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mir ermöglicht hat und die ich unter ihrer Obhut genießen konnte, hat mich fachlich
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Darüber hinaus geht mein Dank, verbunden mit vielen schönen Erinnerungen, an das

Institut für Mathematische Statistik der Westfälischen Wilhelms-Universität Münster,

wo mein akademischer Werdegang seinen Anfang nahm und wo ich den Großteil meiner

Promotionszeit verbracht habe. Ich denke dabei vor allem an meine damaligen Kom-

militonen und Kollegen, die dafür gesorgt haben, dass ich mich stets mit Freuden an

die Zeit in Münster zurückerinnere.
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Preface

This thesis deals with three different models of certain stochastic processes in discrete

time. The processes of the considered models have in common that all three are

derived from time-homogeneous Markov processes in discrete time with the purpose

of creating more realistic stochastic models and thus weakening the ‘memorylessness’

property which is characteristic for Markov processes. Here memorylessness means that

the random movement of the memoryless process to the next state at some point in

time depends only on the present state but not on the entire path which has led to that

state. This property is called Markov property. Since Markov published first results on

those processes in 1906, the theory of Markov processes has been developed further with

considerable success. Hence, today there are numerous tools and techniques available

in the literature which in many cases allow a far-reaching and detailed analysis of such

processes. The application of those techniques usually strongly relies on the above

mentioned memorylessness. Hence, extensions and generalisations which are aiming at

weakening this property are a natural consequent step in the progress of this field.

Processes which do not satisfy the Markov property show a more complex dependence

structure. More precisely, the random displacements of the process at some point in

time can depend on the entire history of the process and not only on its current state.

Generally, such processes can be derived from ordinary Markov processes by assuming

that the evolution of the process takes place in a more complex medium which affects

the evolution in a certain way and which can also be affected by the evolution. Here

the medium is thought of as comprising both the state space of the process and its

transition probabilities which can depend on the present state.

One possible approach is to think of the medium itself as a realization of a random

mechanism and thus as something which is a priori unknown. In this case the (random)

medium is usually called random environment. The crucial idea of this approach is
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to assume that two different random mechanisms are applied. On the one hand the

process obeys certain parameters which determine the random transitions of the process

in its state space. On the other hand – before the actual evolution takes place – the

controlling parameters and/or the explicit shape of the state space are generated as

a realization of a random mechanism. Hence, the randomness occurs, in a certain

sense, in two consecutive steps. As already mentioned, this construction implies that

those processes do not satisfy the Markov property in general. At first glance, this

fact might seem surprising. But the ongoing evolution of the process allows more and

more inferences to be drawn about the a priori unknown (since random) mechanisms

which control the evolution. Hence, the random displacement at each point in time

does not only depend on the current state but also on the path on which the state was

reached. Models of this type have been investigated intensively over the last decades.

Their study goes back to first papers published by Chernov [14] and Temkin [56]

in 1962 and 1972, respectively. These authors considered nearest-neighbour random

walks on the integers with random transition probabilities. At that time their work was

motivated by models for the replication of DNA chains. In 1975 Solomon published his

famous paper “Random Walks in a Random Environment” [54]. Therein he provides a

mathematically rigorous construction of the model as well as answers to questions on

recurrence and the asymptotic speed of the random walk in the case of independent and

identically distributed transition probabilities. Since then for the one-dimensional case

numerous questions have been solved and today the understanding of these processes

has reached a very high level. Thus, it has become clear that these processes show

considerably richer phenomena (such as slowdown and aging effects and traps), which

differ from those of the original models (without a random environment), and which

make their study particularly interesting and rewarding.

Another extension of Markov random walks is a generalisation of both the concepts

of Markov processes and of branching processes. Instead of considering just one single

random walker, it is assumed that this random walker produces offspring according to a

(position-dependent) offspring distribution and that the offspring random walkers move

independently of one another and identically to their progenitor. Thus, a single initial

random walker or particle can result in a cloud or population of particles which moves

and/or expands as an entire cloud. Usually the reproduction is assumed to follow a

Galton-Watson branching process. Hence, the single particles of a population reproduce

independently of each other and they share common mechanisms which determine

the reproduction. In a model of this kind new phenomena related to recurrence and

transience can be observed. Moreover, as always in the context of branching processes,
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questions on survival – both locally and globally – arise immediately. Such models

are called branching random walks or branching Markov processes. A general theory

of branching Markov processes has been developed in a series of papers by Ikeda,

Nagasawa, and Watanabe in 1968 and 1969 [39]. Similar to ordinary random walks,

also a branching random walk can be embedded into a random environment. In this

case both the random movement of the particles as well as their random reproduction

depend on the underlying medium which is again random. This construction yields a

branching random walk in a random environment.

In Chapter 1 of this thesis we study a branching random walk in a random environ-

ment, described as above, on the non-negative integers. The random movement of this

branching random walk can be described as a movement to the right with a location-

dependent random delay. Also the reproduction mechanisms depend on the location.

Both the parameters which determine the movement and those which determine the

reproduction are part of the random environment and thus a priori unknown. In this

chapter we answer questions on the local as well as global survival. Besides, we prove

a theorem on the asymptotic shape or contour of the cloud of particles.

A different variant of random media, which has attracted a lot of interest in the lit-

erature, are random graphs. In additon to the analysis of the properties of random

graphs itself, the graph can be regarded as the state space of a random walk. Thus,

the entire structure of the state space of this random walk is a realization of a random

mechanism. The study of random graphs goes back to the famous work by Erdős and

Rényi from 1959 [25]. Since then numerous different types of random graphs have been

the object of research. A special case of a random graph which is of importance for

the present thesis is the genealogical tree of a Galton-Watson branching process. For

any graph the easiest way to define a random walk on that graph is the so-called sim-

ple random walk. At each point in time the random walker of a simple random walk

chooses one of the states which neighbour the current state of the process at random.

In general, for each vertex of the graph, a different transition distribution on the set of

its neighbours can be given as a part of the random graph, which makes the transition

probabilities also random. One important special case of this approach are random con-

ductance models. For these models a non-negative random weight is assigned to every

edge of the underlying graph. For a fixed configuration of edge weights, the transition

probability to move from a given vertex to one of its neighbouring vertices is propor-

tional to the weight of the edge connecting those two vertices. The edge weights are

also called conductances referring to physical electric networks, which serve as a good
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source of intuition in this context. This model comprises, as the simplest special case,

the simple random walk for which all conductances share the same deterministic value.

A valuable advantage for the analysis of processes defined via edge weights arises from

the fact that all such processes show – in a certain sense – a time reversibility. More

precisely, they possess a canonical reversible measure depending on the edge weights.

In Chapter 2 of this thesis we study a random walk in a random medium which is given

by the genealogical tree of a Galton-Watson branching process with independent and

identically distributed edge weights. In papers by Lyons, Pemantle, and Peres [44, 45] it

is proved that the simple random walk on infinite Galton-Watson trees is almost surely

transient with positive asymptotic speed. Independent and identically distributed edge

weights can be regarded as a kind of blurring or smudging of the simple random walk.

Consequently, in a paper of Gantert, Müller, Popov, and Vachkovskaia from 2012 [30]

it was proved that this generalised model, too, shows transience with a positive speed.

As a natural next step after analysing the speed of a random walk, in Chapter 2 of this

thesis we derive a central limit theorem for the graph distance as well as for the range

of the random walk in this model.

In addition to random media, another approach to increase the complexity of Markov

processes is to assume that the medium interacts with the random walker. Thus, it

is possible that the mechanisms which determine random transitions of the process

are altered in the course of time. In general, this approach can be pursued in various

ways. A famous example is the reinforced random walk first considered by Diaconis

and Coppersmith in 1987 [22]. In this model the probability for the random walker

to perform a certain movement is increased (or decreased) if the same movement has

been performed previously. Subsequently, Davis [20] and Pemantle [50] have derived

far-reaching results on these models. Another way to obtain manipulable media is to

consider excited or cookie random walks. In these models the transition probabilities

of a state are altered after the first visit (or after a certain number of visits) of this

state. Here it can be pictured that at a certain state the random walker undergoes

an excitement by some kind of cookie which has been placed on the state as part of

an initial configuration of cookies, and which is consumed by the random walker after

having reached this state. Hence, after the initial cookie storage of a state is depleted,

the random walker will no longer undergo an excitement and behave according to

different transition probabilities. Excited random walks were introduced by Benjamini

and Wilson in 2003 [11].
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Obviously, the resulting processes do not satisfy the Markov property. The underlying

medium is altered in the course of the evolution of the process by its explicit path. This

fact causes a more complicated dependence structure since visiting a certain state can

affect the evolution of the process arbitrarily many time steps later. So the transition

mechanisms do not only depend on the current position of the random walker but also

on the entire history of the process.

Similarly, the cookie random walk model can be combined with the concept of branch-

ing processes. In this case, instead of considering only a single random walker, the

object of study is a population of random walkers, which move and reproduce indepen-

dently of one another according to certain transition and offspring distributions. But

here, as the available cookies are consumed gradually, the transition probabilities can

be altered depending on whether a respective state has been visited (often enough).

Similarly, the reproduction mechanisms can change in the course of the evolution of

the process.

In Chapter 3 of this work a cookie branching random walk as described above is stud-

ied. The questions of interest are the same as those in the context of branching

random walks without cookies. In Chapter 3 we answer in detail all questions on

recurrence/transience phenomena of the considered process.

The thesis is divided into three self-contained chapters which can be read indepen-

dently of one another. The notation which is made use of within each of the chapters

is introduced at the beginning of each chapter. Whenever it is possible and seems

reasonable we use consistent notation also across different chapters. In each chapter

we use both of the symbols � and � to signal the completion of a proof. � is used at

the end of the proofs of the major results; whereas � is used for the proofs of auxiliary

results which are part of another proof.
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Chapter 1

Survival and growth of a branching

random walk in a random

environment

1.1 Introduction

In this chapter we consider a particular branching random walk in a random envi-

ronment (BRWRE) on N0 started with one particle at the origin. The underlying

environment is an i.i.d. collection of offspring distributions and transition probabili-

ties. In our model particles can either move one step to the right or they can stay

where they are. Given a realization of the environment, we consider a random cloud

of particles which evolves as described below. The process is started with one particle

at the origin and then the following two steps are iterated indefinitely:

• Each particle produces offspring independently of the other particles and accord-

ing to the offspring distribution at its location (and then it dies).

• Then all particles move independently of each other. Each particle either moves

to the right (with probability hx, where x is the location of the particle), or it

stays at its position (with probability 1− hx).

We are interested in the question whether the BRWRE survives or eventually becomes

extinct. Moreover, we analyse the connection between survival/extinction and the

growth rate of the (expected) number of particles, and we characterize the asymptotic

profile of the expected number of particles on N0.

The question on survival/extinction is considered for particles moving to the left or

to the right in a paper by Gantert, Müller, Popov, and Vachkovskaia [29]. Our model is
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CHAPTER 1. SURVIVAL AND GROWTH OF A BRWRE

excluded by the assumptions in [29] (Condition E). The questions on the growth rates

are motivated by a series of papers by Baillon, Clement, Greven and den Hollander.

In their papers [5, 6, 31, 32, 33] the authors study a similar model which is started

with one particle at each location. Since in such a model the global population size

is always infinite, the authors introduce different quantities to describe the local and

global behaviour of the system. They apply a variational approach to analyse different

growth rates.

In this chapter we provide a different (and easier) characterization of the global

survival regime by means of an embedded Galton-Watson branching process in a ran-

dom environment. For a connection between the model considered in this chapter and

the model in [31] we refer to Remark 1.4.2.

In order to obtain results on the growth of the global population (Theorem 1.3.4

and Theorem 1.3.6), it is useful to analyse the local behaviour of the process which is

carried out in Theorem 1.3.3 and its proof. This theorem involves a function β which

describes the asymptotic profile of the expected number of particles. However, the

definition of β is not very explicit: Its existence is derived from the subadditive ergodic

theorem.

An important difference to the model considered in [17] is that in our model particles

can have no offspring, in which case it is possible that the entire process eventually

becomes extinct. Thus, it is neccessary to condition on the event of survival in order

to determine the growth rate of the population.

If we choose h ≡ 1, the spatial component of the BRWRE is trivial (in this case,

all particles at time n are located at position n), and the model reduces to the well-

known branching process in a random environment, which is comprehensively studied

by Tanny in [55]. Our model can be interpreted as an extension of the model considered

in [55] towards a process in time and space.

Chapter 1 is organized as follows: In section 1.2 we give a formal description of our

model. Section 1.3 contains the results, section 1.4 some remarks and section 1.5 the

proofs. At the end of this chapter, in section 1.6, examples and pictures are provided.

The results presented in this chapter have been published in [7] in collaboration

with Nina Gantert and Michael Kochler.

1.2 Formal description of the model

The considered BRWRE is constructed in two steps. First, we define the space of

environments Ω and the associated environmental measure. Subsequently, for a fixed

8



1.2. FORMAL DESCRIPTION OF THE MODEL

environment ω we define the mechanisms of reproduction and movement of the particles

within this environment.

1.2.1 The environmental law

First, we define

M :=
{
(pi)i∈N0 : pi ≥ 0,

∞∑

i=0

pi = 1
}

as the set of all offspring distributions (i.e. probability measures on N0). Then, we

define

Ω̃ := M× (0, 1]

as the set of all possible choices for the local environment which now also includes the

local drift parameter. Let α be a probability measure on Ω̃ satisfying

α
({(

(pi)i∈N0, h
)
∈ Ω̃ : p1 = 1

})
< 1,

α
({(

(pi)i∈N0, h
)
∈ Ω̃ : p0 ≤ 1− δ, h ∈ [δ, 1]

})
= 1

(1.1)

for some δ > 0. The first property ensures that the branching mechanism is non-trivial

and the second property is a common ellipticity condition which usually comes up in

the context of survival of branching processes in a random environment.

Now we define the space of environments Ω as the product space

Ω :=
⊗

x∈N0

Ω̃.

For a suitable (product) σ-algebra F on Ω, we define the probability measure P

on (Ω,F) as the infinite product measure of α, i.e. P := αN0. Hence, if we choose ω ∈ Ω

according to the distribution P the sequence ω = (ωx)x∈N0 = (µx, hx)x∈N0 is an i.i.d.

sequence in Ω̃ with marginal distribution α. The measure P is called the environmental

measure on Ω and we write E for the expectation operator corresponding to P. In the

following ω is referred to as the random environment containing the offspring distribu-

tions µx and the drift parameters hx. The mean offspring at location x ∈ N0 is denoted

by

mx = mx(ω) :=

∞∑

k=0

kµx

(
{k}
)

and the essential supremum of m0 by

M := ess supm0.

9



CHAPTER 1. SURVIVAL AND GROWTH OF A BRWRE

Furthermore, we define

Λ := ess sup
(
m0(1− h0)

)
.

1.2.2 The evolution of the cloud of particles – The quenched

law

Given a randomly chosen environment (ωx)x∈N0 = (µx, hx)x∈N0, the BRWRE is con-

structed as a discrete-time Markov process. At every point in time n ∈ N0 each existing

particle at some position x ∈ N0 produces offspring according to the distribution µx

independently of all other particles and dies. Afterwards, the newly produced particles

move independently according to an underlying Markov chain starting at position x.

The transition probabilities of this Markov chain are also determined by the environ-

ment. We only consider a particular type of Markov chain on N0, which might be called

movement to the right with (random) delay. This Markov chain is determined by the

following transition probabilities:

pω(x, y) =





hx y = x+ 1

1− hx y = x

0 otherwise

. (1.2)

We note that the local drift parameter hx is bounded away from 0 by some posi-

tive δ due to the ellipticity condition in (1.1). In Theorem 1.3.7 we consider the case

that P(h0 = h) = 1 holds for some h ∈ (0, 1] (i.e. a constant drift parameter). In this

special case, we identify a phase transition for the drift parameter h and different

survival regimes depending on h.

For n ∈ N0 and x ∈ N0, the number of particles at location x at time n is denoted

by ηn(x) and, moreover, the total number of particles at time n by

Zn :=
∑

x∈N0

ηn(x).

For a fixed environment ω, the probability and the expectation such that the pro-

cesses (ηn)n∈N0 and (Zn)n∈N0 have the properties described as above and such that the

population is started with one particle at x is denoted by P x
ω and Ex

ω, respectively. P
x
ω

and Ex
ω are called the quenched probability and expectation.

1.2.3 Survival regimes

Now we define two different survival regimes which naturally result from the local and

the global point of view, respectively.

10



1.3. RESULTS

Definition 1.2.1. Given an environment ω ∈ Ω, we say that

(i) there is Global Survival (GS) if

P 0
ω

(
Zn → 0

)
< 1.

(ii) there is Local Survival (LS) if

P 0
ω

(
ηn(x) → 0

)
< 1

for some x ∈ N0.

Remarks 1.2.2. (i) For fixed ω LS is equivalent to

P 0
ω

(
ηn(x) → 0 ∀ x ∈ N0

)
< 1.

(ii) Since the drift parameter is always positive, it is easy to see that for fixed ω LS

and GS do not depend on the starting point in Definition 1.2.1. Thus, we will

always assume that our process starts at 0. For notational convenience we will

omit the superscript 0 and use Pω and Eω instead.

1.3 Results

The following results characterize the different survival regimes. As in [29], local and

global survival do not depend on the realization of the environment but only on its

law.

Theorem 1.3.1. There is either LS for P-a.e. ω or there is no LS for P-a.e. ω.

There is LS for P-a.e. ω iff

Λ > 1.

Theorem 1.3.2. We suppose that we have Λ ≤ 1. There is either GS for P-a.e. ω or

there is no GS for P-a.e. ω. There is GS for P-a.e. ω iff

E

[
log

(
m0h0

1−m0(1− h0)

)]
> 0.

Next, we consider the local and the global growth in terms of the asymptotic be-

haviour of the moments Eω[ηn(x)] and Eω[Zn] as n tends to infinity. For the Theo-
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CHAPTER 1. SURVIVAL AND GROWTH OF A BRWRE

rems 1.3.3 to 1.3.6, we need the following stronger condition

α
({(

(pi)i∈N0, h
)
∈ Ω̃ : p1 = 1

})
< 1,

α
({(

(pi)i∈N0 , h
)
∈ Ω̃ : p0 ≤ 1− δ, h ∈ [δ, 1− δ]

})
= 1

(1.3)

for some δ > 0. In addition, for those theorems we assume M <∞.

Theorem 1.3.3. There exists a unique, deterministic, continuous and concave func-

tion β : [0, 1] −→ R such that for every γ > 0 we have

lim
n→∞

max
x∈n[γ,1]∩N

∣∣∣ 1n logEω

[
ηn(x)

]
− β( x

n
)
∣∣∣ = 0

for P-a.e. ω ∈ Ω. Additionally, we have β(0) = log
(
Λ
)
and β(1) = E[log(m0h0)].

Theorem 1.3.4. We have

lim
n→∞

1
n
logEω

[
Zn

]
= max

x∈[0,1]
β(x)

for P-a.e.ω.

Theorem 1.3.5 shows that GS is equivalent to exponential growth of the expected

global population size Eω[Zn]:

Theorem 1.3.5. The following assertions are equivalent:

(i) lim
n→∞

1
n
logEω

[
Zn

]
> 0 holds for P-a.e. ω.

(ii) There is GS for P-a.e. ω.

In Theorem 1.3.6 we consider the growth of the population Zn without taking

expectation but conditioned on the event of survival:

Theorem 1.3.6. If there is GS, we have

lim
n→∞

1
n
logZn = max

x∈[0,1]
β(x) > 0 Pω-a.s. on {Zn 6→ 0}

for P-a.e. ω.
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1.4. REMARKS

As already announced above we now analyse the case of a constant drift parameter,

i.e., we have P(h0 = h) = 1 for some h ∈ (0, 1]. We easily conclude from Theorem 1.3.1

that in this case we have LS iff

h < hLS :=




1− 1

M
if M ∈ (1,∞]

0 if M ∈ (0, 1] .

In order to analyse the dependence of GS on the drift parameter h, we define

ϕ(h) := E

[
log

(
m0h

1−m0(1− h)

)]
.

Theorem 1.3.7. We suppose that we have h ≥ hLS.

(i) If M ≤ 1, then we have ϕ(h) ≤ 0 for all h ∈ (0, 1] and thus there is a.s. no GS.

(ii) We assume that M > 1 holds.

(a) If ϕ(hLS) ≥ 0 and ϕ(1) ≤ 0, then there is a unique hGS ∈ [hLS, 1] with

ϕ(hGS) = 0. In this case we have a.s. GS for h ∈ (0, hGS) and a.s. no GS

for h ∈ [hGS, 1].

(b) If ϕ(hLS) < 0, then ϕ(h) < 0 for all h ∈ [hLS, 1]. Thus, we have a.s. GS

for h ∈ (0, hLS) and a.s. no GS for h ∈ [hLS, 1]. In this case we define

hGS := hLS.

(c) If ϕ(1) > 0, then ϕ(h) > 0 for all h ∈ [hLS, 1]. Thus, there is a.s. GS for

all h ∈ (0, 1]. In this case we define hGS := ∞.

Hence, we have a unique hGS ∈ [hLS, 1] ∪ {∞} such that there is a.s. GS for

h < hGS and a.s. no GS for h ≥ hGS.

1.4 Remarks

The following remarks apply to the case of constant drift.

Remarks 1.4.1. (i) Since we have ϕ(1) = E[logm0], our results can be regarded

as an extension of the well-known condition for a non-certain extinction of a

Galton-Watson branching process in a random environment (cf. Theorem 5.5

and Corollary 6.3 in [55], we recall that we assume that condition (1.1) holds).

In fact, our proofs rely on this result.

13
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(ii) If M is finite and ϕ(hLS) ∈ (0,∞] holds true, then, by virtue of the continuity

of ϕ, there exists z > 0 such that there is a.s. GS but a.s. no LS for every

h ∈ [hLS, hLS + z). In particular, this is the case if P(m0 = M) > 0 holds true,

since this implies ϕ(hLS) = ∞.

(iii) In Section 1.6 we provide an example for a choice of the parameters so that the

condition of Theorem 1.3.7 (ii)(b) holds true. In this case there is a.s. LS for

h ∈ (0, hLS) and a.s. no GS for h ∈ [hLS , 1] for some hLS ∈ (0, 1).

Remark 1.4.2. The expected global population size Eω[Zn] corresponds to dIn(0, F )

in the notation of [31]. In Theorem 2 I. the authors of [31] describe the limit

lim
n→∞

1
n
logEω[Zn] = lim

n→∞

1
n
log dIn(0, F ) =: λ(h)

as a function of the drift parameter h by an implicit formula.

In order to clarify this correspondence, we consider a random walk (Sn)n∈N0 on N0

started in 0 with (non-random) transition probabilities (ph(x, y))x,y∈N0. The transition

probabilities are defined by

ph(x, y) :=





h y = x+ 1

1− h y = x

0 otherwise

and let Eh be the associated expectation operator. The local times of the random

walk (Sn)n∈N0 are denoted by ln(x), i.e.

ln(x) := |{0 ≤ i ≤ n : Si = x}| for x ≥ 0, n ≥ 0.

Then for x = 0 we obtain

Eω[ηn(0)] = (1− h)n ·m0(ω)
n = Eh

[
n−1∏

i=0

mSi
(ω) · 1{Sn=0}

]
.

Moreover, for x ≥ 1 we have

Eω[ηn(x)] = h ·mx−1(ω) · Eω

[
ηn−1(x− 1)

]
+ (1− h) ·mx(ω) · Eω

[
ηn−1(x)

]
,

which yields

Eω[ηn(x)] = Eh

[
n−1∏

i=0

mSi
(ω) · 1{Sn=x}

]

for all x ≥ 1 by induction. Finally, we get

Eω[Zn] =
∞∑

x=0

Eω[ηn(x)] = Eh

[
n−1∏

i=0

mSi
(ω)

]
= Eh

[
n−1∏

x=0

mx(ω)
ln(x)

]
.
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Since the environment ω = (ωx)x∈N0 can be extended to an i.i.d. environment (ωx)x∈Z

and since (ωx)x∈Z and (ω−x)x∈Z have the same distribution with respect to P, for-

mula (1.8) and Theorem 1 in [31] show that there exists a deterministic c ∈ R such

that

lim
n→∞

1
n
logEω[Zn] = c

holds for P-a.e. ω. In our notation this limit coincides with maxx∈[0,1] β(x).

The connection between the two models enables us to characterize the critical drift

parameter at which the function h 7→ λ(h) in [31] changes its sign using an easier

criterion, which can be directly derived from Theorem 1.3.7.

1.5 Proofs

Proof of Theorem 1.3.1. First, we observe that the descendants of a particle at lo-

cation x which stay at x form a Galton-Watson process with mean offspringmx(1− hx).

For a fixed ω ∈ Ω, we therefore have

P x
ω

(
ηn(x) → 0

)
< 1 ⇔ mx(ω)(1− hx(ω)) > 1.

Now we assume that we have Λ > 1. Thus, there is some λ > 1 such that

P(m0(1− h0) ≥ λ) > ε > 0

holds true for some ε > 0. Using the Borel-Cantelli lemma, we obtain that P-a.s. for

infinitely many locations x we have

mx(1− hx) > 1.

Let x0 = x0(ω) denote a location satisfying mx0(1 − hx0) > 1. Then, for P-a.e. ω, we

have

Pω(ηx0(x0) ≥ 1)

≥
(
1− µ0

(
{0}
))
h0 ·

(
1− µ1

(
{0}
))
h1 · . . . ·

(
1− µx0−1

(
{0}
))
hx0−1 > 0,

where we make use of condition (1.1) for the second inequality. For P-a.e. ω this implies

Pω(ηn(x0) → ∞)

≥ Pω(ηx0(x0) ≥ 1) · P x0
ω (ηn(x0) → ∞) > 0

and thus LS.

15
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Now we assume that we have Λ ≤ 1. As already mentioned above, for every x ∈ N0

and P-a.e. ω the descendants of a particle at location x that stay at x constitue a

subcritical or critical Galton-Watson process. Thus, for a given ω, we have

ηn(0)
Pω-a.s.−−−−→
n→∞

0,

which yields that the total number of particles that move from 0 to 1 is Pω-a.s. finite.

Inductively we conclude for every x ∈ N0 that the total number of particles that reach

location x from x−1 is finite. By assumption each of those particles starts a subcritical

or critical Galton-Watson process at location x, which Pω-a.s. dies out. This implies

Pω

(
ηn(x) −−−→

n→∞
0
)
= 1 ∀ x ∈ N0

and therefore completes the proof of Theorem 1.3.1. �

Proof of Theorem 1.3.2. Since we have Λ ≤ 1 by assumption, there is P-a.s. no LS

according to Theorem 1.3.1. This means we have

Pω(ηn(x) → 0) = 1

for P-a.e. ω and for all x ∈ N0. We now define a Galton-Watson branching process in

a random environment (ξn)n∈N0 which is embedded in the considered BRWRE. After

starting with one particle at 0 we freeze all particles that reach position 1 and keep these

particles frozen until all existing particles have reached 1. This will happen a.s. after

a finite time because the number of particles at 0 constitutes a subcritical or critical

Galton-Watson process that dies out with probability 1. The total number of particles

frozen in 1 is now denoted by ξ1. Then we release all particles, let them reproduce and

move according to the BRWRE and freeze all particles that hit position 2. As before,

the total number of particles frozen at 2 is denoted by ξ2. We repeat this procedure

and with ξ0 := 1 we obtain the process (ξn)n∈N0 which is a branching process in an

i.i.d. environment.

Another way to construct (ξn)n∈N0 is to think of ancestral lines. Each particle has

a unique ancestral line leading back to the first particle starting from the origin. In

this manner of speaking ξk is the total number of particles which are the first particles

that reach position k among the particles in their particular ancestral lines.

We observe that GS of (Zn)n∈N0 is equivalent to survival of (ξn)n∈N0 . Due to

Theorem 5.5 and Corollary 6.3 in [55] (taking into account condition (1.1)), the pro-

cess (ξn)n∈N0 survives with positive probability for P-a.e. environment ω if and only if

we have ∫
log
(
Eω[ξ1]

)
P(dω) > 0.
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Computing the expectation Eω[ξ1] completes our proof. First, we define ξ
(k)
1 as the

number of particles which move from position 0 to 1 at time k. Using this notation we

can write

ξ1 =
∞∑

k=0

ξ
(k)
1

and obtain

Eω[ξ1] =
∞∑

k=0

Eω

[
ξ
(k)
1

]
.

In order to calculate Eω

[
ξ
(k)
1

]
, we observe that (w.r.t. Pω) the expected number of

particles at position 0 at time k equals
(
m0(ω) · (1− h0(ω))

)k
. Each of those particles

contributes m0(ω) · h0(ω) to Eω

[
ξ
(k)
1

]
. This yields

Eω[ξ1] =
∞∑

k=0

(
m0(ω) · (1− h0(ω))

)k ·m0(ω) · h0(ω)

=
m0(ω) · h0(ω)

1−m0(ω) · (1− h0(ω))
(1.4)

which is defined as ∞ if m0(ω) · (1 − h0(ω)) = 1. This completes the proof of Theo-

rem 1.3.2. �

Remark 1.5.1. Alternatively to the computations in the proof of Theorem 1.3.2, equa-

tion (1.4) can be obtained using generating functions. The crucial observation is that

the generating function fx(s) := Eω[s
ξx+1 |ξx = 1] is a solution of the equation

fx(s) = gx
(
(1− hx)fx(s) + hxs

)
(1.5)

where we write gx(s) :=
∑∞

k=0 µx

(
{k}
)
sk. Since we have Eω[ξ1] = f ′

0(1), we can easily

derive (1.4) from equation (1.5).

Proof of Theorem 1.3.3. Following the ideas from [17], we introduce the function β

to analyse the local growth rates.

(i) First, we show that β can be defined as a concave function on (0, 1] ∩Q such that

lim
n→∞

1
sn

logEω

[
ηsn(rn)

]
= β

(
r
s

)
(1.6)

holds for all r, s ∈ N with r ≤ s and for P-a.e. ω.

In order to establish this, we fix r, s ∈ N with r ≤ s and define

Sm,n(ω) :=
1
s
logErm

ω

[
ηs(n−m)(rn)

]

17
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for 0 ≤ m ≤ n, which is integrable due to (1.3) and M < ∞. Using this definition we

obtain

Sm+1,n+1(ω) = Sm,n ◦Θ(ω). (1.7)

Here Θ is defined by Θ(ω) := θr(ω) with θ denoting the shift operator as usual,

i.e. (θ ω)i = ωi+1. Furthermore, we have

S0,n(ω) ≥ S0,m(ω) + Sm,n(ω) (1.8)

since

E0
ω

[
ηsn(rn)

]
≥ E0

ω

[
ηsm(rm)

]
· Erm

ω

[
ηs(n−m)(rn)

]
.

Due to the properties (1.7) and (1.8) we are able to apply the subadditive ergodic the-

orem to (Sm,n). We cite Chapter 7.4 of [24] for a textbook reference of the subadditive

ergodic theorem. However, we conclude that the limit

lim
n→∞

1
n
S0,n(ω) = lim

n→∞

1
sn

logEω

[
ηsn(rn)

]
=: β

(
r
s

)

exists for P-a.e. ω. Clearly, the limit only depends on r
s
and it is P-a.s. constant since P

is a product measure.

(ii) We now show that β is concave on (0, 1] ∩Q. We fix a, b, t ∈ (0, 1] ∩Q with t 6= 1

and define s := a′· b′ · t′ as the product of the denominators of the reduced fractions of

the rationals a, b, t. By virtue of (1.8) we have

1
sn

logEω

[
ηsn
(
s(ta + (1− t)b)n

)]

≥t 1
stn

logEω

[
ηstn
(
stan

)]

+ (1− t) 1
s(1−t)n

logEstan
ω

[
ηs(1−t)n

(
s(ta + (1− t)b)n

)]

=t 1
stn

logEω

[
ηstn
(
stan

)]

+ (1− t) 1
s(1−t)n

logEθstanω

[
ηs(1−t)n

(
s(1− t)bn

)]
. (1.9)

We observe that for all n ∈ N0 we have

Eθstanω

[
ηs(1−t)n

(
s(1− t)bn

)] d
= Eω

[
ηs(1−t)n

(
s(1− t)bn

)]

w.r.t. the enironmental measure P. Due to (1.6) and since β is P-a.s. constant, this

implies that we have

(1− t) 1
s(1−t)n

logEθstanω

[
ηs(1−t)n

(
s(1− t)bn

)]
P−−−→

n→∞
(1− t)β(b).

Therefore, there exists a subsequence of the expression in (1.9) which converges P-a.s.

as n tends to infinity and this yields that we have

β(ta+ (1− t)b) ≥ tβ(a) + (1− t)β(b).
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We observe that β is bounded with 2 log δ+ log(1− δ) ≤ β(x) ≤ logM and thus it can

be uniquely extended to a continuous and concave function β : (0, 1) −→ R.

(iii) We now investigate the behaviour of β(x) if x tends to 0 from above, and we show

that we have

lim
x↓0

β(x) = log(Λ).

We fix ε > 0 and a ∈ Q∩ (0, ε]. Let a′ be the denominator of the reduced fraction of a.

For P-a.e. ω there exists y = y(ω) satisfying

my(ω)(1− hy(ω)) > Λ− ε.

Using the definition

k := max{l ∈ N : l ≤ (1− ε)a′n},
for large n such that k ≥ y(ω) we obtain

Eω

[
ηa′n(a

′an)
]
≥ Eω

[
ηk(y(ω))

]
· Ey(ω)

ω

[
ηa′n−k(a

′an)
]

≥ δ
y(ω)
0 · (Λ− ε)k−y(ω) · δa′n−k

0

for P-a.e. ω, where we write δ0 := δ2 · (1 − δ). If we let n tend to infinity and ε to 0,

we can conclude that we have

lim inf
x↓0

β(x) ≥ log(Λ).

For the remaining inequality, we observe that

Eω

[
ηn1·n2(n2)

]
≤
(
n1·n2

n2

)
· Λ(n1−1)·n2 ·Mn2 (1.10)

holds true for n1, n2 ∈ N and for P-a.e. ω. Since we have

1
n1·n2

log
(
n1·n2

n2

)
−−−−→
n2→∞

n1−1
n1

log
(

n1

n1−1

)
+ 1

n1
log(n1) −−−−→

n1→∞
0,

the estimate in (1.10) yields

1
n1·n2

logEω

[
ηn1·n2(n2)

]
≤ (o(n2) + o(n1)) +

n1−1
n1

log(Λ) + 1
n1

log(M)

−−−−→
n2→∞

n1−1
n1

log(Λ) + o(n1)

for P-a.e. ω. This implies that we have

lim sup
n→∞

β
(
1
n

)
≤ log(Λ)

and due to the continuity of β on (0, 1) we conclude

lim sup
x↓0

β(x) ≤ log(Λ).
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(iv) Since the process (ηn(n))n∈N0 is a branching process in an i.i.d. environment sat-

isfying Eω[η1(1)] = m0h0, we have

β(1) = E
[
log(m0h0)

]
.

The continuity of β in 1 can be established with similar arguments as in part (iii).

(v) We fix γ > 0 and ε > 0 and show that we have

lim inf
n→∞

min
x∈n[γ,1]∩N

(
1
n
logEω[ηn(x)]− β( x

n
)
)
≥ 0 (1.11)

for P-a.e. ω. In order to show this, we observe that there is a finite set

{a1, . . . , al} ⊂ (0, 1) ∩Q

satisfying the following condition:

∀ b ∈ [γ, 1] ∃ i, j ∈ {1, . . . , l} : |b− ai| < ε , ai ≤ b and |b− aj | < ε , aj ≥ b.

Let a′i be the denominator of the reduced fraction of ai. We define

ki := max{l ∈ N : a′il ≤ (1− ε)n}.

By definition of ki, for large n we have

(1− 2ε)n < (1− ε)n− a′i < a′iki ≤ (1− ε)n. (1.12)

Furthermore, for large n and for all i ∈ {1, . . . , l} we have

1
a′iki

logEω

[
ηa′iki(a

′
iaiki)

]
≥ β(ai)− ε (1.13)

for P-a.e. ω as a consequence of (1.6).

Now we fix y ∈ n[γ, 1] ∩ N. Then, there is ai ≤ y
n
with | y

n
− ai| < ε and we have

a′iaiki ≤ (1− ε)nai ≤ (1− ε)y ≤ y. (1.14)

If β(ai)− ε ≥ 0 holds true, by virtue of (1.12), (1.13) and (1.14) we have

Eω

[
ηn(y)

]

≥ Eω

[
ηa′iki(a

′
iaiki)

]
·Ea′iaiki

ω

[
ηn−a′iki

(y)
]

≥ exp
(
a′iki · (β(ai)− ε)

)
· δn−a′iki

0

= exp
(

a′iki︸︷︷︸
≥(1−2ε)n

· (β(ai)− ε)− (n− a′iki)︸ ︷︷ ︸
≤2εn

· log(δ−1
0 )
)

≥ exp
(
n
(
(1− 2ε) · (β(ai)− ε)− 2ε · log(δ−1

0 )
))

20



1.5. PROOFS

for P-a.e. ω and for all large n, again with δ0 := δ2 ·(1− δ). This yields

1
n
logEω

[
ηn(y)

]

≥ (1− 2ε) · (β(ai)− ε)− 2ε · log(δ−1
0 ) (1.15)

for P-a.e. ω. If β(ai)− ε < 0 holds true, we conclude in the same way that we have

Eω

[
ηn(y)

]

≥ exp
(
n
(
(1− ε) · (β(ai)− ε)− 2ε · log(δ−1

0 )
))

(1.16)

for P-a.e. ω. Since we have |ai − y
n
| < ε and since β is uniformly continuous on [γ, 1],

the estimates (1.15) and (1.16) imply (1.11) as n→ ∞ and ε→ 0.

(vi) In order to complete the proof, it remains to prove that

lim sup
n→∞

max
x∈n[γ,1]∩N

(
1
n
logEω

[
ηn(x)

]
− β( x

n
)
)
≤ 0 (1.17)

holds for P-a.e. ω. So we assume that (1.17) does not hold and, as a consequence, for

infinitely many n ∈ N there exists y ∈ n[γ, 1] ∩ N such that

1
n
logEω

[
ηn(y)

]
≥ β( y

n
) + ε (1.18)

holds with positive probability. As in (v), there exists aj ≥ y
n
such that | y

n
− aj| < ε

holds true. Now we define

k′j := max{l ∈ N : a′jl ≤ (1 + ε)n}

and then (1.6) implies

Eω

[
ηa′jk′j (a

′
jajk

′
j)
]
< exp

(
a′jk

′
j · (β(aj) + ε)

)
(1.19)

for P-a.e. ω and for all large n. Moreover, due to (1.18), we have

Eω

[
ηa′jk′j(a

′
jajk

′
j)
]

≥ Eω

[
ηn(y)

]
·Ey

ω

[
ηa′jk′j−n(a

′
jajk

′
j)
]

≥ exp
(
n(β( y

n
) + ε)

)
· δa

′
jk

′
j−n

0

with positive probability since we have

a′jk
′
j − n > 0

and

a′jajk
′
j ≥ (n+ εn− a′j)aj ≥ naj ≥ y

for large n. This yields a contradiction to (1.19) and hence completes the proof of

Theorem 1.3.3. �
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Proof of Theorem 1.3.4. For all ε > 0 there exists x0 ∈ Q∩ (0, 1] such that we have

β(x0) ≥ max
x∈[0,1]

β(x)− ε.

Let x′0 ∈ N denote the denominator of the reduced fraction of x0. Then we have

lim inf
n→∞

1
nx′

0
logEω

[
Znx′

0

]

≥ lim inf
n→∞

1
nx′

0
logEω

[
ηnx′

0
(nx′0 · x0)

]

= β(x0) ≥ max
x∈[0,1]

β(x)− ε

for P-a.e. ω. Moreover, using the ellipticity condition (1.3), we have

Eω

[
Znx′

0+r

]
≥ δr0 ·Eω

[
Znx′

0

]

for r ∈ {0, 1, . . . , x′0 − 1} and for P-a.e. ω. If we let ε → 0, we can conclude that we

have

lim inf
n→∞

1
n
logEω

[
Zn

]
≥ max

x∈[0,1]
β(x) (1.20)

for P-a.e. ω. In order to establish the remaining estimate, we first state the following

lemma.

Lemma 1.5.2. For ε > 0 there is γ > 0 such that for all n ∈ N we have

1
n
logEω

[
ηn(y)

]
≤ log(Λ + ε)

for P-a.e. ω and for all y ∈ n[0, γ] ∩ N0.

Proof of Lemma 1.5.2. We fix 1
2
> γ > 0 and y < γn and observe that we have

Eω[ηn(y)] ≤
(
n
y

)
· Λn−y ·My

for P-a.e. ω. Since we have

1
n
log
(
n
y

)
≤ 1

n
log
(

n
⌊γn⌋

)
−−→
γ→0

0

uniformly in n, we can conclude that we have

1
n
logEω[ηn(y)] ≤ o(γ) + n−y

n
log(Λ) + y

n
log(M) ≤ log(Λ + ε)

for P-a.e. ω if γ > 0 is small enough. �
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For an arbitrary ε > 0 we now choose γ > 0 according to Lemma 1.5.2. Then, from

Theorem 1.3.3 and Lemma 1.5.2, we can derive that we have

lim sup
n→∞

1
n
logEω[Zn]

= lim sup
n→∞

1
n
logEω




⌊γn⌋−1∑

y=0

ηn(y) +
n∑

y=⌊γn⌋

ηn(y)




≤ lim sup
n→∞

1
n
log

(
γn·
(
Λ + ε

)n
+ n·exp

(
n·
(
max
x∈[0,1]

β(x) + o(n)
)))

≤ max
x∈[0,1]

β(x) + ε

for P-a.e. ω since β(0) = log(Λ) holds true. For ε → 0 this yields

lim sup
n→∞

1
n
logEω[Zn] ≤ max

x∈[0,1]
β(x)

for P-a.e. ω. This, together with (1.20), proves Theorem 1.3.4. �

Proof of Theorem 1.3.5. First we prove that (ii) implies (i). We assume that there

is P-a.s. LS. As shown in the proof of Theorem 1.3.1, for P-a.e. ω, there is a location x

such that the descendants of a particle at x that stay at x constitute a supercritical

Galton-Watson process. Let x = x(ω) be such a location, i.e. mx(1 − hx) > 1. Then

we have

Eω[Zn]

≥ Eω[ηn(x)]

≥
(
1− µ0

(
{0}
))
h0 · . . . ·

(
1− µx−1

(
{0}
))
hx−1 ·

(
mx(1− hx)

)n−x

≥ (δ2x ·
(
mx(1− hx)

)n−x

for P-a.e. ω and for n ≥ x. Here we use condition (1.1) for the last inequality. Due to

Theorem 1.3.4, we obtain

lim
n→∞

1
n
logEω[Zn]

≥ lim sup
n→∞

1
n
log
(
δ2x · (mx(1− hx))

n−x
)

= log (mx(1− hx))

> 0

for P-a.e. ω.

Now let us assume that there is P-a.s. no LS, which is, according to Theorem 1.3.1,

equivalent to Λ ≤ 1. Again, we use the process (ξn)n∈N0 defined in the proof of
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Theorem 1.3.2. Since there is GS for P-a.e. ω, the process (ξn)n∈N0 has a positive

survival probability for P-a.e. ω. Thus, we have
∫

log
(
Eω[ξ1]

)
P(dω) > 0 (1.21)

by Theorem 5.5 in [55]. For T ∈ N we now introduce a slightly modified embedded

branching process (ξTn )n∈N0 . For k ∈ N we define ξTk as the total number of all particles

that move from position k − 1 to k within T time units after they have been released

at position k − 1. The leftover particles are no longer considered. With ξT0 := 1 we

observe that (ξTn )n∈N0 is a branching process in an i.i.d. environment. By virtue of the

monotone convergence theorem and (1.21) there exists some T such that
∫

log
(
Eω

[
ξT1
])

P(dω) > 0. (1.22)

By construction of (ξTn )n∈N0 we obtain

ξTn ≤ Zn + Zn+1 + . . .+ ZnT . (1.23)

Using the strong law of large numbers and taking into account that ω is an i.i.d.

sequence, we have

lim
n→∞

1
n
logEω

[
ξTn
]

= lim
n→∞

1
n
log

n∏

i=0

Eθnω

[
ξT1
]

= lim
n→∞

1
n

n∑

i=0

logEθnω

[
ξT1
]

=

∫
log
(
Eω

[
ξT1
])

P(dω) (1.24)

for P-a.e. ω. Here again θ denotes the shift operator as usual, i.e. (θ ω)i = ωi+1.

Together with (1.22) and (1.23) this yields

lim inf
n→∞

1
n
logEω

[
Zn + Zn+1 + . . .+ ZnT

]
> 0 (1.25)

for P-a.e. ω. Using Theorem 1.3.4, we conclude that we have

max
x∈[0,1]

β(x) = lim
n→∞

1
n
logEω[Zn] > 0

for P-a.e. ω because otherwise there would be a contradiction to (1.25). This shows

that (ii) implies (i).

In order to prove that (i) implies (ii), we first notice that (ii) obviously holds true if
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there is LS for P-a.e. ω. Therefore, we may assume Λ ≤ 1 for the rest of the proof.

We now want to consider the branching process focusing on its genealogical structure.

We define Γ as the set of all particles produced in the entire process and write σ ≺ τ

for two particles σ 6= τ if σ is an ancestor of τ . Moreover, |σ| denotes the generation

which the particle σ belongs to. Furthermore, for every σ ∈ Γ let Xσ be the random

location of the particle σ. Using these notations, we define

Gi := {τ ∈ Γ : Xτ = i, Xσ < i for all σ ∈ Γ, σ ≺ τ} (1.26)

for every i ∈ N0. Therefore, Gi is for i 6= 0 the set of all the particles τ that move

from position i− 1 to position i and hence the particles in Gi are the first particles at

position i in their particular ancestral lines. We observe that the process (|Gn|)n∈N0

coincides with (ξn)n∈N0. Further, for every σ ∈ Γ and n ∈ N0, we define

Hσ
n := |{τ ∈ Γ : σ � τ, |τ | = n, Xτ = Xσ}|

and observe thatHσ
n denotes the number of descendants of the particle σ in generation n

which are still at the same location as the particle σ. This enables us to decompose Zn

in the following way:

Zn =

n∑

i=1

∑

σ∈Gi

Hσ
n−|σ|. (1.27)

Since by assumption there is no LS, we have

Eω[H
σ
n | σ ∈ Γ, Xσ = i] ≤ 1 (1.28)

for P-a.e. ω because for any existing particle σ its progeny which stays at the location

of σ forms a Galton-Watson process which eventually dies out. By (1.27) and (1.28),

we conclude that we have

Eω[Zn] ≤
n∑

i=1

Eω[|Gi|]

for P-a.e. ω. Therefore, we get

lim sup
n→∞

1
n
logEω[|Gn|] > 0

for P-a.e. ω as a consequence of (i). Since (|Gn|)n∈N0 coincides with the branching

process in a random environment (ξn)n∈N0, we obtain
∫

log
(
Eω[ξ1]

)
P(dω) = lim

n→∞

1
n
logEω[|Gn|] > 0

for P-a.e. ω as in (1.24). But then again, we have GS for P-a.e. ω since (ξn)n∈N0 survives

with positive probability for P-a.e. ω. This completes the proof of Theorem 1.3.5. �
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Proof of Theorem 1.3.6. In this proof we use the abbreviation “a.s.” in the sense

of “Pω-a.s. for P-a.e. ω”.

Part 1. In the first part of the proof we show in three steps that we a.s. have

lim sup
n→∞

1
n
logZn ≤ max

x∈[0,1]
β(x). (1.29)

(i) In order to obtain (1.29), we start by showing that for all γ > 0 we a.s. have

lim sup
n→∞

max
x∈n[γ,1]∩N

(
1
n
log ηn(x)− β( x

n
)
)
≤ 0. (1.30)

To establish this we fix γ > 0 and ε > 0. Then, Theorem 1.3.3 implies that for P-a.e. ω

there exists N = N(ω, γ, ε) such that we have

Eω[ηn(y)] ≤ exp
(
n · (β( y

n
) + ε)

)

for all n ≥ N and for all y ∈ n[γ, 1] ∩ N. Thus, for P-a.e. ω, we obtain

Pω

(
ηn(y) ≥ exp

(
n · (β( y

n
) + 2ε)

))
≤ Eω[ηn(y)]

exp(n · (β( y
n
) + 2ε))

= exp(−εn)

for large n and all y ∈ n[γ, 1] ∩ N. Using the Borel-Cantelli lemma and taking into

account that
∣∣n[γ, 1] ∩ N

∣∣ ≤ n holds, this yields that we a.s. have

lim sup
n→∞

max
x∈n[γ,1]∩N

(
1
n
log ηn(y)− β( y

n
)
)
< 2ε.

Since ε is arbitrarily small, this proves (1.30).

(ii) For the second step of part 1 of this proof we show that for every ε > 0 there

exists γ = γ(ε) > 0 such that we a.s. have

lim sup
n→∞

max
x∈n[0,γ]∩N

(
1
n
log ηn(x)− β(0)− ε

)
≤ 0. (1.31)

In order to prove this, we observe that, according to Lemma 1.5.2, for every ε > 0

there exists γ = γ(ε) > 0 such that we have

1
n
logEω

[
ηn(y)

]
≤ log(Λ + ε)

(Λ>1)

≤ log(Λ) + ε = β(0) + ε

for P-a.e. ω and for 0 ≤ y ≤ γn. Therefore, the same argument as in (i) yields (1.31).

(iii) We now combine (i) and (ii) in order to obtain (1.29). For an arbitrary ε > 0 we

choose γ > 0 as in (ii). Then, (1.30) and (1.31) imply that we a.s. have

lim sup
n→∞

1
n
logZn

= lim sup
n→∞

1
n
log




⌊γn⌋−1∑

y=0

ηn(y) +
n∑

y=⌊γn⌋

ηn(y)
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≤ lim sup
n→∞

1
n
log

(
γn·exp

(
n·(β(0) + ε)

)
+ n·exp

(
n·
(
max
x∈[0,1]

β(x) + o(n)
)))

≤ max
x∈[0,1]

β(x) + ε.

For ε → 0 this implies (1.29). Thus, the first part of the proof is complete.

Part 2. In the second part of the proof we show that we have

Pω

(
lim inf
n→∞

1
n
logZn ≥ max

x∈[0,1]
β(x)

∣∣∣∣ Zn 6→ 0

)
= 1 (1.32)

for P-a.e. ω. We start by stating the following lemma:

Lemma 1.5.3. For all ε > 0 and r, s ∈ N with r ≤ s and β( r
s
) − ε > 0 there

exists N0 ∈ N such that we have

Pω

(
lim inf
n→∞

1
nsN0

log ηnsN0(nrN0) ≥ β( r
s
)− ε

)
> 0

for P-a.e. ω.

Proof. We define

MN :=
{
ω ∈ Ω̃ : 1

sN
logEω[ηsN(rN)] ≥ β( r

s
)− ε

2

}
.

Then, for every ε0 > 0 there exists N0 = N0(ε0) such that we have

P
(
MN0

)
≥ 1− ε0.

Thus, for sufficiently small ε0 and the corresponding N0(ε0), we have

∫
logEω

[
ηsN0(rN0)

]
P(dω)

≥sN0(β(
r
s
)− ε

2
)(1− ε0)

≥sN0(β(
r
s
)− ε) + sN0(

ε
2
− β( r

s
)ε0 +

ε
2
ε0)

≥sN0(β(
r
s
)− ε) > 0. (1.33)

We now construct a branching process in a random environment (ψn)n∈N0 which is

dominated by
(
ηnsN0(nrN0)

)
n∈N0

. After starting with one particle at 0, we count all

the particles that are at time sN0 at position rN0. This number is denoted by ψ1. The

remaining particles are removed from the system and no longer considered. Next, we

count the number of particles at time 2sN0 at position 2rN0. This number is denoted

by ψ2. An iteration of this procedure yields the process (ψn)n∈N0, which is supercritical
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due to (1.33). In fact, (1.33) and Theorem 5.5 in [55] imply that, for sufficiently

small ε0, we a.s. have

lim inf
n→∞

1
n
log ηnsN0(nrN0) ≥ sN0(β(

r
s
)− ε) (1.34)

on {ψn 6→ 0}. Since we assume condition (1.3), Corollary 6.3 in [55] implies

Pω(ψn → 0) < 1 (1.35)

for P-a.e. ω. Combining (1.34) and (1.35) finally completes the proof of Lemma 1.5.3.

�

Lemma 1.5.3 yields the following corollary.

Corollary 1.5.4. We fix ε, r, s and N0 as in Lemma 1.5.3. Then, there exists ν > 0

such that for P-a.e. ω there is an increasing sequence (xl)l∈N0 = (xl(ω))l∈N0 in N0 such

that for all l ∈ N0 we have

P xl
ω

(
lim inf
n→∞

1
nsN0

log ηnsN0(nrN0) ≥ β( r
s
)− ε

)
> ν.

Proof. Due to Lemma 1.5.3 there exists ν > 0 such that we have

P
({
ω : Pω

(
lim inf
n→∞

1
nsN0

log ηnsN0(nrN0) ≥ β( r
s
)− ε

)
> ν
})

> 0.

Since the sequence
(
P x
ω

(
lim inf
n→∞

1
nsN0

log ηnsN0(nrN0) ≥ β( r
s
)− ε

))

x∈N0

=

(
Pθxω

(
lim inf
n→∞

1
nsN0

log ηnsN0(nrN0) ≥ β( r
s
)− ε

))

x∈N0

is ergodic w.r.t. P, Birkhoff’s ergodic theorem (e.g. Theorem 20.14 in [43]) yields

lim
n→∞

1
n

n−1∑

k=0

1

{
Pθxω

(
lim inf
n→∞

1
nsN0

log ηnsN0(nrN0) ≥ β( r
s
)− ε

)
> ν
}
> 0 (1.36)

for P-a.e. ω and this completes the proof of Corollary 1.5.4. �

Let (xl)l∈N0 be an increasing sequence of positions as in Corollary 1.5.4. Now we

show in two steps that on the event of non-extinction there a.s. is a particle at one of

the positions xl such that the process of the descendants of this particle exhibits the

desired growth.

(i) As a first step, we show that on the event of survival (Zn)n∈N0 a.s. grows as desired

along some subsequence (j + nsN0)n∈N0 for some j ∈ {0, . . . , sN0 − 1}. In order to

28



1.5. PROOFS

obtain this, as in the proof of Theorem 1.3.5, let Γ again denote the set of all existing

particles and for σ ∈ Γ let ησn(y) denote the number of descendants of σ among the

particles which belong to ηn(y). Using the definition of the sets (Gl)l∈N0 given in (1.26)

and the sequence (xl)l∈N0 as in Corollary 1.5.4, we define:

Axl
:=
{
∃ σ ∈ Gxl

: lim inf
n→∞

1
nsN0

log ησ|σ|+nsN0
(xl + nrN0) ≥ β( r

s
)− ε

}
,

Bxl
:=
{
|Gxl

| ≥ l
}
.

Due to Corollary 1.5.4 and since the descendants of all particles belonging to Gxl
evolve

independently we get

Pω

(
Ac

xl
∩Bxl

)
≤ (1− ν)l

for P-a.e. ω. Hence, by virtue of the Borel-Cantelli lemma, we have

Pω

(
lim sup

l→∞

(
Ac

xl
∩ Bxl

))
= 0 (1.37)

for P-a.e. ω. According to Theorem 5.5 of [55], the process
(
|Gl|

)
l∈N0

a.s. grows expo-

nentially fast on the event of survival. Therefore, we a.s. have

lim inf
l→∞

Bxl
=
{
Zn 6→ 0

}
.

Together with (1.37) this yields

Pω

(
lim sup

l→∞
Ac

xl

∣∣∣∣ Zn 6→ 0

)
= 0

for P-a.e. ω. Thus, on {Zn 6→ 0}, there a.s. exists l ∈ N0 and σ ∈ Gxl
such that we

have

lim inf
n→∞

1
nsN0

log ησ|σ|+nsN0
(xl + nrN0) ≥ β( r

s
)− ε

and hence we have

Pω

(
⋃

σ∈Γ

{
lim inf
n→∞

1
nsN0

logZ|σ|+nsN0 ≥ β( r
s
)− ε

} ∣∣∣∣∣ Zn 6→ 0

)

= Pω

(
⋃

j∈N0

{
lim inf
n→∞

1
nsN0

logZj+nsN0 ≥ β( r
s
)− ε

} ∣∣∣∣∣ Zn 6→ 0

)

= Pω

(
sN0⋃

j=1

{
lim inf
n→∞

1
nsN0

logZj+nsN0 ≥ β( r
s
)− ε

} ∣∣∣∣∣ Zn 6→ 0

)

= 1 (1.38)

for P-a.e. ω.
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(ii) The last step of this part of the proof is to show that the growth along some

subsequence (j + nsN0)n∈N0 already implies sufficiently strong growth of (Zn)n∈N0 .

Due to the ellipticity condition (1.3) we have

P x
ω

(
ηi(x) ≥ 1

)
≥ δi0

for all i, x ∈ N0. (We recall that we have δ0 = δ2(1− δ).) A large deviation bound for

the binomial distribution therefore implies that we have

Pω

(
Zn+i ≤ Zn · δi0

2

∣∣∣ Zn = m
)
≤ exp(−m · λ0) (1.39)

for allm ∈ N and i ∈ {1, ..., sN0} and for some constant λ0 = λ0(N0) > 0; cf. Chapter 2

in [21] for the involved large deviation techniques. We now define:

Cj,n :=

sN0⋃

i=1

{
Zj+nsN0+i ≤ δ

sN0
0

2
exp

(
nsN0 ·(β( rs)− ε)

)}
,

Dj,n :=
{

1
nsN0

logZj+nsN0 ≥ β( r
s
)− ε

}
.

Then, due to (1.39), we have

Pω (Cj,n ∩Dj,n)

≤sN0 ·exp
(
− λ0 exp(n·λ1)

)
(1.40)

for P-a.e. ω and for all j ∈ {1, . . . , sN0}. Here we write λ1 := sN0·(β( rs)−ε). Since the
upper bound in (1.40) is summable in n ∈ N0, we can apply the Borel-Cantelli lemma

and conclude that we have

Pω

(
lim sup
n→∞

Cj,n

∣∣∣∣ lim inf
n→∞

Dj,n

)

≤ Pω

(
lim inf
n→∞

Dj,n

)−1

· Pω

(
lim sup
n→∞

(Cj,n ∩Dj,n)

)
= 0

for P-a.e. ω and for all j ∈ {1, . . . , sN0}. Thus, we have

Pω

(
lim inf
n→∞

1
n
logZn ≤ β( r

s
)− 2ε

∣∣∣ lim inf
n→∞

Dj,n

)
= 0

for P-a.e. ω and for all j ∈ {1, . . . , sN0}, which implies

Pω

(
lim inf
n→∞

1
n
logZn ≤ β( r

s
)− 2ε

∣∣∣∣∣

sN0⋃

j=1

lim inf
n→∞

Dj,n

)
= 0. (1.41)

Using (1.38) and (1.41), we obtain

Pω

(
lim inf
n→∞

1
n
logZn ≤ β( r

s
)− 2ε

∣∣∣ Zn 6→ 0
)
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≤ Pω (Zn 6→ 0)−1 · Pω

({
lim inf
n→∞

1
n
logZn ≤ β( r

s
)− 2ε

}
∩

sN0⋃

j=1

lim inf
n→∞

Dj,n

)

= 0,

which yields that we have

Pω

(
lim inf
n→∞

1
n
logZn > β( r

s
)− 2ε

∣∣∣ Zn 6→ 0
)
= 1 (1.42)

for P-a.e. ω. Since r and s can be chosen in such a way that β( r
s
) is arbitrarily close

to maxx∈[0,1] β(x), (1.42) implies (1.32) as ε → 0 and the proof of Theorem 1.3.6 is

complete. �

Proof of Theorem 1.3.7. If we assume that M ≤ 1 holds true, then we P-a.s. have

log

(
m0h

1−m0(1− h)

)
≤ 0.

Therefore, Theorem 1.3.2 implies (i).

We continue with proving (ii) and assume that we have M > 1. If m0 is deterministic,

i.e. we have P(m0 =M) = 1, then we P-a.s. have

log

(
m0h

1−m0(1− h)

)
> 0

and thus ϕ(h) > 0 for all h ∈ (hLS, 1]. This case is included in (c).

In the following we assume that m0 is not deterministic. We notice that ϕ is finite

and continuously differentiable for h ∈ (hLS, 1] since

∂

∂h
log

(
m0h

1−m0(1− h)

)
=

1

h
− m0

1−m0(1− h)

is a.s. uniformly bounded for h ∈ [hLS + ε, 1] with ε > 0. Thus, we have

∂

∂h
ϕ(h) = E

[
1

h
− m0

1−m0(1− h)

]
. (1.43)

Now assume that there exists h∗ ∈ (hLS, 1] satisfying ϕ(h
∗) = 0, i.e. we have

E

[
log

(
m0

1−m0(1− h∗)

)]
= log

(
1

h∗

)
. (1.44)

By virtue of the strict concavity of the function y 7−→ log y, Jensen’s inequality, and

equation (1.44), we have

log

(
E

[
m0

1−m0(1− h∗)

])
> log

(
1

h∗

)
. (1.45)
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Thus, we obtain that ϕ is strictly decreasing in h = h∗ by (1.43) and (1.45).

Now we assume that ϕ(hLS) = 0 holds true. As above, Jensen’s inequality implies

that (1.45) holds true for hLS instead of h∗. Since the function

h 7−→ m0

1−m0(1− h)

is decreasing in h > 1− 1
m0

, we have

lim
ε↓0

E

[
m0

1−m0(1− hLS + ε)

]
= E

[
m0

1−m0(1− hLS)

]
>

1

hLS

by the monotone convergence theorem. Thus, ϕ is strictly decreasing and therefore

negative in h ∈ (hLS, hLS + ε) for some sufficiently small ε > 0.

Finally we obtain (a) – (c) as a consequence of the continuity of ϕ and the fact that ϕ

is strictly decreasing in every zero in [hLS , 1]. �

1.6 Examples

1. A basic and natural example to illustrate our results is provided by a choice of

the parameters as follows: Let µ(+) and µ(−) be two different non-trivial offspring

distributions. We define

m(+) :=

∞∑

k=0

k µ(+)(k) and m(−) :=

∞∑

k=0

k µ(−)(k)

and suppose that we have

0 < m(−) < m(+) ≤ ∞.

Furthermore, we assume that

P
(
µ0 = µ(+)

)
= 1− P

(
µ0 = µ(−)

)
= q ∈ (0, 1)

holds true. This setting obviously satisfies condition (1.1). For figures 1 and 2 we have

chosen

q =
3

4
, m(+) =

10

9
, m(−) =

2

5
,

q =
1

2
, m(+) = 2, m(−) =

2

3
,

respectively.

32



1.6. EXAMPLES

hLS hGS 1

h

ϕ(h)

I II III

Figure 1.1: There are three regimes: I: LS, II: GS but no LS, III: no GS

2. As announced above, we also provide an example for a specific choice of the pa-

rameters so that we have hGS = hLS < 1. Let the law Pm0 of the mean offspring m0 be

given by
dPm0

dλ
(x) := 1.6 · 1[0.5,1](x) + 0.2 · 1(1,2](x),

where λ denotes the Lebesgue measure. Obviously we have hLS = 0.5 and a simple

computation yields

ϕ(hLS) = 0.2 ·
(
2 · log(2)

)
+ 1.6 ·

(
2 · log(2)− 1.5 · log(3)

)
< 0.

hLS 1 < hGS

h

ϕ(h)

I II

Figure 1.2: There are two regimes: I: LS, II: GS but no LS
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Chapter 2

A central limit theorem for a

random walk on Galton-Watson

trees with random conductances

2.1 Introduction

In this chapter we consider a particular model of a random walk in a random environ-

ment. The environment of this random walk is a random network which consists of

the graph of the genealogical tree of a Galton-Watson branching process and a family

of non-negative i.i.d. weights which are assigned to the edges of the graph. In order to

guarantee that the considered graph is infinite, we assume that in the corresponding

branching process the number of offspring is at least one. For every given realization of

the environment, the considered random walk is the Markov chain on the tree whose

transition probabilities are given by the weight configuration. More precisely, for each

vertex of the underlying graph, the probability for the Markov chain to move to an

adjacent vertex is proportional to the weight of the edge connecting those two vertices.

This Markov chain is reversible and its reversible measure is given by the sum of the

weights of all edges which are incident to some vertex. As a source of intuition, weighted

graphs can be regarded as an electric network in the physical sense by thinking of the

edges of the graph as electric conductors (or wires) with conductances given by the

respective weights. Following this idea, various connections between the concepts of

electric current and voltage and the corresponding properties of random walks on those

networks can be observed. We refer to the textbooks by Doyle and Snell [23] and by

Lyons and Peres [47] for comprehensive introductions to random walks and electric

networks.
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It has already been shown that in the model described above the random walk is

transient for almost every realization of the environment. The transience is a conse-

quence of Proposition 4.10 in [2] if the mean conductance is finite and it is also derived

by Gantert, Müller, Popov, and Vachkovskaia in their paper [30] for a more general

setting in which the mean conductance can be infinite and in which, in addition, the

distribution of the conductances may depend on the degree of the adjacent vertices.

Moreover, the authors of [30] also show that the random walk has a deterministic and

(strictly) positive speed if the mean conductance is finite. Here the speed of a random

walk on a tree is defined as the limit of the graph distance from the root of the tree

at time n divided by n as n → ∞ whenever this limit exists. Thus, we almost surely

have

ν := lim
n→∞

|Xn|
n

> 0.

In [30] the authors also provide a semi-explicit formula for the speed which depends only

on the law of certain effective conductances in the underlying electric network. Also,

they show that the random walk exhibits a slowdown effect if the constant weight con-

figuration is replaced by i.i.d. random conductances which share the same mean. In our

setting the conductances are assumed to be in the bounded interval [κ1, κ2] for κ1 ≤ κ2.

In this case, the positivity of the speed of the random walk can also be derived from

Theorem 1.1 in [57] and the fact that the graph of a supercritical Galton-Watson pro-

cess (conditioned on non-extinction) satisfies the anchored expansion property. The

latter result is for example proved in [16] (Corollary 1.3). For further details we refer

to the considerations in those papers and to the references therein.

A natural question following up the analysis of the speed of the random walk is

whether the random walk satisfies a central limit theorem. In this chapter we provide

the proof of such a central limit theorem for bounded conductances and under an

additional condition. More precisely, we show that, for a suitable variance σ2 > 0, the

random variable
|Xn| − ν · n√

σ2n
(2.1)

converges in distribution to the standard normal distribution as n tends to infinity.

Here the convergence is considered with respect to a measure which averages over

the random environment as well as over the random evolution of the random walk.

This kind of central limit theorem is often referred to as annealed. Also, we derive an

analogous result for the range of the random walk. Here the range of the random walk

is defined as the number of different vertices visited by time n.

There are various models which have been considered in recent years and which

are related to ours. The simple random walk (which corresponds to a constant weight
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configuration) is considered in [44] and [45]. In these papers the authors prove that the

simple random walk is transient and that its speed is almost surely positive, using the

concept of the environment observed by the particle. We refer to Chapter 16 of [47] for

a textbook treatment of the topic. Basically, there are two important generalizations

of the simple random walk, one of which is called λ-biased random walk. In this model

the conductances are assigned to the edges on the tree in a way that the resulting

probability for the random walk to move one step towards the root is proportional

to λ while the probability to move away from the root is proportional to the number

of edges leading away from the root. In this setting there are two competing effects:

A higher number of offspring in the underlying tree pushes the random walk further

away from the root while a higher value of λ keeps it closer to the root. Hence, it

is plausible that this model shows a phase transition. It was proved in [44] that the

random walk is positive recurrent if λ > m, null recurrent if λ = m, and transient

if λ < m. Here m denotes the mean offspring of the corresponding Galton-Watson

process. For the transient regime, i.e. for λ < m, it was shown in [45] that the λ-biased

random walk on a Galton-Watson tree has a deterministic and positive speed which

depends on the bias parameter λ. An explicit formula for the speed of the random

walk is known in the case λ = 1 which coincides with the simple random walk. More

precisely, from Theorem 3.2 of [45] we know that the speed of the simple random walk

is given by νSRW =
∑∞

k=0 pk
k−1
k+1

if (pj)j∈N0 denotes the offspring distribution of the

corresponding Galton-Watson process.

Another model related to ours are random walks on marked Galton-Watson trees

which are for example studied in [1] and [26]. In this model, for every vertex of an

underlying Galton-Watson tree, random weights are assigned to each of this vertex’s

direct descendants. Then the probability for the random walker to move to one of

those descendants is proportional to the respective weight; whereas the probability to

move one step towards the root is proportional to one. For this model the authors

of the cited papers prove results on the speed of the random walk and a central limit

theorem.

A central limit theorem for the simple random walk on Galton-Watson trees was

first proved by Piau [53]. A more general central limit theorem is obtained in [52].

Therein the authors show that if the λ-biased random walk is transient, the random

variable in (2.1) converges in distribution to a standard normal distribution for almost

every Galton-Watson tree. This version of a central limit theorem is called quenched.

The quenched result is stronger as it implies its annealed analogue.

This chapter is organized as follows: In Section 2.2 we provide a formal description

of the considered model starting with some preliminaries on trees. Next, we introduce
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different probability measures which we want to study. Moreover, the concept of the

environment observed by the random walk is introduced. Section 2.3 contains the

results and Section 2.4 the proofs.

2.2 Formal description of the model

In our setting the considered random walk evolves in a random environment which is a

weighted Galton-Watson tree. Thus, the formal description of the model begins with

some notational preliminaries on trees.

2.2.1 Notational preliminaries on trees

Let T denote the set of all rooted trees. A rooted tree T = (T, o) ∈ T is a non-oriented,

connected, and locally finite graph containing no loops. In addition, one of the vertices

of T is defined to be the root and it is denoted by o. For notational convenience, we

often omit to explicitly indicate which vertex of T is its root when it is clear form the

context.

As we mostly want to emphasise the genealogical structure of a tree, we make use

of the so-called Ulam-Harris labelling for trees. Every rooted tree can be interpreted

as a suitable subset of the Ulam-Harris tree

V :=
⋃

n∈N0

Nn,

where N0 := {∅} consists only of the root. Then, a tree T is a subset of V which

satisfies the following three properties:

(i) ∅ ∈ T,

(ii) v = (v1, . . . , vn) ∈ T implies (v1, . . . , vk) ∈ T for each k ∈ {1, . . . , n− 1},

(iii) v = (v1, . . . , vn) ∈ T implies (v1, . . . , vn−1, j) ∈ T for each j ∈ {1, . . . , vn}.

Having in mind the genealogy of a tree, we speak of ancestors and descendants in

the canonical way. Besides, we frequently make use of the expression direct descendant

(child) which is not only a descendant but also a neighbour in the corresponding graph.

Moreover, for two vertices v, w in a tree, we refer to the unique self-avoiding path

connecting v and w simply as the path connecting v and w. Thus, v is a descendant

of w if and only if the path connecting v and o runs through w and in this case

we write w � v. We also write w ≺ v if we have w � v and w 6= v. The set of
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vertices of a tree T which belong to the n-th level or generation is denoted by Tn.

Moreover, for a vertex v ∈ T we write Tv for the subtree of T rooted in the vertex v,

i.e. Tv := {w ∈ T : v � w}.
For each tree T, the set of its edges is denoted by E(T) and the edge connecting

two neighbouring vertices v and w is denoted by (v, w). We also write v ∼ w if v

and w are connected by an edge, i.e., (v, w) ∈ E(T). In order to obtain weighted

trees, we want to assign a non-negative real number ξ(e) to each edge e ∈ E(T),

which is called the weight or conductance of the edge e. Thus, we obtain the weight

configuration ξ = ξ(T) := (ξ(e))e∈E(T) of the tree T. In our setting we only want to

allow weight configurations with bounded weights. To be precise, for fixed positive

constants κ1, κ2 ∈ (0,∞) with κ1 ≤ κ2, the set of weight configurations for the tree T

is denoted by Ξ = Ξ(T) := {(ξ(e))e∈E(T) : ξ(e) ∈ [κ1, κ2] ∀ e ∈ E(T)}, and the space

of weighted and rooted trees is denoted by

Ω := {(T, o, ξ) : (T, o) ∈ T , ξ ∈ Ξ} .

The set Ω is referred to as the space of environments. When there is no risk of confusion,

we write only T for a weighted and rooted tree because it is often clear from the context

which root and which weight configuration we are referring to.

2.2.2 Environment measures

We now introduce different probability measures (and their respective expectations)

on (Ω,F), where F is a suitable σ-algebra on Ω. To be more precise, the space of

environments Ω can be canonically embedded into the set T × [κ1, κ2]
V×V and F can

be chosen as the product of standard σ-algebras on T and [κ1, κ2]
V×V. We will always

refer to probability measures on (Ω,F) as environment measures.

The main ingredient of the random environments which we want to consider is

a Galton-Watson branching process. So let (pj)j∈N0 be the offspring distribution of

a standard Galton-Watson process, i.e., pj is the probability that a vertex belonging

to the corresponding Galton-Watson tree has j direct descendants. Since we only

want to consider infinite trees, we assume that we have p0 = 0, which means that

each vertex has at least one direct descendant and thus the branching process cannot

become extinct. Moreover, the smallest index j such that pj is positive is denoted

by d0 := inf{j ∈ N0 : pj > 0}. By definition we have d0 ∈ [1,∞). Furthermore, we

assume that we have

m :=
∞∑

j=1

j pj ∈ (1,∞].
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This already implies that there exists j ≥ 2 such that pj > 0 and thus the tree has

infinitely many ends. The genealogical tree of a branching process given by these

parameters will yield the underlying (random) graph for the random walk which we

want to study. However, one important feature of a standard Galton-Watson tree is the

fact that its root o is a vertex which is singular in the sense that it has no ancestor. In

other words, in distribution the root has one neighbour less than all the other vertices

of a Galton-Watson tree.

In order to prevent this difficulty, we introduce augmented Galton-Watson trees. An

augmented Galton-Watson tree is a random tree which is defined just like the standard

Galton-Watson tree except that the root has stochastically one more direct descendant

than all other vertices, i.e., the root has j + 1 direct ancestors with probability pj and

all those j + 1 vertices have independent standard Galton-Watson descendant trees.

Another equivalent way to define augmented Galton-Watson trees is to consider two

independent copies of a standard Galton-Watson tree whose roots are connected by

one additional edge.

Besides the mere graph structure, which is denoted by T and given by the branch-

ing process, the random environment also includes a family of i.i.d. random conduc-

tances (ξ(e))e∈E(T). Let µ be the distribution of such a random conductance ξ(e). By

definition, µ is a probability measure which is concentrated on [κ1, κ2].

We are now ready to introduce two environment measures P̂ and P on the set of

environments Ω. We define P̂ as the probability measure on Ω such that under P̂ the

random variable T is the genealogical tree of a standard Galton-Watson process with

the above offspring distribution (pj)j∈N0. In addtion, under P̂ all edges of the tree T are

labeled with the random conductances (ξ(e))e∈E(T) which are i.i.d. with distribution µ

and independent of T. Analogously, we define P as the probability measure on Ω

such that T is an augmented Galton-Watson tree with i.i.d. conductances (ξ(e))e∈E(T).

Accordingly, we use Ê and E for the respective expectation operators.

2.2.3 The quenched and the annealed law

For each ω = (T, o, ξ) ∈ Ω, we consider the discrete-time random walk (Xn)n∈N0 on

the electric network defined by ω. This electric network is the graph given by T with

the conductances given by ξ. More precisely, (Xn)n∈N0 is the Markov chain on T with

transition probabilities (qω(u, v))u,v∈T defined by

qω(u, v) :=





ξ(u,v)
π(u)

if u ∼ v

0 otherwise
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for vertices u, v ∈ T. Here π denotes the associated reversible measure which is defined

by

π(u) := πω(u) :=
∑

v:v∼u

ξ(u, v) (2.2)

for u ∈ T. For each fixed realization of the environment ω = (T, o, ξ), the distribution

of the random walk (Xn)n∈N0 starting from o is denoted by Pω, i.e., Pω is the proba-

bility measure on the space of (infinite) trajectories in the weighted and rooted tree T

satisfying

Pω(Xn+1 = u|Xn = v) = qω(u, v)

and

Pω(X0 = o) = 1.

In some situations it is also useful to assume that the random walk starts from a

vertex v ∈ T which is not the root of the tree. In those cases the associated distribution

is denoted by P v
ω . The probability measures Pω and P v

ω are called quenched probabilities

in the literature and their expectations are denoted by Eω and Ev
ω, respectively.

In addition to the quenched measure we introduce the so-called annealed probability

which is obtained by averaging the quenched measure w.r.t. a probability measure on

the space of environments. For this reason, annealed measures are also called averaged

measures which is perhaps a more suggestive name. Formally, for every ω ∈ Ω, Pω can

be regarded as a probability measure on the space of trajectories (VN0 ,G), where G is

the σ-algebra which is generated by the cylinder sets of VN0. Moreover, for every A ∈ G,
the function Pω(A) : (Ω,F) → [0, 1] is measurable as a function of ω. Therefore, the

probability measure P := P⊗ Pω on (Ω× VN0,F ⊗ G) is well-defined by

P(F ×G) :=

∫

F

Pω(G)P(dω) (2.3)

for all F ∈ F and G ∈ G. Mostly, the events in which we are interested only concern

the trajectory of the random walk and not the specific environment chosen (i.e. events

of the form Ω×G). Thus, with a slight abuse of notation, P is also used to denote its

marginal on (VN0,G), which means that for G ∈ G we write

P(G) =

∫
Pω(G)P(dω).

In general, the above construction of P works for each environment measure on (Ω,F).

In particular, the averaged measure w.r.t. the environment measure P̂ is denoted

by P̂ := P̂⊗ Pω.

41



CHAPTER 2. A CLT FOR A RANDOM WALK ON GALTON-WATSON TREES

2.2.4 The environment observed by the random walk

The crucial advantage of considering augmented Galton-Watson trees instead of stan-

dard Galton-Watson trees is that they give rise to a reversible process on the space

of weighted and rooted trees (cf. Chapter 3 in [30]). This process is frequently called

the environment observed by the random walk in the literature and it is the Markov

process on Ω with transition operator K defined by

Kf(ω) = Kf(T, o, ξ) :=
∑

v:v∼o

qω(o, v) · f(T, v, ξ)

=
1

π(o)

∑

v:v∼o

ξ(o, v) · f(T, v, ξ)

for a function f : Ω → R. Now let P̃ denote the probability measure on Ω defined by

its Radon-Nikodym derivative

dP̃

dP
(T, o, ξ) :=

π(o)

E[ξ] · |T1|

and, as usual, let Ẽ denote its expectation. It is not difficult to show that the transition

operator K is reversible w.r.t. P̃, i.e., we have

Ẽ
[
f(T, o, ξ) ·Kg(T, o, ξ)

]
= Ẽ

[
Kf(T, o, ξ) · g(T, o, ξ)

]
(2.4)

for two P̃-square-integrale functions f, g on the space of weighted and rooted trees. For

a complete proof of equation (2.4) we refer to Lemma 3.1 in [30].

Analogously to the definition in (2.3), we also consider the measure Pω averaged

over all environments w.r.t. P̃. This yields the probability measure P̃ which is defined

by

P̃ := P̃⊗ Pω.

2.3 Main results

The main results of this chapter are two central limit theorems with respect to the

averaged measure P, one of which involves the distance to the root and one of which

involves the range of the random walk (Xn)n∈N0. As usual, for a vertex v in a rooted

tree, we write |v| for the the graph distance between v and the root, which is the same

as the length of the path connecting v and o. Thus, the distance between the root and

the random walk at time n is denoted by |Xn|. Moreover, let r(n) denote the range

of the random walk at time n, i.e., r(n) := #{X1, . . . , Xn}. From Theorem 4.1 and
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Theorem 4.2 in [30] we know that the random walk (Xn)n∈N0 is a.s. transient and that

there is even a positive speed ν > 0 such that we have

|Xn|
n

Pω-a.s.−−−−→
n→∞

ν (2.5)

for P-a.e. environment ω. Using the very same argument as in [30], it is possi-

ble to obtain an analogous result for the range of the random walk. Besides, we

have r(n) ≥ |Xn|, and hence there is a positive ν̄ ≥ ν such that we have

r(n)

n

Pω-a.s.−−−−→
n→∞

ν̄ (2.6)

for P-a.e. environment ω.

Remark 2.3.1. As a consequence of the transience of the random walk, the quenched

escape probability is P-a.s. and P̂-a.s. positive. Thus, we have

C = C(ω) := π(o) · Pω

(
Xn 6= o ∀n ∈ N

)
= π(o) · Pω

(
inf{n ∈ N : Xn = o} = ∞

)
> 0.

(2.7)

for P-a.e. and P̂-a.e. ω. The random variable C is often called the conductance between o

and infinity within the electric network given by ω.

Theorem 2.3.2. We assume that we have d0 ≥ κ2

κ1
. There are constants σ2, σ̄2 ∈ (0,∞)

such that we have

(i)
|Xn| − ν · n√

σ2n

d−−−→
n→∞

N (0, 1) w.r.t. the averaged measure P.

(ii)
r(n)− ν̄ · n√

σ̄2n

d−−−→
n→∞

N (0, 1) w.r.t. the averaged measure P.

Remark 2.3.3. (i) It is possible to describe the constants σ2 and σ̄2 more explicitly

in terms of the averaged variance of certain random variables. More precisely,

using the notation introduced in (2.8), (2.9), (2.11), and (2.10), we have

σ2 =
E
[
(V1 − E[V1])

2
]

E[τ2 − τ1]
and σ̄2 =

E
[
(V̄1 − E[V̄1])

2
]

E[σ2 − σ1]
.

(ii) It is intuitively clear that Theorem 2.3.2 also holds w.r.t. the measures P̂ and P̃

since trees generated according to the three measures only differ in the neigh-

bourhood of the root and since the random walk is transient w.r.t. all of those

measures. We will see that this statement holds rigorously true since the first sum-

mand on the right hand side of (2.28) does not depend on whether we choose P, P̂

or P̃ as the environment measure (cf. the proof of Theorem 2.3.2 (i)).

43



CHAPTER 2. A CLT FOR A RANDOM WALK ON GALTON-WATSON TREES

(iii) The assumption d0 ≥ κ2

κ1
implies that the random graph given by ω contains a

regular tree with a degree which is at least κ2

κ1
+ 1. For higher values of d0 more

fluctuation for the random conductances is allowed. However, we believe that

the presented results do not need this assumption, what may motivate future

analysis of the model.

2.4 Proofs

The proof of the above theorem strongly relies on the fact that the process possesses a

certain regeneration structure. In order to specify this, we need some further notation:

As usual, we define inf ∅ := ∞. For a vertex v of a tree, let ζ(v) be the vertex hitting

time of v defined by

ζ(v) := inf{k ≥ 1 : Xk = v}.
Analogously, we define the level hitting time of level n ∈ N by

η(n) := inf{k ≥ 1 : |Xk| = n}.

Moreover, we inductively define the sequence of vertex regeneration times (σn)n∈N by

σ1 := inf{k ≥ 1 : Xi 6= Xk ∀ i < k and Xj 6= Xk−1 ∀ j ≥ k},
σn+1 := inf{k ≥ σn : Xi 6= Xk ∀ i < k and Xj 6= Xk−1 ∀ j ≥ k} for n ≥ 2, (2.8)

and, analogously, the sequence of level regeneration times (τn)n∈N by

τ1 := inf{k ≥ 1 : |Xi| < |Xk| ∀ i < k and |Xj| ≥ |Xk| ∀ j ≥ k},
τn+1 := inf{k ≥ τn : |Xi| < |Xk| ∀ i < k and |Xj| ≥ |Xk| ∀ j ≥ k} for n ≥ 2. (2.9)

We immediately observe that we have σ1 ≤ τ1 and σn+1 − σn ≤ τn+1 − τn for all n ∈ N

since at each level regeneration time the process also exhibits a vertex regeneration.

Whenever the (n+1)-th regeneration time τn+1 is finite, the level increment between

the regeneration times τn and τn+1 is denoted by

Un := |Xτn+1 | − |Xτn | (2.10)

and the centred level increment by

Vn := Un − ν · (τn+1 − τn). (2.11)

The centring ν · (τn+1 − τn) is suitable for the level increments because, asymptoti-

cally, with each time step the distance from the root of the random walk increases
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by ν; cf. (2.5). Analogously, we define the vertex increments and the centred vertex

increments by

Ūn := r(σn+1)− r(σn),

V̄n := Ūn − ν̄ · (σn+1 − σn)

whenever σn+1 is finite; cf. (2.6).

Proposition 2.4.1. (i) For all n ∈ N the random variables σn and τn are Pω-a.s.

finite for P-a.e. ω.

(ii) The sequences (Un)n∈N, (Ūn)n∈N, (σn+1 − σn)n∈N, and (τn+1 − τn)n∈N are i.i.d.

sequences w.r.t. the averaged measure P.

Proof of Proposition 2.4.1. The fact that there are a.s. infinitely many level regenera-

tion points is proved as part of the proof of Theorem 4.1 in [30]. In fact, the authors

of [30] prove the ergodicity of a certain dynamical system using techniques presented

in Chapter 16 of [47]. Since every level regeneration time is also a vertex regeneration

time, we consider part (i) of Proposition 2.4.1 as proved.

Part (ii) is intuitively clear since the differences between two consecutive regen-

eration times depend only on mutually disjoint subgraphs of the underlying random

tree. This fact yields that the sequences (σn+1 − σn)n∈N and (τn+1 − τn)n∈N are i.i.d.

sequences. Obviously, this implies that the same holds true for the increments (Un)n∈N

and (Ūn)n∈N. A rigorous proof, which is rather technical, is provided after Proposi-

tion 3.4 in [46]. �

Remark 2.4.2. (i) We note that we have

Un = |Xτn+1| − |Xτn| ≤ τn+1 − τn,

Ūn = r(σn+1)− r(σn) ≤ σn+1 − σn

for all n ∈ N and thus integrability of the right hand side implies the same for Un

and Ūn, respectively.

(ii) We observe that the distribution of σ1 is different from that of σn+1 − σn for n ∈ N

and that the same holds true for the distributions of τ1 and τn+1 − τn for n ∈ N.

More precisely, we have P(τ2 − τ1 ∈ · ) = P(τ1 ∈ · |ζ(o) = ∞).

In the following proposition we consider the rate of decay of the tail probabilities

of the random variables σ2 − σ1 and τ2 − τ1.
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Proposition 2.4.3. There are constants δ, δ̄ > 0 such that the following assertions

hold true.

(i) We have

P(τ2 − τ1 ≥ n) ≤ exp(−δ · n1/3) (2.12)

for all n ∈ N. In particular, the random variables τ2 − τ1, U1, and V1 possess all

moments w.r.t. P.

(ii) We have

P(σ2 − σ1 ≥ n) ≤ exp(−δ̄ · n1/3) (2.13)

for all n ∈ N. In particular, the random variables σ2 − σ1, Ū1, and V̄1 possess all

moments w.r.t. P.

Remark 2.4.4. Since each level regeneration is also a vertex regeneration, part (ii) of

Proposition 2.4.3 is an immediate consequence of part (i). Thus, it suffices to prove

part (i).

Proof of part (i) of Proposition 2.4.3. For this proof we adapt techniques already used

by Piau in his paper [53]. Throughout the proof, for a non-negative sequence (an)n∈N,

we say that an decays exponentially fast for n→ ∞ if there is a positive constant δ > 0

such that we have an ≤ exp(−δ · n) for all n ∈ N.

The crucial idea of this proof is to decompose the trajectory of the process (|Xn|)n∈N0

for all times n ≤ τ1 in a suitable manner. More precisely, we decompose (|Xn|)0≤n≤τ1

into its partial trajectories between a random number of (unsuccessful) trials to flee a

newly reached level. For this purpose, we need to introduce some further notation. We

start with defining m0 := 0 and s0 := 1. Further, if |Xn| > 0 for all n ≥ 1 (i.e. τ1 = 1),

we define α := 0. Otherwise, we write

r1 := inf{k ≥ 1 : |Xk| = 0},
m1 := sup{|Xk| : k ≤ r1},
s1 := inf{k ≥ 1 : |Xk| = 1 +m1}.

If |Xn| > m1 for all n ≥ s1 (i.e. τ1 = s1), we define α := 1. Analogously to the above

definition as long as rn, mn, and sn are well-defined with rn <∞, we introduce

rn+1 := inf{k ≥ sn : |Xk| = |Xsn| − 1 =
∑n

i=1mi},
mn+1 := sup{|Xk| − |Xsn|+ 1 : k ≤ rn},
sn+1 := inf{k ≥ 1 : |Xk| = |Xsn|+mn+1}.
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We refer to Figure 2.1 which illustrates the above definitions and helps to get a clear

picture of the random variables (rn)n∈N, (sn)n∈N, (mn)n∈N, and the decomposition of

the process.

|Xn|

nr1

m1

s1 r2

m1 +m2

s2 r3

m1 +m2 +m3

s2

Figure 2.1: The decomposition of a typical trajectory of the process (|Xn|)n∈N0 .

We observe that if rn <∞ and rn+1 = ∞, we have τ1 = sn and α = n, which means

that α denotes the index of the last unsuccessful trial to escape a newly reached level,

i.e.

α = sup{n ≥ 0 : rn <∞} = inf{n ≥ 0 : rn+1 = ∞}.

Moreover, we have

{τ1 = sn} = {α = n} = {rn <∞, rn+1 = ∞}

and

|Xτ1 | · 1{τ1=sn} = (1 +m1 + . . .+mn) · 1{τ1=sn}.

The partial trajectories (|Xn|)sk≤n≤sk+1
are not independent. However, the excursions

(|Xn| − |Xsk |)sk≤n≤rk+1

only depend on mutually disjoint subgraphs of the underlying tree ω and therefore,

they are i.i.d. for k ∈ {0, . . . , α− 1} w.r.t. P. In particular, this also holds true for the

random variables (mn)1≤n≤α.

After having introduced the above notation, we are ready to prove the proposition.

We split up the proof into a set of lemmata which finally yield (2.12).

The following lemma is a general lemma on escape probabilities of random walks

on electric networks given by graphs (cf. (2.7)).
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Lemma 2.4.5. Let (G, ξ(v, w)v,∈G)) be an infinite weighted graph with finite degree.

Further, under Pv
G
, let (Xn)n∈N0 be the reversible random walk started in v on the

electric network given by (G, ξ(v, w)v,∈G)), whose canonical reversible measure is given

by πG(v) :=
∑

w∈G:w∼v ξ(v, w). For y ∈ G we consider the stopping times

ζ(y) := inf{n ≥ 0 : Xn = y} and ζ+(y) := inf{n ≥ 1 : Xn = y}

and, moreover, the conductance from y to infinity which is defined by

CG(y) := πG(y) · Py
G
(ζ+(y) = ∞).

Let G∗ denote the graph G plus one additional vertex x which is exclusively connected

to y with edge weight ξ(x, y). Then we have

P
y
G∗(ζ(x) <∞) =

ξ(x, y)

ξ(x, y) + CG(y)
. (2.14)

Proof of Lemma 2.4.5. Due to the Markov property we have

P
y
G∗(ζ(x) <∞)

= P
y
G∗(X1 = x) +

∑

z∼y,z 6=x

P
y
G∗(X1 = z) · Pz

G∗(ζ(x) <∞)

= P
y
G∗(X1 = x) +

∑

z∼y,z 6=x

P
y
G∗(X1 = z) · Pz

G∗(ζ(y) <∞) · Py
G∗(ζ(x) <∞)

=
ξ(x, y)

πG∗(y)
+

∑

z∼y,z 6=x

ξ(y, z)

πG∗(y)
· Pz

G
(ζ(y) <∞) · Py

G∗(ζ(x) <∞)

and from this we get

πG∗(y) · Py
G∗(ζ(x) <∞)

= ξ(x, y) +
∑

z∼y,z 6=x

ξ(y, z) · Pz
G
(ζ(y) <∞) · Py

G∗(ζ(x) <∞),

which is equivalent to

P
y
G∗(ζ(x) <∞) =

ξ(x, y)

πG∗(y)−
∑

z∼y,z 6=x

ξ(y, z) · Pz
G
(ζ(y) <∞)

. (2.15)

Furthermore, we have

∑

z∼y,z 6=x

ξ(y, z) · Pz
G
(ζ(y) <∞)

= πG(y) · Py
G
(ζ+(y) <∞)
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= πG(y) ·
[
1− P

y
G
(ζ+(y) = ∞)

]

= πG(y)− CG(y)

and finally, from this and (2.15) we conclude that we have

P
y
G∗(ζ(x) <∞) =

ξ(x, y)

πG∗ − πG + CG(y)
=

ξ(x, y)

ξ(x, y) + CG(y)
.

�

We make use of a rather technical lemma about weighted Galton-Watson trees

which goes back to Grimmett and Kesten.

Lemma 2.4.6. Let A be a (measurable) subset of all rooted and weighted trees Ω and

let x be a vertex of a the n-th generation of a tree T. For ε1 > 0 we consider the

set A(ε1, x) of all vertices y with o � y ≺ x which satisfy the property that the number

of direct descendants z of y such that x 6∈ Tz and Tz ∈ A is greater or equal to ε1|Z(y)|.
This set is precisely defined by

A(ε1, x) :=
{
y : o � y ≺ x, |{z ∈ Z(y) : x 6∈ Tz,Tz ∈ A}| ≥ ε1|Z(y)|

}
.

Then there are positive constants ε1, ε2, ε3 > 0 such that the sequence

P̂(∃ x ∈ Tn : |A(ε1, x)| ≤ ε3n) (2.16)

decays exponentially fast as n tends to infinity for all (measurable) A ⊆ Ω satisfy-

ing P̂(A) ≥ 1−ε2. Here we can choose any ε2 > 0 such that f ′(ε1−ε1
2 ) < 1 holds, where f

denotes the probability generating function of the offspring distribution corresponding

to P̂. Moreover, the above statement holds also true for augmented Galton-Waltson

tree, i.e. w.r.t. the measure P.

Proof of Lemma 2.4.6. The proof of a result which is similar to the above statement is

part of an unpublished work of Grimmett and Kesten. We refer to Lemma 1 in [34] (cf.

Lemma 1 in [53]). For the sake of completeness, we also provide a proof of Lemma 2.4.6

here, especially because our result differs from that of [34] to some extent.

For the proof we make use of the Ulam-Harris labelling for trees as introduced in

section 2.2.1. In order to estimate the probability in (2.16), we first consider the situa-

tion in which there is a vertex x = (x1, . . . , xn) in T such that the vertices (x1, . . . , xi)

on the path connecting o and x have l1, . . . , ln direct descendants, respectively. For a

vertex v ∈ T we write Z(v) := {w ∈ T : |w| = |v|+ 1, v � w} for the set of its direct
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o

x

yi

yi−1

yi+1 z4z3z2z1

Tz1 Tz2 Tz3 Tz4

Figure 2.2: The figure illustrates the subtrees Tz1 , . . . ,Tz4 which are rooted in the direct

descendants z1, z2, z3, z4 of the i-th vertex on the path connecting o and x = (x1, . . . , xn).

descendants, and we observe that for all k1, . . . , kn ∈ N, l1 ≥ k1, . . . , ln ≥ kn, and θ > 0

we have

P̂
(
x ∈ Tn, |Z(x1, . . . , xi)| = li+1 ∀ i ∈ {0, . . . , n− 1}, |A(ε1, x)| ≤ ε3n

)

= pl1 · . . . · pln · P̂
(
|A(ε1, x)| ≤ ε3n

∣∣∣ |Z(x1, . . . , xi)| = li+1 ∀ i ∈ {0, . . . , n− 1}
)

≤ pl1 · . . . · pln · eθε3n · Ê
[
e−θ|A(ε1,x)|

∣∣∣ |Z(x1, . . . , xi)| = li+1 ∀ i ∈ {0, . . . , n− 1}
]

(2.17)

as a consequence of Markov’s inequality. Moreover, for a vertex (x1, . . . , xj) on the

path connecting o and x, the probability that this vertex is not an element of the set

of vertices A(ε1, x) conditioned on {|Z(x1, . . . , xj)| = l} is bounded from above by

ρ(1−ε1)(l−1),

where we write ρ := 1 − P(A). Furthermore, the events {(x1, . . . , xi) ∈ A(ε1, x)} are

independent for i ∈ {0, . . . , n − 1} (conditioned on the event that x is an element

of Tn). Thus, we obtain

Ê
[
e−θ|A(ε1,x)|

∣∣∣ |Z(x1, . . . , xi)| = li+1 ∀ i ∈ {0, . . . , n− 1}
]
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=
n−1∏

i=0

Ê
[
e−θ·1{(x1,...,xi)∈A(ε1,x)}

∣∣∣Z(x1, . . . , xi) = li+1, x ∈ Tn

]

=

n−1∏

i=0

[
P̂
(
(x1, . . . , xi) 6∈ A(ε1, x)

∣∣∣ |Z(x1, . . . , xi)| = li+1, x ∈ Tn

)

+ e−θ · P̂
(
(x1, . . . , xi) ∈ A(ε1, x)

∣∣∣ |Z(x1, . . . , xi)| = li+1, x ∈ Tn

)]

≤
n−1∏

i=0

[
ρ(1−ε1)(li+1−1) + e−θ

(
1− ρ(1−ε1)(li+1−1)

)]

≤
n−1∏

i=0

[
ε
(1−ε1)(li+1−1)
2 + e−θ

(
1− ε

(1−ε1)(li+1−1)
2

)]
. (2.18)

Summing the expression in (2.17) over all x1, . . . , xn ∈ N and l1 ≥ x1, . . . , ln ≥ xn

together with (2.18) yields

P̂(∃ x ∈ Tn : |A(ε1, x)| ≤ ε3n)

≤
∑

x1≥1,...,xn≥1,

l1≥x1,...,ln≥xn

P̂
(
x ∈ Tn, |Z(x1, . . . , xi)| = li+1 ∀ i ∈ {0, . . . , n− 1}, |A(ε1, x)| ≤ ε3n

)

≤ eθε3n ·
∑

x1≥1,...,xn≥1,

l1≥x1,...,ln≥xn

pl1 · . . . · pln ·
n−1∏

i=0

[
ε
(1−ε1)(li+1−1)
2 + e−θ

(
1− ε

(1−ε1)(li+1−1)
2

)]
. (2.19)

Moreover, we have

∞∑

k=1

∞∑

l=k

pl

[
ε
(1−ε1)(l−1)
2 + e−θ

(
1− ε

(1−ε1)(l−1)
2

)]

=
∞∑

l=1

lpl

[
ε
(1−ε1)(l−1)
2 (1− e−θ) + e−θ

]

= (1− e−θ)f ′(ε1−ε1
2 ) + e−θm. (2.20)

We recall that f denotes the probability generating function of the offspring distri-

bution (pj)j∈N0 and m the associated mean offspring. If we choose θ > 0 so large

that

(1− e−θ)f ′(ε1−ε1
2 ) + e−θm ≤ f ′(ε1−ε1

2 ) + e−θm ≤ 1− δ (2.21)

holds for some δ > 0, we can conclude from (2.19), (2.20), and (2.21) that we have

P̂(∃ x ∈ Tn : |A(ε1, x)| ≤ ε3n)

≤ eθε3n · (1− δ)n

=
[
eθε3 · (1− δ)

]n
.
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The proof is complete for the measure P̂ if we choose ε3 > 0 sufficiently small. From

this we can derive the same statement also for the augmented measure P since the two

measures only differ in the number of vertices adjacent to the root. �

Lemma 2.4.7. The probabilities P(α ≥ n) and P(m1 ≥ n) decay exponentially fast

for n→ ∞.

Proof of Lemma 2.4.7. First, we consider the probability P(α ≥ n). Let ω = (T, o, ξ)

be an arbitrary rooted and weighted tree and let v, w ∈ T be a pair of vertices of T

such that w is a direct descendant of v, i.e., we have |w| = |v|+1 and v � w. Moreover,

we write

Bn(v, w) := {rn <∞, Xsn−1 = v, Xsn = w}
for n ∈ N. Bn(v, w) denotes the event that (after n unsuccessful trials) the (n+ 1)-th

trial to escape a newly reached level starts at the pair of vertices (v, w). Then, we have

Pω(α ≥ n + 1|α ≥ n, Bn(v, w))

= Pω(rn+1 <∞|rn <∞, Xsi = w)

= Pw
ω (ζ(v) <∞).

From Lemma 2.4.5 we can conclude that we have

Pw
ω (ζ(v) <∞) =

ξ(v, w)

ξ(v, w) + C(Tw)
.

We recall the C(Tw) denotes the effective conductance within the graph Tw from w

to infinity, which is the escape probability of the random walk in the electric network

given by the subtree of T rooted in w. Under the averaged measure P the tree TXsn

is independent of the remaining part of the entire tree ω since at time sn the random

walk (Xn)n∈N0 reaches a level which has not been visited before. Thus, under P the

tree TXsn has the same distribution as a rooted and weighted tree under P̂. This

implies

P(α ≥ n + 1|α ≥ n)

=
∑

v,w∈V

P(Bn(v, w)) · P(α ≥ n+ 1|α ≥ n, Bn(v, w))

=
∑

v,w∈V

P(Bn(v, w)) ·
∫

ξ(v, w)

ξ(v, w) + C(Tw)
P(dω)

=
∑

v,w∈V

P(Bn(v, w)) · Ê
[

ξ

ξ + C

]

≤ Ê

[
κ2

κ2 + C

]
=: δ ∈ (0, 1).
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Here the expectation in the last line is in (0, 1) since C is P̂-a.s. positive (cf. Re-

mark 2.3.1). From this we obtain

P(α ≥ n+ 1) = P(α ≥ n + 1, α ≥ n)

= P(α ≥ n + 1 |α ≥ n) · P(α ≥ n)

≤ δ ·P(α ≥ n)

and an iteration of this yields

P(α ≤ n) ≤ δn.

Next, we consider the sequence (P(m1 ≥ n))n∈N0 . Let us consider the subset A of Ω

defined by

A = Aε :=

{
ω = (T, o, ξ) ∈ Ω :

C(ω)
κ2 + C(ω) ≥ ε

}
.

By virtue of Lemma 2.4.5 we have

P y
ω(ζ(x) = ∞) ≥ C(Ty)

κ2 + C(Ty)

for every pair of vertices x, y ∈ T such that y is a direct descendant of x. Under the

measure P the distribution of C(Ty) coincides with the distribution of C under P̂. As

above, we know that the effective conductance C is a.s. positive from the transience of

the process and hence we have

P(Aε) −−→
εց0

1.

Now we want to apply Lemma 2.4.6. For this purpose, we fix ε > 0 such that we have

P(A) = P(Aε) ≥ 1− ε2

and then Lemma 2.4.6 implies that the sequence

P(∃ x ∈ Tn : |A(ε1, x)| ≤ ε3n)

decays exponentially fast for n → ∞ and with suitable constants ε1, ε2, ε3 > 0. By

virtue of the Borel-Cantelli lemma, this implies that for large generations n ∈ N

we P-a.s. have |A(ε1, x)| > ε3n for all vertices x ∈ Tn. In other words, for large n ∈ N

at least a fraction ε3 of the vertices y0, . . . , yn−1 on every path connecting o and level n

has at least ε1|Z(yi)| direct descendants z 6= yi+1 such that we have

C(Tz)

κ2 + C(Tz)
≥ ε.
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This implies that for each yi ∈ A(ε1, x) we have

P yi
ω (ζ(yi−1) = ∞)

≥ P yi
ω

(
X1 6= yi+1,T

X1 ∈ A,Xn 6= yi ∀n ≥ 1
)

= P yi
ω

(
X1 6= yi+1,T

X1 ∈ A
)
· P yi

ω

(
Xn 6= yi ∀n ≥ 1

∣∣X1 6= yi+1,T
X1 ∈ A

)

≥ ε1κ1
κ2 + (1− ε1)κ2 + ε1κ1

· ε =: γ ∈ (0, 1).

Hence, for large n ∈ N and for all x ∈ Tn we P-a.s. have

P x
ω (ζ(o) <∞) ≤ (1− γ)ε3n.

Form this we conclude that for large n ∈ N and for P-a.e. ω we have

Pω(m1 ≥ n) ≤ max
x∈Tn

P x
ω (ζ(o) <∞) ≤ (1− γ)ε3n.

This completes the proof of Lemma 2.4.7. �

Lemma 2.4.8. The probability P(τ1 ≥ η(n)) decays exponentially fast for n→ ∞.

Proof of Lemma 2.4.8. In order to estimate the probability of the event {τ1 ≥ η(n)},
we observe that for all c > 0 we have

{τ1 ≥ η(n)} ⊆ {α ≥ cn} ∪
{

α∑

i=1

mi ≥ n, α ≤ cn

}
.

The probability P(α ≥ cn) decays exponentially fast as n tends to infinity according

to Lemma 2.4.7. Thus, it remains to prove that the same holds true for the probability

of the event {∑α
i=1mi ≥ n, α ≤ cn}. To this end, we introduce a sequence of i.i.d.

random variables (m̃i)i∈N such that the distribution of m̃1 (w.r.t. P) coincides with the

distribution of m1 conditioned on m1 <∞ (or equivalently α ≥ 1). Then we have

P

(
α∑

i=1

mi ≥ n, α ≤ cn

)
(2.22)

≤ P




⌊cn⌋∑

i=1

m̃i ≥ n




= P


 1

⌊cn⌋

⌊cn⌋∑

i=1

m̃i ≥
n

⌊cn⌋




and a standard large deviation argument yields that the probability in (2.22) decays

exponentially fast for all c > 0 such that we have

1

c
> E[m̃1] = E[m1 |m1 <∞].
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We refer to Chapter 2 in [21] for a comprehensive textbook treatment of large deviation

techniques. Finally, it remains to note that we have E[m̃1] ∈ (1,∞) and that even

the moment-generating function of the random variable m̃1 is finite for all arguments

sufficiently close to 0 due to Lemma 2.4.7. �

Lemma 2.4.9. The probability P(η(n) ≥ n3) decays exponentially fast for n → ∞.

Moreover, if d0 >
κ2

κ1
holds true, there is constant ρ1 > 0 such that even the probabil-

ity P(η(n) ≥ ρ1 · n) decays exponentially fast for n→ ∞.

Proof of Lemma 2.4.9. Since we have d0 ≥ κ2

κ1
, we are able to couple the distance of

the random walk on the tree with a symmetric random walk (ψ(n))n≥0 on the non-

negative integers started at the origin with a reflecting barrier at the origin. This

coupling can be constructed in such a way that we have ψ(n) ≤ |Xn| for all n ∈ N0

(regardless of the environment). Hence, the symmetric random walk (ψ(n))n∈N0 hits

the integer n after time η(n). Thus, if η∗(n) denotes the hitting time of the integer n

of the process (ψ(n))n∈N0, we have

P
(
η∗(n) ≥ n3

)
≥ P

(
η(n) ≥ n3

)
. (2.23)

This implies that the right hand side of (2.23) decays exponentially fast for n→ ∞ as

the same holds true for the left hand side, which is e.g. proved in [53] (Lemma 9).

If we have d0 >
κ2

κ1
, the argument presented above can be altered in such a way

that the process involved in the coupling can be chosen as an asymmetric random walk

with a positive drift h to the right. Then a large deviation argument yields that, for

all ρ1 > h−1, the probability P
(
η(n) ≥ ρ1 · n

)
decays exponentially fast for n → ∞;

cf. Chapter 2 in [21] for the involved large deviation techniques.

�

With Lemma 2.4.8 and Lemma 2.4.9 at hand, we turn back to the proof of part (ii)

of Proposition 2.4.3. We have

P
(
τ1 ≥ ρ1 · n3

)
≤ P

(
τ1 ≥ η(n)

)
+ P

(
η(n) ≥ ρ1 · n3

)
(2.24)

for all n ∈ N0 and from Lemma 2.4.8 and Lemma 2.4.9 we know that both of the

summands on the right side of (2.24) decay exponentially fast. This already implies

that the same holds true for P(τ1 ≥ n3).

Now that we can control the tail probabilities of the random variable τ1, we have to

turn to the problem that the distribution of the first level regeneration time τ1 differs

from that of τn+1−τn for n ∈ N. To fix this problem, we introduce a bi-infite process on

trees. Let ω = (T, o, ξ) be a weighted and rooted tree. A bi-infinite trajectory
↔
x in T
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is a family (xn)n∈Z of vertices of T indexed by the integers. Let P ∗
ω denote the law of

the integer-indexed process (Xn)n∈Z such that (Xn)n∈N and (X−n)n∈N are independent

and have distribution Pω. As a consequence of the transience of the random walk, the

trajectories of (Xn)n∈N and (X−n)n∈N a.s. converge to boundary points of T. Thus,

we can restrict ourselves to those bi-infinite trajectories which are convergent (in both

directions). Let
↔

T denote the set of all bi-infinite and convergent trajectories in T

which start at the root of the tree, i.e. x0 = o. The set of all bi-infinite trajectories in

trees is defined by

TrajecInTrees := {((T, o, ξ),↔x) : (T, o, ξ) ∈ Ω,
↔
x ∈

↔

T}.

Now we are able to define the usual shift operator S on TrajecInTrees by

S((T, o, ξ),
↔
x) := ((T, x1, ξ), S

↔
x)

and

(S
↔
x)n := xn+1

for all n ∈ Z. We note here that with slight abuse of notation S
↔
x denotes the shifted

path. As usual, we write Sn for the n-fold shift, i.e. the n-th iteration of S. Analogously

to the definition in (2.3), we define the probability measure P̃
∗ on TrajecInTrees by

P̃
∗ := P̃⊗ P ∗

ω .

The crucial observation is that due to the reversibility property given by equation (2.4),

the shift operator S is measure preserving w.r.t. P̃∗. For further details we refer to

the proof of Theorem 4.1 in [30]. In fact, therein it is even proved that the sys-

tem (TrajecInTrees, P̃∗, S) is ergodic.

We continue with defining the event

R := {Xm 6= X0, Xn 6= X−1 ∀m < 0, n ≥ 0},

which is the event that the bi-infinite trajectories (Xn)n∈Z passes the edge (X−1, X0)

only once between time −1 and time 0. Taking into account that every level regen-

eration is also a vertex regeneration, we observe that the distribution of the random

variable τ1 under the measure P̃
∗ conditioned on R is the same as the distribution

of τ2 − τ1 under the measure P̃
∗ (cf. section 4.1 in [53] for further details). Further,

we observe that the distribution of τ2 − τ1 is not affected either by the change of mea-

sure from P to P̃ or by the change to considering bi-infinite trajectories. Thus, we

have P̃
∗(τ2 − τ1 ∈ · ) = P(τ2 − τ1 ∈ · ) and we can conclude that the tail probabilities
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of τ2− τ1 w.r.t. P decay exponentially fast if the same holds true for τ1 w.r.t. P̃
∗( · |R).

Moreover, we have

P̃
∗
(
τ1 ≥ n3

)
= P̃

(
τ1 ≥ n3

)
=

∫
Pω

(
τ1 ≥ n3)

π(o)

E[ξ]|T1|
P(dω

)
≤ κ2

E[ξ]
· P
(
τ1 ≥ n3

)
.

From this and (2.24) we derive that P̃∗
(
τ1 ≥ n3

)
decays exponentially fast. Finally, the

below lemma implies that P̃∗
(
τ1 ≥ n3

)
decays exponentially fast if and only if the same

holds true for P̃∗
(
τ1 ≥ n3 |R

)
. This proves that P

(
τ2 − τ1 ≥ n3

)
decays exponentially

fast and hence the proof of Proposition 2.4.3 is complete.

Lemma 2.4.10. Let be f : N → [0,∞) be a non-negative function and let the func-

tion g : N → [0,∞) be defined by

g(n) :=
n∑

k=1

f(k).

Then we have

Ẽ
∗[f(τ1)] = Ẽ

∗[1R · g(τ1)] = P̃
∗(R) · Ẽ∗[g(τ1)|R]

In particular, the random variable f(τ1) is integrable w.r.t. P̃∗ if and only if g(τ1) is

integrable w.r.t. P̃∗( · |R).

Proof. We define Rn := R ∩ {τ1 = n} and Rn,k := Sk(Rn) for n ∈ N and k ∈ N0 and

observe that the family of sets (Rn,k)n∈N,k∈{0,...,n−1} constitutes a (pairwise disjoint)

decomposition of TrajecInTrees. Similarly, (Rn)n∈N is a decomposition of R. Moreover,

we have τ1 = n− k on Rn,k and the fact that S is measure preserving implies that we

have P̃
∗(Rn,k) = P̃

∗(Rn) for all k ∈ N0. Thus, we have
∫
f(τ1) dP̃

∗

=
∑

n∈N

n−1∑

k=0

∫

Rn,k

f(τ1) dP̃
∗

=
∑

n∈N

n−1∑

k=0

P̃
∗(Rn,k) · f(n− k)

=
∑

n∈N

P̃
∗(Rn)

n∑

k=1

f(k)

=
∑

n∈N

∫

Rn

g(τ1) dP̃
∗

=

∫

R

g(τ1) dP̃
∗

and this completes the proof of Lemma 2.4.10. �
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As mentioned above, this completes the proof of Proposition 2.4.3. �

In order to formulate a last proposition before we continue with the proof of our

main results, we introduce the counting processes (nσ
n)n∈N and (nτ

n)n∈N which are de-

rived from the sequences (σn)n∈N and (τn)n∈N. More precisely, we define

nσ
n := inf{k ≥ 1 : σk ≥ n}, nτ

n := inf{k ≥ 1 : τk ≥ n}

and we obtain the following proposition.

Proposition 2.4.11. There are constants λ, λ̄ ∈ (0,∞) such that we have

nτ
n

n

P-a.s.−−−→
n→∞

λ and
nσ
n

n

P-a.s.−−−→
n→∞

λ̄. (2.25)

In particular, we have

λ−1 = E[τ2 − τ1] and λ̄−1 = E[σ2 − σ1].

Proof of Proposition 2.4.11. We only prove the statement for (nτ
n)n∈N since the proof

for (nσ
n)n∈N is completely identical. From Proposition 2.4.1 we know that τn is a

sum of i.i.d. random variables which is shifted by the non-negative and finite random

variable τ1. We observe that the associated first passage time of the interval (−∞, n−1]

coincides with nτ
n. Thus, we obtain (2.25) as a consequence of elementary renewal

theory; cf. Chapter 10.14 in [35] or Theorem 4.4.1 in [24]. �

Now we are ready to prove the main results of this chapter.

Proof of Theorem 2.3.2. (i) First, we define τ ∗n := τnτ
n
and observe that we have

|Xn|
n

=

∑
nτ
n−1

k=1 Uk

n
+

|Xτ1 |
n

+
|Xn| − |Xτ∗n |

n

P-a.s.−−−→
n→∞

ν

from (2.5). Further, the law of large numbers and Proposition 2.4.11 imply

∑
n
τ
n−1

k=1 Uk

n
=

nτ
n

n
·
∑

n
τ
n−1

k=1 Uk

nτ
n

P-a.s.−−−→
n→∞

λ · E[U1].

We note here that we have nτ
n ≥ n for all n ∈ N. Moreover, the finiteness of τ1 implies

|Xτ1 |
n

P-a.s.−−−→
n→∞

0.

This P-a.s. yields

ν = lim
n→∞

|Xn|
n
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= lim
n→∞

[∑
n
τ
n−1

k=1 Uk

n
+

|Xτ1 |
n

+
|Xn| − |Xτ∗n |

n

]

= λ · E[U1] + lim
n→∞

|Xn| − |Xτ∗n |
n

.

Moreover, we have
|Xnτ

n
| − |Xnτ

n−1|
n

≥ |Xτ∗n | − |Xn|
n

≥ 0

for all n ∈ N and this implies

|Xn| − |Xτ∗n |
n

P−−−→
n→∞

0

since the sequence (Un)n≥0 is an i.i.d. sequence. In fact, we even know that the

limit lim
n→∞

|Xn|−|Xτ∗n
|

n
exists P-a.s. since both of the limits lim

n→∞

|Xn|
n

and lim
n→∞

nτ
n

n
·
∑n

τ
n−1

k=1 Yk

nτ
n

do so. This P-a.s. yields

lim
n→∞

|Xn| − |Xτ∗n |
n

= 0

and thus we have

E[U1] =
ν

λ
= ν · E[τ2 − τ1]. (2.26)

We recall that the centred level increments are denoted by

Vn := Un − ν · (τn+1 − τn) = |Xτn+1 | − |Xτn | − ν · (τn+1 − τn)

and by Proposition 2.4.1 we know that (Vn)n∈N is an i.i.d. sequence w.r.t. the averaged

measure P. Further, (2.26) guarantees that the random variables (Vn)n∈N are indeed

centred (w.r.t. P). Let the averaged variance of the random variable V1 be denoted by

σ̃2 := E
[
(V1 − E[V1])

2
]
> 0.

Proposition 2.4.3 implies that σ̃2 is finite. Hence, the central limit theorem implies

that we have ∑nτ
n−1

k=1 Vk√
nτ
n

d−−−→
n→∞

N
(
0, σ̃2

)
(2.27)

w.r.t. the averaged measure P. Now we consider

|Xn| − ν · n√
n

=

∑
nτ
n−1

k=1 Uk − ν · n√
n

+
Xτ1√
n
+

|Xn| − |Xτ∗n |√
n

(2.28)

and observe that, as already argued above, the latter two summands of (2.28) con-

verge P-a.s. towards 0. For the first summand of the right hand side of (2.28) we

obtain
∑

n
τ
n−1

k=1 Uk − ν · n√
n
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=
√

nτ
n

n
·
∑

n
τ
n−1

k=1 Uk − ν ·∑n
τ
n−1

k=1 (τk+1 − τk)√
nτ
n

+
ν · (τ ∗n − τ1)− ν · n√

n

=
√

nτ
n

n
·
∑nτ

n−1
k=1 Vk√
nτ
n

+ ν ·
[
τ ∗n − n√

n
+

τ1√
n

]
.

We observe that the sequence

(
τ ∗n − n√

n
+

τ1√
n

)

n∈N0

converges in probability (w.r.t. P) towards 0 since the sequence (τ ∗n − n)n∈N0 converges

in distribution (w.r.t. P) towards a finite random variable. In fact, τ ∗n−n is the residual

waiting time of the associated renewal process (τn)n∈N0 and thus the convergence in

distribution is a consequence of suitable results of classic renewal theory, we refer to

Example 4.4.8 in [24]. Finally, from Proposition 2.4.11, Slutzky’s theorem, and (2.27)

we conclude |Xn| − ν · n√
n

d−−−→
n→∞

√
λ · N

(
0, σ̃2

)
= N (0, σ2).

This completes the proof of part (i) of Theorem 2.3.2.

For part (ii) the very same arguments as for part (i) apply. So we can skip the details

and restrict ourselves to mentioning that we have

r(n)− ν̄ · n√
n

=

∑
n
σ
n−1

k=1 Ūk − ν̄ · n√
n

+
r(σ1)√
n

+
r(n)− r(σ∗

n)√
n

=
√

n
σ
n

n
·
∑

n
σ
n−1

k=1 V̄k√
nσ
n︸ ︷︷ ︸

d−−−→
n→∞

N (0,σ̄2) w.r.t. P

+ ν̄ ·
[
σ∗
n − n√
n

+
σ1√
n

]
+
r(σ1)√
n

+
r(n)− r(σ∗

n)√
n︸ ︷︷ ︸

P-a.s.−−−→
n→∞

0

.

This completes the proof of Theorem 2.3.2. �
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Chapter 3

Cookie branching random walks

3.1 Introduction

In this chapter we study a model which is motivated by what is usually called exicted

random walk in the literature. An exicted random walk is a discrete-time stochastic

process whose future evolution depends on its past through the set of visited sites.

The process can be informally described as follows: The random walker’s movement

in a state space (usually Zd for d ≥ 1) at time n ∈ N0 depends on whether the

random walker has already visited its current position before time n. Such a model was

introduced in [11] and studied in numerous subsequent papers. We refer for example

to [9, 42, 59] (for the one-dimensional case, where, as usual, more complete results are

available), [10, 12, 37, 48] (for the multi-dimensional case and trees), and the references

therein. As a source of intuition, excited random walks are also called cookie random

walk – the idea being that initially all positions of the state space contain (one or

several) cookies, which are consumed by the random walker at the time of its first visit

of the respective positions. Whenever the random walker consumes a cookie at some

position, this changes the transition probabilities at this position (usually by giving

the random walk a drift in some direction).

In the model analysed in this chapter, we adopt the idea of having consumable

cookies at certain positions to branching random walks. Hence, we consider not only

one single random walker or particle that moves around in a state space, which in our

case is Z, but a whole population or cloud of particles which independently produce

offspring particles according to given offspring distributions. Thereafter, the newly

created particles move independently according to given transition probabilities. The

transition and branching parameters depend on whether the position of the respective

particle was visited before or not. The branching random walk is started with one
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particle at the origin and we suppose that in the initial configuration of cookies each

position of Z contains one cookie. We call the process which is considered in this

chapter a cookie branching random walk (CBRW).

Different kinds of models related to branching random walks have recently appeared

in the literature; we refer to [15, 17, 19, 38, 49]. With the CBRW we aim at introducing

a model for a branching random walk whose evolutionary mechanisms are changed as

the process evolves. Another model which lies in some sense inbetween the excited

random walk and the CBRW is the frog model. In contrast to the CBRW, in the frog

model the particles do not produce offspring at every position which has already been

visited but merely move. However, when one or several of the particles visit a position

which has not been visited before, exactly one of them produces offspring according to

a given offspring distribution while the other particles just stay alive. The term frog

model originates from an alternative interpretation of this model. The cookies can also

be regarded as frozen particles or sleeping frogs which are actived by other frogs which

jump on top of the sleeping frogs. The process is started by an initial activated frog

which moves around. We refer to the papers [3, 18] for further details.

Chapter 3 is organized as follows: In section 3.2 the required notation is introduced

and a formal description of the model is given. Besides, general assumptions for the

main results are stated and different recurrence regimes are defined. Subsequently,

section 3.3 contains the main results. After some auxiliary results and their proofs

in section 3.4, section 3.5 provides the proofs of the main results. At the end of the

chapter, in section 3.6, we make some final remarks.

The results presented in this chapter have been submitted for publication as a paper

which is a collaboration with Michael Kochler, Thomas Kochler, Sebastian Müller, and

Serguei Popov; cf. [8]

3.2 Formal description of the model

We now turn to the formal description of the CBRW. First, we have to choose the

initial configuration of the cookies. We restrict ourselves to the case in which we

have (exactly) one cookie at every non-negative integer and no cookies at the negative

integers. Thus, if cn(x) denotes the number of cookies at position x ∈ Z at time n ∈ N0,

the cookie configuration as described above is given by

c0(x) :=




1, if x ≥ 0,

0, if x < 0.
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As it turns out, this configuration is a rather natural choice for an initial configura-

tion which makes it possible to point out the essential differences in the evolution of

the process. In particular, further results for the initial configuration (c0(x) = 1 for

all x ∈ Z) can be derived easily (cf. Section 3.6). At time 0 the CBRW starts with

one initial particle at the origin. In order to specify the evolution of the population of

particles, we need the following ingredients:

• the cookie offspring distribution

µc =
(
µc(k)

)
k∈N0

with mean mc :=

∞∑

k=1

kµc(k);

• the cookie transition probabilities

pc ∈ (0, 1), qc := 1− pc;

• the no-cookie offspring distribution

µ0 =
(
µ0(k)

)
k∈N0

with mean m0 :=

∞∑

k=1

kµ0(k);

• the no-cookie transition probabilities

p0 ∈ (0, 1), q0 := 1− p0.

We say a particle produces offspring according to a offspring distribution µ = (µ(k))k∈N0

if the probability of having k offspring is µ(k). Having fixed the above quantities, the

population of particles evolves at every discrete time unit n ∈ N0 according to the

following rules:

(i) First, every existing particle produces offspring independently of the other par-

ticles. Each particle either reproduces according to the offspring distribution µc

if there is a cookie at its position or otherwise according to µ0. Thereafter, the

parent particle dies.

(ii) Secondly, after the branching the newly produced offspring particles move in-

dependently of each other either one step to the right or one step to the left.

Again the movement depends on whether the particles are at a position with or

without a cookie. If there is a cookie, each particle moves to the right (left) with

probability pc (qc). Otherwise, if there is no cookie, the transition probabilities

are given by p0 and q0.
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(iii) Finally, each cookie which is located at a position where at least one particle has

produced offspring is removed. We note that different particles share the same

cookie if they are at a position with a cookie at the same time. Moreover, due

to the chosen initial configuration of the cookies only the leftmost cookie can be

consumed at every time step.

3.2.1 Notational preliminaries and general assumptions

We now introduce some essential notations and assumptions. Since we do not want

the process to die out, we assume that

µc(0) = µ0(0) = 0

holds. Further, to avoid additional technical difficulties, we suppose that we have

M := sup {k ∈ N0 : µc(k) + µ0(k) > 0} <∞. (3.1)

In fact, we believe that the results remain true if we replace (3.1) by the assumption

that the cookie and the no-cookie offspring variance is finite. In the following we want

to distinguish different particles of the CBRW by using the usual Ulam-Harris labelling.

Therefore, we enumerate the offspring of every particle and introduce the set

V :=
⋃

n∈N0

Nn

as the set of all particles which are potentially produced at any time in the entire

process. Here N0 is defined as the set containing only the root o which denotes the

initial particle. In this setting, ν = (ν1, ν2, . . . , νn) ∈ V labels the particle which is

the νn-th offspring of the particle (ν1, ν2, . . . νn−1). By iteration we can trace back

the ancestral line of ν to the initial particle o. Further, the generation (length) of

the particle ν ∈ V is denoted by |v|, and for two particles ν, η ∈ V we write ν ≻ η

(or ν � η) if ν is a descendant of the particle η (if ν is a descendant of η or η itself). We

use the same notation ν � U (or ν ≻ U) for some set U ⊆ V if there is a particle η ∈ U

with ν � η (or ν ≻ η). With the above notations, we can consider the actually

produced particles in the CBRW. For n ∈ N0 and x ∈ Z let Zn(x) ⊂ Nn ⊂ V denote

the random set of particles which are at position x at time n. Thus,

Zn :=
⋃

x∈Z

Zn(x)

is the set of all particles which exist at time n. On the basis of this finding we can

define Z :=
⋃

n∈N0
Zn as the set of all particles ever produced. Then, for every parti-

cle ν ∈ Z, we write Xν for its random position in Z and the collection of all positions
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of all particles (Xν)ν∈Z is what we call CBRW. Further, the position of the leftmost

cookie is denoted by

l(n) := min{x ∈ N : cn(x) = 1}.

Now we are able to define the set of particles L(n) which is crucial for our considera-

tions:

L(n) := Zn(l(n)).

The particles that belong to L(n) are located at the position of the leftmost cookie

and thus they are the only particles which produce offspring according to µc. We call

the process
(
L(n)

)
n∈N0

leading process (and use the abbreviation LP) since it contains

the rightmost particles if L(n) 6= ∅. One key observation for the understanding of the

CBRW is that the particles in the LP constitute a Galton-Watson process (GWP) as

long as there are particles in the LP. The associated mean offspring is given by pcmc

and thus we call the LP supercritical, or subcritical, or critical when pcmc is greater

than 1, or smaller than 1, or equal to 1, respectively.

3.2.2 Recurrence regimes

As it is usually done in the context of branching random walks (BRW), we now define

three different regimes:

Definition 3.2.1. A CBRW is called

(i) strongly recurrent if a.s. infinitely many particles visit the origin, i.e.

P
(
|Zn(0)| −−−→

n→∞
0
)
= 0,

(ii) weakly recurrent if

P
(
|Zn(0)| −−−→

n→∞
0
)
∈ (0, 1),

(iii) transient if

P
(
|Zn(0)| −−−→

n→∞
0
)
= 1.

We note that these regimes may have different names in the literature; for example

strong local survival, local survival, and local extinction of [29] correspond to the no-

tion of strong recurrence, recurrence, and transience of Definition 3.2.1. The transient

regime can be subdivided into transient to the left (or transient to the right) if the
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negative (or positive) integers are visited infinitely many times. Criteria for the recur-

rence/transience behaviour of BRW are well-known in the literature. In our setting

the BRW of interest is the process related to the behaviour of the particles without

cookies. In the following we call this process BRW without cookies. It is a BRW in the

usual sense started with one particle at 0, with offspring distribution µ0 and transition

probabilities p0, q0 to the nearest neighbours. For this process we have the following

proposition that goes back to fundamental papers by Biggins [13], Hammersley [36],

and Kingman [41]; for a proof we refer to Theorem 18.3 in [51] and Theorem 3.2 in [28].

Proposition 3.2.2. The BRW without cookies is

(i) transient to the right iff

p0 >
1

2
and m0 ≤

1

2
√
p0q0

,

(ii) transient to the left iff

p0 <
1

2
and m0 ≤

1

2
√
p0q0

,

(iii) and strongly recurrent in the remaining cases.

In the transient cases, we define

ϕℓ :=
1

2p0m0

(
1−

√
1− 4p0q0m2

0

)
.

We note that ϕℓ reduces to min{1, q0
p0
} if we have m0 = 1. The interpretation of the

quantity ϕℓ is explained in Section 3.4 below.

3.3 Main results

Now we are ready to formulate the main results of Chapter 3, which give the classi-

fication of the process with respect to weak/strong recurrence in the sense of Defini-

tion 3.2.1.

Theorem 3.3.1. We suppose that the BRW without cookies is transient to the right.

(a) If the LP is supercritical, i.e. pcmc > 1 holds, then

(i) the CBRW is strongly recurrent iff pcmcϕℓ ≥ 1,

(ii) and the CBRW is transient to the right iff pcmcϕℓ < 1.

66



3.4. AUXILIARY RESULTS

(b) If the LP is subcritical or critical, i.e. pcmc ≤ 1 holds, then the CBRW is transient

to the right.

Theorem 3.3.2. We suppose that the BRW without cookies is strongly recurrent. Then

the CBRW is strongly recurrent, no matter whether the LP is subcritical, critical or

supercritical.

Theorem 3.3.3. We suppose that the BRW without cookies is transient to the left.

(a) If the LP is supercritical, i.e. pcmc > 1 holds, then the CBRW is weakly recurrent.

(b) If the LP is critical or subcritical, i.e. pcmc ≤ 1 holds, then the CBRW is transient

to the left.

3.4 Auxiliary results

Analogously to the notation which we use for the CBRW let
(
Yν
)
ν∈Y

denote the BRW

without cookies. Here Y denotes the set of all particles ever produced and if ν is such

a particle, Yν denotes the random position of the particle ν. We define Λ+
0 = Λ−

0 := 1,

and

Λ+
n := |{ν ∈ Y : Yν = n, Yη < n ∀ η ≺ ν}|,

Λ−
n := |{ν ∈ Y : Yν = −n, Yη > −n ∀ η ≺ ν}| (3.2)

for n ∈ N. Here Λ+
n (or Λ−

n ) denotes the random number of particles which are the

first in their ancestral line to reach the position n (or −n). In addition, we define

ϕr := E[Λ+
1 ], ϕℓ := E[Λ−

1 ]. (3.3)

We note that we have

P
(
Λ+

1 <∞
)
= P

(
Λ−

1 <∞
)
= 1

if the BRW without cookies
(
Yν
)
ν∈Y

is transient. In this case the processes
(
Λ+

n

)
n∈N0

and
(
Λ−

n

)
n∈N0

are both GWPs. An important observation is that ϕr and ϕℓ can be

expressed using the first visit generating function of the underlying random walk. Thus,

denote by Xn the nearest-neighbour random walk defined by

P(Xn+1 = x+ 1 | Xn = x) = p0 and P(Xn+1 = x− 1 | Xn = x) = q0.

The first visit generating function is defined by

F (x, y|z) =
∞∑

n=0

P(Xn = y,Xk 6= y ∀k < n | X0 = x)zn.
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A (short) thought reveals that ϕr = F (0, 1|m0) and ϕℓ = F (0,−1|m0) and standard

calculations yield the following formulas; for both arguments we also refer to Chapter 5

in [58].

Proposition 3.4.1. If the BRW without cookies is transient, we have

ϕr =
1

2q0m0

(
1−

√
1− 4p0q0m2

0

)
, and ϕℓ =

1

2p0m0

(
1−

√
1− 4p0q0m2

0

)
.

(3.4)

Remark 3.4.2. A natural special case arises from µ0(1) = 1 (and thusm0 = 1). In this

model particles can only branch at positions with a cookie. In sites without cookies

the process reduces to an asymmetric random walk
(
Yn
)
n∈N0

on Z with transition

probabilities p0 and q0. Here ϕr and ϕℓ simplify to the probabilities of an asymmetric

random walk to ever reach +1 or −1, respectively, i.e.

ϕr = P
(
∃n ∈ N : Yn = +1

)
= min

{
1, p0

q0

}
, (3.5)

ϕℓ = P
(
∃n ∈ N : Yn = −1

)
= min

{
1, q0

p0

}
. (3.6)

Next, we collect some known facts about Galton-Watson processes that will be

required in the sequel. An important tool for the proofs is to identify GWPs which are

embedded in the CBRW. For the rest of this chapter the processes

(
GW super

n

)
n∈N0

,
(
GW sub

n

)
n∈N0

and
(
GW cr

n

)
n∈N0

shall denote a supercritical, subcritical or critical GWP started with z ∈ N parti-

cles with respect to the probability measure Pz. Furthermore, let T super, T sub and T cr

denote the time of extinction corresponding to the above GWPs, i.e.

T super := inf{n ≥ 0 : GW super
n = 0}

and analogously for the subcritical and critical case.

Proposition 3.4.3. For a subcritical GWP
(
GW sub

n

)
n∈N0

with strictly positive and

finite offspring variance there is a constant c > 0 such that

lim
n→∞

P1

(
GW sub

n > 0
)

E1

[
GW sub

1

]n = c.

For a proof we refer for example to Theorem 2.6.1 in [40].

Proposition 3.4.4. For a critical GWP
(
GW cr

n

)
n∈N0

with strictly positive and finite

offspring variance there is a constant c > 0 such that

lim
n→∞

nP1 (GW
cr
n > 0) = c.
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For a proof we cite for example Theorem I.9.1 in [4]. By virtue of the esti-

mate 1− x ≤ exp(−x) we obtain the following consequence of Proposition 3.4.4.

Proposition 3.4.5. For the extinction time T cr of a critical GWP with strictly positive

and finite offspring variance there exists a constant C > 0 such that

Pz

(
T cr ≤ n

)
≤ exp

(
−C z

n

)

for all n ∈ N and for all z ∈ N.

Proposition 3.4.6. For the extinction time T cr of a critical GWP with strictly positive

and finite offspring variance there exists a constant C > 0 such that

Pz

(
T cr = n

)
≤ C

z

n2

for all n ∈ N and for all z ∈ N.

Proof. Due to Corollary I.9.1 in [4] (with s = 0), there is a constant c > 0 such that

lim
n→∞

n2P1

(
T cr = n+ 1

)
= c.

Therefore, we get for n ∈ N

Pz

(
T cr = n

)
≤ z P1

(
T cr = n

)
= z

1

(n− 1)2
(
c+ o(1)

)
≤ C

z

n2

for a suitable constant C > 0. �

Lemma 3.4.7. We consider a BRW (without cookies) (Yν)ν ∈ Y with branching dis-

tribution µ0 and transition probabilities p0 and q0 started with one particle at the origin.

Further, we assume that the BRW is transient to the right. Then, for a suitable con-

stant c > 0, we have

P(∃ ν ∈ Y : Yν = −n) = (c+ o(1))(ϕℓ)
n

as n tends to infinity.

Proof. We consider the process (Λ−
n )n∈N0, which is introduced in (3.2), and observe

that this process is a GWP with mean offspring ϕℓ < 1. Using condition (3.1), it is not

difficult to verify that we have E[Λ−
1 )

2] < ∞. Therefore, Proposition 3.4.3 completes

the proof. �
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3.5 Proofs of the main results

Proof of Theorem 3.3.1

Proof of part (a).

In this part of the proof we suppose pcmc > 1, i.e. the LP is supercritical. For n ∈ N

we define inductively the n-th extinction time and the n-th rebirth time of the LP by

τn := inf
{
i > σn−1 : |L(i)| = 0

}
,

σn := inf
{
i > τn : |L(i)| ≥ 1

}

with σ0 := 0 and inf ∅ := ∞. Since p0 > 1/2 and the LP is supercritical, we know that

we have P(σn < ∞ | τn < ∞) = 1 and P(τn+1 = ∞ | τn−1 < ∞) ≥ P(τ1 = ∞) > 0 for

all n ≥ 0. Hence, we a.s. have

σ∗ := inf{n ∈ N0 : |L(i)| ≥ 1 ∀ i ≥ n} <∞. (3.7)

It is a well-known fact that conditioned on survival a supercritical GWP with finite

second moment normalized by its mean converges to a strictly positive random variable

(e.g. Theorem I.6.2 in [4]). Considering the LP separately on the events {σ∗ = k}
for k ∈ N0 yields

lim
n→∞

|L(n)|
(pcmc)n

= W > 0 (3.8)

for a strictly positive random variable W .

Now, we prove part (i) of Theorem 3.3.1(a). We suppose that we have pcmcϕℓ ≥ 1.

For n ∈ N0, let us introduce

Ln := {ν ∈ Zn+1(l(n)− 1) : ν ≻ L(n)} .

The set Ln contains all particles that are produced in the LP at time n and then leave

the LP to the left. Thus, they are located at the position l(n)− 1 at time n + 1. We

define the events

An :=
{
∃ ν � Ln : Xν = 0

}

for n ∈ N0. In order to show strong recurrence of the CBRW, it is now sufficient to

prove that

P
(
lim sup
n→∞

An

)
= 1. (3.9)

As a first step to achieve this, we consider the events

Bn :=
{
|Ln| ≥

(
pcmc)

nn−1, n ≥ σ∗
}
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for n ∈ N0 and show that

P
(
lim inf
n→∞

Bn

)
= 1. (3.10)

This provides a lower bound for the growth of |Ln| for large n. To see that (3.10) holds,

we define Cn :=
{
|L(n)| ≥ (pcmc)

nn−1/2
}
and notice that due to (3.8) we have

P
(
lim inf
n→∞

Cn

)
= 1. (3.11)

We observe that, given the event Cn, the random variable |Ln| can be bounded from

below by a random sum of ⌈(pcmc)
nn−1/2⌉ i.i.d. Bernoulli random variables with success

probability qc. Hence, we can use a standard large deviation bound to see that the

probabilities P(|Ln| < (pcmc)
nn−1 | Cn) decay exponentially fast as n tends to infinity;

cf. Chapter 2 in [21] for the involved large deviation techniques. An application of the

Borel-Cantelli lemma now yields

P

(
lim sup
n→∞

({
|Ln| < (pcmc)

nn−1
}
∩ Cn

))
= 0. (3.12)

Since σ∗ < ∞ a.s., (3.12) together with (3.11) yields (3.10). We observe that on the

event {n ≥ σ∗}, for each particle in Ln, the number of its offspring which is located at

the positions 1, 2, . . . steps to the left of l(n) − 1 for the first time in their genealogy

constitutes an embedded GWP in the CBRW. Its mean is given by ϕℓ, where ϕℓ < 1

holds since the BRW without cookie is transient to the right (cf. (3.4) and (3.5)).

Therefore, by virtue of Lemma 3.4.7, we get

P
(
An | Bn

)
≥ 1− (1− c(ϕℓ)

n)(pcmc)nn−1

≥ 1− exp
(
−c(ϕℓ)

n(pcmc)
nn−1

)

≥ 1− exp
(
− c

n

)

≥ C
n

(3.13)

for some c, C > 0. Here we use that the position of a particle ν ∈ Ln is bounded by n

(in fact by n − 1). Notice also that we have pcmcϕℓ ≥ 1 by assumption. Since 1Bn is

measurable with respect to the σ-algebra generated by |Ln| and σ∗, we have

P

(
j⋂

n=i

(
Ac

n ∩ Bn

)
)

= E

[
E

[
j∏

n=i

1Ac
n∩Bn

∣∣∣∣∣ |Li|, . . . , |Lj |, σ∗

]]

= E

[( j∏

n=i

1Bn

)
1{i≥σ∗}E

[
j∏

n=i

1Ac
n

∣∣∣∣∣ |Li|, . . . , |Lj |, σ∗

]]

for all i, j ∈ N with i < j. Now we observe that on {i ≥ σ∗} the random vari-

ables
(
1Ac

n

)
i≤n≤j

are conditionally independent, given |Li|, . . . , |Lj| and σ∗. This holds
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because on {i ≥ σ∗} all the particles in
⋃j

n=i Ln start independent BRWs which can-

not reach the cookies anymore. For the same reason on {i ≥ σ∗} each of the random

variables (1Ac
n
)i≤n is conditionally independent of (|Lk|)k 6=n given |Ln| and σ∗. Using

these two facts, we obtain

E

[(
j∏

n=i

1Bn

)
1{i≥σ∗}E

[
j∏

n=i

1Ac
n

∣∣∣∣∣ |Li|, . . . , |Lj|, σ∗

]]

= E

[
j∏

n=i

(
1Bn1{i≥σ∗}E

[
1Ac

n

∣∣ |Li|, . . . , |Lj|, σ∗
] )
]

= E

[
j∏

n=i

1BnE
[
1Ac

n

∣∣ |Ln|, σ∗
]
]
. (3.14)

With the help of (3.13) and (3.14) we can now conclude that we have

P

(
j⋂

n=i

(
Ac

n ∩ Bn

)
)

= E

[
j∏

n=i

1BnE
[
1Ac

n

∣∣ |Ln|, σ∗
]
]

≤
j∏

n=i

(
1− C

n

)
−−−→
j→∞

0. (3.15)

Therefore, for all i ∈ N, we have P
(
∩∞
n=i

(
Ac

n ∩ Bn

))
= 0, which implies

P
(
lim inf
n→∞

(
Ac

n ∩Bn

))
= 0. (3.16)

Since (3.10) holds, (3.16) yields P (lim infn→∞Ac
n) = 0. Thus, we have established (3.9)

and so (i) of Theorem 3.3.1(a) is proved.

Next, we prove part (ii) of Theorem 3.3.1(a). We suppose that pcmcϕℓ < 1. For

sake of simplicity we assume σ∗ = 0. The proof is analogous for σ∗ = k for k ∈ N.

The idea of the proof is to show that the expected number of particles that visit the

origin the second time (the first time after time 0) in their genealogy is finite. Since the

BRW without cookies is transient this implies transience of the CBRW. We note that

no descendant of a particle that visited 0 after time 0 can ever reach a cookie again

since σ∗ = 0. (In the case σ∗ = k only a finite number of particles that have visited 0

up to time k can have descendants which reach a cookie again.) More formally, we

define

Γn := |{ξ ∈ Z : ξ � Ln, Xξ = 0, Xω 6= 0 ∀ω : ξ ≻ ω � ν}|.

Taking expectation yields

E[Γn1{σ∗=0}] = E[|Ln|1{σ∗=0}]F (n, 0|m0) ≤ (pcmc)
nqcmc(ϕℓ)

n,

72



3.5. PROOFS OF THE MAIN RESULTS

and thus that E
[∑

n∈N Γn1{σ∗=0}

]
< ∞ since pcmcϕℓ < 1. Therefore, we can finally

conclude that a.s. only finitely many particles visit the origin, i.e. the CBRW is tran-

sient. This completes the proof of part (a). �

Proof of part (b)

In this part of the proof we suppose that the LP is subcritical or critical, i.e. pcmc ≤ 1.

We start with Lemma 3.5.1, which states that except for finitely many times the par-

ticles at a single position x ∈ Z produce an amount of offspring which is close to the

expected amount as long as there are many particles at this position. To do so, we

first split the set of particles Zn(x) into the following two sets

Z+
n+1(x) := {ν ∈ Zn+1(x) : ν ≻ Zn(x− 1)},

Z−
n+1(x) := {ν ∈ Zn+1(x) : ν ≻ Zn(x+ 1)}

containing the particles which have moved to the right or to the left from time n to

time n + 1. For ε > 0, which we specify later (cf. (3.35) and (3.51)), we introduce the

following sets:

D+
n (x) := {x < l(n), |Zn(x)| ≥ n} ∩

({ |Z+
n+1(x+ 1)|
|Zn(x)|

< (p0m0 − ε)

}

∪
{
(p0m0 + ε) <

|Z+
n+1(x+ 1)|
|Zn(x)|

})
,

D−
n (x) := {x < l(n), |Zn(x)| ≥ n} ∩

({ |Z−
n+1(x− 1)|
|Zn(x)|

< (q0m0 − ε)

}

∪
{
(q0m0 + ε) <

|Z−
n+1(x− 1)|
|Zn(x)|

})
,

E+
n := {L(n) ≥ n} ∩

({ |L(n+ 1)|
|L(n)| < (pcmc − ε)

}

∪
{
(pcmc + ε) <

|L(n+ 1)|
|L(n)|

})
,

E−
n := {L(n) ≥ n} ∩

({ |Z−
n+1(l(n)− 1)|

|L(n)| < (qcmc − ε)

}

∪
{
(qcmc + ε) <

|Z−
n+1(l(n)− 1)|

|L(n)|

})
,

Fn := E+
n ∪ E−

n ∪
⋃

x∈Z

(
D+

n (x) ∪D−
n (x)

)
. (3.17)

Lemma 3.5.1. We have

P

(
lim sup
n→∞

Fn

)
= 0 (3.18)

for all ε > 0.
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Proof of Lemma 3.5.1. First, we recall that the number of offspring of a single particle

is bounded by M . Hence, a large deviation estimate for the random sum |Z+
n+1(x+1)|

of |Zn(x)| i.i.d. random variables with mean p0m0 yields

P
(
|Z+

n+1(x+ 1)| > (p0m0 + ε)|Zn(x)|
∣∣∣σ(|Zn(x)|)

)
≤ exp

(
− |Zn(x)|C1

)
(3.19)

for some constant C1 > 0 and

P
(
|Z+

n+1(x+ 1)| < (p0m0 − ε)|Zn(x)|
∣∣∣σ(|Zn(x)|)

)
≤ exp

(
− |Zn(x)|C2

)
(3.20)

for some constant C2 > 0; cf. Chapter 2 in [21] for the involved large deviation tech-

niques. From (3.19) and (3.20) we can conclude that

P
(
D+

n (x)
)
≤ exp(−nC1) + exp(−nC2). (3.21)

The same argument leads to analogue estimates for the sets D−
n (x), E

+
n and E−

n with

constants Ci > 0 for i = 3, . . . , 8. Since at time n ∈ N0 particles can only be located

at the n+ 1 positions −n,−n + 2, . . . , n− 2, n, we get

P

(
E+

n ∪ E−
n ∪

⋃

x∈Z

(
D+

n (x) ∪D−
n (x)

))
≤ 2(2 + 2(n+ 1)) exp(−nC)

for C := min
i=1,...,8

Ci > 0. Therefore, the Borel-Cantelli lemma implies (3.18). �

In the considered case the CBRW behaves very differently depending on whether

we have p0m0 ≤ 1 or p0m0 > 1:

(i) For p0m0 ≤ 1 the offspring particles of a certain particle which move to the right

in every step behave as a critical or subcritical GWP as long as the particles do

not reach the cookies. Therefore, we can expect that the amount of particles

which reach a cookie at the same time is not very large. More precisely, we will

show in Proposition 3.5.2 that the amount of particles in the LP does not grow

exponentially.

(ii) For p0m0 > 1 the amount of offspring which moves to the right in every time

step in the corresponding BRW without cookies constitutes a supercritical GWP.

Therefore, the number of particles at the rightmost occupied position in the

BRW without cookies a.s. grows with exponential rate p0m0 > 1. In this

case the following proposition shows that the amount of particles in the LP is

essentially bounded by the growth rate of the rightmost occupied position of the

corresponding BRW without cookies.
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Proposition 3.5.2. For every α > max{1, p0m0} =: m∗ we have

P
(
lim inf
n→∞

{|L(n)| < αn}
)
= 1. (3.22)

Proof of Proposition 3.5.2. For the proof we start with the following lemma which

states that a large LP at time n leads to a long survival of the LP afterwards (except

for finitely many times). For β > 0 we define

Gn := Gn(β) := {|L(n)| ≥ n, τ(n) ≤ β log |L(n)|} , (3.23)

where

τ(n) := inf{ℓ ≥ n : |L(ℓ)| = 0} (3.24)

denotes the time of the next extinction of the LP beginning from time n.

Lemma 3.5.3. There exists β > 0 such that we have

P

(
lim sup
n→∞

Gn

)
= 0. (3.25)

Proof of Lemma 3.5.3. Let us first look at a subcritical GWP
(
GW sub

n

)
n∈N0

with repro-

duction mean pcmc < 1 and strictly positive, finite offspring variance and its extinction

time T sub. Assuming that we have an initial population of z ∈ N particles and using

Proposition 3.4.3, we get

Pz(T
sub ≤ n) =

(
1− P(GW sub

n > 0)
)z

≤
(
1− c(pcmc)

n
)z

≤ exp
(
− c(pcmc)

nz
)
,

for a suitable constant c > 0. In particular, if the LP is subcritical, we conclude that

we have

P
(
|L(n)| ≥ n, τ(n) ≤ β log |L(n)|

)
≤ exp

(
−C n

β log(n)

)

for all sufficiently small β > 0 and for all n ∈ N. Hence, the Borel-Cantelli lemma

implies (3.25). If the LP is critical, we can use an analogous argument together with

Proposition 3.4.5. �

In the following we want to investigate the behaviour of the CBRW on the event

Hn0 :=
⋂

n≥n0

(
F c
n ∩Gc

n

)
(3.26)
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for fixed n0 ∈ N0. (Later we will choose n0 sufficiently large such that the assumptions

of the upcoming Lemma 3.5.4 and equation (3.53) are satisfied.) On this event we have

upper and lower bounds for

|Z+
n+1(x+ 1)|
|Zn(x)|

and
|Z−

n+1(x− 1)|
|Zn(x)|

for positions x ∈ Z containing at least n particles at time n ≥ n0 (cf. (3.17)). Addi-

tionally, we have a lower bound for the time for which a LP with at least n particles

at time n ≥ n0 will stay alive afterwards (cf. (3.23)). We note that we have

P
(
lim inf
n→∞

(
F c
n ∩Gc

n

))
= lim

n→∞
P(Hn) = 1 (3.27)

due to Lemma 3.5.1 and Lemma 3.5.3.

For the next lemma we need some additional notation. We define

σ0 := inf{n > n0 : |L(n− 1)| = 0, |L(n)| 6= 0, l(n) ≤ n− 2n0 − 1},

which is the time of the first rebirth of the LP after time n0 for which we have

l(σ0)− (σ0 − n0) ≤ −2n0 − 1 + n0 = −n0 − 1.

This implies

|Zn0

(
l(σ0)− (σ0 − n0 + k)

)
| = 0, (3.28)

for all k ∈ N0. This is a crucial fact, which we make use of in the following computations

(cf. Figure 3.1). Since the LP is critical or subcritical and the BRW without cookies is

transient to the right, we a.s. have σ0 <∞. We now define the random times

τn := inf{ℓ > σn : |L(ℓ)| = 0} − σn, for n ≥ 0,

σn := inf{ℓ > σn−1 + τn−1 : |L(ℓ)| 6= 0}, for n ≥ 1,

which denote the time period of survival and the time of the restart of the LP, induc-

tively. Due to the assumptions of the CBRW all of these random times are a.s. finite.

Using (3.28) we see that we have

|Zn0

(
l(σj)− (σj − n0 + k)

)
| = 0

for all j, k ∈ N0. Here we note that the argument leading to equation (3.28) also holds

true for all n ≤ n0 instead of n0. Hence, we have

|Zn

(
l(σj)− (σj − n + k)

)
| = 0 (3.29)

for all n ≤ n0 and j, k ∈ N0.

As the next step of the proof, we state the following upper bounds for the size of

the LP on the event Hn0 .
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Lemma 3.5.4. The number of particles in the LP is bounded from above as follows:

L(n+ k)| ≤ (pcmc + ε)k + kM(n + k − 1)(1 + δ)k−1

on Hn0 ∩ {|L(n)| = z} ∩ {τ(n) ≥ n + k}, (3.30)

for k, n, z ∈ N, n ≥ n0. Further, we define m∗ := max{1, p0m0}. Then, for all γ > 0,

there exists n∗ = n∗(γ) such that we have

|L(σj+1)| ≤ (m∗ + 3γ)σj+1

on Hn0 ∩ {σj+1 = σj + τj + 2} ∩ {|L(σj)| ≤ (m∗ + γ)σj}, (3.31)

|L(σj+1)| ≤ |L(σj)|(m∗ + 4γ)τj

on Hn0 ∩ {σj+1 = σj + τj + 2} ∩ {|L(σj)| > (m∗ + γ)σj}, (3.32)

|L(σj+1)| ≤ (m∗ + 2γ)σj+1

on Hn0 ∩ {σj+1 > σj + τj + 2} (3.33)

for all j ∈ N0 and n0 ≥ n∗.

Proof of Lemma 3.5.4. First we choose 0 < δ < γ in such a way that

1 + δ ≤ m∗ + 2γ

m∗ + γ
, 1 + δ ≤

(
m∗ + 3γ

m∗ + 2γ

)β log(m∗+γ)

, (3.34)

where β > 0 satisfies Lemma 3.5.3. Then we choose ε > 0 for the definitions of the

events
(
Fn

)
n∈N0

(cf. (3.17)) sufficiently small such that

pcmc + ε ≤ 1 + δ, 1 <
p0m0 + ε

p0m0 − ε
≤ 1 + δ, p0m0 + ε ≤ m∗ + γ. (3.35)

For the upcoming estimates we use the following properties of the set Hn0. For n > n0

we have

|Zn−1(x− 1)| ≤ n− 1 on Hn0 ∩ {|Zn(x)| = 0}, (3.36)

which means that there cannot be very many particles at position x− 1 one time step

before n if we know that the position x stays empty at time n. Similarly, the knowledge

of |Zn(x)| gives us upper estimates for (|Zn−k(x−k)|)k∈N. If we are in the case in which

the cookies are always to the right of the considered positions, we have for n > n0

|Zn−1(x− 1)| ≤ z(p0m0 − ε)−1 + n− 1

on Hn0 ∩ {|Zn(x)| = z, l(n− 1) > (x− 1)},
|Zn−k(x− k)| ≤ z(p0m0 − ε)−k + (n− 1)(1 ∨ (1p0m0 − ε))−k+1

on Hn0 ∩ {|Zn(x)| = z, l(n− 1) > (x− 1)} (3.37)
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for n − k ≥ n0. The first estimate is easily obtained using a proof by contradiction

and an iteration of it yields the second inequality. We note here that by construction

the upper bound is at least equal to n0. Therefore, if the upper bound is exceeded,

at least a ratio of p0m0 − ε of |Zn−k(x− k)| contributes to |Zn−k+1(x− k + 1)| on the

considered event because of the definition of Hn0 . This yields a contradiction.

For n ≥ n0 and k ∈ N, we obtain similar estimates for the size of the LP before the

next extinction at time τ(n) (for the definition of τ(n) we refer to (3.24)):

|L(n+ 1)| ≤ z(pcmc + ε) +Mn

on Hn0 ∩ {|L(n)| = z},
|L(n+ 2)| ≤ z(pcmc + ε)2 + 2M(n + 1)(1 ∨ pcmc + ε)

on Hn0 ∩ {|L(n)| = z} ∩ {τ(n) ≥ n + 2},
|L(n+ k)| ≤ z(pcmc + ε)k + kM(n + k − 1)(1 + δ)k−1

on Hn0 ∩ {|L(n)| = z} ∩ {τ(n) ≥ n + k}. (3.38)

Concerning the last estimate, we note that we can distinguish between two cases as

follows: If |L(n+k)| ≤ n+k−1 holds true, then we have |L(n+k−1)| ≤M(n+k−1)

as a consequence of assumption (3.1). Otherwise, we can use the definition of Hn0 to

get |L(n + k + 1)| ≤ (pcmc + ε)|L(n + k)| on that event. In particular, we have to

show (3.30).

Now, we introduce two processes (Φn)n∈N and (Ψn)n∈N, which help us – together

with the estimates (3.30), (3.36), and (3.37) – to control the number of particles that

restart the LP at time σj+1 (cf. Figure 3.1 and 3.2). For j ∈ N0 and n ∈ N we define

Φ(j)
n := Zn(l(σj+1)− σj+1 + n) and Ψ(j)

n := Zn(l(σj+1)− σj+1 + 2 + n).

For sake of a better presentation we drop the superscript j and write just Φn and Ψn

if there is no room for confusion.

We observe that we have

|Φn+1| = |Ψn| = 0 (3.39)

for all n ≤ n0 due to (3.29). Furthermore, by definition we have Φσj+1
= L(σj+1) and

|Ψσj+1
| = |Ψσj+1−1| = |Ψσj+1−2| = 0. (3.40)

Again, we split the set of particles Φn into the particles which have moved one step to

the right from time n− 1 to time n and the particles which have moved to the left:

Φ+
n :=Z+

n (l(σj+1)− σj+1 + n),
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position x ∈ Z

time n ≥ 0

l(σj )− (σj − n0)
≤ −n0 − 1

l(σj) l(σj) + τj
= l(σj+1)

n0

σj

σj + τj

σj+1

= σj + τj + 2
?

(Φn)n∈N

(Ψn)n∈N

cookie/no particles
cookie/particles
no cookie/no particles
no cookie/
potentially particles
no cookie/potentially
particles without influence
potentially a cookie/
potentially particles
without (direct) influence

? position of interest

Figure 3.1: The LP is restarted at time σj+1, two time steps after the last extinction at

time σj + τj . The two diagonals represent the processes (Φn)n∈N and (Ψn)n∈N.

Φ−
n :=Z−

n (l(σj+1)− σj+1 + n)

To obtain an upper bound for |Φσj+1
| = |L(σj+1)|, we use the following recursive

structure. We have |Φ−
n | ≤ M |Ψn−1| for n ∈ N due to assumption (3.1). Moreover,

on Hn0 we have |Φ+
n | ≤ |Φn−1|(p0m0 + ε) +Mσj+1 for n0 + 2 ≤ n ≤ σj+1 (since the

particles reproduce and move without cookies) and these two facts yield

|Φn| = |Φ+
n |+ |Φ−

n | ≤ |Φn−1|(p0m0 + ε) +Mσj+1 +M |Ψn−1| (3.41)

for n0+2 ≤ n ≤ σj+1. Using (3.39), (3.40), and σj+1−n0−1 iterations of the recursion

in (3.41), we obtain the following upper bound for the particles which start the LP at

time σj+1 on Hn0:

|Φσj+1
| ≤M

σj+1−n0−1∑

k=3

|Ψσj+1−k|(p0m0 + ε)k−1 +Mσj+1

σj+1−n0−1∑

k=1

(p0m0 + ε)k−1

≤M

σj+1−n0−3∑

k=1

|Ψσj+1−k−2|(p0m0 + ε)k+1 +Mσ2
j+1(m

∗ + γ)σj+1 . (3.42)

We note that this bound just depends on σj+1 and the process (Ψn)n∈N. For this reason

we now take a closer look at (Ψn)n∈N and distinguish between the following two cases:
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• In the first case we assume that the LP restarts right after it has died out and

we therefore have σj+1 = σj + τj + 2. In this case the process (Ψn)n∈N coincides

with the LP between time σj and σj + τj (cf. Figure 3.1).

• In the second case we assume that we have σj+1 > σj + τj + 2. From this we

know that there are no particles in the LP at time σj+1 − 2 and thus the process

(Ψn)n∈N is always to the left of the cookies (cf. Figure 3.2).

In both cases the crucial observation is that the amount of particles in (Ψn)n∈N does

not exceed a certain level since none of its offspring reaches the leftmost cookie at

time σj+1 − 2.

First, we consider the case Hn0∩{σj+1 = σj+τj+2}. We apply the estimates (3.30)

and (3.37) to establish upper bounds for |Ψσj+1−k| = |Ψσj+τj+2−k| for 1 ≤ k ≤ σj+1−n0.

We know by definition of σj that we have l(σj − 1) = l(σj) > l(σj)− 1. Thus, we can

apply (3.37) and conclude that on the event Hn0 for 1 ≤ k ≤ σj − n0 we have

|Ψσj−k| = |Zσj−k(l(σj)− k)| ≤ |L(σj)|(p0m0 − ε)−k + σj(1 ∨ (p0m0 − ε)−k+1)

and by using (3.38) for 0 ≤ k ≤ τj − 1 we get

|Ψσj+k| = |L(σj + k)| ≤ |L(σj)|(pcmc + ε)k + kM(σj + k − 1)(1 + δ)k−1.

Applying these two estimates to (3.42) yields

|Φσj+1
| ≤ M

τj∑

k=1

|Ψσj+(τj−k)|(p0m0 + ε)k+1

+M

σj+τj−n0−1∑

k=τj+1

|Ψσj−(k−τj)|(p0m0 + ε)k+1

+Mσ2
j+1(m

∗ + γ)σj+1

≤ M

τj∑

k=1

(
|L(σj)|(pcmc + ε)τj−k

+ (τj − k)M(σj + τj − k − 1)(1 + δ)τj−k−1
)
(p0m0 + ε)k+1

+M

σj+τj−n0−1∑

k=τj+1

(
|L(σj)|(p0m0 − ε)−k+τj

+ σj(1 ∨ (p0m0 − ε)−k+τj+1)
)
(p0m0 + ε)k+1

+Mσ2
j+1(m

∗ + γ)σj+1

≤ τ 2jM
2(|L(σj)|+ σj+1)(1 + δ)τj−1(m∗ + γ)τj+1
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+ σj+1M |L(σj)|
(
p0m0 + ε

p0m0 − ε

)σj

(p0m0 + ε)τj+1

+ 2Mσ2
j+1(m

∗ + γ)σj+1

≤ 2M2σ2
j+1(|L(σj)|+ σj+1)(1 + δ)σj+τj−1(m∗ + γ)τj+1

+ 2Mσ2
j+1(m

∗ + γ)σj+1 . (3.43)

Here we use (3.35) in the last two steps.

If we first investigate |L(σj+1)| on the subset

{|L(σj)| ≤ (m∗ + γ)σj} ∩Hn0 ∩ {σj+1 = σj + τj + 2},

on which we have a limited amount of particles in L(σj), we can conclude, by us-

ing (3.43) and (3.34), that we have

|L(σj+1)| = |Φσj+1
|

≤ 2M2σ2
j+1

(
(m∗ + γ)σj + σj+1

)
(1 + δ)σj+τj−1(m∗ + γ)τj+1 + 2Mσ2

j+1(m
∗ + γ)σj+1

≤ 4M2(σj+1 + 1)3(1 + δ)σj+1(m∗ + γ)σj+1

≤ (m∗ + 4γ)σj+1

for n0 (and thus also σj+1) large enough. This shows (3.31) in Lemma 3.5.4.

On the other hand, if we consider the remaining subset

{|L(σj)| > (m∗ + γ)σj} ∩Hn0 ∩ {σj+1 = σj + τj + 2},

(3.43) yields

|L(σj)|−1 · |L(σj+1)|
= |L(σj)|−1 · |Φσj+1

|
≤ 2M2σ2

j+1(1 + σj+1)(1 + δ)σj+τj−1(m∗ + γ)τj+1 +Mσ2
j+1(m

∗ + γ)τj+2

≤ 4M2(σj + τj + 3)3(1 + δ)σj (m∗ + 2γ)τj+2

≤ 4M2(σj + τj + 3)3(1 + δ)
1

β log(m∗+γ)
τj (m∗ + 2γ)τj+2

≤ (m∗ + 4γ)τj

for n0 (and thus also σj) large enough. Here we use (3.34) and the fact that, on the

considered set, we have {τj > β log
(
(m∗+γ)σj

)
} (cf. Lemma 3.5.3). This shows (3.32)

in Lemma 3.5.4.

We now consider the event Hn0 ∩ {σj+1 > σj + τj + 2}. First, we observe that on

this set, due to (3.36), we have

|Ψσj+1−2−1| = |Zσj+1−2−1(l(σj+1)− 1)| ≤ σj+1 − 2− 1 ≤ σj+1 (3.44)
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position x ∈ Z

time n ≥ 0

?

cookie/no particles
cookie/particles
no cookie/no particles
no cookie/
potentially particles
no cookie/potentially
particles without influence
potentially a cookie/
potentially particles
without (direct) influence

? position of interest

l(σj+1)− 2− (σj − 2)
≤ −n0 − 1

l(σj+1)

n0

σj+1 − 2

σj+1

(Φ)n∈N

(Ψ)n∈N

Figure 3.2: The LP is restarted at time σj+1, more than two time steps after the last

extinction at time σj + τj. The two diagonals represent the processes (Φn)n∈N and (Ψn)n∈N.

since |Ψσj+1−2| = |Zσj+1−2(l(σj+1))| = 0 holds. Further, we observe that the parti-

cles which belong to (Ψn)n∈N are always to the left of the cookies. In particular, we

have l(σj+1 − 2 − 1) = l(σj+1) > l(σj+1) − 1. Therefore, we can apply (3.37) and, by

using (3.44), conclude

|Ψσj+1−2−k| = |Zσj+1−2−k(l(σj+1)− k)|
≤ σj+1(p0m0 − ε)−k + (σj+1 − 2− 1)(1 ∨ (p0m0 − ε)−k+1)

≤ 2σj+1(1 ∨ (p0m0 − ε)−k) (3.45)

for 2 ≤ k ≤ σj+1 − 2− n0.

With the help of (3.42) and (3.45) on the event Hn0 ∩ {σj+1 > σj + τj + 2} we get

|Φσj+1
| ≤ M

σj+1−n0−3∑

k=1

|Ψσj+1−2−k|(p0m0 + ε)k+1 +Mσ2
j+1(m

∗ + γ)σj+1

≤ M

σj+1−n0−3∑

k=1

2σj+1(1 ∨ (p0m0 − ε)−k)(p0m0 + ε)k+1 +Mσ2
j+1(m

∗ + γ)σj+1

≤ 2Mσ2
j+1

(
(p0m0 + ε)σj+1−n0−3 ∨ p0m0 + ε

p0m0 − ε

)σj+1−n0−3

· (p0m0 + ε) +Mσ2
j+1(m

∗ + γ)σj+1

≤ 3Mσ2
j+1(m

∗ + γ)σj+1

≤ (m∗ + 2γ)σj+1
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for n0 (and thus also σj+1) large enough. Here we use (3.34) and (3.35) in the last two

steps. This shows (3.33) in Lemma 3.5.4. �

We now return to the proof of Proposition 3.5.2. First, we choose γ ∈ R such

that 0 < 6γ < α − m∗ and n0 large enough such that the estimations (3.31), (3.32)

and (3.33) from Lemma 3.5.4 hold. Using these estimations, we can conclude that

on Hn0 we a.s. have

η := inf{n ≥ n0 : |L(σn)| < (m∗ + 5γ)σn} <∞. (3.46)

To see this, we just have to see what happens on the event

Hn0 ∩
k⋂

j=1

({
|L(σj)| > (m∗ + γ)σj

}
∩
{
σj+1 = σj + τj + 2

})
.

On this event we can use (3.32) k times in a row and we get

|L(σk)| ≤ |L(σ0)|
k∏

j=1

(m∗ + 4γ)τj ≤ |L(σ0)|(m∗ + 4γ)σk ,

from which we conclude that (3.46) indeed holds on Hn0.

Again by using the three estimations (3.31), (3.32), and (3.33) of Lemma 3.5.4, we

inductively conclude that on the event Hn0 we have |L(σn)| ≤ (m∗+5γ)σn for all n ≥ η.

Additionally, if we assume |L(σn + i − 1)| ≤ (m∗ + 5γ)σn+i−1, we see inductively by

using (3.38) that on the event Hn0 we have for all n ≥ η and for all 1 ≤ i ≤ τn − 1

|L(σn + i)| ≤ |L(σn + i− 1)|(pcmc + ε) + (σn + i− 1)M

≤ (m∗ + 5γ)σn+i−1(pcmc + ε) + (σn + i− 1)M

≤ (m∗ + 5γ)σn+i−1(m∗ + γ) + (σn + i− 1)M

≤ (m∗ + 6γ)σn+i < ασn+i

for n0 (and thus also σn ≥ n0) large enough. Since by the definitions of (σn)n∈N0

and (τn)n∈N0 the LP is empty at the remaining times, we conclude that we have

P
(
lim inf
n→∞

(
Hn ∩ {|L(n)| < αn}

))
= 1. (3.47)

Finally, this and the fact that we have P (lim infn→∞Hn) = 1 imply (3.22). �

After having investigated the growth of the LP, we are now interested in the speed

at which the cookies are consumed:
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Proposition 3.5.5. (a) There exists λ > 0 such that we a.s. have

lim inf
n→∞

l(n)

n
> λ. (3.48)

(b) In fact, for p0m0 > 1 we a.s. have

lim
n→∞

l(n)

n
= 1. (3.49)

Proof of Proposition 3.5.5. (a) We compare the CBRW with a process (Wn)n∈N0 which

is similar to an excited random walk on the integers. More precisely, it is started at

the origin (i.e. W0 := 0) and its transition probabilities are given by

P
(
Wn+1 =Wn + 1 | (Wj)1≤j≤n

)
=





0 on

{
max

j=0,1,...,n
Wj = Wn

}

p0 on

{
max

j=0,1,...,n
Wj > Wn

}

and

P
(
Wn+1 =Wn − 1 | (Wj)1≤j≤n

)
=





1 on

{
max

j=0,1,...,n
Wj = Wn

}

q0 on

{
max

j=0,1,...,n
Wj > Wn

}

for n ∈ N0. The process (Wn)n∈N0 moves to the left with probability 1 every time it

reaches a position x ∈ N0 for the first time and otherwise it behaves as an asymmetric

random walk on Z with transition probabilities p0 and q0. For all x ∈ N0 we consider the

random times given by Tx := inf{n ∈ N0 : Wn = x} and observe that
(
Tx+1 − Tx

)
x∈N0

is a sequence of i.i.d. random variables with

E[T1 − T0] = E[T1] = 1 +
2

2p0 − 1
.

Therefore, the strong law of large numbers implies that we a.s. have

lim
x→∞

Tx
x

= lim
x→∞

1

x

x−1∑

i=0

(Ti+1 − Ti) = E[T1 − T0] = 1 +
2

2p0 − 1
<∞.

Since we can couple the CBRW and the process (Wn)n∈N0 in a natural way such

that we have maxν∈Zn Xν ≥ Wn for all n ∈ N0, we can conclude that (3.48) holds

for 0 < λ <
(
1 + 2

2p0−1

)−1

.

(b) We start this part of the proof with the following lemma:

Lemma 3.5.6. For a CBRW with m0 > 1, there exists γ > 1 such that we a.s. have

lim
n→∞

|Zn|
γn

= ∞. (3.50)
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Proof of Lemma 3.5.6. Let us treat the case where mc > 1 first. Let
(
Vn,k

)
n,k∈N

be

i.i.d. random variables with

1− P(V1,1 = 1) = P(V1,1 = 2) = min

{
∞∑

i=2

µ0(i),
∞∑

i=2

µc(i)

}
,

and we define the corresponding GWP
(
Z̃n

)
n∈N0

by Z̃0 := 0, Z̃n+1 :=
∑Z̃n

i=1 Vn+1,i. We

note that we have E[V1,1] > 1. A standard coupling argument reveals that Z̃n ≤ |Zn|
holds true. Now (3.50) follows since Z̃n grows exponentially, e.g. by virtue of Theo-

rem I.10.3 on page 30 in [4].

The other case is similar: We consider now the i.i.d. random variables
(
Vn,k

)
n,k∈N

with

1− P(V1,1 = 1) = P(V1,1 = 2) = min{q0, qc} ·
∞∑

i=2

µ0(i),

and define the corresponding GWP
(
Z̃n

)
n∈N0

as above. For the coupling we observe

that the probability of every particle in the CBRW to produce a particle which moves

to the left is bounded from below by min{q0, qc}. Such a particle cannot be at a position

with a cookie and therefore its offspring distribution is given by
(
µ0(i)

)
i∈N0

. Eventually,

the corresponding coupling yields Z̃n ≤ |Z2n| and (3.50) follows as above. �

We now return to the proof of Proposition 3.5.5(b). Let us choose ε > 0 such that

we have

p0m0 − ε > 1, and qcmc − ε > 0. (3.51)

We use this ε for the definition of the sets
(
Fn

)
n∈N0

and
(
Hn

)
n∈N0

, cf. (3.17) and (3.26).

Due to Lemma 3.5.6 we can choose γ > 1 such that we a.s. have

lim
n→∞

|Zn|
γ2n

= ∞ and γ < p0m0 − ε. (3.52)

In addition, we choose n0 sufficiently large such that we have for all n ≥ n0

γn > n, γn(qcmc − ε) > (n+ 1), γβ log(γn)(qcmc − ε) ≥ 1 (3.53)

for some β > 0 which satisfies the assumptions of Lemma 3.5.3. In the following we

again investigate the behaviour of the CBRW on the event Hn0 on which the process

does not show certain unlikely behaviour after time n0 (cf. (3.17) and (3.23)). We prove

that already the offspring of one position with “many” particles cause the leftmost

cookie to move to the right with speed 1. For this, we introduce the random time

η := inf{n ≥ n0 : ∃x ∈ Z such that |Zn(x)| ≥ γn}.
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At time η we know that there are sufficiently many particles at the random posi-

tion x0 := sup{x ∈ Z : Zη(x) ≥ γη}. Due to (3.52) we a.s. have η <∞ since at time n

only n+ 1 positions can be occupied. Additionally, we introduce the random time

σ0 := inf{n ≥ η : l(n) = x0 + n− η}

at which offspring of the particles belonging to Zη(x0) can potentially reach the LP

for the first time after time η. Since pcmc ≤ 1, the LP dies out infinitely often and

therefore we a.s. have σ0 <∞. Then, we inductively define the random times

τj := inf{n ≥ σj : |L(n)| = 0} − σj , for j ≥ 0,

σj := inf{n ≥ σj−1 + τj−1 : |L(n)| 6= 0}, for j ≥ 1,

denoting the time period of survival and the time of the restart of the LP after time σ0.

Due to (3.53) we have

|Zη(x0)| ≥ γη ≥ η (3.54)

which allows us to use the lower bound for |Z+
η+1(x0 + 1)| on Hn0 . By using (3.52)

and (3.54) we get on the event Hn0 ∩ {l(η) > x0}

|Zη+1(x0 + 1)| ≥ |Z+
η+1(x0 + 1)| ≥ γη(p0m0 − ε) ≥ γη+1.

By iteration of the last step, we see that on the event

Hn0 ∩
k−1⋂

i=0

{l(η + k − 1) > x0 + k − 1} = Hn0 ∩ {l(η + k)− 1 > x0 + k − 1}

we have |Zη+k(x0 + k)| ≥ γη+k and therefore we conclude that

|L(σ0)| = |Zη+σ0−η(x0 + σ0 − η)| ≥ γη+σ0−η = γσ0

holds on Hn0. In the following we see that already the offspring particles of L(σ0)
which move to the left at time σ0 and afterwards move to the right in every step lead

to a very large LP at the next restart at time σ1. To see this, we first notice that (3.53)

implies on the event Hn0

|Zσ0+1(l(σ0)− 1)| ≥ |Z−
σ0+1(l(σ0)− 1)| ≥ γσ0(qcmc − ε) ≥ (σ0 + 1)

since we have |Zσ0(l(σ0))| ≥ γσ0 > σ0. An iteration of this together with (3.52)

and (3.53) yield for k ∈ N

|Zσ0+1+k(l(σ0)− 1 + k)| ≥ |Z+
σ0+1+k(l(σ0)− 1 + k)|

≥ γσ0(qcmc − ε)(p0m0 − ε)k
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≥ γσ0+k(qcmc − ε)

≥ σ0 + k + 1

on the event Hn0 ∩ {τ0 ≥ k − 1}. In particular, this implies

|L(σ0 + τ0 + 2)| = |Zσ0+τ0+2(l(σ0) + τ0)|
≥ γσ0+2(τ0+1)(qcmc − ε)

≥ γσ0+τ0+2γβ log(γσ0 )(qcmc − ε)

≥ γσ0+τ0+2 > 0

on the event Hn0 . Here we used that, due to Lemma 3.5.3, we have τ0 ≥ β log(γσ0) and

recalled (3.53) for the last inequality. Further, we conclude that we have σ1 = σ0+τ0+2

on Hn0 , which implies that the LP is restarted two time steps after it has died out at

time σ0 + τ0. Iterating this argument finally implies

|L(σj+1)| ≥ γσj+1 and σj+1 = σj + τj + 2 (3.55)

for all j ∈ N0 on the event Hn0. For β
∗ := β log(γ) > 0 we further conclude from (3.55)

and Lemma 3.5.3 by induction that on Hn0 we have

τj ≥ βσj log(γ) ≥ β∗(1 + β∗)jσ0 (3.56)

for all j ∈ N0. This implies

σj+1 = σj + τj + 2 ≥ (1 + β∗)jσ0 + β∗(1 + β∗)jσ0 = (1 + β∗)j+1σ0. (3.57)

Hence, on the event Hn0 we have for n ≥ σ0

l(n)

n
≥ l(σ0) + n− σ0 − 2|{j ≥ 0 : σj + τj ≤ n}|

n

≥
l(σ0) + n− σ0 − 2 log(n)−log(σ0)

log(1+β∗)

n
−−−→
n→∞

1.

Here we use (3.55) in the first step and in the second step we use the fact that due

to (3.56) and (3.57) we have σj + τj ≥ (1 + β∗)j+1σ0 for j ∈ N0. This yields that on

the event Hn0 we have limn→∞
l(n)
n

= 1. Since by (3.27) we have limn→∞ P(Hn) = 1,

we finally established (3.49). �

With Proposition 3.5.2 and Proposition 3.5.5 we are now prepared to prove Theo-

rem 3.3.1(b). Similarly to the proof of Theorem 3.3.1(a), we introduce the event

An := {∃ν � Ln : Xν = 0, Xη < l(|η|) ∀Ln ≺ η ≺ ν}
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with Ln = {ν ∈ Zn+1(l(n) − 1) : ν ≻ L(n)} for n ∈ N. On An, there exists a

particle ν which returns to the origin after time n and additionally the last ancestor

of ν which has been at a position containing a cookie was the ancestor at time n.

For λ0, γ > 0, which we will specify later (cf. (3.59) and (3.61)), we get the following

estimate with m∗ = max{1, p0m0}:

P
(
An ∩ {l(n) ≥ nλ0} ∩ {|L(n)| ≤ (m∗ + γ)n}

)

= 1− P
(
Ac

n ∩ {l(n) ≥ nλ0} ∩ {|L(n)| ≤ (m∗ + γ)n}
)

≤ 1− P
(
Λ−

⌈nλ0−1⌉ = 0
)M(m∗+γ)n

.

Here we use the fact that the number of offspring of every particle belonging to Ln which

return to the origin is bounded by the amount of offspring in Λ−
l(n)−1. Additionally, we

have |Ln| ≤ M |L(n)| due to assumption (3.1). Since the GWP
(
Λ−

n

)
n∈N0

with mean

offspring ϕℓ is subcritical, we can use Proposition 3.4.3 to obtain

P
(
An ∩ {l(n) ≥ nλ0} ∩ {|L(n)| ≤ (m∗ + γ)n}

)

≤ 1−
(
1− c(ϕℓ)

⌈nλ0−1⌉
)M(m∗+γ)n

≤ 1− exp
(
−2c(ϕℓ)

⌈nλ0−1⌉M(m∗ + γ)n
)

≤ 2c(ϕℓ)
nλ0−1M(m∗ + γ)n

= C(ϕℓ)
nλ0(m∗ + γ)n (3.58)

for some constants c, C > 0 and for large n. In the above display we make use of the

estimates 1 − x ≥ exp(−2x), which holds for x ∈ [0, 1
2
], and 1 − exp(−x) ≤ x, which

holds for all x ∈ R. We also note that we have ϕℓ < 1.

Let us first assume that we have m∗ = max{1, p0m0} = 1. We choose λ0 = λ/2 for

some λ > 0 which satisfies the assumptions of Proposition 3.5.5(a). We know that we

have ϕℓ ≤ 2q0m0 < 1 and therefore can choose γ > 0 such that

(ϕℓ)
λ0(m∗ + γ) ≤ (2q0m0)

λ0(1 + γ) ≤ (1− γ). (3.59)

By applying (3.59) to (3.58), we get

P
(
An ∩ {l(n) ≥ nλ0} ∩ {|L(n)| ≤ (m∗ + γ)n}

)
≤ o(1)(1− γ)n.

Therefore, the Borel-Cantelli lemma implies

P

(
lim sup
n→∞

(
An ∩ {l(n) ≥ nλ0} ∩ {|L(n)| ≤ (m∗ + γ)n}

))
= 0. (3.60)
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Moreover, Proposition 3.5.2 and Proposition 3.5.5 together with the choices of λ0 and γ

yield

P
(
lim inf
n→∞

(
{l(n) ≥ nλ0} ∩ {|L(n)| ≤ (m∗ + γ)n}

))
= 1.

Finally, we can conclude from (3.60) that we have P (lim supn→∞An) = 0, which implies

the transience of the CBRW in this case.

We now assume that we have m∗ = p0m0 > 1. Due the assumption of the transience

of the BRW without cookies, we have

ϕℓp0m0 ≤ 2q0m0 · p0m0 ≤
1

2
.

Therefore, we can choose 0 < γ < 1 such that

(ϕℓ)
1−γ(p0m0 + γ) ≤ 3

4
. (3.61)

For λ0 := 1− γ, (3.58) and (3.61) imply

P
(
An ∩ {l(n) ≥ nλ0} ∩ {|L(n)| ≤ (m∗ + γ)n}

)
≤ o(1)

(
3

4

)n

.

Again, by applying the Borel-Cantelli lemma, we get

P

(
lim sup
n→∞

(
An ∩ {l(n) ≥ nλ0} ∩ {|L(n)| ≤ (m∗ + γ)n}

))
= 0.

Additionally, Proposition 3.5.2 and Proposition 3.5.5 together with the choices of λ0

and γ yield

P
(
lim inf
n→∞

(
{l(n) ≥ nλ0} ∩ {|L(n)| ≤ (m∗ + γ)n}

))
= 1.

Therefore, we conclude that we have P (lim supn→∞An) = 0, which implies the tran-

sience of the CBRW in the case p0m0 > 1. �

Proof of Theorem 3.3.2

For this theorem we only have to make sure that the cookies cannot displace the cloud

of particles too far to the right. It turns out that, somewhat similarly to the case of

a cookie (or excited) random walk (cf. Theorem 12 in [59]) one single cookie at every

position x ∈ N0 is not enough for a behaviour of such kind.

We divide the proof of the theorem into two cases. At first we consider the

case m0 = 1, i.e. particles can only branch at positions with a cookie, and in the

second part we consider the case m0 > 1.
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Let us first assume that m0 = 1 holds true. In this case the BRW without cookies

reduces to a nearest-neighbour random walk on Z and is therefore strongly recurrent iff

we have p0 =
1
2
. Further, it is enough to only take into account the very first offspring

particle in each time step since already those particles visit the origin infinitely often

with probability 1. For pc ≤ 1
2
, the strong recurrence is obvious since we can bound

the trajectories of the considered particles from above by the trajectory of a symmetric

random walk on Z with a standard coupling argument. For 1
2
< pc < 1 we can couple

the random movement of the considered particles to a symmetric random walk and an

excited random walk in the sense of [11] (with excitement ε = 2pc − 1) in such a way

that the positions of the considered particles lie in between the symmetric random walk

(to the left) and the excited random walk (to the right). Since both random walks are

recurrent (cf. Section 2 in [11] for the excited random walk), we can again conclude

that the CBRW is strongly recurrent.

Now we suppose that we have m0 > 1. From Proposition 3.2.2 we know that

we have log(m0) > −1
2
log (4p0q0) = I(0), where I(·) denotes the rate function of the

nearest-neighbour random walk on Z with transition probabilities p0 and q0. Since the

rate I is continuous on (−1, 1), there exist ε, δ ∈ (0, 1) such that log(m0) > I(−ε) + δ.

Let
(
Sn

)
n∈N0

denote a nearest-neighbour random walk of this kind started in 0 and

with transition probabilities p0 and q0. We have

lim
n→∞

1

n
logP

(
Sn ≤ −nε

)
=




−I(−ε) for 2p0 − 1 > −ε
0 for 2p0 − 1 ≤ −ε



 ≥ −I(−ε).

In particular, there exists k0 such that P
(
Sk0 ≤ −k0ε

)
≥ exp

(
− k0(I(−ε) + δ)

)
. This

yields for the BRW without cookies
(
Yν
)
ν∈Y

that

E
[
|{ν ∈ Y : |ν| = k0, Yν ≤ −k0ε}|

]
≥ (m0)

k0 exp
(
− k0(I(−ε) + δ)

)
> 1 (3.62)

for the above choice of ε and δ. Therefore, we can conclude that the embedded GWP

of those particles which move at least k0ε to the left between time 0 and k0, between k0

and 2k0 and so on is supercritical and therefore survives with strictly positive prob-

ability psur. Let us now turn back to the CBRW. For every existing particle ν the

probability

P
(
∃η ∈ Z : η � ν, |η| − |ν| = k0, Xη = Xν − k0 | ν ∈ Z

)
≥ qcq

k0
0

to have at least one descendant k0 generations later which is located k0 positions to

the left of the position of ν is bounded away from 0. From this we conclude that, for

every existing particle ν in the CBRW, the probability

P
(
∃η ∈ Z : η � ν, Xτ ≤ l(|ν|) ∀ν � τ � η, Xη ≤ 0 | ν ∈ Z

)
≥ qcq

k0
0 psur =: c > 0

(3.63)
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to have at least one descendant located on the negative semi-axis without any cookie

contact of the ancestral line connecting ν and this descendant is also bounded away

from 0. Here the lower bound is a lower estimate for the probability for each existing

particle ν to have at least one descendant k0 generations later which is located k0

positions to the left of the position of ν and then starts a surviving embedded GWP

which moves at least k0ε to the left between time 0 and k0, between k0 and 2k0 and

so on. Since the particles we consider for this embedded GWP cannot hit the cookies

inbetween, this GWP has the same probability for survival psur as in the case of the

BRW without cookies (cf. (3.62)). Using (3.63) we can conclude the strong recurrence

of the CBRW since the particles on the negative semi-axis behave as the strongly

recurrent BRW without cookies before they can reach a cookie again. �

Proof of Theorem 3.3.3

Proof of part (a). Here we suppose that the LP is supercritical, i.e. pcmc > 1. On the

one hand the probability that all particles which are produced in the first step move

to the left and their offspring then escape to −∞ without returning to 0 is strictly

positive since every offspring particle starts an independent BRW without cookies at

position −1 as long as the offspring does not return to the origin. We note that the

probability for the BRW started at −1 never to return to the origin is strictly positive

since the BRW without cookies is transient to the left by assumption.

On the other hand the LP which is started at 0 is a supercritical GWP and therefore

survives with positive probability. If it survives, a.s. infinitely many particles leave the

LP (to the left) at time n ≥ 1. Afterwards each of those particles starts a BRW without

cookies at position n− 1 ≥ 0 since the offspring cannot reach a cookie again. Each of

those BRWs without cookies will a.s. produce at least one offspring which visits the

origin since the BRW without cookies is transient to the left by assumption. �

Proof of part (b). Here we suppose that the LP is critical or subcritical, i.e. pcmc ≤ 1.

In the following we want to consider the following three quantities. The first one is

the number of particles in the LP. The second one is the number of particles which

are descendants of the non-LP particles of generation n (i.e. Zn \ L(n)) and which are

the first in their ancestral line to reach the position l(n). By definition, these particles

can potentially change the position l(n) of the leftmost cookie in the future. The third

quantity is the number of particles belonging to Zn \ L(n) whose descendants will not

reach the position l(n) in the future. More precisely, for all n ∈ N0 we define (observe

that Xν = l(n) implies that |ν| = n):

ζ1(n) := |L(n)|,
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ζ2(n) := |{ν � Zn \ L(n) : Xν = l(n), Xη < l(n) ∀ η ≻ ν}|
ζ3(n) := |{ν ∈ Zn \ L(n) : Xν < l(n) ∀ η � ν}|.

We note that for the definition of ζ2(n) we count the number of descendants of the

non-LP particles at time n which will reach the position l(n) in the future. Thus, the

type-2 particles belong to a generation larger than n.

In the following we want to allow arbitrary starting configurations from the set

S :=

{
(a, b) ∈ NZ

0 × N0 :
∑

k∈Z

a(k) <∞, max{k ∈ Z : a(k) > 0} ≤ b

}
.

Here a contains the information about the number of particles at each position k ∈ Z

and b is the position of the leftmost cookie. In particular, every configuration of

the CBRW which can be reached within finite time is contained in the set S. For

each (a, b) ∈ S we consider the probability measure P(a,b) under which the CBRW

starts in the configuration (a, b) and then evolves in the usual way.

The main idea of the proof is the following. We show that there is a critical level for

the total amount of the type-1 and type-2 particles. Once this level is exceeded the total

amount has the tendency to fall back below this level. There are two reasons which

cause this behaviour. First, the expected amount of type-2 particles which stay type-2

particles for another time step decreases every time the leftmost cookie is consumed

by a type-1 particle. Second, if there are many type-1 particles, the LP survives for

a long time with high probability and meanwhile the remaining particles have time to

escape to the left.

For the proof we have to analyse the relation between the type-1 and type-2 particles

and to distinguish between two distinct situations. In the first situation, there are

type-1 particles at time n and therefore the leftmost cookie is consumed. In the second

case there are no type-1 particles and therefore the position of the leftmost cookie does

not change. Let us first assume that there are type-1 particles at time n. Then, on the

event {ζ1(n) 6= 0} we a.s. have

E(a,b)

[
ζ1(n+ 1) | ζ1(n), ζ2(n)

]
= ζ1(n)pcmc,

E(a,b)

[
ζ2(n+ 1) | ζ1(n), ζ2(n)

]
= ζ1(n)qcmc(ϕr)

2 + ζ2(n)ϕr. (3.64)

Here the last equality holds since each type-1 particle produces an expected number

of qcmc particles which leave the LP to the left. In order to decide how large their

expected contribution to the type-2 particles at time n + 1 is, we have to count the

number of their offspring which will reach position l(n + 1) = l(n) + 1 in the future.

For each of these particles the distribution of this random number coincides with the
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distribution of Λ+
2 whose expectation is given by (ϕr)

2. Additionally, since one cookie is

consumed the amount of type-2 particles, which are still type-2 particles at time n+1,

decreases in expectation by ϕr. Observe that due to the transience to the left of the

BRW without cookies, the process
(
Λ+

n

)
n∈N0

is a GWP with mean ϕr < 1 (cf. (3.4)

and (3.5)).

Let us now assume that the LP is empty. Then, on {ζ1(n) = 0} we a.s. have

E(a,b)

[
ζ1(n+ 1) + ζ2(n+ 1) | ζ1(n), ζ2(n)

]
= ζ2(n), (3.65)

since the position of the leftmost cookie does not change, i.e. l(n+1) = l(n). Therefore,

each type-2 particle of time n either still is a type-2 particle at time n+ 1 or becomes

a type-1 particle.

First, we deal with the subcritical case, i.e. pcmc < 1. For fixed h ∈ N (which will

be specified later, cf. (3.67)) we define the following random times

ηn+1 :=




(ηn + h) ∧ inf{i > ηn : ζ1(i) = 0}, if ζ1(ηn) > 0,

(ηn + h) ∧ inf{i > ηn : ζ1(i) > 0}, if ζ1(ηn) = 0,

for n ∈ N0 and η0 := 0. We note that we have ηn+1 − ηn ≤ h. For n ∈ N0 we define

ξ1(n) := ζ1(ηn), ξ2(n) := ζ2(ηn)

as the amount of type-1 and type-2 particles along the sequence (ηn)n∈N0 and the

associated filtration Fn := σ
(
ξ1(i), ξ2(i), ηi : i ≤ n

)
. We want to adapt Theorem 2.2.1

of [27] and start with the following lemma:

Lemma 3.5.7. For suitable (large) h, u ∈ N we have

E(a,b)[ξ1(n+ 1) + ξ2(n + 1) | Fn] ≤ ξ1(n) + ξ2(n) (3.66)

a.s. on {ξ1(n) + ξ2(n) ≥ u} for all (a, b) ∈ S.

Proof of Lemma 3.5.7. Let us fix (a, b) ∈ S. We choose h ∈ N large enough such that

(
pcmc

)h
+ qcmc

h−1∑

i=0

(
pcmc

)i
(ϕr)

h−i+1 <
1

2
(3.67)

and

(ϕr)
h <

1

2
. (3.68)

Such a choice is possible since pcmc < 1 and ϕr < 1. Then we fix c = c(h) such that

0 < c ≤ 1

Mh
(1− ϕr) (3.69)
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holds true. We recall that the particles in the LP constitute a subcritical GWP.

Let
(
GW sub

n

)
n∈N0

denote such a GWP (with the same offspring distribution). Then,

for every δ > 0, there is u = u(δ, h, c) ∈ N such that

P⌊c/(c+1)u⌋

(
GW sub

h ≥ 1
)
≥ 1− δ (3.70)

since the probability for each existing particle to have at least one offspring which

moves to the right is strictly positive.

We now verify (3.66) separately on the following three events:

A1 := {ξ1(n) + ξ2(n) ≥ u} ∩ {ξ1(n) = 0},
A2 := {ξ1(n) + ξ2(n) ≥ u} ∩ {0 < ξ1(n) ≤ cξ2(n)},
A3 := {ξ1(n) + ξ2(n) ≥ u} ∩ {ξ1(n) > cξ2(n)}.

We note that A1 ∪ A2 ∪A3 = {ξ1(n) + ξ2(n) ≥ u}.
On the event A1 there is no particle in the LP between time ηn and time ηn+1 by

definition. Thus, the position of the leftmost cookie does not change during this period.

Hence we a.s. have

E(a,b)[ξ1(n+ 1) + ξ2(n+ 1) | Fn]1A1 = ξ2(n)1A1

due to (3.65).

On the event A2 there is at least one particle in the LP and thus the leftmost cookie

is consumed at time ηn. Using ηn+1 − ηn ≤ h and the fact that the total number of

offspring of each particle is bounded by M , we a.s. obtain on the event A2

E(a,b)[ξ1(n+ 1) + ξ2(n+ 1) | Fn] ≤
(
ξ1(n)M

h + ϕrξ2(n)
)
≤ ξ2(n)

(
cMh + ϕr

)
≤ ξ2(n).

Here we use (3.69) in the last step.

Next, we recall that Ln = {ν ∈ Zn+1(l(n)− 1) : ν ≻ L(n)} denotes the set of parti-

cles which leave the leading process to the left at time n. Using (3.64), on the event A3,

we a.s. get

E(a,b)[ξ1(n+ 1) + ξ2(n+ 1) | Fn]

= E(a,b)

[(
ξ1(n + 1) + ξ2(n + 1)

)
1{ηn+1−ηn<h} | Fn

]

+ E(a,b)

[(
ξ1(n + 1) + ξ2(n + 1)

)
1{ηn+1−ηn=h} | Fn

]

≤
(
Mh−1ξ1(n) + ϕrξ2(n)

)
E(a,b)

[
1{ηn+1−ηn<h} | Fn

]

+ (ϕr)
hξ2(n)E(a,b)

[
1{ηn+1−ηn=h} | Fn

]
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+ E(a,b)

[
|L(ηn + h)|1{ηn+1−ηn=h}

∣∣∣Fn

]

+
h−1∑

i=0

E(a,b)


 ∑

ν�Lηn+i

1{Xν=l(ηn)+h,Xη<l(ηn)+h∀η≺ν}1{ηn+1−ηn=h}

∣∣∣∣∣∣
Fn


 .

In the second step of this computation we use that on the event {ηn+1 − ηn < h} (in

expectation) the proportion at most ϕr of the type-2 particles does not escape to the

left since at least one cookie is consumed. On the event {ηn+1 − ηn = h} we consider

three summands. The first one corresponds to the type-2 particles at time ηn that are

still type-2 particles at time ηn+1. The second one corresponds to the particles that are

still in the LP at time ηn+1 and the third one to the particles which have left the LP

in the meantime. Using (3.64) and the fact that we have at least ⌊c/(c + 1)u⌋ type-1

particles on the event A3, we continue the calculation and obtain that on the event A3

we a.s. have

E(a,b)[ξ1(n + 1) + ξ2(n+ 1) | Fn] ≤
[
(
Mh−1ξ1(n) + ϕrξ2(n)

)
P⌊c/(c+1)u⌋

(
GW sub

h = 0
)

+ (ϕr)
hξ2(n) +

(
pcmc

)h
ξ1(n)

+

h−1∑

i=0

ξ1(n)(pcmc)
i(qcmc)(ϕr)

h−i+1

]

≤
(
Mh−1δ +

1

2

)
ξ1(n) +

(
ϕrδ +

1

2

)
ξ2(n)

≤ ξ1(n) + ξ2(n)

for δ = δ(M,h, ϕr) sufficiently small. Here we use (3.67), (3.68), and (3.70) for the

latter estimates. �

We now turn to the case of a critical leading process, i.e., pcmc = 1. Again, for

some c > 0, which we specify later (cf. (3.72)), we inductively define the following

random times

ηn+1 :=




ηn + 1, if ζ2(ηn) ≥ cζ1(ηn),

inf{n > ηn : ζ1(n) = 0}, if ζ2(ηn) < cζ1(ηn),

for n ∈ N0 and η0 := 0. Similarly to above, we define for n ∈ N0

ξ1(n) := ζ1(ηn), ξ2(n) := ζ2(ηn)

and the associated filtration Fn := σ
(
ξ1(i), ξ2(i), ηi : i ≤ n

)
. We continue with a

lemma, which is an analogous statement to Lemma 3.5.7.
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Lemma 3.5.8. For suitable (large) u ∈ N we have

E(a,b)[ξ1(n+ 1) + ξ2(n+ 1)|Fn] ≤ ξ1(n) + ξ2(n) (3.71)

a.s. on {ξ1(n) + ξ2(n) ≥ u} for all (a, b) ∈ S.

Proof of Lemma 3.5.8. Let us fix (a, b) ∈ S. Again for some u = u(c) ∈ N, which we

specify later (cf. (3.83)), we introduce the following events

A1 := {ξ1(n) + ξ2(n) ≥ u} ∩ {ξ2(n) ≥ cξ1(n)},
A2 := {ξ1(n) + ξ2(n) ≥ u} ∩ {ξ2(n) < cξ1(n)}.

and show (3.71) on the events A1 and A2 separately.

On the event A1 we a.s. have

E(a,b)[ξ1(n + 1) + ξ2(n + 1)|Fn]

≤ 1{ξ1(n)=0}ξ2(n) + 1{ξ1(n)>0} (ϕrξ2(n) +Mξ1(n))

≤ 1{ξ1(n)=0}ξ2(n) + 1{ξ1(n)>0}

(
ϕrξ2(n) +Mc−1ξ2(n)

)

≤
[
1{ξ1(n)=0} + 1{ξ1(n)>0}

(
ϕr +Mc−1

)]
ξ2(n)

≤ ξ2(n)

for any

0 < c ≤M (1− ϕr)
−1 . (3.72)

Here we use that on the event A1 we have ηn+1 = ηn + 1. If ξ1(n) = 0 holds, then no

cookie is eaten at time ηn and therefore we have ξ2(n+ 1) = ξ2(n). If ξ1(n) > 0 holds,

the leftmost cookie is consumed and therefore in expectation the amount of the type-2

particles is reduced by the factor ϕr.

Next, to investigate the behaviour of the process on the event A2, we first consider

the case (ξ1(n), ξ2(n)) = (v, 0) for v ∈ N. From this we can easily derive the general case

later on since each time a cookie is consumed the number of type-2 particles is reduced

by the factor ϕr < 1. Therefore, the type-2 particles do not essentially contribute to

the growth of the process. We have:

E(a,b)[ξ1(n+ 1) + ξ2(n+ 1) | Fn]1{(ξ1(n),ξ2(n))=(v,0)}

= E(a,b)[ξ2(n+ 1)|Fn]1{(ξ1(n),ξ2(n))=(v,0)}

=
(
E(a,b)

[
ξ2(n+ 1)1{ηn+1−ηn≤v1/3} | Fn

]

+
∑

j>v1/3

E(a,b)

[
ξ2(n+ 1)1{ηn+1−ηn=j} | Fn

] )
1{(ξ1(n),ξ2(n))=(v,0)}. (3.73)

96



3.5. PROOFS OF THE MAIN RESULTS

We now consider the first summand in (3.73). For this we define

E0 :=

{
max

ℓ=1,...,⌊v1/3⌋
ζ1(ηn + ℓ) ≤ v2/3

}
,

Ek :=

{
max

ℓ=1,...,⌊v1/3⌋
ζ1(ηn + ℓ) ∈

(
2k−1v2/3, 2kv2/3

]}
for k ≥ 1,

in order to control the maximum number of particles in the LP. Using these definitions

we write

E(a,b)

[
ξ2(n+ 1)1{ηn+1−ηn≤v1/3}

∣∣∣ Fn

]

=

∞∑

k=0

E(a,b)

[
ξ2(n+ 1)1Ek∩{ηn+1−ηn≤v1/3}

∣∣∣ Fn

]

≤ v1/3Mv2/3P(a,b)

(
ηn+1 − ηn ≤ v1/3

∣∣ Fn

)

+
∞∑

k=1

v1/3M2kv2/3P(a,b)

(
Bk(n, v) | Fn

)
, (3.74)

where we use the notation

Bk(n, v) :=
{
∃ℓ ∈ {ηn + 1, . . . , ηn+1} : ζ1(ℓ) > 2k−1v2/3, ηn+1 − ηn ≤ v1/3

}
.

Here we note that each particle that leaves the LP starts a new BRW without cookies

(as long as the offspring particles do not reach a cookie again) which is transient to

the left by assumption. Thus, for each of those particles the expected number of

descendants which reach the position l(ηn+1) (and therefore are type-2 particles at

time ηn+1) is less than one since they have to move at least two steps to the right. Now

we observe that on {(ξ1(n), ξ2(n)) = (v, 0)} we a.s. have

P(a,b)

(
ηn+1 − ηn ≤ v1/3

∣∣ Fn

)
= Pv

(
T cr ≤ v1/3

)
(3.75)

and

P(a,b)

(
Bk(n, v)

∣∣ Fn

)
≤ v1/3P⌈2k−1v2/3⌉

(
T cr ≤ v1/3

)
(3.76)

where T cr denotes the extinction time of a critical GWP whose offspring distribution

is given by the number of particles produced by a single particle in the LP which stay

in the LP. (We note that this coincides with the number of type-1 offspring of a type-1

particle.) Now we apply (3.75), (3.76) and Proposition 3.4.5 to (3.74) and a.s. obtain

E(a,b)

[
ξ2(n+ 1)1{ηn+1−ηn≤v1/3}

∣∣∣Fn

]
· 1{(ξ1(n),ξ2(n))=(v,0)}

≤
[
Mv exp

(
−C v

v1/3

)
+

∞∑

k=1

M2kv4/3 exp

(
−C 2k−1v2/3

v1/3

)]
· 1{(ξ1(n),ξ2(n))=(v,0)}
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= o(v) · 1{(ξ1(n),ξ2(n))=(v,0)} (3.77)

where C > 0 is the constant of Proposition 3.4.5.

Now we deal with the second summand in (3.73). For some δ ∈ (0, 1
3
) and j ∈ N

we introduce the events

F 0
j :=

{
max

ℓ=1,...,⌊jδ⌋
ζ1
(
ηn + j − ⌊jδ⌋+ ℓ

)
≤ j2δ

}
,

F k
j :=

{
max

ℓ=1,...,⌊jδ⌋
ζ1
(
ηn + j − ⌊jδ⌋+ ℓ

)
∈
(
2k−1j2δ, 2kj2δ

]}
for k ≥ 1,

and

G0
j :=

{
max

ℓ=1,...,j
ζ1(ηn + ℓ) ≤ j1+δ

}
,

Gk
j :=

{
max

ℓ=1,...,j
ζ1(ηn + ℓ) ∈

(
2k−1j1+δ, 2kj1+δ

]}
for k ≥ 1.

On the events Gk
j we control the maximum number of particles in the LP up to time j,

whereas on F k
j we control the maximum number during the ⌊jδ⌋ time steps before j.

We observe that on the event F k
j ∩Gℓ

j not more than M · 2ℓj2+δ particles leave the LP

up to time ηn+ j−⌊jδ⌋ (because of Gℓ
j). Each of those particles starts a BRW without

cookies and in average it contributes not more than (ϕr)
⌊jδ⌋+1 ≤ (ϕr)

jδ to the number

of type-2 particles at time ηn+j. Similarly, on F k
j ∩Gℓ

j not more thanM2kj3δ particles

leave the LP from time ηn+j−⌊jδ⌋+1 to time ηn+j (because of F
k
j ). Further, it holds

that each particle that leaves the LP starts a new BRW without cookies and for each

of those particles the expected number of descendants which reach the position l(ηn+1)

is less than one since they have to move at least two steps to the right. Thus, we have

E(a,b)

[
ξ2(n + 1)1F k

j ∩G
ℓ
j∩{ηn+1−ηn=j} | Fn

]

≤
(
M2ℓj2+δ (ϕr)

jδ +M2kj3δ
)
P(a,b)

(
F k
j ∩Gℓ

j ∩ {ηn+1 − ηn = j}
∣∣Fn

)
. (3.78)

Now we suppose that ℓ ≥ k and (k, ℓ) 6= (0, 0). Then due to Proposition 3.4.5 we have

P(a,b)

(
F k
j ∩Gℓ

j ∩ {ηn+1 − ηn = j}
∣∣ Fn

)

≤ P(a,b)

(
∃i ∈ {1, . . . , j} : ζ1(ηn + i) > 2ℓ−1j1+δ, ζ1(ηn + j) = 0

∣∣Fn

)

≤ j P⌈2ℓ−1j1+δ⌉ (T
cr ≤ j)

≤ j exp

(
−C 2ℓ−1j1+δ

j

)
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≤ j exp
(
−1

2
C2(ℓ+k)/2jδ

)
. (3.79)

If otherwise k ≥ ℓ and (k, ℓ) 6= (0, 0), then again due to Proposition 3.4.5 we have

P(a,b)

(
F k
j ∩Gℓ

j ∩ {ηn+1 − ηn = j}
∣∣Fn

)

≤ P(a,b)

(
∃i∈ {j − ⌊jδ⌋ + 1, . . . , j} : ζ1(ηn + i) > 2k−1j2δ, ζ1(ηn + j) = 0

∣∣Fn

)

≤ j P⌈2k−1j2δ⌉
(
T cr ≤ jδ

)

≤ j exp

(
−C 2k−1j2δ

jδ

)

≤ j exp
(
−1

2
C2(ℓ+k)/2jδ

)
. (3.80)

By virtue of (3.79) and (3.80) combined with (3.78) we a.s. obtain

E(a,b)

[
ξ2(n+ 1)1{ηn+1−ηn=j} | Fn

]

=
∞∑

k,ℓ=0

E(a,b)

[
ξ2(n+ 1)1F k

j ∩G
ℓ
j∩{ηn+1−ηn=j}

∣∣∣Fn

]

≤
(
Mj2+δ (ϕr)

jδ +Mj3δ
)
P(a,b) (ηn+1 − ηn = j | Fn)

+
∑

(k,ℓ)6=(0,0)

(
M2ℓj2+δ(ϕr)

jδ+M2kj3δ
)
j exp

(
−1

2
C2(ℓ+k)/2jδ

)

≤ C2j
3δ P(a,b) (ηn+1 − ηn = j | Fn)

+

∞∑

i=1

C2j
1+3δ(i+ 1)2i exp

(
−1

2
C2i/2jδ

)
(3.81)

for a suitable constant C2 > 0 which does not depend on j. Due to Proposition 3.4.6 and

for a suitable choice of a constant C3 > 0, we a.s. have P(a,b) (ηn+1 − ηn = j | Fn) ≤ C3
v
j2

on the event {(ξ1(n), ξ2(n)) = (v, 0)}. Therefore, (3.81) yields

E(a,b)

[
ξ2(n + 1) · 1{ηn+1−ηn=j} | Fn

]
· 1{(ξ1(n),ξ2(n))=(v,0)}

≤
[
C4j

3δ−2v +
∞∑

i=1

C2j
1+3δ(i+ 1)2i exp

(
−1

2
C2i/2jδ

)
]

· 1{(ξ1(n),ξ2(n))=(v,0)}
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≤
[
C4j

3δ−2v+ C2j
1+3δ exp

(
−1

4
C2

1
2 jδ
) ∞∑

i=1

(i+ 1)2i exp
(
−1

4
C2i/21

)
]

· 1{(ξ1(n),ξ2(n))=(v,0)}

= C5j
3δ−2v · 1{(ξ1(n),ξ2(n))=(v,0)} (3.82)

for suitable constants C4, C5 > 0. Using the estimates (3.77) and (3.82) for the two

summands in (3.73), we conclude

E(a,b)[ξ1(n+ 1) + ξ2(n+ 1)|Fn] · 1{(ξ1(n),ξ2(n))=(v,0)}

≤
[
o(v) + v

∑

j>v1/3

C5j
3δ−2

]
· 1{(ξ1(n),ξ2(n))=(v,0)}

= vo(v) · 1{(ξ1(n),ξ2(n))=(v,0)},

and therefore there exists v0 ∈ N such that

E(a,b)[ξ1(n+ 1) + ξ2(n+ 1) | Fn]1{(ξ1(n),ξ2(n))=(v,0)} ≤ v1{(ξ1(n),ξ2(n))=(v,0)}

for v ≥ v0.

For the general case, in which we can also have type-2 particles at time ηn, we

notice that for

u ≥ (1 + c)v0 (3.83)

we have

E(a,b)[ξ1(n + 1) + ξ2(n + 1) | Fn]1A2 ≤
[
ξ1(n) + ξ2(n)

]
1A2

since on A2 the type-2 particles which exist at time ηn evolve independently of the LP

until time ηn+1. �

Now we fix u ∈ N such that Lemma 3.5.7 and Lemma 3.5.8 hold. Further, we define

τ := inf{n ∈ N0 : ξ1(n) + ξ2(n) ≤ u}.

Due to Lemma 3.5.7 and, respectively, Lemma 3.5.8, we see that in the subcritical

(i.e. pcmc < 1) as well as in the critical (i.e. pcmc = 1) case the process

(
ξ1(n ∧ τ) + ξ2(n ∧ τ)

)
n∈N0

is a non-negative supermartingale w.r.t. (Fn)n∈N0 and P(a,b) for arbitrary (a, b) ∈ S.
Thus, it converges P(a,b)-a.s. to a finite random variable X (a, b). Moreover, the process

is integer-valued and the probability for it to eventually stay at a constant level v > u

for all times is equal to 0. Hence, we conclude that X (a, b) ≤ u holds P(a,b)-a.s.
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Therefore, for all (a, b) ∈ S we have P(a,b) (∃n ∈ N0 : ξ1(n) + ξ2(n) ≤ u) = 1, and

hence

P(a,b) (∃n ∈ N0 : ζ1(n) + ζ2(n) ≤ u) = 1. (3.84)

We now introduce the random times

σi := inf{n > τi : l(n) = l(τi) + 2}, for i ≥ 0,

τi := inf{n ≥ σi−1 : ζ1(n) + ζ2(n) ≤ u}, for i ≥ 1,

with τ0 := 0. Here σi denotes the first time at which two more cookies have been eaten

since τi. Moreover, we observe that
(
Y (n)

)
n∈N0

:=
((
Zn(x)

)
x∈Z

, l(n)
)
n∈N0

is a Markov

chain with values in S, which can only reach finitely (thus countably) many states

within finite time. Therefore, (3.84) yields for i ∈ N0

P(e0,0)

(
τi+1 <∞ | σi <∞

)
= 1 (3.85)

where (e0, 0) denotes the usual starting configuration with one particle and the leftmost

cookie at position 0. Finally, we have

P(e0,0)

(
σi = ∞ | τi <∞

)
≥
(
qcP(Λ

+
1 = 0)

)Mu
=: γ ∈ (0, 1). (3.86)

This inequality holds since at the first time after τi, at which any particle reaches the

leftmost cookie again, there are not more than u type-1 particles. Each of those type-1

particles cannot produce more than M particles in the next step. Afterwards, the

probability for any direct offspring of the type-1 particles to move to the left and then

produce offspring which escape to −∞ is given by qcP(Λ
+
1 = 0). All the remaining

type-2 particles escape to the left with probability P(Λ+
1 = 0) since one more cookie

has been eaten. In this case, only one more cookie is consumed after the random time τi

implying σi = ∞.

Using (3.85) and (3.86) we can conclude

P(e0,0)

(
σi <∞ ∀ i ∈ N

)

≤ P(e0,0)

(
σk <∞

)

= P(e0,0)

(
σ0 <∞

) k∏

i=1

P(e0,0)

(
σi <∞ | τi <∞

)
P(e0,0)

(
τi <∞ | σi−1 <∞

)

≤
(
1− γ

)k −−−→
k→∞

0.

In particular, this implies that a.s. only finitely many cookies are consumed and this

yields that the CBRW is transient. �
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3.6 Final remarks

At the end of this chapter, let us consider a CBRW with one cookie at every posi-

tion x ∈ Z, i.e. c0(x) := 1 for all x ∈ Z. In this case the leftmost cookie on the positive

semi-axis

l(n) =min{x ≥ 0 : cn(x) = 1}

and the rightmost cookie on the negative semi-axis

r(n) :=max{x ≤ 0 : cn(x) = 1}

are of interest. With the help of these two definitions we are able to introduce the right

LP L+(n) := Zn(l(n)) as well as the left LP L−(n) := Zn(r(n)). Using the symmetry

of the CBRW with regard to the origin, the following results can be derived from

Theorems 3.3.1, 3.3.2, and 3.3.3:

Theorem 3.6.1. We suppose that the BRW without cookies is transient to the right.

(a) If the right LP is supercritical, i.e. pcmc > 1 holds, then

(i) the CBRW is strongly recurrent iff pcmcϕℓ ≥ 1;

(ii) the CBRW is weakly recurrent iff pcmcϕℓ < 1 and qcmc > 1;

(iii) the CBRW is transient to the right iff pcmcϕℓ < 1 and qcmc ≤ 1.

(b) If the right LP is subcritical or critical, i.e. pcmc ≤ 1 holds, then

(i) the CBRW is weakly recurrent iff the left LP is supercritical, i.e. qcmc > 1;

(ii) the CBRW is transient to the right iff the left LP is subcritical or critical,

i.e. qcmc ≤ 1.

Theorem 3.6.2. We suppose that the BRW without cookies is strongly recurrent. Then

the CBRW is strongly recurrent, no matter which kinds of right and left LP we have.

Theorem 3.6.3. We suppose that the BRW without cookies is transient to the left.

Due to the symmetry of the process we get the same result as in Theorem 3.6.1 if we

only replace right LP by left LP, pc by qc and ϕℓ by ϕr.
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[1] E. Aidékon (2008). Transient random walks in random environment on a Galton-

Watson tree. Probab. Theory Rel. Fields 142, 525–559.

[2] D. Aldous, R. Lyons (2007). Processes on Unimodular Random Networks.

Electron. J. Probab. 12, 1454–1508.

[3] O.S.M. Alves, F.P. Machado, S.Yu. Popov, K. Ravishankar (2001). The

shape theorem for the frog model with random initial configuration. Markov Proc.

Rel. Fields 7 (4), 525–539.

[4] K.B. Athreya, P.E. Ney (1972). Branching Processes. Springer, New York.

[5] B. Baillon, Ph. Clement, A. Greven, F. den Hollander (1993). A

variational approach to branching random walk in random environment. Ann.

Probab. 21, 290–317.

[6] B. Baillon, Ph. Clement, A. Greven, F. den Hollander (1994). On a

variational problem for an infinite particle system in a random medium. J. reine

angew. Math. 454, 181–217.

[7] C. Bartsch, N. Gantert, M. Kochler (2009). Survival and growth of a

branching random walk in random environment. Markov Proc. Rel. Fields 15,

528–548.

[8] C. Bartsch, M. Kochler, T. Kochler, S. Müller, S. Popov (2011).

Cookie branching random walks. Preprint, available at arXiv:1106.1688.

[9] A.-L. Basdevant, A. Singh (2008). On the speed of a cookie random walk.

Probab. Theory Rel. Fields 141, 625–645.

[10] A.-L. Basdevant, A. Singh (2009). Recurrence and transience of a multi-

excited random walk on a regular tree. Electron. J. Probab. 14, 1628–1669.

103



BIBLIOGRAPHY

[11] I. Benjamini, D.B. Wilson (2003). Excited random walk. Electron. Commun.

Probab. 8, 86–92.
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