by considerations regarding the management of intellectual property rights.

This definition of the researched entity is consistent with prior research on software

product and platform modularity (Baldwin and Clark, 2000; Sosa et al., 2004; Baldwin

and Clark, 2006; MacCormack et al., 2006; LaMantia et al., 2008; Baldwin and

Woodard, 2009). Using this definition of the unit of analysis, we ensure that our

findings are generalizable and can be aligned with existing theory.

In this dissertation we follow a multi-case design approach, as this approach is likely

to deliver more robust and compelling results and aid the researcher in drawing a more

precise theoretical picture (Eisenhardt and Grabner, 2007, p. 27). A multi-case study can

be compared to the analysis of multiple experiments. Similarly to the experimental

 38

research requirement for careful experiment preparation, multi-case research requires

careful case selection. Case selection follows a replication logic, not a sampling logic,

as in quantitative research. Replication logic is aimed toward the duplication of the

results with altered conditions, resulting in a more robust theory.

To answer the research questions addressed in this dissertation, a theoretical

replication approach is favorable, as the juxtaposition of two contrasting cases can

generate a theory that is both more holistic and more robust (Eisenhardt, 1989, p. 537).

Case studies can follow a holistic or an embedded design approach. A holistic

approach is favorable when the unit of analysis is holistic in itself and no logical

subunits can be defined. However, in certain situations, the holistic approach risks the

generation of overly abstract or general results. In such cases, an embedded design

including several sub-cases is useful (Yin, 2009, p. 50). As in this dissertation, the

primary unit of analysis – a software product or platform – is holistic in itself, the study

primarily follows a holistic case design. To summarize, the qualitative research design

applied in this dissertation can be described as a holistic multi-case approach, as

illustrated in Figure 11.

holistic

embedded

single-case design multiple-case design

Context

Case

Context

Case

Unit of
analysis

Unit of
analysis

Context

Case

Context

Case

Context

Case

Context

Case

Context

Case

Context

Case

Context

Case

Context

Case

Applied
research
design

holistic

embedded

single-case design multiple-case design

Context

Case

Context

Case

Context

Case

Unit of
analysis

Unit of
analysis

Context

Case

Context

Case

Context

Case

Context

Case

Context

Case

Context

Case

Context

Case

Context

Case

Context

Case

Context

Case

Context

Case

Context

Case

Context

Case

Context

Case

Context

Case

Context

Case

Applied
research
design

Figure 11 – Case study research design (based on Yin, 2009, p. 46)

With the research design utilized here, the cases are selected based on the

specification of the respective research context. For this dissertation, the case study

 39

context for software product cases (research topic one, Section 4) and software platform

cases (research topic two, Section 5) differs.

Within each of these sub-contexts, incoming IP modularity and outgoing IP

modularity cases differ (see Section 2.3). With regard to incoming IP modularity, there

is no differentiation between software product and software platform.

As for outgoing IP modularity, the cases differ with regard to the respective vendor’s

IP strategy. For this dissertation, an IP strategy is defined as restrictive when the

product or platform is opened to customers or complementors with a strictly defined

API. In contrast, an IP strategy is considered open when additional IP is provided by the

platform vendor. This IP can be source code access based on special licensing

conditions (West, 2003, p. 1276) or the provision of additional insights into internal

data structures. This classification is important with regard to the selection of polar

cases, which is recommended by Pettigrew (2010, pp. 274–276) for comparative case

studies.

However, it must be mentioned that a gray-scale picture of product/platform

openness is transformed into a black and white one. By their nature, software platforms

in particular cannot follow an excessively restrictive IP strategy but also cannot be

completely open, which would result in total surrender of a platform vendor’s control

(Boudreau, 2010, p. 1850). Figure 12 displays the resulting matrix and the relevant area

for case selection.

Incoming Outgoing

Product

Platform

Type of IP modularity

Open IP
strategy

Restrictive
IP strategy

Case selection area

Figure 12 – Generic case selection matrix

 40

During concrete case selection, we follow a structured approach to identify the most

promising cases. First, a long list of twelve cases from five companies that experience

IP modularity was generated (see Table 1).

No. Case Company
Importance of
IP modularity

Type IP strategy

1 Linux graphic drivers
Suse Linux GmbH
(part of Attachemate Corp.)

medium product open

2 Engineering software - confidential - high product restrictive

3 Embedded Linux - confidential - medium product open

4 Data management software - confidential - high product open

5 Collaboration software - confidential - medium product open

6 Visualization software - confidential - medium product restrictive

7 Visualization toolkit - confidential - low product restrictive

8 Storage technology - confidential - low product open

9 SAP NetWeaver PI SAP AG high platform restrictive

10 SAP Business ByDesign SAP AG medium platform restrictive

11 SugarCRM SugarCRM Inc. high platform open

12 Force.com Salesforce.com Inc. N/A platform restrictive

Table 1 – Long list of possible research cases

In any case study, the disclosure of as much as possible case-specific information is

most desirable, as the reader’s trust in the case results can thereby be increased (Yin,

2009, p. 181). In this dissertation, we face the challenge of being unable to name one

company for confidentiality reasons. This company is a multinational technology

company with significant software businesses in several business units.

This anonymization does not limit the quality of our results because only the names

of individuals and specific products are affected, but all case-relevant data can be used

without any restrictions. Furthermore, the agreed-to confidentiality allowed the

company representatives to be more open and share additional internal documents.

Based on initial consultations with our company contacts, basic case descriptions

were developed and the importance of IP modular design for product or platform

success was rated by the researcher team in cooperation with the company

representatives. Therefore, we identified the strategic performance indicators for the

specific product or platform. Then, we discussed the impact of IP modular design on the

 41

indicators with the company representatives (see questions 14 to 16 in Figure 14). We

rated importance as high when the respondents categorized IP modular design as a vital

precondition for product/platform success.

From the initial long list of cases (see Table 1), the final selection of concrete cases is

aimed toward the identification of cases that cover both incoming and outgoing IP

modularity for software products and follow different IP strategies for software

platforms.

Finally, those cases on the long list in which the importance of an IP modular

strategy is rated highest were selected. Figure 13 provides the cases that were selected

based on this logic.

Case 11
SugarCRM

Incoming Outgoing

Product

Platform

Case 2
Engineering software

Case 4
Data management

software

Type of IP modularity

Case 9
SAP

NetWeaver
PI

Open IP
strategy

Restrictive
IP strategy

Case pair
research topic 1

Case pair
research topic 2

Figure 13 – Final case selection matrix

There is no special case for incoming IP modularity within the platform case, as it

does not differ from the product case in terms of its characteristics.

The case selection process results in a total of four selected cases, which is viewed as

sufficient for the generation of valid theory (Eisenhardt, 1989, p. 545). As this section

aims to focus on a general introduction to the applied case study research methodology,

the selected cases will not be described in detail here. Extensive descriptions of the

selected cases can be found in Sections 4, 5 and 6, which address the case study results.

 42

Interview design

As interviews provide the primary data source for case study research, thorough

preparation is essential. Therefore, a set of guiding questions is defined with the purpose

of maintaining the investigator’s focus during the case interview (Yin, 2009, p. 86).

Unlike in quantitative research, these questions act as guides for the case interviews and

do not have to be answered in a linear manner. Furthermore, one of the primary benefits

of case study research is that unexpected findings may arise from semi-structured case

interviews.

There is no clear rule regarding the level of detail of these guiding questions. Often, a

qualitative inquiry begins with a set of initial research questions and is then extended

during the course of the research:

“Although early identification of the research question and possible constructs

is helpful, it is equally important to recognize that both are tentative in this type

of research. No construct is guaranteed a place in the resultant theory, no

matter how well it is measured.” (Eisenhardt, 1989, p. 536)

For this study, two interview guidelines are used, one for software product and

platform providers (research topics one and two) and one for providers of

complementary applications (research topic three).

As shown in Figure 14, the interview guideline for software product and platform

providers is based on the initial research framework displayed in Figure 10 and includes

additional questions on the demographics and the role of the interview partner.

 43

1. Interview setup

2. Interviewee details: academic background, job project title & function, job with regard to case

3. Brief description of our research goals

Introduction

4. Validate and review prepared case basic description

5. What role did IP play as a criterion for modularization?

6. Was there a trade-off between IP modularity and other types of modularization?

7. Did the level of IP modularity that was established in the product imply higher cost and/or
technical drawbacks?

8. Who brought forward arguments related to IP in the process of designing the modular architecture?

IP
modularity

Other
effects

12. In addition to IP what were other drivers leading to this particular modularization?

13. How are IP considerations and other drivers for this particular modularization interrelated?

17. What are other factors related to IP Modularity in this particular product/technology/platform?

18. Which other stakeholders were involved?

19. Debriefing

Wrap-up

14. What are the performance indicators of this particular product/technology/platform?

15. Did the particular (re-) modularization affect product/technology/platform performance?

16. How did the particular (re-) modularization prevent risks for this product/technology/platform?

Real effects

9. What are the intended effects of IP modularity in this particular case?

10. How could the effects be ranked in importance?

11. Which strategic advantages were in this case obtained from IP Modularity?

Intended
effects

C

B

D

A

Figure 14 – Interview guideline for software product and platform providers

The interview guideline for ecosystem partners, as shown in Figure 15, is based on

the four guiding propositions for this qualitative research project, which are aimed

toward validation of the initial conceptual findings regarding outgoing IP modularity

arrived at by Henkel and Baldwin (Henkel and Baldwin, 2010).

1. Interview setup

2. Interviewee details: academic background, job project title & function, job with regard to case

3. Brief description of our research goals

Introduction

4. How did your product evolve and why did you choose your platform provider?

5. How does your interaction with the platform look like? (Proposition 1)

6. How does your current interface/contract with the platform provider look like (Proposition 2)

7. How complex is your complementary product? (Proposition 3)

8. How does your product extent/adapt the platform? (Proposition 4)

9. What is your offering for other platforms?

Product

10. What are the intended effects of IP modularity in this particular case?

11. How could the effects be ranked in importance?

12. Which strategic advantages were in this case obtained from IP modularity?

Platform &
ecosystem

13. What is your overall perspective on the ecosystem management of your platform provider?

14. Which other stakeholders were involved?

15. Debriefing

Wrap-up

Figure 15 – Interview guideline for ecosystem partners

 44

Figure 14 and Figure 15 present basic interview guidelines. To enable structured text

analysis (see Section 3.2.3), these guidelines2 have not been altered significantly

throughout the research process. However, minor adaptations have been implemented to

incorporate first findings for the benefit of the study as a whole, a method noted by Yin

(2009, p. 90):

“… the existence of such an outline should not imply rigid adherence to a

predesigned protocol. In fact, case study plans can change as a result of the

initial data collection, and you are encouraged to consider these flexibilities – if

used properly and without bias – to be an advantage of the case study method .”

(Yin, 2009, p. 90)

The interview guideline leads us through a case interview in terms of content. Overly

strict adherence to the given structure might ease the interview analysis, but valuable

information could be lost by disrupting the interview partner’s current thought

formation. During the interviews, we had to find the appropriate balance between focus

and openness to maximize the results. To mitigate this risk, both interview guidelines

have been pre-tested in simulated interview situations with a second researcher.

3.2.2 Case interviews

After the case interviews are set up, data generation is prepared from both a content

and an execution perspective: First, the interviewees are identified based on their roles

and importance to the case. Second, the interviews are scheduled with the interviewees.

Third, the interviews are executed and transcribed. Fourth and finally, each interviewee

is asked for additional data that support the discussed topics and opinions. In addition to

the data provided by the interviewees, publicly available documents such as internal

documents, analyst reports and findings from fellow researchers are gathered.

2 Some scholars refer to the interview guideline as an interview outline. For this dissertation, these terms
are used synonymously.

 45

Interviewee identification

We begin our case analysis for each case with a series of pre-interviews with our

primary contact persons in each respective case. The result is a basic case description

(see Section 3.2.1) and a list of possible additional interviewees. This list is generated

with the assistance of the primary contact person for the respective case and based on a

predefined list of roles in a typical software development organization. Table 2 lists the

basic role descriptions used for the pre-interviews.

Role Description and responsibilities

General manager Responsible for overal product performance

R&D manager Responsible for R&D budget

Staff function manager
Supports responsible management using special analysis
Typical functions: strategy, business development,..

Software architect Responsible for architecture decisions for specific product

Developer Involved in product development

Legal expert Expert involved in all IP-related issues

Sales manager Responsible for specific product sales

Ecosystem manager Manages partner ecosystem

Table 2 – Interviewee role description

The primary contact person then identified possible interview partners based on the

role descriptions. In addition, at the end of each interview, all interviewees were asked

to name additional stakeholders (question 18 in Figure 14 and question 14 in Figure 15).

Interview execution and transcription

A total of 30 interviews were conducted for the four cases between May 2011 and

September 2012. The majority of these interviews were conducted with general

managers and R&D managers. All interviewees’ job descriptions fit to one of the roles

provided in Table 2, but not all roles apply to each case.

Overall, more than 27 hours of interviews, which include 13 in-person and 17 phone

interviews, form a solid empirical basis for the case study analysis in this dissertation.

 46

The aim was to conduct each interview as a personal interviews because such a method

allowed us to gather additional information, such as field notes (Eisenhardt, 1989, p.

538) and direct observations (Yin, 2009, pp. 101–114) . Therefore, we made a

significant effort to conduct in-person interviews in five locations in Germany and in

two locations in the United States of America.

To generate a common understanding of the concepts and research objects, we sent

interviewees supporting material prior to the actual interview. Table 3 provides an

overview of all interviews for the selected cases.

No. Case Company Date Interviewee role Type

1 Engineering software - confidential - 2011-07-19 Software architect Phone
2 Engineering software - confidential - 2011-08-05 Developer In-person
3 Engineering software - confidential - 2011-08-08 R&D manager In-person
3 Engineering software - confidential - 2011-08-08 General manager In-person
4 Engineering software - confidential - 2011-08-26 R&D manager In-person
5 Engineering software - confidential - 2011-08-31 Software architect In-person
6 Engineering software - confidential - 2011-09-01 R&D manager In-person
7 Data management software - confidential - 2011-05-03 R&D manager In-person
8 Data management software - confidential - 2011-07-28 Developer Phone
9 Data management software - confidential - 2011-07-29 R&D manager Phone

10 Data management software - confidential - 2012-05-24 General manager Phone
11 SugarCRM SugarCRM Inc. 2011-08-12 General manager Phone

12 SugarCRM SugarCRM Inc. 2012-08-25 Sales manager In-person

13 SugarCRM SugarCRM Inc. 2012-09-19 General manager In-person

14 SugarCRM SugarCRM Inc. 2012-09-19 Legal expert In-person

15 SugarCRM SugarCRM Inc. 2012-09-19 R&D manager In-person

16 SugarCRM SugarCRM Inc. 2012-09-19 Staff function manager In-person

17 SugarCRM SugarCRM Inc. 2012-09-23 General manager In-person

18 SugarCRM KINAMU AG 2011-12-07 General manager Phone

19 SugarCRM Insignio CRM GmbH 2011-12-12 General manager Phone

20 SugarCRM MyCRM GmbH 2011-12-16 General manager Phone

21 SugarCRM SugarCRM Inc. 2012-01-24 R&D manager Phone

22 SugarCRM SugarCRM Inc. 2012-03-01 Staff function manager Phone

23 SAP SAP AG 2011-08-22 Staff function manager Phone

24 SAP SAP AG 2011-09-01 Staff function manager Phone

25 SAP SAP AG 2011-10-06 Software architect Phone
26 SAP SAP AG 2011-11-09 Software architect In-person

27 SAP
Information
Builders Corp.

2012-03-09 Software architect Phone

28 SAP SAP AG 2012-03-09 Ecosystem manager Phone

29 SAP SAP AG 2012-03-13 General manager Phone

30 SAP Itelligencene AG 2012-03-14 Software architect Phone

Table 3 – List of case interviews

The interviews were conducted primarily in the mother tongues of the interviewees.

To prevent case analysis bias, the interviews have not been translated into one language.

The two interviews that could not be recorded because of confidentiality reasons were

summarized by the interviewer(s) in interview write-ups and aligned with the

 47

interviewees. For confidentiality reasons, all person, company, product and location-

based data in the interview transcripts for Case 2 and Case 4 were anonymized. In total,

313 pages of interview transcripts and write-ups were generated for the case database.

Secondary data sources

In addition to the interview transcripts, our analysis is based on data such as official

presentations and internal documents. Therefore, each interviewee was asked to share

additional documents. Additionally, external data sources such as conference

presentations and analyst reports are added to the case database (see Table 4).

No. Case Additional information Type

1 Engineering software List of components affected by IP modularization Internal document

2 Engineering software Architecture introduction Internal document

3 Data management software The use of free and open source software Conference presentation

4 Data management software Third-party software adoption and management process Internal document

5 SugarCRM Dow Jones company report 2011 Analyst report

6 SugarCRM The Forrester Wave™: CRM Suites For Midsized Organizations Analyst report

7 SAP NetWeaver PI List of API components Internal document

Table 4 – Secondary data sources

This rich set of secondary data sources enables the use of a data triangulation

approach during the analysis phase, increasing the construct validity of the findings

(Yin, 2009, p. 116).

3.2.3 Case analysis

The analysis of case data is the most important and difficult step in generating theory

from case study research. In this dissertation, we derive our findings from multiple

analyses: First, the categories obtained from the iterative coding process, second, the

results of the within-case analysis and, third, the results of the cross-case comparison.

The most important criterion for high-quality case analysis is the close linkage of

data and conclusions, which can be assured with a detailed documentation of all

 48

analysis steps (Eisenhardt, 1989, p. 539) (see Figure 9), as provided in the following

paragraphs.

Definition of initial coding scheme

As suggested by Miles and Huberman (1994, p. 58), the initial coding scheme is

derived from the interview guidelines (see Figure 14 and Figure 15), which are based on

the basic research design. Thus, the coding scheme, the interview guideline and the

research framework are aligned so that the questions for research topics one to three can

be answered:

Research framework Root node Interview question

C - IP modularity in research case Q04 - Case review and validation Validate and review prepared case description

Q05 - IP as modularization criterion What role did IP play as a criterion for modularization?

Q06 - Modularization trade-offs Was there a trade-off between IP modularity and other
types of modularization? If so, in what respect?

Q07 - Costs and drawbacks Did the level of IP modularity that was established in the
product imply higher cost and/or technical drawbacks?

Q08 - Stakeholders and decision power Who brought forward arguments related to IP in the
process of designing the modular architecture? And - if
this was the outcome - who finally decided to base
modularization strongly on IP considerations?

A - Intended effects Q09 - Intended effects What are the intended effects of IP modularity in this
case?

Q10 - Effects ranking How could these effects be ranked in importance?

Q11 - Strategic advantages Which strategic advantages were in this case obtained
from IP modularity?

B - Other effects Q12 - Non-IP modularization drivers In addition to IP what were other drivers leading to this
particular modularization?

Q13 - Interrelations IP- and other drivers How are IP considerations and other drivers for this
particular modularization interrelated?

D - Real effects Q14 - Platform performance indicators What are the performance indicators of this particular
product/technology/platform ?

Q15 - Modularization impact on performance Did the particular (re-)modularization affect product/
technology/platform performance? If so, how strongly?

Q16 - Modularization impact on risk mitigation How did the particular (re-)modularization prevent risk
for this product/technology/platform? If yes, how strong?

Table 5 – Initial coding scheme

This approach results in logical consistency throughout the entire research process

and increases the construct validity of this qualitative research project.

 49

Interview coding

In the course of case study research, massive amounts of data are collected, and

addressing this complexity is the key challenge (Miles and Huberman, 1994, p. 56). The

risk of being overwhelmed by the mass and complexity of data is inherent, as Pettigrew

(2010) describes:

“The result is death by data asphyxiation – the slow and inexorable sinking into

the swimming pool which started so cool, clear and inviting and now has

become a clinging mass of maple syrup.” (Pettigrew, 2010)

Structured coding has become a best practice for mitigating this risk (Bansal and

Corley, 2011, p. 234). Coding is the process of attaching units of meaning (codes) to

portions of the original data such as interview transcripts. Coding reduces complexity

and maintains the context of the single parts (Miles and Huberman, 1994, p. 56). The

information portions can be of different sizes, from full paragraphs to single words. In

addition, a coding scheme, consisting of different categories, is required for the

categorization of the various portions of information and that the researcher is to be able

to quickly find the portions relating to a specific research question (Miles and

Huberman, 1994, p. 56).

As the interviews typically do not strictly follow the interview guideline, there is a

degree of overlap among the answers given. Thus, multi-coding of certain parts of the

original data is required.

To ease the coding process, the standard software package NVivo from QSR

International Pty Ltd. has been used to support the iterative coding process (Yin, 2009,

p. 128). In this software, categories are referred to as nodes. Thus, for this dissertation,

“category”, in terms of the coding scheme, and “node” are used synonymously.

As proposed by Eisenhardt (1989, p. 538), multiple investigators were involved in

coding and reviewing to increase confidence in the findings.

Coding refinement

Because the entire qualitative research process is iterative in nature, this initial

coding scheme can be adapted throughout the research process. The idea is that the

researcher becomes familiar with the case as stand-alone entity (Eisenhardt, 1989, p.

 50

541; Miles and Huberman, 1994, p. 65). Revising the initial coding scheme is a

prerequisite for the identification of unexpected findings:

“Researchers with start lists know that codes will change; there is more going

on out there than our initial frames have dreamed of, and few field researchers

are foolish enough to avoid looking for these things.” (Miles and Huberman,

1994, p. 63)

The coding approach applied for this dissertation combines both inductive and

deductive elements. In this approach, deductive elements form the basic research

framework (see Figure 10), and the case study propositions are derived from prior

studies. The coding scheme is extended when new constructs that emerge throughout

the coding process. With regard to these new constructs, the data are approached

without preconceived propositions, which allows the new theory to emerge from the

data in a pure manner (Glaser and Strauss, 2008, p. 46).

The constructs that emerge from the data during this iterative process are the basis

for further analysis and key elements of the cross-case comparison.

Within-case analysis

The importance of the within-case analysis is driven by the serious need to reduce

the staggering volume of data without losing vital details (Eisenhardt, 1989, p. 540).

The emerging categories, as described in the preceding paragraphs, form the first

indications of the identified theoretical constructs. The within-case analysis investigates

how the identified constructs are interrelated. A common method of within-case

analysis is the use of data displays (data abstractions in matrices) that facilitate the

development of plausible reasons for why things are occurring (Miles and Huberman,

1994, p. 90).

Assessment matrix generation

Miles and Huberman (1994, pp. 90–141) provide a variety of assessment matrices

(displays) that assist the qualitative researcher during within-case analysis: partly

ordered displays, time-ordered displays, role-ordered displays and conceptually-ordered

displays.

 51

Based on the specific criteria for each display, we identify the partly ordered

checklist matrix as a perfect fit for our research approach:

“A checklist matrix is a format for analyzing field data on a major variable or

general domain of interest. The basic principle is that the matrix includes

several components of a single, coherent variable, though it does not necessarily

order the components.” (Miles and Huberman, 1994, p. 105)

Checklist matrices are well suited to the exploration of new domains (Miles and

Huberman, 1994, p. 109) – which is the case for our research endeavor on IP modularity

– and for new field research in the information systems domain (Lee and Cheung, 2004,

p. 7).

We collect comparable data from all key respondents and process it in the specific

format of the predefined interview guideline. Looking ahead in the analysis process, the

checklist matrix is suitable for within-case analysis and, furthermore, can easily be

customized for cross-case analysis purposes (Miles and Huberman, 1994, p. 105).

We combine the checklist matrix with the notion of roles that differ among the

interviewees on the list (see Table 2). This dimension is added because in the course of

our research, we experienced that the roles of the respondents significantly influence

their views on IP modularity.

By adding the notion of roles, we extend the checklist matrix using elements of a

role-ordered matrix (Miles and Huberman, 1994, p. 123). The resulting checklist matrix

shows the identified categories on the Y-axis. The interviewees and their roles are

shown on the X-axis. The cells are populated with an “x” or the evaluations “Low”,

“Med” or “High.” “x” indicates that the category – in this case, a type of intended effect

– is mentioned but not evaluated in terms of its importance. The evaluations “Low”,

“Med” or “High” are based on the concrete statements in the coded quotes. To minimize

bias resulting from subjective judgment, all evaluations have been reviewed by a second

researcher.

Identification of case-specific conclusions

The overall idea of a detailed within-case analysis is to familiarize oneself with the

case and allow the case-specific pattern to emerge prior to the cross-case analysis

(Eisenhardt, 1989, p. 540). The assessment matrix and the original data are always

 52

closely linked. Thus, the assessment matrix acts as a vehicle for the identification of

interrelations between identified constructs, but the original case data are required for an

understanding of these interrelations and the generation of valid theory (Miles and

Huberman, 1994, p. 101). In our results, we are explicit and demonstrate how these

interrelations are identified to ensure case study reliability (Miles and Huberman, 1994,

p. 109).

Generating meaning from the sheer mass of case data is the most difficult element of

case study research. Unfortunately, this element is also the least structured element

(Yin, 2009, p. 127). Miles and Huberman (1994, pp. 245–261) describe 13 tactics for

generating insights from data displays (Miles and Huberman, 1994, pp. 245–261) . Yin

(2009, pp. 136–160) provides five elementary analytic techniques: pattern matching,

explanation building, time series analysis, logic models and cross-case synthesis (Yin,

2009, pp. 136–160) .

These analysis techniques support our search for meaning in the case data. A key

challenge is the identification of the appropriate set of techniques for analyzing the data

for a specific case. For within-case analysis, Yin (2009, p. 136) identifies the pattern-

matching approach as the most useful technique. Additionally, Miles and Huberman

(1994, p. 106) explicitly suggest the use of a pattern matching tactic for the analysis of

checklist matrices. Patterns are similarities and differences across categories within the

given context of an assessment matrix (Miles and Huberman, 1994, p. 246). If the

identified similarities and patterns match the predicted ones, solid conclusions can be

drawn and, through further analysis, logic models can be generated (Yin, 2009, p. 137).

In our case, the research framework is tested and extended using identified constructs

that emerge during the coding process. With this approach, we identify new theoretical

constructs and draw our conclusions by reflecting on them in relation to the predefined

research framework and the case study propositions (see Section 3.2.1). This approach

allows us to draw initial conclusions and generate novel theory from single-case

analysis (Yin, 2009, p. 149).

Identification of cross-case patterns

The initial within-case analysis provides us with valid findings and a sound

understanding of each case. However, the real power of case-study analysis lies in the

comparison of cross-case patterns, as it increases the reliability of the findings and

reduces the risk that the findings will be idiosyncratic (Yin, 2009, p. 156; Miles and

 53

Huberman, 1994, p. 172). Eisenhardt (1989, p. 540) frames the rationale for cross-case

analysis as follows:

“Overall the idea behind these cross-case searching tactics is to force

investigators to go beyond initial impressions, especially through the use of

structured and diverse lenses on the data.” (Eisenhardt, 1989, p. 541)

We utilize three basic analysis tactics. First, we search for similarities within a

certain set of categories. In our case, a similarity could for example exist in terms of the

intended effects of IP modularity. Second, we select pairs of cases and list similarities

and differences among these cases. Third, we separate the analysis in accordance with

type of data source (Eisenhardt, 1989, pp. 540–541) .

For this dissertation, we compare polar case pairs of software products and

platforms, as shown in Figure 16.

Case 9
SAP

NetWeaver
PI

Incoming Outgoing

Product

Platform

Case 2
Engineering software

Case 4
Data management

software

Type of IP modularity

Case 11
SugarCRM

Open IP
strategy

Restrictive
IP strategy

Case pair
research topic 1

Case pair
research topic 2

Figure 16 – Case pairs for cross-case analysis

We compare the effects of outgoing IP modularity for an engineering software

product (Case 2) with the effects of incoming IP modularity for data management

software (Case 4). On the software platform side, we juxtapose SugarCRM with an

open IP strategy (Case 11) and SAP NetWeaver PI (Case 9) with a restrictive IP

strategy.

 54

The concrete findings obtained using cross-case analysis emerge through the use of

the iterative research approach with regard to the concrete case pair and are described in

detail in Sections 4 and 5.

Theory development

The overall goal of this qualitative research project is the extension of the existing

theory on IP modularity with novel findings derived from empirical evidence. These

new findings can be concepts, conceptual frameworks, propositions or mid-range

theories (Eisenhardt, 1989, p. 545).

Based on the findings obtained using the within-case and cross-case analysis, we

formulate new theory by constantly refining the definition of the identified constructs

and compiling evidence across cases (Eisenhardt, 1989, p. 541). The permanent

comparison of emerging theory and case data allows us to shape our identified

constructs and verify the relationships between them.

We finally aim to generate novel findings and formulate concrete propositions that

extend the existing literature on IP modularity.

Verification of findings with existing literature

The research design of this dissertation allows us to extend the existing literature on

IP modularity based on within-case and cross-case analysis. The internal validity and

generalizability can be further enhanced by linking the results to the existing literature

(Eisenhardt, 1989, p. 545).

If the findings are congruent with the extant literature, a higher conceptual level can

be achieved. However, conflict between the findings and existing research is also

beneficial to the quality of the case-results. In such a case, the researcher is forced to

enter a more creative and frame-breaking mode of thinking, which often results in

deeper insight into the emergent theory (Eisenhardt, 1989, p. 544).

The comparison of the findings with the existing literature defines the boundaries of

generalization of the results of this case study project (Miles and Huberman, 1994, p.

279). For this dissertation, we juxtapose the emerging theory on IP modularity in

software products and platforms (Sections 4 and 5) with existing research conducted by

Henkel and Baldwin (2010); Baldwin and Henkel (2011).

 55

3.3 Quantitative research

Based on the qualitative findings regarding the impact of IP modularity on software

platform ecosystems (see Section 5), we follow our hybrid research approach (see

Section 3.1) and conduct a quantitative survey to complement our qualitative findings.

Qualitative methods focus on the verification of established theories through the

testing of concrete hypotheses (Creswell, 2003; Mahoney, 2006; Edmondson and

McManus, 2007)3. Similarly to qualitative research, quantitative research follows a

structured research process. For our research endeavor, we apply a three-step approach

based on Flick (2011):

Analysis

 Sample description

 Hypothesis-tests

 Operationalization

 Research design

 Sampling

 Method selection

Study design and
execution

 Literature review

 Qualitative pre-study

 Hypothesis generation

Orientation

Figure 17 – Quantitative research process

The following sections provide the methodological details of the three phases of the

qualitative research process. The detailed results are presented in Section 6.

3.3.1 Orientation

During the orientation phase, the research problem is selected and the relevant

scientific literature is reviewed.

Based on the findings regarding the impact of IP modularity on software platform

ecosystems discussed in Section 5, the research problem is formulated as follows

(named research question in Section 3.2.1):

3 This section builds on the Master thesis of Schreiner Schreiner (2012) that essentially based on the
findings of Waltl et al. (2012). The primary focus of the work was the extension of qualitative findings on
the implications of IP modularity in software platform ecosystems (see Section 5) and the preparation of
further quantitative analysis of the implications of IP modularity for the attractiveness of a software
platform for providers of complementary software products.

 56

Research problem: How does an IP modular platform architecture influence the

attractiveness of a software platform from a complementor’s perspective?

A qualitative pre-study, conducted as described in Section 3.2, in combination with a

thorough review of the literature on modularity (see Section 2.2) and platform

attractiveness (see Section 6.1, Figure 46), yields a model describing the factors

influencing the attractiveness of a software platform:

1. Platform provider setting

2. Complementor setting

3. Platform attractiveness

3.1 Willingness to initially invest

3.2 Willingness to further invest

Return on investment

3.3 Expectations met

3.4 Pay-off

1.1 Perceived fairness of platform provider

1.2 Perceived risk to become dependent on platform provider

1.3 Level of feasibility to generate customized solutions

1.1 Perceived fairness of platform provider1.1 Perceived fairness of platform provider

1.2 Perceived risk to become dependent on platform provider1.2 Perceived risk to become dependent on platform provider

1.3 Level of feasibility to generate customized solutions1.3 Level of feasibility to generate customized solutions

2.3 Importance of anonymous platform interface2.3 Importance of anonymous platform interface

2.4 Importance of openness through access to platform know-how2.4 Importance of openness through access to platform know-how

2.6 Importance of ability of complementor to protect its IP2.6 Importance of ability of complementor to protect its IP

2.5 Importance of low entry barrier to join platform ecosystem2.5 Importance of low entry barrier to join platform ecosystem

2.8 Importance of current end-users in ecosystem (market size)2.8 Importance of current end-users in ecosystem (market size)

2.9 Importance of potential end-users in ecosystem (market growth)2.9 Importance of potential end-users in ecosystem (market growth)

2.1 Complexity of downstream system2.1 Complexity of downstream system

2.2 Need for downstream adaptation (degree of customization)2.2 Need for downstream adaptation (degree of customization)

2.7 Number of platform ecosystems connected to2.7 Number of platform ecosystems connected to

Willingness to invest

2.11 Relation to the platform provider (only SugarCRM)2.11 Relation to the platform provider (only SugarCRM)

2.10 Firm size2.10 Firm size

Figure 18 – Platform attractiveness model

In accordance with the results of the literature review and the qualitative pre-study,

three research hypotheses are formulated (please refer to Section 6.2 for further details

on the hypotheses formulation):

 57

Hypothesis 1A: We expect the coefficients of variable 2.1 Complexity of downstream

system to be larger for SugarCRM than for Salesforce.com.

Hypothesis 1B: We expect the coefficients of variable 2.2 Need for downstream

adaptation to be larger for SugarCRM than for Salesforce.com.

Hypothesis 2: We expect the coefficient of variable 2.3 Importance of anonymous

platform interface to be larger for SugarCRM than for Salesforce.com.

The platform attractiveness model and the formulated hypotheses provide the

orientation for crafting the quantitative study, as described in the following sections.

3.3.2 Study design and execution

The study design and execution phase consists of four steps: operationalization,

research design, sampling and method selection. These steps will be explained briefly

in this section. For further details, please refer to the work of Schreiner (2012).

To test the research hypotheses, the underlying research model must be

operationalized. In operationalization, the proposed relationships are translated into

entities that can be tested (Flick, 2011, p. 49). These entities, or variables, are divided

into two basic groups: dependent variables and explanatory variables.

Explanatory variables, also named independent variables, most likely influence the

dependent variables (Creswell, 2003, p. 94). To test our hypotheses on platform

attractiveness, a single indicator is generated from the set of variables using the

Cronbach’s alpha coefficient (Cronbach, 1951).

During the sampling phase, the population and the related sample are specified. For

our research, the impact of IP modularity on software platform attractiveness, the

population is defined as follows:

Population: Companies that develop complementary goods for CRM software

platforms.

 58

We apply a non-random process to draw a clustered sample from this population, as

we aim to compare the two Customer Relationship Management (CRM) software

ecosystems Salesforce.com and SugarCRM (see Section 6).

For the Salesforce.com ecosystem, we address the entire population because all

complementors are listed on the ecosystem website. For SugarCRM, not all

complementors are known to the platform provider because of the possibility of

anonymous co-creation (see Section 6.2).

During the method selection phase, the sample generation is specified. For our

research, we use an online questionnaire, as it is the only method of addressing our

global target group using reasonable effort. Critics claim that with online

questionnaires, only internet-affine participants respond and that there is little incentive

to respond. Because our target group consists of managers in the software industry, it is

obvious that the former criticism does not apply. To mitigate the second point, we

utilized a raffle on original Oktoberfest Beer Steins. Feedback from our survey

participants revealed that this incentive was effective in increasing survey participation.

The survey was implemented using the online tool Unipark4.

Based on the developed platform attractiveness model provided in Figure 18, the

concrete measurement items and the survey questions are generated based on existing

literature on the operationalization of theoretical constructs (Zaheer et al., 1998;

Steensma and Corley, 2000; Sako and Helper, 1998).

The questions used with Salesforce.com partners and with SugarCRM partners

differ, as necessitated by the peculiarities of each ecosystem, and were finalized after a

pretest given to seven Salesforce.com complementors and five SugarCRM

complementors. For the final survey, the Salesforce.com complementors were contacted

via email based on the contact details provided on the appexchange.salesforce.com

platform. SugarCRM’s ecosystem manager posted a link on the developer portal

sugarforge.com to be used to reach SugarCRM complementors.

In total, we received 126 answers (87 for Salesforce.com, 39 for SugarCRM)

between June 4, 2012 and Aug 16, 2012.

4 See www.unipark.info

 59

3.3.3 Analysis

Opposed to qualitative research, the analysis of quantitative survey data is well

structured and defined. This analysis essentially consists of two steps. First, the sample

is described by various parameters and, second, the defined hypotheses are tested using

statistical tests.

The sample description aims to provide an overview of types of survey respondents,

as shown in Figure 19.

Global reach

Comp. size (number of empl.)

Australia

3,2%

South America

4,8%

Other

5,6% Asia
7,9%

Europe

33,3%

North America

45,2%

Roles of respondents

No info

7,1%

Service

4,8% R&D
11,1%

Sales/
Marketing

14,3%

Technical
Management

14,3%

General
Management

48,4%

No info

2,4%

>50

15,9%

21-50

22,2%

5-20
45,2%

<5
14,3%

Global reach

Figure 19 – Sample description

Following the general description of survey participant characteristics, statistics

regarding the results for the dependent and independent variables are provided. The

overall aim is to provide an adequate overview of the sampled dataset and produce

initial findings. All detailed results are presented in Section 6.2.

 60

Through a basic understanding of the dataset, the hypotheses-tests are prepared. For

this dissertation, we test the hypotheses using a linear regression model. All detailed

results are presented in Section 6.

The overall findings are then aligned with the expected findings obtained from the

initial qualitative research, as shown in Figure 8, allowing us to formulate the final

conclusions.

3.4 Conclusion

This section provides the methodological foundation of the research conducted for

this dissertation. We apply a hybrid (qualitative and quantitative) approach to extent

current evidence on IP modularity in the software industry domain.

As the clear focus of this dissertation is on qualitative findings, the qualitative

research process is described with a high level of granularity. With regard to the

quantitative research methodology, we provide the basics of the data gathering and

research process based on the work of Schreiner (2012). The primary focus of this

dissertation is the analysis phase, as presented in Section 6.2.

 61

4 IP modularity in software products

In this section, we analyze research topic one (see Section 3.2.1), the impact of IP

modular design on software products, using the case study approach as outlined in

Section 3.2. The empirical analysis is based on the preselected engineering software

(Case 2) for outgoing IP modularity and the data management software (Case 4) for

incoming IP modularity (see Figure 13). This section aims to answer two basic research

questions (see Section 3.2.1):

 Why are software products modularized with regards to IP considerations?

 How do the intended effects of IP modular product design relate to the real

effects?

To introduce the topic, we first review the challenges in software product design and

provide the basics of the software product business models. Then, in Sections 4.2 and

4.3, we present the results of the within-case analysis. Following that, in Section 4.4, a

cross-case analysis allows us to identify the effects of IP modularity for the researched

software products. In this section, we also review how consistent our findings are with

the existing literature on IP modularity, software product design and business models.

4.1 Software products – design and business models

To understand the impact of IP modular design on the software products, we must

understand what a software product is. In general, a software product is a piece of

software that is developed once and sold to many customers. This model differentiates

software product companies from IT service companies, which also develop software

solutions but only for the use of one specific customer. Kittlaus and Clough (2009);

Fricker (2012, p. 55) define a software product as follows:

“A software product is a product whose primary component is software.

Software is an information good that manifests human know-how in bits and

bytes. This characteristic makes a software product special in comparison to

other goods.” (Kittlaus and Clough, 2009; Fricker, 2012, p. 55)

 62

This description provides the principal difference between software products and

other products. Software products are purely virtual goods. Unlike with physical

products, the complexity is not limited by physical rules. The value of a software

product is purely generated in the design phase, as the cost of reproduction is negligible.

The designers of software systems strive to generate value for users with the provision

of solutions to real world problems implemented in software technology.

The existing literature on software system design differentiates between business

requirements, functional requirements and non-functional requirements (Wiegers, 2003)

as shown in Figure 20.

Software requirements Functional

Non-functional

e.g., Function A

e.g., Function B

...

Design time

Run time

e.g., Flexibility

e.g., Distributed R&D

e.g., Performance

e.g., Usability

Business

e.g., Business model enablement

e.g., Risk prevention

...

Figure 20 – Software requirements

The business requirements are the benefits that a new system generates to its

stakeholders such as sponsors, buyers and users. Therefore, these business requirements

are strongly influenced by the software provider’s business model. Moreover, the

business requirements materially influence other functional and non-functional

requirements (Wiegers, 2003). The functional requirements describe the set of functions

that a software product must provide to solve real-world problems. The non-functional

requirements describe the behavior of a software system. The non-functional

requirements (also referred to as the quality requirements) are divided into two basic

categories: run time requirements and design time requirements. The run time

requirements describe how a software system behaves during its application. This

behavior can be related to, for example, the performance or the usability. The design

 63

time requirements describe the software system’s characteristics during the design

process5 (Chung and do Prado Leite, 2009, p. 369).

The existing literature provides indications that these non-functional requirements

and the (modular) design of the software system are closely linked and act as rationales

for a certain type of design (Wiegers, 2003; Chung and do Prado Leite, 2009, p. 369).

Because we introduce IP as an additional rationale for a system’s modular design, this

logic would also require the IP to influence the requirement specifications of software

systems. To our knowledge, there is currently no empirical evidence that IP influences

software requirements.

Business requirements are driven by a business model that describes how a company

creates and appropriates value (Weill et al., 2005, p. 5; Popp, 2011, p. 26). Osterwalder

(2004, p. 14) describes a business model as follows:

“… a business model is a representation of how a company buys and sells goods

and services and earns money.” (Osterwalder, 2004, p. 14)

A business model can be described in a two dimensional topology (Weill et al., 2005,

p. 7; Popp, 2011, p. 26):

The first dimension differentiates the type of right that is being sold. This leads four

basic business models: creator, distributor, lessor and the broker. While the creator

builds goods from basic material and components, the distributor buys goods and sells

them. Finally, the lessor sells the allowance to use a good (but not the good itself) and

the broker connects sellers and the buyers (Weill et al., 2005, pp. 8–9; Popp, 2011, p.

26) .

The second dimension distinguishes between the types of assets that are involved

which can be: financial, physical, intangible or human services.

By combining types of goods and services and basic business model types, Weill et

al. (2005, p. 10) and Popp (2011, p. 27) identify 14 specific business model types:

5 Because software products are frequently adapted, the design process is an ongoing process throughout
the lifetime of a software product.

 64

Figure 21 – Business model types (Popp, 2011, p. 27)

Most software product companies6 focus on the intangible column and implement a

hybrid business model where the IP lessor business model type funds the inventor

business model type (Popp, 2011, p. 27). The successful implementation of this hybrid

business model approach depends on the license under which a software product

company allows others to use the created IP. This license describes what the user of a

software product is entitled to do with it (Lindman et al., 2011, p. 31). We differentiate

between proprietary, free- and open source software licenses (FOSS) (Carver, 2005, p.

453).

In the first case of a traditional proprietary license, the firm charges fees for the use

of its software as an IP lessor (Hecker, 1999, p. 48). The conditions are described in the

license terms such as the usage conditions or the number of allowed installations. These

licenses are individual contracts between the buyer and the seller and are therefore not

standardized. It is also typical that the product is provided in a way that hides the source

code to protect the IP of the lessor. Thus, a proprietary software license is the easiest

way to prevent unwanted leakage of IP (Riehle, 2012, p. 10).

FOSS licenses can be differentiated between permissive and restrictive (also named

copyleft) licenses. Permissive licenses do not require a software company or an

individual to reveal the source code for derivative work. The most commonly known

permissive licenses are the Massachusetts Institute of Technology (MIT), Berkeley

Software Distribution (BSD) and Apache licenses (Lindman et al., 2011, p. 32).

Restrictive licenses such as the GNU General Public License (GPL) require the software

company or the individual to publish the final product’s source code and to license all

6 Here, we refer to the predominant business of software companies to sell products – Software as a
Product (SaaP). However, software companies do also sell consulting services and sell software as web
services – Software as a Service (SaaS) Popp (2011).

 65

derivative work under the same license (Lindman et al., 2011, p. 33)7. Figure 22

provides and overview of the described software licensing possibilities:

Proprietary license
Free/ open source

license

Permissive
(e.g. Apache)

Restrictive
(e.g. GPL)

Software license

Figure 22 – IP lessor compatible software licenses

If an OSS project is implemented as community open source software based on a

restrictive license with code coming from a large number of contributors, the potential

for distributed value creation is maximized. The downside is that in this case, a product-

based business model is difficult to implement, and the original owner of the code may

even lose control over its further development if he does not have the complete

copyright for the source code. To overcome this difficulties many companies with a

community open source approach generate revenue from OSS related services (Hecker,

1999, p. 49; Bonaccorsi et al., 2006, p. 1085) which corresponds with the contractor

business model shown in Figure 21.

In addition, the consideration of the software licenses is of utmost importance when

third-party IP is included in a software product. In such cases, the software product

company also acts as the IP distributor (see Figure 22). The license conditions of these

third-party components may lead to a holdup risk and thus pose a serious threat to the

software company’s business model in terms of value appropriation. In this section, we

also aim to identify whether IP modularity can mitigate this holdup risk (Henkel and

Baldwin, 2010) while validating their holdup proposition (see Section 3.2.1):

7 The GPL is the most restrictive license. Please refer to www.opensource.org for less restrictive FOSS
licenses.

 66

Proposition 7: [Holdup Risk] Incoming IP modularity is advantageous when the focal

firm faces the risk of holdup from suppliers of incoming IP. The module boundaries

should go between the firm’s own IP and the incoming IP.

Summing up, in this section, we provided a basic software product definition and an

overview of the design of software products, software requirements and the related

business models. The upcoming sections provide the results from two case studies.

First, we research outgoing IP modularity based on an engineering software case (Case

2 as presented in Section 3.2.1). In the second case, we investigate incoming IP

modularity based on a data management software case (Case 4 as presented in Section

3.2.1).

4.2 Outgoing IP modularity in software products

To answer the basic research questions on outgoing IP modularity, an example of an

engineering software product was selected (Case 2, see Section 3.2.1).

In this case, we follow the modularization decisions of a highly complex engineering

software product developed by an international technology company with over 1 billion

USD in annual revenue. As outlined in Section 3.2.1, information specific to both the

product and individuals must be kept confidential.

The software product at hand is used to configure and program different types of

hardware components. Figure 23 shows the basic structure of the engineering software.

 67

Engineering software

Data object frame

Common
services

Application 1

Editor

Application 2

Application 3

Hardware components

Hardware
component X

Software technology BSoftware technology A Hardware component Software technology BSoftware technology A Hardware component

Compiler

Hardware
component Y

Hardware
component Z

Figure 23 – Schematic structure of the engineering software (Case 2)

The engineering software product consists of several architectural components: the

developer workbench, common services, the data object frame and the applications.

Each of the applications is designed to configure a specific type of hardware

component. For our case, we focus on Application 1. This application consists of a core

engineering functionality and a compiler module that is required to transfer the

configurations to the hardware components.

The revenue model behind this case is based on hardware component sales. The

engineering functionality and the software/hardware integration act as key

differentiators towards the competitors. The compiler is the most crucial component

because it comprises know-how from many years of experience and directly influences

the performance of the corresponding hardware components. The compiler is the core

IP that under no means is to be disclosed to secure the business model.

The case is a new software development project that succeeds a successful existing

engineering software product. In the beginning of this new software development

project, a set of architectural studies were conducted to identify the best suited

implementation technology. Finally, software technology A was chosen because it

offered several benefits, as one of the senior software architects describes:

 68

“The decision for technology A offered the possibility for simpler and faster

code implementation, it has better features for testing and error detection and,

finally, it was also favored by our developers. Furthermore, well-educated

developers can be hired directly from universities.” (Software architect, Person

G)

During the implementation phase, it turned out that an increase in product

performance was required. Therefore, extensive architectural tests were conducted. As

additional finding of these tests was that technology A does not provide sufficient

protection against reverse engineering. While this protection is not critical for large

parts of the system, it does matter for the core IP in the compiler. Based on this

realization, the decision was made to re-modularize the compiler into a general part and

the compiler core, as shown in Figure 24.

Engineering software

Data object frame

Common
services

Application 1

Editor

Application 2

Application 3

Hardware components

Software technology BSoftware technology A Hardware component

Compiler
general

Compiler core

Hardware
component X

Hardware
component Y

Hardware
component Z

Figure 24 – IP modular engineering software (Case 2)

 69

The general parts of the compiler have been maintained in technology A, while the

compiler’s core IP was re-implemented in technology B8, creating additional effort and

risk regarding completion. The additional effort and risk were taken into account to

protect the compiler core IP and, subsequently, the business model, thus answering our

first research question. The analysis of an internal document reveals that a total of 13

out of 23 components were subject to the re-modularization.

We based our findings on interviews with seven key stakeholders, as shown in Table

3. The diverse roles of the respondents ensure that all relevant perspectives on outgoing

IP modularity in Case 2 are captured. Our interviewees were three R&D managers, two

software architects, one developer and the responsible general manager. In total, we

analyzed 71 pages of interview transcripts from approximately seven interview hours

and two internal documents, as presented in Table 4. We derive our results from a

structured analysis process as outlined in Section 3.2.3.

In the first step of our within-case analysis, the transcribed interview data were coded

based on the interview guidelines introduced in Figure 14. The interview guideline itself

is based on the core research framework for the effects of IP modularity as shown in

Figure 10. Hence, it is ensured that the initial coding scheme, interview questionnaire

and research framework are all aligned towards the goal of unraveling the effects of IP

modularity. Because we approached the data without any assumptions, additional code

categories emerged during the coding process. Therefore, the coding scheme was

adapted using an iterative approach and yielding new hierarchical structures, which

were then used to unfold the effects in a manner favorable to subsequent interpretation

(see Appendix A for the full coding scheme).

In the course of this iterative process, two major elements of the original research

framework and their mapping to the interview questions were altered because we

noticed an overlap of answers across several questions9. First, the category Intended

effects was renamed as IP-related effects because this was the prevailing construct being

measured by the actual interview questionnaire (see Figure 14). Second, the category

Other effects was renamed as Non-IP-related effects for the same reason. Figure 25

displays how these adaptations alter the research framework.

8 Sections of the compiler were already available in technology B because the earlier versions of the
engineering software products were implemented in technology B. Consequently, not all parts of the
compiler core were newly implemented.
9 To ensure the openness of the interviewees, the interviews did not strictly follow the guidelines. For the
research framework at hand, this easing of the interview structure means having a certain degree of
overlap within the answers given and the initial questions.

 70

IP-related effects

Non IP-related effects

IP modularity
Real effects

of IP modularity

A

B

C D

Intended effects

Comparison of intended and real effects

Figure 25 – Adapted research framework

In the following sections, the intended effects and the real effects are described and

compared to derive cause and effect propositions. In each of the following sections, we

will describe the effects that we identified based on the coding of data and then assess

the importance of the effects across different roles with the use of role-ordered checklist

matrices (see Section 3.2.3).

We first present the intended effects of IP modularity in the engineering software

case. Figure 26 shows all IP-related and non-IP-related effects that were identified by

our respondents when answering questions 9-13 (see Appendix A).

 71

Figure 26 – Intended effects (Case 2)

In
te

nd
ed

 e
ffe

ct
s

IP
-r

el
at

ed

N
on

 IP
-r

el
at

ed

P
re

ve
nt

io
n

of
 r

ev
er

se
 e

ng
in

ee
rin

g

S
ec

re
cy

C
os

t r
ed

uc
tio

n
fo

r
IP

 e
nf

or
ce

m
en

t

P
re

ve
nt

io
n

of
 s

ec
ur

ity
 r

is
ks

R
un

 ti
m

e

D
es

ig
n

tim
e

P
er

fo
rm

an
ce

: s
pe

ed

M
em

or
y

co
ns

um
pt

io
n

R
e-

us
e

T
ec

hn
ic

al
 r

ea
so

ns

F
as

te
r

im
pl

em
en

ta
tio

n

A
va

ila
b

ili
ty

 o
f

la
bo

r

O
rg

an
iz

at
io

n:
 d

iv
is

io
n

of
 w

o
rk

C
os

t r
ed

uc
tio

n:
 r

ed
uc

ed
 te

st
in

g

C
os

t r
ed

uc
tio

n:
 fa

st
e

r
d

ev
el

o
pm

e
nt

In
te

nd
ed

 e
ffe

ct
In

te
nd

ed
 e

ffe
ct

 tr
ig

ge
rin

g
th

e
re

-m
od

ul
ar

iz
at

io
n

M
ai

nt
en

an
ce

 72

For the IP-related effects, we discovered four main effects. As previously described

in the basic case description, the prevention of reverse engineering was one of the main

IP-related effects of this specific modularization. Related to that effect is the secrecy of

own data structures and data formats from the customers and other third-parties.

Another goal of this IP modular architecture is that the secured differentiating IP of the

compiler would not be subject to costly legal IP enforcement actions. Finally, the

security risk of third-parties manipulating the system is reduced by the IP modular

system.

The non IP-related effects are divided into run time, design time and maintenance.

The run time effects performance: speed and memory consumption were the initial

triggers for the re-modularization that finally yielded an IP modular architecture. In the

context of IP modularity, it is also of particular interest that in this case, the IP modular

design also resulted in a better division of work, which in general may also present a

tradeoff with IP modularity marked as distributed R&D in Figure 5. In this case, the

module boundaries are also technology boundaries, delineating where different teams

work on different parts of the product.

The list of intended effects is the basis for further analysis. With the role-ordered

checklist matrix, each row presents one effect. The columns of the matrix represent the

interviewees and, hence, separate interviews, which are all based on identical interview

guidelines to guarantee consistency. Because we explicitly asked for the importance of

the intended effects in question ten (see Figure 14), the importance is indicated with

High, Med and Low when the interview data provided enough evidence. Thus, not all

intended effects were ranked or put into the perspective of relative importance. Where

no ranking could be indicated that the indicated effect had some level of importance, the

effects were marked with an X as shown in Figure 27.

 73

Figure 27 – Intended effects checklist matrix (Case 2)

In
te

n
d

ed
 e

ff
ec

t
P

e
rs

on
 A

P
e

rs
on

 B
P

er
so

n
I

P
e

rs
on

 H
P

e
rs

o
n

F
P

e
rs

on
 G

P
e

rs
o

n
E

IP
-r

el
at

ed

N
o

n
 IP

-r
el

at
ed

R
un

 ti
m

e

D
es

ig
n

tim
e

Le
ge
nd

:
H
ig
h

Ra
te
d
as
 h
ig
hl
y
im

po
rt
an
t
ef
fe
ct
 in
 s
ev
er
al
 s
ta
te
m
en

ts
Lo
w

Ra
te
d
as
 le
ss
 im

po
rt
an
t
ef
fe
ct
 in
 o
ne

 o
r
se
ve
ra
l s
ta
te
m
en
ts

M
ed

Ra
te
d
as
 im

po
rt
an
t
ef
fe
ct
 in
 o
ne

 o
r
se
ve
ra
l s
ta
te
m
en
ts

x
Ef
fe
ct
 n
ot
 in
cl
ud

ed
 in
 t
he

 im
po

rt
an
ce
 r
an
ki
ng

x x
M

ai
nt

en
an

ce

C
o

st
 r

e
du

ct
io

n:
 r

e
du

ce
d

te
st

in
g

C
o

st
 r

e
du

ct
io

n:
 fa

st
er

 d
e

ve
lo

p
m

en
t

A
va

ila
b

ili
ty

 o
f l

ab
or

O
rg

a
ni

za
zi

on
 -

 d
iv

is
io

n
 o

f w
o

rk

x

Lo
w

M
ed

M
ed

x

F
a

st
er

 im
p

le
m

e
nt

at
io

n

Lo
w

T
ec

h
ni

ca
l r

ea
so

ns

M
ed x x

x

Lo
w

M
ed

R
e

-u
se

Lo
w

Lo
w

x
x

x

x
M

em
o

ry
 c

on
su

m
pt

io
n

H
ig

h

P
e

rf
o

rm
a

nc
e:

 s
pe

ed
M

ed
M

ed

xx
x

x

S
e

cr
ec

y
H

ig
h

P
re

ve
nt

io
n

o
f s

e
cu

rit
y

ris
ks

Lo
w

Lo
w

C
o

st
 r

e
du

ct
io

n
fo

r
IP

 e
n

fo
rc

em
e

nt

R
o

le
 o

f
in

te
rv

ie
w

ee

P
re

ve
nt

io
n

o
f r

ev
e

rs
e

en
gi

ne
er

in
g

H
ig

h
H

ig
h

Lo
w

 (
Jo

b
pe

rs
p.

)
H

ig
h

H
ig

h
H

ig
h

(C
or

p.
 p

er
sp

.)
H

ig
h

R
&

D
 m

an
a

ge
r

S
of

tw
ar

e

ar
ch

ite
ct

R
&

D
 m

an
a

ge
r

R
&

D
 m

a
na

ge
r

G
e

ne
ra

l
m

a
na

g
er

S
of

tw
ar

e

ar
ch

ite
ct

D
ev

e
lo

pe
r

 74

All of the participants (regardless of their background or role) rate the importance of

the IP-related effects as high, whilst the non IP-related effects are frequently regarded as

low or medium priority. This ordering of priorities occurs because the IP-related effects

pose the greatest threat to the companys’ business model as the selected quotes show:

“The business strategy is that the core know-how is in the compiler. It is the

heart of our offering that has to be protected. […] Probably IP protection is

even more important than performance.” (R&D manager, Person F)

 “The core IP was re-implemented to prevent de-compiling. So, protection of

core IP was the main reason to re-arrange the module boundaries between

technology A and technology B.” (General Manager, Person B)

“Nevertheless, I’d rate IP protection highest – finally it’s about our long-term

business.” (Developer, Person H)

For the non IP-related effects, it appears that the run time aspects are considered to

be more important than the design time aspects.

“Run time performance is the vital criteria for the software to be accepted by

our customer base.” (Software architect, Person G)

Interestingly, the IP-related effects came on the table much earlier triggered by an

identified performance issue:

“For technical reasons, we needed to adapt the initial design. […] Once we had

the new model on paper, we also decided to take the IP topic seriously.”

(Developer, Person H)

“In this case, IP was not the initial driver for that re-modularization. The main

driver was a massive technical problem that brought us close to a total collapse

of the project. So we had to act. Thereby, we said: Let’s tackle the IP issue in the

same effort.” (Software architect, Person I)

 75

Thus, although IP is considered to be highly important, it was not considered in the

first modularization phase that was driven by the software architects and developers.

The initial trigger was a run time performance and memory consumption problem.

Finally the criterion for the product’s modular structure was IP protection. This process

is manifested by the “dual ranking” by Person I of the IP-related effects. For the

personal job, IP protection is not considered to be significantly important – on the

contrary, it makes the job even more complicated. Because the software architect was

one of the main designers of the initial modularization, IP was not considered as a

criterion.

However, the same software architect also states that from a company perspective, IP

is most likely the most important criterion.

“From a company perspective, ranking of what would probably be IP

protection, re-use of code, prevention of source code leakage and performance.

From my personal perspective, it’s the other way round.” (Software architect,

Person I)

Answering the first research question regarding why this software product is made IP

modular, we can conclude that the protection of the outgoing IP is the main criterion for

the final modularization. Interestingly, the IP protection lies outside of the traditional

scope of functional and non-functional requirements engineering (Wiegers, 2003).

Furthermore, IP requirements were not associated with business requirements in the

engineering process, in spite of their close linkage to the business model.

The problem resulting from this misconception is that IP-related requirements would

have started to arise during the engineering process or even after the product launch (ex-

post). This delayed attention may lead to time- and cost-intensive re-modularization

(LaMantia et al., 2008, p. 8). These expenditures could be reduced (ex-ante) if the IP-

related requirements were to become perceived as an integral part of the non-functional

requirements.

When asked about the performance indicators of the engineering software, five of the

seven interviewees felt that IP protection is a performance indicator of the focal

software. This result makes the question “why is IP protection not considered to be a

non-functional requirement?” even more relevant. This result reveals that the involved

project stakeholders are, in fact, aware of the importance and yet did not take action at

an early stage.

 76

This problem may be rooted in a misconception: people are aware of IP-related

issues but perceive them to be irrelevant within the initial requirements engineering

phase. A change of perception may mitigate the risks of additional time- and cost-

expenditures later in the process.

To answer the second research question on the relationship between the intended and

the actual effects of IP modularity in software products, we first identify the actual

effects and then contrast them with the intended effects. In other words, we compare

whether the elements in A and B were also named in D of the research framework

shown in Figure 25.

Figure 28 displays the actual effects that were identified from the coding of question

14 (see Appendix A).

 77

Figure 28 – Comparison of intended and real effects (Case 2)

In
te

nd
ed

/r
ea

l e
ff

ec
ts

IP
-r

el
at

ed

N
on

 IP
-r

el
at

ed

P
re

ve
nt

io
n

of
 r

ev
er

se
 e

ng
in

ee
rin

g

S
ec

re
cy

C
os

t r
ed

uc
tio

n
fo

r
IP

 e
nf

or
ce

m
en

t

P
re

ve
nt

io
n

of
 s

ec
ur

ity
 r

is
ks

R
un

 ti
m

e

D
es

ig
n

tim
e

M
ai

nt
en

an
ce

P
er

fo
rm

an
ce

: s
pe

ed

M
em

or
y

co
ns

um
pt

io
n

R
e-

us
e

T
ec

hn
ic

al
 r

ea
so

ns

F
as

te
r

im
pl

em
en

ta
tio

n

A
va

ila
b

ili
ty

 o
f

la
bo

r

O
rg

an
iz

at
io

n:
 d

iv
is

io
n

of
 w

o
rk

C
os

t r
ed

uc
tio

n:
 r

ed
uc

ed
 te

st
in

g

C
o

st
 r

ed
uc

tio
n

:
fa

st
er

 d
ev

el
o

pm
e

n
t

In
te

nd
ed

 a
nd

 r
ea

l e
ff

ec
t

In
te

nd
ed

 e
ffe

ct
E

ff
ec

t t
rig

ge
rin

g
th

e
re

-m
od

ul
ar

iz
at

io
n

 78

The analysis reveals that the actual effects are a subset of the intended effects. In the

engineering software case there were no unintended effects (ex-post) that arose due to

IP modularity. On the side of the IP-related effects, the intended effects materialize as

stated by three interviewees:

“So far (approximately 6 months after product launch) we have not seen

compatible machines in the market.” (Software architect, Person A)

“For us, it is important that we have sufficient time to innovate further and use

lead time to protect our leading edge technology - the shift of our core IP to

technology B gives us this lead time.” (General manager, Person B)

 “I’d say: goal achieved. I do not know any competitor that has used or violated

algorithms that we protected (with the IP modular design).” (R&D manager,

Person E)

In addition, the initial triggers for the re-modularization – run time performance and

memory consumption – could be solved with the re-modularization towards an IP

modular structure:

“With this specific modularization, we increased the performance at factor ten.

Without it, we would not have the engineering software on the market.”

(Software architecture, Person I)

The design time effects were not mentioned throughout the interviews, which

emphasizes that these effects are only observable during the development process and

not during the actual run time phase. As the software product is released, the

employees’ focus is directed towards run time and IP-related effects10.

The checklist matrix (see Figure 29) for the real effects shows that all of the

interviewees except Person I and H mention the prevention of reverse engineering:

10 An additional explanation could be that our interviews took place closely after the first product launch
where the run time issues are more present than design issues in upcoming versions.

 79

Figure 29 – Checklist matrix of real effects (Case 2)

R
ea

l e
ff

ec
t

P
er

so
n

 A
P

e
rs

o
n

B
P

er
so

n
 I

P
e

rs
o

n
 H

P
er

so
n

 F
P

er
so

n
 G

P
e

rs
o

n
E

IP
-r

el
at

ed
x

x
x

x
x

N
o

n
 IP

-r
el

at
ed

R
u

n
tim

e
o

o

D
e

si
g

n
tim

e

M
a

in
te

na
n

ce
x

Le
ge
nd

:
x

d
ire

ct
ly

 m
e

n
tio

ne
d

b
y

in
te

rv
ie

w
e

e

o
a

s
in

te
nd

ed
 e

ff
e

ct
s

(I
P

-r
el

a
te

d
)

/
in

d
ir

e
ct

ly
 m

e
n

tio
ne

d
 (

ru
n

tim
e

)

R
o

le
 o

f
in

te
rv

ie
w

ee

o
o

o

S
o

ft
w

ar
e

ar

ch
ite

ct
G

e
ne

ra
l

m
an

ag
e

r
S

o
ftw

a
re

a

rc
h

ite
ct

R
&

D

m
a

n
ag

er
R

&
D

m

a
n

ag
er

R
&

D

m
a

na
ge

r

o

o

D
e

ve
lo

pe
r

o

x
x

P
re

ve
n

tio
n

 o
f

re
ve

rs
e

e
ng

in
e

er
in

g
o

S
ec

re
cy

P
re

ve
n

tio
n

 o
f

se
cu

rit
y

ri
sk

s

C
o

st
 r

ed
uc

tio
n

 fo
r

IP
 e

nf
o

rc
e

m
e

nt

P
er

fo
rm

a
nc

e:
 s

pe
ed

n
o

t
ap

p
li

ca
b

le

x

x

M
e

m
o

ry
 c

on
su

m
p

tio
n

x

 80

Despite explicitly asked for the real effect from company perspective this mention

may be attributed to the specific roles of persons I and H. As already shown in the

previous section, person I does not see IP protection as having a high impact on the

achievement of the software architect’s job-related goals. Also for Person H, the

developer, the performance-related effects are of higher importance than IP protection,

which is fully consistent with the goals that he pursues on a daily basis.

4.3 Incoming IP modularity in software products

To complete our picture of the effects of IP modularity in software products, we

extend our findings with a case on incoming IP modularity (Case 4, see 3.2.1). In this

case study, we analyze a large data management software product of a technology

company with over 1 billion in annual revenue. As already outlined in Section 3.2.1, we

must provide confidentiality with regards to product and person specific information.

The software product under investigation is a highly complex application that is

implemented in several software technologies. To keep the software product up to date

and competitive, constant development effort is required. R&D management therefore

focuses its endeavors towards the generation of new functionality to differentiate the

product from the competition. The use of well-tested and freely available open source

components allows the developers to accomplish this goal. So, from release to release,

the developers included more and more open source code in the different application

modules as displayed in Figure 30 a).

a) Original implementation b) Re-modularized implementation

OSS A
V 1.0

OSS B
V 2.0

OSS A
V 1.1

OSS B
V 3.0

OSS A
V 1.0

OSS B
V 2.0

OSS A
V 1.1

OSS B
V 3.0

Proprietary own codeProprietary own codeOpen Source SoftwareOpen Source Software

Core application

Open source toolbox

OSS A
V 1.1

OSS B
V 3.0

Application
module 1

Application
module 2

Application module 3

Figure 30 – Data management software (Case 4)

 81

While the unmanaged use of open source components has helped developers to

increase their productivity, it has also yielded a high level of fragmentation with respect

to the proprietary source code and has lowered the degree of control over the various

versions of the incoming IP. In this matter, the leading software architect states:

“We found versions where the (Ass. open source code) code was renamed and

then was checked into our proprietary versions.” (Software architect, Person

AE)

This mix of proprietary and third-party IP caused several problems. First, there was

no control when open source code was used. Second, the open source code was copied

into the own code tree and could not be easily detected. Third, there were different

versions of one open source component in different application modules. Because

sometimes the license conditions change across different versions of the open source

software, these multiple versions impose significant legal risks.

To solve these problems, the architectural team re-modularized the software. They

generated a special module named open source toolbox as shown in Figure 30 b). This

toolbox is the only module that contains the open source software, as the leading

architect further elaborates:

“We want to make sure that the open source of third-party products retains its

identity and integrity. So if they were a JAR11 file as packaged by the provider,

they stay the exact same JAR file as when it is shipped. And the way we do that is

we make sure they stay in the toolbox as a JAR file and that we don't take their

source code and embed their source code in our source code and throw them

together.” (Software architect, Person AE)

With the creation of the open source toolbox, the source code of the data

management software product became IP modular in that the code of the proprietary

core application no longer contained third-party IP. The entire architecture changed

from an IP incompatible to an IP homogeneous status (as shown in Figure 6). Therefore,

just as in Case 2, IP modularity was only established after a re-modularization effort.

11 A Java Archive (JAR) file is a container for several Java classes (which can be seen as synonymous to
modules in our context).

 82

Remarkably, as in Case 2, the original modularization did not take into account IP as a

criterion for modularization.

We base our findings on four interviews with the three key stakeholders as shown in

Table 3. In total, we analyzed 67 pages of interview transcripts from five interview

hours and the full description of the internal process for the integration of third-party IP

(see Appendix C).

With all of the key stakeholders being involved and the core process description

being available to us, we ensure that our dataset sufficiently represents reality so that we

can draw well-grounded conclusions.

The case results are based on the clearly defined analysis process that has been

outlined in detail in Section 3.2.3. As in the previous section, the interview coding

started with an initial coding scheme that was derived from the interview questionnaire

(see Figure 14). This process yielded hierarchical structures that were used for

subsequent interpretation (see Appendix B). The analysis is structured based on the

adapted research framework from Case 2 (see Figure 25) because it allowed us to better

structure the answers for questions nine through 13. From this coding, the following

intended effects for incoming IP modularity can be identified:

Intended effects

IP-related

Non IP-related

Prevent uncontrolled use of code

Reduced legal risk: own company

Reduced legal risk: customers

Run time: improved reliability

Maintenance: cost reduction

Design time: ease of design

Figure 31 – Intended effects (Case 4)

The analysis yielded a division between the IP-related and non IP-related effects –

just as in Case 2. Similarly, the non IP-related effects can be divided into run time,

design time and maintenance effects:

“It's really a situation where you have really difficult bugs that sneak into the

product that are really difficult to find and so just by being conscientious we

 83

kind of improve the reliability of the platform12 by having kind of more

controlled behavior. I think it's about improved software quality, really.” (Staff

function manager, Person AF)

For the IP-related effects, we discovered that the IP modular design prevents the

uncontrolled use of code as mentioned earlier by the leading architect. The IP modular

design prevents the legal risk of violating the license conditions of the incoming IP for

the company and its customers. The checklist matrix in Figure 32 for the intended

effects provides a more detailed picture of how the different stakeholders rate the

intended effects:

Intended effect Person N Person AE Person AF

IP-related

Non IP-related

Legend: x Effect named one or several times

Run time: improved reliability x

Design time: ease of design x

Maintenenace: cost reduction x x

Staff function
manager

Reduced legal risk: customers x x

Reduced legal risk: own company x x x

R&D manager
Software
architect

Prevent uncontrolled use of code x

Figure 32 – Intended effects checklist matrix (Case 4)

All of the interviewees stated that risk reduction for the own company was one of the

main intended effects. Hence, own company risk reduction appears to be a common

theme and the main driver IP modularity in this case, as the responsible R&D manager

best describes:

“What was happening was when there are different parts of the system using the

same component, then we start diverging on the versions and we ran into issues

12 In this case, the term platform refers to the core product platform and is not to be confused with a
platform in a software ecosystem

 84

with different versions of these components which have different licensing

associated with them from an IP viewpoint.” (R&D manager, Person N)

IP-related customer risks also play a role; not as in Case 2 for security risks, but from

a legal perspective:

“Our software becomes a mission critical application to them. […] They are

worried that if we run into any IP issues it would impact them because they have

a deployment of our data management software.” (R&D manager, Person N)

In spite of the consensus that IP issues are important from both a company and a

customer perspective, the importance of IP was not taken into account when the data

management software was initially developed. Instead, a re-modularization was

required, and the toolbox for third-party IP was introduced. Currently, all incoming

third-party IP requires an evaluation through a specifically designed process before it

can be included in the toolbox (see Appendix C). Interestingly, within this process, the

business/legal evaluation and the technical evaluation are on the same level. Therefore,

business and technical aspects are formally treated with equal concern. Finally, the legal

evaluation can prevent the use of the integration of the third-party IP in the toolbox.

As defined in the research framework the intended effects and the real effects are

opposed. At the time of the analysis, the toolbox and the process were newly

introduced, which limits our findings on the real effects to those that were observable at

that time:

Intended effects

IP-related

Non IP-related

Intended and real effectIntended effect

Prevent uncontrolled use of code

Reduced legal risk: own company

Reduced legal risk: customers

Run time: improved reliability

Maintenance: cost reduction

Design time: ease of design

Figure 33 – Comparison of intended and real effects (Case 4)

 85

The incoming IP modularity also eases the software design. The developers are free

to use the third-party IP from the approved toolbox components and are therefore much

faster in development as the leading architect explains:

“That's one of the big benefits, that it becomes easier, much easier, to teach new

developers. This is where we put third-party and this is where you put your own

code. Two different places - two different processes. And then some processes to

keep the wall between them intact. So that's really important.” (Software

architect, Person AE)

After the implementation of the toolbox and the process, the proprietary part of the

data management software became IP homogeneous. Having the security of the legal

approval for the third-party components means that the legal risks are eliminated.

4.4 The effects of outgoing and incoming IP modularity in software

products

The last two sections presented the within-case analysis results for outgoing and

incoming IP modularity. We now move forward to the cross-case analysis, striving to

unravel similarities and thus provide further external validity to our study.

Comparing the within-case analysis results, we identified one common pattern: in

spite of the close linkage to the focal companies’ business model, IP-related

requirements were not captured in the initial requirements analysis. In both cases, large

sections of the product were already realized. It was only when the products were

already built that the IP-related issues drew the attention of the development team. Even

more, in Case 2, the perception of IP-related risks only arose due to non IP-related run

time issues (performance and memory consumption).

Based on our analysis, we find that an ex-ante inclusion of the IP-related

requirements within the non-functional requirements not only protects a software

companies’ business model but also can prevent additional efforts to re-modularize a

software product ex-ante to make it IP modular. Figure 34 presents the extended

software requirements model as result of our analysis.

 86

In
flu

en
ce

Software requirements Functional

Non-functional

e.g., Function A

e.g., Function B

...

Design time

IP requirements

Business

e.g., Business model enablement

e.g., Risk prevention

...

Run time

Figure 34 – Extended software requirements model

In both cases, the business requirements drive the need for IP modular design. For

the outgoing IP modularity case on the engineering software, the safeguarding of the

existing IP lessor business model was the main driver for the re-modularization. Based

on that finding, the following proposition can be formulated:

Proposition A – IP requirements: The earlier that IP requirements are considered in

the software design process, the lower the overall cost to reach the final modular

structure of a software system.

For the incoming IP modularity case on the data management software, the

prevention of IP-related risks was the main driver for the re-modularization. The

comparison of the effects analysis reveals a fine-grained picture of the IP-related effects

of IP modularity for the incoming and outgoing case:

 87

IP-related real effects

Prevention of reverse engineering

Secrecy

Cost reduction for IP enforcement

Prevention of security risks

Prevent uncontrolled use of code

Reduced legal risk: own company

Reduced legal risk: customers

Outgoing IP
modularity
Case 2

Incoming IP
modularity
Case 4

Figure 35 – Real effects of outgoing and incoming IP modularity (Case 2 and 4)

The cross-case comparison shows that the reduction of IP-related legal risks is a

realized effect of incoming and outgoing IP modularity in both cases. The analysis of

the incoming IP modularity directly reveals the reduction of legal risks as a primary

rationale. For the outgoing IP modularity, the legal risks materialize from the legal IP

enforcement efforts and the customer claims in the case of security risks.

In addition to the holdup risk from the supplier side (see holdup risk proposition in

Section 4.1), there are also significant legal risks from the customer side and the

competitor side. In Case 2, the IP modular design eliminates the possible cost of

enforcing differentiating IP against competitors. Also the risk of being sued by a

customer for security risks is reduced with the IP modular design.

Hence, IP modular design is not only favorable for incoming but also for

differentiating IP, which in this case is identical to outgoing IP, with regards to legal

risks. Figure 36 illustrates this situation.

 88

Focal firm’s exposition
to legal risks

B

BB
B

B

Differentiating/
Outgoing IP

Differentiating/
Outgoing IP

C

C

C

Incoming
IP

Legal risks
from

competitors
and

customers

Legal risks
from

suppliers

IP modular software product

B

B

Figure 36 – Holdup risk from incoming and outgoing IP modularity

Hence, the holdup risk proposition initially defined by Henkel and Baldwin (2010)

can be confirmed. Based on the cross-case analysis, a general proposition on legal risks

can be formulated:

Proposition B – Legal risks: IP modularity in a software product can mitigate the focal

firm’s exposure to legal risks from the supplier, competitor and customer sides.

In summary, the cross-case analysis reveals the common effects of outgoing and

incoming IP modularity. The empirical data show that IP as the criterion for

modularization is directly related to the business requirements but was in the researched

cased not considered in the initial design process as a non-functional requirement.

Explicitly including IP requirements in the software design process offers the potential

to save cost from re-modularization ex-post.

The analysis also shows that IP modular software product design can reduce the

exposure to legal risks. IP modular software design introduces product design as a valid

lever to manage the legal risks of a focal company.

 89

4.5 Conclusion

This chapter describes two cases of software products where the modular structure is

related to IP optimization. In the first case of engineering software the IP modular

product structure prevents the reverse engineeering of the application’s core IP. In the

second case of data management software the IP modular product structure prevents the

uncontrolled diffusion of third-party IP into the core modules of the product.

In both cases IP optimization was not a part of the original software requirement

specification, resulting in a later re-modularization which could have been prevented by

considering IP as initial non-functional requirement.

Finally the findings provide indications that IP modular design is an important lever

to reduce a firm’s exposure to legal risks.

 90

5 IP modularity in software platform ecosystems

In this section, we explore SugarCRM and SAP NetWeaver PI13 as concrete

realizations of IP modularity in software platforms. Software platform providers face

the conflicting goals of openness toward providers of complementary goods for the

purpose of distributed value creation, and of maintaining exclusivity of essential

modules to appropriate value (Henkel and Baldwin, 2010).

Hence, the goal of IP modularity is to optimize the system with respect to the firm’s

business model and particularly to reconcile distributed value creation and value

appropriation. While relinquishing control typically increases adoption and outside

contributions, it makes it harder for the platform owner to realize profits and maintain

differentiation (Boudreau, 2010). To analyze whether and how the concept of IP

modularity can be applied in software platforms, we study two different software

platform products that are particularly interesting in this respect: SugarCRM and SAP

NetWeaver PI. The two platforms represent polar cases as they are based on entirely

different IP strategies and related business models (see Figure 12). SAP NetWeaver PI

is a market-leading software platform with a restrictive approach in terms of IP

provision to third-parties, whereas SugarCRM runs its platform as open core14 and

allows its complementors to access large parts of the internally developed IP directly15.

This section aims to understand the strategic rationales behind making a software

platform IP modular to answer the specific research questions defined in Section 3.2.1:

 Why are software platforms modularized with regard to IP considerations?

 How does IP modular platform design influence the cooperation between

platform provider and complementors?

In addition, we juxtapose our findings to the propositions derived by Henkel and

Baldwin (2010) (see Section 3.2.1). Analyzing the reasons behind and the effects of

13 The full product name is SAP NetWeaver Process Integration.
14 See http://alampitt.typepad.com/lampitt_or_leave_it/2008/08/open-core-licen.html.
15 The analysis of the case of SugarCRM in this section is partly based on an earlier publication on the
topic: Waltl et al. (2012)
The reprint is with permission of © Springer-Verlag Berlin Heidelberg.

 91

SugarCRM Inc.’s adoption of an IP modular architecture, we find them fully in line

with theoretical predictions.

Based on the analysis of both cases, SugarCRM and SAP NetWeaver PI, we

introduce IP optimization as a new non-functional requirement for the design of

software platforms (in line with the findings on IP modularity in software products in

Section 4). Specifically, we argue that the delineation of modules must be decided in

conjunction with their “IP status” – e.g., if they are proprietary and binary-only, sources

licensed to select recipients, or under the GPL (Henkel and Baldwin, 2010).

We also provide insight on how the identified effects resulting from an IP modular

platform design influence both the platform and product attractiveness, as well as the

competitive position toward other platforms.

In the following sections, we provide a short introduction into the current literature

on software platform ecosystems and present the results of the within-case analysis and

the commonalities across the two polar platform cases.

5.1 Software platform ecosystems

In the following section, we provide a brief introduction to the concept of and the

dynamics behind platform ecosystems in order to build a foundation for the upcoming

case analysis.

Technological platforms have extensively been researched in the last few years

(Gawer and Cusumano, 2002; West, 2003; Gawer and Henderson, 2007; Baldwin and

Woodard, 2009; Boudreau, 2010; Cusumano, 2010).

Our understanding of “platform” draws on the work by Gawer and Cusumano

(2002), who define an industry platform as a product that provides a core technology

that can be reused in different product variations, that are likely to come from different

companies. In addition, Baldwin and Woodard (2009) define a “platform architecture”

as a modularization that partitions a system into a set of components, with a stable

design, and a complementary set of components, which are allowed — indeed

encouraged — to vary (see Figure 37).

 92

Platform

Components with low
variety and high re-usability

Interface

Must be
stable and
versatile

Complements

Components with high
variety and low re-usability

Figure 37 – Platform architecture (based on Baldwin and Woodard, 2009)

In many cases, not only the company that built the platform but also other companies

generate complementary components16 that foster innovation in functionality (Boudreau

and Lakhani, 2009). End-users then profit from both the platform core functionality and

the additional functionality provided by the complementors.

Eisenmann et al. (2009) provide a model for platform-mediated networks to describe

the interaction between the providers of industry platforms (Gawer, 2009),

complementors and end-users:

16 We name these companies complementors as first defined by Brandenburger and Nalebuff (1996)

 93

End-users Complementors

Platform provider
Point of contact for

Components Rules Architecture

Platform sponsor
Designer & IP rights holder for

Components Rules Ecosystem

Network
effect

Figure 38 – Platform-mediated network (based on Eisenmann et al., 2009)

Furthermore, they differentiate between platform sponsor and platform provider. In

our cases on SugarCRM and SAP NetWeaver PI, sponsor and provider are the same

party, which is why we use the latter term for both.

In platform-mediated networks network externalities exist between platform

provider, end-users and complementors (Katz and Shapiro, 1985). Platform providers

must get both sides of the market on board (Rochet and Tirole, 2003). A platform is

more attractive for end-users the more complementary products exist which extend the

core platform functionality. Similarly, a platform-mediated network is more attractive

for possible complementors when the market of possible end-users is larger (see Section

6.1). Additionally, for platform providers, it is obviously beneficial to nourish the

ecosystem of complementors and end-users to increase the sales of the core platform.

For the context of this dissertation, we use the model of a platform-mediated network

as the basic definition of a software platform ecosystem. Such an ecosystem is created

when a platform provider releases an external API for the development of complements.

Independent software vendors (ISVs) or system integrators (SIs) can then generate

platform complements – applications or apps – and sell them to end-users. In line with

this description, Jansen and Cusumano (2012, p. 46) formally define a software

ecosystem as:

“A software ecosystem is a set of actors functioning as a unit and interacting

with a shared market for software and services, together with the relationships

 94

among them. These relationships are frequently underpinned by a common

technological platform or market and operate through the exchange of

information, resources and artifacts.” (Jansen and Cusumano, 2012, p. 46)

Opening up an industry platform to a wide set of potential complementors implies

that the platform provider has to cede a certain degree of control to catalyze the

development of complements, as Boudreau (2010) shows for the case of handheld

computing systems. There is a broad consensus in the literature that the management of

IP is a key lever for platform providers to manage the cooperation with ISVs and SIs.

Cusumano (2010) notes the connection of platform modularity and openness (through

accessibility of the interfaces and IP) as a major lever for platform leadership (see

Section 6.1). These interfaces are typically implemented as APIs as a means to control

the openness of proprietary platforms, and the complementors fully depend on these

interfaces. Our research on the IP restrictive SAP NetWeaver PI platform aims to

illuminate further this dependency and link it to IP optimization and platform

architecture (see Section 2.2).

The challenge lies in preventing complementors from imitating features essential to

the platform. Hence, it is paramount to find the right degree of openness, which can, to

a large extent, be influenced through the provision of IP and the modular structure of

the platform (Cusumano, 2010).

The decision regarding which parts of a system are open and which are closed

depends on the business model, which can be open to varying degrees: e.g., totally open

source, hybrid, or based on a proprietary approach (Bonaccorsi et al., 2006; Lindman et

al., 2011). In the platform design process, the architects need to balance these

requirements with other requirements, such as technical considerations or R&D process

requirements (Favaro and Pfleeger, 2011).

A similar tension between openness and control for platforms exists for

commercially developed OSS. If an OSS project is organized on a public platform with

code coming from a large number of contributors, then the potential for distributed

value creation is maximized. Downsides are that in such a case a product-based business

model is difficult or impossible, and the original owner of the code may even lose

control over its further development.

Various approaches have been proposed and implemented in practice to harness the

power of community-based OSS development while still running a product-based

business model. Hecker (1999) and Raymond (2001) suggest various ways to profit

 95

indirectly from OSS by selling complements. West (2003), Bonaccorsi et al. (2006) and

Lindman et al. (2011) empirically study “hybrid” business models that either combine

open source and proprietary elements or make use of dual licensing. Riehle (2012)

comprehensively presents the properties of this hybrid approach, referred to as single

vendor commercial open source business model.

Our research relates to this literature as SugarCRM Inc. licenses a community edition

of its software under an open source license while selling the commercial edition under

proprietary license terms. However, their approach goes beyond simple dual licensing

by creating two distinct versions out of the same IP modular code tree.

To our knowledge, this study is the first to link research on hybrid OSS business

models with that on modular product architectures.

5.2 IP modularity in an open source software platform ecosystem

SugarCRM Inc. was founded in 2004 and provides an open source CRM software

platform product and commercial editions17 with extended functionality. This software

platform is the object of our study. IP modularity is of the highest strategic relevance as

the CTO and co-founder explains18:

“I would say it’s one the most fundamental aspects of our entire business model

strategy that we purposely keep the modularity in such a way that we can easily

create different [open source and proprietary] editions. What we sell is based on

IP modularity.” (Clint Oram, CTO and co-founder)

The business model built around SugarCRM differs from that of other open source

companies in the way that IP and source code ownership are managed. The company

maintains all source code for its products in one proprietary code tree and licenses parts

of it for the open source community edition under the GNU Affero General Public

17 At the time of this research four commercial editions exist that add further functionality. For our study
we do not differentiate between them. However, a detailed look across the versions in further research
would add an additional dimension to our findings.
18 The basic concept of IP modularity was explained prior to this statement as part of our research
introduction, which is why Mr. Oram was able to directly apply it to describe SugarCRM’s business
model.

 96

License (AGPL)19. The commercial product editions are sold to customers under

proprietary license terms20. Thus, SugarCRM combines an open source approach with a

proprietary software product business model (see Section 4.1 for details on software

business models). SugarCRM also opens up the platform to enable complementors to

create additional extension modules for end-users and builds an entire software

ecosystem.

Our research draws on twelve interviews with SugarCRM Inc. executives in

technical, business and legal roles, as well as executives of complementors (see Table

3). In total, we collected more than ten hours of interview recordings that were

transformed to 136 pages of interview transcripts. The interviews with SugarCRM

executives were mostly in person and took place at the headquarters in Cupertino, CA,

and the firm’s office in Munich, Germany. The interviews with the ISVs were

conducted via telephone. To triangulate our data, we complement the interviews with

information from extensive field notes, analyst reports (see Table 4) and data from the

company’s open source community website21.

Our research shows that SugarCRM’s platform architecture and its business model

are inseparably linked. The business model is enabled by a product architecture that

separates the IP elements for the community edition from the elements required for the

commercial editions. Figure 39 depicts the basic architecture in a schematic

representation for selected platform functionality and extension modules.

19 See www.gnu.org/licenses
20 Sugar CRM is implemented in PHP technology, which does not allow to keep source code secret for it
is interpreted at run time and not compiled. Following this technical conditions SugarCRM operates on a
combination of OSS and open code software.
21 See www.sugarforge.org

 97

IP for community editionIP for commercial editions Module boundaries

DB access module

Oracle MySQL

Accounts
module

Reporting
module

Platform
core

Extension
modules

Proprietary code tree

(illustrative representation)

Figure 39 – Schematic architecture overview (Case 11) 22

Nick Halsey, VP (Vice President) of marketing, explains the link between

SugarCRM’s product architecture and the company’s business model as follows:

“Our business model would not be possible without an IP modular architecture.

If we solely had an open source product and sold consulting services around it,

we would probably do very well, but we wouldn‘t have the same kind of

explosive growth23 we’re experiencing with our commercial product.” (Nick

Halsey, VP of marketing)

The goal of SugarCRM is to reach clear IP modularity between the open platform

core and the extension modules. This is the case when certain business functionality that

is to be included into one of the commercial editions can be implemented in one or

several extension modules.

However, there may be situations where this is not possible because some

commercial edition functionalities simply cannot be implemented in one extension

module and require modifications of the platform core.

If somehow possible, such IP for commercial editions is then encapsulated in

separate modules within the platform. In the worst case, the code for the commercial

22 Source: Waltl et al. (2012)
© Springer-Verlag Berlin Heidelberg – reprinted with permission
23 To give an example: In North America the billings for the first quarter in 2011 showed a 63% growth
over the same quarter in 2010 [17]

 98

editions cannot be split into different modules (called components in the SugarCRM

context) within the platform. Lila Tretikov, CIO and VP of engineering states:

“We try to keep the platform IP modular as well, but there are some historical

things that are there from before. An example of this would be our general

database component that has code to connect to MySQL that goes into our

community edition and code to connect to Oracle that goes into our commercial

editions.” (Lila Tretikov, CIO and VP of engineering)

To overcome this problem and reach IP homogeneity in the released editions, the

code is tagged in the proprietary code tree when it is only to be included in one of the

proprietary editions. As shown in Figure 40, a special build process removes the IP for

the commercial editions from the code that is released under the AGPL license. Thus, IP

homogeneity within the community and the commercial editions can be achieved with

only one proprietary code tree that has to be managed. Alternatively, two parallel code

trees would have to be managed that only differ in the parts for the commercial editions.

This would require additional maintenance effort and increase the risk of

incompatibility between the versions.

DB access module

Oracle MySQL

Accounts
module

Reporting
module

Platform
core

Extension
modules

(illustrative representation)

Community edition (AGPL)

Commercial editions (proprietary)

Build process

DB access module

MySQL

Accounts
module

Proprietary code tree

IP for community editionIP for commercial editions Module boundaries

DB access module

Oracle MySQL

Accounts
module

Reporting
module

DB access module

Oracle MySQL

Accounts
module

Reporting
module

Figure 40 – Build process to separate IP (Case 11) 24

24 Source: Waltl et al. (2012)
© Springer-Verlag Berlin Heidelberg – reprinted with permission

 99

Based on these findings, we can extend the concept of IP modularity to include the

notion of hierarchy levels. In our case, we identified three levels of IP modularity. On

the first and highest level, the relevant elements are the platform and the extension

modules on an architectural level. The second level is within the platform itself in the

way that its sub-modules are IP homogeneous. On the third level, the modules must

split on a source code level to reach IP homogeneity in the end products.

Table 6 provides a detailed description of the identified hierarchy levels of IP

modularity and their implications for platform strategy, governance mechanisms, and

implementation. According to CTO Clint Oram, the overall aim is to keep the IP

separation at the platform architecture and module level because the implementation of

IP modularity on the source code level implies higher technical complexity and

implementation cost.

Platform architecture level Module level Source code level

Characteristics ▪ Modularity between between
 architectural elements

▪ Modularity between modules
 within one architectural element

▪ Modularity between source
 code sections within one
 module

Strategic rationale ▪ Split open platform from
 proprietary extension modules
▪ Fundamentally enabling
 "open core" business model

▪ Separation of proprietary and
 open modules

▪ Separation of proprietary and
 open code segments

Goverance ▪ Archtectural design committee
 defines general design rules

▪ Product management guides
 engineers

▪ Product management guides
 engineers

Implementation ▪ Platform API
▪ Module builder toolset

▪ Assignment of IP status to
 modules

▪ Assignment of IP status to
 code segments

Cost of implementation Low Low High

Table 6 – Hierarchy levels of IP modularity 25

In the case of SugarCRM, the need for IP modularity on the source code level is

given for three different reasons. First, the SugarCRM platform is a constantly evolving

product, and the focus towards IP modularity has increased over time. Thus, for

historical reasons, there remains code that has not been designed with the principle of IP

modularity in mind, as Nick Halsey explains:

25 Source: Waltl et al. (2012)
© Springer-Verlag Berlin Heidelberg – reprinted with permission

 100

“Now we are 100 percent committed to IP modularity. In the early days our

main focus was to bring our product to the market.” (Nick Halsey, VP of

marketing)

Second, there are modules that cannot be split due to technical or architectural

reasons, for example, the DB access module as shown in Figure 40. Here, the need for

technical optimality justifies the additional cost of implementing IP modularity on the

source code level.

Third, the further down IP modularity is implemented in this layer model, the more

granular the balance between openness and value appropriation can be managed, as

CEO, Larry Augustin, explains:

“With our IP modular architecture, we have more flexibility and can draw that

line in a more granular place. For example, parts of our open platform can be

proprietary. […] I think we have more flexibility to choose what is free versus

what is not free.” (Larry Augustin, CEO)

This highly granular possibility to control the IP even on the source code level for

commercial versions is a core enabler for increased openness because modules that only

partly consist of proprietary elements do not have to be kept proprietary as a whole. On

the other hand, these mechanisms to separate IP on the source code level can lead to

higher cost, at least initially, as Nick Halsey accounts:

“If you take just a little bit of extra time up front to determine the right IP

modular design that fits your business needs, it might mean higher cost up front,

but in the end, you will wind up saving time, saving money and having increased

productivity over time.” (Nick Halsey, VP of marketing)

When IP modular platform design is fundamentally linked with a company’s

business model, it has to be decided to which level IP modularity is implemented to be

beneficial from an overall strategic perspective. This may – and in the present case does

– outweigh higher cost in R&D and/or technical drawbacks.

 101

In addition to enabling SugarCRM’s business model, the IP modular platform design

entails an entire set of additional effects on company performance and the entire

platform ecosystem that can be clustered into inter-platform and intra-platform effects.

As in the previous chapter, we base our findings on the extended research framework of

intended and real effects (see Figure 25). Figure 41 shows the combined results of the

intended and real-effect analysis. A full overview of the underlying coding scheme is

provided in Appendix D.

Open core , IP
lessor business
model enabled

by IP
modularity

Low adoption barrier Scalability to different user groups

Flexibility for downstream adaptations

Protection of complementor’s IP

Trust through openness

Anonymous co-creation

Protection of platform provider’s IP

Securing of innovation roadmap

Lower sales cost

Lower R&D cost

Protection of platform provider’s IP

Securing of innovation roadmap

Lower sales cost

Lower R&D cost

Platform attractiveness for ecosystem partners

Product attractiveness for end-users

Competitive position of platform provider

Network effects

In
tr

a-
p

la
tf

o
rm

In
te

r-
p

la
tf

o
rm

Focus effects: intended and real (confirmed by ecosystem partners)Intended effect

Figure 41 – Intra- and inter-platform effects (Case 11) 26

The intra-platform effects can be divided further into effects that increase platform

attractiveness for complementors and those that increase product attractiveness for end-

users. Not surprisingly and in line with existing research, our data indicate a network

effect between those two (see Figure 38). Our interviews show that executives devote

particular attention to the platform attractiveness for ecosystem partners, as Nick Halsey

testifies:

“By taking the IP modular architecture approach, we have made it easier for

our partner ecosystem to develop add-ons and extensions to our product that

26 Own figure based on: Waltl et al. (2012)
© Springer-Verlag Berlin Heidelberg – reprinted with permission

 102

they can build businesses around. As a result, that means we have a much larger

ecosystem with better solutions that are easier to implement and upgrade.”

(Nick Halsey, VP of marketing)

Furthermore, for anonymous co-creation (see proposition 2 in Section 3.2.1), the

specific platform architecture enables the highly open strategy, which eliminates the

need for complementors to interact directly with the platform provider. The CEO, Larry

Augustin, illustrates why this fosters innovation in the entire ecosystem:

“There are many third-parties that show up and say: We have a product that

works with SugarCRM, and they try to sell to our customer base. Many third-

parties created those integrations using our open source tools, and they don’t

have to talk to us at all to develop a useful solution. We may not have supported

them if they had chosen to talk to us.” (Larry Augustin, CEO)

In addition, we found out that the possibility for anonymous co-creation paved the

way for strong partnerships with complementors. Mirco Müller, CEO of Insignio CRM

(one of SugarCRM’s largest partners in Europe) describes this process as follows:

“In the beginning we did our business only based on the community edition.

SugarCRM did not know us. We started to partner when we acquired our first

big customers – still we did not interact much with SugarCRM. We were able to

solve our problems on our own since we had access to all source code for the

community and commercial editions. That changed when Sugar opened an office

in Europe and we now do interact very closely, especially in marketing.” (Mirco

Müller, CEO of Insignio CRM)

These findings on the rationales for and the effects of IP modularity are perfectly in

line with and, thus, support proposition 2 in Section 3.2.1 regarding the distribution,

number and anonymity of potential value co-creators. Similarly, the following findings

on customization and downstream adaptations lend support to proposition 4 in Section

3.2.1. As CTO Clint Oram explains:

 103

“The reason why our ecosystem partners come to us is because we reduce risk

for them. They have more control over the building of products because they

have full visibility into the source code, and they understand exactly how the

product works.” (Clint Oram, CTO and co-founder)

Additionally, the ecosystem partners appreciate the flexibility for adoption and

customization on the platform core to implement end customer requirements. The core

benefits are best described by Clemens von Dinklage, CEO of SugarCRM’s Gold-

Partner MyCRM GmbH:

“We don’t have to ask SugarCRM when we customize the product, since we can

open the engine hood ourselves and implement customer requirements directly

without additional communication overhead towards the platform vendor.”

(Clemens von Dinklage, CEO MyCRM)

Overall, the identified framework of intra-platform and inter-platform effects shows

that IP modular platform design has a variety of strategic implications far beyond the

basic business model mechanics. The checklist matrix (see Figure 42) proves that the

effects on anonymous co-creation and the flexibility for downstream adaptations that

are intended by the platform provider management materialize on the ecosystem partner

side.

 104

Figure 42 – Intended effects checklist matrix (Case 11)

In
te

n
d

e
d

 e
ff

e
ct

C
lin

t
O

ra
m

Ja
y

S
e

ir
m

a
co

L
ila

 T
re

tik
o

v
N

ic
k

H
a

ls
e

y
L

a
rr

y
A

u
g

u
st

in
C

h
ri

st
ia

n
 K

n
o

ll
M

ir
co

 M
ü

lle
r

C
le

m
e

n
s

v.

D
in

ck
la

g
e

G
e

n
e

ra
l

m
a

n
a

g
e

r
(I

S
V

 p
a

rt
n

e
r)

x
x

x

x x

P
la

tf
o

rm
 a

tt
ra

c
ti

v
e

n
e

ss
fo

r
ec

o
sy

s
te

m
 p

ar
tn

e
rs

P
ro

d
u

ct
 a

tt
ra

c
ti

v
e

n
es

s
fo

r
en

d
 u

s
er

s

C
o

m
p

e
ti

ti
v

e
p

o
s

it
io

n
 o

f
p

la
tf

o
rm

p

ro
v

id
e

rL
o

w
 a

d
o

p
tio

n
 b

a
rr

ie
r

S
ca

la
b

ili
ty

 t
o

 d
iff

e
re

n
t

u
se

r
g

ro
u

p
s

T
ru

st
 t

h
ro

u
g

h
 o

p
e

n
n

e
ss

x

P
ro

te
ct

io
n

 o
f

co
m

p
le

m
e

n
to

r's
 I

P

A
n

o
n

ym
o

u
s

co
-c

re
a

tio
n

x

L
o

w
e

r
R

&
D

 c
o

st
x

x

F
le

xi
b

ili
ty

 f
o

r
d

o
w

n
st

re
a

m
 a

d
a

p
tio

n
s

x

S
e

cu
ri

n
g

 o
f

in
n

o
va

tio
n

 r
o

a
d

m
a

p

L
o

w
e

r
sa

le
s

co
st

x

x
x

x
x

x

x

P
ro

te
ct

io
n

 o
f

p
la

tf
o

rm
 p

ro
vi

d
e

r's
 I

P

x

x

x xx
x

x

x

R
o

le
 o

f
in

te
rv

ie
w

ee

G
e

n
e

ra
l

m
a

n
a

g
e

r
L

e
g

a
l e

xp
e

rt
R

&
D

 m
a

n
a

g
e

r
S

ta
ff

 f
u

n
ct

io
n

m

a
n

a
g

e
r

G
e

n
e

ra
l

m
a

n
a

g
e

r

G
e

n
e

ra
l

m
a

n
a

g
e

r
(I

S
V

 p
a

rt
n

e
r)

G
e

n
e

ra
l

m
a

n
a

g
e

r
(I

S
V

 p
a

rt
n

e
r)

 105

We found that IP modular platform architecture is the key enabler for the company’s

hybrid OSS business model. SugarCRM separates components that it licenses under an

OSS license from those that it puts under a proprietary license in a single code tree, and

in this way, it manages to combine the benefits of open source licensing with those of a

proprietary product-based business model.

With a detailed analysis of SugarCRM’s software platform, we identified three

hierarchy levels for the application of IP modularity: the architectural level, the module

level and the code level. IP modularity is easiest to implement on the architectural level,

but hybrid architectural components may remain. These, in turn, can be made IP

modular through a clear separation on the module level. Nevertheless, there may remain

modules with a hybrid IP status that require differentiation on the source code level. The

further down in this hierarchy IP modularity is implemented the higher is the related

cost, but also the better is the strategic control of value appropriation in a hybrid OSS

business model.

We also identified a set of secondary effects that can be clustered into effects that

increase the platform attractiveness for end-users and effects that increase the

competitive position towards other platform providers. Analyzing the effects on

platform attractiveness for ecosystem partners, we found them fully in line with

propositions derived in earlier work (Henkel and Baldwin, 2010).

Our findings on the implementation and the effects of IP modularity in one particular

software ecosystem may provide insights beyond that particular case, encourage

additional research, and provide insights for industry practitioners.

5.3 IP modularity in a proprietary software platform ecosystem

SAP NetWeaver PI is a core platform of SAP’s enterprise software portfolio that

connects SAP solutions to third-party solutions. As SAP decides to focus on a defined

set of connectors to the most common third-party software systems, it opens up the

platform for third-party companies to develop additional connectors to other systems.

The ecosystem around NetWeaver PI is closely managed in that complementors need to

certify under SAP conditions. The provision of knowledge is strictly controlled via an

API, as well as access to data structures and sample code for API implementation.

 106

Similar to SugarCRM, SAP implements an IP lessor business model (see Section

4.1). It is sold as an on-premise27 solution that typically is embedded into the customers’

IT landscape with the help of a system integrator.

Contrary to SugarCRM, NetWeaver PI is a completely proprietary system, and

access to the platform is only granted to selected ecosystem partners via an external

API. As this API is rich in functionality, it reveals platform internal knowledge.

Accordingly, it is implemented in a separate set of modules. While this separation of

internal and outgoing IP is common in API design, the SAP software architects further

separated the business logic implementation in a separate module (A) and inserted an

SAP internal API module (B) that is not visible for external application developers.

Figure 43 illustrates how SAP NetWeaver PI implements IP modularity.

Business logic
implementation

External API

NetWeaver PI
architecture

New functionality
e.g. business
network graph

A

A

A

A

A

A

A

A

A

C

C

C

B

B

B

B

B

B

SAP internal
API

C

C

Third-party
application

Figure 43 – IP modularity in SAP NetWeaver PI (Case 9)

From an abstract, top-level perspective, the NetWeaver PI platform consists of three

modules: the implementation of the business logic that under no circumstance is to be

revealed to third-parties; the SAP internal API that is subject to change and available to

other SAP product units, and the external API that is to be kept stable across releases.

Whenever new functionality is implemented, it is allocated to one of the three

modules. That is, its architectural integration is tightly linked to the decision about its IP

27 On-premise software describes a model where the a customer buys a software license to run the product
on its own hardware.

 107

status. Thus, IP modularity is a core requirement for new functionality. As for

SugarCRM, the importance of establishing and maintaining IP modularity of the

architecture increased over time. In particular, the adaptation of the external API from

version 7.0 to 7.1 caused additional effort in the entire ecosystem as Frank-Oliver

Hoffmann, the leading software architect for SAP NetWeaver PI, reports:

“There are cases where the API is very closely linked to the implementation and

it can happen that artifacts are to be exposed that are core IP. We had such

cases until version 7.0. To overcome this problem we inserted the internal API

module, but had to break the API compatibility from version 7.0 to 7.1. Now we

are able to exactly decide what we want to expose and keep the API stable at the

same time.” (Frank Oliver Hoffmann, Software architect SAP)

On the complementor side John Senor, software architect and Chief Development

Officer (CDO) at Information Builders Inc., confirms the importance of an open and

stable API:

“It is the openness and the robustness of the APIs that they provide. That are

absolutely the most important points [for making a platform attractive].” (John

Senor, Software architect and CDO at Information Builders Inc.)

To ensure IP modularity, the SAP architects implemented a special build process that

assigns different code artifacts to one of the three modules: Business logic

implementation, SAP internal API or External API.

For our research on SAP NetWeaver PI, we identified six interview partners and

conducted a total of eight interviews. Of these, three were with general and staff

function managers on the platform provider side, whereas two were with software

architects of companies providing complements. In addition, we conducted two in-depth

interviews with the leading software architect for NetWeaver PI and one interview with

an ecosystem manager. Overall, close to six hours of interviews resulting in 48 pages of

interview transcripts built a solid empirical basis for our findings.

For each case, a set of initial interviews was conducted that aimed to understand the

implementation of IP modularity in that specific case. All other interviews were based

 108

on an interview guideline derived from the basic research questions (see Section 3.2.1)

and existing literature.

We coded all empirical data using the software package NVivo, using the interview

guidelines for platform providers and ecosystem partners (see Figure 14 and Figure 15)

as the initial coding scheme. As the first findings emerged from the data, the coding

scheme was adapted in an iterative approach.

The analysis of the effects of IP modularity reveals the same structure for inter- and

intra-platform effects as in the SugarCRM case described in the previous section:

Proprietary, IP
lessor business
model enabled

by IP
modularity

Low adoption barrier Scalability to different user groups

Flexibility for downstream adaptations

Protection of complementor’s IP

Trust through openness

Anonymous co-creation

Protection of platform provider’s IP

Securing of innovation roadmap

Lower sales cost

Lower R&D cost

Platform attractiveness for ecosystem partners

Product attractiveness for end-users

Competitive position of platform provider

Network effects In
tr

a-
p

la
tf

o
rm

In
te

r-
p

la
tf

o
rm

Stability of API

Focus effects: intended and real (confirmed by ecosystem partners)Intended effect Effect not observed

Figure 44 – Intra- and inter-platform effects (Case 9)

For the inter-platform effects, we found that SAP NetWeaver PI’s modular design

allows the NetWeaver product unit to protect its IP externally and particularly internally

towards other SAP units. It also lowers the R&D cost because the platform core can be

adapted in a flexible manner not bound to the external API.

As expected for the platform attractiveness, anonymous co-creation could not be

observed due to the restrictive IP management and the close management of ecosystem

entry with a partner certification program. Notably, we found that the IP modular

platform architecture increases the flexibility for downstream adaptations as the

responsible general manager for the SAP Netweaver PI development explains:

 109

“Based on the subordinate business targets, we have to ensure that our product

is open for adaptations and that it can also be connected to other middleware

systems.” (Achim Kraiss, General manager for the SAP NetweaverPI

development)

The most important effects on platform attractiveness for ecosystem partners is the

increased Stability of the API and Flexibility for downstream adaptations as the

checklist matrix shows28:

Achim Kraiss
Frank Oliver

Hoffmann
John Senor

Robert
Schimansky

Software
architect

(ISV Partner)

Role of interviewee

General
manager

Software
architect

Software
architect

(ISV Partner)

Lower R&D cost x

Lower sales cost

x x

x

x

x

xx

x

x

x

Protection of platform provider's IP

Scalability to different user groups

Low adoption barrier

Securing of innovation roadmap

x

Competitive position of platform
provider

Stability of API

Trust through openness

Platform attractiveness
for ecosystem partners

Product attractiveness
for end users

x

Protection of complementor's IP

Flexibility for downstream adaptions x

Anonymous co-creation

x

Figure 45 – Intra- and inter-platform effects checklist matrix (Case 9)

For the SAP NetWeaver unit, this stability of the API is a core lever to attract and

retain complementors contributing to the NetWeaver PI ecosystem as the responsible

general manager explains:

28 With respect to the specific questions we found that the SAP general manager and the SAP software
architect could provide the highest level of detail as they were directly involved in decisions on IP
modular platform design. So to keep the results as straight forward as possible we did not include the data
from the interviews with the SAP staff function manager and the SAP ecosystem manager in the result
display.

 110

“We really have to invest additional effort upfront in platform design to keep

the APIs as stable as possible.” (Achim Kraiss, General manager for the SAP

NetweaverPI development)

The view on the ecosystem partner side proves that the API stability, enabled by IP

modular platform architecture, is a key factor of platform attractiveness as already

described by John Senor from the complementor Information Builders Inc. earlier in

this section.

With the analysis of the SAP NetWeaver PI case, we show that IP modular platform

design can also be beneficial for providers of proprietary software platforms with a

restrictive management of IP.

The levers to make such a platform more attractive for ISVs are naturally different

from more open platforms, but the stability of the API, enabled by IP modular platform

architecture, appears to be an equal lever to increase the trust in the platform provider

and increase platform attractiveness.

5.4 Effects of IP modularity in open and proprietary software

ecosystems

The cases of SugarCRM and SAP NetWeaver PI illustrate the importance of making

IP requirements a key consideration when designing platform architectures. Detailed

analysis of our empirical data reveals a number of intra- and inter-platform strategic

benefits that result from an IP modular platform design. These benefits relate to (a)

platform development, (b) platform attractiveness for complementors and (c) platform

attractiveness for end customers.

(a) Both SugarCRM and SAP internally benefit in platform development. SugarCRM

can reduce its R&D cost compared to a fully proprietary approach, as large parts of the

platform are co-developed by the user community. On the other hand, selected

functionality is placed in the proprietary part of SugarCRM’s code tree, increasing the

value of the firm’s commercial offerings. In the SAP case, additional flexibility in the

development of the core functionality is realized, as the internal API is easier to adapt

and does not limit the implementation of additional functionality.

(b) In both cases, the IP modular platform design makes the platform more attractive

for complementors. For SugarCRM, adopting the Community Edition entails only

 111

minimal upfront transaction cost; third-parties can develop complements without any

relationship to the platform provider.

In terms of ecosystem access, the closed approach of SAP implies an entry barrier as

the ecosystem partners have to certify their products to prove that they are compatible

with SAP NetWeaver PI. With this upfront investment for joining the ecosystem,

complementors incur a certain economic investment risk that requires SAP to provide

risk-mitigating counter-measures to keep the platform attractive for ISVs. Specifically,

the IP modular design introduced in version 7.1 enables SAP to keep the API stable,

which in turn secures the complementors’ investments.

(c) SugarCRM’s dual licensing model is a key marketing tool to make the product

attractive for end customers. They can download the Community Edition and use it for

free. As soon as they require additional functionality that is in one of the professional

editions, they obtain the additional modules but do not have to switch to another

product. End customers benefit from reduced transaction cost during the first time

installation, as well as the migration to professional product versions. Additionally, SAP

customers (typically large corporations with a complex IT blueprint) benefit from

SAP’s IP modular design. They do not require product updates of third-party SAP

NetWeaver PI connectors caused by API changes. Furthermore, this also applies to

custom-made connectors for legacy systems.

Summarizing, despite rather different levels of platform openness, the need to

separate core IP from code to be made accessible to third-parties drives the requirement

of an IP modular architecture in both cases.

In line with our findings on IP modularity in software products, we identify IP

requirements as an additional instance of non-functional requirements situated on the

same level as quality requirements. Because non-functional requirements play a critical

role for the architectural design (Wiegers, 2003; Chung and do Prado Leite, 2009), they

are reflected in the system architecture, which upon fulfillment of the IP requirements

results in being IP modular.

In line with existing literature (Wiegers, 2003), our research shows that business

requirements influence the non-functional requirements. In particular, the management

of Intellectual Property Rights (IPRs) is directly influenced by the business model. In

the case of SugarCRM, the business model requires the encapsulation of core

functionality that is excluded from the open source version. In the SAP NetWeaver PI

case, the exposure of core functionality via the API is to be prevented. The platform

architecture is then defined based on the non-functional IP modularity requirement.

 112

From our analysis of two software platforms, we identify IP modularity to be a key

criterion to map a software business model to specific platform architecture. We see a

direct link between IP requirements and the technical modularization and architecture

that has to be actively managed – confirming our model on IP related requirements

shown in Figure 34.

Although based on entirely different business models and different levels of

openness, both cases showed that the need to encapsulate platform core IP and to open-

up certain other parts of the system eventually led to an IP modular design. In the initial

generation of the platform architecture, IP requirements played only a subordinate role.

As business requirements gained importance, re-modularization of the initial platform

architecture was inevitable. The consideration of IP related requirements in early stages

of the platform design could have prevented the additional effort needed to re-

modularize the platform in an IP modular fashion.

5.5 Conclusion

By analyzing two widely used software platforms in the enterprise software market,

we have carved out the influence of IP related requirements on the modular structure of

a platform’s architecture. In both cases, IP requirements were more clearly recognized

over time as being vital to the respective platform business model. They gained

importance accordingly, and eventually gave rise to re-modularizations producing IP

modular architectures.

IP modular designs are beneficial in various ways. In the cases we studied, they

allow to prevent exposure of core IP and, simultaneously, to practice selective openness.

For SAP Netweaver PI, the platform gains attractiveness through stable APIs. For

SugarCRM, the open source Community Edition simplifies adoption and invites

external contributions.

These benefits can be obtained at almost no additional cost when IP related

requirements are considered in the initial platform design, but they entail considerable

cost when introduced later through re-modularizations. Thus, software product

managers should be aware of that fact and how the firm’s strategy and its business

model influence the IP requirements of software platforms. IT architects then need to

embrace the IP requirements and weigh them against other non-functional and

 113

functional requirements. If they succeed, the resulting architecture will balance

openness and protection and will be aligned with the software vendor’s business model.

Our research results support software engineers and IT architects in their endeavor of

successfully mapping the business model to the platform architecture. Executives,

architects and ecosystem managers are provided with a model that links strategic

decisions to the architectural requirements. In addition, management field scholars and

information systems researchers can build on our research to further investigate the

field.

 114

6 The impact of IP modularity on platform attractiveness

This section focuses on the effects of IP modularity on the attractiveness of a

software platform for complementors or ISVs. We now switch perspectives from the

strategic intentions of a platform provider to the implications for the complementors.

We thus investigate whether the strategic intentions that led managers of the platform

provider to implement an IP modular platform architecture result in making their

platforms more attractive for complementors. Our research on platform attractiveness

builds on our findings with respect to SugarCRM and SAP NetWeaver PI, which are

discussed in Sections 5.2 and 5.3. We explore platform attractiveness factors by

comparing the SugarCRM ecosystem with that of Salesforce.com, which functions in

the same industry but is completely different in terms of platform openness and

ecosystem management.

Because both ecosystems are populated by a sufficiently large number of

complementors, we may apply a hybrid research approach, such as that described in

Section 3.1 above, to answer our basic research question:

 How does IP modularity influence the attractiveness of a software platform from

a complementor’s perspective?

With this research, we extend the results of the Master’s thesis of Schreiner (2012),

which I initiated and supervised. This thesis is based on our findings on the SugarCRM

case presented in Section 5.3 and Waltl et al. (2012). As part of the Master’s thesis, a

platform attractiveness model was developed, a qualitative pre-study of the SugarCRM

and the Salesforce.com ecosystems was conducted, and a survey on platform

attractiveness was initiated. For the research in this section, we revise and simplify the

platform attractiveness model and test the hypotheses on an extended dataset of N=126

with an Ordinary Least Squares (OLS) regression model.

 115

6.1 Platform attractiveness for ecosystem partners

“Platform leaders need to decide on the degree of modularity for their product

architectures and the degree of openness of the interfaces to the platform. In

particular they must balance openness with how much information about the

platform and its interfaces to disclose to potential complementors, who may use

this information to become or assist competitors.” (Cusumano, 2010, p. 45)

As a vendor opens up for collaboration, complementors require access to platform-

specific knowledge. Research shows that providing knowledge and waiving IPRs are

key levers for ecosystem growth (Gawer and Henderson, 2007, p. 3; Boudreau, 2010).

Unfortunately for the platform provider, waiving IPRs may diminish the ability to

appropriate returns (West, 2003).

In addition, Jansen et al. (2012, p. 1509) identify platform openness as a key factor

generating a vibrant ecosystem by showing that the decision between open and closed is

neither black nor white but instead is multifaceted; further research is required to fully

understand the implications of this decision for the management of software platform

ecosystems. Current research in this nascent field focuses on understanding the

interplay of open-platform architecture and platform attractiveness primarily through

qualitative methods; however, large-scale quantitative studies are non-existent (Anvaari

and Jansen, 2010; Kude et al., 2012, p. 262). To our knowledge, this study29 offers the

first quantitative analysis that links IP modular platform architecture to platform

attractiveness for complementors. We base our analysis on a detailed model in which

Platform attractiveness depends on the Platform provider setting and the Complementor

setting:

29 Including the work of Schreiner (2012).

 116

1. Platform provider setting

2. Complementor setting

3. Platform attractiveness

3.1 Willingness to initially invest

3.2 Willingness to further invest

Return on investment

3.3 Expectations met

3.4 Pay-off

1.1 Perceived fairness of platform provider

1.2 Perceived risk to become dependent on platform provider

1.3 Level of feasibility to generate customized solutions

1.1 Perceived fairness of platform provider1.1 Perceived fairness of platform provider

1.2 Perceived risk to become dependent on platform provider1.2 Perceived risk to become dependent on platform provider

1.3 Level of feasibility to generate customized solutions1.3 Level of feasibility to generate customized solutions

2.3 Importance of anonymous platform interface2.3 Importance of anonymous platform interface

2.4 Importance of openness through access to platform know-how2.4 Importance of openness through access to platform know-how

2.6 Importance of ability of complementor to protect its IP2.6 Importance of ability of complementor to protect its IP

2.5 Importance of low entry barrier to join platform ecosystem2.5 Importance of low entry barrier to join platform ecosystem

2.8 Importance of current end-users in ecosystem (market size)2.8 Importance of current end-users in ecosystem (market size)

2.9 Importance of potential end-users in ecosystem (market growth)2.9 Importance of potential end-users in ecosystem (market growth)

2.1 Complexity of downstream system2.1 Complexity of downstream system

2.2 Need for downstream adaptation (degree of customization)2.2 Need for downstream adaptation (degree of customization)

2.7 Number of platform ecosystems connected to2.7 Number of platform ecosystems connected to

Willingness to invest

2.11 Relation to the platform provider (only SugarCRM)2.11 Relation to the platform provider (only SugarCRM)

2.10 Firm size2.10 Firm size

Figure 46 – Platform attractiveness model (identical with Figure 18)

For the Platform provider setting, the variables in the model are Perceived fairness

of platform provider, Perceived risk of becoming dependent on platform provider and

Level of feasibility of generating customized solutions.

The variable Perceived fairness of platform provider is essential for complementors

to join a software platform ecosystem. Platform providers and complementors are in a

cooperative and competitive relationship simultaneously; platform providers offer the

basic technology for complementors to utilize but may also include functionality as part

of their package that may make complementors` offerings obsolete. Research into the

semiconductor and enterprise software industry has shown that complementors fear

being squeezed out by the innovations of the platform provider (Gawer and Henderson,

2007, pp. 21–22; Kude et al., 2012, p. 262) . To overcome this problem, the platform

provider must signal to its complementors that they will be treated fairly.

 117

Platform providers must also ensure that for the complementors, the Perceived risk of

becoming dependent on the platform provider is not too high. The platform provider

therefore must show that it is able to further develop the platform and thus support the

complementors as they grow (Perrons, 2009, p. 1301). In addition, our own findings

with respect to the SugarCRM and SAP NetWeaver PI software platforms show that

platform providers must keep their API stable to prevent re-engineering effort on the

complementor side (see Sections 5.2 and 5.3).

Software platforms are typically developed to satisfy diverging user needs, e.g., in

specific industry verticals, that the platform provider cannot satisfy (Parker and van

Alstyne, 2009, p. 32). Therefore, it is vital for complementors to be able to meet these

varying user needs. Therefore, a greater Level of feasibility of generating customized

solutions (see Proposition 4 in Section 3.2.1) should entail a more attractive platform

for a complementor.

For the Complementor setting, a total of eleven variables have been identified to

influence the attractiveness of a software platform: Complexity of downstream system,

Need for downstream adaptation, Importance of anonymous platform interface,

Importance of openness through access to platform know-how, Importance of low entry

barrier to join platform ecosystem, Importance of ability of complementor to protect its

IP, Number of platform ecosystems connected to, Importance of current end-users in

ecosystem (market size), Importance of potential end-users in ecosystem (market

growth), Firm size, Relation to the platform provider (only SugarCRM).

Consistent with Proposition 4 on outgoing IP modularity, the IP modular platform

design may be more attractive for complementors that develop products facing a greater

Complexity of the downstream system.

In addition, based on Proposition 4 for outgoing IP modularity, we identify the Need

for downstream adaptation as variable that may increase the attractiveness of an open

platform.

The variable Importance of anonymous platform interface refers to the initial

transaction costs (Williamson, 1979) to join a platform ecosystem as a complementor.

Our research confirms that the ability to enter the SugarCRM ecosystem anonymously

with no upfront investment is a key driver inducing complementors to join the

ecosystem (see Section 5.2).

The variable Importance of openness through access to platform know-how relates to

the complementors’ evaluation of the know-how that is made available by the platform

 118

provider. In extreme cases, such as the SugarCRM platform, the platform provider fully

opens up the platform core with the aim of attracting complementors (see Section 5.2).

For complementors of a software platform, the variable Importance of low entry

barrier to join platform ecosystem should impact the attractiveness of a specific

platform because a low entry barrier reduces the complementors’ economic risk.

Conversely, platforms with a high entry barrier and thus high switching costs are likely

to be less attractive to complementors (Farrell and Klemperer, 2007, p. 1972).

A platform provider must ensure that complementors are able to secure their IP

(Huang et al., 2009). Therefore, the level that complementors rate their Ability to

protect their IP should influence the attractiveness of a software platform.

The variable Number of platform ecosystems a complementor is connected to plays

an important role in platform attractiveness. With this variable, we measure whether a

complementor focuses on only one platform or offers its products in several software

ecosystems. The qualitative pre-study in the two ecosystems revealed that

complementors that find a platform attractive enough do not consider entering

additional platform ecosystems (Schreiner, 2012, p. 51). By contrast, complementors

that do not see a certain platform ecosystem as attractive may tend to diversify their

offerings to other ecosystems.

The Importance of current end-users in ecosystem influences the attractiveness of a

software platform because of the network effects in the ecosystem (Eisenmann et al.,

2006, p. 96); complementors validate the market size as a determinant of whether to

enter a certain software platform ecosystem. In addition, the Importance of potential

end-users in ecosystem influences the attractiveness of a specific software platform, as

Schreiner (2012, p. 51) identified in her qualitative pre-study.

With the variable Firm size, we control whether the companies differ in size between

the SugarCRM and the Salesforce.com ecosystem.

Finally for the complementor setting, the variable Relation to the platform provider

controls for the transaction costs’ entering an ecosystem for complementors by

measuring whether they have an anonymous or certified relationship with the platform

provider. This variable only applies to the SugarCRM ecosystem, as only SugarCRM

offers anonymous co-creation as well as several levels of partner certifications.

The variable of interest in this model, Platform attractiveness, cannot be observed

directly. To overcome this problem, a set of observable variables (see Figure 46) have

been defined based on the findings of the qualitative pre-study of the SugarCRM and

Salesforce.com ecosystems.

 119

Utilizing these observable variables, Platform attractiveness is calculated. The

relationship between the observable variables and Platform attractiveness is tested in

advance of hypotheses testing using Cronbach`s alpha coefficient (see Section 3.3.2).

For our model on platform attractiveness, the following are the observable variables:

Willingness to initially invest, Willingness to further invest, Expectations met and Pay-

off.

 For a full overview of the operationalization of the simplified platform attractiveness

model and a basic description of the survey results for each variable, please refer to

Appendix F – Appendix H.

We use the described platform attractiveness model to verify the qualitative findings

on the impact of SugarCRM’s IP modular architecture on its attractiveness for

complementors.

To formulate the first set of hypotheses we revisit Proposition 4 for outgoing IP

modularity as described by Henkel and Baldwin (2010) (see also Section 3.2.1):

Proposition 4: [Customization] The greater and more varied the need for downstream

adaptations, the more advantageous is outgoing IP modularization. The module

boundaries should separate the IP that serves as the basis for modification from the IP

supporting the proprietary “core” modules.

Our findings on the impact of SugarCRM’s IP modular platform architecture on the

attractiveness of their platform are fully in line with Proposition 4 (see Section 5.2 and

Waltl et al., 2012):

“The reason why our ecosystem partners come to us is because we reduce risk

for them. They have more control over the building of products because they

have full visibility into the source code, and they understand exactly how the

product works.” (Clint Oram, CTO and co-founder)

Transferred to our platform attractiveness model, we expect that a more complex

downstream system (variable 2.1) of a complementor and a higher need for downstream

adaptation (variable 2.2) for a complementor imply a higher attractiveness of an open

software platform. Therefore, the first set of hypotheses may be formulated as follows:

 120

Hypothesis 1A: We expect the coefficients of variable 2.1 Complexity of downstream

system to be larger for SugarCRM than for Salesforce.com.

Hypothesis 1B: We expect the coefficients of variable 2.2 Need for downstream

adaptation to be larger for SugarCRM than for Salesforce.com.

The formulation of the second hypothesis relates to Proposition 2 for outgoing IP

modularity as described by Henkel and Baldwin (2010) (see also Section 3.2.1):

Proposition 2: [Distributed Co-creators] The more distributed, numerous, and

anonymous the co-creators of value, the more advantageous is outgoing IP modularity.

The aspect of the anonymity of co-creators has been fully confirmed by our findings

on the SugarCRM ecosystem, as Mirco Müller, CEO of Insignio CRM (one of

SugarCRM’s largest partners in Europe) describes (see Section 5.2 and Waltl et al.,

2012):

“In the beginning, we did our business only based on the community edition.

SugarCRM did not know us. We started to partner when we acquired our first

big customers – still, we did not interact much with SugarCRM. We were able to

solve our problems on our own, as we had access to all source code for the

community and commercial editions. That changed when Sugar opened an office

in Europe, and we now do interact very closely, especially in marketing.”

(Mirco Müller, CEO of Insignio CRM)

Based on this observation, we formulate the second hypothesis as follows:

Hypothesis 2: We expect the coefficient of variable 2.3 Importance of anonymous

platform interface to be larger for SugarCRM than for Salesforce.com.

The platform attractiveness model and the hypotheses represent the basis for the

quantitative analysis that will be described in the following section.

 121

6.2 The impact of IP modularity on platform attractiveness – analysis

results

In this section, we present the analysis results of our survey on the attractiveness of

software platforms for complementors following the defined research process described

in Section 3.3 and shown in Figure 17. At the outset, the sample is described and the

results of the hypotheses testing are outlined, which is followed by a discussion of the

findings in connection with the prior literature and our own qualitative analysis.

As previously discussed in Section 3.1 (see Figure 8), we apply a hybrid research

approach in this dissertation with a clear focus on qualitative methods due to the nascent

status of the current research on IP modularity in software platform ecosystems.

Therefore, we present basic tests of the hypotheses outlined in the previous chapter.

Additional analysis will be subject to further research.

We derive our findings from a survey based on the two CRM software ecosystems of

SugarCRM and Salesforce.com. The ecosystems differ significantly in their approach to

openness. SugarCRM licenses large parts of its platform core as OSS (see Section 5.2),

whereas Salesforce.com provides an entirely proprietary software platform in the format

of a Software as a Service (SaaS) offering30 featuring an extensive and well-documented

interface. From our findings on SugarCRM, we know that its openness is enabled by its

IP modular platform architecture. As outlined in the previous section, this openness

should influence the attractiveness of the platform compared to a completely proprietary

system. In addition, Salesforce.com experiences IP modularity to a certain degree in that

the proprietary API may be accessed to generate complementary applications, whereas

the platform core is undisclosed. We observe Salesforce.com to be less IP modular than

SugarCRM, which applies an extensive IP modular approach to open the platform core.

SugarCRM and Salesforce.com are considered to be leaders in the CRM market for

small- and mid-sized businesses (William Band, 2010). However, the companies differ

significantly in size and in the features of their ecosystems, as shown in Table 7.

30 In the SaaS delivery model, the software runs on the hardware of the software provider. The customer
accesses the software over the internet.

 122

Salesforce.com SugarCRM

Company Source Source

Launch 1999 1 2004 2

Number of employees 8,000 3 >250 2

Customers > 100,000 3 > 7,000 4

Customer growth (CAGR 2010-2011) 19.2 % 1 7.7 % 2

Target customer Enterprise, Mid, Small 3 Mid, Small 5

Ecosystem

Application exchange platforms appexchange.salesforce.com sugarexchange.com

Number of applications (2010) 743 6 85 6

Number of complementors (2010) 500 6 73 6

1 www.salesforce.com/company
2 www.sugarcrm.com/company-overview
3 Salesforce.com annual report 2012
4 www.sugarcrm.com/newspress/sugarcrm-expands-revenues-and-new-customer-numbers-pacific-rim
5 (William Band, 2010)
6 (Burkard et al. , 2011)

Table 7 – Ecosystem comparison

The survey was conducted using an online questionnaire that was open from June 4,

2012 until August 16, 2012 (see Section 3.3.2). In total, we retrieved answers from 126

ISVs (87 for Salesforce.com and 39 for SugarCRM). Based on prior measurements on

both ecosystems (Burkard et al., 2011), the response rate would amount to

approximately 18% for Salesforce.com and 53% for SugarCRM. However, this

response rate calculation may only be interpreted as an indication for two reasons. First,

the information we have from prior research is on the status of 2010; and second, in the

SugarCRM case, vendors are not required to provide upfront certification and

anonymous co-creation is permitted, making it impossible to draw conclusions about

the overall number of applications and complementors. Our research shows that

SugarCRM complementors first start anonymously and then cooperate with SugarCRM

(see section 5.2). The detailed ecosystem description of Burkard et al. (2011) also

revealed that most vendors focus on the provision of one application.

The dataset retrieved from the online survey provides considerable variation with

respect to global reach, the role of respondents and company size, as shown in Figure

47.

 123

Global reach

Comp. size (number of empl.)

Australia

3,2%

South America

4,8%

Other

5,6% Asia
7,9%

Europe

33,3%

North America

45,2%

Roles of respondents

No info

7,1%

Service

4,8% R&D
11,1%

Sales/
Marketing

14,3%

Technical
Management

14,3%

General
Management

48,4%

No info

2,4%

>50

15,9%

21-50

22,2%

5-20
45,2%

<5
14,3%

Global reach

Figure 47 – Sample description (identical with Figure 19)

For additional descriptive statistics about each variable in the dataset, please refer to

Appendix F – Appendix H.

Prior to hypotheses testing, the dataset must be prepared. As described in the

previous section, Platform attractiveness cannot be measured directly. Therefore, we

build a factor for each data point i by summing up the values of each Platform

attractiveness variable (see Figure 46) and dividing this sum by the number of variables

N:

N

variablenessattractivePlatform

nessattractivePlatform

N

j
j

i


 1

Figure 48 – Platform attractiveness calculation

As described in Section 3.3.3, the Platform attractiveness factor is validated with

Cronbach’s alpha test to assess internal consistency, as shown in Table 8 a).

 124

Full sample Salesforce.com SugarCRM

a) Platform attractiveness (4 items) 0.67 0.71 0.49

b) Willingness to invest (2 items) 0.72 0.75 0.62

c) Return on investment (2 items) 0.67 0.72 0.35

Table 8 – Cronbach’s alpha tests

Higher values for alpha indicate a higher reliability of the construct. Values larger

than 0.7 are regarded as satisfactory, but lower thresholds are used in the literature as

well (Bland and Altman, 1997, p. 572; Santos J. Reynaldo A., 1999). Table 8, row a)

shows that the full sample narrowly misses the 0.7 threshold. For the Salesforce.com

subsample, the Platform attractiveness factor may be regarded as satisfactory, whereas

the alpha value of 0.49 for the smaller SugarCRM subsample is questionable. A

possible reason for this may be that the entry barrier in the SugarCRM ecosystem may

be zero due to the possibility of anonymous co-creation and thus that the measureable

variables Expectations met and Pay-off are of less importance for the attractiveness of

the SugarCRM platform.

Because of the poor result for the SugarCRM subsample, we conducted an

exploratory factor analysis for all platform attractiveness variables to search for

additional factors that might be generated from the platform attractiveness variable31:

31 For further analysis details please refer to Appendix I.

 125

Factor analysis unrotated

Factor Eigenvalue Difference Proportion Cumulative
Factor 1 2.04 0.96 0.51 0.51
Factor 2 1.08 0.53 0.26 0.77
Factor 3 0.54 0.20 0.13 0.91
Factor 4 0.33 . 0.08 1.00

Factor loadings (pattern matrix) and unique variances

Variable Factor 1 Factor 2 Uniqueness
3.1 Willingness to initially invest 0.66 -0.65 0.15
3.2 Willingness to further invest 0.81 -0.35 0.22
3.3 Expectations met 0.67 0.57 0.22
3.4 Pay-off 0.70 0.46 0.30

Factor analysis rotated

Factor Variance Difference Proportion Cumulative
Factor 1 1.57 0.02 0.39 0.39
Factor 2 1.55 . 0.39 0.78

Rotated factor loadings (pattern matrix) and unique variances

Variable Factor 1 Factor 2 Uniqueness
3.1 Willingness to initially invest 0.92 0.00 0.15
3.2 Willingness to further invest 0.82 0.32 0.22
3.3 Expectations met 0.08 0.88 0.22
3.4 Pay-off 0.18 0.82 0.30

Table 9 – Exploratory factor analysis

The unrotated analysis shows that Factor 1 and Factor 2 have eigenvalues larger

than one. According to Kaiser’s rule, these factors should be retained for further

research (Kaiser, 1960). However, recent research questions the strict applicability of

Kaiser’s rule (Lance and Vandenberg, 2009, p. 83; Ruscio and Roche, 2012, p. 290). As

our research is exploratory, we retain both Factor 1 and Factor 2 to ensure that our

hypotheses testing shows the entire picture.

In the unrotated case of the factor analysis, the factor loadings do not differ

significantly, preventing us from identifying variables with which to build a new factor.

The orthogonal rotation of the analysis, however, enables us to identify that the

variables Willingness to initially invest and Willingness to further invest load heavily on

Factor 1. Similarly, we observe that the variables for Expectations met and Pay-off load

on Factor 2.

Using the calculation outlined in Figure 48 for the identified pairs of variables, we

are able to build the additional factors Willingness to invest and Return on investment.

 126

The first factor, Willingness to invest, shows significantly better values in the internal

consistency check with Cronbach's alpha for the entire sample and the subsamples (see

Table 8, row b)). The second factor, Return on investment, shows an acceptable alpha

value only for the Salesforce.com subsample, as shown in see Table 8, row c)32.

We begin the interpretation of the obtained dataset with a mean comparison for each

variable in the platform attractiveness model and apply a Mann-Whitney-U-Test

(Wilcoxon, 1945; Mann and Whitney, 1947) to identify significant differences across

the subsamples for Salesforce.com (SFDC) and SugarCRM (SCRM):

Variable Mean S.D. Mean S.D. Mean S.D.

1. Platform provider setting

1.1 Perceived fairness of platform provider 3.50 1.21 3.37 1.18 3.795 1.218 0.0386*

1.2 Perceived risk to become dependent on platform provider 3.31 1.12 3.52 1.09 2.846 1.065 0.0024**

1.3 Level of feasibility to generate customized solutions 4.62 0.63 4.62 0.63 4.615 0.633 0.9254

2. Comlementor setting

2.1 Complexity of downstream system 3.48 1.26 3.59 1.19 3.231 1.404 0.1884

2.2 Need for downstream adaptation 3.30 1.35 3.00 1.37 3.974 1.038 0.0002**

2.3 Importance of anonymous platform interface 2.95 1.19 2.86 1.19 3.154 1.159 0.1366

2.4
Importance of openness through access to platform know-
how

4.00 1.10 3.77 1.14 4.513 0.79 0.0003**

2.5 Importance of low entry barrier to join platform ecosystem 3.69 1.16 3.81 1.13 3.436 1.209 0.1194

2.6 Ability of complementors to protect its IP 4.33 0.89 4.48 0.76 3.974 1.063 0.0045**

2.7 Number of platform ecosystems connected to 1.94 1.56 1.94 1.68 1.949 1.276 0.2606

2.8
Importance of current end-users in ecosystem
(market size)

4.10 0.98 4.22 0.93 3.821 1.023 0.0349*

2.9
Importance of potential end-users in ecosystem (market
growth)

4.32 0.90 4.38 0.83 4.179 1.048 0.4112*

2.10 Firm size 3.41 0.93 3.39 0.99 3.436 0.788 0.6495

2.11 Relation to the platform provider (only SCRM) 2.90 0.47 2.667 0.806

3. Platform attractiveness

Platform attractiveness 3.98 0.67 3.92 0.72 4.115 0.512 0.1773

Willingness to invest 3.93 0.84 3.82 0.85 4.154 0.779 0.0342*

Return on investment 4.03 0.80 4.01 0.89 4.077 0.545 0.6864

note: ** p<0.01, * p<0.05

test

Full sample SFDC SCRM Mann-Whitney

Table 10 – Descriptive statistics

32 For further details on the factor analysis, please refer to Appendix I.

 127

In the above table, we observe that SugarCRM is perceived as showing higher

fairness to its complementors at the 5% significance level. The perceived fairness of a

software platform is dependent on the behavior of the platform provider and the terms

and conditions under which a complementor may participate in the ecosystem. The

moderately higher mean value in the SugarCRM subsample may be an indicator that the

open core model (see Section 5.2) increases perceived fairness.

The variable Perceived risk of becoming dependent on platform provider shows the

opposite pattern at 5% significance level. In line with our qualitative findings on

SugarCRM and also on SAP NetWeaver PI (see Sections 5.2 and 5.3), this finding

could be interpreted in a way that Salesforce.com’s closed platform strategy increases

the risk of complementors becoming dependent. An explanation could be that in a

closed platform, the provider controls access to the platform core via the API, whereas

in an open platform, the API does not limit access to the platform core. The

complementors in the closed platform case depend on the platform provider to keep the

API broad in functionality and stable across releases. This characteristic could be one of

the reasons why Salesforce.com’s complementors, on average, perceive the risk of

becoming dependent as higher.

For the variable Level of Feasibility of generating customized solutions, both

platforms appear to provide enough freedom for the developers of complementary

applications.

For the variables in the Complementor setting, we observe that the Complexity of the

complementary applications (downstream system) does not significantly differ between

the Salesforce.com and the SugarCRM ecosystem.

The Need for downstream adaptation is on average much higher for the

complementors in the SugarCRM ecosystem, with a mean of 3.974 compared to 3.00

for the complementors of Salesforce.com. Self-selection provides a plausible

explanation for the finding that the complementors that generate more customized

solutions prefer SugarCRM as platform for their application.

As expected, we find the average Importance of an anonymous platform interface to

be higher in the SugarCRM subsample. However, the Mann-Whitney-U-Test does not

show significant differences between the two subsamples.

In line with our expectations for the variable Importance of openness, we observe the

mean in the SugarCRM subsample to be significantly larger than the mean in the

Salesforce.com subsample. Not only is the difference significant at the 5% level, the

absolute value of the mean for SugarCRM is the highest of all complementor setting

 128

variables. This finding may also be interpreted as a self-selection effect toward an open

platform.

Surprisingly the variable Importance of low entry barrier to join a platform

ecosystem shows a higher mean value for the Salesforce.com subsample but is not

significantly different compared to the SugarCRM subsample. Based on our prior

qualitative findings on the SugarCRM case, we would have expected a different

outcome. An explanation could be that in the SugarCRM ecosystem, there is no entry

barrier, whereas in the Salesforce.com ecosystem, the entry barrier is a critical driver of

the complementor’s profitability. Nonetheless, additional research is required to fully

understand this surprising result.

As expected, we observe that the means for the variable Importance of ability of

complementors to protect its IP are high in both ecosystems at the 5% significance

level. Nonetheless, it is interesting why the mean value is even higher in the

Salesforce.com ecosystem, with the difference being significant at the 5% level.

For the rest of the complementor setting variables, the subsamples only differ

considerably in the Importance of current end-users in the ecosystem – the market size.

Here the mean value for the Salesforce.com subsample is moderately higher than that of

SugarCRM. An explanation could be the size and the maturity of the Salesforce.com

ecosystem as an established market of end-users for the complementors. The mean of

the variable Firm size does not differ largely in size and is not significantly different

between the subsamples. We interpret this finding as a sign that both Salesforce.com

and SugarCRM are able to attract firms of comparable size.

The mean values for the calculated platform attractiveness variables are between

3.82 and 4.154. This finding shows that both platforms are relatively attractive for its

complementors, which is obvious. The comparison of the subsamples shows a highly

interesting pattern, especially for managers of platform provider companies. The mean

of all platform attractiveness variables is moderately higher in the SugarCRM

subsample. This result could be an indication that the complementors in the SugarCRM

subsample on average have a higher willingness to invest in their complements. This

result could support software ecosystem managers in their decision regarding how open

a specific ecosystem should be and extend existing understanding about platform

openness (Boudreau, 2010; West, 2003). However, for two reasons, extensive additional

research is required to solidify this result. First, the sample size of the SugarCRM

subsample with N=39 may be a factor that reduces the accuracy of our findings, and

second, the difference in the mean values is only moderate.

 129

Before testing our hypotheses, we perform a correlation analysis for all variables

(measured and calculated) in the platform attractiveness model (see Appendix J). The

analysis shows a strong significant correlation between the three platform attractiveness

factors, which is obvious. In addition, an examination of the maximal Variance Inflation

Factor (VIF) of the analyzed regression models (see Table 11 and Table 12) does not

indicate a problem with multicollinearity33.

For the hypotheses tests, we performed an OLS regression on the full sample as well

as the subsamples for Salesforce.com and SugarCRM with all independent model

variables (see Figure 46) for Platform attractiveness, Willingness to invest and Return

on investment as dependent variables. The results of this first step revealed inacceptable

model significance results for the regression analysis with Willingness to invest as the

dependent variable. Therefore, the regression results on Willingness to invest had to be

excluded for the hypotheses tests.

In a second step, we excluded the variables Importance of current end-users in

ecosystem (market size), Importance of potential end-users in ecosystem (market

growth) and Firm size, which have not been significant in the first round, and repeated

the analysis. Table 11 and Table 12 show the regression results including the F-Test

results for the excluded variables.

33 We consider a regression model to be acceptable when the maximal VIF value is less than ten.
However, it must be mentioned that this condition does not exclude the possibility of multicollinearity, as
discussed in recent research by Echambadi et al. (2006) and Echambadi and Hess (2007).

 130

Coeff. Std. err. Coeff. Std. err. Coeff. Std. err.

1.1 Perceived fairness of platform provider 0.191*** 0.048 0.246*** 0.062 0.047 0.074

1.2
Perceived risk to become dependent on
platform provider

0.057 0.052 0.117* 0.068 0.034 0.080

1.3
Level of feasibility to generate customized
solutions

0.177** 0.088 0.170 0.118 0.254* 0.136

2.1 Complexity of downstream system 0.118*** 0.046 0.127** 0.063 0.089 0.085

2.2
Need for downstream adaptation (degree
of customization)

0.082* 0.043 0.051 0.054 0.072 0.120

2.3
Importance of anonymous platform
interface

-0.011 0.047 -0.007 0.061 0.074 0.085

2.4
Importance of openness through access
to platform know-how

-0.026 0.051 -0.066 0.062 0.117 0.124

2.5
Importance of low entry barrier to join
platform ecosystem

0.016 0.049 0.016 0.064 0.016 0.080

2.6 Ability of complementors to protect its IP -0.073 0.061 0.044 0.092 -0.177* 0.090

2.7
Number of platform ecosystems
connected to

-0.073** 0.034 -0.077* 0.041 -0.003 0.068

2.11 Relation to the platform provider 0.066 0.125 0.193 0.122

124 85 39

4.99 4.210 2.240
0.000 0.000 0.043

0.329 0.363 0.477

0.2631 0.277 0.264

0.5731 0.614 0.440

1.31 1.250 3.060

0.2771 0.4573 0.5673

note: *** p<0.01, ** p<0.05, * p<0.1

Adjusted R-squared

Root mean squared error

VIF (Max)

F-Test for excluded variables

Number of observations

F statistic
Prob > F

R-squared

Variables

Platform attractiveness Full sample SFDC SCRM

Table 11 – OLS regression: Platform attractiveness

The regression models for Platform attractiveness as the dependent variable are all

significant at the 5% level, and the corresponding F-Tests for the dropped variables are

insignificant.

 131

Coeff. Std. err. Coeff. Std. err. Coeff. Std. err.

1.1 Perceived fairness of platform provider 0.264*** 0.054 0.356*** 0.073 0.052 0.066

1.2
Perceived risk to become dependent on
platform provider

0.054 0.060 0.082 0.080 0.073 0.071

1.3
Level of feasibility to generate customized
solutions

0.346*** 0.101 0.381*** 0.138 0.390*** 0.122

2.1 Complexity of downstream system 0.048 0.052 0.055 0.073 -0.056 0.077

2.2
Need for downstream adaptation (degree
of customization)

0.112** 0.049 0.067 0.063 0.297*** 0.108

2.3
Importance of anonymous platform
interface

-0.033 0.054 -0.029 0.072 0.132* 0.076

2.4
Importance of openness through access
to platform know-how

-0.045 0.058 -0.059 0.073 0.037 0.111

2.5
Importance of low entry barrier to join
platform ecosystem

0.034 0.056 0.009 0.075 0.013 0.071

2.6 Ability of complementors to protect its IP -0.029 0.070 0.043 0.107 -0.160** 0.081

2.7
Number of platform ecosystems
connected to

-0.082** 0.039 -0.091* 0.048 0.004 0.061

2.11 Relation to the platform provider 0.134 0.143 0.255** 0.110

124 85 39

6.390 5.650 4.130
0.000 0.000 0.001

0.386 0.433 0.627

0.325 0.356 0.475

0.657 0.718 0.394

1.310 1.250 3.060

0.284 0.5216 0.375

note: *** p<0.01, ** p<0.05, * p<0.1

F-Test for excluded variables

Variables

Number of observations

F statistic

VIF (Max)

Prob > F

R-squared

Adjusted R-squared

Root mean squared error

SCRMFull sample SFDCReturn on investment

Table 12 – OLS regression: Return on investment

Table 12 indicates that the regression models for Return on investment as dependent

variables are all significant at the 1% level and that the corresponding F-Tests for the

dropped variables are insignificant.

Given the characteristics of the conducted regression analyses, we may conclude that

the models for Platform attractiveness and for Return on investment as dependent

variables may be applied for further interpretation.

 132

The results for the full sample shown in Table 11 and Table 12 provide valuable

insights for the existing research on the attractiveness of software platforms. In the two

regression models, Platform attractiveness and the expected Return on investment,

respectively, are significantly positively influenced by the variables: Perceived fairness

of platform provider and Level of feasibility of generating customized solutions.

Software ecosystem managers in particular may find these findings helpful to focus

their effort and prioritize their resources. Interestingly, Fairness to complementors

appears to be only relevant for complementors of the proprietary Salesforce.com

ecosystem and appears to be less important for SugarCRM complementors, which have

access to the full platform code. Our findings may be an indication that active and fair

ecosystem management are of higher relevance for providers of proprietary, closed

source platforms.

The conducted analysis adds to the existing quantitative research on platform

attractiveness (Boudreau, 2010). The results on the variable Perceived fairness of

platform provider confirm prior qualitative findings from Gawer and Henderson (2007,

pp. 21–22) and Kude et al. (2012, p. 262) on the importance of platform provider fair-

play for the complementors.

The formulation of the research hypotheses requires a comparison between the

regression models for the Salesforce.com and SugarCRM subsample, as we wish to

carve out the difference between an open platform (SugarCRM) and a closed

proprietary platform (Salesforce.com). Table 13 displays the research hypotheses and

the relevant regression results for further interpretation.

Hypo-
theses

Coeff.
Std.
err.

Coeff.
Std.
err.

Coeff.
Std.
err.

Coeff.
Std.
err.

2.1
Complexity of
downstream system

H 1A 0.127** 0.063 0.089 0.085 0.055 0.073 -0.056 0.077

2.2
Need for downstream
adaptation

H 1B 0.051 0.054 0.072 0.120 0.067 0.063 0.297*** 0.108

2.3
Importance of
anonymous platform
interface

H 2 -0.007 0.061 0.074 0.085 -0.029 0.072 0.132* 0.076

note: *** p<0.01, ** p<0.05, * p<0.1

SCRM

Return on investment

SFDC SCRM SFDC

Platform attractiveness

Variables

Table 13 – Hypotheses tests

 133

Hypothesis 1A is not supported by our results because the coefficient of the variable

Complexity of downstream system is not larger in the regression analysis for the

SugarCRM subsample.

For Hypothesis 1B, both coefficients show greater values for the SugarCRM

subsample. For the regression with Return on investment as the dependent variable, the

coefficient is considerably larger than the coefficient in the Salesforce.com subsample

with significance at the 1% level. The coefficients differ between the regression

analyses of the subsamples at the 5% level (p=0.012; see Appendix K). These findings

may be interpreted as an indication that Hypothesis 1B could be supported. However,

these results must be viewed in light of the limited dataset for the SugarCRM

subsample, and further quantitative research is required to validate these findings.

For Hypothesis 2, the coefficients for the variable Importance of anonymous platform

interface are moderately larger for SugarCRM in both regression models. As expected,

this coefficient is close to zero for the Salesforce.com subsample. For the regression

analysis with Willingness to Invest as the dependent variable, the coefficients differ at

the 5% significance level (p=0.026, see Appendix K). This finding may be interpreted

as indication that Hypothesis 2 could be supported. However, we find a significant

effect for only one construct measuring platform attractiveness (Return on Investment).

Therefore, additional quantitative research is required to validate this finding.

A limitation of the above analysis is that it is based on the relatively small

SugarCRM ecosystem, resulting in a small subsample size of N=39. Further research

would ideally compare another open code, IP modular software platform with a closed,

proprietary platform to shed additional light on our results.

To summarize our findings, our tests on Hypothesis 2 provide indications that

Proposition 2 as formulated by Henkel and Baldwin (2010) (see Section 3.2.1) could

correctly describe when outgoing IP modularity is advantageous. For Proposition 4, the

conflicting results for the tests on Hypothesis 1A and Hypothesis 1B open up the field for

further research.

 134

6.3 Conclusion

In this section, we analyzed the consequences of an IP modular platform architecture

on how complementors find and evaluate the attractiveness of a software platform. We

base our findings on a survey on two rather different software platform ecosystems. The

first is SugarCRM, with a widely open core enabled by its IP modular platform

architecture; the second is Salesforce.com, with a completely proprietary approach and

only the interface specifications being "open" (but still IP protected).

We tested the hypotheses for the developed platform attractiveness model based on a

quantitative study in both ecosystems. An additional factor analysis for the dependent

variable revealed Return on investment as a separate factor and an additional dependent

variable to measure platform attractiveness.

The hypotheses tests provide indications that complementors with a higher need to

customize their solutions evaluate the open-core SugarCRM platform as more attractive.

Based on our prior qualitative findings, we would also have expected that

complementors with more complex applications evaluate the SugarCRM platform as

more attractive, but could not observe such an effect. In line with our qualitative

findings, we find indications that Proposition 4 [Customization] from Henkel and

Baldwin (2010) could correctly describe when outgoing IP modularity is advantageous.

Further research is required to fully understand the conflicting results and the

mechanisms of complement customization, complexity and related platform

attractiveness.

For Proposition 2 [Distributed Co-creators], our findings provide indications that it

correctly describes when outgoing IP modularity is advantageous, particularly for the

regression model with Return on investment as dependent variable.

Because our quantitative analysis is based on the relatively small SugarCRM

ecosystem resulting in a small subsample size of N=39, the results may only provide

indications if our hypotheses can be supported. Further research with larger samples

sizes would be required to clearly accept or reject our hypotheses.

Finally, our findings indicate that Fairness to complementors appears to be highly

important for Platform attractiveness and perceived Return on invest in proprietary,

closed software platform ecosystems. We could not observe such an effect for the open

SugarCRM platform. These findings are especially relevant for ecosystem managers of

 135

proprietary, closed platforms, emphasizing the importance of a clear and fair rule set for

complementors to make such a platform attractive.

 136

7 Conclusion

This dissertation is the first empirical study to investigate the impact of IP modularity

in the software domain. Based on a hybrid research approach (see Section 3), the study

generates insights on the effects of IP modular software architecture from three different

perspectives. First, there is the perspective of software product developers (Section 4).

Second, there is the perspective of software platform providers (Section 5). And third,

our research takes the perspective of complementors that contribute to a software

platform ecosystem (Section 6).

 Our findings on the impact of IP modular software product design are based on two

case studies. For outgoing IP modularity, we analyzed an engineering software product.

We found that the main reason for the IP modular architecture is the protection of the IP

that differentiates the product from those of competitors. For incoming IP modularity,

we derived our findings from a data management product case. We found that the IP

modular product structure prevents the uncontrolled diffusion of third-party IP into the

core modules of the product. Based on a cross-case comparison, we identified that an

early inclusion of IP considerations in the requirements engineering process would have

prevented a time- and cost-intensive re-modularization. In addition, the IP modular

software product architecture reduces a firm’s exposure to legal risks.

For the research on the perspective of a software platform provider, our results are

based on the analysis of an open and a closed software platform. For the open

SugarCRM platform, its IP modular architecture is the fundamental enabler of its

commercial open-source business model. For the case of SugarCRM, a variety of

effects related to IP modularity could be observed. In particular, SugarCRM’s IP

modular architecture aims to increase platform attractiveness through the possibility of

anonymous co-creation and extensive possibilities to generate customized solutions –

including modifications of the platform core. In the case of the closed, proprietary

NetWeaver PI platform, SAP aims to increase attractiveness for its complementors

through API stability, which is enabled by its IP modular platform architecture. In both

cases, IP requirements were more clearly recognized over time as being vital to the

respective platform business model. They gained importance accordingly and eventually

gave rise to re-modularizations producing IP modular architectures.

Following the hybrid research approach, the analysis of the platform complementor’s

perspective is based on a quantitative survey in two software platform ecosystems in the

 137

CRM software industry. First, SugarCRM, with the open platform core approach

enabled by its IP modular platform architecture; and second, Salesforce.com with a

closed, proprietary approach.

The developed hypotheses are based on qualitative findings on platform

attractiveness and Propositions 2 [Distributed Co-creators] and Proposition 4

[Customization] for outgoing IP modularity described by Henkel and Baldwin (2010).

Our results indicate that for SugarCRM complementors, a high need to customize their

solutions positively influences the attractiveness of the open SugarCRM platform. We

also see indications that the SugarCRM complementors that rate an anonymous

platform interface as important rate the attractiveness of the SugarCRM platform more

highly. These results provide indications that the quantitative analysis confirms our

qualitative findings and prior research by Henkel and Baldwin (2010). However, our

analysis on the relatively small SugarCRM ecosystem is based on a sample size of

N=39; therefore, further research is required to confirm our findings.

Our analysis also revealed that fairness to complementors appears to be highly

important in the proprietary, closed Salesforce.com platform ecosystem, whereas we

could not observe such an effect for the open SugarCRM platform. As the

complementors of both ecosystems SugarCRM and Salesforce.com rate their platform

attractive, our results could be interpreted in a way that a clear and fair rule set for

complementors could substitute for the lack of openness for platform attractiveness.

With our empirical findings, we link existing research on IP modularity, software

platforms, multi-sided markets, software ecosystems, software business models and

software requirements engineering. However, our research represents only the starting

point for further investigations on the impact of IP modularity on software products and

software platform ecosystems. In particular, our quantitative research on the platform

attractiveness for complementors may connect the upcoming field of software

ecosystem research with the concept of IP modularity. Additional scientific effort in this

direction offers the potential to prove this connection and to solidify our findings.

 138

Appendices

Appendix A – Final coding scheme (Case 2)

Research
framework

Root
node

Sub
node 1

Sub
node 2

Sub
node 3

A - Intended
effects

Q09 - Intended effects
IP-related

Prevention of reverse engineering
Secrecy
Cost reduction for IP enforcement
Prevention of security risks

Other
Run time

Performance: speed
Memory consumption

Design time
Re-use
Technical reasons
Faster implementation
Availability of labor
Organization: division of work

Q10 - Effects ranking
IP-related

Prevention of reverse engineering
Secrecy
Cost reduction for IP enforcement
Prevention of security risks

Other
Run time

Performance: speed
Memory consumption

Design time
Re-use
Technical reasons
Faster implementation
Availability of labor
Organization: division of work

Q11 - Strategic advantages

B - Other
Q12 - Non-IP modularization

Run time
Performance: Speed
Memory consumption

Design time
Re-use
Cost reduction: faster
development
Cost reduction: reduced testing

Maintenance

Q13 - Interrelations IP- and other
drivers

D - Real
Q14 - PF performance indicators

IP-protection
Requirements
fulfillment

Functional
Non-
functional

Performance: speed
Memory consumption
Stability

Q15 - Impact on performance
Q16 - Impact on risk mitigation

 139

Appendix B – Final coding scheme (Case 4)

Research
framework

Root
node

Sub
node 1

Sub
node 2

A - Intended effects
Q09 - Intended
effects

IP-related
Prevent uncontrolled use of code
Reduced legal risk: own company
Reduced legal risk: customers

Other
Run time: improved reliability
Design time: ease of design
Maintenance: cost reduction

Q11 - Strategic
advantages

B - Other effects
Q12 - Non-IP
modularization
drivers

IP-related
Prevent uncontrolled use of code
Reduced legal risk: own company
Reduced legal risk: customers

Other
Run time: improved reliability
Design time: ease of design
Maintenance: cost reduction

Q13 - Interrelations
IP- and other drivers

D - Real effects
Q14 - Platform
performance
Q15 - Modularization
impact on
Q16 - Modularization

IP-related
Prevent uncontrolled use of code
Reduced legal risk: own company

Other
Design time: ease of design

 140

Appendix C – Approval process for third-party software (Case 4)

Begin

Needs analysis

Need for
3rd party SW?

Business/legal
evaluation

Technical
evaluation

Technically
worth pursuing?

Financially &
legally viable?

Prepare approval
package

Approved
for use?

Use software
in product

End

yes

yes yes

yes

no

no no

no

Begin

Needs analysis

Need for
3rd party SW?

Business/legal
evaluation

Technical
evaluation

Technically
worth pursuing?

Financially &
legally viable?

Prepare approval
package

Approved
for use?

Use software
in product

End

yes

yes yes

yes

no

no no

no

 141

Appendix D – Final coding scheme (Case 11)

Head
node

Sub
node 1

Sub
node 2

Sub
node 3

A Intended effects
Q 09 Intended effects

AA Business model
AA Optimized design
Competitive position of platform
provider

Lower R&D cost through agile
development
Lower sales cost

Protection of platform provider's IP
Secure innovation roadmap

Platform attractiveness for
ecosystem partners

Anonymous Co-Creation
Flexibility for downstream
adaptations
Trust through openness (Platform
attractiveness)
Protection on complementor's IP

Product attractiveness for end-
users

Low adoption barrier for customers
Scalibility to different user groups
(e.g. Enterprise customers)

Proposition 2 - Distributed Co-
Creators

Q 10 Intended effect ranking
Q 11 Strategic advantages2

Ecosystem growth

B Other effects
Q 12 Other drivers for

particular modularization

D Real effects
Q 14 Definition of product

performance
Q 15 Effect on product

performance
Cost position & pricing
Maintainability
Market Share (Verbreitung)
Profit position

Q 16 Risk prevention

 142

Appendix E – Final coding scheme (Case 9)

Head
node

Sub
node 2

A Intended effects
Q09 Intended effects

Competitive position of
platform provider

Lower R&D cost through
agile development
Lower sales cost
Protection of platform
provider's IP

Secure innovation roadmap

Platform attractiveness
for ecosystem partners

Anonymous Co-Creation
Flexibility for downstream
adaptations
Trust through openness
(Platform attractiveness)
Protection on
complementor's IP

Product attractiveness
for end-users

Low adoption barrier for
customers
Scalibility to different user
groups (e.g. Enterprise
customers)

Other
Traceability of idea/inventor
affiliation

Q10
Intended effect ranking

Q11A Strategic advantages
Q11B Effects on platform

attractiveness

B Other effects
Q12 Non-IP modularization

drivers

D Real effects
Q14 Platform performance

indicators
Q15

Impact on success and
ecosystem growth

Q16 Modularization impact
on risk mitigation

Sub
node 1

Sub
node 3

 143

Appendix F – 1. Platform provider setting

variable v_233 "1.1 Perceived fairness of platform provider"
Operationalization: We are confident that SCRM/SFDC will always treat us fairly
Possible answers: [1 disagree - 5 agree]

Frequencies:
 1.1 |
 Perceived |
fairness of |
 platform |
 provider | Freq Percent Cum.
------------+-----------------------------------
 0 | 1 0.79 0.79
 1 | 10 7.94 8.73
 2 | 11 8.73 17.46
 3 | 35 27.78 45.24
 4 | 41 32.54 77.78
 5 | 28 22.22 100.00
------------+-----------------------------------
 Total | 126 100.00

Mean:
Mean estimation Number of obs = 126

--
 | Mean StdErr [95% ConfInterval]
-------------+--
 v_233 | 3.5 .107349 3.287543 3.712457
--

variable v_234 "1.2 Perceived risk to become dependent on platform provider"
Operationalization: How would you assess the risk in the SCRM/SFDC ecosystem to become
dependent on the platform provider?
Possible answers: [1 very low level of risk - 5 very high level of risk]

Frequencies:
 1.2 |
 Perceived |
 risk to |
 become |
 dependent |
on platform |
 provider | Freq Percent Cum.
------------+-----------------------------------
 1 | 8 6.35 6.35
 2 | 16 12.70 19.05
 3 | 56 44.44 63.49
 4 | 21 16.67 80.16
 5 | 25 19.84 100.00
------------+-----------------------------------
 Total | 126 100.00

Mean:
Mean estimation Number of obs = 126

--
 | Mean StdErr [95% ConfInterval]
-------------+--
 v_234 | 3.309524 .0998184 3.111971 3.507077
--

 144

variable v_231 "1.3 Level of feasibility to generate customized solutions"
Operationalization: Please indicate how strongly you agree or disagree with the
following statements about SCRM/SFDC: It is technically feasible to generate customized
solutions
Possible answers: [1 disagree - 5 agree]

Frequencies:
 1.3 Level |
 of |
feasibility |
to generate |
 customized |
 solutions | Freq Percent Cum.
------------+-----------------------------------
 2 | 3 2.38 2.38
 3 | 1 0.79 3.17
 4 | 37 29.37 32.54
 5 | 85 67.46 100.00
------------+-----------------------------------
 Total | 126 100.00

Mean:
Mean estimation Number of obs = 126

--
 | Mean StdErr [95% ConfInterval]
-------------+--
 v_231 | 4.619048 .0561824 4.507856 4.73024
--

 145

Appendix G – 2. Complementor setting

variable: v_258 "2.1 Complexity of downstream system"
Operationalization: How many components does your product comprise?
Possible answers: [1 Low number of components (e.gconnector) - High number of
components (e.gsystem integrator)5]

Frequencies:
 2.1 |
 Complexity |
 of |
 downstream |
 system | Freq Percent Cum.
------------+-----------------------------------
 1 | 8 6.35 6.35
 2 | 23 18.25 24.60
 3 | 33 26.19 50.79
 4 | 25 19.84 70.63
 5 | 37 29.37 100.00
------------+-----------------------------------
 Total | 126 100.00

Mean:
Mean estimation Number of obs = 126

--
 | Mean StdErr [95% ConfInterval]
-------------+--
 v_258 | 3.47619 .1125261 3.253487 3.698894
--

variable: v_259 "2.2 Need for downstream adaptation"
Operationalization: How customized are the products in your portfolio for your
customers?
Possible answers: [1 Low customization (standardized product) - 5 High customization
(customized solution)]

Frequencies:
 2.2 Need |
 for |
 downstream |
 adaptation |
 (degree of |
customizati |
 on) | Freq Percent Cum.
------------+-----------------------------------
 1 | 18 14.40 14.40
 2 | 17 13.60 28.00
 3 | 28 22.40 50.40
 4 | 33 26.40 76.80
 5 | 29 23.20 100.00
------------+-----------------------------------
 Total | 125 100.00

Mean:
Mean estimation Number of obs = 125

--
 | Mean StdErr [95% ConfInterval]
-------------+--
 v_259 | 3.304 .12087 3.064764 3.543236
--

 146

variable v_253 "2.3 Importance of anonymous platform interface"
Operationalization: Please indicate which of the following factors have an influence on
the attractiveness of a software platform from your point of view: Anonymous platform
interface
Possible answers: [1 not important - 5 highly important]

Frequencies:
 2.3 |
 Importance |
 of |
 anonymous |
 platform |
 interface | Freq Percent Cum.
------------+-----------------------------------
 0 | 3 2.38 2.38
 1 | 12 9.52 11.90
 2 | 23 18.25 30.16
 3 | 52 41.27 71.43
 4 | 22 17.46 88.89
 5 | 14 11.11 100.00
------------+-----------------------------------
 Total | 126 100.00

Mean:
Mean estimation Number of obs = 126

--
 | Mean StdErr [95% ConfInterval]
-------------+--
 v_253 | 2.952381 .1056242 2.743338 3.161424
--

variable v_248 "2.4 Importance of openness through access to platform know-how"
Operationalization: Please indicate which of the following factors have an influence on
the attractiveness of a software platform from your point of view: Openness: Access to
know-how and source code of the platform provider
Possible answers: [1 not important - 5 highly important]

Frequencies:
 2.4 |
 Importance |
of openness |
 through |
 access to |
 platform |
 know-how | Freq Percent Cum.
------------+-----------------------------------
 1 | 4 3.17 3.17
 2 | 7 5.56 8.73
 3 | 30 23.81 32.54
 4 | 29 23.02 55.56
 5 | 56 44.44 100.00
------------+-----------------------------------
 Total | 126 100.00

Mean:
Mean estimation Number of obs = 126

--
 | Mean StdErr [95% ConfInterval]
-------------+--
 v_248 | 4 .09759 3.806857 4.193143
--

 147

variable v_247 "2.5 Importance of low entry barrier to join platform ecosystem"
Operationalization: Please indicate which of the following factors have an influence on
the attractiveness of a software platform from your point of view: Low entry barrier
Possible answers: [1 not important - 5 highly important]

Frequencies:
 2.5 |
 Importance |
 of low |
 entry |
 barrier to |
 join |
 platform |
 ecosystem | Freq Percent Cum.
------------+-----------------------------------
 0 | 2 1.59 1.59
 1 | 4 3.17 4.76
 2 | 9 7.14 11.90
 3 | 39 30.95 42.86
 4 | 34 26.98 69.84
 5 | 38 30.16 100.00
------------+-----------------------------------
 Total | 126 100.00

Mean:
Mean estimation Number of obs = 126

--
 | Mean StdErr [95% ConfInterval]
-------------+--
 v_247 | 3.690476 .1035646 3.485509 3.895443
--

variable v_252 "2.6 Importance of ability of complementors to protect its IP"
Operationalization: Please indicate which of the following factors have an influence on
the attractiveness of a software platform from your point of view: Ability to protect
your intellectual property
Possible answers: [1 not important - 5 highly important]

Frequencies:
2.6 Ability |
 of |
complemento |
 rs to |
protect its |
 IP | Freq Percent Cum.
------------+-----------------------------------
 0 | 1 0.79 0.79
 2 | 1 0.79 1.59
 3 | 23 18.25 19.84
 4 | 31 24.60 44.44
 5 | 70 55.56 100.00
------------+-----------------------------------
 Total | 126 100.00

Mean:
Mean estimation Number of obs = 126

--
 | Mean StdErr [95% ConfInterval]
-------------+--
 v_252 | 4.325397 .0795458 4.167966 4.482828
--

 148

variable v_206 "2.7 Number of platform ecosystems connected to"
Operationalization: On how many platforms (CRM and other platforms) do you offer your
products?
Possible answers: [1-5]

Frequencies:
 2.7 Number |
of platform |
 ecosystems |
 connected |
 to | Freq Percent Cum.
------------+-----------------------------------
 1 | 77 61.11 61.11
 2 | 22 17.46 78.57
 3 | 9 7.14 85.71
 4 | 4 3.17 88.89
 5 | 3 2.38 91.27
 >5 | 11 8.73 100.00
------------+-----------------------------------
 Total | 126 100.00

Mean:
Mean estimation Number of obs = 126

--
 | Mean StdErr [95% ConfInterval]
-------------+--
 v_206 | 1.944444 .1390697 1.669208 2.219681
--

variable v_275 "2.8 Importance of current end-users in ecosystem (market size)"
Operationalization: Please indicate which of the following factors have an influence on
the attractiveness of a software platform from your point of view: Number of current
end-users (market size)
Possible answers: [1 not important - 5 highly important]

Frequencies:
 2.8 |
 Importance |
 of current |
 end-users |
 in |
 ecosystem |
 (market |
 size) | Freq Percent Cum.
------------+-----------------------------------
 2 | 8 6.35 6.35
 3 | 30 23.81 30.16
 4 | 30 23.81 53.97
 5 | 58 46.03 100.00
------------+-----------------------------------
 Total | 126 100.00

Mean:
Mean estimation Number of obs = 126

--
 | Mean StdErr [95% ConfInterval]
-------------+--
 v_275 | 4.095238 .0868705 3.923311 4.267166
--

 149

variable v_276 "2.9 Importance of potential end-users in ecosystem (market growth)"
Operationalization: Please indicate which of the following factors have an influence on
the attractiveness of a software platform from your point of view: Number of potential
end-users (market size)
Possible answers: [1 not important - 5 highly important]

Frequencies:
 2.9 |
 Importance |
 of |
 potential |
 end-users |
 in |
 ecosystem |
 (market |
 growth) | Freq Percent Cum.
------------+-----------------------------------
 2 | 7 5.56 5.56
 3 | 16 12.70 18.25
 4 | 33 26.19 44.44
 5 | 70 55.56 100.00
------------+-----------------------------------
 Total | 126 100.00

Mean:
Mean estimation Number of obs = 126

--
 | Mean StdErr [95% ConfInterval]
-------------+--
 v_276 | 4.31746 .0801988 4.158737 4.476184
--

Variable: v_263 "2.10 Firm size"
Operationalization: How many employees does your company have?
Possible answers: [1 <5 - 5 >50]

Frequencies:
 2.10 Firm |
 size | Freq Percent Cum.
------------+-----------------------------------
 <5 | 18 14.63 14.63
 5-20 | 57 46.34 60.98
 21-50 | 28 22.76 83.74
 >50 | 20 16.26 100.00
------------+-----------------------------------
 Total | 123 100.00

Mean:
Mean estimation Number of obs = 123

--
 | Mean StdErr [95% ConfInterval]
-------------+--
 v_263 | 3.406504 .0839176 3.240381 3.572627
--

 150

variable v_226 "2.11 Relation to platform provider (only SugarCRM)"
Please specify your current contract with SCRM.
1 Anonymous, terms of use under AGPL (Affero General Public License)
2 Informal cooperation (e.goccasional shared marketing or R&D activities)
3 Partnership program (e.gpartnership certification)
4 Other

Frequencies:
2.11 Relation to the |
 platform provider | Freq Percent Cum.
---------------------+-----------------------------------
 Anonymous | 7 5.56 5.56
 Partnership porgram | 118 93.65 99.21
 Other | 1 0.79 100.00
---------------------+-----------------------------------
 Total | 126 100.00

Mean:
Mean estimation Number of obs = 126

--
 | Mean StdErr [95% ConfInterval]
-------------+--
 v_226 | 2.896825 .041906 2.813888 2.979763
--

 151

Appendix H – 3. Platfrom attractiveness variables
Variable: v_237 "3.1 Willingness to initially invest"
Operationalization: How would you assess the resources (time, money, man power)...you
invested in your product for SCRM/SFDC until now?
Possible answers: [1 No resources - 5 A large amount of resources]

Frequencies:
 3.1 |
Willingness |
 to |
 initially |
 invest | Freq Percent Cum.
------------+-----------------------------------
 2 | 7 5.56 5.56
 3 | 39 30.95 36.51
 4 | 37 29.37 65.87
 5 | 43 34.13 100.00
------------+-----------------------------------
 Total | 126 100.00

Mean:
Mean estimation Number of obs = 126

--
 | Mean StdErr [95% ConfInterval]
-------------+--
 v_237 | 3.920635 .0832691 3.755835 4.085435
--

Variable: v_238 "3.2 Willingness to further invest"
Operationalization: How would you assess the resources (time, money, man power)...you
are willing to invest in the SCRM/SFDC ecosystem in the future?
Possible answers: [1 No resources - 5 A large amount of resources]

Frequencies:
 3.2 |
Willingness |
 to further |
 invest | Freq Percent Cum.
------------+-----------------------------------
 1 | 1 0.79 0.79
 2 | 8 6.35 7.14
 3 | 28 22.22 29.37
 4 | 50 39.68 69.05
 5 | 39 30.95 100.00
------------+-----------------------------------
 Total | 126 100.00

Mean:
Mean estimation Number of obs = 126

--
 | Mean StdErr [95% ConfInterval]
-------------+--
 v_238 | 3.928571 .0852102 3.75993 4.097213
--

 152

Variable: v_236 "3.3 Expectations met"
Operationalization: Overall, how well has SCRM/SFDC met your expectations?
Possible answers: [1 Very poorly - 5 Very well]

Frequencies:
 3.3 |
Expectation |
 s met | Freq Percent Cum.
------------+-----------------------------------
 1 | 2 1.59 1.59
 2 | 10 7.94 9.52
 3 | 9 7.14 16.67
 4 | 58 46.03 62.70
 5 | 47 37.30 100.00
------------+-----------------------------------
 Total | 126 100.00

Mean:
Mean estimation Number of obs = 126

--
 | Mean StdErr [95% ConfInterval]
-------------+--
 v_236 | 4.095238 .0846495 3.927706 4.26277
--

Variable: v_239 "3.4 Pay-off"
Operationalization: Does it pay off to be in the SCRM/SFDC ecosystem?
Possible answers: [1 Very poorly - 5 Very well]

Frequencies:
3.4 Pay-off | Freq Percent Cum.
------------+-----------------------------------
 1 | 2 1.60 1.60
 2 | 3 2.40 4.00
 3 | 30 24.00 28.00
 4 | 52 41.60 69.60
 5 | 38 30.40 100.00
------------+-----------------------------------
 Total | 125 100.00

Mean:
Mean estimation Number of obs = 125

--
 | Mean StdErr [95% ConfInterval]
-------------+--
 v_239 | 3.968 .0794627 3.810721 4.125279
--

 153

Variable: v_660 "Platform Attractiveness"
Caluclation: (v_236+ v_237+ v_238+ v_239)/4

Frequencies:
 3.3 |
 Platform |
 toolset | Freq Percent Cum.
------------+-----------------------------------
 no | 37 29.37 29.37
 yes | 89 70.63 100.00
------------+-----------------------------------
 Total | 126 100.00

Mean:
Mean estimation Number of obs = 126

--
 | Mean StdErr [95% ConfInterval]
-------------+--
 v_260 | .7063492 .0407352 .6257291 .7869693
--

Variable: v_670 "Willingness to invest"
Caluclation: v_670 = (v_237+ v_238)/2

Frequencies:
Willingness |
 to invest | Freq Percent Cum.
------------+-----------------------------------
 2 | 4 3.17 3.17
 2.5 | 7 5.56 8.73
 3 | 18 14.29 23.02
 3.5 | 21 16.67 39.68
 4 | 30 23.81 63.49
 4.5 | 17 13.49 76.98
 5 | 29 23.02 100.00
------------+-----------------------------------
 Total | 126 100.00

Mean:
Mean estimation Number of obs = 126

--
 | Mean StdErr [95% ConfInterval]
-------------+--
 v_670 | 3.924603 .07455 3.77706 4.072147
--

Variable: v_680 "Return on investment"
Caluclation: v_680 = (v_236+ v_239)/2

Frequencies:
 Return on |
 investment | Freq Percent Cum.
------------+-----------------------------------
 1.5 | 2 1.60 1.60
 2 | 1 0.80 2.40
 2.5 | 10 8.00 10.40
 3 | 7 5.60 16.00
 3.5 | 10 8.00 24.00
 4 | 42 33.60 57.60
 4.5 | 30 24.00 81.60
 5 | 23 18.40 100.00
------------+-----------------------------------
 Total | 125 100.00

Mean:
Mean estimation Number of obs = 125

--
 | Mean StdErr [95% ConfInterval]
-------------+--
 v_680 | 4.032 .0713338 3.89081 4.17319
--

 154

Appendix I – Factor analysis

 v_239 0.7037 0.4577 0.2953

 v_238 0.8105 -0.3484 0.2217

 v_237 0.6594 -0.6461 0.1478

 v_236 0.6745 0.5728 0.2169

 Variable Factor1 Factor2 Uniqueness

Factor loadings (pattern matrix) and unique variances

 LR test: independent vs. saturated: chi2(6) = 111.19 Prob>chi2 = 0.0000

 Factor4 0.33933 . 0.0848 1.0000

 Factor3 0.54231 0.20299 0.1356 0.9152

 Factor2 1.07639 0.53408 0.2691 0.7796

 Factor1 2.04197 0.96557 0.5105 0.5105

 Factor Eigenvalue Difference Proportion Cumulative

 Rotation: (unrotated) Number of params = 6

 Method: principal-component factors Retained factors = 2

Factor analysis/correlation Number of obs = 125

 Factor2 -0.7005 0.7136

 Factor1 0.7136 0.7005

 Factor1 Factor2

Factor rotation matrix

 v_239 0.1816 0.8196 0.2953

 v_238 0.8225 0.3192 0.2217

 v_237 0.9232 0.0009 0.1478

 v_236 0.0801 0.8813 0.2169

 Variable Factor1 Factor2 Uniqueness

Rotated factor loadings (pattern matrix) and unique variances

 LR test: independent vs. saturated: chi2(6) = 111.19 Prob>chi2 = 0.0000

 Factor2 1.55027 . 0.3876 0.7796

 Factor1 1.56809 0.01783 0.3920 0.3920

 Factor Variance Difference Proportion Cumulative

 Rotation: orthogonal varimax (Kaiser off) Number of params = 6

 Method: principal-component factors Retained factors = 2

Factor analysis/correlation Number of obs = 125

 155

Appendix J – Correlation analysis

V
ar

ia
b

le
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

1
P

la
tf

or
m

 a
tt

ra
ct

iv
en

es
s

1

2
W

ill
in

g
ne

ss
 t

o
in

ve
st

0.
82

*
1

4.
 P

la
tf

or
m

 A
tt

ra
ct

iv
en

es
s

3
R

et
ur

n
on

 in
ve

st
m

en
t

0.
8*

0.
32

*
1

4
1.

1
P

er
ce

iv
ed

 f
ai

rn
es

s
of

 p
la

tf
or

m
 p

ro
vi

de
r

0.
37

*
0.

15
0.

46
*

1

5
1.

2
P

er
ce

iv
ed

 r
is

k
to

 b
ec

om
e

de
pe

nd
en

t
on

 p
la

tf
or

m
 p

ro
vi

de
r

0.
03

0.
08

-0
.0

4
-0

.3
2*

1
1.

 P
la

tf
or

m
 p

ro
vi

de
r

se
tt

in
g

6
1.

3
Le

ve
l o

f
fe

as
ib

ili
ty

 t
o

g
en

er
at

e
cu

st
om

iz
ed

 s
ol

ut
io

ns
0.

24
*

0.
03

0.
37

*
0.

22
*

-0
.0

5
1

7
2.

1
C

om
pl

ex
ity

 o
f

do
w

ns
tr

ea
m

 s
ys

te
m

0.
28

*
0.

31
*

0.
14

-0
.0

4
0.

18
*

-0
.0

5
1

8
2.

2
N

ee
d

fo
r

do
w

ns
tr

ea
m

 a
da

pt
at

io
n

(d
eg

re
e

of
 c

us
to

m
iz

at
io

n)
0.

28
*

0.
18

*
0.

27
*

0.
1

-0
.1

3
0.

14
0.

3*
1

2.
 C

om
pl

em
en

to
r

se
tt

in
g

9
2.

3
Im

po
rt

an
ce

 o
f

an
on

ym
ou

s
pl

at
fo

rm
 in

te
rf

ac
e

-0
.0

2
-0

.0
2

-0
.0

2
0.

1
-0

.2
*

0.
07

-0
.0

3
0.

03
1

10
2.

4
Im

po
rt

an
ce

 o
f

op
en

ne
ss

 t
hr

ou
g

h
ac

ce
ss

 t
o

pl
at

fo
rm

 k
no

w
-h

ow
-0

.0
1

-0
.0

2
0

0.
01

-0
.1

2
0.

17
-0

.0
8

0.
19

*
0.

13
1

11
2.

5
Im

po
rt

an
ce

 o
f

lo
w

 e
nt

ry
 b

ar
rie

r
to

 jo
in

 p
la

tf
or

m
 e

co
sy

st
em

-0
.0

4
-0

.0
7

0.
01

-0
.0

4
-0

.0
7

0.
01

-0
.1

1
0.

01
0.

22
*

0.
14

1

12
2.

6
A

bi
lit

y
of

 c
om

pl
em

en
to

rs
 t

o
pr

ot
ec

t
its

 I
P

-0
.0

6
-0

.1
1

0.
01

0.
09

-0
.1

1
0.

04
0.

06
-0

.0
6

0.
16

0.
01

0.
14

1

13
2.

7
N

um
be

r
of

 p
la

tf
or

m
 e

co
sy

st
em

s
co

nn
ec

te
d

to
-0

.2
4*

-0
.1

6
-0

.2
2*

-0
.1

3
-0

.0
6

0.
04

-0
.0

6
-0

.0
5

0.
06

-0
.0

3
0.

05
0

1

14
2.

8
Im

po
rt

an
ce

 o
f

cu
rr

en
t

en
d-

us
er

s
in

 e
co

sy
st

em
 (

m
ar

ke
t

si
ze

)
0.

1
0.

09
0.

06
-0

.1
2

0.
21

*
-0

.0
4

0.
03

-0
.2

*
0

-0
.0

9
-0

.0
2

0.
15

0.
02

1

15
2.

9
Im

po
rt

an
ce

 o
f

po
te

nt
ia

l e
nd

-u
se

rs
 in

 e
co

sy
st

em
 (

m
ar

ke
t

g
ro

w
th

)
0.

19
*

0.
12

0.
19

*
0.

01
0.

16
0.

14
0.

07
-0

.0
2

-0
.0

5
0.

01
-0

.0
4

0.
18

*
-0

.1
1

0.
72

1

16
2.

10
 F

irm
 s

iz
e

-0
.0

3
-0

.0
4

-0
.0

1
0.

06
-0

.0
3

0.
06

0
0.

05
0.

17
-0

.2
*

-0
.0

6
0.

15
0.

34
*

0.
08

0.
07

1

17
2.

11
 R

el
at

io
n

to
 t

he
 p

la
tf

or
m

 p
ro

vi
de

r
0.

09
0.

02
0.

13
-0

.0
2

0.
18

*
0.

11
0.

15
-0

.1
3

-0
.0

4
-0

.1
7

0.
25

*
0.

21
-0

.0
4

0.
18

*
0.

34
*

0.
01

1

N
ot

e:
 *

 p
<

0.
05

 156

Appendix K – Extended hypotheses tests

Regression: Salesforce.com with Return on investment as dependent variable
 Source | SS df MS Number of obs = 85
-------------+------------------------------ F(10, 74) = 5.65
 Model | 29.1032302 10 2.91032302 Prob > F = 0.0000
 Residual | 38.1202992 74 .515139179 R-squared = 0.4329
-------------+------------------------------ Adj R-squared = 0.3563
 Total | 67.2235294 84 .800280112 Root MSE = .71773

--
 v_680 | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+--
 v_233 | .3559276 .072713 4.89 0.000 .2110439 .5008114
 v_234 | .0824395 .0797728 1.03 0.305 -.0765112 .2413902
 v_231 | .3811238 .138255 2.76 0.007 .1056447 .656603
 v_258 | .0547695 .0732135 0.75 0.457 -.0911116 .2006505
 v_259 | .0666137 .0631512 1.05 0.295 -.0592178 .1924453
 v_253 | -.0289675 .071674 -0.40 0.687 -.171781 .1138461
 v_248 | -.0587566 .0726901 -0.81 0.421 -.2035948 .0860816
 v_247 | .0087557 .0752235 0.12 0.908 -.1411303 .1586418
 v_252 | .0426946 .1073265 0.40 0.692 -.1711581 .2565473
 v_206 | -.0912941 .0478789 -1.91 0.060 -.186695 .0041067
 v_226 | 0 (omitted)
 _cons | .620858 .9471868 0.66 0.514 -1.266453 2.508169
--

Regression: SugarCRM with Return on investment as dependent variable
 Source | SS df MS Number of obs = 39
-------------+------------------------------ F(11, 27) = 4.13
 Model | 7.06811742 11 .642556129 Prob > F = 0.0013
 Residual | 4.20111335 27 .155596791 R-squared = 0.6272
-------------+------------------------------ Adj R-squared = 0.4753
 Total | 11.2692308 38 .296558704 Root MSE = .39446

--
 v_680 | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+--
 v_233 | .0522773 .0661207 0.79 0.436 -.0833912 .1879458
 v_234 | .0726363 .0714259 1.02 0.318 -.0739175 .2191901
 v_231 | .3901003 .1223804 3.19 0.004 .1389965 .6412041
 v_258 | -.0557454 .0765295 -0.73 0.473 -.2127709 .1012801
 v_259 | .2973917 .1078371 2.76 0.010 .0761282 .5186551
 v_253 | .1324994 .0760399 1.74 0.093 -.0235216 .2885204
 v_248 | .0366891 .1109586 0.33 0.743 -.1909792 .2643574
 v_247 | .0129419 .0713981 0.18 0.858 -.1335549 .1594387
 v_252 | -.1602785 .0808785 -1.98 0.058 -.3262274 .0056704
 v_206 | .0036826 .0605712 0.06 0.952 -.1205992 .1279645
 v_226 | .2549362 .1098764 2.32 0.028 .0294884 .480384
 _cons | .1915765 .7347588 0.26 0.796 -1.316024 1.699177
--

Test H1b: The coefficient for “Need for downstream adaptation” is significant different
in the regressions of the subsamples?
 (1) [regSF_mean]v_259 - [regSugar_mean]v_259 = 0

 chi2(1) = 6.30
 Prob > chi2 = 0.0121

Test H2: The coefficient for “Importance of anonymous platform interface” is significant
different in the regressions of the subsamples?

. test [regSF_mean]v_253=[regSugar_mean]v_253

 (1) [regSF_mean]v_253 - [regSugar_mean]v_253 = 0

 chi2(1) = 4.96
 Prob > chi2 = 0.0259

 157

Bibliography

Anvaari, M. and Jansen, S. (2010), “Evaluating architectural openness in mobile

software platforms”, in Proceedings of the Fourth European Conference on Software
Architecture: Companion Volume, ACM, Copenhagen, Denmark, pp. 85–92.

Baldwin, C.Y. (2007), “Where do transactions come from? Modularity, transactions,
and the boundaries of firms”, Industrial and Corporate Change, Vol. 17 No. 1, pp.
155–195.

Baldwin, C.Y. and Clark, K.B. (1997), “Managing in an Age of Modularity”, Harvard
Business Review, Vol. 75 No. 5, pp. 84–93.

Baldwin, C.Y. and Clark, K.B. (2000), Design rules, MIT Press, Cambridge, Mass.

Baldwin, C.Y. and Clark, K.B. (2006), “The Architecture of Participation: Does Code
Architecture Mitigate Free Riding in the Open Source Development Model?”,
Management Science, Vol. 52 No. 7, pp. 1116–1127.

Baldwin, C.Y. and Henkel, J. (2011), “The Impact of Modularity on Intellectual
Property and Value Appropriation”, Harvard Business School, Working Paper 12-
040.

Baldwin, C.Y. and Woodard, J.C. (2009), “The Architecture of Platforms: A Unified
View”, in Gawer, A. (Ed.), Platforms, Markets and Innovation, Cheltenham, U.K.
and Northampton, Mass.: Elgar.

Bansal, P. and Corley, K. (2011), “The coming Age for Qualitative Research:
Embracing the Diversity of Qualitative Methods”, Academy of Management Journal,
Vol. 54 No. 2, pp. 233–237.

Bland, J.M. and Altman, D.G. (1997), “Statistics notes: Cronbach's alpha”, BMJ, Vol.
314 No. 7080, p. 572.

Bonaccorsi, A., Giannangeli, S. and Rossi, C. (2006), “Entry Strategies Under
Competing Standards: Hybrid Business Models in the Open Source Software
Industry”, Management Science, Vol. 52 No. 7, pp. 1085–1098.

Boudreau, K.J. (2010), “Open Platform Strategies and Innovation: Granting Access vs.
Devolving Control”, Management Science, Vol. 56 No. 10, pp. 1849–1872.

Boudreau, K.J. and Lakhani, K.R. (2009), “How to Manage Outside Innovation”,
MIT Sloan Management Review, Vol. 50 No. 4, pp. 69–76.

Brandenburger, A.M. and Nalebuff, B.J. (1996), Co-opetition: A Revolution Mindset
That Combines Competition and Cooperation, Doubleday Dell Publishing, New
York.

Burkard, C., Draisbach, T. and Buxmann, P. (2011), “Software Ecosystems: Vendor-
Sided Characteristics of Online Marketplaces”, in Heiss, H.-U. (Ed.), Informatik
2011: Informatik schafft Communities ; 41. Jahrestagung der Gesellschaft für
Informatik e.V. (GI), 4.10. bis 7.10.2011, TU Berlin, Ges. für Informatik, Bonn.

 158

Carver, B.W. (2005), “Share and Share Alike: Understanding and Enforcing Open
Source and Free Software Licenses”, Berkeley Technology Law Journal, Vol. 20 No.
1, pp. 443–481.

Chung, L. and do Prado Leite, J. (2009), “On Non-Functional Requirements in Software
Engineering”, in Borgida, A., Chaudhri, V., Giorgini, P. and Yu, E. (Eds.),
Conceptual Modeling: Foundations and Applications, Lecture Notes in Computer
Science, Vol. 5600, Springer Berlin / Heidelberg, pp. 363–379.

Creswell, J.W. (2003), Research Design: Qualitative, Quantitative, and Mixed Methods
Approaches, 2nd edition, Sage Publications, Thousand Oaks.

Cronbach, L.J. (1951), “Coefficient alpha and the internal structure of tests”,
Psychometrika, Vol. 16 No. 3, pp. 297–334.

Cusumano, M.A. (2010), Staying power: Six enduring principles for managing strategy
and innovation in an uncertain world (lessons from Microsoft, Apple, Intel, Google,
Toyota and more), Oxford University Press, Oxford, New York.

Dubé, L. and Paré, G. (2003), “Rigor in Information Systems Positivist Case Research:
Current Practices, Trends, and Recommondations”, MIS Quarterly, Vol. 27 No. 4,
pp. 597–635.

Echambadi, R. and Hess, J.D. (2007), “Mean-Centering Does Not Alleviate Collinearity
Problems in Moderated Multiple Regression Models”, Marketing Science, Vol. 26
No. 3, pp. 438–445.

Echambadi, R., Campbell, B. and Agarwal, R. (2006), “Encouraging Best Practice in
Quantitative Management Research: An Incomplete List of Opportunities”, Journal
of Management Studies, Vol. 43 No. 8, pp. 1801–1820.

Edmondson, A.C. and McManus, S.E. (2007), “Methodological Fit in Management
Field Research”, Academy of Management Review, Vol. 32 No. 4, pp. 1155–1179.

Eisenhardt, K.M. (1989), “Building Theories from Case Study Research”, Academy of
Management Review, Vol. 14 No. 4, pp. 532–550.

Eisenhardt, K.M. and Grabner, M.E. (2007), “Theory Building from Cases:
Opportunities and Challenges”, Academy of Management Journal, Vol. 50 No. 1, pp.
25–32.

Eisenmann, T., Parker, G. and van Alstyne, M.W. (2006), “Strategies for Two-Sided
Markets”, Harvard Business Review, Vol. 84 No. 10, pp. 92–101.

Eisenmann, T.R., Parker, G. and van Alstyne, M. (2009), “Opening Platforms: How,
When and Why?”, in Gawer, A. (Ed.), Platforms, Markets and Innovation,
Cheltenham, U.K. and Northampton, Mass.: Elgar, pp. 131–162.

Eppinger, S.D. (1991), “Model-Based Approaches to Managing Concurrent
Engineering”, Journal of Engineering Design, Vol. 2 No. 4, pp. 283–290.

Eppinger, S.D., Whitney, D.E., Smith, R.P. and Gebala, D.A. (1994), “A Model-Based
Method for Organizing Tasks in Product Development”, Research in Engineering
Design, Vol. 6 No. 1, pp. 1–13.

 159

Ethiraj, S.K., Levinthal, D. and Roy, R.R. (2008), “The Dual Role of Modularity:
Innovation and Imitation”, Management Science, Vol. 54 No. 5, pp. 939–955.

Farrell, J. and Klemperer, P. (2007), “Coordination and Lock-In: Competition with
Switching Costs and Network Effects”, in Armstrong, M. and Porter, R. (Eds.),
Handbook of Industrial Organization: Volume 3, Elsevier, Amsterdam, pp. 1967–
2072.

Favaro, J. and Pfleeger, S.L. (2011), “Guest Editors' Introduction: Software as a
Business”, IEEE Software, Vol. 28 No. 4, pp. 22–25.

Flick, U. (2011), Introducing Research Methodology: A Beginner's Guide to Doing a
Research Project, Sage Publications, London.

Fricker, S.A. (2012), “Software Product Management”, in Maedche, A., Botzenhardt,
A. and Neer, L. (Eds.), Management for Professionals, Springer Berlin Heidelberg,
Berlin, Heidelberg, pp. 53–81.

Gawer, A. (2009), “Platform Dynamics and Strategies: From Products to Services”, in
Gawer, A. (Ed.), Platforms, Markets and Innovation, Cheltenham, U.K. and
Northampton, Mass.: Elgar, pp. 45–76.

Gawer, A. and Cusumano, M.A. (2002), Platform leadership: How Intel, Microsoft, and
Cisco drive industry innovation, Harvard Business School Press, Boston, Mass.

Gawer, A. and Henderson, R. (2007), “Platform Owner Entry and Innovation in
Complementary Markets: Evidence from Intel”, Journal of Economics and
Management Strategy, Vol. 16 No. 1, pp. 1–34.

Gephart, R.P., JR. (2004), “Qualitative Research and the Academy of Management
Journal”, Academy of Management Journal, 2004, pp. 454–462.

Gibbert, M., Ruigrok, W. and Wicki, B. (2008), “What passes as a rigorous case
study?”, Strategic Management Journal, Vol. 29 No. 13, pp. 1465–1474.

Glaser, B. and Strauss, A. (2008), The discovery of grounded theory: Strategies for
qualitative research, Aldine Transaction, New Brunswick and London.

Greenwood, R. and Suddaby, R. (2006), “Institutional Entrepreneurship in Mature
Fields: The Big Five Accounting Firms.”, Academy of Management Journal, Vol. 49
No. 1, pp. 27–48.

Hecker, F. (1999), “Setting up shop: The business of open-source software. Software,
IEEE”, Software, IEEE (Software, IEEE), Vol. 16 No. 1, pp. 45–51.

Henkel, J. (2011), IP-Modularität - In offenen Innovationsprozessen profitieren durch
IP-orientierte Modularisierung, Münchener Innovations-Konferenz, Munich.

Henkel, J. and Baldwin, C.Y. (2010), “Modularity for Value Appropriation - How to
Draw the Boundaries of Intellectual Property”, Harvard Business School Finance
Working Paper No. 11-054.

 160

Huang, P., Ceccagnoli, M., Forman, C. and Wu, D. (2009), “Participation in a Platform
Ecosystem: Appropriability, Competition and Access to the Installed Base”, Working
Paper No. 09-14.

Jansen, S. and Cusumano, M.A. (2012), “Defining Software Ecosystems: A Survey of
Software Platforms and Business Network Governance”, in Proceedings of the Forth
International Workshop on Software Ecosystems, Cambridge, MA, USA, June 18th,
2012., Vol. 879.

Jansen, S., Brinkkemper, S., Souer, J. and Luinenburg, L. (2012), “Shades of gray:
Opening up a software producing organization with the open software enterprise
model. Software Ecosystems”, Journal of Systems and Software, Vol. 85 No. 7, pp.
1495–1510.

Jeppesen, L.B. and Molin, M.J. (2003), “Consumers as Co-developers: Learning and
Innovation Outside the Firm”, Technology Analysis & Strategic Management, Vol.
15 No. 3, pp. 363–383.

Kaiser, H.F. (1960), “The Application of Electronic Computers to Factor Analysis”,
Educational and Psychological Measurement, Vol. 20 No. 1, pp. 141–151.

Katz, M.L. and Shapiro, K. (1985), “Network Externalities, Competition, and
Compatibility”, American Economic Review, Vol. 75 No. 3, pp. 424–440.

Kittlaus, H.-B. and Clough, P.N. (2009), Software product management and pricing:
Key success factors for software organizations, Springer, Berlin.

Kude, T., Dibbern, J. and Heinzl, A. (2012), “Why Do Complementors Participate? An
Analysis of Partnership Networks in the Enterprise Software Industry”, IEEE
Transactions on Engineering Management, Vol. 59 No. 2, pp. 250–265.

LaMantia, M.J., Yuanfang Cai, MacCormack, A.D. and Rusnak, J. (2008), “Analyzing
the Evolution of Large-Scale Software Systems Using Design Structure Matrices and
Design Rule Theory: Two Exploratory Cases”, Software Architecture, 2008. WICSA
2008. Seventh Working IEEE/IFIP Conference on, pp. 83–92.

Lance, C.E. and Vandenberg, R.J. (2009), Statistical and methodological myths and
urban legends: Doctrine, verity and fable in the organizational and social sciences,
Routledge, New York.

Langlois, R.N. (2002), “Modularity in Technology and Organization”, Journal of
Economic Behavior & Organization, Vol. 49 No. 1, pp. 19–37.

Lee, M.K.O. and Cheung, C.M.K. (2004), “Internet Retailing Adoption by Small-to-
Medium Sized Enterprises (SMEs): A Multiple-Case Study”, Information Systems
Frontiers, Vol. 6 No. 4, pp. 385–397.

Lerner, J. and Tirole, J. (2002), “Some Simple Economics of Open Source”, The
Journal of Industrial Economics, Vol. 50 No. 2, pp. 197–234.

Lindman, J., Rossi, M. and Puustell, A. (2011), “Matching Open Source Software
Licenses with Corresponding Business Models. Software, IEEE”, Software, IEEE
(Software, IEEE), Vol. 28 No. 4, pp. 31–35.

 161

MacCormack, A., Rusnak, J. and Baldwin, C. (2006), “Exploring the Structure of
Complex Software Designs: An Empirical Study of Open Source and Proprietary
Code”, Management Science No. 52, pp. 1015–1030.

Mahoney, J. (2006), “A Tale of Two Cultures: Contrasting Quantitative and Qualitative
Research”, Political Analysis, Vol. 14 No. 3, pp. 227–249.

Mann, H.B. and Whitney, D.R. (1947), “On a Test of Whether one of Two Random
Variables is Stochastically Larger than the Other”, The Annals of Mathematical
Statistics, Vol. 18 No. 1, pp. 50–60.

Miles, M.B. and Huberman, A.M. (1994), Qualitative data analysis: An expanded
sourcebook, 2. ed, Sage, Thousand Oaks, Calif. [u.a.].

Osterwalder, A. (2004), “The Business Model Ontology. A Proposition in a Design
Science Approach”, Dissertation, École des Hautes Études Commerciales, Université
de Lausanne, Lausanne, 2004.

Parker, G. and van Alstyne, M.W. (2009), “Six Challenges in Platform Licensing and
Open Innovation”, Communications & Strategies, Vol. 1 No. 74, pp. 17–36.

Parnas, D.L. (1972), “On the Criteria to be used in Decomposing Systems into
Modules”, Communications of the ACM, Vol. 15 No. 12, pp. 1053–1058.

Parnas, D.L., Clements, P.C. and Weiss, D.M. (1985), “The Modular Structure of
Complex Systems”, IEEE Transactions on Software Engineering, SE-11 No. 3, pp.
259–266.

Perrons, R.K. (2009), “The Open Kimono: How Intel Balances Trust and Power to
Maintain Platform Leadership”, Research Policy, Vol. 38 No. 8, pp. 1300–1312.

Pettigrew, A.M. (2010), “Longitudinal Field Research on Change: Theory and
Practice”, in Olk, P. (Ed.), Strategy Process, Elgar Reference Collection. Strategic
Management series. Cheltenham, U.K. and Northampton, Mass.: Elgar, pp. 473–498.

Popp, K.M. (2011), “Software Industry Business Models. Software, IEEE”, Software,
IEEE (Software, IEEE), Vol. 28 No. 4, pp. 26–30.

Pratt, M.G. (2009), “For the Lack of a Boilerplate: Tips on Writing up (and Reviewing)
Qualitative Research”, Academy of Management Journal, Vol. 52 No. 5, pp. 856–
862.

Raymond, E.S. (2001), The cathedral and the bazaar: Musings on Linux and Open
Source by an accidental revolutionary, Rev. ed., O'Reilly, Cambridge, Mass.

Riehle, D. (2012), “The single-vendor commercial open course business model”,
Information Systems and e-Business Management, Vol. 10 No. 1, pp. 5–17.

Rochet, J.-C. and Tirole, J. (2003), “Platform Competition in Two-Sided Markets”,
Journal of the European Economic Association, Vol. 1 No. 4, pp. 990–1029.

Ruscio, J. and Roche, B. (2012), “Determining the number of factors to retain in an
exploratory factor analysis using comparison data of known factorial structure”,
Psychological Assessment, Vol. 24 No. 2, pp. 282–292.

 162

Sako, M. and Helper, S. (1998), “Determinants of Trust in Supplier Relations. Evidence
from the Automotive Industry in Japan and the United States”, Journal of Economic
Behavior & Organization, Vol. 34 No. 3, pp. 387–417.

Sanchez, R. and Mahoney, J. (1996), “Modularity, Flexibility, and Knowledge
Management in Product and Organization Design”, Strategic Management Journal,
17 Winter special Issue, pp. 63–76.

Santos J. Reynaldo A. (1999), “Cronbach's Alpha: A Tool for Assessing the Reliability
of Scales”, available at: http://www.joe.org/joe/1999april/tt3.php/tt2.php.

Schilling, M.A. (2000), “Toward a General Modular Systems Theory and Its
Application to Interfirm Product Modularity”, Academy of Management Review, Vol.
25 No. 2, pp. 312–334.

Schreiner, K. (2012), “IP Modularity in Software Platform Ecosystems”, Master Thesis,
Technische Universität München, Munich, 2012.

Sosa, M.E., Eppinger, S.D. and Rowles, C.M. (2004), “The Misalignment of Product
Architecture and Organizational Structure in Complex Product Development”,
Management Science, Vol. 50 No. 12, pp. 1674–1689.

Steensma, H.K. and Corley, K.G. (2000), “On the Performance of Technology Sourcing
Partnerships. The Interaction between Partner Interdependence and Technology
Attributes”, Academy of Management Journal, Vol. 43 No. 6, pp. 1045–1067.

Steward, D. (1981), “The Design Structure System. A Method for Managing the Design
of Complex Systems”, IEEE Transations on Engineering Management, Vol. 28 No.
3, pp. 71–84.

Suddaby, R. (2006), “From the Editors: What Grounded Theory is not”, Academy of
Management Journal, 2006, pp. 633–642.

Teece, D.J. (1986), “Profiting from Technological Innovation: Implications for
Integration, Collaboration, Licensing and Public Policy”, Ricerche Economiche, Vol.
40 No. 4, pp. 607–643.

Ulrich, K.T. (1995), “The Role of Product Architecture in the Manufacturing Firm”,
Research Policy, Vol. 24, pp. 419–440.

Waltl, J., Henkel, J. and Baldwin, C.Y. (2012), “IP Modularity in Software Ecosystems:
How SugarCRM’s IP and Business Model Shape Its Product Architecture. Software
Business”, in Cusumano, M.A., Iyer, B., Venkatraman, N., Aalst, W., Mylopoulos,
J., Rosemann, M., Shaw, M.J. and Szyperski, C. (Eds.), Lecture Notes in Business
Information Processing, Vol. 114, Springer Berlin Heidelberg, pp. 94–106.

Weill, P., Malone, T.W., D'Urso, V.T., Herman, G. and Woerner, S. (2005), “Do Some
Business Models Perform Better than Others? A Study of the 1000 Largest US
Firms”.

West, J. (2003), “How Open Is Open Enough? Melding Proprietary and Open Source
Platform Strategies”, Research Policy, Vol. 32 No. 7, pp. 1259–1285.

 163

Wiegers, K.E. (2003), Software requirements, second edition, 2nd ed., Microsoft Press,
Redmond, Wash.

Wilcoxon, F. (1945), “Individual Comparisons by Ranking Methods”, Biometrics
Bulletin, Vol. 1 No. 6, pp. 80–83.

William Band (2010), The Forrester Wave™: CRM Suites For Midsized Organizations,
Q2 2010, Cambridge, Mass.

Williamson, O.E. (1979), “Transaction-Cost Economics. The Governance of
Contractual Relations”, Journal of Law and Economics, Vol. 22 No. 2, pp. 233–261.

Yin, R.K. (2009), Case study research: Design and methods, 4th ed., Sage Publications,
Los Angeles, Calif.

Yourdon, E. and Constantine, L.L. (1979), Structured Design: Fundamentals of a
Discipline of Computer Program and Systems Design, Prentice Hall, Englewood
Cliffs.

Zaheer, A., McEvily, B. and Perrone, V. (1998), “Does Trust Matter? Exploring the
effects of Interorganizational and Interpersonal Trust on Performance”, Organization
Science, Vol. 9 No. 2, pp. 141–159.

