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Chapter 1

Introduction

1.1 Health care operations management

Health care services are not only one of the largest, but also one of the fastest
growing sectors in all industrialized countries. This is due to demographic
changes, rising standards of living, and technological advances [70]. As cost
and competitive pressure increases it comes as no surprise that the health
care sector is a growing part of the operations research/management science
community [39]. Hans et al. [39] propose a framework for clustering health
care planning problems (see Table 1.1). The first dimension is the manage-
rial area. They differentiate between medical planning (planning of medical
services), resource capacity planning (planning of renewable resources), ma-
terials planning (planning of consumable resources/materials), and financial
planning (planning of costs and revenues). All chapters of this thesis focus
on the field of resource capacity planning. The second dimension is the de-
composition into hierarchical levels. The strategic level considers problems
with long time horizons and great impact. An example of a strategic plan-
ning problem is the creation of new capacities, e.g. the construction of new
patient wards. Operational planning usually involves short term decisions.
It can further be distinguished into offline and online operational planning.
Offline planning problems are those that can be solved in advance, while
monitoring and reactive processes are defined as online planning problems.
Examples of offline and online operational planning are appointment schedul-
ing and rescheduling in case of emergencies, respectively. The tactical level is

1
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Medical
planning

Resource ca-
pacity plan-
ning

Materials
planning

Financial
planning

Strategic Research,
development
of medical
protocols

Case mix
and capacity
planning

Supply
chain and
warehouse
design

Investment
plans, insur-
ance strat-
egy

Tactical Treatment
and protocol
selection

Block plan-
ning, admis-
sion plan-
ning

Supplier se-
lection, ten-
dering

Budget and
cost alloca-
tion

Operational
(offline)

Diagnosis
and plan-
ning of indi-
vidual treat-
ment

Appoint-
ment
scheduling

Purchasing,
determining
order sizes

DRG billing,
cash flow
analysis

Operational
(online)

Triage, di-
agnosing
emergencies
and compli-
cations

Monitoring,
emergency
coordination

Inventory
replenishing,
rush order-
ing

Billing com-
plications
and changes

Table 1.1: Sample framework of health care planning and control [39]

between the strategic and the operational level. Tactical problems might be
those where mid-term allocation of resources defined on the strategic level is
made. Tactical decisions often set the frame for operational planning. This
thesis addresses a tactical and an offline operational planning problem.

1.2 Operating room planning and manage-

ment

Planning and management of the operating theater has gained increasing at-
tention in the operations management literature. Guerriero and Guido [38]
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cite more than 100 studies on operating room (OR) management and Car-
doen et al. [18] write “in the last 60 years, a large body of literature on the
management of operating theaters has evolved”. This comes as no surprise as
around 40% of hospital expenses [22] arise in the operating theater, and more
than 60% of hospital admissions are for surgical operations [69]. Operating
room planning exists on all hierachichal levels. Examples are construction of
new operating theaters (strategic level), the creation of master surgery sched-
ules (MSSs) (tactical level), scheduling of surgeries (offline operational level),
and rescheduling of surgeries in case of emergencies (online operational level).
Vanberkel et al. [89] argue that “surgery care does not operate in isolation”.
Departments like the post-anesthesia care unit (PACU), the intensive care
unit (ICU), the general patient wards, rehab, and the emergency depart-
ment are affected by the OR. Another important factor that influences OR
performance is human behavior. A tactical approach considering effects on
downstream units and an offline operational approach analyzing behavioral
effects are discussed in this thesis.

1.3 Structure of the thesis

Besides the introduction (Chapter 1) and the conclusions (Chapter 6), this
thesis contains four chapters. Chapters 2 and 3 discuss the stochastic tactical
operating room management problem of creating MSSs considering down-
stream units. Chapter 2 discusses the theoretical foundations and Chapter
3 presents a case study in a German university hospital. Chapter 4 presents
the effects of penalty aversion on the behavior in the well-known newsvendor
problem. While it does not discuss an operating room management issue, it
provides the theoretical foundation for Chapter 5. Here, surgeons’ behavior
when planning surgery durations is discussed. The thesis ends with Chapter
6 providing conclusions and discussing possible directions for future research.
In what follows we give a more detailed summary of the four core chapters
of this thesis.
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1.3.1 Master surgery scheduling with consideration of
multiple downstream units (Chapter 2)

Chapter 2 considers a tactical MSS problem in which block OR time is as-
signed to different surgical specialties. While most MSS approaches in the
literature examine only impact of designing the MSS on the operating theater
and operating staff, the scope is expanded to include downstream resources,
such as the ICU and the general wards required for recovery by the patients
once they leave the OR. In this chapter a stochastic analytical approach,
which calculates the exact demand distribution for the downstream resources
of a given MSS, is proposed. Measures to define downstream costs resulting
from the MSS as well as exact and heuristic algorithms to minimize these
costs are discussed. This chapter is based on Fügener et al. [34].

1.3.2 Improving ICU and ward utilization by adapting
master surgery schedules: A case study (Chapter
3)

The close relationship between an MSS and the bed demand in the down-
stream units ICU and ward is outlined in Chapter 3. Using historical data
retrieved from the clinical information system of a German university hospi-
tal and a simple patient flow model, an algorithm for predicting bed demand
based on MSSs is applied. Scenario simulations are performed with three
different MSSs. The impact on the required number of beds in the down-
stream units is analyzed. Chapter 3 presents potential improvements of the
current MSS and evaluates two alternative MSSs: one lowering the weekend
ICU utilization by 20%, the other one reducing the maximum number of
ward bed requests by 7%. The application of the algorithm provides insight
into the impact of MSS designs on the bed demand in downstream units. It
enables the development of MSSs that avoid both peaks in bed requests and
high weekend occupancy levels in the ICU and the ward. This chapter is
based on Fügener et al. [33].
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1.3.3 On the assessment of costs in a newsvendor en-
vironment: Insights from an experimental study
(Chapter 4)

Chapter 4 addresses the question how the assessment of costs influences de-
cisions in a newsvendor setting. It is expected that different cost types lead
to different behavior. This investigation considers a newsvendor problem
with opportunity costs and a newsvendor problem with penalty costs. In
addition, three cases with different margins for each of the two problems are
differentiated. In an experimental study the average order quantities in the
newsvendor problem with penalty costs exceeded the average order quantities
in the newsvendor problem with opportunity costs and a mean anchor effect,
as familiar from a number of previous studies, exists. A different weighting
of costs can be seen as the main driver for the different order quantities.
Thus, a biased perception of different cost types exists and decision makers
are more sensitive to penalty costs than to opportunity costs. Based on the
observations in this chapter, both situations where the cost weighting and
the mean anchor effect compensate for each other and thus lead to “good”
decisions as well as situations where the two effects compound and therefore
lead to “bad” decisions can be identified. As penalty costs are present in
many newsvendor situations, e.g. the planning of surgery durations, the in-
sights allow for the application of the findings from behavioral studies of the
newsvendor problem to a broader context. This chapter is based on Schiffels
et al. [74].

1.3.4 Underutilization and overutilization of operating
rooms: Insights from behavioral health care op-
erations management (Chapter 5)

The planning of surgery durations discussed in Chapter 5 is crucial for ef-
ficient usage of operating theaters. Planning too long or too short slots for
surgeries leads to operating room inefficiency, e.g. idle time, overtime, or
rescheduling of surgeries. Since surgery durations are stochastic, the overall
objective of planning surgery durations is to minimize the expected costs of
operating room inefficiency. While most health care studies assume rational
behavior of decision makers, experimental studies have shown that decision
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makers often act irrational. Based on insights from health care operations
management, medical decision making, behavioral operations management,
as well as empirical observations, hypotheses that surgeons’ behavior devi-
ates from rational behavior in many ways are derived. To investigate this, an
experimental study where experienced surgeons were asked to plan surgeries
with uncertain durations was set up. Systematic deviations from optimal
decision making are discovered and behavioral explanations for the observed
biases are given. This research provides new insights to tackle a major prob-
lem in hospitals, i.e. low operating room utilization going along with staff
overtime. This chapter is based on Fügener et al. [35].



Chapter 2

Master surgery scheduling with
consideration of multiple down-
stream units

2.1 Introduction

Due to an aging society and technological advances, the demand for health
care services is rising in industrialized countries [42]. At the same time, cost
cuts and human resource shortages lead to increasing pressure on hospital
resources. Therefore, the importance of optimizing the usage of scarce re-
sources in hospitals is self-evident. The most expensive resource in most
hospitals is the operating room (OR) [38]. ORs are clearly connected with
other “downstream” resources, for example, the post-anesthesia care unit
(PACU), the intensive care unit (ICU), and the general patient wards, re-
ferred to hereafter as “ward.” When planning the operating rooms and the
downstream units, decision makers face a trade-off between the high com-
plexity of a holistic view and the danger of suboptimal solutions resulting
from focusing on isolated units [89].

Many hospitals use a so-called block-booking system when planning surg-
eries. In this system a medical specialty, e.g. urology, is assigned to blocks
denoting a specific amount of time, e.g. a day, in one OR. These blocks can be

7
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combined into cyclical master surgery schedules (MSSs), where every block is
repeated after a fixed cycle, e.g. every two weeks. In planning and scheduling
problems can be categorized according to levels of a decision hierarchy [39]:
The strategic, tactical, offline-operational — i.e. planning in advance — and
the online-operational — i.e. reacting/monitoring — level. In block-booking
systems, decisions are made on all hierarchical levels. At the strategic level
the number of blocks assigned to the specialties during a MSS cycle is deter-
mined. At the tactical level, OR-days are allocated to specialties in an MSS,
such that the strategic allocation is met. At the operational level, patients
are scheduled (offline) and rescheduled in case of emergencies or unexpected
changes (online). An overview of OR planning may be found in Hans and
Vanberkel [40].

In this chapter, we discuss the tactical MSS problem, concentrating on
the effect the MSS has on downstream care units. Surgeries performed in
each block of the MSS create a flow of patients through the ICU to the ward,
or directly from the OR to the ward, before they leave the hospital. We
exclude the PACU in our tactical problem and denote the ICU and the ward
as downstream units. We define a model to calculate the distributions of
recovering patients in the downstream units expected from the MSS. Based
on this, we propose an approach for planning the MSS with the objective to
minimize downstream costs by leveling bed demand and reducing weekend
bed requests. Anderson et al. [4] show that a high level of utilization in hos-
pital wards leads to a higher discharge rate of patients which might reduce
the quality of care. On days with high patient inflow to the ICU the danger
of readmissions [5] and the probability of rejected ICU requests [60] strongly
increases. Therefore, downstream units should also be considered in surgery
planning for medical reasons.

The remainder of this chapter is organized as follows: In Section 2.2
we provide a brief overview of the relevant literature. Section 2.3 presents
an algorithm for calculating the distribution of recovering patients in the
downstream units — ICU and ward. Section 2.4 offers a generic model to
determine optimal MSSs and a discussion of relevant objective functions
to determine downstream costs. In Section 2.5 we present a branch-and-
bound algorithm and different heuristics to minimize these costs. We test
the algorithms in Section 2.6 in an experimental investigation using data
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obtained from a Dutch hospital. Finally, we discuss managerial implications,
limitations, and potential extensions of our study.

2.2 Literature review

Operating rooms are among the most expensive resources in hospitals and
a large number of studies about OR scheduling exists [18]. For recent liter-
ature reviews on OR scheduling, see Cardoen et al. [18] and Guerriero and
Guido [38]. Articles about health care models that include both the OR and
downstream units are reviewed in Vanberkel et al. [89]. In this section, we
will focus our review on articles that combine OR scheduling with the effect
on downstream units, such as ICUs or wards.

Adan and Vissers [3] present a deterministic integer programming ap-
proach to schedule patients based on fixed capacities in the OR, the ICU,
and the ward. The ICU and ward capacities are the number of beds available
for each specialty, while the OR capacity is the total available operating time
per day. Additionally, the capacity of the nursing staff is considered. Based
on this, a daily admission profile for different specialties that minimizes the
deviation from resource utilization targets is obtained. Santibanez et al. [73]
examine various trade-offs made during tactical OR planning. They also
apply a deterministic mixed-integer program and compare different objec-
tives, e.g. maximizing throughput of patients or leveling the bed requests of
downstream units like ICUs or wards. They differentiate between beds and
nursing levels as well as between ORs and surgeons. A more detailed (i.e.
closer to operational) model to construct an MSS where patient types are
assigned to blocks is formulated by [88]. They seek to minimize the required
OR capacity and to level hospital ward bed requirements. To incorporate the
uncertainty of OR durations, they introduce probabilistic constraints. They
solve the model in two steps. First, OR capacities are optimized without
consideration of hospital-beds using so-called Operating Room Day Sched-
ules (ORDS), i.e., lists of surgery types that are assigned to one OR day.
Then, the ORDSs are assigned to OR days in order to level hospital-bed
demand. Therefore, leveling hospital-bed demand is only possible using the
precomputed set of ORDS. These three studies model multiple downstream
units with deterministic approaches, while our study employs a stochastic
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approach.

Models for creating MSSs with leveled bed occupancy in downstream
units are presented in Beliën and Demeulemeester [8]. Contrary to the ar-
ticles presented above, both the number of patients and the length of stay
in the hospital are assumed to be stochastic. A multinomial distribution is
used to model the length of stay. The authors aim to minimize the expected
bed shortage and employ a mixed-integer programming and simulated an-
nealing approach. The approach of Beliën and Demeulemeester [8] differs
from our approach in only allowing one downstream resource (ward), while
we model the patient flow including the ICU and ward and thus consider
multiple downstream units.

Min and Yih [61] propose an operational scheduling of elective surgeries
that considers both uncertainty and downstream capacity constraints. They
formulate a stochastic surgery scheduling problem minimizing the sum of
costs directly related to patients and expected overtime costs. The down-
stream capacities are modeled as constraints. In contrast to their approach,
that considers the operational surgery planning level, we focus on the tactical
level.

Our study is based on the approach of Vanberkel et al. [91] where bino-
mial distributions and discrete convolutions are used to calculate the exact
distribution of recovering patients in the ward resulting from a given MSS.
Vanberkel et al. [91] present algorithms to determine the distributions of
ward occupancy, patient admissions, patient discharges, and the number of
patients on each day of their recovery period. The major contribution of
that paper is an exact algorithm to evaluate the effect of an MSS on ward
occupancy. A case study where the algorithm is implemented in a Dutch hos-
pital is presented in Vanberkel et al. [90]. The authors use the algorithm to
test several MSSs and to choose one with a more favorable ward occupancy
pattern. However, the study contains some limitations, which we address
in the study at hand. First, the algorithm only includes the ward as a sin-
gle downstream unit. As the ICU is an important bottleneck in hospitals
[53], we incorporate ICU bed requests in the model as a valuable extension.
Second, Vanberkel et al. [91] contains no quantitative approach to evaluate
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the costs resulting from an MSS. As different downstream costs exist, e.g.
costs for providing fixed capacities or costs for weekend staffing, we develop
a model to assign costs to specific MSSs. Third, we improve on the selection
process for new MSSs by introducing several exact and heuristic algorithms
to minimize downstream costs.

To the best of our knowledge, the current study presents the first ex-
act stochastic approach to calculate patient occupancy distributions for the
ICU and ward following an MSS. In addition, we present exact and heuris-
tic algorithms to minimize costs resulting from patients in downstream units.

2.3 Recovering patients in downstream units

In this section, we describe a model that calculates the exact distribution
of post-operative inpatients in the ICU and the ward resulting from a given
MSS cycle. We do not further distinguish between different ICUs or wards
in this study. However, the presented model can easily be extended to in-
clude several ICUs and wards as well as stays in the PACU. We now present
the general underlying assumptions regarding the process, the data require-
ments, and the detailed model.

After an operation several patient paths exist. In most cases, patients
are admitted to the ward. In more acute cases, patients are sent to the ICU
to recover. Alternatively, patients might be discharged without being sent to
the ward or die. Patients in the ward will be transferred to the ICU if their
condition has become unstable. Most patients leave the system only after
recovering in the ward, but they might also leave the hospital directly from
the ICU (e.g. in case of death or if transferred to another hospital). The
patient paths are outlined in Figure 2.1.

In studying data from a large University Hospital in Munich, Germany,
we found that more than 98% of inpatients follow one of three paths. The
vast majority (92%) follow the path OR → ward → discharge. About 5%
follow OR → ICU → ward → discharge. Just above 1% follow the path
OR → ICU → discharge, i.e. the previous path with a zero day stay in the
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OR

ICU

Ward

Discharge

Figure 2.1: Patient paths

ward. It is very rare for patients to return to the ICU after being transferred
from the ICU to the ward (just above 1%). Based on this data we have
simplified the modeled patient pathway as depicted in Figure 2.2.

OR

ICU

Ward

Discharge

Figure 2.2: Simplified patient paths

The number of patients sent to the ICU or the ward after one surgery
block is modeled by a discrete empirical distribution. This distribution may
also include emergency patients who were operated on during this block. A
stay in the ICU is denoted by “I,” a stay in the ward of patients who directly
came from the operating room by “WO,” and a stay in the ward of patients
who were transferred from the ICU by “WI.” The lengths of stay (in days) in
the ICU or the ward, after being transferred from the OR or from the ICU,
are also modeled by discrete empirical distributions. Such distributions are
easily obtained from historical records.

The main sets and indices used in the following model are shown in Table
2.1. The index n is used to determine days after surgery, where 1 denotes
the day of surgery. Days after a transfer to the ward from the ICU will be
denoted by u. Required historical or estimated data for every specialty j ∈ J
are as follows:

• aj(p) represents the probability that p ∈ {0, . . . , Pj} patients are oper-
ated on during a surgery block of specialty j.

• bj represents the probability that a patient of specialty j is admitted
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Description Index ∈ Set
Surgery specialties j ∈ J
Operating rooms (ORs) i ∈ I
Patients p ∈ {0, . . . , Pj}
Days in the ICU after surgery n ∈ {1, . . . , N I

j }
Days in the ward after surgery n ∈ {1, . . . , NWO

j }
Days in the ward after ICU u ∈ {0, . . . , NWI

j }
Days in the MSS cycle ℓ ∈ L
Weekdays in the MSS cycle q ∈ Q
Weekend days in the MSS cycle ℓ ∈ L \ Q

Table 2.1: Sets and Indices

to the ICU immediately after surgery. 1− bj is the probability that the
patient is admitted to the ward.

• cIj (n) represents the probability that a patient from surgery of specialty
j stays exactly n ∈ {1, . . . , N I

j } days in the ICU after surgery.

• cWO
j (n) represents the probability that a patient from surgery of spe-
cialty j stays exactly n ∈ {1, . . . , NWO

j } days in the ward after surgery.

• cWI
j (u) represents the probability that a patient from surgery of spe-
cialty j stays exactly u ∈ {0, . . . , NWI

j } days in the ward after being
released from the ICU. A stay of zero days implies a direct release from
the ICU.

The model works in three steps (see Figure 2.3). First, we calculate the
distributions of recovering patients from a single surgery block in the ICU
and the ward, respectively. This step is carried out for each surgical specialty.
In the next step we calculate the distributions for a single cyclical block. It
is important to note that we assume the MSS to be cyclical. Therefore,
each block will be repeated for each new MSS cycle. In the third step we
combine all blocks from a cyclical MSS. The first two steps do not depend on
the specific MSS, we only need information about the definition of surgery
blocks (e.g. length of a block) and the length of the MSS cycle. Therefore,
these steps can be calculated during preprocessing. Due to the structure of
the problem, the third step has to be calculated for each MSS we want to
evaluate.
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Step 1: Single OR Block

Patient distribution from single OR block

Step 2: Cyclical OR Block

Patient distribution from cyclical schedule of 

one OR block

Step 3: Cyclical MSS

Patient distribution from cyclical MSS

Preprocessing

Figure 2.3: Process steps

2.3.1 Calculation of the distributions of patients re-
sulting from a single OR block (Step 1)

In the following, we present the algorithm to derive the distributions of pa-
tients resulting from a single OR block. First, using the probability of an
ICU admission and the empirical length of stay distributions, we analyze
the pathway of a single patient through the hospital (see Figure 2.4). After
surgery, a patient can be admitted either to the ICU or to the ward. On each
day n, a patient in the ICU may either stay or be transferred to the ward.
A patient in the ward may either stay or be released from the hospital. We
assume that the probability for a patient to be discharged from the ward
after being transferred from the ICU only depends on the length of stay in
the ward.

OR

Day 1 Day 2 Day 3 ...

Ward Ward Ward

ICU ICU ICU

Ward

ICU

Ward

Ward Ward

Ward Ward Ward

Dis-

charge

Figure 2.4: Patient paths modeled as a Markov chain
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Equation (1) calculates the probability dIj,n for a patient of specialty j in
the ICU on day n (i.e. who has not been transferred by then) to be transferred
to the ward that day. Analogously, Equation (2) calculates the probability
dWO
j,n that a patient who is in the ward n days after surgery is discharged on

that day; and Equation (3) calculates the probability dWI
j,u for a discharge u

days after the transfer from the ICU to the ward. Patients who leave the
hospital after staying in the ICU are modeled to have a stay of zero days in
the ward. The calculations follow the logic of Vanberkel et al. [91].

dIj,n =
cIj (n)

∑NI
j

k=n c
I
j (k)

j ∈ J , n ∈ {1, . . . , N I
j } (1)

dWO
j,n =

cWO
j (n)

∑NWO
j

k=n cWO
j (k)

j ∈ J , n ∈ {1, . . . , NWO
j } (2)

dWI
j,u =

cWI
j (u)

∑NWI
j

k=u cWI
j (k)

j ∈ J , u ∈ {0, . . . , NWI
j } (3)

We denote the latest possible day with a positive probability of a patient
staying in the ICU and in the ward as N I

j and NW
j = max(NWO

j , N I
j +NWI

j ),
respectively. Now, we calculate in Equation (4) for all specialties j ∈ J and
each day n ∈ {1, . . . , N I

j } the probabilities eIj,n that a patient of specialty j

who had surgery on day 1 is in the ICU. Accordingly, the same is done for
patients staying in the ward (eWj,n for n ∈ {1, . . . , NW

j }). For the probability
that a patient of specialty j is in the ICU on day n we get:

eIj,n =











bj, n = 1

(1− dIj,n−1)e
I
j,n−1, n ∈ {2, . . . , N I

j }

0, otherwise.

(4)

On day 1, this probability equals bj, i.e. the probability that the patient
is directly transferred to the ICU after surgery. For the following days, the
probability decreases as patients might be transferred to the ward. In order to
calculate eWj,n, we differentiate between patients who were directly transferred
to the ward after leaving the OR and those who were transferred via the ICU.
The probability that the patient came directly from the OR and is in the ward
on day n is denoted by eWO

j,n , whereas the probability that the patient is in
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the ward on day n after staying m days in the ICU is eWI
j,m,n.

eWO
j,n =











1− bj, n = 1

(1− dWO
j,n−1)e

WO
j,n−1, n ∈ {2, . . . , NWO

j }

0, otherwise.

(5)

eWI
j,m,n =























(1− dWI
j,0 )d

I
j,me

I
j,m, m ∈ {1 . . . N I

j }, n = m+ 1

(1− dWI
j,n−m−1)e

WI
j,m,n−1, m ∈ {1 . . . N I

j },

n ∈ {m+ 2, . . . ,m+NWI
j }

0, otherwise.

(6)

The calculation of eWO
j,n in Equation (5) is analogous to eIj,n. To calculate

eWI
j,m,n in Equation (6), the different transfer times from the ICU are taken
into account. After staying m days in the ICU (n = m+1), eWI

j,m,n equals the
product of (a) the probability (1 − dWI

j,0 ) that the patient did not leave the
hospital immediately, (b) the probability dIj,m that he was transferred to the
ward after m days in the ICU, and (c) the probability eIj,m that the patient
was in the ICU on day m. Therefore, the probability eWj,n that a patient is
in the ward on day n is calculated in Equation (7) by adding the probability
eWO
j,n that he came directly from the OR and the probabilities eWI

j,m,n that he
stayed m days in the ICU before for all possible number of days m < n.

eWj,n =























eWO
j,1 , n = 1

eWO
j,n +

n−1
∑

m=1

eWI
j,m,n, n ∈ {2, . . . , NW

j }

0, otherwise.

(7)

Now, we calculate for each day n the probability distribution for the
number of patients in the ICU, f I

j,n(p), in Equation (8) and in the ward,
fW
j,n(p), in Equation (9). The probability that out of k patients who had
surgery, p patients are in the ICU or ward on day n can be determined
using a binomial distribution [91]. Next, we have to sum these probabilities
weighted by aj(k) for all possible k (number of patients that had surgery)
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that could lead to p patients on day n.

f I
j,n(p) =

Pj
∑

k=p

(

k

p

)

(eIj,n)
p(1− eIj,n)

k−paj(k) (8)

j ∈ J , n ∈ {1, . . . , N I
j }.

fW
j,n(p) =

Pj
∑

k=p

(

k

p

)

(eWj,n)
p(1− eWj,n)

k−paj(k) (9)

j ∈ J , n ∈ {1, . . . , NW
j }.

2.3.2 Calculation of the distributions of patients re-
sulting from a cyclical OR block (Step 2)

As the MSS schedule is cyclical, each block will be repeated in every cycle.
For example, in a weekly cycle a urological block on Monday will take place on
every Monday. As the maximum recovery time of patients usually exceeds
the cycle time, patients having their surgery in different cycles might be
recovering at the same time. The number of overlapping cycles depends on
the cycle length L = |L| and the maximum length of stay N I

j for patients
in the ICU and NW

j for patients in the ward. To obtain the distributions of
patients on the days of one cycle, we perform discrete convolutions — see (10)
and (11) — of the patient distributions of all overlapping cycles for the ICU
and the ward, respectively. We use the symbol ∗ for discrete convolution.
F I
j,ℓ (F

W
j,ℓ ) represents the distribution — on the ℓth day of a cycle — of the

number of recovering patients of specialty j in the ICU (ward) which result
from a cyclical surgery block on day 1 of all previous cycles including the
current cycle.

F I
j,ℓ = f I

j,ℓ ∗ f
I
j,ℓ+L ∗ ... ∗ f I

j,ℓ+⌊(NI
j −ℓ)/L⌋L j ∈ J , ℓ ∈ L (10)

FW
j,ℓ = fW

j,ℓ ∗ f
W
j,ℓ+L ∗ ... ∗ fW

j,ℓ+⌊(NW
j −ℓ)/L⌋L j ∈ J , ℓ ∈ L (11)
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2.3.3 Calculation of the distributions of patients re-
sulting from a cyclical MSS (Step 3)

To calculate a cyclical MSS, we obtain the patient distributions coming from
each block (i, q), where i denotes the operating room and q the day of the
cycle. We assume that surgery blocks are only provided on weekdays. For a
given MSS, x is set and each xi,q,j has a value of 1 if specialty j is assigned

to block (i, q) and a value of 0 otherwise. F
I

i,q,l in (12) (F
W

i,q,l in (13)) is the
distribution of the number of recovering patients in the ICU (ward) on day
ℓ of the MSS cycle coming from surgery in OR i on day q of the MSS cycle.

F
I

i,q,ℓ =

{

∑

j∈J F I
j,ℓ−q+1xi,q,j , ℓ ≥ q

∑

j∈J F I
j,ℓ−q+1+Lxi,q,j , otherwise.

(12)

i ∈ I, q ∈ Q, ℓ ∈ L,

F
W

i,q,ℓ =

{

∑

j∈J FW
j,ℓ−q+1xi,q,j , ℓ ≥ q

∑

j∈J FW
j,ℓ−q+1+Lxi,q,j , otherwise.

(13)

i ∈ I, q ∈ Q, ℓ ∈ L

Now we have to convolve the distributions of all blocks to obtain the
patient distribution resulting from the MSS. F I

ℓ in (14) (FW
ℓ in (15)) denotes

the distribution of recovering patients in the ICU (ward) on day ℓ of the MSS
cycle. sup{I} denotes the last operating room, sup{Q} the last weekday with
an active surgery slot.

F I
ℓ = F

I

1,1,ℓ ∗ F
I

1,2,ℓ ∗ ... ∗ F
I

sup{I},sup{Q},ℓ ℓ ∈ L (14)

FW
ℓ = F

W

1,1,ℓ ∗ F
W

1,2,ℓ ∗ ... ∗ F
W

sup{I},sup{Q},ℓ ℓ ∈ L (15)

The steps presented in this section calculate for a given MSS the distri-
bution of patients for every day ℓ in the MSS cycle for the ICU and the ward.
Note that xi,q,j is assumed to be set for now but will become a variable when
we are searching for a good MSS. In the next sections we present methods
to minimize downstream costs of an MSS using these distributions.



2.4 Generic model and discussion of objectives 19

2.4 Generic model and discussion of objec-

tives

In Section 2.4.1 we present a generic model that minimizes downstream costs
using a general assignment problem. We then discuss different downstream
cost functions for this model in Section 2.4.2.

2.4.1 Generic model

We define a generic assignment problem — i.e. not considering hospital
specifics — that minimizes the downstream costs c(x). c(x) is a function
of the distribution of patients in the downstream units calculated in steps 1
to 3 in the previous section resulting from the MSS x, i.e. the assignment
of all blocks (i, q) to a specialty j. The formulation of the generic model
contains constraints (17)-(20) to ensure that no more than one specialty is
assigned to any surgery block, that the sum of required blocks dj for every
specialty j does not exceed the available number of blocks, and that the
maximum number of blocks of specialty j on day q is sqj, e.g. the number of
available surgeons.

Min c(x) (16)

s.t.
∑

j∈J

xi,q,j ≤ 1 i ∈ I, q ∈ Q (17)

∑

i∈I

∑

q∈Q

xi,q,j ≥ dj j ∈ J (18)

∑

i∈I

xi,q,j ≤ sqj q ∈ Q, j ∈ J (19)

xi,q,j ∈ {0, 1} i ∈ I q ∈ Q, j ∈ J . (20)

Equations (17) and (18) are the assignment problem constraints. Equation
(17) ensures that at most one specialty is assigned to each block, while (18)
ensures that the number of blocks assigned to each specialty equals the num-
ber of required blocks. The maximum number of blocks of each specialty per
day is modeled in (19). Equation (16) represents a generic objective function.
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This model can easily be adjusted to deal with specific constraints, e.g. some
specialties have to operate in specific ORs.

2.4.2 Discussion of downstream cost functions

We define four cost components that drive downstream costs: fixed costs,
overcapacity costs, staffing costs, and additional weekend staffing costs. Our
main goal is to incorporate cost estimates based on patient distributions in
the generic model to obtain optimized MSSs.

Fixed costs. We consider the costs for creating and maintaining fixed ca-
pacities. We define cI,f and cW,f as the costs for creating and maintaining the
capacity for one patient in the ICU and the ward per cycle, respectively. An
example of fixed costs is the costs associated with an ICU bed. The model
determines the required capacity of these resources to ensure certain service
levels αI and αW . We denote QI

ℓ(α
I) as the αI-quantile of the distribution F I

l

of the number of patients in the ICU on day ℓ. QW
ℓ (αW ) is the αW -quantile

for the distribution FW
l of patients in the ward. For example, Q(.99) de-

notes the capacity that will not be exceeded with a probability of 99%. The
number of beds we need to provide in the ICU and in the ward are therefore
capI(αI) = max

ℓ∈L
(QI

ℓ(α
I)) and capW (αW ) = max

ℓ∈L
(QW

ℓ (αW )), respectively. We

obtain total fixed costs of

costf = cI,fcapI(αI) + cW,fcapW (αW ). (21)

Overcapacity costs. Overcapacity costs are costs that incur due to re-
quiring capacity beyond capI and capW . This situation occurs, for example,
when patients must be transferred to ICUs or wards in other hospitals as
capacity limits, depending on the service levels αI and αW , are reached.
We assign costs of cI,o and cW,o for each patient above existing capacities
per day. The expected number of these patients per day is excI(αI) =
∑Q

ℓ=1

∑UBI

p=capI(αI)+1 pF
I
ℓ (p) in the ICU and excW (αW ) =

∑Q
ℓ=1

∑UBW

p=capW (αW )+1

pFW
ℓ (p) in the ward. UBI and UBW is an upper bound of the number of

patients that request a bed in the ICU and the ward, respectively. A sim-
ple upper bound is the product of the number of overlapping cycles and the
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maximum number of patients per cycle. We obtain overcapacity costs of

costo = cI,oexcI(αI) + cW,oexcW (αW ). (22)

Both the fixed costs and the overcapacity costs depend on the service levels
αI and αW . The higher the service level is, the higher the fixed costs and the
lower the overcapacity costs are. Setting the appropriate service levels αI

and αW should be done on a strategic level and is not treated in this study.
A discussion of the trade-off between idle capacities (i.e. fixed costs) and
waiting time (i.e. overcapacity costs) can be found in Patrick and Puterman
[68].

Staffing costs. Staffing costs are dependent on the number of patients,
i.e. occupied beds. The staffing decision for every bed is made in advance.
Therefore, we assume a service level of βI and βW for staffing beds. For
example, a hospital might staff the .75 quantile of demand to be understaffed
no more than 25 % of the time. The consideration of a constant nurse-to-
patient ratio would lead to a step-function and an integer number of solutions.
However, this would significantly increase the complexity of the model. For
simplicity, we assume the costs for staffing one bed per day are constant
with cI,s for the ICU and cW,s for the ward. The total number of beds to be
staffed during one cycle in the ICU and in the ward are therefore staI(βI) =
∑

ℓ∈L

QI
ℓ(β

I) and staW (βW ) =
∑

ℓ∈L

QW
ℓ (βW ), respectively. The staffing costs,

costs, with standard wages for all days are

costs = cI,sstaI(βI) + cW,sstaW (βW ). (23)

Weekend staffing costs. Usually, there are additional costs for staffing
beds on weekends. The additional costs for one bed per day are cI,we and
cW,we. The total number of beds to be staffed on the weekends of one cy-
cle in the ICU and the ward are therefore staI,we(βI) =

∑

ℓ∈L\Q

QI
ℓ(β

I) and

staW,we(βW ) =
∑

ℓ∈L\Q

QW
ℓ (βW ), respectively. The additional costs on week-

ends are

costwe = cI,westaI,we(βI) + cW,westaW,we(βW ). (24)
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Many combinations of downstream costs are possible. In our case study,
we employ downstream costs of c(x) = costf+costwe. The resulting objective
function is

Min cI,fcapI + cW,fcapW + cI,westaI,we + cW,westaW,we. (25)

2.5 Solution algorithms

The generic model presented in the previous section is a classical assignment
problem. Although the assignment problem is well-known to be NP-hard,
there are efficient procedures, such as branch-and-bound, to solve even large
instances to optimality. However, the calculation of the objective function
value is, due to the convolution of distributions as carried out in Section
2.3, quite extensive. Hence, in addition to an optimal branch-and-bound
procedure, we discuss two different heuristic approaches to solve the master
surgery scheduling problem:

1. Exact objective function and heuristic solution method

2. Approximated objective function and exact solution method

Relating to 1, we apply an incremental improvement heuristic, a 2-Opt
heuristic, and simulated annealing. Relating to 2, we consider two approxi-
mated objective functions: the first uses expected values only, while the sec-
ond employs a combination of expected values and variances. The last two
approaches show some similarities to Beliën and Demeulemeester [8], who
minimize expected shortage of ward beds by linearization of their problem.

2.5.1 Straightforward branch-and-bound

The straightforward branch-and-bound (SBB) algorithm is based on com-
plete enumeration but avoids redundant symmetrical solutions. These could
be caused by having different combinations of the same specialties on the
same day in different ORs. The algorithm fills up block after block of the
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MSS using a depth-first search. It assigns all blocks, i.e. combinations of
days q and operating rooms i, to specialties j starting with the specialty
with the lowest index. After each block of a day is assigned to a specialty,
the next day is started. To avoid redundant solutions, remaining blocks on
the same day will only be filled with specialties with the same or a higher
index. An example for the solutions is presented in Figure 2.5. Here, we
show for 5 blocks (1 day with 1 OR, 2 days with 2 ORs) and 3 specialties
(specialty 1 and 2 with 2 blocks each, specialty 3 with one block) all 11 pos-
sible non-redundant solutions (compared to a total of 5!

2!2!
= 30 solutions to

assign these 3 specialties to 5 blocks). As an example, the solution 3 shows
an assignment of the two required blocks of specialty 1 to OR 1, days 1 and
3. The two required blocks of specialty 2 are assigned to operating rooms 1
and 2 on day 2, and the block of specialty 3 is assigned to operating room 2
on day 3.
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Figure 2.5: All non-redundant solutions for an example with 5 blocks and 3
specialties

After assigning a specialty to a block the algorithm updates the distribu-
tions of patients in the ICU and the ward. A lower bound of the objective
function, leaving the remaining blocks empty, is computed and compared
with an upper bound, which is the best known feasible solution. A good first
upper bound may be obtained by simulated annealing, as detailed in the
following section. A partial solution is fathomed as soon as its lower bound
is not strictly smaller than the upper bound. If a new feasible solution is
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obtained after assigning the last block to a specialty is better than the cur-
rent upper bound, the upper bound is updated. We present the example of
Figure 2.5 with upper and lower bounds, fathoming of non-optimal solutions
and the optimal solution (dark with white numbers) in Figure 2.6. While
this method is exact, it may only be applied to small problem instances.
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Figure 2.6: Optimal solution for an example with 5 blocks and 3 specialties

2.5.2 Exact objective function and heuristic solution
method

Incremental improvement heuristic. The incremental improvement heuris-
tic (IIH) is motivated by the way MSSs are altered in practice. Usually, an
MSS already exists and the hospital is not willing to allow many changes,
since the MSS affects many upstream and downstream departments (e.g. the
outpatient clinic). The proposed heuristic will seek the best option if only
one swap of two blocks is allowed. Therefore, it will realize the swap with
the maximum incremental improvement. This method may be used to show
improvements for a defined maximum number of swaps.
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2-Opt heuristic. We repeat the incremental improvement heuristic until
no further improvement of the objective function is observed. In this case it is
equivalent to the 2-Opt (2OH) approach known from the traveling salesman
literature [52].

Simulated annealing. IIH and 2OH presented above are quite likely to
get stuck in a local optimum. Its results are sensitive to the starting point.
To overcome this weakness we propose a simulated annealing approach (SA)
with the same neighborhood as IIH and 2OH. Contrary to IIH, the SA might
find solutions that are completely different from the starting solution. The
SA will accept every move, i.e. swap of two blocks, that improves the objec-
tive function. A swap causing an increase in the objective function will be
accepted with a probability which decreases over time. We implement the
SA using a geometric cooling schedule with tk = cf · tk−1, where cf denotes
the cooling factor and tk the temperature level in round k. The lower it is,
the faster the cool down occurs and thus the faster the SA terminates. More
details of the algorithm are given in Section 2.6.

2.5.3 Approximated objective function and exact so-
lution method

Heuristic with approximated objective function based on expected
values. We approximate the quantiles QI

ℓ and QW
ℓ used in the exact objec-

tive function by their expected values, E(F I
j,l) for the ICU and E(FW

j,l ) for the
ward, multiplied with parameters aI,E and aW,E for fixed capacities and bI,E

and bW,E for weekend staffing, respectively. We estimate the parameters by
the average quotient of the respective quantiles Q(·) and the expected values
E(·) of the starting solution. Table 2.2 states the approximated quantiles.
We denote the heuristic using expected values as EV.

As defined in the previous section, the objective function is

Min cI,fcapI + cW,fcapW + cI,westaI,we + cW,westaW,we, (26)

where capI and capW denote the capacity levels, staI,we and staW,we the
cumulated beds to be staffed on weekends during one MSS cycle for the ICU
and the ward, respectively. For the approximation of the objective function,
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Quantile Exact Model EV Heuristic
Patients in the ICU relevant for fixed
capacities

QI
ℓ(α

I) aI,EE(F I
ℓ )

Patients in the ward relevant for fixed
capacities

QW
ℓ (αW ) aW,EE(FW

ℓ )

Patients in the ICU relevant for weekend
staffing

QI
ℓ(β

I) bI,EE(F I
ℓ )

Patients in the ward relevant for weekend
staffing

QW
ℓ (βW ) bW,EE(FW

ℓ )

Table 2.2: Approximations for EV

the constraints (27) to (29) need to be added to the generic model presented
in Section 2.4.1. We only show the constraints for the ICU, the ones for the
ward are formulated analogously.

E(F I
ℓ ) =

∑

i∈I

∑

j∈J

ℓ
∑

q=1

E(F I
j,ℓ−q+1)xi,q,j+ (27)

∑

i∈I

∑

j∈J

L
∑

q=ℓ+1

E(F I
j,ℓ−q+1+L)xi,q,j ℓ ∈ L

aI,EE(F I
ℓ ) ≤ capI ℓ ∈ L (28)

∑

ℓ∈L\Q

bI,EE(F I
ℓ ) = staI,we (29)

In (27), the values for the expected number of patients in the ward are deter-
mined for each day. In (28) the required capacity for the ward is calculated.
Finally, in (29) the number of patients per weekend day relevant for staffing
is determined.

Heuristic with approximated objective based on expected values
and variances. The EV neglects the distribution of patients as it only con-
siders the expected values. With the heuristic with approximated objective
based on expected values and variances (EVV), we assume the distributions
of patients to be normally distributed and approximate the quantiles using
the expected value and the approximated standard deviation. To avoid a
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square root function, the standard deviations SD(F I
l ) and SD(FW

l ) are ap-
proximated by a linear function of the variance (V (F I

j,l) for the ICU and
V (FW

j,l ) for the ward). We employ one linear factor for the ICU, srI in Con-
straint (31), and one for the ward, srW . We use the factors that minimize the
squared errors for the variances of the starting solutions. The z-values for
the quantiles are zI,cap and zW,cap for the capacity levels and zI,sta and zW,sta

for the weekend staffing levels. Table 2.3 states the approximated quantiles.

Quantile Exact Model EVV Heuristic
Patients in the ICU relevant
for fixed capacities

QI
ℓ(α

I) E(F I
ℓ ) + zI,capSD(F I

ℓ )

Patients in the ward relevant
for fixed capacities

QW
ℓ (αW ) E(FW

ℓ ) + zW,capSD(FW
ℓ )

Patients in the ICU relevant
for weekend staffing

QI
ℓ(β

I) E(F I
ℓ ) + zI,staSD(F I

ℓ )

Patients in the ward relevant
for weekend staffing

QW
ℓ (βW ) E(FW

ℓ ) + zW,staSD(FW
ℓ )

Table 2.3: Approximations for EVV

The objective function (25), the assignment problem constraints (17)-
(20), and the constraints to determine the expected values (27) stay un-
changed. Constraints to determine the variances (30) and the approximated
standard deviations (31) need to be added. The constraints determining
the capacities (32) and the beds to be staffed at weekends (33) had to be
changed. The approximation of the square root function to determine the
standard deviation in (31) can be carried out in many ways. The most sim-
ple one is to use a linear function. This method works well if there is no big
difference in the possible variances. For larger differences in the variances,
a piecewise linear function as described in van Essen et al. [87] may also be
applied. Again, we only present the constraints for the ICU (30)-(33), the
constraints for the ward are formulated analogously.

V (F I
ℓ ) =

∑

i∈I

∑

j∈J

ℓ
∑

q=1

V (F I
j,ℓ−q+1)xi,q,j+ (30)
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∑

i∈I

∑

j∈J

L
∑

q=ℓ+1

V (F I
j,ℓ−q+1+L)xi,q,j ℓ ∈ L

srIV (F I
ℓ ) = SD(F I

ℓ ) ℓ ∈ L (31)

E(F I
ℓ ) + zI,capSD(F I

ℓ ) ≤ capI ℓ ∈ L (32)
∑

ℓ∈L\Q

E(F I
ℓ ) + zI,staSD(F I

ℓ ) = staI,weI (33)

2.6 Case study

We tested all algorithms with data used in Vanberkel et al. [91]. Additional
data for the ICU was created based on expert interviews with Dutch hospital
managers. The MSS cycle has a length of two weeks and there are seven
specialties. There is no limit to the number of blocks of any specialty on any
given day other than the number of ORs. We distinguish three examples:

• A small MSS with only one OR and a second OR on Wednesdays. The
number of OR blocks is therefore 12.

• A medium MSS with three ORs (30 blocks).

• A large MSS with nine ORs (90 blocks).

The percentage of blocks of all specialties is approximately equal. Although
in reality some hospitals can have more than 100 ORs, we assume that in
most cases no more than 9 ORs will be grouped together in a common MSS.
As discussed in the previous sections, the downstream costs to be minimized
are the fixed costs costf and the additional weekend staffing costs costwe.
The values of the cost parameters are the outcome of interviews with OR
managers and shown in Table 2.4.

To obtain comparable starting solutions for all cases, we employ a sim-
ple construction heuristic. We begin with an empty MSS and start at the
first day with filling the slots with the first specialty until all required slots
have been assigned. Then we continue with the remaining specialties. As
we cannot compute the optimal solution for the medium and the large case,
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Description Notation Value
Service level for fixed capacities αI , αW 0.99
Fixed costs ICU bed/two weeks cI,f e 5,000
Fixed costs ward bed/two weeks cW,f e 500
Service level for staffing βI , βW 0.75
Additional costs staffing ICU bed at weekends/day cI,we e 700
Additional costs staffing ward bed at weekends/day cW,we e 120

Table 2.4: Input parameters

we use the starting solution as a reference point. We compare the simple
branch-and-bound (SBB), the incremental improvement heuristic (IIH), the
2-Opt heuristic (2OH), simulated annealing (SA), the heuristic with approx-
imated objective function based on expected values (EV), and the heuristic
with approximated objective based on expected values and variances (EVV).
For the IIH we continue swapping blocks until a maximum of one third of
all blocks are swapped. For the simulated annealing (SA), a cooling factor
of cf = 0.9 is chosen as proposed by Aarts et al. [1]. We configured the
SA with 1,500 iterations for each temperature level, an initial temperature
of t0 = 9, 000, and a stopping criterion of 6 consecutive temperature levels
without a new best solution. For each case we compare computation time,
total cost, relative improvement of the starting solution, and the percentage
of changed blocks of the tested algorithms.

Computation Total Improve- Changed
Algorithm time costs ment blocks (%)
Starting Solution 72,500
SBB 13,319s 64,500 11.0% 67%
IIH 5s 68,600 5.4% 33%
2OH 7s 68,600 5.4% 33%
SA 260s 65,000 10.3% 92%
EV 1s 69,480 4.2% 83%
EVV 1s 69,620 4.0% 67%

Table 2.5: Results small case
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A summary of the results of the 12 block example can be found in Table
2.5. In this example the IIH has swapped four blocks, which results in an
improvement of 5.4% compared to the starting solution. The 2OH reaches
the same solution. Therefore, after swapping four blocks no swap of two
blocks improves the solution. The SA takes longer, changes more blocks but
reaches a much better solution than the 2OH (an additional 5% in cost sav-
ings is gained). The two heuristics using an approximated objective function
are very fast (around 1 second), but achieve improvements of about 4% only.
The optimal SBB shows that a maximum improvement of 11% is possible.

Computation Total Improve- Changed
Algorithm time costs ment blocks (%)
Starting Solution 153,120
SBB N/A N/A N/A N/A
IIH 145s 137,860 10.0% 33%
2OH 481s 136,140 11.1% 60%
SA 685s 136,500 10.9% 80%
EV 6s 136,000 11.2% 73%
EVV 6s 136,000 11.2% 87%

Table 2.6: Results medium case

Table 2.6 provides the results for the example with 30 blocks where all
heuristics achieve improvements of at least 10%. EV and EVV approxi-
mating the objective functions work considerably better than in the small
example. Not only are they much faster than the other heuristics, but they
also achieve the best results of more than 11% improvement. However, they
change between 73 and 87% of the blocks of the initial MSS.

The results of the large example with 90 blocks (see Table 2.7) show
greatly increasing computing times. The heuristics EV and EVV, which
solve the approximative objective exactly, show the highest computational
times. However, at the same time they achieve the highest improvements
of all tested methods. IIH and 2OH suffer from the large problem size as
well, since for each swap all possibilities have to be calculated. In fact, in
this example for each iteration more than 4,000 possible swaps have to be
evaluated. The only heuristic that requires less than one hour is the SA with
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Computation Total Improve- Changed
Algorithm time costs ment blocks (%)
Starting Solution 397,680
SBB N/A N/A N/A N/A
IIH 11,902s 368,620 7.3% 28%
2OH 31,101s 365,260 8.2% 39%
SA 1,832s 361,300 9.1% 76%
EV 107,826s 358,480 9.9% 82%
EVV 181,954s 358,560 9.8% 81%

Table 2.7: Results large case

an average improvement of 9.1%, a higher achievement than those of the IIH
and the 2OH.

Regarding these results we draw three conclusions. First, there is only a
small potential in improving MSSs with a small number of blocks. Second,
while IIH and 2OH work fairly well for small problems, they are outperformed
by the SA, the EV and the EVV heuristics in the large case. Nevertheless,
IIH and 2OH could still be of interest for the case where the majority of the
blocks of the initial MSS should be kept. Third, most algorithms discussed in
this chapter require long computation times for the large example. Only the
SA requires computational time of less than one hour. EV and EVV could
be run using a time limit. Even if the optimal solution of the approximated
objective function might not been found within the time limit, good results
can be achieved after a relatively short time period. However, as we are
discussing a tactical problem, relatively high computational times of up to a
few hours can be tolerated in practical settings.

2.7 Conclusion

In this chapter we presented an algorithm for calculating the exact distri-
butions of patients both in the ICU and the ward resulting from a given
cyclical MSS. We further discussed measures as fixed capacities and staffing
levels to estimate the downstream costs of an MSS and proposed algorithms
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to find an MSS with minimized costs. We considered multiple heuristics.
Two simple heuristics that swap MSS blocks, a simulated annealing algo-
rithm that finds good solutions in a reasonable period of time, and a simple
branch-and-bound, that only works in realistic time for small problems. We
further tested optimal solution methods with approximated objective func-
tions. They showed excellent results for medium and large instances, but
required long computation times for large instances.

For large instances there is further room for research on heuristics. For
example, one could investigate on a combination of the approximated ob-
jective function, such as EV or EVV, with a non-optimal solution method
to gain satisfactory results within reasonable time. Furthermore, there are
many possible extensions. Upstream units like the outpatient clinic can be
incorporated as surgeons work there too, so scheduling in both departments
could be coordinated. Effects on the post-anesthesia care unit could also be
incorporated. Operations on weekends (for emergency patients only) as well
as pre-operative stays in ICUs and wards or patients with no surgery could
be included. Moreover, for practice, relevant constraints such as differently
equipped ORs, minimum time between blocks of the same specialty, etc. may
be considered. The algorithms and heuristics proposed in this chapter can
be adapted to these extensions.

Summarizing our findings, we conclude there is significant potential in
cost savings and quality improvements in considering downstream units when
designing tactical operating room schedules. Accounting for weekend staffing
and leveling bed requests may further contribute to employee satisfaction and
decrease negative medical effects.



Chapter 3

Improving ICU and ward uti-
lization by adapting master
surgery schedules:
A case study

3.1 Introduction

In the last years the pressure on hospitals to work in a cost efficient way
has constantly increased [42]. Medical progress, an aging population and
financial restrictions are forcing hospitals to review each individual process
in the treatment of patients. By analyzing hospital expenses it becomes
obvious that the bulk of costs is generated by surgical interventions [22].
Consequently many studies deal with organizational improvements concern-
ing the cost-intensive operating room (OR) departments [38, 18, 41]. While
the management of the OR is vital for hospital performance, it should not be
considered in isolation [89]. Among other things, the degree of OR utiliza-
tion, which is an important goal in many hospitals [86], has a considerable
effect on downstream units [23]. In particular, most admissions of patients
to the intensive care unit (ICU) and to the wards result from the OR work-
load. Approaches solely aiming at maximizing the degree of OR utilization
can lead to a high variation in the occupancy of both the ICU and the reg-

33



3.2 Methods 34

ular wards [7, 60]. Furthermore, Anderson et al. [4] showed an increased
hospital discharge rate when the utilization of the OR is high. Baker et al.
[5] revealed that the readmission rate within 72h after discharging from the
ICU, following days of high patient influx, is significantly increased. The
variability of scheduled caseload, in particular, should be reduced to avoid
high stress on the ICU [60]. In addition, periods of high patient demand
are always associated with triage decisions that impact patients’ outcome
and organizational efforts in the post-operative units [79]. Consequently, a
smoother influx of postoperative patients to the downstream units should be
taken into consideration when creating an OR schedule. The most common
scheduling technique is the use of Master Surgery Schedules (MSSs) [88, 90].
In an MSS surgical specialties, e.g. urology, are assigned to time slots, e.g.
days, in specific ORs. An MSS can be considered as an essential part of the
tactical OR planning and can improve resource utilization and patient flow
within the hospital [88]. Vanberkel et al. [90] describe a successful imple-
mentation of an improved MSS in a comprehensive cancer center, where the
effects of the MSS on the regular wards were the main focus.

Expanding the work of Vanberkel et al. [91], our study considers the
capacity utilization of the highly cost-intensive ICU as well. It is based on
the algorithm presented in Fügener et al. [34] (see Chapter 2), but extending
it to account for emergency surgeries on weekends and applying it with real
life data from a German University hospital. This work aims specifically at
analyzing the effects of employing different MSS scenarios on both the ICU
and ward from a holistic perspective. Our model determines for different
MSSs the probabilities for bed requests in both units.

3.2 Methods

Patient flow information which serve as a data base for our model are taken
from the “Klinikum München rechts der Isar” (MRI), a tertiary care uni-
versity hospital containing 1,100 beds serving all surgical disciplines (except
heart surgery). The hospital runs 36 ORs on a daily basis. The ORs are
located in several decentralized operating room suites. Due to interdisci-
plinary ORs, the so called OR-suite “Zentral-OP-2 (ZOP2)” as a functional
autonomously operating sub-unit allowed an optimized MSS. Consequently,
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we focused solely on this unit with eight ORs. In this OR-suite the depart-
ment of neurosurgery (NCS) runs 3 ORs, urology (URS) 3 ORs and sport
orthopedics (SP) 2 ORs. One OR block of capacity represents a full day of
operating time and the MSS (see Table 1) is repeated on a weekly basis. All
ORs are open from Monday to Friday — during the weekend and on holi-
days only emergency operations are performed. The emergency surgeries on
weekends can be represented within an MSS by introducing a fourth imag-
inary surgical specialty “WE” that comprises all cases during the weekend.
In this study, we pool the ICU and ward bed capacities of these specialties
to a single ICU and ward, respectively.

The historical data utilized for the following analysis has been extracted
from the MRI hospital information system and exported to two Excel-files.
One file contained all OR movements, whereas the other provided insight into
the patients’ ICU and ward movements afterwards. Based on the patient ID,
the records were merged. Data processing was performed using MySQL 5,
a relative database management system and Python 2.7, an object oriented
programming language. For our analysis, we considered data from the first
half of 2010. During this period, 2,480 patients were surgically treated in
ZOP2, resulting in 2,690 surgeries. Regarding these figures, it is obvious
that — in contrast to the main patient flow pattern — some patients have
been operated on more than once. Whenever a patient had to be operated
more than once, we generated a separate record for each surgery of this pa-
tient. Of course, this method involves losing information about pre-operative
stays and their influence on bed occupancy, but these influences are neglected
for the purpose of our study.

The mathematical concept with all equations and more rigorous explana-
tions is provided in more detail Chapter 2. Therefore, we only briefly review
the basic principles and present short explanations. Our model considers his-
torical data to calculate the ICU and ward occupancy resulting from a given
MSS. Analyzing the historical data, the patient flow follows the subsequent
patterns as shown in Figure 3.1, where the percentages given on the left cor-
respond to the percentage of patients who follow the flow. A closer look at
the patient flow in the MRI shows that after surgery most patients will either
be sent directly to the ward or first to the ICU before being transferred to the
ward. Fewer patients leave the hospital directly after their stay in the ICU,
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Figure 3.1: Visualization of possible patient flows

or are transferred to the ICU after first staying in the ward. The first three
types of patient paths are represented by the model in Figure 3.2, whereas
any patient flow from the ward to the ICU are not considered. As the figures

OR

ICU

Ward

Discharge

Figure 3.2: Possible transitions of patient movings after a surgery [34] (see
Chapter 2)

demonstrate, such patient flows occur less often. They usually indicate a
complication of a patient’s health condition. Taking into account the small
number of cases, we rearranged the chronological order of the ICU and ward
stays, i.e. all ICU stays are aggregated right after the surgery, independently
of their real chronological occurrence. For each specialty we use the following
as input:

• The probability distribution of the number of surgeries per OR slot
(Figure 3.3)

• The probability for patients to be sent to the ICU directly after surgery
(Figure 3.4)

• The probability distributions of the number of days a patient has to
recover in the ICU, in the ward after surgery, and in the ward after
having already occupied a bed in the ICU (Figures 3.5-3.7)
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Figure 3.3: Probability distribution of number of patients per OR block

������
���

Specialty

����� � �

��!

��"

��#

���

��$%&'�

(��

)*

Figure 3.4: Probability to be sent to ICU after surgery
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Figure 3.6: Probability distribution of length of stay in the ward (days)
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Figure 3.7: Probability distribution of length of stay in the ward after
being transferred from the ICU (days)

The model to determine the occupancy levels in the ICU and the ward
works in three steps. In step 1, the probabilities, that p patients of specialty
j are still in the ICU or ward n days after surgery are calculated for a
single surgery block of specialty j. For this, we used a so called Markov
chain to model the patient flow. The model is illustrated in Figure 3.8, each
arrow represents a possible transition of a patient. We use these transition
probabilities and the binomial distribution to calculate numerical values for
the probabilities that p patients of specialty j are in the ICU or ward n days
after the surgery. In step 2, we consider that each OR block is repeated
weekly. Therefore, on each day of a week patients coming from OR blocks
from different weeks can be recovering in the ICU or ward at the same time.
We incorporate this by convolving the distributions from step 1. This can be
done as the sum of independent random variables is computed by convolving
their probability distributions. After step 2, we obtain the probabilities that
p patients are in the ICU or ward the ℓth day of a week for a weekly OR block
of specialty j assigned to the first day of the week. In step 3, we convolve
the distributions for all blocks of the final MSS. As a result, we obtain the
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Figure 3.8: Modeling the patient flow by a Markov chain [34] (see Chapter
2)

probabilities that p patients are in the ICU or ward the ℓth day of a week
resulting from the MSS. These probabilities may be directly used to calculate
exact quantiles for ICU and ward bed occupancy.

3.3 Results

We tested three MSSs using our algorithm. MSS A represents the status
quo at MRI, where each specialty is assigned to specific ORs for all days of
the week (see Figure 3.9). MSS B, presented in Figure 3.10, is designed to
avoid weekend bed requests and therefore assigns all ORs on the first days
to NCS, where patients had the longest average stays, and on the last days
to SP, where patients had short average stays and no ICU patients. MSS
C, presented in Figure 3.11, is a mix between MSS A and MSS B to avoid
peaks in ICU and ward utilization as well as high weekend occupancy levels.
Here, NCS is assigned to three ORs on all days of the week as in MSS A.
The remaining ORs are assigned to URS in the beginning and to SP towards
the end of the week.
Figures 3.12-3.14 illustrate the quantiles of the three MSSs. The red, green

and blue lines represent the 25%, 50% and 75% quantile of occupied beds
on the given day of the week - i.e. the real capacity utilization should not
exceed these limits in more than 75%, 50% and 25% of all occurring cases,
respectively. At MRI, the 75% quantile was considered relevant for staffing
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 Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

OR1 SP SP SP SP SP 

WE WE 

OR2 SP SP SP SP SP 

OR3 URS URS URS URS URS 

OR4 URS URS URS URS URS 

OR5 URS URS URS URS URS 

OR6 NCS NCS NCS NCS NCS 

OR7 NCS NCS NCS NCS NCS 

OR8 NCS NCS NCS NCS NCS 

 

Figure 3.9: Master Surgery Schedule A

 Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

OR1 NCS NCS URS URS SP 

WE WE 

OR2 NCS NCS URS URS SP 

OR3 NCS NCS URS URS SP 

OR4 NCS NCS URS URS SP 

OR5 NCS NCS URS URS SP 

OR6 NCS NCS URS URS SP 

OR7 NCS NCS URS SP SP 

OR8 NCS URS URS SP SP 

 

Figure 3.10: Master Surgery Schedule B

 Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

OR1 NCS NCS NCS NCS NCS 

WE WE 

OR2 NCS NCS NCS NCS NCS 

OR3 NCS NCS NCS NCS NCS 

OR4 URS URS URS SP SP 

OR5 URS URS URS SP SP 

OR6 URS URS URS SP SP 

OR7 URS URS URS SP SP 

OR8 URS URS URS SP SP 

 

Figure 3.11: Master Surgery Schedule C
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decisions. Hence, we only discuss this occupancy level in detail. The quan-
tiles of MSS A are presented in Figure 3.12. In the ICU there is a constant
occupation of 6 beds from Monday until Friday. On Saturday the occupation
diminishes by 1 bed to 5 beds. In the ward there is an increasing demand for
beds during the weekdays until Friday, where peak occupation reaches 123
beds. During the weekend, demand decreases to 107 beds on Saturday and
91 beds on Sunday.

Figure 3.12 shows the results after performing the scenario analysis for
MSS B, where the ICU peak occupation of 8 beds occurs on Monday and
Tuesday and decreases until Thursday to 4 beds. Peak occupation of ward
beds occurs on Thursday, where 125 beds are requested in the 75% quantile.
This number decreases to 103 beds on Saturday and 90 beds on Sunday.

Introducing MSS C reveals a constant number of 6 occupied ICU beds
which decreases to 5 on Thursday (Figure 3.14). The maximum number
of occupied ward beds is 115 on Wednesday and Friday. On Saturday and
Sunday the number of bed requests is 105 and 94, respectively.

Figure 3.12: Quantiles of bed demand for Master Surgery Schedule A
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Figure 3.13: Quantiles of bed demand for Master Surgery Schedule B

Figure 3.14: Quantiles of bed demand for Master Surgery Schedule C
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3.4 Discussion

MRI focuses on two goals when considering ICU and ward bed requests.
First, occupancies on Saturdays and Sundays should be lower than during
the week since working on the weekends is not very attractive for most em-
ployees and overtime has to be paid. Second, bed requests during the week
should be leveled as fixed capacities for peak demand have to be provided on
all days, as it is easier to staff at relatively constant levels, and as constant
inflow of patients in the ICU is important for medical reasons. Table 3.1
summarizes the average bed requests per day, the peak bed requests, the
relative additional bed request of the peak demand compared to the mini-
mum bed demand during the week, the average bed request on Saturdays
and Sundays, and the relative reduction of the average bed requests on the
weekend compared to the weekdays for the ICU and the ward.

MSS A shows a peak on Friday, where ward bed requests are about 24%
higher than on Mondays. In the cost-intensive ICU the degree of capacity
utilization throughout the week remains constant. This is due to that the
OR blocks of NCS and URS, both operating on patients with a high prob-
ability to be sent to the ICU, are spread evenly across the week. The main
reason for the high fluctuation in ward bed demand is that the department
of neurosurgery operates on many patients throughout the week and many
of those patients have long postoperative stays in the hospital. This leads to
a growing number of patients during the week. Weekend bed requests are on
average 5 beds for the ICU and 99 beds for the ward.

MSS B is designed to move forward the peak demand in order to reduce
weekend bed requests. Shifting all blocks of NCS towards the beginning of
the week results in a high ICU bed demand on Mondays and Tuesdays with
a peak demand of 8 beds. The peak demand in the ward of 125 beds is also
higher than in MSS A. The average weekend bed requests were reduced to
4.0 and 96.5 beds for the ICU and ward, respectively. However, MSS B will
not be implemented for two reasons: First, the immense variation in ICU
bed requests during the week leads to difficult staffing situations. Second, it
is unrealistic to increase the number of ORs run by NCS from 3 to 8 per day
on Mondays and Tuesdays. In this case, a lot of problems would rise such as
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MSS A MSS B MSS C
ICU
Average bed requests/day 5.7 5.3 5.4
Peak bed requests 6.0 8.0 6.0
Relative peak vs. minimum (Mon-Fri) 0% 100% 20%
Average weekend bed requests (Sat-Sun) 5.0 4.0 5.0
Relative weekend (Sat-Sun) vs. week (Mo-Fri) -20% -45% -12%
Ward
Average bed requests/day 108.3 108.3 108.1
Peak bed requests 123.0 125.0 115.0
Relative peak vs. minimum (Mon-Fri) 24% 30% 11%
Average weekend bed requests (Sat-Sun) 99.0 96.5 99.5
Relative weekend (Sat-Sun) vs. week (Mo-Fri) -13% -17% -12%

Table 3.1: Peak and weekend bed requests for ICU and ward (75% quan-
tile)

staffing of the operating rooms, supplying them with appropriate equipment,
and the organization of the logistics around the OR suite.

To ensure a constant patient flow from NCS to the ICU, we assigned 3
ORs per day in MSS C, similar to MSS A. URS has a high percentage of
patients with a very short postoperative stay in the hospital so we scheduled
the URS blocks from Mondays until Wednesdays and the SP blocks on Thurs-
days and Fridays. This schedule and MSS A show a similar constant ICU
bed demand pattern. However, the peak of ward bed requests of 115 beds
is 7% and 8% below the peaks of MSS A and B, respectively. The average
weekend ward bed requests are only 1% and 3% above those of MSS A and B.

Although MSS C provides a good fit regarding the goals of reducing of
weekend occupancy and leveling of bed requests during the week, some diffi-
culties of implementing MSS C remain. URS has to run 5 ORs on three days
instead of 3 daily ORs, and SP has to run 5 ORs on two days instead of 2
daily ORs. This implies dramatic changes in staffing and logistics, as well as
necessary rescheduling in the outpatient clinic. In order to implement modi-
fications of MSSs, arguments have to be presented to the stakeholders in an
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OR suite. The results demonstrate that it is possible to improve bed demand
in postoperative units by changing the OR schedule. As a first step, minor
modifications concerning the order of the operation within one department
could be realized. Surgeries with a long post-operative stay could be generally
carried out on special days. Modeling different surgery types within medical
specialties could offer a valuable extension of our approach. In our study
we did not take into consideration any financial aspects of different MSSs.
Bed occupancy levels as well as changes in MSSs could be connected with
costs. Assigning costs to MSSs could be another matter for further research.
First steps in this direction have already been performed in Fügener et al.
[34] (see chapter 2). Due to its design, the suggested model can be extended
to deal with more complex organizational structures with several separated
ICUs and wards so that our assumption regarding an aggregated ICU and
ward could be dropped. Another interesting extension would be to adapt the
model to include pre-operative stays as these also account for bed occupancy.

With the approach discussed in this chapter, the influence of a given
MSS on the ICU and ward can be investigated and modeled mathematically.
Extending Fügener et al. [34] (see chapter 2), we account for emergency
surgeries taking place at the weekends by introducing another hypothetical
specialty “WE” in order to reflect their impact as well. We have started with
implementing the current MSS and tested two additional scenarios adjusting
the MSS. As the performed modifications were rather straightforward, one
could easily predict the effects on bed demand and in fact the results of the
simulations match the expected outcome. Therefore, our model should be
considered an important tool for planning downstream units, e.g. to deter-
mine staffing levels or to derive capacity extensions. The model we presented
in this chapter may be used in other hospitals as well. As discussed above,
further extensions to better fit specific hospitals are easily implementable. We
believe that considering both ICU and ward occupancy levels when designing
MSSs can greatly improve both medical and financial hospital performance.



Chapter 4

On the assessment of costs in a
newsvendor environment:
Insights from an experimental
study

4.1 Introduction

In the newsvendor problem a decision maker has to decide on the number
of ordered products under stochastic demand. Once the uncertainty is re-
solved, the costs incurred from the mismatch between the decision and the
realization become apparent. The decision maker observes that his decision
was too “high” or too “low”. The newsvendor model provides a theoreti-
cally grounded approach to determine the optimal order quantity, i.e. the
order quantity that minimizes the expected mismatch costs.1 However, ex-
perimental studies show that decision makers systematically deviate from
the optimal order quantity. In their seminal paper Schweitzer and Cachon
[76] observe a pattern of behavior where subjects order too few high margin
products and too many low margin products. According to the anchoring
and adjustment heuristic [85] this too low/too high pattern can be explained

1A minimization of the expected mismatch costs is equivalent to a maximization of
the expected profit, see Silver et al. [78] or Khouja [49].
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by that individuals anchor on the mean demand and insufficiently adjust
toward the optimal order quantity. A number of follow-up studies have con-
firmed the too low/too high pattern, e.g., in experimental newsvendor studies
considering doubled payoffs and reduced order frequency [15], the effect of
learning [12], different demand distributions [9], participants with different
educational backgrounds [13], different frames [51, 75], multilocation inven-
tory systems [43], different payment schemes [21] or cross-cultural differences
between Western and Eastern countries [30]. Order decisions in the newsven-
dor problem tend to be biased towards the anchor of mean demand, which
we call “mean anchor effect”. For a recent review considering experimental
studies of the newsvendor problem we refer to Kremer and Minner [50].

Although many studies discuss behavioral aspects in the newsvendor
problem, there is hardly any research on the assessment of the different
cost types. Since costs are one of the essential influencing variables in the
newsvendor problem, the assessment of costs may have a strong effect on
human decision making. Depending on the field of application, costs like
out-of-pocket costs, opportunity costs, or penalty costs can be relevant for
the decision about the order quantities. A detailed definition of the cost
types in the context of our study will be given in Section 4.2. Previous stud-
ies have shown that these cost types may have a diverse influence on behavior
in several situations. The indirect character of opportunity costs is a reason
why they are often neglected in decision making. Northcraft and Neale [65]
state that opportunity costs are abstract possibilities which can lead to a bi-
ased assessment of the cost/benefit picture of a decision maker. This biased
opportunity cost perception is documented in numerous papers. The results
from an experimental study by Becker et al. [6] suggest that decision makers
consider opportunity costs as less important than out-of-pocket costs and
even ignore them in some cases. A study by Friedman and Neumann [32]
leads to consistent results. They conclude that decision makers underweight
opportunity costs when only partial information is available. While Becker
et al. [6] as well as Friedman and Neumann [32] investigate a setting with
a certain environment, Hoskin [44] considers the assessment of opportunity
costs in an uncertain environment. Seventeen years before the seminal paper
of Schweitzer and Cachon [76], the experimental study of Hoskin [44] had
already addressed human behavior in the newsvendor problem. The results
show that decision makers deviate from the order quantities that optimize
expected profits. However, the study has a number of technical shortcomings
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which do not allow deriving consistent and reliable results.2 Since previous
research has shown that decision makers underweight or even neglect fore-
gone payoffs, Ho et al. [43] hypothesize that the psychological aversion to
leftovers is greater than the disutility of stockouts. They develop and exper-
imentally test a newsvendor framework where they add psychological costs
of overordering and underordering. A main weakness of their additive ap-
proach is that an underweighting of foregone losses is modeled as additional
(positive) psychological costs, which seems counterintuitive. Furthermore,
the case that decision makers neglect foregone payoffs is even incompatible.
The question why in many situations decision makers underweight opportu-
nity costs compared to out-of-pocket costs is addressed by Thaler [83]. He
argues that the endowment effect supports the different weighting of these
costs. While opportunity costs are often underweighted other cost types
tend to be overweighted by decision makers. McCaffery and Baron [59] refer
to Richard Thaler’s real-world observation: “when a gas station charged a
‘penalty’ for using credit cards ($2.00 versus $1.90, say), people paid cash;
when a gas station across the street gave a ‘bonus’ for using cash ($1.90 ver-
sus $2.00), people used credit cards”. McCaffery and Baron [59] state that,
due to penalty aversion, individuals will rather avoid penalties than obtain
bonuses. The tendency of people to avoid penalties is documented in sev-
eral experimental studies and holds true in diverse economical contexts. For
example, tax rules [58] or contracts [55] are less likely to be accepted when
they are presented as penalties rather than as bonuses. The consequences of
penalty aversion are decisions where penalty costs are higher weighted than
out-of-pocket costs – another example that the different assessment of cost
types can lead to a different behavior.

Involving different types of costs, a wide range of business decisions re-
quire that a decision is made before the occurrence of a random event. The
underlying trade-off, concerning the costs of the mismatch between the de-
cision and the realization, is captured by the newsvendor model. However,
experimental studies of the newsvendor problem typically consider out-of-
pocket costs (overage costs) and opportunity costs (underage costs) as mis-

2The number of participants per experimental setting as well as the number of periods
were too small, participants had to estimate the demand distribution based on the past
data on demand, and some participants received changed information already after few
periods. Furthermore, several product types had to be ordered and the margins of the
products were chosen unfavorably.
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match costs. To investigate how the assessment of costs influences a decision
maker, we consider two newsvendor situations involving different types of
cost. Motivated by the literature, we expect an underweighting of oppor-
tunity costs and an overweighting of penalties. Therefore, we consider a
situation where penalty costs (respectively additional reorder costs) instead
of opportunity costs occur in the underage case. An example is a newsvendor
situation involving a second order for an additional premium as considered
by Cachon and Terwiesch [17] where “the second order opportunity elimi-
nates lost sales (...) [but] therefore, the penalty for ordering too little in the
first order is that one may be required to purchase additional units in the
second order at a higher cost.” We refer to this kind of newsvendor problem
involving out-of-pocket costs and penalty costs as the“penalty cost problem”
whereas the classical newsvendor problem as considered by Schweitzer and
Cachon [76] is referred to as the “opportunity cost problem”. Since only
the type of costs is different the balancing problem remains mathematically
identical and the decision maker is still facing the same underlying tradeoff
concerning ordering too little and ordering too much [17]. Gavirneni and
Isen [36] show that most people are able to compute the overage and un-
derage costs accurately, but fail to determine the optimal inventory level.
Therefore, a different behavior in the penalty cost and the opportunity cost
problem implies that the assessment of costs changes for different cost types.
Consequently, to investigate our research question we set up an experimental
study where we differentiate between these two problems. Since previous
research has shown that people anchor on the mean demand, we further
distinguish between three cases with different margins for each of the two
problems.

The main contribution of this chapter is twofold. Firstly, to the best of
our knowledge, our work is the first which systematically investigates how
the assessment of costs influences a decision maker in a newsvendor situation.
We propose a behavioral approach, including a higher weighting of penalty
costs than of opportunity costs and order decisions which are biased towards
the mean. Our model explains large portions of the observed behavior in our
experimental study. A different weighting of costs can be seen as the main
driver for higher order quantities in the penalty cost problem compared to the
opportunity cost problem. Based on our findings we identify situations in the
newsvendor problem which are particularly unfavorable for the performance
of a decision maker. Furthermore, our insights allow detecting situations
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where the behavioral effects partially compensate for each other and therefore
lead to a better performance of decision makers.

Secondly, our experimental study gives important insights into how peo-
ple behave in newsvendor situations which are affected by penalty costs. For
many business decisions, the underage case of the underlying newsvendor
trade-off is influenced by penalty or reorder costs and not by opportunity
costs. Typical areas where expensive re-orders, contractual penalties or sec-
ond production runs occur instead of lost profits are procurement problems
if too little was ordered (e.g. Cachon and Terwiesch [17]), inventory problems
if too little was stored (e.g. Eppen [29]), or production problems if too lit-
tle was produced (e.g. Donohue [26]).3,4 In order to apply the findings from
behavioral studies of the newsvendor problem to a broad field of business
situations it is important to check the validity and to identify limitations.
The results of our study clarify that the behavior in a newsvendor situation
which is affected by penalty costs is significantly different from the behavior
in a situation which is influenced by opportunity costs.

The chapter is organized as follows: Section 4.1 provides an introduction
and a literature review before we define our hypotheses in Section 4.2. The
experimental setup and design is described in Section 4.3, and we discuss the
results in Section 4.4. Finally, in Section 4.5 we draw conclusions and discuss
managerial implications.

4.2 Definitions and Research Hypotheses

To investigate the influence of different cost types on decision making, we dif-
ferentiate between two from a mathematical point of view identical newsven-
dor problems with the only difference that the type of costs in the underage
case is different. We consider one situation where penalty costs occur and

3Identical to the opportunity cost problem, the overage case of the penalty cost problem
involves out-of-pocket costs like production costs, holding costs, and purchasing costs.

4In a broader context the penalty cost problem is also inherent in stochastic project
management settings, such as the determination of feeding buffers (e.g. Trietsch [84]) or
due dates (e.g. Zhu et al. [95]) assuming costs for starting activities earlier and tardiness
penalties. Furthermore, a typical application in health care management is the reservation
of operating room capacity under uncertainty considering costs for operating room time
and overtime costs (e.g. Olivares et al. [66], Wachtel and Dexter [92]).
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one situation where opportunity costs occur. We expect a different behavior
in the penalty cost and the opportunity cost problem.

The opportunity cost problem is equal to the classical newsvendor prob-
lem as described, e.g., in the seminal paper of Schweitzer and Cachon [76]
and in most follow-up newsvendor studies. A vendor orders goods for the
next period where he faces an uncertain demand d. The cumulated demand
distribution F (D) is known. Purchasing costs per item are c and the selling
price is p. Consistent with the newsvendor literature, we define the purchas-
ing costs as out-of-pocket costs. If the demand exceeds the order quantity q

the foregone opportunity to make more profit by selling more products leads
to lost sales and thus to lost profits which are also referred to as opportunity
costs. The opportunity costs per item which cannot be delivered, termed as
“underage costs”, is cu = p − c. If demand is less than the order quantity,
assuming a salvage value of 0, the costs for each unit ordered too much, called
“overage costs”, are co = c.

Analog to the opportunity cost problem, in the penalty cost problem a
vendor orders q units for the next period where he faces an uncertain demand
d with a known cumulated demand distribution F (D). For each unit he
orders before demand takes place, he has purchase costs of c (out-of-pocket
costs). If the demand exceeds the order quantity, he has to reorder units for
higher reorder costs of s > c to satisfy the excess demand.5,6 The costs for
each unit ordered too little (“underage costs”) are the additional “penalty”
costs of the reorder, i.e. cu = s− c. If demand is less than the order quantity,
the costs for each item ordered in excess of the realized demand (“overage
costs”) are equal to the purchase costs, i.e. co = c.7

In both newsvendor situations the expected costs of overestimating and
underestimating demand have to be minimized. The only difference between
both situations is the different type of costs in the underage case (see Table

5In contrast to Cachon and Terwiesch [17] we consider a reorder obligation instead
of a reorder possibility. It is obvious that the second order should equal the unfulfilled
demand. In order to avoid additional behavioral biases, we prefer to maintain a situation
involving only one decision.

6An obligation to reorder may be interpreted as a commitment for a service level of
100%.

7Considering a reorder possibility instead of a reorder obligation does not change the
overage and underage costs and therefore the optimal order quantity, given that the selling
price is above the costs (see Eeckhoudt et al. [27]).
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4.1). The underage costs correspond to penalty costs in the penalty cost
problem, while they correspond to opportunity costs in the opportunity cost
problem. Since only the type of costs is different, we can determine the

Penalty cost problem Opportunity cost problem

Underage costs Penalty costs Opportunity costs
Overage costs Out-of-pocket costs Out-of-pocket costs

Table 4.1: Summary of cost types

“optimal order quantity” q∗ for both problems with the classical newsvendor
formula

q∗ = F−1

(

cu

cu + co

)

(34)

with a problem specific definition of the underage costs as given above. By
simple algebraic reformulation we obtain

co · F (q∗) = cu · (1− F (q∗)) (35)

which shows the trade-off a decision maker faces: The optimal order quantity
q∗ can be derived from balancing the probability of being over and under
stocked weighted with the overage and underage costs, respectively. In order
to depict a biased assessment of costs we include the underage cost weight
β > 0 which specifies how much the underage costs, relative to the overage
costs, influence a decision. Since the overage costs are equal to the purchase
costs in both problems, we scale these out-of-pocket costs with a weight of
1. An underage cost weight of β > 1 indicates that a decision maker has a
stronger weighting of underage costs relative to overage costs. An underage
cost weight of β < 1 indicates that the decision maker weights the underage
costs lower than the overage costs. We denote the consequences of the cost
weight on the order quantity as the “assessment of costs effect” (ACE). To
integrate the biased assessment of the different costs in the balancing problem
we extend Equation (3) by the overage cost weight 1 and the underage cost
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weight β and obtain

1 · co · F
(

qACE
)

= β · cu ·
(

1− F
(

qACE
))

(36)

where qACE denotes the adapted optimal order quantity.8 Reformulation of
(36) leads to

qACE = F−1

(

β · cu
β · cu + co

)

. (37)

We assume that the weight of the underage costs β depends on the type
of costs only and not on absolute values. In the penalty cost problem the
underage costs correspond to penalty costs that occur because an expensive
reorder has to be placed. Since individuals are trying to avoid penalties, we
derive our first hypothesis with βpen as underage cost weight in the penalty
cost problem:

H1: In the penalty cost newsvendor problem people have a higher
weighting of penalty costs compared to out-of-pocket costs,
that is βpen > 1.

In the opportunity cost problem the underage costs have the character
of opportunity costs. As decision makers tend to underweight opportunity
costs, we derive our second hypothesis with βopp as underage cost weight in
the opportunity cost problem:

H2: In the opportunity cost newsvendor problem people have a
lower weighting of opportunity costs compared to out-of-pocket
costs, that is βopp < 1.

Our central research question is whether decision makers behave differ-
ently in the penalty cost and in the opportunity cost problem. On the one
hand, we expect opportunity costs to be lower weighted than out-of-pocket

8The incorporation of an underweight factor in the newsvendor model is similar to
Chen et al. [21]. They show that the payment timing affects ordering behavior, and
they can explain this behavior by the effect that decision-makers underweight order-time
payments.
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costs and on the other hand we expect penalty costs to be higher weighted
than out-of-pocket costs. This leads to our third hypothesis:

H3: The weighting of opportunity costs in the opportunity cost
newsvendor problem is lower than the weighting of penalty
costs in the penalty cost newsvendor problem, that is βopp <

βpen.

As many newsvendor studies have shown that human behavior depends
on the margin, we consider several cases. In the opportunity cost problem,
the margin is defined as p−c

p
, while in the penalty cost problem the margin

is defined as s−c
s
. Therefore, the margins are equal to the critical ratios. We

differentiate between a “high margin case” where the critical ratio exceeds
0.5, a “medium margin case” where the critical ratio equals 0.5, and a “low
margin case” where the critical ratio is less than 0.5. Assuming symmetric
demand distributions, this leads to optimal order quantities above, equal to,
and below the mean demand. As we consider a medium margin case we can
discuss a situation where deviations from the optimal order quantity may not
solely be explained by the mean anchor effect. Benzion et al. [9] proposed the
following formula to consider the mean anchor effect (MAE) where the order
quantity qMAE is determined by a linear combination of the mean demand µ

and the optimal order quantity q∗ with mean anchor weight α:

qMAE = α · µ+ (1− α) · q∗. (38)

For 0 < α < 1 the resulting order quantity is consistent with the mean
anchor effect. We assume the mean anchor effect to be symmetric, so the
strength of the shift towards the mean neither depends on the order quantity
being above or below the mean nor its distance from the mean. We further
assume the mean anchor weight to be the same for the opportunity cost and
the penalty cost problem. As the mean anchor effect has been documented
in many previous studies, it can be assumed to have a significant effect on
the order decision. This leads to our fourth hypothesis:

H4: The mean anchor effect exists, that is 0 < α < 1.

For an integrated model of human behavior, a combined consideration of
both the assessment of costs effect and the mean anchor effect is needed. To
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model the human order decision we combine both effects in a straightforward
way. We denote the resulting effect as “combined effect” (CE). The logic of
the combined effect is as follows: The assessment of costs effect leads to the
adapted optimal order quantity considering the cost weights of the decision
maker. This adapted optimal order quantity is biased by the mean anchor
effect towards the mean, resulting in the order quantity qCE. The formula
for the combined effect is then

qCE = α · µ+ (1− α) · F−1

(

β · cu
β · cu + co

)

(39)

where, depending on the problem, β stands for βopp in the opportunity cost
problem and βpen in the penalty cost problem, respectively.

We employ a 2 × 3 design where we combine two problems (opportunity
cost problem, penalty cost problem) with three margin cases (high margin,
medium margin, low margin) and thus obtain six different combinations.
To compare the opportunity cost and the penalty cost problem, we set the
selling price p equal to the reorder costs s. As we consider the same purchase
costs c in both problems, the critical ratios are equal. By assuming an
identical demand distribution, we achieve the same optimal order quantities.
This enables a clear comparison of human behavior in the opportunity cost
problem and the penalty cost problem, as the identical optimal order quantity
can be used as a reference point. To achieve the different margin cases, we
vary the costs only.

Based on our hypotheses we consider the consequences of the combined
effect, including the assessment of costs effect and the mean anchor effect
on the order decisions. The higher weighting of penalty costs leads to an
increase in the order quantity in the penalty cost problem while in the op-
portunity cost problem the order quantity is reduced by a lower weighting
of opportunity costs. Furthermore, the mean anchor effect leads to a shift
towards the mean demand. The comparison given in Table 4.2 clarifies that
based on our hypotheses, the order quantities of the penalty cost problem
should exceed the ones of the corresponding opportunity cost problem in all
margin cases.9 We note that the assessment of costs effect and the mean

9Extreme examples could lead to a situation where the assessment of costs effect leads
to quantities above the mean in the low margin case or below the mean in the high margin
case. In these cases the mean anchor effect will change direction as depicted in Table 4.2.
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Penalty cost problem Opportunity cost problem

ACE MAE ACE MAE
High margin case ⇑ ⇓ > ⇓ ⇓
Medium margin case ⇑ ⇓ > ⇓ ⇑
Low margin case ⇑ ⇑ > ⇓ ⇑

Table 4.2: Expected consequences for the order quantities

anchor effect lead in the same direction in both the high margin case of the
opportunity cost problem and the low margin case of the penalty cost prob-
lem, respectively. We therefore expect results in these situations that are
especially far away from the optimal order quantity. On the other hand in
the remaining situations the two effects work in opposite directions, therefore
they should partially compensate for each other and thus the deviations from
the optimal order quantity should be not as big.

4.3 Experimental Setup

To test our hypotheses we set up a laboratory study using a 2 × 3 between-
subjects design where we distinguish between six combinations of problem
and case, as given in Table 4.2. In all six experiments we examine a discrete
uniform demand distribution with the boundaries 0 and 100. The realiza-
tion of the demand was randomly drawn in advance and is used for all six
experiments.

Furthermore, we consider the same critical ratio for the opportunity cost
and the penalty cost problem in each case. The parameters are set to s = 12
in the penalty cost problem and to p = 12 in the opportunity cost problem.
The costs are set to c = 3 in the high margin case, to c = 6 in the medium
margin case, and to c = 9 in the low margin case. The obtained optimal
order quantities of q∗ = 75, q∗ = 50, and q∗ = 25, are above, equal to, and
below the mean demand of µ = 50.

All experiments were conducted at the “Munich Experimental Labora-

The overall order quantities will still be greater in the penalty cost problem than in the
corresponding opportunity cost problem.
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tory for Economic and Social Sciences” (MELESSA). For every experiment
25 separated PC terminals were ready to use. Participants were recruited
from the subject pool of the MELESSA with the help of a recruitment-
software. All participants were students without profound knowledge of the
newsvendor problem and they came from different fields of study. Each stu-
dent participated in one experimental study only and altogether 148 students
participated in the six different experiments. We ran four experiments with
25 participants and two experiments with 24 participants. Despite an over-
booking of 3, only 24 students participated in the high margin case of the
opportunity cost problem and in the high margin case of the penalty cost
problem. The experiment was programmed and conducted with the software
z-Tree [31]. Before the experiments the instructions were read aloud (see
Appendix). Every period started with a decision screen where the partici-
pants had to make their order decision. After every decision they received
information about the realization of the demand, their order quantity, and
the resulting profit or costs of this period on the information screen. The
profits or costs were displayed in “experimental currency units” (ECU). In all
six experiments the purchase decision was repeated for thirty periods. The
duration of one experiment was about 45 minutes. By control questions we
ensured that all subjects understood their job within the experiment. Af-
ter completing the session the accumulated earnings were paid privately and
in cash. In all six experiments we chose the factor and the fixed amount
such that an income of e14 could be obtained if the optimal order quantity
was placed in each period. The performance oriented compensation was ex-
plained in the instructions and therefore known in advance. Across all six
experiments the subjects earned on average e10.47 including a show-up fee
of e4. The standard deviation was e1.72.

4.4 Results

4.4.1 General Results

As in previous studies we observe average order quantities per period and
over all periods which are significantly higher in the high margin case than in
the medium margin case (one-tailed Wilcoxon, p < 0.005), and significantly
lower in the low margin case than in the medium margin case (one-tailed
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Wilcoxon, p < 0.005). This holds true for the penalty cost problem (PCP)
and for the opportunity cost problem (OCP). For each case the average
order quantities of the subjects are shown in the Figures 4.1, 4.2, and 4.3.
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Figure 4.1: Average order quantities in the high margin case

For both the penalty cost and the opportunity cost problem, Figures 4.1 to
4.3 illustrate that the average order quantities differ from the mean demand
as well as from the optimal order quantities. As provided in Table 4.3,
only for the medium margin case of the opportunity cost problem is the
difference not significant. Furthermore, the average order quantities in the
penalty cost problem significantly exceed the average order quantities in the
opportunity cost problem for each margin case (see Table 4.3). Our results
show that the order quantities are especially far away from the optimal order
quantity in both the high margin case of the opportunity cost problem and
the low margin case of the penalty cost problem. This is in line with our
expectations outlined in Section 4.2.10 To investigate learning effects we
conducted a regression analysis on the average order quantities for each of
the six experiments, where we define learning as a trend towards the optimal
order quantity. As illustrated in Table 4.4, we observe significant learning

10Considering the high and the low margin case, we observe a too low/too high pattern
for the penalty cost problem as well as for the opportunity cost problem.



4.4 Results 60

5 10 15 20 25 30

20

40

60

80

µ

q∗

Period

Ø
o
rd

er
q
u
a
n
ti
ty

Ø order quantity PCP

Ø order quantity OCP

Figure 4.2: Average order quantities in the medium margin case

in the high margin case, but there is no significant learning in the medium
margin case and the low margin case. Over all six experiments no consistent
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Figure 4.3: Average order quantities in the low margin case
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High margin case Medium margin case Low margin case

PCP OCP PCP OCP PCP OCP

Opt. order
quantity q∗

75.0 50.0 25.0

Mean av-
erage order
quantity

72.6 58.9 60.3 50.3 46.0 38.9

Difference
from µ

p < 0.005 p < 0.005
p < 0.005 p = 0.829

p < 0.005 p < 0.005

Difference
from q∗

p < 0.005 p < 0.005 p < 0.005 p < 0.005

PCP is sig-
nificantly
higher than
OCP

p < 0.005 p < 0.005 p < 0.005

Table 4.3: One-tailed Wilcoxon test for average order quantities

learning or trend pattern can be approved.

Penalty cost problem Opportunity cost problem

High margin case 0.141 (p <0.005) 0.367 (p <0.005)
Medium margin case 0.061 (p =0.425) 0.192 (p =0.009)
Low margin case -0.023 (p =0.783) 0.000 (p =0.996)

Table 4.4: Trend values of the regression analysis on the average order
quantities

We further analyzed how the average order quantities over the 30 periods
of the decision makers are distributed. Figure 4.4 provides a box plot diagram
for each of the six experiments with the lower quartile, the median, and the
upper quartile. The end of the “whiskers” show the lowest and the highest
datum within the 1.5 interquartile range. Outliers are illustrated as well. The
box plots show that the average order quantities of the individuals (shown
on the y-axis) are significantly higher in the penalty cost problem than in
the opportunity cost problem for all three margin cases (one-tailed Mann-
Whitney U, p < 0.005 for all three cases). The box plots also clarify the
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Figure 4.4: Box plot diagram of the average order quantities of the partici-
pants

systematic difference of the average order quantities in the three margin cases
for both problems. Our results provide a good prediction of the behavior
of an “average” decision maker since the box plots illustrate that most of
the observed average orders of individuals are distributed closely around the
median.

4.4.2 Testing of the hypotheses

Our general results confirm that humans do not behave optimally in the
newsvendor setting. However, their decisions are not random. For both
problems the level of the average order quantities in the different margin
cases correspond to the level of the optimal order quantities. Furthermore,
systematic differences between the penalty cost and opportunity cost prob-
lems exist. Consequently, we investigate whether a combined effect, including
a higher weighting of penalty costs than of opportunity costs and order de-
cisions which are biased towards the mean, is consistent with the observed
behavior. Therefore, we adapt Formula (39) describing the combined effect
to test our hypotheses and to evaluate our explanatory approach. Based on
the six experiments, we estimate the three relevant parameters for Formula
(40) wherein qt is the average order quantity in period t. For the estimation
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we integrated an error term ǫt.

qt = α · µ+ (1− α) · F−1

(

β · cu
β · cu + co

)

+ ǫt (40)

For the six experiments with 30 periods each, we estimate one common mean
anchor weight α according to our assumptions in Section 4.2. For the three
experiments in the penalty cost problem, we estimate a common penalty
cost weight βpen and for the three experiments in the opportunity cost prob-
lem, we estimate a common opportunity cost weight βopp. The parame-
ters are estimated using a least square estimation (R2=0.88) where the test
statistic follows asymptotically the standard normal distribution. We obtain
βpen = 2.42, and we can show that βpen > 1 is significant (one-tailed z-test,
p < 0.005). Consequently, the first hypothesis could be verified: Penalty
costs are higher weighted than out-of-pocket costs. As βopp = 0.95, the op-
portunity cost weight is lower than one. However, the difference is quite
small. Since βopp < 1 (one-tailed z-test, p = 0.073), we find support for the
second hypothesis: Opportunity costs are lower weighted than out-of-pocket
costs. Furthermore, we can verify the third hypothesis as βopp is significantly
lower than βpen (one-tailed Welch’s t-test, p < 0.005): Penalty costs are
higher weighted than opportunity costs. For the mean anchor weight we ob-
tain α = 0.49.11 The fourth hypothesis could also be confirmed since we can
show that 0 < α < 1 is significant (two-tailed z-test, p < 0.005) and thus a
mean anchor effect exists.

Our results clarify that the mean anchor effect can be seen as the strongest
driver for the non-optimal order quantities since the mean demand is weighted
by almost 50%. However, the mean anchor effect cannot explain the large
differences of the order quantities between the opportunity cost problem and
the penalty cost problem. Hence, our results show that the different weight-
ing of costs can be seen as the main driver for higher average order quantities
in the penalty cost problem compared to the opportunity cost problem.

Our approach leads to an mean absolute error of 3.2 (standard deviation

11This is in line with the results from previous studies in Western countries. Considering
a high margin case and a low margin case of the opportunity cost problem, e.g. Bostian
et al. [15] obtain a mean anchor weight of 0.47 and the data from Bolton and Katok [12]
correspond to a mean anchor weight of 0.54.
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of 2.4) concerning the order quantity.12 This is very low compared to an
mean absolute error of 11.1 when using the optimal order quantity as an
estimator, of 10.0 when using the mean demand as an estimator, and of 6.2
when using the mean anchor effect (see Formula 38) as an estimator. The
comparison demonstrates the high explanatory quality of our approach.13

4.5 Conclusion

Our research highlights differences in human decision making in situations
involving different types of costs. Motivated by the literature, we expect that
opportunity costs are underweighted compared to out-of-pocket costs while
penalty costs are overweighted. In order to investigate the research question
we set up an experimental study in a newsvendor setting which provides
a simple yet realistic environment to investigate the assessment of penalty
costs and opportunity costs in two mathematical identical situations. To the
best of our knowledge we are the first to compare the assessment of these
two cost types in an operations management setting. We observe that indi-
viduals order significantly more in a newsvendor setting with penalty costs
than in a newsvendor setting with opportunity costs. We propose a behav-
ioral approach which incorporates decision biases in the newsvendor model
to explain the observed behavior. Besides the assessment of costs effect we
also include the mean anchor effect. Based on our approach we tested our
hypotheses and could confirm the mean anchor effect as well as a different
weighting of different cost types. We found that penalty costs are higher
weighted than opportunity costs. Our approach is valuable to predict actual
ordering behavior and, furthermore, it allows us to quantify the extent of
the psychological biases. Based on our findings we conclude that the perfor-
mance of a newsvendor depends clearly on the underlying situation. Situa-
tions where the assessment of costs effect and the mean anchor effect lead

12The remaining error can be partially explained by demand chasing, see Schweitzer and
Cachon [76]. Since the underlying demand vector is identical in all experiments, demand
chasing systematically influences the average order quantities per round.

13Our approach reduces the error by 68% compared to the mean demand as an esti-
mator and by 71% compared to the optimal order quantity as an estimator. The isolated
mean anchor effect reduces the error by 38% compared to the mean demand and by 44%
compared to the optimal order quantity. This clarifies that the mean anchor effect explains
only a part of the behavioral deviations.
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in the same direction result in particularly bad performance while in situa-
tions where the two effects partially compensate each other result in a better
performance of human decision makers. Since in many business decisions
the underlying newsvendor trade-off is influenced by penalty costs instead
of opportunity costs, our study gives important insights in order to apply
behavioral findings of newsvendor studies in a broader field. Typical exam-
ples where contractual penalties occur are inventory problems or purchase
situations. It can be misleading to relate the insights from the opportunity
cost newsvendor problem to situations incurring penalty costs instead of lost
sales. This already happens, e.g., in research concerning the bullwhip effect
[64] or operating room planning [92]. The main finding of our research is
that a biased perception of opportunity costs as well as a biased perception
of penalty costs can explain the observed behavior. We show that decision
makers are more sensitive to penalty costs than to opportunity costs. Con-
sequently, we conclude that people have a different assessment of different
cost types.

Our work has several limitations. We assume the mean anchor effect to
be symmetric even if the effect is stronger in the low margin context than in
the high margin context in many studies. A first promising research consid-
ering the asymmetry in ordering behavior is done by Moritz [62]. He finds
support that cognitive dissonance explains a portion of this behavior. As
there are considerable differences in the asymmetry and since the asymme-
try is even reverse in several studies (e.g., Ho et al. [43], Rudi and Drake
[72], Lurie and Swaminathan [56]) a further investigation is needed. If an
asymmetry of the mean anchor effect could be validated and measured in
terms of different mean anchor weights for different margin cases, it could be
easily included in our approach. We agree with Bostian et al. [15] that the
exploration of the asymmetry is one of the most promising directions for fur-
ther research. Another interesting research area is cross-cultural differences
between Western and Eastern countries. Even though, the mean anchor ef-
fect is a predominant cross-cultural effect, Feng et al. [30] have shown that
the strength of the effect is stronger in Eastern cultures. The investigation
of differences and similarities in the assessment of costs between Eastern and
Western cultures is a promising area for further research. Furthermore, the
explanatory power of our approach could be increased by the integration of
additional behavioral factors. Rudi and Drake [72] state that besides the
“level behavior” the “adjustment behavior” can be seen as the main driver
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of the mismatch costs. Therefore, consideration of demand chasing could be
worthwhile. Another example is the integration of a learning factor which
would be especially useful for long-term consideration, e.g. 100 periods as
investigated by Bolton and Katok [12]. These extensions would lead to a
more complex approach but they could also enable an even more realistic
description and prediction of the behavior.

Based on our approach and our findings we conclude several managerial
implications: From an internal company point of view our insights could
be used in a control process to detect situations which lead to systematic
deviations from the optimal order quantity that are particularly unfavorable.
Identifying these situations may allow corrective actions. Another internal
aspect related to the planning process is that one could create situations
where the deviations of the order decisions are relatively small and therefore
the decision maker performs better. From a supplier perspective it may be
possible to create situations where the behavior of the decision maker leads to
deviations which are favorable for the supplier. Another important aspect for
a supplier is to identify situations where the customer systematically orders
too little. Consulting the customer may help to improve the situation for
both, e.g. by a modified contract.14

14The performance of different contracting mechanisms in a two-echelon supply chain
in which the retailer faces the opportunity cost newsvendor problem is investigated by
Katok and Wu [48]. Based on our results further research concerning the performance of
contracting mechanisms in the penalty cost newsvendor problem as well as further research
concerning the use of different cost types to increase contract performance in general would
be interesting.



Chapter 5

Underutilization and overutiliza-
tion of operating rooms:
Insights from behavioral health
care operations management

5.1 Introduction

Recently, Gino and Pisano [37] encouraged researchers to take into account
human behavior in operations management. Health care operations man-
agement has a particularly strong behavioral influence [16], since health care
services are provided by people who may be influenced by cognitive biases,
social preferences, and cultural norms [54]. Even though people issues are vi-
tal for the processes in health care, very little research investigates the effects
of human behavior on process performance in this industry. A promising op-
portunity to come up with more realistic health care operations management
theories and to develop models which take into account human behavior is
provided by experimental research. While behavioral experiments are a well-
established research methodology for studying human issues in many disci-
plines including several business disciplines and medical research, combining
findings from behavioral operations management with health care applica-
tions is a virtually untouched area. In line with Gino and Pisano [37] who

67
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argue that “human beings are critical to the functioning of the vast major-
ity of operating systems, influencing both the way these systems work and
how they perform,” we recommend a classification of behavioral health care
operations management focusing on the human beings involved in hospitals.
These can be divided into hospital staff (service providers) and patients (ser-
vice receivers). Patients can be further distinguished into inpatients and
outpatients, while hospital staff can be further differentiated into hospital
management, surgeons and nurses (see Figure 5.1). Most studies discussing
patients’ behavior relate to patient satisfaction, e.g. perceived waiting time
for outpatients [45] or general patient satisfaction [11] for inpatients. The
coverage of staff behavior in hospitals is diverse. Hospital management’s
behavior is well covered by general behavioral operations management stud-
ies. Nurses’ behavior is often discussed in the context of job satisfaction, see
Chang et al. [20], Irvine and Evans [46], and Jamal and Baba [47]. While
surgeons make both medical and management decisions, in the literature
their behavior is mainly discussed in the context of medical decision making.
Bornstein et al. [14] and Bland and Altman [10] observe biased surgeons’
decision making. Moskowitz et al. [63] state that doctors might show non-
optimal behavior “dealing with uncertainty, risks, and trade-offs in critical
decisions” and claim that the anchoring and adjustment heuristic exists in
medical decision making. To further classify the field of behavioral health
care operations management, we consider the four main hierarchical levels
in health care decision making presented by Hans et al. [39]: The strategic
(e.g. case mix planning), the tactical (e.g. master surgery scheduling), the
offline operational (e.g. surgery scheduling), and the online operational (e.g.
rescheduling of surgeries) levels. In Figure 5.1 we assign the people making
these decisions in hospitals to the hierarchical decision levels. Typically, the
decisions on the strategic level are made by management, the tactical deci-
sions are either made by management or surgeons, while most operational
decisions are made by surgeons or nurses.

In this study, we approach the field of behavioral health care operations
management by investigating surgeons’ behavior in the operating room (OR),
one of the most researched resources in hospitals. Guerriero and Guido [38]
cite more than 100 studies on operating room management and Cardoen
et al. [18] write “in the last 60 years, a large body of literature on the man-
agement of operating theaters has evolved”. This comes as no surprise as
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Figure 5.1: Classification for Behavioral Health Care Operations Manage-
ment

around 40% of hospital expenses arise in the operating theater [22] and more
than 60% of hospital admissions are for surgical operations [69]. Although
the high importance of optimizing the usage of this scarce resource is evident,
there still seems to be much room for improvement. Rhodes and Barker [71]
report poor utilization of ORs and Pandit and Carey [67] argue that 10-40%
of all scheduled elective surgeries are cancelled or rescheduled at least once.
A major consequence of poor decisions made by OR managers is staff work-
ing overtime as mentioned by Wachtel and Dexter [92].

Low OR utilization, rescheduling of surgeries and staff overtime are conse-
quences of poor planning of surgery durations. Obviously, centralized plan-
ning cannot account for the specific patient knowledge of the responsible
surgeon. Therefore, it is common practice in most hospitals that surgery
durations are planned independently by the surgeon in charge of the patient.
There are a few studies indicating non-optimal behavior of surgeons con-
sidering operating room management. Yule et al. [94] conduct a literature
review on non-technical skills of doctors in the OR and they conclude that
non-technical skills such as planning skills, resource management, and com-
munication are often neglected, despite being vital for efficient OR manage-
ment. Carter [19] show one example where doctors only considered fairness
when planning the ORs but neglected negative consequences on other units
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and Abouleish et al. [2] state that OR management is often based on con-
venience and tradition rather than on efficiency optimization. A systematic
underestimation of surgery durations is found by Dexter et al. [24]. Wachtel
and Dexter [92] discuss that the newsvendor model could be used to deter-
mine the time period, where staff is required in the OR. They also provide
a literature review on behavioral newsvendor studies as they suspect biases
known from the newsvendor model to hold in the staffing problem as well.
However, they do not account for differences between the operating room
staffing problem and the inventory newsvendor problem. Furthermore, they
do not carry out an experimental investigation. Hence, the details on how
to use the newsvendor model in an OR setting are still an open issue.

In our study, we undertake an experimental study with senior surgeons to
test the behavioral effects of planning surgery durations. The main contribu-
tion of our research is to provide better understanding of surgeons’ behavior
when planning surgery durations. We can show systematic deviations from
optimal planning. Awareness of these deviations helps in managing deci-
sion situations, such as communicating transfer prices for OR utilization or
in developing debiasing methods to improve the planning results. Further-
more, we show the significance of human behavior in health care operations
management. With this, we hope to encourage researchers to engage in the
promising field of behavioral health care operations management. The re-
mainder of our chapter is organized as follows: In the next section we present
the problem of planning surgery durations. We explain similarities and differ-
ences of the surgery duration planning problem compared to the newsvendor
problem familiar from inventory management, and discuss behavioral biases
as known from newsvendor studies. In Section 5.3 we present our research
question and derive our hypotheses. In Section 5.4 the experimental setup
is explained. After discussing the results in Section 5.5 and providing an as-
sessment of the experiment in Section 5.6, we draw conclusions and analyze
managerial implications in the final section 5.7.

5.2 Planning of Surgery Durations

Planning of surgery durations is a challenging task for surgeons since every
patient is different, surgery durations are uncertain, and bad planning leads
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Crossectomy Cholecystectomy Joint fracture
Surgeries planned too
long

83% 52% 29%

Surgeries planned too
short

14% 47% 67%

Mean (st. dev)
planned durations

90.0 (0.0) 63.3 (6.5) 66.0 (21.5)

Mean (st. dev) realized
durations

68.1 (24.0) 65.9 (26.8) 79.9 (45.2)

Average plan deviation + 31% - 4% - 17%

Table 5.1: Comparison of planned and realized durations of three different
surgeries

to undesirable consequences. To obtain first insight into planning behavior
in real life, we have analyzed 6 months (12/2011 - 05/2012) of surgery data
from a German university hospital. We compare the planned and realized
durations of three exemplary operations from different specialties: Varicose
veins crossectomy and stripping, cholecystectomy, i.e. the surgical removal
of the gallbladder, and a specific joint fracture surgery. We compare the
planned and the realized durations of these three surgeries in Figures 5.2-5.4
and present some additional information in Table 5.1. Crossectomy and strip-
ping was systematically planned too long (one tailed, Wilcoxon p < 0.005),
cholecystectomy surgeries were on average planned close to the expected du-
ration (two tailed, Wilcoxon p = 0.978), and joint fracture surgeries were
significantly planned too short (one tailed, Wilcoxon p = 0.030). All surg-
eries have in common that the planned durations showed less variation than
the realized ones. We derive three main findings from these data. First, it is
obviously not possible to always plan the exact surgery duration, as surgery
times are stochastic. Second, different specialties seem to plan their surgeries
in a different way, which may be a consequence of different cost structures.
Third, some surgeries are systematically planned too long, while others are
systematically planned too short. In general, surgeons have a consistent be-
havior, since their decisions are not random.

Planning of surgery durations is a complex task due to two characteristics
of the problem.
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• First, variability in surgery durations exists.

• Second, as both planning too long and too short durations results in
different negative consequences, a trade-off decision has to be made.
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Figure 5.2: Comparison of planned and realized durations — Crossectomy

There are two reasons for variability of surgery durations: Uncertainty
and “diversity of situation”. Uncertainty in surgery durations is caused by
many factors that cannot be pre-determined. A typical example is unex-
pected bleeding that increases the duration. With “diversity of situation”
we take into account a priori known factors, such as patient age or OR-team
experience. There is a lot of literature on estimating the distribution of
surgery durations. Strum et al. [81], May et al. [57] and Stepaniak et al. [80]
use lognormal distribution to model surgery times, while Silber et al. [77] es-
timate surgical and anesthesia procedure times using data obtained from the
US Medicare system. All these studies show that there is significant uncer-
tainty in surgery durations. Furthermore, there are several empirical studies
showing that surgeons’ estimates do not meet the realized durations. Wright
et al. [93] compared time estimates of software scheduling systems to those
made by surgeons. Even though the software systems could not outperform
the surgeons, modeling could help the surgeons to improve their time esti-
mates. Eijkemans et al. [28] demonstrated that, in addition to the surgeons’
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Figure 5.3: Comparison of planned and realized durations — Cholecystec-
tomy
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Figure 5.4: Comparison of planned and realized durations — Joint Frac-
ture
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estimates, diversity of situation factors such as surgery and team character-
istics and, to a lesser extent, patient characteristics like age and body mass
index proved to be relevant for surgery times. These results demonstrate
that surgeons’ estimates do not include all diversity factors.

The second driver of the complexity of planning surgery durations is that
both planning with too long and too short time estimates for surgeries leads
to undesirable consequences. If the realized surgery duration falls below the
planned duration, OR idle time will be the consequence. In line with Strum
et al. [82], we define this as underutilization. If the realized surgery duration
is above the planned surgery duration multiple consequences might occur.
The scheduled surgery or following surgeries might end after regular working
hours, i.e. staff works overtime. Following surgeries may have to be resched-
uled which involves a considerable organizational effort and reduces patient
and staff satisfaction. Overtime or time of rescheduled surgeries caused by
planning too short surgery durations is defined as overutilization. Since some
compensation of under- and overutilization may occur, the expected under-
and overutilization of an OR is less than the time surgeries were planned too
long and too short, respectively. To obtain a rough idea about the conse-
quences of inaccurate planning, we used data from the hospital mentioned
above. We performed regression analyses to determine the effects on plan-
ning too long and too short on OR under- and overutilization, respectively.
In Figure 5.5 we compare for each OR and each day the number of min-
utes surgeries were planned too long with total operating time performed.
We observe that the more minutes surgeries were planned too long, the less
was the total operating time (0.348 Minutes of operating time per minute
planned too long, p = 0.007) and thus the more idle time occurred. We
further compared the number of minutes planned too short with the minutes
of overtime (between 4pm and 10pm). As presented in Figure 5.6, the more
minutes surgeries were planned too short, the more overtime occurred (0.483
minutes of OR overtime time per minute of planned too short, p < 0.005).
Both underutilization and overutilization of ORs are associated with addi-
tional costs. Typically, costs for underutilization are created by idle OR
and staff capacities, while costs for overutilization represent the additional
overtime payments and costs for reorganizing the schedule. These costs can
also include further negative effects on employee satisfaction (for working un-
planned overtime) and patient satisfaction (for rescheduling their surgeries
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and for increased waiting times). Olivares et al. [66] state that “the costs
of OR idle time were perceived, on average, as approximately 60% higher
than the costs of schedule overrun,” while Wachtel and Dexter [92] assume
that the costs of OR overutilization are twice as high as the costs of OR
underutilization. Thus, there is no clear ratio of these costs in the literature,
which might be caused by different assessments of under- and overutilization
in different hospitals. To minimize the expected costs of under- and overuti-
lization, Strum et al. [82] propose a minimal cost analysis model. The sum
of cost-weighted under- and overutilization is defined as OR inefficiency by
Dexter and Traub [25]. The minimal cost analysis model is mathematically
equivalent to the well-known newsvendor problem, which is also used by Oli-
vares et al. [66] to conduct a structural estimation of the costs for under- and
overutilization. All studies using the minimal cost model have in common
that a rational decision maker is assumed. They do not take into account
that a human decision maker may not act rationally.
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Figure 5.5: Consequences of planning too long and too short (in minutes)

As decision biases in the newsvendor problem are well-researched in the
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Figure 5.6: Consequences of planning too long and too short (in minutes)

field of inventory management, we compare the surgery planning problem to
the inventory management situation. The structure of the problem seems to
be the same. In both problems, the decision situation can be characterized
as follows.

• Decision under uncertainty with known distribution.

• Trade-off between planning (ordering) too long (too many) or too short
(too little) durations (products).

• Optimal solution (i.e. cost minimum or profit maximum) can be derived
analytically.

On the other hand, the two problems are obviously different. Some im-
portant differences include the following:

• Planning time versus quantity.
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• Consequences when not reserving enough time (not ordering enough
quantities): Overtime with additional (penalty) costs in the OR case
versus opportunity costs for lost sales in the inventory situation.

• Different decision makers: Surgeons (with no management training)
versus inventory managers.

Due to the similarities, however, we expect that some behavioral effects in
the inventory problem can be found in the OR planning problem as well. One
bias that is consistently found in all newsvendor studies is the mean anchor
effect, where orders are too high when the optimum lies below mean demand
and too low when the optimum lies above the mean demand. Schweitzer and
Cachon [76] are the first to describe this pattern and they also discuss possi-
ble explanations for the observed behavior. They find support that decision
makers use the mean as an anchor and only insufficiently adjust towards the
optimal solution. They also find some support that decision makers anchor at
the previous order quantity and adjusts towards the previous demand which
is called “chasing demand heuristic”. Based on their seminal paper a num-
ber of follow-up studies analyze further behavioral effects. Benzion et al. [9]
encounter similar biases for different demand distributions and Bolton and
Katok [12] analyze learning effects detecting small but significant long term
learning effects when a decision is repeated over 100 times. In contrast to
the classical newsvendor problem, where ordering too little results in lost
profits, the consequences of planning too short in our context differ. Too
short planning of surgeries is associated with additional costs, since opera-
tions have to be finished. Therefore, the planning of surgeries is similar to a
newsvendor situation where penalties occur when ordering too little and de-
mand has to be fulfilled. Schiffels et al. [74] analyze the impact of “penalty”
costs instead of opportunity costs and they find that order quantities are
consistently higher in contexts with penalties than in those with opportu-
nity costs for ordering too little. Kremer et al. [51] compared a classical
newsvendor situation (operations frame) with a context-free but mathemat-
ically equivalent situation (neutral frame). They discovered that the bias
towards the mean demand was much stronger in the operations frame than
in the neutral frame. Furthermore, Bolton et al. [13] observed that even if the
direction of behavioral effects is the same the magnitude of effects may differ
for students and experienced managers. Therefore, context as well as profes-
sional background matters when considering behavioral biases. Even though
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newsvendor biases are likely to be relevant for our OR planning problem, bi-
ases in the OR context might be different from those in the inventory context.

We conclude that the complexity of planning a surgery’s duration is con-
siderable, even if optimal planning can theoretically be obtained with the
newsvendor model. In everyday life surgeons lacking training in capacity
management plan the surgery durations. As several studies show that inven-
tory managers do not behave optimally in the related inventory situation,
and since some studies observe biased surgeon behavior in general, we ex-
pect that surgeons do not plan optimally. To the best of our knowledge, we
are the first to employ an experimental study to analyze surgeons’ behavior.

5.3 Research Question and Hypotheses

To investigate surgeons’ behavior when planning surgery durations we set up
an experimental study. The experimental design pursued three main goals:
Simplicity, realism, and comparability to literature. Simplicity of an exper-
iment guarantees that it is understood by participants, i.e. that errors by
misinterpretation are avoided and that behavioral effects can be isolated.
Realism is vital to apply findings to real life situations. As noted previously,
many studies have been conducted on inventory management. In order to
insure comparability of our study to already known findings from the inven-
tory management literature, we designed our study similar to those.

The experimental task that we consider is the planning of one surgery
duration. We define the costs cu for each minute of underutilization, co for
each minute of overutilization, and c for each minute of used OR capacity.
(Note: In classical newsvendor studies, costs for ordering too much (under-
utilization) are defined as overage costs, and costs for ordering too little
(overutilization) are defined as underage costs.) Using these costs, the costs
for one surgery depend on the planned duration p and the realized duration
D as follows:

C(p,D) = cu ·max{p−D, 0}+ co ·max{D − p, 0}+ c ·D. (41)

Analogous to the newsvendor problem, the planned duration p∗ that mini-
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mizes the expected costs E[C(p)] is:

p∗ = F−1

(

co

co + cu

)

, (42)

where F−1 denotes the inverse of the cumulative distribution function of the
realized duration D. For the sake of brevity, we denote p∗ as “optimal dura-
tion” in the following. co

co+cu
is defined in the literature as the critical ratio.

As stated before, the specific costs for underutilization and overutilization
may differ across hospitals. To account for different situations on the one
hand, and to be comparable to the inventory literature on the other hand,
we differentiate between two exemplary cases. The “low quantile case” with
relatively high underutilization costs cu indicates a hospital where idle ca-
pacities are of greater concern, while the “high quantile case” with relatively
high overutilization costs co indicates a hospital where overtime is of greater
concern. Furthermore, we provide information about the distribution of the
surgery duration. To avoid different assessments of potential causes for diver-
sity of situation, we exclude details about patient or OR-team characteristics.
Thus, we can refer the observed behavior to the underlying decision prob-
lem. As we present a distribution for the duration, every subject has the
same information about the uncertainty of the surgery duration. Since our
goal is to investigate how doctors behave in real life situations, the subjects
of our experiment are doctors with relevant experience, i.e. doctors who are
responsible for scheduling their surgery durations.

Based on our literature review, e.g. [2, 92, 76] and our empirical obser-
vations in Section 5.2 we derive the first two hypotheses of our experimental
study:

H1: The surgeons behavior is not random but is consistent.

H2: Doctors do not behave optimally.

To measure the degree of non-optimality, we define the relative cost in-
crease (see Equation 43) as the percentage of avoidable costs due to non-
optimal planning. For each decision of our subjects in our experimental
study we calculate the difference between the expected costs of the planned
duration and of the optimal decision and divide this difference by the ex-
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pected costs of the planned duration.

I(p) =
E[C(p)]− E[C(p∗)]

E[C(p)]
(43)

The most striking bias known from the inventory newsvendor literature dis-
cussed above is the mean anchor effect, or mean bias [76]. As this bias can
be found in all studies, we formulate the next two hypotheses:

H3: Doctors plan longer durations than optimal in cases where
the optimal duration p∗ is below the average duration µ of a
surgery.

H4: Doctors plan shorter durations than optimal in cases where
the optimal duration p∗ is above the average duration µ of a
surgery.

As explained in the previous section, planning the length of a surgery
corresponds to the penalty cost newsvendor problem, since operations have
to be finished. Besides a mean anchor effect Schiffels et al. [74] observe order
quantities that are consistently higher in a penalty cost problem than in a
situations with lost profits for ordering too little. Taking these findings into
account, we formulate the fifth hypothesis:

H5: Planned durations are more strongly biased away from the
optimal duration in cases where the optimal duration p∗ is
below the average duration µ than in cases where the optimal
duration p∗ is above the average duration µ.

As the experiment from our study involves asking surgeons about plan-
ning surgery durations, we expect context and background driven effects to
be different than in studies, where undergraduate students performed inven-
tory experiments [51, 13]. Thus, we derive our sixth hypothesis:

H6: Surgeons’ behavior is different compared to decision makers’
behavior in inventory newsvendor studies.

As demand chasing is a heuristic that often appears in newsvendor exper-
iments, we expect doctors to react to the realized duration of the previous
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surgery. If the realized duration of the previous surgery (Dt−1) was longer
than the planned duration (pt−1), we expect doctors to plan a longer dura-
tion (pt) for the following surgery, if it took shorter, we expect them to plan
a shorter duration. To detect demand chasing, we count each decision as
moving towards the previous duration if At =

pt−pt−1

Dt−1−pt−1

is positive, if At is
negative we count the decision as moving away from the previous duration
[51]. If At = 0, we count the decision as repeat plan. We formulate our
seventh hypothesis:

H7: Demand chasing affects surgeons’ behavior.

We expect that the answers to these hypotheses provide valuable insight
in surgeons’ behavior when planning surgery durations. To test the hypothe-
ses, we set up an experimental study.

5.4 Experimental Setup

As our research question focuses on the behavior of surgeons when plan-
ning surgeries, we chose only doctors with relevant experience in scheduling
surgeries as subjects. The experiment was carried out by 40 doctors from
three German university hospitals, 20 in the low quantile case and 20 in
the high quantile case. They were all senior physicians or chief physicians
with an average age of 43 years. None of them had previous knowledge of
the newsvendor model. We used a between subject design with 20 partic-
ipants in each treatment. Since it was not possible to bring 40 senior or
chief physicians to our computer laboratory, all experiments were conducted
in hospitals. We conducted the experiments in a separated office room with
a computer and we ensured that the physicians had no time pressure and
that they were not disturbed or interrupted during the experiment. At the
beginning of the experiment we provided the instructions (see Appendix).
The subjects were asked to schedule the duration of one surgery at a time.
The following information was provided:

• A uniform distribution between 100 and 200 minutes for surgery dura-
tion.

• OR costs c per reserved minute (underutilization costs cu = c).
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Low Quantile Case High Quantile Case
Costs for planned time c 90 30
Costs for overtime s 120 120
Underutilization costs cu = c 90 30
Overutilization costs co = s−c 30(=120-90) 90(=120-30)
Critical ratio 0.25 0.75
Optimal duration 125 175

Table 5.2: Costs and optimal planning times for low and high quantile case

• Increased costs per minute overtime s (overutilization costs co = s−c).

The uniform distribution was chosen for simplicity and for comparabil-
ity to the inventory literature. In most studies, the uniform distribution is
used even though normal or lognormal distributions better fit real life dis-
tributions. Benzion et al. [9] have shown that for an inventory setting the
same behavioral effects are observed for different demand distributions. For
simplification, we assume that each minute scheduled too long results in a
minute of underutilization, and each minute scheduled too short results in a
minute of overutilization. Details are depicted in Table 5.2.

The experiment was implemented in z-Tree [31]. Either the low quantile
case or the high quantile case was tested for each subject. After an initial
screen, where the subjects had to place a planned duration between 100 and
200 minutes, feedback about the realized demands and the occurred costs was
provided. The subjects performed 20 decision periods. The demand for each
round was randomly drawn in advance and the same for all subjects. After
planning the 20 surgery durations the subjects answered a questionnaire.
The average duration of each experiment was 25 minutes. Money was the
only incentive used. Payments were based on total costs and ranged between
19 Euro and 39 Euro with a mean of 33.2 Euro. Thus, the average payment
matched the income of experienced doctors.

5.5 Results

As expected, we observed average planned durations of all subjects that are
significantly higher in the high quantile case (HQC) (162.2) than in the low
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quantile case (LQC) (149.5) (one tailed, Wilcoxon p < 0.005). In neither
case did doctors plan the optimal duration. The box plots of the average
planned durations per subject are presented in Figure 5.7. The box indicates
the quartiles, and the ends of the “whiskers” show the lowest and the highest
datum within the 1.5 interquartile range. Outliers are illustrated by dots
beyond the whiskers. The average planned duration of all subjects is marked
with a bold circle for both cases. The average duration of 150 minutes and
the optimal durations for both the low quantile case (125 minutes) and the
high quantile case (175 minutes) are illustrated by dotted lines. In Figure
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Figure 5.7: Average Planned Durations

5.7, it is apparent that the average planned durations per subject are dis-
tributed around the average planned duration of all subjects in both cases.
In fact, they are approximately normally distributed (K-S test for normal
distribution, low quantile case: p = 0.714, high quantile case: p = 0.993).
Therefore, we can confirm our first hypothesis: The surgeons behavior is not
random but is consistent. As stated previously, the planned durations differ
from the optimal duration in both cases. On average, in the low quantile
case the planned durations are highly above the optimal duration of 125
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Low Quantile Case High Quantile Case
Avoid overutilization costs
(co)

65% 65%

Indifferent 15% 10%
Avoid underutilization costs
(cu)

20% 25%

Table 5.3: Motivation when planning surgery durations

minutes (Wilcoxon p < 0.005) and close to the the mean duration of 150
minutes (Wilcoxon p = 0.493). In the high quantile case the planned dura-
tions are below the optimal duration of 175 minutes (Wilcoxon p < 0.005)
and above the mean duration (Wilcoxon p < 0.005). We calculated the aver-
age relative cost increase (43) for all participants and all rounds. We found
average relative cost increase of 3.3% in the low quantile and 3.4% in the
high quantile case. The relative cost increase is higher in the high quantile
case, as the total costs are lower in this case. This analysis shows that in
our two scenarios about 1

30
of OR costs (i.e. the part depending on staff

and fixed capacities) may be saved by planning optimally. This confirms our
second hypothesis: Doctors do not behave optimally. Our third and fourth
hypotheses can be confirmed as well: Doctors plan longer durations than
optimal in cases where the optimal duration is below the average duration
of a surgery, and shorter durations than optimal in cases where the optimal
duration is above the average duration. However, these biases are asymmet-
ric, as the planned durations in the low quantile case are further away from
the optimal duration than in the high quantile case. In the low quantile
case, the planned duration is on average 24.8 minutes above the optimal du-
ration, while in the high quantile case, the planned duration is on average
12.8 minutes below the optimal duration. Therefore, the bias away from the
optimal duration is significantly stronger in the low quantile case (one-tailed
Mann-Whitney U, p < 0.005), which confirms our fifth hypothesis: Planned
durations are more strongly biased away from the optimal duration in cases
where the optimal duration is below the average duration than in cases where
the optimal duration is above the average duration. To gain more insights,
we asked all subjects after the experiment whether they had sought to avoid
overutilization or underutilization. The results depicted in Table 5.3 show
that consistent in both cases the subjects tended to avoid overutilization. To
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test our sixth hypothesis, we compared our data with the corresponding data
from the study of Schiffels et al. [74] (see Chapter 4). There, subjects where
asked to order newspapers in a penalty cost based scenario with critical ra-
tios of 0.25 and 0.75 and a uniform demand distribution between 0 and 100.
In order to compare the results we shifted the data from [74] (see Chapter 4)
up by 100. Therefore, differences in the order quantities/planned durations
can be referred back to the different contexts. In the low quantile case, the
values were significantly lower in Schiffels et al. [74] (see Chapter 4) (average:
146.0) compared to our study (average: 149.5) (one-tailed Mann-Whitney U,
p < 0.005). In the high quantile case, the values were significantly higher
in Schiffels et al. [74] (see Chapter 4) (average: 172.6) compared to our
study (average: 162.2) (one-tailed Mann-Whitney U, p < 0.005). In both
cases planned durations were more strongly biased towards the mean in our
study. We conclude that different contexts, in our example reserving OR
time versus ordering newspapers, do influence the behavior and confirm our
sixth hypothesis: Surgeons’ behavior is different compared to decision mak-
ers’ behavior in inventory newsvendor studies. Consistent with inventory
management studies, we further gained some insight into learning behavior.
We assume learning if a significant trend in the planned durations towards
the optimum exists. We determine the trend using linear regression. For the
low quantile case it is evident that no learning occurred. Over the 20 deci-
sion periods, the trend of 0.165 is not significant (p = 0.603). As the mean
planned duration of 149.5 minutes is already above the optimal solution of
125 minutes, the trend even moves away from the optimum (see Figure 5.8).
In the high quantile case, the trend of 0.189 leads in the direction of the
optimal duration (see Figure 5.9), but is not significant either (p = 0.595).
This comes as no surprise, as Bolton and Katok [12] show significant learn-
ing effects in the long run only. To test our final hypothesis, we analyze
whether demand chasing might explain the surgeons’ behavior. We show
the directions of planned durations for the low quantile case and the high
quantile case in Table 5.4. Consistent with Kremer et al. [51], for all sub-
jects, we compared the probabilities to adjust their planned duration in the
direction of the previous realized duration and away from it. We found that
subjects are more likely to adjust their planned duration in the direction of
the previous realized duration than away from it, both in the low quantile
case (p < 0.005) and in the high quantile case (p < 0.005). Therefore, we
can confirm our seventh hypothesis: Demand chasing occurs.
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Figure 5.8: Average Planned Duration, Realized Duration and Trend per
Period (LQC)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
100

120

140

160

180

200

µ

p∗

Decision Period

M
in
u
te
s

Ø planned duration

Trend

Realized duration
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Low Quantile Case High Quantile Case
Repeat plan 30% 49%
Towards previous duration 45% 37%
Away from previous duration 25% 14%

Table 5.4: Directions for planned duration

5.6 Assessment of Experiment

We conducted an ex-post assessment of our experiment to validate whether
the newsvendor model fits the reality in planning surgery durations and
whether the experimental set up suited our goals simplicity, realism, and
comparability to literature. The newsvendor problem is a cost-minimization
model based on a trade-off decision under uncertainty. We asked our sub-
jects whether cost pressure influences their decisions and whether there is
uncertainty when planning surgery durations. They reported that cost pres-
sure has a great impact on their decisions (average: 4.6 out of 7, 1 being
no impact, 7 being huge impact). They reported as well that they do en-
counter uncertainty when planning surgeries (average: 4.4 out of 7, 1 being
no uncertainty, 7 being huge uncertainty). We conclude that the newsvendor
framework fits well for modeling planning surgery durations. Furthermore,
we investigated whether our experiment was simple, realistic, and compara-
ble as demanded in Section 5.3. We obviously chose a simple experimental
setting, and all subjects stated they understood their task. On the other
hand, it is obvious that our experiment simplifies the real life situation, so
we analyzed whether the task was still realistic enough for the results to be
of any value. In the questionnaire, we asked the subjects whether the exper-
iment reflected the real life situation. The response, an average of 3.8 out
of 7 (1 being not realistic, 7 being extremely realistic), showed the exper-
iment was considered realistic, but did not reflect all relevant information.
To gain insight into required information, we asked what was missing. The
top three responses (reflecting about 90% of replies) were information on the
surgery team, the type of surgery and the patient characteristics. These are
all measures of diversity of situation as discussed in Section 5.2. Considering
diversity of situation is vital for precise estimations of surgery duration dis-
tributions, especially the three characteristics surgery team, type of surgery
and patient characteristics are of significant influence [28]. As we gave full
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disclosure of the distribution in our experiment, we do not account for diver-
sity of situation and concentrate on uncertainty of the duration. Therefore,
the “missing” information does not affect the results. By offering no further
information about diversity measures like surgery team, surgery type, and
patient characteristics, we avoided different interpretations of the duration
distribution. We conclude our experiments to be realistic and the results to
be applicable to real life. As our experiment was configured analogously to
most inventory studies, e.g., we chose a uniform demand distribution and
compared two margin cases with critical ratios of 0.25 and 0.75 (see e.g.
Schweitzer and Cachon [76], Bolton and Katok [12], Schiffels et al. [74] (see
Chapter 4)), the findings were compared to those of inventory studies and
explanations could be adapted taking into account context sensitivities

5.7 Conclusion

Many studies have shown that human behavior has great effects on oper-
ations management decisions. Although the operating theater is the most
expensive resource in hospitals, and especially the operational planning level
is crucial for its efficient usage, the behavior of health care decision makers in
hospitals is widely ignored in research. In our study, we demonstrated signif-
icant non-optimal planning of surgery durations by experienced surgeons and
we showed that relative cost improvements of about 3.3% could be achieved
in our setting. In a university hospital with an annual budget of 150 million
Euro and annual OR costs for staff and fixed capacities of about 45 million
Euro, the savings potential is thus about 1.5 million Euro a year. We verified
that biases known from inventory newsvendor studies exist as well, but that
the different context and the penalty cost situation changed the magnitude
of the biases. Planned durations showed greater biases in situations where
idle capacities were expensive compared to situations where overtime was
expensive. Our study demonstrates that even in a simplified environment
the planning behavior of surgeons is not efficient, systematic biases can be
observed, and avoidable costs accrue.

Our work has several limitations. To be consistent with the inventory
literature, we chose a uniform distribution of surgery durations in our ex-
perimental setup. Typically, surgery durations tend to follow a lognormal
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distribution [81]. Benzion et al. [9] show that in an experimental setting,
different distributions yield the same behavioral biases. However, a possi-
ble next step could be to set up experiments with more realistic duration
distributions. We further ignore variability of durations due to diversity-
factors such as different patient and OR-team characteristics. By this we
were able to concentrate on the impact of uncertainty on trade-off decisions.
An interesting research project would be to analyze surgeons’ behavior when
diversity-information is additionally available. In our experiment, we did not
find any significant learning behavior. For long run experiments we would
expect small learning effects as described by Bolton and Katok [12]. The
strongest learning effects can be expected if the time intervals between the
same surgery situations are not too long. The same situation, i.e. the same
combination of surgery type, OR team, and patient characteristics like age
and body mass index does not appear that often during short time intervals.
Therefore, the investigation of cross-learning effects, i.e. learning over a se-
quence of different surgeries, is a promising field for further research.

As planning of surgery durations is a task of high economic impact for all
hospitals, and as we are able to show significant and systematic non-optimal
behavior of experienced surgeons, important managerial implications may
be derived. We showed that in hospitals where idle capacities are more ex-
pensive than overtime, surgeons planned too long, while they planned too
short when overtime costs exceed costs for idle capacities. Hospital manage-
ment could react to these findings and create incentives for planning optimal
surgery durations, develop debiasing methods to obtain better planning re-
sults, or improve the planning skills of surgeons by training. In addition to
these managerial implications, we hope to encourage future research in this
field. We discovered some systematic errors in planning surgery durations.
We were able to demonstrate that biases in other fields like inventory man-
agement are relevant in health care settings as well. Although the health care
sector is in terms of number of employees the largest industry in industri-
alized countries, and human decision making plays an important role, little
research has been conducted in the field of behavioral health care operations
management. We are convinced that many biases in this field are still to
be discovered, and managing these biases could greatly impact the health
care sector. Therefore, we strongly encourage researchers, both from the
field of behavioral operations management and from health care operations
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management, to conduct further research in this promising area.



Chapter 6

Conclusion

6.1 Summary and conclusions

In the thesis at hand, we investigated the field of operating room manage-
ment from two directions. First, we discussed the influences a tactical MSS
has on the downstream units ICU and the regular wards in Chapters 2 and 3.
Second, behavioral aspects of operational operating room planning are pre-
sented in Chapters 4 and 5. In Chapter 2, we developed an analytical model
to detect the exact distributions of post-operative patients in the downstream
units ICU and ward resulting from an MSS. We further defined possible cost
functions based on these distributions and developed algorithms to create
cost-minimizing MSSs. These algorithms were tested and compared in a nu-
merical case study with three scenarios. The costs in the downstream units
could be reduced in a range from 4 to 12%. The data was based on real life
data of a Dutch hospital, however, the scenarios were artificial. In Chapter
3, a real life case study with data from a German university hospital was
carried out. The model was adjusted to meet the requirements of the hospi-
tal. For instance, to consider emergency surgeries on weekends, an artificial
specialty WE was introduced. In the case study three potential MSSs were
compared and discussed. As a result, peak occupancies in the ward could be
reduced by about 7% through adapting the MSS. Thus the model proved to
be valuable when designing or adapting MSSs.
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Chapter 4 provides a theoretical foundation for behavior in penalty-based
newsvendor situations. We showed that people ordered more goods in sit-
uations where ordering too little was penalized by costs, than in situations
where ordering too little resulted in opportunity costs. This is of high rele-
vance, as all previous newsvendor studies assumed an opportunity cost based
problem, and many situations with penalties exist. One example of a penalty
cost based problem is the planning of surgery durations. If surgeries are
planned too short, penalties for staff overtime and potential rescheduling of
following surgeries occur. In Chapter 5, we discussed the problem of planning
surgery durations and behavioral biases of surgeons in detail. We showed that
surgeons behave in non-optimal ways and reveiled systematic biases similar
to those in newsvendor situations. Surgeons reserved more time than optimal
in situations, where the optimal planned duration was below the expected
duration, and less time than optimal in situations, where the optimal planned
duration was above the expected duration. However, some context related
differences occurred. For instance, the shift towards the expected duration
was stronger than in inventory newsvendor studies.

6.2 Final Remarks and future research direc-

tions

Each approach presented in this thesis created new ideas for future research.
Incorporating stochasticity and downstream units in operating room plan-
ning could be further expanded. A possible future research project might
involve applying similar approaches for strategic problems. They could be
used, e.g., to obtain more information on the effect of OR capacity extension
projects on downstream units. This could help reducing bottleneck situa-
tions in these units.

Another promising future research area is the further investigation of be-
havioral effects in operating room planning and other areas of health care
operations management. As human behavior greatly influences decision mak-
ing in health care, further insights are valuable. Possible research projects
might be to investigate behavioral effects in admission planning, staffing,
and surgery scheduling. Behavioral investigation of hospital management or
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nursing staff could also help shed light on health care decision making.



Appendix A

Instructions for Experiments

A.1 Instructions experiment Chapter 4

Instructions: The instructions are translated from German and shortened
since the original instructions also contain examples and screen shots. Fur-
thermore, they do not contain the price and cost values and the payment
figures since they are different for the three margin cases. Differences in the
penalty cost and the opportunity cost problem are set in italics. The instruc-
tions consist of four parts though Part 1 is identical for both problems.

1. General information: You are about to participate in an experiment in de-
cision making. You will receive a fixed payment of e4 for your appearance.
Furthermore, in the course of the experiment you can earn a considerable
amount of money depending on your decisions. In the experiment, all mon-
etary amounts are specified in Experimental Currency Units (ECU). They
are converted according a fixed exchange rate into Euro (see payment de-
termination) at the end of the experiment. The experiment is followed by a
short questionnaire and, afterwards, you will be paid in cash. All your de-
cisions and answers will be treated confidentially. Please read the following
instructions carefully. If you have any questions, please raise your hand. An
instructor will come to your place and answer your questions. During the
experiment you have to switch off your cell phone and communication with
other participants is prohibited. If you fail to comply with these rules, we
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will exclude you from the experiment and you will receive no payment.

Opportunity cost problem (Part 2-4):

2. Experimental task: Your job is to determine the order quantity of a prod-
uct before you know the demand. You know that the demand is equally
probable for any value between 0 and 100. If your order quantity exceeds the
demand, the remaining products are worthless. If the demand exceeds your
order quantity, the unsatisfied demand expires. For each product you order,
you pay a price of ECU ... to the wholesaler (the costs per product unsold
correspond to ECU ...). For each product sold you will receive a price of ECU
... from your customers (the opportunity costs for each product ordered too
little corresponds to ECU ...).

• You cannot sell more products than are demanded.

• You cannot sell more products than you have ordered.

3. Experimental procedure: The experiment consists of 30 rounds and the
demand in each round is independent of past demand. Every round consists
of two screens. The first screen summarizes the information already given in
the instructions. Furthermore, you have to enter the number of products you
want to order in a red box and press the button “OK”. Please take sufficient
time to make your decisions. Once all participants have confirmed their en-
try, the second screen appears. On the second screen, your order quantity
is given again and you receive information about the realized demand. Fur-
thermore, the resulting gains/losses are listed. When all participants have
pressed “OK”, the next round starts.

4. Payment determination: You receive a fixed payment of e4 for your ap-
pearance. Furthermore, you can earn additional money dependent on your
performance in the course of the experiment. At the end of the experiment,
the gains/losses in ECU incurred in all rounds are added together. Your
payoff is the resulting amount which is converted by a factor of ECU ... =
e1 plus the e4 you receive for your appearance. In the event that you have
generated a total loss, you still receive your show up fee.

Penalty cost problem (Part 2-4):
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2. Experimental task: Your job is to determine the order quantity of a prod-
uct before you know the demand. You know that the demand is equally
probable for any value between 0 and 100. The demand of the customers
has to be satisfied. If your order quantity exceeds the demand, the remaining
products are worthless. If the demand exceeds your order quantity, you have
to reorder products instantly at a higher price. For each product you order,
you pay a price of ECU ... to the wholesaler (the costs per product unsold
correspond to ECU ...). For each product ordered too little, you have to pay
a price of ECU ... to the wholesaler (the additional costs for each product
ordered too little correspond to ECU ...).

• You cannot sell more products than are demanded.

• You have to reorder products if demand exceeds the order quantity.

3. Experimental procedure: The experiment consists of 30 rounds and the
demand in each round is independent of past demand. Every round consists
of two screens. The first screen summarizes the information already given in
the instructions. Furthermore, you have to enter the number of products you
want to order in a red box and press the button “OK”. Please take sufficient
time to make your decisions. Once all participants have confirmed their en-
try, the second screen appears. On the second screen, your order quantity
is given again and you receive information about the realized demand. Fur-
thermore, the resulting costs are listed. When all participants have pressed
“OK”, the next round starts.

4. Payment determination: You receive a fixed payment of e4 for your ap-
pearance. Furthermore, you can earn additional money dependent on your
performance in the course of the experiment. At the end of the experiment,
the costs in ECU incurred in all rounds are added together. These costs will
be deducted from a fixed budget of ECU ..., which is available to fulfill the
task. Your payoff is the resulting amount which is converted by a factor of
ECU ... = e1 plus the e4 you receive for your appearance. In the event that
you have generated a total loss, you still receive your show up fee.
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A.2 Instructions experiment Chapter 5

Instructions: The instructions are translated from German and shortened
since the original instructions also contain screen shots. Furthermore, they
do not contain the cost values and the payment figures since they are differ-
ent for the instruction of the low quantile case and the high quantile case.
The instructions consist of four parts.

1. General information: You are about to participate in an experiment in
decision making. In the course of the experiment you can earn a consid-
erable amount of money depending on your decisions. In the experiment,
all monetary amounts are specified in Experimental Currency Units (ECU).
They are converted according a fixed exchange rate into Euro (see payment
determination) at the end of the experiment. The experiment is followed by
a short questionnaire and, afterwards, you will be paid in cash. All your de-
cisions and answers will be treated confidentially. Please read the following
instructions carefully. If you have any questions, please ask.

2. Experimental task: Consider the following simplified decision situation
about planning of surgery durations. Your job is to reserve time for a surgery
in the operating room. You don’t know how long the surgery will take but
you know that the duration of that surgery is equally probable for any value
between 100 and 200. Every reserved minute of the operating room is asso-
ciated with costs. If your reserved time exceeds the duration, the remaining
time can not be used otherwise. If the duration exceeds your reserved time,
the additional time needed is associated with higher costs. The surgery can
not be interrupted. For each minute you reserve the operating room, the
costs are ECU ... (the costs per minute reserved too much correspond to
ECU ...). For each minute the operating room is needed beyond the reserved
time, the costs are ECU ... (the additional costs for each minute reserved
too little correspond to ECU ...).

• The cost per minute reserved time even occur if the duration is shorter
than the reserved time.

• The operation must be carried out until the end.
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3. Experimental procedure: The experiment consists of 20 rounds and the
surgery duration in each round is independent of past surgery durations.
Every round consists of two screens. The first screen summarizes the infor-
mation already given in the instructions. Furthermore, you have to enter
the minutes you want to reserve the operating room (between 100 and 200
minutes) in the red box and press the button “OK”. Please take sufficient
time to make your decisions. Afterwards, the second screen appears. On the
second screen, your reserved time is given again and you receive information
about the realized duration. Furthermore, the resulting costs are listed. Af-
ter pressing “OK”, the next round starts. You have to plan 20 independent
surgeries.

4. Payment determination: You can earn money dependent on your perfor-
mance in the course of the experiment. At the end of the experiment, the
costs in ECU incurred in all rounds are added together. These costs will be
deducted from a fixed budget of ECU ..., which is available to fulfill the task.
Your payoff is the resulting amount which is converted by a factor of ECU ...
= e1. Depending on your performance, the payoff will be between e5 and
e55.



Appendix B

Abbreviations, Notations, and
Symbols

B.1 General Abbreviations

2OH 2-Opt heuristic

ACE Assessment of costs effect

CE Combined effect

ECU Experimental currency units

EV Heuristic with approximated objective function

based on expected values

EVV Heuristic with approximated objective based on

expected values and variances

HQC High quantile case

ICU Intensive care unit

IIH Incremental improvement heuristic

K-S Kolmogorow-Smirnow

LQC Low quantile case

MAE Mean anchor effect
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MELESSA Munich Experimental Laboratory for Economic

and Social Sciences

MRI Klinikum München rechts der Isar

MSS Master surgery schedule

NCS Department of neurosurgery

OCP Opportunity cost problem

OR Operating room

ORDS Operating room day schedules

PACU Post-anesthesia care unit

PCP Penalty cost problem

SA Simulated annealing

SBB Straightforward branch-and-bound

SP Department of sport orthopedics

URS Department of urology

WE Imaginary specialty for cases on weekends

ZOP2 Zentral-OP-2

B.2 Notations and Symbols Chapter 2

Sets and indices

j ∈ J Surgery specialties

i ∈ I Operating rooms

p ∈ {0, . . . , Pj} Patients

n ∈ {1, . . . , N I
j } Days in the ICU after surgery

m ∈ {1, . . . , N I
j } Days in the ICU after surgery

n ∈ {1, . . . , NWO
j } Days in the ward after surgery

u ∈ {0, . . . , NWI
j } Days in the ward after ICU
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ℓ ∈ L Days in the MSS cycle

q ∈ Q Weekdays in the MSS cycle

ℓ ∈ L \ Q Weekend days in the MSS cycle

Parameters

aI,E Estimated quotient of required fixed capacities and

expected number of patients in the ICU

aW,E Estimated quotient of required fixed capacities and

expected number of patients in the ward

aj(p) Probability that p ∈ {0, . . . , Pj} patients are

operated on during a surgery block of specialty j

αI Service level for fixed capacities in the ICU

αW Service level for fixed capacities in the ward

bI,E Estimated quotient of patients to be staffed and

expected number of patients in the ICU

bW,E Estimated quotient of patients to be staffed and

expected number of patients in the ward

bj Probability that a patient of specialty j is

admitted to the ICU immediately after surgery

βI Service level for staffing in the ICU

βW Service level for staffing in the ward

cI,f Costs for creating and maintaining the capacity for

one patient in the ICU per cycle

cW,f Costs for creating and maintaining the capacity for

one patient in the ward per cycle

cI,o Costs for each patient above existing capacities in the

ICU per day

cW,o Costs for each patient above existing capacities in the

ward per day

cI,s Costs for staffing one patient in the ICU per day
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cW,s Costs for staffing one patient in the ward per day

cI,we Extra costs for staffing one patient in the ICU per day

on weekends

cW,we Extra costs for staffing one patient in the ward per day

on weekends

cIj (n) Probability that a patient of specialty j stays

n ∈ {1, . . . , N I
j } days in the ICU after surgery

cWO
j (n) Probability that a patient of specialty j stays

n ∈ {1, . . . , NWO
j } days in the ward after surgery

cWI
j (u) Probability that a patient of specialty j stays

u ∈ {0, . . . , NWI
j } days in the ward after

being released from ICU

cf Cooling factor for SA

dj Sum of required blocks for specialty j

dIj,n Probability for a patient of specialty j in the ICU

to be transferred to the ward on day n

dWO
j,n Probability for a patient of specialty j in the ward

n days after surgery to be released that day

dWI
j,u Probability for a patient of specialty j in the ward

u days after transfer from ICU to be released that day

eIj,n Probability that patient of specialty j who had surgery

on day 1 is in the ICU on day n

eWO
j,n Probability that patient of specialty j who had surgery

on day 1 and was transferred from the OR is in

the ward on day n

eWI
j,m,n Probability that patient of specialty j who had surgery

on day 1 and stayed in the ICU before is in

the ward on day n

eWj,n Probability that patient of specialty j who had surgery
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on day 1 is in the ward on day n

f I
j,n Probability distribution for the number of patients

in the ICU on day n from one block of specialty j

fW
j,n Probability distribution for the number of patients

in the ward on day n from one block of specialty j

F I
j,ℓ Probability distribution for the number of patients in

the ICU on day ℓ from one cyclical block of specialty j

FW
j,ℓ Probability distribution for the number of patients in

the ward on day ℓ from one cyclical block of specialty j

sj Maximum number of blocks for specialty j on day q

srI Estimated quotient of variance and standard deviation

of number of patients in the ICU

srW Estimated quotient of variance and standard deviation

of number of patients in the ward

tk Temperature level in round k

zI,cap z-Value for standard deviation of distribution of

required fixed capacities in the ICU

zW,cap z-Value for standard deviation of distribution of

required fixed capacities in the ward

zI,sta z-Value for standard deviation of distribution of

patients to be staffed in the ICU

zW,sta z-Value for standard deviation of distribution of

patients to be staffed in the ward

Decision variables

xi,q,j 1, If specialty j is assigned to block (i, q), 0 otherwise

Functions

c(x) Downstream costs

capI Number of beds needed in the ICU
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capW Number of beds needed in the ward

costf Fixed costs in downstream units

costo Overcapacity costs in downstream units

costs Staffing costs in downstream units

costwe Extra staffing costs on weekends in downstream units

E(F I
ℓ ) Expected number of patients in the ICU on day ℓ

E(FW
ℓ ) Expected number of patients in the ward on day ℓ

excI Expected number of patient days above capacities in

the ICU during one cycle

excW Expected number of patient days above capacities in

the ward during one cycle

F
I

i,q,l Probability distribution for the number of patients

in the ICU on day ℓ from the cyclical block (i, q)

F
W

i,q,l Probability distribution for the number of patients

in the ward on day ℓ from the cyclical block (i, q)

F I
l Probability distribution for the number of patients

in the ICU on day ℓ from the MSS

FW
l Probability distribution for the number of patients

in the ICU on day ℓ from the MSS

QI
ℓ(α

I) αI-quantile of the distribution F I
l on day ℓ.

QW
ℓ (αW ) αW -quantile of the distribution FW

l

SD(F I
ℓ ) Standard deviation of number of patients in the ICU

on day ℓ

SD(FW
ℓ ) Standard deviation of number of patients in the ward

on day ℓ

staI Number of patients to be staffed in the ICU

staW Number of patients to be staffed in the ward

V (F I
ℓ ) Variance of number of patients in the ICU on day ℓ

V (FW
ℓ ) Variance of number of patients in the ward on day ℓ
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B.3 Notations and Symbols Chapter 3

Indices

j Surgery specialties

p Patients

n Days after surgery

ℓ Days in the MSS cycle

B.4 Notations and Symbols Chapter 4

Indices

t Period

Parameters

α Mean anchor weight

β Underage cost weight

βopp Underage cost weight in the opportunity cost problem

βpen Underage cost weight in the penalty cost problem

c Purchasing costs per item

co Overage costs

cu Underage costs

d Uncertain demand
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ǫt Error term in period t

F (D) Cumulated demand function

µ Mean demand

p Selling price per item

s Higher reorder costs

Decision variables

q Order quantity

q∗ Optimal order quantity

qACE Adapted optimal order quantity

qCE Order quantity after CE

qMAE Order quantity after MAE

qt Order quantity in period t

B.5 Notations and Symbols Chapter 5

Indices

t Period

Parameters

c Costs per minute of used OR capacity

co Costs per minute of overutilization

cu Costs per minute of underutilization

D Realized duration

Dt Realized duration in period t

F−1 Inverse cumulative distribution function of D

µ Mean realized duration
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p Planned duration

s Increased costs per minute of overutilization

Decision variables

p Planned duration

p∗ Optimal planned duration

pt Planned duration in period t

Functions

At Planning adjustment score

C(p,D) Total costs

E[C(p)] Expected costs with planned duration p

E[C(p∗)] Expected costs with optimal planned duration p∗

I(p) Relative cost increase of planned duration p
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