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Abstract

Researchers from the social sciences and economics consider trust a re-
quirement for successful cooperation between people. It helps to judge the
risk in situations, in which a person has the choice to rely on another one.
In the future, technical systems will face similar situations. Assume for ex-
ample that, at a large logistics centre, a robot should reload goods of a ship
in cooperation. In the beginning, it must find the right partner out of a set
of diverse other robots. To do this selection efficiently without exaggerated
security mechanisms, the robot needs trust. Here I consider trust a mecha-
nism, which estimates the certainty of the outcome of the partner’s actions.

This dissertation formalises trust between technical systems to set the
theoretical foundation for the above idea. It reviews the socio-scientific and
technical literature and identifies generic requirements for the mechanism
trust. Based on the requirements and further considerations, it presents a
conceptual, implementation-independent framework. This new framework,
called the Enfident Model, incorporates various facets of trust in form of sub-
models. Amongst others, it regards the temporal development of coopera-
tion, the dependency on the task and bargaining, time-varying behaviour of
the cooperation partner, learning from experiences, logical constraints of the
present situation, and transfer learning to handle unknown situations. With
these manifold features described on a conceptual level, the Enfident Model
captures existing trust procedures and is suitable for designing new ones.
The theoretical part is complemented with algorithms for prototyping trust in
individual applications. These algorithms use statistical relational learning to
combine logic, learning, clustering and statistics for trust development. They
work on a relational dynamic Bayesian network.

Since trust is a social phenomenon, the evaluation features a virtual so-
ciety of vehicles. These systems cooperate by exchanging information in
a vehicular network. They use a trust algorithm to distinguish correct from
incorrect information. The simulation shows that the identified trust require-
ments and the Enfident Model lead to intuitive and consistent results.
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1 Introduction

In a future with many self-organising systems, socio-scientific issues also
apply to the society of those machines. Imagine, for example, a future sce-
nario of robots at a large construction site. They have different shapes and
abilities as they have been optimised for different purposes, like moving big
and heavy items, or cutting and screwing. Some of them have worked to-
gether before; others do not know each other, because they are new or
belong to different companies.

In this scenario, various complex tasks can only be executed jointly by
a group of robots. Imagine a robot has got the job to carry out such a
task. It looks for partners, asks them whether they would be willing to do
the job, and finally performs the task with their support. Selecting the right
cooperation partners is important for an optimal outcome: The partner could
have insufficient abilities, be partly defect, or be manipulated to sabotage the
task. Thus the organising robot should select those partners, with which it
expects to gain the best outcome. This is where trust comes in.

1.1 Problem Statement

The scenario above is an example for the problem this dissertation ad-
dresses. The general setting consists of a system that wants to cooperate
with another system or a group of systems. Here I understand cooperation
as any form of relying on the action of another party. That setting is related to
various subjects like reputation, identification of the partner, individual trust
development, decision making, reciprocity and information security (see Fig-
ure 1.1 on page 3). This dissertation picks out just one. It focuses on the
single problem: How can a system that wants to cooperate with another sys-
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tem or a group of systems predict the cooperation outcome? This prediction
should have the form of beliefs in or likelihoods for all possible cooperation
outcomes.

The problem can also be considered from another point of view: If a sys-
tem can predict cooperation outcomes, it has a certain model of the other’s
manifest behaviour. It cannot look into the other system to see how that
system really works. But it can obtain a limited idea of how the other system
works just from observing its behaviour over several interactions. This idea
is a model of the other’s manifest behaviour regarding cooperation. So the
problem treated in this dissertation can also be formulated as: How can a
system learn a model of other systems’ cooperation-related behaviour?

I call a mechanism, which can learn this, trust between technical systems.
The term trust has different meanings in different fields. To address this
fact, the next chapter introduces the views of some researchers in social
sciences, cryptology and the field of multi-agent systems. It relates them
to the problem described above to clarify why I use the term trust in this
dissertation. Finally it defines some trust-related terms for the present work.
Chapter 4 summarises the state of the art for technical trust mechanisms.
The contribution of this dissertation beyond the state of the art is compiled
in Section 1.3.

More specifically, this dissertation does not try to simply solve the de-
scribed problem with a certain algorithm for a specific application. Instead
it collects requirements for a trust mechanism in general and derives a con-
ceptual trust model from them. To realise and evaluate this model, an ex-
emplary algorithm is presented. More implementations of the model and
optimisations are subject to future research.

In the remainder of this section, I further detail the problem and delimit
it from selected other problems that the reader may possibly think of. For
this, Figure 1.1 gives some orientation. The term cooperation is interpreted
very widely in this document. It includes delegation and all sorts of relying
on another party. Consider, for example, a driver that is overtaking another
car on a highway. The situation seems free of risk as no third car is around.
But still, each of the drivers relies on the other one not to hit the own car
(for whatever strange reasons). This situation features a form of loose re-
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Trust
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+ PKI
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Figure 1.1: This figure shows some mechanisms the reader may think of when talking about
trust. The blue ellipse contains modules that work on the individual level. Those in the grey
part are used for the interaction with systems: the society level. This dissertation only treats
the trust mechanism marked in dark blue.

liance without any explicit agreement. In this dissertation, I still consider it
an implicit form of cooperation, as it constitutes a trust situation.

Furthermore the systems here should cooperate without human support.
Especially they should develop trust on their own. This is in contrast to
systems that use humans as trust sources like classical online reputation
systems. That points to an important pre-requisite: In this thesis, a trusting
system must be able to assess all facets of a cooperation outcome. Only
then, it can learn the cooperation-related behaviour of others on its own.

Related trust methods often include mechanisms for decision making,
reputation building, reciprocity enforcement as well as cryptographic data
and platform security. I focus on the trust development in the individual and
omit society-level features like cryptographic network protocols or reputation
building. Moreover I consider decision making and also reciprocity to be
different from trust development (see Chapters 2 and 3).

So I propose a mechanism, which just learns a model of the other’s be-
haviour. All the tools mentioned above are related to trust and important
for a trusting society. Figure 1.1 depicts this. But they are different from
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a trust mechanism in the strict sense that is proposed in this dissertation.
Moreover the dissertation focuses on machine-machine interaction without
human intervention. Every time, when cooperating and trusting systems or
agents are mentioned, I refer to technical systems, except if interpersonal
trust is considered explicitly.

What comes very close to a trust mechanism is a sensor model. Such a
model describes how a sensor transforms the observed physical quantity in
an output signal. So it reflects the behaviour of a sensor. A trust mechanism
goes beyond this. It learns behavioural models for many other systems, not
just one sensor, and for many tasks, not just the single task of obtaining a
certain physical quantity. In addition, these other systems are unknown in
advance and their basic way of functioning may vary. Still the trust mech-
anism should provide accurate expectations, even if only few experiences
have been made with the other systems before. Thus the trust mechanism
must be able to learn various behavioural models; it must be generic. And it
should involve transfer learning to quickly adapt to new situations.

The next section introduces various scenarios in which a technical form of
trust is useful. The scenarios show that the present work has relevance for
the research on cognitive systems, multi-agent systems, sensor networks,
vehicular networks and – to some extent – on cryptology; it features tech-
niques from the field of statistical relational learning.

1.2 Motivation and Applications

Trust is only a minor subject in the development of today’s technical sys-
tems. In contrast to this, interpersonal trust is considered important for per-
sonal relationships as well as business organisations (see Section 3.3 and,
e.g., Gennerich, 2000, pp. 10–12 for an overview). It improves communi-
cation and cooperation, and it is considered a pre-requisite of efficient work
flows in groups. If it is so important for people, why is it used only rarely in
technical systems? The main reason might be that trust is especially neces-
sary for cooperation between self-organising agents. Strictly controlled work
flows, as they are typical today for machine-to-machine interaction, make
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trust needless. But the proposed idea is important for systems that cooper-
ate in a self-organised way. Such systems will need a trust mechanism to
handle the uncertainty when relying on other systems. As a consequence,
the reader should venture a glimpse into the future to find application sce-
narios for trust between cooperating systems.

I use the following exemplary scenarios throughout this dissertation. The
first is the scenario of a construction site as described in the previous sec-
tion. It is similar to the scenario of a large logistics centre with various kinds
of robots that cooperate to reload goods from a ship. In both scenarios,
the cooperation helps to extend the physical capabilities or to perform tasks
more efficiently. In the third example, future cognitive vehicles are driv-
ing around while perceiving their environment. To extend their perception
range, they exchange all sorts of information, which some vehicles have
perceived before. With this form of cooperation, they can efficiently maintain
a model of their surrounding world (like a map or a model of the traffic situ-
ation) and advise the driver (e.g., where to go or what to give attention to).
The fourth scenario features virtual agents at a virtual market place, which
trade with each other. So they cooperate as substitutes of persons. These
scenarios should give the reader the feeling that trust is helpful for future
self-organising systems.

In general, trust supports the following reasoning tasks that appear when
cooperating:

1. Select a cooperation partner from several possible ones;

2. Decide whether to cooperate or not if there is a choice not to cooper-
ate at all;

3. Know about the weaknesses of a certain act of cooperation and take
their consequences into account;

4. Decide about the correctness of received information;

5. Decide whether the received information about a certain subject is
sufficient; and if not,
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6. Decide whom to ask for a further opinion about the subject (which is
related to Item 1); and finally,

7. Decide whether to accept a cooperation request of another party
(which is related to Item 2). So trust is usually needed by both, the
one that asks for cooperation and the other one that is asked.

In summary, a self-organising cooperating system needs trust to decide on
“how, when, and who to interact with” (Ramchurn et al., 2004, p. 3).

The reader can find many scenarios, in which future technical systems
could perform the above reasoning tasks. To support this, I give an overview
of the various forms of cooperation, which can be expected in the future
(based on Hirche, 2010). It was proposed in CoTeSys, a cluster of excel-
lence of the Deutsche Forschungsgemeinschaft (German Research Foun-
dation), which investigates cognitive systems.

• Two systems interact solely through the environment during the coop-
eration.

• Two systems share single components and couple one another via
information exchange

– to extend the perception range (joint perception),

– to extend the physical capabilities (joint manipulation),

– to increase the learning performance (joint learning), and

– to find good and efficient strategies for the task execution (joint
planning and decision making).

Figure 1.2 illustrates how two cognitive systems can share various
components directly.

Both main forms of cooperation can also be mixed. Trust is helpful in all
cases.

With this schema of cooperation forms, the reader might get an idea of the
various applications we can expect of future self-organising systems. The
previous list of reasoning tasks shows that a trust mechanism can strongly
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Figure 1.2: Examples of how two cognitive systems can share their components (based on
Hirche, 2010). The black lines indicate data flows between the components in one system.
The orange lines refer to data flows, which are realised by communication between two
different systems.

support the reasoning in these applications. So there is a wide range of use
cases trust can be applied to. But is trust really necessary or could it be
substituted with better planning and control in the scenarios? Full control
over complex situations with several interested parties is difficult and, thus,
expensive. Imagine, for example, a large harbour in the future. The robots
there belong to different parties, have various ages and come from several
manufacturers. So full control is difficult here. Avoiding strict global control
is the exact idea behind self-organising systems. Thus trust enables those
systems to cooperate efficiently without expensive procedures for security
enforcement. This concern is similar to that of Gerck (2002), who recom-
mends trust for the Internet because of its self-organising nature. For him,
using trust instead of full surveillance has the advantages of a simpler and
more modular system design as well as lower costs.

Above I used the notion of a cognitive system. This kind of system has
the ability to trust, because it can perceive and understand its environment in
order to judge past acts of cooperation and to learn from them. And this kind
of system has a need for trust, because it should engage in cooperation and
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reason about cooperation. Therefore cognitive systems are widely used in
this dissertation, but the application of trust is not limited to them. This term
is defined in CoTeSys as follows:

“Cognitive technical systems (CTS) are information processing
systems equipped with artificial sensors and actuators, inte-
grated and embedded into physical systems, and acting in a
physical world. They differ from other technical systems as
they perform cognitive control and have cognitive capabilities.
Cognitive control orchestrates reflexive and habitual behavior
in accord with longterm intentions. Cognitive capabilities such
as perception, reasoning, learning, and planning turn technical
systems into systems that ‘know what they are doing’.” (Buss
et al., 2007, p. 25)

1.3 Contribution of This Dissertation

This dissertation has the objective to improve the understanding and mod-
elling of trust between cooperating technical systems. To achieve this, it
contributes the following to a theory of technical trust.

It discusses the term and mechanism “trust” across disciplines and in-
troduces research on interpersonal and technical trust to compare various
views. In contrast to the state of the art (e.g. Castelfranchi and Falcone,
2010; Engler, 2007; Kassebaum, 2004), this dissertation presents interper-
sonal trust as an input-output system. This new view makes it easier to
relate trust between persons and between machines with each other. In ad-
dition, the presented interdisciplinary discussion is deeper than the state of
the art. This leads to a different understanding of technical trust, especially
regarding the following questions: What notions of trust can be distinguished
(Section 2.5)? How does trust differ from related mechanisms (Chapters 1
and 2)? What influences trust development (Sections 3.2 and 6.2)? How
do interpersonal trust and inter-machine trust differ from one another (Sec-
tions 3.4 and 10.2.5)? This work results in clear, well-founded technical con-
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cepts for different notions of inter-machine trust. It is necessary, because
the present state of the art lacks a sufficient theoretical framework for the
trust model presented in this document.

The interdisciplinary research together with an analysis of future trust sce-
narios leads to a formalisation of trust between technical systems. This for-
malisation is the core contribution of this dissertation. It consists of general
application-independent requirements on a trust algorithm and a conceptual
implementation-independent model of trust. The requirements are postu-
lated together with a review of the technical literature in Chapter 4. Formal
requirements for a trust mechanism are unique in the literature. While some
authors (e.g. Ramchurn et al., 2004) review the literature on trust, they do
not derive requirements from it. Furthermore the new conceptual model of
trust describes various aspects of trust development and can be understood
as a meta-model to create new application-specific trust algorithms. It is pre-
sented in Chapter 6 and called the Enfident Model. The following list details
its main features with a focus on those that are rarely found in other trust
models.

• The Enfident Model evaluates a trust situation comprehensively. It
explicitly names three aspects: the cooperation partner(s), the coop-
eration agreement and the task to fulfil. It combines them as entity
classes in a relational sub-model; each of the entity classes groups
several attributes of the trust situation. Present trust models consider
the attributes of one or two of those entity classes only, as Section 4.2
points out.

• This relational sub-model can reunite two lines of research on tech-
nical trust, which are detailed in Section 4.2. Today, most trust algo-
rithms rate previous cooperation outcomes and derive trust from these
ratings. In contrast, the socio-cognitive trust models derive trust from
beliefs about the cooperation partner in the given trust situation, bas-
ing their theory on belief-desire-intention agents. These beliefs can
be located in the Enfident Model in the same way as the cooperation
outcomes and contextual information.
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• Section 4.4.1 shows that some trust algorithms base their outcome
prediction on past experiences, while others use logical constraints of
the present situation. The Enfident Model addresses both information
sources. This is unique in the literature.

• Most trust algorithms just rate the act of cooperation. In contrast, this
dissertation makes the cooperation outcome the first class object. The
subjective likelihoods of the possible cooperation outcomes (named
the trust distribution) should be predicted directly and as complete as
possible. If necessary, a rating can be derived from them in a subse-
quent step, either in the trust algorithm or in a decision algorithm. The
trust algorithm in ElSalamouny et al., 2010 is one of few examples that
put out the cooperation outcome instead of a rating.

• Present trust algorithms compute specific trust for a certain purpose.
The needs of a reputation system, for example, or the trust problem of
an autonomous agent define that situation. The literature of the social
sciences shows though that people can express trust for all sorts of
attribute combinations like: the trust in a certain cooperation partner
or the trust regarding a certain situational setting (e.g. meeting at
night) (see Section 3.4.1). The Enfident Model resembles this with the
concept of querying. This concept is unique in the technical literature.
It enables a system to compute trust for a specific trust situation or to
exchange the trust in various objects with other systems – with just
one single trust model.

• The Enfident Model explicitly models trust-related changes in the
mentioned entities over time. For example a cooperation partner could
change its behaviour, which means its internal way of working, be-
cause of defects or software updates. I found a related functionality
only recently in the literature: ElSalamouny et al. (2010) model the
time-varying behaviour of a single cooperation partner as a hidden
Markov model. The Enfident Model includes similar sub-models for
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all entity types not just the cooperation partner and entangles those
sub-models across entities. Moreover the Enfident Model proposes a
time-dependent likelihood for the state transitions.

• Trust develops over an ordered sequence of acts of cooperation. An
act of cooperation may in turn consist of an ordered sequence of in-
teractions. The trustor can evaluate trust at any time during an act
of cooperation. Some information may be known at that time, other
information may be unknown and some information may change from
interaction to interaction. To my knowledge, no present work contains
such a comprehensive sub-model for the temporal development dur-
ing a single act of cooperation.

• A trust mechanism should help to handle new, uncertain situational
settings. Therefore it must transfer knowledge from other, even dif-
ferent settings to this new one by utilising similarities (Pan and Yang,
2010). Rettinger et al., 2008 is the only present work that realises this
functionality satisfyingly.

The Enfident Model combines all these features in a coherent model and
shows how they can interplay with each other. Present trust models focus
on few of them only. This listing also clarifies why the Enfident Model can
serve as a meta-model to analyse existing trust algorithms.

To realise this functionality, I propose algorithms that combine clustering,
learning, logic and probability theory in a relational dynamic Bayesian net-
work (e.g. Manfredotti, 2009). They are based on the algorithms in Xu, 2007
for static relational Bayesian networks and the algorithms in Van Gael, 2011
for infinite hidden Markov models.

For the evaluation, the Enfident Model is applied to the scenario of coop-
erating cognitive vehicles. This scenario features a whole “society” of self-
organising systems. Since trust addresses a social problem, the evaluation
with a realistic technical society matches best here. To my knowledge, such
an evaluation is unique in the literature and was a complex undertaking.
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1.4 Organisation

The organisation of this dissertation uses a methodology that follows the
phases of a systematic engineering process with use cases, requirements,
design, implementation and testing. At the same time, the text is organised
in two parts: a generic and an application-specific part. To avoid duplication
of text, some phases of the above process are detailed in one part or the
other only, as described in the following.

Problem definition and use cases. Chapter 1 introduces the problem and
sketches application scenarios. Chapter 2 then compiles views on
trust from various fields to find a definition of trust and related terms
for this dissertation. Those views and the definitions further clarify the
problem. A comprehensive description of a single application together
with use cases can be found in Chapter 8.

Requirements. Chapter 4 presents the requirements. They are based on a
review of the socio-scientific literature on interpersonal trust in Chap-
ter 3 and of the technical literature on trust in Chapter 4. Own consid-
erations complement them.

Design. The requirements lead to an application- and implementation-
independent design of a trust mechanism: the Enfident Model (Chap-
ter 6). Chapters 4 and 6 together show that the Enfident Model suits
as a framework to analyse existing technical trust algorithms and to
design new ones. The preceding Chapter 5 introduces the notation of
some mathematical tools that are used throughout the remainder of
this document.

Implementation. Chapter 7 proposes implementation techniques for the En-
fident Model. These techniques originate from statistical relational
learning and are just implementation examples, because other tech-
niques seem reasonable as well. Chapter 7 marks a first step towards
a concrete algorithm. However the attributes are still unknown; they
depend on the application. Chapter 8 then applies the model to a
specific scenario. In this step, attributes can be identified and the al-
gorithms can be completed.
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Test. Chapter 8 describes the evaluation method. It introduces the applica-
tion scenario of cognitive vehicles that cooperate through a vehicular
network and defines the simulation environment. The evaluation re-
sults and the discussion are combined in Chapter 9, but separated in
the subsections. In this way, one subject can be evaluated and dis-
cussed in one place, while the reader can still distinguish the results
and their discussion.

Chapter 10 summarises the dissertation. For this purpose, it also relates
the Enfident Model back to selected findings from social sciences. Finally it
points out directions for future research.





2 Clarifying the Concept of Trust

Trust is a term of everyday speech. People know it and have formed it during
the integration in her linguistic environment. As a consequence, the meaning
of the term varies between individuals – but also between researchers on
trust. Various disciplines investigate trust and even within a field, people
have a different understanding of what trust is. In contrast, a central term of
a scientific paper should have a clearly delimited meaning.

As a consequence, I introduce conceptualisations of trust from different
disciplines in this chapter. Because trust is primarily associated with hu-
mans, the view of social scientists is discussed first. Because interpersonal
trust serves as a prototype for the trust concept in other disciplines, it is
discussed more comprehensively than the other trust concepts.

Interpersonal trust is a mechanism that has not been invented for a special
aim, but simply found to be there. Therefore some scientists have argued on
its purposes. Their considerations are introduced in Section 2.2. Some of
the purposes the same problem as that mentioned in the introduction. This
is the reason, why I speak of trust between technical systems: This technical
trust mechanism should provide a similar functionality as interpersonal trust,
although both mechanisms might work differently.

Sections 2.3 and 2.4 cover the concept of trust in the technical fields of
cryptology and multi-agent systems. Finally, Section 2.5 introduces a defini-
tion of trust between technical systems in the form it underlies the remaining
dissertation.
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2.1 Interpersonal Trust

In the literature, many authors choose their own definition for interpersonal
trust. Often these definitions are operationalisations with only a limited ap-
plicability (Narowski, 1974). In order to represent a construct that is subject
to investigations, the concept must describe something observable. These
observable criteria constitute an operationalisation of the term then.

This section describes the concept of interpersonal trust (German: zwi-
schenmenschliches Vertrauen or interpersonales Vertrauen) as an attempt
to integrate considerations from different authors. To avoid just another new
definition of the concept, that of Kassebaum (2004) is taken. It integrates
many definitions of the literature. Especially it incorporates the affective, be-
havioural and cognitive component of trust; many other authors considered
only some of them (Narowski, 1974, p. 125). However it is hardly possible
to come to a common understanding of trust between you as the reader and
me as the author within three sentences. For this reason, I highlight key
aspects of the definition afterwards.

“Interpersonal trust is an expectation about a future behaviour of
another person and an accompanying feeling of calmness, con-
fidence, and security depending on the degree of trust and the
extent of the associated risk. That other person shall behave as
agreed, not agreed but loyal, or at least according to subjective
expectations, although she/he has the freedom and choice to
act differently, because it is impossible or voluntarily unwanted
to control her/him. That other person may also be perceived
as a representative of a certain group.” (Freely translated from
Kassebaum, 2004, p. 21)

Most parts of the definition describe the so called trust situation, in which
someone reasons about the behaviour of another one. Both persons may
tightly work together or be loosely coupled according to the definition. This is
the wide understanding of cooperation that is underlying this dissertation as
already mentioned in the introduction. The term cooperation is still chosen
because it emphasises the relational aspect of trust between two systems.
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Figure 2.1: Key aspects of the interpersonal trust definition. A trust situation involves an
object to trust, the trusted person, and uncertainty about a trust subject in the future. The
trusting person forms an expectation about the outcome of the trust situation. For some
authors, the possible outcomes need to involve risk, for others they just may do so. The
formed trust attitude can in the end result in actions (the behavioural component), feelings
(the affective component) and thinking (the cognitive component).

But Kassebaum goes beyond the definition of a trust situation. He also
emphasises that interpersonal trust is an expectation and a feeling. As an
attitude, trust expresses in affection, behaviour and cognition. The affective
component can be considered one difference between interpersonal trust
and trust between technical systems.

In the following, key aspects of the definition are detailed and discussed
with regard to the literature. Figure 2.1 visualises them.

The trusted person. Interpersonal trust involves two parties who interact
with each other: On the one hand side, there is the person who trusts,
ego, the trustor (German: Vertrauender or Treugeber). In this document,
I use the name Paula (P) for this person in many examples. On the other
hand side, there is the person whom is trusted, alter, the trustee (German:
Vertrauensperson or Treuhänder). I name this person Oliver (O). In the case
that mutual trust develops over time in many interactions, both parties are
ego and alter at the same time.

As part of the interaction, ego judges alter to be trustworthy or untrustwor-
thy. Such a judgement about alter’s traits and motives is called attribution in
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social psychology. Studies have shown that the attribution process is very
subjective (Forgas, 1985, p. 77). This is a basic finding that should be kept
in mind when thinking about interpersonal trust.

The actor can perceive the other person as an individual or as a repre-
sentative of a specific group. For example, one trusts a police man in a
dangerous situation, because this person holds the role of a police man, but
not because this person is trusted as a known and maybe familiar person.
This kind of trust in the role of the other is called role trust (German: Rol-
lenvertrauen) by Strasser and Voswinkel (1997). In showing trust in the role,
the trust in the abstract system of the police becomes practical. Therefore a
person can have trust in the working of a system. Luhmann (1979, Chap. 7)
calls this type of trust system trust (German: Systemvertrauen). It is im-
portant for a complex society with a high degree in the division of labour.
Trust can be established between two persons, unfamiliar with each other,
but acting on behalf of a trusted system. Gennerich (2000, pp. 40–44) ex-
tends this concept to general social groups to which a person can manifest a
social identity. For example, fans of a soccer team form a community within
that they trust each other to a certain extent. In contrast to system trust,
Luhmann (Chap. 6) calls the trust in an individual – which is mostly based
on familiarity – personal trust (German: persönliches Vertrauen).

Note that the object of trust can also be a thing or my self (self-
confidence). These forms of trust are out of the scope of this thesis, as
they are not referred to as interpersonal trust.

Lack of control, complexity and uncertainty. The trusted person must
be free to some extent to behave trustworthy or untrustworthy (Kee and
Knox, 1970). This freedom may be forced by the situation or voluntarily
given by the trustor. From the point of view of the trusting person, it is a lack
of control over the situation that forces to trust.

For Luhmann, this is an important feature that characterises that kind
of complexity the trust mechanism addresses: It is “that complexity which
enters the world in consequence of the freedom of other human beings”
(Luhmann, 1979, p. 30).
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The lack of control can also be understood as a lack of knowledge. Trust
is a “middle state between knowing and not-knowing” about another person
(Simmel, 1968, p. 263). Luhmann (1979, Chap. 2) details this in the following
way. If Paula knows how Oliver will act and how the cooperation will end
up, she can make a rational decision and needs not trust. If she knows
nothing about the specific problem, she cannot trust but only hope. The trust
decision forces the trustor to choose one out of the many possible scenarios
the future offers. Altogether the lack of control and knowledge results in an
increased uncertainty about the future and, thus, in an increased complexity
that is inherit to a trust situation. It comes from the trusted person being
there and free to act. Trust is a mechanism to cope with this uncertainty.

Some authors think that this mechanism is an irrational process only
partly based on clear evidence. It incorporates some rational decision cal-
culus about the uncertainty but deliberately goes beyond that. “Trust always
extrapolates from the available evidence” (Luhmann, 1979, p. 26). Kee and
Knox speak of a “subjective probability” and an inner, not rational “certainty
or uncertainty about O’s trustworthiness” (1970, p. 359). This irrational pro-
cess is driven by wishful thinking (Koller, 1997; Oswald, 1997). Section 3.4.3
summarises some of the irrational findings about interpersonal trust.

In contrast to this, users expect a technical system to act predictable and
rational. So while both, persons and technical systems, need trust to handle
the uncertainty, the way they do it might be different.

Subject of the trust situation and expectation. Despite the uncertainty,
Paula must still act, either by relying or by not relying on Oliver. For this,
she forms an expectation about the future. Burt and Knez propose “Trust is
anticipated cooperation” (1995, p. 257) as a compact definition of interper-
sonal trust. Luhmann emphasises the anticipation of the future, as well: “To
show trust is to anticipate the future. It is to behave as though the future
were certain” (1979, p. 10). The future consists of many possible scenarios;
only one can become present – a process of complexity reduction. Some-
one who trusts chooses from all the possibilities of future presents. With this
choice, the trusting person simplifies her internal future.
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At the same time, Paula looks back into the past too. She uses prior
experiences to form an expectation about the future. This is detailed below.

The expectation also specifies what to expect, the cooperation subject
of the trust situation. “Trust therefore always bears upon a critical alterna-
tive” (Luhmann, 1979, p. 24). Note that this statement already points to the
proposition of Requirement 2 that a trust mechanism should put out a prob-
ability distribution or a belief mass distribution over all possible future worlds
(see page 79 of this document).

Paula is only able to build up a clear expectation for one of the future
worlds, if Oliver acts predictable. So the attribution of predictability and con-
sistency to Oliver is a key requirement to establish trust (Gennerich, 2000;
Rempel et al., 1985). Paula takes her collected experiences from the past
and transforms it to an expectation for the future. Trust is thus based on
social learning (Blomqvist, 1997, pp. 280 and 283).

Risk. Luhmann restricts that not every expectation is trust-related. Ex-
pectations of trust are “only those in the light of which one commits one’s
own actions and which if unrealized will lead one to regret one’s behaviour”
(Luhmann, 1979, p. 25). Thus the individual must have some interest in the
outcome of the trust situation. This interest corresponds to a value. And
because of the uncertainty the value is at risk. In addition to the expectation
above, risk incorporates a value because of own interest.

Many authors support this restriction. Some others negate it though. For
example, Jones (2002), a researcher from the field of informatics, criticises:
“While it is true to say that a goal-component of this sort is often present, this
is by no means always so. For example, x might trust y to pay his (y’s) taxes
[. . . ], even though it is not a goal of x that y pays” (p. 229). He regards trust
as an expectation towards another one without the need of own interest.
Thus a trust situation needs or needs not involve risk. Figure 2.1 depicts
this with the additional arrow that bypasses the term risk. Note that the
concept of interpersonal trust can merely be observed only. In contrast to
this, trust between technical systems is designed. So whether to include the
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risked value in the trust computation, is a design decision. It is discussed in
Section 2.5.

Of what kind is the risked resource? It may be a material resource re-
sulting in a direct financial harm, but also time, effort, and trouble. Rempel
et al. give a couple of examples mostly relevant in intimate relationships:
“[. . . ] trust involves a willingness to put oneself at risk, be it through intimate
disclosure, reliance on another’s promises, sacrificing present rewards for
future gains, and so on” (1985, p. 96). Gennerich (2000) regards the own
identity as a resource that is always at risk, sometimes more, sometimes
less. I detail this – in my opinion interesting – thought in Section 2.2.

The harm arises if the other one acts untrustworthy. If he fulfils the trust
though, the trustor has a benefit from that. Examples for the benefit are
future reciprocity in the relationship, health when going to the doctor, or a
monetary benefit when accepting a “good deal”. The benefit is also asso-
ciated with a subjective probability. Both together form a positive risk or
chance. Some authors like Luhmann (1979, Chap. 4) require that the per-
ceived risk must be larger than the perceived chance in a trust situation.
Otherwise the decision is more rational.

The risk is not only in the situation but also in the motives of the other.
The trustor must decide whether the motives he perceives from the other
are sufficient to trust in this situation. While Kee and Knox (1970) require
that both sides must be cognisant of the risk for the trustor, Strasser and
Voswinkel (1997) do not even postulate that the other must behave loyal. In
their understanding, it is sufficient that an enemy or competitor behaves as
expected. Then the risk for the trustor may be hidden towards the other.

The investigation of Koller (1988) supports the assumption that the degree
of trust depends on the risk.

Heisig (1997, pp. 131–133) emphasises the binding effect of trust. The
trusted person usually perceives a high obligation to fulfil the request. The
act of trusting is an appreciation towards the trusted person, a moral dona-
tion. Similarly complying with the act of trust also has a high moral value.
Betraying the trust would reject the appreciating donation. Even without
formal sanctions, a betraying person would be stigmatised in his social envi-
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ronment. In fact, not only the trusting person risks her own identity, but also
the trusted person. For this reason, Heisig thinks that the risk is too strongly
emphasised in the literature about trust.

The affective, behavioural, and cognitive component. Trust is an atti-
tude towards the trust situation, including the trustee. Human beings can
express an attitude, and hence trust, in three ways: with an affective, a be-
havioural, and a cognitive response (Fazio and Petty, 2008, pp. 7–11).

The affective response of trust consists of “feelings of confidence and
security” (Rempel et al., 1985). The behavioural component can be formu-
lated in a compact way as: “Trust is anticipated cooperation” (Burt and Knez,
1995, p. 257). Within this component, trust is expressed as a verbal intention
or as an action with cooperative tendency. As the cognitive response, the
individual reasons about the uncertainty in the situation and the attributes of
the other (see Chapter 3.2).

Narowski (1974, pp. 125–130) points out, that the definitions in the litera-
ture diverge, mainly because they contain only few of these three responses.
But trust is reflected in all of them together.

Summary. The concept of interpersonal trust features two persons who
are connected through the expectation of the one person about the other
person’s behaviour. So trust is an attitude towards the behaviour of another
person in a given situation. This situation is referred to as the trust situa-
tion. As a consequence, the trust attitude depends on three independent
variables: The one who is trusting, the one whom is trusted and the situa-
tional context. This is a main result with consequences to the modelling of
interpersonal trust in Chapter 3 as well as trust between technical systems
in Chapters 4 and 6.

The attitude represents an expectation about the future state of the world.
So it assigns beliefs or subjective likelihoods to some of the possible states.
It is debatable whether trusting includes the interest of the one party in the
other’s behaviour. If so, the trust situation would be characterised by per-
ceived reliance and risk.
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Some authors argue that the trusted person must be aware of the risk the
trusting person is exposed to. This leads to an increased obligation of the
trusted person not to betray. Other authors consider the awareness as a
possible advisory phenomenon but not as a pre-requisite for trust.

Finally trust is obtained in response to the current situation with a process
that is partly rational and partly driven by own desire. The obtained trust
becomes manifest in affections, actions (behavioural trust) and thinking.

Section 2.5 summarises how interpersonal trust related to trust between
technical systems as proposed in this dissertation – discussing the similari-
ties and differences.

2.2 Functions of Interpersonal Trust

When there is a new effect in the natural sciences or a new technical
achievement, it quickly raises the question: What is it good for? This ques-
tion is interesting regarding the trust construct too. In the literature, I found
that the trust mechanism supports three functions; they are described below.

Identifying a function of a construct sounds like finding a solution for a
problem. Luhmann (1979, Chap. 4) points out though that trust is accompa-
nied by a problem as well. The complexity is still there and, after all rational
considerations, risk remains. Trust is more a substitute problem. So the
advantage must be in form of the remaining problem. It seems that human
beings can bear a trust problem more easily than the original problem.

Reduction of social complexity. When a mother entrusts her child to a
babysitter for an evening, many things can happen during this time: Every-
thing could work fine; the baby could sleep well, while the babysitter reads
a book or watches TV. But also, the babysitter could watch a cruel television
program with the child. Or, the babysitter could not care about the child,
although it screams. The babysitter could even murder the child and run off.

Luhmann defines the concept complexity as the “number of possibilities
which are opened up through system formation. It implies that the condi-
tions (and hence boundaries) of possibility can be specified, that the world
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becomes constituted after this fashion and also that the world contains more
possibilities than can be realized, so that in this sense it has an ‘open’ struc-
ture” (Luhmann, 1979, p. 6). The example above shows that the future offers
many possibilities. This openness of the future makes the situation complex.
Interpersonal trust is specifically about that kind of complexity, “which enters
the world in consequence of the freedom of other human beings” (Luhmann,
1979, p. 30) – it is about social complexity.

In that the mother trusts the babysitter, she leaves many of the possibili-
ties of the future meaningless. This reduces the perceived complexity and
gives the mother the necessary confidence and security to spend a pleasant
evening away from home. Things become even clearer, when considering
what happens if human beings would not have a mechanism like trust. Luh-
mann thinks: “A complete absence of trust would prevent him [the human
being] even from getting up in the morning. He would be prey to a vague
sense of dread, to paralysing fears. [. . . ] Anything and everything would be
possible” (1979, p. 4). In a positive sense, leaving some bad possibilities of
the future meaningless opens the mind for new experiences. So trust is an
important base for taking new chances.

Besides the uncertainty and complexity, a trust situation may also involve
risk. Then another purpose of the trust mechanism is that it helps to handle
the risk.

Risk management. If the trusting person has some interest in the other’s
action, if some gain or loss is at stake for her, trusting is associated with risk
taking. So perceiving the risk helps to act correctly.

Following exchange theory, the expected risk could be quantified as the
product of the potential loss and the probability of betrayal; analogously the
expected gain would be the product of the potential gain and the probability
of fulfilment. A rational agent would then compare both, expected risk and
gain, for a decision (Coleman, 2000, Chap. 5).

In Koller’s (1997) model, trust depends on the perceived risk and the per-
ceived importance of the interaction goal. The higher the importance, the
higher is the maximal accepted risk. This model can explain irrational find-
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ings like those in Section 3.4.3. It emphasises the individual perception of
the trust situation by the trusting person. Trusting is also wishful thinking.
So the trust mechanism manages the risk in balance with the importance.

Trust can handle the risk also in another way. In many situations, the trust
situation is also risky for the trusted person. A betrayal of trust would lead to
sanctions of the community like stigmatisation. No in such situations where
both are cognisant of the risk for the trusting person and the trusted person,
the risk is indeed reduced (Heisig, 1997, p. 133). (Compare this also with
the note at the end of this section.)

Besides the complexity reduction and risk management, trust has another
purpose that is considered only rarely. The risked resource may be the own
identity. Then risk management is actually a identity building as the following
thoughts show.

Preservation of the own identity. I reconsider the above mentioned ex-
ample of a mother that entrusts her child to a babysitter. If the babysitter
does any harm to her child, she will perceive herself as a bad mother and
think that others will perceive her in the same way. So the babysitter im-
paired her identity. To clarify this, imagine the process of identity building
as a mutual alignment of the image that the mother would like to be seen
as (the intended identity, I) and the image that she perceives others see her
(the perceived identity, me). (See Gennerich, 2000, pp. 50–57 who follows
Mead, 1974.)

According to Gennerich, trust can develop if, with regard to the given situ-
ation, the intended role-identity and the perceived role-identity match. When
this matching successes across many different situations, the trust in the
other one is high, because this is only possible, if the other one understands
all intended identities and shows a high variability. Then it is likely that the
other one will confirm future intended role-identities as well – he will show
the desired behaviour. In contrast, if the matching fails, suspicion and dis-
trust increases. From this point of view, trust is a mechanism to preserve
one’s own identity. Note that this view also includes an expectation about
the other’s behaviour.
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If Paula, who lent a book to Oliver, does not get back her book, she may
ask herself whether Oliver considers her a friend, whether Oliver under-
stands her person with regard to her tidiness, or she thinks everyone mucks
around with her. In many situations, the identity is impaired only marginally
like in this example. But still, even small trust problems affect the own iden-
tity in some way. As another example, the relationship to one’s superior
affects the occupational identity. In some way, trust problems always raise
questions like: “Who am I?”, “Who would I like to be?”, “Am I good enough?”,
or “Am I likable?” (Gennerich, 2000, p. 49).

Luhmann (1979, Chap. 4) describes a cognate idea from a systems point
of view. The human being counteracts the complexity of the outer environ-
ment with inner order leading to perceived confidence. Trust is a mechanism
to constitute and stabilise this inner order. It does so in a way that the inner
order is more important than environmental evidence to perform the com-
plexity reduction. Thus the trust mechanism is sustained by its importance
for the inner order and confidence.

Finally note that Oliver is another ego who needs to develop his identity.
Paula’s trust in Oliver depends on how she perceives him, that is, what iden-
tity Oliver shows towards her. His identity makes Oliver different from others.
And because of his identity, Paula could choose Oliver to help her in the trust
situation. From Oliver’s point of view, these considerations of Paula support
or violate his identity. And in the distinct way how Oliver fulfils Paula’s re-
quest, Oliver exhibits his identity. So for Oliver, accepting a trust request is a
problem of self-expression and identity building; and therefore, the request
itself can be a donation from Paula for him, if it meets his identity. In the end,
Oliver must balance the desire to be trustworthy with other aspects of his
personality (Luhmann, 1979, Chap. 8).

2.3 Trust in Information Security

Classical books about security in IT systems (e.g. Menezes et al., 2001) use
trust very frequently in expressions like “trusted third party”, “trust in a sever”
or “trust chain”. But nowhere, the term is defined. From reading, it turns out
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that the user or the system can either completely trust or not trust at all;
there is no degree of trusting. Often trust is used in the context of public key
infrastructures and is established through authentication.

Standards related to this context try to be more general. For example, the
ITU standard X.509 defines: “Generally, an entity can be said to ‘trust’ a sec-
ond entity when it (the first entity) assumes that the second entity will behave
exactly as the first entity expects. This trust may apply only for some specific
function. The key role of trust in this framework is to describe the relationship
between an authenticating entity and an authority; an entity shall be certain
that it can trust the authority to create only valid and reliable certificates”
(ITU, 2008, p. 6). While the first sentence is quite general, the standard
focuses on a technical infrastructure that helps to ensure and enforce cer-
tain kinds of policies. In the end, developing trust reduces to cryptographic
authentication.

So what happens here? The policies and the proposed technical infras-
tructure have an enforcing character that is necessary, when people want
cooperate, although they do not trust one another directly. With regard to
this, they are similar to some legal rules and their enforcement. Sitkin and
Roth (1993) investigated such legalistic mechanisms in the context of or-
ganisations. They point out that these policies often fail to establish trust.
Instead they substitute trust with a control-based confidence. The control
comes from the enforcing mechanisms that are integrated in the policies
and the infrastructure.

Gerck (2002) argues in a similar direction for the context of Internet com-
munication. He compares information security and trust with closed loop and
advanced open loop control. Closed loop control realises complete surveil-
lance. In contrast, the open-loop controller actuates without prior observa-
tion, just based on estimation. Gerck still allows the open-loop controller to
observe some system variables every now and then. This way, it can adapt
its model of the controlled system. Trust is similar in the way that the trust-
ful action happens without full control. But the trusting person observes its
environment and its partners in order to improve her future decision.

Gerck concludes that introducing trust in Internet communication has sim-
ilar advantages like open loop control: “simpler systems (hence, better fault-
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tolerance); immediate response (i.e., nothing needs to be measured in order
for it to actuate); easier design (e.g., avoiding probable but unknown pitfalls
of complex designs); easier interfacing (i.e., suffers less influence from and
also exerts less influence on the rest of the system); modular design (i.e.,
complete and interchangeable); and less cost” (p. 23).

2.4 Trust in Multi-Agent Systems Research

In the field of multi-agent systems, people usually model trust following the
work in social sciences. Ramchurn (2004), for example, refers to Dasgupta,
when he defines: “Trust is a belief an agent has that the other party will do
what it says it will (being honest and reliable) or reciprocate (being recip-
rocative for the common good of both), given an opportunity to defect to get
higher payoffs” (p. 9). Besides the expectation about the other’s behaviour,
this definition emphasises two more aspects. First, the trusted agent should
act reciprocally to increase the general benefit. Making a society of agents
work is an important aim in multi-agent systems. The name of the field
already points at the society level. For Ramchurn, reciprocal behaviour is
important to reach this aim. Consequently, he added it to his definition of
trust. Second, the trusted agent should not only have the chance to betray.
Rather it must have a higher advantage in this case. This condition should
avoid that it is not just the trusted agent’s rational choice that lets the reliance
work.

Castelfranchi and Falcone (2010) choose a different approach. They state
that a subjective probability or belief about the other’s behaviour is insuffi-
cient for trust. Instead they derive a content model of trust from the work in
social sciences, their socio-cognitive model of trust. They start with defining
trust as a relation of five parts (TRUST(X , Y , C, τ , gX )): “X trusts (in) Y in
context C for performing action α (executing task τ ) and realizing the result
p (that includes or corresponds to her [X’s] goal GoalX (g) = gX )” (p. 36). The
trusting agent X should evaluate Y ’s competence, willingness and unharm-
fulness positively. In addition, X must have an interest in Y ’s action, a goal
it desires; and it must positively expect that this goal can be reached. More-
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over it must count on this positive expectation. This means, it must really
consider whether to rely on Y . Only then, the attitude of X is trust. Besides
these thoughts about the trusted agent, trust also includes considerations
about the opportunities and the obstacles of the task in the context.

Castelfranchi and Falcone distinguish the trust attitude, the decision to
trust and the act of trusting. While the trust attitude is the mental counting
on Y as described above, the decision to trust goes a step further by consid-
ering the trust attitude towards others and deriving an intention to act. The
decision is finally realised by the act of trusting, which may be temporar-
ily separated from the decision. All in all, the theory of Castelfranchi and
Falcone is rather complex. This section only presents a short glance on it
without being complete.

Jones (2002) criticises the narrow definition of Castelfranchi and Falcone.
For him, trust needs no goal component; it can be just a positive evaluation.
Since Castelfranchi and Falcone allow that the trusting system evaluates the
trusted system positively and negatively for reaching the goal, he wonders
why the trusting system cannot be indifferent towards the trusted behaviour
as well. Jones proposes a simpler content model of trust. The trusting
system must have a positive rule-belief and a positive conformity-belief to
trust. The rule-belief basically expresses that there is some regularity in
the trustee’s behaviour or norms that restrict the other’s actions. So this
belief regards the past. The conformity-belief reflects whether the trusting
system expects the trusted system to follow this rule in the future again. So
it extrapolates from the past to the future.

In summary, the definitions introduced in this section feature different con-
cepts: The likelihood of the trustee’s future behaviour, the own goal, reci-
procity and the payoffs of the trusted system. The definition of Ramchurn
mostly focuses on the purpose of trust: It is a mechanism that forms a be-
lief. The other two definitions also determine what should be including in the
process of belief formation (the belief sources).

The work of Castelfranchi and Falcone is quite elaborate. While it ad-
dresses social sciences and multi-agent systems, it disregards differences
between the trust of a human and of a technical agent though. In my opin-
ion, this has two weaknesses. First, people may act more arbitrarily and
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irrational compared to what technical systems are expected to behave. In
some of their examples that should support their trust theory, I would say,
a person may act like this but a machine should not. (Compare this with
the paragraph about uncertainty in Section 2.1 and with Section 3.4.3.) And
second, Castelfranchi and Falcone try to explain interpersonal trust. This is
a mechanism that is already there and can only be observed, not designed.
So they describe a specific implementation of trust: interpersonal trust. In
contrast, a technical form of trust is a mechanism that is designed for a cer-
tain purpose. As a consequence, a definition of trust would be needed that
is based on implementation-independent criteria.

2.5 Definition of Trust in This Dissertation

This section defines trust between technical systems by abstracting inter-
personal trust. For this, it discusses some arguable aspects of the trust
definitions so far and identifies those that are necessary aspects and those
that are just accompanying ones. This results in definitions of some notions
of trust. They should just describe, what trust is, but not, how it works. I use
the term agent instead of technical system in this section to remain in line
with other disciplines.

Prediction, interest, decision and action. When regarding interpersonal
trust as an attitude, it refers to an inner state, which expresses as feelings,
actions and thinking (the affective, behavioural and cognitive component).
For some researchers, it incorporates own interest and, thus, risk. Others
just require an expectation about the other’s action. The situation is similar
in technical fields. All of these notions of trust are different objects that are
important for the research on trust but not clearly distinguished in everyday
speech. I do not say, one of them is trust and another one is not. For the
scientific discourse, they should have different names though. As a conse-
quence, I define names for them below: probabilistic trust, interest-related
trust, trust-related decision and trust-related behaviour. No one of these
names is just “trust”. Instead the term trust may refer to all of them. If the
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specific meaning of trust is not clear from the context though, I use one of
these specific terms.

While the forms of responses to the trust attitude (feelings, actions and
thinking) are important to understand and investigate interpersonal trust,
they are not necessary for a definition of trust in general. One kind of system
like a human being may respond in this way, another kind of system may
respond in a different way. Especially I do not require the notion of a feeling
for trust. A system may express trust as a feeling but needs not.

Representation of trust. In some contexts, trust can be high or low. Then
it refers to a specific action of the other agent. The degree of trust describes,
how likely this action is or how relevant to reach a certain goal. For prac-
tical reasons, the expectation could refer to several possible actions of the
trustee. These can be rated separately but handled as a collection. To dis-
tinguish the expectation about a single action from the expectations about
several possible actions, I use the term trust value for a single rating and
trust distribution for a collection of ratings. The trust value can be understood
as a belief or subjective probability that the specific action will happen. The
trust distribution could be realised, for example, as a belief function (Shafer,
1976) or as a (subjective) probability distribution. Section 4.3 discusses with
regard to the technical literature on trust, why both representations may be
reasonable.

Mechanism and state. Some authors regard trust as an inner state that
can be high or low as in the previous paragraph. Some other authors write
that trust is “a mechanism for the reduction of social complexity” (book title
of Luhmann, 1989) or that trust is a relation “TRUST(X , Y , C, τ , gX )” (as
already introduced in Section 2.4). In this case, the inner state trust is the
output of the relation trust. So trust is a mechanism here that forms (or
produces) the trust state. To distinguish both concepts of trust, I call the
relation or mechanism the trust mechanism and the state the trust attitude.
Together with the previous paragraph, the trust attitude can be represented
as a trust value or a trust distribution.
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Mutual awareness of the risk. I do not require that the other one is aware
that someone is trusting him. This may be the case and could make the
compliance more likely. But it is no necessary feature for trusting. What
is the reason for this view on trust? I consider trust to be the result of a
cognitive process in the trusting agent. The fact that the trusted agent knows
of the risk for the trusting agent can influence the trustee’s behaviour and
could therefore influence the degree of trust. But it is no condition that the
underlying mechanism works. So this mechanism can form the trust attitude
disregarding the mutual awareness of the trustor’s risk. The result is some
degree of trust.

In the case that the trusted agent does not know of the trustor’s risk, it
cannot act with goodwill towards the trusting agent. It needs not know that
something is good or bad for the trustor. So goodwill cannot take effect in
such a case. For this reason, the trusting agent may desire a loyal and
benevolent action of the other agent, but this is no necessary criterion. The
trust mechanism can work for every action of the trustee that is considered
for evaluation.

Sources of trust. Some definitions of trust include conditions trust de-
pends on. For example, Castelfranchi and Falcone (2010) postulate that
trust (as a mechanism) must depend on some trust sources like the abil-
ity and the willingness of the trustee. I omit such trust sources in the trust
definition for two reasons. First, the influences of trust are still subject of
research. It is hard to find new influences for a concept that is defined by
its influences. Second, I consider the trust sources to depend on the im-
plementation of the trust mechanism. Different application scenarios could
require a different set of influences. The postulated conditions of trust usu-
ally refer to interpersonal trust. For me, this is just a specific implementation.
To abstract from interpersonal trust, I leave the trust sources open.

With all these pre-considerations, the different forms of trust can be de-
fined as follows.

Definition 2.1 (Probabilistic trust). Let P denote an agent and let a be a con-
sidered uncertain action of another agent O with the outcome o(a). P ’s prob-
abilistic trust is P ’s perceived certainty (subjective probability) about o(a).
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The outcome o(a) can be understood as a random variable. Its possible
values may indicate that a certain outcome will or will not be achieved (a
boolean event); or the values may represent all possible outcomes. Asso-
ciated with the random variable is a probabilistic trust distribution. It needs
not be a probability distribution. It can, for example, be a belief function as
well. A probabilistic trust value can be derived from the probabilistic trust
distribution. So probabilistic trust can be understood as a probabilistic trust
value or a probabilistic trust distribution.

The definition emphasises that trust handles the uncertainty that comes
from the trustee’s freedom to act (social complexity) – from his willingness
and ability. If the trusting agent knew, how the other one decides (like a
totally rational decision), and knew all input values of the decision process,
then it also knew the decision and the action. So the other’s action would not
be uncertain in this case. No trust would take effect. With these considera-
tions, the uncertainty requirement seems strong enough for me. Because of
these arguments, I do not require a prisoner dilemma-like setting, in which
the trusted agent gets higher payoffs when betraying. This setting just aims
to ensure the uncertainty.

The definition does not regard the situational context explicitly. While it
certainly influences the expectation, it is no necessary part of the definition.
The situational context is already implied, because it affects the trustee’s
behaviour. And if the gain and loss of the trusting agent is regarded as
below, it also influences the trusting agent’s perceived problem.

Note that the definition does not speak of cooperation. It just mentions
another agent’s action. In this dissertation, I use the term cooperation to re-
fer to all kinds of trust situations. The reason is that cooperation lets people
think of a certain setting, which suits to understand trust. Just for this docu-
ment, I consider all other kinds of trust situations as cooperation settings as
well – which are degenerate though.

Definition 2.2 (Interest-related trust). Let P be an agent that has some inter-
est in the uncertain action a of another agent O, which leads to the outcome
o(a). P ’s interest-related trust is P ’s estimate of the chance and risk for P
that is accompanied with o(a).
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As Jones (2002) notes, interest connects trust with risk (p. 230). So
interest-related trust combines probabilistic trust with own gain and loss.
Analogously to probabilistic trust, there can be an interest-related trust value
and an interest-related trust distribution.

Definition 2.3 (Trust-related decision). A trust-related decision is a decision
that depends on probabilistic or interest-related trust.

Influences that are not related to trust, may dominate the trust-related
decision. The definition only says that trust (the reasoning about the other’s
behaviour) should have played a role. So a trust-related decision need not
be a decision for a risk taking action.

Consider the following example: Paula could need Oliver’s support to
move to a new flat. She trusts Oliver to help her really well. But she also
knows that Oliver is currently busy building his new house. So she decides
not to ask him. This action of refused cooperation does not reflect her dis-
trust in Oliver. It is simply influenced by other considerations than trust. The
term trust-related decision should emphasise that trusting and deciding are
different objects, although trust can impact a decision (see also Section 3.)

Definition 2.4 (Trust-related behaviour). Trust-related behaviour is be-
haviour that realises a trust-related decision.

Following this definition, trust-related behaviour includes to show no man-
ifest action. Therefore it is no completely observable concept.

This dissertation focuses on the first step in the chain of trust concepts:
probabilistic trust. All other forms of trust are derived from it. They should
be subject of further research.

Further terms. The definitions above focus on the trust attitude. Then the
trust mechanism is a mechanism that forms this attitude. Another interesting
view centres the trust mechanism. It could be defined as a mechanism that
models the behaviour of other agents. The behaviour of an agent could
be regarded as its actions in response to certain situations. Then the trust
mechanism can refine the model of the other’s behaviour by observing the
agent or talk with other about the agent, for example.
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In a technical context, I call a specific implementation of the trust mech-
anism a trust algorithm. For example, the CREDIT algorithm of Ramchurn
(2004) and the fuzzy approach of Falcone et al. (2003) are trust algorithms.
A trust model is a conceptual representation of trust. It often refers to inter-
personal trust. In this case, the model explains something real. But a trust
model may also be a conceptual representation of technical forms of trust.
Examples for this are the socio-cognitive trust model (Castelfranchi and Fal-
cone, 2010) or the Enfident Model that is proposed later in this document.
To regard anything like a trust model or a trust algorithm, I sometimes use
the more general term trust method.

I consider reputation to be the view of a group or community about an
agent’s behaviour. This understanding of reputation is further detailed in
Section 3.2.2. The view of a single third party on an agent’s behaviour is
sometimes regarded as a recommendation. Thus the fusion of the recom-
mendations from a group of agents about the agent O could be understood
as O’s reputation within that group. Other terms related to humans like com-
petence or acceptance are described in Section 3.2.2. And some terms in
the context of technical agents, like ability, competence and willingness, are
given in Chapter 4. Note that a few terms are used for both, humans and
technical systems. The context then determines the exact interpretation of
them.





3 An Input-Output View on a
Trusting Person

This chapter introduces interpersonal trust. Understanding this form of trust
helps to understand trust between technical systems and to work across
disciplines. Interpersonal trust is a working mechanism, so it can serve as a
prototype. This chapter points at similarities and differences with a technical
form of trust in order to increase the understanding about trust. Following
Chapter 2, interpersonal trust is about the thinking, feeling, and behaving of
a human being. Thus the matter of interest is what happens inside a human
being. It is impossible to see that, though.

For this reason, I consider a human being a black box, a common ap-
proach in system theory (Ropohl, 1979; Trappl, 1983). Its inner configura-
tion is unknown. An external entity can only observe what are the inputs, i.e.
information and actions that affect the system, and what are the outputs, i.e.
information and actions that the system produces. This consideration shows
that a black box model has the inherent property of the separation between
the outside (the environment) and the inside (the unknown configuration of
the box) (Luhmann, 1985, Chap. 5). The system boundary in this chapter is
the surface of the trusting person.

Why did I choose the paradigm of an input-output model to introduce inter-
personal trust? One reason is that system theory is very suitable for interdis-
ciplinary research (Ropohl, 1979; Trappl, 1983). Of course, the combination
of trust and system theory is not new. For example, Luhmann (1979) inves-
tigated trust with social systems in mind. As a sociologist, he focused on
the role of trust in the embedding of the individual in its social environment.
This report distinguishes from others therein that it describes the trustor in a
way that is pleasant for engineers: as an input-output system. The purpose
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of the model here is to easy the understanding of the trust construct. The
model does not show the real constitution within an individual nor is it able
to forecast the behaviour of an individual.

The black box description in this chapter is based on empirical studies of
the literature. This approach – developing a model with support of empirical
research – is good practise (Trappl, 1983), but meets a problem here. As
Chapter 2 points out, the empirical research is often based on a different un-
derstanding of trust. Because of this, Narowski even devoted his complete
doctoral dissertation (1974) to the analysis of the term trust and an attempt
of operationalisation. He concludes, while he was able to integrate differ-
ent views on trust in an overall definition of the construct, it was impossible
to find clearly observable criteria for an operationalisation of the found con-
struct. With this consideration in mind, the empirical results in this chapter
must be seen as potential blocks for a building that reflects an empirically
representation of trust, but not as hard facts.

Note that I model the trusting person only, although a model of the trustee
would be very interesting as well. The trustee is omitted in the literature quite
often. I make the same mistake here, as the model of a technical trustor is
the common theme of this dissertation. The side of the trustee is subject to
future research.

3.1 Overview

This section introduces the main components of the model and relates them
to the literature. It includes the pure black box view as well as a rough con-
cept of the internal structure. The internals of the box are just assumptions
and, thus, are detailed only as far as they are necessary to understand the
research on interpersonal trust. Sections 3.2 – 3.4 detail each component
then.
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3.1.1 Trust as a Dependent and Independent Variable

In psychology, it is common to look at a construct as a dependent and as
an independent variable. When researchers consider trust as a dependent
variable, they investigate how other variables constitute the variable trust.
These other variables can be regarded as the “inputs of the trust mecha-
nism”. Gennerich (2000, pp. 12–21) identifies three groups of influencing
variables:

• Trust as a variable of the trustor’s personality,

• Trust as a variable of the trustee and

• Trust as a variable of the situation.

Following the input-output paradigm, the first group of properties lays in-
side the box, while both other groups are located outside the box. Only
the second and the third group of influences are inputs of the black box.
Properties of the trustee are the other’s competence, empathy, loyalty or
willingness, for example. The situation can be characterised by the time of
the day or the fact that witnesses are present, for example.

All these properties strongly interact with each other as the following two
examples illustrate. I trust my doctor to care about my health. But I will
not let him repair my car. This example combines properties of the trustee
and the situation. And when I drive with my car at night and I am stopped
by the police, I could have a hard time feeling confident and establishing
a trustful relationship with the police officer. This would be much easier if
the same would happen during a nice sunny day. This example shows that
the properties of the trustor’s personality and the situation constitute trust
only in their combination. So the inputs affect trust not independently like
an additive model. Trust rather depends on the specific combination of the
inputs together with the personality of the trustor.

Saying “Oliver is competent in repairing cars” seems to describe him. So
“competent in repairing cars” is regarded as a property of Oliver. Another
person would probably share the same view on him. “Oliver understands
me” looks like a general property of Oliver as well. However this time, the
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speaker is part of the attribution as the object “me”. Another speaker would
possibly have a different view on Oliver. For this reason, the properties of the
trustee are often regarded as the properties of the relationship to emphasise
that they depend on both, the trustor and the trustee. Another reason is that
human perception is very subjective; so the perception of the other one is
always specific to the individual. Section 3.2 gives an overview of how the
relationship and the situational context influence the constitution of trust.

When researchers consider trust as an independent variable, they as-
sume a given state of trust and look, how it influences other variables like
the communication in a group, conflict resolution, or personal satisfaction.
Usually they want to show that high trust has a positive effect on the trust-
ing person and the group or organisation the person belongs to. Only some
researchers look at the trust-related behaviour directly (also called the risk
taking). It may, for example, be a request for help or a self-explanatory
statement. It is the immediate output of the black box. This action or ver-
bal statement influences the environment of the trusting person and, in its
consequence, leads to the mentioned effects of trust. Section 3.3 compiles
selected investigations about trust-related behaviour and effects of trust.

The behaviour of the trustor transforms the environment. This, in turn,
can result in modified inputs. So the trusting person is embedded in a kind
of feedback loop. This consideration emphasises that, in the long term, trust
is a property of the relationship between the trustor and the trustee, as both
are in a continuous interplay.

Figure 3.1 illustrates that the trustor relates properties of the trustee and
the situational context to trust-related behaviour. This relation is what Ropohl
(1979, p. 55) calls the functional conception of the system. The glue be-
tween both sides lays inside the box and can thus not be observed. But
from the input-output behaviour of the system, assumptions can be derived
that help to describe this behaviour. There are many theories about how
trust works in the human being. Most of them go beyond the intent of this
chapter. Here they are only of interest as far as they help to understand the
experimental research on interpersonal trust and to compare trust between
humans with trust between technical systems in the succeeding chapters.
The next section gives an conceptual overview of selected components in
the black box.
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Figure 3.1: The main components considered when investigating the trusting person: Paula
(the trustor) is in a situation, in which she considers to trust Oliver (the trustee). As a result
of the consideration, she behaves somehow. Her behaviour will in turn influence the trustee
and change the situation.

3.1.2 Attitude, Decision and Manifest Behaviour

In their article (1970), Kee and Knox review the research on trust at that time
(mainly the work of Deutsch). They state that researchers had investigated
trust with experimental games and operationalised their definition of trust
accordingly. In their opinion, the observed behaviour in the game situations
was subject to many interpretations though. Only some of the interpretation
incorporated the concept of trust. As a consequence, they conceptualise
trust in a generic way, in order that it is useful for different research methods,
not just experimental games. Their main contribution is to conceive an inner
trust attitude and separate it from the observable behaviour. The attitude
is an internal state of the system, which makes it possible to consider the
observable behaviour as well as answers in questionnaires and interviews
to be indirect effects of the same inner state.

With the distinction of the trust attitude and the trust-related behaviour, the
internals of a trusting person can be conceptualised as shown in Figure 3.2
on the next page. Paula perceives the situation and especially Oliver. This
subjective process results in attitudes towards Oliver, like his perceived com-
petence, consistency or acceptance. But it also constitutes trust attitudes
towards the possible own choice in the trust situation – the trust-related be-
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Figure 3.2: Concept of the internal structure in the trusting person: Paula (the trustor) per-
ceives the external factors subjectively. From this subjective view on the trust situation, she
constitutes trust attitudes regarding several possible actions. Finally she decides for one ac-
tion, which becomes salient as her trust-related behaviour. All the processing is influenced by
her personality and thus is subjective. This model is simplified and only focuses on selected
trust-related aspects.

haviour. The attitudes represent expectations about the other’s behaviour.
They are internal states, feelings, and thus, a hypothetical concept.

The trust attitude is the inner opponent of the outside visible action: the
trust-related behaviour. A component for planning, decision making and
control transforms the trust attitude together with other influences into the
finally executed actions. So the manifest behaviour is not a direct result
of an individual’s trust, but a consequence of various thoughts, evaluations
and desires. Only some of them are related to trust. Section 2.5 shows
this with the help of an example. Consequently it is impossible in general
to conclude from a degree of trust directly to an action without considering
further influences that are unrelated to trust.

Usually the trusting person cannot only choose between a completely
trustful action and a completely distrusting action. Instead it can also opt
for an action in between. For example, the set of choices, when closing
a contract, could be to sign it as it is, not to sign it at all, to gather more
information, or to insert an escape clause.

All the processing in the trusting person is influenced by her experiences
and disposition: the perception, the trust development as well as the deci-
sion making (Forgas, 1985; Gennerich, 2000). These processes are very
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subjective. The additional state personality variables should indicate that
the inner processes depend on the trustor’s personality. This is only relevant
from an observers point of view to understand the different behaviours of
several trusting persons. The trustor himself needs not think about them.
They are just there; the trustor cannot get around her subjective perception
and judgement.

In summary, the blocks on the left and the right hand side of Figure 3.2
represent complex subsystems. The subsystem perceiving encapsulates all
the processing from the sensors up to the interpretation of the perceived
information. This process is very subjective. The subsystem planning &
deciding transforms the trust attitude into behaviour. The trust attitude me-
diates between both. But it is not the only inner state of the trusting person
that does so. The right block depends on many more attitudes, not just trust
attitudes.

3.2 External Influences – the Inputs

The inputs are attributes of the environment that affect the investigated sys-
tem. If the human body is considered a black box, the inputs are clearly
associated with the sense organs: eyes, ears, nose, tongue, and skin. They
capture input measures like light, sound, etc. These inputs do not suit to
describe interpersonal interaction, though. A higher level of perception must
be chosen.

In social psychology, person perception is concerned with complex prop-
erties of another person, like traits and motivation. Forgas (1985, p. 22)
emphasises that this is very different from object perception, because the
properties in person perception are hidden; they are subject to the inter-
pretation of the perceiver. So interpersonal perception is to a lesser extend
about pure perception but more about inferences. And both, direct percep-
tion and inferences, are very subjective in human beings.

The following section introduces concepts of interpersonal perception that
are necessary to understand interpersonal effects in the development of
trust. Then Section 3.2.2 details the influence of the other. The subjective in-
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ferences about the other’s behaviour develop trust. They are an appropriate
description level for the system inputs. More specifically, they reflect the per-
ception of the relationship, because they merge the perceivable properties
of the other with the own personality. In the conceptualisation of Figure 3.2
on page 42, they are located at the output of the subsystem perceiving. The
inferences at the output of this subsystem also suit to describe the influence
of situational properties (Section 3.2.3). It is not part of this dissertation,
though, what happens inside this subsystem. The end of this chapter dis-
cusses the interdependency between the inputs; they are mixed up when
inferring.

3.2.1 Interpersonal Perception

Trust is directed towards another person; it depends on the relationship be-
tween the trustor and the trustee. How human beings perceive traits and
form beliefs during the interaction with others, is investigated by the research
area of interpersonal perception (German: interpersonelle Wahrnehmung).
Its concepts help – as proposed by Gennerich (2000) – to better understand
the interaction between the trustor and the trustee. This section introduces
interpersonal perception as far as I use it in this report. It is mainly based
on Fassheber et al., 1990, Chapter 4; Kenny, 1994, Chapter 1; Laing et al.,
1966, Part 1; and Strack, 2004.

Paula’s trust is based on her view on Oliver. She forms her opinion con-
tinuously during interaction. This process is subjective. During perception,
her experience mediates her perception of Oliver’s behaviour, resulting in
the perceived behaviour. Thus two persons seeing the same situation, may
perceive it differently.

For example, if a beggar asks another person for money, this person could
think of him as a simple poor beggar or as a member of a Mafia-like beggar
group, which is not poor at all. Besides situational influences, the view on
the beggar depends on the personality of the perceiving person.

In interpersonal perception, researchers look at the interaction between
all participants, not only at one person’s view: Each person is “a self to
himself each an other for the other, together, in relation” (Laing et al., 1966,
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Oliver's experience

Oliver's behaviourPaula's perception

Paula's behaviour Oliver's perception

Paula's experience Common situation

Figure 3.3: Interaction in a group of two persons (dyad). Interpersonal perception empha-
sises the existence of reciprocal effects. Compare this with Laing et al., 1966, p. 9.

p. 6). The interaction between Paula and Oliver can be modelled as a loop as
drawn in Figure 3.3. Oliver subjectively perceives Paula’s behaviour, which
constitutes Oliver’s experience, resulting in Oliver’s decision and behaviour.
Then the same happens vice versa on Paula’s side. This mutual process is
interaction.

So far, I introduced the basic idea of interpersonal perception. In the
following, I distinguish several kinds of perception.

Paula may perceive Oliver as competent. This view of Paula on Oliver is
called other-perception or a perspective on the other (German: Fremdbild):
The one who perceives and the perceived person or object are different. I
write this as p(O), Paula’s perspective on Oliver. Paula’s perspective on a
thing, opinion, relationship (X) is also other-perception written as p(X ). The
perspectives o(P) and o(X ) are other-perceptions of Oliver.

Oliver may see himself as clumsy. This time, the perceiver and the per-
ceived person are the same. Such a view is called self-perception or a
perspective on myself (German: Selbstbild). Paula’s view on herself is also
self-perception. Self-perception and other-perception form the group of di-
rect perspectives (German: direkte Perspektiven).

In contrast to a direct perspective, a meta-perspective or meta-perception
(German: Meta-Perspektive) is the perception about another perception. For
example, Oliver may belief that Paula beliefs, he is going to cooperate. Such
a belief of Oliver about Paula’s belief about himself is written as o(p(O))
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Figure 3.4: Meta-perception. This comic shows the development of a meta-meta-meta-
meta-perspective (p(o(p(o(p(X ))))): “I see that he pretends not to know that I know that he
knows that I would like to go for a walk.”). With the kind permission of Bulls Press, © Solo
Syndication/Distr. Bulls.

(German: vermutetes Fremdbild). The comic in Figure 3.4 shows different
meta-perspectives.

Table 3.1 collects the perspectives used in this report. There a capital
letter symbolises the object of perception. A small letter symbolises the
viewing actor (e.g. p for Paula). Most perspectives look at the other one as
a whole. The superscript s in the table indicates a situational view: How
Paula currently perceives Oliver. Finally the superscript star means that
this perspective refers to an ideal/desired conception. The ideal can be
regarding competence, moral values, etc. I use my own notation derived
from Fassheber et al. and Kenny but more convenient for engineers and
consistent with other parts of this dissertation.

A perspective can also be the view of a group of persons or an institution.
For example, the opinion of a trusted group or institution is important for
reputation (see the paragraph about reputation in the following section).

According to Gennerich (2000, pp. 22–23), trust had mostly been investi-
gated with the perspective p(O) (e.g. by Rotter and Giffin) and correspond-
ingly conceptualised as an attitude regarding O’s personality. For him, self-
perception p(P) is also trust-relevant, especially in personal relationships.
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Name of the perception Short Definition

Self-perception p(P) How does P perceive herself?

Perception of the other p(O) How does P perceive O?

Other-perception of myself o(P) How does O perceive P?

Ideal image of the other p∗(O) How does P wish O would be?

Situational perception of the
other

ps(O) What behaviour of P does O
currently perceive?

Supposed other-perception
of myself

p(o(P)) How does P think O perceives
her?

Supposed group perception
of the other

p(g(O)) How does P think the group
perceives O?

Table 3.1: Kinds of perceptions that are used to model trust in this report.

He concludes that the trusting person evaluates relations of social percep-
tions. So trust develops depending on, how similar the other (p(O)) is to me
(p(P)), or how the other relates myself (p(o(P))) to him (p(O)).

Summary. During interaction, an actor takes up different perspectives
about herself/himself, about the other one or about things, opinions, relation-
ships, etc. These perspectives in their combination determine the perceived
relationship. Therefore they suit to systemically describe trust as a variable
of the relationship. The next section does so.

Note. Fassheber et al. name the classification of the perspectives (within
the research about interpersonal perception) Sozialperspektivität or Sozia-
le Perspektivität. As a generic term for any kind of perspective, they use
Sozialperspektive or soziale Perspektive.

3.2.2 Properties of the Relationship

Interpersonal trust is directed to another person (equivalent with alter, the
trustee, or the other). In the second book of his On Rhetoric, Aristotle
discusses that not only the arguments are important for persuasion, but
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also the way, how the listeners feel the speaker is disposed towards them.
Aristotle names three properties of the speaker that make the audience trust
him: “practical wisdom [phronēsis] and virtue [aretē] and good will [eunoia]”
(Rhet. 1378a: Aristotle, 1991, p. 121). Butler (1991) calls these properties
conditions of trust as they cause (“activate and sustain” (p. 644)) trust. He
developed his Conditions of Trust Inventory in an elaborate study over sev-
eral years. This inventory is a questionnaire to measure the causes of trust
and mistrust in a specific person. In four sub-studies, Butler identified and
validated nine factors: competence, discreetness, integrity, fairness & loy-
alty, openness, consistency, receptivity, availability, and promise fulfilment.

Gennerich (2000) collected the results of a few publications on this topic.
In his opinion, the properties of the trustee cannot be separated from the
interests of the trustor. Because of this consideration, he transformed them
into properties of the relationship and developed a classification based on
the concepts of interpersonal perception. Table 3.2 shows this classification.
It groups properties of the trusted person depending on the perspectives
they include. Then every combination of perspectives gets a group name
assigned.

In this section, I mainly follow Gennerich’s view and explanations while
detailing each perspective with regard to trust. Note that Gennerich also
discusses the perspective of the role model. If Paula perceives Oliver be-
cause of his role as an ideal for a certain aspect of her life, this is also a
condition of trust. I omit it, as it is rarely found in the literature.

Perceived competence. Trust refers to an expected behaviour, possibly
related to a delegated task. This behaviour can require a specific compe-
tence of the trusted person. For example, to trust a doctor, his perceived
medical competence is an important criterion.

Paula thinks Oliver is competent, if she perceives him (p(O)) as very sim-
ilar to an ideal person (p∗(O)) for the given situation. This ideal person can
represent a standard of performance respectively skills (expertise) or a stan-
dard of moral values (justice). When a leader represents a group, this ideal
person is a prototype that incorporate all opinions and ideas within the group
(German: Prototypikalität).
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Competence: p(O)− p∗(O)
Expertise: O performs his tasks perfectly.

O has the skills important for that task.
Justice: O pays attention to laws and moral principles.
Prototype-ness: O represents the group as a whole.

Consistency: p(O)− ps(O)
Predictability, dependability: O behaves as he did before in similar situations.

O behaves reliably and uniformly.
Honesty, integrity: O speaks as he really thinks.
Promise fulfilment: O does what he promises.
Discreetness: O can keep confidences.

Similarity: p(P)− p(O)
O has the same goals or moral values as I have.

Empathy: p(o(P))− p(P)
Understanding: O sees me as I am.
Receptivity: O understands my ideas.

Acceptance: p(o(P))− p(O)
O takes me as I am and stands by me.

Benevolence: O can relate myself positively to himself.
Loyalty: O protects me and makes me look good.

Reputation: p(g(O))− p(O) with regard to p∗(O)
Others compliment on O’s work.

Openness: p(o(P))− p(O) and p(O)− ps(O)
O tells me his ideas.
(acceptance and honesty)

Respectfulness: p(o(P))− p(P) and p(o(P))− p(O)
O incorporates my view in his behaviour.
(understanding and acceptance)

Availability: p(o(P))− p(O) and p(O)− p(P)
O is present when I need him.
(acceptance and closeness)

Table 3.2: Trust-related properties of the trustee. These properties are classified and ex-
pressed by relations of perspectives. The lower three properties are dependent in that they
are combinations of the upper six. (Adapted from Gennerich, 2000, p. 24)
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Butler (1991) investigated competence in terms of skills. (It is named
expertise in Table 3.2). He considers competence a very important property
of the trustee (p. 646). Butler also identifies the property fairness, which is
similar to justice. However he uses it more like benevolence or loyalty (see
the paragraph about perceived acceptance below).

Perceived consistency. Luhmann (1979) describes trust as a commit-
ment to one’s own expectation about the future. However Oliver must have
shown consistent behaviour in the past, so that Paula can predict his be-
haviour. The prediction results in the expectation, which in turn is evaluated
with regard to trust.

Oliver’s behaviour appears consistent for Paula, if this current behaviour
(ps(O)) can be predicted to his past behaviour, which can be considered
to be part of Oliver’s personality (p(O)). Similarly Paula perceives honesty,
if Oliver’s current statement (ps(O)) is consistent with his supposed state of
knowledge (p(O)). And finally, Oliver’s former promise (p(O)) is fulfilled in his
current actions (ps(O)). Discreetness is a special kind of promise fulfilment.

Butler identified four factors belonging to this group: discreetness, in-
tegrity, consistency, and promise fulfilment. He describes integrity as “hon-
esty and truthfulness” and consistency as “reliability, predictability, and good
judgement” (pp. 646–647). Butler also measured overall trust in a specific
person. The items of overall trust mainly loaded on the factor integrity. They
also loaded on the factors fairness & loyalty as well as discreetness, but
more weakly. Thus the attribution of integrity is the most important trait to
judge the trustworthiness of the other.

Perceived similarity. Sitkin and Roth (1993) investigated similarity with
regard to values. When Paula perceives that Oliver has different cultural
values than her, she will doubt his view of the world. “The threat of future vi-
olations of expectations arises because the person is now seen as a cultural
outsider—as one who ‘doesn’t think like us’ and may, therefore, do the ‘un-
thinkable’” (p. 371). Thus the value incongruence could compromise Paula’s
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concerns. Gennerich takes a step forward. The value incongruence could
let Oliver condemn her and so compromise her self-conception.

Gennerich also discusses reports about attraction to differences. If the
other definitely accepts one’s own person, similarity is not necessary any
more. In this respect, similarity should only ensure acceptance in the begin-
ning, as long as the acceptance of differences is not sure.

Also not that similarity can conflict with competence, although both are
conditions of trust. For a professional and distant relationship, competence
might be more important, as Section 3.4 shows.

Perceived empathy. According to Kee and Knox (1970), both, Paula and
Oliver, must be aware of her risk in the trust situation. To trust Oliver, Paula
must be confident that he knows about her situation and her act of trusting.

This knowledge is only a weak form of empathy though. It does not reflect
the importance of perceived understanding for trust development. If Paula
thinks Oliver perceives her (p(o(P)) differently than she perceives herself
(p(P)), she will accuse Oliver of that. This difference compromises her own
identity, because “self-identity is a synthesis of my looking at me with my
view of others’ view of me” (Laing et al., 1966, p. 5). Gennerich infers that
the self-identity is – besides others – a precious property Paula risks in her
act of trusting. Being understood supports the own identity and gives a
feeling of safeness, necessary to trust.

Butler calls one of his factors receptivity. He means with it whether Oliver
is open for Paula’s ideas. This is a form of understanding.

Perceived acceptance. To perceive acceptance, Paula must see that
Oliver can relate her (p(o(P))) to himself (p(O)). Oliver must be able to
integrate her personality in his life. So acceptance goes beyond simple sim-
ilarity, in that it allows both parties to be different. If Oliver can accept the
strange, the different sides of Paula, she can trust him despite the risk that
comes from the personal differences. “Acceptance can be considered a
form of behaviour here, which makes it possible that the dissimilarity of two
persons does not violate their identities (Gennerich, 2000, p. 46).

Butler identified a factor which is loaded by items about loyalty and fair-
ness. In his opinion, these two properties “are conceptually similar in that
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they both refer to one’s perception of another’s concern for one’s welfare.
However, fairness refers to perceived equity; loyalty, to perceived benevo-
lence” (p. 652). With this definition, he focuses on the favourable aspect of
fairness in contrast to justice with its more professional, distant meaning.

This relation of perspectives covers trust reciprocity, too. Especially in
personal relations, it may be important for trusting him that the other trusts
me (Butler, 1986). This is a form of acceptance.

Perceived reputation. Reputation is the opinion of others about a person
or community. In the development of trust, it is mainly used to validate one’s
own opinion. As such, the relation between both, the own opinion (p(O))
and the opinion of a group (a(g(O))), is evaluated with regard to an ideal
type (p∗(O)). As a consequence, the third-party information can exceed
one’s own experience in such a way that it even destroys trust (Gennerich,
2000, pp. 30–31).

Besides the verification purpose, reputation can create a kind of imper-
sonal trust, if one’s own experience with the other is too small (Gennerich,
2000, p. 30). This process can be modelled with Coleman’s (2000, Chap. 7)
principal-agent schema. The principal delegates the acquisition of trustwor-
thiness to the agent, who in turn determines alter’s competence or consis-
tency. Strasser and Voswinkel (1997) mention certificates as one form of
realisation. Today many parts of professional life depend on recommen-
dation letters of experts, school reports, academic or organisational titles,
seals of quality, etc. Certificates can even create trust, if alter is not present.
In some of the mentioned examples, the agent is an institution. Strasser and
Voswinkel call such an agent a trust agency (German: Vertrauensagentur ).
Examples of trust agencies are product testing institutions (Stiftung Waren-
test or Consumer Reports), credit protection agencies (Experian or Schufa),
and literary critics. Strasser and Voswinkel also note that trust agencies
must be suspicion agencies at the same time. This is, because the principal
only perceives them as trustworthy, if they discover and punish black sheep
(agents who betray).
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Besides the principal and the agent, alter is also concerned with his repu-
tation. Companies care for their corporate identity and, indeed, try to design
their publicly perceived image (Strasser and Voswinkel, 1997). The trust
in an organisation manifests in the trust towards its representatives and
the other way around. One trusts those representatives because of their
(known) social identity, not because of their (unknown) character. Strasser
and Voswinkel (1997, p. 225) call the trust in a specific social identity of
a person role trust (German: Rollenvertrauen), Gennerich (2000, p. 40)
transpersonal trust (German: Transpersonales Vertrauen).

The described formalised reputation process helps to establish trust be-
tween frequently changing and foreign actors. This is typical for modern so-
cieties with a wide division of labour. Sometimes, reputation is even estab-
lished based on a chain of contracts or certificates (Strasser and Voswinkel,
1997).

The theoretical concepts introduced above are only partly accompanied
by empirical research. Empirical studies mainly investigated reputation
through the structure of the social network.

Burt and Knez (1995) analysed the data of a survey among senior man-
agers about their network structure and success. The analysis showed for
a strong relationship that trust in a specific other person is higher, if the re-
lationship is embedded in a joint dense network, that is, if both have many
third parties in common. On the other hand side in a weak relationship, dis-
trust in a specific other person is higher, if the relationship is isolated from
the network, that is, if both have only few third parties in common. The study
analysis only one point in time; as such, it cannot draw the underlying dy-
namics in form of a cause-and-effect chain. Burt and Knez suppose that the
gossip of third parties mainly validates and thus confirms one’s own opinion.

Buskens (1998) modelled and simulated the influence of the network
structure on the trust level in a buyer-seller-scenario. The network struc-
ture is characterised by the ties between the buyers, which represent the
information flow. When looking at one individual buyer, a higher number
of outgoing information connections to other buyers (higher centrality) in-
creases the situational trust level of that individual buyer, because he has
a larger reputation effect and so is more dangerous for the seller. When
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looking at the network globally, a higher density of network ties increases
the mean trust level. Some other results were unintuitive, though.

Both studies above discuss the effect of reputation on the development
of trust towards a specific person. Reputation mainly serves to verify one’s
own opinion about the other. The verification often works as a confirmation
of trust or distrust. All in all, there is still need for empirical investigations
into the effect of reputation on trust (Burt and Knez, 1995).

Perceived openness, respectfulness, and availability. The previous ex-
planations have shown that a perspective represents not only one trait of a
person, but a group of adjunctive traits. In turn, a trait names a specific as-
pect of a perspective. It is likely that the perspectives have more aspects as
listed in Table 3.2. This section shows that such aspects must be combined
to describe some other traits.

When Paula feels Oliver is an open person, she perceives that he inte-
grates her in his life (an aspect of acceptance) and tells what he thinks.
Thus, openness follows from honesty and acceptance. In the same way,
availability combines aspects of acceptance and similarity (geographical
closeness), while respectfulness combines aspects of empathy and accep-
tance. These perspectives depend on other perspectives. For this reason, I
separated them from the independent perspectives in Table 3.2.

Butler investigated openness and availability. Gennerich lists a few au-
thors for all three of those combined perspectives.

3.2.3 Properties of the Situation

So far, I showed that trust depends on properties of the relationship, not just
on those of the other one. In the model introduced in Section 3.1, trust also
depends on variables characterising the situation. Many researchers have
investigated this situational influence empirically. In this section, I give an
impression on the topic by introducing a selection of these studies.

The situation sets the need for a decision, to trust or not to trust, be-
cause it has an inherent complexity associated with risk. Thus one group of
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situational variables determines the perceived complexity and risk. These
variables directly affect the perception of the trust situation. The variables in
the second group modify, how the trusting person perceives the properties of
the relationship as described in the previous section. The trustor takes these
modified properties into account when deciding to trust or not to trust. So
such situational characteristics affect the trust development only indirectly.

Situational properties affecting the perceived risk. Several situational
methods arose in the past, to strengthen trust for a specific decision: a cere-
monial oath, a testimony in presence of a witness, depositing a pledge, etc.
They all reduce the perceived risk of the situation (Strasser and Voswinkel,
1997). Heisig (1997) argues in the same direction when he says that the
chance of trust betrayal is low even without formal sanctions because of
social forces. The fear to be stigmatised in one’s social environment, for
example, acts deterrently.

A very interesting study of Oswald (1997) explored, whether an increasing
complexity of the situation increases the trust in a consultant. The subject,
in the role of a mayor, had to accept or reject an investor with the help of a
consultant. In the experiment, three different ways to explain the economic
connections were used, resulting in a simple, a medium complex, and a
very complex situation for the subject. In addition, either an appropriate or
an inappropriately simple consulting concept was offered.

It appeared that the subject perceived an increasing competence of the
consultant with an increasing complexity of the situation. The perceived
sympathy remained equal. Both together let to an increasing trust in the
consultant with an increasing complexity. This applies for both consulting
concepts. In addition, the subjects increasingly accepted the consulting
concepts, especially the inappropriately simple one. Oswald concludes that
the need for trust had increased because of the complexity. This need had
resulted in the changed perception. All in all, this study shows that the per-
ceived complexity of the situation influences the trust in the trusted person.
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Situational properties affecting the perception of the trustee. Commu-
nication is an important vehicle to perceive properties of the relationship. In
a game situation, an increasing amount of communication resulted in an
increasing amount of perceived mutual trust (Loomis, 1959). In a real life
situation, the perceived relationship does not only depend on the amount of
communication but also on its content (Alexander et al., 1989). Trust also im-
proves the communication in an organisation. This is important for efficient
work processes (Bierhoff, 1995). Note on all these investigations that trust
and communication influence each other strongly. Hence it can hardly be
separated, what comes first and what is the effect of the other (Kassebaum,
2004, p. 49).

The trusting person could also communicate with a third party. Then the
communication forms the reputation of alter as a situational property (Gen-
nerich, 2000, p. 18). Reputation is discussed as social perception in Sec-
tion 3.2.2.

In literature, there are some indications that power, control, and punish-
ment hinder the development of trust:

Strickland (1958) investigated a surveillance game situation, in which the
subject played a supervisor who could monitor the result of her/his subordi-
nates. However these results indeed were fixed, because the subordinates
were only faked. Thus trust development was based only on the supervisor’s
own attribution – without any evidence. In summary, the monitoring activity
of the supervisor led to lower trust in the monitored subordinate. Strickland
argues that trust development needs opportunities to be disloyal. Monitoring
avoids these opportunities.

A study of Tedeschi et al. (1969) shows the influence of social power on
the trust development. In a game situation with equal social power, subjects
cooperated more often in reaction on a message with an intent to cooperate
than in situations with unequal social power. In addition, their own messages
were true more often. In a situation with a decline in power, weak and strong
subjects acted quite competitive to maximise their gains.



3.3 External Effects – the Outputs 57

3.3 External Effects – the Outputs

Outputs are attributes of the system that affect the environment. A human
being affects the environment through verbal and non-verbal actions. In this
section, such behaviour is of interest, if it may be driven by trust. In the
following, the immediate behaviour of the trusting person is distinguished
from its secondary effects. The behaviour is the real output of the system.
The effects rather help to see the advantage of trust.

Trustful behaviour. In the literature, the forms of real-life trustful behaviour
are only investigated rarely. Most often, the authors were interested in pos-
itive effects of trust. Petermann (1996) is one of the few who study trust
with behavioural monitoring – making the immediate trust-driven behaviour
of the subjects the first-class object of the investigation. He classifies trustful
behaviour according to four features:

Self-exploratory statements open the own personality to the other. They
disclose information the other could misuse. Paula could fear that
others – if they come to know the information from Oliver – could mis-
understand it in a way that they think negative about her. In this case,
her standing in the group, that is, her social identity is risked. Thus
trust is necessary for such statements.

Here-and-now statements about the current situation involve risk because
the reaction of the other cannot be known in advance. This is in con-
trast to well-proved statements about previous experience, general
knowledge, or negligible information. This uncertainty requires trust.

A request for help gives the control to the other, on whom the requesting
person then depend. This involves trust. Often a request for help also
admits the own weakness and vulnerability. Such a request can be
verbal or non-verbal. For example, signing a contract is a non-verbal
form of agreement about help.
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A request for feedback can be understood as a request for help. However
it differs in the way that it allows a negative reaction of the other. The
requesting person makes herself even more vulnerable.

All items involve uncertainty and the risk to get disliked, exploited, dis-
appointed, or punished. They rely on trust. This list does not claim to be
complete, though. Petermann selected those items that are applicable to a
dyad and integrable in an interaction sequence. He gives further references
for other views.

Effects of trust. Trustful behaviour, that is the direct output of the system,
results in indirect, mostly positive effects. They underline the importance of
trust and may serve as motivation. Because of that, I give a rough overview
in the following, although the effects of trust are not directly related to the
system description. I follow Rotter’s (1980) distinction between personal
consequences and consequences for the society – or in general, for the
affected community.

Personal consequences include that “the high truster is less likely to be
unhappy, conflicted, or maladjusted; he or she is liked more and is sought
out as a friend more often, both by low-trusting and by high-trusting others”
(Rotter, 1980, p. 6). The high trustor opens up to others more easily and can
better interpret non-verbal behaviour of others; nevertheless he is not more
gullible (Koller, 1997, p. 16). In addition, trust lowers stress in relationships
(Gennerich, 2000, p. 11). This might be related to Oswald’s (1997) report
that trust is important to adapt the cognitive resources to the complexity of
the situation.

There are also advantages for the communities the trustor belongs to.
“People who trust more are less likely to lie and are possibly less likely to
cheat or steal. They are more likely to give others a second change and to
respect the rights of others” (Rotter, 1980, p. 6). Gennerich (2000, p. 12)
compiled studies from the area of market and organisation and concluded
that trust has positive consequences on the quality and quantity of the in-
formation flow, on the acceptance of information, on cooperation and nego-
tiation success, on the engagement within the organisation, on the general
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and team performance, and on the satisfaction. All in all, trust is important
for successful professional collaboration.

3.4 Inner Processing

The previous sections mainly dealt with the observable environment of the
black box in form of related studies. (Describing the interaction partner
with the concepts of person perception left the observable level, of course.)
This section presents assumptions about what happens in the human be-
ing. There are many theories on the subject. I only present three selected
topics, which help to relate interpersonal trust with trust between technical
systems. They are regarded in the succeeding chapters.

3.4.1 Trust as a Generalised and a Specific Expectation

In unknown situations, no experiences are available to support the decision.
Human beings have some amount of trust to cope with such situations. This
kind of trust is developed as a basic sense in the childhood (basic trust, Ger-
man: Urvertrauen) and is continuously learned by generalising over previous
experiences later. It is a generalised expectancy about the statements and
actions of unknown others (Erikson, 1968; McKnight and Chervany, 2001;
Rotter, 1980).

This kind of trust can be measured with questionnaires as a one-
dimensional magnitude (e.g. Couch and Jones, 1997; Kassebaum, 2004).
Persons who have high values on this component and those who have low
values are called high trustors and low trustors, respectively (German: Per-
sonen mit geringer/hoher Vertrauensbereitschaft). Rotter (1980) thinks that
high trustors grant a credit to their interaction partners if no clear-cut data is
available. This credit lasts until clear evidence makes it impossible to trust.
With this strategy, high trustors can better exploit chances. This is different
to gullible or naive people, who trust, even if there is clear evidence not to
trust. On the other hand, low trustors start with suspicion in the absence of
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clear-cut data. Trust must develop in a process of proving. With this strategy,
low trustors take less risk.

The following two experiments illustrate the differing strategies: In a game
experiment (Parks et al., 1996), high trustors reacted with increased cooper-
ation on a message that the unknown other wants to cooperate, low trustors
did not. In contrast, low trustors decreased cooperation after a message of
the other that indicated competition, high trustors did not. In a perception ex-
periment (Gurtman and Lion, 1982), low trustors recognised connotatively
negative words faster than other words, while high trustors recognised all
words in about the same time. So the perception of the other and the situa-
tion depends on the personality of the trustor. Low trustors seem to be more
sensible about risk.

This unspecific expectancy is necessary at the beginning of an acquain-
tance when there is insufficient information about the other one. In the
course of the aquaintance, direct experiences with the other one provide the
necessary information to form a specific expectancy (McKnight and Cher-
vany, 2001). Trust then depends on the perceived relationship. This form
of relation-specific trust can also be measured with questionnaires. They
show that high and low trustors can develop strong trust in a specific person
likewise (Couch and Jones, 1997; Kassebaum, 2004).

The trust in a specific other is still a generalisation over several situations,
but regards a fixed person. The trust in a single trust situation is the most
specific judgement. So while trust as a generalised expectancy is consid-
ered a stable trait of some one, the trust in a specific situation depends
on the properties of that situation and the experience with similar situations
(McKnight and Chervany, 2001).

What does all that tell us for this dissertation? First, a trust mechanism
needs the ability to derive trust from past experiences with similar situations:
it generalises over the similar experiences. Note that here, the situation in-
cludes the trustee. If the current situation is rather new and unknown, all
existing experiences are taken. This results in a rather stable generalised
expectancy for all unknown situations. The more the properties of the cur-
rent situations are similar to those of experiences (including the properties of
the trustee), the more specific the trust becomes and the more it may differ
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Actual relationship

Desired relationship

Problematic situation

Trust intention

Figure 3.5: Model of trust development according to Gennerich (2000, p. 62). In a given
situation, trust is high if the relationship with the trusted person matches the need.

from the generalised expectancy. This way, the trust mechanism specialises
on the trustee and the situational context. Or in other word: To judge the
current situation, the trust mechanisms takes all experiences, while those
that are more similar to the current situation have a stronger influence on
the resulting trust than those that are less similar. This is postulated as a
requirement in Section 4.4.2.

Second, a person can form a trust attitude towards various classes of sit-
uations, not only towards a completely specific situation. Someone can have
a trust expectation about a specific person, about a completely unknown sit-
uation, about his family and friends together (Couch and Jones, 1997), about
a certain company (McKnight and Chervany, 2001), etc. If some properties
interest are independent from each other and each property defines a class
of trust situations, then independent trust components could be found for
each class. This feature of interpersonal trust let to the concept of query-
ing for the Enfident Model as introduced in Section 6.4. Querying describes
that the trust mechanism can reason about the current situation but can po-
tentially infer many other magnitudes too. The querying mechanism is only
conceptual though. A trust algorithm needs not implement it.

3.4.2 Matching of the Actual and the Desired Relationship

Gennerich (2000) takes a different approach to describe how trust is formed
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Figure 3.6: Importance of the trustee’s properties depending on the distance of the relation-
ship according to Gennerich (2000).

in a given situation. It is illustrated in Figure 3.5 on the previous page. For
him, the situation defines a problem for the individual. To solve the prob-
lem, another person could be helpful. This results in a desired relationship,
which is not connected with a certain other. It just describes what kind of
relationship would be ideal to solve the problem. Then the relationship with
a specific other person can be compared with this ideal. The closer both
are, the higher is the trust intention. Note that the trust intention is the inner
trust state in Gennerich’s text.

Thus the model combines the situational context with the trusted person
to form trust. This is like others do. The properties of the trusting person are
hidden, on the one hand, in the word relationship and, on the other hand,
in the way, how the situation is perceived as a problem and transformed in
a desired relationship. The model emphasises that there is a problem to
address with the help of another person. The trustworthiness of this other
person depends on that problem.

The problem, in turn, is defined by the situation. When comparing this with
the situational influences described in Section 3.2.3, the first group of influ-
ences that define the perceived complexity and risk, are clearly assigned to
the problem and result in a certain desired relationship. In contrast, the sec-
ond group of influences that affect the perception of the trustee, may result
in a certain desired relationship but may also be perceived as a property of
the present actual relationship.

A first class problem for humans is identity building. A personal identity
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is supported by relationships with similarity, empathy and acceptance. For
example, Paula could talk with Oliver about her problems with her mother.
She might want to get support for her position (stabilise her personal iden-
tity), but also some hints how to handle the situation in a better way (solve a
personal problem).

In contrast, a professional context needs more competence and reputa-
tion. When Paula brings her car to a garage, for example, she wants to
know what is defect with her car (help with a professional subject) and to be
treated as a respected customer (meet her social identity), while she might
have talked with the mechanic Oliver never before.

Gennerich distinguishes close and distant relationships and connects
them with the perspectives of interpersonal perception that were introduced
in Section 3.2.2. Figure 3.6 visualises this assignment and the above sce-
narios are examples for a close and a distant relationship, respectively. The
assignment of perspectives to the one or the other kind of relationship is
weak. It should express that the given perspective is especially important
for the assigned context. Consistency is essential for all kinds of relation-
ship. Without a consistent behaviour, no clear expectation could be formed.

Personally, I agree with the model of Gennerich, because it feels like a
good tool to analyse trust situations. It shows that trust is not a rating of
the relationship but the matching of a problem with the relationship. The
problem requires a certain kind of relationship, that is, a certain way the
trustor wants to be treated. The model of Gennerich helps to analyse trust
situations between persons accordingly.

But how does the model relate to trust between technical systems? When
technical systems interact, they do so to fulfil a certain job. They focus on
a professional subject matter. In Gennerich’s classification, this is a distant
relationship. Consequently for trust between technical system, consistency,
competence and reputation are mainly effective. So it is sufficient to focus
on that kind of relationship in this dissertation.

In addition, the idea of matching a problem with a solution is quite familiar
to engineers. This view helps to understand trust.

On the other hand, the model shows how trust between persons and trust
between technical systems differ. Close relationships to not matter in the
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technical case, because machines do not have something like an identity
that needs to be formed and maintained. This is a major difference. It makes
clear that results from interpersonal trust should only be transferred to tech-
nical systems with care.

3.4.3 Self-Perception

Finally, I want to point to two studies of (Koller, 1988) and Zak et al. (1998).
They investigated independently of each other whether interpersonal trust
develops in response to one’s own actions. Following self-perception theory
(Bem, 1972), people develop their attitude by observing the own action and
inferring what attitude it comes from.

In the experiment, every individual had to perform an action that requires
trust in another person. Directly before this action, the trust is the other
person is measured with a questionnaire. This is also done directly after
the trustful action and before the trusted person could comply and betray.
So the amount of positive or negative experiences is not changed during
the experiment. The only thing that really happened before the two trust
measurements is the trustful action of the trustee. It turned out that trust
increased in the consequence of the own action and the amount of increase
was related to the risk the trustful action involved.

The experiment shows that the own action caused the increase in trust,
not the behaviour of the trustee. This sounds unexpected, because the pur-
poses of trust as introduced in Section 2.2 indicate the trust is a mechanism
to handle the uncertainty that comes along with the trustee.

Koller (1997, 1988) argues that the decision to take a risk in a trust sit-
uation depends not only on the amount of positive experience with the in-
teraction partner, but also on the importance of the goal that can only be
reached with the help of the other one. A trust situation comes along with
a lack on control. Trust creates an illusion of control by overestimating the
competence and reliability of the trustee. This illusion transforms the feeling
of helplessness in a feeling of confidence, so that the goal could finally be
reached. These considerations could also explain the findings of Oswald
(1997).
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With regard to technical systems, it seems desirable that trust should de-
pend on the performance of the trustee, not just on own actions without any
exchange. People expect that a machine is a somewhat rational device.
In summary, this section should make clear that there might be major dif-
ferences in the working of interpersonal trust and trust between technical
systems.

3.5 Summary

This chapter introduced interpersonal trust in order to deepen the under-
standing of trust in general as well as to highlight similarities and differences
between interpersonal trust and inter-machine trust. This way, human be-
ings can serve as a prototype for some aspects of trust between technical
systems. To relate both disciplines with each other, I found it useful to con-
sider the trusting person with regard to her trust-related processing as an
input-output system. This is a view often taken in technical fields.

An input-output model clarifies what is outside and what is inside the sys-
tem. The objects outside the system can be observed by an investigator,
while the processing inside the system can only be assumed; it is subject to
theories.

Trust is conceptualised as an inner state of the system. It is not directly
observable, but effects trust-related actions and statements (including those
in questionnaires), also called risk taking actions. These are the observable
system outputs. They are rarely investigated though. Usually secondary ef-
fects like improved communication or happiness are the subject of research.

The expectation of the trusting person in a specific situation, that is the
cooperation outcome, depends clearly on the person, whom is trusted, and
on the situational context. So it is plausible that researchers found them to
be the inputs of the system.

To describe the influence of the interaction partner, directly observable
properties are inappropriate. The perceiving trustor implicitly makes infer-
ences about the other’s traits and motives. In the model, this happens in
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the perception component, a conceptual sub-system that precedes the trust
component. The traits and motives are the outputs of this sub-system. So
the concepts of person perception suit better for this purpose. Relations
of perspectives as perceived by the trusting person allow a conclusive de-
scription of the inputs. This idea has been proposed by Gennerich (2000).
It is borrowed for this dissertation, because it is very systematic and gen-
eral. Understanding it may help to design a trust algorithm for a specific
application.

Gennerich identifies seven perceived relations: Consistency (including
predictability and honesty), competence (including expertise and justice),
similarity, empathy, acceptance (including loyalty and benevolence), reputa-
tion and role model. They are all used to form the expectation about the
cooperation outcome. The reader may wonder why just predictability is not
sufficient for this. If the behaviour of the other one is predictable, that would
be sufficient to form a clear expectation; and if it is unpredictable, no expec-
tation for a single outcome could be found.

Predictability describes the other’s behaviour over several interactions in
similar situations. It applies to all kinds of trust situations. In contrast, most
other characteristics like expertise, honesty, empathy or acceptance reflect
abilities that are necessary to solve the one or the other problem. The trust-
ing person may need some one to repair her car, to talk about her mother, to
talk about religion or to share a secret. Different abilities are necessary for
these cooperation tasks, but all of them can be realised in a predictable way.
Therefore to form a trust expectation, the individual must judge whether the
cooperation partner has the necessary abilities and whether he applies his
abilities in a predictable way. Falcone et al. (2003) identify in addition that
the other one must be willing to perform the task. So the predictability de-
scribes whether the trusting person can well model the other’s abilities and
willingness. If the model is insufficient, it results in wrong expectations and
thus unpredicted behaviour.

The studies about the characteristics of the interaction partner present
correlations between those characteristics and the degree of trust. The cor-
relations can be explained in the above way that trust is a magnitude that is
derived from those characteristics. Or they can be explained in the way that
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the trust attitude and the other attitudes towards the relationship with the
trustee depend all on common subsets of other internal states; they have
common causes. These joint sources may indeed exist, because all these
attitudes are mainly based on previous interactions with this opponent. So
these interactions are the experience that drives the formation of attitudes
towards the trusted person. Both points of view are valid, because they
cannot be distinguished by an external observer. Section 10.2.2 further dis-
cusses the subject with regard to the Enfident Model.

The situational context defines the problem for the trusting person. For
this problem a good solution with a good result is desired. The individual can
match the problem with the interaction partner. So both together form the
trust expectation. On the other hand, the trusted person faces this situation
as well. He first agrees to do the task that is inherent in the problem (if there
is an explicit agreement) and later actually performs it. So the situational
context and the intended interaction partner are in a relationship from both,
the trustor’s and the trustee’s point of view.

The inputs and the outputs are the observable part of the model, the func-
tional conception of the system. This dissertation does not cover decision
and action. Instead it stops when the trust expectation is obtained. So for
this text, the inputs are more interesting than the outputs of the black box.
The inputs of the Enfident Model are compiled in Section 6.2.

The set up and processing within the human being can only be assumed.
The presented model conceptualises three main components that are re-
lated to trust. The perception component observes the environment and
makes inferences about it. It works subjectively and, thus, reflects, what
the individual thinks, not what is true. The trust component forms the trust
attitude towards the present trust situation, which is an inner state of the
system. To do this, it takes the outputs of the perception component. This
component also works subjectively. For example, some people are more
suspicious than others. The trust attitude than influences the planning and
decision making component. Other considerations and attitudes affect this
process as well. So the resulting decision and trust-related behaviour may
reflect the trust attitude but may as well be quite different from it. If this
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set up is applied to technical systems, this dissertation deals with the trust
component only.

The trust component learns for a specific situational context and inter-
action partner. But it is also able to generalise over similar contexts and
partners in order to judge new settings. This functionality is discussed for
the Enfident Model in Section 6.3. The model of Gennerich (2000) empha-
sises that the trusting person needs to match the situational problem with
the interaction partner, which should help with the problem. As a conse-
quence, different characteristics of the interaction partner influence the trust
attitude depending on the kind of situation. So trust can also be considered
as a problem-related evaluation of the trusted person. Finally some studies
suggest that trust is developed not only in response to the other’s behaviour
but also to own actions.

In summary, looking at interpersonal trust gives some interesting insides
and helps to understand trust. In the consequence, some ideas of the Enfi-
dent Model are inspired by the thoughts in this chapter.
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This chapter reflect on features of the mechanism trust and relates them to
the work of others. These features are requirements for a new trust algo-
rithm. In some cases, the introduction of the literature leads to a feature in
the text. In other cases, own pre-considerations formulate a feature, while
references are given afterwards. For the literature review, I chose only few
trust algorithms, although a vast number of papers could be found. Two aims
guided the selection: First, the review should present a wide range of trust
concepts to explain the various features of trust. Second, the papers should
cover a wide range of applications. This should emphasise the general utility
of trust and the general applicability of the required features.

In data networks, trust helps to rate the reliability of the exchanged con-
tent. The selected literature includes methods for wireless sensor networks
(Zhang et al., 2006), vehicular networks (Bamberger et al., 2010, 2012;
Golle et al., 2004), and general ephemeral networks (Raya et al., 2008).
The trust literature in the field of multi-agent systems usually considers the
scenario of trading agents at a virtual market place. Trust should arise be-
tween buyers and sellers (Rettinger et al., 2008; Ramchurn, 2004; Sabater
and Sierra, 2002; ElSalamouny et al., 2010).

The work of Falcone et al. (2003) is conceptual. They combine beliefs
to obtain a trust belief. How they obtain the first level of beliefs remains
open though. It seems they want to model human trust with a computational
formalism. The dissertation of Marsh (1994) is conceptual in a similar way.

Section 1.1 already clarified that this dissertation focuses on the trust de-
velopment in the individual only. Trust-related subjects on the society level
are omitted, although they are certainly important for a trust-based soci-
ety of technical systems. They include, for example: norms and policies
(Ramchurn, 2004; Zhang et al., 2006); privacy (Eichler, 2009; Engler, 2007);
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Figure 4.1: Common causes between several cooperation outcomes.

cryptographic mechanisms, like secure protocols or secure platform (Eich-
ler, 2009; Engler, 2007; ISO/IEC11889-1, 2009; Zhang et al., 2006).

Reputation and recommendation systems work on the society-level as
well. But they share some features with an individual-level trust mechanism.
For this reason, the following references are used in this chapter too. The
reputation system of the eBay Inc. (2013) is well known. It is a centralised
system for a single platform. Another paper with a similar goal is Jøsang
and Ismail, 2002. On the other hand, distributed reputation systems want
to manage reputation across platforms and with enhanced privacy (Engler,
2007; Yu and Singh, 2002).

4.1 The Causality of Trust Development

The trust mechanism forms an expectation about an act of cooperation.
Such an expectation is a glance in the future, a prediction of how the in-
teraction partner will behave. When removing all the logical constraints of
what can happen, a trust situation remains uncertain though, because the
cooperation partner is there with his freedom to act. There is a lack of control
or information as already discussed in Section 2.1. Why is it possible then
to take a cautious look into the future and predict the other’s freely chosen
behaviour? Prediction is only possible, if the other one acts not completely
random. There must be statistical dependencies in the behaviour of the co-
operation partner. This is the reason, why developing trust makes sense at
all.
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For example, if vehicles cooperate in a network by exchanging informa-
tion, a cooperation outcome could be represented as the difference between
the reported and the real value. When a vehicle received five messages in
the past, the cooperation outcomes can be denoted by the random vari-
ables X1, ... , X5 as shown in Figure 4.1. Some of these outcomes could be
statistically dependent. The messages of the outcomes X1, X2 and X3, for
example, could have been from the same sender, and those of the outcomes
X4 and X5 from another sender. A sender has certain sensors and software
with their own abilities and drawbacks. They could induce sender-specific
correlations between the outcomes. In the figure, the double arrows with
a solid line indicate that the messages of the connected outcome variables
have been sent by the same trustee. Similarly two vehicles could have ob-
served the same traffic sign; they performed the same task. Some tasks
are more difficult or require different abilities than others. So the task as
the subject of cooperation could induce a statistical dependency too. In the
figure, this dependency is represented by a dashed line. For example, the
messages two and four, and the messages three and five could refer to the
same task. Finally the situational context, in which the message is received,
could correlate with the cooperation outcome as well. Some regions, for
example could have lower criminal activities or, simply, better cars than oth-
ers. In the figure, the messages two, three and four have been received
in the same situational context. The correlation between their outcomes is
shown with dotted arrows. So a double arrow in the graphic indicates that
the connected variables are correlated with each other but do not influence
one another. Instead a common cause that is hidden affects both. (Pearl,
2000 introduces such graphical notations of causality.)

In the example, the sender can be characterised by some attributes like,
whether it is an emergency vehicle, how old it is, or whether it is a bus, truck,
etc. Most of these attributes do not directly affect the cooperation outcome,
but they may be correlated with it. The real cause may be hidden in the
sensors and the software of the sender. The sensory system, in turn, comes
from the manufacturer, which also influences all other attributes. So there
are hidden causes that connect the attributes of the sender with cooperation
outcomes and the outcomes with each other. The resulting cause-effect
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chain goes from the hidden variables to the cooperation outcomes and other
observable attributes, but not from the attributes to the cooperation outcome.

Note that some observable variables may influence other observable vari-
ables. There is a direct cause-effect relation. These cases are more obvious
and easier to understand than the above consideration though.

In summary, the hidden variables introduce statistical dependencies be-
tween the observable variables. The dependencies in turn make it possible
to predict some observable variables from others. Trust is a mechanism
that exploits these statistical dependencies. With trust, a system can infer
from some observable variables to the cooperation outcome based on past
interactions. But what are these observable inputs?

4.2 Influences

If a trust mechanism should handle the uncertainty of a trust situation, it
must assess this situation comprehensively to understand it. This section
shows what attributes of a trust situation influence the trust development in
the literature. I do not state every single attribute, which the various trust
methods consider, but group them by entities they belong to, like the coop-
eration partner or the cooperation task.

Some basic trust algorithms attribute trust completely to the cooperation
partner (Bamberger et al., 2010; eBay Inc., 2013; Zhang et al., 2006; Jøsang
and Ismail, 2002; Yu and Singh, 2002). They disregard that a cooperation
partner could perform various tasks differently. The algorithms take all out-
comes from past interactions with a certain partner, rate them and estimate
the trust in a new act of cooperation based on these ratings.

If a method develops trust depending on the task, it is often called context-
aware. Such methods usually derive trust from the outcome ratings too, but
incorporate some degree of interdependence between tasks (Bamberger
et al., 2012; Engler, 2007; Ramchurn, 2004; Sabater and Sierra, 2002). The
tasks are pre-defined as a list. The methods do not consider task and part-
ner attributes. There are two exceptions though: Firstly, Ramchurn (2004)
discusses the role of norms and rules (e.g. legal or platform dependent),
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which are attributes of the task. Secondly, Sabater and Sierra (2002) incor-
porate an attribute of the cooperation partner to model that the trustee may
belong to a group or institution.

Golle et al. (2004) as well as Raya et al. (2008) take a completely dif-
ferent approach. They disregard or neglect the possibility of learning from
past cooperation outcomes, mainly because they think that the interaction
partners do not cooperate several times. Instead they only consider the
plausibility of the exchanged information. The algorithms reason about the
geometric setting, possible sensor capabilities, the type of information or a
group-membership of the partner, for example. So they relate present at-
tributes of the task and the partner entity with each other.

Only the method of Rettinger et al. (2008) handles the available informa-
tion in a generic way. It explicitly mentions the entities for the cooperation
partner and the state of the context. It considers a set of characterising at-
tributes for both of them and sets of attributes that describe the cooperation
agreement and the real cooperation outcome. However their method does
not consider attributes of the partner-task relation that are not part of the
agreement or the real outcome. For example, Raya et al. (2008) use the
temporal and geographical proximity between the task and the cooperation
partner to deduce the plausibility of the received data.

So far, the first group of methods learns trust from past cooperation out-
comes. The second group of methods considers attributes of the present sit-
uation only to derive something that could be called the plausibility of some
information. The work of Castelfranchi and Falcone forms a third line of
theory regarding the influences of trust. (The following introduction specifi-
cally refers to the method described in Falcone et al., 2003.) They propose
a high-level method that works on subjective beliefs, not on observable at-
tributes of the trust situation. Their nomenclature is strongly influenced by
work in the social sciences.

Following their approach, the following five beliefs mainly determine the
trust in a given situation. The first three are attributed to the cooperation
partner (internal factors); the last two regard the cooperation task (external
factors).
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The ability/competence belief describes the partner’s physical and mental
skills to choose and perform the right procedure in order to reach the
desired goal. For example, to reload some goods, a robot needs spe-
cific arms, a sufficient allowed maximum load, and the algorithms to
control his hardware sophisticatedly.

The willingness/disposition belief refers to the willingness, steadiness and
availability of the trustee to act as agreed. The ability for an action
is insufficient. The partner must also come into action. Certainly the
trustee’s behaviour may be an indicator for his willingness. But also
the fact that he belongs to a certain group could indicate his willing-
ness and steadiness, especially if experiences are missing. Falcone
et al. attribute willingness to cognitive agents only. I take the term for
all kinds of technical systems in this dissertation.

The unharmfulness belief represents the absence of risk that is intrinsic to
the cooperation partner. This risk includes, for example, the danger of
a machine break. So the unharmfulness belief addresses the quality
of the work like the ability belief, but it emphasis the negative experi-
ences. It is the belief that relates to the feeling of safety with regard to
the cooperation partner.

The opportunity belief summarises opportunities of the context that are in-
dependent of the cooperation partner. If a vehicle, for example, re-
ports a traffic sign, the fact whether the sign has been observed at
night (little light) or during the day (much light) may be relevant con-
text information.

The danger belief covers the absence of obstacles that are independent of
the cooperation partner. For example, when a medical assistant dur-
ing his education treats you, you may feel safer if an experienced doc-
tor is nearby. The basic task and person is the same, but the risk
assessment changes because of this additional context information.
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These beliefs together provoke trust. Falcone et al. propose a scheme
based on a fuzzy cognitive map to combine the beliefs to a trust belief. But
were do those beliefs come from? How can a technical cognitive system
judge the willingness of the cooperation partner? Falcone et al. leave this
question open; they just name four general kinds of sources:

Direct experiences cover former trust situations whose outcome is already
known.

Categorisation of the cooperation partner refers to the deduction of class
properties to a class member. For example, a doctor could be trusted
without knowing him directly, just because he is a doctor.

Reasoning is a more general form of deduction than categorisation. And
finally,

Reputation covers the experiences of others.

In their evaluations, these sources have predefined values. All in all,
Castelfranchi and Falcone seem to model human trust and apply it to multi-
agent systems, specifically to belief-desire-intention agents (Wooldridge,
2000). While the author of this dissertation thinks that there are some
main differences between inter-personal trust and inter-machine trust (as
discussed in Chapters 2 and 3), the work of Castelfranchi and Falcone gives
an important alternative view on trust in distinction to the other literature
introduced in this chapter.

This section covered three approaches to trust theory: One focuses on
the rating of past cooperation outcomes. Another one checks the plausibility
of the present situation. And the third line evaluates beliefs on a high ab-
straction level. In the following, the various considerations in the literature
are systematised and extended with own ideas. They all regard the same
problem but from different points of view.
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View on the affecting entities. Many trust algorithms rate cooperation out-
comes depending on the cooperation partner and the performed task.
In contrast, the vehicular network example, which was described in the
previous section, shows that there are two kinds of situations: that of
the task execution and that of the message exchange (the bargaining).
Thus there are indeed three entities affecting the trust considerations:
The cooperation partner, the task context and the bargaining context.
They are further detailed in Section 6.2.

View on correlating variables. The previous section already showed that the
cooperation outcome correlates with some other attributes of the trust
situation. Consequently all attributes of the mentioned entities that
may correlate with the cooperation outcome should be included in the
inference to exploit all available correlations.

Temporal view. All entities induce dependencies in the outcomes of several
interactions. This makes it possible to learn from experiences. The
present situation also restricts the possible states of the future. Con-
sequently the constraints in the presence allow to judge the plausibil-
ity of possible cooperation outcomes. (How the plausibility is checked,
could be learned from experience in turn.)

View on the partner’s abilities. This view matches the partner with the trust
situation from the trustor’s point of view. The trust situation exposes
a problem to the trusting system and the other system is the right
partner, if it is able to help with the problem in the desired way. So the
ability refers to the view of the trustor on the trust situation. (Here the
term ability refers to expertise but also to traits like empathy, loyalty,
etc. They can all help to solve a personal or professional problem.) As
a consequence, a trust algorithm should be based on all observable
variables that could correlate with the partner’s abilities.

View on the partner’s willingness. This view matches the partner’s needs
and chances with the trust situation as perceived by the trustor. The
trustee faces the trust situation and relates it to its own goals. So the
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willingness refers to the view of the trustee on the trust situation. It
affects the cooperation outcome as well. As a consequence, a trust
algorithm should regard all observable variables that could correlate
with the partner’s willingness. Especially during the bargaining, the
partner could express its willingness.

All these views help to understand the inference problem completely. The
following requirement summarises that.

Requirement 1 (Influences). To judge an act of cooperation, a trust method
should evaluate it comprehensively. Thinking

• of the affected entities, their attributes and correlations;

• of the different situations the trusting system has experienced over
time; and

• of the abilities and willingness of the trustee

helps the algorithm designer to identify all influences. In addition, the ex-
pectation computed with a trust algorithm should indeed depend on those
influences.

As a main contribution, this document unifies all these lines of trust theory
in one model of trust, the Enfident Model. This model can be understood as
a framework to analyse and understand existing trust algorithms as well as
to devise a new trust algorithm specific for a certain application.

4.3 Output of a Trust Algorithm

This section describes some qualitative properties of the output that should
be provided by a trust algorithm. The right output depends on how it is
processed in subsequent modules.
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4.3.1 Trust Representation

All investigated trust algorithms provide a trust value. It may be a discrete or
continuous value (often in the ranges [0, 1] or [−1, 1]); and it is computed for
every combination of input parameters. So some algorithms distinguish only
one trust value per cooperation partner, others attribute many trust values
to a cooperation partner, depending on the input parameters.

Ramchurn (2004) as well as Sabater and Sierra (2002) emphasise that
every single property of a cooperation outcome should be evaluated sepa-
rately instead of one rating per outcome. In the scenario of a virtual market
place for example, the delivery time, the properties of the delivered product
and the price in the bill should all be rated on their own. This way, a decision
algorithm can better balance the ratings depending on the current situation.

Some trust algorithms provide just a trust value (Falcone et al., 2003;
Golle et al., 2004; Jøsang and Ismail, 2002; Ramchurn, 2004; Raya et al.,
2008; Rettinger et al., 2008). Others associate a trust value with an addi-
tional ignorance value (Bamberger et al., 2010, 2012; Engler, 2007; Zhang
et al., 2006). The ignorance value describes how certain the trust value is.
So it is usually related to the amount of evidence, on which the trust value is
based.

For some authors, a trust value fails to sufficiently describe the past
behaviour of the cooperation partner. As a consequence, Yu and Singh
(2002) introduce an additional distrust value to better distinguish positive
experiences (the trust value) and negative experiences (the distrust value).
Sabater and Sierra (2002) incorporate a deviation value that should reflect
the variability (or unsteadiness) of the partner’s rating.

Both, the distrust value and the deviation value, try to better describe the
form of the distribution over the cooperation outcomes. But again, they fail to
represent any kind of distribution. They still reduce the information contained
in a distribution into two values. So in general, a decision algorithm could
benefit from knowing the whole distribution instead of just these two values.

For this reason, I propose that a trust algorithm should provide the whole
distribution over the cooperation outcomes, the trust distribution; and it
should do so for every single property of the outcome (see also Section 2.5).
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A distribution is a general description, from which various kinds of trust val-
ues can be derived. It is also very useful for a decision algorithm, because it
can be well combined with a utility function and other decision-related con-
siderations.

In addition, a trust distribution should be accompanied by an ignorance
value to quantify the evidence the trust distribution is based on. Both to-
gether provide the complete information from which other characterising
measures can be derived.

Requirement 2 (Trust representation). A trust algorithm should compute
an expectation for every attribute of a cooperation outcome separately. An
expectation should quantify the belief in or the likelihood of every possible
value of its attribute (the trust distribution). In addition, the algorithm should
state the certainty of the trust distribution, for example, in form of variances
for the distribution parameters or in form of the amount of evidence.

A trust algorithm can also provide a trust value if needed and a distrust
value. Both typically characterise some aspects of the trust distribution and
can be derived from it. They are especially useful to talk about trust with
other systems.

In the same way as the trusting system should evaluate the likelihood of
every possible cooperation outcome, the trusted system should be allowed
to give likelihoods for the possible cooperation outcomes during the bar-
gaining. A vehicle, for example, could say that there is a speed limit sign
showing the limit 80 km/h with a certainty of 0.2 and 60 km/h with a cer-
tainty of 0.8. Prohibiting uncertain outcome agreements would suppress the
spreading of uncertain information although such information can be useful
for the receiver.

4.3.2 Trust and Decision

Some trust methods include the decision logic (Raya et al., 2008; Zhang
et al., 2006); thus they integrate various pieces of information to one value
or determine the optimal action to perform. In contrast, the Enfident Model
and many other trust methods stop directly before the decision making.
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In alignment with the literature in the social sciences (Sections 2.5
and 3.1), I think that decision making is influenced by much more than trust.
In other words, trust is an attitude that can manifest itself in corresponding
behaviour but needs not. So I expect decision algorithms that exploit the in-
formation provided by a trust algorithm, but also consider further aspects of
the situation like other sub-goals or alternative sets of actions. As a conse-
quence, the decision algorithm should be separate from the trust algorithm.
(Compare this with the systematics in Section 2.5.)

Requirement 3 (Inner state). A trust algorithm should provide an expecta-
tion towards a certain cooperation outcome. This expectation represents an
inner state of the system. It needs not determine its final action.

So from a conceptual perspective, trust development and deciding are
two distinct concepts. But of course, it could be reasonable to combine both
in one algorithm. This depends on the application.

4.3.3 Trust, Risk and Utility

The provided trust value can be understood as a likelihood indicator (as
in Bamberger et al., 2012, 2010; Raya et al., 2008; Rettinger et al., 2008;
Zhang et al., 2006; Golle et al., 2004) or as a utility (or risk) indicator (as
in Ramchurn, 2004; Sabater and Sierra, 2002). (Certainly in some sce-
narios, both are equivalent.) This distinction of a likelihood and utility/risk
interpretation applies only to trust methods that have a technical system as
the evaluating entity. For reputation methods with human user input, the in-
terpretation as a likelihood or utility is up to the user (Engler, 2007; Falcone
et al., 2003; Jøsang and Ismail, 2002; Yu and Singh, 2002).

I think, whether the trust value should reflect the utility and risk (interest-
related trust) or just a rate (probabilistic trust), depends on its usage. (Com-
pare this with the systematics of Section 2.5.) For this reason, the Enfident
Model addresses both cases. Considerations about utility and risk are typ-
ically located in a decision module, which is much more than evaluating
trust. Therefore the probabilistic trust distribution is recommended for the
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interface between the trust module and the decision module. On the other
hand, an interest-related trust value could be useful for talking about trust
and interacting with reputation systems.

4.4 Reasoning Process

So far, the input and the output variables have been identified. They already
say much about what a trust algorithm should do. In the following, some
general aspects are discussed how a trust algorithm should reason on the
available evidence. They are qualitative aspects independent of any specific
algorithmic technique.

4.4.1 Present Constraints and Experience

Golle et al. (2004) as well as Raya et al. (2008) consider only parameters of
the current situation and combine them with a fixed algorithm that discards
experiences. (Refer especially to p. 1916 of Raya et al., 2008.) Besides
other techniques, they exploit logical constraints between the variables to
judge the cooperation outcome (see also the previous Section 4.2).

Falcone et al. (2003) combine beliefs that may origin in experiences. They
define a fixed logic for the combination. They never state though, how to
obtain these beliefs.

Most methods explicitly show how to use past outcome ratings to estimate
the trust in new cooperation (Bamberger et al., 2010, 2012; Engler, 2007;
Ramchurn, 2004; Jøsang and Ismail, 2002; Sabater and Sierra, 2002; Yu
and Singh, 2002). The way how they combine these ratings is a logic with
fixed parameters though. Such an algorithm requires the designer to know
exact correlations and thresholds. This is often not the case.

Zhang et al. (2006) make a first step towards parameter learning. They
use clustering to estimate one parameter. Only Rettinger et al. (2008)
propose a complete statistical model, for which most parameters can be
learned. He uses a technique similar to that proposed in Chapter 7.



82 4 Requirements and Related Work

All in all, I think that learning from the past is inherent to the trust mecha-
nism. Experiences can help to better estimate trust in analogue situations.
Together with generalisation techniques (see below), they also help to judge
about new situations. Additional logic also reduces the number and the
probability of future states. Thus present constraints are another important
tool to compute an expectation about the cooperation outcome.

How certain experiences and certain attributes of the current situation
cause a new cooperation outcome, is hard to define. It may even depend
on the specific environment the system lives in. As a consequence, a trust
method should define a schema for learning (of parameters and, possibly,
even of the reasoning structure).

Requirement 4 (Present constraints and experience). The reasoning pro-
cess of a trust algorithm should evaluate constraints of the current situation
and learn from past acts of cooperation. The experience should even influ-
ence the parameters of the process.

The trustor should use the most up-to-date set of experiences and eval-
uate trust as late as possible. This is important because reasoning is non-
monotonic, that is, additional evidence can change the reasoning result sig-
nificantly (Pearl, 1988, p. 17). Use Case 6 on page 166 gives an example.
Even the order of the experiences matters in some cases as Section 4.4.3
below discusses. On the other hand, all experiences cannot be stored for-
ever. So efficient experience storage and late evaluation must be balanced
reasonably.

Requirement 5 (Non-monotonic reasoning). A trust algorithm should be
able to revise the judgement of a previous cooperation outcome.

4.4.2 Specialisation and Generalisation

A trust algorithm should learn from experiences to better judge a certain
situation. It specialises on that situation with an increasing amount of expe-
rience. But a main purpose of trust is to support acting under uncertainty,
that is, in quite new situations. Thus a trust algorithm should also generalise
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over all past situations to judge a new (possibly similar) situation. It should
transfer the lessons learned so far to a new problem. So transfer learning
(e.g., Pan and Yang, 2010) is an important technique for a trust algorithm to
handle the uncertainty of new situations.

Those trust algorithms that do not learn cannot specialise and generalise
(Raya et al., 2008; Golle et al., 2004; Falcone et al., 2003).

Some trust algorithms consider the cooperation partner the only situa-
tional property (Bamberger et al., 2010; Zhang et al., 2006; Jøsang and
Ismail, 2002; Yu and Singh, 2002). So they specialise for the partner but for
no further aspect of a situation. None of them considers generalisation.

Other algorithms allow different kinds of cooperation tasks (Bamberger
et al., 2012; Engler, 2007; Ramchurn, 2004; Sabater and Sierra, 2002). So
they specialise on the combination of the task class and the partner. But the
classification of the tasks is predetermined, so the degree of specialisation
is fixed. The algorithms handle generalisation in different ways. Sabater
and Sierra (2002) as well as Ramchurn (2004) make no mention of gen-
eralisation. But in fact, different kinds of cooperation may share outcome
attributes. So some attributes are learned across various trust situations. In
contrast, Engler (2007) explicitly defines context area dependencies through
a weighted graph. The weights must be known by the designer; so this form
of generalisation is static. The algorithm of Bamberger et al. (2012) gen-
eralises across cooperation tasks dynamically. The experiences with other
tasks should only fill the lack of knowledge about the task of interest. So if
many experiences are available for a task, the experiences with other tasks
only have a low weight. And the other way around, if only little is known
about a task, the experiences with other tasks dominate the result.

Finally Rettinger et al. (2008) use probabilistic clustering for dynamic spe-
cialisation and generalisation (similarly to the algorithm proposed in Chap-
ter 7). With an increasing number of experiences, the clusters have stronger
characteristics (specialisation), while the number of clusters possibly in-
creases. The clustering assigns every single experience to every cluster
with a degree of similarity. So the algorithm generalises over all clusters.
This is, to our knowledge, the only related work that can generalise over
cooperation partners.
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I think that handling uncertain situations is an important purpose of a trust
algorithm. Generalisation helps to do so. It is a form of transfer learning.
With it, the trusting system can judge cooperation partners, bargaining con-
texts or task contexts, even if no or only few experiences are available for
some of them. So it especially supports to form initial trust as Rettinger
et al. (2008) emphasise. (Initial trust is the trust in a situation, for which no
experience is available; that means no experience is available for the exact
combination of all three entities.)

Requirement 6 (Specialisation and generalisation). A trust algorithm should
generalise over and specialise for the cooperation partner, the bargaining
context and the task context.

Experiences that are more similar with a trust situation should stronger
influence the resulting trust. This implies that the algorithm specialises
stronger for a certain situation, the more similar experiences it knows.

For example, a system wants to judge a new trust situation that features
the cooperation partner P2 and the task context T2. (For simplicity, I omit
the bargaining context here.) It never had cooperation with the same combi-
nation of entities. But it cooperated with the partner P1 for the task context
T2 and it cooperated with the partner P2 for the task context T1. Because
P1 and P2 are similar to a certain degree as well as T1 and T2, the trusting
system can generalise over the partner and the task entity at the same time
to judge this new situation. In fact, it would consider all task contexts and
all cooperation partners depending on their similarity to the current problem.
Note that Zacharia and Maes (2000) require that a new cooperation partner
should have an initial trust value that is related to, how easy an identity can
be changed in the system. Otherwise a system with a bad reputation could
simply change its identity to increase its reputation.

4.4.3 Entities as a Time-Varying Process

The cooperation partner can be understood as a statistical process, because
its behaviour can be perceived as non-deterministic from the observer’s
point of view. So far, this chapter assumed that the inner working of the
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trustee does not change. The observable behaviour looks as it would come
from a static statistical process.

While the basic set up of the cooperation partner may remain stable
throughout its life time, the whole performance can change though. For ex-
ample, a software update can improve the cooperation quality significantly.
(It is more likely than a hardware modification). Another example for a non-
static behaviour is a hardware defect. It results in a temporary decrease
of the performance. After the defect has been repaired, the performance
goes up again. This happens abruptly. A third notable example is malicious
software that misuses the technical system for other purposes. This form of
unwanted system modification is especially discussed in the field of cogni-
tive vehicles that cooperate through a vehicular network. Section 8.2 gives
exemplary use cases for it.

So assuming the process to be static is inappropriate. The model must
include a concept of time that allows the process to affect the cooperation
outcome differently depending on when the cooperation happens.

The examples above showed that the cooperation partner must obviously
be modelled as a time-varying process. Is this also the case for the other
entities of Section 4.2 (the bargaining context and the task context)? On a
first glance, a situational context describes something that has no own way
of working. It is just a collection of variables, which the participating sys-
tems perceive. But this is exactly, why a situational context may change its
influence on the cooperation outcome, although its observable attributes do
not change: Either the trustor or the trustee perceives or evaluates a situ-
ation differently than before, or some situational properties that are missing
in the trust algorithm have changed. So yes, basically all entities can be
time-varying processes. However this way of modelling seems especially
important for the cooperation partner.

Requirement 7 (Time-Varying Processes). A trust algorithm should respect
time and treat the entities of a trust situation like time-varying processes. In
the application, this could be unnecessary for some entities though.

How is this requirement realised in the literature? Some algorithms disre-
gard experiences and thus do not model the dynamics of the entities (Raya
et al., 2008; Golle et al., 2004; Falcone et al., 2003). Other algorithms take
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the experiences as an unordered collection (Rettinger et al., 2008; Zhang
et al., 2006; Yu and Singh, 2002). Consequently they neglect time as well.
While Ramchurn also disregards the temporal order of the experiences, he
discusses that the algorithm could better adapt to the current behaviour of
the cooperation partner if it drops old experiences (Ramchurn, 2004, pp. 76,
101 and 129)

Some algorithms take a step further by weighting the experiences accord-
ing to their ages (Engler, 2007; Jøsang and Ismail, 2002; Sabater and Sierra,
2002). This is a simple but explicit model of the time-dependent nature of
trust development. Bamberger et al. (2010, 2012) address quick changes in
the behaviour of the cooperation partner with loop control. The mechanism
is too simple for complex scenarios though. Only recently (January 2013), I
found a paper (ElSalamouny et al., 2010) with a similar approach like mine
for this requirement. There a hidden Markov model (see Bishop, 2007 for an
introduction) produces the outcome of an interaction. But the model is still
to simple to integrate other trust functionalities like those of Requirements 1,
4 and 6.

4.5 Summary

This chapter looked at various aspects of a trust algorithm, from the input
variables and the processing of the algorithm to the output variables. So
it followed again the schema of an input-output system. The focus was
on the trust development in the individual. Other trust-supporting features
were omitted. Note that the input-output schema is not used for the Enfi-
dent Model in the next Chapter, because it is too restricted for a general
reasoning approach as Section 6.4 points out.

The work of other authors and own ideas complemented each other to
get an image of, what a trust method should do, independently of a specific
application. Seven requirements have been identified. Some of them are not
met by any current trust algorithm. Such a definition of clear requirements
for trust methods is new. It is a contribution to a theory of trust between
technical systems.
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This chapter clarifies the notation and some terms, which are used through-
out this dissertation. This is done on an example. As a consequence, the
text sometimes reads like a tutorial, although it does not introduce the sub-
ject matter. The text just introduces the notation. For further readings on the
subject matters, references are given in every section.

5.1 Probabilistic Notation

This section describes the statistics-related symbols and notation that are
used in the remaining chapters. The reader can find an introduction to
modern probability theory based on measure theory, for example, in Bar-
toszyński and Niewiadomska-Bugaj, 2008; Fristedt and Gray, 1997 and
Schmidt, 2009. This section is based on these books.

I introduce the notation on an example. This makes it easy to understand
the symbols, even if the reader knows a different notation. In the exemplary
experiment, a coin is tossed twice. It can show its head (referred by the
symbol H) and its tail (referred by the symbol T).

Probability space. The sample space Ω = {HH, HT, TH, TT} is the set
of all outcomes. Any subset of the sample space is called an event. For
example, a = {HH, HT} is the event that the first toss shows the head.
The event corresponding to the empty set is called the impossible event or
null event. The probability measure P assigns a probability to every event
including the null event (P : F 7→ [0, 1]). F is a σ-field or σ-algebra of
subsets of Ω. (It “is a collection [. . . ] of subsets of Ω that has ∅ as a member
and is closed under complementation and countable unions“ (Fristedt and
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f ∈ F P(f ) f ∈ F P(f ) f ∈ F P(f ) f ∈ F P(f )
∅ 0.00
HH 0.25 HT 0.25 TH 0.25 TT 0.25
HH, HT 0.50 HH, TH 0.50 HH, TT 0.50
HT, TH 0.50 HT, TT 0.50 TH, TT 0.50
HH, HT, TH 0.75 HH, HT, TT 0.75 HH, TH, TT 0.75 HT, TH, TT 0.75
HH, HT, TH, TT 1.00

Table 5.1: The probability table that describes the probability measure P in the coin example.
An event f has happened if the experiment’s outcome is part of it.

Gray, 1997, p. 6).) The pair (Ω,F ) of a set Ω and a σ-field F over Ω is
called a measurable space. The triple (Ω,F , P) forms the probability space.
Table 5.1 describes F and P for the coin example.

An intersection of events appears often in the text. To simplify the notation,
I write commas for this operation. This is very common in the literature. So
the joint probability P(a, b) is equivalent to P(a ∩ b).

Random variable. A random variable X is a mean to describe an event.
Its value can be considered the result from a measurement of a random
process. Technically it is a measurable function from the probability space
(Ω,F , P) to another measurable space (Ψ,G), so X : F 7→ G. (Note that
some authors further restrict random variables to have numerical values. I
do not so.) For example with the help of a real-valued random variable X , the
inequality X < a describes an event in the image of X . In the domain of X ,
the same event is represented by the set of all elements ω ∈ Ω that satisfy
X (ω) < a. In the coin example, the random variable X could assign a num-
ber between 1 and 4 to every element in Ω (Ψ = {1, 2, 3, 4}). Then X = 3
corresponds to the event {TH} with the probability P(X−1({3})) = 0.25
and 2 ≤ X ≤ 4 corresponds to the event {HT, TH, TT} with the proba-
bility P(X−1({2, 3, 4})) = 0.75. (X−1 is the preimage of X .) So random
variables can be used to easily name certain events. As another exam-
ple of notation, the random variable Y could give the result of the first coin
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toss (Ψ = {H, T}). Then P(Y = H) refers to the probability of the event
{HH, HT}.

To ease writing the probabilities, another probability measure PX : Ψ 7→
[0, 1] could be introduced and defined as PX (ψ) = P(X−1(ψ)). It is the
distribution of X . Together with PX , the image space (Ψ,G) is a probability
space as well. The notation X ∼ F expresses that the random variable X
has the distribution F .

Sometimes this text uses the term discrete random variable. It refers to a
random variable from Ω to Ψ, for which a countable set U ⊆ Ψ exists with
P(U) = 1.

In addition to the strict notation above, this dissertation uses the following
common simplifications. The symbol P denotes arbitrary probability mea-
sures, although they are different objects. The context and the argument of
the measure help to distinguish them. Furthermore events {ω} containing
only a single outcome ω ∈ Ω can be written without surrounding brackets.
Consequently if two experiments are considered, the double coin toss of the
example above and a single coin toss associated with the random variable
Y , then the following notation can be used: P({HH}) = P(HH) = P(X = 1) =
P({1}) = P(1), P({Y = 1} ∩ {X = 2}) = P(Y = 1, X = 2) and “P(Y = 1) is
greater than P(X = 1)”.

All in all, random variables are widely used to give names to events. They
are usually defined by their image, hiding the underlying probability space.
This approach aligns well with the invariance principle of random variables
postulated by Bartoszyński and Niewiadomska-Bugaj (2008, p. 126). They
state that a single experiment can usually be described with several sam-
ple spaces. Random variables help to work independently of the underlying
sample space. In this dissertation, the sample space often remains unde-
fined. Instead the image of a random variable is regarded.

Conditional probability and independence. When, in the running exam-
ple, the coin is tossed once and it shows its head, it is said that the event
c = {HH, HT} occurred. Knowing this event changes what probability is
associated with the events of the probability space. The old probability mea-
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sure becomes invalid, because some additional information is available. The
experiment changed. The new probability measure is called the conditional
probability measure. It is written as P(a | c), where a is a free variable de-
fined on F and c is fixed. Schmidt (2009) defines the conditional probability
measure as the indefinite Lebesgue integral∫

χc

P(c)
dP, provided P(c) > 0.

χc(ω) is the indicator function of the event c. It is 1, if ω ∈ c, and 0 otherwise.
The value of the conditional probability measure for a certain event a is
called the conditional probability of a given c. It can be computed with the
well known formula for the conditional probability:

P(a | c) =
∫
a

χc

P(c)
dP =

P(a ∩ c)
P(c)

. (5.1)

Inference is based on partial knowledge (experience) about the future
state of the world. This partial knowledge can be modelled as a condition
in the way shown above. So the idea of conditioning will be very important
throughout this dissertation.

In modelling tasks, it is sometimes hard to quantify probability measures.
In contrast, the following independence properties can often be found intu-
itively. For this reason, I recall them here; they are important for the following
sections and chapters.

Two events a and b are statistically independent, if the probability of the
one does not change in the light of the information that the other one has
occurred. Formally this is the case, if the equation

P(a ∩ b) = P(a) P(b)

holds. Often the wording is abbreviated by saying a and b are independent
– omitting the word “statistically”.

Let h be another event with P(h) > 0. Then a and b are conditionally
independent given the event h, if

P(a ∩ b | h) = P(a | h) P(b | h).
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This means, when knowing h, the information about B does not change the
probability of a. Finally note that both independence properties above are
a commutative property of the relation. They hold in both directions: a is
independent of b and b is independent of a.

Knowing that two events are statistically or conditionally independent usu-
ally simplifies a model. This is the reason, why both properties are so im-
portant for this dissertation.

Finally I recall the well known theorem of Bayes, here in the form that is
often considered in statistical inference. The theorem follows from Equa-
tion 5.1.

P(A = vi | d ,H) =
P(d | A = vi ,H) P(A = vi | H)∑NA

k=1

[
P(d | A = vk ,H) P(A = vk | H)

]
∝ P(d | A = vi ,H) P(A = vi | H)

The symbol A denotes a random variable, which can take on the values vi

with i = 1, ... , NA. d represents the observed data and H the hypothesis,
which typically contains the parameters and the model structure. The sym-
bol ∝ expresses that the right hand side equals the left hand side except
for a scaling factor that is independent of vi . In other words, normalising
the right hand side so that it sums up to one results in the left hand side. I
call P(A = vi | H) the prior distribution or just the prior, P(A = vi | d ,H) the
posterior distribution or just the posterior and P(d | A = vi ,H) the likelihood,
which updates the prior in the light of the data.

5.2 Graphical Notation

To describe the problem of trust development, I need a notation that com-
bines data with uncertainty and logic. This dissertation uses the probabilis-
tic entity-relationship models of Heckerman et al. (2007). The directed form
of this graphical language combines elements from entity-relationship mod-
els (Chen, 1976) and Bayesian networks (Pearl, 1988). For this reason, it
should be easily understandable for readers that know those. Here I only
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recall the elements that are used in the dissertation to clarify the notation.
For an introduction, please refer to Heckerman et al., 2007.

Entities refer to subjects and objects of the model and help to identify the
data of interest. Relationships describe the logic that underlies the entities.
Entity-relationship models focus on the types of entities, not on entities di-
rectly. As an example, consider a bag of coins, every one of which is tossed
twice. Then each experiment consists of three entities: one coin and two
tosses in a specific order. With every coin, the same two tosses are per-
formed. They are the single trials of the experiment. So every coin is in a
relationship with two trials.

The exemplary setting can be transformed in a probabilistic entity-
relationship model. It contains two entity types: the type Coin and the type
Trial. Every entity of the type Coin is related to two entities of the type Trial.
This relationship is of the type Thrown. Figure 5.1 shows how this setting
can be expressed graphically as an entity-relationship model. An entity type
is drawn as a rectangle and a relationship type as a diamond. They are
connected with dashed lines. Observe that this model describes a logic on
a data set. The entity types induce the predicates is-coin and is-trial. They
help to test, whether an entity e is of a certain type: is-coin(e) is true only, if e
is an entity of the type Coin. Similarly the relationship introduces a predicate
is-thrown-in that connects coins and trials. If a trial t has been performed
with a coin c, the predicate is-thrown-in(c, t) is true, otherwise it is false. (In
this example, of course, that predicate is always true, because both trials
have been performed with all coins.)

Coin TrialThrown

Figure 5.1: Graphical description of the entities and their relations in the coin toss example.
The rectangles are entities; the diamond is a relationship.

So far, the model simply described the setting. Typically people are also
interested in the data of an experiment. Imagine that a coin is white, blue
or black and it can show head or tail. This introduces two attribute types.
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Every entity of the type Coin has an attribute of type Coin.Colour and ev-
ery relationship of the type Thrown has an attribute of type Thrown.Side.
Through the entities and their relationships, every side value is associated
with a colour value. Attribute types are drawn as ovals and connected with
their entity or relationship types by a dashed line as shown in Figure 5.2.
This diagram also contains the attribute type Trial.Number to distinguish the
first from the second toss. Note that an attribute type can be understood as
a function from a set of entities or relationships of a certain type to a value
set.

Coin TrialThrown

Colour NumberSide

Figure 5.2: Graphical model of the entities, relationships and attributes in the coin toss ex-
ample. Attributes are drawn as ovals.

A main point of an entity-relationship model should be emphasised here.
The model describes the structure of data sets. To make a specific data
set out of it, the entities and their relationships (the skeleton) as well as the
values of the corresponding attributes must be given. Such a specific data
set is an instance or a realisation of the model.

Entity and relationship types make up a type hierarchy as known from
object-oriented programming languages. This is an important feature to
model different but possibly similar trust situations. A type Y derived from
X is associated with the same attribute and relationship types as X , but can
have additional attribute and relationship types. Thus a sub-type extends the
parent type. This way, the concept of a cooperation partner can be modelled
as a type, while the sub-types are kinds of machines, which can have com-
pletely different attribute types. For example, a vacuum cleaning robot can
be characterised by its year of manufacturing and the power of its engine,
and a kitchen robot by its year of manufacturing and its kind of arm. Both
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types can exist in the same model and be handled as cooperation partners.
I regard a type that is not derived from any other type as a root type.

The following three functions help to access the structure of the data.
The function entities regards the entities associated with an attribute. If a
is an attribute of the entity e, entities(a) maps to the set {e}. And if a is
an attribute of the relationship r , entities(a) results in the set of all entities
that are connected with r . The function type maps to the type of an entity,
relationship or attribute x . It provides the specific type of an object, not a
parent type. If x is of the type t , type(x) results in t . Finally the function
roottype maps to the root type of the entity e in the type hierarchy. If e is of
the type t which is derived from the root type R, then roottype(e) results in
R. Note that all these functions take instances as arguments, not types.

Imagine now that the coins are not fair. Instead they have different bino-
mial distributions depending on their colour. So the side attribute correlates
with the colour attribute. This can be expressed with an arc type. This again
is an element on the type level. It can be realised for given attributes. An
arc type is drawn as an arrow in the diagram. The direction of the arrow
specifies a conditional probability distribution. The starting point is the con-
dition. If the conditioning does not matter, just a solid line with no arrow is
used. Note that the main element of this graphical notation is the absence
of an arc. Attributes that are not connected are conditionally independent.
Figure 5.3 shows the arc type between the attribute types Coin.Colour and
the Thrown.Side. Because the trials with a certain coin are statistically inde-
pendent, no arrow starts at Trial.Number.

Coin TrialThrown

Colour NumberSide

Coin[Colour] =
Coin[Side]

Figure 5.3: Probabilistic entity-relationship model of the coin toss example.
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In the diagram, the arrow is annotated with “Coin[Colour] = Coin[Side]”.
This annotation is a constraint on the arc type. In a realisation of the model,
the arc is only present, if the constraint is fulfilled. The given constraint in
the figure is a sloppy form of the expression that for a given coin c and
a given relationship Throw(c′, t) between a coin c′ and a trial t , the arc is
present only, if c = c′. So this constraint simply says that an arc is not drawn
between all colour and side values, but only between the coin’s colour and
the resulting side that were part of a single trial. Because it is the typical
case in this document that arcs connect only the attributes of those entities
and relationships that are either connected directly or through a relationship,
that constraint is taken as an implicit constraint and usually omitted. This
convention makes the graphical presentation cleaner.

The probabilistic entity-relationship model again describes the structure
of a data set and the independence relations in the structure. So it is no
Bayesian network. Rather, entities and their relationships as well as values
of their attributes are necessary to transform the model in a Bayesian net-
work. In this dissertation, the model is often conceptual though. It describes
the problem but not the algorithm. Thus it is not intended simply to trans-
form it in a Bayesian network and run standard algorithms on them. Rather
the presented model could be realised with different Bayesian networks and
algorithms. Chapter 7 shows as an example of, how the conceptual model
of Chapter 6 could be realised in a Bayesian network structure.

This dissertation is mostly interested in causes and their effects, not in
probability distributions. Although the description of causality was not the
intention behind probabilistic entity-relationship models, their notation suits
well for this purpose (see also Pearl, 2000). In this context, an arrow de-
scribes a cause-effect relation; it is not associated with a conditional proba-
bility distribution. The starting point of the arrow is the cause, the end point
the effect. Such a graphical model is not a generative model any more. It
could be realised by generative and discriminative algorithms. This is the
way, how I use the graphical notation throughout Chapter 6.





6 The Enfident Model

This chapter presents a trust mechanism for technical systems by showing
different views on it. All these views describe the same model of trust. They
are sub-models. I call the complete model the Enfident Model. It is a quali-
tative model of trust, because it only states how the reasoning should work,
but omits a specific reasoning algorithm. Chapter 7 shows a straight-forward
implementation then. A qualitative model helps to understand and investi-
gate the principles of trust and to evaluate various reasoning techniques for
trust development. As a consequence, the Enfident Model can be thought
of as a meta trust model or a framework for specific implementations.

The next section introduces the basic setting of a trust situation. Sec-
tion 6.2 then defines the data that is involved in a trust situation. The way
how a reasoning mechanism should connect these pieces of data is shown
in Section 6.3. The sections up to there describe a model that contains
trust, but they do not state what the actual output of the model is. Sec-
tion 6.4 then presents a flexible mechanism, how to get something out of the
model. Finally Section 6.5 gives some advise for designers who make an
implementation for a certain application scenario.

6.1 Trust-Related Situations

Trust involves two parties: The one who is trusting, that is, who expects
certain behaviour of another one; and the one, whom is trusted and who
acts. Both interact with each other in different situations, depending on the
application scenario.

Some of these situations feature the behaviour and abilities of the trusted
system. They are the situations of the task execution. For example, imagine
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Figure 6.1: UML use case diagram of the basic trust setting. Two parties interact in two
kinds of situations with one another.

the scenario of a logistics centre where three robots move a large box. One
of them is the trusting system; the two others are trusted systems. They
perform the task in cooperation. Or consider the scenario of information ex-
change in a vehicular network. The task here is to obtain some information
that is exchanged later. So during the task execution, the trusted system
may be at a different place than the trusting system and both may not even
know each other yet. This setting may look unexpected at a first glance.
It is detailed in Section 8.3. All in all, the situation of the task execution is
characterised by the actions of the trusted system, about which the trust-
ing system has an expectation. These actions require and, thus, manifest
certain abilities of the trusted system.

In some scenarios, both parties negotiate on the intended act of cooper-
ation before the task execution. This happens in the situation of bargaining.
The following examples illustrate different forms of bargaining situations. In
the logistics centre example, the robots may have talked about, what task is
to do, whether the trusted robots can perform the task, when the task should
be done, etc. In the vehicular network scenario, the bargaining happens af-
ter the task execution. The vehicles simply talk about information they have
observed some time ago. In addition, the bargaining can be implicit here.
The trusting vehicle often accepts any information with the only requirement
that it is correct. Moreover consider a car that is overtaken by another one.
The slower car is expecting and, thus, trusting that the faster car is not hit-
ting it. This scenario of forced dependence between both vehicles has been
introduced in Section 1.1. Here the cooperation is very loose and implicit. It
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t
C1 C2 C3C1 C2 C4 C4 C3/1 C3/2

Figure 6.2: Exemplary time line of trust situations. C1, C2, C3 and C4 are acts of coop-
eration. The light grey refers to situations of bargaining, the dark grey to situations of task
execution.

involves no explicit bargaining. In summary, while the bargaining does not
feature the actions of interest, it may correlate with them. The subject of
the negotiation connects the bargaining with the task execution. The trusted
person can indicate its motivation and willingness in the situation of bargain-
ing. This situation can be before or after the task execution. It can have
the form of an explicit bargaining or it can be just an imagined situation of
implicit bargaining.

As a result, the basic setting is that two parties, the trusting and the trusted
person, interact in two trust-related phases. This simple but important idea
is depicted in Figure 6.1 as a UML use case diagram. Both phases may
consist of several single situations. For example, the performance of a task
can take several days. Or one part of the cooperation could have been
negotiated in one meeting, while other parts were added later. This view on
the time is visualised in Figure 6.2. It shows that the bargaining can happen
before the task execution (C1, C3 and C4) or after the task execution (C2).
Every phase can be made up of several interactions, like the task execution
of C3. And several acts of cooperation can overlap (C3 and C4).

When thinking about trust, the trusting system can be at any position on
the time line: at the end of the bargaining, for example, or in the middle of
the task execution. There it may reason about an unknown property that
is obtained anywhere else on the time line. For example, it could reason
about how moving some containers will end up – in the future –, or it could
want to know what the sending vehicle has really observed – in the past – in
contrast to what it has sent. This is the basic setting underlying the Enfident
Model: two parties interact over time in situations of two kinds, accompanied
by uncertainty. The model takes the available information and reasons about
missing pieces. The next section systematises the involved information from
an entity-relationship perspective.
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6.2 Data Definition

This section defines the data, which appears in the Enfident Model, in an
object-oriented way. A trust algorithm learns models of the others’ be-
haviour. As a consequence, it must consider all information that can cor-
relate with the behaviour of interest.

6.2.1 Overview

Figure 6.3 visualises the data model in form of an entity-relationship diagram
(Chen, 1976). It describes types of objects and a logic that relates them with
each other. The model is detailed in the following.

As introduced in the previous section, the cooperation partner faces two
situations when deciding about an act of cooperation: the situation of the
bargaining and that of the task execution. In the first one, the coopera-
tion partner negotiates about the task to perform and, in the end, claims
to achieve a certain cooperation outcome. The other’s statements and be-
haviour in this situation can indicate its attitude towards the act of cooper-
ation and can thus correlate with the task execution. They are related to a
belief about the other’s willingness, which has been proposed by Falcone
et al. (see Section 4.2). Consequently this situation features two indepen-
dent entity types for an object-oriented data model: the cooperation partner
and the bargaining context. They are related with one another in two types
of relationships. One describes, how the partner negotiates in that situ-
ation independently of the task, and, thus, independently of the trustee’s
task-related ability. The other relationship type contains the final agreement
about the cooperation outcome and the task-dependent negotiation charac-
teristics. This it what the trustee claims to achieve. Figure 6.3 shows all
these types on the left.

Later the cooperation partner performs the cooperation task. This situ-
ation features the behaviour of interest and requires certain abilities of the
trusted system. So it is related to Falcone et al.’s belief about the other’s abil-
ity or competence (see Section 4.2). This situation again includes two inde-
pendent entity types: the cooperation partner and the task context. One of
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Figure 6.3: An entity-relationship context diagram describing the data included in the Enfi-
dent Model.

the relationship types between those two entity types characterises, how the
trustee’s ability fits for the task independently of the bargaining. Another re-
lationship type describes the real cooperation outcome and the willingness-
related behaviour during the task execution. This is what the trusted system
achieves. Figure 6.3 shows these types on the right.

The bargaining context and the task context may also be in a relationship,
although this relationship seems to be less important. To emphasise the
temporal progress, the model contains two relationship types between those
entity types: the task-related bargaining context and the bargaining-related
task context.

All these types are root types. Sub-types can be defined, if a system acts
in different settings. So a trusting system may be designed for various kinds
of tasks and may cooperate with different kinds of cooperation partners.
The main statement of this overview is that every trust situation is made
of these kinds of entities and relationships, either explicitly or implicitly. A
specific situation then consists of instances of those types. Finally note
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Figure 6.4: The entity-relationship diagram with the attributes. To maintain a clear arrange-
ment, the relationships that connect the same entities are collapsed.

that the assignment of willingness and ability to some parts of the model
is not meant to be exclusive. It should help to understand the model and
derive algorithms for specific scenarios. Properties of the task context, for
example, are expected to correlate stronger with ability than with willingness.
But certainly correlations with willingness could also be found.

6.2.2 Detailed Description of the Entities and Relationships

In this subsection, the entities and relationships are detailed by describing
their attributes. Figure 6.4 extends the Figure 6.3 by the attributes. Note that
the Enfident Model makes no assumptions about the nature of an attribute.
It may be continuous or discrete, one- or multi-dimensional. Throughout
this section, let P, B and T be types, which are derived from the root types
cooperation partner, bargaining context and task context, respectively.

The set of attribute types AP describes the cooperation partner type P.
In the logistics centre scenario, these attributes could, for example, be a
robot’s number of arms, its size, its weight and known defects. All these
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attribute types should characterise the cooperation partner independently
of any specific situation. So they could also include a task-independent
reputation of the partner or the time how long the partner is already working
at the logistics site.

The bargaining context type B represents the situation of bargaining. Its
set of attribute types is denoted by BB. For example, the presence of wit-
nesses as well as the time and the location of the bargaining characterise
the bargaining context. Furthermore in the vehicular network scenario, the
current traffic situation could indicate the willingness to tell the truth. The
attribute types in BB should characterise the bargaining context indepen-
dently of the cooperation partner. Sometimes there happened no bargain-
ing though. The desired outcome and way of cooperation are implicitly as-
sumed. In the Enfident Model this is still a certain form of bargaining.

The cooperation partner lives in the current bargaining context and may
exploit it. So the types P and B are in a relationship, which is of the type
negotiates in and which is independent of the cooperation task. Its set of
attribute types is regarded by BBP . The relationship may reflect the progress
of the bargaining. Did the partner, for example, change his opinion after
a while? Happened the bargaining several times? Was the progress of
the bargaining expectable? Was it quick? All in all, this relationship type
models those aspects of the other’s behaviour and communication that are
independent of the task.

During the bargaining, the cooperation partner indicates what he is willing
to do. So when defining the sets BB and BBP , the system designer may think
of indicators for willingness and self-confidence. Furthermore note that the
willingness and thus its indicators could change over time. An implementa-
tion should consider this (see Section 6.3).

The set of attribute types TT is associated with the task context type T .
It characterises the cooperation task and the context of the task execution.
Task attributes of the logistics centre scenario could be the forms of the
containers, the source and target location, the tools necessary for the work,
or the fact, whether the task is executed at night. All in all, these attribute
types should characterise the task context independently of the cooperation
partner.
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The cooperation partner performs the task in its context. So the types P
and T are in a relationship that is related to the other’s abilities but indepen-
dent of the bargaining. This relationship type is derived from the root type
fits for and described by the set of attribute types TPT . In the logistics centre
and the virtual market place scenario, these attribute types regard, for ex-
ample, the experience of the cooperation partner: Do others report that the
trusted system has done similar tasks before? Or does it offer many related
products? So a task-related reputation of the cooperation partner would be
part of this relationship, too.

The task execution demands the skills and abilities of the cooperation
partner. These characteristics are learned by the trusting system from past
interactions. They help to reason about the cooperation outcome. But even
if the partner’s abilities are unknown, the context of the task, the mani-
fest properties of the trustee and the agreed cooperation outcome could
be checked for their plausibility. So thinking about the other’s abilities and
competence as well as the plausibility of the agreement helps the system
designer to find attributes for the sets TT and TPT .

The situations of bargaining and task execution are connected through
the trusting and the trusted system. The relationship types task-related bar-
gaining context and bargaining-related task context reflect this. Relation-
ships of these types are associated with the attribute types in the sets BBT

and TBT , respectively. For example, the attribute types in BBT could describe
the availability of other cooperation partners during the bargaining and their
competence. In the virtual market place scenario, the availability could be
understood as the relation of supply and demand for the target product at
a specific market place. The cooperation partner considers the task during
the negotiation. Thus the attribute types in BBT might also be related to its
willingness.

Finally the relation between all three entities remains. Here again, the
model distinguishes the situations of the bargaining and the task execution
with two relationship types. In the bargaining situation, the trustee claims to
achieve a certain cooperation outcome. The agreed outcome is described
by the set of attribute types BO . All other attribute types of this relation are
collected in the set BBPT . Later the trustee performs the task and achieves
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a cooperation outcome. This actual outcome is described by the set of at-
tribute types TO , while the set TBPT contains all other attribute types of this
relation.

The outcome attribute types in BO and TO assess all facets of the cooper-
ation outcome. They usually describe the same aspects of the cooperation
outcome, but can be realised with different values. Section 6.5 further dis-
cusses how the outcome can be rated. In the vehicular network scenario,
the values in a received message, like the speed limit value, and their er-
rors describe the cooperation outcome. In the logistics centre scenario, the
duration of the task execution and the intactness of the transported goods
are examples of outcome attributes. So the outcome can influence various
attitudes towards the partner: competence, honesty, willingness and some
more. This is discussed in Section 10.2.2.

The sets BBPT and TBPT contain the attributes, which are related to all
three entities except for the outcome attributes. For example, these at-
tributes could reflect that the cooperation partner claims he has done a sim-
ilar task before, or that the same witnesses are present in both situations.

6.2.3 Conclusion

This section introduced the entity-relationship view on the Enfident Model.
It is quite complex as it describes all involved data. In doing so, it fulfils
Requirement 1 on page 77. The data is defined, on the one hand, by three
entities and their relationships and, on the other hand, by attitudes about the
trustee’s competence and willingness. In this way, the Enfident Model unifies
the attitude-based and the experienced-based view on trust in the literature.
Section 10.2.2 further discusses the connection between both views and
their relation to the Enfident Model.

The entity-relationship view of this section disregards the time. Of course,
there are several acts of cooperation with different configurations of par-
ticipating entities. They make up the experience of the trusting system.
And certainly, the bargaining and the task execution happen in a sequen-
tial order. Some pieces of information can already be known, others could
be unknown. This temporal view must be kept in mind. The presented
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entity-relationship model organises the characteristics of a trust situation at
just one point in time. That means, every single situation in Figure 6.2 on
page 99 is described by the proposed triplet of entities. In this way, the
attributes may change from situation to situation.

So far, I described the data involved in reasoning about trust. But what can
be done with the data? The next section shows how the pieces of data are
connected with each other. And afterwards, I detail how the model produces
some output.

6.3 Reasoning Process

As pointed out in Section 4.1, reasoning about trust is mainly possible, be-
cause several acts of cooperation are correlated. Hidden causes connect
them. The attributes in the previous subsection are the observable descrip-
tion of the hidden causes. In the entity-relationship model, the attributes
also describe the entities. Therefore the entities correspond to the hidden
causes. There are several possible causes, also regarded as the cause
components. An observable attribute depends on a subset of these com-
ponents. An entity is considered to correspond to a superposition of cause
components. In the model, the superposition is represented by a cause
variable for every entity. These cause variables may be multi-dimensional
variables and are indicated as grey ellipses in Figure 6.5 on page 108.

The cause variables are important for the trust model to realise the gener-
alisation over all experiences, which was required in Section 4.4.2. If an en-
tity is assigned to every cause component but at different degrees of mem-
bership, the model can generalise and specialise. A new, unknown entity
can belong to all components with degrees of a general representative. The
more an entity is known, the more specific the degrees become. Thus learn-
ing and inference happen across entities, but especially for well known and
similar entities. This way, the trust model can give reasonable advice even
for partly or widely unknown trust situations.

Up to here, the inner state of an entity is modelled as a specific super-
position of cause components. However the way an entity influences the
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cooperation outcome may change over time as Section 4.4.3 points out in
detail. Thus the cause components associated with every entity may change
from interaction to interaction. This is especially true for the cooperation
partners, but may also be relevant for the task and bargaining contexts. For
this reason, a time-varying model for entity types is proposed in the follow-
ing. It can be applied to all root types but also to some of them only. The
time-varying model assigns sub-entities to every entity. They represent ob-
servations of the main entity. An observation is a set of observed attributes.
Thus an observation entity is connected with all the attributes that were as-
signed to a main entity in the previous subsection. In addition, it has its own
cause variable, which the attributes depend on. This new cause variable has
most likely the same value as its temporal predecessor of the same entity,
but it may have changed. So the new hidden cause depends on its prede-
cessor. Figure 6.6 on page 109 visualises this. It features the observation
entity types instead of the main entity types. The observations of the same
main entity are indexed consecutively. The additional relationship types Next
connect an observation with its successor. Every observation has a cause
variable, which determines the associated attributes. The figure hides the
main entities. They are only relevant to determine what observation entities
are connected through a Next relationship.

The following consideration may help to realise the constraint of a cause
variable on its predecessor. A change of an entity’s inner state is more likely
the more time has elapsed since the last act of cooperation. For example,
when two robots meet again on the next day, they have the same inner state
with a higher chance than in the case when they meet again only after ten
years. So the state change likelihood should incorporate the time.

With this time-varying model, the effect of an entity on the cooperation
outcome may change over time. But also the observable entity attributes
can change over time without breaking the model. An obvious hardware
defect, for example, could have happened to a partner. This fact leads to a
changed attribute value for new observation entities but not for past ones.
Altogether the time-varying model connects the temporal view of Section 6.1
and the entity-relationship model of Section 6.2. The observation of a co-
operation partner or a situational context results in a set of attributes. It is
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Figure 6.5: Reasoning with time-invariant entities. In this probabilistic entity-relationship
diagram, the arrows describe the causality between the attribute types. In a realisation of the
model, arrows to attributes types of relationship types are restricted to entities that participate
in the relationship. (This is the implicit constraint that was mentioned in Section 5.2.)

a snapshot of the underlying causes that are in effect at that single point in
time and represents a record with the form of the entity-relationship model.
Such a record is repeated for every trust situation. The time-varying model
connects these repetitions. Finally note, whether an entity type requires a
time-invariant or a time-varying form of modelling, depends on the applica-
tion.

With the setting of hidden causes and observable attributes described
so far, the reasoning goes as follows. From the observed attributes, their
causes can be inferred. Various techniques for probabilistic clustering like
latent variable models (e.g. Bishop, 2007; Xu et al., 2009) come to mind. For
time-varying entities, every cause variable is inferred with a constraint on its
predecessor. Then with the cause variables, the unknown attributes can
be estimated. Typically these unknown attributes are the attributes of the
cooperation outcome that should be predicted. Note that some reasoning
techniques perform those two phases in one step, others in two steps. And
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Figure 6.6: Modelling of the entities as time-varying processes. This is again a probabilistic
entity-relationship diagram that depicts the causality in the model and, thus, the reasoning
flow. This time, the entities represent observations. The observations of a main entity are
number sequentially with the variable i in the graphic. It represents the progress of time.
(Note that the variable t is already reserved for entities of the type task context.)
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some make the hidden cause variables explicit, others only work with the
known and unknown observable attributes.

In summary, the reasoning is supported by characteristics of each entity
and by past cooperation outcomes (Requirement 4). These two information
sources together with the hidden causes let the model generalise and spe-
cialise as needed for trust (Requirement 6). The cause variables make it
also possible to capture temporal changes of entities (Requirement 7). And
finally the Enfident Model needs not forget anything or recompute some-
thing, because it is just a conceptual model. For this reason, it inherently
respects Requirement 5.

6.4 Querying

So far, the presented Enfident Model learns models of other system’s co-
operation behaviour. The structure and the parameters of a learned Enfi-
dent Model contain models for many of those other systems. Based on this
data, a realisation of the Enfident Model can infer various reasonable values
not just a specific output value. For this reason, I say that another module
can query the Enfident Model for a value that describes a certain aspect
of the other’s cooperation behaviour. This section describes some typical
forms of values that can be queried from the Enfident Model. Note that an
implementation will probably have something like output values, which are
pre-determined queries.

A trust model is typically asked to predict the outcome of a planned act of
cooperation. Most informative would be the complete probability distribution
for all outcome attribute types in OA: a probabilistic trust distribution as in-
troduced in Definition 2.1 on page 32. A decision module can then prioritise
the attribute types and apply utility functions on the distributions. But it may
also be that only a subset of the attributes like danger-related attributes are
necessary to decide pro or contra cooperation in a certain situation. The in-
formation of interest could also be an interest-related trust distribution, which
incorporates utility and risk as proposed in Definition 2.2.



6.4 Querying 111

While distributions over all possible values of an outcome attribute are
most informative, trust values that summarise the content of the distribution
are widely spread (see Section 4.3). The Enfident Model can be queried for
such a measure, which is derived from trust distributions. Thus the querying
mechanism is also the interface to some recommendation systems as Sec-
tion 6.5 details. There is no single right way to derive a trust value from an
outcome distribution. Various ways have been proposed, which emphasise
different aspects of the outcome distribution as Section 4.3 shows. Some
trust values represent the mean behaviour of the other system; others pay
special attention to the negative behaviour. Again some others distinguish
the positive and the negative behaviour with a trust and a distrust value. All
these forms have their own right for certain application scenarios. Conse-
quently the Enfident Model leaves it open, how a trust value is computed.
Some appropriate algorithms can be found in related work (Section 4.3).
Typically they include utility or loss functions and aggregation functions,
which reduce the outcome distributions of several attributes to an overall
trust value for the whole act of cooperation (see, e.g., Calvo et al., 2002).

So far, the outcome of a specific cooperation situation was predicted.
Sometimes a more general assessment of the partner or of any other en-
tity may be necessary. When talking about trust, for example, the trust in
the partner disregarding the context could be relevant. And as a second
example, the influence of each entity on the cooperation outcome must be
investigated in order to decide what measures would be best to make a
good outcome more likely. All these kinds of assessments can be queried
from the Enfident Model. The reasoning happens then by inserting attributes
and latent variables as needed for the query. For example, to get a general
impression a certain cooperation partner disregarding the context, an act
of cooperation with a specific partner entity and unspecific context entities
must be inserted in the model. This means, the latent variable of the part-
ner entity is described by all its attributes and past cooperation outcomes,
while the other latent variables have completely unspecified attributes. Then
the Enfident Model can predict probability distributions for the cooperation
outcome and derive a trust value as needed.



112 6 The Enfident Model

While a probability distribution over all values of an attribute is quite in-
formative, it does not quantify the certainty of the distribution. The same
distribution could be obtained from one interaction or one hundred interac-
tions with the cooperation partner. So the certainty or ignorance behind a
prediction is of interest as well. One way to express the ignorance of the
trust distribution is the amount of evidence the distribution has been calcu-
lated from (see, e.g., Jøsang et al., 2006). Since the Enfident Model learns
across entity boundaries, an outcome value cannot be said to origin from
exactly those interactions with the cooperation partner. But still, the num-
ber of experiences with a certain entity combination gives a good ignorance
indicator. Another way to express the ignorance are the variances of the
parameters of the provided probability distribution.

In summary, various outcome ratings can be obtained from the Enfident
Model, as long as the corresponding ratings of previous outcomes have
been included as attributes. Then a probability distribution of any attribute
can be queried. This is possible for a specific act of cooperation with a
well defined cooperation partner, task context and bargaining context. But
it is also possible to obtain a more general assessment, if some of the at-
tributes and entities remain unspecified. Instead of a probability distribution,
trust values can also be received by plugging in the desired algorithms. Be-
cause the mapping from an outcome distribution to a trust value reduces
information, I recommend the whole distribution over a trust value wherever
possible.

6.5 Implementation Notes

Up to here, the Enfident Model has been introduced as a general framework
to design a trust algorithm for a specific application. The description may be
too abstract to implement a trust algorithm directly. Therefore this section
provides an addendum of, how selected ideas from the literature relate to
the Enfident Model. Some of them are out of the scope of this dissertation.
I still mention them here to connect the Enfident Model to the surrounding
research and to point to further interesting research areas.
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6.5.1 Determining the Attributes

The various entities and relationships in the Enfident Model can be char-
acterised by many attributes. Some of them may be more important for a
certain application than others though. And some attributes might be more
helpful for the reasoning algorithm to converge and predict than others. This
subsection notes some examples of those attributes and considerations on
how to use them.

Knowing that a trustee belongs to a certain group or category, may in-
fluence trust, even if no experiences with him are available. If a human
partner, for example, is a doctor, he is more trustworthy regarding health
advises than otherwise. So the group membership characterises the cause
component of the trustee and is, thus, an attribute of the partner entity type.

When a third party has recommended the partner or discouraged from
him, this rating corresponds to a task-related or general attribute of the part-
ner entity. Recommendations should be taken with care like any other in-
formation from others. This means that trust in recommendations of a third
party must be respected (e.g. Jøsang et al., 2006). Chapter 4 gives some
references for recommendation and reputation systems.

The outcome attributes describe the behaviour of the cooperation partner.
Therefore they are especially important for trust development. They should
comprise all facets of the cooperation outcome. This way, the decision mod-
ule can balance them as needed in the current situation. If the task, for
example, is to cut a certain steel beam, the resulting size of the beam and
the task duration could be chosen as outcome attributes. In this example,
the real outcome can be represented in several ways. Should the absolute
task duration be taken for TO (e.g. 0.9 h)? Or should a rating with regard to
the agreed duration be used (e.g. the deviation 0.1 h if the agreed duration
was 1.0 h)? Or should a rating with regard to a desired ideal duration char-
acterise the outcome (e.g. the deviation −0.4 h if the desired duration was
0.5 h)? All these values are different views on the same thing. What values
suit better depends on the reasoning algorithm and the desired output of the
trust model.
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In the vehicular network scenario, a message could contain a statement
together with the sender’s own certainty about the statement. A vehicle
could say that there is a new sign limiting the speed to 60 km/h, but it is not
sure about this with a certainty level of 0.2? What is the outcome rating, if
the sign actually shows a limit of 80 km/h? The sender already said, it is un-
certain regarding the value. This example addresses the difference between
the absolute correctness of the statement (an ability regarding sign detec-
tion) and the discounted correctness of the statement (an ability regarding
telling the truth). Both are independent and should be included as two sep-
arate attributes. This becomes even clearer, if the number of the provided
independent values is considered: The sender sent the two values 60 and
0.2, so two outcome properties can be evaluated. Bamberger et al. (2012)
discuss this problem and also consider the case that the own observation,
that is, the assumed true value is uncertain as well.

A few outcome attributes could be subject to norms. They are implicitly as-
sumed by the cooperation partners without explicit bargaining. Some norms
are enforced by law or site policies. They are more likely to be achieved.
If the enforceability is varying (e.g. because of varying sites or countries),
this fact should be included as an attribute. Other norms are mere conven-
tions. In this case, both cooperation partners could follow different norms.
Moreover norms could change between the time of bargaining and task ex-
ecution. All in all, norms should also be modelled as outcome attributes, so
their violation can be respected.

6.5.2 Distinguishing Entities

In some applications, it is possible to recognise a cooperation partner again
and again, for example, with techniques from cryptology. But how can a task
context be said to be the same as a previous task context? Basically two
task or bargaining contexts can be taken as the same, if they have exactly
the same attributes. But it is also valid to represent every task context as its
own entity. The reasoning works with both ways of realisation. The same
problem appears, if cooperation partners cannot be identified uniquely. Such
a scenario can also be realised in both forms.
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If the entities for task and bargaining contexts are reused, the relation-
ships could be realised with different attributes. In the strict sense of the
entity-relationship model, a kind of trial or situation counter must be incorpo-
rated as another entity to allow several realisations for a single relationship.
I did not regard this in the text so far to keep the description clear. But
certainly, it is possible to have this repetition of attributes for every trust situ-
ation.

6.5.3 Trusting a Group of Systems

When a system commissions a couple of other systems to reload some
goods, the system could be said to trust this specific group of other systems.
How can a group of systems be represented in the Enfident Model? In some
cases, an aggregation function could be appropriate to transform the trust
in the individual group members to the trust in the whole group. If the task,
for example, can be split in independent sub-tasks, which are assigned to
individual trustees, the whole cooperation outcome is a combination of all
sub-task outcomes. Or the cooperation outcome could, for example, be
determined by the weakest member of the group. All these aggregation
functions depend on the specific application.

In other cases, the group can be represented as an entity on its own.
Then its cause component can be learned as well. The group entity can
have relationships to the entities of its members. These links describe the
group entity like attributes of the types inAP . Such additional links are not in
the scope of this dissertation. Further research is necessary on this subject.

6.5.4 Modelling the Social Structure

Some authors emphasise that the social structure around the trustor and the
trustee is an important source for trust development (e.g. Buskens, 1998;
Jøsang et al., 2006; Sabater and Sierra, 2002; Yu and Singh, 2002). They
propose different ways to incorporate the social structure. If the trustee be-
longs to a certain group or clique, he can be characterised by a group mem-
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bership attribute as described above. If third parties recommend the trustee,
the recommendations can be used in the way discussed above too.

Moreover friendship-like connections become manifest in recommenda-
tions and possibly high cooperation frequencies. They can be modelled
as additional relationships between the systems’ entities together with an
attribute for the relationship existence or relationship strength (Chu et al.,
2007; Heckerman et al., 2007; Taskar et al., 2007). This way of modelling
expresses that the cause components of connected entities correlate with
each other. The references show promising results. How these techniques
perform for trust development is subject to further research though and not
in the scope of this dissertation.

6.5.5 Designing the Reasoning

Although the Figures 6.5 and 6.6 use the graphical notation of Bayesian
networks, the Enfident Model leaves it open, what reasoning technique is
used. The Bayesian network notation should just visualise the causal con-
cept. An implementation may well apply techniques like fuzzy logic, Gaus-
sian processes, Markov logic networks or some other methods for latent
variable models. The evaluation in the paper realises the Enfident Model
with Bayesian networks based on finite mixture models.

The reasoning technique should be able to realise the requirements of
Section 4.4. Especially it should respect the generalisation requirement,
because this requirement emphasises the purpose of trust to support the
decision making in unknown situations.

Not all characteristics of an entity or relationship support the inference of
the cause component. Such attributes could be attached with an additional
probabilistic or deterministic logic. For example, the difference between the
real outcome and the agreed outcome could, in some cases, better support
the inference of the cause component than the absolute value of the real
outcome. Then this difference should be chosen as the child node of the
cause variable.
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6.5.6 Connecting the Enfident Model to a Reputation System

Reputation systems provide good hints, how trustworthy a cooperation part-
ner might be, especially if only few own experiences are available (see Chap-
ter 4 for references). These hints can be incorporated in the Enfident Model
as additional attributes. For example, if the reputation system provides one
reputation indicator for every participating system, this indicator would be
an attribute of the cooperation partner. In contrast, if the reputation sys-
tem is task-aware by providing a reputation indicator for every combination
of task and participating system, this indicator would be an attribute of the
task-partner relationship. If there are many reputation sources, they should
be included as separate attributes with separate parameter sets (e.g. sep-
arate conditional probability distributions). This way, the reasoning process
can learn and distinguish the reliabilities of the different reputations sources.
This is similar to the recommendations mentioned in Section 6.5.1.

In the other direction, an agent must feed a reputation system with its ex-
periences. Usually the uploaded data only reflects the rating of one certain
cooperation outcome. No prediction, and thus, no trust is involved in this
process. Moreover, these computations are specific to the policies of the
reputation system. So a distinct reputation module would compute these rat-
ings and pass them to the reputation system. This processing is not related
to the Enfident Model. In contrast, some other reputation or recommenda-
tion systems exchange trust values that originate from all past interactions
with the partner. Such trust values can be queried from the Enfident Model
as described in Section 6.4.

The implementation notes of this section still address the conceptual level.
The next chapter switches to the algorithmic level. It proposes a probabilistic
schema from statistical relational learning to realise the Enfident Model.





7 Reasoning Algorithms for the
Enfident Model

The probabilistic entity-relationship model of the previous chapter does not
prescribe a single way of realisation. This chapter proposes an exemplary
implementation, which is later used for the evaluation of the Enfident Model.
It does not aim to be the best implementation following any benchmark. But
it is an implementation that demonstratively explains the Enfident Model.
It stays close to the ideas that underlie the Enfident Model, although that
might impose some algorithmic disadvantages. This is appropriate, because
Chapters 8 and 9 evaluate the Enfident Model itself and do not compare
several algorithms for the Enfident Model.

Although this chapter targets at the Enfident Model, it presents a generic
way to transform a probabilistic entity-relationship model into a specific prob-
abilistic model and shows, how to infer in this model with Gibbs sampling.
As a consequence, the proposed technique can be applied to any other
probabilistic entity-relationship model as well.

The work in this chapter is based on that of Xu (2007). It extends her
concept, in Sections 7.2.2 and 7.3.2, by allowing a hierarchy of entity and
relationship types and, in Sections 7.2.3 and 7.3.3, by extending entities
to have time-varying states. Sections 7.2.3 and 7.3.3 are also based on
relational dynamic Bayesian networks (e.g. Manfredotti, 2009) and non-
parametric hidden Markov models (Van Gael, 2011). This chapter recalls
some common techniques for Bayesian inference to relate them to trust and
to describe all algorithms in a consistent notation with type hierarchies. The
theoretical background on the algorithms is beyond the focus of this the-
sis though. Please consult the three mentioned dissertations for this. They
describe well the state of the art at their time.
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7.1 Introduction

Section 4.1 argued that the observable attributes of a trust situation depend
on hidden causes. This idea corresponds well with the mixture models in
statistics. I use the Bayesian approach to mixture models with prior distribu-
tions on the parameters, because in this way, the parameters can easily be
specialised for objects and types depending on requirements. The reader
can find an introduction to Bayesian mixture models in Bishop, 2007, for
example.

In a mixture model, an observation A comes from a superposition of sev-
eral independent effects. Every effect is modelled with a probability distri-
bution. The overall probability distribution, the mixture distribution F M , is a
weighted sum of all sub-distributions, the mixture components Fk . In a finite
mixture model, the number K of independent effects and, thus, of mixture
components is fixed and finite:

A ∼ F M =
K∑

k=1

πk Fk . (7.1)

The variables πk are the mixture weights.
However the main idea of Section 4.1 is that several observable attributes

are correlated, because they share common hidden causes. As a conse-
quence, for the object-oriented setting considered here, the modelling con-
cept above must be extended. Several mixture models must be entangled.
This is done by introducing a random variable Z , which connects the corre-
lated attributes. It indicates which mixture component is selected with which
weight and is called the indicator variable or component variable. The val-
ues of this variable are taken from a set S with K elements. Z follows a
categorical distribution with the probability vector π = (π1, ... ,πK ). (The cat-
egorical distribution matches the multinomial distribution if the number of
experiences n = 1; it is the distribution of each trial in a multi-valued urn
experiment.) A Bayesian mixture model realises the vector π of mixture
weights as a random variable Π, which follows a Dirichlet distribution with
the parameter vector α. Altogether the complete probabilistic model of a
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Πα Θ βZ

A1
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Figure 7.1: Exemplary Bayesian network of a Bayesian mixture model. A1, A2 and A3 are
three observations of the same statistically process, which is described with the mixture
model. Θ is a tuple of all component parameters Θs with s ∈ S.

Bayesian mixture model with indicator variables goes as follows:

A | Z = s ∼ Fs

Z | Π = π ∼ Categorical(π)

Π ∼ Dirichlet(α)

To simplify the notation in the above equation, the set S is assumed to be
{1, ... , K} without restricting it to this content. That way, s ∈ S can serve as
an index for F . Further note that the probability distribution for A becomes
the same as in Equation 7.1, when taking π as a fixed parameter and inte-
grating out Z .

In the context of Bayesian inference, the mixture components have all the
same functional form F (θ). Then each component is represented by a pa-
rameter vector θs with s ∈ S. Through the subscript s, a component is
associated with the value s of the state variable Z . All vectors θs can in turn
be understood as random variables Θs and associated with a prior distribu-
tion. This prior is a distribution over distributions. Figure 7.1 illustrates the
setting in form of a Bayesian network.

Note that the mixture model with an indicator variable still assumes that
there are exactly K causes and that these are statistically independent.
However the additional component variable has the advantage that it can be
interpreted as a random variable for hidden causes behind the observable
attributes. This interpretation matches with an assumption of the Enfident
Model: There are hidden causes behind a task context, which affect the co-
operation outcome; and the behaviour of the cooperation partner depends
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on its inner states. To underline this view, I additionally denote the indicator
variables as cause variables or state variables.

The remaining sections of this chapter show, how mixture models can be
applied to an object-relational data set. I start with a finite number of com-
ponents K and propose probabilistic models for objects with time-invariant
and time-varying states. After that, I extend these models to the infinite-
dimensional case.

Initialise all variables x1, ... , xn randomly
Repeat T times do

foreach i ∈ {1, ... , n} do
Sample xi from P(Xi | x−i ) = P(Xi |mb(Xi )).

Algorithm 7.1: Basic steps of the Gibbs sampler. It samples all random variables X1, ... , Xn

T times from their Markov blanket. x1, ... , xn contain the last sampled value of their corre-
sponding random variable.

The common base for all the algorithms in these sections is the Gibbs
sampling. This sampling technique makes it possible to combine different
probabilistic models for the various entity types in a simple plug-in manner.
The Gibbs sampling is widely spread and detailed, for example, in Bishop,
2007 and Andrieu et al., 2003. For the explanations in this section, it is
sufficient to know that the Gibbs sampling of a Bayesian network with the
unknown random variables X1, ... , Xn basically involves the steps shown in
Algorithm 7.1. Here the variable xi denotes the newest value of Xi during the
sampling and x−i is the joint event of all random variables except for Xi in
their current state. Because Xi depends only on the variables of its Markov
blanket mb(Xi ), it is sufficient to consider P(Xi |mb(Xi )). The sampling goes
over T rounds. This sketch of the algorithm shows that, first, P(Xi | x−i )
must be found for every node in the Enfident Model and, second, the algo-
rithm, that is, the conditional distribution for one node can be different and
is independent from that for other nodes. The following sections show ways
to statistically model the entities in the Enfident Model and propose corre-
sponding algorithms for P(Xi | x−i ).
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7.2 Realisations with Finite Mixture Models

This section considers mixture models with a state space that has a finite
and fixed number of dimensions K . Such a mixture model assigns the data
probabilistically to K clusters. The corresponding sampling algorithms are
easy to implement and lead in many publications to good results. They also
provide a good basis to understand the more complex case of an infinite
dimensional state space in Section 7.3. On the downside, in some practi-
cal problems, the number of necessary states changes over the lifetime of
the system or can hardly be guessed in advance. Then the techniques of
Section 7.3 could help.

The state variables in this section have a categorical distribution. The
conjugate prior distribution for its parameter vector is the Dirichlet distribu-
tion. While I assume the distribution to be known, I give its definition in the
following to clarify my notation. (A good tutorial is Frigyik et al., 2010.) After
that a probabilistic model for entities with a time-invariant state is proposed
as well as one for entities with a time-varying state.

7.2.1 The Dirichlet Distribution

The definition of the Dirichlet distribution uses an integral that is called the
multidimensional beta function. It is introduced first.

Definition 7.1 (Multidimensional beta function). Let θ regard the vector
(θ1, ... , θn) ∈ Rn and S be the standard simplex in Rn: S = {θ ∈
Rn |

∑n
k=1 θk = 1 and θk ≥ 0 for k = 1, ... , n}. (S is an (n − 1)-

dimensional surface in Rn.) Let Γ(z) denote the gamma function. Then
for Re(αk ) > 0 (k = 1, ... , n),

B(α) =
∫
S

n∏
k=1

θαk−1
k dθ =

Γ(α1) Γ(α2) ... Γ(αn)
Γ(α1 + ... + αn)

.

The integral on the right is the multidimensional beta integral. When un-
derstanding the integral as a function B(α) with the independent variable
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α = (α1, ... ,αn), this function is called the multidimensional or multinomial
beta function (Andrews et al., 1999, Section 1.8).

The beta integral normalises the density of the Dirichlet distribution, as
the following definition shows.

Definition 7.2 (Dirichlet distribution). For α = (α1, ... ,αn) ∈ Rn with αi > 0
for all i = 1, ... , n, the function

f (θ1, ... , θn−1) =

{
1

B(α)

∏n
i=1 θ

αi−1
i for θ1, ... , θn−1 > 0, θ1 + ... + θn−1 < 1

0 otherwise

with θn = 1 −
∑n−1

k=1 θk is a density function. Its corresponding distribution
is called the Dirichlet distribution of order n (Frigyik et al., 2010; Schmidt,
2009).

So the Dirichlet distribution of order n is a continuous multivariate distri-
bution over an n− 1-dimensional space. Because it has only support on the
standard simplex and vanishes otherwise, it suits well to model the probabil-
ities over a partition of n events. Note that there are also other distributions
on the standard simplex. None of them needs to be more correct or ap-
propriate than the others. People usually take the Dirichlet distribution, just
because it is the conjugate prior of the categorical distribution and, thus,
leads to reasonable algorithms.

7.2.2 Time-Invariant Entity Types

This section considers the case that an entity is all the time in the same
state. In addition, the possible number of states an entity can be in is finite.

Probabilistic model for the state variables. Section 7.1 shows, how ob-
servable attributes can result from unobserved effects. In the mixture model,
these effects are assumed to be independent and associated with a state
variable. From an object-oriented point of view, an entity perceives its en-
vironment and reacts depending on its inner way of working and its inner
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Figure 7.2: Probabilistic entity-relationship model of the coin toss example with finite time-
invariant states. In addition to Figure 5.2 on page 93, the person that throws the coin is
modelled, a state variable for every entity is added and the prior and hyper-parameters are
made explicit. The parameter variables should not be repeated for every entity, so they are
not connected to an entity type box.

state. Thus every entity is associated with a state variable. The possible
states for an entity depend on its type. Two entities of the same type can
potentially be in the same state. So the state variable belongs to an entity,
while the set of states is associated with a root type.

For example, consider the coin experiment of Section 5.2. It features
coins, which are thrown in trials. Here the model is extended by the persons,
who throw the coins. One person may play fair, others may cheat. Then the
colour and the result of a coin toss can be understood as observable hints
about the hidden kind of the coin and the inner state of the throwing person.
In the example, the kinds of coins are represented by a fixed set; and every
coin is of one particular kind, which remains the same all the time. Figure 7.2
illustrates this setting. It is further explained in the following.

Let R be a root type whose entities should be modelled with a time-
invariant state. ER denotes the set of all entities that are of a type derived
from R. So it contains all entities of interest in this section. Let the set of
states SR be a fixed finite set with K elements. I assume SR = {1, ... , K}
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here without restricting it to that. This specific content of the set makes it
possible to omit an additional index set for SR at some places below. With
these prerequisites, the entities in ER are transformed into a probabilistic
model in the following way.

The inner state of each entity e ∈ ER is represented by a random variable
Ze with the image SR . Ze follows a categorical distribution with the parame-
ter vector ΠR . The elements of this vector are the mixture weights. Following
the Bayesian modelling approach, ΠR is taken as a random variable with a
Dirichlet distribution. The parameters of this prior distribution are regarded
by αR . In summary, the probabilistic model of the hidden causes features a
hierarchy of two levels of random variables as depicted in the expressions

Ze | ΠR = π ∼ Categorical(π) for all e ∈ ER and

ΠR ∼ Dirichlet
(
αR).

The variable π is the current value of ΠR during the sampling. Figure 7.2
illustrates this model on the coin example.

Probabilistic model for the attributes. The inner state of an entity be-
comes manifest in its attributes. Thus all attributes of an entity are random
variables that depend on the entity’s state variable. In the same way, at-
tributes of a relationship reflect the inner state of all participating entities to-
gether. Therefore a relationship attribute is a random variable that depends
on the joint event of the indicator variables that belong to the associated
entities. This results in the following probabilistic model for attributes.

An attribute is a random variable Y . It depends on the joint value sY of the
indicator variables that belong to its associated entities. Let Stype(Y ) be the
set of possible joint values.

(
Stype(Y ) =

∏
e∈entities(Y ) Sroottype(e), if

∏
denotes

the Cartesian product.
)

sY is an element of this set. The attribute Y follows
a mixture distribution with |Stype(Y )| components. Every component has the
form F type(Y )(θ). It is identified by its parameter vector Θtype(Y )

s , which is
associated with elements of Stype(Y ) through the subscript s ∈ Stype(Y ). In
summary, the probabilistic model of the attribute Y has the following form.
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Figure 7.3: Exemplary Bayesian network for the probabilistic model with finite time-invariant
states. The figure depicts, how several mixture models as that of Figure 7.1 on page 121 are
entangled through a hierarchy of random variables. This hierarchy makes it possible to learn
on all levels and transfer knowledge between otherwise separate probability distributions.
c1 and c2 are entities of type Coin and p1 is an entity of type Person. Zc1, Zc2 and Zp1

correspond to the entity attributes c1.Z, c2.Z and p1.Z, respectively. I aligned their names
with the mathematical notation of the main text. t1, t2 and t3 are relationships.

Let θtype(Y )
s be the current value of Θtype(Y )

s and ze the current value of Ze.
Then the attribute Y has the conditional distribution

Y | {Ze = ze}e∈entities(Y ), {Θtype(Y )
s = θtype(Y )

s }s∈Stype(Y ) ∼ F type(Y )(θtype(Y )
sY ).

Associated with that distribution is the likelihood function Ltype(Y ). It provides
the likelihood of the current value of Y given the parameter vector θtype(Y )

sY .
The likelihood function is necessary below for the sampling algorithm.

To complete the model, the parameter vectors Θtype(Y )
s can in turn be un-

derstood as random variables with a prior distribution when following the
Bayesian paradigm. The detailed model of the attributes and their prior dis-
tributions is out of the scope of this dissertation though. It depends on the
application and is not in the core of trust modelling.

Summary of the probabilistic model. The probabilistic model of this sec-
tion can be summarised as follows. The state variables are related to entities
(e.g. specific cooperation partners), while the parameter variables αR and
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ΠR are associated with root types (the types cooperation partner, bargain-
ing context and task context). In the consequence, the a priori probabilities
of the state variable depend on the type, while the a posteriori probabilities
are individual for each entity and formed through the observation of several
attributes. Figure 7.3 on the preceding page shows an exemplary realisa-
tion of the probabilistic model. It even better points at the hierarchy of the
variables. Only the grey elements are observable. All others are hypotheti-
cal constructs. They make it possible to perform probabilistic clustering and
learning at the same time, just by inference in the full Bayesian model. The
state variables cluster similar entities, that is, similar groups of observations.
Thus similar cooperation partners and similar task contexts, for example,
are treated in a similar way. Every entity belongs to all clusters at the same
time but with different weights. The parameter variables in Θτ = {Θτ

s}s∈Sτ

(τ is an attribute type) are learned based on the clustering. So basically, all
evidence influences them, but weighted by cluster assignment probabilities.

Below I show, how Ze can be sampled during Gibbs sampling (Algo-
rithm 7.1 on page 122). ΠR is superfluous for this. It can be integrated
out resulting in a compound probability distribution that depends on αR . The
sampling of Y is out of the scope of this dissertation, because it depends on
the application-specific attributes.

Sampling with the parameter ΠR . For Gibbs sampling, a cause variable
Ze is sampled depending on its Markov blanket mb(Ze). Here the Markov
blanket refers to four objects (compare this with Figure 7.3): The parents of
Ze are the mixture weights in ΠR . Thus the a priori probability for the state
s ∈ SR is simply the value of ΠR

s . The children of Ze are all attributes that
belong to the entity e or to a relationship that e is participating in. The set of
these attributes is denoted by Ae. The other parents of the children (except
for Ze) are the parameter vectors of the mixture components and, for rela-
tionship attributes, the cause variables of the other entities that participate in
the relationship. Consequently the posterior update factor is the combined
likelihood of all attributes in Ae depending on the current state of their par-
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ents. The likelihood function LY for the attribute Y was already mentioned
above.

To take all this together in a compact equation, few more symbols are
necessary for the values of the random variables. Given an attribute Y , let
aY denote the current value of the attribute during the Gibbs sampling and
sY the joint value of all state variables that Y depends on. sY selects the
mixture component for Y . Let θtype(Y )

sY be the current value of the parame-
ter vector of that component. Furthermore the vector π denotes the current
value of ΠR . Then the sampling distribution for Gibbs sampling is a categor-
ical distribution over all states s ∈ SR with the probabilities

P
(
Ze = s |mb(Ze)

)
∝ πs

∏
Y∈Ae

Ltype(Y )(aY , θtype(Y )
sY

)
. (7.2)

The symbol ∝ means that the left and the right side are equal except for a
certain factor, which is the same for all s. So the list of the values computed
from the right side for all s must be normalised to sum up to one. This last
step results in the distribution parameters.

Sampling with the collapsed Dirichlet-categorical distribution. The
mixture weights can be integrated out to speed up the random walk of the
Markov chain Monte Carlo simulation (see Neal, 2000, for example). Up to
here, the vector of the mixture weights is a common parent variable of all
considered state variables. Thus it makes the state variables independent
from one another. As a consequence, when removing it, the prior probability
of Ze depends on all other state variables of the same root type. The re-
sulting independence structure cannot be visualised as a Bayesian network
any more, because all the state variables are mutually dependent now. The
resulting algorithm still remains simple though, as all other variables except
for Ze are assumed to be fixed during the sampling of Ze. This means that
all other state variables are parents of Ze just for this sampling step. I regard
them by the set ZR

−e = {Ze′ | e′ ∈ ER ∧ e′ 6= e} in the following.
To avoid that the notation becomes confusing when deducing the algo-

rithm without the mixture weights, I concentrate on one root type. So I can
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remove the superscripts from αR , SR and ZR
−e. π is again a value of ΠR .

The aim is to solve

P(Ze = s | z−e,α) =
P(Ze = s, z−e | α)

P(z−e | α)
. (7.3)

Here z−e is the event that describes the current joint realisation of all state
variables Ze′ except for Ze (Ze′ ∈ Z−e).

The denominator can be got by integrating over the simplex S that is
associated with π. This results in

P(z−e | α) =
∫
S

P(z−e | π) p(π | α) dπ

=
1

B(α)

∫
S

∏
s′∈S

π
ns′
s′ π

αs′−1
s′ dπ =

B(α + n)
B(α)

.

The function p regards the density function of the Dirichlet distribution; ns′

is the number of all state variables Ze′ ∈ Z−e that have the value s′; and n
denotes the vector of all ns′ .

The numerator of Equation 7.3 is the same as the denominator except
that the value of Ze is counted. The vector of counts that includes Ze is
denoted by n(+Ze). So the prior probability of Ze = s is

P(Ze = s | z−e,α) =
B(α + n(+Ze))

B(α + n)
=

Γ(α0 + n0)
Γ(α0 + n0 + 1)

Γ(αs + ns + 1)
Γ(αs + ns)

=
αs + ns

α0 + n0
∝ αs + ns. (7.4)

n0 and α0 are the sums over all ns′ and αs′ , respectively (with s′ ∈ S). To
get the final result without gamma functions, the recursion Γ(x + 1) = x Γ(x)
helps.

The above result is very simple. It substitutes the probabilities πs in Equa-
tion 7.2 on the preceding page. Together with the posterior update, the
probability of the state s depending on the Markov blanket is

P
(
Ze = s |mb(Ze)

)
∝
(
αR

s + nR
s

) ∏
Y∈Ae

Ltype(Y )(aY , θtype(Y )
sY

)
. (7.5)
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p ← αR

for s ∈ SR do
c ← count the occurrence of s in all variables ze′ ∈ ZR

−e

ps ← ps + c

// Set the current variable to the correct state for the likelihood computation.
ze ← s
for Y ∈ Ae do

aY ← get the current value of Y
sY ← joint value of Y ’s parent variables
θ ← select the component sY from the vector θtype(Y )

ps ← ps · Ltype(Y )(aY , θ)

p ← normalise the vector p to sum up to 1
ze ← draw from Categorical(p)

Algorithm 7.2: Sampling of a finite time-invariant entity state. Here ze is the variable of the
state to sample (the value of Ze). p is the probability vector of the distribution to sample from.
The algorithm sets ze in a new state that is sampled from its Markov blanket.

In this equation, the state variables are related to entities, while the parame-
ter variables αR and θτ , the counts nR as well as the likelihood functions Lτ

are associated with types.
The probabilities computed with the above equation are the parameters of

a categorical distribution. During the Gibbs sampling, Ze must be sampled
from this distribution. Algorithm 7.2 summarises the equation in a program-
ming style.

This subsection presented a probabilistic model, which assumes that the
state of an entity remains stable over time. All observable behaviour is
caused by the same system state. Regarding the state concept and the
cause effect considerations, the probabilistic model is very similar to the
considerations that have been made for the Enfident Model. This is the rea-
son, why I selected it for this thesis.
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7.2.3 Time-Varying Entity Types

The probabilistic model of this subsection allows the internal state of the ob-
served system to change over time. In the consequence, every observation
is a snapshot of the system’s current state. The transitions of the system
from state to state are assumed to be correlated. These correlations are
represented by a Markov chain with state transition probabilities.

Probabilistic model. As an example, consider a coin, which can change
its colour and its centre of mass electro-mechanically. (Do not think too
much about the coin’s shape, which would be necessary for this.) A simple
state machine controls the transition from one colour to another and from
one centre of mass to another. Then the colour and the result of a coin toss
make up an observable snapshot of the inner state flow. Moreover imagine
that the person, who throws the coin, sometimes intends to play fair and
sometimes intends to cheat. Figure 7.4 visualises this example.

Let R be a root type whose entities should be modelled with a time-varying
state. Again ER denotes the set of all entities that are of a type derived from
R. These are all the entities of interest in this section. The set of states
SR is pre-defined and finite. Every entity e ∈ ER has been captured in Te

observations, which are numbered in their temporal order from 1 to Te. The
entities in ER can be transformed into a probabilistic model in the following
way.

For every observation i = 1, 2, ... , Te of the entity e ∈ ER , add a ran-
dom variable Ze,i that represents the inner state of the entity during the ob-
servation. Ze,i with i 6= 1 depends only on its predecessor Ze,i−1 (Markov
property). It follows a mixture of categorical distributions. Given the event
Ze,i−1 = s with s ∈ SR , Ze,i follows a categorical distribution with the param-
eter vector ΠR

s . Thus Ze,i has a mixture distribution. ΠR
s is modelled as a

random variable, which has a Dirichlet prior distribution with the parameter
vector αR . All mixture components have the same hyper-parameters. The
first state Ze,1 has no predecessor. It simply follows a categorical distribu-
tion with the parameter vector Π′R . This vector is again a random variable,
which has a Dirichlet prior distribution with the parameter vector αR . Fig-
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Figure 7.4: Probabilistic entity-relationship diagram of the coin example with finite time-
varying states. Compared to Figure 7.2 on page 125, observations of real world objects
are modelled instead of the objects itself. The observations of one object are still connected
through the relationship next though. To keep the figure clear, I omitted Π′Person and Π′Colour.
They can be imagined as being part of ΠPerson and ΠColour, respectively.
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ure 7.4 illustrates the model using the coin example. The following mathe-
matical expressions summarise the resulting probabilistic model of the state
variables:

Ze,1 | Π′R = π′ ∼ Categorical
(
π′
)
,

Π′R ∼ Dirichlet
(
αR),

Ze,i | Ze,i−1 = s,ΠR = π ∼ Categorical(πs) and

ΠR
s ∼ Dirichlet

(
αR)

for all i ∈ {2, ... , Te} and all e ∈ ER . ΠR denotes the tuple of all ΠR
s (s ∈

SR). π′, π and πs are values of Π′R , ΠR and ΠR
s , respectively.

As in the previous section, the model features a hierarchy of random vari-
able levels, with the observable attributes, the hidden states, the parameters
and the hyper-parameters. The exemplary realisation in Figure 7.5 shows
the hierarchy from left to right as well as temporal sequences of connected
state variables from top to bottom. Again similar observations are clustered
with the help of the state variables. The state transition probabilities are
learned for all entities of the same root type, because they all use the same
random variable ΠR . And if the parameter αR is estimated with another
hyper-distribution, it can incorporate the whole evidence of every mixture
component in ΠR and transfer the knowledge about one mixture component
to the others and to Π′ (as, e.g., in MacKay and Peto, 1995).

Sampling of a state variable. In the following, I consider a state variable
Ze,i that has a predecessor and a successor (Ze,i−1 → Ze,i → Ze,i+1). I
regard the values of these variables with r, s and t, respectively (r , s, t ∈
SR). Ze,i follows a mixture model. This means that the preceding state
determines the mixture component of the prior distribution. It is the indicator
variable of that mixture model. Given the preceding state, the setting is the
same as in the previous section, except for the additional child Ze,i+1. As
a consequence, the prior probabilities in Equation 7.2 on page 129 must
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Figure 7.5: Exemplary Bayesian network for the probabilistic model with finite time-varying
states. It shows again the hierarchy of random variables and the progress from one state
to the next. Compare this diagram with Figure 7.3. This time, the colour of the coin can
change over time, for example. c1, c2 and p1 are again coins and a person, t1, t2 and t3
are relationships. The sequence of states is indicated by the number after the comma (e.g.,
Zc1,1, Zc1,2 and Zc1,3). As in Figure 7.4, I assume ΠPerson and ΠCoin to contain Π′Person and
Π′Coin, respectively.
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be index with the component indicator and the likelihood of Ze,i+1 must be
added. The probabilities of Ze,i = s for all s ∈ SR then result in

P
(
Ze,i = s |mb(Ze,i )

)
∝ πr ,s πs,t

∏
Y∈Ae

Ltype(Y )(aY , θtype(Y )
sY

)
,

where πx ,y is the element y in the component vector πx .
The parameter vectors in ΠR can be integrated out as in the time-invariant

case. This task starts again with

P(Ze,i = s | z−e,i ,α) =
P(Ze,i = s, z−e,i | α)

P(z−e,i | α)
, (7.6)

which is free of those parameter vectors. z−e,i is the current joint event of all
state variables except for Ze,i .

The denominator can directly be obtained by integrating over all param-
eter vectors πs. SR is assumed to contain K states. To ease writing the
integral, π denotes the tuple of all parameter vectors πs and SK regards
the compound space of all standard simplexes the parameter vectors are
defined on. To keep the notation clear, I focus on a single root type R,
which should be modelled as proposed in this section, and, thus, omit the
superscript R. Then the denominator can be obtained by the following trans-
formations:

P(z−e,i | α) =
∫
SK

P(z−e,i | π) p(π | α) dπ

= p1

∫
SK

∏
e′∈ER ,j∈{2,...,Te′}
(e′,j)/∈{(e,i),(e,i+1)}

P(ze′,j | ze′,j−1) ·
∏
x∈S

∏
y∈S

1
B(α)

π
αy−1
x ,y dπ

= p1

∏
x∈S

∫
S

∏
y∈S

π
nx ,y
x ,y π

αy−1
x ,y dπx

= p1

∏
x∈S

B(α + nx )
B(α)

.
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The variables ze′,i′ for all e′ ∈ ER and all i ′ ∈ {1, ... , Te′} represent the cur-
rent value of their corresponding random variables Ze′,i′ during the sampling.
Further p1 =

∏
e′∈ER P(ze′,1) denotes the joint probability of all first variables

in the state sequences. It is a constant here. And nx ,y is the number of state
transitions from the state x to the state y without counting the transitions to
and from Ze,i . Compare this with the range of the first product in the second
line of the above equation. nx = (nx ,y )y∈SR is a vector with all counts that
start from a variable in the state x . Altogether the result is the same as in
the time-invariant case, except for the additional constant factor p1 and the
conditioning on the previous state.

The numerator in Equation 7.6 can be derived in the same way except
that the state transitions to and from Ze,i must be counted. The new counts
are represented by the vectors n(+Ze,i )

x . They match nx but with the additional
transitions Ze,i−1 → Ze,i and Ze,i → Ze,i+1. Numerator and denominator
together result in the prior probability of the state Ze,i :

P(Ze,i = s | z−e,i ,α) =
∏
x∈S

B
(
α + n(+Ze,i )

x

)
B(α)

B(α)
B(α + nx )

=
∏
x∈S

B
(
α + n(+Ze,i )

x

)
B(α + nx )

.

How this fraction can be reduced, depends on the specific values of the
three states r , s and t .

If r 6= s, the additional transitions are in two different counting vectors. So
the two fractions

P(Ze,i = s | z−e,i ,α) =
B(α + nr + ês)

B(α + nr )
B(α + ns + êt )

B(α + ns)

=
αs + nr ,s

α0 + nr ,0

αt + ns,t

α0 + ns,0

remain. Here êx is a standard basis vector with a one at the position of
the state x ∈ S. α0 =

∑
y∈S αy and nx ,0 =

∑
y∈S nx ,y for all x ∈ SR .

When comparing this with Equation 7.4 on page 130, the first fraction can
be interpreted as the prior probability of the incoming mixture model and the
second fraction as the likelihood of the outgoing mixture model.
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In the case that r = s, the additional transitions affect the same counting
vector ns. Moreover if s 6= t , two different counts in the counting vector
are changed by one. But the sum of the counts in this vector differs by
two. Applying the rule of the gamma function Γ(x + 1) = x Γ(x) recursively,
similarly to Equation 7.4 on page 130, leads to

P(Ze,i = s | z−e,i ,α) =
B(α + ns + ês + êt )

B(α + ns)

=
(αs + nr ,s) (αt + ns,t )

(α0 + nr ,0) (α0 + ns,0 + 1)
.

I chose the indices r and s freely here, because r = s. This way of indexing
turns out to be useful later on. It also retains the interpretation of the above
mentioned first and second fractions.

Finally if r = s = t , one counter in one counting vector changes by two.
This results in

P(Ze,i = s | z−e,i ,α) =
B(α + nr + 2ês)

B(α + nr )

=
(αs + nr ,s) (αt + ns,t + 1)
(α0 + nr ,0) (α0 + ns,0 + 1)

.

Again the indices r , s and t are freely assigned to the variables.
So far, Ze,i had a predecessor and a successor. The cases, if one or both

of them are missing, are treated in the following. If Ze,i is the last variable in
a state sequence or, in other words, if i = Te, the likelihood of the outgoing
transition vanishes. And if Ze,i is the first variable in a state sequence, that is,
i = 1, a categorical distribution with the parameter vector Π′R must be taken
instead of the mixture distribution with the components ΠR

s . This is the same
as in the time-invariant case. The counting vector for the integrated out Pi ′R

is regarded as n′R . If i = 1 6= Te, the likelihood of the successor must be
included in addition to the time-invariant case of Equation 7.4 on page 130.

In summary, six cases must be distinguished depending on, where Ze,i is
located within the state sequence and what values its neighbours have. The
following equations collect them. For them, I go back to the usual notation
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with the superscript R to denote the root type under consideration. This
notation emphasises the object-relational setting. In addition, I omit factors
that are constant for all s ∈ SR by using the ∝ symbol. If Ze,i is at one end
of a state sequence, the probabilities of the categorical distribution are

P
(
Ze,i = s | z−e,i ,αR) ∝ αR

s + n′Rs for i = Te = 1

P
(
Ze,i = s | z−e,i ,αR) ∝ (αR

s + n′Rs
) αR

t + nR
s,t

αR
0 + nR

s,0
for i = 1 6= Te

P
(
Ze,i = s | z−e,i ,αR) ∝ αR

s + nR
r ,s for i = Te 6= 1.

In the case that Ze,i is in the middle of a state sequence, the probabilities
are

P
(
Ze,i = s | z−e,i ,αR) ∝


(
αR

s + nR
r ,s

) αR
t +nR

s,t

αR
0 +nR

s,0
for 1 < i < Te ∧ r 6= s(

αR
s + nR

r ,s

) αR
t +nR

s,t

αR
0 +nR

s,0+1
for 1 < i < Te ∧ r = s 6= t(

αR
s + nR

r ,s

) αR
t +nR

s,t +1
αR

0 +nR
s,0+1

for 1 < i < Te ∧ r = s = t

(7.7)

Because the probabilities depend on s in this case, all three equations are
necessary to get one categorical distribution.

Finally the likelihood of the attributes must be included to get the prob-
ability of the event Ze,i = s depending on the Markov blanket of Ze,i . I do
not split this probability up in all the six cases again. Instead I stay with the
general formulation

P
(
Ze,i = s |mb(Ze,i )

)
∝ P

(
Ze,i = s | z−e,i ,αR) ∏

Y∈Ae

Ltype(Y )(aY , θtype(Y )
sY

)
.

Algorithm 7.3 on the next page shows a possible realisation of the sampling
algorithm in a programming style. While the calculations are still simple,
many different cases have to be distinguished.

Given the state of the predecessor, the mixture components are inde-
pendent from one another. How can transfer learning happen then? The
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if i = 1 then n′Rs ← n′Rs − 1
else nR

r ,s ← nR
r ,s − 1

if i < Te then nR
s,t ← nR

s,t − 1

Create p
for s ∈ SR do

if i = 1 then ps ← αR
s + n′Rs

else ps ← αR
s + nR

r ,s

if i 6= Te then
if i = 1 or r 6= s then

ps ← ps ·
(
αR

t + nR
s,t

)
/
(
sum

(
αR

)
+ sum

(
nR

s

))
else if s 6= t then

ps ← ps ·
(
αR

t + nR
s,t

)
/
(
sum

(
αR

)
+ sum

(
nR

s

)
+ 1

)
else

ps ← ps ·
(
αR

t + nR
s,t + 1

)
/
(
sum

(
αR

)
+ sum

(
nR

s

)
+ 1

)
for Y ∈ Ae do

sY ← joint value of Y ’s parent variables
ps ← ps · Ltype(Y )

(
aY , θtype(Y )

sY

)
p ← normalise the vector p to sum up to 1
s ← draw from Categorical(p)

if i = 1 then n′Rs ← n′Rs + 1
else nR

r ,s ← nR
r ,s + 1

if i < Te then nR
s,t ← nR

s,t + 1

Algorithm 7.3: Sampling of a finite time-varying entity state. This algorithm handles all
three cases of a state variable, which can be at the beginning, in the middle or at the end of
a state chain. It maintains global count tables nR and n′R , instead of counting states like in
Algorithm 7.2.
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predecessor variables are only fixed temporarily for a Gibbs sampling step,
but not for the whole sampling process. Instead every state variable is as-
signed to every state probabilistically. This way, the evidence associated
with each state variable influences all transition probabilities. So transfer
learning indeed happens in a limited way. To further smooth the mixture
components, αR could be modelled as a random variable with its own prior
distribution. Then αR

s is a parameter that represents the evidence for all
mixture components with regard to the target state, while nR

r ,s is a parameter
that represents the evidence for a single mixture component. Section 7.3.3
uses this extension for the infinite mixture model.

This subsection features a model, which tracks the inner state of entities.
While the observations of an entity were exchangeable in the time-invariant
model, the time-varying model of this subsection orders the observations of
an entity temporally in form of a Markov chain. This fits well with the con-
cepts of the Enfident Model. The proposed algorithm simplifies the Enfident
Model though. The chance of a state transition disregards the time that
elapsed between the two associated observations. In contrast to this, Sec-
tion 6.3 proposes that various more state transitions may have happened
when a long time has been elapsed between two observations compared to
closely succeeding observations.

The algorithmic realisation integrates out the prior probabilities ΠR . As
in the previous section, this mutually connects all state variables that are
associated with the same root type. This time however, the preceding and
succeeding state variables in the Markov chain are handled differently from
all others. They determine that not all state variables of the same root type
are connected but only those which have predecessors or successors in the
same state.

The whole section covered probabilistic models for the hidden variables,
if they have a fixed finite number of states. Two algorithms have been pro-
posed: One assumes that an object’s state is time-invariant; the other al-
lows that an object’s state changes over time. However the exact number of
states is rarely known in practice. How can both algorithms be extended to
find the right number of states on their own?
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7.3 Realisations with Infinite Mixture Models

This section introduces a technique that assumes a countably infinite num-
ber of states while it realises only a finite subset of them. The resulting
algorithms do not estimate a suitable number of states. Instead they infer
for any number of states at once in a full Bayesian way. There is an im-
plicit probability distribution, whether a state is used or not. The following
subsection introduces infinite mixture models and applies them to the time-
invariant case. With the concepts of this subsection, the time-varying case
can be treated afterwards.

7.3.1 Introduction to the Infinite Mixture Model

In this subsection, the finite mixture model is extended to a model with a
countably infinite number of states. In the beginning, the set of states SR is
assumed to have the finite size K . All K elements in the parameter vector
αR should be equal. If αR

0 is the sum of all these values, one element is
αR

0 /K . Applying these prerequisites to the prior distribution in Equation 7.4
on page 130 leads to the form

P
(
Ze = s | z−e,αR

0

)
=

αR
0

K + nR
s

αR
0 + nR

0
.

There can be less state variables than possible states. This means, not
all states need to be represented in state variables. The states that are
currently used are collected in the set SR+ = {s ∈ SR | nR

s 6= 0}. As in
Section 7.2.2, nR

s is the number of state variables that have the value s. The
other states are in SR− = SR \ SR+. Suppose SR+ contains J elements.
Then the event znew that a state variable Ze takes on a new state from SR−

has the probability

P
(
znew | z−e,αR

0

)
=
∑

s∈SR−

α0
K + nR

s

αR
0 + nR

0
= (K − J)

αR
0

K

αR
0 + nR

0
.
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In the infinite mixture model, J is kept finite, while K → ∞. Applying this
to both of the above equations results in the probabilities

P
(
Ze = s | z−e,αR

0

)
=


nR

s
αR

0 +nR
0

for an s ∈ SR+ and
αR

0
αR

0 +nR
0

for a new s.
(7.8)

These are the parameters of a state’s prior distribution in the infinite mixture
model. Neal (1991, 2000) discusses that the limit is well defined. This way of
constructing a new state from the already realised states is usually regarded
as the Chinese restaurant process (CRP) or the Pólya urn scheme (see e.g.,
Pitman, 2006; Xu, 2007; Frigyik et al., 2010).

Note here that the process of sampling a new state variable has a rich-
get-richer property. A state that is already used by many other state vari-
ables is most likely to be used again. Thus rich states become even richer.
This avoids overfitting of the model. With an infinite number of mixture com-
ponents, data could be explained exactly, if every observation gets its own
component. But then, a new observation could not be explained well with
the same model. This is an overfitting of the model to the data. The pre-
sented sampling schema with the rich-get-richer property suppresses the
overfitting by clustering the state variables.

The above equation describes a schema, how a new state is chosen. In
a mixture model, every state is associated with a mixture component, that
is, with a probability distribution. Consequently a new probability distribution
must be instantiated for every new state. If an attribute follows a mixture
distribution with components of a parametric family F (θ), a new distribution
can be got by creating a new parameter vector θs. This vector is drawn from
a prior distribution G0, that is, θs ∼ G0.

Taking all this together, results in a process that provides a countably
infinite number of distributions of the same parametric family, all drawn from
G0. The probability of each distribution depends on, how often it is already in
use. The algorithmic realisation of this process instantiates a finite number
of distributions only. The parameter α0 of the process controls, how easily
a new distribution is generated or, in other words, how sparse the clusters
are.
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The process could also be said to define a discrete distribution on the
continuous space of probability distributions over the observation values.
This discrete distribution could be written as

G(θ) =
∞∑

k=1

πk δθk (θ), (7.9)

where every θ regards a probability distribution F (θ) on the space Ω of the
observation values and the θk refer to those countably infinite distributions
with a probability greater than zero. πk is the probability of the distribution
θk . Such distributions over distributions are what the Dirichlet process pro-
duces. The following expressions sketch the statistical model of the Dirichlet
process:

G ∼ DP(α0, G0),

φi ∼ G and

yi ∼ F (φi ).

Both, α0 > 0 and G0, correspond to the symbols that are already used
above. In the context of the Dirichlet process, α0 is called the concentration
parameter and G0 the base distribution. DP is the distribution of the Dirichlet
process: the Dirichlet measure. The above expressions simplify the notation
a bit for cleanness. G, φi and yi are used as random variables and as
realisations at the same time. When considering the setting of Section 7.2.2,
in which several mixture models are entangled, then yi is an attribute of the
i th mixture model and φi regards the mixture component of this attribute. In
the case of the infinite mixture model, there is a countably infinite number
of mixture components identified by θ1, θ2, .... φi can take on any of those
values. Expressed with the indicator variable zi , φi = θzi . Thus for indices
i and j with i 6= j , φi can be equal φj , while θi and θj are always different.
The draws from G have a clustering property that is equivalent to that of the
Chinese restaurant process.

All this shows that the theory of Dirichlet processes lays out the ground
for the infinite mixture model. For completeness, the formal definition of the
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Dirichlet process is given in the following, although the above informal intro-
duction is more helpful for infinite mixture models. In the definition, (Ψ,G) is
the measurable space of the mixture components. And a finite measurable
partition of Ψ is a collection of elements Bj ∈ G with j , k ∈ J, if each Bj 6= ∅,
Bj ∩ Bk = ∅,

⋃
j∈J Bj = Ψ and J is a finite set.

Definition 7.3 (Dirichlet process). Let (Ψ,G) be a measurable space,
G0 be a probability measure on this space and α0 be a positive real
number. G is produced by a Dirichlet process with the base distribu-
tion G0 and the concentration parameter α0, if (G(B1), ... , G(Bk )) ∼
Dirichlet(α0G0(B1), ... ,α0G0(Bk )) for any finite measurable partition
B1, ... , Bk (Ferguson, 1973; Van Gael, 2011).

The theory around the Dirichlet process is quite interesting and worth
reading, but goes beyond the scope of this dissertation. The article of Fer-
guson (1973) lays out the basic concepts, while the tutorial of Frigyik et al.
(2010) illustrates the various views on the Dirichlet process. The article of
Neal (2000) and the dissertation of Xu (2007) describe the Dirichlet process
with respect to the infinite mixture model.

This chapter uses a third view on the Dirichlet process: the stick break-
ing process (e.g. Teh et al., 2006; Frigyik et al., 2010). It constructs the
probabilities πk in Equation 7.9. The following equations sketch its statistical
model:

bk | α0 ∼ Beta(1,α0) and

πk = bk

k−1∏
j=1

(1− bj ).

Beta refers to the beta distribution, which equals to the Dirichlet distribution
for the binomial case (n = 2 in Definition 7.2).

The idea is to break a stick of length one in two parts. b1 represents the
fraction. The length of the first half is taken as π1. Then the second half is
broken in two parts again. This time, the fraction is b2 and the length of the
first half is assigned to π2. This procedure is repeated as long as new prob-
abilities are necessary. The remaining second half represents the remaining
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probability mass. In the mixture model, it corresponds to the probability of
the states that are not yet instantiated (the states in SR−).

In summary, the Dirichlet process directly provides a sequence of mixture
components for the infinite mixture model. It repeats already used com-
ponents according to, how often they appeared. The Dirichlet process de-
fines a mathematical concept but no computation schema. Instead other
processes are used in algorithms. The stick breaking process describes a
computation schema for the probabilities of the mixture components. These
probabilities are sometimes necessary. And the Chinese restaurant pro-
cess adds an intermediate layer in form of the state variables but integrates
out the prior probabilities πk of the mixture components. Its computation
schema is easy to use and, thus, the main tool in this section.

7.3.2 Infinite Mixture Models for Time-Invariant Entity Types

The above paragraphs introduced the infinite mixture model. In the following,
it is extended to the entity-relationship paradigm in the form proposed by
Xu (2007). Several mixture models are entangled so that an observable
attribute can depend on the state variables of several entities and that all
entities of a certain root type share the same parameters.

Probabilistic model. Let R be a root type with entities, each of which
should be modelled with one state variable for all observations, and let ER

be the set of all entities that are of a type derived from R. These are the
entities of interest in this section. The set SR collects a countably infinite
number of states. As in the previous section, I assume it to be the set of
natural numbers starting with 1 (SR = {1, 2, ...}), just to ease the notation
of indices in the following. Then the entities in ER are transformed into a
probabilistic model in the following way.

Every entity e ∈ ER is associated with a state variable Ze. It is a ran-
dom variable that can take on any value in SR . The state variables follow a
Chinese restaurant process (with the distribution named CRP):

(Ze)e∈ER | αR
0 ∼ CRP(α0).
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The basic model here is the same as that of Figure 7.2 on page 125.
The hyper-parameter αR is not a vector though. The Chinese restaurant
process needs only the single scalar parameter αR

0 . There are views on
the Dirichlet process that make the prior probabilities in ΠR explicit. Then
ΠR is an infinite dimensional vector. The Chinese restaurant process works
on the collapsed Dirichlet-categorical distribution, which has already been
introduced for the finite case as well. The parameter vector ΘColour of an
entity attribute Coin.Colour is an infinite dimensional vector as well. The
relationship attribute Throws.Side has two state variables as parents. So its
parameter vector ΘSide has∞×∞ elements. All these infinite dimensional
structures are not explicitly realised during the computations. Rather the
algorithm works on a finite subset of them.

If a conjugate prior distribution is used for the parameter vectors Θτ , these
vectors can be integrated out. This leads to a rather compact model. Indeed
this is assumed for the algorithms of the infinite-dimensional case in the fol-
lowing, because the hyper-prior G0 is explicitly necessary in this case to
create new components as already shown in the introduction of the infinite
mixture model. The algorithms below are well manageable, when the inte-
gration can be performed analytically as with conjugate prior distributions for
Θτ .

Sampling a state variable. Equation 7.8 on page 143 already gives the
prior distribution of Ze. Naturally one would add the attribute likelihood

P(Ze = s | z−e,α0, Ae) ∝ P(Ze = s | z−e,α0)
∏

Y∈Ae

Ltype(Y )(aY , θtype(Y )
sY

)
,

as it happened in the finite cases, and assume that everything is done. This
would require though that all possible s ∈ SR are explicitly handled. In the
infinite-dimensional case, only the states that are occupied by some state
variables should be treated explicitly. They are in the set SR+. Thus the
above equation is sufficient for s ∈ SR+. All other states should be treated
as a whole. This ensemble of states corresponds to any parameter vector
θtype(Y ) except for those vectors that are associated with the states in SR+.
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This means, with τ = type(Y ), to integrate over the whole space V τ of the
parameter vector θτ in the form∫

Vτ

Lτ (aY , θτ ) Gτ
0 (θτ ) dθτ . (7.10)

Note that V τ depends on the parameter vector θτ .
Equation 7.10 describes the likelihood that the attribute Y comes from any

of the states in SR− by collapsing the attribute distribution F τ and its prior
distribution Gτ

0 . If the integral can be solved analytically, the resulting col-
lapsed likelihood depends only on the prior parameters any more. Note that
these parameters are not made explicit here. They are part of the function
Gτ

0 .
The collapsed likelihood can be used for the states in SR+ as well. This

time, it must include the data that is already associated with a state: It is
the a posteriori likelihood. The set Aτ−Y |sY

denotes this data. It contains all
attributes of type τ that are associated with the same component sY except
for the attribute Y . The a posteriori likelihood corresponds to the a posteriori
probability

P(Y | A−Y |sY
, G0) =

P(Y , A−Y |sY
| G0)

P(A−Y |sY
| G0)

.

Transforming this to a likelihood, results in the function

K τ
sY

(Y ) =

∫
Vτ

Lτ (aY , θτ )
( ∏

Y ′∈Aτ
−Y |sY

Lτ (aY ′ , θτ )
)

Gτ
0 (θτ ) dθτ

∫
Vτ

( ∏
Y ′∈Aτ

−Y |sY

Lτ (aY ′ , θτ )
)

Gτ
0 (θτ ) dθτ

.

It is the a posteriori likelihood of the attribute Y of type τ given the mixture
component sY . Or in other words, it is the likelihood of the attribute Y for
the mixture component sY given all data that is also associated with this
component and expressed in terms of the prior parameters instead of θτ .



7.3 Realisations with Infinite Mixture Models 149

If Gτ
0 is the conjugate prior of the distribution, to which the likelihood Lτ

belongs, K τ
sY

can be obtained analytically. Note that Aτ−Y |sY
is empty in the

case of a new state s ∈ SR− for Ze. With this empty set, K τ
sY

reduces to the
integral of Equation 7.10, because the products are empty and the integral
over Gτ

0 in the denominator results in 1. Thus K τ
sY

fits for the cases that s is
from SR+ and from SR−.

With this likelihood function, the a posteriori distribution of Ze can be ex-
pressed compactly. It has the probabilities

P(Ze = s | z−e,αR
0 ,Ae) ∝


nR

s
∏

Y∈Ae

K type(Y )
sY (Y ) for an s ∈ SR+ and

αR
0
∏

Y∈Ae

K type(Y )
sY (Y ) for a new s.

The set Ae contains all attributes Y that are associated with the entity e
either directly or through a relationship (Ae = {Y | e ∈ entities(Y )}). And
Ae denotes a set, which contains all the attributes in Ae plus all attributes
that are of the same type as those in Ae. This way, Ae also contains all
attributes of the sets Atype(Y )

−Y ,sY
.

Algorithm 7.4 on the next page expresses this sampling schema in a pro-
gramming style. Altogether the algorithm is similar to the finite case. Only
few additional operations are necessary to include the probability of all the
states that are not instantiated in a state variable. However during the sam-
pling, the algorithm randomly creates many states that are used by one or
two state variables only. So the total number of instantiated states might
be higher compared to a finite mixture model with a well estimated num-
ber of states. On the other hand, the estimation of the number of states is
unnecessary here.

7.3.3 Infinite Mixture Models for Time-Varying Entity Types

The finite time-varying case in Section 7.2.3 uses a Markov chain in a similar
way as a hidden Markov model. Therefore I roughly introduce the infinite
hidden Markov model first and extend it then for the object-relational domain.
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nR
s ← nR

s − 1
if nR

s = 0 then remove unnecessary elements

// Probabilities for states that are already in use
p ← nR

for s ∈ SR+ do
for Y ∈ Ae do

sY ← joint component indicator with Ze = s
ps ← ps · K type(Y )

sY (Y )

// Overall probability for all unused states
q ← αR

0

for Y ∈ Ae do
sY ← joint component indicator for a new state in Ze

q ← q · K type(Y )
sY (Y )

Append value q to the vector p

p ← normalise the vector p to sum up to 1
s ← draw from Categorical(p)

if s ∈ SR+ then
nR

s ← nR
s + 1

else
s ← a new appropriate state value // possibly reuse old values
Extend nR to contain nR

s = 1

Algorithm 7.4: Sampling of an infinite time-invariant state variable. s is the variable for the
current state of the random variable Ze and nR is a one-dimensional list of the state counts
for all states in SR+.
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Idea of an infinite hidden Markov model. The section about the finite
time-varying case already mentions that the hyper parameters αR can be
understood as random variables in order to learn across mixture compo-
nents. This is necessary here. To do so, the parameter vector αR is split in
two parts: αR = αR

0 β
R . βR is a unit vector and αR

0 a scaling factor. Then
βR is turned into a random variable denoted as BR and gets a Dirichlet prior
distribution with parameters, that all have the value γR/K . K is as always
the number of states in SR and γR is another scaling factor. Both, αR

0 and
γR can be random variables with a gamma distribution as, for example, Teh
et al. (2006) show. For this chapter, it is sufficient to model them as con-
stants. The extended finite-dimensional model can be summarised with the
expressions

BR ∼ Dirichlet
(
(γR/K , ... , γR/K )

)
,

ΠR
s | BR = βR ,αR

0 ∼ Dirichlet
(
αR

0 β
R) and

Ze,i | Ze,i−1 = r ,ΠR = (πs)s∈SR ∼ Categorical(πr )

with s, r ∈ SR .
What does this form of coupling bring about? Equation 7.7 on page 139

contains terms of the form αR
s + nR

r ,s. Through the evidence variable nR
r ,s,

every component of the transition distribution learns on its own. It only uses
the evidence of the given predecessor r . In contrast, αR

s is a parameter
solely depending on the current state. Making this parameter a random
variable learns a probabilistic effect for the state s, which is common to all
the predecessors. Thus when using the extension above, αR

s +nR
r ,s combines

the learning of source- and target-related correlations for the transitions in
the Markov chain.

The new model connects two Dirichlet distributions. It is a hierarchical
Dirichlet model. With K → ∞, it results in a hierarchical Dirichlet process,
which has been proposed by Teh et al. (2006). Van Gael et al. (2008) fur-
ther detailed its application on the infinite hidden Markov model. The idea
is the following. Given Ze,i−1, the indicator variable Ze,i together with the
attribute variable Yi makes up a mixture model. The state transition proba-
bilities πze,i−1,s for s ∈ SR are the mixture weights. In the infinite case, the
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mixture model can be represented by a Dirichlet process. Every state in
Ze,i−1 regards its own mixture model and thus its own Dirichlet process. So
there is an infinite set of Dirichlet processes or, in other words, an infinite
set of mixture models for an attribute. With a hierarchical Dirichlet process,
these attribute-related processes are coupled in the way that they share the
same mixture components but with different mixture weights. The mixture
components that they share come from another Dirichlet process. This par-
ent process also produces an infinite-dimensional vector BR of probabilities,
around which the mixture weights of the child processes are centred. BR

corresponds to the finite-dimensional vector BR in the equations above.
The theory about hierarchical Dirichlet processes is so complex that pre-

senting it here would loose the scope of this work. Therefore I point the
reader to the mentioned papers. In the following, I introduce an object-
relational model based on these concepts. I present it without the theory
of hierarchical Dirichlet processes. Instead I build on top of the previous
sections to point out the idea.

Probabilistic model. Let R be a root type whose entities should be mod-
elled with a time-varying state. ER denotes the set of all entities that are of a
type derived from R. These are the entities of interest in this section. SR is
a countably infinite set of all states. Then the entities in ER are transformed
into a probabilistic model in the following way.

For every observation i = 1, 2, ... , Te of every entity e ∈ ER , add a ran-
dom variable Ze,i that represents the inner state of the entity during the ob-
servation. The state variables Ze,i of the entity e for all i make up a Markov
chain. Thus Ze,i with i 6= 1 depends only on its predecessor Ze,i−1. The col-
lapsed Dirichlet-categorical distribution for the infinite hidden Markov model
has no name in the literature. In the following, I call it the time-varying Chi-
nese restaurant franchise (TVCRF). It is an extension of the Chinese restau-
rant process and generalises Equation 7.7 to the infinite-dimensional case.
TVCRF’ is the corresponding process for the first state variable in a state
sequence. These processes are coupled with a random variable BR . BR is
an infinite-dimensional probability vector, which is associated with the root
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type R of the entity. It is generated by a stick breaking process with the dis-
tribution named Stick (Section 7.3.1). The time-varying Chinese restaurant
franchise and the stick breaking process have the root-type-specific param-
eters αR

0 and γR , respectively. Both are positive real numbers. The following
expressions summaries the random variables and parameters:

BR ∼ Stick
(
γR),

Ze,1 | z−e,1, BR = β,αR
0 ∼ TVCRF′

(
αR

0 ,β
)

and

Ze,i | z−e,i , BR = β,αR
0 ∼ TVCRF

(
αR

0 ,β
)

for i 6= 1.

Here ze,i is the current joint event of all state variables of the entities in ER

except for Ze,i .
This probabilistic model is comparable with the finite-dimensional model

of Section 7.2.3 but extends it in the following ways. The model uses a count-
ably infinite number of states, but instantiates only a finite subset of it. Con-
sequently the transition matrix and the set of attribute mixture components
are infinite dimensional as well. An additional random variable B couples the
components of the transition distribution. It is an infinite-dimensional vector
of prior probabilities.

What features does the model offer in the end? With the hidden state
variables, it learns an individual mixture model for every observation of an
entity. The state transition probabilities and the mixture parameters for the
attributes are shared variables for all entities of a root type. This way, the
model transfers evidence between entities. For a trust model, this means
that the model can learn the behaviour of, for example, every cooperation
partner individually. But it shares behavioural patterns across all coopera-
tion partners. Through the additional hierarchy level with the variable B, ev-
idence is shared between the transition components. This can be realised
in a similar way for the mixture distributions of the attributes. All these are
important features for a trust model in order that it can support the ability to
decide under high uncertainty. On the downside, the state transition proba-
bility only depends on the root type. In some scenarios, transition probabili-
ties could be desirable that are individual for each entity. Partly the proposed
model can compensate this missing feature in the way that a state variable
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is in all states, just with different weights. This way, the state trajectory of
different entities can be individual. If this is not sufficient, another Dirichlet
process level can be inserted to group all observations of an entity.

So far, I introduced the setting. The remaining section shows shortly how
to sample the state variables and the hyper-parameter B. For details, please
refer to the papers mentioned above.

Sampling a state variable The distribution over the first state variable in a
sequence (Π′R) can be understood as just another mixture component in the
transition matrix (ΠR). The component is selected for all first state variables
with probability one and for all other state variables with probability zero.
This can be realised in the algorithm by adding a constant Ze′,0 to all entities
e′ with a state value, which is not in SR . For example, if SR = {1, 2, ...},
then Ze,0 can be set to zero. This simplifies the algorithm, because fewer
branches are necessary. Consequently only Equation 7.7 on page 139 is
the relevant part from Section 7.2.3 regarding the prior distribution.

In the following, the state variable Ze,i for i = 1, ... , T1 − 1 should be
sampled. The variables r , s and t should be the values of Ze,i−1, Ze,i and
Ze,i+1, respectively. Let z−e,i be the joint event of all other state variables,
that is, all Ze′,j with e′ ∈ ER , j ∈ {0, ... , Te′} and (e′, j) 6= (e, i). Similarly
to the infinite-dimensional time-invariant algorithm, there is a set SR+ for all
states that are used in z−e,i and a set SR− for all other states. These other
states are only treated as a whole. Moreover let βR be the current realisation
of the random variable B. Then the prior probabilities of Equation 7.7 can
be reformulated to

P
(
Ze,i = s | z−e,i ,αR

0 ,βR) ∝


(
αR

0 β
R
s + nR

r ,s

) αR
0 β

R
t +nR

s,t

αR
0 +nR

s,0
for r 6= s ∈ SR+(

αR
0 β

R
s + nR

r ,s

) αR
0 β

R
t +nR

s,t

αR
0 +nR

s,0+1
for r = s 6= t(

αR
0 β

R
s + nR

r ,s

) αR
0 β

R
t +nR

s,t +1
αR

0 +nR
s,0+1

for r = s = t

αR
0 β

R
u β

R
t for a new s.

In the last case, αR
0 β

R
u is the incoming probability to get from r in any of

the states in SR− and βR
t is the outgoing probability to reach the successive
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state t . For the last state variable Ze,Te in a chain, the second factor of the
first three cases is omitted, because there is no outgoing transition. In the
consequence, the above probability has only two cases for Ze,Te any more.

The probabilities of the sampling distribution

P(Ze,i = s |mb(Ze,i )) ∝ P
(
Ze,i = s | z−e,i ,αR

0 ,βR) ∏
Y∈Ae,i

K type(Y )
sY (Y )

just contain the likelihood of the attributes in addition. K type(Y )
sY is defined as

in the previous section. Algorithm 7.5 on the following page realises this
schema in programming style. It is straightforward except for the case when
a new state is created. How is this done, since the number of states for all
state variables and for the parameter vector B must match?

A stick breaking process generates the variable B with the beta distribu-
tion as described in Section 7.3.1. βR

u represents the size of the remaining
stick or the remaining probability mass. If a new state is sampled, βR

u is
broken by the random factor b ∼ Beta(1, γ) in the way that

βR
snew

= b βR
u and

βR
u = βR

u − βR
snew

.

This schema ensures that βR =
(
βR

1 , ... ,βR
K ,βR

u

)
is Dirichlet-distributed. In

the case here, this the whole stick breaking computation, because no evi-
dence is yet available for βR

u , since it represents the unrealised states. Al-
gorithm 7.5 contains this update of βR as well. It also notes that the count
table must be updated if a new state is instantiated.

In this hierarchical setting, the parameter vector BR must be sampled
as well. It cannot be integrated out analytically. The following paragraphs
reproduce the sampling schema from Teh et al., 2006.

Sampling BR . Before sampling BR , the data structures should be cleaned
up. All states that are not used any more (nR

r ,s = 0) should be removed.
To get the probability distribution of BR , an auxiliary random matrix MR is

necessary. In Teh et al.’s (2006) Chinese restaurant franchise schema, MR
jk
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nR
r ,s ← nR

r ,s − 1
if i 6= Te then nR

s,t ← nR
s,t − 1

Create p
for s ∈ SR+ do

ps ← ps ·
(
αR

0 β
R
s + nR

r ,s

)
if i 6= Te then

if r 6= s then
ps ← ps ·

(
αR

0 β
R
t + nR

s,t

)
/
(
αR

0 + sum
(
nR

s

))
else if s 6= t then

ps ← ps ·
(
αR

0 β
R
t + nR

s,t

)
/
(
αR

0 + sum
(
nR

s

)
+ 1

)
else

ps ← ps ·
(
αR

0 β
R
t + nR

s,t + 1
)
/
(
αR

0 + sum
(
nR

s

)
+ 1

)
for Y ∈ Ae do ps ← ps · K type(Y )

sY (Y )

q ← αR
0 β

R
u

if i 6= Te then q ← q · βR
t

for Y ∈ Ae,i do
sY ← joint component indicator for a new state in Ze,i

q ← q · K type(Y )
sY (Y )

Append q to p

p ← normalise the vector p to sum up to 1
s ← draw from Categorical(p)

if s /∈ SR+ then
Extend nR to contain nR

x ,s = 0 and nR
s,x = 0 for all x ∈ SR+

b ← draw from Beta
(
1, γR

)
βR

s ← βR
u b

βR
u ← βR

u − βR
s

Add s to SR+

nR
r ,s ← nR

r ,s + 1
if i 6= Te then nR

s,t ← nR
s,t + 1

Algorithm 7.5: Sampling the state variable in the infinite time-varying case. This algorithm
combines the techniques from Algorithms 7.3 and 7.4.
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represents the number of tables in the restaurant j with the dish k . The dish
k is the state of Ze,i , while the restaurant j is the state of Ze,i−1. MR has a
categorical distribution with the probabilities

P
(
MR

jk = m | z, m−jk ,βR) =
Γ
(
αR

0 β
R
k

)
Γ
(
αR

0 β
R
k + nR

j ,k

) s
(
nR

j ,k , m
) (
αR

0 β
R
k

)m
.

The symbol z denotes the joint event of all state variables in ER and m−jk

regards the joint event of all elements in MR except of MR
jk . s(n, m) are

unsigned Stirling numbers of the first kind.
With this random matrix, the probability distribution of BR is simply an

updated Dirichlet distribution:(
βR

1 , ... ,βR
K ,βR

u |MR , γR) ∼ Dirichlet
(
m1, ... , mK , γR),

where mi is the sum over the column i in the current value of MR (mi =∑K
s=1 msi ).
I omit the programming code for the sampling of both variables. It would

not add much to the equations above. In summary, the hierarchical setting
of the model in this section requires to sample two additional variables. Fur-
thermore the algorithm for sampling a state variable is more complicated.
But still it requires just one loop over SR+ and a sub-loop over the attributes.
Only in case, that a new state is created, all data structures must be ex-
tended.

7.4 Summary

At the beginning of this dissertation, trust has been introduced as a mech-
anism that learns model of others’ behaviour. What does this mean for an
algorithm? When the trusting agent knows little about the world, few other
agents and few trust experiences, it has a simple model only. With increas-
ing number of experiences and interaction partners, the model should be-
come more extended, detailed and complex. Learning a model of others’ be-
haviour also means that a trust algorithm should be able to flexibly learn any
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behavioural pattern. It should make as little assumptions about the others’
behaviour as possible. At the same time, it should learn every behavioural
pattern as exact as possible.

So a trust algorithm should be able to handle complex and simple scenar-
ios, that is, little and much evidence. And it should be unspecific regarding
the possible behaviour pattern, but learn every specific behavioural pattern
exactly. The poles of both statements seem incompatible for algorithms. For
example, if an agent models a discrete attribute with six levels, it can apply
a categorical distribution with these six levels to it. This is the most generic
model schema, as it provides five degrees of freedom for the probabilities.
Now the agent has three pieces of evidence. It can learn the categorical
distribution with this evidence, but the result will not be reliable. It is likely to
change with more evidence, because three random points are too few for five
degrees of freedom. If the agent would know that the discrete values come
from the discretion of a Gaussian distributed continuous random magnitude,
the probabilistic model would have two degrees of freedom only. Thus it
can find the right distribution with little evidence more easily. In addition,
the degrees of freedom add up over all mixture components. In general, a
complex probabilistic model has many ways to explain few data. For a sam-
pling algorithm, the consequence is that the sampling space is large and,
thus, the algorithm could fail to converge. Similar problems may occur with
maximum likelihood or maximum a posteriori learning. Altogether a trust al-
gorithm must be flexible and specific at the same time. This is an inherent
property of the trust mechanism.

The proposed algorithms include several means to realise this property.
Through their entity-relationship paradigm they can scale from simple to
complex scenarios: With an increasing number of entities, the structure
of the underlying probabilistic model increases as well. And the infinite-
dimensional algorithms adjust the number of states as needed; they are
non-parametric. This is also a kind of structure learning, as the number of
states matches with the number of distributions in the mixtures. With an in-
creasing amount of evidence, they can distinguish more and more mixture
components. While the probabilistic models of the attributes are important
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for this property of the trust mechanism as well, they have been omitted,
because they are application specific and not at the core of the trust model.

Further advantages of the proposed algorithms are already mentioned
throughout this chapter several times. Especially the algorithms try to trans-
fer the available evidence between all entities. This is important to judge
under high uncertainty – another inherent requirement of the trust mecha-
nism.

Besides these advantages, the proposed algorithms were mainly selected
for this dissertation, because they suit well to explain many algorithmic
facets of trust and the Enfident Model. They are based on generative prob-
abilistic models, which reflect assumptions about trust in a similar way as
the Enfident Model and can well be visualised. This meets the scope of this
dissertation to improve the understanding and modelling of trust between
cooperating technical systems.

However explaining the world is also one of the drawbacks of genera-
tive models. The main purpose of an inference algorithm is to match the
data and not any assumption about the world. For this reason, it would be
interesting for the future to apply discriminative regression and clustering
techniques on the Enfident Model. This could also lead to a higher com-
putational speed, since especially the sampling algorithms for the infinite-
dimensional mixtures are very slow. In addition to these drawbacks, the
proposed time-varying algorithms do not include the progressing time in the
transition probabilities of the Markov chain. This differs from the Enfident
Model as explained in Section 6.3. Moreover the algorithms just compute
probabilistic trust. They disregard potential gain and loss. They could be
extended for interest-related trust though. Finally Gibbs sampling can fail to
converge to the right distribution. This can also be a problem in real appli-
cations. Despite all these problems, the proposed algorithms still have good
practical advantages and fit well with the aim of this dissertation.





8 Evaluation Method

To show trust in action, I apply it to communicating vehicles. The following
three sections introduce the scenario more in detail. Why did I select this
scenario for the evaluation of the Enfident Model? On the one hand, apply-
ing trust here is reasonable: Cognitive vehicles have the necessary ability
to judge cooperation outcomes; and they benefit from a trust model as the
next section explains. On the other hand, the scenario can be simulated
well: The social structure can be constructed as shown in Section 8.4.1; it
determines who is interacting with whom. And the message exchange and
information processing can sufficiently be reproduced in a simulation too.

While an application scenario is helpful for the concreteness and vivid-
ness of the evaluation, what should be the scope of an evaluation in this
dissertation? The aim of this dissertation is not to find the fastest trust algo-
rithm, for example. Rather it contributes to the understanding and modelling
of trust between technical systems on a conceptual level. Thus the evalua-
tion should show that the postulated requirements and the Enfident Model
lead to intuitive and consistent results. Moreover the Enfident Model and the
realising algorithms should fulfil the requirements.

Consequently the requirements are connected with application-specific
use cases in Section 8.2. These use cases are in turn transformed in sim-
ulation scenarios as described in Sections 8.5.1 and 8.5. The simulation
scenarios are comparable to tests. Simulating them leads to test results
presented in Chapter 9. That chapter also relates the results back to the
requirements and verifies them regarding practical expectations.
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8.1 The Inter-Vehicular Communication Scenario

Consider a scenario in which cars continuously talk with each other while
driving around. These future cars can perceive, reason, learn, plan and act
in a way that they understand the surrounding traffic scene. In the litera-
ture, they are sometimes called cooperative cognitive automobiles (Stiller
et al., 2007). Compare this with cognitive technical systems in general as
introduced in Chapter 1.2. Such vehicles are expected to improve the traf-
fic efficiency and safety. While they may still be driven by a human, they
can widely assist the driver. To extend their perception range and their ca-
pabilities, they exchange all kinds of model information through a vehicular
network. In this setting, a trustworthy cooperation partner is a vehicle that
sends accurate information. Note that vehicles also cooperate in the way
that they slow down or change lanes because of other vehicles on the road.
This form of cooperation is not considered here.

The following listing collects examples of information that the vehicles
store in their knowledge base and exchange through the network (Enkel-
mann, 2003; Matheus et al., 2004; CAR 2 CAR Communication Consortium,
2007; Kranz, 2008). Its classification is arbitrary. It should just make aware
of the various kinds of applications associated with a vehicular network.

Long-term information. Structural alterations, permanent changes in the
traffic regulations (e.g. traffic signs), new or removed points of interest
(like petrol stations, hotels or museums).

Medium-term information. Temporary changes in the traffic regulation (e.g.
traffic signs because of special events), hazardous locations (e.g. dirt
or oil on the road), content changes of a point of interest (e.g. prices).

Short-term information. Hazardous locations (e.g. fog, aquaplaning), obsta-
cles, free parking space, level of service, traffic congestions.

Situational information. Green light optimal speed advice, location and ve-
locity of traffic participants (for collision warning, collision preparation
and merging assistance to join flowing traffic), location and route of
emergency vehicles.
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In the considered scenario, a vehicle has two sources of information: It
continuously scans its environment for interesting features (named observa-
tions) and it receives information about the environment from other vehicles
(named reports). All reports must be evaluated and some decisions must
be derived from them, like: Should I take the information as correct and inte-
grate it into my knowledge base? Should I recommend the driver to choose
a different route, because the received information suggests that? Should I
warn the driver to slow down, because the other vehicle informed me about
bad road conditions ahead?

While vehicular networks are already there in industrial projects, they will
become even more important for vehicles with cognitive capabilities. This is
because such a vehicle will be able to gather more information and to under-
stand a situation more thoroughly – it is better able to cooperate. With the
obtained information, it advises the driver and takes control in emergency
situations. But can the vehicle be sure, that the information received from
other vehicles is correct?

Using a trust mechanism offers a cooperating vehicle various advantages
for the communication management (following Chapter 1.2): The vehicle
can better judge the reliability of received information; as a consequence, it
can more certainly know whether available evidence is sufficient for a deci-
sion; and it can more reliably select a cooperation partner to ask for further
information about a subject. In the consequence of this improved communi-
cation management, the information exchange might become more reliable
and efficient, and the inner models of the vehicles about their environment
might get more accurate and complete.

Note that the scenario in this dissertation is simplified. A vehicular net-
work involves not only vehicles but also fixed roadside-units. They are, for
example, associated with a traffic light. Vehicles may also exchange infor-
mation with the Internet and with radio stations. In addition, the considered
setting is completely decentralised. A real vehicular network will probably
combine distributed and central elements. Finally I also disregard privacy
aspects. All this would induce additional complexity in the application sce-
nario without any benefit for the evaluation. Therefore I chose the simplified
scenario here.
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8.2 Use Cases for the Trust Model

This section derives use cases for the scenario described above. It presents
few use cases only. They should illustrate the main ideas about trust in this
scenario, cover all the requirements of Chapter 4 and be reproducible in the
simulation.

The common theme of the use cases is that somehow wrong informa-
tion got into the network and the trust model should support the knowledge
management to maintain a correct knowledge base. Consequently the use
cases are sorted according to the reason for the wrong information. In addi-
tion, the listing below notes the desired behaviour of the trusting vehicle. In
this way, the text can directly link to the requirements.

Usual behaviour use cases. Even if every car works as intended – no de-
fects, no manipulations –, the trust mechanism must capture the behaviour
of other cars, because technical systems are always limited in their abilities.

1. Cars have differently restricted sensory capabilities. Therefore they
sometimes miss to report an event (like a new sign) or spread out
wrong information (e.g. a wrong level of service). The error rate de-
pends on the car and on the involved sensors.

The trusting car must know how correct the values of the other car
usually are. This property refers to the ability or competence of the
other car following the nomenclature of Falcone et al. (2003) and of
Chapter 6. The ability depends on the task to perform (for example,
on the quality of the speed sensor or the pedestrian detection sys-
tem). Thus the trusting car should develop trust depending on the
cooperation partner and the cooperation task (Requirement 1). This
also includes situational properties like the fact that the detection of a
traffic sign was at night (darkness) or during the day (daylight).

Typically the task-specific ability cannot be known in advance (e.g.
depending on the vehicle model). Some properties of the cooperation
partner may be a good indicator in the beginning, but the individual,
task-specific ability can only be learned over several interactions (Re-
quirement 4).
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2. A car enters the vehicular network and starts to participate regularly.
Prior to that, it was not equipped with a vehicular network adapter.

The trusting car should learn, how new participants perform typically
by generalising over all new participants, with which it has interacted
before (generalisation as demanded in Requirement 6). It can then
adjust its trust in this participant in the course of further interactions to
a value, which is specific for that cooperation partner (specialisation
as demanded in Requirement 6 and experience-based learning as
demanded in Requirement 4).

3. At a crowded place, a car receives many messages of various kinds.
Some are safety-relevant like the velocity vectors of other vehicles;
some are of low importance like offers of a new hotel nearby. Slowly
the car’s input queue is filling up, because it fails to process the mes-
sages as quickly as new ones come in. So it decides to drop all mes-
sages of low importance.

This use case describes the actions of the trusting car. The car drops
messages, thus it refuses cooperation. It does so to handle its diffi-
cult situation best. The correctness of the dropped messages or the
trustworthiness of their senders does not play any role. The decision
what to do with the messages can be made without trust considera-
tions (Requirement 3). This use case shows the possible divergence
between an inner trust state and a trust-related decision.

4. A car wants to know, how good the traffic is on the highway it is go-
ing to. It meets a moped and some other cars that come from this
direction. It has not met all of them before.

In this use case, the trusting car uses trust to decide whether to start
cooperation with the moped. Because a moped must not drive on a
highway, the car does not need to ask it for the desired information.
Instead the trusting car should contact some of the other cars. Thus
trust arises just from logical considerations without prior experiences
(Requirement 4).



166 8 Evaluation Method

Use cases with defects. In the use cases above, the performance of the
cooperation partner is assumed to be system inherent and thus constant.
If a defect happens, the performance varies in time. The variations could
happen slowly or suddenly. A trust mechanism should provide means to
model the time variance. The following list gives two examples.

5. A car has a defect speed sensor. It displays a deviation of 15 km/h.
Therefore it wrongly reports levels of service and traffic congestions.
After a while, the defect is detected and repaired.

The trusting car should decrease the trust in the partner, the more it is
sure about its disability. This decrease should depend on the kind of
information though. Some kinds rely on the defect sensor, others do
not. When later, the good performance is back, it should rehabilitate
the old trust level (Requirement 7).

6. Again a car has a defect speed sensor. This time, it detects the de-
fect automatically after one day by comparing the own speed with the
values reported by neighbouring cars. As a consequence, it tells the
others that its speed reports were wrong since one day. When the
defect is repaired it also mentions that.

The trusting car should re-evaluate all reasoning operations that were
affected by the wrong speed values. It should also reconsider its trust
and respect the honesty of the cooperation partner. Trust should al-
ways be reconstructed from stored evidence every time it is needed.
This is necessary to handle changes in the evaluation of former evi-
dence as described in this use case. Pearl (1988) emphasises that it
can always be necessary in reasoning to retract a conclusion when
new evidence is available – reasoning is non-monotonic (Require-
ment 5).

Use cases with malicious behaviour. A malicious node in the vehicular
network can be a vehicle that has been manipulated somehow or a faked
vehicle like a simple notebook with a cracked access to the network. The
motivations for such attacks on the vehicular network can be quite differ-
ent: An operator of a point of interest could spread outdated information
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about competitors with a manipulated roadside-unit. Others could try to
make up a virus-based infrastructure, like that for spam in the Internet, in
order to present context-related advertisement to the driver. These two ex-
amples show that there is some economic interest in inducing unwanted
information into a vehicular network. Besides this economic motivation, a
hacker may also act for several non-commercial reasons like showing his
skills. Raya (2009, pp. 10–13) gives a systematic overview. She classifies
the attacker according to his network membership, motivation, method and
scope. Based on this structure, she introduces various kinds of attacks. I
do not recall them here. The use cases in the following should just illustrate
some trust-related problems without being comprehensive.

There is a schema that distinguishes the use cases introduced so far from
those in the following. The above use cases discuss the reliability of the co-
operation partner regarding its abilities, considering the sensory systems.
In contrast, the manipulations below regard the control system of the co-
operation partner. So the abilities are still the same, but the willingness to
cooperate changed (see Requirement 1 and Chapter 6).

7. Every Wednesday, a car reports that a certain car park is full to ensure
it can park there. In addition, it reports bad recommendations of other
cars that mention free parking space there. Besides this malicious
behaviour, the car acts trustworthy.

The trusting car should consider situational attributes that could cor-
relate with the other’s willingness. For example, these attributes could
be the time of interaction, the expected parking space or the amount
of bad recommendations (Requirement 1).

Even with the consideration of willingness-related attributes, the be-
haviour may still seem random. As a consequence, the trusting car
should also evaluate, how well it can predict the other’s behaviour.
Cooperation can only be reliable if the trust mechanism can predict
the cooperation outcome (Requirement 2).

Finally this use case also indicates that recommendations may be
wrong. Scenario 9 covers this issue.
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8. An attacker designs a software virus that infects cars to spread adver-
tisements with a high trustworthiness. A certain vehicle gets infected.
Half a year later, the virus is removed during a regular inspection.

In this use case, the remarkable pattern might be that the infected
car sends many messages with a message type (point of interest)
that is not important compared to other more traffic related message
types. The infected car misuses the infrastructure and the other cars’
knowledge base.

As a consequence, the trusting car should not only judge the correct-
ness of received information but also its usefulness (Requirement 2).
And similar to the use cases with defects, the behaviour of the coop-
eration partner is time-varying (Requirement 7). There are disruptions
in the partner’s behavioural pattern.

9. A group of ten cars reports bad recommendations regarding another
car, which are wrong.

This is a lying witnesses use case (Ramchurn et al., 2004; Sen and
Dutta, 2002). Such an attack is possibly easy to perform, but can
have a high impact on the reputation system. This use case is often
mentioned in the context of trust and reputation. For this reason, I
mention it here, although it addresses the reputation mechanism, not
the individual-level trust mechanism. So it is out of the scope of this
dissertation.

The trust mechanism can help the reputation system by evaluating
received recommendations. A recommendation is also a kind of report
(Requirement 2).

Altogether, if a car can well judge about acts of cooperation, own ex-
periences – if there are enough – should dominate the trust in another
car over the other’s reputation. This stabilises the reputation system,
too. In the course of time, the trusting system can learn the balance
between own experiences and various kinds of recommendations.
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At the parking site xyz,
there are 23 bays free.

Find out a piece of information

Provide the piece of information to others

Figure 8.1: The trust-related situation as it occurs in a typical vehicular network scenario:
the information retrieval happened some time in the past before the information exchange.

8.3 The Trust Problem

The use cases describe the car in a situation where it must decide about its
future behaviour. This decision may be influenced by several considerations:
Is the sender trustworthy? Is the received information plausible with regard
to the own knowledge? What is the benefit and cost if the information is
accepted correctly and what if it is accepted wrongly? The decision may be
even more complex, if one vehicle reports congestion ahead and another
vehicle mentions congestion on the alternative route. This thesis focuses
on the correctness of the received message only. This is the trust-related
aspect of the decision problem. All other aspects are out of scope.

To analyse the trust problem, two related scenarios are compared: the
typical scenario of information exchange in a vehicular network as shown in
Figure 8.1 and a fictitious scenario with the same aim but different steps as
illustrated in Figure 8.2.
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OK, I'll do.

Could you please find out, how many 
bays are free at the parking site xyz?

Oh, thank your very much.

I executed your request.

There are 23 bays free.

Bargain the cooperation: Ask for some information

Execute the cooperation task: Find out the piece of information

Provide the piece of information

Figure 8.2: The trust-related situation as it occurs in a fictitious scenario: first the bargaining
of the cooperation, then the information retrieval and finally the information exchange.
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In the considered trust situation, the vehicle wants to know something, so
it needs cooperation. In the fictitious scenario, it requests cooperation explic-
itly by sending a request. Then the other vehicle cooperates, if it answers
with a correct value. This procedure corresponds to what people typically
connect with trust and delegation: request and bargain the delegation, exe-
cute it and hand out the result. It is illustrated in Figure 8.2. In a vehicular
network, the other vehicle usually sends some values without a previous
request though. It just broadcasts information to all passing vehicles (Fig-
ure 8.1). There is an implicit agreement that the spread values should be
correct and relevant. Thus an implicit request can be imagined before the
automatic spreading of information. When taking this into account, receiv-
ing a message means that cooperation has implicitly been requested and
the other vehicle has an answer.

But the trusting vehicle may still not know, whether the other vehicle coop-
erated. This is so, because it may not know, whether the received message
is correct. In some cases, it can verify the value only at a later point in time.
Until then, the vehicle can believe the message or not. If it does, it accepts
the costs of a possible betrayal. This is a key feature of a trust situation.
Only with this choice, the trustor really opts for a trustful act of cooperation
with the other vehicle.

If the trusting vehicle accepts the message, it cooperates. The subject
of cooperation is information about a property of the world. As mentioned
above, the bargaining is often implicit, describing a request for correct and
useful information. Consequently the bargained cooperation outcome is the
correct value of this property; and the real cooperation outcome is the re-
ceived message. Thus in this trust setting, the real cooperation outcome is
known, while the implicitly bargained outcome is wanted. This is different to
other cooperation scenarios and can be seen best by comparing Figures 8.1
and 8.2.

In summary, the trust computation can be formalised as an inference
problem. The trusting vehicle wants to infer the unknown bargained out-
come BO (the correct piece of information) from the real cooperation out-
come TO (the received message) and all other evidence e mentioned in the
Enfident Model. This means the probability distribution P(BO | TO , e) should
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be computed. Section 8.6 shows how to do this based on the Chapters 6
and 7.

Note that a vehicle cannot verify every value it receives with own obser-
vations. Either the regarded location is not on the route of the vehicle or the
vehicle takes a new route because of the received information (e.g. about a
congestion). In some cases though, the vehicle can build its opinion from
the values of many other vehicles. Thus it does not need to observe every-
thing on its own. In some other cases, like the answer “I don’t know”, it may
be that the vehicle can never know whether the other vehicle really did not
know the answer or whether it refused to cooperate.

This leads to another problem of trust computation here: The cooperation
outcome is verified with what the trusting vehicle assumes to be right. And
this assumed truth depends in turn on information from other acts of cooper-
ation. In the consequence, trusting only works if there are either many own
observations or many good reports.

The sections of this chapter up to here introduced the vehicular network
scenario in general. The following sections show how it is used to evaluate
the Enfident Model through simulation.

8.4 Simulation Environment

This section gives an overview of the evaluation software. It highlights es-
pecially the parts I developed. Figure 8.3 illustrates the interaction of the
tools.

To virtually rebuild the scenario of cooperating cognitive vehicles, traffic
is necessary. The vehicle movements of the traffic determine when a ve-
hicle can talk with which other vehicles. Thus they constitute something
like the social structure of the vehicles. The movements are generated with
SUMO (Behrisch et al., 2011), a microscopic traffic simulator of the Ger-
man aerospace centre (Deutsches Zentrum für Luft- und Raumfahrt, DLR),
and with own extensions. Section 8.4.1 introduces the concept of the social
structure and the tool chain.
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OpenStreetMap

Map of
Eichstätt

Vehicle
movements

Knowledge
bases

Trust output

SUMO

Shawn

Mates

Figure 8.3: The tool chain used for the simulation. The boxes on the left represent the tools,
those on the right the output/input files. SUMO is a traffic simulator, Shawn a communica-
tion network simulator, and Mates an own application for post-processing, which can apply
various trust models.

The movements of the vehicles are then passed to the network simulator
Shawn (Kröller et al., 2005). It provides the infrastructure to let the vehi-
cles communicate. I extended Shawn by a new plug-in (named vanet) for
the whole information processing in the vehicles. Sections 8.4.2 and 8.4.3
introduce the processing in this new Shawn plug-in.

Finally I developed a new application called Mates for some post-
processing. This application can take knowledge bases from a Shawn simu-
lation and inject synthetic message patterns (see Section 8.4.4). It can then
replay these modified knowledge bases with various trust algorithms.

8.4.1 The Social Structure

The development of trust depends on interaction characteristics like when
cooperation happens, how often it happens, or for what purpose it happens.
For this evaluation, I summarise these characteristics under the term social
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structure. As the social structure determines the trust development, it must
be included in an evaluation method for trust-enabled systems. This is the
reason, why I decided to evaluate the trust algorithms with the scenario
of cognitive vehicles that cooperate in a vehicular network. This scenario
contains a social structure that can be reproduced well.

In the scenario, the traffic forms the social structure. It describes the
movements of the vehicles and, thus, determines their communication part-
ners. Because the drivers take some routes regularly (like to work or to
a specific shopping mall), some vehicles meet each other again and again.
The resulting meeting pattern constitutes the base for the trust development.

But how can such traffic be created? It is insufficient to generate the traffic
completely randomly. The resulting vehicle movements would not reflect the
described meeting pattern. Instead I developed a simplified activity-based
traffic demand model. Such a demand model creates the traffic based on
statistical characteristics of the population, like work place densities in every
street, number of children per family or the unemployment rate. Activity-
based traffic demand modelling is well described in Hertkorn, 2004. Traffic
demand created in this way is random but includes the required inner de-
pendencies. Vehicles can meet again and again like work colleagues or
friends.

The traffic simulation has been performed with the microscopic traffic sim-
ulator SUMO, a comprehensive open source traffic simulator. The activity-
based demand model has been implemented as an additional module of
SUMO. The map for the traffic simulation is based on a cut of the German
town Eichstätt from OpenStreetMap (OpenStreetMap Project, 2013). The
simulation replays the trips of 6554 vehicles over 18 weeks and results in a
detailed description of their movements.

These movements are then put in the sensor network simulator Shawn to
simulate the communication between the vehicles. This simulator can pro-
cess a sensor network with a large number of nodes quickly (Kröller et al.,
2005). Shawn implements various models of wireless networks. The eval-
uation in this thesis uses a simple disk model with a range of 100 m; the
transmission is reliable. This simplification is necessary, because the main
purpose of the simulation here is the evaluation of a trust algorithm. For this,
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Figure 8.4: This graph shows how often a prototypical vehicle meets other vehicles. For
example, on average a vehicle meets about three other vehicles at least once a week. Each
line filters the set of considered senders based on the number of messages received from
that sender. The x-axis shows the simulated time in weeks, the y-axis the number of senders,
from which so many messages have been received.

it is important that an error in a received message can be attributed solely
to the sender’s behaviour.

Figure 8.4 visualises the resulting social structure. It shows, for example,
that a prototypical vehicle can exchange information with about three other
cars at least once a week on average. Thus a vehicle has something like
well-known friends. To generate the figure, every vehicle in the simulation
counts the number of received messages per sender, cumulated over the
whole simulation. After every week, the sender-receivers pairs are assigned
to bins according to their count. A sender from which twelve messages were
received so far is assigned to the bins “≥ 5 meetings” and “≥ 10 meetings”.
Then the number of sender-receiver pairs per bin is counted and divided by
the number of receivers. The resulting values are drawn in the figure, where
every kind of line represents a bin.

8.4.2 Events and the Information Model

So far, the vehicles just exchange simple messages without content. To
simulate the information processing in the vehicles, I developed the new
plug-in vanet for the network simulator Shawn. It is part of the Shawn project
and thus open source.
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Type of the event Number of
events

Mean of the
duration

Standard deviation of
the duration

Short-term 400 1.5 hours 0.75 hours
Medium-term 80 4 days 2 days
Long-term 8 2 years 1 year

Table 8.1: The parameters of the event generator.

Environment Sensor
Knowledge

base

Event Observation

Figure 8.5: The flow of information from the environment into a vehicle’s knowledge base.
The sensors represent the gate, through which information gets into the vehicular network.

To induce information the vehicles could talk about, environmental events
are placed in the map. They can be perceived by a vehicle’s virtual sensor.
The events are of three different types, for long-, medium- and short-term
information. These types correspond to the classes in Chapter 8.1. The
value of an event is discrete in the range 0–4. The events are randomly
generated on the map. Their values are distributed equally over the value
range. Events exist only for a limited time. Their beginning of life is dis-
tributed equally throughout the simulation; their duration of life is drawn from
a Gaussian distribution with a mean and variance depending on the infor-
mation type. Table 8.1 lists the generator’s parameters. All events are stored
in a configuration file and read by the vanet plug-in at simulation start-up.

8.4.3 The Processing in the Vehicles

The trust model should help the vehicle to obtain correct pieces of knowl-
edge. In the simulation, other vehicles may send wrong values either be-
cause of sensor errors or because of a manipulated transmission module.

New information gets into the vehicular network through the sensors of
the vehicles (see Figure 8.5). Every vehicle has one sensor. If a sensor
finds an event in its environment, it adds a normally distributed error to the
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Sensor type Standard deviation for
medium-term events

Standard deviation for
all other events

S0 0.00 0.00
S1 0.67 0.33
S2 0.33 0.67
S3 1.00 1.00

Table 8.2: Sensor types and the standard deviations of the additive Gaussian noise that is
applied to the sensor values. Note that the type S0 has a deterministic error of 0, which is
indicated in the table by σ = 0.

perceived value and reports the modified value to the vehicle. There are
four sensor types. The sensor type defines the parameters of the Gaussian
noise. It is always mean-free. Its standard deviation depends on the type of
the perceived event and is listed in Table 8.2. The noisy values are rounded
to integers and limited to the range 0 to 4. Figure 8.6 on the next page
shows an approximate distribution for the resulting error. It applies the right
rounding. Just the range limiting cannot be reproduced correctly, because
it depends on the actual sensor value the noise is added to. A perceived
event is called an observation. It is saved in the vehicle’s knowledge base
for later transmission in the network.

In the vanet plug-in, a vehicle simply spreads out the latest observations
(see Figure 8.7 on the following page). Some vehicles, however, are con-
figured to disseminate wrong information. They take the latest observations
from the knowledge base, change their values to zero and send the manip-
ulated values. This manipulating disseminator should represent defects or
malicious software in the vehicles.

A piece of information received from another vehicle is called a report in
this document. It is also saved in the knowledge base as Figure 8.8 on the
next page illustrates.

A vehicle can derive its own opinion about an event from the correspond-
ing observations and reports. This process is usually called information inte-
gration or data fusion (see e.g. Nakamura et al., 2007). It is the place where
trust comes in. Reports from a highly trusted source should have a higher
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Figure 8.6: Approximate distributions of the sensor error for medium-term events. These
figures show the error distributions, when samples of the normal distributions in Table 8.2
are rounded to integers and when those samples outside the range {-4, . . . , 4} are mapped
to their nearest range member.
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Figure 8.7: The flow of information in the vehicular network. This is the way how vehicles
spread out what they have perceived from the environment.
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Message Report

Figure 8.8: The flow of information that comes from the vehicular network. This is the way,
how a vehicle stores a cooperation history in the knowledge base.
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influence on the resulting piece of knowledge than reports from a weakly
trusted source. Thus a trust-supported integration algorithm is necessary.
The algorithm used for the evaluation is very simple. It has been introduced
first in Bamberger et al., 2012.

The vehicle then uses its own opinion to judge about the reliability of re-
ceived reports. The absolute value of the difference between the own opin-
ion and the report’s value quantifies the cooperation outcome in the trust
model.

Finally a vehicle drops redundant reports from the knowledge base. If
it finds more than five reports from the same sender and about the same
event in its knowledge base, it removes some of them in a way that the time
of observation is evenly distributed between the reports with the lowest and
the highest time stamp. This process happens regularly. It ensures that
the size of the knowledge base keeps reasonably. Otherwise the simulation
would get very slow and finally run out of memory. Tests showed that this
forgetting algorithm has little impact on the simulation result.

Altogether the knowledge base is the hub for the information processing
in the vehicle. It is connected to other vehicles and environmental events
through task-specific internal components. In addition, it saves the history
of cooperation with other vehicles. From this history, the vehicle derives its
assumed true value of an event and the error of a cooperation outcome.

8.4.4 Post-processing with Mates

The combination of SUMO and Shawn reproduces the real world in a form
suitable for this thesis. To investigate a trust algorithm, additional synthetic
patterns of received messages are needed though. For example, to analyse
the generalisation and specialisation capabilities of an algorithm, it would be
helpful that a vehicle sees the exact same message pattern several times
throughout the simulation (see Section 8.5.2). The program Mates can mod-
ify a knowledge base in the needed ways. Mates is a tool, which I wrote to
support various actions around the simulation. It is especially important for
the following two actions.
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Mates can inject reports in knowledge bases that exhibit a certain pat-
tern. This functionality is used in the sensor quality scenario to investigate
generalisation and specialisation, and in the defect scenario to analyse the
response of a trust algorithm to time-varying behaviour.

Moreover Mates can replay knowledge bases to evaluate a trust algo-
rithm. For the algorithm, this looks like a real run in a vehicle. During the
replaying, Mates records the development of trust in selected senders. At
the end, it assesses the final trust for all sender-received pairs. The result-
ing trust values and distributions are the basis for the diagrams in the next
chapter.

Replaying a knowledge base with Mates is different from a simulation
with Shawn though. Shawn only saves the 25 largest knowledge bases, not
all. This is necessary to speed up the replaying. Even for only those 25
knowledge bases, replaying takes two to six weeks.

8.4.5 Further Limitations of the Simulation Environment

A simulation only considers a limited image of the reality. This image must
be designed to be sufficient for the evaluation purpose. Most of the simplifi-
cations of the presented evaluation method were already described above.
This section points to some other limitations that should be kept in mind, but
may be obscure so far.

The activity-based traffic demand includes the work place activity only.
The vehicles drive from home to work and back. This is a very simplified
demand model. In reality, vehicles would drive many more trips. This would
lead to a denser traffic. Consequently a vehicle would meet more other
vehicles and could cooperate more often. This simplification has the advan-
tage that it results in a better manageable simulation complexity, while it is
sufficient to highlight the main properties of the Enfident Model.

Chapter 1.1 already points out that a trusting system must be able to
assess all relevant facets of a cooperation outcome. For this reason, all
information in the network comes from a vehicle’s sensor; and the sensor
of all vehicles can perceive the same kind of information. Roadside units,
radio broadcasting and other information sources are omitted. The simula-
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tion considers car-to-car communication only, with cars that are autonomous
regarding the information flow (not necessarily regarding the driving).

Furthermore the simulation tools run independently. As a result, the driver
who receives a message about a traffic jam ahead cannot change the route.
This example is a use case, in which a vehicle would not be able to verify
the correctness of the received message by an own observation, because it
would avoid the traffic jam. Verification could be supported by other means
like central traffic reports though. I do not consider such scenarios here,
mainly because the coupling between SUMO and Shawn (which already
exists) slows down both programs heavily. The simulation of this thesis only
realises information flows that can be verified autonomously and that do not
affect the driving route.

8.5 Simulation Scenarios

The simulation environment described so far is used in different configura-
tions: the simulation scenarios. This section introduces them and shows
what evaluation purpose they suit for. They are all based on a run of the
traffic simulator SUMO and the network simulator Shawn. The resulting
knowledge bases are then modified with Mates to contain some additional
message sequences. Finally these knowledge bases are replayed with the
trust algorithms mentioned in Section 8.6.

8.5.1 Verifying the Fulfilment of the Requirements

The evaluation aims to show that the proposed implementation of the Enfi-
dent Model meets the requirements for a trust model as postulated in Chap-
ter 4. This way of verification closes the loop that started with the use cases
and the requirements and, up to here, ended with the implementation. The
simulation scenarios are like test cases for this verification. The following list
shows, how every requirement is verified.
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Requirement 1. The sensor quality scenario (Section 8.5.2) is suitable to
show whether the computed expectation indeed depends on the se-
lected influences. It features the ability-related aspect of trust.

Requirement 2. The Enfident Model represents trust in the form described
in this requirement. Trust values and trust distributions appear
throughout the evaluation results. This shows their usefulness.

Requirement 3. The Enfident Model separates trust and decision making as
required. No additional verification is necessary.

Requirement 4. The Enfident Model learns from experiences as demanded
in this requirement. All evaluation scenarios are based on experience-
based learning. The effect of present constraints is not evaluated
though.

Requirement 5. The proposed implementation of the Enfident Model works
on the complete knowledge base and reconsiders a previous judge-
ment with each received message. However outside the trust algo-
rithm, the knowledge management realises forgetting to handle the
high amount of data (see Section 8.4.3). As a result, the vehicle can
only revise previous judgements based on the reduced data. Because
the requirement is partially violated outside the trust model, it is not
further evaluated here. The theory already shows that the Enfident
Model basically fulfils the requirement.

Requirement 6. The sensor quality scenario (Section 8.5.2) can show how
a trust algorithm learns the behaviour of a certain partner step-by-step
with each act of cooperation (specialisation). And it can also demon-
strate how an algorithm learns for all partners at once (generalisation).

Requirement 7. The defect scenario (Section 8.5.3) is suitable to show how
a trust algorithm handles time-varying behaviour of the cooperation
partner.
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Vehicle 1

Vehicle 2

Vehicle 3

Vehicle 4

Vehicle 5

Vehicle 6

Vehicle 7
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Vehicle 10

Vehicle 11
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Figure 8.9: Schema of the reports inserted in the knowledge bases after the Shawn simula-
tion. The horizontal axis indicates the progressing simulation time; the vertical axis gives the
name of the sending vehicle. The coloured blocks represent sequences of reports with the
following content:

Information type: long-term, values: 1, 1, 1, 0, 1 (sensor type 1)

Information type: medium-term, values: 1, 0, 0, 2, 1 (sensor type 1)

Information type: long-term, values: 1, 1, 1, 1, 1 (sensor type 0)

Information type: medium-term, values: 1, 1, 1, 1, 1 (sensor type 0)

8.5.2 Sensor Quality Scenario

The sensor quality scenario aims to show, whether a trust algorithm can
learn a model of a partner’s ability-related behaviour. In the simulation envi-
ronment, a vehicle’s ability-related behaviour corresponds to its sensor type
as given in Table 8.2 on page 177. The quality of the sensor should be the
only reason, why there is wrong information in the network. Only own ob-
servations are spread out; and no manipulating disseminator is used. Under
these conditions, the behavioural model that is estimated by the trust algo-
rithm matches with the sender’s sensor model and can thus be verified. This
scenario is similar to Use Case 1 and is suitable to verify Requirement 1.

Because a vehicle continuously meets new other vehicles, this scenario
can also show how a trust algorithm handles new cooperation partners. So
it reproduces the Use Case 2 as well. This aspect can be better evaluated,
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if the new cooperation partners are comparable. For this reason, two times
three new vehicles are inserted in this scenario with Mates. They send com-
parable message sequences at three points of the simulation. Figure 8.9
on the previous page illustrates schematically what reports are added. At
the beginning of the simulation, vehicle 2, which has a sensor of type S1,
sends a certain pattern of messages with medium-term information. The
vehicles 6 and 10 repeat the same message sequence in the middle and at
the end of the simulation. The vehicles 4, 8 and 12 do the same, but have a
sensor of type S0. So the vehicles 2, 6, and 10 and the vehicles 4, 8 and 12
are directly comparable. They make it possible to see, how a trust algorithm
changes its treatment of new cooperation partners over time.

With the insertions, the scenario is also suitable to investigate the gener-
alisation and specialisation capabilities of a trust algorithm (Requirement 6).
The judgement about a new partner might correspond to a generalisation
over all known partners. And with every other message received from a new
partner, the algorithm should quickly be able to judge the partner’s individual
trustworthiness.

Generalising over cooperation partners does not only mean to learn ap-
propriate initial trust. Rather a trust algorithm should also find inner depen-
dencies between the various abilities. In the simulation environment, it is
possible to infer from the standard deviation for the long-term information
type to that for the medium-term information type. The reader can see that
easily from Table 8.2. To show this form of generalisation, another six vehi-
cles are inserted: the vehicles 1, 5 and 9 send the same message sequence
as the vehicles 2, 6, and 10, but with five messages with long-term informa-
tion in advance. So they perform a different task prior to the task that the
vehicles 2, 6, and 10 also do. The trust algorithm should be able to exploit
this additional information to better judge about the messages with medium-
term information. In the same way, the vehicles 3, 7 and 11 replicate the
vehicles 4, 8 and 12 just with some preceding messages of the long-term
type.

All in all, the inserted reports follow the competence schema of the pre-
ceding Shawn simulation. They do not violate the idea of this scenario as
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described in the beginning of this section. They just help to get meaningful
data out of the simulation regarding the Requirement 6.

To complete the description of the scenario and to make it reproducible, I
list the configuration of Shawn here.

# Make the randomness of the simulation reproducible

random_seed action=set seed=1

# Set up the world

prepare_world edge_model=simple comm_model=disk_graph range=100

# Configure logging (logging needs a world)

logging_load_cfg log_cfg_file=logger.cfg

# Move nodes by a SUMO dump file.

node_movement mode=sumo processors=vehicle \

net_file=eichstaett.net.xml \

dump_file=eichstaett.dmp.xml

# Set up the reading for the vehicle sensor

create_environment readings_file=eichstaett.readings.xml

# Set up the tasks for the statistics output

output_interval=604800

# Configure the information processing

sensor_error=medium_mixed_errors

trust_computer=bamberger2010

prune=overfull

init_vanet

# Run the simulation for 18 weeks (time in seconds)

simulation max_iterations=10886400 run_without_nodes=true

8.5.3 Defect Scenario

This scenario should show, how a trust algorithm can react to changes in the
partner’s behaviour. It addresses Requirement 7. Its idea is adapted from
Use Cases 5 and 8. The simulations with SUMO and Shawn are the same
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Figure 8.10: Schema of the reports inserted after the Shawn simulation for the defect sce-
nario. The horizontal axis indicates the progressing simulation time. The green areas rep-
resent correct messages; the sending vehicle is working well. The red area in the middle
marks a period, in which the vehicle is defect and, thus, disseminates wrong messages.

as in the sensor quality scenario. Then the knowledge bases are modified
with Mates in the following way.

Four vehicles with sensors of type S0 are inserted. They send many
good messages during about the first half of the simulation time. Then they
become defect and, thus, send wrong information. The value in the message
is always zero. After about three quarters of the simulation time, they get
repaired and send correct values again. Figure 8.10 illustrates this schema
for one of the inserted vehicles.

In summary, a vehicle’s reliability depends on the quality of its sensor and
its defect state in this scenario. This means for a trust algorithm that it must
handle two alternations in the other’s behaviour for the inserted vehicles.

8.6 The Algorithms Used for the Evaluation

The evaluation uses the Credit algorithm and variations of the Enfident
Model. The Credit algorithm has been selected, because it is a typical rep-
resentative of today’s trust algorithms and is based on some elaborate work
in Ramchurn, 2004. It is defined there completely. This section introduces
the evaluated realisations of the Enfident Model.

To realise the Enfident Model in the presented scenarios, various at-
tributes could be identified and assigned to the three entity classes. This
would result in a trust algorithm, which is too complex for the scope of this
evaluation. Instead I designed a model, which is complex enough to capture
all features to be evaluated, and simple enough too lead to interpretable re-
sults. Figure 8.11 depicts the basic relational setting. In the simulation, a
receiver can identify the sender by the sender id in the message. Further the
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Figure 8.11: Basic relational model for the evaluation setting. It is widely reduced compared
to Figure 6.3 to match the purpose of the evaluation.

E1.1 E1.2 E1.3 E2.1 E2.2

P1 P2

I1 I2

Figure 8.12: Exemplary Bayesian network for the Enfident-sp-ot algorithm. It contains a
hidden variable (P1, P2) for each cooperation partner as well as the observed message
errors (E1.1, . . . , E2.2) and the observed information type (I1 = L, I2 = M).

message contains the information type, which describes the task to perform.
And the value in the message is transformed in an absolute error.

This basic data model is converted in four trust algorithms. They are
described in the following list. The corresponding figures illustrate all the
same example. It consists of two senders, P1 and P2. From P1, one mes-
sage was received with long-term information (L) and two messages with
medium-term information (M). From P2, one message is available for each
of both information types. The somewhat technical names are just to distin-
guish them in later references. sp stands for static partner, dp for dynamic
partner, ot for observable task and ht for hidden task.

Enfident-sp-ot. This is the simplest realisation. Figure 8.12 illustrates it as
a Bayesian network for the above example. One hidden variable rep-
resents each sender. It is sampled as described in Section 7.2.2.
The message error is the only child attribute. The information type is
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E1.1 E1.2 E1.3 E2.1 E2.2

P1.1 P2.1

I1 I2

P1.2 P1.3 P2.2

Figure 8.13: Exemplary Bayesian network for the Enfident-dp-ot algorithm. It contains a
hidden variable (P1.1, . . . , P2.1) for each interaction with the cooperation partners. The
observed message errors (E1.1, . . . , E2.2) depend on the corresponding partner variables
and the observed information type (I1 = L, I2 = M).

taken as the constant value of the task context. Thus the task context
is an observable variable in this algorithm. The message error also
depends on this variable.

Enfident-dp-ot. For this algorithm, the partner is modelled as a time-varying
process following Section 7.2.3. The task context is still realised as an
observable constant: the information type (see Figure 8.13).

Enfident-sp-ht. This algorithm equals with the Enfident-sp-ot algorithm, but
the task context is represented as a hidden variable as described in
Section 7.2.2. Two messages that regard the same event (same in-
formation type and same location) share the same hidden variable for
the task context. The task context T3 in Figure 8.14 shows these con-
nections. The information type is an observable child attribute of the
task context.

Enfident-dp-ht. This variant combines the time-varying model for the coop-
eration partner (Section 7.2.3) with the time-invariant hidden variable
model for the task context (Section 7.2.2). Thus it combines the modi-
fications of the Enfident-dp-ot and the Enfident-sp-ht algorithm as de-
picted in Figure 8.15.

To keep the figures clean, the distribution parameters are omitted. As a
result, the task contexts in Figures 8.14 and 8.15 seem independent from
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E1.1 E1.2 E1.3 E2.1 E2.2

P2

I1 I2

P1

T1 T4T2 T3

I3 I4

Figure 8.14: Exemplary Bayesian network for the Enfident-sp-ht algorithm. It contains a
hidden variable (P1, P2) for each cooperation partner as well as the observed message
errors (E1.1, . . . , E2.2). In addition, hidden variables (T1, . . . , T4) represent the different
task contexts. The information type variables (I1 = I4 = L, I2 = I3 = M) describe the task
contexts.

E1.1 E1.2 E1.3 E2.1 E2.2

P1.1 P2.1

I1 I2

P1.2 P1.3 P2.2

T1 T4T2 T3

I4I3

Figure 8.15: Exemplary Bayesian network for the Enfident-dp-ht algorithm. It contains a
hidden variable (P1.1, . . . , P2.1) for each interaction with the cooperation partners. Additional
hidden variables (T1, . . . , T4) represent the different task contexts. The observed message
errors (E1.1, . . . , E2.2) and the observed information type variables (I1 = I4 = L, I2 = I3 = M)
are associated with the corresponding hidden variables.
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each other. This is not the case though. They are connected through the
parameters and the values of the information type variable.

The evaluation results in the next chapter have mostly been produced
with the Enfident-dp-ot algorithm. It realises all necessary features and is
still simple enough to have well interpretable results. The other variants
help to contrast the effects of different implementation techniques. Note that
I finally removed the algorithms with infinite-dimensional mixtures from the
evaluation results. Their additional flexibility seems relevant for real, more
complex scenarios. In the presented, simple evaluation scenarios, they did
not add something interesting as tests showed. But they need much more
computation time and memory.



9 Evaluation Results and Their
Discussion

To show that the Enfident Model meets the requirements of Chapter 4, simu-
lations have been performed as described in the previous chapter. The cur-
rent chapter presents and discusses the simulation results. It tests whether
the requirements and the Enfident Model lead to sensible and intuitive re-
sults in some well defined scenarios. And it verifies the Enfident Model with
regard to the requirements (see Section 8.5.1).

Section 9.1 shows, how the evaluated algorithms learn competence-
related trust from past interactions (Requirements 1 and 4). In addition,
it presents trust values and trust distributions side by side to show their re-
spective usefulness (Requirement 2). Section 9.2 looks closer at the trust
development to visualise specialisation and generalisation (Requirements 4
and 6). The response to time-varying behaviour is shown in Section 9.3 (Re-
quirement 7). Finally Section 9.4 points out that the purpose of trust directly
corresponds to a common problem of learning.

9.1 Learning the Competence-Related Influences

The results in this section are based on a simulation of the sensor quality
scenario as introduced in Section 8.5.2. At the end of the simulation, the
20 largest knowledge bases are taken. For all senders in these knowledge
bases, trust is assessed in the following way: For each sender, a fictitious
new report of that sender is passed to the trust algorithm. This is done
for both, medium-term and long-term information types and provides task-
specific trust distributions and trust values. These results suit to see whether
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Figure 9.1: The evaluated trust algorithms can well learn the competence of a cooperation
partner. The figure shows the mean trust values depending on the type of the sender’s
sensor and the trust algorithm. Only senders, from whom at least six message have been
received, are included. The diagram on the left hand side is based on fictitious reports about
medium-term information, that on the right hand side about long-term information.

a trust algorithm can learn the competence of the cooperation partner. Note
that the resulting trust is associated with a new fictitious report not with the
message that was actually received from the sender. This makes the results
interpretable because they are independent from other messages about the
same subject.

Only senders, from which at least six messages have been received for a
given information type, are considered in the following. This is done because
few single reports of a sender cannot fully specify its behaviour – they are
just random. The resulting trust distributions and trust values are visualised
in the following two ways.

The trust value as a reliability indicator. The trust values are grouped
according to the type of the sender’s sensor. For every group, a mean value
is computed. Figure 9.1 shows the means. The sensor type of the sender
is indicated on the x-axis, the mean of the trust values on the y-axis and the
trust algorithm by the line style. The trust values of the diagram on the left
hand side are based on the fictitious reports with medium-term information;
those on the right hand side come from the fictitious reports with long-term
information.
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In the sensor quality scenario, a vehicle has sensors with an error vari-
ance depending on the information type. Table 8.2 on page 177 lists them.
If trust values are considered a reliability measure, the table suggests that
higher variances should lead to lower trust values. And since the variances
depend on the information type and the sensor type, the trust values should
do so as well. This is what Requirement 1 says. Figure 9.1 shows that all
evaluated trust algorithms indeed compute trust values related to the error
variance. Thus a receiving vehicle can estimate the reliability of the sender
well after a couple of messages. For the Credit algorithm, the designer of the
implementation must define the grouping according to the information type
explicitly though. In contrast, the algorithms based on the Enfident Model
find the groups on their own by clustering as long as sufficient attributes are
provided. Note that only the relative scaling of the trust values is important.
The absolute scaling can easily be adjusted with a non-linear transformation
as, for example, shown in Bamberger et al., 2012.

Trust as a mechanism to model the other’s behaviour. For Figure 9.2
on the following page, the trust distributions of the Enfident-dp-ot algorithm
in response to a fictitious medium-term report are taken and grouped ac-
cording to the sender’s sensor type. Then a box plot is drawn for every
group. The x-axis shows the absolute value of the error, the y-axis indicates
the estimated probability of the error. The grey boxes indicate the range
between the lower and upper quartile, the orange line the median. The
grey whiskers illustrate the values in a range that is extended at the lower
and upper end of the boxes by one and a half of the interquartile range.
All outliers outside this extended range are drawn as single crosses. The
additional green circles mark the actual error distribution of the data in all
twenty knowledge bases. This is the reference distribution. Since the Credit
algorithm cannot provide a trust distribution, the figure reproduces the trust
distributions only for the Enfident-dp-ot algorithm.

Note that the green reference distribution, which is based on the actu-
ally transferred messages, differs from the Gaussian noise distribution of
the sensor error model. The uncorrected standard deviations of the refer-
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Figure 9.2: The Enfident-dp-ot algorithm successfully learns Gaussian distributions as be-
havioural models. The figures illustrate the outcome distributions in response to a medium-
term message depending on the sender’s sensor type. They are box plots with orange
medians as well as grey whiskers and outliers. The reference distribution is marked with
green circles (compare it with Figure 8.6 on page 178).

ence distributions in Figure 9.2 – given a mean error of 0 – are 0.00, 0.62,
0.33 and 0.83 for the sensor types S0, S1, S2 and S3 respectively. They
correspond to the standard deviations of the sensor error model in the mid-
dle column of Table 8.2, but are smaller than those. The deviation from the
sensor error model is higher, if the value of the standard deviation is higher.
This comes from the post-processing of the sensor values in the simulation.
Particularly the error can be ±4 at most. Higher errors, which would lead
to higher standard deviations, cannot occur. Thus the error model is indeed
not completely Gaussian, but quantised and range-restricted.

If a trust algorithm should learn a model of the other’s behaviour, the trust
distribution, which is computed for a report in the given simulation setting,
should reflect the error distribution of the originating sensor. The reason for
this is that a vehicle only sends own observations in the simulation. The
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figure illustrates the trust distributions. The used implementation of the En-
fident Model does not assume a Gaussian model, but uses a categorical
distribution, which induces few assumptions. It just learns the sender’s reli-
ability and finds distributions with a Gaussian-like shape similar to the error
distribution of the originating sensor. Thus it meets its purpose fulfilling Re-
quirements 1 and 4.

Note that the time-varying Enfident-dp-ot algorithm judges good sensors
a bit too bad and bad sensors too good. This is not the case for the time-
invariant Enfident-sp-ot algorithm. Section 9.4 discusses this phenomenon
further.

Representation of trust. Figures 9.1 and 9.2 are based on the same data.
They show the same information, one in form of trust distributions, the other
one in form of trust values, which are derived from the trust distributions.
This justifies parts of Requirement 2; and this illustrates that both represen-
tations of trust can go hand in hand with the Enfident Model as recommend
in Section 4.3.1.

Discussion of the results. The simulation results show that the presented
trust algorithms can learn the reliability of the sender’s sensors well. But
isn’t the setting too simple with a behaviour, which depends just on the infor-
mation type and the sender, and without a complex information integration
algorithm in the sender? Yes, the simulation scenario is simplifying. And
some tests showed that the amount of erroneous messages significantly
decreases, if the vehicles send values that come from the integration of sev-
eral information sources. The reason for letting vehicles send just their own
observations is that a sender’s behaviour should have a probabilistic model,
which is known in advance to make the simulation results interpretable. In
contrast, the proposed trust algorithms do not assume anything about what
sender’s behaviour constitutes. The behaviour may depend on the sensor,
the information integration algorithms, manipulation software or anything
else. As a consequence, the simulation results suggest that the Enfident-dp-
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ot algorithm can evaluate behaviour that depends on various factors within
the sender (Requirement 1).

Moreover, the clustering of the Enfident-dp-ot algorithm finds the depen-
dency on the sender and the information type automatically. It is just me, the
investigator, who has the pre-knowledge about it to interpret the simulation
results correctly. Thus the trust algorithm might also handle various other
influencing attributes for clustering. This is in contrast to many other trust
algorithms in the literature like the Credit algorithm. For them, the algorithm
designer has to define categories for trust in advance (see Chapter 4).

All in all, this section features a competence-dependent and time-invariant
behaviour of the cooperation partner. Especially Figure 9.2 shows that the
algorithms that are based on the Enfident Model can learn the opponent’s
behaviour without many prior assumptions. This is what a trust mechanism
should do. The resulting trust distributions can then support the data fusion
algorithm to prioritise good information sources (see Section 9.5).

9.2 Specialisation and Generalisation

This section looks at the vehicles that are added to the sensor quality
scenario through post-processing with Mates. They are described in Sec-
tion 8.5.2 and Figure 8.9 on page 183. These vehicles are suitable to show,
how the trust algorithms develop specific trust over several interactions and
how they learn to judge new situations.

A trust algorithm can specialise for a certain situation with more and more
experiences for that situation. For example, a vehicle could receive several
messages from the same sender and about the same kind of subject in
similar contexts over time. Regarding the Enfident Model, this means to
learn the joint outcome distribution for fixed entities. And this is what most
experience-based trust algorithms do (see Section 4.4). It is shown on an
example below.

A trust algorithm can also specialise on some entities only, while the oth-
ers vary. For example, a vehicle can interact with a certain cooperation part-
ner in several different tasks. This way, it gets to know more and more facets
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of the other’s overall behaviour: It learns the other’s competence and willing-
ness. The same can be expressed the other way around: A trust algorithm
can generalise over some entities only, while others remain fixed. In the
previous example, the trusting vehicle can exploit similarities between the
different tasks to estimate the cooperation outcome of situations, for which
no or only few experiences with the given partner are available. This partial
specialisation or generalisation is shown in two forms below.

The data set used in this section is extensive. Therefore I first introduce
it, before I derive the key results. Finally I discuss specialisation and gener-
alisation at the end of this section.

Description of the data. The common frame of the results in this section
is the following: After every message of a vehicle that has been added dur-
ing post-processing, a dummy report is presented to the trust algorithm. The
trust value for this report is taken as the current trust value. The dummy re-
port comes from the same sender as the preceding message, but is not as-
sociated with a real event of the simulation – no other vehicle can have sent
a message about the same subject. This ensures that the dummy report is
always treated in the same way. So the trust values are associated with this
dummy report, not with the messages that are illustrated in Figure 8.9. The
diagrams in this section are all from the perspective of the vehicle 3038; it
is the receiver and the trustor. To describe the results compactly, only trust
values are shown; the trust distributions are omitted.

Figure 9.3 on the following page shows the resulting trust values from
the Credit algorithm for vehicles 9–12. The reader can imagine the time
running from left to right. All messages that are vertically in line arrived at
the same simulation step; the order of processing within a simulation step
is unknown. The diagrams on the left are associated with the long-term
messages, those on the right with the medium-term messages of Figure 8.9.
The same evaluation has been performed with the Enfident-dp-ot algorithm.
Figure 9.4 on page 199 shows it.

With vehicles 9 to 12, the previous paragraph considered the response
of the trust algorithm at the end of the simulation; the algorithm can access
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Figure 9.3: Specialisation with an increasing amount of experiences and transfer learning
from one task to another with the Credit algorithm. A single vehicle (3038) receives all
messages of vehicles 9 to 12. The temporal order runs from left to right. Vehicles 9 and
11 start with five messages containing long-term information. The right column regards
messages with medium-term information. The Credit algorithm specialises on the sender
with an increasing amount of experiences, but it cannot generalise from one type of message
to another one.
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Figure 9.4: Specialisation with an increasing amount of experiences and transfer learning
from one task to another with the Enfident-dp-ot algorithm. A single vehicle (3038) receives
all messages of vehicles 9 to 12. The temporal order runs from left to right. Vehicles 9
and 11 start with five messages containing long-term information. The right column regards
messages with medium-term information. The Enfident-dp-ot algorithm specialises on the
sender with an increasing amount of experiences; and it generalises from one type of mes-
sage to another one, as the initial trust value for messages with medium-term information
depends on the preceding messages with long-term information
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much evidence at this time. In contrast, Figure 9.5 shows how the Enfident-
dp-ot algorithm evolves with more and more overall experiences, from the
beginning and the middle of the simulation until its end. Vehicles 2, 6, and
10 send the same message sequence, just at different simulation times. The
same applies to vehicles 4, 8, and 12. In Figure 9.5, these different points in
time are ordered from top to bottom. The left diagrams are associated with
vehicles that have a sensor of type S0, the right diagrams with those that
have a sensor of type S1. Note that the diagrams for vehicles 10 and 12
are the same as in Figure 9.4. Also note that this evaluation has been omit-
ted for the Credit algorithm, because its behaviour regarding new vehicles
does not change over time. The diagrams are always the same as those of
vehicles 10 and 12 in Figure 9.3.

What do all these results say about generalisation and specialisation? I
consider two cases in the following.

Full specialisation. If the same act of cooperation is performed again and
again (in the same contexts), a trust algorithm can learn the underlying sta-
tistical process – the joint outcome distributions for the participating entities.
Both, the Credit algorithm and the Enfident-dp-ot algorithm, can do that. For
example, the diagram of vehicle 12 in Figure 9.4 shows that the algorithm
learns the high reliability (sensor type S0) of that vehicle message by mes-
sage: The line is increasing. In contrast for vehicle 10 with sensor type S1,
the diagram shows a decreasing trust value. The algorithm learns that the
sender is not as good as supposed in the beginning. Figure 9.3 shows simi-
lar results for the Credit algorithm. Thus both trust algorithms learn stepwise
to judge the reliability that comes along with a certain trust situation. They
exploit the available experiences (Requirement 4) to learn the influence of
certain entities (Requirement 6).

Transferring knowledge between task contexts. Vehicles 9 and 10 send
the exact same sequence of medium-term information as Figure 8.9 visu-
alises. For this reason, the Credit algorithm assigns the same trust values
to those vehicles (Figure 9.3). However vehicle 9 sends some long-term
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Figure 9.5: The Enfident-dp-ot algorithm can learn initial trust by generalising over all en-
tities. The figures show how vehicle 3038 rates the five medium-term messages received
from vehicles 2, 4, 6, 8, 10 and 12. The two figures on the top come from messages at the
beginning of the simulation, those below from the middle of the simulation and the two at
the bottom from the end of the simulation. The senders of the diagrams on the left have bad
sensors for medium-term information (sensor type S1); those on the right have good sensors
(sensor type S0). The initial trust value is learned with an increasing amount of experience
in the receiver (from top to bottom).
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messages in advance. Figure 9.4 shows that the Enfident-dp-ot algorithm
can take advantage of them. The Enfident-dp-ot algorithm learns from the
preceding long-term messages that vehicle 9 is less reliable than it would ini-
tially assume without the long-term messages. Consequently it starts with
lower trust values for the medium-term messages of that sender compared
to the trust values for vehicle 10. This means that the Enfident-dp-ot algo-
rithm can learn the kind of partner from experiences in one task context and
transfer this knowledge to another context with the same partner. The same
effect can be observed with vehicles 11 and 12. This time, the Enfident-
dp-ot algorithm learns from the long-term messages that vehicle 11 is more
reliable than the average unknown vehicle. So the graph for medium-term
information of vehicle 11 begins higher than that of vehicle 12. In contrast,
the Credit algorithm cannot generalise. The graphs for the medium-term
messages of vehicles 9 and 10 as well as that of vehicles 11 and 12 are
exactly the same.

Transferring knowledge between cooperation partners. The Enfident-
dp-ot algorithm can learn the initial trust in a new cooperation partner. It
can develop different initial trust depending on the task context. This means
the algorithm generalises over the partner entities, while it specialises on
the task context entity. This can be seen in Figure 9.5. It shows only those
vehicles that only send the five messages with medium-term information.
The initial trust value increases on both sides with every row, that is, with
an increasing amount of experiences. The Enfident-dp-ot algorithm learns
the performance of a typical unknown cooperation partner. In the beginning,
it knows nothing about the error statistics. Then it learns that high errors
are less likely than low errors. Consequently the trust value increases. The
initial trust value also includes that half of the vehicles in the simulation have
a sensor of type S0 and, thus, are very reliable. Starting from this initial trust
value, the algorithm then specialises on the specific partner: On the left, the
trust values increase, while they decrease on the right. Just at the beginning
of the simulation (the first row), the Enfident-dp-ot algorithm cannot yet judge
the other’s trust reliably. The curves remain vague. In contrast, the Credit
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algorithm always starts with a trust value of one before any message has
been evaluated. It cannot adapt its initial trust to the trustworthiness of all
the cooperation partners.

Discussion of the results. Specialising takes evidence from the entities,
which are participating in the trust situation of interest, in order to learn the
joint probability distribution of those entities. In contrast, generalising takes
the evidence from other entities to learn that joint probability distribution. It
regards transfer learning, which is important for the trust mechanism to han-
dle new situations and, thus, to act under uncertainty. The evaluation results
illustrate this. They justify Requirement 6 and make clear, why this require-
ment is inherent to trust. Rettinger et al. (2008) emphasise the importance
of transfer learning as well. Only few trust algorithms address this ability at
present though (see Chapter 4.4.2).

Specialisation and generalisation are antagonists, which complement
each other in two ways as the evaluation results show: First, if a vehicle
knows one of the trust situation’s entities, it can specialise on that entity and
generalise over the other entities using the experiences, which have been
made with that entity. Second, a vehicle can use specialisation and gener-
alisation for one single entity at the same time. It can take all experiences,
which have been made with that entity, and complement them with the ex-
periences, which have been made with all the other entities of the same root
type exploiting similarities. While the Enfident Model connects both forms,
other trust algorithms may support only the one or the other. For example,
the trust algorithm in Bamberger et al., 2012 can only generalise over differ-
ent tasks. The experiences that are used to compute trust are restricted to
those with the same cooperation partner.

In some scenarios, the cooperation partner cannot be identified reliably.
Then the algorithm cannot specialise on the partner entity. Vehicular net-
works can be one example of such a scenario, as pseudonyms will possibly
be used there to protect privacy. For this and other reason, Raya (2009)
considered traditional trust models inappropriate for vehicular networks and
proposed to focus on the plausibility of the data with a fixed logic. She calls
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this form of trust data-centric trust. The evaluation results show though that
the Enfident Model can still specialise on all other entities, even if the coop-
eration partners do not interact again and again or do not recognise each
other. This means that the Enfident Model implicitly includes data-centric
trust. It automatically moves its attention on the cooperation partner or the
data, just as needed. Thus the mixed specialisation and generalisation is
important to keep in mind, when analysing various trust applications.

9.3 Time-varying Behaviour of the Trustee

The vehicles that have been considered so far always follow the same statis-
tical process throughout the simulation. This section investigates how three
trust algorithms handle changing statistical processes. It is based on the
defect scenario as described in Chapter 8.5.3 and looks at the vehicles that
were added through post-processing with Mates. These vehicles change
their underlying processes from a reliable partner to a defective partner and
back to a reliable partner as illustrated in Figure 8.10 on page 186.

Description of the data. The way, how the trust value develops with ev-
ery received message, can well describe how an algorithm adapts to the
statistical processes of the considered senders. Figure 9.6 shows this de-
velopment for two senders: vehicle 1 on the left and vehicle 2 on the right.
In the first phase, all messages contain correct values. In the second phase,
both vehicles are defective. They always send 0. The first wrong message of
vehicle 1 is the 33rd, that of vehicle 2 is the 30th. In the third phase, the de-
fect is repaired. The vehicles send correct messages again. The first correct
messages of vehicles 1 and 2 are the 44th messages. The top row of the
figure shows the error in the received message. This error is the input of the
trust algorithms. Note that the vehicles do not necessarily send wrong val-
ues. Rather they always send 0, which may accidentally be true or false. The
receiver is always the same vehicle (3038). Three different trust algorithms
have been simulated: the Credit algorithm, the time-invariant Enfident-sp-
ot algorithm and the time-varying Enfident-dp-ot algorithm. The results are
given row by row in the figure as indicated by the labels in the diagrams.
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Figure 9.6: Response of the trust model on a time-varying behaviour of the cooperation
partner. On the left, the sender is vehicle 1; on the right, it is vehicle 2. The first row shows
the error in the received message. It describes the behaviour of the sender. This is what the
trust algorithms see. The following three lines illustrate the responses of three different trust
algorithms in the receiver. The name of the algorithm is indicated in the diagram.
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Adaptation to a time-varying process. When looking at the curves be-
fore the 30th message, all trust algorithms judge both senders as very re-
liable. With the sequence of wrong messages, the trust values are going
down quickly. They stay around 0.2 to 0.4 during the defect phase. This is
common to all three algorithms. But then a major difference becomes visi-
ble. The Credit algorithm and the Enfident-sp-ot algorithm can react to the
next sequence of correct messages only slowly. The trust value increases
only by around 0.1. In contrast, the Enfident-dp-ot algorithm ends with a
trust value of about 0.80 to 0.85. This trust level is comparable to that before
the defect phase. So the Enfident-dp-ot algorithm can follow a time-varying
process. In contrast, both other algorithms treat the sender as a single pro-
cess. The algorithms take all previous outcomes disregarding their temporal
order. As a consequence, they weight the bad message in the third phase,
as if they occurred directly before the current message.

The different approaches of the algorithms can also be seen at the be-
ginning of the second phase. There the effect is not as clear-cut as in the
third phase though. The Credit and the Enfident-sp-ot algorithm take the
high errors in the beginning of the second phase (value four on the y-axis)
together with the low errors in the first phase as part of a Gaussian-like dis-
tribution. The lower trust values reflect just the overall performance of the
sender, not a switch in the estimated statistical process. Consequently both
algorithms tend to a medium to low trust value. In contrast, at the beginning
of the second phase, the Enfident-dp-ot algorithm estimates a trust distri-
bution that has high probabilities especially at errors of zero and four. The
algorithm goes up to a medium trust value only with the following medium
errors in the messages. Then it accepts a Gaussian-like distribution. In the
consequence, the later errors of four lead to a smaller peak down, as they fit
better in the newly estimated process. This can be seen in the right diagram
of the Enfident-dp-ot algorithm.

Discussion of the results. The plots for the Credit and the Enfident-sp-ot
algorithm may seem right at first glance. A cooperation partner who betrayed
once looses his trustworthiness. Trust shall recover slowly. However all
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three algorithms do not distinguish between increasing and decreasing trust.
The longer the first phase with the correct messages takes, the slower trust
will decrease with the time-invariant trust algorithms. This is in contrast to
an algorithm that considers the order of messages like the Enfident-dp-ot
algorithm does.

Bad experiences can be emphasised with other tools like utility functions
and the mapping from a trust distribution to a trust value. Indeed the latter
mapping of all three algorithms is quite pessimistic. For this reason, the
time-invariant algorithms decrease their trust values rather steep, although
the trust distribution does not change much. The increase is the slower
though.

In the literature, only few trust algorithms address abrupt changes in the
partner’s behaviour as Section 4.4.3 points out. Most algorithms focus on
time-invariant or slowly changing behaviour. The proposed model for time-
varying entities leads to good results for time-invariant and time-varying
behaviour of cooperation partners, as the various results in this chapter.
The actual performance depends on the concrete implementation algorithm
though.

9.4 Generality of a Trust Algorithm and Its
Convergence

A trust algorithm should learn the behavioural model of a cooperation part-
ner so that it can predict cooperation outcomes. The possible behavioural
models of any partner may not be known in advance though. This is in
contrast to a sensor model. The sensor is known and can be tested. As a
consequence, a Gaussian model, for example, can be valid for a sensor, but
could be too restricted for the behaviour of a cooperation partner.

This shows that a trust algorithm should be able to capture a variety of
different behavioural models at the same time. It should be generic. To em-
phasise this, I selected categorical distributions for the error model in this
evaluation. They can take on any form for a discrete magnitude. Moreover
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Figure 9.7: More specific algorithms find the right explanation of the data better than more
generic algorithms. This figure shows box plots of the found behavioural model for senders
with a sensor of type S0. These plots correspond to the top left diagram in Figure 9.2. The
plots only differ in the trust algorithms as indicated in each diagram.

the time-varying algorithms are more generic than the time-invariant algo-
rithms. They can learn even more forms of behaviour.

On the downside, a more generic algorithm has more ways to explain the
experiences. In the consequence, it may need more data to converge to the
real explanation. Figures 9.7 and 9.8 illustrate this. The diagrams are box
plots like in Figure 9.2. The bottom left diagram of Figure 9.7 is the same as
the top left diagram of Figure 9.2, and the bottom left diagram of Figure 9.8
is the same as the bottom right diagram of Figure 9.2.

Figure 9.7 depicts the outcome distributions, which the different algorith-
mic variants from Section 8.6 learn for senders with a sensor of type S0.
This sensor type is an extreme case, as it makes no error. The most re-
stricted algorithm, the Enfident-sp-ot algorithm, converges best to the real
distribution (the green circles). In contrast, the Enfident-dp-ht algorithm has
more degrees of freedom. Consequently it has more ways to explain the
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Figure 9.8: More specific algorithms find the right explanation of the data better than more
generic algorithms. This figure shows box plots of the found behavioural model for senders
with a sensor of type S3. These plots correspond to the bottom right diagram in Figure 9.2.
The plots only differ in the trust algorithms as indicated in each diagram.

same data and these ways are more pessimistic. It would need much more
data to rule out the pessimistic explanations. The other two algorithms are
somewhere in between.

The other extreme case is the sensor type S3. The outcome distribu-
tions for senders with such a sensor are shown in Figure 9.8. Again the
Enfident-sp-ot algorithm gets close to the real distribution of the data, while
the Enfident-dp-ht algorithm finds other more optimistic explanations of the
same data.

In summary, trust development requires a generic underlying model,
which can capture various behavioural patterns of the cooperation partners.
Such generic algorithms may need much data to converge to the real be-
havioural pattern. At a first glance, this need contradicts the purpose of the
trust mechanism to support acting under uncertainty, which means acting
in case of little data. There seem to be contrary needs in Requirement 6.
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But in fact, an algorithm can offer both: It can give reasonable advice based
on none or little data for a single cooperation partner; and it can specialise
on various different behavioural patterns. The challenge is to generalise
with few overall data, which comes from other partners than the cooperation
partner of interest, and to specialise to the behavioural pattern of that spe-
cific partner with little additional data. Consequently the algorithm designer
must typically balance the need for data and the generality of the underlying
model.

For completeness, I must note here that the proposed algorithms fail to
balance both needs, because the scenario is quite simple. The statistical
model with categorical distributions suits well to emphasise that the trust
algorithm can find Gaussian shaped distributions without prior knowledge
about the Gaussian sensor model. But the statistical model uses indeed
mixture models, each of which is a superposition of categorical distributions
(see Equation 7.1 on page 120). If the mixture model of the error variable,
for example, contains K mixture components and every component is a cat-
egorical distribution with five probabilities, four of which are independent,
then the resulting mixture distribution has 4K independent parameters. But
its shape only has four independent values. This consideration changes
though, if more than one variable depends on the mixture component. Other
distributions like discretised normal distributions are useful for the mixture
components as well.

9.5 Summary

The evaluation results visualise in various forms, what a statistical model
of the cooperation partner’s behaviour means here. Section 9.1 considers
a single trust situation at a given point in time. The shown trust distribu-
tions predict the other’s behaviour for this situational context. The evalua-
tion demonstrates that with task-dependent trust distributions. A trust value
sums up a trust distribution on a one-dimensional scale. As a consequence,
it misses some information of the trust distribution. The evaluation did not
consider attributes of the bargaining context though. Because the Enfident
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Model is symmetric regarding its entity classes, the development of trust
depending on such attributes would work in the same way as with the task
attributes. The additional situational constraints of Requirement 4 were also
omitted to keep the evaluation focused. They could easily be integrated in
the sampling, as well, but add only little to the understanding of trust.

The evaluation especially emphasises the temporal view on trust devel-
opment. Sections 9.2 and 9.3 show, how the behavioural model (the trust
distribution) is learned for a specific combination of attributes; how the ini-
tial trust in a new cooperation partner evolves with an increasing amount of
overall experiences; how the experience with a certain partner for one task
can be exploited to estimate the cooperation outcome with the same part-
ner but for another task; and why a trust algorithm should be able to quickly
follow changes in the partner’s behaviour.

All these results demonstrate the interplay of learning, clustering and logic
within a probabilistic framework. This combination is important for trust de-
velopment as it is for other cognitive abilities (e.g. Kemp et al., 2006). This
is the strength of the presented algorithms. They are also suitable to bet-
ter understand the Enfident Model, because the generative model of the
algorithms matches with the visualisation of the Enfident Model. On the
downside, the algorithms need much data and much computation time to
converge to the target distributions. This gets even worse for relational mod-
els with more attributes and hidden variables. In addition, the algorithms
disregard the temporal distance between two interactions. The transition
probabilities between two connected state variables are all the same. But
following the Enfident Model, a higher temporal distance should lead to a
higher uncertainty about the next state value. For these reasons and some
more mentioned in Section 7.4, I am not completely satisfied with the pre-
sented algorithms. They are subject to future research.





10 Conclusion

This dissertation contributes to a theory of trust with a conceptual and
application-independent trust model and a set of accompanying require-
ments. This theoretical work is based on a thorough interdisciplinary discus-
sion of trust in social and technical sciences; and it is complemented with
modern algorithms from the field of statistical relational learning. For the
evaluation, the Enfident Model is applied to a vehicular network scenario.
The simulation features a virtual society of vehicles, which cooperate by ex-
changing interesting information. The evaluation shows that the postulated
requirements and the Enfident Model together with the proposed algorithms
lead to intuitive, reasonable and consistent results.

The next section summaries this dissertation. Section 10.2 then relates
the Enfident Model back to interpersonal trust. The final section opens the
view for further interesting research issues in the context of trust for technical
systems.

10.1 Summary

In this dissertation, I analysed the definitions of trust in several disciplines.
The analysis revealed different notions of trust, which I named probabilis-
tic trust, interest-related trust, trust-related decision and trust-related be-
haviour. All these notions of trust address the uncertainty about another’s
behaviour. They target at inter-machine trust and not at interpersonal trust.
The definitions abstract from interpersonal trust and the emotions that come
along with it. Each is reduced so far that it refers to just one technical con-
cept. This sequence of defined trust concepts is new in the literature.
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The requirements then consider the mechanism that is necessary to com-
pute these trust concepts. They focus especially on probabilistic trust, be-
cause the other trust concepts can be derived from it. The requirements
identify base functionalities that are necessary to realise a trust mechanism.
For example, a trust algorithm should generalise over all past trust situations
to predict the trust for a new, unknown situational setting. The requirements
are independent from an application and an implementation. In this way,
they can guide in applying trust on any specific scenario. Systematic re-
quirements for inter-machine trust are new in the literature.

The Enfident Model combines the required functionalities in one model,
which features different views on trust. One view defines the entities of
a trust situation: the cooperation partner, the bargaining situation and the
task to perform. Various application-specific attributes describe the entities.
They influence the trust in a specific situation. This variety of attributes is
necessary to understand the trust situation and to predict the cooperation
outcome well. The Enfident Model proposes the most complete assess-
ment of the trust situation in the literature. In addition, it unifies trust models
based on ratings of cooperation outcomes and those based on beliefs about
the partner’s characteristics in a coherent view (see Sections 4.2, 6.2 and
10.2.2).

Another view of the Enfident Model highlights the temporal aspects of
trust. Trust develops over a temporal sequence of acts of cooperation. Each
act of cooperation consists of a temporal sequence of interactions. Both
temporal sequences introduce additional relations between the entities men-
tioned above. The trustor can evaluate trust at any time during an act of
cooperation.

The view on the reasoning process conceptualises the attributes of an
entity as the observable expression of an internal state. Each entity has
its own internal state, which reflects its inner way of working. A state can
change over time. For example, a software virus can change a robot’s inner
way of working. The evaluation showed that this conception of an entity
helps
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• to learn the specific trust for a certain situational setting;

• to take advantage of similarities between situational settings to judge
a new, unknown setting;

• and to react on changes in the cooperation partner’s behaviour.

The integration of these important trust functionalities in one model is unique
in the literature. Moreover the reasoning process is based on experiences
from the past, but also on a logical evaluation of present situational con-
straints (something like plausibility).

In addition, the Enfident Model contains a querying mechanism. It em-
phasises that trust can be assessed in different forms. For example, the
Enfident Model can provide the trust for a specific act of cooperation, the
trust in a specific cooperation partner and the trust as a general expectation
about trust situations (see Section 10.2.3).

To implement the Enfident Model, I proposed modern algorithms for rela-
tional dynamic Bayesian networks. They combine logic, clustering, learning
and reasoning based on probability theory to realise the postulated features
of a trust mechanism.

I evaluated the Enfident Model with a virtual society of cognitive vehicles
that cooperate in a vehicular network. This scenario emphasises that trust
addresses a social problem. It is directed towards another system. The
evaluation illustrates some requirements and some aspects of the Enfident
Model. It justifies them intuitively with reasonable and consistent results.

The chain of technical thoughts follows a loop from the use cases and
requirements to the Enfident Model and the implementation up to the eval-
uation. The evaluation results are then related back to the requirements. In
contrast, the loop for the interdisciplinary considerations has not been closed
completely yet. Therefore the next section sums up interesting connections
between interpersonal trust and the Enfident Model.
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10.2 The Enfident Model and Interpersonal Trust

This section shows selected parallels and differences between inter-
personal and inter-machine trust. It closes the interdisciplinary discussion
so far and justifies some aspects of the Enfident Model on a theoretical level.

10.2.1 Influencing Factors

Following the literature in the social sciences, the trusting person consid-
ers the trustee and the situational context to judge the trust situation (Sec-
tion 3.1). The Enfident Model further distinguishes two context types: the
situational context of the bargaining and that of the task execution. More-
over it conceptualises sequences of interactions (Section 6.1). There may be
several situations of bargaining and task execution. This way of modelling
details the concept from the social sciences for a technical application. It
does not contradict that concept.

In addition, Gennerich emphasises that only the combination of all at-
tributes together, attributes of the trustee and of the situational context, de-
termines trust as described in Section 3.1. A person may be trustworthy re-
garding one task but not regarding another task. And additional information
during the cooperation negotiation may place the cooperation in a different
light. The Enfident Model agrees with this view. Its three entities influence
the prediction only together, not independently.

10.2.2 Perceived Characteristics of the Cooperation Partner

Interpersonal trust depends on some attitudes towards the cooperation part-
ner, like competence, consistency, promise fulfilment, and loyalty (see also
Section 3.2.2). How does this observation relate to the Enfident Model as it
does not contain such characteristics explicitly?

These characteristics are attributed to the cooperation partner based on
past interactions and on recommendations of others. They can be un-
derstood as summarising descriptions of certain kinds of cooperation out-
comes. If the cooperation partner, for example, devotes himself to someone
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in certain situations, he is said to be loyal to that one. Similarly if a profes-
sional does a good job in certain situations, he is called competent regarding
these situations.

Consistency is different though. Someone can be consistently honest,
consistently competent, consistently loyal, and so on. Consistency is more
related to the form of the outcome distribution, while other characteristics
seem more like an expected value of the outcome. An inconsistent be-
haviour could be said to lead to a broad outcome distribution. Reputation
is different too. Someone can have a distinct reputation for loyalty, compe-
tence and so on. Reputation represents the opinion of a community. This
community can have an opinion about all distinct characteristics of a person,
but also about the person as a whole.

These considerations show that the Enfident Model indirectly includes
such characteristics of the cooperation partner. It evaluates the same ex-
periences that lead to perceived characteristics like competence, promise
fulfilment and consistency. This way, trust computed by the Enfident Model
will strongly correlate with those attitudes, although they are no direct input
parameter of the Enfident Model. In fact, the researchers on interpersonal
trust only investigated the correlations between trust and the characteristics.
The results do not show the causality between them. For technical systems,
I prefer that the algorithms have the full data instead of the derived attitudes.

Nonetheless thinking about these characteristics helps to identify all the
properties of the cooperation outcome that are helpful for the trust devel-
opment. So the trustee’s characteristics may be considered a development
tool to understand the evaluation of the trust situation. For technical sys-
tems, those groups of characteristics that regard professional relations (see
Section 3.4.2) might be most relevant. They include, for example, expertise,
fairness, honesty, integrity, promise fulfilment, discreteness and reputation.
The Enfident Model emphasises this view by explicitly mentioning the ability
and the willingness of the cooperation partner. This is in line with the work
of Castelfranchi and Falcone (Section 6.2).
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10.2.3 Trust as a Generalised and Specific Expectancy

Section 3.4.1 introduces trust as a generalised and a specific expectancy. In
contrast, the arguments in this dissertation mainly aim at trust for a specific
trust situation. Nonetheless the Enfident Model can produce a generalised
expectancy as well – through the querying mechanism of Section 6.4. Trust
can be computed for completely unknown entities. Then the result depends
on the parameters of the Bayesian prior distribution – which is somehow
comparable to Erikson’s basic trust in form of an early disposition – and on
an inductive inference over all previous situations – which is comparable to
Rotter’s idea of a learned generalised expectancy.

In between the completely generalised and completely specific ex-
pectancy, various trust scales have been developed for trust in intimate
relationships, friends, professional guilds and so on, as described in Sec-
tion 3.4.1 as well. Such expectancies could also be requested from the
Enfident Model by inserting appropriate entities in the network. Thus one
model can integrate all these notions of trust.

10.2.4 Trust as an Inner State or Manifest Behaviour

Chapter 2 points out that some scientists conceptualise interpersonal trust
as cooperative manifest behaviour and others as an inner state. Modern
researchers (e.g. Kassebaum, 2004) often unify both views in the way that
they understand trust as an attitude with an affective, behavioural and cog-
nitive expression.

This dissertation takes a step further by distinguishing probabilistic trust,
interest-related trust, trust-related decision making and trust-related be-
haviour. Because trust-related decision making and behaviour depend also
on aspects that are unrelated to trust, the Enfident Model ends right before
the decision making process. It provides some input to the decision module,
but does not say what should be done next or what information is correct
or incorrect (for more details, see Section 4.3.2). It focuses on probabilistic
and interest-related trust – the inner states of trust.
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10.2.5 Summary

Comparing interpersonal trust with trust between cooperating technical sys-
tems helps to understand both of them. This is a central theme through-
out this dissertation and a contribution to the state of the art. While some
authors like Castelfranchi and Falcone (2010), Engler (2007), and Marsh
(1994) regard some aspects of interpersonal trust, their interdisciplinary dis-
cussion omits many findings that are important for the presented work. The
previous subsections show that interpersonal trust and the Enfident Model
show some interesting parallels. They include aspects of what influences
the trust development and aspects of what trust expresses. The parallels
justify a few design aspects of the Enfident Model to some extent.

Besides these common aspects, trust between persons and trust between
machines still have major differences. The reader should especially keep in
mind that interpersonal trust is a phenomenon that is there, hidden in the
person and, thus, subject to analysing investigation. In contrast, trust be-
tween technical systems is a mechanism synthesised to fulfil a certain pur-
pose. And while a machine should act according to some rational principles,
the research on interpersonal trust shows some interesting irrational findings
(Section 3.4.3). Interpersonal trust also helps to constitute and maintain a
person’s own identity (Section 3.4.2). This is a far wider interpretation of the
purpose than is necessary for cooperating machines.

10.3 Limitations of the Enfident Model and Future
Research Issues

This dissertation marks just a small step towards trusting systems. Many
important subjects are not covered. Society-level features, like those men-
tioned at the beginning of Chapter 4, are important for a social mechanism
like trust. In some application scenarios, they even are a key for trust devel-
opment.

Moreover the presented Enfident Model has some limitations, which
should be investigated in the future, too. At present, the Enfident Model
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is more like a rough conceptual work piece, which still needs the finishing
that comes from the variety of applications. Applying the Enfident Model
on various real scenarios will bring up new insights and lead to improved
algorithms. The proposed sampling schemas depict some features of the
Enfident Model well, but they have some drawbacks as discussed in Sec-
tion 9.5. There are other interesting techniques, which should be evaluated
regarding trust development. The proposed requirements and the Enfident
Model give some guidelines as to which features should be offered by a po-
tential reasoning technique. This topic directly leads to benchmarks for trust
algorithms. They mainly consist of data sets, which reflect an application
scenario in a good quality. Evaluating reasoning techniques is only sensible
with such benchmarks.

The topics above were mentioned several times in the dissertation. Some
interesting limitations have not been touched though. At present, the pro-
posed trust model offers no conclusive way to integrate experiences that
come from observing the cooperation of others. All experiences are as-
sumed to come from acts of cooperation between oneself and the coopera-
tion partner. Because one self regards always the same entity, it is omitted in
the Enfident Model. Consequently both cooperation partners must be mod-
elled to include observed acts of cooperation. This raises many interesting
questions like whether and how to model who is the trusting and the trusted
system, and how to realise transfer learning for the various combinations of
cooperation partners.

Furthermore the interaction between the agents as introduced in Sec-
tion 6.1 could be modelled more extensively. In the Enfident Model, the state
of an entity depends just on its previous state. For the cooperation partner
this limitation could be too simplistic in some scenarios. Rather the partner’s
state could also depend on what the partner perceives. Consequently the
causality could go from some observable attributes (the input attributes) to
the current state variable and also from the preceding state variable to the
current state variable. And from there, the causality could go to some other
observable attributes (the output attributes). This results in a stochastic dy-
namic system (similar to a Kalman filter). While the Enfident Model omits
the causality path from the input attributes to the current state variable, it still
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can react on changes of attributes through the inverse causality direction.
For this reason, this extension of the Enfident Model could be unnecessary
in many application scenarios.

The trust mechanism should support the system to act under high un-
certainty. However it is only one part of this functionality. It must be com-
plemented with trust-supported decision making (or information integration
or control). Both, the trust computation and the decision making, could be
combined in a single overall algorithm. This algorithm assesses the trust
situation as the Enfident Model does and puts out a trust-related decision
for an action. The inner trust state (probabilistic or interest-related trust) be-
comes irrelevant. For example, the information integration in a system could
be implemented with a hidden Markov model and the Enfident Model with a
dynamic Bayesian network (see Bishop, 2007 for an introduction on these
techniques). Both models could be entangled in one big dynamic Bayesian
network, which contains no inner trust state. The new algorithm would di-
rectly compute the integrated information without the detour of a trust value
or trust distribution.

The trustee could be investigated and conceptualised, too. This is a rarely
considered subject in the literature of the social sciences as well as the
technical fields. It could give insights on how a trustee should decide, why he
may betray and what could let him comply. This research would investigate
good behaviour in the same way as malicious systems and the forces behind
them. The model of the trustee could be combined with that of the trustor.
This would result in an interesting overall interaction model for trust research,
in which the alternating behaviour of both, the trustor and the trustee, could
be investigated in various scenarios.

The research issues so far address trust between cooperating technical
systems, as this is the subject of this dissertation. But certainly, the view
could be opened to human-machine interaction: the technical system as a
trustor, which needs the help of a human partner, and as a trustee, which is
asked for cooperation by a person. While some aspects of trust in a human-
machine setting might be similar to what is proposed in this dissertation,
there might also be major differences as Chapter 3 and Section 10.2 em-
phasise. People do not act rationally. This leads to many interesting ques-
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tions like: How does a person perceive a cognitive machine, which can act
quite independently? What does a person expect from a machine in the role
of a trustee? How will a person understand its role as a trusted cooperation
partner, when he is asked for help by a machine? Trust in human-machine
interaction is obviously a bit different and more complex than the rational
concept of trust between technical systems. This was the main reason for
me to start with technical systems as a first step.

Altogether I think, trust is an interesting research topic. The mixture of
social and technical aspects is attractive and frequently brought up exciting
findings and papers. The outlook in this section shows that the research
on trust is still at the beginning. It promises many enhancements to trust
theory and practice in the future. With a growing society of technical sys-
tems, more and more topics from the social sciences will have a technical
relevance. Maybe somewhen, robots will even have a simple identity and
self-conception. Trust could then support the preservation of the robot’s
identity.
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Researchers from social sciences 
and economics consider trust a 
requirement for successful coop-
eration between people. It helps to 
judge the risk in situations, in which 
a person has the choice to rely on 
another one. In the future, technical 
systems will face similar situations. 
Assume, for example, self-organ-
ised robots, which reload some 
goods at a large logistics centre 
together. For this, they will need a 
mechanism like trust.

This book gives the reader tools 
to understand trust and introduce 
a trust mechnism into own appli-
cations. The tools include generic 
requirements for own trust mecha-
nisms and the Enfident Model – a 
conceptual, implementation-inde-
pendent model of trust. These theo-
retical tools are complemented with 
state-of-the-art algorithms from sta-
tistical relational learning. Finally, 
as an example, all this is applied to 
cooperating cognitive vehicles. As 
trust is a social phenomenon, this 
evaluation features a virtual society 
of vehicles, which cooperate in a 
vehicular network. It shows that the 
postulated requirements and the 
Enfident Model lead to intuitive and 
consistent results.


	Introduction
	Problem Statement
	Motivation and Applications
	Contribution of This Dissertation
	Organisation

	Clarifying the Concept of Trust
	Interpersonal Trust
	Functions of Interpersonal Trust
	Trust in Information Security
	Trust in Multi-Agent Systems Research
	Definition of Trust in This Dissertation

	An Input-Output View on a Trusting Person
	Overview
	Trust as a Dependent and Independent Variable
	Attitude, Decision and Manifest Behaviour

	External Influences – the Inputs
	Interpersonal Perception
	Properties of the Relationship
	Properties of the Situation

	External Effects – the Outputs
	Inner Processing
	Trust as a Generalised and a Specific Expectation
	Matching of the Actual and the Desired Relationship
	Self-Perception

	Summary

	Requirements and Related Work
	The Causality of Trust Development
	Influences
	Output of a Trust Algorithm
	Trust Representation
	Trust and Decision
	Trust, Risk and Utility

	Reasoning Process
	Present Constraints and Experience
	Specialisation and Generalisation
	Entities as a Time-Varying Process

	Summary

	Notation
	Probabilistic Notation
	Graphical Notation

	The Enfident Model
	Trust-Related Situations
	Data Definition
	Overview
	Detailed Description of the Entities and Relationships
	Conclusion

	Reasoning Process
	Querying
	Implementation Notes
	Determining the Attributes
	Distinguishing Entities
	Trusting a Group of Systems
	Modelling the Social Structure
	Designing the Reasoning
	Connecting the Enfident Model to a Reputation System


	Reasoning Algorithms for the Enfident Model
	Introduction
	Realisations with Finite Mixture Models
	The Dirichlet Distribution
	Time-Invariant Entity Types
	Time-Varying Entity Types

	Realisations with Infinite Mixture Models
	Introduction to the Infinite Mixture Model
	Infinite Mixture Models for Time-Invariant Entity Types
	Infinite Mixture Models for Time-Varying Entity Types

	Summary

	Evaluation Method
	The Inter-Vehicular Communication Scenario
	Use Cases for the Trust Model
	The Trust Problem
	Simulation Environment
	The Social Structure
	Events and the Information Model
	The Processing in the Vehicles
	Post-processing with Mates
	Further Limitations of the Simulation Environment

	Simulation Scenarios
	Verifying the Fulfilment of the Requirements
	Sensor Quality Scenario
	Defect Scenario

	The Algorithms Used for the Evaluation

	Evaluation Results and Their Discussion
	Learning the Competence-Related Influences
	Specialisation and Generalisation
	Time-varying Behaviour of the Trustee
	Generality of a Trust Algorithm and Its Convergence
	Summary

	Conclusion
	Summary
	The Enfident Model and Interpersonal Trust
	Influencing Factors
	Perceived Characteristics of the Cooperation Partner
	Trust as a Generalised and Specific Expectancy
	Trust as an Inner State or Manifest Behaviour
	Summary

	Limitations of the Enfident Model and Future Research Issues

	Bibliography

