
TECHNISCHE UNIVERSITÄT MÜNCHEN
Lehrstuhl für Echtzeitsysteme und Robotik

Recovery of Structure and Motion from
Monocular Images under Poor Lighting and

Texture Conditions.

Oliver Ruepp

Vollständiger Abdruck der von der Fakultät der Informatik der Technischen Uni-
versität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Bernd Brügge, Ph.D.
Prüfer der Dissertation:1. Univ.-Prof. Dr.-Ing. Darius Burschka

2. Prof. Gregory D. Hager, Ph.D.
Johns Hopkins University, Baltimore/USA

Die Dissertation wurde am 29.02.2012 bei der Technischen Universität München
eingereicht und durch die Fakultät für Informatik am 15.10.2012 angenommen.

http://www.tum.de
http://www6.in.tum.de
mailto:ruepp@in.tum.de

ii

Abstract

Recovery of dense geometry and camera motion from a set of monocular images
is a well-known problem that can be solved quite reliably in well-conditioned en-
vironments. Common prerequisites for algorithms dealing with this problem are
static lighting conditions and presence of sufficient scene texture, allowing reliable
detection and matching of image features.

There are, however, many situations where these prerequisites are not met, and
common algorithms fail. One example is medical video-endoscopy, where surfaces
do not exhibit much texture, and lighting conditions change due to the moving
light source that is mounted on the camera. We suggest to address the problem by
applying a purely intensity-based approach that also takes into account changes in
lighting conditions.

In this thesis, we investigate the applicability of sliding-window intensity-based
bundle-adjustment methods to this problem. First of all, we show that such meth-
ods are well-suited for recovery of dense scene structure and camera motion under
constant lighting conditions. To this end, we develop a novel algorithm that adapts a
parametric surface model to a set of images, determining both surface and extrinsic
camera parameters.

That algorithm is subsequently extended to model the case of variable lighting due
to a moving light source that is linked rigidly to the camera. This special case can
be found in medical video-endoscopy, which is the main application area that we
are focusing on with our method. However, we argue that such usage of dynamic
lighting is generally beneficial for robustness of reconstruction, since the changes in
shading itself provide additional information about the surface shape.

We validate the feasibility of that approach on synthetic data as well as on real-world
images. In case of real-world images, it is apparent that radiometric imperfections
significantly influence the performance of the algorithm, such that a calibration
of photometric and geometric properties of the system becomes necessary. The
relevant properties of the optical system are the camera response function, the
camera vignetting effect, and some properties of the light source. A description
of an adequate calibration technique complements the thesis, facilitating an overall
system that provides scene structure and camera motion estimates in cases where
established, feature-based methods fail.

iv

Zusammenfassung

Das Berechnen eines dichten Szenenmodells und der Kamerabewegung aus mono-
kularen Bildern ist ein bekanntes Problem, welches in gut konditionierten Umge-
bungen zuverlässig gelöst werden kann. Übliche Voraussetzungen zu seiner Lösung
sind statische Beleuchtungsbedingungen und das Vorhandensein von ausreichend
strukturierten Texturen in der beobachteten Szene, so dass Bildmerkmale verlässlich
detektiert und zugeordnet werden können.

Allerdings gibt es Situationen, in denen diese Voraussetzungen nicht erfüllt sind
und bisher bekannte Algorithmen keine brauchbaren Ergebnisse liefern. Ein Bei-
spiel dafür ist die Videoendoskopie in der Medizin, wo die beobachteten Flächen
häufig wenig Struktur aufweisen und die Lichtbedingungen sich ändern, da die Licht-
quelle sich mit der Kamera bewegt. Wir schlagen vor, dieses Problem mit Hilfe ei-
nes rein Intensitäts-basierten Algorithmus zu lösen, welcher die Lichtbedingungen
berücksichtigt.

In dieser Arbeit untersuchen wir die Andwendbarkeit von intensitätsbasierten Bün-
delausgleichsverfahren auf dieses Problem. Zunächst zeigen wir, dass solche Me-
thoden gut geeignet sind, um die Szenenstruktur und die Kamerabewegung unter
konstanten Lichtbedingungen zu berechnen. Zu diesem Zweck entwickeln wir einen
neuartigen Algorithmus, der ein parameterisiertes Oberflächenmodell an eine Men-
ge von Bildern anpasst, so dass gleichzeitig die Oberflächen- und Kameraparameter
bestimmt werden.

Wir beschreiben außerdem eine Erweiterung des Algorithmus für den Fall einer
Lichtquelle, die fest mit der Kamera verbunden ist. Diesen Spezialfall kann man z.B.
in der Videoendoskopie finden, welche wir als Hauptanwendungsgebiet für unsere
Methode sehen. Allerdings kann eine solche Verwendung von dynamischer Beleuch-
tung ohnehin vorteilhaft sein, da die Helligkeitsänderungen im Bild selbst zusätzliche
Information über die Beschaffenheit der beobachteten Oberfläche liefern.

Wir validieren unsere Ansätze auf synthetischen Datensätzen sowie auf echten Ka-
merabildern. Im Fall von echten Bildern zeigt sich, dass photometrische und geome-
trische Eigenschaften des Systems das Verhalten des Algorithmus negativ beeinflus-
sen, so dass eine Kalibrierung dieser Eigenschaften nötig wird. Eine Beschreibung
einer adäquaten Kalibrierungsmethode vervollständigt die Arbeit.

v

vi

Acknowledgements

First and foremost, I’d like to thank my supervisor Prof. Darius Burschka for his
guidance, encouragement and advice. I appreciate all his contributions of time,
ideas, and motivation that have helped me especially in tough times of my Ph.D.
pursuit.

Furthermore, I want to thank all the colleagues at our chair for Robotics and Embed-
ded Systems for making this a great place to do a PhD, and for being great company
for lunch breaks, soccer matches, movie nights, and so on. Additional thanks go to
the members of the Machine Vision and Perception group for many helpful discus-
sions. I am especially grateful to my office mate and friend Elmar Mair for both his
professional and personal support.

My sincere gratitude also goes to Dr. Gerhard Schrott, Gisela Hibsch, Monika
Knürr, and Amy Bücherl for their support with administrative things, and their
readiness to help with any problems.

I would also like to thank Prof. Markus Holzer, who supervised my earlier scientific
work and acquainted me with the basics of scientific research and good scientific
practice.

Thanks also go to all my friends, whom I neglected too often in all this time, but who
were, nevertheless, always there for me. I wish to thank my parents for giving me the
opportunity to pursue my studies in this field and for their support in everything
I did. Finally, I would like to thank Anna for her love and support and for her
virtually endless patience during those hard final months of writing this thesis.

i

Contents

List of Figures vii

List of Tables xi

1 Motivation 1
1.1 Contribution . 4

2 Bundle Adjustment Basics 5
2.1 Feature-Based Bundle Adjustment . 6
2.2 Intensity-Based Bundle Adjustment . 11

3 Approach 15
3.1 The Constant Light Case . 19
3.2 Light Source Modelling . 19
3.3 The Case of a Point Light at the Optical Center 22
3.4 The Case of Fully Calibrated Light . 23

4 Efficient and Flexible Nonlinear Optimization 27
4.1 Sequential Quadratic Programming . 29
4.2 On Computation of Hessian Matrices . 31

4.2.1 Full Computation . 31
4.2.2 Gauß-Newton-Approximation . 32
4.2.3 Non-Least-Squares Hessian Approximation 33

4.3 Established Algorithms for Derivative Computation 33
4.3.1 Finite Difference Approximation . 34
4.3.2 Symbolic Derivatives via Computer Algebra Systems 34
4.3.3 Automatic Differentiation . 35
4.3.4 Hand-Coded Derivatives . 36

4.4 A Modular Approach for Computing Derivatives 37
4.4.1 An Example: Feature-Based Bundle Adjustment 39

4.5 Basic Modules of our Framework . 43
4.5.1 Vector-Valued Functions . 43

iii

CONTENTS

4.5.1.1 Compositional Function Module 44
4.5.1.2 Input Map . 47
4.5.1.3 Function Stack . 47

4.5.2 Cost Functions . 49
4.5.2.1 Squared Differences . 50
4.5.2.2 Blake-Zisserman . 50
4.5.2.3 Huber and Pseudo-Huber . 52
4.5.2.4 Comparison of Pseudo-Huber and Blake-Zisserman Functions . . 53
4.5.2.5 Specialization of Cost Functions for Batch Matching 54
4.5.2.6 Another Alternative: Mutual Information 56

4.5.3 The Lagrangian Term Module . 58

5 Modules for Implementing Bundle Adjustment 61
5.1 Rigid Transformations . 65

5.1.1 Interpretation of Quaternions as Rotations 66
5.1.2 Quaternions in Multiple View Geometry 67

5.2 The Depth Map Model . 69
5.2.1 On B-Spline Curves and Surfaces . 70

5.2.1.1 B-Spline Linearity in Parameters 72
5.2.1.2 B-Spline Derivatives w.r.t. Curve Coordinates 75
5.2.1.3 B-Spline Derivatives w.r.t. Surface Coordinates 77

5.2.2 Surfaces Induced by Depth Maps . 79
5.2.2.1 Derivatives w.r.t. Surface Parameters 80
5.2.2.2 Tangents . 81
5.2.2.3 Normals . 82

5.2.3 Surfaces Induced by Inverse Depth Maps 85
5.2.3.1 Derivatives w.r.t. Surface Parameters 86
5.2.3.2 Tangents . 87
5.2.3.3 Normals . 87

5.2.4 Inverse Depth Maps using B-Splines . 88
5.3 Perspective Projection . 90
5.4 Image Interpolation . 91
5.5 Brightness Warping . 93
5.6 Unit Quaternion Constraints . 97
5.7 A Scale Uniqueness Constraint . 97
5.8 Regularization . 98
5.9 Efficient Sparse-Sparse Matrix Products . 103

6 Light Source Calibration 107
6.1 Estimation of the Projection Center . 109
6.2 Optimization of the Objective . 112
6.3 Modelling Constant Intensity Disturbances . 113

iv

CONTENTS

6.4 Determining the Intensity Profile . 114

7 Experimental Results 117
7.1 Ground Truth Comparison Method . 117

7.1.1 Depth Map Registration Approach . 120
7.1.2 Rotation and Translation Similarity Measures 123

7.2 Synthetic Datasets Used for our Evaluation . 123
7.3 Static Lighting Conditions . 128

7.3.1 Importance of Adequate Initialization . 128
7.3.2 Sensitivity of the Initialization to Motion 130

7.3.2.1 Ambiguous Configurations . 133
7.3.3 Importance of Window Size . 135
7.3.4 Influence of Regularization . 135
7.3.5 Effect of Spline Resolution . 135
7.3.6 Behaviour for Medium and Weak Textures 139
7.3.7 The Tube Scenario . 140
7.3.8 Results on Independent Benchmarks . 141
7.3.9 Non-Verified Reconstruction Results . 143

7.4 Camera-Centered Light Source . 145
7.4.1 Non-Verified Reconstruction Results . 146
7.4.2 A Short Evaluation of Mutual Information 149
7.4.3 Effect of Camera-Light Source Displacement 152

7.5 Light Source Calibration Results . 153
7.6 Tracking with a Calibrated Light Source . 157
7.7 Performance Considerations . 158

8 Conclusion 159
8.1 Future Work . 160

A Mathematical Notation 163

B Diagram Conventions 167

Complete List of Author’s Publications 169

References 171

v

CONTENTS

vi

List of Figures

1.1 Video-Endoscopy example image. 2
1.2 Difficult face reconstruction example. 2
1.3 Detected SIFT features for difficult face reconstruction. 3

2.1 Bundle adjustment toy problem. 6
2.2 Relation between pixel coordinates and 3D coordinates. 8
2.3 Illustration of rigid transformations. 9
2.4 Reprojection Error. 10
2.5 Comparison of direct depths and inverse depths. 12
2.6 Intensity reprojection error. 13

3.1 Flowchart for surface and motion recovery algorithms. 17
3.2 A simple 2D depth profile. 18
3.3 Face reconstruction example. 20
3.4 Direct BA with Light Shading Correction. 21
3.5 Treating the light source as inverse camera. 24
3.6 Schmatic of the image warping process under calibrated light. 25

4.1 Overview of the Optimization System. 30
4.2 Example for computational graph. 35
4.3 Schematic of QP System Assembly. 38
4.4 Computational Graph of Bundle Adjustment. 41
4.5 Parameter and function stacking. 48
4.6 Several cost functions. 50
4.7 Fitting results when using robust cost functions. 51
4.8 Gradient direction and magnitude for line fitting with Pseudo-Huber cost. . . . 54
4.9 Gradient direction and magnitude for line fitting with Blake-Zisserman cost. . . 55
4.10 Gradient direction and magnitude for a hypothetical optimal cost function. . . . 55

5.1 Computational Graph for Reconstruction under Constant Light. 62
5.2 Computational Graph for Reconstruction with Light Model. 63
5.3 Computational Graph for Reconstruction with Light Model. 64

vii

LIST OF FIGURES

5.4 Overview of surface representations. 70
5.5 A B-spline curve. 71
5.6 Interaction of brightness warping modules. 95
5.7 Inverse Depth Regularization. 99

6.1 The light source as an inverse camera. 108
6.2 Example calibration images for light calibration. 108
6.3 Lambertian reflectance on two calibration planes. 110
6.4 Basic idea of light calibration objective. 111
6.5 Bounding box used for calibration. 113
6.6 Calibration results with and without ambient light term. 115

7.1 Sample images from cone sequence. 118
7.2 Example images for a corrupted depth map estimate. 119
7.3 Example similarity values for cone result. 120
7.4 Normalization-based similarity measure vs. registration-based similarity mea-

sure. 121
7.5 Overview of scenes used for validation. 125
7.6 Motion paths used for evaluation scenarios. 126
7.7 Textures used in synthetic scenes. 127
7.8 Motion path used for initialization test. 129
7.9 Importance of adequate initialization. 129
7.10 Evaluation of movement paths at different speeds for plane and sphere scenes. . 131
7.11 Evaluation of movement paths at different speeds for cone and plane with bumps

scenes. 132
7.12 Inverted reconstruction phenomenon for synthetic data. 133
7.13 Inverted reconstruction phenomenon for real data. 134
7.14 Evaluation results for different sliding window sizes. 136
7.15 Evaluation results for different regularization strengths 137
7.16 Evaluation results for different spline resolutions 138
7.17 Tube reconstruction results for different spline resolutions. 139
7.18 Plane with bumps reconstruction results for different spline resolutions. 140
7.19 Evaluation results for different texture types . 141
7.20 Tube scenario reconstruction results. 142
7.21 Planar tracking benchmark results. 144
7.22 Reconstruction of a white piece of cloth. 144
7.23 Face reconstruction example. 145
7.24 Another face reconstruction example. 145
7.25 Static lighting vs. camera-centred lighting . 146
7.26 Evaluation of movement paths at different speeds for plane and sphere scenes. . 147
7.27 Evaluation of movement paths at different speeds for cone and plane with bumps

scenes. 148

viii

LIST OF FIGURES

7.28 Reconstruction results on real images. 150
7.29 Mutual information performance on moving light scenes. 151
7.30 Evaluation results for light displacement . 153
7.31 Light displacement cone reconstruction results. 154
7.32 Light displacement cone reconstruction results. 155
7.33 Light calibration results on synthetic data. 156
7.34 Evaluation results for tracking and reconstruction under calibrated light 158

B.1 HSV color scale. 168

ix

LIST OF FIGURES

x

List of Tables

A.1 Mathematical notation . 165

xi

xii

Chapter 1

Motivation

The recovery of scene geometry and camera motion from monocular image sequences is a
long-standing, highly relevant research problem within the area of Computer Vision. The
applications of such techniques include localization for navigation of mobile robots, augmented
reality applications as well as navigation in video-endoscopy, to name just a few. Many different
approaches for solving this problem have been pursued, leading to a multitude of methods that
work well for the settings that they have been conceived for. The main contribution of this
work is the development of a number of methods that aim at recovering scene structure and
camera motion under “difficult” conditions: Changing lighting and poor scene texture.

Typical methods for scene and motion recovery can be split up into two categories: feature-
based methods and direct methods. Feature-based methods rely on feature extraction mecha-
nisms, such as SIFT [10], SURF [11], BRISK [12] etc., using only the 2D position of landmarks.
Direct methods, on the other hand, work directly on image intensities, and are naturally better
suited for cases where the scene does not provide much texture.

Some early examples for feature-based systems are MonoSLAM by Davison [13] and V-
GPS by Burschka and Hager [14], while FrameSLAM by Agrawal and Konolidge [15] and
PTAM by Klein and Murray [16] are more recent developments. There has been a strong
trend in recent feature-based approaches towards sliding-window methods that do not update
their estimates based on only one image at a time, but instead perform an update over a
small set of key-frame images via bundle adjustment. Strasdat et al. [17] have investigated this
approach and found it to perform favourably compared to traditional methods, both in terms
of performance and accuracy, except for very small feature sets.

Feature-based methods work fine as long as enough features can be detected and matched
in images. However, this is by far not always the case. Consider Figure 1.1, which shows an
example image from a video-endoscopy sequence. Note that the image quality is rather bad, and
that there is not much texture in the scene. Not surprisingly, feature detection and matching
turns out to be quite difficult on such images. We have run SIFT on two images of the sequence,
which yielded 9 matches. However, only 2 of these 9 were actual good matches, and 2 matches
are definitely not enough for recovering pose or any scene structure.

1

1. MOTIVATION

Figure 1.1: Example images from video-endoscopy, showing SIFT matches.

(a) Template image. (b) Reconstruction at ∼ 45◦ angle. (c) Profile view of reconstruction.

Figure 1.2: Face reconstruction example. Note that the forehead region exhibits almost no
texture at all, except for a slight gradient due to shadowing.

Performing structure and motion recovery from such low-quality images remains challenging
for intensity-based methods as well. But, as we will see in Chapter 7, we are at least able to
perform an approximate reconstruction.

Another example for a difficult reconstruction scenario is shown in Figure 1.2, along with
reconstruction results produced by one of our algorithms. Note that the reconstruction works
quite well despite large, homogeneous regions that are present in the image. We have also run
the SIFT feature detection and matching algorithm on some images, and found only a very
small number of features. Especially on the forehead, features are very sparse, and definitely
insufficient to reconstruct the associated surface. The detected features are shown in Figure 1.3.
We do not show the feature matching lines for the sake of clarity.

Direct methods are better suited for such difficult cases, since they can make better use of
the information that is present in the images [18]. Consider again the video-endoscopy example
of Figure 1.1: while there are no strong edges, corners, or other features, the shading of the
environment does provide information in brightness variation that can be used for matching.
The methods developed in this thesis make use of this idea, and combine it with the sliding-

2

Figure 1.3: Detected SIFT features in two images of the face reconstruction sequence.

window approach that has been used with great success in feature-based approaches.

Earlier direct methods are typically restricted to planar surfaces, such as the method pro-
posed by Benhimane and Malis [19]. These methods have subsequently been extended by
Malis [20] to account for more general surface types. One of the contributions of this thesis is
the combination of the sliding-window paradigm with such direct methods.

Silveira and Malis have also proposed a method that accounts for changing lighting condi-
tions [21]. Their idea is quite general and allows for significant variation in lighting, modelling
the lighting variation as a parametrized image that is multiplied with the intensities of the
image to be tracked. In this thesis, we will also present an approach for dealing with lighting
variations, but our approach will be more specialized than that of Silveira and Malis. More
specifically, we will explicitly model the light source and compute its influence on image forma-
tion as is done in shape-from-shading.

Shape from shading methods [22, 23] are single-view methods that also use the entire image
to assign a 3D position to each pixel, but are typically a lot less accurate than multi-view meth-
ods. They assume either a point light at the camera center or distant light, Lambertian surface
reflectance, and a uniform albedo of the surface under consideration. Especially the assumption
of an uniform albedo is problematic, because it is rarely fulfilled in real scenarios. Neverthe-
less, these methods have been applied with some success in video-endoscopic settings [24, 25].
However, they will typically run into problems whenever some of their premises are not fulfilled.

In this thesis, we pick up the idea of modelling a point light source as well, thus combining
the approach of shape-from-shading with direct, multi-view structure and motion recovery.
Thus, we combine the advantages of both methods and are able to perform reconstruction also
under difficult lighting conditions, by which we mean that there is only one source of light in
the scene which is linked rigidly to the camera. A very relevant real-world example for such a
scenario is video-endoscopy.

3

1. MOTIVATION

1.1 Contribution

The contribution of this work is threefold:

1. An optimization engine is provided to solve intensity-based bundle adjustment problems.
We have developed a specialized, modular engine that is flexible yet efficient at the same
time. This optimization engine will be described in Chapter 4.

2. We have implemented three different variants of intensity-based bundle adjustment algo-
rithms. The modules needed to implement them within our optimization framework will
be described in detail in Chapter 5.

3. Furthermore, we have developed a method that is capable of calibrating the position and
the spatial intensity distribution of a small light source from camera images showing a
calibration pattern. The light source should be small compared to the distance at which
objects are observed, such that it can be approximated as a point light source. This
method will be discussed in Chapter 6.

The main focus of this work, however, is on the three mentioned variants of direct bundle
adjustment algorithms that are useful for surface and motion recovery in different, special
settings. We will introduce our notation and recapitulate some basics of bundle adjustment in
Chapter 2. Chapter 3 will provide detailed problem specifications, while Chapter 7 contains
experimental results obtained with each of our methods, and discusses the applicability of these
methods in different situations. Finally, Chapter 8 concludes the thesis with a summary and
outlook on future work.

4

Chapter 2

Bundle Adjustment Basics

Bundle-adjustment (BA) is a well-known technique that allows simultaneous retrieval of scene
geometry and extrinsic camera parameters from a set of images. All of the algorithms developed
in this work have been inspired by intensity-based bundle adjustment methods. While these
methods have been known for a long time (see e.g. [26, 27, 28]), computer hardware development
only recently reached a point where such algorithms run in real-time [21] or at least close to
real-time [29, 30].

A different interpretation of such techniques is that of image registration algorithms. To
this end, intensity-based bundle adjustment methods can be seen as instances of optical flow
algorithms [31, 32] equipped with a special parameterization that encodes the structure of the
scene and extrinsic camera parameters.

Bundle adjustment was originally conceived as a method that retrieves scene structure and
camera parameters accurately from large sets of images. However, in recent years, sliding-
window approaches have become increasingly popular [33, 15, 16]. These methods are suitable
for real-time navigation with high accuracy. The basic idea is to apply bundle adjustment only
to a small subset of images, including the most recent image. Until now, such methods have
been limited to the case of feature-based bundle adjustment. One of the contributions of this
work is the development of sliding-window intensity-based bundle adjustment algorithms.

A good introduction to bundle adjustment is contained in Hartley’s book [34]. The paper
by Triggs et al. [35] provides a detailed overview. For the reader’s convenience, and also to
introduce our notation, we are going to give a brief overview of bundle adjustment methods
and intensity-based approaches in this chapter.

Since we are now going to explain the mathematics underlying our algorithms in detail, we
want to point the reader to the appendix Chapters A and B, where we introduce the most
important parts of our mathematical notation and explain our convention of using color-coded
images to display depth images, error images, etc.

5

2. BUNDLE ADJUSTMENT BASICS

Figure 2.1: Toy problem illustrating bundle adjustment: A cube is observed from several different
locations. Feature points project to different coordinates in those different views. The task is to
reconstruct the camera position as well as the 3D coordinates associated with the feature points.

2.1 Feature-Based Bundle Adjustment

Intensity-based bundle adjustment methods are very closely related to more common case of
feature-based bundle adjustment. Actually, as Triggs et al. [35] point out, the only difference to
the feature-based case is that the objective function is composed with a smooth approximation
of the image function itself, such that residuals are computed in image intensity space instead
of pixel coordinate space. For this reason, we are going to quickly recapitulate the basics of
feature-based methods, before we explain intensity-based methods in more detail.

The problem addressed by classic bundle adjustment is as follows: given n images of the
same scene, taken from different camera positions, and some features in these images that were
detected and matched, determine the camera positions associated with the n images and the 3D
coordinates of the detected feature points. The feature matching step is typically performed by
using SIFT [10], SURF [11], or similar feature detection methods. Figure 2.1 shows a schematic
overview.

In what follows, we are going to focus on the case of a finite projective camera whose intrinsic
parameters are known [34, pp. 153-157]. We will describe the projective properties of cameras
using 3 × 3 camera matrices K that contain the intrinsic calibration parameters. The most
practically relevant case is that of a pinhole camera, where the camera matrix has the structure

K =

αx 0 px

0 αy py

0 0 1

 , (2.1)

6

2.1 Feature-Based Bundle Adjustment

where αx and αy are the focal lengths and px, py are the coordinates of the principal point of
the camera. Throughout this thesis, we assume that cameras have been calibrated (using, e.g.,
the method by Zhang [36]), and that any significant radial distortions have been rectified.

The matrix K maps inhomogeneous 3D coordinates b ∈ R3 to homogeneous 2D pixel
coordinates K ·b. To get the inhomogeneous pixel coordinates from K ·b, we would then need
to divide through the homogeneous component, a process that is known in computer graphics
as projective divide. It will be convenient for us to define a function π : R3 → R2 that performs
the perspective divide:

π(x) =
(

x1

x3
,
x2

x3

)T
. (2.2)

Conversely, feature detection and localization yields feature coordinates π(K ·b) ∈ R2 that are
usually related to homogeneous 2D coordinates by extending the 2D vector π(K ·b) with an
entry of 1. The resulting homogeneous coordinates represent the same point as K ·b, since
homogeneous coordinates are equivalent up to scale (indicated by the symbol ∝):

(
π(K ·b)

1

)
=

(K ·b)1
(K ·b)3
(K ·b)2
(K ·b)3

1

 ∝
(K ·b)1

(K ·b)2

(K ·b)3

 = K ·b. (2.3)

We can then use the inverse camera matrix K−1 to determine a 3D direction vector that points
from the camera’s principal point towards b, such that

b ∝ K−1 ·

(
π(K ·b)

1

)
, or b = b3 ·K−1 ·

(
π(K ·b)

1

)
(2.4)

Note that the parameter b3 represents the z-coordinate of the point b, measured in the camera’s
frame of reference. The vector K−1 · (π(K ·b)T, 1)T alone is a vector from the principle point
of the camera to the 2D projection of the point b onto an xy plane at distance 1, as illustrated
in Figure 2.2.

In the mathematical framework of projective cameras described above, images taken from
different viewpoints correspond to images of the same point cloud as seen from different camera
frames. Discussing the intrinsic parameters of cameras, we have shown now how 3D coordinates
that are relative to a camera’s frame can be mapped to 2D coordinates. However, we also need
to introduce the extrinsic camera parameters, which are used to describe transformations of 3D
coordinates from one camera frame to another.

Transforming coordinates is done via so-called rigid transformations, and these transforma-
tions consist of a rotation and translation in 3D space. It is well-known that the minimal number
of parameters needed to describe such a rigid transformation is 6, encompassing 3 parameters
for translation and 3 parameters for rotation. Rotations can be represented using many differ-
ent schemes, such as, e.g., Euler angles, quaternions, rotation matrices, each of which uses at
least 3 parameters. The topic of rotation representation is indeed quite complex and will be
discussed in more detail later on. For our algorithms, we have decided to use quaternions for

7

2. BUNDLE ADJUSTMENT BASICS

K
−1 (π(b), 1)T

b3 ·K
−1 (π(b)T ,

1)T

1

Figure 2.2: Relation between pixel coordinates and 3D coordinates.

our rotation representation, such that extrinsic parameters can be represented by 7-dimensional
vectors a = (aT

t ,aT
q)T, where at ∈ R3 is a vector of translation between our coordinate frames,

and aq ∈ R4 is the rotation quaternion representing the rotation between frames.
Using this scheme, our definition of rigid transformations becomes

T(a,b) = R(aq)T(b− at), (2.5)

where R(aq) denotes the 3×3 rotation matrix corresponding to the rotation quaternion aq ∈ R4,
and b ∈ R3 are the 3D coordinates of a point to be transformed. Thus, in our case rigid
transformations are functions of type R3 × R7 → R3 that take point coordinates in one frame
together with transformation parameters to point coordinates in another frame.

Sometimes, it will be convenient to refer to the specific coordinate frames involved in a
certain rigid transformation. This requires us to introduce some new notation, which is shown
in Figure 2.3. There, a rigid transformation relates point coordinates relative to coordinate
frame {A} to point coordinates relative to frame {B} and vice versa. In the following, whenever
we want to be be more specific about the coordinate frames involved, we will use leading sub- and
superscripts to refer to the source and destination coordinate frames of a rigid transformation,
such that the transformation parameters for moving from coordinate frame {A} to coordinate
frame {B} would be denoted as B

Aa. Similarily, we may denote the frame of reference of the
coordinates of some point with a leading superscript, such that the coordinates of point b
relative to frame A would be Ab. Mathematically, the following Equations hold: T(BAa,Ab) =
Bb and T(ABa,Bb) = Ab.

Now we are ready to formulate the basic idea underlying bundle adjustment: Assume we have
applied a feature detection and matching algorithm to a set of N images In, where 1 ≤ n ≤ N .

8

2.1 Feature-Based Bundle Adjustment

b

B
Aa,AB a

{A} {B}

Ab Bb

Ax

Ay

Az

Bz

Bx

By

Figure 2.3: Illustration of rigid transformations.

The algorithm has produced, for each image In, a set of M 2D image feature coordinates pn,m.
Not all features are neccessarily visible in all frames, so the algorithm also produces values vn,m
indicating whether feature m has been found in image n. The numbering is such that pi,k,pj,k
denote the image coordinates of some feature k that has been detected and matched in the
two images Ii, Ij . Neglecting for now the possibility of false matches and assuming the feature
localization to be 100% accurate, this means that pi,k,pj,k are 2D projections of the same
3D point bk, seen from two different positions. Let ai denote the extrinsic camera parameters
(rotation and translation) and bj the 3D coordinates of a point j. Furthermore, define a and b
to be the vectors resulting from stacking all ai respectively bj on top of each other.

The image reprojection error associated with a point bj seen in view ai is defined as

|π(K ·T(ai,bj))− pi,j | , (2.6)

which is simply the length of the displacement vector between the predicted position of a
point and its actually measured position. The goal of bundle adjustment algorithms is to find
solutions bj ,ai that minimize these reprojection errors.

This is typically achieved by minimizing the following sum EF (a,b) of squared image re-
projection error vectors:

EF (a,b) =
N∑
i=1

M∑
j=1

vi,j (π(K ·T(ai,bj))− pi,j)2 (2.7)

Note that the pre-superscript F is used to distinguish this error term from the intensity-based
one that will be introduced later on.

The minimization of above objective function is typically performed using a non-linear
optimization method. Such optimization involves repeated solution of sparse linear systems,
and the exploitation of this sparsity of these systems is essential. Solving the involved linear

9

2. BUNDLE ADJUSTMENT BASICS

pi,jπ(T(ai,bj))

|π(T(ai,bj))− pi,j |

Figure 2.4: Illustration of reprojection errors: Blue crosses indicate current projection estimates,
green crosses are measured projection coordinates, red line segments show the reprojection error.

problems would be infeasible if the linear system was treated as a dense system.
In the hypothetic case of perfectly accurate values ai,bi, the image reprojection error would

be 0. More realistically, the values will never be completely accurate, but still, the reprojection
error will be minimal if the parameters ai,bj reflect the real values of point coordinates and
extrinsic camera parameters as closely as possible. This is our basic formulation of the bundle
adjustment problem: Given measurements pi,j , determine parameters ai,bj such that the sum
of squared reprojection error (2.7) is minimized.

In practice, this problem is typically solved as a two-step process:

1. Initial estimates for all ai,bj are generated via algorithms for fundamental matrix esti-
mation and successive triangulation [37]. Another option to perform this initialization
is the use of an L∞-norm (maximum norm) formulation of above problem together with
second-order cone programming methods [38].

2. The initial fit is subsequently refined using a nonlinear optimization technique that min-
imizes the reprojection error. This is usually done using the Levenberg-Marquardt non-
linear optimization method [39].

It is quite common that feature coordinates determined by feature detection algorithms
are unreliable, and affected by noise, gross outliers, and false matches. This has a drastically
deteriorating effect on the quality of the solution found by solving the BA equation (2.7), at
least if the equation is used in its original formulation. A typical approach for reducing the
influence of such corrupted measurements is the usage of robust cost functions [34, pp. 616-622].

Such a cost function basically takes as input a displacement vector, and assigns to it a
specific cost. Robust cost functions are typically designed such that they assign less cost to
outliers. We reformulate Equation (2.7) for the case of using some cost function C as follows:

EF
C(a,b) =

N∑
i=1

M∑
j=1

vi,j ·C (π(K ·T(ai,bj)),pi,j) (2.8)

We see that the original formulation (2.7) is coincident with this slightly generalized version for

10

2.2 Intensity-Based Bundle Adjustment

the case of C(x,y) = (x− y)T · (x− y).
Sliding-window based approaches also solve the bundle adjustment problem, but typically,

this is only done for a relatively small set of images taken from a camera stream. Thus, their
main purpose is the computation of an incremental motion and structure update. Georg Klein’s
widely known PTAM system [16] can probably be considered the gold standard when it comes
to implementing this idea. One of our contributions is the transfer of sliding-window methods
to the case of intensity-based bundle adjustment.

This concludes our discussion of classical feature-based bundle adjustment, and we will now
turn to the intensity-based variant of bundle adjustment, which is the main idea underlying all
algorithms presented in this thesis.

2.2 Intensity-Based Bundle Adjustment

As we have mentioned before, the intensity-based bundle adjustment formulation is very similar
to the feature-based one, but some small changes have to be made. First of all, we will no longer
rely on a feature detection mechanism, but instead match a reference image I0 to the other
images I1, I2, . . . , IN . Furthermore, we will associate some camera parameters a0 with the
reference image, and all other images should be localized relative to that image. If we still
model the scene as consisting of single points, the image re-projection error would be rewritten
as

EC(a,b) =
N∑
i=1

M∑
j=1

vi,j ·C (Ii(π(K ·T(ai,bj))), I0(π(K ·T(a0,bj)))) . (2.9)

This formulation, however, is slightly problematic, since it indirectly assumes that pixels can be
identified solely based on their intensity. However, images usually contain many pixels of the
same intensity value, which makes finding a correct match very unlikely. On the other hand,
pixels that are close to each other in an image have a high probability that their depth values
are also close together. This observation leads to the idea of restricting the points to lie on
some kind of surface.

The natural choice for such a surface model is usage of a parametrized depth map z that
assigns a depth value z(p, u, v) or an inverse depth value 1

z(p,u,v) to pixels (u, v) of the template
image. We will call the former approach a direct depth parametrization, and the latter approach
an inverse depth parametrization. It has been shown that for several reasons, inverse depth
parametrizations are superior to direct depth parametrizations in the context of SLAM methods
[40], which is why we will employ an inverse depth parametrization in our algorithm.

The concept of depth maps has been applied with considerable success in many recon-
struction methods. One quite recent example is the on-line dense reconstruction algorithm by
Newcombe [41], where a per-pixel depth map is determined directly from image data, and a to-
tal variation regularizer to enforce a certain degree of smoothness on the depth map. Figure 2.5
shows an example of a direct depth map and an inverse depth map for an artifically rendered
scene.

11

2. BUNDLE ADJUSTMENT BASICS

Figure 2.5: Left: Synthetic scene, Middle: Direct depth map, Right: Inverse depth map.

These considerations finally lead to a formulation of intensity-based bundle adjustment
where all images are involved. Thus, we will call this the complete intensity-based objective, as
opposed to the pair-wise and sliding-window variants that we will define later. The complete
objective is defined as

ECI
C(a,p) =

N∑
i=1

M∑
j=1

C (Ii(π(K ·T(ai,dz(p, uj , vj)))), I0(uj , vj)) , (2.10)

where dz denotes the surface induced by the depth map function z. The reference pixel coor-
dinates (uj , vj) are typically chosen before the optimization process, and remain constant. Due
to the computational expense of intensity-based bundle adjustment, it is quite common not to
include all image pixels in the set of reference pixels. In our case, the reference pixels will be
distributed uniformly across a user-chosen rectangular region of interest. Figure 2.6 shows the
concept for the simple case of alignment between two frames.

This formulation of intensity-based bundle adjustment makes use of the well-known color
constancy assumption, which is intuitively understood as the assumption that the same scene
point has the same color when seen from different points of view. For nearly Lambertian
surfaces, constant illumination and non-significant camera vignetting, the color constancy as-
sumption is a reasonable approximation.

The objective term formulated above is a bit complicated, thus we will define a helper
function to keep our presentation concise. Exploiting the fact that the reference pixel co-
ordinates (uj , vj) remain constant, we can define a warping function wj for each reference
pixel (uj , vj) as

wj(p,ai) = π(K ·T(ai,dz(p, uj , vj))). (2.11)

This function represents a warp of 2D coordinates, since it describes, for any surface point (uj , vj),
its 2D position in a different frame. The warping function can thus be interpreted as the op-
tical flow of the reference points (uj , vj). Using this warping function, we can shorten above
objective term to

ECI
C(a,p) =

N∑
i=1

M∑
j=1

C
(
Ii(wj(p,ai)), I0(uj , vj)

)
. (2.12)

12

2.2 Intensity-Based Bundle Adjustment

∑
+

−

Frame i, current estimate

Template

Intensity Difference

Improved alignment with reduced error in
frame i

Figure 2.6: The intensity matching process: The current estimate yields a prediction of inten-
sity values, which are compared to the template image values. This yields the image intensity
error. Intensity-based bundle adjustment minimizes the intensity re-projection error, yielding an
improved surface and camera position estimate.

13

2. BUNDLE ADJUSTMENT BASICS

In the case of changing illumination, the situation gets more difficult, since the color of one
point might change from one image to the next. It is, in general, quite difficult to incorporate
lighting changes into intensity-based reconstruction methods. One way to deal with the problem
is the approach suggested by Silveira and Malis [21], where the lighting variation is parametrized
in a similar way as the surface model, and the lighting parameters are then simply estimated
along with the surface and camera parameters. This approach, however, can only work if the
surface to be reconstructed and tracked provides enough texture, since the lighting change
model provides quite a lot of degrees of freedom. In case of a weakly textured surface, it seems
likely that such an algorithm would not be able to discern whether a color change is due to a
change in lighting or due to movement of the surface.

14

Chapter 3

Approach

We are now going to provide exact problem descriptions for each of the three algorithms that
we have mentioned earlier, and sketch the solutions we have developed. Since the problem of
motion and scene recovery from monocular images is an ill-posed problem, we need to rely on
a couple of assumptions to make it feasible. The assumptions that are made for all three cases
are the following:

• The surface to be reconstructed exhibits Lambertian reflectance, and it is smooth, such
that it can be represented well using a smooth surface model.

• The surface is not occluded and fully visible.

• Intrinsic camera parameters and camera distortion coefficients are known, and do not
change during an image sequence. The images we are working with have been rectified,
such that distortion effects are removed.

• The photometric properties of the camera (inverse response function and vignetting pro-
file) have been calibrated, and the images we are working with show no significant pho-
tometric distortions or have been rectified accordingly.

For each of the three algorithm variants, there are some specific additional assumptions as
follows:

1. Lighting conditions are arbitrary, but do not change during the reconstruction.

2. There is a point-shaped light source that is located at the camera’s principle point. Except
for that light, there is no other source of light in the scene. Light inter-reflections from
surfaces are neglected.

3. There is a small light source that is linked rigidly to the camera itself. The light is
very small, but not a perfect point source. Thus, we treat the light source as having a
non-uniform spatial intensity profile. A calibration method is used to determine both
the light’s position and the intensity profile. Again, we ignore inter-reflections between
illuminated surfaces.

15

3. APPROACH

All of our algorithms are formulated as optimization problems, and their problem structure is
very similar, and closely related to the intensity-based bundle adjustment methods that have
been described in Chapter 2.

Basically, the algorithms work by finding parameters that warp the image intensity values
in the current frame back to the reference image, minimizing the intensity differences. Fig-
ure 3.1 shows a coarse overview in form of a flow chart. We apply a coarse-to-fine pyramidal
optimization scheme as is done frequently in optical flow algorithms [42], with a downscaling
factor of 0.5 and three pyramid levels.

For solving the optimization problem, we employ the well-known SQP method [43]. This is
basically a Newton-type optimization method that supports enforcing some constraints on the
problem parameters. It has also been suggested by Triggs et al. [35] as the method of choice
when solving constrained bundle-adjustment problems. The need for constrained optimization
arises because of our choice of unit quaternions as rotation representation, and because of the
need to constrain the scale of there reconstruction, which is non-observable. We have developed
an efficient and flexible optimization framework that will be described in detail in Chapter 4.

The optimization is performed over a sliding window of images. To assure that the baseline
between images in the sliding window is large enough, we check the average translational flow
magnitude of every new image before adding it to the sliding window. A new image is accepted
into the sliding window buffer if its average translational flow magnitude against the reference
image and all other images in the buffer is larger than some threshold value. We are using a
threshold value of 10 pixels that has been determined empirically.

As we have mentioned in Chapter 2, it is typically very difficult to match points through
their image intensities alone, so usually they are constrained to lie on some kind of parametric
surface. A very common scene representation for dense scene recovery methods is that of a
direct or inverse depth map. Figure 3.2 shows an example of curves induced by a cosine depth
profile for the 2D case, which is analogous to the 3D case.

Our surface model is that of an inverse B-spline depth map, where different spline orders and
different amounts of control points can be chosen. These parameters influence the smoothness
and the the level of detail that the surface model can represent. Typically, we use 8 control
points for the spline surface in each direction, and a spline order of 2 in both directions,
corresponding to a bi-quadratic spline surface.

Because the optimization is computationally very expensive, we do not perform an exhaus-
tive minimization of the objective for every pixel of the ROI. Instead, we only sample a certain
number of pixels for each control point. Typically, the sampling resolution is 8 × 8 pixels per
control point, and the sampling points are spread evenly over the ROI. More sophisticated
methods for determining effective pixel sampling sets have been proposed by Brooks et al. [44].
Essentially, such a method allows for higher computational performance without losing much
accuracy. We have not yet integrated their scheme into our algorithms, but would like to do
this in the future.

In the case of constant lighting conditions, the resulting algorithm is basically an optical flow
method, trying to find the 2D position of reference points in another image. In the other two

16

Start

Ask User for ROI

Read Calibration Data,
First Image of Sequence etc.

Initialize Reconstruction System,
Generate Initial Pose Estimate

Read Next Image
from Sequence

Compute Translational
Flow Between the Two

most Recent Images

Is Flow Large
Enough?

Rotate Images in Sliding
Window, Adding New Image

and Removing the Oldest

Replace Newest Image
in Sliding Window

Perform Coarse-to-fine
Optimization to Estimate

New Parameters

Output Parameter Estimate
for Camera Extrinsics and

Surface Parameters

More Images
in Sequence?

Terminate

Yes

No

Yes

No

Figure 3.1: Coarse flowchart overview showing the overall structure of our surface and motion
recovery algorithms.

17

3. APPROACH

0

0.5

1

1.5

2

-1 -0.5 0 0.5 1

0

0.5

1

1.5

2

-1 -0.5 0 0.5 1
Projection Center

(x, 1) f(x) · (x, 1)

0

0.5

1

1.5

2

-1 -0.5 0 0.5 1

(x, 1)

Projection Center

1
f(x) · (x, 1)

Figure 3.2: A very simple, synthetic example for a 2D depth profile. The function shown in the
topmost plot is defined as f(x) = 1

2 · (cos(10 · x) + 2.5). The middle and bottom plots show the
corresponding direct and inverse depth maps in the 2D case, respectively.

18

3.1 The Constant Light Case

cases, we do not only warp the 2D positions of pixels, but also their brightness values according
to the illumination model. Implementation-wise, the difference between these methods is merely
the usage of different modules within our optimization framework, thus optimizing different
objectives.

This concludes our introduction of the common concepts that are shared by all of our
algorithms. The only remaining difference between the algorithms is then the optimization
objective used, and the rest of this chapter will be devoted to introducing the different objective
functions.

In the next Section, we will discuss the first of these three cases, which is the sliding-window
method for constant lighting. It is basically a small modification of the original intensity-based
bundle adjustment Equation (2.10). Before going into detail about the other two methods that
use an explicit illumination model, we introduce the reader to the theory of image formation
for Lambertian surfaces for point light sources in Section 3.2. Using this knowledge, we can
provide mathematical specifications for the second and third algorithm variants in Sections 3.3
and 3.4.

3.1 The Constant Light Case

The first algorithm uses a cost function similar to the one in Equation (2.10), and makes use of
the color constancy assumption. Our main contribution is the development of a sliding-window
approach, which improves the robustness and accuracy of the approach. The sliding-window
paradigm has been applied with great success in feature-based bundle adjustment [45, 16].

Typical direct methods compare only two images, minimizing the pair-wise objective

EPI
C(ai,p) =

M∑
j=1

C
(
Ii(wj(p,ai)), I0(uj , vj)

)
, (3.1)

where i is the index of the newest image. Our method, however, will use the objective function

ESI
C(aV,p) =

∑
i∈V

M∑
j=1

C
(
Ii(wj(p,ai)), I0(uj , vj)

)
, (3.2)

where V is a set of image indices containing the newest image, and aV is a vector containing the
corresponding extrinsic parameters. An example reconstruction obtained using this method is
shown in Figure 3.3.

3.2 Light Source Modelling

Furthermore, we developed two variants of the aforementioned algorithm that are able to cope
with two special cases of changing illumination. The second variant of our algorithm assumes
that the only source of light in a scene is a point light source located at the camera’s optical

19

3. APPROACH

Figure 3.3: Face reconstruction example. The input data was the same as used in Figure 2.6.

center. A typical, very relevant example for real-world applications of this idea is medical video-
endoscopy. The idea has been previously exploited in the case of shape-from-shading [46, 23].

To our knowledge, nobody has applied this idea yet to bundle-adjustment algorithms, so
our main contribution is transferral of the explicit light model to direct bundle adjustment.
Besides assuming that the light source is located at the camera center, the mentioned shape-
from-shading approaches also assume that the surface reflectance is Lambertian with uniform
albedo, and that there are no inter-reflections. In comparison, our method has the substantial
advantage that it does not require an uniform albedo, but is able to deal with varying albedo
as well.

The third variant of our algorithm is a further generalization which allows the point light
source to be located at an arbitrary fixed position relative to the camera, and it furthermore
allows the light source to have a non-uniform, direction-dependent intensity distribution.

The objective functions for these variants of intensity-based bundle adjustment combine the
original objective (2.10) with a correction factor that couples the image intensity differences
with the camera motion. We will now discuss the mathematical theory behind modelling of
point light sources, which is illustrated in Figure 3.4.

Following the approach presented by Prados et al. [23], we can compute the intensity values
as

Ii(wj(p,ai)) = C · cosα(p,ai, uj , vj)
|dlt(p,ai, uj , vj)|2

, (3.3)

I0(uj , vj) = C · cosα(p,a0, uj , vj)
|dlt(p,a0, uj , vj)|2

, (3.4)

where C is a constant depending on light intensity and surface albedo at the scene point
corresponding to surface coordinates (uj , vj), the vector dlt(p,ai, uj , vj) points from the surface
point (uj , vj) to the light source in frame i, and α(p,ai, uj , vj) is the angle between the surface
normal nz(p, uj , vj) and the incident light at the surface point in frame i. In our algorithms,

20

3.2 Light Source Modelling

nz(p, uj , vj)

dz(p, uj , vj)

d lt
(p,

a0,
uj
, vj

)

α(p,ai, uj , vj)
α(p,a0, uj , vj)

Camera

Object Surface

Light
Source

u

v

d
lt (p,a

i , u
j , v
j)

Reference Frame

Frame i

Figure 3.4: Lighting situation in case of a point light source moving with the camera.

the light source is linked rigidly to the camera, so we have

dlt(p,ai, uj , vj) = T(ãi, lt)− dz(p, uj , vj), (3.5)

where lt is the constant position of the light source relative to the camera, expressed in the
camera’s frame of reference, and ãi are the inverse extrinsic parameters such that

T(ãi,T(ai,b)) = b. (3.6)

Thus, T(ãi, lt) computes the position of the light source in frame i with respect to the reference
frame’s coordinate system a0.

Above equations can be rearranged into

Ii(wj(p,ai)) ·
|dlt(p,ai, uj , vj)|2

cosα(p,ai, uj , vj)
= C, (3.7)

I0(uj , vj) ·
|dlt(p,a0, uj , vj)|2

cosα(p,a0, uj , vj)
= C, (3.8)

which in turn leads to

I0(uj , vj)− Ii(wj(p,ai)) ·
|dlt(p,ai, uj , vj)|2

cosα(p,ai, uj , vj)
· cosα(p,a0, uj , vj)
|dlt(p,a0, uj , vj)|2

= 0, (3.9)

the left hand side of which constitutes the new intensity re-projection error to be minimized. The

21

3. APPROACH

term multiplied to the right of Ii is a correction factor that maps the intensities as measured
in frame i to intensities as measured in frame 0, compensating intensity changes due to the
moving light source.

To simplify the notation, we will now define an abbreviation of the correction term formula
by means of a brightness warping function wlt

B j(p,ai) as

wlt
B j(p,ai) = |dlt(p,ai, uj , vj)|2

cosα(p,ai, uj , vj)
· cosα(p,a0, uj , vj)
|dlt(p,a0, uj , vj)|2

. (3.10)

This brightness warping function will be useful for both variants of our algorithms that perform
light source modelling.

3.3 The Case of a Point Light at the Optical Center

Having explored the properties of light modelling, we are now ready to formulate the objective
function underlying the second variant of our algorithm, where it is assumed that the scene
is lit merely by a point light source at the optical center of the camera. Making use of the
intensity warping function defined above, the objective function is

EL
C(aV,p) =

∑
i∈V

M∑
j=1

C
(
Ii(wj(p,ai)) · w0

B j(p,ai), I0(uj , vj)
)
. (3.11)

Note that the light source position relative to the camera is 0.
During our experiments, we have found that the initialization of this system is significantly

more difficult than in the case of static lighting. This can be explained as follows: The objective
function in the case of static lighting is already a non-convex function, which is inherently
difficult to optimize. Using our assumption that the camera is moving smoothly, and thus
image displacements are not too big, we are, however, still able to find a good initial optimum
and thus a good initial surface approximation in most cases. This is mostly due to the fact that
the objective does not exhibit very strong non-linearity: The pseudo-Huber cost function that
we are using looks like a square function for inliers and like a linear function for outliers. This
means that the objective can be approximated well through a Taylor approximation, which can
be seen as basis for our optimization method.

The objective function (3.11) for this illumination-modelling approach now introduces ad-
ditional non-linearity through the intensity warping function, which basically computes as a
fraction of some terms that even include third-order powers. This is our explanation for the
increased difficulty of optimization this objective.

To aid with this initialization, we provided a crude initialization to the system by estimat-
ing a pixel’s depth from its intensity. The underlying assumption is that the surface albedo is
constant, and that the angle between light source and surface is constant. Starting from Equa-
tion (3.3), and denoting our initial depth estimates as zi,j and the constant surface-light-angle

22

3.4 The Case of Fully Calibrated Light

as α′, these assumptions lead to the following formula:

|Ii(wj(p,ai))| ≈
∣∣∣∣C · cos(α′)

zi,j

∣∣∣∣⇔ |zi,j | ≈
√
|C| · | cos(α′)|
|Ii(wj(p,ai))|

(3.12)

Note that |dlt(p,ai, uj , vj)|2 = z2
i,j , since lt = 0. The reconstruction is in any case only up to

scale, so the constant values |C| and | cos(α′)| can be chosen arbitrarily and are set to 1 in our
case. After the per-pixel initial values have been determined using this formula, we compute an
initial interpolation using the depth map surface. The depth surface is subsequently normalized
such that our scale constraint is fulfilled.

3.4 The Case of Fully Calibrated Light

The third variant of direct bundle adjustment considered in this work goes one step further by
using a light source whose position is not coincident with the camera, but has an arbitrary fixed
position relative to the camera. In addition to that, the light source is assumed to have a non-
uniform intensity profile. Both the position of the light and its intensity profile are calibrated
using a novel calibration algorithm that will be described in Chapter 6.

Figure 3.5 shows a 2D schematic view of the situation when a light source is used that is not
located at the optical center. A point light source can be modelled as an inverse camera which
projects light into the scene instead of measuring it. Actual light sources are, however, not
perfect point-shaped sources, and exhibit a non-uniform light intensity in different directions.
Our calibration method determines both the position of the light source relative to the camera
as well as the intensity profile in terms of a light intensity image IL .

The basic idea underlying this algorithm is the same as in the previous two cases: Using our
mathematical model for image formation, we are able to remap the intensities found in some
image i to the reference frame. In the case of the uniform point light source, it was enough
to take into account the intensity warping factor w0

B j . In the more complex case of calibrated
light, it is not enough to merely take that intensity warping into account, but we also need to
remove the non-uniform light pattern from the intensities of frame i, and finally re-project the
pattern again to the reference frame’s intensities. Figure 3.6 illustrates the concept. After the
intensities have been re-projected into the reference frame, they can be compared to each other.

When treating the light source as an inverse camera, determining the brightness of a light
ray hitting a surface point becomes an easy task: We merely have to transform the point in
question to the light source’s frame of reference, and perform the 3D-2D projection according
to the light source’s projection matrix. We shall define a new coordinate warping function wlL j

for this case as follows:

wlL j(p,ai) = π(KL ·T(l,T(ai,dz(p, uj , vj)))), (3.13)

where KL denotes the light source’s projection matrix, and l denotes the constant extrinsic
parameters of the light source with respect to the camera frame. Note that the only two

23

3. APPROACH

Light Source
Projection Center

Camera
Projection Center

White Planar

Object

Non-uniform Light
Ray Intensities

Perceived Brightness
is Influenced

by Light Intensity

Figure 3.5: When using a calibrated light source, we treat the source as an inverse camera:
Instead of measuring incoming light, it projects light into the scene. Since common light sources
are hardly perfect point-shaped sources, the projected light usually exhibits a non-uniform intensity
in different directions.

differences to the original warping function wj is the additional rigid transformation according
to the light’s extrinsic parameters l and usage of a different projection matrix KL. The vector
of extrinsic light parameters consists of a translation portion and a rotation portion, just like
the extrinsic camera parameters: l = (lt, lr).

Together with the intensity warping function from the previously discussed algorithm, this
allows us to re-project the image intensities of some frame i to the reference frame with reference
lighting. The idea is then as follows:

1. Multiply each image intensity I(wj(p,ai)) with the inverse light intensity ÎL (wlL j(p,ai)).
This will neutralize the light’s intensity profile.

2. Multiply the resulting intensities with the brightness warping values w0
B j(p,ai), to account

for the brightness changes due to the translation of the point source.

3. Finally, multiply the intensity values with the directional light intensities IL (wlL j(p,a0)),
in order to fully reproduce the lighting conditions in the reference image.

After these steps have been performed, the computed intensity values can then be matched
against the template intensity values. Formulated as an objective function, this would look as

24

3.4 The Case of Fully Calibrated Light

normalize light
intensities according to
inverse light profile ÎL

re-apply light intensity
profile IL for reference

frame

perform
perspective
warping via

wj and
brightness

warping via
wlB j

Reference FrameFrame i

Figure 3.6: Images of a synthetic scene, illustrating the overall warping process from image i
back to the reference frame.

25

3. APPROACH

follows:

ECL
C(aV,p) =

∑
i∈V

M∑
j=1

C
(
Ii(wj(p,ai)) · ÎL (wlL j(p,ai)) ·

w0
B j(p,ai) · IL (wlL j(p,a0)), I0(uj , vj)

)
. (3.14)

Note that the intensity warping now depends on the baseline between the camera and the
light source, which means that this method is no longer an up-to-scale reconstruction, but
provides a metric reconstruction instead. This also means that the surface scale constraint is
not applied in this variant.

26

Chapter 4

Efficient and Flexible Nonlinear
Optimization

While we have already introduced the mathematical formulation of both feature- and intensity-
based bundle adjustment methods in the previous chapter, this chapter is dedicated to the
theory and practice of nonlinear optimization, which is the core technology applied for solving
bundle adjustment.

The mathematical discipline of non-linear optimization (also known as non-linear program-
ming) is a well-studied field that has produced a multitude of methods for solving the following
type of problem: Given an objective function o : Rn → R, and functions g : Rn → Rm,
h : Rn → Rk, solve the minimization problem

min
x∈Rn

o(x) subject to the constraints g(x) ≤ 0, h(x) = 0

where the ≤ operator is interpreted in an element-wise fashion. The functions g and h thus
allow specification of inequality and/or equality constraints on the solution. Many methods for
solving this type of problem are known, and each specific method has benefits and drawbacks.
For more information about general non-linear optimization methods, see the well-known book
by Nocedal and Wright [43].

The bundle adjustment problem that we have introduced earlier is also a problem of this
type, but so far, without any constraints. However, when using quaternions for representing
rotations, it is necessary to constrain the quaternions to be of unit length, and this is some-
thing that can easily be achieved by integrating appropriate constraints in an optimization
formulation.

The “gold standard” implementation of bundle adjustment, SBA by Lourakis [47], employs
the Levenberg-Marquardt (LM) method [39, 48] to solve the non-linear optimization problem.
In its original form, the LM method does not take into account any types of constraints. While
there are variants, such as the well-known Levmar [49] package, that implement at least linear

27

4. EFFICIENT AND FLEXIBLE NONLINEAR OPTIMIZATION

constraints, we require at least quadratic constraints for our specific problem. Thus, we use the
slightly more general method of sequential quadratic programming (SQP). Both methods are
actually very similar and belong to the class of Newton-type optimization problems.

We have developed our own optimization framework implementing a sparse SQP method
for optimization problems that exhibit a modular structure, in the sense that their objective
functions are actually compositions of sub-functions, and each of these sub-functions performs
a specific, well-identifiable task. In the case of bundle adjustment problems, such sub-functions
would be, e.g., the cost function, the rigid transformation, the perspective projection, and so
on.

Most optimization problems are of this structure, so it is usually possible to decompose such
a problem, represented by the objective function o(x), into several smaller parts as follows:

o(x) = C ◦ fn ◦ fn−1 ◦ . . . ◦ f1(x). (4.1)

We have designed an optimization framework that implements the SQP algorithm and takes
advantage of the modular structure of optimization problems. Our main goals were the follow-
ing:

• Flexibility: Our objective functions are seen as compositions of modular functions, and
treated as such within our framework. This means that we are always able to exchange
modules, e.g., cost functions, at will, which makes the process of evaluating different
alternative algorithms especially simple, and allows for great re-usability of modules.

• Performance: We have taken great care to make sure that the computations are optimized
to a very high degree. The main expense during optimization of complex compositional
functions is the evaluation of a chain product of sparse Jacobian matrices of the involved
functions. Since computing sparse-sparse matrix products is usually an operation with
poor performance, we have developed a specialized solution to alleviate this performance
problem.

However, our solution is also somewhat specialized to the problems considered in this work,
and thus it is also restricted in some ways. More specifically:

• The framework is laid out for sparse matrices, and nothing else. Thus, it will perform
suboptimal in the case that dense matrices (Jacobians and/or Hessians) appear in the
optimization problem.

• Furthermore, it is required that the sparsity structure of the various derivative matrices
is static and not dependant on the parameters.

• The modules represent functions with at least multi-dimensional domain and often also
multi-dimensional range. Implementation of those modules requires implementing deriva-
tive computation routines, which can be a quite complex, error-prone and cumbersome
task in some cases.

28

4.1 Sequential Quadratic Programming

While the framework works very well for the intensity-based bundle adjustment problems we
are interested in, its restrictions might also limit its usability for some other applications.

The rest of this chapter is structured as follows: In the next Section, we will review the
basics of SQP optimization. The topic of Section 4.2 is a discussion of the mathematical theory
of Hessian approximation schemes. The core problem for solving any optimization problem is
the computation of the derivatives of the objective function, and we will devote Section 4.3 to
a discussion of several available techniques for their computation. Our conclusion will be that
none of the available methods is completely satisfying for our purposes, so we will introduce our
own approach in Section 4.4. We will explain our approach of partitioning the objective function
and the equality constraints into a number of sub-modules, and we will show an example for our
approach. Section 4.5, then concludes the chapter with a presentation of some basic building
blocks that are available within our framework.

4.1 Sequential Quadratic Programming

We will now give a short, basic overview of the theory behind the SQP method for equality-
constrained problems. It is well-known that for optimization problems such as the one described
above, the so-called Karush-Kuhn-Tucker (KKT) conditions must hold for any value x∗ that is
a minimum. In the equality-constrained case, these conditions can be formulated in equation
form as: (

∇x(o(x) + λT ·h(x))
h(x)

)
=
(

0n
0k

)
. (4.2)

For the equality-constrained case, the KKT conditions are coincident with the linear depen-
dence condition of the Lagrange multiplier. Thus, the term λ ∈ Rk is the Lagrange multiplier
associated with the minimum. This is, in general, a nonlinear system of equations. The
Lagrange-Newton Method can be applied to these equations, and we can compute an update
∆x to x and a new Lagrange multiplier λ+ by solving the symmetric system of equations(

∇2
xx(o(x) + λT ·h(x)) ∇xh(x)
∇xh(x)T 0k,k

)(
∆x
λ+

)
= −

(
∇xo(x)
h(x)

)
. (4.3)

It is apparent that any implementation of this algorithm needs some way to evaluate the
Hessian matrices ∇2

xx(o(x)) and ∇2
xx(λ ·h(x)) as well as the transposed Jacobian ∇xh of h.

Since o is, in our case, a quite complex composition of multi-dimensional functions, it is not
feasible to compute the exact Hessian. Instead, it is common practice to use one of several well-
known approximation schemes to the Hessian. The next section is dedicated to the discussion
of several possibilities to compute function derivatives, and the theory behind second-order
derivative approximation will be discussed in Section 4.2.

After evaluation of the required derivatives, the QP system (4.3) is solved repeatedly until
convergence. For increased robustness of this process, we add a damping term µI to the Hessian
of the system. This method is well-known in the context of Levenberg-Marquardt optimization

29

4. EFFICIENT AND FLEXIBLE NONLINEAR OPTIMIZATION

SQP OptimizerScalar Cost
Function C

Vector-Valued
Function f1

Vector-Valued
Function f2

Vector-Valued
Function fn

. . .

Scalar Constraint
h1

Scalar Constraint
h2

Scalar Constraint
hk

. . .

Vector-Valued
Composite f

Lagrangian Term
λ ·h

Values, Derivatives Parameters

Figure 4.1: Overview of the Optimization System: The SQP optimization module interacts
directly with three modules: The cost function module, a composite function module, and a La-
grangian term module. The composite function module and the Lagrangian term module them-
selves interact with other modules.

and can be applied to the SQP method as well. The equation system itself is then solved by
employing a sparse Cholesky transformation on the whole system. The efficient Eigen library
for Linear Algebra1 is used to handle this. Finally, when a solution to the system has been
found, a simple step size search according to the Armijo rule is performed.

We have mentioned in the introduction that we are exploiting a certain modular structure
of optimization problems. After our introduction of the basic theory of equality-constrained
SQP, we are now ready to present an overview of the structure of our framework in Figure 4.1.

1http://eigen.tuxfamily.org/

30

http://eigen.tuxfamily.org/

4.2 On Computation of Hessian Matrices

4.2 On Computation of Hessian Matrices

Usually, the computation of the full Hessian of the objective function is a quite complex problem,
and is avoided for this reason. Instead of performing the full computation, the Hessian is
then approximated using a Gauß-Newton or similar approximation scheme. More accurate
approximation are also available, such as the ESM method proposed by Malis [50].

In this section, we will discuss some basics concerning the full computation of Hessian
matrices, as well as the Gauß-Newton approximation scheme. Finally, we are going to explain
the approximation scheme used in our implementation, which is a slightly enhanced version of
Gauß-Newton approximation, using at least the full Hessian of the cost function C, but only
first-order derivatives of the function f .

4.2.1 Full Computation

While computation of the full Hessian is commonly avoided in practice, we will discuss some
basic aspects of full Hessian computation here in preparation for discussing the approximation
methods. More specifically, we will consider compositional functions, and there are two cases
we are going to investigate:

1. The composition of a scalar function C : Rm → R1 (which is, in our applications, the cost
function) with a general multi-dimensional function f : Rn → Rm.

2. The composition of two multi-dimensional functions g : Rm → Rl, f : Rn → Rm. In
that case, we are interested in the Hessian matrics of the components gi(f(x)) of the
composite.

The first-order derivatives are easily determined for both cases. The gradient of the composite
function in the first case is computed according to the chain rule as

∇xC(f(x)) = JT
f (x) · ∇f(x)C(f(x)). (4.4)

For the second case, the gradient of the i-th component of g ◦ f can be computed as:

∇x(gi(f(x))) = JT
f (x) · ∇xgi(x). (4.5)

Note that we consider the gradient to be a column vector, thus it is technically the transpose
of the first order derivative. Computation of the Hessian for the composite C(f(x)) can be
performed as follows: Consider a function d(x,y), defined as

d(x,y) = JT
f (x) · ∇f(x)C(f(y)). (4.6)

31

4. EFFICIENT AND FLEXIBLE NONLINEAR OPTIMIZATION

It is clear that d(x,x) is equal to the function for gradient computation specified in (4.4), thus
d

d xd(x,x) is equal to the Hessian of the composite. We can rewrite d(x,y) as

d(x,y) =
m∑
i=1

[
∇f(x)C(f(y))

]
i
·
[
JT

f (x)
]
∗,i (4.7)

where the bracket operator is used as follows: In case of a vector, [·]i denotes the i-th compo-
nent, and in case of a matrix, [·]i,j denotes the element at row i and column j. The asterisk
∗ in place of a row or column index is used to refer to whole columns or rows, respectively.
This means that, e.g., [·]∗,i corresponds to the i-th column. Above formula makes it easy
to determine the derivatives of d with respect to x and y based on formulas (4.7) and (4.6),
respectively:

d
d xd(x,y) =

m∑
i=1

[
∇f(x)C(f(y))

]
i
·Hfi

(x), (4.8)

d
d yd(x,y) = JT

f (x) ·HC(f(y)) ·Jf (y). (4.9)

Using the fact that d(x,x) = d(x,x), and applying the chain rule, we see that the derivative
d

d xd(x,x), and therefore the Hessian of the composite, is equal to

d
d xd(x,x) = HC◦f (x) = JT

f (x) ·HC(f(x)) ·Jf (x) +
m∑
i=1

[
∇f(x)C(f(x))

]
i
·Hfi

(x). (4.10)

The second case is seen to be analogous to the first case, we merely have to replace C with gi.
The resulting formula is:

Hgi◦f (x) = JT
f (x) ·Hgi

(f(x)) ·Jf (x) +
m∑
i=1

[
∇f(x)gi(f(x))

]
i
·Hfi

(x). (4.11)

4.2.2 Gauß-Newton-Approximation

There are several ways to derive the Gauß-Newton optimization scheme from a regular Newton
one. Our derivation is based on the preceding considerations regarding computation of the full
Hessian of composite functions. The Gauß-Newton method is restricted to optimizing a sum of
squared differences, such that the objective function o(x) can be written as

o(x) = fT(x) · f(x). (4.12)

With respect to our elaboration on Hessian computation in Subsection 4.2.1, the objective is
equivalent to a composite of a squared norm function c(x) = x2 with the multidimensional

32

4.3 Established Algorithms for Derivative Computation

function f(x). We can specialize formula (4.10) to this case as follows:

Hc◦f (x) = 2 ·JT
f (x) ·Jf (x) +

m∑
i=1

2 · fi(x) ·Hfi(x). (4.13)

The approximation consists then in leaving away the right term in above formula, which is
seen to contain the higher-order derivatives. This is equivalent to approximating the objective
function via a first-order Taylor approximation, and using the approximation as in the Newton
method. The step computation of the Newton method looks as follows:

∆x = [JT
f (x) ·Jf (x)]−1∇xo(xn). (4.14)

Note that the factors of 2 have been omitted, since they cancel out. The approximation

HC(f(x)) ≈ JT
f (x) ·Jf (x) (4.15)

is thus called the Gauß-Newton approximation of the Hessian. The approximation scheme is
frequently applied in optimization methods. Nevertheless, better approximation schemes are
also available, such as the ESM method proposed by Malis [50]. Such higher-accuracy approxi-
mations provide higher convergence rates and at the same time increase the convergence basin,
so they should be preferred over the Gauß-Newton type approximation whenever applicable.

4.2.3 Non-Least-Squares Hessian Approximation

When using a cost function different from least squares, the Gauß-Newton approximation
scheme, as developed in the preceding subsection, can be adapted to the new cost function.
In that case, we stick with the following approximation derived from equation (4.10):

HC◦f (x) ≈ JT
f (x) ·Hc(f(x)) ·Jf (x) (4.16)

Again, this is equivalent to leaving away the higher-order derivatives associated with f , but
at least the second-order derivatives due to c are taken into account. This is the Hessian
approximation method that we are going to use within our framework.

4.3 Established Algorithms for Derivative Computation

A central problem in the nonlinear optimization methods we are using is the efficient and
accurate computation of derivatives (gradient and Hessian) of objective functions. Several
methods already exist:

1. Approximation via finite differences.

2. Symbolic Differentiation.

33

4. EFFICIENT AND FLEXIBLE NONLINEAR OPTIMIZATION

3. Automatic Differentiation.

4. Hand-coded derivatives.

Each of these methods has its benefits and drawbacks, and we shall quickly highlight them here,
and argue why we developed our own solution.

4.3.1 Finite Difference Approximation

The most straightforward method is the approximation via finite differences, which is equivalent
to evaluating the divided difference term

(x+ h)− f(x)
h

(4.17)

for a R→ R function f and small values of h. Some variants exist (using forward, backward, and
centralized difference computation schemes), however all of them share very similar properties,
with the centralized differences method yielding the most accurate results.

A big advantage of using finite difference approximations is that they are very easy to
implement: As long as a routine for evaluating the original function f is available, the derivative
approximation can be trivially computed by evaluating formula (4.17).

However, the drawbacks of this method strongly outweigh this advantage. Any of the other
methods discussed in this section is more efficient and more accurate than the finite difference
approximation, which immediately disqualifies the method for our purposes.

4.3.2 Symbolic Derivatives via Computer Algebra Systems

Another way to compute derivatives is by establishing the symbolic equations corresponding
to the objective function in a computer algebra system (such as Maple or Mathematica), and
subsequently using symbolic differentiation capabilities of these packages to generate formulas
for gradient and Hessian computation.

Another interesting alternative to using these established computer algebra systems would
be usage of the D∗-package [51], which is an algorithm that specializes purely in derivative code
generation, and produces quite efficient code.

While symbolic differentiation, when applied carefully, is able to produce moderately fast
and very accurate derivative computation codes, it suffers from several other problems. First
of all, generating the symbolic formulas can take extremely long. We have experienced this
problem when generating code using Maple, where in one case the generation of derivative
code of a moderately complex functions already took days, where other techniques (namely
Automatic Differentiation) were able to compute derivatives within seconds. Furthermore, the
produced code is usually not flexible, which often times means that all of the code has to be
regenerated from scratch if some parameters (number of measurements, etc.) of the problem
change.

34

4.3 Established Algorithms for Derivative Computation

x1

x2

x4 = x1 · x1

·

x3 = cos(x2)

cos

x5 = x3 + x4

+

x6 = √x5

√
• f(x) = x6

dx4
x1

= x1

dx4
x1

= x1

dx3
x2

= − sin(x2)

dx5
x4

= 1

dx5
x3

= 1

dx6
x5

= 1/(2 · √x5)

Figure 4.2: Computational graph, complete with derivative annotations on the edges, for the
example function f(x) =

√
x2

1 + cos(x2).

These two problems constitute enough of an obstacle for us to decide against using the
method of symbolic differentiation for our algorithms. Even if the code generation performance
problem can be tackled, the problem of inflexibility remains.

4.3.3 Automatic Differentiation

The technique of Automatic Differentiation (AD) [52] is known to compute derivatives with
both high accuracy and good performance, without requiring any additional implementation
effort besides implementing the function f itself. Thus, it is as convenient and easy to apply
as the finite differences derivative computation scheme. The basic idea behind AD is that of
“recording” every basic operation of a more complex computation in a computational graph.
Each of the basic operations (e.g., sin, cos, log,+,−, · , etc.) available on standard computers
are trivially differentiable, and with extensive use of the chain rule, it is a simple matter to
compute the overall derivative of a composite function given the derivatives of these most
elemental functions.

As an example, consider Figure 4.2, showing the computational graph of the function f :
R2 → R,x 7→

√
x2

1 + cos(x2). Every edge represents the flow of one of the values x1, x2, . . . , x6,
and nodes represent elementary functions that perform computations on the incoming values.
Temporary results x4, x5, x6 have been introduced. The edges have been annotated with the
derivatives of the function nodes with respect to the variable that the edge represents. According
to the function graph, the computation would be carried out through the following sequence of
assignments:

x3 ← x1 ·x1, x4 ← cos(x2), x5 ← x3 + x4, x6 ←
√
x5 (4.18)

According to the chain rule, the derivative of f(x) with respect to the variable xi can now be
determined by computing the products along all paths from the input node xi to the output
value f(x), and adding those products. In the case of our example, the results would be:

d
d x1

f(x) = x1 · 1 ·
1

2 ·√x5
+ x1 · 1 ·

1
2 ·√x5

(4.19)

d
d x2

f(x) = − sin(x2) · 1 · 1
2 ·√x5

, (4.20)

35

4. EFFICIENT AND FLEXIBLE NONLINEAR OPTIMIZATION

and it is easily verified that these results are correct. Note however that evaluation of the
function itself, and thus evaluation of the temporary results x4, x5, x6 is required for this scheme
to work.

For scalar-valued functions, the performance of AD is rather good, since the evaluation of
a function’s derivatives requires time proportional to the time required to evaluate the original
function. In the case of computing sparse Jacobian matrices for multidimensional functions,
the performance question turns out to be a little more complicated to answer. For these cases,
the computational graph typically contains a lot of redundancies, because edges and/or nodes
might be used in many of the paths from input to output nodes. Naturally, the computation can
be accelerated by identifying re-usable results and computing those results only once. However,
this problem is NP-complete in general [53], and a lot of research has been devoted to finding
good heuristics [54] for accumulating the values of the Jacobian.

We have tried out the technique of AD for our algorithms, but unfortunately, it turned out
that it is not so well suited to our problems. One minor problem is the performance of AD,
which is good, but by far not as good as the performance of our own solution. Empirically, we
have tested the performance of AD for computing the derivatives of the rigid transformation
function, and we have found our own implementation to be about 3 times as fast as the solution
using AD.

A more serious problem is that the complexity of the computation graph grows rapidly
when large, piecewise defined functions are used. This is the case for our image interpolation
function, for which we use a typical bi-cubic interpolation scheme. This leads to very high
memory usage, and it also requires a lot of computation time whenever a new image is loaded.
For these reasons, we also discard AD as a potential solution to solve our problem of derivative
computation.

4.3.4 Hand-Coded Derivatives

Computing derivatives by hand is also a viable alternatives as long as the involved functions
do not become too complex. Hand-coding functions is tedious and error-prone, but it is as
accurate as automatic or symbolic differentiation, and when done carefully, very likely the most
efficient variant. Computer algebra systems typically produce derivative computation formulas
that compute derivatives on a per-element basis for vector-valued functions. A human, on the
other hand, is capable of computing derivatives at a higher level, recognizing certain algebraic
characteristics that result in more elegant and efficient formulae.

As an example, consider computing the Hessian of the following function of type Rn → R:

f(x) =
√

xT ·x = |x|. (4.21)

The gradient and Hessian of that function are:

∇f(x) = x√
xT ·x

, Hf (x) = In ·
√

xT ·x− x ·xT

√
xT ·x

3 . (4.22)

36

4.4 A Modular Approach for Computing Derivatives

These formulas are short and can be implemented very efficiently using optimized computer
algebra libraries. The computation of the outer product x ·xT is likely to be much faster than
the element-wise computation of the Hessian, which would be the typical solution generated
by computer algebra systems. Furthermore, our formula is flexible with respect to the dimen-
sionality n of the domain of f , while formulae implemented using symbolic computation are
typically restricted to some fixed size n.

However, for really complex functions, the amount of work involved for manually computing
derivatives can be tremendous. Furthermore, the formulas are not very flexible: If one of the
functions in the function composition is changed, one would have to recompute all the derivatives
from scratch.

4.4 A Modular Approach for Computing Derivatives

Instead of applying any of the methods above directly to the objective function o, we propose a
new method that takes advantage of the modular structure that many optimization problems
exhibit. The resulting algorithms make heavy use of the chain rule, as is done in automatic
differentiation. However, the chain rule is applied on the higher level of vector-valued functions
instead of elementary scalar operations. In our case, such functions would be, e.g., a rigid
transformation of a point cloud, a 3D-2D projection, image interpolation etc. Our method
combines the flexibility of AD with the speed of hand-coded derivatives. Another advantage
of hand-coded derivatives is that they can handle some special function types that are difficult
to handle using AD, e.g., piecewise defined functions. This means that we will also be able to
deal with the image interpolation function.

In general, the functions we will be optimizing will be functions o(x) that are composed of
a number of multi-dimensional functions fi and a cost function C:

o(x) = C ◦ fn ◦ fn−1 ◦ . . . ◦ f1(x). (4.23)

We will be interested in computing an approximation to the Hessian of o as well as the gradient
of o. For notational convenience, we will now define a function f := fn ◦ fn−1 ◦ . . . ◦ f1 that
represents the overall function composed of all functions fj . Thus, we can also think of the
objective function as being made up of two “modules” C and f , such that o(x) = C ◦ f(x). The
function f is then itself composed of the modules f1, f2, . . . , fn.

The theory behind approximation of Hessian matrices has been discussed in Section 4.2,
and we have derived the following approximation scheme:

Ho(x) = JT
f (x) ·HC(f(x)) ·Jf (x) (4.24)

Note that this computation scheme also naturally suggests the partition of the objective function
into parts c and f : If we are able to compute the Hessian HC of C and the Jacobian Jf of C
and f , computing the approximation to Ho is a simple matter.

37

4. EFFICIENT AND FLEXIBLE NONLINEAR OPTIMIZATION

QP System Assembly

JfHc

QP Matrix
Block Assembly

∇c

QP Right
Hand Side
Assembly

h

JT
f · ∇c

Ho ∇o∇2(λT ·h)

Cost Function Module

Lagrangian Term Module

RHSLHS

Composite Function Module

JT
f ·Hc ·JT

f

∇h

Figure 4.3: Schematic overview of the information flow and steps involved in assembling the QP
system. Yellow blocks represent modules, blue blocks symbolize computation results or sub-results.
Actual computational steps are represented by green blocks.

Now that we have given a hint at our approach of partitioning the optimization problem
into modules, let us consider the problem of assembling the QP system from Equation (4.3).
The left hand side matrix is put together by combining various derivatives into a block matrix,
and the right hand side vector contains the gradient of the objective function and the value of
the constraints function h. A schematic overview of the process is shown in Figure 4.3.

This schematic overview shows how the partitioning approach fits in with the problem of
preparing the QP system: A Lagrangian term module provides functionality to compute the
values of h and its derivatives, a cost function implements computation of value, gradient and
Hessian of C, and the composite function module is in charge of computing the value and
Jacobian of f .

Note that the composite function module as well as the Lagrangian term module are them-
selves containers for other modules. While the composite function module contains the sub-
functions fi and embodies the function f , the Lagrangian term module contains the components
of h, which are h1,h2, . . . ,hk, where k is the number of constraints.

This partitioning scheme is applicable only to optimization problems that are of the struc-

38

4.4 A Modular Approach for Computing Derivatives

ture described in Equation (4.23), and for which the Hessian approximation scheme (4.24) is
applicable and yields good results. This is certainly a restriction of the proposed method,
however, it is still very useful for solving many problems, and it is especially well suited for
implementing the BA algorithms discussed in this work.

Now that we have explained the most basic ideas of our modular approach, we can describe
the architecture of our framework in more detail. The SQP optimizer module interacts directly
with the following three types of modules:

1. Modules representing vector-valued functions with multi-dimensional domain and range.
The functionality provided by this type of module are the evaluation of the function value
and computation of its Jacobian.

2. Modules implementing scalar functions with multi-dimensional domain and one-dimensional
range. Such modules can evaluate their function value, compute their function gradient,
and compute their sparse Hessian.

3. The Lagrangian term module: It represents an equality constraint h as a collection of
scalar functions. When looking at the QP problem (4.3), it is evident that the follow-
ing functionality is required: Evaluation of h, computation of the constraint Jacobian
(∇h)T = Jh, and calculation of the Hessian ∇2(λT ·h).

In our C++-implementation, the first two module types exist as abstract base classes, while
the actual implementation of any mathematical function would be derived from one of these
base classes. The base classes thereby force the user to implement the required functionality of
function evaluation and derivative computation.

The Lagrangian term module is not an abstract class, but a separate module that is derived
from the scalar function base class. It is a container for scalar functions. Since it adds some very
specific functionality to the scalar function base class and plays a specific role in our framework,
it is listed separately here.

4.4.1 An Example: Feature-Based Bundle Adjustment

Let us demonstrate the partitioning approach on the simple example of feature-based bundle
adjustment. Applying our scheme to this problem is straightforward, since the objective func-
tion EF is very simple. While there are several possibilities, we decide to use the decomposition

EF
C = C ◦ f2 ◦ f1, (4.25)

where C is the cost function, f2 would be the function performing the projective transformation
of a point cloud, and f1 would be the function performing the rigid transformation of a point

39

4. EFFICIENT AND FLEXIBLE NONLINEAR OPTIMIZATION

cloud of M points to N camera views. The function f1 could be defined as

f1(a,b) = vec

T(a1,b1) T(a2,b1) . . . T(aN ,b1)
T(a1,b2) T(a2,b2) . . . T(aN ,b2)

...
...

. . .
...

T(a1,bM) T(a2,bM) . . . T(aN ,bM)

 , (4.26)

where vec(•) denotes the vectorization of matrices, which is a stacking of the columns of a
matrix into one vector. The function f2 then performs the 3D-2D projection, taking a vector
x of N ·M 3D points as input. Letting xi denote the i-th point contained in that vector, the
function is defined as

f2(x) =

π(K ·x1)
π(K ·x2)

. . .

π(K ·xN ·M)

 . (4.27)

The cost function C takes as input a vector y of N ·M 2D points, which consists of a stack of
N ·M 2D vectors. Using a regular least-squares cost, as in (2.7), it would then be defined as

C(y) =
N∑
i=1

M∑
j=1

vi,j (yi,j − pi,j)2
, (4.28)

where yi,j is the transformed, projected version of point bj under camera parameter ai.
We are, however, not finished yet, because we also need an equality constraint to fix the

length of the quaternions aq to 1. For each quaternion, there will be a component in h enforcing
its length. Thus, h(a,b) is a N -dimensional vector, where N is the number of views. We can
define h by defining its components hi as

hi(a,b) = 1− a2
q . (4.29)

It is easily verified that h = 0 holds if and only if all quaternions have unit size.
Overall, the structure of a compositional systems describing an objective function can be

visualized well using a graph, similar to the computation graph shown in Figure 4.2. We
will, however, be using graphs whose function nodes contain only informal descriptions of the
contained functions, and we will also introduce additional nodes for parameters and intermediate
results in order to make the structure easier to understand. An example for such a graph is
shown in Figure 4.4.

As for actual optimization algorithms realized using our framework, Algorithm 4.1 shows
pseudo-code for implementation of the feature-based BA explained above. While this example
is extremely simple, it already shows the typical steps necessary for setting up the framework:

1. Create vector-valued function objects.

2. Create composite function object from vector-valued objects.

40

4.4 A Modular Approach for Computing Derivatives

Function Layer 2

3D-2D Projection

Function Layer 1

Rigid Transformation

Parameter Layer 1

Point Cloud Camera Parameters

Parameter Layer 2

Original Point Cloud,
Transformed to the N Views.

Parameter Layer 3

Point Cloud Reprojected
to each of the N Views.

Compute SSD

Figure 4.4: Computational graph of classic bundle adjustment. Yellow nodes are function nodes,
and blue nodes correspond to intermediate results.

41

4. EFFICIENT AND FLEXIBLE NONLINEAR OPTIMIZATION

3. Create a cost function object.

4. Create equality constraint function objects.

5. Create a Lagrange term object from the equality constraints.

6. Create the SQP optimizer.

After these steps have been performed, the SQP optimizer can be run as often as needed. In
the case of new sensor data arriving, e.g., the data can be sent to the object it concerns via a
custom method call, and the SQP optimizer can be run again to update the current estimate
according to the new data.

Algorithm 4.1: Feature-based bundle adjustment, as it could look like when implemented
in our framework. Our pseudo-code notation is similar to C++.

Input: Number of views N , number of cameras M , visibility information v, measured
feature positions p, initial parameters a,b.

Output: Optimized parameters a,b
// Create array containing two vector-valued function modules.
NonScalarFunction non scalar funcs [2];
// Fill array with rigid trans. and persp. proj. objects.
non scalar funcs [1] = new RigidTransform(N,M);
non scalar funcs [2] = new PerspectiveProjection(N ·M);
// Create composite function from non scalar funcs.
CompositeFunction comp function = new CompositeFunction(non scalar funcs);
// Create cost function object
ScalarFunction cost func = new LSQCost(N ·M,p,v);
// Declare array of scalar function modules, used to store constraints.
// There will be one unit quaternion constraint for each view.
ScalarFunction quat constraint [N];
for i = 1 to N do

quat constraint [i] = new UnitQuaternionConstraint(N,M, i);
// Create Lagrangian term module containing all quaternion constraints.
LagrangianTerm lagrangian term = new LagrangianTerm(quat constraint);
// Create SQP optimizer and provide the three relevant modules.
SQPOptimizer sqp opt =

new SQPOptimizer(comp function, lagrangian term, cost func);
// Perform optimization.
sqp opt.optimize((a,b));

Analysis of the Example: The Composite Function as Essential Building Block
The functions defined for the feature-based BA example would be classified in our framework
as follows: f1 and f2 clearly are vector-valued functions, while C is a scalar function, and h
would be implemented using a Lagrangian term module. Looking again at Figure 4.3, we see
however that we actually need to compute the Jacobian of the function f = f2 ◦ f1. Within
our framework, there is a special kind of vector-valued function module that implements such

42

4.5 Basic Modules of our Framework

compositional functions. It internally contains arbitrary collections of vector-valued functions,
and acts externally as the composition of those functions would.

This compositional function module is a very essential part of the framework. It allows
the user to partition complex multi-dimensional functions into smaller parts that are managed
more easily. Without the compositional function module, our framework would be restricted
to using hand-coded derivatives only, and nothing would have been gained.

Implementation-wise, it is very convenient if the composite function module behaves exactly
like a regular vector-valued function module. That way, a composite will be able to contain
other composite functions. Furthermore, it can be exchanged for a non-composite function
module if necessary, so using the composite function module is not mandatory. In our C++-based
implementation, we have used the composite design pattern [55] to implement this behaviour.

4.5 Basic Modules of our Framework

There are some functions that are not only useful for optimizing BA-related problems, but can
be used for optimization problems in general. One example for this is the composite function
module, which we have already outlined in the previous section, and are going to explain in
more detail here. We will also discuss some other universally useful vector-valued function
modules.

There are also some generally useful scalar function modules that we have implemented
within our framework, namely various robust cost functions. We will discuss the implementation
and the respective benefits and drawbacks of least squares, Blake-Zisserman, pseudo-Huber, and
Mutual Information cost functions.

Finally, we will give a specification of the Lagrangian term module, which is essentially a
scalar function module, but with some specialized functionality.

4.5.1 Vector-Valued Functions

We have already mentioned the composite function module, which is a very important building
block within our framework. But there are other useful functions belonging to the class of
vector-valued functions:

• The function stack module, which allows stacking of an arbitrary number of functions
on top of each other, such that the resulting function accepts a stack of parameters and
returns a stack of function values. It is another function module that implements the
composite pattern.

• An identity function module: Sometimes, it is convenient to simply pass through a certain
set of parameters, while others are evaluated by some function. This is made possible by
combining the functionality of the function stack module with the identity module.

• A module for mapping input values: It allows the user to specify a function that simply
copies its input values to specified locations in the output vector. Thereby, it can be used

43

4. EFFICIENT AND FLEXIBLE NONLINEAR OPTIMIZATION

to permute/replicate function values.

4.5.1.1 Compositional Function Module

The compositional function module represents a vector-valued function

f = fn ◦ fn−1 ◦ . . . ◦ f1, (4.30)

and it is implemented in such a way that it internally contains objects that represent the
vector-valued functions f1, f2, . . . , fn, and behaves like the composition f of those functions.
The functionality that the module needs to implement is, according to our specification, the
computation of the function value f(x) and the computation of the Jacobian Jf (x) of the
function.

Evaluation of the function value f is straightforward. We start by evaluating f1(x), then we
use that result to compute f2(f1(x)), and so on. In our framework, this is implemented as a
simple loop over all function modules fi in ascending order, feeding the parameters x into the
first function f1 and passing the output of function fi−1 as parameter to function fi for all other
functions.

For computing the Jacobian, we can make use of the chain rule for vector-valued functions.
To put this in a concise mathematical form, it will be convenient to make use of the definition

f◦(i) :=

fi ◦ fi−1 ◦ . . . ◦ f1 if i > 0,

id if i = 0
(4.31)

to refer to the composition of functions f1 up to fi, and to the special case of an empty composi-
tion f◦(0), where id denotes the identity function. We can now specify the computation scheme
for the composite Jacobian f as

Jf (x) = Jf◦(n)(f◦(n−1)(x)) ·Jf◦(n−1)(f◦(n−2)(x)) · . . . ·Jf◦(2)(f◦(1)(x)) ·Jf◦(1)(x). (4.32)

=
1∏
i=n

Jf◦(n)(f◦(n−1)(x)). (4.33)

Thus, the Jacobian of f can be computed by evaluating a chain product of Jacobian matrices
of the functions fi. Since all the Jacobian matrices are sparse matrices, this is, at first sight,
bad news performance-wise, because computation of sparse-sparse matrix products is known to
be a quite inefficient operation. However, we have made an effort to remedy the situation by
applying the following techniques:

• The order of evaluating the matrix products can make a tremendous difference in evalua-
tion performance: It is well possible that the evaluation of (A ·B) ·C has a dramatically
different count of multiplication operations than computation of A · (B ·C). This ob-
servation leads to the problem of optimal matrix chain product bracketing [56]. In the
context of automatic differentiation, it has been shown that the approach of computing

44

4.5 Basic Modules of our Framework

Jacobians as sparse, optimally bracketed chained products is very effective [57].

• Since the sparsity structure of the Jacobians is static, we can pre-compute the sparsity
structures of the result matrices, and we can also pre-compute lists of indices of elements
to be multiplied and added. Performing a sparse-sparse matrix product is then reduced
to executing a prepared list of multiplications and additions, which is a lot faster than
carrying out a general sparse-sparse product.

The problem of computing an optimal bracketing of a matrix chain product can be solved
by applying a well-known dynamic programming algorithm [56, p. 331-338]. To give the reader
an idea of the computational savings that are possible consider the following example: Suppose
A is a 10× 30 matrix, B is a 30× 5 matrix, and C is a 5× 60 matrix, and all of these matrices
are dense. Then:

• (A ·B) ·C takes (10 · 30 · 5) + (10 · 5 · 60) = 1500 + 3000 = 4500 multiplications.

• A · (B ·C) takes (30 · 5 · 60) + (10 · 30 · 60) = 9000 + 18000 = 27000 multiplications.

This observation generalizes to sparse chain products, and the adaptation of the dynamic pro-
gramming algorithm to the case of sparse matrices is straightforward: The dynamic program-
ming algorithm uses a certain formula to evaluate the cost of matrix-matrix products, and this
is the only thing that needs to be changed. Generally, the cost of performing a matrix-matrix
product can be evaluated by determining the number of multiplications that need to be carried
out in the evaluation. In the case of dense matrix-matrix products, the cost of multiplying a
n×m matrix with a m× k matrix would thus be n ·m · k.

For sparse matrices however, the number of multiplications required for evaluating a matrix-
matrix product depends on the sparsity structure of those matrices. Let S denote an operator
that maps a sparse matrix to its sparsity structure, which is represented as a 0-1 matrix.
Consider matrices A, B with sparsity structures

S(A) =

1 1 0
1 1 1
0 1 1

 , S(B) =

1 1 0
0 0 1
1 0 1

 . (4.34)

The cost of multiplying A and B can be determined by calculating the product S(A) · S(B),
and summing up all entries of the resulting matrix. This can be explained as follows: First of
all, we note that the product of both sparsity matrices would be

S(A) · S(B) =

1 1 1
2 1 2
1 0 2

 , (4.35)

and it is easily verified that each entry of the product matrix contains the number of multiplica-
tions that is needed to compute that entry. It is clear then that, by summing up all entries, we

45

4. EFFICIENT AND FLEXIBLE NONLINEAR OPTIMIZATION

compute the total number of multiplications that are needed to evaluate the matrix product.
In general, this can be expressed in a concise mathematical form as

1T
n · S(A) · S(B) ·1k, (4.36)

if the matrix dimensions are again n × m for A and m × k for B. By replacing the cost
evaluation formula in the original dynamic programming algorithm with this scheme, we obtain
an algorithm that computes an optimal bracketing for sparse matrices.

The algorithm for fast computation of sparse matrix-matrix products is quite straightfor-
ward, and is best explained using an example, using the matrices A,B that have been defined
above. The sparsity structure of the result matrix C is easily determined as

S(C) =

1 1 1
1 1 1
1 0 1

 (4.37)

Whatever the actual values of the non-zero entries of A and B are, the multiplications and
additions needed to compute the values of the result matrix C are always the same. They can
be stored in list form as follows:

C0,0+ =B0,0 ·A0,0, C1,0+ =B0,0 ·A1,0,

C1,0+ =B2,1 ·A0,2, C2,0+ =B2,1 ·A1,2,

C0,1+ =B0,1 ·A0,0, C1,1+ =B0,1 ·A1,0,

C0,2+ =B1,2 ·A0,1, C1,2+ =B1,2 ·A1,1,

C2,2+ =B1,2 ·A2,1, C1,2+ =B2,2 ·A1,2,

C2,2+ =B2,2 ·A2,2

Obviously, this list can also be determined and stored by a computer program, using simply
an array that stores the matrix indices. Performing the matrix-matrix multiplication is then
simply a matter of fetching the indices from the list, fetching the values from the matrices, and
performing the multiply-add operation.

The performance of this approach is substantially better than that of a generic sparse-sparse
matrix multiplication. We have compared the time taken by the Eigen library to compute a
general sparse-sparse matrix product to that taken by our algorithm using a prepared multiply-
add list, with the result that our algorithm was more than 4 times faster than the general
algorithm on a large matrix with random sparsity structure. We have also tried out different
degrees of sparsity and different sparsity patterns, but our algorithm was consistently faster in
all cases.

46

4.5 Basic Modules of our Framework

4.5.1.2 Input Map

For some applications, it is necessary to replicate some input data or re-order it. We will call
the corresponding function an input map. Such an input map can conveniently be described
using a 0-1-matrix. An input map that simply duplicates an input vector of dimension Rn

would, e.g., be described by a matrix stack of two identity matrices of size n, since(
In
In

)
·x =

(
x
x

)
. (4.38)

Another simple example is an input map that reverts a vector. It is described by a mirrored
identity matrix, because

0 · · · 0 1
... . .

.
. .
.

0

0 . .
.

. .
. ...

1 0 · · · 0

 ·

x1

x2
...

xn

 =

xn

xn−1
...

x1

 . (4.39)

Generally, an input mapping function f is described by some sparse matrix M, and the function
evaluation is done simply by evaluating a sparse-dense matrix-vector product:

f(x) = M ·x. (4.40)

The Jacobian of that function is obviously the matrix M itself.

4.5.1.3 Function Stack

The function stack module is another module that is a container for vector-valued functions.
Let those functions be denoted as fi, and let the domain and range dimensions be Ni and Mi,
such that fi is of type RNi → RMi . Mathematically, the stacked function f is then defined as
follows:

f(x1,x2, . . . ,xn) =

f1(x1)
f2(x2)
...

fn(xn)

 . (4.41)

The stacked function f accepts a parameter vector of overall dimension
∑n
i=1Ni, and evaluates

to an output vector of dimension
∑n
i=1Mi. Evaluation of such a function stack is quite simple:

Iterate over all fi, and pass the input value xi, evaluate its function value. Finally, stack all
function value vectors into one vector, which will be the function value of f .

47

4. EFFICIENT AND FLEXIBLE NONLINEAR OPTIMIZATION

Function Layer 1

Vector-Valued
Function 1

Vector-Valued
Function 2

Vector-Valued
Function 3

Function Layer 2

Vector-Valued
Function 4

Parameter Layer 2

Intermediate
Results 1

Intermediate
Results 2

Intermediate
Results 3

Intermediate
Results 4

Parameter Layer 1

Parameter Set 1 Parameter Set 2 Parameter Set 3

. . .

Figure 4.5: Our way to visualize parameter and function stacking: Light blue resp. light yellow
surrounding boxes represent parameter resp. function stacking.

The Jacobian of f is easily seen to be of the following shape:

Jf (x1,x2, . . . ,xn) =

Jf1(x1) 0N1,M2 . . . 0N1,Mn

0N2,M1 Jf2(x2)
. . .

...
...

. . .
. . . 0Nn−1,Mn

0Nn,M1 . . . 0Nn,Mn−1 Jfn(xn)

 . (4.42)

Despite its simplicity, the function stacking module is also a very important building block
within our framework. For this reason, we are going to use a special scheme to done stacks of
parameters and stacks of functions in our computational graphs. An example for this is shown
in Figure 4.5, and we have already used it in Figure 4.4. Our concept to visualize stacking
of parameters is by showing the blue parameter boxes to be part of larger, surrounding boxes
(referred to as “Parameter Layer i”), and for visualizing stacked functions, we analogously use
light yellow boxes (referred to as “Function Layer i”) that contain the actual functions.

48

4.5 Basic Modules of our Framework

4.5.2 Cost Functions

Real data obtained from feature detection algorithms is subject to a multitude of disturbances:
Camera images are noisy and have only limited resolution, and as a consequence, the pixel
coordinates returned from any feature detection mechanism will also be noisy. In addition to
that, false matches might be generated, producing outliers. In Chapter 1, we have already
mentioned that the robustness of bundle adjustment methods strongly depends on the cost
function employed. In this section, we are going to discuss several useful cost functions in
detail.

First of all, we will give an intuitive explanation as to why the least squares cost function
reacts very strongly to errors in the data. The basis for this discussion will be Equation (2.7),
which is the least-squares objective function for feature-based bundle adjustment. The results
can, however, easily be transferred to the intensity-based cases. Consider a situation where
there is one gross outlier in the data set. The quadratic error term (π(K ·T(ai,bj))− pi,j)2

grows rapidly, and will take on very large values for that outlier. A solution minimizing the
sum (2.7) is likely to neglect the error associated with the inliers in order to reduce the error for
that one outlier, causing a significant shift of the optimization result towards the false match.

A mathematically sound explanation for the outlier sensitivity is found via a probabilistic
characterization of least-squares minimization. From this viewpoint, the minimization of the
objective (2.7) corresponds to computing the maximum likelihood solution for the parameters
given measurements that are uniformly affected by Gaussian noise. The assumption of Gaussian
noise on measurements is the root cause for the lack of robustness of least-squares estimation:
While inliers can be modelled well using a normal distribution, the stochastic behaviour of
outliers will not be Gaussian at all.

A number of robust cost functions that are suitable for bundle adjustment problems are
described by Hartley and Zisserman [34, pp. 616-622]. Such cost functions aim to address the
problem described above by assigning a lower penalty value to outlier terms.

In the following, we consider cost functions C(z,y) that assign a scalar cost value to a
prediction z ∈ Rd and a measurement y ∈ Rd, as introduced in (2.8). Intuitively, the cost
should be small if z and y agree, and high otherwise. With x, we denote the parameters of our
optimization problem, and f is the measurement function, such that

f(x) = z.

Any robust cost function typically depends on an additional parameter, which is the outlier
threshold b. The outlier threshold is a value that can be interpreted as the border between
inliers and outliers with respect to the error norm |z − y|. Thus, if the error norm |z − y|
is bigger than b, the associated value is treated as an outlier, and it is treated as an inlier
otherwise.

Note that while these cost functions are discussed here within the framework of feature-based
bundle adjustment, they are also applicable to the case of intensity-based bundle adjustment
that we will turn to later. Figure 4.6 shows an overview of the cost functions that will be

49

4. EFFICIENT AND FLEXIBLE NONLINEAR OPTIMIZATION

-2

 0

 2

 4

 6

 8

 10

 12

 14

 16

-4 -3 -2 -1 0 1 2 3 4

Squared Distance
Blake-Zisserman

Pseudo-Huber

Figure 4.6: Several cost functions.

discussed, and Figure 4.7 shows some results of line fitting using different cost functions.

4.5.2.1 Squared Differences

The most straightforward cost function is the squared difference measure, which is the one used
in the original definition (2.7). It is defined as

CLSQ(z,y) = (z− y)T · (z− y) = (z− y)2.

In our experiments, we have found that the least squares cost function is almost unusable for
intensity-based bundle adjustment. This is not very surprising, given that the distribution of
image intensities differs greatly from a Gaussian distribution.

On the other hand, the property of the squared differences function leading to a maximum
likelihood estimate is something that is actually desireable, since the noise distribution of inliers
is quite close to a Gaussian distribution. So all of the alternative cost functions seek to preserve
this characteristic to a certain degree. This means that the alternative robust cost functions
will behave like a squared difference function for inliers, while outliers will be treated differently.

4.5.2.2 Blake-Zisserman

As we have outlined above, the main problem of using the least-squares cost function is its
tendency to assign very high penalty values to outliers, thus neglecting the values of inliers

50

4.5 Basic Modules of our Framework

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Ground Truth
Least Squares
Pseudo-Huber

Blake-Zisserman
Data

Figure 4.7: Fitting results when using robust cost functions.

that we are actually interested in. For inliers, however, it is usually reasonable to assume a
Gaussian noise distribution, for which the least-squares estimation is the best estimator in a
maximum-likelihood sense.

The Blake-Zisserman cost function [34, p. 618], [58] is maybe the most straightforward
approach to tackle this problem of least squares estimation. The basic idea is to assign a
quadratic cost to inliers, while a constant cost is used for outliers. Blake and Zisserman [58]
have originally defined in a piecewise fashion, such that it would be defined as

CBZ(z,y) = min(−(z− y)2, b2) (4.43)

when adapted to our notation. However, this function is obviously not continuously differ-
entiable, which is undesirable for continuous optimization problems. It is possible to find a
function that is very close to the piecewise function, yet it has continuous derivatives of all
orders [34]:

CBZ(z,y) = − log(e−(z−y)2
+ ε). (4.44)

The parameter ε should be chosen as ε = e−b2 . Figure 4.6 shows the resulting function. This
is the formulation that we have actually used in our implementation.

Figure 4.7 shows that the Blake-Zisserman cost function actually performs best when trying
to fit a line to noisy data. However, it also has one big drawback: It is not convex, which greatly
impedes its usefulness when being used in conjunction with non-linear optimization problems.

51

4. EFFICIENT AND FLEXIBLE NONLINEAR OPTIMIZATION

The non-convexity means that the function is likely to introduce local minima, which typically
prevent convergence of optimization algorithms to the true minimum.

The gradient and Hessian of this cost function are easily determined as

∇zCBZ(z,y) = 2 · (z− y) · e−(z−y)2

e−(z−y)2 + ε
, (4.45)

∇2
z,zCBZ(z,y) = 4 · e−(z−y)2

e−(z−y)2 + ε
· (z− y) · (z− y)T

= ∇zCBZ(z,y) · ∇zCBZ(z,y)T · ε

e−(z−y)2 . (4.46)

4.5.2.3 Huber and Pseudo-Huber

While the Blake-Zisserman cost function does a good job at reducing the influence of outliers,
it also has a property that is very undesirable for smooth non-linear optimization: It is non-
convex. This introduces a lot of local minima, and our experiments have also shown that this
cost function frequently does not converge to the desired results, unless one is already close to
a solution.

A better choice for optimization problems that need to deal with outliers are the Huber and
Pseudo-Huber cost functions [34, p. 619]. These functions can be seen as combination between
the non-differentiable L1 norm for outliers with the L2 norm for inliers. Let b denote the outlier
threshold, then the Huber cost function is defined as

CH(z,y) =

(z− y)2 for |z− y| < b,

2 · b · |z− y| for |z− y| ≥ b.
(4.47)

Since this is a piecewise defined function, it still has one problem: The second-order deriva-
tives are not continuous, which is a disadvantage when applying nonlinear optimization meth-
ods. However, the problem can be rectified easily by using the Pseudo-Huber cost function,
which has a simple definition and continuous derivatives of all orders:

CPH(z,y) = 2 · b2 ·
(√

(z− y)2

b2
+ 1− 1

)
(4.48)

Since we compute the full Hessian matrices of the cost function for our approximation of the
objective function Hessian, we prefer this variant over the classic Huber cost function. The
function can be seen in Figure 4.6.

As can be seen in Figure 4.7, the Pseudo-Huber cost function (which performs very similar
to the Huber cost function) also leads to reasonable estimates that are closer to the ground
truth than the result of using the least squares function. The fit is not as good as when using the
Blake-Zisserman function, but in practice, the non-convexity of the Blake-Zisserman function
is a much bigger problem.

Computation of the gradient and Hessian of the cost function is not very difficult, but we

52

4.5 Basic Modules of our Framework

state the results for completeness:

∇zCPH(z,y) = 2√
(z−y)2

b2 + 1
· (z− y) (4.49)

∇2
z,zCPH(z,y) = 2√

(z−y)2

b2 + 1
· Id −

2

b2 ·
(

(z−y)2

b2 + 1
) 3

2
· (z− y) · (z− y)T

= 2√
(z−y)2

b2 + 1
· Id −

(∇zCPH(z,y)) · (∇zCPH(z,y))T

2 · b2 ·
√

(z−y)2

b2 + 1
(4.50)

4.5.2.4 Comparison of Pseudo-Huber and Blake-Zisserman Functions

A first evaluation of the cost functions discussed previously is provided through Figure 4.7,
showing the results of line fitting using each of the cost functions. Fitting has been performed
using the Levmar package [49] for non-linear optimization. The ground truth line had a slope
of −1 and an offset of 0. Noisy measurement data has been generated by adding considerable
white noise and some coarse outliers. The result closest to the ground truth was achieved by
using the Blake-Zisserman function, the Pseudo-Huber cost function ranks second. The worst
result is achieved, as expected, by using the least-squares cost function, which overreacts to the
coarse outliers.

However, as we have mentioned earlier, the Blake-Zisserman cost function has a major
drawback, which is its strong tendency to introduce local minima as a consequence of its non-
convexity. Local minima, however, constitute a major problem, since optimization of functions
with local minima is a difficult problem. And indeed, Figure 4.7 shows only half of the truth:
The Blake-Zisserman function is a good cost function, but only if one already has a good initial
estimate of the actual minimum. If the optimization process is started with a bad initial value,
it does not converge towards any usable value at all.

The line fitting problem is a two-dimensional problem, since only the slope and the offset
of the line need to be estimated. This makes it possible to analyse the behaviour of the cost
functions by plotting the optimization landscape, and the result of this is shown in Figures 4.8
and 4.9 for the Pseudo-Huber and Blake-Zisserman cost, respectively. The x and y coordinates
of these images correspond to the slope and offset values, and the color and intensity encode
the gradient direction and the gradient magnitude.

The color coding is explained in Figure 4.10, which is an image of a landscape where all
gradients point towards the center, and the gradient magnitudes shrink towards the center.
This profile represents the “perfect” landscape, assuming that the optimal value is located in
the center, since every gradient points directly towards the minimum, and gradient magnitudes
only become small in the vicinity of the minimum.

Looking at Figure 4.8, we can see that the profile resembles the reference profile 4.10 very
closely, while the profile for the Blake-Zisserman function is drastically different. In particular,
it reveals that there are a lot of local minima, as indicated by the black areas surrounding the
actual minimum, which confirms our earlier statement.

53

4. EFFICIENT AND FLEXIBLE NONLINEAR OPTIMIZATION

Figure 4.8: Gradient direction (encoded by color) and magnitude (encoded by brightness) for
the line fitting problem when using the Pseudo-Huber cost function. Comparison with Figure 4.10
reveals a high degree of similarity to the “ideal” behaviour with respect to convexity.

Since the intensity-based bundle adjustment problems that we have introduced are non-
convex optimization problems even in a least-squares formulation, using the Blake-Zisserman
cost function worsens that non-convexity significantly. In our experiments, we made the expe-
rience that this cost function is basically unsuitable for intensity-based bundle adjustment. It
might still prove useful for refining a solution that is already close to a minimum, and thus it
might be applied after an initial fit has been found via the Pseudo-Huber cost function.

4.5.2.5 Specialization of Cost Functions for Batch Matching

Until now, our discussion of cost functions was limited to the case of comparing two d-dimensional
vectors z,y. If we are dealing, e.g., with RGB images, the cost functions would be applied to
pairs of 3-vectors containing red, green and blue intensity values. This does not, however, fit in
directly with the architecture of our optimization system, where we expect one vector-valued
function f to generate one big vector of measurement predictions whose cost value must be esti-
mated, and the cost function has to work directly on this vector, thus on multiple measurement
values simultaneously.

Let us assume now that the reference values y consist of a concatenation of M d-dimensional
values, such that

y = vec(y1 y2 . . . yM). (4.51)

In the case of intensity-based bundle adjustment, we would have yi = I0(pj). Similarly, assume
that the output z = f(x) of f is a concatenation of N ·M d-dimensional vectors zi,j with

54

4.5 Basic Modules of our Framework

Figure 4.9: Gradient direction (encoded by color) and magnitude (encoded by brightness) for
the line fitting problem when using the Blake-Zisserman cost function. The black areas indicate
a lot of local minima.

Figure 4.10: Gradient direction and magnitude for a hypothetical cost function that would be
optimal in the sense that every gradient points towards the minimum located at the center, and
that gradient magnitude becomes smaller as the minimum is approached.

55

4. EFFICIENT AND FLEXIBLE NONLINEAR OPTIMIZATION

1 ≤ i ≤ N and 1 ≤ j ≤M , such that

z = vec

z1,1 z2,1 . . . zN,1
z1,2 z2,2 . . . zN,2
...

...
...

z1,M z2,M . . . zN,M

 (4.52)

where the operator vec(•) denotes the vectorization of matrices. The value zi,j is going to
correspond to the value Ii(π(K ·T(ai,D(bj)))) in the basic intensity-based bundle adjustment
problem.

Using this notation, we can compute the overall cost associated with vectors z,y as

C(z,y) =
N∑
i=1

M∑
j=1

C(zi,j − yj). (4.53)

This definition of cost functions is compatible with our framework, and its shape is also familiar
from Equation (2.10). Note that the reference values y are constant over an image sequence,
so C will, for our purposes, be treated as a function of type RN ·M · d → R.

The formulas for computing the gradient and Hessian matrix of such cost functions are
easily determined as long as the formulas for computing ∇C and HC are known. The gradient
is then computed by stacking the gradients ∇C(zi,j ,yi) on top of each other, while the Hessian
is block-diagonal with blocks HC(zi,j ,y) on the diagonal.

4.5.2.6 Another Alternative: Mutual Information

Mutual information is a robust similarity measure based on information theory that is often used
for intensity-based matching problems. It has been introduced for visual tracking problems by
Viola and Wells [59], where it was shown to be extremely robust to many kinds of perturbations,
such as lighting changes etc. We will briefly reproduce some basic theory on mutual information
and some details about our specific implementation.

Our optimization framework is laid out for minimizing continuous objective functions, thus
we need to use a continuous version mutual information as well. The mutual information of
scalar, continuous random variables Z and Y is defined as

h(Z) + h(Y)− h(Z, Y), (4.54)

where h(Z),h(Y) and h(Z, Y) denote the entropy of Z, Y , and the joint entropy of Z and Y .

56

4.5 Basic Modules of our Framework

Entropy and joint entropy are defined as follows:

h(p(Z)) =
∫ ∞
−∞

p(Z) log(p(Z)) dZ

h(p(Z, Y)) =
∫ ∞
−∞

∫ ∞
−∞

p(Z, Y) ln(p(Z, Y)) dZ dY

The mutual information is a measure of correlation between the random variables Z and Y .
Its value is maximal if the correlation is highest, which means that one of the variables can be
perfectly predicted knowing values of the other variable.

Let us assume for now that we are working on single-channel gray-scale images. The random
variables Z and Y then represent the intensity values of the reference pixels yi = I0(pj) and
the comparison pixels zi,j = Ii(π(K ·T(ai,D(bj)))), where we are using the notation from
Equation (2.10). In a discrete setting, we would use a probability mass function to describe the
probability of Z and Y taking certain values. Given samples from the images as defined above,
such a probability mass function can be approximated very well using histograms of the sample
values.

In the our case, we cannot make use of this technique, because histograms are computed
using a limited resolution of histogram bins, and such a representation is inherently discrete and
thus non-continuous. In these cases, it is a common approach to use kernel-based probability
density estimation, such as, e.g., a Parzen window density approximation [60], which has also
been applied in the work by Viola and Wells [59]. The basic idea is to approximate the density
function via a weighted sum of Gaussian kernels as

p(Z) ≈ 1
M
·
M∑
i=1

Gψ(z), (4.55)

where G is an appropriate Gaussian kernel with ψ as covariance matrix, and M is the number
of samples. The Gaussian kernel typically has the form

Gψ(z) = (2 ·π)−M
2 · |ψ|− 1

2 · e− 1
2 z

Tψ−1z. (4.56)

Using the Parzen window estimate, it is possible to specify a formula for continuous approxi-
mation of the entropy of a random variable given a number of samples. In our case, we would
have M samples drawn from the image values, and we could estimate the entropy associated
with the random variable Z as

h(Z) ≈ − 1
M
·
M∑
i=1

ln

 1
M

M∑
j=1

Gψ(zi − zj)

 (4.57)

57

4. EFFICIENT AND FLEXIBLE NONLINEAR OPTIMIZATION

From these observations, we derive a MI-based cost function as follows:

CMI(z,y) = 1
M
·

 M∑
i=1

ln

 1
M

M∑
j=1

Gψz
(zi − zj)

+

M∑
i=1

ln

 1
M

M∑
j=1

Gψy
(yi − yj)

+

M∑
i=1

ln

 1
M

M∑
j=1

Gψzy
((zi,yi)− (zj ,yj))

 (4.58)

This is our basic formulation for mutual information on gray-scale images. When we are working
with multi-channel images, we apply the MI cost function on a per-channel-basis, and add up
the results. We omit the formulas for computation of the first and second-order derivatives,
as the formulas become quite complicated and lengthy. Results of this can be found in Viola’s
paper [59], and some results on second-order derivatives have been published in the paper by
Arbel and Brooks [61].

During our experiments, we have indeed implemented a computation scheme to evaluate
the full Hessian of the mutual information cost function. Unfortunately, it turned out that the
computational expense for calculation of the Hessian is tremendous, even in a GPU-supported
version. While the convergence rate was better using the full Hessian, the overall performance
was considerably worse than when using simple gradient descent. Thus, we decided in the end
to abstain from using the Hessian computation code, and settled for simple gradient descent
instead. Note that this can easily be implemented in our framework by using a simple identity
matrix as Hessian.

Since mutual information has a reputation of being very robust, we have used it to compare
the performance of our light source modeling algorithms against it. It has turned out that
mutual information is indeed well suited to deal with images that exhibit uniform brightness
changes. However, in the case of a moving light source, the brightness changes are strongly
non-uniform, and we were not able to get a reliable reconstruction by merely using a mutual
information cost function.

4.5.3 The Lagrangian Term Module

The Lagrangian term module plays a special role within our framework. Mathematically, it
represents a scalar function λT ·h(x), so it technically depends on two sets of parameters: The
Lagrange multipliers λ, and the parameters x of the function h. The module is itself a container
for other scalar functions.

Since the Lagrangian term is a scalar function, one might be tempted to treat it as such
within the framework. However, a close look at Figure 4.3 reveals that the Lagrangian term
actually needs to provide some special functionality:

1. Evaluating h, which is actually a vector-valued quantity.

58

4.5 Basic Modules of our Framework

2. Computing the Jacobian of h.

3. Calculation of the Hessian ∇2(λT ·h).

These three tasks are quite simple to solve if the gradients and Hessian matrices of the func-
tions hi contained in a Lagrange term object can be computed.

Evaluation of h is done simply by iterating over the contained function objects and storing
their evaluation results in a vector:

h(x) = (h1(x) h2(x) . . . hk(x))T. (4.59)

For computing the Jacobian of h, we can similarly iterate over all functions hi, compute
their gradients, and store the gradient of function i in column i of a matrix. The end result
will be the transposed Jacobian of h:

∇h(x) = (∇h1(x) ∇h2(x) . . . ∇hk(x)) . (4.60)

Finally, for computing the Hessian, we note that

∇2(λT ·h(x)) = ∇2

(
k∑
i=1

λi ·h(x)
)

=
k∑
i=1

λi · ∇2h(x), (4.61)

so that we can again simply iterate over all sub-functions hi, and add up all Hessian matrices,
scaled by λi.

59

4. EFFICIENT AND FLEXIBLE NONLINEAR OPTIMIZATION

60

Chapter 5

Modules for Implementing
Bundle Adjustment

In the previous chapter, we introduced our framework for flexible and efficient non-linear opti-
mization. However, we did not talk yet about our realization of the intensity-based BA problem
stated in Chapter 3 within that framework. This is going to be the main concern of this chapter:
We will discuss the details of all the modules that one needs to implement in order to solve our
bundle adjustment problems. These modules are essentially implementations of mathematical
functions together with their derivatives. In the case of scalar functions, the computation of the
gradient and the Hessian are discussed. In the case of non-scalar multi-dimensional functions,
we will be concerned with the computation of their Jacobian matrices.

There are three different variants of intensity-based bundle adjustment algorithms that have
been realized using this framework, namely:

1. Assuming constant lighting.

2. Assuming a point light source at the camera origin. This is useful when the light source
is very close to the camera, and is moving along with it.

3. Using a calibrated light source with non-uniform directional intensity. This can be used in
the case of a light source that is not sufficiently close to the camera, and has a non-uniform
spatial intensity distribution.

The different functionality of these algorithms has been implemented within our optimization
framework by means of exchangeable modules. This allows for a high degree of re-usability and
flexibility. Before we start discussing the separate modules in detail, we will give a schematic
overview over each of the algorithms to be discussed herein.

• Surface sampling module: A function that maps a set of surface parameters to a 3D point
cloud. Our surface model of choice is a surface induced by an inverse B-spline depth map.

61

5. MODULES FOR IMPLEMENTING BUNDLE ADJUSTMENT

Function Layer 5

Re-Projection of Sliding Window
Images to Reference Image

Parameter Layer 5

Image Values @
Sliding Window

Parameter Layer 4

2D Image Coordinates
for Sliding Window

Function Layer 4

Image Interpolation for
Camera Im. @ Sliding Win.

Function Layer 3

3D-2D Projection for Views
in Sliding Window

Parameter Layer 3

Surface Point Cloud
for each Camera

Function Layer 1

Surface Evaluation Identity

Function Layer 2

Rigid Transformation

Parameter Layer 2

Surface Point Cloud Camera Parameters

Parameter Layer 1

Surface Parameters Camera Parameters

Parameter Layer 6

Rectified Intensities

Cost Function

Figure 5.1: Computational graph of the algorithm used for reconstruction and tracking under
constant light.

62

Function Layer 5

Re-Projection of Sliding Window
Images to Reference Lighting

Parameter Layer 5

Image Values @
Sliding Window

Brightness Warping
Values

Parameter Layer 4

2D Image Coordinates
for Sliding Window

Numerators and Denominators
of Brightness Warping Values

Function Layer 4

Image Interpolation for
Camera Im. @ Sliding Win.

Component-Wise
Division

Function Layer 3

3D-2D Projection for Views
in Sliding Window

Brightness Warping Values Numerator
and Denominator Computation

Parameter Layer 3

Surface Point Cloud
for each Camera

Brightness Warping
Components

Function Layer 1

Surface Evaluation +
Surface Normals Identity

Function Layer 2

Rigid Transformation +
Brightness Warping Components

Parameter Layer 2

Surface Point Cloud Surface Normals Camera Parameters

Parameter Layer 1

Surface Parameters Camera Parameters

Parameter Layer 6

Rectified Intensities

Cost Function

Figure 5.2: Computational graph of the algorithm used for reconstruction and tracking with a
point light source at the camera’s principal point.

63

5. MODULES FOR IMPLEMENTING BUNDLE ADJUSTMENT

Parameter Layer 6

Rectified Intensities

Parameter Layer 1

Surface Parameters Camera Parameters

Parameter Layer 2

Surface Point Cloud
for Reference Camera Surface Normals Camera Parameters

Function Layer 2

Point Cloud Passthrough +
Rigid Transformation +

Brightness Warp Coefficients

Function Layer 1

Surface Evaluation +
Surface Normals Identity

Parameter Layer 3

Surface Point Cloud
for other Cameras

Brightness Warping
Components

Surface Point Cloud
for reference Camera

Function Layer 3

3D-2D Projection for Cameras
and Light Sources
in Sliding Window

Numerators and Denominators
of Brightness Warping Values

3D-2D Projection for Light Source
in Reference Frame

Function Layer 4

Image Interpolation for
Light Profile @ Ref. Image

Image Interpolation for
Camera Im. @ Sliding Win.

Image Interpolation for
Light Profile @ Sliding Win.

Component-Wise
Division

Parameter Layer 4

2D Image Coordinates
for Sliding Window

2D Light Profile Coordinates
for Sliding Window

Numerators and Denominators
of Brightness Warping Values

2D Light Profile Coordinates
for Reference Image

Parameter Layer 5

Light Profile Values @
Reference Image

Image Values @
Sliding Window

Light Profile Values @
Sliding Window

Brightness
Warping Values

Function Layer 5

Re-Projection of Sliding Window
Images to Reference Lighting

Cost Function

Figure 5.3: Computational graph of the algorithm used for reconstruction and tracking with
calibrated point light source.

64

5.1 Rigid Transformations

• Surface and normal sampling module: In the variants of our algorithms where lighting
is accounted for, it is important to evaluate the surface normals along with the surface
points. Mathematically, this is a function that takes a set of surface parameters, and
outputs the surface point cloud as well as the normal associated with each point of the
cloud.

• Geometry computation module: Performs the rigid transformation of a 3D point cloud
to n other frames of reference. It takes as input a 3D point cloud, and n sets of rotation
and translation parameters. Rotations will be described as quaternions, and translations
via a simple 3D vector, so there are 7 parameters for each view. The output of this
function consists of n copies of the original point cloud, each one transformed according
to one set of extrinsic parameters provided as input.

• Brightness warping modules: Three modules that compute the brightness warping co-
efficients for each pixel. Input to the first module is the 3D point cloud together with
extrinsic camera parameters and 3D normal vectors associated with each point. The
output of that module is used as input to the second module, which performs some in-
termediate calculations. The third module finally calculates, from the output values of
the second module, a vector of brightness warping values that can be used to map the
intensity values of some frame i back to the intensity values in the reference frame 0.

• Camera projection module: Takes as input a point cloud, and computes its 2D projection
according to a specified camera matrix.

• Image interpolation module: Takes as input n sets of 2D coordinates, and interpolates
the camera images at the specified image coordinates.

These are the most important functions used for realizing intensity-based bundle adjustment
algorithms in our optimization framework. All of the main functions, as well as some smaller
helper functions, will be discussed in this chapter.

5.1 Rigid Transformations

As we have discussed in Chapter 1, the representation of a camera is usually split up into intrinsic
and extrinsic parameters [34]. The intrinsic parameters describe the projective properties of the
camera, while the extrinsic parameters relate the 3D coordinates of points in the scene to the
camera’s coordinate system. In this section, we will give some details on the aspect of rotation
representation for extrinsic parameters.

To specify a rigid transformation of a camera, we need to determine translation and orien-
tation with respect to the scene reference frame. Specifying the translation is straightforward
via specification of a three-dimensional vector t ∈ R3. When it comes to specifying rotations,
however, there are many choices, such as 3 × 3 rotation matrices, Euler angles, Axis-Angle
representation and many more. We choose to represent rotations by means of unit quaternions,
which have a number of desirable properties:

65

5. MODULES FOR IMPLEMENTING BUNDLE ADJUSTMENT

1. They are singularity-free, as opposed to all known three-parameter 3D rotation represen-
tations.

2. A quaternion is composed of 4 parameters, which is only one parameter more than needed
in a minimal representation, and it is still considerably less than the 9 parameters needed
in a rotation matrix representation.

3. Compositions of rotations are performed via quaternion multiplications, which are rela-
tively cheap, yet easy to compute in contrast to some of the other methods.

4. It is quite straightforward to perform spherical interpolation between rotations represented
as quaternions.

A drawback of quaternions as rotation representation is that we need to ensure at all times
that such a quaternion has unit length. This may or may not be a problem depending on the
type of application. We are primarily concerned with optimization problems, where the unity
constraint can be implemented easily.

5.1.1 Interpretation of Quaternions as Rotations

The function for mapping a vector of point coordinates x ∈ R3 to a coordinate frame described
by translation vector t ∈ R3 and quaternion q ∈ R4 can be computed as

T(t,q,x) = R(q)T(x− t), (5.1)

where R(q) denotes the 3 × 3 rotation matrix corresponding to the rotation quaternion q =
(q̌, q4) = (q1, q2, q3, q4). In our notation, the fourth component q4 of the quaternion is the
scalar (real) part. To avoid notational difficulties later on, we will use q̂ = q4 as another way to
specify the scalar component of q. Thus, q can also be written as (q̌, q̂). The rotation matrix
corresponding to q can now be computed as:

R(q) = (q̂2 − q̌Tq̌)I3 + 2(q̌q̌T + q̂[q̌]×), (5.2)

with

q̌ =

 q1

q2

q3

 , and [q̌]× =

 0 −q3 q2

q3 0 −q1

−q2 q1 0

 . (5.3)

As usual, the operator [·]× denotes the conversion of a three-dimensional vector to its cross
product matrix. From this formula, it is also obvious that the inverse (or transposed) rotation
matrix is computed through the formula:

R(q)T = (q̂2 − q̌Tq̌)I3 + 2(q̌q̌T − q̂[q̌]×) (5.4)

If this representation is to be used in an optimization framework, we are often interested in
computing the derivative of above function with respect to parameters x, t,q. This is slightly

66

5.1 Rigid Transformations

cumbersome, but essentially only a matter of basic calculus. The results are as follows:

d T(t,q,x)
d x = R(q)T (5.5)

d T(t,q,x)
d t = −R(q)T (5.6)

d T(t,q,x)
d q̌ = 2

(
[(x− t)× q̌ + q̂(x− t)]× + q̌T(x− t) I3

)
(5.7)

d T(t,q,x)
d q̂ = 2 ((x− t)× q̌ + q̂(x− t)) (5.8)

For some applications, we will be interested in the inverse rigid transformation, described by
rotation quaternion q′ = q∗, and translation vector t′ = −R(q)T · t. With q∗, we denote the
quaternion conjugate, which is defined as q∗ = (−q̌, q̂). It corresponds to the rotation inverse
of q. For this case, the rigid transformation would have the specific shape

T(t′,q′,x) = R(q′)T(x− t′) = R(q)(x− t′) = R(q) ·x + t = T(0,q′,x) + t (5.9)

Using this form of the inverse transformation, we can easily determine the derivatives, adapting
the results for the forward transformation to the inverse case:

d T(t′,q′,x)
d x = R(q) (5.10)

d T(t′,q′,x)
d t = I3 (5.11)

d T(t′,q′,x)
d q̌ = −2

(
[−x× q̌ + q̂ ·x]× − q̌T ·x · I3

)
(5.12)

d T(t′,q′,x)
d q̂ = 2 (−x× q̌ + q̂ ·x) (5.13)

5.1.2 Quaternions in Multiple View Geometry

Usually, one is not only interested in rigid body transformations of a single point x, but of
whole sets of points ξ = (x1,x2, . . . ,xn) ∈ R3n. Above definitions allow us to formulate this in
a concise manner:

Tn(ξ, t,q) =

T(t,q,x1)
T(t,q,x2)

...

T(t,q,xn)

 (5.14)

The derivative of above function w.r.t. ξ is easily derived from earlier formulae. We see that
the Jacobian is a block-diagonal matrix with n× n blocks of size 3× 3, and with the rotation

67

5. MODULES FOR IMPLEMENTING BUNDLE ADJUSTMENT

matrix R(q)T on the diagonal:

d Tn(t,q, ξ)
d ξ

=

R(q)T 03 . . . 03

03 R(q)T . . .
...

...
. . .

. . . 03

03 . . . 03 R(q)T

 (5.15)

Furthermore, we are also able to specify the form of the derivative w.r.t. t, q̌ and q̂:

d Tn(t,q, ξ)
d t =

−R(q)T

−R(q)T

...

−R(q)T

 , where −R(q)T repeats n times. (5.16)

We can use the Kronecker matrix product, denoted by ⊗, to achieve a more concise notation:

d Tn(t,q, ξ)
d ξ

= I3 ⊗R(q)T,
d Tn(t,q, ξ)

d t = −1n ⊗R(q)T. (5.17)

Here, 1n is the n-dimensional column vector (1, 1, . . . , 1)T. The Jacobians of Tn w.r.t. q̌ and q̂
compute as:

d Tn(t,q, ξ)
d q̌ = 2

[(x1 − t)× q̌ + q̂(x1 − t)]× + q̌T(x1 − t) I3

[(x2 − t)× q̌ + q̂(x2 − t)]× + q̌T(x2 − t) I3
...

[(xn − t)× q̌ + q̂(xn − t)]× + q̌T(xn − t) I3

 (5.18)

d Tn(t,q, ξ)
d q̂ = 2

(x1 − t)× q̌ + q̂(x1 − t)
(x2 − t)× q̌ + q̂(x2 − t)

...

(xn − t)× q̌ + q̂(xn − t)

 (5.19)

When dealing with observations of a set of n 3D points taken with the same camera, but
from m different views τ = (t1,q1, t2,q2, . . . , tm,qm), we need to further extend above defini-
tions as follows:

Tn,m(τ , ξ) =

Tn(ξ, t1,q1)
Tn(ξ, t2,q2)

...

Tn(ξ, tm,qm)

 (5.20)

Given the preceding elaboration on derivative computation, it is a simple matter then to infer
a computation scheme for derivatives of Tn,m as well. The block structure of that matrix is as

68

5.2 The Depth Map Model

follows:

d Tn,m(ξ, τ)
d ξ

=

In ⊗R(q1)T

In ⊗R(q2)T

...

In ⊗R(qn)T

 (5.21)

d Tn,m(ξ, τ)
d τ

=

d Tn(ξ,τ)

d x1,q1
03n,7 . . . 03n,7

03n,7
d Tn(ξ,τ)

d x2,q2

. . .
...

...
. . .

. . . 03n,7

03n,7 . . . 03n,7
d Tn(ξ,τ)
d xn,qn

 . (5.22)

5.2 The Depth Map Model

Common feature-based bundle adjustment methods typically use a point cloud model to rep-
resent the reconstructed scene: Every feature is assigned a set of 3D coordinates, and all
coordinates are independent of each other. With intensity-based methods, a point cloud rep-
resentation is likely to cause difficulties, since intensity values are usually not unique, which
makes data association practically impossible. Thus, it is desirable to further constrain the scene
model, and this is usually done by imposing some kind of shape prior or smoothness constraint
on the surface. Typical examples for this technique are planar [62] and non-planar [21, 29, 30]
parametric surface tracking methods such as the ones discussed herein.

In this section, we are going to look at some alternatives for representing parametric smooth
surfaces, and we will discuss the basics of B-Spline surfaces, which is the representation we have
chosen in our implementation. Furthermore, we will discuss some aspects of inverse depth maps,
and we will finally show how inverse depth maps can be implemented using B-Spline surfaces.

In general, we are dealing with three-dimensional parametric surfaces of the form

d : Rn × R2 → R3. (5.23)

The surface shape is governed by n parameters and the surface function maps surface parame-
ters p ∈ Rn and surface coordinates (u, v) ∈ R2 to three-dimensional coordinates on the surface.
In the variant of our algorithm where scene lighting is also taken into account, we will also be
interested in computing the surface normals along with the surface values.

As we have mentioned, our surface representation of choice is a bivariate B-Spline model.
Still, we shall give a quick overview of other alternatives as well as their advantages and draw-
backs.

Generally, one would want the surface model to be sparse in the sense that surface param-
eters have only local support. This has the advantage that the resulting bundle adjustment
equation (2.10) will be sparse and thus feasible to solve. It is well known for feature-based
bundle adjustment that the optimization process quickly becomes infeasible for large feature
sets if the sparsity of the bundle adjustment equations is not exploited [47].

69

5. MODULES FOR IMPLEMENTING BUNDLE ADJUSTMENT

Representation Pros Cons
B-Spline Sparse surface model Limited expressiveness

Linear in parameters
Easy to differentiate

Rational B-Spline Sparse surface model Not linear in parameters
More general surface

Radial Basis Functions Easy interpolation Dense model

Figure 5.4: Overview of surface representations.

What would be even worse than the cost of solving dense bundle adjustment equations is
the cost of generating a dense Jacobian of the intensity difference function. For a sparse surface
model, we would end up with a sparse matrix with O(m) non-zero entries, where m is the
number of intensity comparison points. For a dense model, we would need to generate O(m ·n)
values, which is prohibitively large already for small values of m and n.

The table in Figure 5.4 shows a rough overview over several surface models and their advan-
tages and disadvantages. The rest of this Section is sub-divided into the following parts: First
of all, we will introduce B-Spline curves and surfaces, and we will develop some formulas that
are relevant for our implementation. Afterwards, we will discuss properties of surfaces induced
by direct depth maps and will derive formulas for computation of surface values and surface
normals. These formulas will then be adapted to the case of inverse depth maps. Finally, we
will combine the formulas for inverse depth surfaces with those for B-Spline surfaces to develop
the formulas used in our implementation.

5.2.1 On B-Spline Curves and Surfaces

B-Splines are a well-known parametric model with many applications in computer science. In
this Section, we will discuss some aspects of B-Splines that are relevant for our implementation.
However, we assume the reader to be familiar with the basic theory of B-splines, as presented,
e.g., in [63]. Many different notation schemes are in use for dealing with B-splines, and we will
introduce our own notation, which is inspired by the notation used in the documentation of the
SISL NURBS library1.

We start with the formalism for B-spline curves, and we subsequently extend this to B-spline
surfaces. According to our notation, the parameters describing a B-spline curve are:

• The order k of the curve.

• The number of control points n.

• The dimension d of the domain of the curve.

• The knot vector t = (t1, t2, . . . , tn+k)T ∈ Rn+k, which is a nondecreasing sequence of real
numbers.

1http://www.sintef.no/sisl

70

http://www.sintef.no/sisl

5.2 The Depth Map Model

0

0.5

1

1.5

2

2.5

3

0 100 200 300 400 500 600

s(p, x)

p3 · B3
k t(x)

Figure 5.5: Illustration of a typical B-spline curve. The functions drawn in black are the basis
functions, multiplied with the respective control point values pi.

• The control points pi ∈ Rd of the curve.

• We also denote with p the vector (pT
1 ,pT

2 , . . . ,pT
n)T of all control points stacked on top

of each other.

• The basis function Bik t : R → R associated with control point pi, for order k and knot
vector t.

We only consider clamped B-spline curves and surfaces, which imposes the restriction of having k
equal knot values at the beginning and end of the knot vector t. Using this notation, we can
define a spline curve c : R→ Rd as follows:

c(p, x) =
n∑
i=1

pi · Bik t(x). (5.24)

An example for such a B-spline curve is shown in Figure 5.5. The extension of above definition
to a B-spline surface is straightforward:

• The order in first and second parameter direction is specified by k1, k2.

• The number of control points in both directions is denoted by n1, n2.

• The dimension is d.

• There are two knot vectors q, r, again for first respectively second parameter direction.

• The control points are pij ∈ Rd, where 1 ≤ i ≤ n1, 1 ≤ j ≤ n2.

71

5. MODULES FOR IMPLEMENTING BUNDLE ADJUSTMENT

• We also denote with P the following matrix:

P =

p11 p12 . . . p1n2

p21 p22 . . . p2n2

...
...

...

pn11 pn12 . . . pn1n2

 (5.25)

Each column i of that matrix contains n1 control points, enumerated along the first
coordinate direction and stacked on top of each other.

• With p, we denote the vectorization of P, which is achieved by stacking the column
vectors of P on top of each other into one big vector. We write p = vec(P), and we have

vec(P) =
(
pT

1,1 pT
2,1 . . . pT

n1,1 pT
1,2 pT

2,2 . . . pT
n1,n2

)T
. (5.26)

The spline surface s(p, u, v) : Rn1 ·n2 · d × R2 → Rd is then defined as follows:

s(p, u, v) =
n1∑
i=1

n2∑
j=1

pi,j · Bik1 q(u) · Bjk2 r(v). (5.27)

5.2.1.1 B-Spline Linearity in Parameters

In most of the problems considered within this work, we are interested in determining surface
parameters that best describe the camera measurements. For optimization purposes, it is
therefore necessary to compute the derivatives of a B-spline surface with respect to parameters.

It is well-known that B-splines are linear in parameters, which makes the problem of deriva-
tive computation almost trivial. This linearity means that if the curve respectively surface
evaluation coordinates are fixed, the evaluation of the B-spline is equivalent to a mere matrix-
vector multiplication of some basis matrix with the B-spline parameter vector.

For the case of a B-spline curve with d = 1, we have

c(p, x) = Bnk t(x) ·p, (5.28)

where Bnk t(x) is defined as n-dimensional row vector

Bnk t(x) = (B1
k t(x), B2

k t(x), . . . , Bnk t(x)). (5.29)

This is easily seen to be equivalent to Equation (5.24). The formula can be generalized to
account for the case d > 1 as follows: We define

Bnk t,d(x) = Bnk t(x)⊗ Id, (5.30)

72

5.2 The Depth Map Model

where ⊗ denotes the Kronecker matrix product. Then we can use the formula

c(p, x) = Bnk t,d(x) ·p (5.31)

to evaluate the multidimensional spline curve at parameter location x. Note that the resulting
matrix exhibits a high degree of sparsity, which is something our optimization framework takes
advantage of.

Above result generalizes nicely to the case of evaluation of B-spline curves at multiple
parameter locations. Assume that the curve is to be evaluated at parameter positions

x = (x1, x2, . . . , xm)T. (5.32)

In this case, we extend the definition of Bnk t,d(x) as follows:

Bnk t,d(x) =

Bnk t,d(x1)
Bnk t,d(x2)

...

Bnk t,d(xm)

 , (5.33)

so Bnk t,d(x) is a m×n-dimensional matrix of vertically stacked row vectors Bnk t,d(xi). Using this
generalized matrix instead of the original definition allows us to evaluate the curve at multiple
locations merely by multiplying with the B-Spline parameter vector p.

The preceding consideration is easily extended to the case of B-spline surfaces. Starting out
with Equation (5.27), we have

s(p, u, v) =
n1∑
i=1

n2∑
j=1

pi,j · Bik1 q(u) · Bjk2 r(v)

=
n1∑
i=1

Bik1 q(u)

 n2∑
j=1

pi,j · Bjk2 r(v)

=

n1∑
i=1

Bik1 q(u)
(

(pi,1,pi,2, . . . ,pi,n2) · Bn2 T
k2 r (v)

)
= Bn1

k1 q,d(u) ·P · Bn2 T
k2 r (v). (5.34)

Using some properties of vectorizations and the Kronecker product, this can be turned into a
matrix-vector equation. More specifically, we are going to use

(BT ⊗A) vec(X) = vec(AXB), (5.35)

which can be applied to the surface evaluation problem as follows:

s(p, u, v) = vec(s(p, u, v)) = (Bn2
k2 r(v)⊗ Bn1

k1 q,d(u)) · vec(P). (5.36)

73

5. MODULES FOR IMPLEMENTING BUNDLE ADJUSTMENT

Thus, we have turned the problem of evaluating the surface at a location u, v into the problem
of evaluating a matrix-vector product.

When evaluation of the spline surface at multiple parameter locations (ui, vi) is desired,
there exist two possibilities. If the parameter locations are independent of each other, and are
specified as vectors

u = (u1, u2, . . . , um)T,v = (v1, v2, . . . , vm)T, (5.37)

we can achieve evaluation of the B-spline surface at the locations (ui, vi) by stacking basis
matrices. We define a symbol for the resulting matrix as follows:

Bn1,n2
k1,k2 q,r,d(u,v) =

Bn2

k2 r(v1)⊗ Bn1
k1 q,d(u1)

Bn2
k2 r(v2)⊗ Bn1

k1 q,d(u2)
...

Bn2
k2 r(vm)⊗ Bn1

k1 q,d(um)

 (5.38)

Evaluating the spline at the parameter locations u,v is then possible as a mere matrix-vector
multiplication as follows:

s(p, u1, v1)
s(p, u2, v2)

...

s(p, um, vm)

 = Bn1,n2
k1,k2 q,r,d(u,v) · vec(P). (5.39)

However, if the B-spline surface is to be sampled on a regular grid of parameter positions,
there is a more elegant way to achieve this. Let the parameter coordinates in the first direction
be specified as

u = (u1, u2, . . . , um), (5.40)

and in the second direction as
v = (v1, v2, . . . , vl). (5.41)

Then, the spline surface can be evaluated over the whole lattice by computing

(Bn2
k2 r(u)⊗ Bn1

k1 q,d(v)) · vec(P). (5.42)

This is the formulation that is used most frequently in our algorithms, and we define the
symbol Ln1,n2

k1,k2 q,r,d to refer to the corresponding matrix:

Ln1,n2
k1,k2 q,r,d(u,v) = Bn2

k2 r(v)⊗ Bn1
k1 q,d(u). (5.43)

From the preceding considerations it follows immediately that the derivatives of a B-spline
curve resp. surface with respect to parameters p is equal to the basis matrix computed above.
Alternatively, the derivative values can be deduced directly from equations (5.24) or (5.27),

74

5.2 The Depth Map Model

respectively:

d c(p, x)
d pi

= Bik1 q(x) · Id,
d s(p, u, v)

d pij
= Bik1 q(u) · Bjk2 r(v) · Id. (5.44)

5.2.1.2 B-Spline Derivatives w.r.t. Curve Coordinates

Another important question that is encountered quite frequently when dealing with B-splines
is that of differentiation with respect to the curve resp. surface parameters. This problem
appears, e.g., when one has to compute the curve resp. surface tangents, or when we want to
compute the length resp. area. Fortunately, this is also rather easily computed, and we can
express the corresponding computation concisely as a simple linear transformation on curve
resp. surface parameters.

Let us start with the case of curves: When differentiating a spline curve defined by Equa-
tion (5.24) with respect to the curve parameter x, it is well known that the result will be another
spline curve with the following properties:

• The degree is reduced to k − 1.

• The number of control points is reduced to n− 1.

• The knot vector will be (t2, t3, . . . , tn+k−1), so the first and last entries in the knot vector
will have to be discarded.

• The new control points, denoted by qi, are computed according to the following formula:

qi = k − 1
ti+k − ti+1

(pi+1 − pi) (5.45)

The computation of the new control points can be concisely formulated in form of a matrix
to be multiplied with the original spline parameters. This is easily seen by realizing that
both computation of the differences (pi+1 − pi) as well as scaling with k−1

ti+k−ti+1
are easily

expressible as matrix operations, and the combination of both operations will yield another
matrix describing the whole operation.

This is best explained using an example. Assume that we have a set of 4 scalar control
points pi ∈ R, so d = 1. Then the matrix computing the differences pi+1 − pi is simply:

∆4 =

−1 1 0 0
0 −1 1 0
0 0 −1 1

 (5.46)

Multiplying the vector of stacked control points against this matrix, we see that the 4 differences
will be computed correctly. The overall matrix for computing the curve derivative control points
can now be computed by premultiplying the difference computation matrix obtained according

75

5. MODULES FOR IMPLEMENTING BUNDLE ADJUSTMENT

to above scheme with the following scaling matrix:

Σ4
k t =

k−1

t1+k−t1+1
0 0

0 k−1
t2+k−t2+1

0
0 0 k−1

t3+k−t3+1

 . (5.47)

This is easily extended to the case of multi-dimensional spline curves. In the case d = 2, we
can use the following matrix to compute the differences:

∆4
2 =

−1 0 1 0 0 0 0 0
0 −1 0 1 0 0 0 0
0 0 −1 0 1 0 0 0
0 0 0 −1 0 1 0 0
0 0 0 0 −1 0 1 0
0 0 0 0 0 −1 0 1

(5.48)

More generally, we see that these difference matrices have the following shape:

• The size is (n− 1)d× nd.

• All entries are 0, except for the diagonal and the d-th superdiagonal.

• The diagonal contains only the value −1.

• The d-th superdiagonal contains only the value 1.

The shape of the difference computation matrix depends on two values, which are the num-
ber n of parameters and the number d of dimensions. Thus, we will denote the corresponding
difference matrices by ∆n d.

Furthermore, the scaling matrix needs to repeat the scaling factors d times. Thus, it has
the following shape:

• Size (n− 1)d× (n− 1)d.

• All values are 0, except for the diagonal.

• The diagonal contains the values k−1
ti+k−ti+1

, each is repeated d times.

This matrix is determined by: The number of parameters n, the order of the spline k, the
number of dimensions d, and the knot vector t. Scaling matrices constructed according to these
values are denoted by Σnk t,d from now on.

So, all in all, the computation of B-spline derivatives is reduced to multiplying the parameter
vector p of the original curve with the matrix (Σnk t,d · ∆n d), and interpreting the new parameters
as spline curve with n− 1 control points, degree k− 1, and knot vector that has been shrinked
at beginning and end.

76

5.2 The Depth Map Model

We conclude that the vector
d

du1
c(p, u1)

d
du2

c(p, u2)
. . .

d
dun

c(p, un)

 (5.49)

of tangent values for the spline curve is computed by evaluating

Bn−1
k−1 t′,d(u) · Σnk t,d · ∆n d ·p, (5.50)

where t′ is the shortened knot vector t as explained above. Note that the vector of tangent values
should not be confused with the Jacobian of the function c(p,x,y), which is a diagonal n× n
matrix. The entries in the diagonal of the Jacobian are exactly the entries of the tangent values
vector.

5.2.1.3 B-Spline Derivatives w.r.t. Surface Coordinates

These considerations generalize nicely to B-spline surfaces, where we have to compute the deriva-
tive not only with respect to one, but to two different parameter directions. This corresponds
to computing the surface tangents in both directions.

It is possible to directly apply the computation scheme for curve derivatives to surface
derivatives with respect to the first parameter direction: Simply compute the matrix product

Σn1
k1 q,d · ∆n1

d ·P, (5.51)

where P is the control point matrix as explained above, and this will yield the parameter matrix
for the derivative surface. For the other parameter direction, things are equally simple. The
derivative parameters can be computed as

P(Σn2
k2 r,d · ∆n2

d)
T. (5.52)

Usually, we are not interested in the parameter matrices of the derivative surfaces, but we want
to work with parameter vectors instead. This can be achieved by applying the vectorization
operator:

vec(Σn1
k1 q,d · ∆n1

d ·P) (5.53)

vec(P(Σn2
k2 r,d · ∆n2

d)
T) (5.54)

Again, we are going to use the property (BT⊗A) vec(X) = vec(AXB) of the Kronecker matrix

77

5. MODULES FOR IMPLEMENTING BUNDLE ADJUSTMENT

product. It can be applied to above equations as follows:

vec(Σn1
k1 q,d · ∆n1

d ·P) =

vec((Σn1
k1 q,d · ∆n1

d) ·P · In2) =

(IT
n2
⊗ (Σn1

k1 q,d · ∆n1
d)) vec(P) =

(In2 ⊗ (Σn1
k1 q,d · ∆n1

d)) vec(P), (5.55)

vec(P(Σn2
k2 r,d · ∆n2

d)
T) =

vec(Idn1 ·P(Σn2
k2 r,d · ∆n2

d)
T) =

((Σn2
k2 r,d · ∆n2

d)⊗ Idn1) vec(P) (5.56)

Pre-multiplying above matrices with appropriate B-spline basis matrices will allow evaluation
of tangent values through a simple matrix-vector product, and it will be convenient to define
abbreviations for these tangent evaluation matrices as follows:

B
n1,n2
k1,k2 u,q,r,d(u,v) = Bn1−1,n2

k1−1,k2 q′,r,d(u,v) · (In2 ⊗ (Σn1
k1 q,d · ∆n1

d)), (5.57)

B
n1,n2
k1,k2 v,q,r,d(u,v) = Bn1,n2−1

k1,k2−1 q,r′,d(u,v) · ((Σn2
k2 r,d · ∆n2

d)⊗ Idn1). (5.58)

If we want to compute all derivative surface parameter values for both parameter directions
using one matrix-vector product, we can stack the above matrices vertically into one matrix

B
n1,n2
k1,k2 uv,q,r,d(u,v) =

(
B

n1,n2
k1,k2 u,q,r,d(u,v)

B
n1,n2
k1,k2 v,q,r,d(u,v)

)
. (5.59)

Note that this matrix is extremely sparse, and it is definitely beneficial to exploit that whereever
possible. Multiplication with the vector vec(P) directly yields the tangent values of the surface
in both directions, stacked on top of each other. In the case of evaluation parameters being
on a regular grid, we can simply use the lattice basis matrices L instead of the general basis
matrices B. Since evaluation of spline surfaces on a regular grid is what we actually use
in our implementation, we introduce additional notation for that specific case. The tangent
computation matrices will in that case be denoted as

L
n1,n2
k1,k2 u,q,r,d(u,v) = Ln1−1,n2

k1−1,k2 q′,r,d(u,v) · (In2 ⊗ (Σn1
k1 q,d · ∆n1

d)), (5.60)

L
n1,n2
k1,k2 v,q,r,d(u,v) = Ln1,n2−1

k1,k2−1 q,r′,d(u,v) · ((Σn2
k2 r,d · ∆n2

d)⊗ Idn1). (5.61)

The stacked matrices will be defined analogously as

L
n1,n2
k1,k2 uv,q,r,d(u,v) =

(
L

n1,n2
k1,k2 u,q,r,d(u,v)

L
n1,n2
k1,k2 v,q,r,d(u,v)

)
. (5.62)

78

5.2 The Depth Map Model

5.2.2 Surfaces Induced by Depth Maps

The particular surface model used in most of our developments is an inverse B-Spline depth
map. Before we continue with describing that specific type of depth map in detail, there are
some properties of depth maps that we want to discuss here in a more general setting, so that
our formulas can be used for other types of surface models as well.

For our treatment of surface models, it is most convenient to interpret a parametric depth
map z(p, u, v) as a function that assigns depth values to pixel coordinates in some image. Since
this is technically not a full 3D model, it is also often called a 2.5D surface model.

One of the most important operations on depth maps is the computation of 3D coordinates of
a point with known pixel coordinates u, v, given the depth map z. To achieve this, we make use
of the fact that the inverse camera matrix K−1 maps homogeneous pixel coordinates (u, v, 1)T to
3D spatial coordinates that lie along the viewing ray associated with pixel coordinates (u, v)T

at depth 1. This allows us to concisely define the three-dimensional surface dz(u, v) that is
induced by some parametric depth map z(p, u, v) as

dz(p, u, v) = z(p, u, v)

K−1 ·

uv
1

 . (5.63)

This will be the basis for further analysis of surfaces that are based on depth maps. We are
later going to be interested in the derivatives of functions of this kind with respect to p, u,
and v.

Often, it is convenient to evaluate the surface at several parameter locations uj , vj si-
multaneously. Let m be the number of surface parameter locations to be evaluated, and
let u ∈ Rm,v ∈ Rm be the surface coordinates of those locations. Define z(p,u,v) as the
vector of depth values for the coordinate pairs (uj , vj):

z(p,u,v) =
(
z(p, u1, v1) z(p, u2, v2) . . . z(p, um, vm)

)T
. (5.64)

In the following, let diag(z) denote the diagonal matrix created from a vector z by setting the
diagonal elements equal to the elements of z. Thus, diag(z(p,u,v)) is the matrix with all depth
values in its diagonal. Then, we note that the product of matrices

K−1

 uT

vT

11,m

diag(z(p,u,v)) (5.65)

evaluates to a 3×m matrix containing the surface values dz(p, uj , vj) as columns. Since that
expression is bound to appear very often in the following elaborations, it will be convenient to

79

5. MODULES FOR IMPLEMENTING BUNDLE ADJUSTMENT

define the shorthand term

K(u,v) = K−1

 uT

vT

11,m

 , (5.66)

allowing us to compactly write down above expression as

K(u,v) · diag(z(p,u,v)). (5.67)

Alternatively, we can write this as

K(u,v) ◦ (13,1 · (z(p,u,v))T), (5.68)

where ◦ denotes the Hadamard product, which is the component-wise product of matrices.
This alternative formula will be useful later on for computing derivatives. Note that modern
linear algebra libraries, like the Eigen library used in our implementation, provide efficient
implementations for evaluating both variants of this expression. For more information on the
Hadamard product, see [64].

Above expression can be interpreted as a matrix-valued function that performs the mapping
that we are looking for, since it takes surface parameters and surface locations to 3D point
coordinates. However, we want to avoid matrix-valued functions, and we will instead look at
the vectorization of that function, thereby generalizing equation (5.63) as

dz(p,u,v) = vec(K(u,v)) ◦ vec(13,1 · (z(p,u,v))T) (5.69)

to the case of vector-valued evaluation positions u,v. It is easily verified that for m = 1, this
definition coincides with the original definition from equation (5.63). The function dz(p,u,v)
maps surface parameters and surface locations to a vector of m 3D surface points that are
stacked on top of each other. Each of these surface values is a 3D vector, so formally dz is a
mapping of type

dz : Rn × Rm × Rm → R3m. (5.70)

5.2.2.1 Derivatives w.r.t. Surface Parameters

Using the Hadamard product in the surface definition allows a simple and concise formulation
of the computation of various derivatives of the surface. Before we continue giving details on
those computation schemes, we would like to note two properties of the Hadamard product.
The first concerns the derivative of the Hadamard product of two vectors. It reads as follows:

d
d a (a ◦ b) = diag(b), d

d b (a ◦ b) = diag(a), (5.71)

80

5.2 The Depth Map Model

which is easily verified. Based on this observation, we can formulate a product rule for the
Hadamard product of vector-valued functions:

d
d x (a(x) ◦ b(x)) = diag(b(x))d a(x)

d x + diag(a(x))d b(x)
d x , (5.72)

which is also easily verified. Using the first of these two observations, we are able to deduce
that the derivatives of the surface with respect to parameters are computed as

d
d pdz(p,u,v) = diag(vec(K(u,v))) · d

d p vec(13,1 · (z(p,u,v))T)

= diag(vec(K(u,v))) · d
d p (Im ⊗ 13,1) · z(p,u,v)

= diag(vec(K(u,v))) · (Im ⊗ 13,1) · d
d p z(p,u,v). (5.73)

5.2.2.2 Tangents

Tangents of surfaces are generally computed by differentiating the surface function with respect
to surface coordinates. This is also true for surfaces that are induced by depth maps, and we
can compute tangents uTz and vTz in first and second parameter direction as

uTz(p, u, v) := d
dudz(p, u, v), vTz(p, u, v) := d

d vdz(p, u, v) (5.74)

at specific locations u, v, based on Definition (5.63). For the case of multiple surface locations
at which we want to determine tangent vectors, it is tempting to simply differentiate the surface
function (5.69) with respect to u or v. However, proceeding like this will yield blockdiagonal
matrices that contain the tangent vectors, which is inconvenient. Again, we would like to avoid
matrix-valued functions, and instead compute a stacked vector of tangents.

Therefore, we define functions

uTz(p,u,v) =

uTz(p, u1, v1)
uTz(p, u2, v2)

...
uTz(p, um, vm)

 , vTz(p,u,v) =

vTz(p, u1, v1)
vTz(p, u2, v2)

...
vTz(p, um, vm)

 (5.75)

for computing the vector of stacked tangents in first and second coordinate directions. In what
follows, we will only give details for the computation of uTz and uTz. It is trivial to adapt
those formulas to the case of vTz and vTz.

We start by computing the derivative of dz with respect to u, based on (5.63):

d
dudz(p, u, v) = d

duz(p, u, v) ·K−1 ·

xy
1

+ K−1
X · z(p, u, v), (5.76)

81

5. MODULES FOR IMPLEMENTING BUNDLE ADJUSTMENT

where K−1
X is the first column of K−1. For the depth map tangents, we will now define the

shorthands
uTz(p, u, v) = d

dxz(p, u, v), vTz(p, u, v) = d
d y z(p, u, v), (5.77)

in order to keep our presentation as concise as possible. Note that uTz and vTz are scalar-
valued functions. As we have done for depth map values, we also define abbreviations for
stacked tangent values:

uTz(p,u,v) =

d

duz(p, u1, v1)
d

duz(p, u2, v2)
...

d
duz(p, um, vm)

 , vTz(p,u,v) =

d

d v z(p, u1, v1)
d

d v z(p, u2, v2)
...

d
d v z(p, um, vm)

 , (5.78)

These definitions allow us to formulate the computation scheme in a more concise way. Further-
more, routines for computing uTz and vTz are usually available in implementations. When z

is, e.g., a B-spline surface, the computation of these tangent values is simply a matrix-vector
multiplication, since B-spline derivatives with respect to surface position are again B-splines.
Formula (5.76) shows how to compute the tangent of a surface at a specific location. Using the
introduced abbreviations, it can be restated as

uTz(p, u, v) = uTz(p, u, v) ·K−1 ·

uv
1

+ K−1
X · z(p, u, v). (5.79)

It is possible to extend this computation scheme for computation of uTz:

uTz(p,u,v) = diag(vec(K(u,v))) · (Im ⊗ 13,1) · uTz(p,u,v)+

(Im ⊗K−1
X) · z(p,u,v). (5.80)

Note that since u and v stay constant in practice, the matrices

diag(vec(K(u,v))) · (Im ⊗ 13,1), (Im ⊗K−1
X) (5.81)

stay constant as well and can easily be precomputed.

5.2.2.3 Normals

The surface normals are computed as cross product between the tangent vectors in both surface
directions. Looking at the original definition (5.63), the surface normal at a single surface

82

5.2 The Depth Map Model

location u, v can be determined as

nz(p, u, v) = d
dudz(p, u, v)× d

d vdz(p, u, v)

= K−1
X ×K−1

Y · z(p, u, v)2

− K−1
Y × (K−1(u, v, 1)T) · z(p, u, v) · uTz(p, u, v)

+ K−1
X × (K−1(u, v, 1)T) · z(p, u, v) · vTz(p, u, v)

This can be put in a more concise form. We define 3× 3 matrices K̃(u, v) as

K̃(u, v) =
(

K−1
X ×K−1

Y −K−1
Y × (K−1(u, v, 1)T) K−1

X × (K−1(u, v, 1)T)
)

(5.82)

and a function Nz(p, u, v) as

Nz(p, u, v) =

 z(p, u, v)
uTz(p, u, v)
vTz(p, u, v)

 . (5.83)

The foregoing definitions allow us to establish a formula for normal evaluation at surface coor-
dinates (u, v) concisely as

nz(p, u, v) = K̃i · z(p, u, v) ·Nz(p, u, v). (5.84)

Now we are ready to generalize the computation scheme to simultaneous evaluation of m > 1
normals. We define two more abbreviations K̃(u,v) and Nz(p,u,v):

K̃(u,v) =

K̃(u1, v1) 0 . . . 0

0 K̃(u2, v2)
. . .

...
...

. . .
. . . 0

0 . . . 0 K̃(um, vm)

 , Nz(p,u,v) =

Nz(p, u1, v1)
Nz(p, u2, v2)

...

Nz(p, um, vm)

 .

(5.85)
In the following formulas, we will leave away u and v to facilitate a more concise presentation.
This is also supported by realizing that u and v are, in our case, constant values. This means
that the blockdiagonal matrix K̃ also remains constant, since the camera calibration matrix is
constant as well. Thus, the matrix K̃ only needs to be computed once and can be re-used for
repeated normal evaluation.

With these definitions, the computation of normals can be done by evaluating

nz(p) = K̃ · (diag(z(p))⊗ I3) ·Nz(p) (5.86)

which is essentially a sparse-dense product between the constant, precalculated matrix K̃ and
the dense, parameter-dependent vector (diag(z(p))⊗ I3) ·Nz(p).

83

5. MODULES FOR IMPLEMENTING BUNDLE ADJUSTMENT

All in all, we now have an efficient computation scheme for the surface normals. When using
this formulation in an optimization problem, it is also important to be able to compute the
derivative of this normal computation function with respect to parameters.

Differentiating nz(p, u, v) as specified in (5.84) with respect to p yields the following result:

d
d pnz(p, u, v) = K̃i ·

(
Di(p) · d

d pNz(p, u, v) + Nz(p, u, v) · d
d pz(p, u, v)

)
(5.87)

Note that Nz(p, u, v) · d
d pz(p, u, v) is an outer product, which can alternatively be computed as

diag(Nz(p, u, v)) ·
(

d
d pz(p, u, v)⊗ 13,1

)
. (5.88)

For computing the full derivative of nz(p), this suggests the following formula:

d
d pnz(p) = K̃ ·

(
(diag(z(p))⊗ I3) · d

d pNz(p) +

diag(Nz(p)) ·
(

d
d pz(p)⊗ 13,1

))
. (5.89)

A note on efficient evaluation of the preceding formula: Often, implementations provide ways
to directly compute z, uTz, and vTz. Thus, it would be trivial to compute the stacked vector
(z(p)T, Tx(p)T, Ty(p)T)T, which we will now abbreviate as N∗z. Creating the vector Nz, as
defined above, from the vector N∗z involves rearranging its values, which incurs a small, but
avoidable performance penalty. By exploiting the characteristics of the so-called commutation
matrix, we are able to establish a formula that works directly with N∗z, thus avoiding that
penalty.

More details about the commutation matrix can be found in the paper by Magnus and
Neudecker [65], and we adopt their notation here, except for using the letter C instead of K
to denote commutation matrices. This is to avoid any confusion with camera matrices. In our
case, Cm,n denotes the commutation matrix with the property

vec(AT) = Cm,n · vec(A), (5.90)

where A ∈ Rm×n. The commutation matrix is thus useful for relating the vectorization of a
matrix with the vectorization of its transpose. A commutation matrix Cm,n has size mn ×
mn, and its inverse is Cn,m, such that Cm,n ·Cn,m = Imn. Furthermore, for matrices A ∈
Rm×n, B ∈ Rk×l, it establishes a relation between A⊗B and B⊗A as follows:

Ck,m · (A⊗B) ·Cl,n = B⊗A. (5.91)

Now we can formulate a relationship between N∗z and Nz as follows:

Nz(p) = vec((z(p), uTz(p), vTz(p))T). (5.92)

84

5.2 The Depth Map Model

Using the commutation matrix, this can be changed into

Nz(p) = Cm,3 · vec((z(p), uTz(p), vTz(p)) = Cm,3 ·N∗z(p). (5.93)

Going back to formula (5.86), we see that normals can be computed from N∗z as

nz(p,u,v) = K̃ · (diag(z(p))⊗ I3) ·Cm,3 ·N∗z(p). (5.94)

This can be further changed into

nz(p,u,v) = K̃ ·C3,m · (I3 ⊗ diag(z(p))) ·C3,m ·Cm,3 ·N∗z(p), (5.95)

which we can simplify to

nz(p,u,v) = K̃ ·C3,m · (I3 ⊗ diag(z(p))) ·N∗z(p). (5.96)

Note that K̃ ·C3,m remains constant and can be precomputed, as long as x and y remain
constant. Thus, we see that the effect of reordering N∗z can basically be achieved by reordering K̃
instead.

The formula for computation of derivatives can also be adapted to compute derivatives
from N∗z instead of Nz. Formula (5.89) then becomes

d
d pnz(p) = K̃ ·C3,m ·

(
(I3 ⊗ diag(z(p))) · d

d pN∗z(p) + (5.97)

diag(N∗z(p)) ·
(

13,1 ⊗
d

d pz(p)
))

. (5.98)

5.2.3 Surfaces Induced by Inverse Depth Maps

It is well-known that inverse depth parameterization schemes are well-suited for 3D reconstruc-
tion problems. Intuitively, they reflect the fact that distant points can be measured with lower
accuracy than closer ones.

Since this is a general idea that can be applied to virtually any depth map model, it makes
sense to adapt the formulas developed for general depth models to this case. We are going to
decouple the depth inversion step from the depth model, which will lead to slightly modified
formulas for surface, tangent, and normal computation.

In the following, we will assume that z(p, u, v) is the inverse depth map, which means
that 1

z(p,u,v) is the actual depth map. As in the case of general depth map models, this
definition can be extended to encompass simultaneous evaluation at locations (ui, vi) specified
as vectors u,v.

For that case, we are going to make use of the Hadamard inverse. In analogy to the
Hadamard product being the component-wise product between matrices, the Hadamard inverse
is the component-wise inverse of matrices. For a matrix M ∈ Rm×n, we denote its Hadamard

85

5. MODULES FOR IMPLEMENTING BUNDLE ADJUSTMENT

inverse as M̂, and we formally define the inverse in a component-wise fashion as

M̂i,j = M−1
i,j . (5.99)

This is consistent with the notation used in [64]. It should be clear that evaluating

ẑ(p,u,v) (5.100)

is equivalent to evaluating the depth map at all locations specified by u,v simultaneously. Using
this concise notation, the general surface formulation from equation (5.63) turns into

dẑ(p, u, v) = ẑ(p, u, v)

K−1 ·

xy
1

 , (5.101)

and for simultaneous evaluation of multiple surface locations, we can use

dẑ(p,u,v) = vec(K(u,v)) ◦ vec(13,1 · (ẑ(p,u,v))T), (5.102)

which is easily derived from equation (5.69).

5.2.3.1 Derivatives w.r.t. Surface Parameters

The formulas for evaluating a surface that is defined as an inverse depth map have been really
straightforward so far. When computing derivatives, things become a little bit more compli-
cated. In what fallows, we are going to need a formula for differentiating the Hadamard inverse
function. It is easily seen that the derivative of the Hadamard inverse of some vector a computes
as

d
d a â = −diag(â)2, (5.103)

which is analogous to the scalar rule d
d x

1
x = −(1

x)2. This rule can now be applied to formula
(5.73), and we end up with the following result:

d
d pdẑ(p,u,v) = − diag(vec(K(u,v))) · (Im ⊗ 13,1) ·

diag(ẑ(p,u,v))2 · d
d pz(p,u,v). (5.104)

If z is linear in parameters, and d
d pz is a sparse matrix, the evaluation can be done in an

especially efficient way. Details on this technique will be provided in Section 5.9.

86

5.2 The Depth Map Model

5.2.3.2 Tangents

Let us reconsider equation (5.76) for computation of the tangents of a depth-map induced
surface. The formula given there is

uTz(p,u,v) = diag(vec(K(u,v))) · (Im ⊗ 13,1) · uTz(p,u,v) + (Im ⊗K−1
X) · z(p,u,v).

When using an inverse depth map, this computation scheme is easily modified by replacing z
with ẑ. We then need to determine a relationship between uT ẑ and uTz. This relationship is:

uT ẑ =

d

du ẑ(p, u1, v1)
d

du ẑ(p, u2, v2)
...

d
du ẑ(p, um, vm)

= −diag(ẑ(p,u,v))2 ·

d

duz(p, u1, v1)
d

duz(p, u2, v2)
...

d
duz(p, um, vm)

= −diag(ẑ(p,u,v))2 · uTz(p,u,v).

This allows us to state the tangent computation formula as

uTz(p,u,v) = − diag(vec(K(u,v))) · (Im ⊗ 13,1)

· diag(ẑ(p,u,v))2 · uTz(p,u,v) + (Im ⊗K−1
X) · ẑ(p,u,v).

5.2.3.3 Normals

The computation of normals can also be adopted to the special case of inverse depth maps. We
start by recapitulating the original formulas (5.86) and (5.96) for computing normals:

nz(p,u,v) = K̃ · (diag(z(p,u,v))⊗ I3) ·Nz(p,u,v),

nz(p,u,v) = K̃ ·C3,m · (I3 ⊗ diag(z(p,u,v))) ·N∗z(p,u,v).

We will only show how N∗z changes in the case of an inverse depth map, since this is the practi-
cally more relevant case. Through the relationship Nẑ(p) = Cm,3 ·N∗ẑ(p), these considerations
can be translated to Nẑ. The original definition of N∗z is:

N∗z(p) =

 z(p)
uTz(p)
vTz(p)

 .

87

5. MODULES FOR IMPLEMENTING BUNDLE ADJUSTMENT

In the section about tangents, we have seen that

xT ẑ = − diag(ẑ(p))2 · uTz(p). (5.105)

This implies the relationship

N∗ẑ(p) =

 ẑ(p)
−ẑ(p)◦2 ◦ uTz(p)
−ẑ(p)◦2 ◦ vTz(p)

 , (5.106)

where the superscript ◦n denotes the Hadamard exponential of a vector, which is the component-
wise exponential. This in turn leads to the formula

nẑ(p,u,v) = K̃ ·C3,m · diag

 ẑ(p)◦2

−ẑ(p)◦3

−ẑ(p)◦3

 ·
 1m

uTz(p)
vTz(p)

 . (5.107)

Differentiating this formula with respect to p yields the following result (we omit some details
of the computation):

d
d pnẑ(p) = K̃ ·C3,m ·

diag

ẑ(p)◦3

ẑ(p)◦3

ẑ(p)◦3

 · d
d p

 −2z(p)
−(uTz(p))
−(vTz(p))

+ diag

 0m
ẑ(p)◦4 ◦ uTz(p)
ẑ(p)◦4 ◦ vTz(p)

 · d
d p

 0m
3z(p)
3z(p)

 (5.108)

Again, this formula can be implemented in an especially efficient way if z is a B-spline surface.
We will give details later on.

5.2.4 Inverse Depth Maps using B-Splines

Finally, we are ready to describe the inverse B-Spline depth map model used in our implemen-
tation. Combining the results from the previous section, it is quite a simple matter now to
derive all necessary formulas. The functionality of the associated module is as follows:

1. It accepts a n ·m-dimensional vector p of spline surface parameters, as described in Equa-
tion (5.26).

2. The output of the module is a point cloud of M 3D points dŝ(p, u, v), evaluated at the
reference surface point coordinates (uj , vj), where j ranges from 1 to M . The surface
coordinates are chosen, in our case, to lie on a regular grid, such that the underlying
B-Spline surface can be evaluated using the respective basis matrices L,Lu,Lv as defined
in Equations (5.43) and (5.62).

88

5.2 The Depth Map Model

3. Optionally, the module outputs the normal vectors nŝ of the surface. They are useful for
implementing lighting calculations.

4. Furthermore, the module computes the Jacobian of the point cloud and, if required, of
the surface normals, with respect to surface parameters.

We have developed all the formulas required to compute these values for the general case of
arbitrary inverse depth maps, and we will now specialize these formulas to the case of inverse
B-Spline depth maps.

We will start with the evaluation of the point cloud from the surface parameters. For this
case, Equation (5.102) can be applied directly:

dẑ(p,u,v) = vec(K(u,v)) ◦ vec(13,1 · (ŝ(p,u,v))T), (5.109)

where s(p,u,v) is evaluated by computing the matrix-vector product L ·p.
The computation of the surface normals at the evaluation positions u,v can be done by

adapting Equation (5.107) to the case of B-Spline surfaces. Leaving away the parameters u,v
for brevity, the formula becomes:

nŝ(p) = K̃ ·C3,m · diag

 ŝ(p)◦2

−ŝ(p)◦3

−ŝ(p)◦3

 ·
 1m
Lu ·p
Lv ·p

 . (5.110)

For computing the Jacobian of the point cloud with respect to surface parameters, we can
use Formula (5.104):

d
d pdŝ(p,u,v) = − diag(vec(K(u,v))) · (Im ⊗ 13,1) ·

diag(ŝ(p,u,v))2 ·L. (5.111)

And finally, the most difficult part is the computation of the Jacobian of the surface normals.
Formula (5.108) can be adapted to the case of a B-Spline depth map as follows:

d
d pnŝ(p) = K̃ ·C3,m ·

diag

ŝ(p)◦3

ŝ(p)◦3

ŝ(p)◦3

 ·
−2L
−Lu

−Lv

+ diag

 0m
ŝ(p)◦4 ◦ (Lu ·p)
ŝ(p)◦4 ◦ (Lv ·p)

 ·
0m

3L
3L

 (5.112)

Using these formulas, the depth map surface module can be implemented. The evaluation of
the Jacobian matrices is done according to the technique described in Section 5.9 in order to
avoid computation of matrix products between sparse matrices.

89

5. MODULES FOR IMPLEMENTING BUNDLE ADJUSTMENT

5.3 Perspective Projection

According to our presentation in Chapter 1, the perspective projection of a point b is computed
as π(K · b), where π represents the perspective divide, and K is the matrix containing the
intrinsic camera parameters. Our module for perspective projection evaluates this function for
a set of points bi ∈ R3 that it receives as input. In addition to computing the actual perspective
projection, the module allows to specify a constant rigid transformation using a rotation matrix
R and a translation vector t, so that the overall computation performed by the module for one
point is

g(bi) = π(K · (R · (bi − t))) (5.113)

This additional constant rigid transformation is useful for the case of a calibrated point light
source, since the point cloud has to be transformed into the frame of reference of the light source.
This transformation is, just like the rigid transformation between a pair of stereo cameras, a
constant rigid transformation.

The overall function f is then a function R3 ·M → R2 ·M , where M is the number of points
to be transformed and projected. Letting b denote the vector (bT

1 ,bT
2 , . . . ,bT

M)T consisting of
all vectors bi stacked on top of each other, the function is then defined as

f(b) =

g(b1)
g(b2)
...

g(bM)

 (5.114)

The derivatives can be determined easily if the derivatives of g are known. Let b′i = (bi−t),
and let K∗ = K ·R. Furthermore, let us denote with K∗1,K∗2,K∗3 the first, second and third
rows of K∗. Then, the derivative of g is computed as

d
d bi

g(bi) = Jg(bi) =
(

(K∗3 ·b′i) ·K∗1 − (K∗1 ·b′i) ·K∗3
(K∗3 ·b′i) ·K∗2 − (K∗2 ·b′i) ·K∗3

)
· 1

(K∗3 ·b′i)2 (5.115)

For computing the overall Jacobian of f , these derivatives are arranged into a block-diagonal
matrix as follows:

Jf (b) =

Jg(b1) 0 . . . 0

0 Jg(b2)
. . .

...
...

. . .
. . . 0

0 . . . 0 Jg(bM)

 (5.116)

Our implementation of this module is a bit more general, since it also allows the user to
project the same point cloud to multiple views with possibly different camera matrices and
extrinsic transformations. In that case, let us denote the camera matrices for the views with
Kj , the rotation matrices with Rj , and the translation vectors with tj . Furthermore, assume

90

5.4 Image Interpolation

that there are N views, and let us define

gj(bi) = π(Kj · (Rj · (bi − tj))), (5.117)

fj(b) =

gj(b1)
gj(b2)
...

gj(bM)

 . (5.118)

Finally, we can re-define f as a function of type R3 ·M → R2 ·N ·M as follows:

f(b) =

f1(b)
f2(b)
...

fN (b)

 . (5.119)

Note that this definition also makes sense for N = 1, and then coincides with our initial
definition. The Jacobian now also looks a bit different:

Jfj
(b) =

Jgj

(b1) 0 . . . 0

0 Jgj (b2)
. . .

...
...

. . .
. . . 0

0 . . . 0 Jgj (bM)

 , Jf (b) =

Jf1(b)
Jf2(b)
...

JfN
(b)

 . (5.120)

5.4 Image Interpolation

Images recorded by common cameras are discrete, meaning that the image value I(u, v) of some
image I at pixel coordinates (u, v) is only defined if and only if (u, v) ∈ Z2, and if u and v are
within the image boundaries which depend on the camera’s resolution.

For our optimization problems, this is quite bad news because our optimization approach
only works with continuous, differentiable functions. This is a well-known problem, and it is
typically solved by employing image sub-sampling methods that turn the discrete image function
I into a continuous one by means of interpolation. The most common interpolation methods
are nearest neighbour, bi-linear, and bi-cubic interpolation, in order of increasing quality.

For optical flow methods, it is recommended to use bi-cubic filtering, as mentioned in the
paper by Sun et al. [42]. As we have mentioned in Chapter 1, our algorithms are actually very
close in spirit to optical flow algorithms, which makes bi-cubic filtering seem a good choice for
our algorithms as well. In our implementation, we are making use of the well-known OpenCV1

library for performing image sub-sampling using the remap function. We will not go into details
on cubic spline interpolation methods here, and refer the interested reader to [66].

In the following, we shall denote I to be the continuous image approximating I by applying
1http://opencv.willowgarage.com

91

http://opencv.willowgarage.com

5. MODULES FOR IMPLEMENTING BUNDLE ADJUSTMENT

the bi-cubic interpolation scheme. Our image interpolation module performs simultaneous
interpolation of the M reference points in each of the N images that currently are in the sliding
window. First of all, we will define functions if that interpolate a set of M points in image i
as follows:

if(iu, iv) =

Ii(iu1,

iv1)
Ii(iu2,

iv2)
...

Ii(iuM , ivM)

 (5.121)

Here, (iuj , ivj) are sets of pixel coordinates at which the images in the window are to be
evaluated, where j denotes the point index and i the image index. These sub-functions can
now be used to define the overall functionality of our module as

f(1u, 1v, 2u, 2v, . . . ,Nu,Nv) =

1f(1u, 1v)
2f(2u, 2v)

...
N f(Nu,Nv)

 . (5.122)

Thus, the function f computes the stacked, interpolated image values at the specified positions.

For computing the derivatives of f , there are two main approaches: The first, straightforward
one is to take the mathematical definition of bi-cubic sub-sampling and compute the analytic
derivatives. An early implementation of our image sub-sampling module actually used this
method. However, as Brooks and Arbel point out [61], it is more efficient to compute the
derivative image once and for all and subsequently apply a sub-sampling scheme on that image.
Our experiments also confirmed that this technique does not interfere with the image alignment
process and is much faster.

For computing the image derivatives, it has been suggested to use a 5-point filter [42]. We
will denote the derivative images obtained that way with Iu and Iv for the first and second
image coordinate direction, respectively. The interpolated images (we use bi-cubic interpolation
here as well) will be denoted with Iu and Iv. Then the Jacobian of iI is approximated as

JI(u, v) ≈
(
Iu(u, v) Iv(u, v)

)
=: J∗I(u, v) (5.123)

Thus, we compute an approximation to the Jacobian of functions if as

Jif (iu, iv) ≈

J∗iI(iu1,

iv1) 0 . . . 0

0 J∗iI(iu2,
iv2)

. . .
...

...
. . .

. . . 0
0 . . . 0 J∗iI(iuM , ivM)

 =: J∗if (iu, iv), (5.124)

92

5.5 Brightness Warping

and an approximation to the Jacobian of f as

Jf ≈

J∗1f (1u, 1v) 0 . . . 0

0 J∗2f (2u, 2v)
. . .

...
...

. . .
. . . 0

0 . . . 0 J∗N f (Nu,Nv)

 . (5.125)

5.5 Brightness Warping

In this Section, we are going to discuss the modules involved in computing the brightness
warping function wlt

B j(p,ai) as introduced in Chapter 1, Equation (3.10). Since the involved
formulas are rather complex, the computation process is broken up into three steps, represented
by three modules. Before we continue with the discussion of those modules, let us analyse the
structure of the correction factors. First of all, we note that the factors can be reshaped such
that the cosines of αk,j and α0,j are computed using the dot product formula:

wlt
B j(p,ai) = |dlt(p,ai, uj , vj)|2

cosα(p,ai, uj , vj)
· cosα(p,a0, uj , vj)
|dlt(p,a0, uj , vj)|2

=

|dlt(p,ai, uj , vj)|3 ·dlt(p,a0, uj , vj)T ·nz(p, uj , vj)
|dlt(p,a0, uj , vj)|3 ·dlt(p,ai, uj , vj)T ·nz(p, uj , vj)

(5.126)

The surface computation module outputs a 3D point cloud along with the associated normals,
which are subsequently used as input to this formula, along with the vector a of extrinsic
camera parameters. Let the 3D points be denoted by xj , and the associated normals by nj ,
and let x and n be vectors containing all points resp. normals, stacked on top of each other.
Above formula can then be written as

wlt
B j(ai,x,n) = |T(ãi, lt)− xj |3 · (T(ã0, lt)− xj)T ·nj

|T(ã0, lt)− xj |3 · (T(ãi, lt)− xj)T ·nj
(5.127)

In our case, a0 are extrinsic parameters that correspond to the identity transformation, thus
we can further simplify the formula into

wlt
B j(ai,x,n) = |T(ãi, lt)− xj |3 · (lt − xj)T ·nj

|lt − xj |3 · (T(ãi, lt)− xj)T ·nj
. (5.128)

Using this simplified formula, we can now give an overview of the three modules that we are
using to implement the brightness warping function. These are as follows:

93

5. MODULES FOR IMPLEMENTING BUNDLE ADJUSTMENT

1. The first module performs computation of the values

1yi,j = f1(ai,xj) = T(ãi, lt)− xj ,
2yj = f2(xj ,nj) = nj · |lt − xj |3,
3yj = f3(xj ,nj) = (lt − xj)T ·nj , (5.129)

and stacks the computation results on top of each other. We will call these values the
brightness warping components.

2. Afterwards, these values are used by the second module to compute the numerator and
denominator values of (5.128) as

1zi,j = g1(1yi,j , 3yj) = |1yi,j |3 · 3yj ,
2zi,j = g2(1yi,j , 2yj) = 1yT

i,j · 2yj . (5.130)

Again, these values are stacked on top of each other. We will call these values the bright-
ness warping numerators and denominators.

3. Finally, the brightness warping values are computed by performing a component-wise
division of the values g1,g2. Using the notation v̂ to denote the inverse of some scalar v,
the corresponding formula is

h(1zi,j ,
2zi,j) = 1zi,j · 2ẑi,j . (5.131)

These values finally are the brightness warping values that can be used to map intensities
from some frame back to the template image.

These modules are employed in both of our light-modelling algorithms. Figure 5.6 shows how
they typically work together. Note that they are also part of our algorithm diagrams shown
in Figures 5.2 and 5.3. The functions themselves have already been defined, but to provide a
complete specification of the modules, we still have to discuss formulas for computation of the
derivatives of these functions.

We start with the derivatives of the brightness warping components, denoted by functions
f1(ai,xj), f2(xj ,nj), and f3(xj ,nj). All of these derivatives are quite simple to compute, except
maybe for the function f1(ai,xj), where we need to compute the derivative of T(ãi, lt). This is
the inverse rigid transformation corresponding to ai, such that

T(ãi,T(ai,x)) = x. (5.132)

The computation of this derivative has already been discussed in Section 5.1 about rigid trans-
formations, so we will refer the reader to formulas (5.10) through (5.13).

94

5.5 Brightness Warping

Parameter Layer 2

Surface Point Cloud Surface Normals Camera Parameters

Function Layer 2

Computation of Brightness
Warping Components

Parameter Layer 3

Brightness Warping
Components

Function Layer 3

Brightness Warping Numerator
and Denominator Computation

Function Layer 4

Component-Wise
Division

Parameter Layer 4

Numerators and Denominators
of Brightness Warping Values

Parameter Layer 5

Brightness Warping
Values

Figure 5.6: Computational graph showing the typical interaction of modules involved in com-
puting the brightness warping functions.

95

5. MODULES FOR IMPLEMENTING BUNDLE ADJUSTMENT

All other derivatives are quite easy to determine, and we state only the results here:

d
d xj

f1(ai,xj) = I3 (5.133)

d
d xj

f2(xj ,nj) = −3 · |lt − xj | · (nj · (lt − xj)T) (5.134)

d
d nj

f2(xj ,nj) = |lt − xj |3 · I3 (5.135)

d
d xj

f3(xj ,nj) = −nT
j (5.136)

d
d nj

f3(xj ,nj) = −xT
j (5.137)

The derivatives for the functions g1 and g2 are then

d
d 1yi,j

g1(1yi,j , 3yj) = 3 · |1yi,j | · 3yj · 1yT
i,j (5.138)

d
d 3yj

g1(1yi,j , 3yj) = |1yi,j |3 (5.139)

d
d 1yi,j

g2(1yi,j , 2yj) = 2yT
j (5.140)

d
d 2yj

g2(1yi,j , 2yj) = 1yT
i,j (5.141)

Finally, the derivatives of h(1zi,j ,
2zi,j) are determined as

d
d 1zi,j

h(1zi,j ,
2zi,j) = 2ẑi,j (5.142)

d
d 2zi,j

h(1zi,j ,
2zi,j) = −

1zi,j
2z2
i,j

. (5.143)

In our implementation, the modules actually embody stacks of the functions introduced
here, such that they simultaneously compute values for a set of M points and N views of a
scene. The extension of our functions that have been defined on a per-view, per-point basis
to the case of multiple views and multiple points can be done analogously to the case of rigid
transformations, and we will not go into detail here.

Notice that Figures 5.2 and 5.3 actually do not show the brightness warping component
computation as a separate module, which might be unexpected. The reason for this is that
we have simply extended the already present rigid transformation module to compute the
brightness warping components as well, which is more efficient than implementing the module
separately.

96

5.6 Unit Quaternion Constraints

5.6 Unit Quaternion Constraints

As we have explained earlier, our optimization framework implements equality constraints by
means of the Lagrange Term module, which expects constraints to be specified by means of
scalar function modules. When formulated as a scalar constraint, the condition for ensuring
that a 4-dimensional sub-vector of some parameter vector c is

hi(c) = 1− [c]2i:i+3, (5.144)

where the notation [x]i:j represents the sub-vector (xi,xi+1, . . . ,xj)T of x. Using the value
of i that represents the position of the rotation quaternion to be constrained within c, this is
exactly the constraint that we need. Note that hi(c) = 0 if and only if [c]2i:i+3 = 1.

In our case, the overall parameter vector to be constrained is the vector c = (aV,p), where aV

contains the extrinsic parameters for the views in the sliding window. Let V = {V1,V2, . . . ,VN},
where N is the number of views in the sliding window. Then the vector aV would be composed of
sub-vectors at,V1 and aq,V1 representing translation vector and rotation quaternion, respectively.
Formally, the shape of aV would then be

aV = (aT
t,V1

,aT
q,V1

,aT
t,V2

,aT
q,V2

, . . . ,aT
t,VN

,aT
q,VN

)T,

and we would need N constraints h(i−1) · 7+4(c) with 1 ≤ i ≤ N to enforce unit length on all
rotation quaternions for all views.

The derivatives of this constraint function are:

∇hi(c) =

 0i−1

2 · [c]i:i+3

0N−i−4

 , (5.145)

Hhi
(c) =

 0i−1,i−1 0i−1,4 0i−1,N−i−4

04,i−1 2 · I4 04,N−i−4

0N−i−4,i−1 0N−i−4,i−1 0N−i−4,N−i−4

 . (5.146)

5.7 A Scale Uniqueness Constraint

As we have mentioned in the introduction, our algorithms, except for the one using calibrated
light, perform reconstructions only up to scale. Since it is not possible to retrieve the scale, we
at least need to make sure that it is unique. Otherwise, we would introduce an artificial degree
of freedom into our optimization problem, making it infeasible to solve.

Scale uniqueness can be achieved easily by constraining the inverse depth map to have a
certain average value as follows:

c =
∑M
j=1 z(p, uj , vj)

M
, (5.147)

97

5. MODULES FOR IMPLEMENTING BUNDLE ADJUSTMENT

where c ∈ R is an arbitrary constant, and the values z(p, uj , vj) are the inverse depth values.
As we have explained above, we are using an inverse B-Spline depth map, which means that
above constraint is, within the SQP framework, equivalent to

h(aV,p) = 11,M ·L ·p−M · c, (5.148)

where L is the B-spline basis matrix. This constraint is linear in parameters, and its derivatives
are easily computed as

∇h(aV,p) =
(

07 ·N
(11,M ·L)T

)
, (5.149)

and the Hessian matrix of this constraint is simply the 0 matrix.

5.8 Regularization

Our algorithms, as presented up to now, are already capable of performing the task of recon-
struction and motion recovery quite well in case of suitable data. However, there is one major
drawback that has a strongly adverse effect on the performance of the system: In case of very
small camera displacements, large changes to the depth map result in almost no changes in the
2D re-projected intensities. This gives the system a lot of undesired freedom to play around
with parameters, and it frequently leads to the depth map blowing up if the first few images of
a tracking sequence do not exhibit enough baseline. Basically, there is not enough information
contained in the images to allow recovery of the depth map, so the system should not even try
to perform the recovery.

This problem is well-known, and it can effectively be rectified by adding a regularization
term to the image alignment objective. Recently, total variation regularization and some vari-
ants thereof [67] have been applied with great success to many problems [41, 68, 69] in computer
vision. This type of regularization is also applicable to our problem and serves, in that con-
text, to restrain the surface from being distorted. A particularly nice, slightly more practical
explanation of regularization is given in the paper by Sun et al. [42] on optical flow principles.

The basic idea for this type of regularization is the addition of a penalty term to the
original objective function E(a,b) as defined in Equation (2.10). In the case of total variation
regularization, the penalty term is typically chosen as∫

P

|∇z(p, x, y)| dx dy, (5.150)

such that the actual objective function to be optimized becomes

E(a,b) + λ

∫
P

|∇z(p, x, y)| dx dy, (5.151)

where λ is a weighting term for the regularization. Note that the integral term is only useful
for mathematical analysis, but is almost always replaced with a discrete sum in actual imple-

98

5.8 Regularization

Figure 5.7: Schematic illustration showing the problem with direct depth regularization: When
observing a simple slanted plane, the depth associated with a pixel, and thus the accociated area,
varies greatly over the whole image. This leads to nonuniform regularization of different parts of
the plane, which is undesireable.

mentations, where the underlying function D is typically also defined as a discrete function on
a grid. In our case, we will approximate the integral in a very similar manner, using a variant
of Simpson’s formula.

We have developed a similar regularizer for our algorithm. The concept behind the regular-
izer is quite simple. First of all, we argue that we should regularize the inverse depth map, and
not the actual surface. The reason for this is that we do not want to punish depth variations
at higher depth more than depth variations at closer depths. The problem with direct depth
regularization is shown in Figure 5.7.

The well-known formula for evaluating the area of some 3D surface S : R2 → R3 is∫∫
P

|Sx(x, y)× Sy(x, y)| dx dy, (5.152)

where P ⊆ R2 is the parameter space over which we want to integrate, and Sx and Sy denote
the surface derivatives in the first and second parameter direction, respectively. Since we want
to do regularization based on inverse depths, our definition of the surface to be regularized is

S(p, x, y) =

 x

y

s(p, x, y)

 , (5.153)

where the function s is the B-Spline surface function as defined in Equation (5.27). Computing
the directional derivatives with respect to x and y is rather trivial, since computation of spline
derivatives has been shown to be a simple linear function in Section 5.2.1.

Applying Formula (5.152) leads to the following integral to be evaluated:∫∫
P

√
1 + sx(p, x, y)2 + sy(p, x, y)2 dx dy, (5.154)

99

5. MODULES FOR IMPLEMENTING BUNDLE ADJUSTMENT

Replacing the 1 in above formula with a constant α yields a regularization term that is similar
to the Huber regularization term as discussed by Pock et al. [70]. The evaluation of such
an integral is rather difficult, and it is much simpler to approximate it using, e.g., Simpson’s
quadrature rule. This is also especially convenient in our case, since the surface is any ways
sampled at fixed parameter locations.

More specifically, our approximation of the integral is based on the following composite
formulation of Simpson’s rule [71]:

∫ b

a

f(x) dx ≈ h

48

[
17f(x1) + 59f(x2) + 43f(x3) + 49f(x4) + 48

n−4∑
i=5

f(xi)+

49f(xn−3) + 43f(xn−2) + 59f(xn−1) + 17f(xn)
]
, (5.155)

where the values x1, x2, . . . , xn are spaced equally in the interval [a, b]. This formulation holds
for the case of a function f : R → R with one-dimensional real domain. Note that this corre-
sponds to a simple dot product between the weighting constants with a vector of sampling values
of the function f . Letting f denote the vector (f(x1), f(x2), . . . , f(xn))T ∈ Rn of sampling val-
ues, and letting wn denote the vector 1

48 (17, 59, 43, 49, 48, 48, . . . , 48, 49, 43, 59, 17)T ∈ Rn of
weights used in the formula, we can thus rephrase (5.155) as∫ b

a

f(x) dx ≈ wT
n · f . (5.156)

Extending this formula to the case of a double integral over a two-dimensional real domain R2

is possible by applying it twice. Let us define a matrix F of function samples such that

F =

f(x1, y1) f(x1, y2) . . . f(x1, ym)
f(x2, y1) f(x2, y2) . . . f(x2, ym)

...
...

. . .
...

f(xn, y1) f(xn, y2) . . . f(xn, ym)

 , (5.157)

where x1, x2, . . . , xn and y1, y2, . . . , yn are spaced equally over the intervals [a, b] and [c, d], re-
spectively. Then, we can formulate the following approximation formula for the two-dimensional
integral over f : ∫ b

a

∫ d

c

f(x, y) dx dy ≈ wT
n ·F ·wm. (5.158)

Within our framework, it is more convenient to work with the vectorization of F, in which case
the formula is expressed simply as

wT
n ·F ·wm = (wT

n ⊗wT
m) · vec(F), (5.159)

via the well-known rule vec(AXB) = (BT⊗A) · vec(X). Applied to the case of Formula (5.155),

100

5.8 Regularization

the integral approximation boils down to evaluating above expression for the case

f(x, y) =
√

1 + sx(p, x, y)2 + sy(p, x, y)2. (5.160)

In our case, the evaluation of the values sx and sy is done through simple matrix-vector products,
and we are thus able to specify a concise computation scheme for the vector vec(F) that is formed
from the entries of f . We have discussed the computation of spline tangent values at length
in Section 5.2.1, and we have seen there that those values can easily be computed using some
basis matrices Lx and Ly. Making use of Hadamard products, the formula we seek is

vec(F) =
(
(Lx ·p)◦2 + (Ly ·p)◦2 + 1N,1

)◦ 1
2 , (5.161)

where N = n ·m is the number of evaluation locations. Overall, our regularization function is
then defined as

R(p) = (wT
n ⊗wT

m) ·
(
(Lx ·p)◦2 + (Ly ·p)◦2 + 1N,1

)◦ 1
2 . (5.162)

As usual, it is necessary to compute the derivatives of the regularization term to make it
usable within our optimization framework. The gradient of the regularization function is easily
computed as follows:

d
d pR(p) = (wT

n ⊗wT
m) · diag

(
(Lx ·p)◦2 + (Ly ·p)◦2 + 1N,1

)◦(− 1
2) ·

(
diag(Lx ·p) diag(Ly ·p)

)
·

(
Lx

Ly

)
= ∇p R(p)T (5.163)

Computing the Hessian is a bit more involved. We start by rearranging the gradient computa-
tion formula as follows:

∇p R(p) =
(
LT
x LT

y

)
·

(
diag(Lx ·p)
diag(Ly ·p)

)
·

diag
(
(Lx ·p)◦2 + (Ly ·p)◦2 + 1N,1

)◦(− 1
2) · (wn ⊗wm)

=
(
LT
x LT

y

)
· diag

(
wn ⊗wm

wn ⊗wm

)
·

(
diag(Lx ·p)
diag(Ly ·p)

)
·

(
(Lx ·p)◦2 + (Ly ·p)◦2 + 1N,1

)◦(− 1
2)
. (5.164)

The formula is thus reshaped into a chain multiplication of four components: Two constant
matrices, a stack of two parameter-dependent diagonal matrices and a parameter-dependent
vector. The main challenge when computing the derivative of this expression, and thus the
Hessian matrix of R, is the computation of the derivative of the matrix-vector product of the

101

5. MODULES FOR IMPLEMENTING BUNDLE ADJUSTMENT

two rightmost terms. To compute this derivative, we define a helper function h as follows:

h(q, r) =
(

diag(Lx ·q)
diag(Ly ·q)

)
·
(
(Lx · r)◦2 + (Ly · r)◦2 + 1N,1

)◦(− 1
2) =

diag
(

(Lx · r)◦2 + (Ly · r)◦2 + 1N,1
(Lx · r)◦2 + (Ly · r)◦2 + 1N,1

)◦(− 1
2)

·

(
Lx

Ly

)
·q, (5.165)

where q and r are both vectors of the same dimension as the number of surface parameters, so
they have the same dimension as p. Note that h is a slightly generalized version of the matrix-
vector product of the two rightmost terms in (5.164). Computing the derivatives of h(q, r) with
respect to q and r will be a simple matter based on (5.165), and we will be able to compute
the derivative of h(q, r) based on the partial results using the chain rule. The derivatives are:

d
d qh(q, r) = diag

(
(Lx · r)◦2 + (Ly · r)◦2 + 1N,1
(Lx · r)◦2 + (Ly · r)◦2 + 1N,1

)◦(− 1
2)

·

(
Lx

Ly

)
, (5.166)

d
d rh(q, r) =−

(
diag(Lx ·q)
diag(Ly ·q)

)
· diag

(
(Lx · r)◦2 + (Ly · r)◦2 + 1N,1

)◦(− 3
2) ·(

diag(Lx · r) ·Lx + diag(Ly · r) ·Ly
)
. (5.167)

Using the fact that h(p,p) = h((ININ)T ·p), we can compute the desired derivative of h(p,p)
using the chain rule as

diag
(

(Lx ·p)◦2 + (Ly ·p)◦2 + 1N,1
(Lx ·p)◦2 + (Ly ·p)◦2 + 1N,1

)◦(− 1
2)

·

(
Lx

Ly

)
−

(
diag(Lx ·p)
diag(Ly ·p)

)
·

diag
(
(Lx ·p)◦2 + (Ly ·p)◦2 + 1N,1

)◦(− 3
2) ·

(
diag(Lx ·p) diag(Ly ·p)

)
·

(
Lx

Ly

)
. (5.168)

Combining this result with the linear part of Formula (5.164) yields the overall formula for
computing the Hessian matrix of the regularization term:

HR(p) =
(
LT
x LT

y

)
· diag

(
wn ⊗wm

wn ⊗wm

)
·diag

(
(Lx ·p)◦2 + (Ly ·p)◦2 + 1N,1
(Lx ·p)◦2 + (Ly ·p)◦2 + 1N,1

)◦(− 1
2)

−

(
diag(Lx ·p)
diag(Ly ·p)

)
·

diag
(
(Lx ·p)◦2 + (Ly ·p)◦2 + 1N,1

)◦(− 3
2) ·

(
diag(Lx ·p)
diag(Ly ·p)

)T
 · (Lx

Ly

)
. (5.169)

102

5.9 Efficient Sparse-Sparse Matrix Products

5.9 Efficient Sparse-Sparse Matrix Products

The optimization framework that has been introduced in Chapter 4 makes sure that the sparse
matrix chain products that are needed to compute the overall derivatives are evaluated in a
very efficient way. However, as we have seen in this Chapter, the evaluation of sparse Jacobian
and Hessian matrices can be a quite complex problem in itself. The more complicated Jaco-
bian/Hessian computation formulas consist themselves of products of several sparse matrices.
However, because the surface model underlying most of our computations is linear in parame-
ters (see Section 5.2.1.1), many of the Jacobian and Hessian computation formulas are of the
following shape:

J(p) = A ·X(p) ·B, (5.170)

where A and B are some constant matrices (often these are related to the B-Spline basis
matrices), and X(p) is a parameter-dependent matrix. All of the matrices have a constant
sparsity structure that is not dependent on p. An example for this is Equation (5.169).

The straightforward way to evaluate that matrix product would be simply carrying out the
chained matrix product: We could use the algorithms developed for the optimization frame-
work to determine an optimal bracketing and pre-compute multiplication tables, which would
probably provide decent performance. However, there is an even faster way: Accessing the
non-zero entries of J(p) as dense vector, it is possible to compute the values of those entries
directly as a sparse-dense matrix-vector product. Carrying out sparse-dense products is usually
an operation that is at least as fast as carrying out a pre-recorded matrix multiplication, but
does not require any special preparation.

Before we can start to present the theory behind our idea, we need to discuss some technical
details of the data structure underlying sparse matrices. Our description will be based on the
compressed column storage (CCS) scheme used by the Eigen library for linear algebra. The
ideas are, however, certainly applicable to other sparse matrix storage schemes as well. For an
overview of sparse matrix storage schemes and some basic concepts, see [72].

To give the reader an idea about the CCS scheme, we will provide an example. Consider
the matrix

M =

1 0 0
0 0 5
4 0 7

 . (5.171)

In CCS format, such a matrix is represented by a collection of three arrays, which we will denote
by val(M), rowidx(M), colidx(M). The array val(M) stores the non-zero values contained
in the sparse matrix. In our example, we would have val(M) = (1, 4, 5, 7)T. For each element,
we also need to know its position in the matrix. The row index of each element is stored in the
array rowidx(M), which would be (0, 2, 1, 2)T in our example. Finally, the array colidx(M)
stores for each column of the matrix the index into val(M) at which it starts. For the example,
we have colidx(M) = (0, 2, 2)T. Typically, it is more efficient to access and manipulate the
array of sparse matrix values directly instead of using general matrix multiplication algorithms.

To develop our idea for computing the values of the val array directly, we need to define

103

5. MODULES FOR IMPLEMENTING BUNDLE ADJUSTMENT

some mathematical tools that provide a link between the array-based implementation of sparse
matrices on computers and the mathematical formulas. Intuitively, we need a way to express
the val operator in a mathematical way. This is easily achieved as follows: The vectorization
of a sparse matrix M will in general yield a sparse vector vec(M). The val operator is now
seen to be a mapping that removes the 0 entries from that sparse vector. This means that val
is a linear operator on the vectorization of M, and can thus be expressed as a matrix-vector
multiplication. In our example, we would have

val(M) = (1, 4, 5, 7)T =

1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

 · vec(M). (5.172)

Thus, it is possible to implement the val operator as a multiplication of vec(M) with a matrix
of certain shape that selects the non-zero entries of the vectorization of M. More formally,
let M be a sparse matrix with n rows, m columns, and N non-zero entries. Then we define the
matrix χ(M) as follows:

1. The size of χ(M) is N × (n ·m).

2. For each 0 ≤ i < N , the entry in row i and column rowidx(vec(M))i is set to 1, and all
other entries are set to 0.

Another notable property of these matrices is that their transpose χ(M)T reverses the mapping,
such that χ(M)T ·χ(M) · vec(M) = vec(M).

Now we are finally ready to discuss our technique. We start by vectorizing the original
equation J(p) = A ·X(p) ·B, which yields the formula

vec(J(p)) = (BT ⊗A) · vec(X(p)). (5.173)

Since vec(X(p)) is a sparse vector, some of the columns of the Kronecker product BT ⊗A will
be irrelevant for the computation. Mathematically, this can be explained by observing

(BT ⊗A) · vec(X(p)) = ((BT ⊗A) ·χ(X(p)T) · (χ(X(p)) · vec(X(p))), (5.174)

since ((BT⊗A) ·χ(X(p)T) is equal to the matrix BT⊗A without the columns corresponding
to the zero entries of vec(X(p)).

Now, since we want to find the entries of val(J(p)), we apply the matrix χ(J(p)) as follows:

vec(J(p)) = ((BT ⊗A) ·χ(X(p)T) · (χ(X(p)) · vec(X(p)))⇔

χ(J(p)) · vec(J(p)) = (χ(J(p)) · (BT ⊗A) ·χ(X(p)T) · (χ(X(p)) · vec(X(p)). (5.175)

Finally, we see that the vector val(J(p)) of values contained in the sparse matrix J(p) can be

104

5.9 Efficient Sparse-Sparse Matrix Products

computed by evaluating a sparse-dense matrix-vector product, with a sparse matrix of

χ(J(p)) · (BT ⊗A) ·χ(X(p)T) (5.176)

and a dense vector of χ(X(p)) ·X(p) = val(X(p)). Since the sparsity structure of all the
involved matrices is static, the matrices χ(J(p)) and χ(X(p)) remain the same, and the whole
expression (χ(J(p)) · (BT ⊗A) ·χ(X(p)T) is thus constant.

As an example, consider the following simple formula:

J(p) = A · diag(p)2 ·B. (5.177)

According to our elaboration above, we might calculate the values of val(J) directly using the
constant matrix

D = χ(J(p)) · (BT ⊗A) ·χ(diag(p)2). (5.178)

We would then compute the values as a simple sparse-dense matrix-vector product using

val(J) = D · val(diag(p)2). (5.179)

Note that this product can be evaluated quite efficiently since val(diag(p)2) is simply the
component-wise squared vector p.

In general, we can say that this computation scheme is only efficient if the computation
of (χ(X(p)) · vec(X(p)) = val(X(p)) is efficient. This is, however, always the case in our
modules. One example is the formula for computing the Hessian of the regularization term,
which is specified in Formula (5.169): The middle, parameter-dependent matrix corresponding
to the matrix X(p) in our computation scheme, would be the matrix

diag
(

(Lx ·p)◦2 + (Ly ·p)◦2 + 1N,1
(Lx ·p)◦2 + (Ly ·p)◦2 + 1N,1

)◦(− 1
2)

−

(
diag(Lx ·p)
diag(Ly ·p)

)
·

diag
(
(Lx ·p)◦2 + (Ly ·p)◦2 + 1N,1

)◦(− 3
2) ·

(
diag(Lx ·p)
diag(Ly ·p)

)T
 (5.180)

The structure of that matrix is quite simple: It is a 2 × 2 block matrix consisting of large
diagonal matrices. Thus, computing the vector val(X(p)) is possible quite easily using simple
component-wise vector-vector operations.

105

5. MODULES FOR IMPLEMENTING BUNDLE ADJUSTMENT

106

Chapter 6

Light Source Calibration

In the previous Chapter, we have described an algorithm that makes use of an explicit light
model assuming a point-shaped light with a non-uniform intensity distribution. For this algo-
rithm to be of any use at all, we need to provide some means to calibrate the light source, by
which we mean determining the light source’s position along with its intensity profile. Figure 6.1
visualizes the situation.

We are assuming that the light source to be calibrated is the only source of light in the scene,
and we also assume that it is small compared to the scene structures observed. By small, we
mean that the extent of the light source can be neglected, such that the rays coming from the
source appear to originate from only one point. This is an important prerequisite for treating
the light source as an inverse camera.

Camera-to-light calibration methods are quite common in the area of structured light [73],
and they typically rely on usage of a projector that is able to project a specific pattern onto the
scene. In our case, we do not assume that we are able to project a pattern of choice onto the
scene. Rather, we see the non-uniform intensity distribution of a light source as a nuisance that
we wish to compensate. The method that we are proposing is able to cope with the calibration
problem without requiring projection of specific patterns through the light source.

Our algorithm computes the position of the light source and its intensity profile from a
number of images of a calibration pattern at different positions. It is a two-step process that
first tries to find the light source’s projection center, and then determines its light intensity
profile. The calibration pattern is a simple white rectangle surrounded by a black border, such
that the rectangle can be detected easily in images.

Since we treat the light source as an inverse camera, the situation is actually very similar
to the calibration of a stereo camera pair. The intrinsic parameters associated with the light
source will be chosen to match the parameters of the camera. Furthermore, we will determine
translation lt and rotation lr describing the pose of the light source relative to the camera,
corresponding to the extrinsic parameters of stereo calibration. Calibrating the rotation of a
light source might seem confusing at first sight, since a light source usually emits light in all
directions. However, realizing that the camera will only see a limited section of the full light

107

6. LIGHT SOURCE CALIBRATION

Figure 6.1: Example scene showing how the light source in a scene is treated as an inverse
camera: All the light rays emerge from a common projection center, and they might have different
intensities.

Figure 6.2: Top: Two example calibration images, Bottom Left: Recovered light intensity profile,
Bottom Right: Projected image. The recovered area corresponds roughly to the lower right quarter
of the projected image.

108

6.1 Estimation of the Projection Center

profile, it makes sense to choose the rotation of the light source to point towards the calibrated
region. Thus, the rotation will be chosen such that the light source “camera” looks towards the
calibration patterns that have been seen by the actual camera.

Our algorithm makes strong use of the image formation laws for Lambertian surfaces that we
have described in Chapter 3. Furthermore, we assume that the camera intrinsics and distortion
have been calibrated and images rectified accordingly. Also, we need to know the radiometric
response of the camera as well as its vignetting profile. There are many calibration methods
available [74, 75, 76, 77] for determining these quantities. In our case, all cameras we were using
were set to operate in raw mode, thus their response was already linear, and we only needed to
determine the vignetting profile. This has been done according to the method described in the
paper by Goldman and Chen [75], Section 6.1.

6.1 Estimation of the Projection Center

First off, let us recall the Lambertian law of reflection that we have already discussed in Sec-
tion 3.2 on light source modelling. We shall adapt the formulas presented there to our calibra-
tion scenario. Consider a situation where we are looking at a calibration plane that is specified
trough normal n and distance d in Hessian normal form, such that

nT ·x− d = 0 (6.1)

describes the plane in 3D space. Then, the intensity of some point x on that plane, as observed
in image i, can be calculated as

Ii(π(K ·x)) = d · n
T · (lt − x)
|n| · |lt − x| ·

1
|lt − x|2 , (6.2)

where d is a value depending on surface albedo and light intensity, and π(K ·x) is the per-
spective projection of x to pixel coordinates. The first of the two fraction terms corresponds to
the cosine of the angle between incoming light and surface normal, and the second accounts for
light attenuation over distance. This assumes that the intensity, as reported by the camera, is
not affected by non-linear camera response or camera vignetting, that the plane’s reflectance is
Lambertian, and that the light source exhibits inverse squared attenuation over distance.

Note that the quantity d is one of the actual values that we want to calibrate: Since the
calibration pattern is of uniform white color, the only other reason for changing values of d
would be the light intensity. It is a simple matter to rearrange above equation to calculate d,
so if the light source position is known, we would already be able to calculate the intensity of
that specific ray.

Now consider the situation shown in Figure 6.3, showing a case where two images of cali-
bration planes at different positions have been taken, and there is a light ray that hits them
both. We have seen that the value d can be determined using only one measurement associ-
ated with one light ray. Now we have two measurements, so we are also able to compute two

109

6. LIGHT SOURCE CALIBRATION

Camera

True Light
Source Position

n1

n2

r2
r1

Figure 6.3: The same light ray passing through two calibration planes.

values of d that should be equal in the ideal case. We can calculate an optimal value for d in
the least-squares sense. Then, the discrepancy between the intensity values predicted by the
Lambertian reflectance law and the actual measurements are used as error quantifier.

Of course, the scheme is not restricted to only two calibration patterns. Generally, the cal-
ibration results will improve with the number of calibration images used. Figure 6.4 illustrates
the situation when using more than two calibration patterns.

In the following, we assume that we have recorded M calibration images I1, I2, . . . , IM .
Each of these images shows the calibration plane, and it is a simple matter to detect that plane
and determine its location relative to the camera, e.g., using the functions findContours and
solvePnP from the OpenCV library1. The planes will be represented in Hessian normal form,
and we will denote their normals and distances with ni and di. Furthermore, let xj ∈ R3 denote
points that are located on the calibration rectangles, where j ranges from 1 to N , and N is the
total number of points.

We will formulate the problem of finding the projection center as an optimization problem
on the variable lt, defining an objective function o(lt) on the 3D coordinates lt. The objective
function rewards a configuration where the calibration pattern brightness values behave accord-
ing to the Lambertian reflectance law, and penalizes configurations where the brightness values
differ from what is computed by the Lambertian law.

1http://opencv.willowgarage.com/

110

http://opencv.willowgarage.com/

6.1 Estimation of the Projection Center

Camera

Wrong Light Source
Position Hypothesis

True Light
Source Position

Figure 6.4: Schematic view of the calibration situation, showing the camera and a number of
calibration planes. For the correct light source position, the intensity values at the ray-plane
intersections will behave according to the Lambertian reflectance law (blue circles). In the other
case, the behaviour will differ considerably from that predicted by the reflectance law (red circles).

111

6. LIGHT SOURCE CALIBRATION

The basic idea is as follows: For a candidate light position lt, each of the 3D points xj induces
a ray from the candidate light position to the point xj . Intersections between the calibration
planes and these rays can subsequently computed, and we shall denote by yi,j the intersection
of the ray induced by xj with the calibration plane in image Ii. It might happen that the
line-plane intersection lies outside the calibration rectangle, so we also need a indicator variable
vi,j to indicate whether this is the case. The value of vi,j will be equal to 1 if the intersection is
inside the rectangle, and 0 otherwise. We will denote the distance between lt and yi,j with ri,j ,
and the corresponding cosine between the calibration plane normal and the light ray is denoted
by ci,j .

For each ray, we now have M equations of type

Ii(π(K ·yi,j)) = di,j ·
ci,j
r2
i,j

. (6.3)

Theoretically, the values di,j should all be the same for all images i and one specific ray j.
We can calculate a least-squares solution d̃j representing that common value for each ray j by
minimizing the objective

M∑
i=1

vi,j ·

(
Ii(π(K ·yi,j))− d̃j ·

ci,j
r2
i,j

)2

. (6.4)

The solution to this minimization process can be calculated as

d̃j =

∑M
i=1 vi,j ·

(
Ii(π(K ·yi,j)) · ci,j

r2
i,j

)
∑M
i=1 vi,j ·

(
ci,j

r2
i,j

)2 . (6.5)

Note that choosing the points xj to lie on the calibration rectangles makes sure that each ray
hits at least one of those rectangles, and prevents situations where d̃j cannot be determined
at all because all vi,j are equal to 0. Now we are ready to formulate the objective function as
follows:

o(lt) =

∑N
j=1

∑M
i=1 vi,j ·

(
d̃j · ci,j

r2
i,j
− Ii(π(K ·yi,j))

)
∑N
j=1

∑M
i=1 vi,j

. (6.6)

This can be interpreted as the average weighted error for each pixel between the predicted
intensity by the Lambertian reflectance law and the measured intensity, using the optimal
value d̃j as computed above.

6.2 Optimization of the Objective

The objective function (6.6) is a quite complex, non-convex, non-continuous function. Opti-
mization of such functions using a non-linear optimization technique, such as the one introduced
in Chapter 4, is difficult, if not impossible. However, there are other optimization techniques

112

6.3 Modelling Constant Intensity Disturbances

Camera

Bounding Box

Minimum
Distance

Figure 6.5: The bounding box used for the optimizer: The extent in all three spatial directions
is the same, and just big enough to reach the closest point of any calibration rectangle seen by
the camera.

available that are better suited for the problem at hand.
Both the non-convexity as well as the non-continuity can be addressed by using probabilistic

optimization methods, such as simulated annealing [78]. Recently, Papazov and Burschka [79]
have shown how such techniques can be applied to the problem of rigid point set registration.
We were able to apply their method to optimize our objective function with great success. We
have also tried out a classic non-linear method, using the Levmar package, without success.

The probabilistic method requires the parameter space to be a box, such that is has upper
and lower bounds in each parameter direction. We assume that the light source is rather
close to the camera, and restrict the parameter space of the light source position to a box
around the camera’s principal point, with extents just big enough to reach the closest point
of any calibration rectangle seen in the calibration images. Figure 6.5 shows the situation
schematically.

Since the objective function is quite expensive to evaluate, and around 10000 function eval-
uations of the function are required to find a minimum, we need to limit the number of rays
that are considered in the objective function. Typically, values between 150 and 200 rays have
been used, and good results could be achieved.

6.3 Modelling Constant Intensity Disturbances

The theory developed above assumes that the image measurements behave exactly according
to our assumptions, which is normally not the case. Most importantly, we were assuming that
there is no other source of light in the scene, which means that we neglect any indirect, scattered
light affecting the images. Such indirect lighting, however, is nearly impossible to suppress, and
constitutes a major source of calibration error.

113

6. LIGHT SOURCE CALIBRATION

We propose to address this issue by incorporating a constant “ambient” brightness term
in our optimization. This is motivated as follows: The objects in a calibration setting that
cause this undesired scattered light are usually objects that themselves exhibit diffuse reflection
properties: White walls, floor carpets, chairs etc. This means that the reflected light typically
is also very diffuse. Such diffuse light often shows very little variation in light strength. The
same effect of reflecting light from diffuse surfaces is used by photographers to produce a
homogeneous, soft light.

For each calibration rectangle, this term is assumed to be constant, such that the original
law (6.3) turns into

Ii(π(K ·yi,j)) = di,j ·
ci,j
r2
i,j

+ ai. (6.7)

where ai is the constant ambient light term for frame i. We can solve for a per-ray intensity
value d̃j along with ambient light values ai in a least-squares sense, minimizing the following
objective:

M∑
i=1

vi,j ·

(
Ii(π(K ·yi,j))− d̃j ·

ci,j
r2
i,j

+ ai

)2

. (6.8)

Assuring that the points xj lie on the calibration rectangles is no longer enough to guarantee
solvability of the resulting least-squares system. However, we can compute a valid solution in
all cases by performing an eigen decomposition of the system, which will yield a valid solution
even in degenerate cases.

The objective function is then also adapted to the ambient light estimation:

o(lt) =

∑N
j=1

∑M
i=1 vi,j ·

(
d̃j · ci,j

r2
i,j

+ ai − Ii(π(K ·yi,j))
)

∑N
j=1

∑M
i=1 vi,j

. (6.9)

This modification turned out to be very useful. Figure 6.6 shows calibration results using the
plain algorithm described earlier, and the algorithm with additional estimation of ambient light
values. It is evident that the results are better when ambient light is estimated as well: In the
left image, the crossover edges between calibration patterns are still visible. The lower half of
the intensity profile is darker than the upper half, and there is a visible crossover line just above
the lower text line. The right image is much smoother overall.

6.4 Determining the Intensity Profile

After the projection center has been found, the next step is determining the full intensity profile
of the light source. We proceed as follows:

1. Determine the rotation lr such that the light source “camera” faces the calibration pat-
terns. Each calibration pattern can be associated with a number of pixels, and each of
these pixels corresponds to a 3D point. All calibration images Ii thus define point clouds,
and we choose the rotation such that the z axis associated with the light source points

114

6.4 Determining the Intensity Profile

Figure 6.6: Calibration results for intensity profile of a projector. Left: without estimating
ambient light, Right: with ambient light estimation.

towards the centroid of the point cloud made up of all pixels belonging to calibration
patterns in all images.

2. Compute an intrinsic camera matrix such that the point cloud of calibration rectangles
just fits completely into one light intensity image IL that has the same resolution as the
camera images Ii.

3. Each pixel of the intensity profile can be identified with a ray from the light source
through the scene, possibly hitting one or more calibration patterns. Thus, by shooting
rays through each pixel of the intensity profile, we may calculate intersection points with
the calibration rectangles and determine the intensity value d̃j associated with that light
ray.

The last step of calculating the per-ray intensities could theoretically be solved by calculating
the least-squares solution to (6.9), as we have done before. However, this is infeasible in practice,
due to the size of the resulting system of equations. If the intensity profile has a resolution of
640× 480, the system matrix will exceed a size of (640 · 480)× (640 · 480) for one-channel gray-
scale images. Storing such a matrix would already be a big problem, since the memory required
to do so exceeds 700 GB. Additionally, we would need to calculate an eigen decomposition of
that matrix, which is completely out of the question for a matrix of this size.

Instead, we re-use the ambient light values that have been estimated when finding the light
source projection center, and subtract those values from the image intensities. Afterwards, we
can compute the ray intensity according to Equation (6.5) directly, without the need to resort
to an eigen decomposition.

115

6. LIGHT SOURCE CALIBRATION

116

Chapter 7

Experimental Results

We have tested all of our algorithms on a variety of synthetic data sets with known ground
truth as well as on real camera images where the ground truth is not known. For the synthetic
datasets, we are able to make precise statements about the performance of the algorithms.
Furthermore, we can analyse the influence of system parameters on the reconstruction results.

The synthetic datasets have been generated using POV-Ray1 in the extended MegaPOV
variant2, augmented with the VLPov3 patch by A. Vedaldi. The patch allows generation of
motion data and a ground truth depth map for a scene.

7.1 Ground Truth Comparison Method

When comparing results generated by POV-Ray with the reconstruction estimates, we would
like to evaluate the quality of the estimated depth map, rotation, and translation. Defining
meaningful similarity measures on these quantities is not at easy as it might seem on first sight.
Monocular reconstruction is always only possible up to scale, so first of all, the scale of the
estimated depth and translation will likely differ from the scale of the ground truth values.

The usual way to address such scaling problems is the application of scale-invariant similarity
measures such as normalized cross-correlation (NCC). However, our experiments revealed that
such a simple approach does not provide meaningful results on our problem. It is known that
correlation measures are very sensitive to outliers [80], which explains our observation. Thus,
instead of using NCC as similarity measure, we rely on a different method, first performing
a registration of depth maps and subsequently determining the overlap between ground truth
and estimated surface. This allows us to calculate an estimate of the ratio of the depth map
that has been reconstructed correctly.

Before we start discussing our approach to depth map comparison, we will give some details
on the normalized cross-correlation measure, and some examples where it performs sub-optimal.

1http://www.povray.org/
2http://megapov.inetart.net/
3http://www.vlfeat.org/˜vedaldi/code/vlpovy.html

117

http://www.povray.org/
http://megapov.inetart.net/
http://www.vlfeat.org/~vedaldi/code/vlpovy.html

7. EXPERIMENTAL RESULTS

(a) Template image and ROI. (b) Final image of sequence.

Figure 7.1: Left: The template image used for reconstruction, with ROI marked in green. Right:
The last image of the sequence. Notice the significant self-occlusion of the cone.

The normalized cross-correlation between two vectors x,y is typically defined as(
x− 1n ·x
|x|

)T
·
(

y− 1n ·y
|y|

)
, (7.1)

where x,y denotes the mean value of vectors x,y, respectively. The range of normalized cross
correlation is typically between −1 and 1, where the value of 1 signifies maximum agreement
between the vectors, and −1 indicates that values are directly opposed to each other.

In our case, we skip the step of subtracting the mean, since only the scale of the reconstruc-
tion and the ground truth might differ, but there can be no additive offset between both. Thus,
we define the depth map correlation function as

CD(x,y) =
(

x
|x|

)T
·
(

y
|y|

)
. (7.2)

We skip the step of subtracting the mean before computing the dot product between vectors,
but we still normalize their scales. Note that since the depth values cannot become negative,
the range of similarity measures is between 0 and 1 for depth maps, where the value 1 is reached
in maximum agreement, when both vectors are equal up to scale.

Now we are ready to give an example of a situation where the NCC similarity behaves in an
undesired way. One of our synthetic testing cases is a sequence of images of a cone, with the
camera orbiting around the tip of the cone. As soon as the camera reaches a certain angle, a part
of the cone’s surface becomes occluded. Figure 7.1 visualizes the situation. The last four frames
of the sequence are affected by this occlusion. When using our reconstruction algorithm without
the sliding-window technique, it is very sensitive to such occlusions, generating significantly
corrupted depth maps. One example for this can be seen in Figure 7.2.

The NCC values for the reconstructed depth maps behave in a quite inconsistent way on
these results. From visual inspection of the reconstructed 3D model, it appears that the depth

118

7.1 Ground Truth Comparison Method

(a) Successful reconstruction. (b) Corrupted reconstruction.

Figure 7.2: The left picture shows a successful reconstruction result, and the right image shows
a corrupted result due to self-occlusion.

map corruption present in the last four frames of the sequence is roughly the same. It seems
that slightly more than half of the surface is still reconstructed successfully, while the rest is
strongly distorted. Since the occlusion becomes slightly larger during these four frames due to
the increasing angle, we would expect the reconstruction quality to reduce slightly for these
frames.

However, the NCC values show quite the contrary behaviour: In the frame just before the
occlusion happens, the NCC value is at 0.999996, which indicates virtually perfect alignment.
For the following frames, the values are 0.83, 0.87, 0.91 and 0.93, so the NCC values are
increasing, which would normally indicate an improvement of the depth map. Our registration-
based similarity measure gives an estimate of the percentage of the surface that could not be
reconstructed, and it produces the values 39.0%, 41.5%, 41.6%, 45% for said four frames, which
agrees with our reasoning that the reconstruction quality should decrease. Figure 7.3 shows the
error of the depth map for the last frame of the sequence.

Furthermore, as we are using splines as an inverse depth model, it is not possible to model
sharp peaks such as the tip of the cone. However, in the case of non-occlusion, the NCC value
still indicates a nearly perfect match of the whole depth map, which seems inadequate. Our
proposed similarity measure, however, correctly recognizes this discrepancy between ground
truth and the estimate, and estimates that 0.8% have not been reconstructed accurately. Fig-
ure 7.3 shows the per-pixel error assigned by our method. You can see there that the tip of the
cone is correctly recognized as outlier.

When analysing this observation, we quickly find that the problem is the normalization of
the depth map values involved in computing the NCC ratio. Figure 7.4 shows a schematic
example of the problem that the normalization causes. Since the depth map is corrupted, the
normalization is not able to bring the depth maps in significant overlap. Rather, the depth
maps overlap at parts that do not constitute a valid reconstruction result at all, which explains
the unexpected behaviour.

119

7. EXPERIMENTAL RESULTS

(a) Similarity values for distorted cone. (b) Similarity values for good cone result.

Figure 7.3: Example similarity measurement results, where red indicates high error, green low
error, and black areas indicate outlier values that are classified as unsuccessfully reconstructed.
The left image is based on a reconstruction using the last image of the cone sequence with heavy
occlusion, the right image is based on the non-occluded case.

7.1.1 Depth Map Registration Approach

In the following, let d ∈ Rn,d∗ ∈ Rn denote the estimated and ground truth depth maps in a
vectorized format, such that all n depth values are stacked on top of each other. Furthermore,
let ε ∈ R with ε > 1 denote a threshold tolerance parameter. For some scaling value s ∈ R,
we would then consider the values s ·di and d∗i to be in overlap if they are “similar enough”,
which we define mathematically as

MT(di,d∗i , s) =

1 if d∗i
ε < s ·di < d∗i · ε,

0 otherwise.
(7.3)

It is important to use a multiplicative threshold here, since the notion of matching depth values
must be independent of the scale of the ground truth depth map d. To see this, let us look at
the case of an additive threshold, where the matching function would be defined as

MA(di,d∗i , s) =

1 if |s ·di − d∗i | < ε,

0 otherwise.
(7.4)

If the scale of d∗ is changed, the inlier/outlier classification of the values of d may change, which
is undesirable. This is not the case for our function MT, where intuitively, larger discrepancies
are allowed for larger ground truth depth values. Furthermore, using a multiplicative threshold
takes into account that large depth values are more difficult to reconstruct accurately, and thus

120

7.1 Ground Truth Comparison Method

Ground Truth

Corrupted
Reconstruction

Normalization-Based
Approach

Registration-Based
Approach

Figure 7.4: An intuitive explanation for the bad performance of NCC: The normalization of both
depth map and estimate does not lead to a maximal overlap of both, in contrast to the registration-
based approach. The green lines indicate overlap, while the red lines indicate disagreement.

121

7. EXPERIMENTAL RESULTS

larger error values should be allowed for them.
The matching function MT can be reformulated into an equivalent form as follows:

MLT(di,d∗i , s) =

1 if | log(s)− log
(

d∗i
di

)
| < log(ε),

0 otherwise.
(7.5)

To find a value s that leads to a maximal agreement of depth map functions under the similarity
indicator function MLT, we minimize the objective function

OLT (s) = −
n∑
i=1

MLT(di,d∗i , s), (7.6)

which is simply the number of inliers generated by the scaling value s. To perform this mini-
mization, we use the approach proposed by Papazov and Burschka [79], which has been applied
with great success to the much more complicated problem of 3D point set registration. The
method also copes very well with our optimization objective.

However, as mentioned in the article by Papazov and Burschka, even better registration
results can be achieved by replacing the simple thresholding mechanism with a continuous
approximation. They propose to use the function (α+β · δ2)−1 as a smooth matching indicator,
where δ is the difference between the values to be matched. Applied to our threshold-based
matching function, this leads to the definition of a soft matching function as follows:

MLS(di,d∗i , s) =
[
α+ β ·

(
log(s)− log

(
d∗i
di

))2
]−1

. (7.7)

Replacing the matching function in the optimization objective above with this smooth function
generally leads to a higher quality of fit with a smaller residual error on the matched parts, so we
prefer this matching function over the simple threshold function. Some guidelines for choosing
the values α and β are given in the article by Papazov and Burschka. For our registration
method, we use the values ε = 1.02, β = 20−1

log(ε)2 , and α = 1.
Once the scale has been retrieved through optimization, we are able to compute the ratio

of outlier depth values to total depth values, which finally yields one scalar similarity measure
for depth maps. For this computation, we use the threshold-based matching function, because
interpretation of the soft matching values in such a sense is difficult.

Another interesting question is the quality of the reconstruction in those parts of the surface
that could be reconstructed at all. Again, we should use a scale-invariant measure here, and
thus associate the errors on a logarithmic scale, such that the error value calculated for some
entry di of the estimated depth map would be | log(s)− log

(
d∗i
di

)
|.

We have already shown two examples for error images created using these values in Fig-
ure 7.3, where green color signifies a low error value, red color signifies high error value, and
black areas denote estimation outliers, so the images aim to show both the reconstructed area
of a depth map and the reconstruction quality in that area. For computing a scalar measure of

122

7.2 Synthetic Datasets Used for our Evaluation

reconstruction quality for the reconstructed parts only, we will compute the root mean squared
error of the values | log(s)− log

(
d∗i
di

)
| for all i.

7.1.2 Rotation and Translation Similarity Measures

For comparing two rotations, there are several known similarity measures. The article by
Huynh [81] gives a good overview of the most commonly used ones, and also provides an
analysis of each of those rotation metrics. Among the six comparison measures analysed, there
is also one that operates on rotation quaternions, which is very convenient for us since our
implementation also works with rotation quaternions. Let q,q∗ denote the rotation estimate
and the ground truth rotation, respectively. Then, we adapt the metric described as Φ3 in the
article by Huynh, and define our rotation similarity measure as

CR(q,q∗) = arccos(|qT ·q∗|) · 2
π
. (7.8)

This similarity measure yields values in the range [0, 1], where 0 indicates maximum agreement.
For comparing translations, we have to deal with the same scale ambiguity as in the case of

the depth maps. The correct scale s, however, is determined through the depth map registration
process. Denoting with t our translational motion estimate and with t∗ the ground truth
motion, we can calculate an error relative to the average of the depth map as

CT(t, t∗) = s · t− t∗

d∗
, (7.9)

where d∗ denotes the average of the ground truth depth values. The values of the translation
comparison function will be greater or equal to 0, with 0 indicating minimal error.

7.2 Synthetic Datasets Used for our Evaluation

For evaluating our algorithms, we have set up an automated testing environment that generates
testing data and evaluates the reconstruction results for a set of combinations of scenes, camera
motion paths, textures, and lighting conditions. We have used five different synthetic scenes:

• The surface of a sphere. This has turned out to be a quite easy scenario for our algorithms,
mainly because a sphere surface can be easily approximated by a spline surface.

• A slanted plane. Again, this is can be modelled quite well using a spline surface.

• A cone that is viewed from above. The tip of the cone presents some difficulty to the
algorithms, since its first order derivative would be non-continuous, which is something
that cannot be modelled well using a spline.

• A plane with 4 bumps on its surface. The bumps are modelled as half-spheres. This
scenario is more difficult than the cone scenario, since the depth surface has a non-

123

7. EXPERIMENTAL RESULTS

continuous second-order derivative along the joining line between the half-spheres and
the plane.

• Finally, we emulate a setting similar to video-endoscopy with a scene containing a tube
that the camera is viewing downwards. This has turned out to be the most difficult
scenario for the algorithm, due to the large variations in depth and presence of a discon-
tinuity.

Snapshots of all the above scenes are shown in Figure 7.5.
As for camera motion, we have tried a number of different paths for the camera to follow:

• Linear motion in x-direction, with the camera looking at a fixed point close to the object
to be reconstructed.

• Spiralling motion in the x− y plane, with the camera looking at a fixed point.

• Linear zoom-out motion, where the camera moves backwards along z direction.

• A linear motion parallel to the viewing plane in x− y direction.

• As a special case for the tube scenario, there is a motion path that moves backward along
the tube. The motion is backwards to assure that as much of the reference image as
possible remains visible in the subsequent images.

Schematic views of all those motion paths are shown in Figure 7.6.
Finally, we have also tested the influence of the texturedness of the surfaces. To this end,

we have run tests with two different textures exhibiting medium and low texturedness. The
textures are shown in Figure 7.7.

Not all combinations of scenes and motion paths lead to meaningful scenarios. When com-
bining, e.g., the tube scenario with the spiralling motion path, the camera moves through the
boundary wall of the tube, such that a reconstruction becomes completely impossible at that
point. Thus, we only use the specialized tube following motion path in conjunction with the
tube scenario, and all other motion paths in combination with all other scenarios. Not counting
the tube scene, we have then 4 scenes to combine with 4 paths and 2 textures, which makes
all in all 32 scenarios. The tube scene is only combined with the two different texture choices,
yielding another 2 testing scenarios.

The data is evaluated as follows: We have defined several sets of parameter values in order
to systematically determine the influence of system parameters on reconstruction results. The
reconstruction algorithm is then run on all possible combinations of scenes, motion paths,
textures, and parameters, which generates a lot of data. We calculate the similarity of the
estimated quantities with the ground truth, using the comparison functions defined above. If
nothing else is mentioned, we use an empirically determined baseline set of parameters which
worked well in most cases. Those parameters are:

• The spline order is 2 in both directions, so we are using a bi-quadratic spline.

124

7.2 Synthetic Datasets Used for our Evaluation

Figure 7.5: An overview of our rendered scenes, along with associated inverse depth maps. From
top to bottom: A sphere, a slanted plane, a cone viewed from above such that its tip is in the
image center, a plane with four half spheres attached, and a tube.

125

7. EXPERIMENTAL RESULTS

Axis of
Rotation

Camera
Motion

Viewing
Direction

(a) Linear motion, camera faces
static point

Camera
Motion

Viewing
Direction

(b) Spiralling motion, camera
faces static point

Camera
MotionViewing

Direction

(c) Linear motion, constant view-
ing direction

Camera
Motion Viewing

Direction

(d) Camera Zooming out, viewing
direction constant

Camera
Motion

Viewing
Direction

(e) Tube-following motion

Figure 7.6: Schematic overview of different motion paths used in our evaluation. Note that these
plots are not accurate, but are only intended to illustrate the different motion types.

126

7.2 Synthetic Datasets Used for our Evaluation

Figure 7.7: The two different types of textures used in our experiments: A soft, diffuse cloud-like
pattern, and a more structured, granite-like one.

• The number of control points is 8 in both directions.

• The sliding window buffer size is 3.

• The regularization multiplier is 0.01.

We have tested the behaviour of the system under the following changes of the baseline
parameter set:

• Different window sizes: No sliding window, and window sizes 2 up to 4.

• Regularization multiplier: The influence of different regularization weights was tested for
values 0, 0.001, 0.01, 0.1, 0.2, 0.5, and 1.

• Spline resolution: The number of control points used in the spline surface model affects
the level of detail that can be achieved using that model. We have tested 6, 7, 8, 9, 10,
and 11 control points.

All in all, this amounts to testing 4 + 7 + 6 = 17 parameter sets in combination with the
34 different scenarios we have described above, amounting to 578 test scenario runs all in all.
There have been additional, separate evaluation runs for empirically analysing the sensitivity
of the algorithm to different amounts of motion.

We want to analyse the expected behaviour of the algorithms under certain settings, and to
do this, we proceed as follows:

1. For the parameter we are interested in, say a certain setting of the regularization multi-
plier, we evaluate the performance of the algorithm for each of the 34 test scenarios. We
determine the associated average performance values that have been achieved for depth
map similarity, motion similarity, and rotation similarity each. If the parameter settings
can be ordered in a sequential manner, we can analyse the behaviour of the algorithm by
plotting said evaluation results sequentially.

127

7. EXPERIMENTAL RESULTS

2. Sometimes, it is more informative to look at the progression of the reconstruction per-
formance values over time. This is the case, e.g., when examining the performance of
the algorithm on different scenes, because there is no clear ordering on the scenes, as op-
posed to, e.g., the regularization multiplier or the spline resolution. To obtain information
about the expected behaviour, we group the values per frame, so that we can calculate
the average performance of the system per frame for a specific setting.

The graphs display the depth map, rotation, and angular comparison values as defined above,
and we use the colors red, green, and blue, respectively. An example for the first kind de-
scribed above can be seen in Figure 7.15, which shows the overall reconstruction performance
for different regularization settings. An example for the second kind of plot can be seen in
Figure 7.14. These plots show the development of the estimates over time, where the plots on
the left show the worst case performance achieved by the system, while the plots on the right
show the median performance ratings for each frame of the specified sequence.

7.3 Static Lighting Conditions

We will start our evaluation with the most simple case, which is the case of static lighting.
Our evaluation will discuss several different aspects that influence the reconstruction and mo-
tion estimation quality. Furthermore, we have run some experiments on a publicly available
benchmarking data set, and we will show the results here. Finally, we will also present some
reconstruction results on real data whose quality can be evaluated only through visual inspec-
tion.

7.3.1 Importance of Adequate Initialization

Intuitively, we would expect the system to be a lot more robust against large motions once
it has been initialized properly. This is because the distance between the parameter sets that
explain measurements for successive images are much smaller if the surface parameters have
already been computed correctly, and it is easier for the optimization algorithm to find a way
from one parameter set to the other. We have verified this conjecture using a specialized data
set that uses a motion path that uses two different movement speeds. This allows us to choose
the movement speed for the initialization frames and the other frames independently.

For this experiment, we have again used the cone scene. The movement path was a special
movement path where the camera moves along a Lissajous curve with x = 2 · sin(2 · t), y =
sin(3 · t). Figure 7.8 visualizes the camera motion. The speed of camera motion for the initial-
ization frames was varied from very small to very high. The speed for the other frames was
chosen constant, but high enough that the system would not be able to initialize from these
images. To quantify the amount of camera motion, we specify the ratio |t|

d∗max
of the translation

baseline magnitude in relation to the maximum value d∗max of the vectorized depth map d∗.
We will call this measure the normalized baseline.

128

7.3 Static Lighting Conditions

Figure 7.8: The motion path used for our test of the importance of proper initialization. The
red line denotes the motion curve of the tip of the cone.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.0375 0.038 0.0385 0.039 0.0395 0.04 0.0405 0.041 0.0415

A
ve

ra
ge

 E
rr

or

Average Normalized Baseline

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.0375 0.038 0.0385 0.039 0.0395 0.04 0.0405 0.041 0.0415

B
es

t C
as

e
E

rr
or

Average Normalized Baseline

Figure 7.9: Evaluation results for different average normalized baseline values. The left plot
shows the average performance of the reconstruction algorithm for the 20-image sequence against
the ground truth average normalized baseline in the first three frames, the right plot shows the
best case similarity obtained.

The algorithm has shown the following behaviour: For smaller initial motion, it was able to
initialize properly, as well as track the subsequent images exhibiting very fast object movement.
For a larger amount of initial camera motion, the system was not able to initialize properly from
the first few frames, and the fast movement after the initialization frames prevented the system
from recovering from the bad initial reconstruction. Figure 7.9 shows the average performance
of the algorithm against the average normalized baseline for the initialization frames.

The plots show that while an increase in the baseline leads to a better average performance
at first, having a baseline that is too large leads to unrecoverable problems. As seen in the best
case plot, which shows the best reconstruction similarity values achieved during the whole 20
frame sequence, the performance is really bad as soon as the average baseline exceeds a certain
value. This is caused by the inability of the algorithm to initialize properly from the first few
images, and it is subsequently not able to recover due to the quick motion of the camera.

129

7. EXPERIMENTAL RESULTS

7.3.2 Sensitivity of the Initialization to Motion

One of the most important steps in our system is the initialization of the depth map. We
have seen in the previous section that without a proper initialization, the algorithm can get
lost in a local minimum easily and it might not be able to recover. In this section, we will try
to answer the question of which motion paths and motion speeds are likely to lead to a good
initialization. To quantify the amount of motion in a scale-independent way, we again use the
normalized baseline as introduced above.

For this test, we consider the slanted plane, sphere, cone, and plane with bumps scenarios,
in combination with the paths (a)-(d) shown in Figure 7.6. The tube scenario is left out because
it is an especially difficult case that shall be discussed separately.

We have evaluated the initialization performance achieved when using the mentioned paths
at different speeds, computing our similarity measures for the first three images of the se-
quence after the initialization. Our first will be on focused on the performance of the different
motion paths using different motion speeds. Figures 7.10 and 7.11 show plots of the average
reconstruction accuracy against the normalized baseline.

There are several things that we want to show with this experiment:

• Certain types of motion are more suitable for initialization than others.

• The normalized baseline between frames must neither be too small nor too large.

• Initialization is “easier” when the initial surface model is close to the actual model.

As for the most suitable type of motion, the plots clearly indicate that the two paths (a)
and (b), which combine translational and rotational motion, perform best, while paths (c)
and (d) that consist of purely translational motion consistently perform worse. This observation
can be explained by noting that the camera facing a constant point in the scene leads to a bigger
overlap of surface regions in consecutive images, while at the same time allowing a large baseline
without the ROI leaving the image region. The initial overlap helps the algorithm to correctly
align the rest of the image, while the comparatively large baseline makes the determination of
depths easier. The bad performance of the zoom-out motion can be explained by observing
that the camera moves away from the surface, which has the effect that the depth resolution
quickly gets worse.

Finally, we can see that the initialization of the system performs better when the initial
surface model, which is a plane parallel to the camera plane, is close to the ground truth model.
The initial model is a plane at distance 1, which means that the initial model does not need to
be modified much for the slanted plane and plane with bumps scenarios. For the slanted plane
scenario, it is only necessary to rotate the initially estimated plane slightly, and in the plane
with bumps scenario, the initial guess is already perfect except for the bumps. The plots show
that the error values are very good already for a small normalized baseline. For the sphere
and cone scenarios, this is not the case, and larger motion is required to achieve an accurate
reconstruction.

130

7.3 Static Lighting Conditions

Slanted Plane Scenario

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.001 0.01 0.1 1 10 100

R
ec

on
st

ru
ct

io
n

E
rr

or

Average Normalized Baseline

Path (a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.001 0.01 0.1 1 10 100 1000

R
ec

on
st

ru
ct

io
n

E
rr

or

Average Normalized Baseline

Path (b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.001 0.01 0.1 1 10 100

R
ec

on
st

ru
ct

io
n

E
rr

or

Average Normalized Baseline

Path (c)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.001 0.01 0.1 1 10 100 1000

R
ec

on
st

ru
ct

io
n

E
rr

or

Average Normalized Baseline

Path (d)

Sphere Scenario

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.001 0.01 0.1 1 10 100

R
ec

on
st

ru
ct

io
n

E
rr

or

Average Normalized Baseline

Path (a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.001 0.01 0.1 1 10 100 1000

R
ec

on
st

ru
ct

io
n

E
rr

or

Average Normalized Baseline

Path (b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.001 0.01 0.1 1 10 100

R
ec

on
st

ru
ct

io
n

E
rr

or

Average Normalized Baseline

Path (c)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.001 0.01 0.1 1 10 100 1000

R
ec

on
st

ru
ct

io
n

E
rr

or

Average Normalized Baseline

Path (d)

Figure 7.10: Initialization results for all four movement paths on the slanted plane and sphere
scenarios, where different motion speeds have been used. All plots show the average reconstruction
accuracy against the average normalized baseline during the first 5 frames on a logarithmic scale.

131

7. EXPERIMENTAL RESULTS

Cone Scenario

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.001 0.01 0.1 1 10 100

R
ec

on
st

ru
ct

io
n

E
rr

or

Average Normalized Baseline

Path (a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.001 0.01 0.1 1 10 100 1000

R
ec

on
st

ru
ct

io
n

E
rr

or
Average Normalized Baseline

Path (b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.001 0.01 0.1 1 10 100

R
ec

on
st

ru
ct

io
n

E
rr

or

Average Normalized Baseline

Path (c)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.001 0.01 0.1 1 10 100

R
ec

on
st

ru
ct

io
n

E
rr

or

Average Normalized Baseline

Path (d)

Plane with Bumps Scenario

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.001 0.01 0.1 1 10 100

R
ec

on
st

ru
ct

io
n

E
rr

or

Average Normalized Baseline

Path (a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.001 0.01 0.1 1 10 100 1000

R
ec

on
st

ru
ct

io
n

E
rr

or

Average Normalized Baseline

Path (b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.001 0.01 0.1 1 10 100

R
ec

on
st

ru
ct

io
n

E
rr

or

Average Normalized Baseline

Path (c)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.001 0.01 0.1 1 10 100 1000

R
ec

on
st

ru
ct

io
n

E
rr

or

Average Normalized Baseline

Path (d)

Figure 7.11: Initialization results for all four movement paths on the cone and plane with bumps
scenarios, where different motion speeds have been used. All plots show the average reconstruction
accuracy against the average normalized baseline during the first 5 frames on a logarithmic scale.

132

7.3 Static Lighting Conditions

(a) Ground truth ROI depth map for cone scenario. (b) Reconstructed depth map.

(c) Successful cone reconstruction. (d) Reverse reconstruction.

Figure 7.12: Some reconstruction results showing the reverse depth map phenomenon for the
synthetic cone dataset. Note that the reconstructed surfaces are shown from approximately the
same camera position.

7.3.2.1 Ambiguous Configurations

During our experiments, we have found another class of motions that lead to undesirable be-
haviour. This is the class of motions that perform pure rotations and no additional translations.
We have tested variants of both paths (a) and (b) that were pure rotations about the look-at
point. The performance of the algorithm under this class of motion was highly unstable, some-
times leading to a good reconstruction, but almost equally often leading to a surface model that
resembles a stretched mirror image of the actual depth map. Figure 7.12 shows an example for
this phenomenon on our synthetic data.

We are not sure about the reason for these singularities. It is known that there exist some
configurations [82] that are critical for euclidean multi-view reconstruction, and do not admit
a unique solution. However, considering the appearance of these reversed reconstructions, it
seems unlikely that our testing cases belong to this class. A different class of ambiguities for
euclidean structure-from-motion problems has been described by Oliensis [83]. The author

133

7. EXPERIMENTAL RESULTS

(a) Successful face reconstruction. (b) Reversed reconstruction result.

(c) Reversed reconstruction, front view, camera
moved slightly to the left.

(d) Reversed reconstruction, front view, camera
moved slightly to the right.

Figure 7.13: Face reconstruction results, showing a comparison between successful and reversed
reconstructions.

describes the reconstructions as resembling inverse perspective images, which seems to fit our
observations well. This makes it seem quite likely that this is the ambiguity that our algorithm
encounters. However, a thorough analysis of this situation has yet to be done.

The described problem of reversed depth maps is encountered very rarely on real camera
images. One example is shown in Figure 7.13, showing the result of a face reconstruction from
two sequences with different camera motion. The surfaces shown in the top two images are
viewed from different camera positions, in order to better highlight the distortion of the model.
The bottom images show what the inverted model would look like under small translation from
the camera’s reference position. Note that the camera motion is exactly the inverse of what one
would expect. These images show that the reverse depth map is actually a good approximation
to the actual images for small camera displacements.

134

7.3 Static Lighting Conditions

7.3.3 Importance of Window Size

One of the main contributions of this work is the transferral of the sliding-window technique to
the domain of intensity-based algorithms. Thus, this benchmark is of special importance to us.
The results are shown in Figure 7.14 for the window sizes 1 up to 4. From looking at the plots,
it is apparent that the reconstruction results are consistently better for increasing window sizes,
both in the worst case and on average.

Note that the algorithm tends to diverge towards the end of some sequences, as seen in
the upper left plot and the one below. This phenomenon is due to partial self-occlusion in the
cone and sphere scenarios when paths (a) and (b) are used. The disastrous effect that such a
self-occlusion can have on the reconstruction has already been shown in Figures 7.2 and 7.3.
For window sizes 3 and 4, however, the robustness of the algorithm against this occlusion is
improved significantly. The corresponding plots show almost no increase of the reconstruction
error for the last couple of frames.

Furthermore, it is apparent that the overall reconstruction quality is also improved by using
a bigger window size. Very good results are achieved for window sizes 3 and 4. The difference
in quality between window sizes 3 and 4 is marginal, which is why we have settled for a window
size of 3 as baseline for our tests due to its lower computational complexity.

7.3.4 Influence of Regularization

The usage of spline surfaces in our algorithm already provides some inherent regularization
for surface points that are close to each other. If there are large homogeneous regions in the
image, this local regularization will not suffice, and additional regularization can be helpful. We
have described our implementation of a regularization term in Section 5.8, and now we want to
determine the multiplier that should be used for the regularization term.

We have run all of our test cases for the regularization multipliers 0, 0.001, 0.01, 0.1, 0.2, 0.5, 1,
and the results are shown in Figure 7.15. We show both the failure rates and the average
reconstruction accuracy achieved. A reconstruction run is classified as failure if the best re-
construction quality achieved is below 50%, or if the initialization completely fails. To assure
comparability of the results used in the reconstruction quality evaluation, we consider only
scenarios that have not been classified as failure for any regularization parameter setting.

The plots show that the failure rates are lowest for the multiplier values between 0 and 0.2,
while they rise significantly for higher multiplier values. The quality plot, on the other hand,
reveals that the reconstruction quality reaches the best value for the third parameter setting,
which corresponds to a multiplier of 0.1. Overall, it seems that a regularization multiplier of
0.1 performs best with respect to the achieved quality as well as failure rates.

7.3.5 Effect of Spline Resolution

Another parameter of our system is the number of control points used to determine the shape
of the reconstructed surface. With an increasing number of spline control points, we are able

135

7. EXPERIMENTAL RESULTS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16 18

W
or

st
 R

ec
on

st
ru

ct
io

n
E

rr
or

Frame Number

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 2 4 6 8 10 12 14 16 18

A
ve

ra
ge

 R
ec

on
st

ru
ct

io
n

E
rr

or
Frame Number

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16 18

W
or

st
 R

ec
on

st
ru

ct
io

n
E

rr
or

Frame Number

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 2 4 6 8 10 12 14 16 18

A
ve

ra
ge

 R
ec

on
st

ru
ct

io
n

E
rr

or

Frame Number

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16

W
or

st
 R

ec
on

st
ru

ct
io

n
E

rr
or

Frame Number

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 2 4 6 8 10 12 14 16

A
ve

ra
ge

 R
ec

on
st

ru
ct

io
n

E
rr

or

Frame Number

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16

W
or

st
 R

ec
on

st
ru

ct
io

n
E

rr
or

Frame Number

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 2 4 6 8 10 12 14 16

A
ve

ra
ge

 R
ec

on
st

ru
ct

io
n

E
rr

or

Frame Number

Figure 7.14: Evaluation results for different sliding window sizes. The plots on the left and the
right show the worst and average performance values over time, respectively. From top to bottom,
the results are obtained using sliding window sizes 1 to 4. The window size of 1 corresponds to
no sliding window at all.

136

7.3 Static Lighting Conditions

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6

A
ve

ra
ge

 R
ec

on
st

ru
ct

io
n

E
rr

or

Parameter Set Index

Failure Rate

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6

A
ve

ra
ge

 R
ec

on
st

ru
ct

io
n

E
rr

or

Parameter Set Index

Figure 7.15: Evaluation results for different regularization multipliers. The plot on the left
shows the failure rates associated with different regularization multipliers. On the right, the av-
erage reconstruction error achieved by different parameter settings is shown. The x axis rep-
resents different parameter settings 0 − 6, which correspond to the regularization multipliers
0, 0.001, 0.01, 0.1, 0.2, 0.5, 1.

to model the surfaces at higher detail. On the other hand, the additional degrees of freedom
make the parameter estimation problem more difficult. The behaviour we would expect from
the system is as follows:

• For a small number of control points, the reconstruction accuracy should be worse, because
small details cannot be modelled well. On the other hand, when data is ambiguous due
to large homogeneous regions, lowering the number of control points can help to retrieve
better reconstructions, because this increases the effect of the regularization inherent to
spline surfaces.

• When increasing the number of control points, the reconstruction quality should increase.
However, a higher number of control points also means that the surface has more degrees
of freedom for deformation, and this can lead to undesired over-fitting.

We have tested our synthetic data sets with spline resolution parameters 6 up to 11, and the
results are shown in Figure 7.16. We can see that the influence of the spline resolution is
surprisingly small. Looking closely at the plots, it seems that spline resolutions 9 × 9 and
11× 11 yielded the best results, even though the improvement is not substantial.

This is most likely the result of the scenes that have been used for this evaluation. Most of
them can already be modelled well with a low spline resolution. The only scene that has some
smaller details is the plane with bumps scene, and here, the differences between reconstruction
results are also most pronounced. Also, the tube scenario did benefit slightly from an increased
spline resolution. See Figures 7.17 and 7.18 for reconstruction results under different spline
resolutions.

The reconstruction results for the plane with bumps scenario shows that for a very low
spline resolution 6 × 6, the surface is reconstructed as an almost perfect plane. This is visible
from the error map, which shows that the bumps are completely ignored by the algorithm for

137

7. EXPERIMENTAL RESULTS

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 2 4 6 8 10 12 14 16

A
ve

ra
ge

 R
ec

on
st

ru
ct

io
n

E
rr

or

Frame Number

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 2 4 6 8 10 12 14 16

A
ve

ra
ge

 R
ec

on
st

ru
ct

io
n

E
rr

or

Frame Number

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 2 4 6 8 10 12 14 16

A
ve

ra
ge

 R
ec

on
st

ru
ct

io
n

E
rr

or

Frame Number

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 2 4 6 8 10 12 14 16

A
ve

ra
ge

 R
ec

on
st

ru
ct

io
n

E
rr

or

Frame Number

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 2 4 6 8 10 12 14 16

A
ve

ra
ge

 R
ec

on
st

ru
ct

io
n

E
rr

or

Frame Number

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 2 4 6 8 10 12 14 16

A
ve

ra
ge

 R
ec

on
st

ru
ct

io
n

E
rr

or

Frame Number

Figure 7.16: Evaluation results for different spline resolutions. The plots show the average error
per frame for all test cases. From top left to bottom right, the spline resolution increases from
6 × 6 up to 11 × 11.

138

7.3 Static Lighting Conditions

(a) Ground truth depth map. (b) Reconstructed depth map, reso-
lution 8 × 8.

(c) Reconstructed depth map, reso-
lution 11 × 11.

(d) Reconstructed surface for 11×11
resolution.

(e) Error map, resolution 8 × 8. (f) Error map, resolution 11 × 11.

Figure 7.17: Tube reconstruction results for different spline resolutions.

this spline resolution, but the plane is reconstructed well. For the higher 11×11 resolution, the
reconstructed surface now contains the bumps, but there are also artefacts at their borders.

These artefacts are due to the inability of splines to model surfaces with discontinuities in
their first derivative. Thus, we see that the increased detail level accounts only for a slight
improvement in quality. Our similarity measure gave an error measure of 9.1% for the 6 × 6
resolution result, and 5.9% error for the 11× 11 result, which is a rather minor improvement.

For the tube sequence, the improvement at a higher spline resolution is even smaller. For a
resolution of 11× 11, the tube was reconstructed with an error of 16.7%, while the result for a
resolution of 8 × 8 was 19.1%. From inspecting the reconstructed surface, it is apparent that
the algorithm did a good job for reconstructing the tube walls close to the camera, but was not
successful in determining the depths for the parts of the tube that are further away.

7.3.6 Behaviour for Medium and Weak Textures

Even though our algorithm can deal quite well with weakly textures surfaces, a higher degree
of texturedness does improve the reconstruction results slightly. We have already shown the
textures that are used in our evaluation in Figure 7.7. The cloud-like texture does provide
considerably less structure than the granite-like one, so we would expect better results when
using the granite texture.

139

7. EXPERIMENTAL RESULTS

(a) Ground truth depth map. (b) Reconstructed depth map, reso-
lution 6 × 6.

(c) Reconstructed depth map, reso-
lution 11 × 11.

(d) Reconstructed surface for 11×11
resolution.

(e) Error map, resolution 6 × 6. (f) Error map, resolution 11 × 11.

Figure 7.18: Plane with bumps reconstruction results for different spline resolutions.

Figure 7.19 shows the average reconstruction errors for both texture types. And indeed,
the system behaves according to our expectation: The reconstruction results are consistently
better for the granite texture, even though not by a large margin. This shows that while the
system can cope well with weakly textured surfaces, stronger texturedness does help.

7.3.7 The Tube Scenario

As we have mentioned earlier, the tube scenario is an especially difficult scenario to reconstruct.
This can be explained as follows:

• As we have seen, B-splines already have trouble modelling surfaces whose first-order
derivative is non-continuous, leading to such artefacts as shown in Figure 7.18. The
tube scenario, however, is even more difficult, because its depth map is itself already
non-continuous.

• As we have mentioned, the initial surface model is a plane that is parallel to the camera
plane. This surface shape, however, is very far away from that describing a tube in
parameter space. This makes it especially difficult for the optimization algorithm to
converge towards a usable approximation to the tube shape.

Despite these difficulties, we were able to successfully reconstruct the tube, but the success
rate was only about 50% across all different parameter settings. Furthermore, we experimented

140

7.3 Static Lighting Conditions

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 2 4 6 8 10 12 14 16

A
ve

ra
ge

 R
ec

on
st

ru
ct

io
n

E
rr

or

Frame Number

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 2 4 6 8 10 12 14 16

A
ve

ra
ge

 R
ec

on
st

ru
ct

io
n

E
rr

or

Frame Number

Figure 7.19: Evaluation results for different texture types. The plots on the left and the right
show the average reconstruction performance when using the cloud-like texture and the granite-like
texture, respectively.

a long time with different camera motions, and we found the tube-following motion moving
backwards through the tube to performed quite well. This is a bit surprising, given that this
kind of motion is very similar to the zoom-out camera motion which has been shown to perform
rather suboptimal for the other scenarios.

Some reconstruction results have already been shown in the discussion on spline resolution
in Section 7.3.5, see Figure 7.17. Figure 7.20 shows the best and worst reconstruction results
that can be expected from our algorithm.

It can be seen that the algorithm is able to reconstruct the parts that are close to the
reference camera quite accurately, but has trouble retrieving the correct depths for parts of the
tube that are far away. From visual inspection, the difference between both reconstructions is
quite difficult to see. However, the error map shows that the main difference is the reconstruction
quality in the vicinity of the reference camera.

These observations show that the reconstruction of tube-like structures is indeed possible
using our system, even though such reconstructions are difficult and have some accuracy prob-
lems for parts of the depth map that are far away. It would probably be possible to drastically
improve the performance of the algorithm by initializing the system properly. Furthermore,
there are probably other depth map models than B-spline surfaces that could be better suited
for representing tube-like structures. Exploring such improvements is one of our topics for
future work.

7.3.8 Results on Independent Benchmarks

To our knowledge, there are no proper benchmarks for such direct structure-from-motion algo-
rithms as proposed in this work. Lieberknecht et al. [84] have, however, developed a benchmark
for planar tracking algorithms. We have run our constant-light reconstruction algorithm on two
of their data sets, making only one minor change to our reconstruction algorithm, namely the
usage of a purely planar surface model.

The datasets we have used for this evaluation are the “bump sign” and “stop sign” sequences,

141

7. EXPERIMENTAL RESULTS

Figure 7.20: Tube scenario reconstruction results.

142

7.3 Static Lighting Conditions

which are classified as weakly textured scenarios in the benchmark. We have also restricted our
tests to the “angle” sequences in both cases, because these are the only sequences where the
tracking target stays within the image. We have not yet taken measures to make the algorithm
robust against parts of the ROI leaving the image, so our algorithm is at an disadvantage
here. This is the main reason why we have only verified our algorithm with the two mentioned
datasets.

The benchmark expects as input the 2D pixel coordinates of four reference pixels that should
be tracked by the algorithm, and it evaluates the accuracy of the tracking result by computing
the root mean squared error for the coordinates of these four pixels. Frames where this mean
squared error is below 10 pixels are counted as successfully tracked, and another RMS value
is computed based only on these successfully tracked images. The evaluation results for both
mentioned datasets are shown in Figure 7.21.

The results show that, with tracking success rates of 80.4% and 99.8% and average pixel
RMS errors of 3.13 and 3.0, our algorithm performs better than any of the feature-based track-
ing methods evaluated by Lieberknecht et al. in their original paper. Three feature-based
tracking methods have been tested, using the FERNS [85], SURF [11] and SIFT [10] feature
detection and matching methods, and the performance of all these algorithms is consistently be-
low 50%, supporting our conjecture that intensity-based methods are better suited for tracking
and reconstructing sparsely textured scenes.

The only algorithm that performs better than ours is the ESM [86] algorithm, which is also
a direct method. This is, however, not very surprising, since the ESM algorithm specializes
in tracking of pre-specified planar targets. In other words, the ESM algorithm already knows
what the planar tracking template looks like, and merely has to find it in the image.

Our method, on the other hand, performs a simultaneous reconstruction while tracking the
ROI, which is more difficult. It does not know what the planar template looks like at the
beginning, but it determines the template on the fly while tracking. All in all, the benchmark
results show that our algorithm is well capable of tracking and reconstructing real-world planar
scenes that exhibit only low texturedness.

7.3.9 Non-Verified Reconstruction Results

Finally, we would like to present some results of reconstruction on real-world images where we
do not have any ground truth to compare to. The only way to verify these results is by visual
inspection. Figure 7.22 shows the reconstruction results for a cup that has been covered by a
piece of white cloth. As can be seen from the images, the scene exhibits very little texture.
Still, the reconstruction seems to be accurate, since the shape of the cup under the cloth is
clearly recognizable.

Furthermore, we present two more face reconstruction results in Figure 7.24. These recon-
structions have been performed using 11 × 11 spline control points, and a sliding window size
of 4. The results are quite good, but especially from the profile views it is apparent that the
spline surfaces offer only limited modelling accuracy. However, generating high-detail models

143

7. EXPERIMENTAL RESULTS

(a) Benchmark results for bump sequence. (b) Benchmark results for stop sign sequence.

Figure 7.21: Tracking results for the planar tracking benchmark.

(a) Cup under cloth template image. (b) Reconstruction result. (c) Different view of result.

Figure 7.22: Reconstruction results for a cup that has been placed under a white piece of cloth.

144

7.4 Camera-Centered Light Source

(a) Template image. (b) Reconstruction at ∼ 45◦ angle. (c) Profile view of reconstruction.

Figure 7.23: Face reconstruction example.

(a) Template image. (b) Reconstruction at ∼ 45◦ angle. (c) Profile view of reconstruction.

Figure 7.24: Another face reconstruction example. Note that there is an outlier that is caused
by a depth discontinuity in the ROI.

of the environment is not the main focus of our algorithm, our intent is instead to facilitate
reconstruction under difficult situations.

7.4 Camera-Centered Light Source

For evaluating the illumination-modelling reconstruction algorithm that assumes a light source
at the camera position, we are again relying mainly on synthetic data sets, where ground truth
is available. We are using the same scenarios as in the case of constant light. Generally,
we have found the light-modelling algorithm’s performance to be very similar to that of the
constant-light algorithm. There were, however, also some differences:

• We have claimed that the changing illumination actually helps to improve the recon-
struction results of our algorithm, since the changing pixel intensities actually contribute
additional information about the shape that is being observed. This is reflected in the
reconstruction accuracy.

• However, the initialization is more difficult than that of the constant-light algorithm.
This can be explained by observing that the intensity-warping function used to explain
the intensity changes introduces even more non-linearity into the non-convex optimization
problem, so it can be hard for the algorithm to find its way to a correct minimum.

145

7. EXPERIMENTAL RESULTS

 0

 0.05

 0.1

 0.15

 0.2

 0 2 4 6 8 10 12 14 16

A
ve

ra
ge

 R
ec

on
st

ru
ct

io
n

E
rr

or

Frame Number

 0

 0.05

 0.1

 0.15

 0.2

 0 2 4 6 8 10 12 14 16

A
ve

ra
ge

 R
ec

on
st

ru
ct

io
n

E
rr

or

Frame Number

Figure 7.25: Per-frame average performance results for the static lighting case on the left and
for the camera-centred lighting case on the right.

The plots in Figure 7.25 show that the reconstruction quality of the light-modelling algo-
rithm is indeed slightly better than that of the static-light algorithm for the major part of the
frames. However, it can also be seen that the decline in quality over last couple of frames is
higher than in the constant light case. It seems that the partial occlusions that appear at the
end of some of the synthetic sequences are more problematic for the light-modelling algorithm
than for the simple constant-light algorithm.

We have also performed the benchmark for suitable initialization motions and speeds that
has been performed for the static light algorithm in Section 7.3.2. According to our expectation,
the initialization of the illumination-modelling algorithm is much more difficult than that of
the static-light algorithm. We have prepared some plots showing the relation between baseline
and motion types and initialization accuracy in Figures 7.26 and 7.27. We can see that the
algorithm is much more sensitive to the initial baseline. For example, the paths (a) and (b)
produced very good results when using the static-light algorithm, but in this case, we can see
that the initialization fails quickly if the baseline becomes too big. Also, the results for some
of the other movement paths look drastically worse.

Furthermore, for the tube scenario, it was not possible to initialize the system at all unless
the initialization described in Section 3.3, Equation (3.12) was used. This shows that, as
expected, the initialization of the system is made considerably more difficult because of the
additional non-linearity introduced through the intensity warping function.

However, it is also striking that the initialization results for small baselines, where successful,
are very good, and mostly better than the corresponding results in the constant-light case.
This is another observation that supports our claim that the changing image intensity values
can contribute additional information to the system, leading to a better overall reconstruction
quality.

7.4.1 Non-Verified Reconstruction Results

The reconstruction of real-world images using the illumination modelling approach has turned
out to be much more difficult than for constant-light images. The main reason is that our

146

7.4 Camera-Centered Light Source

Slanted Plane Scenario

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0.001 0.01 0.1 1

R
ec

on
st

ru
ct

io
n

E
rr

or

Average Normalized Baseline

Path (a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0.001 0.01 0.1 1

R
ec

on
st

ru
ct

io
n

E
rr

or

Average Normalized Baseline

Path (b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0.001 0.01 0.1

R
ec

on
st

ru
ct

io
n

E
rr

or

Average Normalized Baseline

Path (c)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0.001 0.01 0.1 1

R
ec

on
st

ru
ct

io
n

E
rr

or

Average Normalized Baseline

Path (d)

Sphere Scenario

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0.01 0.1 1

R
ec

on
st

ru
ct

io
n

E
rr

or

Average Normalized Baseline

Path (a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0.01 0.1 1

R
ec

on
st

ru
ct

io
n

E
rr

or

Average Normalized Baseline

Path (b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0.001 0.01 0.1

R
ec

on
st

ru
ct

io
n

E
rr

or

Average Normalized Baseline

Path (c)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0.001 0.01 0.1 1

R
ec

on
st

ru
ct

io
n

E
rr

or

Average Normalized Baseline

Path (d)

Figure 7.26: Initialization results for all four movement paths on the slanted plane and sphere
scenarios when using the light source modelling algorithm. All plots show the average reconstruc-
tion accuracy against the average normalized baseline during the first 5 frames on a logarithmic
scale.

147

7. EXPERIMENTAL RESULTS

Cone Scenario

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0.001 0.01 0.1 1

R
ec

on
st

ru
ct

io
n

E
rr

or

Average Normalized Baseline

Path (a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0.001 0.01 0.1 1

R
ec

on
st

ru
ct

io
n

E
rr

or
Average Normalized Baseline

Path (b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0.001 0.01 0.1

R
ec

on
st

ru
ct

io
n

E
rr

or

Average Normalized Baseline

Path (c)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0.001 0.01 0.1 1

R
ec

on
st

ru
ct

io
n

E
rr

or

Average Normalized Baseline

Path (d)

Plane with Bumps Scenario

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0.01 0.1 1

R
ec

on
st

ru
ct

io
n

E
rr

or

Average Normalized Baseline

Path (a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0.01 0.1 1

R
ec

on
st

ru
ct

io
n

E
rr

or

Average Normalized Baseline

Path (b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0.001 0.01 0.1

R
ec

on
st

ru
ct

io
n

E
rr

or

Average Normalized Baseline

Path (c)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0.001 0.01 0.1 1

R
ec

on
st

ru
ct

io
n

E
rr

or

Average Normalized Baseline

Path (d)

Figure 7.27: Initialization results for all four movement paths on the cone and plane with
bumps scenarios when using the light source modelling algorithm. All plots show the average
reconstruction accuracy against the average normalized baseline during the first 5 frames on a
logarithmic scale.

148

7.4 Camera-Centered Light Source

algorithm is quite sensitive to sub-optimal photometric characteristics of the employed system.
We have only had the chance to work with images that were not photometrically rectified,
so that vignetting and a non-linear camera response could not be removed from the images.
Furthermore, as we have described above, reconstruction results may be affected considerably
by a non-zero displacement between the camera and the light source.

Nevertheless, we present here two reconstruction results obtained from video-endoscopic
images, shown in Figure 7.28. The first result is a reconstruction of a rolled-up newspaper,
and the other image shows a reconstruction of an airway. For comparison, we also show the
reconstruction of a nearly “perfect” circular tube from synthetic data, which has been evaluated
as showing an error of ∼ 24% by our comparison method. The reconstruction is accurate for
the opening area of the tube, and is only inaccurate for the part of the tube that is far away.

It is apparent that the reconstruction quality is not quite optimal for the real-world images,
however the newspaper reconstruction came out lot better than the airway reconstruction. The
rolled-up newspaper result shows one large outlier corresponding to one corner of the ROI.
Apart from that, the reconstruction seems quite close to the reconstruction of the synthetic
tube.

For the airway result, we can only say that the shape of the tube has been reconstructed very
roughly. The border of the ROI has been reconstructed with unsatisfactory accuracy, showing
several outliers. We attribute these difficulties to four factors:

• The photometric response curve of the employed camera system is not known.

• The vignetting profile is also unknown.

• Even though the light source is very close to the camera, there still is a notable displace-
ment between the light source and the camera center.

• Assuming a point light source is unrealistic, and it would be better to approximate the
light source as a point light with non-uniform spatial intensity distribution.

The last two points have been discussed, e.g., by Wu et al.[24], who have shown that these
two problems can be dealt with through proper calibration. Overall, it is hard to say which of
these four sources of error is most problematic for our method. Exploring possible measures to
alleviate these problems is a subject of future work.

7.4.2 A Short Evaluation of Mutual Information

To support our claim that illumination modelling is necessary to achieve satisfying reconstruc-
tion results, we have compared our approach to the well-established method of mutual informa-
tion (MI) [59], which has a reputation of being resistant against many types of lighting changes.
We were, however, able to show that mutual information performs considerably worse than our
proposed algorithm in the specific case of a light source at the camera center.

This can be explained by realizing that mutual information can deal well with uniform
changes of intensities that affect the whole image, but not with local changes, where one part

149

7. EXPERIMENTAL RESULTS

Figure 7.28: Reconstruction results on two real-world sequences (top two rows) and one synthetic
sequence for comparison (bottom row).

150

7.4 Camera-Centered Light Source

Figure 7.29: Some reconstruction results generated by using the mutual information similarity
measure (left two columns), and reconstruction results produced by our proposed algorithm for
comparison (right column).

of the image becomes brighter and another part darker due to the moving light source. By
maximizing the mutual information between two sample sets, we are essentially aligning the
histograms associated with those sets. The mutual information similarity measure rewards
situations where the joint histogram between both sample sets is sparse, and penalizes dispersed
joint histograms. However, a non-uniform change in intensities provokes a non-uniform change
in histograms as well, and mutual information cannot align such histograms.

To support this claim, we have equipped our algorithm in the static-light variant with the
mutual information similarity measure, and compared the reconstruction results with those from
our illumination-modelling algorithm. The results can be seen in Figure 7.29. It is apparent
that while the reconstruction using MI does not fail completely, it generates a lot of artificial
bumps and other outliers in the reconstructed result, and thus performs significantly worse
than our proposed algorithm on both real-world and synthetic datasets. For generating these
reconstructions, we have tried a lot of different parameter settings, and we show the best results
we could achieve.

The cone reconstruction results are especially bad and the surface reconstructions are basi-
cally unusable, since they hardly resemble a cone any more. The images show the results of two

151

7. EXPERIMENTAL RESULTS

different reconstruction runs with different parameters. While the tube reconstruction result
looks OK when viewed from the outside, a close look from inside the tube through the opening
reveals that the border is strongly distorted, which is not the case for the reconstruction that
has been retrieved using our algorithm. The result using our algorithm has been verified to be
accurate in the region around the opening, which proves that the quality of the MI reconstruc-
tion is sub-optimal. Note that there are four small, but visible corners in our reconstruction
result. These are no errors, but are caused by the corners of the ROI in the template image.

Even for real-world images, the mutual-information based reconstruction is inferior to the
one produced by our algorithm. The reconstruction results from our algorithm are not flawless,
but clearly better than that of the MI-based algorithm. We do not know the ground truth for
the rolled-up newspaper images, but it seems reasonable to assume that the surface should look
very similar to the cone reconstruction. We conclude that using a robust similarity measure
such as mutual information is by no means enough to perform surface recovery under moving
light conditions, and explicit illumination modelling, as performed by our algorithm, produces
much better results.

7.4.3 Effect of Camera-Light Source Displacement

For real-world images, it is physically impossible to have the light source coincide with the
camera position. This will always only be approximately the case, and it has already been
shown that the position of the light source relative to the camera has a substantial influence
on reconstruction accuracy in the case of shape-from-shading methods [24]. Having a non-zero
displacement between the camera and the light source violates our assumption of having a light
source at the camera center, and in this section, we examine the exact effects of this violation
on our reconstruction results.

For this test, we have used the same scenarios as in Section 7.3.2 in combination with the
same camera motion paths. However, instead of varying the speed of the camera motion, we
vary the displacement of the light source against the camera, such that the light source is moved
in positive x direction, to the right of the camera.

Our results show that already for very small displacements, the reconstruction quality is
reduced drastically. Figure 7.30 shows the plots of average reconstruction qualities for different
normalized light displacement values. The normalization is performed by dividing the light
displacement vector through the maximum depth value of the ground truth depths, so these
values are analogous to the normalized baseline values introduced earlier. It is evident that
the light displacement severely disturbs the reconstruction algorithm, and the error values rise
consistently with the displacement.

Figures 7.31 and 7.32 show some reconstruction results that visualize the typical distortions
that can be expected when camera and light are not coincident. From visual inspection, we can
see that the reconstructed surfaces do still resemble the true surfaces, but are distorted. The
surfaces show a specific distortion where the surface seems to deform towards one direction. In
addition to that, the blurry texture of the surface leads to the algorithm shifting towards false

152

7.5 Light Source Calibration Results

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3

A
ve

ra
ge

 R
ec

on
st

ru
ct

io
n

E
rr

or

Normalized Light Displacement

Slanted Plane

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

A
ve

ra
ge

 R
ec

on
st

ru
ct

io
n

E
rr

or

Normalized Light Displacement

Sphere

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

A
ve

ra
ge

 R
ec

on
st

ru
ct

io
n

E
rr

or

Normalized Light Displacement

Cone

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

A
ve

ra
ge

 R
ec

on
st

ru
ct

io
n

E
rr

or

Normalized Light Displacement

Plane with Bumps

Figure 7.30: Evaluation results for different amounts of light displacement. The plots show the
average error for all 20 frames per normalized light displacement.

matches, which produces artificial bumps on the surfaces. This can be seen especially well in
the plane reconstruction results.

All in all, we have shown that the algorithm is rather sensitive to violations of its essential
assumption that the light source is located at the camera center, which in turn reinforces our
claim that proper calibration is necessary to further improve reconstruction results.

7.5 Light Source Calibration Results

Before we move on to our reconstruction results when using a calibrated light source, we first
show some example calibration results on synthetic data. Two results of the light source cal-
ibration method on some real-world images have already been shown in the corresponding
Chapter 6, see Figures 6.2 and 6.6.

There is no way to specify an intensity profile for a light source in POV-Ray. Rather,
one has to create semi-transparent objects that affect the color of the light passing through it.
This makes it rather difficult to obtain the ground truth profile, so we rely on visual inspection
instead. We have created three test cases that can be verified quite easily that way. The
calibration results for these cases are shown in Figure 7.33.

We have used a calibration pattern size of 640 × 480 for all three test cases. For the
first example, we have used a plain white light source. We would expect the intensity profile

153

7. EXPERIMENTAL RESULTS

(a) Depth map for 0% offset. (b) Depth map for 5.6% offset. (c) Depth map for 11.3% offset.

(d) Overall error: 0%. (e) Overall error: 55.7%. (f) Overall error: 71.5%.

(g) Reconstruction for 0% offset. (h) Reconstruction for 5.6% offset. (i) Reconstruction for 11.3% offset.

Figure 7.31: Reconstruction results for the cone scenario under increasing light displacement.

154

7.5 Light Source Calibration Results

(a) Depth map for 0% offset. (b) Depth map for 9.1% offset. (c) Depth map for 18.1% offset.

(d) Overall error 0%. (e) Overall error 59.9%. (f) Overall error 79.4%.

(g) Reconstruction for 0% offset. (h) Reconstruction for 9.1% offset. (i) Reconstruction for 18.1% offset.

Figure 7.32: Reconstruction results for the slanted plane scenario under increasing light dis-
placement.

155

7. EXPERIMENTAL RESULTS

(a) Results for plain white light source.

(b) Results for projected translucent spheres.

(c) Results for complex structured light.

Figure 7.33: Light calibration results on synthetic data. The left two images in each row show
rendered images used for the calibration. The rightmost image shows the calibrated intensity
profile.

156

7.6 Tracking with a Calibrated Light Source

to be completely white as well, and the algorithm indeed computes such a uniform intensity
profile. The light projection center has been determined as (100.51,−302.28,−102.31)T, where
(100,−300,−100)T would be the true values. The error is thus very low relative to the size of
the calibration pattern.

In the second example, we have added some semi-translucent spheres between the light
source and the calibration patterns, which results in the projection of coloured circles onto the
calibration planes. The intensity profile can be seen to be very accurate, since the circles are
reproduced as nearly perfect ellipses in the intensity profile. The projection center of the light
source has been computed as (400.97, 296.97,−1.17)T, and the ground truth is (400, 300, 0)T,
again a very low error in relation to the observed objects.

Finally, for the third example, we have created a translucent textured sphere with a complex
pattern around the light source. In addition to that, we have made the images brighter, to show
that our algorithm can cope well with the problem of uniform, diffuse ambient light. Indeed,
we can see that the calibrated intensity profile reproduces the projected pattern quite well. The
light source position has been determined as (398.11,−403.19, 3.11)T, where (300,−400, 0)T is
the ground truth position.

7.6 Tracking with a Calibrated Light Source

The case of using a calibrated light source is rather difficult when compared to the other two
cases of reconstruction scenarios. This is mainly because the reconstruction is now no longer
up to scale, which is due to the baseline between the camera and the light source. However,
this also means that we cannot initialize the scene estimate with arbitrary scale, but we need
a good initial estimate of the actual depth.

This turned out to be a considerable problem in our experiments. We were not able to find
an efficient method for computing a useful initialization state for the system. However, it was
at least possible to show that the system is able to track the object under consideration after
the system parameters had been initialized adequately.

We show here the data obtained for one run of the cone sequence, using motion path (a)
and the granite texture. For determining the light calibration parameters, we have used our
light calibration method. The system has been initialized with an approximate model of the
cone and also the translational part of the camera motion has been specified. The initialization
is not perfect, however, as can be seen from the error image shown in Figure 7.34. The initial
surface has been evaluated to have an error of 7%. The initial motion was evaluated with error
values of 0.03 for the translational error and 0.014 for the rotational error.

The surface reconstruction error is already low to begin with, but it improves considerably
after the first optimization run during initialization, and stays low throughout the 20-frame
sequence. This shows that the method is at least capable of tracking and refining a 3D surface
under calibrated lighting.

All in all, the results look promising, but without a way to properly initialize the system,
the method can not be used for anything else than tracking at present. Finding a solution to

157

7. EXPERIMENTAL RESULTS

(a) Error image for initial model.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 2 4 6 8 10 12 14 16 18

A
ve

ra
ge

 E
rr

or
Frame Number

(b) Per-frame tracking accuracy.

Figure 7.34: Evaluation results for calibrated-light reconstruction and tracking. The plots show
the average error per frame, and the first entry shows the accuracy of the initialization.

the initialization problem is one of the topics for future work.

7.7 Performance Considerations

While we have taken some efforts in order to improve performance of our algorithms, the
efficiency of our methods was never the main concern of our work. Through our optimization
framework, we have sought a compromise between flexibility and performance. Consequently,
none of our algorithms are currently real-time capable. Depending on the type of algorithm
that is used, and also on some parameters such as sliding window size, number of control points,
etc., the processing speed for typical reconstruction problems lies between roughly 5 and 0.2
frames per second.

However, there is much potential for performance improvement. First of all, we use a generic
sparse Cholesky decomposition to solve the SQP equation system, which is sub-optimal. For
feature-based bundle adjustment, it is well-known that the special structure of the bundle-
adjustment equations can be exploited very well [47, 87]. It seems quite likely that this would
be possible for our algorithms as well, leading to a faster, but more specialized algorithm.

Furthermore, many modern structure-from-motion algorithms rely on GPU computation [41,
68] to achieve real-time performance. We are quite confident that our algorithms would also
benefit greatly from a GPU-based implementation, and would probably be able to achieve
real-time performance then.

158

Chapter 8

Conclusion

In this thesis, we presented three different algorithms for recovering structure and motion from
monocular images based purely on image intensities under different lighting assumptions, and
we described an optimization framework that allows implementation of these algorithms in a
uniform, consistent and modular way. Furthermore, we have described a method for calibration
of a camera-light pair, in which the light source is modelled as an inverse camera.

For our surface and motion recovery algorithms, the constant-light variant has shown the
best overall performance, even though there are some minor problems with ambiguous solu-
tions. The algorithm performs well for both synthetic and real camera images, and it can
be easily initialized even from images with a very small baseline. For the algorithm using a
camera-centered point light model, we have observed very good results on synthetic datasets,
but there are some problems on real camera data. We have discussed possible causes for these
problems, which are photometric inconsistencies that can probably be dealt with using cali-
bration methods. Furthermore, we have seen that the camera-centred light algorithm is more
difficult to initialize than the constant-light variant. The last type of algorithm, which uses an
illumination model based on a calibrated light source, is currently only fit for tracking tasks,
and only after the system has been initialized properly. The performance on synthetic data was
satisfactory, but due to the initialization problems, we were not able to gather any results from
real camera images. Thus, as it is now, this algorithm is more of theoretical interest.

The optimization framework proposed in this work is powerful enough to implement the
described algorithms in an efficient and uniform way, facilitating re-usability of components.
It is specialized for implementing equality-constrained SQP-type optimization problems for
compositional objective functions, where the involved derivatives are sparse and exhibit a static
sparsity structure. The framework is the core technology used in our implementations.

Our proposed light calibration method has been shown to work well both on synthetic data
and on real image data. It is also capable of dealing with constant additive disturbances to the
image data, effectively cancelling out brightness shifts and minor scattered light effects.

159

8. CONCLUSION

8.1 Future Work

The topic of surface and camera motion recovery directly from image intensities is a very
complex one, and within this thesis, we were only able to explore a limited set of aspects of
this problem. Consequently, there are a number of possible improvements that we would like
to investigate in the future. Roughly ordered in descending order by importance, these would
be:

• As we have mentioned, the reconstruction algorithm for the case of using a calibrated light
source is very difficult to initialize. Finding a way to solve this initialization problem is
very important to improve the usability of the algorithm. Possible approaches to address
the problem are as follows:

– If the light source is close to the camera, we could generate an initial, scale-free
estimate assuming that the light is located at the camera center, determine a pre-
liminary scale for the estimate through a separate optimization, and finally use the
generated estimate for initialization.

– We could perform some kind of well-defined motion at the beginning of a sequence
such that at least the camera parameters can be initialized roughly.

• The centred-light algorithm seems to suffer from photometric inconsistencies that could
be removed through proper photometric calibration. A thorough evaluation should be
done, examining the potential of this method for video-endoscopy applications.

• The static-light algorithm has been shown to suffer from an ambiguity where “inverse
perspective” reconstructions are generated. These solutions correspond to local minima.
It should be possible to devise methods to detect these ambiguous configurations and
subsequently avoid the erroneous reconstruction.

• All of our algorithms could probably benefit from an extended convergence radius by
using a better approximation to the Hessian in our optimization. A potential candidate
technology is the ESM method proposed by Malis [50], in the generalized variant described
by Brooks and Arbel [61].

• The simple regularization that we have implemented has been shown to be useful, but we
suspect that more sophisticated regularization schemes could further improve the perfor-
mance of our algorithm. The anisotropic regularization scheme described by Werlberger
et al. [88] would be a candidate for exploring the possible benefits of better regularization.

• We assume that the observed surfaces exhibit Lambertian reflectance, which is not the
case for many surfaces. Using a more sophisticated surface reflectance model, such as
Phong shading [89] or the Oren-Nayar reflectance model [90], would probably increase
the reconstruction accuracy and make the algorithms more robust.

160

8.1 Future Work

• Our algorithms are not real-time capable until now. However, real-time performance could
probably be achieved easily if time-intensive computational parts are ported to the GPU,
using CUDA1 or OpenCL2. Furthermore, the sparsity structure of the intensity-based
bundle adjustment problem could probably be exploited more efficiently [47, 87].

The most important improvements are the first two, because we expect them to have significant
impact on our algorithm’s performance on real video-endoscopic images, while they seem rela-
tively easy to implement. Supporting different surface reflectance models also seems promising,
but we would expect this to be more difficult to implement. Additional parameters might be
needed to capture the reflectivity behaviour of surfaces, which means that the optimization
formulation needs to be changed drastically. The other improvements are mainly of technical
nature, and as such are “nice to have”, but do not constitute essential improvements. All
in all, we see that the framework we have created and the basic algorithms that have been
implemented within it may well serve as a basis for future research projects.

1http://www.nvidia.com/object/cuda_home_new.html
2http://www.khronos.org/opencl/

161

http://www.nvidia.com/object/cuda_home_new.html
http://www.khronos.org/opencl/

8. CONCLUSION

162

Appendix A

Mathematical Notation

Symbol Meaning
n Scalar values are denoted by italic letters.

f(x) This is a scalar function of the scalar variable x.
v Bold lower case letters are used to refer to vectors.

v(x) A multi-dimensional function v with vector-valued parameter x.
f ◦ g, f ◦ g If f resp. f and g resp. g are both functions, the ◦ operator denotes the

composition of these functions.
id(x), id(y) The identity function.

T(a,b) A rigid transformation of the 3D coordinate vector b according to extrinsic
parameters a.

R(q) The rotation matrix associated with unit quaternion q.
C(z,y) A cost function that assigns a scalar penalty value to vectors z,y, where z

is the prediction and y is the measurement.
π(v) The perspective divide function, performing a 3D-2D projection by dividing

the first two elements of a vector v ∈ R3 through the third component.
vi Subscripts are used to refer to the elements of a vector, in this case the i-th

element of v.
[a + b]i Sometimes, we want to refer to a certain element of a vector-valued ex-

pression. To enhance readability, we use a subscript in conjunction with
square brackets, such that the expression on the left would denote the i-th
component of the sum of vectors a,b.

M Matrices are denoted by upper case bold letters.
Mi,j A specific element of a matrix is referred to by using two comma-separated

subscripts. The element in row i and column j of M would be denoted as
shown here.

continued on next page

163

A. MATHEMATICAL NOTATION

continued from previous page
[A + B]i,j If we want to refer to a certain element of a matrix-valued expression, we will

use square brackets in conjunction with two comma-separated subscripts in
order to enhance readability. The expression on the left would then denote
the element in row i of column j of the sum of matrices A,B.

[M]i,∗ This is the i-th row vector of the matrix M.
[M]∗,j This is the j-th column vector of the matrix M.

In The identity matrix of dimension n× n.
0n,m A matrix of zeros of dimension n×m.
0n A column vector of zeros of dimension n.

1n,m A matrix of ones of dimension n×m.
1n A column vector of ones of dimension n.
K The camera projection matrix associated with a calibrated camera.
KL The light projection matrix, containing the intrinsic parameters associated

with a calibrated light source.
A ·B The dot denotes a regular matrix product. The inner product of vectors a,b

would be denoted as aT ·b.
A⊗B The symbol ⊗ denotes Kronecker matrix product.
A ◦B The symbol ◦, when used with matrices, denotes the Hadamard matrix prod-

uct, which is the component-wise product of matrices.
Â The hat symbol is used to denote the Hadamard inverse of a matrix or vector,

which is its component-wise inverse.
A◦n The superscript ◦n denotes the Hadamard exponentiation of a matrix or

vector, which calculated by raising all elements to the power of n. This
means that A◦(−1) = Â.

vec(A) The vectorization of the matrix A, which is a column vector obtained by
stacking all columns of A on top of each other, from left to right.

diag(v) A diagonal matrix with the vector v on its diagonal.
S(S) The 0− 1 matrix describing the sparsity structure of a sparse matrix S.

val(S) Denotes the vector of values of the sparse matrix S, obtained by stacking all
non-zero values into one vector. The values are obtained in a column-major
fashion, such that the values of columns are collected from left to right.
Within a column, they are taken from top to bottom.

I The image function. It can represent single-channel or multi-channel images.
If n is the number of channels, then the function is of type R2 → Rn. When
dealing with image sequences, a subscript is used to denote the number of
that image within the sequence, such that Ii denotes the i-th image.

continued on next page

164

continued from previous page
IL The light intensity function. Represents the spatial light intensity from the

light projection center in some direction.

Table A.1: Mathematical notation

165

A. MATHEMATICAL NOTATION

166

Appendix B

Diagram Conventions

When displaying images of depth maps, error maps and similar entities, we are using the
commonly adopted method of rainbow color maps. In such a map, the color blue represents
the lowest value, while red color corresponds to the highest value. Intuitively, this can be
understood as a “temperature” chart, with temperatures going from low to high. We usually
use normalized plots, unless otherwise stated. Figure B.1 illustrates the usage of the colour
map.

167

B. DIAGRAM CONVENTIONS

Figure B.1: Top: Colour-coding used for displaying magnitudes. The values are increasing
from 0 on the left to 1 on the right. Middle: Colour-coded example depth map, bottom right:
Corresponding gray-scale depth map.

168

Complete List of Author’s
Publications

[1] Elmar Mair, Michael Fleps, Oliver Ruepp, Michael Suppa, and Darius
Burschka. Optimization Based IMU Camera Calibration. In Proceedings of
the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’11),
September 2011.

[2] Markus Holzer, Andreas Klein, Martin Kutrib, and Oliver Ruepp. Compu-
tational Complexity of NURIKABE. Fundamenta Informaticae, 110(1):159–174, Jan
2011.

[3] Oliver Ruepp and Darius Burschka. Fast Recovery of Weakly Textured Sur-
faces from Monocular Image Sequences. In Ron Kimmel, Reinhard Klette, and
Akihiro Sugimoto, editors, Computer Vision - ACCV 2010 - 10th Asian Conference on
Computer Vision, Queenstown, New Zealand, November 8-12, 2010, Revised Selected Pa-
pers, Part IV, 6495 of Lecture Notes in Computer Science, pages 474–485. Springer,
2010.

[4] Oliver Ruepp, Darius Burschka, and Robert Bauernschmitt. Towards On-
Line Intensity-Based Surface Recovery from Monocular Images. In Proceed-
ings of the British Machine Vision Conference, pages 77.1–77.11. BMVA Press, 2010.
doi:10.5244/C.24.77.

[5] Oliver Ruepp and Markus Holzer. The computational complexity of the
KAKURO puzzle, revisited. In Proceedings of the 5th international conference on
Fun with algorithms, FUN’10, pages 319–330, Berlin, Heidelberg, 2010. Springer-Verlag.

[6] Oliver Ruepp and Darius Burschka. A Geometrically Inspired Approach to
Active View Planning. In Proceedings of the Workshop on Vision in Action: Efficient
strategies for cognitive agents in complex environments. HAL - CCSD, 2008.

[7] Dominik Steinhauser, Oliver Ruepp, and Darius Burschka. Motion segmenta-
tion and scene classification from 3D LIDAR data. Intelligent Vehicles Symposium,
2008 IEEE, pages 398–403, June 2008.

169

http://dx.doi.org/10.3233/FI-2011-534
http://dx.doi.org/10.3233/FI-2011-534
http://dl.acm.org/citation.cfm?id=1875616.1875647
http://dl.acm.org/citation.cfm?id=1875616.1875647
http://hal.inria.fr/inria-00321944/en/
http://hal.inria.fr/inria-00321944/en/

COMPLETE LIST OF AUTHOR’S PUBLICATIONS

[8] Hermann Gruber, Markus Holzer, and Oliver Ruepp. Sorting the Slow Way:
An Analysis of Perversely Awful Randomized Sorting Algorithms. In Pierluigi
Crescenzi, Giuseppe Prencipe, and Geppino Pucci, editors, FUN, 4475 of Lecture
Notes in Computer Science, pages 183–197. Springer, 2007.

[9] Markus Holzer and Oliver Ruepp. The Troubles of Interior Design-A Com-
plexity Analysis of the Game Heyawake. In Pierluigi Crescenzi, Giuseppe
Prencipe, and Geppino Pucci, editors, FUN, 4475 of Lecture Notes in Computer
Science, pages 198–212. Springer, 2007.

170

http://dblp.uni-trier.de/db/conf/fun/fun2007.html#GruberHR07
http://dblp.uni-trier.de/db/conf/fun/fun2007.html#GruberHR07
http://dblp.uni-trier.de/db/conf/fun/fun2007.html#HolzerR07
http://dblp.uni-trier.de/db/conf/fun/fun2007.html#HolzerR07

References

[10] David G. Lowe. Object Recognition from Local Scale-Invariant Features. In
ICCV, pages 1150–1157, 1999. 1, 6, 143

[11] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool. Speeded-
Up Robust Features (SURF). Comput. Vis. Image Underst., 110:346–359, June 2008.
1, 6, 143

[12] Stefan Leutenegger, Margarita Chli, and Roland Siegwart. BRISK: Binary
Robust invariant scalable keypoints. In Dimitris N. Metaxas, Long Quan, Al-
berto Sanfeliu, and Luc J. Van Gool, editors, ICCV, pages 2548–2555. IEEE, 2011.
1

[13] Andrew J. Davison, Ian D. Reid, Nicholas D. Molton, and Olivier Stasse.
MonoSLAM: Real-Time Single Camera SLAM. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 26(6):1052–1067, 2007. 1

[14] D. Burschka and G.D. Hager. V-GPS(SLAM): vision-based inertial system for
mobile robots. In Robotics and Automation, 2004. Proceedings. ICRA ’04. 2004 IEEE
International Conference on, 1, pages 409 – 415 Vol.1, april-1 may 2004. 1

[15] Motilal Agrawal and Kurt Konolige. FrameSLAM: From Bundle Adjustment
to Real-Time Visual Mapping. IEEE Transactions on Robotics, 24(5), October 2008.
1, 5

[16] Georg Klein and David Murray. Parallel Tracking and Mapping for Small AR
Workspaces. In Proc. Sixth IEEE and ACM International Symposium on Mixed and
Augmented Reality (ISMAR’07), Nara, Japan, November 2007. 1, 5, 11, 19

[17] H. Strasdat, J.M.M. Montiel, and A.J. Davison. Real-time monocular SLAM:
Why filter? In Robotics and Automation (ICRA), 2010 IEEE International Conference
on, pages 2657 –2664, may 2010. 1

[18] Michal Irani and P. Anandan. About Direct Methods. In Triggs et al. [91], pages
267–277. 2

171

http://dl.acm.org/citation.cfm?id=1370312.1370556
http://dl.acm.org/citation.cfm?id=1370312.1370556

REFERENCES

[19] S. Benhimane and E. Malis. Real-time image-based tracking of planes using
Efficient Second-order Minimization. In IEEE/RSJ International Conference on In-
telligent Robots and Systems, pages 943–948, 2004. 3, 2

[20] E. Malis. An efficient unified approach to direct visual tracking of rigid and
deformable surfaces. In Intelligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ
International Conference on, pages 2729 –2734, 29 2007-nov. 2 2007. 3, 2

[21] Geraldo Silveira and Ezio Malis. Unified Direct Visual Tracking of Rigid and
Deformable Surfaces Under Generic Illumination Changes in Grayscale and
Color Images. Int. J. Comput. Vision, 89:84–105, August 2010. 3, 5, 14, 69, 2

[22] Ruo Zhang, Ping-Sing Tsai, James Edwin Cryer, and Mubarak Shah. Shape
from Shading: A Survey. IEEE Trans. Pattern Anal. Mach. Intell., 21:690–706, August
1999. 3, 2

[23] E. Prados and O. Faugeras. Shape from shading: a well-posed problem? In
Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society
Conference on, 2, pages 870 – 877 vol. 2, june 2005. 3, 20, 2

[24] Chenyu Wu, Srinivasa G Narasimhan, and Branislav Jaramaz. A Multi-Image
Shape-from-Shading Framework for Near-Lighting Perspective Endoscopes. In-
ternational Journal of Computer Vision, February 2009. 3, 149, 152, 2

[25] Guo hui Wang, Jiu qiang Han, and Xin man Zhang. Three-dimensional recon-
struction of endoscope images by a fast shape from shading method. Measure-
ment Science and Technology, 20(12):125801, 2009. 3, 2

[26] A W Gruen. Adaptive Least Squares Correlation: A Powerful Image Matching
Technique. South African Journal of Photogrammetry, Remote Sensing and Cartography,
14:175–187, 1985. 5

[27] F. Ackermann. DIGITAL IMAGE CORRELATION: PERFORMANCE AND
POTENTIAL APPLICATION IN PHOTOGRAMMETRY. The Photogrammet-
ric Record, 11(64):429–439, 1984. 5

[28] M. Okutomi and T. Kanade. A multiple-baseline stereo. In Computer Vision and
Pattern Recognition, 1991. Proceedings CVPR ’91., IEEE Computer Society Conference
on, pages 63 –69, jun 1991. 5

[29] Oliver Ruepp, Darius Burschka, and Robert Bauernschmitt. Towards On-
Line Intensity-Based Surface Recovery from Monocular Images. In Labrosse
et al. [92], pages 1–11. 5, 69

[30] Oliver Ruepp and Darius Burschka. Fast Recovery of Weakly Textured Sur-
faces from Monocular Image Sequences. In Ron Kimmel, Reinhard Klette, and

172

http://dx.doi.org/10.1007/s11263-010-0324-z
http://dx.doi.org/10.1007/s11263-010-0324-z
http://dx.doi.org/10.1007/s11263-010-0324-z
http://dl.acm.org/citation.cfm?id=314270.314272
http://dl.acm.org/citation.cfm?id=314270.314272
http://stacks.iop.org/0957-0233/20/i=12/a=125801
http://stacks.iop.org/0957-0233/20/i=12/a=125801
http://dx.doi.org/10.1111/j.1477-9730.1984.tb00505.x
http://dx.doi.org/10.1111/j.1477-9730.1984.tb00505.x

REFERENCES

Akihiro Sugimoto, editors, ACCV (4), 6495 of Lecture Notes in Computer Science,
pages 474–485. Springer, 2010. 5, 69

[31] Berthold K.P. Horn and Brian G. Schunck. Determining Optical Flow. Tech-
nical report, Cambridge, MA, USA, 1980. 5

[32] Bruce D. Lucas and Takeo Kanade. An Iterative Image Registration Technique
with an Application to Stereo Vision (IJCAI). In Proceedings of the 7th International
Joint Conference on Artificial Intelligence (IJCAI ’81), pages 674–679, April 1981. 5

[33] Zhengyou Zhang and Ying Shan. Incremental Motion Estimation Through
Local Bundle Adjustment. Technical report, 2001. 5

[34] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cam-
bridge University Press, ISBN: 0521540518, second edition, 2004. 5, 6, 10, 49, 51, 52,
65

[35] Bill Triggs, Philip F. McLauchlan, Richard I. Hartley, and Andrew W.
Fitzgibbon. Bundle Adjustment - A Modern Synthesis. In Triggs et al. [91],
pages 298–372. 5, 6, 16

[36] Zhengyou Zhang. Flexible Camera Calibration by Viewing a Plane from Un-
known Orientations. Computer Vision, IEEE International Conference on, 1:666, 1999.
7

[37] H. C. Longuet-Higgins. A Computer Algorithm for Reconstructing a Scene
from Two Projections. In M. A. Fischler and O. Firschein, editors, Readings in
Computer Vision: Issues, Problems, Principles, and Paradigms, pages 61–62. Kaufmann,
Los Altos, CA., 1987. 10

[38] Fredrik Kahl. Multiple View Geometry and the L∞-norm. In ICCV, pages
1002–1009. IEEE Computer Society, 2005. 10

[39] K. Levenberg. A method for the solution of certain non-linear problems in
least squares. Quarterly Journal of Applied Mathmatics, II(2):164–168, 1944. 10, 27

[40] J. Civera, A.J. Davison, and J. Montiel. Inverse Depth Parametrization for
Monocular SLAM. Robotics, IEEE Transactions on, 24(5):932 –945, oct. 2008. 11

[41] Richard A. Newcombe and Andrew J. Davison. Live dense reconstruction with
a single moving camera. In Computer Vision and Pattern Recognition (CVPR), 2010
IEEE Conference on, pages 1498–1505, 13-18 2010. 11, 98, 158

[42] Deqing Sun, Stefan Roth, and Michael J. Black. Secrets of optical flow es-
timation and their principles. In CVPR, pages 2432–2439. IEEE, 2010. 16, 91, 92,
98

173

REFERENCES

[43] J. Nocedal and S.J. Wright. Numerical optimization. Springer series in operations
research. Springer, 1999. 16, 27

[44] Rupert Brooks, Tal Arbel, and Doina Precup. Anytime similarity measures
for faster alignment. Computer Vision and Image Understanding, 110(3):378–389, 2008.
16

[45] N. Sunderhauf, K. Konolige, S. Lacroix, and P. Protzel. Visual Odometry using
Sparse Bundle Adjustment on an Autonomous Outdoor Vehicle. Tagungsband Autonome
Mobile Systeme. Springer Verlag, 2005. 19

[46] Guo hui Wang, Jiu qiang Han, and Xin man Zhang. Three-dimensional recon-
struction of endoscope images by a fast shape from shading method. Measure-
ment Science and Technology, 20(12):125801, 2009. 20

[47] M.I. A. Lourakis and A.A. Argyros. SBA: A Software Package for Generic
Sparse Bundle Adjustment. ACM Trans. Math. Software, 36(1):1–30, 2009. 27, 69,
158, 161

[48] Donald W. Marquardt. An Algorithm for Least-Squares Estimation of Non-
linear Parameters. SIAM Journal on Applied Mathematics, 11(2):431–441, 1963. 27

[49] M.I.A. Lourakis. levmar: Levenberg-Marquardt nonlinear least squares algo-
rithms in C/C++. http://www.ics.forth.gr/˜lourakis/levmar/, Jul. 2004. 27,
53

[50] Ezio Malis. Improving Vision-based Control using Efficient Second-order Min-
imization Techniques. In ICRA, pages 1843–1848. IEEE, 2004. 31, 33, 160

[51] Brian Guenter. Efficient symbolic differentiation for graphics applications. In
ACM SIGGRAPH 2007 papers, SIGGRAPH ’07, New York, NY, USA, 2007. ACM. 34

[52] Andreas Griewank and Andrea Walther. Evaluating Derivatives: Principles and
Techniques of Algorithmic Differentiation. Number 105 in Other Titles in Applied Math-
ematics. SIAM, Philadelphia, PA, 2nd edition, 2008. 35

[53] Uwe Naumann. Optimal Jacobian accumulation is NP-complete. Math. Program.,
112(2):427–441, 2007. 36

[54] Andreas Alexander Albrecht, Peter Gottschling, and Uwe Naumann.
Markowitz-Type Heuristics for Computing Jacobian Matrices Efficiently. In
Peter M. A. Sloot, David Abramson, Alexander V. Bogdanov, Jack Don-
garra, Albert Y. Zomaya, and Yuri E. Gorbachev, editors, Computational Science
- ICCS 2003, International Conference, Melbourne, Australia and St. Petersburg, Russia,
June 2-4, 2003. Proceedings, Part II, 2658 of Lecture Notes in Computer Science, pages
575–584. Springer, 2003. 36

174

http://books.google.com/books?id=epc5fX0lqRIC
http://stacks.iop.org/0957-0233/20/i=12/a=125801
http://stacks.iop.org/0957-0233/20/i=12/a=125801
http://link.aip.org/link/?SMM/11/431/1
http://link.aip.org/link/?SMM/11/431/1
http://www.ics.forth.gr/~lourakis/levmar/
http://doi.acm.org/10.1145/1275808.1276512

REFERENCES

[55] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design pat-
terns: elements of reusable object-oriented software. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1995. 43

[56] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms, Second Edition. The MIT Press and McGraw-Hill
Book Company, 2001. 44, 45

[57] Andreas Griewank and Uwe Naumann. Accumulating Jacobians as chained
sparse matrix products. Math. Program., 95(3):555–571, 2003. 45

[58] Andrew Blake and Andrew Zisserman. Visual Reconstruction. MIT Press, 1987. 51

[59] Paul A. Viola and William M. Wells III. Alignment by Maximization of Mu-
tual Information. In ICCV, pages 16–23, 1995. 56, 57, 58, 149

[60] Stanford University. Applied Mathematics, Statistics Laboratory,
E. Parzen, and United States. Office of Naval Research. On estimation
of a probability density function and mode. Defense Technical Information Center, 1961.
57

[61] Rupert Brooks and Tal Arbel. Generalizing Inverse Compositional and ESM
Image Alignment. Int. J. Comput. Vision, 87:191–212, May 2010. 58, 92, 160

[62] S Benhimane and E Malis. Real-time image-based tracking of planes using
efficient second-order minimization. 2004 IEEERSJ International Conference on In-
telligent Robots and Systems IROS IEEE Cat No04CH37566, 1(x):943–948, 2004. 69

[63] Hartmut Prautzsch, Wolfgang Boehm, and Marco Paluszny. Bezier and B-
Spline Techniques. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2002. 70

[64] Robert A. Beezer. A First Course in Linear Algebra. Robert A. Beezer, 2009.
http://linear.ups.edu. 80, 86

[65] Jan R. Magnus and H. Neudecker. The Commutation Matrix: Some Properties
and Applications. The Annals of Statistics, 7(2):pp. 381–394, 1979. 84

[66] Cristian Constantin Lalescu. Two hierarchies of spline interpolations. Practi-
cal algorithms for multivariate higher order splines. CoRR, abs/0905.3564, 2009.
91

[67] Thomas Pock, Daniel Cremers, Horst Bischof, and Antonin Chambolle.
Global Solutions of Variational Models with Convex Regularization. SIAM J.
Imaging Sciences, 3(4):1122–1145, 2010. 98

[68] Jan Stühmer, Stefan Gumhold, and Daniel Cremers. Real-time dense geome-
try from a handheld camera. In Proceedings of the 32nd DAGM conference on Pattern
recognition, pages 11–20, Berlin, Heidelberg, 2010. Springer-Verlag. 98, 158

175

http://books.google.de/books?id=vOz6HgAACAAJ
http://books.google.de/books?id=vOz6HgAACAAJ
http://dx.doi.org/10.1007/s11263-009-0263-8
http://dx.doi.org/10.1007/s11263-009-0263-8
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1389474
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1389474
http://www.jstor.org/stable/2958818
http://www.jstor.org/stable/2958818

REFERENCES

[69] Thomas Pock, Markus Unger, Daniel Cremers, and Horst Bischof. Fast and
Exact Solution of Total Variation Models on the GPU. In CVPR Workshop on
Visual Computer Vision on GPU’s, Anchorage, Alaska, USA, June 2008. 98

[70] Thomas Pock, Daniel Cremers, Horst Bischof, and Antonin Chambolle.
Global Solutions of Variational Models with Convex Regularization. SIAM J.
Imaging Sciences, 3(4):1122–1145, 2010. 100

[71] W.H. Press. Numerical recipes: the art of scientific computing. Cambridge University
Press, 2007. 100

[72] Gene H. Golub and Charles F. van Loan. Matrix computations (3. ed.). Johns
Hopkins University Press, 1996. 103, 104

[73] Jiarui Liao and Lilong Cai. A calibration method for uncoupling projector and
camera of a structured light system. In Advanced Intelligent Mechatronics, 2008. AIM
2008. IEEE/ASME International Conference on, pages 770 –774, july 2008. 107

[74] Seon Joo Kim and M. Pollefeys. Robust Radiometric Calibration and Vi-
gnetting Correction. Pattern Analysis and Machine Intelligence, IEEE Transactions
on, 30(4):562 –576, april 2008. 109

[75] Dan B Goldman and Jiun-Hung Chen. Vignette and Exposure Calibration and
Compensation. In The 10th IEEE International Conference on Computer Vision, pages
899–906, Oct. 2005. 109

[76] M.D. Grossberg and S.K. Nayar. Modeling the Space of Camera Re-
sponse Functions. IEEE Transactions on Pattern Analysis and Machine Intelligence,
26(10):1272–1282, Oct 2004. 109

[77] T. Mitsunaga and S.K. Nayar. Radiometric Self Calibration. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 1, pages 374–380, Jun 1999. 109

[78] Christopher C. Skíscim and Bruce L. Golden. Optimization by simulated an-
nealing: A preliminary computational study for the TSP. In Proceedings of the
15th conference on Winter Simulation - Volume 2, WSC ’83, pages 523–535, Piscataway,
NJ, USA, 1983. IEEE Press. 113

[79] Chavdar Papazov and Darius Burschka. Stochastic global optimization for
robust point set registration. Comput. Vis. Image Underst., 115:1598–1609, December
2011. 113, 122

[80] S J Devlin, R Gnanadesikan, and J R Kettenring. Robust estimation and
outlier detection with correlation coefficients. Biometrika, 62(3):531–545, 1975.
117

176

http://books.google.com/books?id=1aAOdzK3FegC
http://dl.acm.org/citation.cfm?id=800044.801546
http://dl.acm.org/citation.cfm?id=800044.801546
http://dx.doi.org/10.1016/j.cviu.2011.05.008
http://dx.doi.org/10.1016/j.cviu.2011.05.008
http://www.jstor.org/stable/2335508
http://www.jstor.org/stable/2335508

REFERENCES

[81] Du Q. Huynh. Metrics for 3D Rotations: Comparison and Analysis. Journal of
Mathematical Imaging and Vision, 35(2):155–164, 2009. 123

[82] Fredrik Kahl and Richard I. Hartley. Critical Curves and Surfaces for Eu-
clidean Reconstruction. In Anders Heyden, Gunnar Sparr, Mads Nielsen, and
Peter Johansen, editors, ECCV (2), 2351 of Lecture Notes in Computer Science, pages
447–462. Springer, 2002. 133

[83] John Oliensis. A New Structure-from-Motion Ambiguity. IEEE Trans. Pattern
Anal. Mach. Intell., 22(7):685–700, 2000. 133

[84] Sebastian Lieberknecht, Selim Benhimane, Peter Meier, and Nassir Navab.
Benchmarking Template-based Tracking Algorithms. to appear in IJVR, 2011.
141

[85] Mustafa Özuysal, Pascal Fua, and Vincent Lepetit. Fast Keypoint Recogni-
tion in Ten Lines of Code. In CVPR. IEEE Computer Society, 2007. 143

[86] S. Benhimane and E. Malis. Homography-based 2D Visual Tracking and Ser-
voing. Int. J. Rob. Res., 26:661–676, July 2007. 143

[87] Kurt Konolige. Sparse Sparse Bundle Adjustment. In Labrosse et al. [92], pages
1–11. 158, 161

[88] Manuel Werlberger, Werner Trobin, Thomas Pock, Andreas Wedel, Daniel
Cremers, and Horst Bischof. Anisotropic Huber-L1 Optical Flow. In Proceedings
of the British Machine Vision Conference (BMVC), London, UK, September 2009. to
appear. 160

[89] Bui Tuong Phong. Illumination for computer generated pictures. Commun.
ACM, 18:311–317, June 1975. 160

[90] M. Oren and S.K. Nayar. Generalization of Lambert’s Reflectance Model. In
ACM 21st Annual Conference on Computer Graphics and Interactive Techniques (SIG-
GRAPH), pages 239–246, Jul 1994. 160

[91] Bill Triggs, Andrew Zisserman, and Richard Szeliski, editors. Vision Algorithms:
Theory and Practice, International Workshop on Vision Algorithms, held during ICCV ’99,
Corfu, Greece, September 21-22, 1999, Proceedings, 1883 of Lecture Notes in Computer
Science. Springer, 2000. 171, 173, 167, 169

[92] Frédéric Labrosse, Reyer Zwiggelaar, Yonghuai Liu, and Bernie Tiddeman,
editors. British Machine Vision Conference, BMVC 2010, Aberystwyth, UK, August 31 -
September 3, 2010. Proceedings. British Machine Vision Association, 2010. 172, 177

177

http://dl.acm.org/citation.cfm?id=1270220.1270222
http://dl.acm.org/citation.cfm?id=1270220.1270222
http://gpu4vision.icg.tugraz.at/papers/2009/werlberger_bmvc2009.pdf
http://doi.acm.org/10.1145/360825.360839

	List of Figures
	List of Tables
	1 Motivation
	1.1 Contribution

	2 Bundle Adjustment Basics
	2.1 Feature-Based Bundle Adjustment
	2.2 Intensity-Based Bundle Adjustment

	3 Approach
	3.1 The Constant Light Case
	3.2 Light Source Modelling
	3.3 The Case of a Point Light at the Optical Center
	3.4 The Case of Fully Calibrated Light

	4 Efficient and Flexible Nonlinear Optimization
	4.1 Sequential Quadratic Programming
	4.2 On Computation of Hessian Matrices
	4.2.1 Full Computation
	4.2.2 Gauß-Newton-Approximation
	4.2.3 Non-Least-Squares Hessian Approximation

	4.3 Established Algorithms for Derivative Computation
	4.3.1 Finite Difference Approximation
	4.3.2 Symbolic Derivatives via Computer Algebra Systems
	4.3.3 Automatic Differentiation
	4.3.4 Hand-Coded Derivatives

	4.4 A Modular Approach for Computing Derivatives
	4.4.1 An Example: Feature-Based Bundle Adjustment

	4.5 Basic Modules of our Framework
	4.5.1 Vector-Valued Functions
	4.5.1.1 Compositional Function Module
	4.5.1.2 Input Map
	4.5.1.3 Function Stack

	4.5.2 Cost Functions
	4.5.2.1 Squared Differences
	4.5.2.2 Blake-Zisserman
	4.5.2.3 Huber and Pseudo-Huber
	4.5.2.4 Comparison of Pseudo-Huber and Blake-Zisserman Functions
	4.5.2.5 Specialization of Cost Functions for Batch Matching
	4.5.2.6 Another Alternative: Mutual Information

	4.5.3 The Lagrangian Term Module

	5 Modules for Implementing Bundle Adjustment
	5.1 Rigid Transformations
	5.1.1 Interpretation of Quaternions as Rotations
	5.1.2 Quaternions in Multiple View Geometry

	5.2 The Depth Map Model
	5.2.1 On B-Spline Curves and Surfaces
	5.2.1.1 B-Spline Linearity in Parameters
	5.2.1.2 B-Spline Derivatives w.r.t. Curve Coordinates
	5.2.1.3 B-Spline Derivatives w.r.t. Surface Coordinates

	5.2.2 Surfaces Induced by Depth Maps
	5.2.2.1 Derivatives w.r.t. Surface Parameters
	5.2.2.2 Tangents
	5.2.2.3 Normals

	5.2.3 Surfaces Induced by Inverse Depth Maps
	5.2.3.1 Derivatives w.r.t. Surface Parameters
	5.2.3.2 Tangents
	5.2.3.3 Normals

	5.2.4 Inverse Depth Maps using B-Splines

	5.3 Perspective Projection
	5.4 Image Interpolation
	5.5 Brightness Warping
	5.6 Unit Quaternion Constraints
	5.7 A Scale Uniqueness Constraint
	5.8 Regularization
	5.9 Efficient Sparse-Sparse Matrix Products

	6 Light Source Calibration
	6.1 Estimation of the Projection Center
	6.2 Optimization of the Objective
	6.3 Modelling Constant Intensity Disturbances
	6.4 Determining the Intensity Profile

	7 Experimental Results
	7.1 Ground Truth Comparison Method
	7.1.1 Depth Map Registration Approach
	7.1.2 Rotation and Translation Similarity Measures

	7.2 Synthetic Datasets Used for our Evaluation
	7.3 Static Lighting Conditions
	7.3.1 Importance of Adequate Initialization
	7.3.2 Sensitivity of the Initialization to Motion
	7.3.2.1 Ambiguous Configurations

	7.3.3 Importance of Window Size
	7.3.4 Influence of Regularization
	7.3.5 Effect of Spline Resolution
	7.3.6 Behaviour for Medium and Weak Textures
	7.3.7 The Tube Scenario
	7.3.8 Results on Independent Benchmarks
	7.3.9 Non-Verified Reconstruction Results

	7.4 Camera-Centered Light Source
	7.4.1 Non-Verified Reconstruction Results
	7.4.2 A Short Evaluation of Mutual Information
	7.4.3 Effect of Camera-Light Source Displacement

	7.5 Light Source Calibration Results
	7.6 Tracking with a Calibrated Light Source
	7.7 Performance Considerations

	8 Conclusion
	8.1 Future Work

	A Mathematical Notation
	B Diagram Conventions
	Complete List of Author's Publications
	References

