
Technische Universität München
Department Physik
E19a – Chemische Physik fern vom Gleichgewicht

ANeural Network ofWeakly CoupledNonlinear

Oscillators with a Global, Time-Dependent

Coupling - Theory and Experiment

Doktorarbeit von Robert Hölzel

Dezember 2012





Technische Universität München
Department Physik
E19a – Chemische Physik fern vom Gleichgewicht

ANeural Network ofWeakly CoupledNonlinearOscillatorswith

a Global, Time-Dependent Coupling - Theory and Experiment

Robert Hölzel

Vollständiger Abdruck der von der Fakultät für Physik der Technischen Universität München zur
Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. F. Simmel

Prüfer der Dissertation:

1. Univ.-Prof. Dr. K. Krischer

2. Univ.-Prof. Dr. A. Pikovsky, Universität Potsdam

Die Dissertation wurde am 18. 12. 2012 bei der Technischen Universität München eingereicht und

durch die Fakultät für Physik am 18. 04. 2013 angenommen.





Danksagung

Meiner Doktormutter, Prof. Dr. Katharina Krischer, danke ich für die hervorragende Betreu-

ung meiner Arbeit, bei der ich freie Hand hatte, ein faszinierendes Thema zu erforschen,

und mich zugleich jederzeit auf ihre Unterstützung, gepaart mit ihrer großen Begeisterung,

verlassen konnte.

Dr. Joachim Wiechers danke ich für die viele Zeit, die er sich genommen hat, um meine

grundlegenden Fragen zum Entwurf von Schaltkreisen zu beantworten, sowie für zahlreiche

hilfreiche Hinweise zur Optimierung des experimentellen Aufbaus.

Prof. Dr. Rolf Schuster bin ich ebenfalls für hilfreiche Diskussionen und für die Beantwor-

tung diverser Fragen über die verwendeten elektronischen Bauteile dankbar.

Bei meinen Kollegen vom Fachbereich E19a möchte ich mich für die ausgesprochen

freundschaftliche und anregende Arbeitsatmosphäre bedanken, deretwegen ich immer

gern ins Labor beziehungsweise Büro gekommen bin, selbst in Zeiten großen Stresses.

Meinen Eltern danke ich für ihre beständige, liebevolle Zuwendung und für den bedin-

gungslosen Rückhalt, den ich bei ihnen immer gefunden habe und immer finden werde.





CONTENTS 5

Contents

1. Introduction 8

2. Theoretical background 13

2.1 Associative networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Pattern recognition in a network of individually coupled ideal oscillators with

equal frequency and constant coupling . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Initialization of the network . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.2 Recognition of a defective pattern . . . . . . . . . . . . . . . . . . . . 15

2.3 Pattern recognition in a network of globally coupled ideal oscillators with

different frequencies and weak time-dependent coupling . . . . . . . . . . . 20

2.3.1 Equivalence of weak global coupling dynamics and strong individual

coupling dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.2 Choosing suitable frequencies . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Phase shift equations for networks of weakly coupled realistic oscillators . . 26

2.4.1 General case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.2 Phase shift equations for a network of weakly coupled near-harmonic

oscillators with a global coupling in one variable . . . . . . . . . . . . 27

3. Methods 30

3.1 Numerical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1.1 Time integration of ODEs . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1.2 Simulations of circuit behavior with SPICE . . . . . . . . . . . . . . . 30

3.1.3 Extraction of the period and the phase shift from waveform data . . . 30

3.1.4 Extraction of the total harmonic distortion from waveform data . . . . 32

3.1.5 Curve fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Electronic circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.1 Circuit elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.2 Subcircuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.3 Van der Pol oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3 Experimental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.1 Phase response curve measurements . . . . . . . . . . . . . . . . . . 40

3.3.2 Pattern recognition experiments . . . . . . . . . . . . . . . . . . . . . 41

4. Theoretical analysis 45

4.1 Properties of the pattern states in recognition mode . . . . . . . . . . . . . . 45

4.1.1 Orthogonal memorized patterns . . . . . . . . . . . . . . . . . . . . . 46



6 CONTENTS

4.1.2 Non-orthogonal memorized patterns . . . . . . . . . . . . . . . . . . . 52

4.2 Changes of the ideal dynamics under non-ideal conditions present in an

experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2.1 Change induced by phase noise . . . . . . . . . . . . . . . . . . . . . 61

4.2.2 Change induced by distorted oscillations with amplitude noise . . . . 69

4.2.3 Change induced by phase noise in the coupling function . . . . . . . 69

4.2.4 Change induced by a distorted coupling function with amplitude noise 72

4.2.5 Change induced by a small separation of time scales . . . . . . . . . 73

4.3 Consequences for the scalability of the network . . . . . . . . . . . . . . . . 80

5. Design of the experiments 83

5.1 Selection of the individual oscillators . . . . . . . . . . . . . . . . . . . . . . . 83

5.2 Selection of the coupling mechanism . . . . . . . . . . . . . . . . . . . . . . 90

5.2.1 Coupling through an external resistor . . . . . . . . . . . . . . . . . . 90

5.2.2 Improved coupling through an external resistor . . . . . . . . . . . . . 92

5.2.3 Coupling through analog computing devices . . . . . . . . . . . . . . 95

5.3 Complete Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.3.1 Parameters of the individual oscillators . . . . . . . . . . . . . . . . . 96

5.3.2 Circuit with improved coupling through an external resistor . . . . . . 100

5.3.3 Circuit with coupling through analog computing devices . . . . . . . 102

5.4 A physical perspective: Pattern recognition as the result of minimal entropy

production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6. Experimental results 106

6.1 Pattern recognition in a network with 8 oscillators . . . . . . . . . . . . . . . 106

6.1.1 Network of TD-type oscillators with coupling through a VCR . . . . . 108

6.1.2 Network of NIC-type oscillators with coupling through a VCR . . . . . 112

6.1.3 Network of NIC-type oscillators with coupling through analog com-

puting devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.1.4 Discussion of the results . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.2 Long term behaviour during pattern recognition . . . . . . . . . . . . . . . . 127

6.3 The stabilizing effect of pattern initialization on frequency drift . . . . . . . . 129

7. Summary 132

References 135

A Appendix 141

A1 Table of repeatedly used symbols and abbreviations . . . . . . . . . . . . . . 141



CONTENTS 7

A2 Numerical integration example . . . . . . . . . . . . . . . . . . . . . . . . . . 143

A3 Netlists for LTSpiceIV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

A3.1 Van der Pol oscillator with tunnel diode . . . . . . . . . . . . . . . . . 147

A3.2 Van der Pol oscillator with NIC and gyrator . . . . . . . . . . . . . . . 147



8 1. Introduction

1. Introduction

For about ten years now, commercially available consumer computers (desktops and

laptops) have been experiencing a stall in their processing speeds. Most of the recent

improvements in computer performance have been in the fields of energy efficiency and

increased parallelization (for an accessible discussion of this development and its reasons,

see Sutter (2005)). While these gains are still considerable, due to the mature, well-

understood technology as well as the manpower and other resources dedicated to further

improvement, the classical von-Neumann computer architecture (von Neumann 1945),

which is the basis of modern computers, in principle does not lend itself particularly well to

parallelization (Backus 1978).

This thesis is motivated by the continuing quest for an inherently parallel computing device

- a device employing a network of many small, interconnected units acting both as data

processors and data storage for efficient parallel computation. Such devices are called

neural networks, because their parts mimic the function of neurons in human brains. They

exhibit a level of parallelization that goes much deeper than the multicore processors and

GPUs which today seem to have become almost synonymous with parallel computing.

The decisive architectural difference is the real time exchange of information between the

network elements through synaptic coupling, which is not a part of conventional parallel

computing devices.

Neural networks are based on the notion that the human brain, while governed by dynamic

processes many orders of magnitude slower than modern computers, still surpasses them

in many areas of information processing, such as pattern matching, speech recognition,

finding structure in unstructured data and, in general, the handling of complex, erroneous

and sometimes contradictory external inputs. The fact that nowadays a supercomputer

with 3000 processor cores and online access to terabytes of data, containing all knowledge

of humanity, does only moderately better than humans in a quiz show, rather than proving

the superiority of the computer, underlines the incredible efficiency of the human brain

(referring to the IBM project "Watson" (Ferrucci, et al. 2010)).

Ideas to construct artificial neural networks are roughly as old as the conventional computer

(McCulloch & Pitts 1943). After initial enthusiasm, interest in neural networks somewhat

faded due to the success of conventional computers. A major reason for this is that the

number of synapses of highly interconnected neural networks increases quadratically with

the size of the system. Also, the connections between neurons are not entirely trivial. In

general, synaptic coupling strengths must be adaptable to enable some form of Hebbian

learning (Hebb 1949), which means that neurons that often act synchronously will have an

increased synaptic coupling strength. When the technology was available to build neural

networks in sufficient sizes, conventional computers had improved to the point that it was
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(and still is) often more efficient (or at least more cost effective) to simulate a neural network

on a conventional computer than building the network in reality.

Interest in neural networks was renewed in the 1980s, when a seminal paper by Hopfield

(1982) introduced a new type of neural network, working as a content-addressable or

associative memory. The intriguing property of Hopfield’s approach is its applicability to

simple physical networks (in particular spin glasses), in which the computational task of

associative pattern recognition is accomplished by the tendency of the network to minimize

the energy function

E = − 1

2N

N∑
i

N∑
j 6=i

wijViVj, (1.1)

where wij are the synaptic coupling coefficients (or weights) and Vi ∈ {0, 1} is the state of

the i-th neuron. For suitably chosen (i.e. according to the Hebbian rule) synaptic weights,

equation (1.1) has a minimum for each memorized binary pattern of neuron states.

In spite of the renaissance of neural network research due to the Hopfield network, com-

mercial applications have been few and far between (e.g. the Intel 80170NX electronically

trainable neural network chip (Holler, et al. 1989)) and never particularly successful. How-

ever, in light of the developments described earlier and in conjunction with the advent of

the memristor (Chua 1971, Strukov, et al. 2008), which makes the physical implementation

of synapses a lot easier, neuromorphic computers today are once again in the focus of

science and computer industry alike (see for example Lohr (2011)), some researchers even

speak of a second renaissance of neural networks (Schmidhuber, et al. 2011).

Although these prospects are better than they have been for quite some time now, many

problems remain to be tackled on the way to applicable neural network hardware. One of

them, as mentioned before, is that all neuromorphic hardware must somehow realize the

synaptic coupling. In the case of Hopfield type networks, this means that N2 connections

have to be provided for N neurons, which becomes increasingly difficult if each connection

is implemented as a physical object like for example a wire or a resistance in an electric

circuit. The neural network presented in this thesis follows a different approach, by using

a global coupling which acts on all neurons alike, but affects each of them differently.

Once built, a network employing such a coupling technique allows for the addition of

further neurons without the need for adding any more neuron-neuron connections. This

is made possible by using oscillatory neurons that resonate only with specific frequencies

present in an external signal comprising many frequency components. The mathematical

basis of this idea was developed by Hoppensteadt & Izhikevich (1999). For this thesis,

a working associative network of 8 electrical oscillators using and proving their concept

was built. To the best knowledge of the author, this is the first hardware implementation.

The experimental realization of the coupling is based on research on globally coupled
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electrochemical oscillators, investigated in theory by Mazouz, et al. (1997), Krischer, et al.

(2003) and Hölzel (2007) and experimentally by Kiss, et al. (1999), Kiss, et al. (2002) and

Mikhailov, et al. (2004). Despite these foundations, one of the challenges of this thesis

was the transfer of the abstract idea of an oscillatory neural network to an experiment.

Therefore, before the chapter on experimental results, there is a chapter on the design of

the experiments, which describes this process.

Besides the experimental part, there is also a theoretical part to this thesis, which has

roughly the same extent. Before the motivation of the theoretical analysis is discussed, it is

helpful to look a bit closer into the mathematics underlying the neural network at hand:

Hoppensteadt & Izhikevich suggested a network of globally coupled sinusoidal phase oscil-

lators (or Kuramoto oscillators, (Kuramoto 1984)) with different frequencies and a complex,

time-dependent coupling function. They showed that the dynamics of the network can be

effectively written as

ϕ̇i =
1

N

N∑
j

wij sin(ϕj − ϕi), (1.2)

which describes the dynamics of a network of Kuramoto oscillators with phases ϑi defined

by ϑi(t) = Ωt + ϕi(t), common frequency Ω and individual coupling strengths wij between

pairs of oscillators. By choosing the phase shifts ϕi as variables, the common rotation

was eliminated. At first sight, this seems a bit remote from the topic of neural networks.

However, there is a strong relation between (1.2) and the Hopfield network, which will

become apparent a little further below.

The dynamical system (1.2) is not only studied in the context of neural networks, but

also with respect to synchronization phenomena of coupled oscillatory systems. It is a

mathematically relatively tractable toy model for more complicated oscillatory networks

and therefore appears, in varied form (i.e. with a frequency distribution instead of equal

frequencies, some added noise and/or different sets of coefficients wij ), in a considerable

amount of publications (see for example section 3. in the review by Arenas, et al. (2008)

and the references there). Most of those, however, do not deal with an all-to-all coupling

obeying the Hebbian rule.

Due to the involvement of many researchers from different scientific communities including

neurobiologists, mathematicians and physicists, it is surprisingly hard to determine who

came up with the idea to build a Hebbian neural network of coupled Kuramoto oscillators

first. For this idea to take form, the two concepts of neural networks and synchronized

oscillators had to be merged, a process that started in the early 80s and took roughly ten

years (this is briefly covered in a review by Acebrón, et al. (2005), which is focused on

synchronization phenomena).

In the synchronization community the dynamical system (1.2) was investigated as a model
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for coupled oscillators (escpecially chemical oscillators), where the wij reflected the spatial

displacement between oscillators (Neu 1980), a nearest-neighbor coupling (Sakaguchi,

et al. 1987, Kowalski, et al. 1988), random interactions (Daido 1987, Daido 1992), or a

combination of all those (Niebur, et al. 1991), albeit with a frequency distribution instead of

equal oscillator frequencies.

In the context of neural networks it appears that (1.2) was introduced by Cohen, et al. (1982),

once again with a frequency distribution. They, and also Strogatz & Mirollo (1988) and

Kopell & Ermentrout (1988), were concerned with chains of oscillators modeling undulatory

locomotion in certain lower animals. The first usage of (1.2) with some kind of Hebbian

learning can be found in Baldi & Meir (1990) and Sompolinsky, et al. (1991), who used

several coupled arrays of oscillators, as well as (Abbott 1990), who mentioned the open

problem of a neural network using the dynamics (1.2) with the coupling coefficients

wij =
M∑
k=1

ξki ξ
k
j , (1.3)

which is an application of the Hebbian rule for a set ofM memorized binary pattern vectors

ξk with ξki = ±1. The coupling matrix given by (1.3) is the coupling matrix used throughout

this thesis.

Meanwhile, coming from a more physical side, Cook (1989) extended the Hopfield model,

by considering a Q-state neural network with arbitrarily large Q (instead of the 2-state spins

used by Hopfield). In the limit of Q → ∞, i.e. if the spins take on continuous values

(and if, other than in Cook’s paper, only binary memorized patterns are considered), the

Hamiltonian of the system is given by

E = − 1

2N

N∑
i

N∑
j 6=i

wij cos(ϕj − ϕi), (1.4)

where the ϕi are now interpreted as the orientation of the respective spins (Nobre &

Sherrington 1986). The energy function (1.4) is a generalization of (1.1). Incidentally, it is

also a potential function of (1.2), which means the dynamics are equivalent.

Building on this preliminary work, Arenas & Pérez-Vicente (1994), were first to unequivocally

prove the applicability of a Hebbian network of (almost) identical Kuramoto oscillators for

pattern recognition. They, like Cook, allowed for real-valued pattern vectors instead of

binary patterns only, (1.3) being a special case.

In the years that followed, the understanding of Hebbian networks of Kuramoto oscillators

was further improved (Park & Choi 1995, Pérez-Vicente, et al. 1996, Aoyagi & Kitano 1997,

Aoyagi & Kitano 1998, Aonishi 1998, Aonishi, et al. 1999, Yamana, et al. 1999, Yoshioka

& Shiino 2000, Hong, et al. 2001, Shim, et al. 2002). The most relevant findings for the
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experimental realization were that, other than in the Hopfield network, the memorized

patterns are not attractors of the network dynamics. Instead, the system settles for states

close to the memorized patterns. Also, it has been found that the overlap of the resulting

pattern with the memorized pattern is the largest immediately after the onset of pattern

recognition.

None of these publications are written from an experimentalists point of view (especially

an experimentalist dealing with a small number of oscillatory neurons). Most of them use

the thermodynamic limit of N → ∞ in their calculations and all of them use some kind of

mean field approach to assess the quality of pattern recognition. For reasons discussed in

the theory chapter, this approach has some disadvantages. Instead of concentrating on

the mean field, the analysis presented in this thesis deals with the dynamics of individual

oscillators and with the structure of the 8-dimensional (or N-dimensional) phase space of

the network dynamics. Using this approach, a theoretical understanding of some previously

undocumented long-term behavior of the network observed both in simulations and in the

experiments was reached. In addition, the effects of several different types of experimental

inaccuracies on the quality of pattern recognition were assessed and compared, using

numerical simulations.
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2. Theoretical background

2.1 Associative networks

An associative network is a mathematical model or physical system that performs a

mapping between two vector spaces A and B

f : A→ B,x 7→ y

with the following characteristic: For a set of predefined input vectors xk ∈ A, k = 1, . . . ,M ,

there is a set of output vectors yk ∈ B, k = 1, . . . ,M such that any input in a neighborhood

of xk is mapped to yk. This is the defining property of an associative network (Rojas 1996).

If xk = yk, the network is called autoassociative. Due to its capability to associate a fixed

output vector with all inputs that are close to a predefined input vector, an associative

network can be used to recognize previously stored patterns (given by yk) from noisy input.

The network discussed in this thesis is an autoassociative networkmodeled by a continuous

dynamical system in which the memorized patterns are represented by different preferred

dynamical states of the system (albeit those states are not attractors). The input pattern is

supplied by the choice of the initial conditions. The network is able to store and retrieve

(albeit not perfectly) binary patterns ξk that only have entries of either 1 or −1:

ξk = (ξk1 , . . . , ξ
k
N)T, ξki = ±1, i = 1 . . . N, k = 1 . . .M

The most important characteristic of an associative network is its loading rate

α =
M

N
.

The maximal loading rate αmax indicates how many patterns can be reliably memorized

and retrieved by a network of a given size. The quality of retrieval depends not only

on the architecture of the network but also on the separation of the patterns (i.e. the

Hamming distance, the number of components that are different between two vectors)

in configuration space. To make different network architectures comparable, storage

capacities are generally computed for large N and randomly selected patterns ξk, which

have Hamming distances of roughly N/2. The optimal value for the Hamming distance for

the neural network under investigation in this thesis is exactly N/2, which is the case for

orthogonal patterns, i.e. if ξk · ξl = 0.
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2.2 Pattern recognition in a network of individually coupled ideal oscillators with

equal frequency and constant coupling

Building on previous, more general research (Arenas & Pérez-Vicente 1994, Aoyagi &

Kitano 1997), Aonishi (1998) investigated and proved the ability of an associative network

of coupled Kuramoto oscillators (Kuramoto 1984) with individually adjustable coupling

strengths to recognize binary pattern vectors from a given set of memorized patterns. The

oscillator phases ϑi(t) in this network are governed by the following system of differential

equations:

ϑ̇i = Ω +
1

N

N∑
j=1

wij sin(ϑj − ϑi) (2.1)

Here N is the number of oscillators, Ω is the common frequency of all oscillators and

wij = wji is the individual coupling strength between oscillators i and j. A positive value of

wij stabilizes a difference of ϑi − ϑj = 0 while a negative value stabilizes ϑi − ϑj = π.

Since the phase differences are the quantities we are interested in, we monitor the phase

shift rather than the phase in our numerical simulations and experiments, where each phase

ϑi(t) is written as the sum of a uniform oscillation and a phase shift ϕi(t):

ϑi(t) = Ωt+ ϕi(t)

Therefore, ϑi − ϑj = ϕi − ϕj, and (2.1) can be rewritten as

ϕ̇i =
1

N

N∑
j=1

wij sin(ϕj − ϕi). (2.2)

The pattern recognition process consists of two steps, namely the initialization and the

recognition step.

2.2.1 Initialization of the network

By choosing appropriate values for wij, a binary pattern ξ,

ξ = (ξ1, ξ2, . . . , ξn), ξi = ±1, i = 1...N,

can be stored in the network. From here on, this process will be called the initialization of

the network. We consider the network as successfully initialized to ξ, if

ξiξj = 1⇔ ϕi = ϕj + 2kπ

ξiξj = −1⇔ ϕi = ϕj + (2k + 1)π,
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where k ∈ Z. This means there are two groups of synchronized oscillators representing all

’1’ and all ’-1’ entries of the pattern vector respectively that differ in phase by π. This is

achieved by setting the coupling strengths to

wij = ξiξj.

The resulting dynamical system is given by

ϕ̇i =
1

N

N∑
j=1

ξiξj sin(ϕj − ϕi). (2.3)

By choosing new variables

ϕi → ϕ′i = ϕi + π for ξi = −1

ϕi → ϕ′i = ϕi for ξi = 1

the system (2.3) can be transformed to a system of uniformly coupled Kuramoto oscillators:

ϕ̇′i =
1

N

N∑
j=1

sin(ϕ′j − ϕ′i)

In this network, all oscillators synchronize (Kuramoto 1975). Therefore, ξ is the only attractor

of (2.3).

The left hand sides of Fig. 1to Fig. 4 show numerical simulation results for the initialization

of a pattern over time (up to the dashed vertical line), starting at random initial phases.

Note that after initialization there are two distinct branches of oscillators with phase shifts

at 0 and π, respectively. This is not necessarily the case, because (2.3) is invariant under a

global shift

ϕi → ϕ′i = ϕ+ u, u ∈ R.

In all plots in this chapter, the phase shift curves were globally shifted in such a way that

after initialization for ξi = −1 the phase shift is ϕi = 0 and for ξi = 1 the phase shift is ϕi = π.

2.2.2 Recognition of a defective pattern

In the recognition step a network that has been initialized to ξ is used to recognize ξ as

one of a given set of M memorized patterns ξk, k = 1 . . .M . This is achieved by adjusting

the coupling strengths wij according to a Hebbian (Hebb 1949) learning rule:

wij =
M∑
k=1

ξki ξ
k
j
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ξ ξ1 ξ2 ξ3

0 25 50 75 100

0

π

t[s]

ϕ

Fig. 1: Numerical time integration of the phase shifts in (2.3) (t ≤ 25 s) and (2.4) (t > 25 s) with random initial
conditions, N = 16 oscillators,M = 3 memorized patterns and one erroneous bit in the initial pattern.
The initial pattern ξ and the memorized patterns ξk are depicted above. Black squares correspond to
ξi = −1, white squares correspond to ξi = 1. Both the squares and the phase shift curves belonging
to erroneous bits in the initial pattern are marked red. Note that the three memorized patterns are
mutually orthogonal.

ξ ξ1 ξ2 ξ3

0 25 50 75 100

0

π

t[s]

ϕ

Fig. 2: Simulation results analog to Fig. 1, with three erroneous bits in the initial pattern.
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ξ ξ1 ξ2 ξ3

0 25 50 75 100

0

π

t[s]

ϕ

Fig. 3: Simulation results analog to Fig. 1 with N = 15 and two erroneous bits in the initial pattern. Note that
the three memorized patterns are not orthogonal (which is impossible for an odd number of pixels).
Still, the patterns are separate enough to enable a successful pattern recognition.

ξ ξ1 ξ2 ξ3

0 25 50 75 100

0

π

t[s]

ϕ

Fig. 4: Simulation results analog to Fig. 1 with N = 60 and eight erroneous bits in the initial pattern. Note that
the three memorized patterns are not orthogonal. Still, the patterns are separate enough to enable a
successful pattern recognition.
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ϕ̇i =
1

N

N∑
j=1

M∑
k=1

ξki ξ
k
j sin(ϕj − ϕi) (2.4)

The idea behind this choice of coupling is as follows: If the initial pattern ξ is close to ξl,

the ξl-component in the coupling will favor a switching of the few erroneous bits of ξ to

their correct values in ξl because the overwhelming majority of oscillators already have the

correct phase for this pattern. On the other hand, the ξk 6=l-components of the coupling

will neither strongly favor switching nor keeping the current phase shift of any erroneous

oscillator, if the Hamming distances of the memorized patterns are large enough (ideally

they are orthogonal, making the Hamming distances N/2 each).

Another motivation for the introduction of the Hebbian learning rule is given by the fact that

(2.3) is a gradient system with a potential function

Eξ = − 1

2N

N∑
i=1

N∑
j=1

ξiξj cos(ϕj − ϕi),

where ϕ̇i = −∂E/∂ϕi. The globally stable minimum of this potential corresponds to ξ.

The potential function of equation (2.4) is the sum of the potential functions belonging to

the patterns ξk:

EHebb =
M∑
k=1

Eξk = − 1

2N

N∑
i=1

N∑
j=1

M∑
k=1

ξki ξ
k
j cos(ϕj − ϕi) (2.5)

It is reasonable to expect this combined potential landscape to have a locally stable

minimum in the vicinity of each pattern ξk. If that is the case, initial patterns that are close

to ξk are transformed into the pattern corresponding to this attractor.

The question remains whether these attractors actually exist and what their basins of

attraction are, which in turn determine the storage capacity αmax of the network. As of

now, no analytical way to locate the attractors of (2.4) has been found for the general

case. However, Aonishi (1998) showed that in general, for large N and randomly assigned

patterns ξk, the dynamics of the network settles indeed in the vicinity of amemorized pattern

if M/N ≤ αmax = 0.042 (for comparison: the standard Hopfield network (Hopfield 1982)

has a loading rate of αmax ≈ 0.14 (Amit, et al. 1985)) and if the initial pattern is close

enough to a particular memorized pattern. These steady states reached in the long run

are different from the patterns themselves, which in general are unstable steady states of

(2.4). If the patterns are near orthogonal instead of random, the ratio M/N may be larger

than αmax and still allow for successful pattern recognition, a fact that was used for the

experiments with 8 oscillators and 3 memorized patterns described in chapter 6. If all

patterns are mutually orthogonal, it appears that the attractors form a degenerate network
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with a common basin of attraction rather than isolated minima of the potential. Section 4.1

presents some arguments that corroborate this conjecture.

Fig. 1 to Fig. 4 show the pattern recognition process for different network sizes and

memorized patterns. Fig. 1 and Fig. 2 depict numerical simulations with 3 orthogonal

patterns. Note that the system approaches a steady state ϕfinal that is substantially

different from a perfect recognition ϕperfect, even more so as more erroneous bits are

introduced in the initialized pattern. However, as long as

|ϕi,final − ϕi,perfect| < π/2, (2.6)

the two branches corresponding to ξi = 1 and ξi = −1 can still be told apart, and recognition

is successful. It is possible to modify the coupling such that the ξk become attractors

(Nishikawa, et al. 2004). However, this only works for strongly coupled oscillators of

identical frequency.

Fig. 3 shows a numerical simulation of a pattern recognition with 3 non-orthogonal patterns.

The system comes very close to the exact pattern it is supposed to recognize. Since this

is an unstable steady state, however, the system evolves away again from the exact

representation, but 2.6 remains fulfilled.

Finally, Fig. 4 is an example for a successful pattern recognition in a larger network

(pattern taken from Hoppensteadt & Izhikevich (1999)) with non-orthogonal patterns. Here

M/N = 0.05.

In all of these simulations, a perturbation of the order 10−6 was added to the phases when

the recognition coupling was switched on, because otherwise the system would have

remained at the initial pattern which is a steady state as well, albeit an unstable one.

Please note that, in the network discussed in this thesis, the coupling matrix wijhas to be

changed between initialization mode and recognition mode for each pattern recognition

process. As a consequence, the memorized patterns are not stored in the network itself

but must be kept elsewhere; the network is only a processing unit, other than a classic

neural network (which has static synaptic connection strengths wij, once it is completely

trained). On the plus side, this means that the network can switch dynamically between

different pattern sets.



20 2. Theoretical background

2.3 Pattern recognition in a network of globally coupled ideal oscillators with

different frequencies and weak time-dependent coupling

The complexity of physically implementing the coupling in (2.1) is ofO (N2). If each coupling

link is established by a unique physical connection (like a conducting wire between electrical

oscillators), adding or removing a new oscillatory neuron becomes increasingly complex

with a larger number of oscillators, rendering a modular setup impossible. Depending on

the type of oscillators used for the physical realization, it might not be feasible to individually

link oscillators to each other at all.

On the other hand, a global coupling can be readily implemented in a number of oscillatory

systems (Kiss et al. 1999, Taylor, et al. 2008, Mertens & Weaver 2011, Temirbayev,

et al. 2012). Hoppensteadt & Izhikevich (1999) proposed a network of weakly globally

coupled oscillators with different frequencies. In their approach, the complexity of O(N2)

needed to implement individual coupling strengths between pairs of oscillators is transferred

away from the physical architecture of the network towards the time-dependence of the

global coupling.

If the frequencies are suitably chosen, the dynamics of the system can be reduced to the

shape of (2.2), which is explained in section 2.3.1. Section 2.3.2 deals with the difficulties

of the search for suitable frequencies.

2.3.1 Equivalence of weak global coupling dynamics and strong individual

coupling dynamics

In the network proposed by Hoppensteadt and Izhikevich the time evolution of oscillator

phases ϑi(t) is given by:

ϑ̇i = Ωi + εa(t)
1

N

N∑
j=1

sin(ϑj − ϑi) (2.7)

Or, in terms of the phase shifts ϕi(t):

ϕ̇i = εa(t)
1

N

N∑
j=1

sin((Ωj − Ωi)t+ ϕj − ϕi) (2.8)

These equations differ from the original system of individually coupled oscillators ((2.1),

(2.2)) in several points:

• The frequencies Ωi are different.

• The coupling strength ε is weak compared to the natural frequencies of the oscillators

(namely, εN2 � Ωmax − Ωmin, as is explained in section 2.3.2). This means that the

time scale of the dynamics of ϕi is of O(1/ε) instead of O(1).



2. Theoretical background 21

• Instead of a constant individual coupling strength wij for each pair of oscillators,

there is a time-dependent global coupling term a(t). This global coupling must

be designed such that an "effective coupling" proportional to wij arises between

oscillators i and j.

What follows now is a multiple time scale analysis (Strogatz 1994) of (2.8) that yields a set

of time-averaged equations for the ϕi. This approach is an alternative to the ansatz used

by Hoppensteadt and Izhikevich, namely the direct averaging method, that comes to the

same result. The approach developed in this work puts more emphasis on the fact that

there is a fast time scale depending on the oscillator frequencies Ωi besides the slow time

scale introduced by ε. The quality of the approximation depends on the ratio between fast

and slow time scale rather than on the slow time scale alone.

Let δ denote the minimal difference between two frequencies present in the network:

δ = min
i 6=j
|Ωi − Ωj|

δ is the smallest frequency that occurs in the oscillatory terms on the right hand side of

(2.8). An oscillation with this frequency is still considered as fast. Therefore, it makes sense

to define the fast time T = δ · t and the slow time τ = εt. Now, ϕi(t) is written as a Taylor

series in ε/δ:

ϕi(t) = ϕ0
i (T , τ) +

ε

δ
ϕ1
i (T , τ) +O

(
ε2

δ2

)
ϕ̇i(t) = δ

∂ϕ0
i (T , τ)

∂T + ε

(
∂ϕ1

i (T , τ)

∂T +
∂ϕ0

i (T , τ)

∂τ

)
+O

(
ε2

δ

)
Plugging these approximations into (2.8) and separating the terms according to their order

in ε/δ yields for zeroth order

∂ϕ0
i

∂T = 0⇔ ϕ0
i (T , τ) = ϕ0

i (τ).

The first order equation reads

∂ϕ1
i

∂T = a(T /δ) 1

N

N∑
j=1

sin((Ωj − Ωi)T /δ + ϕ0
j − ϕ0

i )−
∂ϕ0

i

∂τ
. (2.9)

On the right hand side, all fast oscillating terms with a vanishing time average can be

neglected. The other, resonant terms including ∂ϕ0
i

∂τ
must cancel each other out. Whether

there are resonant terms or not depends on the frequencies present in the Fourier spectrum

of the global coupling signal

a(t) =

∫ ∞
0

a(Ω′) cos(Ω′t+ ϕ(Ω′))dΩ′.
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Assume that there is only one frequency present in the coupling (a(Ω′) = δ(Ω′ −Ωcoup)) and

ϕ(Ωcoup) = 0. Therefore a(t) = cos Ωcoupt and

a(T /δ) sin((Ωp − Ωq)T /δ + ϕ0
p − ϕ0

q) =
1

2
sin((Ωp − Ωq − Ωcoup)T /δ + ϕ0

p − ϕ0
q)

+
1

2
sin((Ωp − Ωq + Ωcoup)T /δ + ϕ0

p − ϕ0
q).

This is a fast oscillating term if |Ωcoup − |Ωp − Ωq|| � ε and can be neglected in (2.9). For

smaller values of |Ωcoup − |Ωp − Ωq|| the term becomes resonant. For the special case of

|Ωcoup − |Ωp − Ωq|| = 0, the resonant term becomes

a(t) sin((Ωp − Ωq)t+ ϕ0
p − ϕ0

q) =
1

2
sin(ϕ0

p − ϕ0
q).

In this case, (2.9) becomes

∂ϕ1
i

∂t
= δipδ

j
q

1

2N
sin(ϕ0

j − ϕ0
i ) + δiqδ

j
p

1

2N
sin(ϕ0

j − ϕ0
i )−

∂ϕ0
i

∂τ
.

To keep the right hand side nonresonant, ∂ϕ
0
i

∂τ
must fullfill the following conditions:

∂ϕ0
i 6=p,q
∂τ

= 0,
∂ϕ0

p

∂τ
=

1

2N
sin(ϕ0

q − ϕ0
p),

∂ϕ0
q

∂τ
=

1

2N
sin(ϕ0

p − ϕ0
q).

Therefore, by introducing a frequency component Ω = Ωp − Ωq in the global coupling

function a(t), the phase shifts ϕl and ϕq can be selectively manipulated without influencing

the other oscillators. This is possible simultaneously for all pairs of oscillators if the

constraint

||Ωq − Ωp| − |Ωj − Ωi|| � ε for {p, q} 6= {i, j} and p 6= q, i 6= j.

is fulfilled. If the minimal difference δ′ of two frequency differences in the network is defined

by

δ′ = min
{p,q}6={i,j}, p 6=q,i6=j

||Ωq − Ωp| − |Ωj − Ωi|| (2.10)

this amounts to

ε� δ′

or, with an appropriate choice of frequencies (see 2.3.2),

ε� δ. (2.11)

The constraint (2.11) ensures that the frequency differences of two pairs of oscillators

cannot coincide to produce spurious resonant terms in (2.9). Under this constraint the
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ξ ξ1 ξ2 ξ3
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ϕ

Fig. 5: Numerical time integration of the phase shifts in (2.8) with random initial conditions, N = 15 oscillators,
M = 3 memorized patterns and two erroneous bits in the initial pattern. Black squares correspond to
ξi = −1, white squares correspond to ξi = 1. Both the squares and the phase shift curves belonging
to erroneous bits in the initial pattern are marked red. Oscillator frequencies were chosen as a Golomb
ruler (see next section) between Ωmin = 1 kHz and Ωmax = 2 kHz. The coupling strength was set to
ε = 1. a(t) was chosen according to (2.12), where wij was determined by the patterns depicted above
as described in section 2.2. The coupling was switched to recognition mode at t = 25 s.

global coupling function

a(t) =
N∑
p=1

N∑
q=1

wpq cos((Ωp − Ωq)t) (2.12)

inserted in (2.9) yields
∂ϕ0

i

∂τ
=

1

N

N∑
i=1

wij sin(ϕ0
j − ϕ0

i ).

Thus, the zero-order approximation for ϕ̇i in normal time reads:

ϕ̇i = ε

(
1

N

N∑
j=1

wij sin(ϕj − ϕi) +O
(ε
δ

))

Apart from the different time scale, the approximate dynamics of a system of weakly

globally coupled oscillators with different frequency (2.8) is identical to the dynamics of

a system of coupled oscillators with the same frequency and individual strong coupling

(2.2), if the constraint (2.11) is fullfilled and the coupling function a(t) is given by (2.12).

Fig. 5 depicts the simulation results of a pattern recognition with the patterns also used in

Fig. 3, where Ωmin = 1 kHz, Ωmax = 2 kHz and ε = 1. The details of frequency selection are
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described in 2.3.2. Note that the average dynamics depicted in Fig. 5 differs qualitatively

from the dynamics shown in Fig. 3 in two aspects. First, the unstable steady state is

destroyed much quicker compared to Fig. 3, which is expected because of the fluctuations

that are present in the weakly coupled case. Second, there is a continuous drift in some of

the phase shifts. This drift settles for very long times (not shown in the picture) at a state

which does not necessarily correspond to the recognized pattern any more (not even in

the sense of (2.6)). The reason is that all steady states close to patterns are not particularly

robust (see 4.1.2).

2.3.2 Choosing suitable frequencies

A set of integer numbers, where each difference of any two numbers in the set occurs

only once, is called a Golomb ruler (Golomb 1997). Finding a set of N frequencies Ωi that

satisfy condition (2.11) is equivalent to finding a Golomb ruler of order N and rescaling the

numerical values appropriately to fit the available frequency range.

An example for a Golomb ruler of order N = 4 is given by the sequence

0, 1, 4, 6.

These numbers produce the six differences 1 − 0 = 1, 6 − 4 = 2, 4 − 1 = 3, 4 − 0 = 4,

6− 1 = 5 and 6− 0 = 6. They form a perfect Golomb ruler because the length L of the ruler

(i.e the difference between the highest and the lowest number) is equal to the number of

pairs that can be chosen from the set:

Lperfect =
N2 −N

2

However, it is proven that no perfect Golomb rulers exist for N > 4. For higher orders,

there exist optimal rulers with a minimal length Loptimal > Lperfect. There are no known

search algorithms for optimal Golomb rulers that only take polynomial time (Drakakis 2009).

As a consequence, until now, only Golomb rulers up to N = 26 have been found,

while the search for N = 27 is currently underway (the progress can be seen at http:

//www.distributed.net/OGR). Fig. 6 plots the length of the known optimal rulers versus

the order. The length scales worse than Lperfect but considerably better than N2. While

there are no known efficient algorithms to find optimal Golomb rulers, near optimal Golomb

rulers with

Lnear optimal < N2

have been found for N ≤ 65000 (Apostolos 2002). This gives an estimate of the minimal

separation between two frequencies that can be achieved in a Golomb ruler of length N .

The ratio of the minimal distance of two marks on the ruler (i.e. 1) to the length of the ruler is

http://www.distributed.net/OGR
http://www.distributed.net/OGR
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Fig. 6: Length of known optimal Golomb rules vs. the number of marks on the ruler, with differently scaling
polynomials for reference.

above or equal to 1/N2 if N ≤ 65000. Rescaling the integer distances on the Golomb ruler

to the available range of frequencies yields

min
i 6=j
|Ωi − Ωj| ≥

Ωmax − Ωmin

N2
. (2.13)

Therefore, if the frequencies represent a Golomb ruler of length N , the constraint (2.11) is

fulfilled if

ε� Ωmax − Ωmin

N2
. (2.14)

This condition is stricter than necessary, because larger values of ε still lead to a successful

pattern recognition. A large minimal separation of two frequencies and therefore large ε is

desirable because it increases both convergence speed and tolerance of the network for

frequency inaccuracies (the reason for that is explained in 4.2.1).
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2.4 Phase shift equations for networks of weakly coupled realistic oscillators

The experiments presented in chapter 6. were conducted with electrical oscillators that are

described by two differential equations each. The dynamics of the phases and phase shifts

is extracted from these equations using a method introduced by Kuramoto, applicable to

weakly coupled oscillators. The method is described in 2.4.1. Section 2.4.2 shows that for

the specific case of oscillators that exhibit an almost harmonic oscillation, global coupling

in one variable leads to phase shift dynamics equivalent to (2.2).

2.4.1 General case

The dynamics of a general nonlinear oscillator is given by a dynamical system

Ẋ = f(X) (2.15)

that has a stable limit cycle solution XLC(t + T )) = XLC(t), where T = 2π/Ω is the period

of the limit cycle. On the limit cycle itself, a uniform phase variable ϑ can be defined with

ϑ(t) = ϑ(XLC(t)) = Ωt+ const, (2.16)

ϑ̇ = ∇Xϑ ·
dX

dt
= Z(ϑ) · f(X) = Ω, (2.17)

where (2.17) follows from the chain rule. Z(ϑ) is called the phase-dependent sensitivity of

the oscillator. If the current phase of the oscillator is ϑ and the oscillator is subject to a

small external perturbation dX this will result in a jump in phase given by

dϑ = Z(ϑ) · dX (2.18)

The vector Z(ϑ) = ∇Xϑ is only meaningful if there is a phase ϑ(X) defined outside the

limit cycle. An asymptotic phase (Kuramoto 1984) ϑ(P ) for an arbitrary point P in the basin

of attraction of the limit cycle can be defined in the following way (see also Fig. 7):

• If P ∈XLC, ϑ(P ) is given by (2.16).

• If P /∈XLC, find a point P ′ ∈XLC such that

lim
t→∞
‖P ′(t)− P (t)‖ = 0,

where P (t) and P ′(t) are the trajectories emanating from the initial conditions P and

P ′ respectively. Since P is in the basin of attraction of XLC, it is always possible to
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XLC(t)

Q(t0)

P (t0)

P (t1)

Q(t1)

Fig. 7: Attractive limit cycle of (2.15) (red) with a trajectory in its basin of attraction (black). Initial states that
do not lie on the limit cycle (like P (t0)) will evolve towards states on the limit cycle (P (t1)). The phase
of P (t0) is equal to the phase of Q(t0) if P (t) and Q(t) coincide for t� t0

find such a point P ′. The phase of P ′ is given by (2.16). It is identical to the phase of

P :

ϑ(P ) = ϑ(P ′)

Now consider a system of N oscillators with frequencies Ωi subject to a weak coupling

Ẋi = fi(Xi) + εgi(X1, . . . ,XN , t), i = 1 . . . N, (2.19)

where ε� Ωi. In analogy to (2.17), the phase dynamics in this system is given by

ϑ̇i = Ωi + εZi(ϑi) · gi(X1, . . . ,XN , t). (2.20)

This is exact, however it is generally not possible to find an analytic expression for Z(ϑ).

Usually, Z(ϑ) is determined numerically in a simulation or experimentally (see 3.3.1 in the

chapter on methods).

2.4.2 Phase shift equations for a network of weakly coupled near-harmonic

oscillators with a global coupling in one variable

This section gives a derivation why both the waveform and the phase-dependent sensitivity

of a weakly nonlinear, near-harmonic oscillator take sinusoidal shape. Later on, it is shown

how this can be used in conjunction with a suitable global coupling to form a network with

properties equivalent to the networks presented in previous sections.

The weakly nonlinear oscillator

Ẋ = −Y + µf(X, Y )

Ẏ = X + µg(X, Y )
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with µ� 1 has the solution (Strogatz 1994)

X(t) = r(τ) cos(t+ ϕ(τ)) (2.21)

Y (t) = r(τ) sin(t+ ϕ(τ)),

where r(τ) = 1 + O(µ), −π ≤ ϕ(τ) < π are varying on the slow time scale τ = µt.

The instantaneous phase in the sense of (2.16) is given by ϑ = t + ϕ(τ) + O(µ) =

tan−1(Y/X) + µh(X, Y ). Therefore, if (2.21) is subjected to an infinitesimal jump (dX, dY ) in

both variables, there is a change in phase:

dϑ = tan−1

(
Y (t) + dY

X(t) + dX

)
+ µh(X + dX, Y + dY )− tan−1

(
Y (t)

X(t)

)
− h(X, Y )

dϑ = tan−1

(
r sin(t+ ϕ) + dY

r cos(t+ ϕ) + dX

)
+ µh(X + dX, Y + dY )− tan−1

(
r sin(t+ ϕ)

r cos(t+ ϕ)

)
− µh(X, Y )

A Taylor expansion to first order in dX and dY leads to

dϑ = −(sin(t+ ϕ) +O(µ))
dX

r
+ (cos(t+ ϕ) +O(µ))

dY

r
. (2.22)

With smaller µ, (2.22) becomes arbitrarily close to

dϑ = − sinϑdX + cosϑdY.

A comparison with (2.18) shows that in the limit of weak nonlinearity, the phase-dependent

sensitivity for near-harmonic oscillators is given by

Z(ϑ) =

(
− sinϑ

cosϑ

)

if the position in phase space is given by

X(ϑ) =

(
cosϑ

sinϑ

)
.

The next step is to couple N such oscillators with different frequencies Ωi, i = 1 . . . N . In

order to achieve a dynamics equivalent to (2.2), a suitable weak coupling function (i.e. g in

(2.19)) is needed. One possibility to choose the coupling is given by

g(X1, . . . , XN , Y1, . . . , YN) = a(t)
1

N

N∑
j=1

Yj(ϑj(t)),
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where a(t) is given by (2.12). Using this coupling and the expressions obtained earlier for

X(ϑ) and Z(ϑ), the general equation (2.20) transforms to

ϑ̇i = Ωi + εa(t)
1

N

N∑
j=1

Zi(t)Yj(t). (2.23)

Here, Zj(t) = sinϑj(t) is the second component of Zj. Since there is only a coupling in

the Y variable, Zj(ϑj) contains all information that is needed about the phase-dependent

sensitivity. From here on, the functions Z(ϑj) are referred to as the phase response curves

of the respective oscillators. Entering Zj(t) and Y (t) into (2.23) yields

ϑ̇i = Ωi + εa(t)
1

N

N∑
j=1

sinϑj cosϑi. (2.24)

This equation can be analyzed in the same manner as (2.7) in section 2.3.1. The final result

is (Hölzel & Krischer 2011)

ϕ̇i = εeff

(
1

N

N∑
j=1

wij sin(ϕj − ϕi) +O
(εeff

δ

))
(2.25)

where εeff = ε/2 and, additionally to εeff � δ, also

||Ωq + Ωp| − |Ωj − Ωi|| � εeff for {p, q} 6= {i, j} and p 6= q, i 6= j (2.26)

must hold. A simple way to guarantee this condition is fulfilled is to pick frequencies such

that 3Ωmin − Ωmax � εeff . Again, apart from the different time scale, (2.25) is equivalent

to (2.2). As it turns out, there is a difference in the slower time scale to the ideal weakly

coupled network, which results in a qualitatively different dynamics of the phase shifts. In

4.2.5, a multiple time scale analysis of 2.24 with three time scales is done which elaborates

on this difference.
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3. Methods

3.1 Numerical

3.1.1 Time integration of ODEs

For all numerical integrations of differential equations discussed in the thesis, the equations

were implemented in a straightforward C++ program. All variables and parameters

had double precision. The Livermore ODE solver (Radhakrishnan & Hindmarsh 1993)

available from http://www.netlib.org/odepack was used for numerical integration. The

flag indicating the integration method was set to MF=22, indicating a stiff ODE with a

Jacobian internally generated by the solver. Both, the relative and the absolute error

tolerances were set to 1 · 10−7. For all other settings, standard values were used. The solver

was compiled into a library with the GNU gfortran compiler. The library was then linked into

the C++ program with the GNU g++ compiler. Appendix A2 gives an example code listing

and describes the compiling and linking steps.

3.1.2 Simulations of circuit behavior with SPICE

SPICE (Nagel & Pederson 1973) is a state of the art simulation software for electronic

circuits. It realistically models the behavior of circuit elements like operational amplifiers

and diodes. The results of SPICE simulations predict the behavior of a circuit more reliably

than the numerical integration of differential equations derived from applying Kirchhoff’s

laws to an ideal circuit.

Before the experiments were conducted, the circuitry was tested with a SPICE model for

stability and for plausibility of the observed currents and voltages. For each non basic

circuit element, the SPICE model provided by the vendor was used, with the exception

of the tunnel diode, which was modeled as a nonlinear current source with a polynomial

characteristic. The characteristic was a fit of a fifth order polynomial to the data depicted

in Fig. 9 further below.

There are different implementations of the SPICE engine. For this thesis, LTspiceIV, which

is obtainable at http://www.linear.com/designtools/software, was chosen. Appendix

A3 shows SPICE netlists for both types of oscillators that were used in the experiment as

well as the commands to run the simulations.

3.1.3 Extraction of the period and the phase shift from waveform data

Both numerical and experimental data originally were either available as a time series of

the phase shifts (in simulations of networks of phase oscillators) or as time series of an

oscillating variable (in the experiment). In the second case, one or more steps of processing

http://www.netlib.org/odepack
http://www.linear.com/designtools/software
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the data were necessary to be able to plot the phase shift curves. The procedure is

first described in general, before its application for the data presented in this thesis is

discussed.

It is impossible to compute a phase shift from a waveform without deciding what is

considered the intrinsic period T = 2π/Ω of an oscillator. The reason is that in principle the

instant phase shift ϕ(t) of a signal is computed in the following way:

• Determine the current phase ϑ(t) of the signal.

• Subtract t from an integral multiple k of the intrinsic period T , such that

−0.5 · T ≤ kT − t < 1.5 · T . This will result in −0.5 · π ≤ ϕ(t) < 1.5 · π.

• The phase shift is now given by ϕ(t) = ϑ(t) + 2π(kT − t)/T .

Note that it is not always evident which is the intrinsic period. For example, in a system of

coupled oscillators, it is entirely possible that the frequencies change due to the coupling.

The data then could be interpreted as both a drift in the phase shift at the old frequency

or a constant phase shift at the new frequency. Arguments can be made for both

interpretations; the first one clearly separates coupling effects from the intrinsic dynamic

of the oscillator, while the second one extracts the relevant information more clearly under

some circumstances (this is illustrated with Fig. 24 in section 4.2.1).

The problem of finding the instant phase of the signal remains in both cases. Theoretically,

it is possible to obtain a continuous time series of the phase by using a Hilbert transform on

the data (a detailed discussion of this approach can be found in Pikovsky (2001)). However,

this high time resolution is not needed for the experiments and comes at a considerable

computational cost. Therefore, the following path was taken in this thesis:

Let t and U be two vectors representing data of an experimental voltage time series in

computer memory, where Ui represents the value of the voltage at the time ti. From

this data, the times of zero crossings tcrossi with positive slope were linearly interpolated

(compare Fig. 8):

tcrossi = tni
− tni+1 − tni

Uni+1 − Uni

Uni
, for (ni| tni

< 0 ∧ tni+1 ≥ 0)

The intrinsic period of the oscillation was determined by averaging the time between two

zero crossings in a certain time window:

T =
tcrossn+N

− tcrossn

N

The time window was chosen such that the oscillators were either uncoupled, or had

settled on the steady state during initialization. Otherwise, the transient changes in the

phase shifts due to the coupling could have lead to a biased average value.
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Fig. 8: Extraction of the momentary phase ϑ(t) from a measured voltage signal (black dots) at discrete
points in time. The times of zero crossings with positive slope (tcrossi ) are interpolated linearly from
neighboring data points (see text). ϑ(tcross1) = ϑ(tcross2) = 0.

Even without actually performing the Hilbert transform, the advance in phase between two

zero crossings of the signal is known to be π, if the signal is sufficiently close to sinusoidal

shape and has no spurious zero crossings. In this thesis, zero crossings with positive slope

were assigned the phase value ϑ = 0, fixing the phase of zero crossings with negative

slope at ϑ = π. With this assignment, the phase of the signal is known at the time of

all zero crossings. Only zero crossings with positive slope were taken into account. The

phase shifts ϕ(tcrossi) were determined from ϑ(tcrossi) = 0 as described above. This whole

procedure is only necessary if one is interested in a time series of the phase shifts. For

example, for pattern recognition, it is sufficient to determine one zero crossing before and

one zero crossing sufficiently long after the coupling function was switched, to determine

whether the phase shift has changed by π or not.

3.1.4 Extraction of the total harmonic distortion from waveform data

One method to characterize the deviation of an oscillating signal from a sine wave often

used in electronics is the total harmonic distortion (THD) (see for example Shmilovitz (2005)

for a thorough discussion). The THD describes the ratio of the amplitude of the higher

harmonics of a signal x(t) to the amplitude of the ground frequency:

x(t) =
∞∑
n=1

an sin(nΩt+ ϕn), THD(x(t)) =

√∑∞
n=2 a

2
n

a1

For an ideal sine wave, the THD is zero.

To obtain the THD from a time series the Fourier coefficients an were computed for
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n = 1 . . . 10 by numerically evaluating the expression

an = 2

√(∫
sin(nΩt)x(t)dt

)2

+

(∫
cos(nΩt)x(t)dt

)2

where the integrals were taken over one period of the signal. These first ten harmonics

were then used to compute the approximate THD.

3.1.5 Curve fitting

For the fits in shown in Fig. 9, Fig. 10, Fig. 15, Fig. 31, Fig. 64 and Fig. 65, the fit command

of the open source software Gnuplot (http://www.gnuplot.info) was used with standard

settings. This command works with the Levenberg-Marquardt algorithm (Marquardt 1963).

http://www.gnuplot.info
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3.2 Electronic circuitry

3.2.1 Circuit elements

Tunnel diode

A tunnel diode (Esaki 1958) is a special type of diode, which exhibits a region of negative

differential resistance in its current voltage characteristic; Fig. 9 shows the measured

I − U-characteristic of the type of tunnel diode (part number 40571, available at http:

//www.americanmicrosemiconductor.com) used in this thesis. The tunnel diodes were used

to enable sustained oscillations in oscillatory circuits. The schematic symbol of the tunnel

diode is depicted in Fig. 11. A serious drawback of tunnel diodes is that they are somewhat

hard to get by, since they are not produced any more. As a consequence, no vendor model

for SPICE was available for the tunnel diode; instead, a voltage dependent current source

with the polynomial characteristic also shown in Fig. 9 was used.

0 100 200 300 400 500
0

2

4

6

U [mV]

I
[m

A
]

Fig. 9: Current-voltage characteristic of the 40571 tunnel diode used for the experiments (black curve). The
curve was measured with a Jaissle PGU-10V-1A-IMP-S potentiostat. Note the wrinkles on the branch
of negative slope, testament to the instability of the steady state, which was constantly readjusted by
the potentiostat during the voltage sweep. The red curve shows a polynomial fit of fifth order, given
by I(U) =

∑5
n=1 aiU

n to the characteristic. The coefficients were a1 = 1.434 61 · 10−4 AV−1, a2 =
−1.482 · 10−3 A/V2, a3 = 6.139 39 · 10−4 A/V3, a4 = 1.177 77 · 10−2 A/V4 and a5 = 8.657 29 · 10−3 A/V5.

Voltage controlled resistor

For this thesis, an n-channel junction field effect transistor (JFET, for a discussion see

(Tietze 2008)) of type VCR2N was used as a voltage controlled resistor (VCR). This

particular transistor is specifically designed to be used in the linear regime of the current

voltage characteristic, where the device behaves as a resistor between source and drain

(see Fig. 10a). The resistance RSD is governed by the gate-source voltage UGS; the

dependence is shown in Fig. 10b. The schematic symbol of the JFET is depicted in Fig. 11.

http://www.americanmicrosemiconductor.com
http://www.americanmicrosemiconductor.com
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Fig. 10: a) Source-drain current vs. source-drain voltage of a VCR2N JFET for different values of the gate-
source voltage UGS. UGS was decreased from 0V (curve with the largest slope) to −3V (curve with
the smallest slope) in steps of −0.5V. The curves were measured with a Jaissle PGU-10V-1A-IMP-S
potentiostat. b) Inverse slope of linear fits to the curves in a), approximately equal to the source-drain
resistance of the JFET, vs. the gate-source voltage.

Like the tunnel diode, the VCR2N is a discontinued device, but it is replacable by current

JFETs.

Operational Amplifier

An operational amplifier, or op-amp, is a device with two high impedance inputs (called

the non-inverting and the inverting input) and a low impedance output. The potential at

the output is given by Uout = A · (U+ − U−), where U+ and U− are the potentials at the

non-inverting input and the inverting input, respectively, and A is a huge gain factor (usually

A > 104 - A depends on the frequency of the input signals, however). If the output voltage

is fed back to the inputs in a suitable manner, any circuit containing an op-amp can be

treated by applying the two "golden rules" (Horowitz & Hill 1989):

• The inputs draw no current.

• The output voltage will be such that both inputs are at the same potential.

For this thesis, op-amps were used as voltage follower, differential amplifier, nonlinear

impedance converter and gyrator, all of which are presented briefly below. The schematic

symbol of the op-amp is depicted in Fig. 11.

gate

source

drain

−

+

inverting input

non-inverting input
output

Fig. 11: Circuit symbols for tunnel diode, n-channel JFET and op-amp (from left to right).



36 3. Methods

3.2.2 Subcircuits

The following five subcircuits that make use of op-amps were used at least once in the

experimental network of oscillators. They can be understood by applying the two rules

mentioned above. A more detailed description for all of them can be found, for example, in

Tietze et al. (2008).

Voltage follower

This device mirrors the input voltage Uin at its output: Uout = Uin (see Fig. 12a). No current

is drawn from the circuit providing Uin. In the experiments, a voltage follower was used to

drive the VCR without influencing the dynamics of the coupled oscillators.

Differential amplifier with gain 1

The output of this device is the difference of its inputs: Uout = U2 − U1 (see Fig. 12b). In the

experiments, a differential amplifier was used to compute the effective gate-source voltage

of the VCR.

Negative impedance converter (NIC)

This device behaves as if it were a negative resistance to ground: I = −U/Rneg (see

Fig. 12c). In the experiments, NICs where used both as part of the nonlinear element of

oscillatory circuits and to enhance the range of the coupling, including negative values of

εeff .

Gyrator

This device acts as an inductance, with L = CL ·1 kΩ ·RL (see Fig. 12d). In the experiments,

gyrators where used instead of regular inductances (i.e. coils), because they are easily

tunable.

Inverting adder

The output of this device is the negative sum of its inputs: Uout = −∑N
i=1 Ui (see Fig. 12e). In

the experiments, an adder was used to sum over all oscillator voltages, which is necessary

for one particular implementation of the weak coupling mechanism.

3.2.3 Van der Pol oscillator

Van der Pol oscillators are LC circuits enhanced by an active nonlinear device that drives

the oscillation. A detailed description of the oscillation mechanism can be found for

example in Kanamaru (2007). The two variants that were used in this thesis are
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Fig. 12: Diagrams of some subcircuits used in the experiments: a) Voltage follower. b) Difference amplifier.
c) Negative impedance converter. d) Gyrator. e) Inverting voltage adder.

• a van der Pol oscillator with a tunnel diode in series with a voltage source as

nonlinear element (see Fig. 13) and

• a van der Pol oscillator with a NIC in parallel connection with two diodes as nonlinear

element and a gyrator as tunable inductance (see Fig. 14).

The first design will be referred to as TD-type oscillator, the second as NIC-type oscillator

from here on. If the current-voltage characteristic of the nonlinear element is given by

INL(U), the dynamical equations of the oscillator are

U̇ =
1

C
(−INL(U)− I)

İ =
U

L
(3.1)



38 3. Methods

L

UTD

40571

C

U

Fig. 13: Circuit diagram of a TD-type oscillator. U is a nearly sinusoidal signal if the specifications if the values
for C, L and UTD are chosen appropriately (see 5.1).

Here, U is the potential at the respective circuit nodes indicated in Fig. 13 and Fig. 14,

I is the current through the inductance. For sustained oscillations, INL(U) must have a

region of negative differential resistance around U = 0 (i.e. dINL/dU |U=0 = −1/Rneg with

Rneg > 0). If this is true, the damping is negative and the steady state (U, I) = (0, INL(0))

of (3.1) is unstable and the system exhibits stable long term oscillations (i.e. the attractor

of the system is a stable limit cycle). The frequency of the oscillations is close to the

frequency of the ideal LC-circuit, namely f0 = 1/2π
√
LC. The shape of the oscillations as

well as the deviation of the actual frequency f from f0 depend on the ratio of time scales,

given by γ = C/L (note that usually this parameter is denoted by ε, which, however, is

used in this thesis to denote the coupling strength between oscillators) and on 1/Rneg. If

γ � 0, oscillations tend to be relaxational, far from a sinusoidal shape. This is not the case

if 1/Rneg is sufficiently close to zero (i.e. if the system is close to the Hopf bifurcation).

A comprehensive numerical analysis of the parameter regions with sinusoidal oscillations

can be found in section 5.1. The analysis presented there also takes into account effects

of non-ideal circuit behavior that are not included in (3.1).

Fig. 15a shows the current-voltage characteristic of the tunnel diode. The slope of the

branch of negative differential resistance corresponds to Rneg ≈ 60 Ω. To move the region

1N4148 1N4148TL071

−

+

1 kΩ

1 kΩ Rneg

15V

−15V −+

TL
07

1

− +

TL071

15V−15V

15V −15V

1 kΩ

1 kΩ1 kΩ

CL

C

RL

U

Fig. 14: Circuit diagram of a NIC-type oscillator. U is a nearly sinusoidal signal if the specifications of the
TL071 amplifier are met, and if the values for C, CL and RL are chosen in compliance with the
specifications of the TL071.
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Fig. 15: a) Measured current-voltage characteristic of a 40571 tunnel diode shifted by UTD = 250mV. This is
the characteristic of the nonlinear element in Fig. 13. b) Current-voltage characteristic of the nonlinear
element in the circuit shown in Fig. 14 with Rneg = 6.19 kΩ. The characteristic for the 1N4148 diode
wasmeasuredwith a Jaissle PGU-10V-1A-IMP-S potentiostat and then fitted to the Shockley equation
(Shockley 1949): I1N4148(U) = IS(exp(U/UT)− 1) with UT and IS as parameters. The results of the fit
were UT = 52.39mV and IS = 8.235nA. The plot shows INL = I1N4148(U)− I1N4148(−U)−U/6.19 kΩ.

of negative differential resistance to U = 0, a voltage source must be connected in series

to the tunnel diode. For this voltage source, values in the range UTD ∈ [200mV, 300mV]

were used throughout the experiments.

Fig. 15b shows the current-voltage characteristic of a nonlinear element consisting of an

NIC with Rneg = 6.19 kΩ, in parallel with two diodes connected in opposite direction. The

effect of this arrangement is that the negative slope provided by the NIC is capped at high

voltages by the exponential shape of the characteristic of the diodes.
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3.3 Experimental

3.3.1 Phase response curve measurements

To obtain experimental phase response curves, a van der Pol oscillator was connected to

an external voltage source Uext via a resistor R (Fig. 16 shows the circuit for a TD-type

oscillator). The external voltage was provided by a Spectrum M2i.6021 digital/analog

converter PCI card with a sample rate of 50 MS/s. The differential equation for the evolution

of U in the extended circuit is given by

U̇ =
1

C

(
−INL(U)− I − U − Uext

R

)
.

The resistance R is also part of the circuit employed for pattern recognition experiments,

namely R = 500 Ω for the TD-type oscillator and R = 8.25 kΩ for the NIC-type oscillator (see

chapter 5. on the design of the experimental circuits). The same values were chosen for the

determination of the phase response curve, because then, the dynamics can be written as

U̇ = U̇uncoupled +
Uext

CR
,

which is a perturbation of the dynamics of an uncoupled oscillator. When a sharp external

voltage pulse is applied (ideally a delta peak), the voltage of the oscillator makes an instant

jump by a defined value ∆U , regardless of the phase of the oscillator. To obtain the phase

response curves in Fig. 31, a pulse with a Gaussian profile was applied to the oscillator

100 times at random points in time. For the TD-type oscillator (with C = 100 nF), the pulse

had a FWHM of 0.3µs and an amplitude of 3000mV, while for the NIC-type oscillator (with

C = 1nF), the pulse had a FWHM of 0.1µs and an amplitude of 1500mV. In both cases, the

expected voltage jump is

∆U =

∫
Uext(t)

RC
dt ≈ 0.02V.

This jump in the voltage signal is accompanied by a phase jump ∆ϑ which does depend

on the phase of the oscillator at the time when the external pulse was applied. This jump in

phase can be calculated by comparing the time T ′ between zero crossings of the voltage

signal U(t) (recorded at a rate of 50 MS/s with a Spectrum M2i.4032 A/D converter PCI

card) with positive slope directly before and directly after the pulse with the original period

T :

∆ϑ = 2π

(
1− T ′

T

)
Now, the phase response curve can be obtained as Z(ϑ) = ∆ϑ/∆U , where ϑ is the phase

of the signal when the external pulse was applied to the oscillator. The procedure described

above was adapted from a procedure used by Kiss, et al. (2005). Note that for the TD-type
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Fig. 16: Schematic of the extended circuit of a TD-type oscillator used to determine the phase response
curve of the oscillator.

oscillators, which tend to exhibit parasitic oscillations of very high frequency, a running

average of the sampled voltage signal with a window of 21 samples was used instead of

the raw signal to suppress spurious zero crossings. Still, spurious zero crossings due to

noise happened for both types of oscillators. If the phase at the time of the pulse was close

to zero with a spurious crossing occuring immediately afterwards, this resulted in a return

time T ′ close to zero instead of T . These values were ignored in the preparation of Fig. 31b

and Fig. 31d.

3.3.2 Pattern recognition experiments

For the pattern recognition experiments, the components comprised in the setup were

• a Dell Precision T7400 workstation (Intel Xeon dual core processor, 2x2Ghz, 4GB

RAM) running 64 bit Windows Vista,

• a Spectrum M2i.4032 analog/digital converter PCI card, installed in the workstation,

• a Spectrum M2i.6021 digital/analog converter PCI card, also installed in the work-

station,

• a LeCroy WaveRunner 44MXi oscilloscope,

• the circuit board with the oscillatory network, as described in the design chapter

(5.3),

• a power supply for the circuit board,

• a metal shield, consisting of a bottom plate and a lid, shielding the circuit board from

above, below and two sides

• and a cardboard box, containing holes for the BNC connections of the circuit board,

in which the circuit board along with the metal shielding was placed. The shielding

improves the performance of the network.
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Fig. 17: Schematic setup of the pattern recognition experiments. White on black numbers show the order of
the experimental steps described in the text.

The schematic setup is depicted in Fig. 17. The whole setup was controlled by a program

written in C++, using the Qt framework (http://qt-project.org) as well as the C++ APIs

provided by Spectrum and LeCroy. The communication between the oscilloscope and

the workstation was done via a LAN connection. All other external connections between

devices were realized with BNC cables.

For a pattern recognition experiment, the following steps were performed in the order: 1,

2a through 7a, 2b through 7b, 8 (compare Fig. 17):

1. The defective pattern and the three recognizable patterns were passed to the

controlling software, along with the desired duration Trecord of the recorded time

series and the desired parameters Uamp
coup and Uoff

coup of the voltage signal governing

the coupling (see also step 2b).

2. (a) The coupling voltage (i.e the designated output of the D/A converter) was set to

UDA(t) = 0 and written to a memory buffer.

(b) Using the frequencies determined in step 7a, the coupling voltage was set to

UDA(t) = Uoff
coup + Uamp

coup/N · a′(t). The coupling function a′(t) (slightly varied from

(2.12)) is given by

a′(t) =
N∑
p=1

∑
q 6=p

wpq cos((Ωp − Ωq)t).

This coupling function contains the same frequency components as a(t) without

the homogeneous contribution, which is instead governed by the value of Uoff
coup in

the coupling signal. Uamp
coup/N is the amplitude of a single sinusoidal component in

the coupling signal. There was a low cutoff voltage (Umin
DA ) as well as a high cutoff

http://qt-project.org
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voltage (Umax
DA ). These values differed between measurements. They were due to

the limited range of the M2i.6021 DA converter at a given voltage resolution, the

maximum voltage range being [−3V, 3V].

In both cases, the size of the buffer depended on the duration of the measurement:

Since the sample rate was fixed at 1 MS/s, the buffer had Trecord · 1MHz samples.

3. The D/A output buffer was transferred to the D/A converter.

4. The trigger signal was given for the A/D and D/A converter cards, which was passed

on to the oscilloscope with a delay of a few microseconds. This delay was due

to some undocumented behavior of the Spectrum cards and therefore not entirely

predictable.

5. Simultaneously (i.e. within the small time difference between the oscilloscope

and the A/D converter mentioned above), the coupling voltage was applied to the

oscillatory network and the voltage signal Ui(t) of all 8 oscillators was collected into

recording buffers on the oscilloscope and the A/D converter, respectively, during a

time interval of length Trecord. The sample rate of data acquisition was 1 MS/s.

6. The oscilloscope and A/D buffers were transferred to the memory of the workstation

computer.

7. (a) The second half of the buffer data was taken to determine the frequencies of the

oscillators as described in 3.1.3. In order to avoid transients from switching on

the system or from any previous measurements, the first half was not used.

(b) The second quarter of the buffer data was taken to determine the frequencies of

the oscillators after initialization. This is a time interval in which the oscillators are

expected to have settled for their initial configuration, but the coupling according

to the Hebbian rule has not yet started. Also, the phase shifts were computed for

the whole time interval [0, Trecord] using these frequencies as described in 3.1.3.

Through this procedure, common drifts in the phase shift of all oscillators during

initialization, like they are present in the simulations shown in Fig. 25 or Fig. 29 in

the next chapter, do not appear in visualizations of experimental data. This is a

more convenient way to display the data and does not affect the assessment of

pattern recognition quality.

Due to small delays in the triggering process, the point of reference (namely

t = 0) was not the same for all oscillators, but differed by a few microseconds. To

eliminate the varying offsets in the phase shift curves caused by this discrepancy,

the offsets of all phase shift curves were chosen artificially such that after the

time interval Trecord/2, the pattern represented by the phase shifts was exactly
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the desired initial pattern. This means, it was assumed that initialization always

worked perfectly. As a consequence, in visualizations of experimental phase

shift data, the branches of ϕ = 0 and ϕ = π are never spread out as for example

in Fig. 25 during initialization. These plots therefore cannot be taken to judge

the quality of the initialization process, because they are artificially perfect in

that respect. However, they can be used to judge the quality of the recognition

process by monitoring the change in the phase shift between initialization and

recognition for each oscillator. After all, these changes do not depend on

constant individual offsets of the phase shift curves.

8. The phase shift and frequency data (and optionally also the voltage time series) was

stored on the hard drive.

Steps 2 to 7 were repeated, because first the frequencies of the uncoupled oscillators had

to be measured exactly (in the sequence 2a, 3, 4, 5, 6, 7a) before the recognition could

be performed (in the sequence 2b, 3, 4, 5, 6, 7b). However, once the frequencies are

known, the system can be used for a series of pattern recognition measurements (i.e. going

through steps 1, 2b, 3, 4, 5, 6, 7b, 8) repeatedly without going through the steps 2a, 3, 4,

5, 6, 7a in between). After a rather short time (usually around half a minute) however, the

frequencies must be determined anew, because they have drifted too far from their original

values for a successful pattern recognition. The frequencies were determined immediately

before the pattern recognition experiment for all experiments presented in chapter 6.
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4. Theoretical analysis

This chapter shines light on the restrictions that both the ideal and the realistic network

have with respect to the robustness of pattern recognition and scalability of the network.

First, both numerical and analytical evidence is presented suggesting that any stationary

state the ideal network settles for in recognition mode is marginally attracting at best (even

when the zero eigenvalue of the Jacobian due to the global invariance with respect to

common rotations of the phase shifts is not considered), other than the steady state in

initialization mode (which is, apart from the aforementioned eigenvalue, an asymptotically

stable fixed point, even in the presence of distributed oscillator frequencies (van Hemmen

& Wreszinski 1993)). This fact has important consequences for the robustness the pattern

recognition process.

Second, the effects of different deviations from ideal behavior of the realistic network are

investigated systematically. This includes noise, distortions of the oscillation wave form,

phase response curve and coupling function as well as a small separation of time scales.

The main result is that noise (especially frequency inaccuracies due to noise) is qualitatively

different from other types of non-ideal behavior: its effect worsens with a larger number of

oscillators, thus putting a limit on network size.

Third, an estimate is given for the maximum size N of the network given the available

frequency accuracy ∆Ω/Ω.

4.1 Properties of the pattern states in recognition mode

It has already been discussed that the network described by (2.4) does not deliver

recognized patterns perfectly, because the perfect representations of the memorized

patterns are unstable steady states of the system (Aonishi 1998). While Aonishi established

that up to a loading rate of α ≈ 0.042, a network that is initialized close enough to a

memorized pattern will retrieve the memorized pattern, little is known about the exact

location or about the eigenvalue spectra of the steady states corresponding to those

retrieval states. Especially the eigenvalues are interesting from an experimentalist’s point

of view, because even a theoretically stable solution will not be realized in the long term if

the level of noise or other deviations from ideal behavior of the network are large enough

to drive the system away from it.

The first part of this section shows that for the special case of mutually orthogonal

memorized patterns ξk, each point on the straight lines connecting any two of the states

representing the patterns ξk in phase space is a stationary state. This family of degenerate

states is either an attracting limit set, or it is part of an even larger set of degenerate states.

Whether the larger set is an attractor itself remains an open question. However, it seems
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plausible that it is the only attractor of the system, as will be discussed below.

Mutually orthogonal memorized patterns are a highly symmetrical special case. In the

second part of this section, an argument is given why any meaningful attractor (i.e. close to

a memorized pattern) existing in the network during the recognition phase should have M

leading eigenvalues close to zero, where M is the number of memorized patterns, which

means that states corresponding to recognized patterns are considerably less robust than

the single global attractor in the case of initialization. Also, some numerical evidence

is presented suggesting that, even in the general case, there is a family of degenerate

steady states interconnecting all steady states corresponding to recognized patterns in

phase space, making these states indifferent equilibria, same as in the case of mutually

orthogonal patterns.

4.1.1 Orthogonal memorized patterns

General case

Consider again the dynamical equations for the recognition step in the ideal network:

ϕ̇i(ϕ1, . . . , ϕN) =
1

N

N∑
j=1

M∑
k=1

ξki ξ
k
j sin(ϕj − ϕi) (4.1)

To analyze this equation it is helpful to abstract from the global phase shift symmetry.

Therefore, from here on, a fixed point is referred to as attractive, if all but one eigenvalues

of the Jacobian are smaller than zero (the last one being always equal to zero). Also, a

stationary state will be called non-isolated or degenerate only if the fixed point in question

is not just trivially non-isolated (i.e. some neighboring stationary states must not lie along

the (1, 1, . . . , 1)T-direction for a non-isolated fixed point).

For each pattern ξk, there is a corresponding 1-dimensional manifold of fixed points of

(4.1). Let ϕ∗k be any of those fixed points. In the case of just one memorized pattern (i.e.

for an initialization to that pattern), ϕ∗k is a global attractor. For more than one memorized

pattern, the ϕ∗k are generally unstable. However, in the special case of mutually orthogonal

patterns (i.e. ξl · ξm = Nδlm), the ϕ∗k are part of a set of non-isolated fixed points (once

again, apart from the fact that they are trivially non-isolated because of the global phase

shift invariance). Minimally, this set contains all straight lines connecting two such states in

phase space:

ϕ̇(ϕ∗l + u(ϕ∗m −ϕ∗l)) = 0 (4.2)

with the parameter u ∈ R and l,m ∈ (1, . . . ,M).

Equation (4.2) can be verified by explicitly computing the time derivative. Entering the

parametrization of the phase shifts along the connection of ϕ∗l and ϕ∗m into a single term
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on the right hand side of (4.1) yields

ξki ξ
k
j sin(ϕj(u)− ϕi(u)) = ξki ξ

k
j sin(ϕ∗lj − ϕ∗li + u(ϕ∗mj − ϕ∗lj )− u(ϕ∗mi − ϕ∗li )).

Since the invariance of a state in phase space does not depend on the coordinates, a

new set of coordinates ϕ′ can be chosen such that ξli
′

= 1, i = 1, . . . , N , without loss of

generality. In these new coordinates ϕ∗lj
′
= ϕ∗li

′ holds for all i and j, leading to:

ξki
′
ξkj
′
sin(ϕj

′(u)− ϕi′(u)) = ξki
′
ξkj
′
sin(u(ϕ∗mj

′ − ϕ∗mi ′))

= ξki
′
ξkj
′
(ξmj

′ − ξmi ′)β.

where β = sin(uπ)/2. Therefore, the time derivative of any state on the line defined by

variation of the parameter u evaluates to

ϕ̇i
′ =

1

N

N∑
j=1

M∑
k=1

ξki
′
ξkj
′
(ξmj

′ − ξmi ′)β

=
M∑
k=1

ξki
′
(δkm − δlkξmi ′)β

= (ξmi
′ − ξmi ′)β

= 0.

This result proves that the patterns ξk correspond to non-isolated fixed points of (4.1) that

are mutually connected by straight lines of non-isolated fixed points in phase space. The

potential along these lines is equal to −N/2:

E = − 1

2N

∑
i,j,k

ξki ξ
k
j ξ

l
iξ
l
j = −1

2

∑
j,k

ξkj ξ
l
jδlk = −N

2

∑
k

δ2
lk = −N

2
.

In the next step, it is proven that λ ≤ 0 for all eigenvalues λ of the Jacobian of any of these

states. For the stationary states ϕ∗k, this was already done in section 5.1 of (Hölzel 2007).

The following proof is an extension of the proof presented there.

The Jacobian J of (4.1) is given by

Jij =
∂ϕ̇i
∂ϕj

=
1

N

(
M∑
k=1

ξki ξ
k
j cos(ϕj − ϕi)− δij

N∑
p=1

M∑
k=1

ξki ξ
k
p cos(ϕp − ϕi)

)
(4.3)
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Along the vector joining ϕ∗l and ϕ∗m in phase space, given by ϕ(u) = u(ϕ∗m − ϕ∗l), the
individual summands constituting the entries of the Jacobian evaluate to

ξki ξ
k
j cos(ϕj(u)− ϕi(u)) = ξki ξ

k
j cos(ϕ∗lj − ϕ∗li + u(ϕ∗mj − ϕ∗lj )− u(ϕ∗mi − ϕ∗li ))

= ξki ξ
k
j cos

(
(ξliξ

l
j − 1)

π

2
+ u(ξmi ξ

m
j − ξliξlj)

π

2

)
= ξki ξ

k
j ξ

l
iξ
l
j cos

(
u(ξmi ξ

m
j − ξliξlj)

π

2

)
= ξki ξ

k
j

(
ξliξ

l
j (1− γ) + ξmi ξ

m
j γ
)

where γ = (1− cos(uπ))/2. J can now be written as a sum of matrices whose eigenvectors

can be computed more easily than those of J itself:

J = (1− γ)
M∑
k=1

Akl + γ
M∑
k=1

Akm − 1. (4.4)

Here, Akxij = ξki ξ
k
j ξ

x
i ξ

x
j /N .

Akx hasM mutually orthogonal eigenvectors given by

vkx,q = ξx ◦ ξq, q = 1 . . .M,

where ’ ◦ ’ denotes component-wise multiplication. The corresponding eigenvalues are

given by

λkx,q = δkq, q = 1 . . .M,

as can be seen by calculating Akx ·w with an arbitrary vector w:

(
Akx ·w

)
i

=
1

N

N∑
j=1

ξki ξ
k
j ξ

x
i ξ

x
jwj =

1

N
ξki ξ

x
i

N∑
j=1

ξkj ξ
x
jwj =

1

N
vkx,ki vkx,k ·w

This result proves that all vectors orthogonal to vkx,k are eigenvectors ofAkx with eigenvalue

0. Therefore the eigenvalue spectra of the three terms on the right hand side of (4.4) are

• M × (1− γ) and (N −M)× 0 for the first term,

• M × γ and (N −M)× 0 for the second term and

• N ×−1 for the third term.

This means that λ ≤ 0 for all eigenvalues λ of J , since the largest eigenvalue of a sum

of matrices cannot surpass the sum of the largest eigenvalues of the summands (see for

example Knutson & Tao (2001)). J has at least two eigenvalues equal to 0, one belonging

to the eigenvector (1, 1, . . . , 1) because of the global phase shift invariance, the other

belonging to the eigenvector ξl ◦ ξm, which is the vector pointing from ϕ∗l to ϕ∗m.
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If the rest of the eigenvalues is negative, the degenerate set of states as a whole is

attracting. This is the case in the example presented below in this section and also in the

experiments presented in section 6.1.

If there are additional zero eigenvalues, the line of degenerate fixed points is embedded in

a stationary manifold of higher dimension. The reasoning for this is as follows:

Movement along an eigenvector χ = (χ1, χ2, . . . , χN) starting at any steady state ϕ∗ in the

phase space of (4.1) can be written as

ϕ̇i(u) =
1

N

N∑
j=1

wij sin(ϕ∗j − ϕ∗i + (χj − χi)u),

where ϕ̇i(0) = 0. If the respective eigenvalue is zero, also ∂uϕ̇i(0) = 0 holds. The higher

order derivatives with respect to u are given by

∂(2n)
u ϕ̇i(0) =

1

N

N∑
j=1

wij(−1)n(χj − χi)2n sin(ϕ∗j − ϕ∗i ) = 0

and

∂(2n+1)
u ϕ̇i(0) =

1

N

N∑
j=1

wij(−1)n(χj − χi)2n+1 cos(ϕ∗j − ϕ∗i ).

where n ∈ N. If all entries of χ have the same absolute value χ (which is the case for the

degenerate state considered here, namely χi = ±1), the last equation reduces to

∂(2n+1)
u ϕ̇i(0) = (−1)n(2χ)2n∂uϕ̇i(0) = 0.

This means, all derivatives with respect to u vanish. Since ϕ̇i(u) is analytical, it must be

identical to zero for all u. Therefore, all points along the eigenvector are stationary states as

well; the line of non-isolated fixed points and the eigenvector span a whole plane of fixed

points.

Unfortunately, the attempt to find the general structure and stability of the degenerate state

for arbitrary sets of mutually orthogonal memorized patterns was not successful and further

investigations are necessary. Also, it remains unclear, whether other attractors exist far

from the memorized patterns even though they were never observed in the experiment or

in simulations.

Example: 8 oscillators, 3 memorized orthogonal patterns

For a better impression of the location of the degenerate state in phase space, con-

sider an example with 8 oscillators and 3 memorized patterns ξ1 = (1, 1, 1, 1, 1, 1, 1, 1)T,

ξ2 = (1, 1, 1, 1,−1,−1,−1,−1)T and ξ3 = (1, 1,−1,−1, 1, 1,−1,−1)T, which are mutually

orthogonal.
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Fig. 18: a) Surface plot of the potential E of the network dynamics in recognition mode (given by (4.5)) on a
two-dimensional plane in ϕ-space spanned by ξ2 = ξ2 ◦ ξ1 and ξ3 = ξ3 ◦ ξ1. ξ1 is the origin. The
location of special patterns in the plane is marked by labels. b) Three dimensional section of ϕ-space
spanned by ξ2, ξ3 and ξx. ξ1 is the origin. Note that the global invariant direction is orthogonal
to the section. Solid lines mark stationary states. The direction of the eigenvectors with negative
eigenvalues for these states is indicated by the colored arrows (red: ξx, green: ξ2, blue: ξ3). The
absolute value of the eigenvalue is indicated by the length of the line, ranging from 0 to 1. Note that
all eigenvalues along directions other than ξ1, ξ2, ξ3 and ξx are equal to −1 for these states.

Fig. 18a visualizes the potential function

E =
M∑
k=1

Eξk = − 1

2N

N∑
i=1

N∑
j=1

M∑
k=1

ξki ξ
k
j cos(ϕj − ϕi) (4.5)

in the vicinity of the origin on a two-dimensional cross section of phase space. Incidentally,

because of the global phase shift invariance of (4.1), the origin ϕ1 = 0 represents pattern ξ1.

The cross section is the plane spanned by the vectors ξ2 and ξ3, which are, due to the choice

of coordinates, also eigenvectors with zero eigenvalue of the steady state representing ξ1.

By moving from the origin a distance of π/2 along either of the two axes, one arrives at pat-

terns ξ2 and ξ3, respectively: ϕ2 = (π/2, π/2, π/2, π/2,−π/2,−π/2,−π/2,−π/2)T is a repre-

sentation of ξ2 and the same goes for ϕ3 = (π/2, π/2,−π/2,−π/2, π/2, π/2,−π/2,−π/2)T

and ξ3. By moving a distance of π/2 along both ξ2 and ξ3 from the origin, one arrives

at another pattern orthogonal to the other three: ξx = (1, 1,−1,−1,−1,−1, 1, 1)T. Since

this pattern does not enter the coupling function, the potential function behaves differently

here, showing a maximum.

If the dynamics are confined to the ξ2-ξ3-plane, the system can be expected to settle for

any state in the potential valleys between ξ1 and ξ2 or ξ1 and ξ3, depending on the initial

conditions (if there are no perturbations). For pattern recognition, the final state will be

closer to one of the patterns, because the initial pattern is closer to this pattern as well.
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However, this is not thewhole picture. While it is known that at ξ1 all other directions in phase

space are strongly attracting (except for the global invariance of the (1, 1, 1, 1, 1, 1, 1, 1)T

direction), this is not true for ξ2 and ξ3. For these patterns, the potential landscape looks

analog to Fig. 18a in the ξ2-ξx-plane and in the ξ3-ξx-plane, respectively.

Therefore, the subspace containing the possible final states is spanned by all three pattern

vectors (once again neglecting the global phase shift invariance). Fig. 18b shows the

degenerate steady state in this subspace (where the origin still represents ξ1). The four

patterns lie on the corners of a cube in phase space. Points on the edges that are not

adjacent to ξx are fixed points with eigenvalues λ ≤ 0. The eigenvectors belonging to

negative eigenvalues are embedded in the faces of the cube (the absolute value of λ is

visualized by the colored arrows along the edges). As a consequence, the degenerate state

as a whole is a stable attractor.

Since each face of the cube is a symmetry plane of the flow, the attractor extends infinitely

over phase space, which allows for permanently rotating solutions in the presence of

arbitrarily small perturbations. An example for this kind of behavior is presented in Fig. 19,

which shows the result of a simulated pattern recognition in the system (4.1) with randomly

detuned frequencies. The detuning introduces small additional constant terms in the

equations for ϕ̇i:

ϕ̇i = ωi +
1

N

N∑
j=1

M∑
k=1

ξki ξ
k
j sin(ϕj − ϕi) (4.6)

This equation and its dynamics are discussed in detail in section 4.2.1. For the simulation

shown in Fig. 19, N values ω′i were chosen randomly from the interval [0Hz,∆Ω] with a

uniform probability distribution. The width of the distribution was ∆Ω = 0.1Hz. Then, their

average value was subtracted from each ω′i to obtain ωi. The latter was done to avoid a

global change in frequency leading to rotating solutions.

Adding the small terms ωi to the dynamics is equivalent to introducing a small random

tilt in the potential landscape. As a consequence, in the example at hand, after the initial

fast recognition (i.e. ξ1), the system begins to "roll" towards ξ2. At this crossroad, the

system moves towards ξ3 which appears to be the favored direction, since from then

on, the system keeps alternating between ξ2 and ξ3. Another way to imagine the motion

in phase space is to look at the cube in Fig. 18b. The system starts out close to the

ξ1-corner and gets attracted to the ξ1-ξ2-edge, moving slowly towards ξ2 due to the effect

of the perturbation terms. Arriving at ξ2, the system continues along the ξ2-ξ3-edge and

periodically cycles through both patterns. Depending on the distribution of the ωi, different

movement patterns occur.

Since perturbations of this kind arise in any experimental system, no truly stationary pattern

recognition can be achieved for mutually orthogonal memorized patterns.
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Fig. 19: Numerical time integration of the phase shifts in (4.6) with random initial conditions, N = 8 oscillators,
M = 3 memorized patterns and one erroneous bit in the initial pattern. The initial pattern ξ and the
memorized patterns ξk are depicted above. Black squares correspond to ξi = −1, white squares
correspond to ξi = 1. The color of the border around each square corresponds to the color of the
phase shift curve in the plot. The coupling was switched to recognition mode at t = 100 s. The choice
of the frequency deviations ωi in (4.6) is described in the text.

4.1.2 Non-orthogonal memorized patterns

General case

In the following, an argument is made that for any set of randomly selected of memorized

pattern vectors ξk, k = 1 . . .M , the M leading eigenvalues of the Jacobian for an attractor

ϕ∗ of (4.1) should be

λk ≈ 0, k = 1, . . . ,M, (4.7)

if the attractor is close to a memorized pattern, much like it is the case in for a set of

orthogonal memorized patterns. Since the states in ϕ-space that form the attractors of 4.1

do not in general correspond to pattern vectors ξ with entries 1 or −1, it is useful to define

the complex pattern vectors |ξ〉 (ϕ), that are defined for arbitrary states in ϕ-space:

|ξ〉i (ϕ) = eiϕi .

With this definition, each vector of phase shifts ϕ is linked to a pattern state |ξ〉 in an

N-dimensional complex Hilbert space. For the proof of (4.7), consider the operator J :

Jij =
1

N

(
M∑
k=1

ξki ξ
k
j e

i(ϕj−ϕi) − δij
N∑
p=1

M∑
k=1

ξki ξ
k
pe

i(ϕp−ϕi)

)
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Note that J as defined in (4.3) forms the real part of J . At any state |ξ〉 in phase space, J
can be written as

J =
1

N

M∑
k=1

(∣∣ξk ◦ ξ〉 〈ξk ◦ ξ∣∣− 〈ξk ∣∣ ξ〉 N∑
i=1

〈
ξk ◦ ξ

∣∣ i〉 |i〉 〈i|) ,
where |i〉 is the unit vector along the i-th coordinate direction.

In the limit of large N, it can be shown that
〈
ξl
∣∣J ∣∣ ξm〉 = 0 for all combinations of l and m

if the state represented by |ξ〉 corresponds exactly to a memorized pattern. Note that this

implies that
〈
ξl
∣∣ J ∣∣ ξm〉 = 0, because

∣∣ξl〉 and |ξm〉 are real-valued vectors.

The value of
〈
ξl
∣∣J ∣∣ ξm〉 is determined as follows:

〈
ξl
∣∣J ∣∣ ξm〉 =

1

N

M∑
k=1

(〈
ξl
∣∣ ξk ◦ ξ〉 〈ξk ◦ ξ ∣∣ ξm〉− 〈ξk ∣∣ ξ〉 N∑

i=1

〈
ξk ◦ ξ

∣∣ i〉 〈ξl ∣∣ i〉 〈i | ξm〉)

=
1

N

M∑
k=1

(〈
ξl
∣∣ ξk ◦ ξ〉 〈ξk ◦ ξ ∣∣ ξm〉− 〈ξk ∣∣ ξ〉 N∑

i=1

〈
ξk ◦ ξ ◦ ξl ◦ ξm

∣∣ i〉)

=
1

N

M∑
k=1

(〈
ξl
∣∣ ξk ◦ ξ〉 〈ξk ◦ ξ ∣∣ ξm〉− 〈ξk ∣∣ ξ〉 〈ξk ◦ ξ ◦ ξl ◦ ξm ∣∣ 1 . . . 1〉) ,

where |1 . . . 1〉 is the pattern vector defined by ξi = 1, i = 1 . . . N . The latter expression can

be rewritten as

〈
ξl
∣∣J ∣∣ ξm〉 =

1

N

M∑
k=1

(〈
ξk ◦ ξl

∣∣ ξ〉 〈ξ ∣∣ ξk ◦ ξm〉− 〈ξk ∣∣ ξ〉 〈ξ ∣∣ ξk ◦ ξl ◦ ξm〉) ,
|ξ〉 is now assumed to correspond to a memorized pattern. Without loss of generality, this

memorized pattern is chosen as |1 . . . 1〉. Therefore,

〈
ξl
∣∣J ∣∣ ξm〉 =

1

N

M∑
k=1

(〈
ξk
∣∣ ξl〉 〈ξk ∣∣ ξm〉− 〈ξk ∣∣ 1 . . . 1〉 〈ξk ∣∣ ξl ◦ ξm〉) .

The largest contribution in the left hand term occurs at k = l, while the largest contribution

in the right hand term occurs for k = 1. Both terms cancel each other out. All other

individual contributions have the same expected value of O(
√
N), which means that they

should cancel out as well if N is large enough, and therefore
〈
ξl
∣∣J ∣∣ ξm〉 = 0. For the

rest of the proof, only the symmetric, real-valued operator J and real-valued vectors are

considered. Let |ψ〉 be any such vector in theM-dimensional span of the
∣∣ξk〉, given by

|ψ〉 =
M∑
k=1

ak
∣∣ξk〉 ,
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with arbitrary coefficients ak ∈ R. Then, also

〈ψ | J |ψ〉 =
M∑
k=1

M∑
l=1

akal
〈
ξk
∣∣ J ∣∣ ξl〉 = 0. (4.8)

This result allows to prove that J has at least M zero eigenvalues. The proof is done by

contradiction:

Suppose that J had only x < M eigenvalues λi = 0, i = 1 . . . x and N − x eigenvalues

λi < 0, i = x + 1 . . . N . As J is a symmetric matrix, all eigenvalues are real. Also, there are

no positive eigenvalues, because the state under consideration is assumed to be attractive.

Let |χi〉 denote the corresponding normalized eigenvectors, which form an orthonormal

basis of the N-dimensional vector space. Now, choose a vector |ψ〉 of finite length in the

M-dimensional subspace spanned by the
∣∣ξk〉, for which 〈ψ |χi〉 = 0 for i ≤ x. Such a vector

must exist because the dimension of the subspace spanned by the first x eigenvectors is

strictly smaller thanM , according to the premise. For this particular vector, there is at least

one i > x with 〈ψ |χi〉 6= 0, and therefore

〈ψ | J |ψ〉 =
N∑
i=1

λi
∣∣〈ψ ∣∣χi〉∣∣2 < 0

This is a contradiction to (4.8) and therefore, if an attractive steady state is exactly equal to

a memorized pattern, its Jacobian must have M eigenvalues equal to zero. If the steady

state is sufficiently close to a memorized pattern, this is still approximately true, as stated

in (4.7). The question remains, however, what ‘‘sufficiently close’’ means in this respect.

Example: 100 oscillators, 3 memorized random patterns

To see the effect of theM small eigenvalues discussed above, a series of simulations was

run in a system with N = 100 oscillators and M = 3 patterns. The reason for the huge

increase in oscillator number compared to the example for orthogonal patterns is that for

random patterns, a substantially bigger number than eight oscillators are needed in order

to accommodate three memorized patterns. At N = 100 and M = 3, the load rate of the

network is α = 0.03, which is sufficiently below Aonishi’s threshold that small size effects

can be ruled out as the reason for any type of special behavior.

Fig. 20 depicts three simulations of slightly perturbed dynamics

ϕ̇i = ωi +
1

N

N∑
j=1

M∑
k=1

ξki ξ
k
j sin(ϕj − ϕi) (4.9)

where, again, N values ω′i were chosen randomly from the interval [0Hz,∆Ω = 0.1Hz] with

a uniform probability distribution and their average value was subtracted from each ω′i to
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obtain ωi.

The only difference between the simulations shown in Fig. 20a, Fig. 20b and Fig. 20c were

the different random patterns and the different random frequency deviations ωi that were

used. The images show three qualitatively different types of behavior:

In Fig. 20a, the network evolves quickly (faster than the time resolution of the figure) to the

correct memorized pattern and stays there for all times. Pattern recognition works in the

long time limit.

In Fig. 20b, the network evolves quickly to the correct memorized pattern, but after a

transient settles for another, incorrect memorized pattern and stays there for all times.

Pattern recognition works on a short time scale only.

In Fig. 20c, the network evolves quickly to the correct memorized pattern, but then drifts

cyclically between all memorized patterns, similar to Fig. 19. Pattern recognition works on

a short time scale only.

Fig. 20c suggests that the potential landscape looks similar to Fig. 18a even for nonorthogo-

nal patterns. However, in contrast to the orthogonal case, there are truly stable states close

to the patterns, to which the system settles in Fig. 20a and Fig. 20b. This begs the question,

why the state corresponding to the correct memorized pattern is not always realized for

long times, although it is apparently attractive and close to the initial pattern. A possible

explanation is that, because some of the eigenvalues are close to zero, ∆Ω = 0.1Hz is too

large a perturbation, randomly destabilizing the weakly stable attractors.

To determine the effect of the size of the deviations on the behavior, a series of numerical

simulations with varying ∆Ω was conducted. The results are shown in Fig. 21. Each of

the bar stacks represents a series of 100 numerical integrations of (4.9). The size of the

perturbations was different for each series, ranging from ∆Ω = 1 · 10−5 Hz to ∆Ω = 0.1Hz.

The most remarkable observation is that the time scale of the error terms ωi does not

play a role at all in the long time limit of the dynamics of 4.9. The relative frequency of the

different possible outcomes remains the same for the whole investigated range of ∆Ω. The

ratio of correctly recognized patterns to incorrectly recognized patterns is roughly 1 : 2,

suggesting that the correct pattern is not preferred in any way as long term limit of the

dynamics, regardless of the size of the perturbation terms. Another interesting result is that

for all ∆Ω, drifting solutions comparable to the one in Fig. 20c exist. Finally, apart from

the three different outcomes depicted in Fig. 20, it also happened roughly 20% of the time

that a stationary solution that did not correspond to any of the memorized patterns was

realized. A possible explanation of this behavior is as follows:

In the case of nonorthogonal memorized patterns, there exists a set of (up to symmetries)

M special solutions ϕk∗ that are close to the memorized patterns and have M zero eigen-

values. These solutions are connected by a network of degenerate steady state solutions

much like the perfect patterns in the orthogonal case. However, the degenerate state is not
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Fig. 20: a) Numerical time integration of the phase shifts in (4.9) with random initial conditions, N = 100
oscillators,M = 3 randomly selected memorized patterns (with equal probability for both states) and
10 erroneous bits in the initial pattern. The choice of the frequency deviations ωi in (4.9) is described
in the text. b) Same as a), with a different set of random patterns and frequency deviations. c) Same
as a), with yet another different set of random patterns and frequency deviations. Note that in all
three simulations, the short term pattern recognition was successful in a matter of seconds. Due
to the low sampling rate of the data on that time scale, this is unfortunately not recognizable in the
images.
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Fig. 21: The plot shows, for different values of the frequency detuning ∆Ω, how often each possible type
of long term behavior occurred in a series of 100 numerical simulations of (4.9) with N = 100
oscillators,M = 3 randomly selected memorized patterns (with equal probability for both states) and
10 erroneous bits in the initial pattern. The relation between ∆Ω and the frequency deviations ωi in
(4.9) is explained in the text. The long term behavior of the system was evaluated at t = 1000/∆Ω, the
coupling was switched to recognition mode at t = 100 s. Note that the short term pattern recognition
was always succesful in these simulations.

a network of straight lines now, due to the lesser symmetry of the system. Fig. 22 shows

a stylized potential landscape with the curved invariant manifold. While in the ideal system

no point in phase space is attractive, an arbitrarily small perturbation can stabilize points

close to the invariant manifold, if the effect "tilts" the potential landscape in the right way.

This also explains why occasionally a pattern that does not represent one of the memorized

patterns is realized in the long term. Note that this stabilizing mechanism does not work

in the case of orthogonal patterns, where the invariant curves connecting the ϕk in phase

space are straight lines. Please also note that these thoughts as well as the potential

landscape in Fig. 22 are quite speculative. However, they do explain the numerical results

well.
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Fig. 22: Schematic plot of the potential E of the network dynamics in recognition mode on a two-dimensional
subsection through the three-dimensional center manifold of ϕ1∗ in ϕ-space for a system withM = 3
nonorthogonal memorized patterns. The subsection is orthogonal to the (1, . . . , 1)-direction. Fixed
points withM zero eigenvalues that represent imperfect memorized patterns are marked with labels.
The thick black lines are equipotential curves with minimal potential that connect ϕ1∗ to the other
memorized patterns.
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4.2 Changes of the ideal dynamics under non-ideal conditions present in an

experiment

Any experimental realization of a globally coupled network of oscillators will exhibit devia-

tions from (2.25). In the last section, it was shown that reliable long term pattern recognition

cannot be achieved in the presence of arbitrarily small perturbations even in the ideal model

of the network. However, short term recognition appears to be more robust. Still, it is

important to quantify the effect of a non-ideal setup on the quality of short term pattern

recognition. This is somewhat difficult, because of the cumulative effect of errors produced

by different sources. For example, an offset in oscillator frequencies causes a drift in the

solution. A small separation of time scales causes an oscillation of the solution around

the slowly drifting average. Both effects together will lead to a faster destruction of the

recognized pattern (i.e ϕi leaving the appropriate value range) than the drift alone.

This section investigates different types of deviations from ideal behavior independently,

with the caveat that the combined effects may be worse.

Note that the following analysis is different from the one in (Hölzel 2007), as it is given from

an experimentalist’s point of view, with a special focus on effects that pose severe limita-

tions for a large number of oscillators. It also goes deeper than previous efforts regarding

perturbations to the ideal dynamics (2.4) using mean-field models; this is discussed in

detail in the concluding section (4.3) of this chapter.

The starting point of the analysis is the general equation for realistic oscillators with a weak

global coupling (compare section 2.4.2),

ϑ̇reali = Ωreal
i (t) + εareal(t)

1

N

N∑
j=1

Zreal
i (t)Y real

j (t)),

ϕ̇reali = ϑ̇reali − Ωi. (4.10)

With the definition of the "real" quantities given below, this general equation deals with the

fact that each oscillator and the coupling function itself are subject to small deviations in

phase and amplitude:

• ϑreal(t) = ϑ(t) + ηϑ(t), ϕreal(t) = ϕ(t) + ηϑ(t), Ωreal(t) = Ω + η̇ϑ(t)

ηϑ 6= 0 accounts for phase noise in the uncoupled oscillations. If η̇ϑ(t) is a slowly

varying function, this error corresponds to a deviation from the original frequency.

• Zreal(t) = cos(ϑreal(t)) + ηZ(t) and Y real(t) = sin(ϑreal(t)) + ηY (t)

ηZ 6= 0 and ηY 6= 0 account for a noisy amplitude of the waveforms of both oscillation

and phase response as well as for systematic distortions from sinusoidal shape.

• areal(t) =
∑N

k=1

∑N
l=1wkl cos((Ωk − Ωl)t+ ηphase

kl (t)) + ηamp
kl (t)
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Each component of the coupling function is treated as a signal with a phase error

and an amplitude error, just like each oscillator:

– ηphase
kl 6= 0 accounts for phase noise in a coupling component. Similar to η̇ϑ(t),

a slowly varying η̇phase
kl (t) is equivalent to a detuned frequency of the coupling

component.

– ηamp
kl 6= 0 accounts for amplitude noise, distortions and small delays in the

coupling function.

There is another possible error source, which also must be covered, namely,

• if ε/δ � 1 does not hold i.e if the coupling strength can no longer be considered

small compared to the time scale of the slowest oscillations, even ϑideal in the system

of coupled harmonic oscillators might deviate substantially from ϑ in the system of

phase coupled oscillators.

To get an impression of the effects of the different errors, each error type is investigated

separately from the others. Since in most physical systems these errors occur simultane-

ously, the results must be taken with a grain of salt. In the very least, however, they provide

a set of minimum requirements for experimental accuracy. Moreover, the analysis is helpful

to identify the most important error types with respect to experimental optimization.

Please note that from here on, ϑreal, ϕreal, Zreal and Y real will be denoted ϑ, ϕ, Z and Y for

brevity. The respective variables of the unperturbed system are called ϑideal, ϕideal, Z ideal

and Y ideal, respectively.

To quantify the deviations from ideal behavior, the quality of pattern recognition must be

assessed in some way. The commonly used criterion is the overlap ml of the final state

ϕfinal of the system with the recognized pattern ξl, given by

ml =
1

N

∣∣〈ξfinal|ξl〉
∣∣ =

1

N

√√√√( N∑
i=1

ξli sinϕi,final

)2

+

(
N∑
i=1

ξli cosϕi,final

)2

,

which is an order parameter arising from a mean-field treatment of the network (Aoyagi &

Kitano 1997, Aoyagi & Kitano 1998, Aonishi 1998, Aonishi et al. 1999, Yamana et al. 1999).

For the overlap, 0 ≤ ml ≤ 1 is always fulfilled, with ml = 1 in case of a perfect recognition

of ξl. Note that "final state" here denotes the state of the network at the point in time when

the recognized pattern is read out, even if this is not a steady state. The parameter ml

maps all solutions that differ in a common offset in all ϕi to one value, which is convenient

for dealing with the global symmetry of the network. If there is only one memorized pattern,

the parameter m is equivalent to the order parameter r in the classic Kuramoto model.

However, usingm as a criterion for pattern recognition has also some disadvantages: Other
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than for synchronized oscillators that are all in phase, the order parameter cannot be simply

determined by reading out the amplitude of a global signal. Computing the overlap of the

final state with all memorized patterns from the individual values ϕi is not feasible, because

this could have been done with the original pattern ξ to obtain the pattern with the greatest

overlap in the first place. Also, a value of e.g m = 0.95 is no guarantee that all oscillators

have correct phase shift values. If the number of pixels in the pattern is very large, single

defective bits will not alter the average significantly. Since the intended application of the

network is the retrieval of an error-free pattern from an erroneous one, m is not necessarily

suitable to judge the capabilities of the network.

An alternative measure, which is introduced here to alleviate the aforementioned shortcom-

ings, is the proximity P l, defined by

P l = min
i
ξiξ

l
i cos(ϕi,initial − ϕi,final),

where ϕi,initial is the initialized state of the network corresponding to ξ. The proximity

indicates how close the recognized pattern is to perfect recognition in the sense of the

recognition condition (2.6). −1 ≤ P l ≤ 1 always holds, with P l > 0 if and only if all oscillators

corresponding to correct bits in the initial pattern changed their phase shift by less than

π/2 during the recognition phase and all oscillators corresponding to defective bits in the

initial pattern changed their phase shift by more than π/2. Since the output pattern ξfinal of

the network after recognition was always determined as

ξi,final = sgn (ξi cos(ϕi,initial − ϕi,final)) ,

(based on the assumption that (2.6) is fullfilled; see also the experimental chapter 6.) this

means that P l > 0 if and only if the pattern ξl was recognized correctly. Note that P , other

than m, is not tolerant of common offsets in the phase shifts, which means that the two

measures behave differently in the presence of such offsets. However, in the numerical

simulations based on (4.10) presented in the rest of this chapter, a value of P clearly larger

than zero was always correlated with a value of m close to one.

4.2.1 Change induced by phase noise

In this section, the effect of phase noise on the dynamics of the network is investigated.

It turns out that only low frequency phase noise, which is equivalent to slow drifts in the

oscillator frequencies, has an non-vanishing average effect on the ideal dynamics.
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General case

Phase noise is taken into account in

ϑ̇i = Ωi + η̇ϑ,i(t) + εa(t)
1

N

N∑
j=1

cosϑi sinϑj

ϕ̇i = η̇ϑ,i(t) + εa(t)
1

N

N∑
j=1

cosϑi sinϑj (4.11)

where ϑi(t) = ϑideal
i (t) + ηϑ,i(t) = Ωit + ϕideal

i (t) + ηϑ,i(t) = Ωit + ϕi(t) with the phase noise

term ηϑ,i(t) that fulfills η̇ϑ,i(t) � Ωi. Splitting up the right hand side into the ideal dynamics

and a perturbation part yields

ϑ̇i = ϑ̇i,ideal + η̇ϑ,i(t),

ϕ̇i = ϕ̇i,ideal + η̇ϑ,i(t).

Let η̇ϑ,i(t) = µhi(t), where hi(t) ≤ 1 and µ describes the intensity of the phase noise.

In order to preserve the ideal dynamics, all effects of the error term must occur on a

slower time scale than the ideal dynamics. Therefore, if the noise term obeys µ � ε, its

effect can be neglected. However, depending on the time scale of the noise, this may

be an unnecessarily strict requirement. Assume for example that the noise term is a fast

oscillating term: η̇ϑ,i(t) = µ sin Ωηt with constant µ� Ωη. Then, like for the ideal dynamics,

the average effect of the error term can be estimated with the multiple time scale analysis

described in section 2.3.1:

ϑ̇i = ϑ̇i,ideal + µ sin Ωηt = ϑ̇i,ideal +O
(
µ

Ωη

)
.

As a consequence, depending on the type of phase noise, there are two different conditions

on the size of η̇ϑ,i(t):

For slow time scale noise, or constant offsets in frequency, the condition is given by

µ� εeff .

For noise that contains only fast oscillating terms of frequency Ωη � µ or higher, the

condition becomes
µ

Ωη

� εeff .

Those two conditions can be combined into

µeff(Ωη)� εeff ,
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Fig. 23: Effective size of the noise term in (4.11) with η̇ϑ,i(t) = µ sin Ωηt vs. the frequency of the noise term
Ωη. The noise term is negligible if µeff � ε. Note that this curve is only meant to show the qualitative
behavior and the order of magnitude of µeff in the limit of low and high Ωη. In particular, the kink at
Ωη = µ is just an artifact.

where µeff(Ωη) describes the effective size of the phase noise after averaging (see Fig. 23

for the qualitative behavior of µeff(Ωη)). The largest effect occurs at constant and slowly

varying phase noise terms. The special case of constant terms is treated below.

Effect of small frequency inaccuracies of the oscillations

In an experimental network, to provide the coupling function, oscillator frequencies must be

measured at some point before the pattern initialization and pattern recognition steps are

performed. This can only be done with limited accuracy. Also, frequency drifts over time

arise due to changes in the environmental conditions (like temperature and air humidity).

Therefore, deviations of the actual frequencies from the frequencies entering the coupling

function are to be expected. In this case (4.11) takes the form

ϕ̇i = ∆Ωi + εa(t)
1

N

N∑
j=1

cosϑi sinϑj, (4.12)

where ∆Ωi are the frequency deviations. After averaging, these equations become

ϕ̇i = ∆Ωi + εeff

(
1

N

N∑
j=1

wij sin(ϕj − ϕi) +O
(εeff

δ

))
, (4.13)

with εeff = ε/2. The averaged equations can only have a steady state if ∆Ωi = 0 where

∆Ωi is the average deviation, because
∑N

i=1

∑N
j=1 wij sin(ϕj − ϕi) = 0. Therefore, it makes

sense to analyze the system in a rotating frame of reference. The variable transform

ϕi → ϕ′i = ϕi −∆Ωit leads to

ϕ̇′i = ωi + εeff
1

N

N∑
j=1

wij sin(ϕ′j − ϕ′i).
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Here, ωi = ∆Ωi −∆Ωi and therefore ωi = 0. For the initialization case this is equivalent to

the Kuramoto model of N coupled oscillators with a frequency distribution:

ϕ̇′i = ωi + εeff
1

N

N∑
j=1

sin(ϕ′j − ϕ′i) (4.14)

Initialization works if the oscillators form a synchronized cluster for t → ∞. Whether or

not oscillators synchronize depends on the distribution of the ωi and on the coupling

strength εeff . In general, there will be a group of synchronized oscillators and a group of

unsynchronized oscillators. Kuramoto introduced the complex order parameter

reiψ =
1

N

N∑
j=1

eiϕ′
j

and showed that (4.14) can be rewritten as

ϕ̇′i = ωi + εeffr sin(ψ − ϕ′i)

Here 0 ≤ r ≤ 1 describes the degree of synchronization in the system, where r = 1 means

full synchronization and ψ is the average phase shift. It is known (Strogatz 2000) that all

oscillators with |ωi| ≤ εeffr for N → ∞ form a synchronized group. For a finite number of

oscillators, r is not constant. Still, since r ≤ 1 always, |ωi| ≤ εeff is a necessary condition

for a stationary value of ϕ′i.

The condition on the actual measuring error of the frequencies then becomes

|∆Ωi −∆Ωi| < εeff .

This means, if frequency deviations occur symmetrically around zero, no single deviation

should be larger than εeff .

Fig. 24 illustrates what happens when the system passes through the synchronization

bifurcation in a system of two slightly detuned coupled oscillators. In this case, (4.12) may

be simplified to

ϕ̇2 − ϕ̇1 = ∆Ω2 −∆Ω1 + ε cos((Ω2 − Ω1)t) sin((Ω1 − Ω2)t+ ϕ1 − ϕ2), (4.15)

where only terms that are potentially resonant with the coupling function were left in the

product on the right hand side. Apart from the drift in the phase shift difference, which

is compensated by choosing a rotating frame of reference, there are two effects of the

frequency detuning:

The first effect is a shift of the steady states of the phase shift differences. Far below the

bifurcation, the stable states are at ϕ′2 − ϕ′1 = 0 for positive coupling and ϕ′2 − ϕ′1 = π for
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Fig. 24: Left column: Numerical time integration of the phase shift difference of two weakly coupled oscillators
with a detuned coupling frequency (ODE given by (4.15)). For each value of the frequency detuning
∆Ω = ∆Ω2 −∆Ω1, simulations were repeated with five randomly selected initial conditions for both
positive (w12 = 1, red curves) and negative coupling (w12 = −1, green curves). The values of the
parameters were ε = 0.2 s−1, Ω1 = 1Hz, Ω2 = 2Hz. Right column: Each plot shows the corresponding
plot on the left side after a transformation to a rotating coordinate system (ϕ′2−ϕ′1 = ϕ2−ϕ1−∆Ωt).
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Fig. 25: a) Numerical time integration of the phase shifts in (4.13) with random initial conditions, N = 60
oscillators, M = 3 memorized patterns and 8 erroneous bits in the initial pattern. The initial and
memorized patterns are the same as in Fig. 4. Red phase shift curves belong to phase shifts that
correspond to erroneous bits in the initial pattern. The coupling strength was set to εeff = 1. The
coupling was switched to recognition mode at t = 25 s. The ∆Ωi were chosen randomly from the
interval [−∆Ω/2,∆Ω/2] with a uniform probability distribution and ∆Ω = 0.5. b) Same as a) with
∆Ω = 1. c) Same as a) with ∆Ω = 1.5.
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negative coupling. When the detuning approaches the bifurcation (at ∆Ω2 − ∆Ω1 = ε/2),

those states move to ϕ′2 − ϕ′1 = −π/2 and ϕ′2 − ϕ′1 = π/2 respectively. The second effect

comes into play if the system is beyond the bifurcation. In this case, the oscillators still

keep their phase shift differences almost constant for a while (this is the "ghost" of the

steady state below the bifurcation), but then a jump of 2π occurs.

In a system with many oscillators, there is an average acceleration or deceleration due to

frequency inaccuracies as well. The shift in the steady state of the phase shift differences

causes a certain spread of the branches at ϕ = 0 and ϕ = π. Both effects can be observed

in the numerical results shown Fig. 25, particularly well during the initialization. The plots

show three simulations for a network of 60 oscillators governed by 4.13. The range of

frequency deviations

∆Ω = max
i,j
|∆Ωj −∆Ωi|

was increased from ∆Ω = 0.5 · εeff in Fig. 25a to ∆Ω = 1 · εeff in Fig. 25b to ∆Ω = 1.5 · εeff

in Fig. 25c. As one would expect, the pattern recognition does not work any more for

∆Ω = 1·εeff , even though initialization still does. At ∆Ω = 1.5·εeff , initialization does not work

any more as well. The relative robustness of the initialization follows from the robustness of

the synchronized steady state in contrast to the steady states during recognition. Another,

more intuitive way to explain this robustness goes as follows: During the initialization

step, each oscillator is coupled to all other oscillators with the coupling strength εeff/N . In

recognition mode, this coupling strength is modified by the coupling matrix wij, which now

has entries of different sizes, potentially even including zeros. Therefore, some oscillators

will be coupled more strongly than during initialization and others more weakly. It seems

logical that a weaker coupling during recognition can drive the system above the bifurcation

threshold, even if it is below for initialization.

In a more systematic approach to quantify the effect of the spread of frequency deviations

∆Ω on short term pattern recognition, a series of simulations with N = 100 oscillators,

M = 3 randomly selected memorized patterns and ten defective bits in the initial pattern

was performed, where ∆Ω/εeff was varied from 10−2 to 10. For each value of ∆Ω/εeff , the

results of 100 numerical simulations were recorded (see Fig. 26). Fig. 26 plots two different

measures of the short term pattern recognition quality over ∆Ω/εeff . The first is the overlap

m = 1/N | 〈ξfinal | ξ1〉 | of the final pattern with the correctly memorized pattern ξ1, where

|ξfinal〉i = eiϕfinal,i. The final state was evaluated after a 15 s (15/εeff) recognition period. While

m is a good measure for the overall closeness of two patterns, it does not provide a good

criterion to decide whether the phase shift of any single oscillator is correct. Therefore, as

discussed in the introduction to section 4.2, the proximity

P = min
i
ξiξ

1
i cos(ϕfinal,i − ϕinitial,i)
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Fig. 26: a) Overlap of the final pattern with the correct memorized pattern vs. the frequency detuning for a
series of simulations of (4.13) withN = 100 oscillators,M = 3 randomly selected memorized patterns
(with equal probability for both states) and ten erroneous bits in the initial pattern. The coupling
strength was set to εeff = 1. The coupling was switched to recognition mode at t = 25 s, the final
state was evaluated at t = 40 s. The ∆Ωi were chosen randomly from the interval [−∆Ω/2,∆Ω/2]. For
each value of ∆Ω, 100 simulations were run. Small crosses indicate results for individual simulations,
the filled circles are the average overlap. b) Proximity (see text for definition) of the final pattern to
the correct memorized pattern vs. the frequency detuning for the same simulations. Small crosses
indicate results for individual simulations, the filled circles are the average proximity.

was introduced as a second criterion. A proximity value of P = 1 means that the correct

pattern (i.e. ξ1) has been perfectly recognized, while any value P > 0 shows that every

oscillator is sufficiently close to its respective branch (i.e. |ϕfinal − ϕperfect| < π/2).

The largest detuning of frequencies for which all pattern recognitions were successful in

these simulations was ∆Ω/εeff = 0.4, although, in at least one instance, recognition was

very close to failing. For a larger detuning, recognition starts to fail in more and more

cases - at ∆Ω/εeff = 1 the average value of P is equal to zero, indicating that the number

of failures becomes comparable to the number of successes. All in all, the results suggest

that

∆Ω ≤ 0.3 · εeff

is a reasonable value for the upper limit of the frequency detuning.

Note that, since the maximal available coupling strength is inversely proportional to N2

(compare (2.14)), this can be written as

∆Ω� 0.3 · Ωmax − Ωmin

N2

Therefore, the frequency accuracy of the oscillators must increase quadratically with N ,

which severely limits the scalability of the system. Note that the meaning of "�" in the last

equation is investigated in 4.2.5, when a small separation of timescales is discussed.
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4.2.2 Change induced by distorted oscillations with amplitude noise

The phase shift dynamics of a network of weakly coupled near-harmonic oscillators with

slightly distorted and/or noisy wave forms and phase response curves is given by

ϑ̇i = Ωi + εa(t)
1

N

N∑
j=1

Zi(t)Yj(t),

where Zi(t) = cos(ϑi(t)) + ηZ,i(t), Yj(t) = sin(ϑj(t)) + ηY,j(t) and ηZ(t)� 1 and ηY (t)� 1 are

arbitrary, small error terms. The dynamical equation for ϑi reads

ϑ̇i = Ωi + εa(t)
1

N

∑
j=1

(cosϑi + ηZ,i(t))(sinϑj + ηY,j(t))

Splitting up the right hand side into the ideal dynamics and a perturbation part yields

ϑ̇i = ϑ̇i,ideal + εa(t)
1

N

∑
j=1

(ηZ,i(t) sinϑi + ηY,j(t) cosϑj) +O(ηZ,iηY,j)

Since ηZ,i(t) � 1 and ηY,j(t) � 1, any deviation from the ideal dynamics occurs on a

substantially longer timescale and can be neglected for pattern recognition, regardless

of the number of oscillators. Therefore, using noisy oscillators which are not perfectly

sinusoidal does not restrict the scalability of the network.

4.2.3 Change induced by phase noise in the coupling function

General Case

If each frequency component cos((Ωp − Ωq)t) entering the coupling function is subject to

phase noise described by ηphase
pq (t) with η̇phase

pq (t)� Ωp − Ωq, the network dynamics is given

by

ϑ̇i = Ωi +
ε

N

N∑
p=1

N∑
q=1

wpq cos((Ωp − Ωq)t+ ηphase
pq (t))

N∑
j=1

cos(ϑi) sin(ϑj)

ϕ̇i =
ε

N

N∑
k=1

N∑
l=1

wpq cos((Ωp − Ωq)t+ ηphase
pq (t))

N∑
j=1

cos(ϑi) sin(ϑj) (4.16)

Let η̇phase
pq (t) = µhpq(t), where hpq(t) ≤ 1 and µ describes the intensity of the phase noise.

Under the assumption, that µ ≤ ε, all noise terms ηphase
pq (t) can be treated as slowly varying

variables just like ϕi(t). For now, only this case is considered, and 4.16 can be averaged to

ϕ̇i = εeff
1

N

N∑
j=1

wij sin(ϕj − ϕi − ηphase
ij (t))) +O

(εeff

δ

)
+O

(µeff

δ

)
,
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where µeff depends on the frequencies present in the slowest noise term ηphase
ij (t), analog

to Fig. 23. µeff is indeed the correct effective scale of the phase noise term, because single

terms ηphase
ij (t) can be redeclared as phase noise of either ϕi or ϕj. Therefore, their effective

contribution scales in the same way and constant noise terms have the biggest effect,

which is investigated below.

Effect of small frequency inaccuracies in the coupling

The averaged equations of a network with frequency inaccuracies in the coupling function

are given by

ϕ̇i = εeff
1

N

N∑
j=1

wij sin(ϕj − ϕi −∆Ωij). (4.17)

Fig. 27 shows three simulations for a network of 60 oscillators governed by 4.17. The

range of frequency deviations

∆Ω = max
i,j,p,q
|∆Ωij −∆Ωpq|

was increased from ∆Ω = 0.1 · εeff in Fig. 27a to ∆Ω = 0.2 · εeff in Fig. 27b to ∆Ω = 0.5 · εeff

in Fig. 27c.

There are two important differences to the dynamics of a network with detuned oscillator

frequencies. First, even during initialization, no synchronized state emerges, but each

oscillator drifts at its own pace, because there is no transformation to a rotating frame of

reference that maps (4.17) to a system of coupled Kuramoto oscillators. Second, successful

pattern recognition breaks down at a substantially lower value of ∆Ω.

This can be seen especially well in Fig. 28, which shows the quality of short term pattern

recognition depending on ∆Ω/εeff in a series of numerical simulations of (4.17) withN = 100

oscillators,M = 3 randomly selected memorized patterns and ten defective bits in the initial

pattern. For each value of ∆Ω/εeff , the results of 100 numerical simulations the overlap and

the proximity of the final pattern were recorded. The threshold for the detuning up to which

all 100 runs resulted in a successful pattern recognition was at

∆Ω ≤ 0.1 · εeff .

Like the frequency inaccuracies of the oscillators, the frequency inaccuracies of the coupling

function must decrease with 1/N2. On top of that, it appears that the frequencies of the

coupling function must be more accurate than those of the oscillators by a factor of 3.
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Fig. 27: a) Numerical time integration of the phase shifts in (4.17) with random initial conditions, N = 60
oscillators, M = 3 memorized patterns and 8 erroneous bits in the initial pattern. The initial and
memorized patterns are the same as in Fig. 4. Red phase shift curves belong to phase shifts that
correspond to erroneous bits in the initial pattern. The coupling strength was set to εeff = 1. The
coupling was switched to recognition mode at t = 25 s. The ∆Ωij were chosen randomly from the
interval [−∆Ω/2,∆Ω/2] with a uniform probability distribution and ∆Ω = 0.1. b) Same as a) with
∆Ω = 0.2. c) Same as a) with ∆Ω = 0.5.
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Fig. 28: a) Overlap of the final pattern with the correct memorized pattern vs. the frequency detuning for a
series of simulations of (4.17) withN = 100 oscillators,M = 3 randomly selected memorized patterns
(with equal probability for both states) and ten erroneous bits in the initial pattern. The coupling
strength was set to εeff = 1. The coupling was switched to recognition mode at t = 25 s, the final
state was evaluated at t = 40 s. The ∆Ωi were chosen randomly from the interval [−∆Ω/2,∆Ω/2]. For
each value of ∆Ω, 100 simulations were run. Small crosses indicate results for individual simulations,
the filled circles are the average overlap. b) Proximity of the final pattern to the correct memorized
pattern vs. the frequency detuning for the same simulations. Small crosses indicate results for
individual simulations, the filled circles are the average proximity.

4.2.4 Change induced by a distorted coupling function with amplitude noise

If each frequency component cos((Ωp − Ωq)t) entering the coupling function is subject to a

small additive error ηamp
pq (t)� 1, the network dynamics is given by

ϑ̇i = Ωi +
ε

N

N∑
p=1

N∑
q=1

(wpq cos((Ωp − Ωq)t) + ηamp
pq (t))

N∑
j=1

cosϑi sinϑj

Splitting up the right hand side into the ideal dynamics and a perturbation part again yields

= ϑ̇i,ideal +
ε

N

N∑
k=1

N∑
l=1

ηamp
pq (t)

N∑
j=1

cosϑi sinϑj

= ϑ̇i,ideal + εNηamp(t)
N∑
j=1

cosϑi sinϑj

where ηamp(t) =
∑N

p=1

∑N
q=1 η

amp
pq (t)/N2 is the error average over all entries of the coupling

matrix.

The effect of the error term is especially large, if ηamp(t) can be written as a Fourier

sum of one or more frequency differences present in the system. Let for example

ηamp(t) = µ cos((Ωp − Ωq)t), where µ is a small constant. In this case, the perturbed

dynamics becomes

ϑ̇i = ϑ̇i,ideal + εNµ cos((Ωp − Ωq)t)
N∑
j=1

cosϑi sinϑj.
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The last term can only be neglected in the equations for i = p, q, if Nµ � 1. This means

that the signal-to-noise ratio of the coupling function increases linearly with the number of

oscillators. This is a rather mild restriction on scalability because, as it has been already

shown, frequency accuracy must improve quadratically with the number of oscillators.

Besides, it is reasonable to expect that there are also frequencies present in the noise

term that do not contribute to the slow phase shift dynamics but cancel out in the time

averaging. Nµ� 1 is a constraint derived from a worst case scenario.

4.2.5 Change induced by a small separation of time scales

In the experiment, it is desirable to keep the ratio of the time scales given by εeff/δ as large

as possible. The largest usable value of εeff/δ determines how many oscillators that fulfill

condition (2.11) can be built within a given window of available frequencies. On the other

hand, if the number of oscillators is fixed, a larger value of εeff means faster convergence.

In the following, a multiple time scale analysis is conducted on the dynamics

ϑ̇i = Ωi + εa(t)
1

N

N∑
j=1

cosϑi sinϑj (4.18)

of an ideal network of harmonic oscillators. The fast time is given by T = δ · t and the slow

time is given by τ = εt. A multiple time scale analysis of (4.18), carried out with these two

time variables analog to the one in section 2.3 will yield an average solution ϕi(t) which is

guaranteed to fulfill

|ϕi(t)− ϕreal,i(t)| = O
(ε
δ

)
for times up to t ∼ 1/ε. Around a hyperbolic fixed point of the ideal dynamics, this

approximation is true for all times (Guckenheimer & Holmes 1983). Unfortunately, due to

the invariance of the averaged dynamics with respect to a global rotation of phase shifts, no

fixed point is hyperbolic, not even the final state during an initialization. Thus, a statement

for the proximity of the averaged solution to the true solution can only be made for t ∼ 1/ε.

In contrast, the time it takes until a pattern is initialized or recognized is at the very least

ten times longer (compare any of the simulations shown so far - for the strongly coupled

network, ε = 1 s−1). Therefore, another, very slow time variable given by τ ′ = ε2/δ · t is
introduced.
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Writing the first three terms of the Taylor series in ε/δ for ϕi(t) gives

ϕi(t) = ϕ0
i (T , τ, τ ′) +

ε

δ
ϕ1
i (T , τ, τ ′) +

ε2

δ2
ϕ2
i (T , τ, τ ′)

ϕ̇i(t) = δ
∂ϕ0

i (T , τ, τ)

∂T
+ε

(
∂ϕ1

i (T , τ, τ ′)
∂T +

∂ϕ0
i (T , τ, τ ′)
∂τ

)
+
ε2

δ

(
∂ϕ2

i (T , τ, τ ′)
∂T +

∂ϕ1
i (T , τ, τ ′)
∂τ

+
∂ϕ0

i (T , τ, τ ′)
∂τ ′

)
.

The explicit form of ϕ̇i, if a(t) =
∑

p

∑
q wpq cos((Ωp − Ωq)t), is given by

ϕ̇i(t) = δ · 0

+ε

(
1

4N

∑
j,p,q

wpq(sin(Ωjp
iq t+ ϕ0

j − ϕ0
i ) + sin(Ωjq

ip t+ ϕ0
j − ϕ0

i )

+ sin(Ωijp
q t+ ϕ0

i + ϕ0
j) + sin(Ωijq

p t+ ϕ0
i + ϕ0

j)

)

+
ε2

δ

(
1

4N

∑
j,p,q

wpq(cos(Ωjp
iq t+ ϕ0

j − ϕ0
i )(ϕ

1
j − ϕ1

i ) + cos(Ωjq
ip t+ ϕ0

j − ϕ0
i )(ϕ

1
j − ϕ1

i )

+ cos(Ωijp
q t+ ϕ0

i + ϕ0
j)(ϕ

1
i + ϕ1

j) + cos(Ωijq
p t+ ϕ0

i + ϕ0
j)(ϕ

1
i + ϕ1

j))

)

with the shorthand notation Ωjp
iq = Ωj + Ωp − Ωi − Ωq, Ωijp

q = Ωi + Ωj + Ωp − Ωq and so on.

The zeroth order immediately yields

∂ϕ0
i

∂T = 0⇔ ϕ0
i (T , τ, τ ′) = c0

i (τ, τ
′) = ϕ0

i (τ, τ
′),

which is the already known fact that the zero-order approximation of ϕi(t) is constant at

the fast time scale. The first order is given by

∂ϕ1
i (T , τ, τ ′)
∂T +

∂ϕ0
i (T , τ, τ ′)
∂τ

=
1

4N

∑
j,p,q

wpq(sin(Ωjp
iq T /δ + ϕ0

j − ϕ0
i ) + sin(Ωjq

ipT /δ + ϕ0
j − ϕ0

i )

+ sin(Ωijp
q T /δ + ϕ0

i + ϕ0
j) + sin(Ωijq

p T /δ + ϕ0
i + ϕ0

j))

On the right hand side, all terms containing an Ω with three upper indices are fast oscillating

and therefore non-resonant. The same goes for all terms containing Ωjp
iq and Ωjq

ip as long

as the upper and lower indices are not identical. Considering only the potentially resonant
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terms in the first order equation leads to

∂ϕ1
i (T , τ, τ ′)
∂T +

∂ϕ0
i (T , τ, τ ′)
∂τ

=
1

2N

∑
j

wij sin(ϕ0
j − ϕ0

i )

Resonant terms in the fast time derivative of ϕ1
i are avoided if

∂ϕ0
i

∂τ
=

1

2N

N∑
j=1

wij sin(ϕ0
j − ϕ0

i ), (4.19)

which is the result already given in 2.4.2. Integrating the non-resonant terms of the first

order equation yields the fast part of ϕ1
i :

ϕ1
i (T , τ, τ ′) = − 1

4N

∑
j,p,q

wpq

(
δ

Ωjp
iq

∣∣
jp6=iq

cos(Ωjp
iq T /δ + ϕ0

j − ϕ0
i ) +

δ

Ωjq
ip

∣∣
jq 6=ip

cos(Ωjq
ipT /δ + ϕ0

j − ϕ0
i )

+
δ

Ωijp
q

cos(Ωijp
q T /δ + ϕ0

i + ϕ0
j) +

δ

Ωijq
p

cos(Ωijq
p T /δ + ϕ0

i + ϕ0
j)

)
+ c1

i (τ, τ
′)

= − 1

4N

∑
j,p,q

wpq

(
δ

Ωjp
iq

∣∣
jp6=iq

Ajpiq (T ) +
δ

Ωjq
ip

∣∣
jq 6=ip

Ajqip(T )

+
δ

Ωijp
q

Bijp
q (T ) +

δ

Ωijq
p

Bijq
p (T )

)
+ c1

i (τ, τ
′) (4.20)

This is a fast oscillating term that is responsible for the small oscillations on top of the slow

dynamics observed in the weakly coupled network.

Finally, the second order equation reads

∂ϕ2
i (T , τ, τ ′)
∂T +

∂ϕ1
i (T , τ, τ ′)
∂τ

+
∂ϕ0

i (T , τ, τ ′)
∂τ ′

=

1

4N

∑
j,p,q

wpq(A
jp
iq + Ajqip)(ϕ1

j − ϕ1
i ) + (Bijp

q +Bijq
p )(ϕ1

i + ϕ1
j)) (4.21)

where the expressions defined in (4.20) must be inserted on the right hand side. This is

a tedious procedure resulting in a sum over 6 indices where for each set of indices there

are 32 oscillating terms. To obtain the dynamics on the very slow time scale, the resonant

terms on the right hand side must be determined. At least in the case of initialization, this

process can be simplified, because the fixed point of (4.19) is hyperbolic with the exception

of the (1, 1, . . . , 1) eigenvector of the Jacobian with eigenvalue zero. Therefore, the only

relevant dynamics on the very slow time scale is the dynamics of the average phase shift

ϕ = 1/N
∑

i ϕi. The average is constant even at the slow time scale because

∂ϕ0

∂τ
=

1

N

N∑
i=1

∂ϕ0
i

∂τ
= 0.
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The average of (4.21) during initialization is given by

∂ϕ2(T , τ, τ ′)
∂T +

∂ϕ1(T , τ, τ ′)
∂τ

+
∂ϕ0(T , τ, τ ′)

∂τ ′
=

1

4N2

∑
i,j,p,q

(Bijp
q +Bijq

p )(ϕ1
i + ϕ1

j)), (4.22)

where still the ϕ1
i given by (4.20) must be inserted. In (4.22), the coordinates were chosen

such that wij = 1 for all i and j. To obtain the very slow dynamics of ϕ, only the resonant

terms on the right hand side are considered:

∂ϕ1(T , τ, τ ′)
∂τ

+
∂ϕ0(T , τ, τ ′)

∂τ ′
= res.terms

(
1

4N2

∑
i,j,p,q

(Bijp
q +Bijq

p )(ϕ1
i + ϕ1

j))

)

All potentially resonant terms on the right hand side contain either a factor of the form

AabcdB
efg
h or a factor of the formBabc

d Befg
h , where each of the letters a−h stands for an arbitrary

index. Resonances in the first factor can only occur if the sum over five frequencies present

in the system is equal to the sum of three other frequencies. This is possible, though not

very likely, but could be avoided entirely by choosing Ωmin > 0.6 · Ωmax. Therefore, the

overwhelming resonant contribution will be by terms of the second form, which will be

given by

− δ

Ωabc
d

Babc
d Befg

h = − δ

2Ωabc
d

(
1 + cos(2Ωabc

d t+ ϕ0
a + ϕ0

e)
)

for any combination of indices that fulfills Ωabc
d = ±Ωefg

h . The resonant part of these terms is

strictly negative, which means that on the very slow time scale, the average of the phase

shifts decreases with a constant rate:

∂ϕ1(T , τ, τ ′)
∂τ

+
∂ϕ0(T , τ, τ ′)

∂τ ′
=
∂c0(τ, τ ′)

∂τ ′
+
∂c1(τ, τ ′)

∂τ
= const < 0

During the recognition phase, the picture is more complicated. At any steady state, there

are M eigenvalues equal to zero, therefore the very slow dynamics in an M-dimensional

subspace of the system is relevant. As a consequence, much like it is the case for

inaccurate oscillator frequencies, the branches of the recognized state will tend to split up

along those eigenvectors. Still, there will be a negative tendency in the phase shift average.

These drift terms, along with the small oscillations of the slow dynamics with an amplitude of

ε/δ and the imperfections that are present even in the ideal dynamics, lead to a breakdown

of reliable pattern recognition if ε is not sufficiently smaller than δ.

Fig. 29 illustrates the effect of a small separation of time scales for ε/δ = 0.5, ε/δ = 1

and ε/δ = 1.5. The initialization succeeds in all three cases, although there is a common

drift towards smaller values of the phase shift variable for all oscillators. This is the very

slow time scale effect discussed above. Like the amplitude of the oscillations around the

average dynamics, this effect increases with increasing ε. While in Fig. 29a, with ε/δ = 0.5,
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Fig. 29: a) Numerical time integration of the phase shifts in (4.18) with random initial conditions, N = 60
oscillators, M = 3 memorized patterns and 8 erroneous bits in the initial pattern. The initial and
memorized patterns are the same as in Fig. 4. Red phase shift curves belong to phase shifts that
correspond to erroneous bits in the initial pattern. Oscillation frequencies were chosen as a Golomb
ruler between 10 kHz and 20 kHz. The coupling strength was set to ε = 0.5 · δ. The coupling was
switched to recognition mode at t = 25 s. b) Same as a), with oscillation frequencies between 5 kHz
and 10 kHz and ε = 1 · δ. c) Same as a), with oscillation frequencies between 3.5 kHz and 7 kHz and
ε = 1.5 · δ.
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Fig. 30: a) Overlap of the final pattern with the correct memorized pattern vs. the ratio of time scales for a
series of simulations of (4.18) with N = 16 oscillators,M = 3 randomly selected orthogonal patterns
and one erroneous bit in the initial pattern. The coupling was switched to recognition mode at
t = 25 s, the final state was evaluated at t = 50 s. Oscillation frequencies were chosen as a Golomb
ruler with δ = 1.595Hz and Ωmin = 0.5 ·Ωmax. Small crosses indicate results for individual simulations,
the filled circles are the average overlap. b) Proximity of the final pattern to the correct memorized
pattern vs. the ratio of time scales for the same simulations. Small crosses indicate results for
individual simulations, the filled circles are the average proximity.

there is a time window of roughly one minute, in which the correctly memorized pattern

is represented by the network, the recognized state is barely realized in Fig. 29b, with

ε/δ = 1, and gets destroyed immediately because the phase shift curves are wildly drifting

and oscillating. In Fig. 29c, with ε/δ = 1.5, finally the deviations from ideal behavior are so

large that the correct pattern never is realized in the network.

To get an idea of how large a value of ε/δ still allows for reliable pattern recognition, a series

of simulations of (4.18) over a wide range of values for ε/δ was performed for a network

with 16 oscillators, 3 randomly chosen mutually orthogonal patterns and one defective bit.

The results are presented in Fig. 30. The highest ratio of time scales for which every single

simulation was successful is ε/δ = 0.4, although recognition nearly failed in some of them.

Thus, ε/δ ≤ 0.3, corresponding to

εeff ≤ 0.15 · δ.

should be a safe threshold value under which no problems with pattern recognition are

to be expected. Together with the limitations for ∆Ω that were investigated earlier, this

condition can be used to derive a relation between the required frequency accuracy and

the number of oscillators in the network; this is done in the next section.

Note that εeff and ε differ by a factor of two because the oscillators are only coupled in one

of the two dynamical variables. It is conceivable to let the coupling function act on both

variables, resulting in a phase equation of

ϑ̇i = Ωi + εa(t)
1

N

(
N∑
j=1

sinϑj cosϑi −
N∑
j=1

cosϑj sinϑi

)
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Such a coupling would both provide the additional coupling strength to guarantee that

εeff = ε and avoid the global drift during initialization; the resulting equations are exactly

ϑ̇i = Ωi + εa(t)
1

N

N∑
j=1

sin(ϑj − ϑi),

as suggested by Hoppensteadt & Izhikevich (1999).
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4.3 Consequences for the scalability of the network

Before the consequences of the findings described above for the experimental network are

discussed, these findings should be considered in the context of previous research. There

have been investigations of two types of Hebbian networks of Kuramoto oscillators with

distributed frequencies and white noise before. The first type was investigated by Arenas &

Pérez-Vicente (1994), Park & Choi (1995) and Pérez-Vicente et al. (1996), who considered

the network

ϑ̇i = Ωi + γi(t) +
1

N

N∑
j=1

M∑
k=1

cos(ξki − ξkj ) sin(ϕj − ϕi)

where the ξki are random phases, the Ωi are narrowly distributed around a common

frequency and γi(t) is an additive white noise term. The second type, investigated by

Aonishi et al. (1999), Yamana et al. (1999) (both without the white noise term) and Yoshioka

& Shiino (2000), is given by

ϑ̇i = Ωi + γi(t) +
1

N

N∑
j=1

wij sin(ϕj − ϕi + βjj).

This model allows for complex pattern vectors of the form
∣∣ξk〉

i
= eϕ

k
i with arbitrary ϕki .

The coupling coefficients are given by wij = |Cij| and the synaptic delays by βij = argCij

with Cij =
∑m

k=1

〈
ξk
∣∣ j〉 〈i ∣∣ ξk〉. Note that both types of network contain the ideal dynamics

given by (2.4) as a special case.

The important result common to both networks is that in the thermodynamic limit N →∞,

there is a phase transition between a so-called "glassy state" and a "condensed"memorized

pattern (Park & Choi 1995, Aonishi et al. 1999). This transition depends on the three

macroscopic parameters α, σ and T , where α is the load rate of the network, σ (in

general the standard deviation of a normal distribution) governs the width of the frequency

distribution and T is a temperature determining the level of the white noise. In the limit

of α → 0 and T → 0, this phase transition is equivalent to the transition in the original

Kuramoto model.

This macroscopic view on the network establishes that there is a surface of critical values

in the three dimensional parameter space that separates the regime in which the system

is capable of pattern recognition from the glassy regime. It does not, however, deal with

the question whether and how the condensed patterns are separated from each other

within the "memorized" state. After all, the states representing different patterns should

be thermodynamically equivalent and therefore not separated by a phase transition. This

question is addressed in section 4.1, which presents a proof that in the case of mutually

orthogonal memorized patterns, all condensed patterns form part of a larger set of steady

states; it also presents analytical and numerical results suggesting that the restriction of
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mutually orthogonality can be dropped.

As a result of this inner structure of the memorized state, it appears that, in the network

investigated in this thesis, there is no critical value for the width σ of the frequency

distribution, above which the degradation of condensed memorized patterns sets in; in

contrast, an arbitrarily slow degradation will be found for arbitrarily narrow distributions.

This degradation is also not influenced by the number of memorized patterns determined

by α, because as soon as there is more than one memorized pattern, the system may

alternate between patterns in the presence of frequency inaccuracies. This is why, instead

of critical values depending on the frequency distribution and the load rate, section 4.2

gives constant threshold values for different types of non-ideal behavior.

Because, other than in the aforementioned studies, the Hebbian Kuramoto model with the

network at hand only arises by time-averaging a more complicated dynamics, there is an

additional relation between the number of oscillators and the available frequency accuracy

of the system (i.e. the width σ of the frequency distribution) in the ideal dynamics, posing

severe requirements on the latter.

As a result, with respect to the scalability of an experimental network, two of the error

sources discussed in this chapter stand out because their degrading effect scales with

N2, namely frequency inaccuracies in both the oscillators themselves and in the coupling

function.

It is reasonable to assume that the coupling mechanism can be implemented with much

greater frequency accuracy than the oscillators themselves, simply because the phases of

the components of the coupling function are fixed. No sensitivity for any kind of feedback

is needed. Therefore, any frequency stabilizing measure, up to using an atomic clock, in

principle is available for the implementation of the coupling. With the oscillators, it is a

different story. Since their phases need to be adaptable, the frequencies are not entirely

fixed. The wiggle room needed for pattern recognition to occur makes the oscillation

susceptible to undesired frequency changes due to noise. In conclusion, the single largest

factor limiting scalability is the frequency accuracy of the oscillators used in the experiment,

for which the condition

∆Ω ≤ 0.3 · εeff

must hold (see section 4.2.1).The coupling strength εeff must fulfill

εeff ≤ 0.15 · δ = 0.15 ·min
i 6=j
|Ωi − Ωj|

(taken from section 4.2.5). When the two conditions are combined, the result is that the

expected error in the frequency should be roughly twenty times smaller than the minimal
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difference of two frequencies present in the network:

∆Ωi ≤ 0.05 ·min
i 6=j
|Ωi − Ωj|

There is a more concise formulation for this condition, if some reasonable assumptions are

made about the frequency accuracy of the oscillators and the frequency range. First, if only

one type of oscillator is used, the relative frequency accuracy ∆Ωi/Ωi should have roughly

the same value across all oscillators. Let this value be denoted by ∆Ω/Ω. Second, the

frequencies Ωmin, Ωmax as well as the range Ωmax − Ωmin should all be in the same order of

magnitude, denoted by Ω. If not, then either the available frequency space is used poorly

(if Ωmax−Ωmin � Ωmin) or the higher frequency oscillators must have a much higher relative

accuracy than the lower oscillators (if Ωmin � Ωmax). With these assumptions and with the

scaling of the Golomb ruler taken from (2.13), one can write:

∆Ω ≤ 0.05 · Ωmax − Ωmin

N2
≈ 0.05 · Ω

N2
.

Therefore, to construct a network of N oscillators, a frequency accuracy of

∆Ω

Ω
≈ 0.05 · 1

N2

or better is needed, although for low numbers of oscillators, where the length of available

Golomb rulers is close to N2/2 · δ, a factor of 0.1 instead of 0.05 will be sufficient.

Note that an increase in the number of oscillators is also accompanied by a decreasing

coupling strength which should not surpass

εeff ≈ 0.15 · Ω

N2
.

This means that the minimal time it takes to recognize a pattern (trun ≈ 2× 10/εeff for both

initialization and recognition) is in the order of

trun ≈ 100 · N
2

Ω
,

where Ω is a typical frequency of an oscillator. In other words, in this model, an increase in

parallelization is not accompanied by an increase in computation speed, because although

quadratically more computational steps are executed simultaneously, they also take a

quadratically longer time. When a time-dependent coupling is used to implement neural

synaptic coupling, this must be taken into account.
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5. Design of the experiments

In principle, a set of arbitrary harmonic oscillators could be used to implement a network

that behaves like 2.24, including mechanical, chemical and electrical oscillators. Depending

on the type of oscillator, there is a wide range of possibilities for the coupling as well. To

narrow down the field of possibilities, at the beginning of the thesis the choice was made

to implement the network with electrical van der Pol oscillators. For a proof of principle,

those excel in terms of simplicity and are easy to tune to a wide range of frequencies. There

might be better choices if large numbers of oscillators and/or especially high frequencies

are required; however, this kind of performance tuning is beyond the scope of the work at

hand.

Even so, there still is a number of possibilities to realize the global coupling mechanism.

The coupling variable could be both the voltage across the oscillator or the current

through it, or even a combination of both. This depends mainly on the way the individual

oscillators are connected (i. e., either all in parallel or all in series, because all of them

must be interchangeable for a global coupling) and on the physical quantity governing the

coupling strength (i. e., whether the coupling is inductive, capacitive or resistive, or some

combiniation).

For this thesis, a global coupling through an external resistance was chosen. This approach

has been studied theoretically (Mazouz et al. 1997, Krischer et al. 2003, Hölzel 2007) and

experimentally (Kiss et al. 1999, Kiss et al. 2002, Mikhailov et al. 2004) but mainly for strong

coupling (in the sense, that the coupling strength was beyond the Kuramoto transition) and

never in the weak, time-dependent form that is treated in this thesis.

5.1 Selection of the individual oscillators

The ideal oscillator for the associative network should

• exhibit harmonic oscillations with a harmonic phase response curve,

• have a stable frequency

• have a wide range of available frequencies and

• be simple to build.

The first requirement follows from the analysis presented in 2.4.2. The second is a

consequence of the sensitivity to frequency deviations shown by the network, as discussed

in 4.2.1. The third condition allows to freely adjust the frequencies to meet the marks of a

Golomb ruler, while the fourth is obviously desirable in any realization.

Van der Pol oscillators are almost ideal in terms of waveform and phase response
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Fig. 31: a) Waveform of a TD-type oscillator with L = 47µH, and C = 100 nF (black dots). b) Results of a
series of phase response measurements of the same TD-type oscillator (crosses). c) Waveform of
a NIC-type oscillator with C = 1nF and f = 67 kHz (black dots). d) Results of a series of phase
response measurements of the same NIC-type oscillator (crosses). In panels a), c) and d), the solid
line is a fit of the function f(ϑ) = A sin(ϑ+ φ) to the experimental data with A and φ as parameters.
In panel b), the experimental data used for the fit was restricted to ϑ ∈ [0.5, 2π − 0.5]. This was done
because due to the parasitic oscillations of the tunnel diode, which occur especially in the rising flank
of the waveform (i.e. around ϑ ≈ 0), the phase response is systematically underestimated around
ϑ ≈ 0.

characteristics (see Fig. 31), if the parameters are chosen appropriately, with a frequency

stability of up to ∆f/f ≈ 10−4 (Horowitz & Hill 1989).

In the methods chapter, two possible designs for a van der Pol oscillator were presented

(3.2.3). Both of these circuits are basically LC-circuits with a negative damping for small

amplitudes of the oscillation, governed by the dynamical equations

U̇ =
1

C
(−INL(U,Rneg)− I)

İ =
U

L
(5.1)

The TD-type oscillator has the free parameters f0 = (2π
√
LC)−1 and γ = C/L, which

determine the frequency and the separation of time scales for U and I. Note that
√
γ is the

conductance of both the capacitive and the inductive branch of the LC-circuit at the natural

frequency f0. In case of the NIC-type oscillator there is the additional parameter Rneg,

which for the TD-type oscillator is fixed at Rneg ≈ 60 Ω. All of these parameters influence

both oscillation frequency and shape. There are parameter regions, where oscillations are

distorted and/or have a frequency f far away from the frequency f0 = (2π
√
LC)−1 of the
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Fig. 32: Ratio of actual frequency f to f0 = (2π
√
LC)−1 (solid line), amplitude of the first harmonic a1 (dashed

line) and total harmonic distortion (dotted line) of the oscillations of the oscillator in Fig. 13 vs.
γ = C/L. The plots are based on SPICE simulation results.

ideal LC-circuit. There are also large parameter regions in which (5.1) exhibits sustained

oscillations which immediately break down in the presence of small parasitic resistances

or some noise in the circuit, because the system is very close to the Hopf bifurcation. All

these parameter regions have to be ruled out for the use in the experiments.

Fig. 32 and Fig. 33 show, for a TD-type oscillator with f0 = 30 kHz and a NIC-type

oscillator with f0 = 30 kHz and Rneg = 10 kΩ, respectively, how three criteria relevant for

the assessment of the experimental suitability of the oscillator depend on the choice of γ.

These criteria are the THD of the waveform, its amplitude and the ratio f/f0. The values

of these quantities were determined from the results of SPICE simulations (see A3 for the

source code) of the respective oscillator at the particular set of parameter values. The

simulations were started at the unstable equilibrium U = I = 0, with the external voltage

source starting out at zero voltage (in that way, the system was driven to oscillate). They

were run for a time interval of 50/f0, where THD, amplitude and f/f0 were determined for

the first complete period after a time interval of 40/f0.

The following trends can be observed:

• For both oscillator types, in the limit of very small γ, the oscillations become

relaxational and lose their sinusoidal shape, reflected by a substantial nonzero value

of the THD. A detailed discussion of this effect of different time scales can be

found for example in (Kanamaru 2007). The distortion from the sinusoidal shape

is accompanied by a decrease in frequency, because the system now acts like an

RL-circuit with a negligible parallel capacitance and a characteristic time scale of

L/Rneg rather than an LC-circuit with a time scale of
√
LC. The transition occurs

in the parameter region where the impedances of the nonlinear branch and the

capacitive branch are roughly equal, namely around Rneg ≈ (2πf0C)−1 =
√

1/γ.
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Fig. 33: Ratio of actual frequency f to f0 = (2π
√
LC)−1 (solid line), amplitude of the first harmonic a1 (dashed

line) and total harmonic distortion (dotted line) of the oscillations of the oscillator in Fig. 14 for
Rneg = 10 kΩ vs. γ = C/L. The plots are based on SPICE simulation results.

Therefore, a larger value of Rneg moves the transition towards smaller values of γ.

• In the limit of large γ on the other hand, the system acts like a weakly perturbed

harmonic oscillator, because the currents through the inductive branch become

huge compared to the currents through the nonlinear element, due to the fact that

Rneg � 2πf0L =
√

1/γ. There is a sharp drop to zero amplitude for both oscillators

above a certain value of γ (i.e. γ ≈ 0.03A2/V2 for the TD-type and γ ≈ 1 · 10−4 A2/V2 for

the NIC-type oscillator). This drop, however, is an artifact of the way the amplitude

was computed, namely by giving the oscillator only a certain time (i.e 50 periods)

to spiral out of the unstable steady state. By waiting an arbitrarily long time, the

threshold could be pushed to arbitrarily large values of γ. Beyond some value of

γ, these oscillations will be never observed experimentally; it is, however, not self-

evident where the threshold should be placed to correctly reflect the experimental

breakdown of oscillations. Therefore, while this absence of sustained oscillations

for too large values of γ was an important factor for the choice of the experimental

parameters in the course of this thesis, it is hard to use as a rigorous criterion to

rule out certain parameter regions. A more rigorous way to establish a threshold on

γ is the introduction of small parasitic serial resistance RL in the inductance L. This

will introduce a Hopf bifurcation at γ = 1/(RneqRL) beyond which there are no stable

oscillations. For example, in the case of the TD-type oscillator Fig. 32 deals with,

the amplitude cliff is around γ ≈ 0.03A2/V2, which, at f0 = 30 kHz, corresponds to

L ≈ 20µH. For a Hopf bifurcation at γ = 0.03A2/V2, the parasitic resistance of this

inductance should be RL ≈ 50mΩ, which is close to the specifications for the coils

used to build the TD-type oscillators. In other words, the γ value of the amplitude

cutoff depicted in Fig. 32 is realistic, although it is based on an initially arbitrarily
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Fig. 34: Parameter space of a TD-type oscillator. Shown are the regions of sustained oscillations (area left of
the dashed line), a THD below 0.05 (area right of the dotted line) and a ratio f/f0 above 0.95 (area
right of the solid line). The THD and f/f0 curves are contour lines determined with a grid of 101× 101
SPICE simulations with even logarithmic spacing of the parameter values. The dashed line is the
Hopf bifurcation for RL = 50mΩ, which, according to the datasheet, is the serial resistance RL of
the 47µH coils that were used in the experiment.

chosen time interval of the simulation of an ideal model system. Unfortunately, this

argument cannot be simply extended to the NIC-type oscillator, because the gyrator

was, among other reasons, designed to overcome the problems of the parasitic

serial resistance of other types of inductors. Still, there are other effects present in

NIC-type oscillators as well as in TD-type oscillators, like noise for example, which

are also prone to suppress oscillations if γ becomes too large.

• Finally, also in the limit of large γ, but only for the NIC-type oscillator, the frequency

ratio f/f0 decreases, similar to the limit of very small γ. The reasons for this effect

will be discussed further below.

In the analysis of the parameter space so far, the frequency f0 of oscillators was excluded,

as well as the negative differential resistance Rneg of the nonlinearity. The first two effects

discussed above are not expected to depend on f0, because they are only governed by a

relationship between Rneg and γ. This is illustrated by Fig. 34, which shows the boundaries

of the region in parameter space which is eligible for the use in experiments for TD-type

oscillators with a parasitic resistance RL = 50mΩ.

The f0-γ-plane in the parameter space of the NIC-type oscillator was investigated for

several values of Rneg, because its negative differential resistance can be adjusted much

more flexible than that of the TD-type oscillator. The results are shown in Fig. 35. The main

finding illustrated in this figure is that the area where f ≈ f0 is considerably smaller than for
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Fig. 35: f0-γ-plane in the parameter space of a NIC-type oscillator. Shown are the regions with a THD below
0.05 (area right of the densely dotted line) and a ratio f/f0 above 0.95 (area beneath the solid line) for
five different values of Rneg. Those values are, from right to left, 100 Ω, 1 kΩ, 10 kΩ, 100 kΩ and 1MΩ.
The THD and f/f0 curves are contour lines determined with a grid of 101 × 101 SPICE simulations
with even logarithmic spacing of the parameter values. The THD contour line for Rneg = 1MΩ is
located at lower values than the depicted range of γ and therefore not shown. The loosely dotted
lines indicate the location of all oscillators with either C = 150pF or L = 100µH, which appear to be
the minimal values that can be reached with the setup in Fig. 14.

the TD-type. The boundary of this region (solid lines in Fig. 35) has three distinct segments:

At L ≈ 1mH and below, constant stray inductances in the system lower the frequency f

with respect to f0 (segment of negative slope). BelowC ≈ 1nF, constant stray capacitances

play a similar role (segment of positive slope). More precisely, the location of the boundary

indicates that the circuit has a minimal capacitance Cmin ≈ 150pF and a minimal inductance

Lmin ≈ 100µH. As a result, the effectively accessible parameter region for the NIC-type

oscillator regarded here is bounded by the two loosely dotted lines in Fig. 35. These

minimal values depend on the internal properties of the integrated circuits that were used.

They appear to be rather high; they result, however, from SPICE calculations using tested

vendor models for all parts involved and should be valid nonetheless. Also note that the

segment with positive slope in the f/f0 = 0.95 contour line appears only if Rneg is large

enough that the system still acts as an LC-circuit rather than an RL-circuit. Otherwise,

there is a vertical segment of the boundary, as it is the case for the TD-type oscillator. This

vertical segment, along with the region of a THD below 0.05, moves towards smaller values

of γ with increasing Rneg.

In summary, the conclusions from the analysis of presented above are:

• The ratio of time scales γ should be chosen such that γ ≥ 1/R2
neg, to avoid

relaxational oscillations but not be so large that γ � 1/R2
neg, in order to still have
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sustained oscillations under non-ideal conditions. This leaves a preferred value

range of roughly two orders of magnitude for γ for any given Rneg.

• For the NIC-type oscillators, frequencies much larger than 1MHz are unattainable

because of the effective reduction of the available parameter space due to stray

capacitances and inductances in the circuit.

Apart from these limitations, the parameters can be chosen freely in a manner most suited

for the demands of the coupling mechanism (see next section).
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5.2 Selection of the coupling mechanism

The first part of this section explains a global coupling with an external resistor, which

is a common way to couple oscillators with the electric potential as oscillating variable.

In this thesis, a time-dependence is introduced to the coupling resistance - it turns out,

however, that the straightforward implementation has some undesirable limitations that

restrict its usability for the type of coupling needed for pattern recognition. In particular, it

is very hard to implement a coupling function varying sinusoidally around zero in time with

a substantial amplitude. The second section presents an improved version of the coupling

circuitry that eliminates these problems, but still has a minor issue, namely an unwanted

distortion of the coupling function from a sum of purely sinusoidal signals. This problem

can be circumvented by using an entirely different approach, in which the correct coupling

input to the oscillators is calculated from an external voltage signal with the help of active

analog circuit elements. This approach is presented in the third part of the section. Both

the second and the third approach were used in the experiments.

5.2.1 Coupling through an external resistor

The straightforward way to implement a coupling via an external resistor is depicted in

Fig. 36a. Each oscillator is connected to a common node via an "internal" resistance Rint.

The common node is connected to ground via the time-dependent external resistance

Rext(t). The presence of Rint provides the degree of freedom for each oscillator to run at

its own frequency. Rint is part of the local dynamics of each individual oscillator (therefore

"internal"). The dynamical equations for a single oscillator in the coupled network, following

from Kirchhoff’s laws, are:

U̇i =
1

Ci

(
−INL(Ui)− I +

Uext − Ui
Rint

)
İi =

Ui
Li

Where the common external potential Uext is given by

Uext =
Rext(t)

Rint +NRext(t)

N∑
j=1

Uj

The inclusion of Rint effectively changes the negative differential resistance of the nonlinear

element (compare 3.2.3): The new value is given by

Rneg,eff =
RnegRint

Rint −Rneg

,



5. Design of the experiments 91

where

Rneg =

(
−dINL

dU

)−1

U=0

.

To preserve the stable oscillations, it is important that Rint > Rneg, because otherwise,

−1/Rneg,eff ≥ 0, which means there is a positive damping, rendering the steady state stable.

There is an intuitive explanation for this fact: The oscillations are stable, because the

NIC constantly works to increase the voltage drop across the oscillator. At high voltages

(around 0.4V), this effect is balanced by the diodes, thus limiting the amplitude. The rate

with which the NIC can build up a voltage difference is proportional to 1/Rneg. If only Rint

were in place instead of the NIC, any voltage drop would decrease at a rate proportional to

1/Rint. Therefore, if Rneg > Rint, no substantial voltage drop develops, because the build-up

rate through Rneg is smaller than the rate of consumption through Rint.

The dynamics can be separated into a term pertinent to the individual oscillator and a

coupling term:

U̇i = U̇i,individual +
Rext(t)

CiRint(Rint +NRext(t))

N∑
j=1

Uj

İi = İi,individual

If the coupling term is small, this separation allows to derive an equation for the time

evolution of the phases using the phase response approach discussed in section 2.4:

ϑ̇i = Ωi +
Rext(t)

CiRint(Rint +NRext(t))

N∑
j=1

Zi(t)Uj(t)

Here, Zi(t) is the phase response curve of the i-th oscillator and Uj(t) is the waveform of

the j-th oscillator. As Fig. 31 shows, the waveforms and phase response curves for the

oscillators used in the experiments are close to

Ui(t) = Umax · sin(ϑi(t)), Zi(t) = Zmax · cos(ϑi(t)).

For the particular TD-type oscillator shown in Fig. 31a,b, the measured values were

Umax = 0.20V and Zmax = 5.0V−1 For the NIC-type oscillator shown in Fig. 31c,d, the values

were Umax = 0.40V and Zmax = 2.5V−1. Both oscillators are representative for all oscillators

of the respective type used in the experiments.

For an almost harmonic oscillator, the expected value of the product of the amplitudes of

waveform and phase response curves is UmaxZmax = 1. For both types of oscillator, this

is fulfilled (within the error margins of the fitting algorithm). The dynamics of the phase is



92 5. Design of the experiments

therefore approximately given by

ϑ̇i = Ωi +
Rext(t)

CiRint(Rint/N +Rext(t))

1

N

N∑
j=1

cosϑi sinϑj.

A comparison with (2.24) gives a relation between the coupling strength ε and the coupling

function a(t) in the phase model on the one hand and the values of Rext(t), Rint, Ci on the

other hand:

a(t) =
Rext(t)

εCiRint(Rint/N +Rext(t))

To obtain the function Rext(t) that provides a certain coupling function a(t), the expression

above is solved for Rext(t)

Rext(t) =
Rint

N
· a(t)

(εCiRint)−1 − a(t)
(5.2)

There are two problems with this relation of Rext(t) and a(t). First, since a(t) alternates

between positive and negative values, Rext(t) must do the same to deliver the correct

coupling function. This is not necessarily a huge problem, as an offset to the external

resistance, such that Rext(t) > 0 at all times, is tolerable if it is not too large, because its

effect will cancel out on average. Second, and more gravely, if the denominator on the

right hand side of (5.2) becomes very small or even changes its sign, Rext(t) will be hugely

distorted compared to a(t). For the Hebbian coupling

a(t) =
N∑
p=1

N∑
q=1

wpq cos((Ωp − Ωq)t)

and any set of values for ε, Ci and Rext, this is bound to happen at some point if the number

of oscillators is increased, because the value range of a(t) increases with N . The only way

to avoid this is to ensure that (εCiRint)
−1 � a(t) which in turn limits the amplitude of Rext.

5.2.2 Improved coupling through an external resistor

To avoid the problems discussed above, the original coupling was modified by replacing

the external resistance Rext(t) with an external impedance Zext(t) (see Fig. 36b). A negative

impedance Zser was included in series to a variable resistor Rvar(t) to allow for positive

as well as negative values of Zext(t). The parallel negative impedance Zpar = −Rint/N

was chosen with the goal that the nonlinear dependence of Rext(t) from a(t) is changed

into a simple proportionality. With the new choice of the external impedance, the external
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Fig. 36: a) Circuit of coupled oscillators with a straightforward implementation of a time-dependent global
coupling provided by Rext(t). The relation between the coupling strength ε and the value of Rext(t)
is defined by (5.2). b) Circuit of coupled oscillators with a time-dependent coupling proportional to
Rvar(t) + Zser, as defined by (5.4).

potential is given by

Uext =
Zser +Rvar(t)

Rint

N∑
j=1

Uj (5.3)

Again, the single oscillator dynamics can be broken down in an individual and a coupling

term:

U̇i = U̇i,individual +
Rext(t)

CiRint(Rint +NRext(t))

N∑
j=1

Uj

İi = İi,individual

The phase equations for weak coupling are now given by

ϑ̇i = Ωi +
N(Rvar(t) + Zser)

CiR2
int

1

N

N∑
j=1

cosϑi sinϑj.

Once again, a sinusoidal shape of both waveform and phase response curve was assumed.

Now, the relation between Rvar(t) and a(t) is simply

Rvar(t) = −Zser +
εCiR

2
int

N
· a(t) (5.4)

This relation between Rvar(t) and a(t) has a number of advantages over the original design

(5.2). First of all, by making Zser sufficiently smaller than zero, the variable resistance can

be kept at positive values, which allows for the application of a simple VCR as presented

in 3.2.1. Second, there is no distortion any more in the shape of the coupling function
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Fig. 37: Source-drain resistance of a VCR2N JFET for a time-dependent sinusoidal gate source voltage
UGS = −1.5V − U0 sin(2πft) with f = 50 kHz. The variable resistance of the JFET was connected
in series to a 50 Ω resistor with 0.1% tolerance. A voltage of 0.5V was applied across both
resistances. The voltage drops USD and U50 Ω across both resistors where measured with a
Waverunner44MXi oscilloscope. From these voltages, the source drain resistance was computed as
RSD = 50 Ω ·USD/U50 Ω, using the math capabilities of the oscilloscope. The output curves are shown
in the plot.

implemented as a variable resistance. Both a(t) and Rvar(t) are discrete Fourier sums with

the same limited number of frequency components. Such a function is in general easier to

provide than the complex nonlinear function required by 5.2. Last but not least, there is

now a direct way to relate the variable external resistance to the coupling strength ε of the

phase model. Assume that the variable resistance is given by

Rvar(t) = Roff
coup +

Ramp
coup

N
· a(t),

where Ramp
coup/N is the amplitude of one single frequency component in Rvar(t) and Roff

coup is

a positive offset. Then, if Zser is chosen such that Zser = −Roff
coup, the coupling strength is

given by

ε =
Ramp

coup

CiR2
int

(5.5)

As a consequence, to ascertain equal coupling coefficients across all oscillators, it is

mandatory that all capacitances Ci be the same. If not, oscillators with larger capacitances

will feel a weaker influence of the coupling. Another consequence is the quadratic influence

of the internal resistances Rint on the coupling strength. This means that Rint is not an

entirely free parameter when it comes to the selection of the individual oscillator, even if

Rint > Rneg, because its value is tied to the value of the coupling strength.

Although there is now a linear relationship between the coupling strength ε and the coupling

resistance Rcoup, the coupling function a(t) provided by a variable resistance might still not

be free from distortions, depending on the implementation. If, like it was done for this
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thesis, a VCR2N-type voltage controlled resistor is used with a variable gate source voltage

UGS, a sinusoidal shape of the voltage signal does not necessarily translate into a sinusoidal

variation of the source drain resistance RSD, which was used as Rvar(t) in the experiments.

Fig. 37 illustrates this point, showing the behavior of RSD for a sinusoidal gate source

voltage of frequency 50 kHz. This nonlinearity could be compensated by appropriately

attenuating the voltage signal for larger amplitudes. Alternatively, the VCR2N could be

replaced by a more sophisticated VCR with a linear R − U characteristic (see for example

Senani, et al. (2009)). Both approaches, while promising to yield better results, arguably

take something away from the simplicity and elegance of the coupling mechanism.

5.2.3 Coupling through analog computing devices

A variable resistance is not the only possible source of a time-dependent coupling. Since

the time evolution of an oscillator’s voltage is given by

U̇i = U̇i,individual +
Uext

CiRint

,

any coupling circuitry producing an external voltage Uext(t) = c · a(t)/N
∑

i Ui with a

sufficiently small proportionality constant c will produce the correct phase shift dynamics,

with a coupling strength of

ε =
c

CiRint

(5.6)

In particular, it is possible to explicitly sum over the voltages of all oscillators employing a

voltage adder, multiply the resulting signal with an external coupling signal containing the

correct frequency components and feed back the product to each oscillator.
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5.3 Complete Circuit

Two circuit boards with 8 coupled oscillators each were built, one using TD-type oscillators,

one using NIC-type oscillators. Fig. 38 and Fig. 39 show photographs of the TD-type and

the NIC-type network respectively. For the circuit board with TD-type oscillators, only the

improved coupling through a VCR, as described in 5.3.2 was implemented; for the circuit

board with NIC-type oscillators, additionally also the coupling mechanism using analog

computing devices was built. In the first part of this section, the specific parameter values

of the individual oscillators used in the experiments are given. Then, the detailed circuit

schematics for both coupling mechanisms are discussed.

5.3.1 Parameters of the individual oscillators

Oscillator ID TD-type NIC-type
C f f

1 660nF 29 376Hz±7Hz 35 048Hz±3Hz
2 517nF 35 620Hz±80Hz 36 071Hz±4Hz
3 330nF 40 625Hz±20Hz 39 126Hz±5Hz
4 220nF 55 615Hz±30Hz 44 093Hz±3Hz
5 147nF 61 374Hz±8Hz 50 158Hz±3Hz
6 132nF 66 092Hz±8Hz 57 115Hz±2Hz
7 122nF 67 309Hz±9Hz 67 022Hz±20Hz
8 100nF 73 800Hz±7Hz 69 037Hz±15Hz

Table 5.1: Characterization of the 8 oscillators used for both network types. The second column shows the
nominal value of the capacitance Ci of each experimental TD-type oscillator. The third column
shows the value range over which the frequency of the same, uncoupled oscillator varied during
a series of pattern recognition experiments that took roughly 5min (the results of this series are
shown in Fig. 45 in the next chapter). The fourth column shows the value range over which the
frequency of each uncoupled NIC-type oscillator varied during a series of pattern recognition
experiments that took roughly 15min (the results of this series are shown in Fig. 54 in the next
chapter).

The parameter range of the TD-type oscillators was γ = 2.1 · 10−3 A2/V2 . . . 1.4 · 10−2 A2/V2

and f0 = 29 kHz . . . 73 kHz; each oscillator had an inductanceL = 47µH (with 10% tolerance),

while the values of the capacitance Ci, i = 1 . . . 8 differed between oscillators depending

on the frequency. Both the values Ci (with 20% tolerance) and the resulting actual

oscillation frequencies as they were measured in one particular series of pattern recognition

experiments are given in table 5.1. The range of experimental parameters is also visualized

in Fig. 40.

In the network of NIC-type oscillators, each oscillator had a negative differential resistance

Rneg = 6.19 kΩ (the resistors had a tolerance of 1%) and a capacitance C = 1nF (again using

capacitors with 20% tolerance); for each oscillator, the frequency was tuned by adjusting the
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Fig. 38: Photograph of the circuit board for a network of TD-type oscillators used in the experiments described
in chapter 6.

Fig. 39: Photograph of the circuit board for a network of NIC-type oscillators used in the experiments
described in chapter 6.
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Fig. 40: Parameter space of the TD-type oscillators that were used in the experiments (i.e. with internal
resistance Rint = 500 Ω). The figure is analog to Fig. 34, but additionally, the isolated line segment
shows where the eight experimental TD-type oscillators were located in parameter space, namely on
the line at L = 47µH between frequencies of f0 = 29 kHz and f0 = 73 kHz.
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Fig. 41: f0-γ-plane in the parameter space of the NIC-type oscillators that were used in the experiments (i.e.
with negative differential resistance Rneg = 6.19 kΩ and internal resistance Rint = 8.25 kΩ). The figure
is analog to Fig. 35, but only for one specific set of parameters. The isolated line segment shows
where the eight experimental NIC-type oscillators were located in parameter space, namely on the
line at C = 1nF between frequencies of f = 35 kHz and f = 69 kHz.
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potentiometer in the respective gyrator (and thereby adjusting the inductance Li). The range

of actual oscillation frequencies measured in the experiment was f = 35 kHz . . . 69 kHz. The

individual frequencies measured in one particular series of pattern recognition experiments

are given in table 5.1. Since the actual values of the Li were not measured, and since the

measured frequency f was already somewhat below f0 for the NIC-type oscillators, the

exact range of γ and f0 is not given here. However, the approximate range of experimental

parameters is visualized in Fig. 41. Note that this range does not actually lie inside the

region where f/f0 > 0.95. However, this was still close enough to conveniently tune the

frequencies over a wide range.

There are a few comments to be made concerning the data in table 5.1. The frequency

range was selected with the condition (2.26) in mind, i.e. the minimum frequency was

larger than a third of the maximum frequency. The order of magnitude of the frequencies

was a compromise between the execution speed of the pattern recognition process on

the one hand and the avoidance of any deteriorating non-ideal behavior of the TL071 and

LT1055 op-amps at higher frequencies on the other hand. For example, the gain factor A

of the LT1055, according to its datasheet, decreases from A ≈ 5 × 105 (or 115dB) at zero

frequency to A ≈ 1 (or 0dB) at 4MHz. At 70 kHz, the gain is A ≈ 100 (or 40dB), which still

seems sufficient for the LT1055 to operate like an ideal op-amp.

For both networks, the goal was to realize a Golomb ruler with as large a minimal frequency

difference δ as possible. In the case of the NIC-type oscillators, this worked reasonably

well. If only the first two digits of each frequency are considered, an optimal Golomb ruler

with 8 marks and a minimal frequency difference of δ = δ′ = 2π · 1 kHz ensues (note that

in the case of imperfect Golomb rulers, where the frequency differences are not multiples

of a common step size, δ′ as defined in equation (2.10) is the relevant fast time scale,

rather than δ). Although over very long times, the oscillators tended to drift by as much as

several 100Hz, it was always possible to readjust the frequencies such that δ′ ≥ 2π · 800Hz.

Unfortunately, the same cannot be said for the TD-type oscillators for which the frequency

tuning was much more tedious. As a matter of fact, δ′ ≈ 2π · 300Hz was the best value that

could be achieved, and even that worked only for short times before the frequency drift

(which was considerably faster than for NIC-type oscillators, as can be seen from table 5.1)

reduced the value even more.

Another problem with the TD-type network was that all inductances had the same value,

rather than all capacitances. In hindsight, this turned out to be a bad choice, because it

meant that different oscillators experienced a different coupling strength.

The numerical values of the frequency deviations given in table 5.1 are not the relevant

values for ∆Ω in the sense of the discussion in 4.3, because in the experiments, the

frequencies were determined anew for each experimental run, which means that the

accuracy was higher (see also the first section in chapter 6.). They do, however, become
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relevant if one wishes to use the same set of oscillators without continuously updating the

frequency information, which puts even greater demands on the accuracy of the oscillators.

Finally, note that the two circuit designs presented here still have room for improvement

in terms of oscillator speed and oscillator frequency stability or flexibility and accuracy of

the coupling mechanism; in the present form, they are straightforward implementations

that do not make use of any sophisticated optimization techniques. For example, one

could consider using more precise quartz oscillators instead of van der Pol oscillators.

However, it is not entirely obvious how one should go on about this, because a standard

quartz oscillator is an output-only black box that does not allow for the feedback needed to

implement a two-way coupling. This is the equivalent of a zero phase response. Breaking

up the black box to implement a feedback must be done with caution to not defeat the

original purpose of frequency stability.

5.3.2 Circuit with improved coupling through an external resistor

The schematic of the circuit is shown in Fig. 42. The nominal values for Rint, Rpar and R

were Rint = 500 Ω, Rpar = 62 Ω and R = 62 Ω for the TD-type network and Rint = 8.25 kΩ,

Rpar = 1 kΩ and R = 1 kΩ for the NIC-type network. The tolerance of these resistances was

1%. Note that the values for the parallel negative impedance Zpar = −Rpar are not exactly

equal to −Rint/8; in particular, in the case of the NIC-type network, there is a deviation of

3% from the correct value. The distortion introduced by this deviation, however, is much

smaller than the distortions introduced by the nonlinearity of the VCR2N.

UDA(t), as already mentioned in the methods chapter, is a voltage signal given by

UDA(t) = Uoff
coup +

Uamp
coup

N

8∑
p=1

∑
q 6=p

wpq cos((Ωp − Ωq)t)

where the low cutoff value was fixed to Umin
DA = 0V.

To implement the variable resistance Rvar(t), a VCR2N transistor was used. To provide

a potential difference equal to −UDA(t) between gate and source of the VCR, a voltage

follower and a differential amplifier were applied. The voltage follower is necessary because

the differential amplifier draws a certain current which does not pass through the external

impedance Zext. A buffer is needed to provide this current; otherwise the differential

equations describing the system have to be modified. The differential amplifier subtracts

UDA(t) from the potential at the source of the VCR. Therefore, as UDA(t) varies between

0V and 3V (which is the highest possible cutoff value Umax
DA for the setup) , RSD(t) = Rvar(t)

varies roughly between 30 Ω and 200 Ω (see Fig. 37).

For very small amplitudes of the coupling voltage, the relation between UDA(t) and Rvar(t)
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Fig. 42: Design of the network circuit with a VCR2N JFET voltage controlled resistor as the basis for the
time-dependent coupling.

is almost linear, and therefore

Rvar(t) ≈ Roff
coup(Uoff

coup) +
Ramp

coup

N

8∑
p=1

∑
q 6=p

wpq cos((Ωp − Ωq)t).

Based on an offset value of Uoff
coup = 1.5V in UDA(t), which results in an offset in Rvar(t)

close to 60 Ω, as can be seen in Fig. 37, the serial negative impedance was chosen as

Zser = −62 Ω.

In the low amplitude limit, it is possible to relate the amplitude of a single component in the

coupling signal to the coupling strength in the phase model using equation (5.5):

ε =
20 ΩV−1 · Uamp

coup

CiR2
int

Here, it was assumed (using Fig. 37) that at low amplitudes a variation of 1V in UDA(t)

causes a variation of 20 Ω in Rvar(t). In the NIC-type network, where all oscillators have the

same capacitance Ci = C = 1nF, this amounts to

ε ≈ 3 · 102 V−1 s−1 · Uamp
coup.
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Fig. 43: Design of the network circuit with an inverting adder and an AD633 multiplier as the basis for the
time-dependent coupling. The AD633 has 5 inputs, only two of which were used in the experiment
to provide the desired output voltage. The rest of the inputs were connected to ground.

In the TD-type network, with capacitance values Ci ranging from 100nF to 660nF, the

effective coupling strength depends on the oscillator and is given by

ε ≈ 1 · 102 V−1 s−1 . . . 8 · 102 V−1 s−1 · Uamp
coup.

5.3.3 Circuit with coupling through analog computing devices

This circuit, shown in Fig. 43 was designed in a straightforward way to feed back the

product of the sum of all individual voltage signals Ui and the coupling signal UDA(t) to

each oscillator. To achieve this, the Ui, each buffered by a voltage follower, are fed into an

inverting adder. The output of the inverting adder is then once again inverted, multiplied

with UDA(t), and divided by 10 in a AD633 multiplier. If the voltage signal

UDA(t) =
Uamp

coup

N

8∑
p=1

∑
q 6=p

wpq cos((Ωp − Ωq)t)

is applied (note that in this configuration, Uoff
coup = 0), this amounts to the coupling strength

(using equation 5.6)

ε =
Uamp

coup

10 · 1nF · 8.25 kΩ
≈ 1.2 · 104 V−1 s−1 · Uamp

coup.
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5.4 A physical perspective: Pattern recognition as the result of minimal entropy

production

There is an interesting physical interpretation of the long term behavior of the electrical

circuit, other than the fact that it is the long term solution of the differential equation it

was designed to mirror: The system prefers states in which the average combined entropy

production of all oscillators is minimal, in accordance with the minimum entropy production

principle (Prigogine 1961).

Ideally, in the weakly coupled limit, each of the oscillators in Fig. 36b is a sinusoidal voltage

source with a freely adjustable phase shift: Ui = U0 sinϑi = U0 sin(Ωit + ϕi). The power

dissipated in the internal resistors Rint is then given by

Pint =
N∑
i=1

(U0 sinϑi − Uext)Iint,i = U0

N∑
i=1

sinϑiIint,i − UextIext

If Zext happens to be negative, part of this power is supplied by the negative impedance. On

the other hand, if Zext is positive, it draws power from the oscillators. The power provided

or consumed by the external impedance is given by

Pext = UextIext,

where a negative sign of Pext means that the external impedance acts as a power supply.

The overall power output of all oscillators is therefore

P = Pint + Pext = U0

N∑
i=1

sinϑiIint,i =
U0

Rint

N∑
i=1

sinϑi(U0 sinϑi − Uext).

In this equation, Uext can be replaced by its functional dependence on the oscillator phases

ϑi using (5.3):

P =
U2

0

Rint

N∑
i=1

sinϑi

(
sinϑi −

Zser +Rvar(t)

Rint

N∑
j=1

sinϑj

)

=
U2

0

Rint

(
N∑
i=1

sin2 ϑi −
Zser +Rvar(t)

Rint

N∑
i=1

N∑
j=1

sinϑi sinϑj

)

Obviously, the momentary power output has a quite complicated dependence on time.

However, a closer look on the average power output 〈P 〉 associated with a certain

distribution of phase shifts ϕ, given by

〈P 〉(ϕ) = lim
T→∞

1

T

∫ T

0

P (t,ϕ)dt,
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reveals that 〈P 〉(ϕ) is closely related to the potential function E(ϕ) of the ideal phase

equation discussed in section 2.2. Evaluating the integral over the first term and inserting

the coupling resistance

Rvar = −Zser +
Rcoup

N
· a(t), a(t) =

N∑
p=1

N∑
q=1

wpq cos((Ωp − Ωq)t)

into the second term leads to

〈P 〉(ϕ) =
U2

0

Rint

(
N

2
− Rcoup

NRint

lim
T→∞

1

T

∫ T

0

a(t)
N∑
i=1

N∑
j=1

sin(Ωit+ ϕi) sin(Ωjt+ ϕj)dt

)

=
U2

0

Rint

(
N

2
− Rcoup

NRint

lim
T→∞

1

T

∫ T

0

∑
i,j,p,q

wpq cos((Ωp − Ωq)t) sin(Ωit+ ϕi) sin(Ωjt+ ϕj)dt

)
.

Consider a single term sijpq in the sum on the right hand side:

sijpq = wpq cos((Ωp − Ωq)t) sin(Ωit+ ϕi) sin(Ωjt+ ϕj)

=
wpq
2

cos((Ωp − Ωq)t) (cos((Ωi − Ωj)t+ ϕi − ϕj)− cos((Ωi + Ωj)t+ ϕi − ϕj))

Due to the selection of frequencies, cos((Ωp−Ωq)t) cos((Ωi + Ωj)t+ϕi−ϕj) is an oscillatory

term, regardless of the values of i, j, p, and q and therefore, only the first term in parentheses

may contribute to the average 〈sijpq〉 at all:

〈sijpq〉 = lim
T→∞

1

T

∫ T

0

wpq
4

(
cos(Ωpj

qi t− ϕi + ϕj) + cos(Ωpi
qjt+ ϕi − ϕj)

)
dt

=
wpq
4

(δpqδji cos(ϕj − ϕi) + δpiδjq cos(ϕj − ϕi) + δpqδij cos(ϕi − ϕj) + δpjδiq cos(ϕi − ϕj))

with the shorthand notation Ωpj
qi = Ωp + Ωj − Ωq − Ωi. Only if Ωpj

qi = 0 or Ωpi
qj = 0, 〈sijpq〉 is

different from zero. This is the case exactly when the two lower indices are a permutation

of the two upper indices.

Inserting 〈sijpq〉 into the equation for 〈P 〉(ϕ) and simplifying the sums over i, j, p and q gives

〈P 〉(ϕ) =
U2

0

Rint

(
N

2
− Rcoup

Rint

(
N

2
+

1

2N

N∑
i=1

N∑
j=1

wij cos(ϕj − ϕi)
))

=
U2

0

Rint

(
N

2
− Rcoup

Rint

(
N

2
− E(ϕ)

))
,

where E(ϕ) is the potential function of the ideal phase coupled network from 2.2. Another

way to write this is

〈P 〉(ϕ) =

(
1− Rcoup

Rint

)
〈P0〉+

U2
0Rcoup

R2
int

E(ϕ),
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where 〈P0〉 is the average power output of the uncoupled set of oscillators (i.e for Rcoup = 0).

Since the combined entropy production dS/dt of all oscillators is related to the dissipated

power via
dS

dt
=
P

T
,

where T is the ambient temperature, the average entropy production 〈dS/dt〉 is minimized

for a minimum of the potential E, which is realized in the case of pattern recognition.

The above reasoning can be applied any kind of network of van der Pol oscillators to predict

and explain synchronization phenomena (see for example Matsumura, et al. (2012)).
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6. Experimental results

In this chapter, results of experiments with the three different circuits presented in the

design chapter are discussed, namely with

• a network of TD-Type oscillators with a VCR2N providing the coupling function as

described in 5.3.2,

• a network of NIC-Type oscillators with a VCR2N providing the coupling function as

described in 5.3.2 and

• a network of NIC-Type oscillators with an AD633 analog multiplier providing the

coupling function as described in 5.3.3.

This order reflects the order in which the different designs were built, examined and

improved during the thesis. Therefore, pattern recognition works best with the third type

of network. The results of the pattern recognition experiments are discussed in the first

section of the chapter.

The second section shows some examples of the long term behavior of the network during

the recognition step, and compares them to the theoretical and numerical findings of

section 4.1.

Finally, the third section deals with an interesting effect of a coupling of the form

a(t) =
N∑
p=1

N∑
q=1

cos((Ωp − Ωq)t)

(i.e. the coupling used for the initialization of the network to any pattern, after a suitable

coordinate transform). This type of coupling makes oscillations more regular compared to

the oscillations of an uncoupled set of oscillators.

6.1 Pattern recognition in a network with 8 oscillators

All experiments discussed below were conducted in the fashion described in detail in

section 3.3.2. In brief, the experimental routine consisted of the following steps:

• The voltage signals of the oscillators were measured during a time interval of Trecord,

without any time-dependent coupling (i.e. UDA(t) = 0).

• The average frequencies Ωi during the second half of this time interval were

determined.
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• The oscillators’ voltage signals Ui(t) were measured during a time interval of Trecord

again, this time in the presence of the time-dependent coupling signal

UDA(t) = Uoff
coup +

Uamp
coup

N

8∑
p=1

∑
q 6=p

ξiξj cos((Ωp − Ωq)t)

during the initialization in the first half of the interval and

UDA(t) = Uoff
coup +

Uamp
coup

N

8∑
p=1

∑
q 6=p

3∑
k=1

ξki ξ
k
j cos((Ωp − Ωq)t)

during the recognition in the second half of the interval. Here, ξ was the initialized,

tested pattern, and the ξk were the memorized patterns. These patterns were

chosen randomly for each measurement, but always such that the ξk were mutually

orthogonal and ξ differed from ξ1 in exactly one bit. Whenever the value of UDA(t)

left a certain interval [Umin
DA , U

max
DA ], the signal was cut off and fixed at the boundary

value, because of the limitations of the DA converter. By the choice of Uamp
coup, the

coupling strength ε in the phase model was fixed as well. The relation between Uamp
coup

and ε depends on the implementation of the coupling circuitry and is explained in

detail in the previous chapter (see 5.3).

• From the voltages Ui(t), the time evolution of the phase shifts ϕi(t) was determined.

This was not done with respect to the frequencies Ωi of the uncoupled oscillators,

but with respect to the average frequencies Ω′i the oscillators settled for during the

second half of initialization. As long as the separation of time scales is large, this

frequency change is an effect on a slower timescale than the evolution of the phase

shifts due to pattern recognition (see section 4.2.5) and the results are not altered

significantly.

• From the changes in phase shift ∆ϕi(t) = ϕi(t + Trecord/2) − ϕi(Trecord/2) during the

recognition phase, the evolution of the proximity P 1(t) of the network to the correctly

recognized pattern ξ1 during the recognition phase was computed.

In the analysis given in section 4.2.1, it was discussed how a large uncertainty in the

oscillator frequencies may influence the pattern recognition performance of the network

negatively. Therefore, it is necessary to quantify the frequency fluctuations in the ex-

periments. Since the frequencies were determined as a part of each single run of the

experiment, the drifts given in table 5.1 are not the relevant values. A better measure is the

difference in frequency ∆Ωn+1 −∆Ωn that arises in an oscillator between two consecutive

runs of an experiment (which were only seconds apart). Here, the index denotes the running

number of the experiment. The time it takes to perform one pattern recognition run is
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Fig. 44: a) Histogram of the differences in Ω measured for the uncoupled oscillators between two consecutive
pattern recognition experiments for the series of 250 experiments with the TD-type network depicted
in Fig. 45. b) Histogram of the differences in Ω measured for the uncoupled oscillators between
two consecutive pattern recognition experiments for the series of 500 experiments with the NIC-type
network depicted in Fig. 54.

also the time scale on which the relevant fluctuations in frequency occur that cannot be

detected by the experimental setup. Fig. 44a shows the statistics of these fluctuations for

the series of 250 pattern recognition experiments with the TD-type network shown further

below in Fig. 45. Fig. 44b shows the statistics of the fluctuations for the series of 500

pattern recognition experiments with the NIC-type network also shown further below in

Fig. 54. For the TD-type oscillators, most of the fluctuations lie in the window ±30Hz,

with a few single deviation values going as high as ±100Hz. These strong fluctuations all

occurred for the especially noisy oscillator around a frequency of 35.6 kHz. In the case

of the NIC-type oscillators, fluctuations stay mainly within ±10Hz, while the flanks of the

distribution reach out to ±35Hz. In the NIC-type network, there was no oscillator that was

particularly noisier than the others. In the following, based on the distributions depicted in

Fig. 44, the values ∆ΩTD = 100Hz and ∆ΩNIC = 35Hz were assumed for the size of the

frequency windows for the two types of oscillators.

6.1.1 Network of TD-type oscillators with coupling through a VCR

The best success rate for pattern recognition that could be reached in a TD-type network

was approximately 80%. Fig. 45 gives an overview over the results of the series of 250

experiments in which this rate was achieved. The measuring time interval of an individual

experiment was Trecord = 0.2 s, the amplitude of a single component in the coupling signal

UDA(t) was Uamp
coup = 1500mV and the offset was Uoff

coup = 1250mV. The resulting coupling

strength acting on the oscillators was therefore ε ≈ 1.5 · 102 s−1 . . . 1.2 · 103 s−1. Since the

network does not settle for a steady state in the presence of noise (see theory chapter),

pattern recognition, as expected, was only transient. The time of of the maximum success

rate (i.e. the time at which the maximum number of experiments showed P 1 > 0) was 0.04 s

after the coupling was switched from initialization to recognition mode.
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Fig. 45: Results of a series of 250 pattern recognition experiments with the circuit depicted in Fig. 42, using an
array of TD-type oscillators. The parameters of the experiment were Trecord = 0.2 s, Uamp

coup = 1500mV,
Uoff

coup = 1250mV, Umin
DA = 0mV, Umax

DA = 2500mV and UTD = 300mV. The maximum recognition rate
was 199/250 ≈ 80% after 0.04 s in recognition mode. a) Distribution of ∆ϕ(0.04 s) for oscillators that
are supposed to keep their phase shift (black bars, left vertical axis) and oscillators belonging to
the defective bit (white bars, right vertical axis). b) Distribution of P 1(0.04 s). c) Success rate as
measured by P 1 over time in recognition mode. d) Evolution of the minimal difference of frequency
differences δ′ during the series of experiments. The bin size in a) and b) was 0.2.

Fig. 45a shows the distribution of the changes ∆ϕ(0.04 s) the phase shifts underwent up

to this time for oscillators that were supposed to keep their phase shift (black bars) and

oscillators that were supposed to change their phase shift by π for a correct recognition

of ξ1, respectively. For the former, the values of ∆ϕ(0.04 s) are arranged in a broad peak

around ∆ϕ = 0, while for the latter, there are two distinct peaks, one substantially below

∆ϕ = π and one substantially above. The peak below π is larger than its counterpart above

π. For brevity, from here on the distribution of the ∆ϕ of oscillators that are supposed

to keep their phase shift will be referred to as zero-flip peak or distribution, while the

distribution of the ∆ϕ of oscillators corresponding to defective bits in the initialized pattern

will be called π-flip distribution. Parts of the zero-flip distribution lie outside the desired

range of [−π/2, π/2]; just as well, parts of the π-flip distribution lie outside the interval

[π/2, 3π/2]. Those outliers account for the 20% failures. Further discussion of the shape of

both distributions is postponed to section 6.1.4.

Fig. 45b shows the histogram of the proximity P 1(0.04 s) of the network to the pattern ξ1.

As expected, instances of near-perfect pattern recognition are very rare, with the maximum
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of the distribution occurring around P 1(0.04 s) = 0.5. The left part of the distribution (i.e.

P 1(0.04 s) ≤ 0) account for the 20% failures. Since the zero-flip distribution and the π-flip

distribution in Fig. 45a overlap, there is also no criterion other than P 1 > 0 that reliably

separates defective from correct bits in 100% of the cases.

Fig. 45c shows the evolution of the success rate (measured by the ratio of experiments

with P 1(t) > 0 to all 250 experiments) during the recognition phase. Immediately after the

Hebbian coupling is switched on, the phase shifts had not yet adjusted and therefore the

success rate was zero. Then, there is a quick rise to the maximum value of 199/250 ≈ 80%

after 0.04 s. For longer times, the rate goes down again, due to the transient nature of

pattern recognition in the presence of noise.

Finally, Fig. 45c shows how the minimal difference δ′ of two frequency differences present

in the system evolved during the series of experiments. This quantity, which varied around

1 kHz, puts an upper limit on the coupling strength, namely ε ≤ 0.3 ·δ′ ≈ 3 · 102 s−1 (compare

section 4.2.5).

On the other hand, there is also a lower limit for ε established by the frequency inaccuracy

∆ΩTD = 100Hz, namely ε ≥ ∆ΩTD/0.15 ≈ 7 · 102 s−1 (compare section 4.2.1).

Since these two conditions cannot be fulfilled simultaneously, the network in the config-

uration hat hand cannot be expected to operate at a 100% success rate at all. In fact,

especially given the inhomogeneous distribution of the coupling strength

ε ≈ 1.5 · 102 s−1 . . . 1.2 · 103 s−1,

the network seems to be working better than it has any right to. However, if one keeps in

mind that ∆ΩTD = 100Hz was a very conservative estimate for the frequency inaccuracy, a

success rate of 80% is less surprising.

Fig. 46 shows the full time evolution of all phase shifts ϕi during an individual, successful

pattern recognition experiment. The average phase shift dynamics is overlain by distinct

small amplitude oscillations, indicating that the separation of time scales is at or even below

the limit for reliable pattern recognition (the amplitude is comparable with the oscillations

in Fig. 29 for ε = 0.5 · δ).
Fig. 47 shows the evolution of the phase shifts during another, this time unsuccessful,

experiment. This particular experiment failed because the oscillator represented by the

cyan curve still was in a transient during the second half of the initialization interval and

therefore its frequency was determined incorrectly, thus derailing the whole recognition

process. The two approaches for dealing with this type of problem, namely either increasing

the coupling strength or choosing a longer time interval for one measurement were both

not feasible for this particular network, because this would have meant to have even less

separation of time scales or even larger frequency inaccuracies, respectively.
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Fig. 46: Time evolution of the phase shifts ϕi during a successful pattern recognition experiment in the series
shown in Fig. 45. The initial pattern ξ and the memorized patterns ξk are depicted above. Black
squares correspond to ξi = −1, white squares correspond to ξi = 1. The color of the border around
each square corresponds to the color of the phase shift curve in the plot.
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Fig. 47: Time evolution of the phase shifts ϕi during an unsuccessful pattern recognition experiment in the
series shown in Fig. 45. The initial pattern ξ and the memorized patterns ξk are depicted above.
Black squares correspond to ξi = −1, white squares correspond to ξi = 1. The color of the border
around each square corresponds to the color of the phase shift curve in the plot.
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6.1.2 Network of NIC-type oscillators with coupling through a VCR

To obtain a higher success rate, the TD-type oscillators were replaced by the more

frequency-stable NIC-type oscillators. Also, the inductances were realized with gyrators

which simplified the tuning of the frequencies, facilitating a larger value of δ′ ≈ 5 kHz

(instead of δ′ ≈ 1 kHz for the TD-type network, see Fig. 48). Moreover, as described earlier,

the frequency was tuned by changing the value of L with the NIC-type oscillators and

therefore the coupling strength was the same for all oscillators. The upper and lower limits

for ε are now ε ≤ 0.3 · δ′ ≈ 1.5 · 103 s−1 and ε ≥ ∆ΩTD/0.15 ≈ 2.3 · 10−2 s−1, respectively.

As a result, there was actually a range of values for the coupling strength ε in which the

system performed reasonably well, albeit not perfectly. The highest success rate for a

NIC-type network with a VCR2N providing the time-dependent coupling was 95%. Four

series of experiments were conducted, each consisting of 500 pattern recognition runs.

The experimental parameters are given in table 6.1, together with the success rates. The

values of the coupling strength ranged from ε ≈ 3 · 102 s−1 to ε ≈ 8 · 102 s−1. Note that for

two of the series, the coupling strength was increased by a factor of 4/3 during recognition.

The reason for this will become apparent below.

Trecord Uamp
coup ε Nsuccess/N success rate

0.5 s 2000mV 6 · 102 s−1 448/500 90%

0.5 s 2000mV / 2660mV 6 · 102 s−1 / 8 · 102 s−1 460/500 92%

1 s 1000mV 3 · 102 s−1 433/500 87%

1 s 1000mV / 1330mV 3 · 102 s−1 / 4 · 102 s−1 473/500 95%

Table 6.1: Parameter sets and success rates for the four series of experiments conducted with a NIC-type
network with a VCR-based coupling. If two parameter values are given, the first one applies to
the initialization phase and the second one to the recognition phase of the experiment. For all four
series, the values Umin

DA = 0mV, Umax
DA = 2500mV and Uoff

coup = 1250mV were the same.

Since the values of ε are well within the favorable value region for ε, the fail rates of

up to 13% cannot be explained by a small separation of time scales, nor by frequency

inaccuracies. There are at least two other effects that hinder the pattern recognition, namely

the distortion of the coupling signal by the VCR2N and the cutoff of the coupling signal

at Umin
DA and Umax

DA . These effects certainly play a role - in particular, as will be described

in the next section, the network employing the (almost) distortion-free AD633 multiplier as

main coupling element works considerably better than with the coupling discussed here.

Still, there is another detrimental effect to pattern recognition that is not present in the

phase-only description of the network discussed in the theory chapter.

To understand this effect, it is instructive to look at the statistics of, for instance, the series

of experiments described in the third row of table 6.1, depicted in Fig. 48. In this series, the

maximum number of successful pattern recognitions (87%) occurred 0.2 s after the coupling
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Fig. 48: Results of a series of 500 pattern recognition experiments with the circuit depicted in Fig. 42,
using an array of NIC-type oscillators. The parameters of the experiment were Trecord = 1 s,
Uamp

coup = 1000mV, Uoff
coup = 1250mV, Umin

DA = 0mV and Umax
DA = 2500mV. The maximum recognition

rate was 433/500 ≈ 87% after 0.2 s in recognition mode. a) Distribution of ∆ϕ(0.2 s) for oscillators
that are supposed to keep their phase shift (black bars, left vertical axis) and oscillators belonging
to the defective bit (white bars, right vertical axis). b) Distribution of P 1(0.2 s). c) Success rate as
measured by P 1 over time in recognition mode. d) Evolution of the minimal difference of frequency
differences δ′ during the series of experiments. The bin size in a) and b) was 0.1.

was switched to recognition mode. Fig. 48a shows that the zero-flip peak in the distribution

of ϕ(0.2 s) is strongly asymmetric, as opposed to its shape for the TD-type network. The

π-flip distribution, i. e. the distribution of ∆ϕ(0.2 s) for oscillators corresponding to a

defective bit, again has two peaks. The difference in size between the two peaks is even

more pronounced than in the TD-type network. Also it appears that both the zero-flip and

the π-flip distribution are slightly shifted to the right. As a result, the histogram of P 1(0.2 s)

shows proportionately more measurements close to P 1(0.2 s) = 1, than for the TD-type

network, because there are more defective oscillators actually undergoing a phase shift

close to π. The shift is also responsible for the fact that a disproportionately large part of

the right peak in the π-flip distribution lies above ∆ϕ = 3π/2 (or −π/2). As a result of this,

oscillators corresponding to defective bits in the initial pattern that slow down instead of

speeding up to adjust their phase shift to the correct value are especially likely to cause a

failed pattern recognition.

The reason for the shift to the right is that all oscillators collectively slow down slightly

during initialization mode (compared to their frequencies in the uncoupled state) and then
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Fig. 49: Time evolution of the phase shifts ϕi during a successful pattern recognition experiment in the series
shown in Fig. 48. The initial pattern ξ and the memorized patterns ξk are depicted above. Black
squares correspond to ξi = −1, white squares correspond to ξi = 1. The color of the border around
each square corresponds to the color of the phase shift curve in the plot.
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Fig. 50: Time evolution of the phase shifts ϕi during an unsuccessful pattern recognition experiment in the
series shown in Fig. 48. The initial pattern ξ and the memorized patterns ξk are depicted above.
Black squares correspond to ξi = −1, white squares correspond to ξi = 1. The color of the border
around each square corresponds to the color of the phase shift curve in the plot.
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speed up again a little (still not recovering their original frequencies), once the coupling is

changed from initialization mode to recognition mode. The slowdown effect increases with

the coupling strength. In the series shown in Fig. 48, all oscillators slowed down by about

0.5Hz . . . 1.5Hz during initialization. This behavior can be observed indirectly for example in

Fig. 49, which shows the results of an individual, successful pattern recognition experiment

from the series depicted in Fig. 48. Only a speedup in the second half is visible, because

the phase shifts were measured with respect to the frequencies during initialization. In

Fig. 50, which shows the results of another, this time unsuccessful pattern recognition

experiment from the same series, one can see, how a collective speedup (on top of other

frequency influencing effects), can derail the pattern recognition: It appears that, whenever

the oscillator belonging to the defective bit slows down in order to switch branches, other

oscillators are particularly prone to speed up considerably (as the oscillators represented

by the green, yellow and magenta curves do in Fig. 50), thus endangering a successful

pattern recognition. This is intuitive, because to achieve an increase in the average speed

of all oscillators, other oscillators must counteract a single oscillator that is slowing down.

A switching oscillator that is speeding up causes less problems.

As of now, no completely satisfactory explanation for this behavior has been found. The

nonlinearity of the VCR2N can be ruled out quite safely, because the effect is also present

for a different coupling mechanism. It appears that the effect is related to the global

frequency decrease due the very slow time scale dynamics described in section 4.2.5. This

effect leads to a slightly slower average frequency during initialization as well. However, it

does not cause a significant amount of recognition failures in an otherwise ideal system, nor

does it suppress the right hand peak in the π-flip distribution; the effect must therefore be

enhanced by a mechanism that is not captured by the phase model (the last two statements

are corroborated in the discussion section further below).

To counteract the speedup between initialization and recognition mode, experiments were

made with different values of ε before and after the coupling was switched to the Hebbian

learning rule. Fig. 51 shows the results of the series of experiments described in the last

row of table 6.1. The only difference with respect to the series in Fig. 48 was that the

value of ε was increased by a factor of 4/3 during recognition. Increasing ε had the effect

of eliminating the shift in the distribution of ∆ϕ. As a consequence, the success rate, as

measured by P 1, went up considerably, namely from 87% to 95%. Also, the decrease of

the success rate in Fig. 51c is slower than in Fig. 48c. Of course, one could have achieved

the same increase in the success rate by subtracting a suitable constant value from all ∆ϕ

values before calculating the proximity.

Unfortunately, increasing ε did not have the desired effect of eliminating all false recognitions

due to the collective speedup. Moreover, there is still some asymmetry in the system,

favoring oscillators that speed up to switch branches: of 27 failed pattern recognition
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Fig. 51: Results of a series of 500 pattern recognition experiments with the circuit depicted in Fig. 42 using an
array of NIC-type oscillators. The time interval of a single run was Trecord = 1 s. During initialization, a
coupling signal with Uamp

coup = 1000mV and Uoff
coup = 1250mV was applied, whereas during recognition

Uamp
coup = 1330mV and Uoff

coup = 1250mV were used. Umin
DA = 0mV and Umax

DA = 2500mV were the
same in both cases. The maximum recognition rate was 473/500 ≈ 95% after 0.2 s in recognition
mode. a) Distribution of ∆ϕ(0.2 s) for oscillators that are supposed to keep their phase shift (black
bars, left vertical axis) and oscillators belonging to the defective bit (white bars, right vertical axis).
b) Distribution of P 1(0.2 s). c) Success rate as measured by P 1 over time in recognition mode. d)
Evolution of the minimal difference of frequency differences δ′ during the series of experiments. The
bin size in a) and b) was 0.1.

experiments, 22 featured an oscillator corresponding to the defective bit that slowed down

during the recognition transition although (given the relative sizes of the two peaks in the

π-flip distribution) experiments in which the oscillator in question slows down are less than

half in number compared to experiments in which it speeds up. Fig. 52 and Fig. 53 show

the results of a successful and an unsuccessful experimental run contained in the series

shown in Fig. 51. Note how, due to the change in coupling strength, the average frequency

is roughly the same during initialization and recognition in both cases.
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Fig. 52: Time evolution of the phase shifts ϕi during a successful pattern recognition experiment in the
series shown in Fig. 51. The initial pattern ξ and the memorized patterns ξk are depicted above.
Black squares correspond to ξi = −1, white squares correspond to ξi = 1. The color of the border
around each square corresponds to the color of the phase shift curve in the plot. The recognition is
successful despite the fact that the oscillator belonging to the defective bit slows down during the
transition (see text).
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Fig. 53: Time evolution of the phase shifts ϕi during an unsuccessful pattern recognition experiment in the
series shown in Fig. 51. The initial pattern ξ and the memorized patterns ξk are depicted above.
Black squares correspond to ξi = −1, white squares correspond to ξi = 1. The color of the border
around each square corresponds to the color of the phase shift curve in the plot.
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6.1.3 Network of NIC-type oscillators with coupling through analog computing

devices

To avoid the distortion that the nonlinear characteristic of the VCR2N introduces to the

coupling function, the coupling mechanism in the NIC-type network was also implemented

using an inverting adder and a multiplier. This approach provided the best experimental

results; table 6.2 shows the parameters and success rates of 6 series of 500 pattern

recognition experiments each. The minimal pattern recognition success rate was 96%. In

one series, every single one of the 500 experiments worked.

Trecord Umax
coup, U

min
coup Uamp

coup ε Nsuccess/N success rate

0.2 s ±750mV 180mV 2.2 · 103 s−1 479/500 96%

0.2 s ±750mV 180mV / 240mV 2.2 · 103 s−1 / 2.9 · 103 s−1 489/500 98%

0.5 s ±375mV 90mV 1.1 · 103 s−1 499/500 99.8%

0.5 s ±375mV 90mV / 120mV 1.1 · 103 s−1 / 1.4 · 103 s−1 500/500 100%

1 s ±190mV 45mV 5.4 · 102 s−1 483/500 97%

1 s ±190mV 45mV / 60mV 5.4 · 102 s−1 / 7.2 · 102 s−1 491/500 99%

Table 6.2: Parameter sets and success rates for the six series of experiments conducted with a NIC-type
network with a coupling based on analog computing devices. If two parameter values are given,
the first one applies to the initialization phase and the second one to the recognition phase of the
experiment. For all six series, Uoff

coup = 0mV was used.

Since the upper and lower limits for ε are ε ≤ 1.5 · 102 s−1 and ε ≥ 2.3 · 103 s−1, respectively,

it is surprising that pattern recognition in the first two series in table 6.2 worked so well.

Once again, this is most likely because of the rather conservative estimate for the frequency

accuracy. Still, the pattern recognition performance is best right in the middle between the

upper and lower limits.

Fig. 54 shows the statistics of the series of experiments with 99.8% success rate with the

parameter values shown in the third row of table 6.2. Compared to the NIC-type network

coupled through a VCR, the asymmetry in the zero-flip and π-flip distributions is even

greater. In fact, both the shoulder on the right of the zero-flip peak and the right hand

side peak of the π-flip distribution of ∆ϕ have disappeared entirely (see Fig. 54a). Also,

the overall shift of both distributions towards the right is even larger than in Fig. 48a. This

is a strong indicator that the asymmetry of the zero-flip and π-flip distributions is indeed

caused by the oscillators’ speedup during recognition.

The positive side of the asymmetry effect is the fact that it tends to narrow both the zero-flip

and the π-flip distributions, such that they are well separated (with only a few exceptions);

this means that in general, pattern recognition works very well. Fig. 55 shows an example

of a successful pattern recognition experiment from the series in Fig. 54. The speedup

effect is much more prominent than in Fig. 49. Here, the slowdown during initialization was
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Fig. 54: Results of a series of 500 pattern recognition experiments with the circuit depicted in Fig. 43
using an array of NIC-type oscillators. The parameters of the experiment were Trecord = 0.5 s,
Uamp

coup = 90mV, Uoff
coup = 0mV, Umin

DA = −375mV and Umax
DA = 375mV. The maximum recognition rate

was 499/500 ≈ 100% during a time interval of roughly 0.04 s in recognition mode. a) Distribution of
∆ϕ(0.05 s) for oscillators that are supposed to keep their phase shift (black bars, left vertical axis) and
oscillators belonging to the defective bit (white bars, right vertical axis). b) Distribution of P 1(0.05 s).
c) Success rate as measured by P 1 over time in recognition mode. d) Evolution the minimal difference
of frequency differences δ′ during the series of experiments. The bin size in a) and b) was 0.1.

3Hz . . . 4Hz.

Still, there is the possibility that the oscillator corresponding to the defective bit in ξ slows

down instead of speeding up during recognition. This happened exactly once in the series

depicted in Fig. 54 and, unfortunately, pattern recognition failed in this case (see Fig. 56).

The oscillator in question is represented by the brown curve. Note that the information

about the correct pattern in this instance is completely unsalvageable from the phase shift

data, even after an arbitrary common offset is subtracted from all phase shift values to

cancel out the speedup.

Like it was already done for the NIC-type network with VCR based coupling, the series

of experiments was repeated with an increased coupling strength (factor 4/3) during the

recognition phase. The results are shown in Fig. 57. In this series, every single experiment

was successful (Fig. 58 shows an example). Again, the higher coupling strength during

the recognition phase was able to cancel out the speedup effect. During this series of

experiments, there was no oscillator corresponding to a defective bit that slowed down

during recognition, which explains the 100% success rate.
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Fig. 55: Time evolution of the phase shifts ϕi during a successful pattern recognition experiment in the series
shown in Fig. 54. The initial pattern ξ and the memorized patterns ξk are depicted above. Black
squares correspond to ξi = −1, white squares correspond to ξi = 1. The color of the border around
each square corresponds to the color of the phase shift curve in the plot.
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Fig. 56: Time evolution of the phase shifts ϕi during the single unsuccessful pattern recognition experiment in
the series shown in Fig. 54. The initial pattern ξ and the memorized patterns ξk are depicted above.
Black squares correspond to ξi = −1, white squares correspond to ξi = 1. The color of the border
around each square corresponds to the color of the phase shift curve in the plot.
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Fig. 57: Results of a series of 500 pattern recognition experiments with the circuit depicted in Fig. 43 using an
array of NIC-type oscillators. The time interval of a single run was Trecord = 0.5 s. During initialization,
a coupling signal with Uamp

coup = 90mV and Uoff
coup = 0mV was applied, whereas during recognition

Uamp
coup = 120mV and Uoff

coup = 0mV were used. Umin
DA = −375mV and Umax

DA = 375mV were the same
in both cases. The maximum recognition rate was 500/500 = 100% during a time interval of roughly
0.06 s in recognition mode. a) Distribution of ∆ϕ(0.05 s) for oscillators that are supposed to keep
their phase shift (black bars, left vertical axis) and oscillators belonging to the defective bit (white
bars, right vertical axis). b) Distribution of P 1(0.05 s). c) Success rate as measured by P 1 over time in
recognition mode. d) Evolution of the minimal difference of frequency differences δ′ during the series
of experiments. The bin size in a) and b) was 0.1.
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Fig. 58: Time evolution of the phase shifts ϕi during a pattern recognition experiment in the series shown
in Fig. 57. The initial pattern ξ and the memorized patterns ξk are depicted above. Black squares
correspond to ξi = −1, white squares correspond to ξi = 1. The color of the border around each
square corresponds to the color of the phase shift curve in the plot.

6.1.4 Discussion of the results

The most important result of the experiments presented above is the fact that a globally

coupled network of NIC-type van der Pol oscillators could be used reliably for pattern

recognition with 3 memorized mutually orthogonal 8 bit patterns if an adder and a multiplier

were used to provide the time-dependent coupling.

Other than for the network of TD-type oscillators, for the network of NIC-type oscillators

there is a favorable range of the coupling strength given by ε = 1.5 · 102 s−1 . . . 2.3 · 103 s−1

in which the main obstacle for pattern recognition is neither the frequency inaccuracy of

the oscillators, nor the small separation of time scales.

Instead, there is another dynamical effect with a potentially negative influence on pattern

recognition that does not appear in the phase model investigated in the theory chapter.

Before this effect is discussed, however, the experimental results are compared to the

behavior of a hypothetical ideal pattern recognition device which exhibits phase jumps of

exactly ∆ϕ = 0 for oscillators belonging to correct bits in ξ and ∆ϕ = π for oscillators

belonging to defective bits in ξ). A histogram of experiments with this device, in the

presence of some Gaussian noise, should show two bell shaped distributions centered

around 0 and π respectively. The observed statistics deviates from this behavior in the

following points:

• There appears to be an overall increase in the oscillator frequencies, when the

coupling function is changed from pattern initialization to pattern recognition. As a
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result, the entire histogram of phase jumps appears shifted towards the right.

• Choosing a larger coupling strength for the recognition phase than for the initialization

phase (ratio roughly 4:3) cancels out this shift effect.

• The zero-flip peak has a pronounced shoulder or even another smaller peak on the

left, and a less pronounced shoulder on the right. The shoulder on the right (almost)

disappears for the more successful experimental runs with less noise and distortion

in the network dynamics.

• The π-flip distribution exhibits two peaks that are clearly separated. The peak on the

right hand side is less pronounced and (almost) disappears for the more successful

experimental runs with less noise and distortion in the network dynamics. This peak

corresponds to oscillators that slow down during pattern recognition to adjust their

phase shift.

To find an explanation for these findings it is instructive to look at comparable statistics for

the ideal model of globally coupled phase oscillators obeying (4.18), as depicted in Fig. 59,

which shows the statistics for a series of 10000 simulations using ε = 5.4 · 102 s−1 and an

ideal Golomb ruler between f1 = 35 kHz and f8 = 69 kHz. Like in the experiments, three

randomized orthogonal patterns ξk were used, along with an initial pattern ξ that differed

from ξ1 in one bit.
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Fig. 59: Results of a series of 10000 numerical integrations simulating pattern recognition with the ideal phase
equation (4.18) for 8 oscillators with frequencies that formed a Golomb ruler between f1 = 35 kHz
and f8 = 69 kHz. The time interval of a single integration run was Trun = 0.5 s. The coupling strength
was set to ε = 5.4 · 102 s−1. The choice of initial and memorized patterns was the same as in the
experiments. Simulations were started at random initial phases. The graphic shows the zero-flip
distributions (black area, left vertical axis) and the π-flip distribution (white area, right vertical axis) of
∆ϕ(0.075 s). The bin size of the histogram was 0.005.

Fig. 59 shows that the zero-flip distribution has two distinct, fairly symmetrical side peaks

next to the main peak. These are mirrored by the two distinct peaks in the π-flip distribution.

The reasons for these features are the following:

First, the phase shift ϕ of the oscillator representing the defective bit does not change by
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π during recognition, but by a little less, since the other oscillators are pushed in the other

direction a bit (albeit not much, because of their larger number); after all, the sum of all

phase shifts is conserved (on the slow, but not on the very slow time scale; this is true

because the sum over the right hand side of (2.2) for all i is zero). This explains the two

peaks in the π-flip distribution, formed by oscillators that either speed up (corresponding

to the left peak) or slow down (corresponding to the right peak) to adjust to a correct phase

shift. Second (which explains the two smaller side peaks for in the zero-flip distribution),

the entry wij = wji describing the coupling strength between oscillators i and j has an

absolute value of either 1 or 3 during the recognition stage (for three memorized patterns). If

the memorized patterns are chosen orthogonal, it turns out that each oscillator has exactly

one partner oscillator to which it is coupled with relative strength 3 while it is coupled to the

rest with relative strength 1. The side peaks are formed by the partners of the oscillators

corresponding to defective bits, which experience a bigger backlash from the phase jump

than the rest. Note that these are small size effects which should not play a role for larger

systems with random patterns.

Another small size effect is the fact that there were actually 8 simulations that failed to

deliver the correctly recognized pattern even in an absolutely noiseless phase model. The

ratio of time scales is ε/δ ≈ 0.18, which in this simulation is sufficient to cause a fail rate of

0.08%. This is a small size effect that should disappear in larger networks, because, if the

ratio of invariant eigendirections to phase space dimensions were significantly lower than

3/8 (namely equal to α ≤ 0.042 in a higher dimensional network with random memorized

patterns) any drift effect is expected to be proportionately smaller and less prone to cause

pattern recognition errors. Note that the experiments were also subject to this effect, but it

was overshadowed by other detrimental effects

In the simulations, the overall shift towards larger phase shift values seems not to be

present at all. Also, the right hand side peak of the π-flip distribution does not seem to be

suppressed compared to the left hand side peak. As mentioned before, this indicates that

the shift of the whole distribution of the ∆ϕ to the right and the asymmetry between the

two peaks in the π-flip distribution (entailing the asymmetry of the shoulders of the zero-

flip distribution) in the experiments are related effects, meaning that if there is an overall

tendency for oscillators to speed up due to the recognition coupling, the symmetry between

the two peaks is broken as well. If one looks closely, there is a slight dominance of the peak

on the left over the peak on the right (nspeedup = 5139, nslowdown = 4859 simulations (note that

the missing two oscillators belong to simulations with failed recognition)). However, this

effect is far to small to explain the huge asymmetry in the experimental data.

In conclusion, it seems clear that the symmetry breaking observed in the experiments cannot

be explained by a phase-only dynamical model. On the other hand, if the experiments are
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modeled by the realistic equations

U̇i =
1

Ci

(
−INL(Ui)− I −

Ui
Rint

)
+

UDA(t)

10 · CiRint

8∑
i=1

Ui

İi =
Ui
Li
, (6.1)

where Ci = C = 1 · 10−9 nF, the Li are chosen appropriately to implement the Golomb

ruler between f1 = 35 kHz and f8 = 69 kHz and UDA(t) is chosen to provide a coupling

strength of ε = 1.1 · 103 s−1, the asymmetry is close to that observed in the experiments

(see Fig. 60a). Interestingly, the histogram can be altered quite significantly by choosing

a different characteristic INL than the one used in the NIC-type van der Pol oscillator

(Fig. 60b). This is shown in Fig. 61a. All other parameters being equal, simulating the

system (6.1) with the nonlinear characteristic INL shown in Fig. 61b yields results that are

much closer to the phase model.

Apparently, the dynamics of the system away from the limit cycle, which is influenced by

the shape of the nonlinearity INL(U), is critical for the asymmetry effect. This is reminiscent

of the so called acceleration/deceleration effect investigated by Aonishi, et al. (2002).

This effect leads to an increase or decrease of the average frequency of locked coupled

oscillators of similar frequency, depending on the curvature of the isochrones in the vicinity

of the limit cycle. It is not self-evident however, how this mechanism can be transferred to

the system of weakly coupled oscillators far below the Kuramoto threshold.

As a final remark, it should be noted that, like the very distinct features of the zero-flip

and π-flip distributions in the phase model, the asymmetry effect should be strongest for

a small number of oscillators and play less of a role for a system with a larger number of

oscillators and random patterns.



126 6. Experimental results

a)

−π
2

0 π
2

π 3
2
π

0

200

400

∆ϕ[rad]

#
of

os
ci

ll
at

or
s

0

50

100

150

200

#
of

os
ci

ll
at

or
s

b)

−600−400−200 0 200 400 600
−0.1

− 5 · 10−2

0

5 · 10−2

0.1

U [mV]

I N
L
[m

A
]

Fig. 60: a) Results of a series of 500 numerical integrations of a network of 8 van der Pol oscillators each
described by the equations (6.1). The parameters were chosen to model a series of experiments with
the coupling based analog computing devices and the parameters Uamp

coup = 90mV, Uoff
coup = 0mV,

Umin
DA = −375mV and Umax

DA = 375mV. The choice of initial and memorized patterns was the same
as in the experiments. Simulations were started at random initial phases. The graphic shows the
zero-flip distribution (black bars, left vertical axis) and the π-flip distribution (white bars, right vertical
axis) of ∆ϕ(0.05 s). The bin size of the histogram was 0.1. b) Shape of the nonlinear characteristic
INL(U) that was used for the simulations (compare Fig. 15b).
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Fig. 61: a) Results of a series of 500 numerical integrations of a network of 8 van der Pol oscillators each
described by the equations (6.1). The parameters were the same as for Fig. 60, except for the
nonlinear characteristic INL. The graphic shows the zero-flip distribution (black bars, left vertical axis)
and the π-flip distribution (white bars, right vertical axis) of ∆ϕ(0.05 s). The bin size of the histogram
was 0.1. b) Shape of the nonlinear characteristic INL(U) = −5 · 10−5 A · tanh(U · 5V−1) · e−U2/4 V2

that
was used for the simulations.
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6.2 Long term behaviour during pattern recognition

From the experimental data presented in section 6.1, for instance the phase shift evolution

depicted in Fig. 52, it can be seen that the system did not settle for a stationary state after

the defective oscillator in the initial pattern underwent the phase shift flip, just as expected

based on the reasoning in section 4.1. However, the measuring intervals were too short for

the movement patterns in phase space predicted by the theory to emerge. Therefore, some

longer measurements were performed. Two examples are shown in Fig. 62 and Fig. 63,

respectively.

Fig. 62 shows a measurement in which moderate frequency inaccuracies lead to a very

regular movement pattern in phase space. After the recognition process (which seems

to happen almost instantly on the pictured time scale), the system cyclically followed the

pattern sequence ξ1 → ξ3 → ξ2 → ξ3 → . . . in a fashion very similar to Fig. 19.

Fig. 63 shows a measurement with larger fluctuations than Fig. 62, where the transition

between patterns was much faster. Also, the phase shift evolution of any single oscillator

was somewhat erratic, with stretches of regular behavior in between. Therefore, there did

not seem to be a clear periodic sequence of pattern states any more, after the system

started out with patterns ξ1 → ξ3 → ξ2 → . . .; still, the network always returned to

representations of one of the memorized patterns (for example pattern ξ2 around t = 1.8 s).

The important point illustrated by Fig. 62 and Fig. 63 is the fact that, while the network is

in a state representing the "pattern recognition phase" rather than the "glassy phase" in

the sense discussed in 4.3, no single one of the memorized patterns is actually exclusively

realized in the network. Rather than being in a state, where all phase shifts are locked,

representing a memorized pattern, only subsets of oscillators exhibit a lock in their phase

shift values. At certain junctions in phase space (namely at the points where the potential

valleys in Fig. 18a meet, i.e. whenever the network represents a memorized pattern), those

subsets may change.

Note that, although initial pattern recognition worked in both experiments shown in Fig. 62

and Fig. 63, respectively, this is no necessary condition for the long term pattern switching

to occur. For example, in Fig. 53, the process of pattern switching starts at pattern ξ2

instead of the correctly recognized pattern ξ1.



128 6. Experimental results

0 0.5 1 1.5 2

0

π

t[s]

ϕ

ξ1 ξ3 ξ2 ξ3 ξ1 ξ3 ξ2

ξ ξ1 ξ2 ξ3

Fig. 62: Time evolution of the phase shifts ϕi during a pattern recognition experiment with the circuit depicted
in Fig. 43 using an array of NIC-type oscillators. The time interval of a single run was Trecord = 2 s.
During initialization, which in this case took only 0.4 s, a coupling signal with Uamp

coup = 180mV and
Uoff

coup = 0mV was applied, whereas during recognition Uamp
coup = 240mV and Uoff

coup = 0mV were used.
Umin

DA = −375mV and Umax
DA = 375mV were the same in both cases. The initial pattern ξ and the

memorized patterns ξk are depicted above. Black squares correspond to ξi = −1, white squares
correspond to ξi = 1. The color of the border around each square corresponds to the color of the
phase shift curve in the plot.
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Fig. 63: Time evolution of the phase shifts ϕi during another pattern recognition experiment with the same
circuit and parameters as in Fig. 62. The initial pattern ξ and the memorized patterns ξk are depicted
above. Black squares correspond to ξi = −1, white squares correspond to ξi = 1. The color of the
border around each square corresponds to the color of the phase shift curve in the plot.
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6.3 The stabilizing effect of pattern initialization on frequency drift

It has been pointed out repeatedly that during the initialization phase of the coupling, the

dynamics of the phase shifts in the weakly coupled network is equivalent to the dynamics in

the classic Kuramoto network, which is a simple description for a set of nonlinear oscillators

with a constant, synchronizing coupling.

Systems of noisy oscillators of equal frequency, when subjected to such a coupling,

are known to exhibit smaller fluctuations in the coupled, synchronized state than in the

uncoupled state (see for example Kori, et al. (2012) and references therein). For small

networks with white, Gaussian phase noise, the standard deviation σT in the period of

a single oscillator decreases with the number N of coupled oscillators according to the

square root law

σT =
1√
N
· σT,uncoupled

The intuitive explanation for this fact is that the coupling works to enforce an equal average

value for the period over all oscillators, thus evening out deviations of individual periods in

opposite direction.

In the weakly coupled network of this thesis, a similar noise reducing effect is to be

expected, even though the oscillators have now frequencies far apart from each other.

However, there is an important difference: There are defined fluctuations in the oscillation

periods that are brought about by the coupling mechanism, which manifest themselves

in small oscillations of the phase shifts ϕi around the value predicted by the average

dynamics. This effect causes a variation in oscillation periods that is not related to noise

in the system. Since these fluctuations are part of the ideal dynamics of the coupled

network, they cancel out in the long time average and will never lead to the accumulation

of a substantial deviation of any of the ϕi. Therefore, the accumulated phase shift deviation

from the average dynamics in a certain time interval is a good measure for the level of

undesired fluctuations present in a particular oscillator.

To measure the fluctuations in the period of the oscillators, the same setup as for the

pattern recognition experiments was used, in the version with NIC-type oscillators and

coupling through active circuit elements. The measurement consisted of two steps: In the

first step, no coupling (i.e. UDA = 0) was applied for a time of Trecord = 1 s. In the second

step, a constant positive coupling between all 8 oscillators (i.e. wij = 1) with Uamp
coup = 90mV,

Uoff
coup = 0mV, Umin

DA = −375mV and Umax
DA = 375mV was applied for the same time interval.

The accumulated deviation ∆ϕ in the phase shift of each oscillator over the second half of

the respective time interval was monitored in both steps.

Fig. 64 shows the results of a series of 500 such measurements, depicting the phase shift

deviation accumulated by the 50 kHz oscillator between t1 = 0.5 s and t2 = 0.9 s both for
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Fig. 64: a) Distribution of phase shift deviations accumulated in an uncoupled (i.e. Ucoup = 0) NIC-type
oscillator with a frequency of roughly 50 kHz without coupling in the time interval of 0.4 s. b)
Distribution of phase shift deviations accumulated in the same oscillator over the same time interval
in the 8-oscillator network with completely synchronizing coupling (i.e. wij = 1 and Uamp

coup = 90mV,
Uoff

coup = 0mV, Umin
DA = −375mV and Umax

DA = 375mV). Each histogram shows the data of 500
measurements. The interval represented by a single column is 0.04. The solid curves are Gaussian
fits to the data.

the uncoupled (Fig. 64a) and the coupled case (Fig. 64b). Both histograms show a normal

distribution; for the uncoupled case, the distribution is almost 1.5 times wider than for the

coupled case.

Fig. 65a shows the evolution in the standard deviation of both distributions over time,

Fig. 65b shows the ratio of the two standard deviations. After an initial increase, the this

value remains nearly constant around 1.4. The initial increase is expected, because for very

low times, the accumulated deviation in phase shift is mainly determined by the inaccuracy

of the frequency determination algorithm, which is equal for the coupled and uncoupled

case.

The effect of the coupling on oscillation fluctuations seems to vary greatly between

oscillators. For example, the fluctuations of the second slowest oscillator (36 kHz) remain

almost unaffected (see Fig. 65c,d), while the fluctuations of the oscillator at 57 kHz are

reduced by a factor of up to 3.5 (see Fig. 65e,f). For the other oscillators, the ratio was in

between. Interestingly, the strength of the effect does not seem to be perfectly correlated

with the frequency; from the measurements one can only conclude that the coupling has a

certain stabilizing effect on every oscillator (with the exception of the 36 kHz oscillator). A

precise theoretical derivation of the expected effects, however, is yet to be formulated.
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Fig. 65: a), c), e) Evolution of the standard deviation σ∆ϕ of phase shift deviations plotted over the time
interval ∆t in which the deviations were accumulated for the uncoupled 50 kHz / 36 kHz / 57 kHz
NIC-type oscillator (circles) and for the same oscillator in the 8-oscillator network with completely
synchronizing coupling (i.e. wij = 1 and Uamp

coup = 90mV, Uoff
coup = 0mV, Umin

DA = −375mV and
Umax

DA = 375mV) (crosses). Each circle or cross corresponds to a histogram similar to Fig. 64a and
Fig. 64b respectively; the error bars show the error of the fitting algorithm. b), d), f) Ratio of both
standard deviations σuc (uncoupled oscillator) and σc (coupled oscillator) over the time interval for the
50 kHz / 36 kHz / 57 kHz oscillators.
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7. Summary

In the course of the work on this thesis, a mathematical model for a neural network of

coupled phase oscillators proposed by Hoppensteadt & Izhikevich (1999) was theoretically

investigated for its use in real-life applications. Based on the results of this investigation, a

prototype network of 8 electronic oscillators was designed and built, successfully proving

the feasibility of the mathematical concept. The task performed by this neural network is

the recognition of a defective pattern as one of a set of given memorized patterns. The

unique property of the model is that the synaptic coupling between any pair of neurons

is dynamically governed by a single external coupling parameter with a complex time-

dependence, rather than by a large set of static individual coupling parameters. This is

made possible by subjecting a set of Kuramoto oscillators to a weak, time-dependent

coupling. If the oscillators and the coupling function are suitably chosen, the average

dynamics is equivalent to that of a set of strongly coupled Kuramoto oscillators with

equal frequencies, which is known to be capable of pattern recognition, if the coupling

between pairs of oscillators is chosen according to a Hebbian learning rule (Arenas &

Pérez-Vicente 1994). Note that "weak coupling" here denotes a coupling strength far below

the synchronization threshold, while "strong coupling" means that the coupling strength is

above this threshold but still small enough to allow a phase-only description.

In the theoretical part of the thesis, the oscillatory network was analyzed on three different

levels:

First, the stability of the stationary states corresponding to the recognized patterns of

a Hebbian network of strongly coupled Kuramoto oscillators with equal frequency was

examined. For the case of mutually orthogonal learned patterns (i.e. patterns that have

maximum distance in pattern space), it was proven that the solutions corresponding to

the memorized patterns are part of a larger set of degenerate steady states. Numerical

evidence was found that suggests there is a degenerate attractor in the general case, too.

The consequence of these findings is that pattern recognition in the neural network at hand

is only transient in the presence of noise, giving way to a more complicated long term

behavior. The different types of possible long term behavior in the presence of noise were

categorized.

Second, to quantify the effects of noise, a series of numerical simulations was conducted

to determine the noise threshold at which reliable pattern recognition breaks down. This

was done for the phase description of the weakly coupled network with the global time

dependent coupling. The main result was that frequency inaccuracies of the oscillators

as well as the time-dependent coupling function are the most detrimental type of noise,

because the effect of frequency inaccuracies increases quadratically with the number of

oscillators.
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Third, a phase equation mirroring the experimental dynamics, based on the assumption of

experimental oscillators with perfectly sinusoidal waveforms and phase response curves,

was derived and it was shown that the average dynamics on the relevant slow time

scale equals that of the original weakly coupled phase model. On an even slower time

scale, however, there is an additional common drift that is introduced by using realistic

oscillators instead of phase oscillators. Using the multiple time scale analysis of this more

realistic phase equation, together with the results on the effects of noise and some general

considerations about the efficiency of the experimental setup, a rule of thumb was derived

which relates the number of oscillators to the necessary frequency accuracy needed for a

network of this size.

For the experiment, two different electrical oscillators, both of the van der Pol type

(Kanamaru 2007), were used. The parameter space for both types of oscillator was

explored in order to find the region with sinusoidal waveform and phase response curve.

Also, two different mechanisms for implementing a weak time-dependent global coupling

in a network of electrical oscillators were developed. The main challenge was to find a

way to realize a seamless transition between positive and negative values of the coupling.

To achieve this, the first mechanism uses a voltage controlled resistor in conjunction

with two negative impedance converters. The second mechanism employs several active

electronic devices like adders and multipliers to model the dynamical equation directly.

Relating the phase model based on ideal waveform and phase response curve mentioned

above to a realistic two-variable description of the oscillators, the coupling strength in the

mathematical model was expressed as a function of experimental parameters. Also, the

process of pattern recognition in the electric circuit could be related to the tendency of the

network to find a state of minimal entropy production.

To test both coupling mechanisms, two networks with 8 van der Pol oscillators each

were built, with different designs for the individual oscillators. Using the two networks in

combination with the two coupling variants, several series of experiments were made in

which the network recognized randomized 8 bit patterns with one defect out of three given

mutually orthogonal patterns. The best experimental configuration was a network featuring

NIC-circuits as nonlinear elements in the van der Pol oscillators, gyrators as inductors and

a coupling through active electronic devices. Its success rate was 100% (i.e. 500 in a

series of 500 pattern recognition experiments were successful). Other configurations had

success rates of up to 80% and up to 95%, respectively. In the experiments, a symmetry

breaking was observed. For a successful pattern recognition, oscillators corresponding to

incorrect bits in the tested pattern must change their phase shift by π by either speeding

up or slowing down. In the experiments, especially for a network with low noise level and

low distortion of the coupling function, the speeding up of these oscillators was heavily

favored. This effect cannot be observed in a pure phase model of the network and has yet
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to be fully understood. However, some numerical simulations revealed that the strength of

this effect depends on the shape of the nonlinearity of the van der Pol oscillator.

Additionally to the pattern recognition experiments, the long term behavior predicted by

the theoretical analysis was observed after the transient pattern recognition and a positive

effect of the weak coupling on the regularity of oscillations was demonstrated.

With these experiments, in particular the series with 100% successful pattern recognition, it

has been established that the original mathematical model can be implemented successfully

as an electronic circuit. To the knowledge of the author, this was also the first time that

the phase shifts of coupled heterogeneous oscillators were selectively and accurately

manipulated in an experiment with a very weak coupling far below the Kuramoto threshold,

even without the pattern recognition aspect.

Based on this foundation, further research can now concentrate on improving on the

disadvantages of the approach. In particular, it is unlikely that the network will be used in

a real world application in its current form for the following reason: Due to the fact that

the coupling strength scales inversely with the square of the number of oscillators, the

convergence time of the network increases quadratically with the number of oscillators.

This simply means that there is no computational speed gained by the parallel architecture

compared to a sequential computer, even for arbitrarily large network sizes. Still, the

weak global coupling approach for neural networks can be useful for applications when

combined with more conventional ways of neural coupling. In such systems, there is a

trade-off between the complexity of the coupling topology and the execution speed of the

network. First, promising steps in this direction have already been made by Kostorz, et al.

(2013).

Another intriguing direction of future research is the investigation of moremodular, clustered

network designs, which suffer less of the restrictions of an all-to-all coupled network. Finally,

it seems promising to study networks in which individual oscillators act both as neurons

and as generators of the time-dependent coupling function. Systems adhering to this

concept seem closer to the actual inner workings of the human brain; in particular they

would be self-contained, not depending on an external global coupling function.
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A Appendix

A1 Table of repeatedly used symbols and abbreviations

• abbreviations

FWHM full width at half maximum

JFET junction field effect transistor

NIC negative impedance converter

op-amp operational amplifier

TD tunnel diode

VCR voltage controlled resistor

• capital Latin letters

E(ϕ) potential function of the strongly coupled network

J , Jij Jacobian of the strongly coupled network, entries of the Jacobian

M number of memorized patterns for a given network

N number of oscillators in a given network

P proximity: measure for the closeness of a state ϕ to a pattern ξ

Rint internal resistance, connecting each oscillator to the coupling node

Trecord length of the measuring time interval for a single pattern recognition experi-

ment

Uamp
coup amplitude of a single frequency component in the coupling voltage UDA(t)

Uoff
coup amplitude of a single frequency component in the coupling voltage UDA(t)

UDA(t) output of the DA converter used to provide the coupling signal in the

experiment

Umin
DA lower cutoff value of UDA

Umax
DA upper cutoff value of UDA

Y (ϑ) waveform of an oscillator

Z(ϑ) phase response curve of an oscillator

• small Latin letters

a(t) functional dependence of the time-dependent coupling a weakly coupled net-

work
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f(t), g(t), h(t) time dependent expressions in the order of magnitude of 1

i, j, p, q summation index that usually runs from 1 to N , indicates the number of an

oscillator

k, l,m summation index that usually runs from 1 to M , indicates the number of a

memorized pattern

m overlap: measure for the closeness of a state ϕ to a pattern ξ

wij entries of the coupling matrix in the strongly coupled network, coefficients of the

coupling function in a weakly coupled network.

• capital Greek letters

Ω undisturbed frequency of an oscillator; frequency of a noise signal

Ωmin,Ωmax bounds of the frequeny interval used by the network

∆Ωi deviation of a single oscillator from its undisturbed frequency

∆Ω all frequency deviations ∆Ωi fall within the interval [−∆Ω/2,∆Ω/2]; also called

absolute frequency accuracy in the thesis.

• small Greek letters

α load rate of the network; α = M/N

δ minimal difference of two oscillator frequencies in a weakly coupled network

δ′ minimal difference of the frequency differences of two pairs of oscillators in a

weakly coupled network

ε coupling strength in the ideal weakly coupled network; coupling strength before

averaging in the realistic weakly coupled network

εeff effective coupling strength after averaging in the realistic weakly coupled net-

work; εeff = ε/2

η(t) small, undesired perturbation of the dynamics of the realistic weakly coupled

network

ϑ(t) phase of an oscillator

λ eigenvalue of J

µ size of an undesired perturbation of the dynamics of the realistic weakly coupled

network; η(t) = µh(t)

µeff effective size of an undesired perturbation of the dynamics of the realistic weakly

coupled network after averaging

ξ initialized pattern vector; N entries ξi ∈ [−1, 1]
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ξk memorized pattern vector

ξfinal pattern vector represented (in general only approximately) by the network when

the recognized pattern is read out

|ξ〉 state vector in complex pattern space; N entries |ξ〉i = eiϕi

ϕ(t) phase of an oscillator

ϕ(t) state vector of the network in phase space; N entries ϕi(t)

ϕ∗ steady state in the phase space of the strongly coupled network

ϕ∗k steady state in the phase space of the strongly coupled network approximately

representing ξk

ϕinitial state vector of the network when the initialization has ended

ϕfinal state vector of the network when the recognized pattern is read out

ϕperfect state vector of the network after a hypothetical perfect recognition

ωi deviation of a single oscillator from its undisturbed frequency; similar to ∆Ωi,

however
∑

i ωi = 0

A2 Numerical integration example

To run the example, create a folder containing the files opkda1.f, opkda2.f and opkdmain.f

obtained from http://www.netlib.org/odepack as well as a the file integrate.cpp con-

taining the following program:

using namespace std;

#include <iostream>
#include <fstream>
#include <vector>
#include <cmath>

#define N_OSZI 16

#define T_END 100.
#define N_SAMPLES 500
#define DT (T_END/N_SAMPLES)
#define T_SWITCH (T_END/4)

#define N_PATTERN 3

double pattern[][N_OSZI]={
{ 1,-1,1,-1,-1,-1,-1,1,1,-1,1,1,-1,-1,-1,1},
{ 1,1,1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1},
{ 1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1},
{ 1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,1,-1,1}
};

http://www.netlib.org/odepack
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double initCoeffs[N_OSZI*N_OSZI];
double recCoeffs[N_OSZI*N_OSZI];

// variables and arrays required by LSODE
int NEQ_ = N_OSZI;
double T_;
double Y_[N_OSZI];
int ITOL_ =1;
double RTOL_ = 1e-7;
double ATOL_ = 1e-7;
int ITASK_ = 1;
int ISTATE_ = 1;
int IOPT_ = 0;
int LRW_=22 + 9*N_OSZI + N_OSZI*N_OSZI;
double RWORK_[22 + 9*N_OSZI + N_OSZI*N_OSZI];
int LIW_=20+ NEQ_;
int IWORK_[20+ N_OSZI];
int MF_=22; // stiff method with internally generated Jacobian
int MU_=0;
int ML_=0;

// wrapper for fortran ode solving routine
extern "C" void dlsode_(void F(int*,double*,double*,double*), int* NEQ,\

double* Y, double * T , double *TOUT,int* ITOL, double *RTOL,\
double *ATOL, int* ITASK, int* ISTATE,int* IOPT,double* RWORK,\
int* LRW,int* IWORK, int* LIW, \
void JAC(int*,double*,double*,int*,int*,double*,int*),int* MF);\

// right hand side of the differential equation, is passed to the solver
void func(int* NEQ, double* T, double* Y, double* Ydot);

// fills coupling matrix array with w_ij
void compute_coefficients()
{

for(int i = 0;i<N_OSZI;++i)
{

for(int j = 0;j<N_OSZI;++j)
{

initCoeffs[i*N_OSZI+j]=pattern[0][i]*pattern[0][j];
recCoeffs[i*N_OSZI+j]=0;
for(int k=1;k<=N_PATTERN;++k)
recCoeffs[i*N_OSZI+j]+=pattern[k][i]*pattern[k][j];

}
}

}

int main(int argc, char** args)
{

compute_coefficients();

// set initial conditions
T_=0;
srand(time(NULL));
for(int i=0;i<NEQ_;++i)

Y_[i] = (double)rand()/(double)RAND_MAX*2*M_PI-0.5*M_PI;
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int percentStep=T_END/DT/100.;
double dt = DT;

// data structures that store the results
vector<double> time;
vector<vector<double> > phases(N_OSZI);

// integration
int j = 0;
for(double t = 0;t<=T_END;t+=dt)
{

dlsode_(func, &NEQ_, Y_, &T_ , &t ,&ITOL_,&RTOL_, &ATOL_,&ITASK_,\
&ISTATE_,&IOPT_,RWORK_,&LRW_,IWORK_,&LIW_,NULL,&MF_);

time.push_back(T_);
for(int i = 0;i<N_OSZI;++i)

phases[i].push_back(Y_[i]);

if(j%percentStep==0)
cerr«"\b \b \b \b"«j/percentStep«"%";

++j;
}

// write out results "to phases.dat",
fstream file;
file.precision(15);
file.open ("phases.dat", ios::out);

// but before, perform a global phase shift
// such that branches are at 0 and pi respectively
double shift = phases[0][N_SAMPLES/(T_END/T_SWITCH)]-M_PI*(pattern[0][0]+1)/2;
for(int i=0;i<time.size();++i)
{

file«time[i]«"\t";
// and restrict the values of phi to [-0.5*pi,1.5*pi[
for(int j=0;j<N_OSZI;++j)
{

double d = phases[j][i]-shift;
while(d>1.5*M_PI)

d-=2*M_PI;
while(d<-.5*M_PI)

d+=2*M_PI;

file«d«"\t";
}
file«endl;

}

file.close();
cerr«"\b\b \b \b \b100%"«endl;

return 0;
}

// right hand side of the differential equation, is passed to the solver
void func(int* NEQ, double* T, double* Y, double* Ydot)
{
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if(*T<T_SWITCH)
{

for(int i = 0;i<N_OSZI;++i)
{

Ydot[i]=0;
for(int j = 0;j<N_OSZI;++j)
{

Ydot[i]+=initCoeffs[i*N_OSZI+j]*sin(Y[j]-Y[i]);
}
Ydot[i]/=(double)N_OSZI;

}
}
else
{

for(int i = 0;i<N_OSZI;++i)
{

Ydot[i]=0;
for(int j = 0;j<N_OSZI;++j)
{

// .999999: slight distortion to move the system
// away from the unstable equilibrium
Ydot[i]+=recCoeffs[i*N_OSZI+j]*sin(Y[j]-Y[i]*.999999);

}
Ydot[i]/=(double)N_OSZI;

}
}

}

At a shell prompt change the directory to the folder; then compile and link the program with

gfortran opkda1.o opkda2.o opkdmain.o -c

g++ opkda1.o opkda2.o opkdmain.o integrate.cpp -o integrate -lgfortran

and run it with

./integrate

or just

integrate

depending on your shell. The output file phases.dat should then contain the data for Fig. 1.

A3 Netlists for LTSpiceIV

To run spice with one of the netlists below create a text file (e.g VDP.cir) containing one of

the netlists below. Now go to the directory containing the file at the command prompt and

type

scad3 -b VDP.cir -ascii

which starts LTspiceIV in batch mode, performs a transient analysis of the circuit and stores

a time series of the oscillator signal in the file VDP.raw in ASCII format. The starting and

stopping time of the series as well as the time step are set in the .tran line. The parameters

of the oscillator itself are set in the .param lines.
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A3.1 Van der Pol oscillator with tunnel diode

*************************************************
.param C={1.59155e-011}
.param L={0.159155}
.param RINT={500}
.param U={0.3}
.tran 0 0.0021 0.0011 1e-007
.print tran v(v_osc)
.ic v(v_osc)=0.000001
*******************************************
XU1 P001 0 40571
V1 P001 v_osc {U}
C1 v_osc 0 {C}
L1 v_osc 0 {L}
R1 v_osc 0 {RINT}
* tunnel diode 40571
.subckt 40571 plus minus
G1 plus minus value={(V(plus)-V(minus))*.143461-(V(plus)-V(minus))**2*1.482+(V(plus)
+ -V(minus))**3*6.13939-(V(plus)-V(minus))**4*11.7777+(V(plus)-V(minus))**5*8.65729}
.ends 40571
.end

A3.2 Van der Pol oscillator with NIC and gyrator

*************************************************
.param C={5.30516e-012}
.param L={5.30516}
.param RL={1000}
.param RNEG={10000}
.param RINT={1e+010}
.tran 0 0.00766667 0.00433333 3.33333e-007
.print tran V(V_OSC)
.ic V(V_OSC)=0.0000001
********************************************************
R1 V_OSC N002 1k
R2 N002 N005 1k
R3 N005 N004 1k
R5 N006 0 {RL}
C2 N004 N006 {L/1e6}
C1 V_OSC 0 {C}
R7 V_OSC N001 1k
R8 N003 N001 1k
R9 0 N003 {RNEG}
D1 V_OSC 0 1N4148
D2 0 V_OSC 1N4148
V1 0 VN 15
V2 VP 0 15
R4 V_OSC 0 {RINT}
XU1 V_OSC N005 VP VN N004 TL071
XU2 N006 N005 VP VN N002 TL071
XU3 V_OSC N003 VP VN N001 TL071
.model D D
.model 1N4148 D(Is=2.52n Rs=.568 N=1.752 Cjo=4p M=.4 tt=20n IBV=200m BV=75)
********************************************************
* TL071 OPERATIONAL AMPLIFIER "MACROMODEL" SUBCIRCUIT
* CREATED USING PARTS RELEASE 4.01 ON 06/16/89 AT 13:08



148 A Appendix

* (REV N/A) SUPPLY VOLTAGE: +/-15V
* CONNECTIONS: NON-INVERTING INPUT
* | INVERTING INPUT
* | | POSITIVE POWER SUPPLY
* | | | NEGATIVE POWER SUPPLY
* | | | | OUTPUT
* | | | | |
.SUBCKT TL071 1 2 3 4 5
*
C1 11 12 3.498E-12
C2 6 7 15.00E-12
DC 5 53 DX
DE 54 5 DX
DLP 90 91 DX
DLN 92 90 DX
DP 4 3 DX
EGND 99 0 POLY(2) (3,0) (4,0) 0 .5 .5
FB 7 99 POLY(5) VB VC VE VLP VLN 0 4.715E6 -5E6 5E6 5E6 -5E6
GA 6 0 11 12 282.8E-6
GCM 0 6 10 99 8.942E-9
ISS 3 10 DC 195.0E-6
HLIM 90 0 VLIM 1K
J1 11 2 10 JX
J2 12 1 10 JX
R2 6 9 100.0E3
RD1 4 11 3.536E3
RD2 4 12 3.536E3
RO1 8 5 150
RO2 7 99 150
RP 3 4 2.143E3
RSS 10 99 1.026E6
VB 9 0 DC 0
VC 3 53 DC 2.200
VE 54 4 DC 2.200
VLIM 7 8 DC 0
VLP 91 0 DC 25
VLN 0 92 DC 25
.MODEL DX D(IS=800.0E-18)
.MODEL JX PJF(IS=15.00E-12 BETA=270.1E-6 VTO=-1)
.ENDS
********************************************************
.end


