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Abstract  

A Dynamic Bayesian Network (DBN) model for probabilistic assessment of tunnel 

construction performance is introduced. It facilitates the quantification of uncertainties in 

the construction process and of the risk from extraordinary events that cause severe 

delays and damages. Stochastic dependencies resulting from the influence of human 

factors and other external factors are addressed in the model. An efficient algorithm for 

evaluating the DBN model is presented, which is a modification of the so-called Frontier 

algorithm. The proposed model and algorithm are applied to an illustrative case study, the 

excavation of a road tunnel by means of the New Austrian Tunneling Method.  
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1 Introduction 

Estimations of time and cost of tunnel construction projects are subject to major 

uncertainties, which are caused by uncertain geotechnical conditions, varying 
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performance of the utilized excavation technologies and human and organizational 

factors. In spite of these uncertainties, at present a majority of stakeholders (project 

owners, contractors, public, etc.) rely on deterministic estimates of project time and cost, 

which are based on expert judgment. Additionally to these deterministic estimates, the 

risk is often analyzed by means of semi-quantitative or qualitative methods, which are 

also based on expert judgements; applications of this approach are presented in Sturk et al. 

(1996), Shahriar et al. (2008) and Hong et al. (2009). The approach is also recommended 

in guidelines of International Tunneling Asociation (Eskesen et al. 2004).  

Since time and cost estimates are fundamental parameters for decision making in all 

phases of tunnel construction projects, it should be evident that a more realistic 

assessment of the associated uncertainties is crucial. The need of probabilistic prediction 

of construction time and costs and their communication with the stakeholders has been 

discussed in the tunneling community in recent years (Lombardi 2001, Reilly 2005, 

Grasso et al. 2006). Several model for such predictions have been developed, as 

summarized in the following. 

In Ruwanpura & Ariaratnam (2007), tools for simulation of the tunnel drilling process are 

presented, which include Monte Carlo Simulation (MCS) for the evaluation of 

uncertainties in predicting construction time and costs. Isaksson & Stille (2005) suggest 

an analytical solution for probabilistic estimation of tunnel construction time and cost 

considering both normal variations of the performance and extraordinary events. In 

Chung et al. (2006) and in Benardos & Kaliampakos (2004) observed advance rates are 

used for updating the predictions of advance rates and resulting excavation time for the 

remaining part of the tunnel, by means of Bayesian analysis and artificial neural networks, 

respectively.  

At present, the most advanced method for probabilistic modeling of uncertainties in the 

tunnel construction processes available in the literature is the Decision Aids for 

Tunneling (DAT), developed in the group of Prof. Einstein at MIT. It has been applied to 

several projects, an overview of which is given in Min (2008). DAT uses Monte Carlo 

simulation (MCS) for probabilistic prediction of construction time, costs and 

consumption of resources. It takes into account the geotechnical uncertainties, which are 

modeled by means of a Markov process (Chan 1981), as well as the uncertainties in the 
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construction process. In the applications, the coefficients of variation of the total 

construction time and cost estimated by DAT are typically less than 5%. This computed 

uncertainty is too low when compared to the one observed in practice, e.g. in (Flyvbjerg 

et al. 2004). 

The risk of extraordinary events, such as tunnel collapse, tunnel flooding or legislative 

and political obstruction, is not included in the original DAT model. A model to include 

the risk of a tunnel collapse has been presented in Sousa & Einstein (2011).  Therein, a 

dynamic Bayesian networks (DBN) model and decision graphs were used to identify the 

optimal construction method based on a comparison of expected utilities of different 

methods (whereby utilities correspond to costs). Uncertainty in the costs is not considered 

and no probabilistic estimate of the overall construction cost and time is presented.  

None of the models known to the authors fulfills all requirements that are deemed 

important for a realistic estimation of construction time and costs. A tunnel construction 

model should ideally provide the following: (1) It should correctly model common 

factors that systematically influence the construction process, such as human and 

organizational factors. These factors lead to stochastic dependence among the random 

variables describing performance at different phases of the excavation. The significant 

influence of such dependencies on construction time estimates is shown for example in 

Yang (2007) and Moret & Einstein (2011). (2) The model should consider the risk of 

extraordinary events (e.g tunnel collapse, tunnel flooding). These events, even if they 

have relatively small probabilities, cannot be neglected as they often lead to huge delays 

and damages (IMIA 2006, Špačková et al. 2010, Sousa & Einstein 2011). (3) The model 

should allow for making full use of data available from previous projects, such as 

advance rates and costs recorded during excavation of tunnels under similar conditions. 

In this way, the know-how can be systematically managed. (4) The methodology should 

facilitate the easy updating of predictions when new information on the analyzed project 

(e.g. geotechnical investigations, performance rates and costs observed after 

commencement of excavation) is available. (5) The model assumptions and involved 

simplifications must be properly understood and described. This is important in 

probabilistic modeling, where results are difficult to validate by experiments and must 

therefore be well reasoned.  
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The requirements stated above motivate the development of a methodology based on 

Dynamic Bayesian Networks (DBN). While many of the requirements could be satisfied 

by means of the commonly used MCS approach, we propose DBNs, because they are 

more efficient in updating of the predictions based on additional observations 

(requirement 4) and because the graphical nature of DBN strongly facilitates the 

representation and communication of the model assumptions (requirement 5), in 

particular when dependencies among random variables are present (requirement 1). The 

DBN presented in this paper also includes extraordinary events and the influence of 

human and organizational factors (requirements 1 and 2). The learning of model 

parameters from data (requirement 3) is not addressed in detail in this paper. However, 

the DBN framework facilitates such learning. 

The proposed DBN is applied to the case study utilizing the DAT model presented in Min 

(2003) and Min et al. (2003). The proposed DBN is here limited to estimating 

construction time, but adaptation of the model to predict construction cost is 

straightforward by simply replacing the variable time with variable cost.  

The paper starts out with a general introduction to Bayesian networks and to the Frontier 

algorithm applied for evaluating DBNs (section 2). Thereafter, the structure of the 

proposed DBN model for tunnel excavation is presented in section 3. In section 4, the 

application of the frontier algorithm for evaluating the tunnel DBN is explained in details. 

A modification of the algorithm is presented, which significantly increases its efficiency 

for this application. Finally, the DBN model is applied to a case study, allowing 

investigation of the effect of extraordinary events and the influence of human and 

organizational factors on the excavation time estimates. 

2 Bayesian networks – basic principles 

Bayesian networks (BN) are directed acyclic graphical models for representation of a set 

of random variables. Random variables are symbolized by the nodes of the BN, the 

dependencies between them are depicted by directed links. The set of random variables 

            is fully described by the graphical structure and the conditional probability 

distribution of each node    given its parent nodes       . Parent nodes are all nodes 
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with links pointing towards   . The joint probability mass function of             is 

expressed using the chain rule as  

               ∏            
 
    , (1)     . 

where              is the conditional probability mass function (PMF) of variable    

given its parent variables. The notation used here applies to discrete random variables, 

which is the case for the model proposed in this paper. Whenever no ambiguity arises we 

use                as the short notation for            
              and similarly 

             for           
           . 

The efficiency of the BN stems from the decomposition of the joint probability 

distribution into local conditional probability distributions according to Eq. (1). This 

decomposition is made possible, because the graphical structure of the BN encodes 

information about dependence among random variables. From the BN graph, one can 

directly infer which random variables are statistically independent of each other (d-

separated in BN terminology). The statistical dependencies change when states of one or 

more nodes in the network are fixed (e.g. when evidence is available). For a given set of 

nodes   it is possible to identify another set of nodes, which, when fixed, d-separate   

from the rest of the network. This set is called the Markov blanket of  . For a more 

detailed introduction to BN we refer to Jensen & Nielsen (2007). 

An example of a simple BN is depicted in Fig. 1. This BN contains four random variables: 

geology  , construction method  , excavation time   and construction costs    The 

construction method   is defined conditionally on geology   (i.e.   is a parent node of 

  and, correspondingly,   is a child node of  ), the excavation time   is defined 

conditionally on the construction method   and costs   are defined conditionally on both 

  and  .  
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Figure 1. Example of a Bayesian network. 

Following Eq. (1), the joint probability mass function (PMF) of this BN is 

                                   , (2)  

where      is the PMF of   and       ,        and          are conditional PMFs of 

 ,    and  . The values of the conditional PMFs are conveniently organized in 

conditional probability tables (CPT). An example CPT is provided in the application 

presented in Section 5.1. 

Assumptions concerning dependencies among the random variables are made when 

constructing the BN in Fig. 1: According to this model, if the construction method is 

known (fixed), any information about geology does not alter the probability distribution 

of time and costs, i.e.   and   are statistically independent of   if   is fixed.  

Dynamic Bayesian networks (DBN) are a special case of BN used for modeling of 

random processes. An example is depicted in Fig. 2. The  th slice of the DBN represents 

the state of the system in time/position  . Because the state of the system in slice   has 

only its state in slice       as its parent, this DBN represents a Markov chain: In a 

Markov chain, the future states are independent of the past states when the present state is 

known.  

 

Figure  2. Example of a dynamic Bayesian Network (DBN) 
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In the example of Fig. 2, each slice   consists of two random variables geology    and 

unit excavation time   . The joint probability of    and    is obtained as 

         ∑                              
, (3)  

where         is the marginal probability distribution of random variable      in slice 

     ,            is the conditional probability describing changes of geology between 

neighboring slices and          is the conditional probability of    in slice   defined 

conditionally on geology in the same slice.  

The use of BN and DBN in engineering applications has grown significantly in recent 

years (Weber et al. 2010). One reason is their graphical nature that facilitates 

communication of the model assumptions. Secondly, the BNs allow to easily update the 

prediction when additional information becomes available. Finally, the BN allows 

decomposing large models into local probabilistic dependences. Therefore, they are 

especially suitable for engineering applications, where statistical data is often sparse, but 

where conditional probability distributions of variables can be modeled by means of 

engineering models, expert judgment or other known relations. Applications of BN and 

DBN in engineering problems can be found for example in Faber et al. (2002), Grêt-

Regamey & Straub (2006), Neil et al. (2008), Droguett et al. (2008), Straub (2009) or 

Straub & Der Kiureghian (2010b).  

2.1 Evaluation of the DBN - basic principles of the Frontier 

algorithm  

For the evaluation of the DBN presented in this paper, a procedure based on the so-called 

Frontier algorithm (see Murphy 2002) is used. It enables one to compute the marginal 

probability distribution of all random variables. The algorithm belongs to the group of 

exact inference methods and is applicable to DBNs with discrete nodes.  

The Frontier algorithm utilizes the fact that in the DBN one can identify sets of nodes, 

which, if fixed, d-separate the nodes on their left side from the nodes on their right side. 

(These sets of nodes are Markov blankets of the sets of nodes on either their left or their 

right side.) These sets are called frontiers (or frontier sets). To give an example, all 
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variables in slice   of the DBN in Fig. 2 create a frontier. They d-separate variables in the 

slices    , representing future states of the process (right side of the DBN), from the 

variables in the slices    , representing past states of the process (left side of the DBN).  

For the evaluation of the DBN, the frontier is moved slice by slice along the network. We 

can add a variable to the frontier, if all its parents are already included in the frontier. We 

can remove a variable from the frontier if all its children variables are included in the 

frontier.  

In the following, the Frontier algorithm is illustrated on a DBN containing   variables in 

each slice. One cycle of the algorithm moving frontier from slice     to slice   is shown 

in Fig. 3. The variables marked with grey are those included in the frontier at a particular 

step. At the beginning of the cycle (Fig. 3a), the frontier contains variables 

                       and                     is the known joint PMF of these 

variables.  

 

Figure 3. Graphical representation of one cycle of the Frontier algorithm for an example DBN. 
The grey nodes are those included in the frontier at a given step. 

In step (b), a variable      is added to the frontier and variable        is removed from the 

frontier. Adding      corresponds to calculating the joint probability mass function 

                         as: 

                                             (             ), (4)  
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Removing        is performed by summing the joint PMF over all states of       . This 

operation is called marginalization in BN terminology. 

                       ∑                                     
. (5)  

The above steps are repeated for other nodes until the frontier consists only of nodes of 

slice   as shown in (Fig. 3d). The cycle is then repeated for the next slice     and so on. 

The marginal distribution of any variable      can be obtained from the joint distribution 

of any frontier that includes this variable, through elimination of all other variables in that 

frontier. 

As seen from Eqs. 4 and 5 above, in each step the algorithm requires only the joint 

probability of the variables in the frontier, which reduces the computational demand 

significantly. In every step, the frontier should include as few variables as possible. We 

therefore add a new variable to the frontier as late as possible and we remove variables 

from the frontier as soon as possible.  

Evidence (observations of random variables) can be efficiently included in the DBN. 

Consider observation of node       . The frontier algorithm proceeds until a frontier 

including      is reached.  The observation is then included by setting the probability of 

all outcome states with        equal to zero and normalizing the probabilities of the 

remaining outcome states. With this procedure, the probability distribution of a variable 

in slice   is updated with the evidence from all slices    . The evidence in slices     

is not included. To include such evidence, the above algorithm must be extended by a 

backward computation, in which the frontier moves from right to left. This case is not 

considered in this paper. Details on the algorithm can be found in Murphy (2002); Straub 

(2009) presents an application of the algorithm to modeling the effect of inspection and 

monitoring of deteriorating structures. 

3 Modeling tunnel excavation process via DBN 

A DBN for modeling uncertainties connected with tunnel excavation processes is 

presented in this section. The DBN is shown in Fig. 4. The excavation process is 

described by random variables representing (1) geotechnical conditions, (2) the 
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construction process, (3) extraordinary events and (4) overall excavation time. 

Excavation cost is not included here for ease of presentation, but its modeling is 

analogous to excavation time. Each slice in the DBN represents a tunnel segment of 

length   , i.e. a segment from position         to position     along the tunnel axis. 

Within one slice, all variables are modeled as constant. Table 1 provides an overview of 

the definition of the variables as they are used in the case study presented in sec. 5. The 

variables are introduced in more detail in the following subsections. 

 

 

Figure 4. DBN for tunnel excavation. (The variables are explained in Table 1.) 
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Table 1. Overview of the variables in the DBN. 

Id. Variable Type States of the variable  

Z Zone Random/ Discrete 1,2,…,8 
R Rock class Random/Discrete I, II, III, IV, V 
O Overburden Determ./Discrete Low, Medium, High 
G Ground class Random/Discrete L-I, L-II, L-III, L-IV, L-V, M-I, M-II, M-III, M-IV, M-

V, H-I, H-II, H-III, H-IV, H-V 
H Human factor Random/Discrete  Favourable, neutral, unfavourable 
E Geometry Determ./Discrete 1 (begin/end), 2 (typical), 4 (chem.plant) , 5 (EPP) 
M Construction 

method 
Random/Discrete P.1, P.2, P.3, P.4, P.5, P.6,P.2-1,P.2-2,P.2-3,P.EPP 

T Unit time Random/ Discretized 0,     ,      , …, 15 [days] 
*
 

F Failure mode Random/Discrete Failure, No failure 
NF Number of 

failures 
Random/Discrete 0,1,2,3,4,>5 

Tcum Cumulative 
time 

Random/Discretized 0,     ,      , …,     **
 [days] 

Textra Delays caused 
by failures 

Random/ Discretized 15,     ,      , …,            
 
[days] 

***
 

Ttot Total time Random/ Discretized 0,     ,      , …,                   )[days] 

*
     is the discretization interval of time variables. In the application example it is             , 

  

**
upper bound of cumulative time = 122 x 15= (number of segments) x (upper bound of unite time)

 

***
             is the 99.9 percentilse of Textra 

3.1 Geotechnical conditions 

The variables to be utilized for describing the geotechnical conditions vary depending on 

the specifics of the tunneling project. The variables selected here follow the description in 

Min (2003). Within a segment   of the tunnel, the geotechnical conditions are described 

by the random variables zone   , rock class   , height of the overburden    and ground 

class   .  

Along the tunnel axis, quasi-homogenous geotechnical zones are identified. The positions 

of the boundaries of these quasi-homogenous geotechnical zones are not known with 

certainty; therefore, the zone    to which segment   belongs is modelled as a random 

variable. The definition of this variable is in detail described in Annex 1. The rock class 

  within a zone is modelled as a homogeneous Markov process. The suitability of 

Markov processes for modeling of geotechnical conditions (such as rock class, degree of 

jointing) along the tunnel axis was shown already in Chan (1981). The parameters of the 

Markov process can be estimated by experts. The description of the parameters of the 

Markov process and definition of the variable    in the DBN are given in Annex 1. 
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The height of overburden    is modelled deterministically. The ground class    is defined 

deterministically for given    and   . As evident from Table 1, each    corresponds to a 

specific combination of    and   , e.g. ground class L-I stands for rock class I with low 

overburden, M-II for rock class II with medium overburden.  

3.2 Construction process 

The construction performance in segment   of the tunnel is described by the variables 

cross section geometry   , construction method   ,  Human factor    and unit excavation 

time   . 

The deterministic variable geometry    enables one to consider the different cross 

sections along the tunnel (typical cross section vs. extended cross section for emergency 

parking places EPP) and it is also used to consider the special conditions at the beginning 

and end of the tunnel and at the location where the tunnel passes an existing chemical 

plant.  

The construction method    describes the excavation type and the related support pattern 

applied in the  th segment and is determined conditional on the ground class    and 

tunnel geometry   . The modeling of    follows Min (2003), where the details of the 

construction methods are described.  

The variable Human factor     represents the uncertain quality of design and construction 

works and other external factors (legislative, political etc.) affecting the construction 

process. The Human factor    is in one of the three states “unfavourable”, “neutral” or 

“favourable” throughout the entire tunnel construction, i.e. the   s are fully dependent 

from one slice to the next and the conditional probability matrix            in each slice 

is the 3x3 identity matrix. This simple model reflects the fact that the influence of human 

factor cannot be directly measured and can only be deduced from the average 

performance over long sections of the tunnel project (Špačková et al. 2010). The 

uncertainty in the Human factor introduces dependence among the performance in each 

segment of the tunnel, and thus increases the variability of the estimated total 

construction time.    can also be interpreted as a random variable describing a model 

class, which reflects uncertainty on the selection of the appropriate probabilistic model of 

variables that are defined conditionally on   , i.e. unit time and failure rate. Prior to 
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construction, the probability distribution of unit time and the failure rate are not known 

with certainty. Several probabilistic models are thus applied. During the construction, it 

becomes apparent which of the models is the most appropriate. This learning process is 

automated when applying Bayesian networks through the updating of the probability 

distribution of   . The concept of model classes is often applied in the context of 

structural identification (e.g. Cheung and Beck 2010). 

For every construction method    and human factor   , the unit time    is defined by a 

conditional CDF            . To facilitate the application of the exact inference 

algorithm presented earlier, the variable    is discretized, as described in sec. 4.1.  

3.3 Extraordinary events 

Extraordinary events are defined as events that stop the advance of the excavation 

(progress of the tunnel heading) for longer than a threshold value (here chosen as 15 

days); these events can be considered a failure of the construction process. They are e.g. 

tunnel collapses, tunnel flooding or major legislative or organizational problems. They 

are characterized by the variables failure mode    and number of failures     .  

The failure mode    describes the occurrence of failure in segment  . Different failure 

modes can be taken into account (cave-in collapse, tunnel flooding, fire). In the presented 

application, only modes “failure” and “no failure” were considered.    is defined 

conditionally on ground class    and human factor   .  

The random variable      represents the total number of failures from the beginning of 

the tunnel to location    . It is defined conditionally on the number of failures in the 

previous slice,       , and the failure mode    in the  th segment. Definition of the 

variables    and      is described in Annex 1.  

3.4 Excavation time  

The main output of the model is the total excavation time     . In the DBN, it is 

computed as the sum of excavation time excluding extraordinary events,      and the 

time delay caused by extraordinary events,       .  
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The cumulative time        is the time for the excavation of the tunnel up to location    . 

It is defined as the sum of          and the unit time in segment  ,   :        

           . 

         is the time delay due to occurrences of failures (extraordinary events) in the 

tunnel construction up to segment  . The distribution of          for given number of 

failures      can be derived from the statistics of observed delays, which provide the 

probability density function (PDF) of the delay caused by one failure event,      . With 

   being the delay caused by the  th failure, the total delay due to      failures is 

computed as the sum of the individual delays: 

         ∑   
    

   , (6)   . 

We compute the PDF of          for given      by assuming that all delays    are 

independent and have identical PDF       . This implies the assumption that the 

expected delay caused by a failure is independent on the position where it occurs. 

Assessment of the total excavation time is in most cases of interest for the tunnel as a 

whole or for a section of the tunnel. Therefore, its distribution is computed only at 

selected positions, as illustrated in Fig. 4, where      is assessed for the whole tunnel.  

3.5 Length of segment represented by a slice of DBN 

We expect that the changes of conditions can only occur at the boundaries of the tunnel 

segments represented by slices of the DBN. We thus assume that the random variables 

are fully dependent within each segment. The optimal segment length    corresponds (in 

case of cyclic excavation methods) approximately to the length of the excavation cycle. 

This topic is discussed in more detail in Špačková & Straub (2011).  

The definition of random variables, i.e. the determination of their conditional 

probabilities, also depends on   . Calculation of conditional PMFs of zone   , rock class 

   and failure mode    for given    is described in Annex 1. The conditional PDFs of unit 

time    should be ideally determined directly from data for a given   . 
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The human factor    is supposed to be fully dependent throughout the entire excavation, 

therefore its CPT does not change if    changes. Deterministic variables and variables 

defined by deterministic functions (ground class   , construction method   , number of 

failures      and cumulative time       ) are not influenced by the segment length.  

4 Evaluation of the DBN 

The evaluation of the DBN proceeds in three steps: First, all continuous variables are 

discretized. Second, some of the nodes are eliminated from the DBN in order to simplify 

the computations in the modified Frontier algorithm. Third, the modified Frontier 

algorithm, which is outlined in Section 4.3, is applied. The three steps are presented in 

the following. In Section 4.4, the procedure for updating of the prediction based on 

observed geotechnical conditions and performance is shown. 

4.1 Discretization of random variables 

Random variables defined in a continuous space (i.e. variables describing unit time    and 

delay         ) are transformed into random variables defined in a discrete space. The 

discretization is described below for   ; an analogous procedure is used for discretizing 

        . 

Let  ̃  be the original continuous random variable with parent variables     ̃  , which is 

defined by a CDF   ( ̃       ̃  ). Let    be the corresponding discrete random variable 

whose    states are denoted by   
   

, where         . Let state   
   

 represent an 

interval 〈 ̃ 
     

  ̃ 
   〉 in the original continuous space,  ̃ 

   
 is the upper bound of the 

interval corresponding to state   
   

. The conditional probability mass function of    then 

equals  

 (  
   

|    ̃  )   ( ̃ 
   

|    ̃  )   ( ̃ 
     

|    ̃  ), (7)  

The intervals are defined so that they have an equal length     . Each state   
   

 is 

represented by the central value of corresponding interval, i.e.   
   

  ̃ 
   

 
    

 
. 
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For computational purposes, which will become clear later in the paper (sec. 4.3), it is 

beneficial to define the representative values as integer multiplications of     . 

In addition to    and         , also        must be discretized. Since        is defined as a 

sum of          and   , it is convenient to use the same discretization interval length      

for all three variables and to define the representative values of their states as integer 

multiplications of     . This, however, implies that the number of states of        

increases with every slice of the DBN as is illustrated in Fig. 5. If    is the number of 

states of   ,        , then the number of states of        is                  . 

To deal with the resulting large number of states of       , a modification to the Frontier 

algorithm is proposed in section 4.3.  

 

Figure 5. Illustration of the summation of two discretized random variables: PMF of cumulative 
time         ,unit time    and cumulative time        for tunnel segment    ,zone      , 
human factor             , and rock class       . The PMF of        is obtained through 
convolution of          and   . 

4.2 Elimination of nodes 

Prior to the application of the Frontier algorithm, it is computationally beneficial to 

eliminate some nodes from the DBN. Such an elimination of nodes can be considered a 
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pre-processing of the DBN. In the presented DBN, we eliminate ground class   , 

overburden   , cross section geometry    and construction method   . This operation can 

be performed generically for all slices in the DBN. The resulting DBN is shown in Fig. 6, 

following the procedure for graphical elimination of nodes explained in Straub and Der 

Kiureghian (2010a). When eliminating nodes from the network, additional links must be 

added to the remaining nodes, to ensure that their joint probability distribution is not 

altered. New links are introduced from    to    and   , and from    to   . This new 

definition includes all the information from the eliminated nodes, which ensures that the 

reduced DBN gives the same results as the original DBN.  

In principle, one could directly define this reduced DBN instead of the original DBN. 

However, because the effect of variables such as overburden or ground class is only 

implicit in this reduced model, the direct determination of the conditional probabilities in 

the reduced DBN is not straightforward. 

 

Figure 6. DBN after elimination of nodes. 

For the resulting network, due to the new links introduced in the elimination process, it 

becomes necessary to compute the conditional PMFs             and               . The 

conditional PMF of failure mode    can be calculated as (compare with Figure 4): 
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            ∑               
  

 

 ∑           ∑          
  

      

  

  

(8)  

The conditional PMF of unit time    is obtained as: 

               
 

     
∑               ∑            ∑                 

      

  
(9)       . 

4.3 Modified Frontier algorithm 

A modified version of the frontier algorithm is used for evaluating the DBN. The new 

algorithm is investigated and validated on an academic example in Annex 2. Because 

some random variables in the DBN have large numbers of states, direct application of the 

Frontier algorithm is inefficient. We therefore propose two modifications to the algorithm, 

which avoid defining large conditional probability tables: (a) the frontier is optimized by 

excluding some of the variables; this modification was originally proposed by Murphy 

(2002) under the name “interface algorithm”; (b) some steps of the original algorithm are 

replaced by computations of convolutions of conditional PMFs; to our knowledge, this 

modification has not been previously published. The new algorithm is computationally 

efficient; computations shown here were performed in Matlab and take in the order of 80 

CPU seconds on a MacBook Pro with a 2.53 GHz Intel Core 2 Duo Processor, 4 GB 

1067 MHz DDR3 RAM and Mac OS X v. 10.6.8. The computational efficiency in 

comparison with the original Frontier algorithm is presented in Annex 2. 

In the following, we present one cycle of the modified Frontier algorithm, which 

advances the frontier from slice    , with corresponding joint PMF 

  (                              ) , to slice  , with corresponding joint PMF 

  (                    ). As outlined in Section 2.1, the frontier is moved from slice     

to slice   by sequentially adding nodes from slice   and removing nodes from slice     

in the frontier. The individual steps are graphically documented in Fig. 7 and are 

described in the following. 
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Figure 7. Graphical documentation of one cycle of the Frontier algorithm for evaluation of the 
DBN of tunnel excavation processes. The grey nodes are those included in the frontier at a given 
step. Grey nodes with dashed line indicate the nodes that are operated in a particular step (i.e. 
nodes which are added or removed from the frontier in this step). 

At the beginning of the cycle, the joint PMF  (                              )  is 

available from the previous cycle. In the first step (a) of the cycle, the node    (the 

geotechnical zone in segment    is added and node      is removed, as indicated in Fig. 

7a. The corresponding computation is: 

 (                            )  

∑  (                              )              
, 

(10)  

where            is obtained as described in sec. 3.1. 

In the second step (b) of the cycle, the random variable rock class    is added to the 

frontier and      is removed, as depicted in Fig. 7b. The corresponding computation is: 

 (                          )  (11)  



Dynamic Bayesian networks for modeling tunnel excavation processes (O. Špačková & D. Straub) 20/43 

∑  (                            )                 
, 

where               is obtained as described in sec. 3.1. 

In the third step (c) of the cycle, the random variable human factor    is added to the 

frontier and      is eliminated, as shown in Fig. 7c. The corresponding computation is: 

 (                        )  

∑  (                          )              
, 

(12)   

The conditional probability            is defined by an identity matrix (see sec. 3.2). 

Because of this definition, the calculation from Eq. (12) can be skipped and the joint 

PMF can be obtained simply by replacing      with    in the known joint PMF 

 (                          ).  

In the fourth step (d) of the cycle, the random variable     , representing the number of 

failures,  is added to the frontier and        is removed. Since      is defined conditional 

on the failure mode   , this random variable is also added to the frontier. The step is 

shown in Fig. 7d and the corresponding computation is: 

 (                         )  

∑  (                        ) (    |         )                 
, 

(13)  

    . 

where  (    |         ) is computed as described in sec. 3.3 and             is obtained 

after the elimination of nodes according to sec. 4.2. 

In order to complete the cycle, one could, in principle, perform the following two 

operations (corresponding to the fifth step shown in Fig. 7e). First, the random variable   , 

representing unit time, could be added and    removed: 

 (                         )  

∑  (                         )  
              , 

(14)  

Second, the cumulative costs        could be added, while          and    could be 

eliminated: 
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 (                    )  

 ∑ ∑  (                         ) (      |           )          
, 

(15) . 

Because random variables          and        can have large numbers of states, 

computation of Eq. (15) puts high demands on computer memory, which can make exact 

computations infeasible. For this reason, an alternative solution that avoids this 

computation is developed in the following.  

We exploit the fact that the cumulative time in segment   is obtained as the sum        

           , by using the convolution function to compute the distribution function of 

      . If          and    were independent random variables, the PMF of        could be 

computed as 

       
    ∑          

        
    , (16)  

     . 

where the summation is over all states   of   . This is the convolution function (illustrated 

in Fig. 5.), which is written in short notation as 

       
             

    
   . (17)  

    .  

         and    are dependent and direct application of Eq. (17) is not possible. However, 

from the graphical structure of the DBN, it can be inferred that          and    are 

independent for given values of   ,   ,    and   . (This follows from the d-separation 

properties of the BN.) Making use of this conditional independence, we can write: 

                   
                         

             
   , (18)  

    . 

The conditional PMF of   ,               , is known from Eq. (9). Furthermore, from the 

joint PMF of step (d), Eq. (13), we obtain 

 (        |           )  
∑  (                         )    

∑ ∑  (                         )             

. 
(19)  
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The convolution operation in Eq. (18) is numerically efficient because it avoids the 

summation over the states of         , which is necessary in the conventional approach 

(Eq. (15)). This reduces the number of necessary operations by a factor corresponding to 

the number of states of         . Additionally, standard software like Matlab have 

optimized algorithms for computing the convolution function based on Fast Fourier 

Transform. The computation times of both algorithms are compared in Annex 2. 

With   (      |           ) of Eq. (18), the final frontier shown in Fig. 7f is calculated 

from: 

                        ∑  (      |           )                     
, (20)  

  . 

with 

 (                )  ∑  (                         )        
. (21)  

where  (                         ) is the joint PMF of step d. 

The full DBN is evaluated by repeatedly applying the cycle described above, starting at 

    and ending at the last slice    . To initiate the calculation, the frontier in slice 1 

must be known. It is: 

 (                )  

                  ∑             (    |  )                . 

(22)  

Because          , the joint PMF of the initial frontier is obtained simply by replacing 

   with        in the above expression.  

4.4 Updating 

If observations of the tunnel construction performance are available, the predictions can 

be updated according to the description in sec. 2.1. Commonly, the rock class, cumulative 

time and number of failures for individual segments can be directly observed as the 

construction proceeds. The observations in segment   are denoted as          ,        
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       and            . To include the evidence in the Frontier algorithm, the joint PMF 

computed according to Eq. (20),                        , is replaced by the conditional 

PMF 

 (                                         )

 {
   (                    )                                         

      
    

(23)  

  . 

where   is a normalization constant to ensure that the sum over all states of 

 (                                         ) is equal to one. This conditional PMF is then 

used as the input for the next cycle of the Frontier algorithm.  

4.5 Calculation of total time 

The total time        is the sum of the cumulative time        and delays caused by 

extraordinary events          :                        . For given value of     ,        

and          are independent. Therefore, the distribution of         can be computed via the 

convolution function as: 

            
                

               
   . (24)  

The conditional PMF             
 is obtained from the joint PMF  (                    ), 

which results from the Frontier algorithm, as follows: 

 (      |    )  
 (           )

 (    )
 

∑ ∑ ∑  (                    )      

∑ ∑ ∑ ∑  (                    )            

. 
(25)  

              
 is evaluated following Eq. (6). 

5 Numerical example 

The DBN model is applied to the excavation of a section of the Suncheon-Dolsan road 

tunnel in South Korea. The case study was originally presented in Min (2003) and Min et 
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al. (2003), where the Decision Aids for Tunneling (DAT) model was applied for 

probabilistic prediction of construction time and costs.  

The modeled tunnel section is a 610 m long tunnel tube with two lanes, which is 

excavated with a conventional tunneling method (ITA 2009). A scheme of the tunnel tube 

is depicted in Fig. 8.  

 

Figure 8. Scheme of the modeled tunnel excavation.  

A simplified version of the proposed DBN model, without consideration of extraordinary 

events, human factor    and zone   ,  as previousl  applied to this tunnel in Špačková & 

Straub (2011), to validate the DBN model by comparing its results with those of the DAT 

model (Min 2003). In Špačková & Straub (2011), the variable human factor    is called 

quality   , its meaning and modeling is however the same. 

5.1 Parameters of the DBN model 

For the application of the DBN model, the tunnel is discretized in segments of length 

     . 

The description of the geotechnical conditions (zone   , rock class   , overburden    and 

ground class   ) as well as of some variables describing the construction process 

(geometry    and construction method   ) are taken from Min (2003). An example of a 

conditional probability table, describing the rock class in slice  ,   , is show in Table  2. 
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The rock class definition is based on the classification utilized for the individual tunnel 

and it combines electrical resistivity, Rock Mass Rating (RMR) and Q-value. For further 

details on geotechnical classification we refer to (Singh  & Goel  1999). 

Table 2. Conditional probability table of rock class in zone 2 for a DBN with slice length 
     . For example, the conditional probability of rock class in slice   being       , given 
that the rock class in slice     is        and the zone in slice   is     , is 
                          . 

  Zi = 2 

Ri                                                  Ri-1 = I Ri-1 = II Ri-1 = III Ri-1 = IV Ri-1 = V 

I 0.606 0.260 0.215 1 1 
II 0.260 0.606 0.417 0 0 
III 0.134 0.134 0.368 0 0 
IV 0 0 0 0 0 
V 0 0 0 0 0 

 

The conditional probability distributions             of unit time    were determined 

based on data recorded during excavation of a Czech tunnel. An example of the utilized 

non-parametric distributions of    for given construction methods    and human factor 

             is shown in Fig. 9. The means and standard deviations of    conditional 

on human factor    and construction method   , as applied in the numerical example, are 

summarized in Table 3. 

 

Figure 9. PDF of unit time    for excavation of a segment with length of      , on the 
condition of neutral human factor    and for selected construction methods     
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Table 3. Means and standard deviations of unit time    [in days] for different human factors and 
construction methods, for slices of length      . The description of construction methods is 
taken from Min et al. (2008). 

Const. 
method                                             

Excavation type Bolts: Length/ 
horizontal interval / 
vertical interval  
[m] 

Unfavourabl
e human 

factor 

Neutral 
human 
factor 

Favourable 
human 
factor 

Mea
n 

St.d. Mea
n 

St.d. Mea
n 

St.d. 

P.1 Full face 3/ > 3.5 / >2 1.56 1.36 1.40 1.13 1.24 0.89 
P.2 Full face 3/3.5/2  1.56 1.36 1.40 1.13 1.24 0.89 
P.3 Full face 3/2/1.8  1.56 1.36 1.40 1.13 1.24 0.89 
P.4 Bench cut 4/1.5/1.5  1.62 1.35 1.46 1.02 1.35 0.83 
P.5 Bench cut 4/1.2/1.5  3.49 2.35 3.21 1.78 2.83 1.44 
P.6 Bench cut 4/1.0/1.5  3.49 2.35 3.21 1.78 2.83 1.44 
P.2-1 Full face - 2.02 1.88 1.83 1.48 1.65 1.20 
P.2-2 Full face - 2.02 1.88 1.83 1.48 1.65 1.20 
P.2-3 Full face - 2.02 1.88 1.83 1.48 1.65 1.20 
P.EPP - - 2.02 1.88 1.83 1.48 1.65 1.20 

 

The discretization interval for    and       , as discussed in Section 4.1, is selected as 

             . 

The conditional probability of an extraordinary event (a failure) in segment  ,            , 

is estimated based on experience from the Czech Republic, where the number of tunnel 

collapses is known (e.g. Aldorf, 2010) and can be related to the total length of 

constructed tunnels (Barták, 2007). The rate of failures is dependent on human factor    

and ground class   , and the estimated values [in number of failures per m] are assessed 

to range from          to          for unfavourable influence of human factor, from 

         to          for neutral influence of human factor and from          to 

         for favourable influence of human factor. The estimates were not validated with 

data from other countries, they should not be taken as generally applicable.  

The determination of the probability distribution of    will generally be based on a 

subjective assessment. For the purpose of this study, we apply two alternative prior 

distributions, to investigate the influence of this choice. The utilized probabilistic models 

are: 

H(a):                         ,                     ,       

                .  

H(b):  (   ´           ´)      ,   (   ´       ´)      ,   (   

´         ´)      .  
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The probability distribution of delay caused by one extraordinary event 

 (        |      ) was derived from (Sousa 2010). A shifted exponential distribution  

with minimum at 15 days, mean value 175 days and standard deviation 160 days was 

fitted to the data given in that reference and, in discretized form, applied in the example.  

5.2 Bayesian updating of the probabilistic estimate with 

performance data 

To demonstrate the ability of the DBN for updating the prediction as the construction 

proceeds, we introduce hypothetical performance data. These are from the first 120m of 

the tunnel and include observed rock class   , number of failures        and cumulative 

time        at each segment.  

It is assumed that no failure occurs in this section and that the cumulative time is slightly 

higher (up to 10 per cent) than the mean prior prediction. The predicted and observed 

cumulative time        is shown in Fig. 10. Rock class II is found in the first 49 meters, 

rock class III in the next 41 meters and rock class IV in the last 30 meters of the section. 

 

Figure 10. Performance data used for updating the predictions: Observed excavation time in the 
first 120m of the tunnel, together with the predicted excavation time. 

5.3 Results without observations 

The resulting probabilistic estimates of construction time for the whole tunnel are 

presented in Fig. 11 and 12. Fig. 11 shows the prediction without consideration of 
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extraordinary events, Fig. 12 includes the extraordinary events. In both figures, results are 

shown separately for the two a-priori probabilistic models of human factor   . In addition, 

results for a fixed human factor              are shown, which correspond to a model 

that does not consider human factor as a random variable, i.e. which neglects the 

uncertainty in the model class. By comparing the results for fixed and uncertain human 

factor, the effect of introducing    can be observed: The standard deviation of the 

construction time estimate increases due to the uncertainty in   . If the average 

performance (e.g. advance rate) is uncertain, the overall uncertainty of the total 

construction time is higher than in the case when this average value is known and only 

the variability of the performance is considered (which is the case of fixed human factor 

            ).  

By comparing Fig. 11 and 12, the significant impact of extraordinary events on the 

expected construction time and, in particular, on the uncertainty in the construction time 

are evident. The resulting distributions of total excavation time are strongly skewed 

towards larger construction times. 

 

Figure 11. Prediction of excavation time       without consideration of extraordinary events, for 
two a-priori models of human factor and for the case of fixed human factor. 
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Figure 12. Prediction of total excavation time      with consideration of extraordinary events, for 
two a-priori models of human factor and for the case of fixed human factor. 

5.4 Results for the updating with performance data 

The updated estimates of cumulative time      (excluding extraordinary events) and 

total time      (including extraordinary events) for the whole tunnel, conditional on the 

observations described in Sec. 5.2, are shown in Fig. 13 and Fig. 14. They are obtained 

by updating the PMF at all slices with observations (segments           ), according 

to Eq. (23). For comparison, the estimates computed without the observation data are also 

provided (corresponding to the results shown in Fig. 10 and Fig. 11). The updated 

estimates are identical for the two prior models of human factor   , because the observed 

performance strongly indicates that the human factor is                  . This can 

be observed from Fig. 15, which shows the updated probability of    as the construction 

proceeds. This probability is computed by marginalizing all other variables from the 

conditional joint PMF obtained according to Eq. (23).  

The updated estimate of      (which excludes extraordinary events) shown in Fig. 13 

exhibits a lower standard deviation, because there is no more uncertainty in   , i.e. in the 

appropriate probabilistic model of unit time   . However, the standard deviation of the 

updated total construction time      (including extraordinary events) is higher, because 

the resulting                   implies an increased probability of failure 

(extraordinary events).  
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Figure 13. Updated prediction of excavation time      (without consideration of extraordinary 
events) for Dolsan A tunnel based on observations made during excavation of 120 m of the tunnel. 

 

Figure 14. Updated prediction of excavation time      (with consideration of extraordinary 
events) for Dolsan A tunnel based on observations made during excavation of 120 m of the tunnel. 
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Figure 15. Updated prediction of human factor    for Dolsan A tunnel based on observations 
made during excavation of 120 m of the tunnel. 

6 Discussion 

The proposed DBN model and computational algorithm for tunnel excavation processes 

is a step towards a quantitative assessment of uncertainties that is needed to support the 

optimization of decisions in infrastructure projects. The significant uncertainty in 

estimates of construction cost and time observed in practice is not fully reflected in most 

existing models. In our view, a main reason for this underestimation is the assumption of 

independence among the performances at different phases of the construction. This 

observation was also made recently by Yang (2007) and Moret & Einstein (2011). In the 

proposed DBN model, we represent correlation among the performance at different 

phases of the construction through the random variable “Human factor”,  hich is 

assumed to represent the overall quality of the planning and execution of the construction 

process and other external factors influencing the entire project. As observed in Figure 10, 

the inclusion of this variable leads to an increased variance of the estimate of construction 

time. As stated earlier, the variable ¨Human factor¨ can also be interpreted as a model 

uncertainty, which reflects the fact that the applied probabilistic models of tunnel 

excavation performance are based on a limited amount of data or expert estimates. This 

second interpretation has the advantage of not being judgmental and therefore more 
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easily acceptable in practice. As we show in the example application (Figure 15), the 

DBN model facilitates to update the estimate of the “Human factor”, i.e. as the 

construction proceeds, the observed performance is used in an automated manner to learn 

the model and to improve the prediction for the remaining construction. 

Another main reason for the underestimation of the uncertainty in construction time and 

cost is that most existing models do not account for possible extraordinary events, which 

can be considered as failures of the construction process. These events are included in the 

DBN model,. By providing the stakeholders with the full distribution of project time (and 

cost), as in Fig. 11, the risk associated with extraordinary events can be more effectively 

communicated and included in the decision making process than with the traditional 

approach of considering only expected values.   

The presented Frontier algorithm for evaluating the DBN is computationally efficient and 

applicable in practice. It is flexible in including observations to update the model. 

Besides updating the model with performance data and the observed geology of the 

excavated tunnel sections, as shown in Sec. 5.2 and Sec. 5.4, other types of observations, 

e.g. borehole tests, can be used. For some of these observations, an extension of the 

presented algorithm is required, to include the so-called backward pass (e.g. Murphy 

2002), which allows one to update the probabilistic model at segment   with information 

from segments    .  

The proposed DBN approach is flexible with regard to changes in the model. One aspect 

that should be revised in future work is the modeling of the variable    to more 

realistically reflect changes of construction technology during the excavation process. 

The present model assumes full flexibility in changing the construction patterns based on 

changes in geology. In reality, the construction pattern is not modified so frequently, as 

this is connected with additional time and costs. This effect is even more pronounced 

when mechanized excavation is used. A second aspect that should be addressed is the 

modeling of costs. As stated earlier, the variable time can be replaced by the variable cost 

to obtain a cost estimate. However, for a combined modeling, an extension of the DBN 

model is needed to account for the dependence of construction costs on construction time.  

In probabilistic assessment of construction time and costs, the model parameters 

(especially advance rates and unit costs) should ideally be based on analyses of data from 
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past projects. Expert estimates are reliable for the assessment of mean values, but not for 

determining the variances and the probabilistic models. Furthermore, determination of 

failure probabilities and associated delays should be based on an extensive analysis of 

information from past projects. The analysis of tunnel construction data is a complex task, 

because the local conditions and design and construction procedures differ in different 

countries and projects. Therefore, further research is needed to provide a more robust 

information basis for probabilistic modeling. The understanding of the benefits of 

probabilistic modeling among stakeholders should be raised, which should lead them to 

more systematically manage and statistically analyze data from available projects.     

7 Conclusion 

A model for probabilistic prediction of tunnel construction performance using Dynamic 

Bayesian Networks (DBN) is introduced. It allows to realistically quantify the 

uncertainties connected with construction time, by including correlations in the 

construction process and the risk of extraordinary events (tunnel collapses and other 

major problems) in the model.  

The DBN adopts the modeling of uncertain geotechnical conditions from previous 

models (DAT model) but modifies the representation of uncertainties inherent in the 

construction process itself. The dependencies that result from the influence of human, 

organizational and external factors are addressed by introducing a random variable 

“Human factor” into the model. The performance variables (unit time, probability of 

failures) are defined conditionally on the human factor.  

An algorithm for the efficient evaluation of the DBN was described. We modified the 

existing Frontier algorithm to better address specific features of the proposed DBN. The 

modification enables one to deal with discrete random variables with large numbers of 

outcomes states that result from the discretization of continuous random variables such as 

time or cost. We exploited the fact that these variables are defined as cumulative sums of 

other random variables in the DBN and that the probability distribution of a sum of two 

random variables can be efficiently calculated by means of convolution functions.  
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The DBN model was applied to estimation of the excavation time of a 610 m long tunnel. 

Bayesian updating of the estimate with the observed construction performance was also 

shown. As demonstrated by this application, the DBN model is able to capture the overall 

uncertainty of estimates of tunnel construction time. Some data from real tunnel projects 

were used in the presented application, but more extensive analysis of data from past 

projects (combined with expert opinion) should be performed, using the DBN as a model 

framework.  

Acknowledgement 

The first author is funded by project No. TA01030245 of the Technology Agency of the 

Czech Republic, project No. 103/09/2016 of the Czech Science Foundation and project 

No. 1M0579 (CIDEAS research centre) of the Ministry of Education, Youth and Sports 

of the Czech Republic. Additional support by DAAD and Bayhost is gratefully 

acknowledged. 

References 

 

Aldorf, J. 2010. Underground construction projects in the Czech Republic: Completed, under construction 
and planned from 2004. Tunel 19(2), pp. 83-99, Czech tunnelling association ITA-AITES. 

Barták, J.  2007. Underground construction in the Czech Republic. Monograph, SATRA, Prague. 

Benardos, A.G. & Kaliampakos, D.C. 2004. Modelling TBM performance with artificial neural networks. 
Tunnelling and Underground Space Technology 19, pp. 597-605. 

Chan, M. H. C. 1981. A geological prediction and updating model in tunneling, M.Sc. thesis, 
Massachusetts Institute of Technology, Cambridge, USA. 

Cheung, S. H. & Beck, J. L. 2010. Calculation of posterior probabilities for Bayesian model class 
assessment and averaging from posterior samples based on dynamic system data. Computer-Aided Civil 
and Infrastructure Engineering 25, pp. 304-321. 

Chung, T.H., Mohamed, Y. & AbouRizk, S. 2006. Bayesian updating application into simulation in the 
north Edmonton sanitary trunk project. J. of Construction Engineering and Management 8, pp. 882-894. 

Droguett, E.L., Moura, M.C., Jacinto, C.M. & Silva, M.F. 2008. A semi-Markov model with Bayesian 
belief network based human error probability for availability assessment of downhole optical 
monitoring system. Simulation Modelling Practice and Theory 16, pp. 1713-1727. 

Eskesen, S. D., Tengborg, P., Kampmann, J. & Veicherts, T. Guidelines for tunnelling risk management: 
International Tunnelling Association, Working Group No. 2. Tunnelling and Underground Space 
Technology 19 (2004), pp. 217-237. 



Dynamic Bayesian networks for modeling tunnel excavation processes (O. Špačková & D. Straub) 35/43 

Faber, M. H., et al. 2002. Risk assessment of decommissioning options using Bayesian networks. J. 
Offshore Mech. Arct. Eng., 124(4), 231–238. 

Flyvbjerg, B., Holm, M.K.S. & Buhl, S.L. 2004. What causes cost overrun in transport infrastructure 
projects? Transport Reviews, 24, pp. 3-18.  

Grasso, P., Xu, S., Pescara, M., Russo, G. & Repetto, L. 2006. A methodology for the geotechnical design 
of long high-speed rail tunnels under the conditions of uncertainty. Proc. of ITA-sponsored China 
International Symposium on High-Speed Railway Tunnels. 

Grêt-Regamey A. & Straub D. 2006. Spatially explicit avalanche risk assessment linking Bayesian 
networks to a GIS. Natural Hazards and Earth System Sciences, 6(6), pp. 911-926. 

Hong, E. S., et al. 2009. Quantitative risk evaluation based on event tree analysis technique: Application to 
the design of shield TBM. Tunnelling and Underground Space Technology 24 (2009), pp. 269-277.  

IMIA (The International Association of Engineering Insurers). 2006. ALOP/DSU coverage for tunnelling 
risks?. The International Association of Engineering Insurers 39th Annual Conference – Boston. 
http://www.imia.com/downloads/imia_papers/wgp48_2006.pdf 

ITA (International Tunnelling Association). 2009. General report on conventional tunneling.Isaksson, T. & 
Stille, H. 2005. Model for estimation of time and cost for tunnel project based on risk. Rock Mechanics 
and Rock Engineering 23, pp. 373-398. 

Jensen, F.V & Nielsen, T.D. 2007. Bayesian Networks and Decision graphs, 2nd edition. Springer, New 
York, USA. 

Lombardi, G. 2001. Geotechnical risks for project financing of tunnels in non-urban areas. Tribune N
o
 20 – 

International Tunnelling Association newsletter.  

Min, S.Y. 2003. The application of decision Decision Aids for Tunneling (DAT) to the Sucheon tunnel in 
Korea. M.Sc. Thesis, Massachusetts Institute of Technology, Cambridge, USA. 

Min, S.Y., Einstein, H.H., Lee, J.S., & Kim, T.K. 2003. Application of decision aids for tunneling (DAT) to 
a drill & blast tunnel.” J. Civil Eng., KSCE, Vol. 7, pp. 619-628. 

Min, S.Y., Einstein, H.H., Lee, J.S., Lee, H.S., 2005. Application of decision aids for tunneling (DAT) to 
update excavation cost/time information. J. Civil Eng. KSCE 9, 335–346. 

Min, S.Y., Kim, T.K., Lee, J.S. & Einstein H.H. 2008. Design and construction of road tunnel in Korea 
including application of the Decision Aids for Tunneling - A case study. Tunnelling and Underground 
Space Technology 23, pp. 91-102. 

Min, S. 2008. Development of the resource model for Decision Aids for Tunnelling (DAT). Ph.D. thesis, 
MIT. 

Moret, Y. & Einstein, H.H. 2011. Cost and time correlations in linear infrastructure projects. Proceedings 
of 11

th
 Internation Conferenc on Application of Statistics and Probability in Civil Engineering, Taylor 

& Francis Group, London,  pp 788-796.  

Murphy, K. P. 2002. Dynamic Bayesian networks: Representation, inference and learning, Ph.D thesis, 
Univ. of California, Berkeley, Calif. 

Neil, M., Tailor, M., Marquez, D., Fenton, N. & Hearty, P. 2008. Modelling dependable systems using 
hybrid Bayesian networks. Reliability Engineering and System Safety 93, pp. 933-939. 

Reilly, J.J. 2005. Cost estimating and risk – management for underground projects. Underground Space 
Use: Analysis of the Past and Lessons for the Future. Taylor & Francis Group, London.  

Ruwanpura, J. Y. & Ariaratnam, S. T. 2007. Simulation modelling techniques for underground 
infrastructure construction processes. Tunnelling and Underground Space Technology 22, pp. 553-567. 

Shahriar, K., Sharifzadeh, M., Hamidi, J. K. 2008. Geotechnical risk assessment based approach for rock 
TBM selection in difficult ground conditions. Tunnelling and Underground Space Technology 23 
(2008), pp. 318-325. 

Singh, B. & Goel, R. 1999. Rock mass classification: A practical approach in civil engineering. Elsevier,  

http://www.imia.com/downloads/imia_papers/wgp48_2006.pdf


Dynamic Bayesian networks for modeling tunnel excavation processes (O. Špačková & D. Straub) 36/43 

Sousa, R.L. 2010. Risk anpalysis of tunneling projects. Dissertation Thesis, Massachusetts Institute of 
Technology, Cambridge, USA. 

Sousa, R.L. & Einstein, H.H. 2011. Risk analysis during tunnel construction using Bayesian Networks: 
Porto metro case study.  Tunnelling and Underground Space Technology, in press. 

Špačková,  .  bermann,  .,  ostohr  ,  .,  esel ,  ., Šejnoha, J. 2010.   pert estimation of probabilit  
of failure during tunnel excavation. Tunel 19(4), pp. 15-23, Czech tunnelling association ITA-AITES. 

Špačková,  . &  traub, D. 2011. Probabilistic risk assessment of excavation performance in tunnel projects 
using Bayesian networks: a case study. Proceedings of the 3

rd
 International Symposium on Geotechnical 

Safety and Risk, pp. 651-660. 

Straub, D. 2009. Stochastic modeling of deterioration processes through dynamic Bayesian networks. J. of 
Engineering Mechanics 135 (10), 1089-1099. 

Straub, D. & Der Kiureghian, A. 2010a. Bayesian Networks Enhanced with Structural Reliability Methods. 
Part B: Methodology. Journal of Engineering Mechanics, Trans. ASCE, 136(10), pp. 1248-1258. 

Straub, D. & Der Kiureghian, A. 2010b. Bayesian Networks Enhanced with Structural Reliability Methods. 
Part B: Application. Journal of Engineering Mechanics, Trans. ASCE, 136(10), pp. 1259-1270. 

Sturk, R., Olsson, L., Johansson, J. 1996. Risk and decision analysis for large underground projects, as 
applied to the Stockholm ring road tunnels. Tunnelling and Underground Space Technology 11, pp. 
157-164. 

Walker, J.S. 1996. Fast Fourier transforms, 2
nd

 ed. CRC Press, Boca Raton, Florida, USA.  

Weber, P., Medina-Oliva, G., Simon, C. & Iung, B. 2010. Overview on Bayesian networks applications for 
dependability, risk analysis and maintenance areas. Engineering Applications of Artificial Intelligence 
(in press). 

Yang, I.T. 2007. Risk modelling of dependence among project task durations. Computer-Aided Civil and 
Infrastructure Engineering 22, pp. 419-429. 

 



Dynamic Bayesian networks for modeling tunnel excavation processes (O. Špačková & D. Straub) 37/43 

Annex 1 – Probabilistic definition of selected nodes in the DBN 

Zone   

The variable represents the position of a tunnel segment in quasi-homogenous 

geotechnical zones along the tunnel axis. The uncertainty in the location of the boundary 

   between zones   and     is described by the cumulative probability distribution 

function (CDF) of the location of the boundary,       ,. To establish the conditional 

PMF of   , let          denote the probability that segment   is part of zone j and 

           the probability that segment     lies in zone j. Assuming that a segment   

can only be in either zone   or zone    , the probability of the  th segment being in 

zone   is calculated as 

              (    
  

 
) , (26)  

   . 

where    is the length of the segment represented by one slice of the DBN. 

The conditional probabilities defining the variable    (i.e. the values in the CPT) are: 

                
               

          
 

        

          
 

(27)  

   . 

                                      
        

          
 , (28)  

                    . (29)  

    . 

The second equality in Eq. (27) as well as Eq. (29) follow from the fact that segment   

can only be in zone   if segment     is also in zone  .  

If the segment   can be in more than two different zones (e.g. in zone    ,   and    ), 

Eq. (26) - (29) must be extended accordingly. 
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Rock class   

The rock class describes the geotechnical conditions along the tunnel axis. In a zone 

     it is modeled as a Markov process. Parameters of the Markov process are obtained 

from experts in form of the average length   
   

 for which the rock class remains in state   

and transition probabilities    
   

, i.e. probability that, in case of a change, rock class   is 

followed by rock class   (Chan 1981). 

In the DBN model, the Markov process is discretized into a Markov chain, i.e. it is 

transformed to a discrete space represented by slices of the DBN corresponding to 

segments of length   . Assuming that changes in rock class occur as a Poisson process, 

the conditional probabilities of rock class in segment  ,   , are derived from the 

parameters of the continuous Markov process as follows: 

                         ( 
  

   
   ) , 

(30)  

                      
  

   
⌈      ( 

  

   
   )⌉        . 

(31)  

Note that due to the dependence introduced through the parent variables   , the rock class 

is not a Markov process. (It is a Markov process only conditional on zone   .) 

Failure mode   

Variable failure mode    represents the possible occurrence of an extraordinary event in 

segment  . In the presented application it can be in one of t o states: “failure” or “no 

failure”. It is defined conditionally on ground class    and human factor   . The 

conditional failure rate          
 for given ground class and human factor can be 

determined from historic data. Assuming that failures occur as a Poisson process for 

given    and   , the conditional probability of failure mode    within a section of length 

   can be approximated by: 

                              (          
  ), (32)  
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                             (         
  ). (33)  

Number of failures    

Number of failures      represents the total number of failures from the beginning of the 

up to the segment  . With    being the maximal number of failures to be considered 

(where state    represents    or more failures), the conditional probabilities are: 

  (      |                       )   , for    {      } , (34)  

  (      |                        )   , for    {      } , (35)  

  (       |                      )   . (36)  

For all other conditional probabilities it holds 

  (    |           )   . (37)  
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Annex 2 – Validation of modified Frontier algorithm 

In this annex, a simple DBN is evaluated using the original Frontier algorithm (FA) and 

the modified Frontier algorithm (MFA). The example is applied in order to validate the 

proposed MFA and to compare its computational performance with that of the original 

FA. The utilized sample DBN is depicted in Fig. 16. Each slice of the DBN consists of 

three random variables. Variable     has two states,     , and is defined conditionally 

on     . The conditional probability table (CPT) of this random variable is shown in 

Table 4.  

 

Figure 16. Sample DBN calculated with FA and MFA. 

Table 4. Conditional probability table (CPT) of random variable   . 

Vi                                                  Vi-1 = I Vi-1 = II 

I 0.3 0.6 
II 0.7 0.4 

The variable    is defined as a Normal distributed random variable conditional on    

with parameters as given in Table 5. For the application of the FA and MFA, the variable 

   must be discretized according to the procedure described in sec. 4.1. Here, the 

variable is discretized into       states:        . 

Table 5. Parameters of the Normal distributed variable    for given    

Wi                                                  Vi-1 = I Vi-1 = II 

Mean 4 6 
St. dev. 1.5 2.5 
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The variable    is defined as the sum of      and   . The interest is in calculating the 

PDF of variable    ∑   
   
   , where   is the number of slices in the DBN.  

Frontier algorithm (FA) 

Prior to the application of the FA, we eliminate the variables   , since they do not have 

links to nodes in neighbouring slices. Elimination of these nodes can be understood as a 

pre-processing of the DBN, reducing the computational demand during application of the 

FA. The elimination of    is performed for the whole DBN at once, variable    is then 

defined directly on    and on     : 

              ∑                        
, (38)  

   . 

where          is known from the discretization process of    and               

                          takes value 1 for            and value 0 

otherwise. The number of states of    is             . 

One cycle of the FA, i.e. moving the Frontier from slice     to slice  , is shown in the 

following. First, the variable    is added and      removed from the Frontier: 

           ∑                           
, (39)  

   . 

where            is defined in Table 4 and              is the joint PMF known from 

previous cycle of the FA. 

Second, the variable    is added and      removed from the Frontier: 

         ∑                            
, (40)  

   . 

where               and            are known from Eq. (38) and (39), respectively. Eq. 

(40) represents the most demanding computational step in the algorithm. The 

computation of this equation of the DBN requires     
      time in the  th slice. 

The evaluation the whole DBN with   slices therefore requires       
      

    [         ]      time. It is evident that the computation time increases 
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exponentially with the number of states of the variable  ,   , and with the number of 

slices of the DBN,  . 

Modified Frontier algorithm (MFA) 

One cycle of the MFA is presented in the following. First, variable    is added and      is 

removed from the Frontier according to Eq. (39). Second, the PMF of    is calculated 

using convolution (analogously to Eq. (16) and (18)): 

      
            

       
    ∑         

           
    , (41)  

   . 

where         
                            ,          is known from the 

discretization of variable    and the summation is over all states   of   . Finally, the 

joint PMF describing the Frontier in slice   is calculated as                           . 

The number of states of    is increasing in each slice of the DBN; it is              

for         . The most demanding computational step of the MFA is the calculation of 

Eq. (41), which in the  th slice of the DBN requires               time.  For 

computation of the convolution, the Fast Fourier Transform (FFT) is commonly used 

(Walker 1996). With FFT, the calculation of the  th slice of the DBN requires      

              time and evaluation of the whole DBN with   slices requires 

    ∑                   ∑            [       ] 
     

    time (Walker 

1996).  

Results 

Computations are performed for the DBN with varying number of slices  . The 

computation times depicted in Fig. 17 show the theoretical computation time estimated 

based on the number of performed operations as presented above and the observed time 

of computations performed in Matlab on the computer specified in sec. 4.3. The time 

needed for evaluation of the DBN with only       slices is almost 1000 times higher 

with the original FA than with the MFA. The observed increase in computation time with 

the number of cycles is lower than the one estimated above. The likely reason for this is 

that the FFT algorithm implemented in Matlab is more efficient than the estimate given 

above (which represents a general upper bound). 
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Figure 17. Computation time for evaluation of the sample DBN with different number of slices,  : 
comparison of FA and MFA.  

A comparison of the mean and standard deviation of    computed with FA and MFA 

with the exact analytical solution is given in Table 5. FA and MFA give exactly the same 

results, which differ slightly from the analytical results due to the small discretization 

errors. 

Table 5. Comparison of    for      and       computed with FA and MFA with exact 
analytical solution. 

            

                                                FA/MFA Anal. FA/MFA Anal. 

Mean 50.78 50.77 507.76 507.69 
St.dev. 7.04 7.05 22.19 22.23 
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