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Abstract— In this paper, we analyze the fundamental trade-
off between information transfer and power gain by means
of an information-theoretic framework in communications cir-
cuits. This analysis is of interest as many of today’s applications
require that maximum information and maximum signal power
are extracted (or transferred) through the circuit at the same
time for further processing so that a compromise concerning
the signal spectral shape as well as the matching network has to
be found. To this end, the optimization framework is applied
to a two-port circuit, which is used as an abstraction for a
broadband amplifier. Thereby, we characterize the involved
Pareto bound by considering different optimization problems.
The first one aims at optimizing the input power spectral
density (PSD) as well as the source and load admittances,
whereas the second approach assumes the PSD to be fixed and
uniformly distributed within a fixed bandwidth and optimizes
the source and load admittances only. Moreover, we will show
that additional matching networks may help to improve the
trade-off.

I. INTRODUCTION

The necessity of simultaneously achieving maximum in-
formation transfer (i.e. minimum noise figure) and maximum
power gain occurs in communication circuits, such as the dif-
ficulty of achieving broadband matching for communication
frontend circuits. In [1], the authors show that in the context
of simultaneous power and information transfer achieving
this goal always involves finding a compromise concerning
the spectral shape of the signal. Generally speaking, the
maximum power transfer is obtained if all available power
is concentrated on one single frequency, where the circuit
presents the maximum power gain. In order to ensure a
maximum information transfer (noise figure), the Waterfill-
ing approach [3], [4] shall be employed, requiring a certain
amount of bandwidth that the spectrum is allowed to occupy.
Additionally, the matching strategy of the circuit to the
source and the load is usually different with respect to the
two aspects.

Our work therefore aims at characterizing this trade-off,
i.e., maximizing the amount of information being transfered
through while simultaneously requiring a certain amount of
signal power at the output to obtain the Pareto-bound of this
trade-off. A simple circuit model corresponding to such a
situation will be presented in Section II. It consists of a very
basic version of a broadband amplifier which is an essential
and common device in the receiver chain. The amplifier
design problem also presents a trade-off between information
transfer and maximum output power gain [6]. This issue is
also known as the noise vs. the power matching design trade-
off. In fact, circuit-designers aim at minimizing the SNR
degradation caused by the braodband amplifier (measured
by the noise figure), while assuring a certain output power

gain such that the subsequent circuit components (mixers,
ADCs) can work in an appropriate way. Due to the difficulty
of defining the noise figure for broadband signals (frequency
dependent), it is meaningful to utilize the Shannon’s mutual
information to measure the degree of degradation caused
by the broadband amplifier, which leads to the proposed
information theoretic framework.

In his very famous work [2], Shannon was able to show
that communication with a negligible error is possible as
long as the communication rate does not exceed the capacity
of the channel. The channel capacity is hereby defined as the
maximum of the mutual information over all possible input
stochastic processes: C , maxpX(x) I(X,Y). For practical
applications an optimization of I(X,Y) given a constraint
concerning the maximum input power seems most reason-
able. Solving this problem as stated in (1) by a Lagrangian
approach yields the well-known water-filling structure of the
PSD (2).
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Hereby, H(ω) is the channel transfer function and Φs(ω)
and Φn(ω) represent the signal and noise PSD respectively.
The notation (x)+ denotes the convenient way of expressing
max (0, x). We will be able to discover strong similarities to
our solution in the following sections, even if an additional
power transfer constraint is present.

II. SYSTEM MODEL

Fig. 1 depicts the circuit model that is employed in order
to obtain an insight into our ambition. In fact, it is a fairly
simple small-signal model of a 2-port amplifier, but on the
other hand it provides up to certain point an abstraction for
a real broadband amplifier. Nevertheless, the analysis can be
applied to other circuit models exhibiting such a trade-off.

The transfer function H(p) = uL(p)
is(p)/GS

is in this case

H(p) =
pCgdGS − gmGS

GSGL + pCgd(GS +GL + gm)
. (3)
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Fig. 1. Used small signal circuit model for the analysis.

With the help of (3), the power gain can be obtained in a
straightforward manner. The power gain – in this context – is
defined as the ratio of the output power to the input power,
which is frequency dependent and leads to the following
form:

GLNA(ω) =
E [|uL(ω)iL(ω)|]

ΦS(ω)
=

E
[
|uL(ω)|2

]
GL

1
4
E
[
|us(ω)|2

]
GS

= 4
GL

GS
|H(jω)|

=
4GSGL

(
g2
m + ω2C2

gd

)
(GSGL)2 + ω2C2

gd(GS +GL + gm)2
. (4)

Another influence which is of vital importance to our
computations is the noise figure NF of the amplifier. This
figure indicates the ratio of the SNR of the original input
signal to the signal at the output port. Using the example of
the circuit in Fig. 1, we obtain the noise figure when just
considering the noisy input part of the circuit

NF(ω) =
SNRin(ω)

SNRout(ω)
=

GSΦS(ω)
GSN0

GSΦS(ω)
GSN0+g0N0

= 1 +
g0

GS
. (5)

We note that, contrary to this example, the noise figure is
usually frequency dependent. As we have seen before, the
expression for the channel capacity depends on the term
ΦS(ω)|H(ω)|2

Φn(ω) , where Φn(ω) is the noise PSD seen at the
output. For the considered circuit, both the signal and the
noise are subject to the same transfer function. Therefore,
the SNR at each frequency is given by

ΦS(ω)|H(ω)|2
Φn(ω)

=
ΦS(ω)|H(ω)|2
NFN0|H(ω)|2 =

ΦS(ω)

NFN0
. (6)

III. MATHEMATICAL PROBLEM FORMULATION

Having introduced all necessary prerequisites, we are now
able to state the mathematical problem, which forms the
foundation for our analysis. Before we tackle this issue in
terms of precise mathematical notation, the problem shall be
revised in a brief summary: Our general goal is to maximize
the information that can be transfered over a noisy channel.
The Waterfilling algorithm provides the optimal way to
distribute power between different independent channels
given a maximum power constraint. However, as we have
mentioned in the introduction, we would like to go one step
beyond and see how the additional constraint of a desired
minimum of power transfer affects the optimization results.

To this end, the mathematical formulation would be
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As pointed out before, the objective function is the mu-
tual information as introduced in (1). The first constraint
expresses that we do have a finite maximum available input
power of P that we are able to spread over the frequency
depending on the form of ΦS(ω). Now, the interesting part
is concealed in the second constraint: We hereby enforce a
certain amount of power to be transfered – the exact amount
can be adjusted by setting η correspondingly. A high value
of η indicates that we demand a large amount of power
to be transfered. As a matter of fact, η must be greater
than one, in order to enable the amplifier to work as a
device it was designed for. We note that this optimization
leads to the characterization of the trade-off (i.e. the Pareto
bound) between information and power transfer of the two-
port circuit.

The maximization problem of (7) can be solved by means
of the Lagrangian approach and the KKT conditions. The
resulting Lagrangian function reads as
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∞∫
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− κ(ω)ΦS(ω).

Regarding the active set of inequality constraints one can
conclude that the last two constraints of (7) have to be active
(i.e. µ 6= 0, κ(ω) 6= 0, as any other theoretically combina-
tions of the KKT multipliers would contradict the principles
of primal feasibility and complementary slackness [7].

IV. CHARACTERIZATION OF THE TRADE-OFF

A. Optimization with Regard to the PSD and the Source and
Load Admittances

The necessary optimality conditions provide a system of
equations that has to be solved

∇L(ΦS(ω), GS, GL, λ, µ, κ(ω)) =
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Caculating ∂L
∂ΦS(ω) and setting it to zero, we get ΦS(ω)

ΦS(ω) =

(
1

ln(2) (λ− µGLNA(ω))
−NFN0

)+

. (9)



This expression can now be used in the other equations
to derive the optimum values of λ, µ and GS, GL. Please
note that the existence of a non-zero value of the drain
conductance gd is crucial for the existence of the trade-off.

The η − C curves in Fig. 2 depict the trade-off between
information and power transfer. Of course, one recognizes
that the curves are monotonously decreasing as the more
power we demand to be transfered (larger η), the less
information can be transmitted.

To this end, Fig. 3 provides an excellent insight into the
trade-off between mutual information and power gain. It
clearly depicts that the more power is demanded to be trans-
fered (indicated by a larger value of η), the narrower (smaller
bandwidth) and higher the graph becomes. If this process
of increasing η is continued, it is obvious that the resulting
mathematical function converges to a Dirac distribution with
zero bandwidth. In fact, this situation perfectly illustrates the
problem of the bandwidth trade-off between both aspects as
depicted in the introductory chapter.
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B. Optimization with Regard to Source and Load Admit-
tances under a Uniformly Distributed PSD

In contrast to our previous investigations, we now assume
that the input power spectral density is fixed and uniformly
distributed (10). This may apply to reality when ΦS(ω) is
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given by a certain application, which does not allow the
spectral density to be modified. In such a scenario, the only
free parameters are the source and load admittances which
are therefore subject to on-going optimization. Besides, we
also introduce an additional matching network at the output
shown in Fig. 6.

ΦS(ω) =

{
P
ωB
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0 otherwise
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Fig. 6. Circuit model with additional matching component.

Consequently, the two necessary conditions with and
without the matching network read respectively as

∇L(GS, GL, µ) =
(
∂L
∂GS

, ∂L
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∂µ

)T
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and
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, ∂L
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)T
= 0.



The numerical simulation results clearly prove the as-
sumption that we had in mind when introducing an addi-
tional matching network. As Fig. 7 shows, the matching
network is able to improve the trade-off by a certain extent.
The extremal points (i.e. maximum channel capacity with
zero power transfer and vice versa) obviously remain the
same, but the overall Pareto bound becomes better due to
the compensation of the gate-drain capacity.

The remaining figures can serve as a confirmation for the
η − C trade-off curve: Fig. 8 shows that the optimization
yields a slightly larger value of GS which causes a higher
capacity according to (5), (7). The sudden decrease of the
inductance value near the maximum gain can be explained if
the derivative of the gain function with respect to L is taken
into account. As the source conductance approaches zero (cf.
Fig. 8), the derivative begins to vanish, resulting in the fact
that the influence of the inductance value is irrelevant.
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V. CONCLUSION

We addressed the characterization of the trade-off between
information and power transfer in designing communication
circuits. As example, we considered a simple small signal
equivalent circuit of a transconductance MOS broadband
amplifier with internal noise source. Finding this trade-
off consisted of maximizing the channel capacity given a
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constraint on the amount of power being transmitted at the
same time. In the beginning, the optimization concentrated
on optimizing the power spectral density as well as the
source and load admittances. In the last section, we finally
assumed the power spectral density to be uniformly dis-
tributed and optimized with respect to the source and load
admittances. Besides, we found that an additional matching
circuit may help to improve this trade-off significantly.
Regarding future work, one should concentrate on further
investigations involving matching circuits and considering
more general circuits.
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