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Nomenclature

x, y, z Cartesian coordinates
ξ, η, ζ curvilinear coordinates
t time

n = (nx, ny, nz)
T

interface normal vector in global Cartesian coordinates
u, v, w Cartesian velocity components

q = (u, v, w)
T

Cartesian velocity vector

q =
√
u2 + v2 + w2 absolute value of velocity

qn = nxu+ nyv + nzw velocity normal to an interface
e internal energy per unit mass
ε = ρe internal energy per unit volume
E = e+ 1

2q
2 total (internal+kinetic) energy per unit mass

ρ density
p pressure
T temperature
ϑ potential temperature
µ mean molecular weight
c speed of sound
M = q/c Mach number
X active or passive scalar / mass fraction of chemical abundances
g = −∇φ gravitational acceleration
φ gravitational potential

U = (ρ, ρu, ρv, ρw, ρE, ρX)
T

vector of conservative variables
V = (ρ, u, v, w, p,X) vector of primitive variables
F flux vector
R universal gas constant

R̃ = R/µ specific gas constant
γ ratio of specific heats
σsb Stefan-Boltzmann constant
K thermal conductivity
κop opacity
cl speed of light
V volume
Hp pressure scale height
D
Dt = ∂

∂t + q · ∇ Lagrangian derivative
subscript r, e.g. Mr reference quantity for non-dimensionalization
Fr = ur√

grxr
reference Froude number
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1 Introduction: Principles of stellar
evolution and open questions

1.1 Physical processes in stars

Stars are known to be self-luminous massive objects. They consist of a huge amount of gaseous
matter which is hold together by its own gravitational field. In the following, some basic facts
about stellar structure and the governing physical processes are briefly reviewed. More details
can for example be found in the books by Weiss et al. (2004), Salaris & Cassisi (2005) or Maeder
(2009). Three important parameters to categorize a star are the total mass of the gas, the
luminosity (i.e. the radiative energy output per unit time) and the radius. For the latter, it has
to be assumed that a star has a spherical shape. From the luminosity and the radius, an effective
surface temperature can be derived under the assumption of a black body emission.

For the sun, these parameters are easily accessible by observations. As it is the only star whose
surface can be spatially resolved by observations, its radius and shape can be determined with
high precision. The oblateness of the sun is only of the order of 10−5 such that spherical symmetry
is indeed a very good approximation here (e.g. Sofia et al. 1994). As the other parameters can
also be measured very accurately, they usually serve as reference quantities for comparisons.

For other stars, the above parameters can at least be derived from observations under some
further assumptions. It is seen that the parameters show a huge variability among the observable
stars (e.g. Weiss et al. 2004). On the one hand, this may be explained by evolutionary processes in
stars which slowly change the stellar parameters. The observed variability would thus represent
a sample of different evolutionary stages. On the other hand, stars may have some intrinsic
parameters distinguishing them from other stars. As the luminosity and the effective temperature
of stars usually do not evolve significantly on short time scales (e.g. a human lifetime), it can
be assumed that stars are in some kind of mechanical and energetic equilibrium to a very good
approximation. Thus, evolutionary processes may only emerge on much longer time scales and
can only be investigated by theoretical models.

The chemical composition of stars can be inferred by spectroscopic observations, but only on
the stellar surface. Most stars are composed of hydrogen and helium and a minor fraction of
heavier elements at the surface. However, the internal composition and structural properties such
as the density and temperature profiles are a priori unknown and can only be obtained by indirect
measurements such as astroseismology. They are therefore also subject to theoretical modeling
efforts.

Before describing stellar evolution models in more detail, some relevant physical processes
in stars are reviewed in the following. To this end, any process that may disturb a certain
mechanical or energetic equilibrium within a star is considered along with its typical time scale.
The mechanical equilibrium of a star is given by the assumption that the gravitational force is
balanced by a non-vanishing radial pressure gradient of the gas (cf. Section 2.3.2). Any flow
within a star is expected to be very close to such a hydrostatic equilibrium state.

If this equilibrium is globally significantly distorted, the time scale for fluid motions can be
estimated by assuming that pressure forces can be neglected. The corresponding free-fall time
scale is then given by (Weiss et al. 2004)

tff ≈ 2

√
R3

GM
≈ 1 ·

√
ρ̄�
ρ̄

hours. (1.1.1)
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The variables R, G, M and ρ̄ denote the stellar radius, the gravitational constant, the total mass
and the mean density of a star. The subscript � always denotes the corresponding solar values
in the following. The free-fall time scale can also be seen as an estimate for the typical time for
reinforcing a new hydrostatic equilibrium.

If the hydrostatic equilibrium is distorted only locally, the gravitational force tries to pull the
corresponding fluid elements back to their equilibrium position. Due to the presence of inertial
forces, this results in oscillatory motions which may build up so-called internal gravity waves in
the stellar atmosphere. Their typical time scale is given by the (inverse) Brunt-Väisälä-frequency
which is typically somewhat larger than the free-fall time scale (cf. Section 6.4). Internal gravity
waves may propagate through significant parts of a stellar atmosphere within hours to days,
carrying some amount of energy and (angular) momentum with them.

The global energetic equilibrium is governed by the assumption that the energy generation
within a star is balanced by the energy which is radiated away from its surface. From theoretical
modeling efforts in the last century, it is known that stars are mostly powered by the energy release
from nuclear reactions. Since the conditions at the stellar surface are insufficient to trigger such
reactions, they have to be confined to regions near the center of the star where the temperatures
and densities are expected to be much higher. For example, in the solar core, hydrogen is converted
to helium by several nuclear reactions. The emerging neutrino flux produced in these reactions
can actually be measured on earth today. In order to get an impression of the time scale on which
the nuclear burning may significantly change the composition and structure of a star by hydrogen
burning, it is assumed that the corresponding energy release is in equilibrium with the energy
that is radiated away at the stellar surface. Estimating that a tenth of the total mass M of a
star fulfills the thermodynamic conditions for the nuclear reactions, the nuclear time scale can be
approximated by (Weiss et al. 2004)

tnuc ≈
1

10
· 0.007Mc2l

L
≈ 1010

(
M

M�

)(
L�
L

)
years, (1.1.2)

where L denotes the surface luminosity of the star and cl the speed of light. The factor 0.007 is
the fraction of mass that is converted to energy during the nuclear reaction. This rough estimate
shows that the nuclear energy reservoir of the sun lasts for about 10 billion years. The internal
chemical composition should therefore also change on this time scale. It should be noted that
nuclear reactions only change the composition and internal energy locally but do not transport
the reaction products to different locations within the star.

As the nuclear energy generation is assumed to be in equilibrium with the surface luminosity,
the energy has to be transported from the center of a star to the surface. One possibility to achieve
this is by thermal radiation. A time scale for this process can easily be estimated by assuming
that nuclear reactions are absent and that all the internal energy is successively radiated away at
the stellar surface. The so-called Kelvin-Helmholtz time scale can then be calculated as (Weiss
et al. 2004)

tKH ≈
3GM2

4LR
≈ 2 · 107

(
M

M�

)2(
L�
L

)(
R�
R

)
years. (1.1.3)

The variable G denotes the gravitational constant while R denotes the stellar radius. Thus, with-
out an energy source, the sun would radiate away its thermal energy content in about 20 million
years. However, the assumption that the luminosity and radius stays constant during this process
is not justified. Therefore, the Kelvin-Helmholtz time scale should be regarded as an estimate for
the thermal adjustment time which is needed to reinforce a global energetic equilibrium after a
temperature excess has been produced somewhere within the star. The relatively long time scale
for this process is caused by the fact that stellar material is mostly ionized. Due to the large
number of free electrons, the mean free path of a thermal photon is of the order of millimeters
(Maeder 2009), which is extremely short compared to the radius of a star.

Energy transport solely by thermal radiation is possible only if the temperature gradient does
not exceed a certain critical value. This threshold is given by the temperature gradient of an
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adiabatically expanding gas (cf. Section 6.4.1). For an over-adiabatic temperature gradient, the
atmosphere becomes unstable to convective motions, where hot plumes of gas rise to some point
releasing their energy content somewhere above in the atmosphere. As the gas cools again it
sinks downwards to a different position. This results in a cyclic process, which is well-known from
everyday life, e.g. boiling water in a pot or convective motions in earth’s troposphere. Under
suitable stellar conditions, the time scale of a convective turnover time can be estimated to be
several days in deep interiors to several minutes in the outer layers of a star (e.g. Weiss et al.
2004). Thus, compared to thermal radiation, convection is a very fast process to transport energy.
It should be noted that chemical elements are also redistributed by convective motions on the
same time scale. Species generated by nuclear reactions in the core may therefore rise to higher
altitude within the star by convective motions. Moreover, convection is an inherently multi-
dimensional process and cannot be described directly in a one-dimensional framework assuming
spherical symmetry.

Another possibly important process in the description of stars is rotation. For example, the
solar surface rotates with a period of approximately 25 days, while the internal rotation structure
inferred from helioseismic data shows some considerable variations (Thompson et al. 2003). The
rotation of the sun can be considered to be relatively weak, because the overall shape stays nearly
spherical as mentioned above. However, different kinds of stars may have much higher rotational
velocities such that the spherical symmetry is broken by centrifugal forces (e.g. Beck et al. 2012).
Moreover, this may induce further internal transport processes which also take place on the typical
time scale of a rotational period (e.g. Maeder & Meynet 2000).

A redistribution of chemical elements may also be caused by atomic diffusion and turbulent
motions. The strength of atomic diffusion can be estimated by considering mean free paths of
particles and leads to diffusion time scales of the order of 1012 years (Maeder 2009). As this
exceeds even the nuclear time scale, atomic diffusion is generally assumed to have only minor
effects on the structure and evolution of stars. However, as soon as fluid elements within a star
start to move, the stellar interior is expected to become very turbulent as the corresponding
viscosity is very low. Describing these motions as an effective diffusion process, the corresponding
time scales may be estimated to be smaller by factors of 105 to 108 compared to atomic diffusion
(Maeder 2009). A physical process that can trigger such fluid motions is for example shear due
to differential rotation (Maeder & Meynet 2000).

Finally, stellar atmospheres permit the propagation of sound waves as they are composed of a
compressible gas (cf. Section 2.6.1). Denoting the average speed of sound in a solar-like star by
c̄, the acoustic time scale can be estimated by

tac =
R�
c̄
≈ 1 hour. (1.1.4)

In total, it can be seen that stellar interiors contain a rich variety of physical processes. The
corresponding time scales range from hours to billions of years, giving rise to a multi-scale problem
for their theoretical investigation. The time scales given above can be ordered as

tac . tff < trotation � tKH � tnuc. (1.1.5)

It should be noted that these relations and the definitions of the corresponding time scales only
apply for typical evolutionary stages where a star evolves in a relatively quiescent and quasi
static way. As these stages usually make up most of the lifetime of a star, the above definitions
are justified. However, there are several exceptions where the above ordering and the involved
assumptions do not apply. For example, nuclear reactions may become very fast in rare situations,
such that the corresponding nuclear time scale reduces even below the free-fall time scale (see
Section 1.3).

9



1.2 Stellar evolution modeling

In order study the evolution of a star, it is desirable to cover its full life-cycle such that effects
on measurable parameters like the luminosity or effective temperature become apparent. The
governing time scale is thus set by the nuclear time scale which refers to the slowest physical
process in the problem. However, it is obvious that the fastest physical processes can not be
followed in detail over such long periods of time. This is the case in particular, if a specific stellar
model is subject to numerical modeling efforts, as these generally require to resolve the fastest
processes in detail. Therefore, it is standard practice to simplify the overall problem such that
the nuclear time scale can be resolved. This method, referred to as stellar evolution modeling,
is briefly described in the following. More details can, for example, be found in the books by
Kippenhahn & Weigert (1994); Weiss et al. (2004); Salaris & Cassisi (2005).

The most simple stellar evolution models use a set of standard assumptions in order to sim-
plify the problem such that the remaining complexity becomes solvable at least with numerical
algorithms. It should be noted that in modern, more elaborate stellar evolution models, the stan-
dard assumptions are often weakened. Certain physical processes are not neglected anymore, but
are treated in an approximate way. Thus, the standard assumptions presented in the following
still form a common basis for many stellar evolution models, although specific models may have
significant improvements on certain points.

• Stars are isolated objects. Although many observable stars can be found in binary sys-
tems, tidal and radiative effects of a companion star are assumed to be small and are thus
neglected.

• Stars are spherically symmetric not only in their overall shape but also in their internal
structure. This assumption greatly reduces the complexity of the problem by reducing the
number of spatial dimensions from three to one.

• Stellar material is composed of gaseous matter and thermal radiation such that a local
thermodynamic equilibrium may be defined at each point of the star. This assumption
basically justifies the definition of unique temperature everywhere.

• The star is always very close to a hydrostatic equilibrium state. Evolutionary processes
therefore have to be sufficiently slow.

• Atomic and turbulent diffusion as well as viscosity can be neglected.

• Acoustic phenomena and internal gravity waves can be neglected.

• Chemical elements may only be transported by convection, whereas energy is additionally
be transported by thermal radiation.

• Stellar rotation is absent as centrifugal effects are considered to be small. Moreover, a
spherically symmetric treatment of a star does not permit rotation anyway, as it would
break up this symmetry.

It should be noted that two assumptions are not compliant to each other, namely the spheri-
cal symmetry and the possibility of convective heat and element transport as it is an inherently
multi-dimensional process. On the one hand, convection is regarded as a very important process
for stellar structure and thus cannot be neglected. On the other hand, it could not be resolved
temporally in a multi-dimensional setup due to the large discrepancy between the convective and
the nuclear time scale. In order to cure this problem, a one-dimensional theoretical model of
convective transport has to be established. For stellar evolution modeling, the so-called mixing
length theory (MLT) is commonly used (Vitense 1953; Böhm-Vitense 1958). It assumes that a
rising convective fluid element gets mixed with its surroundings after traveling a fixed vertical
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length and deposits its thermal energy content there. The so-called mixing length is a free param-
eter of the model. Despite its phenomenological approach, the mixing length theory may produce
qualitatively reasonable results as long as the parameter is well adjusted.

With the above assumptions and MLT, it is possible to derive a rather simple set of partial
differential equations describing the evolution of a star as a sequence of hydrostatic models. These
equations can be solved numerically assuming that material functions such as a suitable equation
of state, opacity functions and nuclear energy generation rates are given. Despite the simplicity
of the model, it is very successful as it is able to explain the large variety of observable stars at
least qualitatively. It is thus the standard model for stellar evolution.

1.3 Limitations and open questions

Despite the great success of the standard model for stellar evolution, there are also some stellar
phases which cannot be treated within this model. Moreover, some effects seen in observations
are in contradiction with the model assumptions. Some of the limitations and open questions in
stellar evolution modeling and possible solutions are discussed in the following.

The assumption that the nuclear time scale is the slowest is not justified for the full life time
of the star. For example, during the late phase of helium burning in stars with 0.7M� . M .
2.2M�, the electrons within the helium core may become partially degenerate, leading to a massive
increase of the temperature and the nuclear burning rates (see e.g. Salaris & Cassisi 2005). This
process is known as core helium flash. The corresponding nuclear time scale reduces to several
days here. The energy produced by the nuclear reactions is mostly carried away by convection,
which has a typical turnover time of several hours. As the nuclear burning can not be treated
separately from convection anymore, it can be suspected that the convective fluxes predicted
by mixing length theory are rather inaccurate in this case. This can be confirmed by multi-
dimensional hydrodynamic simulations of the problem (e.g. Mocák et al. 2009). Moreover, it
can be seen that stellar evolution calculations performed by different research groups predict
fundamentally different results on the outcome of the core helium flash. A similar example, where
stellar evolution calculations become very questionable is the silicon burning phase of massive
stars (see e.g. Arnett & Meakin 2011). Here, the nuclear time scale may even decrease to hours
and the resulting strong convection may not be spherically symmetric on average anymore. Since
the results of the silicon burning phase serve as initial conditions for core-collapse supernovae
models, a more detailed theoretical investigation is very desirable.

In general, the validity of the mixing length theory can also be questioned for rather quiescent
stellar evolutionary phases. According to Kupka (1996) some of the main problems of mixing
length theory are the choice of a free parameter (i.e. the mixing length) and the basic assumptions
about the turbulent flow field within a convective zone. In fact, the mixing length parameter may
have a severe impact on the results of a stellar evolution calculation and is sometimes even be used
to compensate different errors in order to get results which are more compliant to observations.
Choosing the mixing length on physical grounds is hardly possible. Moreover, due to the low
viscosity in stars, the convective flow field is expected to be highly turbulent. Mixing length theory
contains some assumptions about turbulence which can not be justified for stellar atmospheres.
In order to cure the problems of mixing length theory, several improvements have been developed
in the past (see e.g. Spruit et al. 1990; Canuto 1996; Kupka 1996). However, these models either
involve even more free parameters which are a priori unknown or they are hardly applicable to all
kinds convection zones which might occur. Mixing length theory is, despite its deficiencies, still
the most common method to model stellar convection. More recent hydrodynamic simulations of
convection in deep stellar interiors which were compared to predictions of mixing length theory
have actually shown that the mean energy flux is quite compatible (Meakin & Arnett 2007).
However, the position of the convective boundaries where the energy flux becomes dominated by
radiation again seems to be hardly predictable with mixing length theory. Moreover, additional
mixing processes of chemical elements at these boundaries (e.g. by convective overshooting)
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cannot be resolved by mixing length theory. Since convective boundaries may have a substantial
impact on stellar evolution calculations, further improvement of convection models may become
vital in stellar evolution research.

Internal gravity waves may also be excited at convective boundaries by overshooting processes
(see e.g. Young et al. 2003; Talon 2008, and references in there). These waves may propagate
through radiative zones within a star until they break by non-linear interactions, leading to
small-scale turbulence in these regions. Apart from being an important mechanism for angular
momentum transport, internal gravity waves may constitute an additional source of mixing of
chemical elements in radiative regions. Such processes can only be modeled in stellar evolution
calculations by additional turbulent diffusivities in radiative regions. However, to date there is
no self-consistent method to estimate the strength of such a process. Comparing the solar rota-
tion profile measured by helio-seismology to stellar evolution calculations suggests that internal
gravity waves may indeed have important implications on stellar structure (Talon 2008). More
sophisticated models are thus required to incorporate the additional physics.

Stellar evolution modeling becomes much more involved when rotation is considered. First of
all, rotation breaks up the spherical symmetry of stars due to the effect of centrifugal forces,
violating one of the basic assumptions of standard stellar evolution models. A one-dimensional
treatment of the overall problem is then still possible if shellular rotation is assumed (Maeder
2009). However, the description still becomes very complex because a differentially rotating
stellar interior is subject to various flow instabilities such as meridional circulation, the Solberg-
Hoiland instability, the GSF instability (Goldreich & Schubert 1967; Fricke 1968) and dynamical
and secular shear instabilities (see Maeder & Meynet 2000, for an overview). The latter are
discussed in more detail in Chapter 7. These instabilities may lead to turbulence and may thus
be an additional source of mixing. Moreover, the global angular momentum transport crucially
depends on these processes and should be investigated in a self-consistent way. For stellar evolution
modeling, the situation is very similar to internal gravity waves. The additional physics can only
be modeled by additional turbulent diffusivities whose effective properties are rather unknown.
As stars, especially in the high-mass region, are suspected to develop fast rotating cores in the
late phases of their evolution, an accurate treatment of rotation is of great importance (Maeder
& Meynet 2000).

In summary, these examples show that the standard stellar evolution model still has major
shortcomings that might have major effects the results in some cases. It should be noted that the
above presentation not complete. Additional physical processes like magnetic fields or radiation
in optically thin regions might further increase the complexity of the overall problem, but are not
discussed here. Moreover, some physical phenomena in stars, for example the Urca process or
stellar pulsations, are basically known but can not be treated accurately in stellar evolution models
yet. In total, it can be stated that stellar evolution models, although qualitatively extremely
successful so far, need further improvement in order to give a comprehensive explanation of the
huge variety of observable stars on a quantitive level.

1.4 Hydrodynamic treatment of stars

One potential way to improve stellar evolution models is by detailed hydrodynamic numerical
simulations on a computer system. Ideally, they should capture the temporal evolution of a star
incorporating all relevant physical processes from first principles on a three-dimensional domain.
This also means that the fastest process should be followed in detail, which is the propagation
of sound waves in this case. However, it is obvious that sound waves cannot be followed for
the entire life-cycle of a star. The ratio of the nuclear time scale to the acoustic time scale
actually spans about 14 orders of magnitude resulting in an extreme multi-scale problem (cf.
Section 1.1). Even with a tremendous increase in computing power, such problems would be far
out of reach for numerical simulations. Therefore, the detailed hydrodynamic treatment of a star
has to be limited to relatively short time scales compared to the stellar life time. Nonetheless,
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such simulations may still be very useful. First, they could capture very violent phases where
stellar evolution models fail due to their simplifications. Examples include the aforementioned core
helium flash or the silicon burning phase which only last for several days, but may have significant
implications for the further evolution of the star. Second, hydrodynamic simulations may be used
to investigate physical processes in more detail which can only be treated in a parametrized way
in stellar evolution models. This includes convective zones in stars with turnover times suitable
for a hydrodynamic treatment. The results can then be compared to the predictions of mixing
length theory in order to test its validity in certain situations. Moreover, the big question of the
origins of turbulent flow patterns in radiative regions in stars may be addressed by hydrodynamic
calculations. Here, it might even be sufficient to simulate small parts of a star on the length scale
where a certain phenomenon is expected. In a first step, suitable stellar conditions for turbulence
producing processes may be explored. In a second step, effective turbulent diffusivities might be
derived from simulations and compared to existing simplified model predictions. Finally, these
numerical calculations may be even used to develop new models for a certain physical process
which can then be incorporated into stellar evolution models.

It was seen in the last section that the most important prospects for a hydrodynamic treatment
of stars are related to convection or turbulent fluid motions. The time scale for both processes
is thus determined by the speed q of fluid elements. However, the governing equations (see
Chapter 2) also permit sound waves which propagate at a different velocity c. The ratio of both
speeds, M = q/c, is called Mach number. For typical situations in stellar interiors the Mach
number is very low. This can be seen by evaluating the speed of sound for an ideal gas, which is
solely determined by the temperature T of the gas:

c =

√
γR̃T (1.4.1)

The parameter γ denotes the ratio of specific heats while R̃ refers to the specific gas constant. As
stellar interiors generally become hotter with increasing depth, the speed of sound also increases.
Thus, it can be expected that the Mach numbers tend to decrease towards the center of a star.
For example, the convective speeds predicted by mixing length theory have corresponding Mach
numbers of ≈ 10−6 in deep interiors and may reach 0.1− 1 near the stellar surface. Hence, fluid
motions in stars are generally low Mach number flows.

In order to perform hydrodynamic simulations of stellar interiors, two approaches have com-
monly been employed in the past. The first one uses simplified sets of equations, such as the
Boussinesq approximation or the anelastic equation, to describe the flow. Although these ap-
proaches are generally well-suited for low Mach number flows, it is argued in Section 2.7 that
the involved simplifications are too severe in order to simulate complex stellar interiors. For the
second approach, the fully compressible Euler equations (see Section 2.1) are simulated with nu-
merical codes, which were originally developed for high Mach number flows. As the temporal
discretization is usually explicit in this case, the computational time step is limited by numerical
stability requirements such that the fastest physical process, i.e. the propagation of sound waves,
is well resolved in time. As this limitation is also valid in the low Mach number regime, the
computational efficiency becomes extremely low. Here, it takes of the order of 1/M time steps,
just to move a fluid element from one grid cell to another. Hence, this approach can only be
used for moderately low Mach numbers (i.e. > 10−2). Simulations of convection in deep stellar
interiors is therefore far out of reach with this approach. Moreover, it can be questioned if the
employed spatial discretization techniques, which were developed to capture strong high Mach
number shock waves are still accurate in the low Mach number regime.
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1.5 Goals and organization of this thesis

The aim of this work is to develop a new general purpose simulation code which is especially
suitable for stellar interiors involving low Mach number flows. In order to keep the applicability
of the code as large as possible, the simulation is also governed by the compressible Euler equations,
which generally describe flows of all Mach numbers accurately. In order to maintain computational
efficiency in the low Mach number regime, one main goal of this work is to employ a fully-implicit
temporal discretization (see Section 5.2). With such a technique, the computational time step is
not limited by the fast sound waves anymore and may be chosen according to the physical process
of interest, e.g. low Mach number convection. Thus, implicit time steppers may potentially be a
factor 1/M more efficient than an explicit temporal discretization. However, implicit time steps
are computationally much more expensive than their explicit counterpart. In each implicit time
step, several systems of non-linear equations have to be solved numerically. While this can easily
be done for very small systems, it has often been questioned whether this approach is feasible for
discretizations of the compressible Euler equations, potentially involving up to several hundreds
million degrees of freedom. Thus, the solution of the huge non-linear systems of equations is critical
in order to keep the implicit method computationally efficient compared to explicit time steppers.
It is shown in Chapter 5, that this goal can indeed be reached with a suitable combination of
modern numerical techniques. Moreover, the resulting code can even be employed on parallel
computer systems with distributed memory architectures efficiently (see Section 7.5).

A second goal of this work is the systematic evaluation and improvement of the numerical
accuracy of low Mach number flows in stellar interiors. It is shown in Chapter 4 that standard
discretization techniques (developed for high Mach number flows) become very inaccurate in the
low Mach number regime, as the numerical viscosity becomes exceedingly high. In order to cure
this problem, the behavior of several low Mach number discretization techniques is analyzed in
detail. Moreover, new discretization methods are proposed here, which are particularly well-suited
for the simulation of stellar interiors. Besides that, special emphasis is put on the discretization of
gravity. As low Mach number flows in stellar interiors can be expected to be nearly hydrostatic,
it is of uttermost importance that the involved physical processes are treated with high accuracy.
Due to aforementioned improvements on the computational efficiency and accuracy, it became
possible to examine nearly hydrostatic flows in more detail. However, it is shown in this work
that standard discretization techniques for gravity also need some improvement in order to capture
the gravitational dynamics in stellar interiors accurately.

This work is organized as follows. Chapter 2 describes the physics and the governing equations
which are needed in order to described stellar interiors with a hydrodynamic treatment. Moreover,
the asymptotic behavior of the equations in the low Mach number regime is discussed in detail.
Chapter 3 describes standard discretization techniques which form the basis of the new hydro-
dynamic simulation code. Special emphasis is put here on a discrete formulation in curvilinear
coordinates. In Chapter 4, numerical flux functions are analyzed systematically in the low Mach
number regime. The reason for the failure of the standard discretization techniques in the low
Mach number regime is identified and several alternatives are presented and compared. Implicit
temporal discretization methods are described in Chapter 5. Several numerical techniques are
presented in order to solve the arising non-linear systems of equations efficiently. The computa-
tional performance and accuracy of the overall method is confirmed by detailed numerical tests.
Chapter 6 is devoted to the discretization of gravity and nearly hydrostatic flows. The arising
numerical challenges are assessed by theoretical arguments and numerical tests. Moreover, the
behavior of internal gravity waves in numerical simulations is evaluated and their importance for
stellar interiors is emphasized. In Chapter 7, a first application of the new simulation code is
presented. Shear instabilities in stellar interiors are first analyzed by a semi-analytical model.
It is then shown that numerical simulations with the new code are feasible in an accurate and
efficient way. Moreover, the prospects of the new tool for the improvement of stellar evolution
models are outlined.

In total, this work can be seen as a first step towards more efficient simulations of low Mach

14



number flows in stellar interior such that convective and turbulent fluid motions can be accurately
resolved. For stellar evolution models, it would be very desirable to reach time scales in hydrody-
namic simulations where the flow becomes significantly affected by radiative processes. Although
beyond the scope of the efforts presented here, this work provides a significant step towards this
goal.
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2 Governing equations

This chapter describes the basic equations for a hydrodynamic treatment of stellar interiors. This
will be done to a level of detail as needed for their discretization in the new simulation code.
Moreover, some theoretical properties concerning low Mach number flows are derived.

2.1 Euler equations

Throughout this thesis, the fluid is described in the continuum approximation, neglecting the
individual behavior of the particles of the fluid. This approach is well justified in case that all
fluid elements of interest are much larger than the mean free path of the particles. For typical
situations of gas flows within stars, this is requirement is well fulfilled. Moreover, it is assumed that
the fluid is inviscid. Due to technical reasons the discretized equations contain some numerical
viscosity, as will be shown later. The physical viscosity is neglected because it is typically orders
of magnitude smaller within stars.

With these assumptions, the fluid can be described mathematically by its velocity field and some
quantities that fully represent the thermodynamic state of the fluid. All fields are continuous
functions of space and time whose temporal evolution is governed by the compressible Euler
equations. They may be written as a set of conservation laws,

∂U

∂t
+
∂Fx
∂x

+
∂Fy
∂y

+
∂Fz
∂z

= S (2.1.1)

where the vector of conservative variables,

U =


ρ
ρu
ρv
ρw
ρE
ρX

 , (2.1.2)

contains the density ρ, the Cartesian velocity components u, v, w, the total (internal+kinetic)
energy E of the fluid and optionally some scalar values X. The corresponding flux vectors,

Fx =


ρu

ρuu+ p
ρuv
ρuw

ρuE + up
ρuX

 Fy =


ρv
ρvu

ρvv + p
ρvw

ρvE + vp
ρvX

 Fz =


ρw
ρwu
ρwv

ρww + p
ρwE + wp
ρwX

 , (2.1.3)

contain the pressure p that is related to the conservative variables by an equation of state. The
vector S may contain source terms such as gravity, nuclear reactions or thermal radiation. In the
absence of any source terms, the equations are called homogeneous Euler equations. They are
said to be in strong conservation form, since they express the conservation of mass, momenta and
total energy. This can easily be seen by integrating the equations over an arbitrary domain and
applying Gauss’ theorem. Then, the integral over the conservative variables may only change in
time by fluxes through the boundaries of the domain.
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It should be noted that the scalar field X, as written in the above equation is only exemplary
for any number of scalar fields, which may be needed. For example, the fluid may consist of n
chemical species, whose individual mass fractions Xi (i = 1..n) should be distinguished. Then,
the Euler equations are augmented by n scalar fields, whose temporal evolution is similar to the
one shown above. Therefore X may always represent a set of scalar fields.

The Euler equations as presented above are valid on a three-dimensional domain. However, they
can easily be reduced to one or two spatial dimensions by removing the dispensable momentum
equations and setting the corresponding velocities and fluxes to zero. For example, the one-
dimensional Euler equations are recovered by setting

U =


ρ
ρu
ρE
ρX

 Fx =


ρu

ρuu+ p
ρuE + up
ρuX

 Fy = Fz = 0. (2.1.4)

2.2 Equations of state

2.2.1 General description

In order to close the Euler equations, an equation of state is needed that relates the pressure of
the fluid to the conservative variables. Since the discretization of the Euler equations should not
depend on any specific equation of state, its detailed form is not specified at this point. Instead of
that, a general interface is described in the following, which can be used by an arbitrary equation
of state.

For the discretization, it is assumed that a specific equation of state provides the pressure p and
its partial derivatives as a function of density ρ, internal energy per unit volume ε and optionally
any number of scalars X, i.e.

p(ρ, ε,X)
∂p

∂ρ

∣∣∣∣
ε,X

∂p

∂ε

∣∣∣∣
ρ,X

∂p

∂X

∣∣∣∣
ρ,ε

. (2.2.1)

It should be noted that any other combination of independent variables (e.g. ρ, T,X) for this
function would be equally reasonable. The specific choice made here has the advantage that the
pressure can easily be expressed by the conservative variables:

p = p

(
Uρ,UρE −

1

2Uρ

(
U2
ρu + U2

ρv + U2
ρw

)
,
UρX

Uρ

)
(2.2.2)

Therefore the partial derivatives of the pressure with respect to the conservative variables can
also be computed very easily by the chain rule.

With the knowledge of the pressure and its derivatives, it is possible to compute the speed of
sound, which is needed for many calculations. For a general fluid, it is defined as the square root
of a pressure change with density in an isentropic process (e.g. Weiss et al. 2004):

c =

√
∂p

∂ρ

∣∣∣∣
S

(2.2.3)

This partial derivative can be expanded by the chain rule with the known derivatives:

∂p

∂ρ

∣∣∣∣
S

=
∂p

∂ρ

∣∣∣∣
ε,X

+
∂p

∂ε

∣∣∣∣
ρ,X

· ∂ε
∂ρ

∣∣∣∣
S,X

(2.2.4)

The last derivative can further be calculated with the first law of thermodynamics under the
assumption of constant mass and composition of the fluid element:

TdS = dU + p dV
= V dε+ (p+ ε)dV
= V dε− p+ε

ρ V dρ
(2.2.5)
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The final expression for the speed of sound therefore results in

c =

√
∂p

∂ρ

∣∣∣∣
ε,X

+
∂p

∂ε

∣∣∣∣
ρ,X

· ε+ p

ρ
. (2.2.6)

Apart from pressure, an equation of state has to provide also the temperature T of the fluid. For
the Euler equations as described in the last section, this would not be necessary since they do not
contain T explicitly. However, certain boundary conditions or source terms like thermal diffusion
may have such an explicit temperature dependence. In these cases, information of the temperature
derivatives may also be needed. In most cases, it is more convenient to compute the derivatives of
the inverse function ε = ε(ρ, T,X) which contains the same amount of information. To summarize,
the following expressions have to be provided by the equation of state for temperature depended
processes:

T (ρ, ε,X)
∂ε

∂ρ

∣∣∣∣
T,X

∂ε

∂T

∣∣∣∣
ρ,X

∂ε

∂X

∣∣∣∣
ρ,T

(2.2.7)

Equation 2.2.1 and 2.2.7 form the interface for the equation of state. It was chosen such that
further calculations needed in this thesis take a rather simple form. However, a disadvantage
of this interface is, that many equations of state are naturally given with different independent
variables, e.g.

p = p(ρ, T,X) ε = ε(ρ, T,X). (2.2.8)

In general, their inverse functions can not be written down analytically. Given the conservative
variables, it may therefore be necessary to iterate on pressure and temperature with a numerical
algorithm (e.g. a Newton-Raphson method). If the equation of state provides the partial deriva-
tives corresponding to Equation 2.2.8 only, they have to be transformed to the interface given by
Equation 2.2.1. Therefore, the pressure is written as

p (ρ, T (ρ, ε,X) , X) (2.2.9)

whose partial derivatives with respect to ρ, ε,X can be obtained by the chain rule:

∂p
∂ρ

∣∣∣
ε,X

= ∂p
∂ρ

∣∣∣
T,X

+ ∂p
∂T

∣∣∣
ρ,X
· ∂T∂ρ

∣∣∣
ε,X

∂p
∂ε

∣∣∣
ρ,X

= ∂p
∂T

∣∣∣
ρ,X
· ∂T∂ε

∣∣
ρ,X

∂p
∂X

∣∣∣
ρ,ε

= ∂p
∂X

∣∣∣
ρ,T

+ ∂p
∂T

∣∣∣
ρ,X
· ∂T∂X

∣∣
ρ,ε

(2.2.10)

The partial derivatives of the temperature can be calculated by applying the implicit function
theorem:

∂T
∂ρ

∣∣∣
ε,X

= −
(
∂ε
∂T

∣∣
ρ,X

)−1

· ∂ε∂ρ
∣∣∣
T,X

∂T
∂ε

∣∣
ρ,X

=
(
∂ε
∂T

∣∣
ρ,X

)−1

∂T
∂X

∣∣
ρ,ε

= −
(
∂ε
∂T

∣∣
ρ,X

)−1

· ∂ε
∂X

∣∣
ρ,T

(2.2.11)

With this procedure, equations of state in the form (2.2.8) can easily be used with the interface
described in this thesis. Similar procedures can be applied if the equation of state is given in
arbitrary other variables. Moreover, it should be emphasized that no assumption about the
analytic form of the equation of state is made. Therefore, even tabulated equations of state may
be used as long as the values required by the interface can be computed numerically.

2.2.2 Ideal gas

The most simple equation of state is that of an ideal gas. The pressure can be related directly to
the internal energy via

p = (γ − 1) ε. (2.2.12)
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The ratio of specific heats γ is assumed to be 5/3, corresponding to a monoatomic gas, if not
stated differently. The partial derivatives of this equation of state read

∂p

∂ρ

∣∣∣∣
ε,X

= 0
∂p

∂ε

∣∣∣∣
ρ,X

= γ − 1
∂p

∂X

∣∣∣∣
ρ,ε

= 0. (2.2.13)

In order to calculate the temperature of the ideal gas, the following relation can be used:

p = ρRT/µ (2.2.14)

Here, the mean molecular weight µ can either be taken constant or it can be calculated from the
mass fractions of the chemical (or nuclear) species stored in scalar fields. In the latter case, the
effective mean molecular weight can be derived from the original ideal gas law,

p = nkBT (2.2.15)

where n is the total number of particles per volume. The fluid consists of several different species
with mass fractions Xi, each having a molecular weight Mi and a charge number Zi. It is assumed
that the atoms are fully ionized, corresponding to the environment in deep stellar interiors. The
total particle number per volume can thus be expressed as

n =
∑
i

(1 + Zi)
ρXiNA
Mi

. (2.2.16)

Comparing this expression with Equation 2.2.14 leads to the definition of the mean molecular
weight as

µ =

(∑
i

(1 + Zi)
Xi

Mi

)−1

. (2.2.17)

The remaining partial derivatives of the equation of state needed for the interface therefore read

∂ε

∂ρ

∣∣∣∣
T,X

=
RT

(γ − 1)µ

∂ε

∂T

∣∣∣∣
ρ,X

=
ρR

(γ − 1)µ

∂ε

∂Xi

∣∣∣∣
ρ,T

=
ρRT

γ − 1
· 1 + Zi

Mi
. (2.2.18)

However, it must be stressed that as long as the Euler equations do not contain a temperature-
depended process, the hydrodynamic evolution is independent of temperature and chemical com-
position. A change in mean molecular weight can not be distinguished from an inverse change in
temperature. Therefore, it is usually not necessary to store and evolve the chemical composition
explicitly as long as an ideal gas is used.

2.2.3 Ideal gas with radiation pressure

In many cases in stellar interiors, the temperature rises to extremely high values, such that the
radiation pressure becomes significant or even dominates over the gas pressure. Therefore, the
ideal gas equation of state has to be extended to account for these effects. The pressure and the
internal energy are given by (e.g. Weiss et al. 2004)

p(ρ, T,X) =
ρRT

µ
+

4σsb

3cl
T 4, (2.2.19)

ε(ρ, T,X) =
ρRT

(γ − 1)µ
+

4σsb

cl
T 4. (2.2.20)

Here, the pressure can not be expressed through the conservative variables analytically. Therefore,
given the density and the internal energy, Equation 2.2.20 is solved numerically for the temperature
by the Newton-Raphson method. The initial guess for the temperature is chosen as the arithmetic
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mean of the gas temperature and the radiation temperature. Convergence to machine accuracy is
usually reached within a few iterations. The pressure can then be evaluated from Equation 2.2.19.
The partial derivatives, needed for the interface of the equation of state are calculated with the
procedure described in Section 2.2.1. Special care has to be taken in this step in order to avoid
large numerical round-off errors. The treatment of the chemical composition is similar to the ideal
gas.

2.3 Gravity

2.3.1 Source terms

The hydrodynamic evolution of gas flows in stars is strongly affected by gravitational forces. The
gravitational potential φ of a star can be computed from the density distribution self-consistently
by solving Poisson’s equation:

∇2φ = 4πGρ (2.3.1)

The universal (or Newton’s) gravitational constant is denoted by G here. This equation should be
solved simultaneously with the Euler equation in order to model to gas flow correctly. However,
for a spherical star, the gravitational potential at a certain point is solely determined by the
mass within a spherical shell below that point. Since it is not expected that this mass changes
significantly within the time scales of interest, the gravitational potential is assumed to be constant
in time and externally given for this work. However, there are some cases like full-star simulations
of stellar pulsations where this approximation is certainly not valid anymore. The extension to a
correct treatment of self-gravity is subject to future work.

Given the external potential, the gravitational acceleration can be calculated by

g = −∇φ. (2.3.2)

The corresponding source term which has to be added to the Euler equations reads

Sg =


0
ρgx
ρgy
ρgz

ρ (ugx + vgy + wgz)
0

 . (2.3.3)

The terms in the momentum equations simply describe the action of the external body force.
Thus, the total momentum is not conserved anymore. The term in the total energy equation
accounts for the corresponding change of kinetic energy. The sum of internal and kinetic equation
is therefore also not conserved anymore.

However, the potential energy can also be added to the total energy, defining a new quantity

Eφ = E + φ. (2.3.4)

Rewriting the energy equation from the Euler system in terms of this new variable results in

∂

∂t
(ρEφ) +

∂

∂x
(ρuEφ + up) +

∂

∂y
(ρvEφ + vp) +

∂

∂z
(ρwEφ + wp) = S. (2.3.5)

The gravitational source term for this new system reads

Sφ =


0
ρgx
ρgy
ρgz
0
0

 , (2.3.6)
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which clearly shows the conservation of the sum of total and potential energy. For the continuous
Euler equations, both formulations of the energy equation are equivalent. However, discretizing
both systems may have an effect on the results. The system with Eφ as energy variable au-
tomatically conserves the energy Eφ, if it is discretized with a suitable scheme. In contrast to
that, special care has to be taken if the original formulation with the source term (2.3.3) is used.
Discretization errors in the momentum and the energy equation have to be consistent in order to
inhibit a numerical violation of total energy conversation. However, the discretization methods
presented in Chapter 6 fulfill this criterion.

2.3.2 Hydrostatic equilibrium

The Euler equations in the presence of gravity permit a quiet steady state, which is called hy-
drostatic equilibrium. This can easily be seen by setting time derivatives and velocities to zero.
Then, only the momentum equations have non-vanishing terms and reduce to

∇p = ρg. (2.3.7)

Thus, in a quiet atmosphere, the pressure gradients may be balanced by the gravitational ac-
celeration. Note that the equilibrium depends on the equation of state, since both pressure and
density are involved.

An important special case of hydrostatic equilibrium is that of an ideal gas with gravitational
acceleration along the z-axis. The differential equation then reads

∂p

∂z
=
gzµ

RT
· p =

1

Hp
p. (2.3.8)

In the last step, the so-called pressure scale height has been introduced, which is generally defined
as

Hp = p

(
∂p

∂z

)−1

. (2.3.9)

The hydrostatic equilibrium therefore depends on the vertical profiles of gravity, temperature and
mean molecular weight. Assuming that these profiles are given, the differential equation for the
hydrostatic pressure can be solved by

p(z) = p0 exp

{∫ z

0

1

Hp(z′)
dz′
}
. (2.3.10)

In the simplest case, where the pressure scale height is a constant, this reduces to

p(z) = p0 exp

{
z

Hp

}
, (2.3.11)

showing that Hp denotes the length on which the pressure reduces by a factor 1/e. Moreover,
it should be stressed that the hydrostatic equilibrium of an ideal gas solely depend on the ra-
tio of temperature and mean molecular weight and not on the individual quantities (see also
Section 2.2.2)

2.4 Thermal radiation

Another important physical process for stellar interiors is energy transport by thermal radiation.
It is assumed that the radiation field is in local thermodynamic equilibrium (LTE) with the gas.
This assumption is justified by the fact that the mean free path of the photons is very small
compared to the length scale of temperature variations. Only the outermost layers of a star,
where the gas becomes optically thin, can not be treated within this approximation. In LTE, the

21



spectrum of the radiation can locally be described by a blackbody, leading to a very simple source
term for the Euler equations in the energy equation (see e.g. Maeder 2009)

Srad,ρE =
∂

∂x

(
K
∂T

∂x

)
+

∂

∂y

(
K
∂T

∂y

)
+

∂

∂z

(
K
∂T

∂z

)
, (2.4.1)

where the thermal conductivity

K =
4aclT

3

3ρκop
(2.4.2)

is a function of density, temperature and opacity κop. Note that the form of the source term is
identical to the one for heat conduction. Only the conductivity differs in that case. Therefore,
the simulation code described in this work can easily be extended to account for this process.

The opacity is usually itself a function of the local thermodynamic state and chemical composi-
tion. However, in this work the opacity is assumed to be constant. Appropriate values are taken
from the OPAL opacity tables (Iglesias & Rogers 1996). An extension to dynamic opacities is
straightforward, but this is subject to future work.

Special attention should be drawn to the form of the source term (2.4.1). It can be viewed as
a divergence of a radiative flux frad,χ = K ∂T

∂χ , χ ∈ {x, y, z}. Therefore, it can be added to the
hydrodynamic fluxes of the Euler equations before the system is discretized, i.e.

Fx,ρE → Fx,ρE + frad,x

Fy,ρE → Fy,ρE + frad,y

Fz,ρE → Fz,ρE + frad,z

. (2.4.3)

As will be seen in the next chapter, this treatment maintains the energy conservation property of
the discrete system.

2.5 Non-dimensionalization

For numerical simulations of the Euler equations, as well as their analytic treatment, it is often
desirable to get results which are independent of a specific choice of units. This can be achieved
by non-dimensionalizing the system. Therefore, each quantity like density, velocity, etc. is de-
composed into a product of a reference value (subscribed with an r) and a dimensionless number
(marked with a hat), e.g. ρ = ρr · ρ̂. The reference value should always be chosen such that the
dimensionless value is typically of order one. Here, a reference density ρr, velocity ur, speed of
sound cr and length scale xr is chosen. Other suitable reference quantities can be derived directly
from them:

tr =
xr

ur
pr = ρrc

2
r Er = er = c2r (2.5.1)

These definitions can now be used to replace all dimensional quantities in the Euler equations
(3.1.5) and the corresponding flux vectors (3.1.10). After some simple algebraic manipulations,
most of the reference quantities cancel out, leading to

∂Û

∂t̂
+
∂F̂x
∂x̂

+
∂F̂y
∂ŷ

+
∂F̂z
∂ẑ

= Ŝ with Û =


ρ̂
ρ̂û
ρ̂v̂
ρ̂ŵ

ρ̂Ê
ρ̂X

 (2.5.2)
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and the non-dimensional flux vectors

F̂x =



ρ̂û
ρ̂ûû+ 1

Mr
p̂

ρ̂ûv̂
ρ̂ûŵ

ρ̂ûÊ + ûp̂
ρ̂ûX

 F̂y =



ρ̂v̂
ρ̂v̂û

ρ̂v̂v̂ + 1
Mr
p̂

ρ̂v̂ŵ

ρ̂v̂Ê + v̂p̂
ρ̂v̂X

 F̂z =



ρ̂ŵ
ρ̂ŵû
ρ̂ŵv̂

ρ̂ŵŵ + 1
Mr
p̂

ρ̂ŵÊ + ŵp̂
ρ̂ŵX

 . (2.5.3)

Thus, the homogeneous, non-dimensional Euler equations solely depend on a single, non-dimensional
reference quantity, namely the reference Mach number

Mr =
ur

cr
. (2.5.4)

It should be further noted that scalar fields are not non-dimensionalized because they are usually
unit-free. Moreover, they are expected to have typical values of order one, at least when used for
storing mass fractions for chemical abundances.

In order to transform the source term for gravity, it is necessary to define a reference gravita-
tional acceleration gr. This value can be used to define the so-called reference Froude number

Fr =
ur√
grxr

(2.5.5)

which is a non-dimensional value, describing the strength of advection relative to gravity. The
non-dimensional source term then reads

Ŝg =
1

F 2
r


0
ρ̂ĝx
ρ̂ĝy
ρ̂ĝz

M2
r ρ̂ (ûĝx + v̂ĝy + ŵĝz)

0

 . (2.5.6)

For transforming the fluxes for thermal radiation it is further required to define a reference
temperature Tr and a reference thermal conductivity Kr. These quantities can be used to define
another non-dimensional reference quantity, namely the Péclet number

Per =
ρrc

2
rxrur

KrTr
. (2.5.7)

The dimensionless flux for thermal radiation results in

f̂rad,χ =
1

Per
· K̂ ∂T̂

∂χ
, χ ∈ {x̂, ŷ, ẑ}. (2.5.8)

Summarizing, it can be stated that the non-dimensional Euler equations, as presented here,
solely depend on three reference quantities. All other reference quantities are just a scaling to
specific units, but do not influence the dynamics of the system. Moreover, it should be noted that
the dimensional Euler equations can easily be retained by setting all reference quantities to one.

2.6 Low Mach number asymptotics

In this section, the behavior of the Euler equations is analyzed as the Mach number is decreased
to zero. This is done for the homogeneous system, i.e. in the absence of gravity and thermal
radiation.
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2.6.1 Sound waves

From everyday life, it is obvious that stationary fluids with no mean velocity field (i.e. at zero
Mach number) support the propagation of sound waves. Their behavior can be analyzed (see e.g.
Landau & Lifschitz 1991) by considering a fluid at rest with uniform density ρ0 and pressure p0.
Small deviations from that state can be expressed in a non-dimensional way by

ρ̂ = ρ̂0 +Mrρ̂1 p̂ = p̂0 +Mrp̂1 û = Mrû1, (2.6.1)

where the reference Mach number (Mr � 1) has been chosen to express the smallness. For
simplicity, a one-dimensional geometry is assumed. The evolution of the disturbances is analyzed
by inserting this ansatz into the non-dimensional Euler equations, keeping only terms up to order
Mr. The continuity equation then results in

∂ρ̂1

∂t̂
+ ρ̂0

∂û1

∂x̂
= 0, (2.6.2)

while the momentum equation reads

ρ̂0
∂û1

∂t̂
+

1

M2
r

∂p̂1

∂x̂
= 0. (2.6.3)

Instead of invoking the energy equation, the pressure fluctuations are expressed by the density
fluctuations under the assumption of reversible, adiabatic thermodynamic processes:

p̂1 =
∂p̂

∂ρ̂

∣∣∣∣
S

· ρ̂1 = ĉ2 · ρ̂1 (2.6.4)

In this step, the definition of the non-dimensional speed of sound is recognized and inserted into
the formula. The continuity equation can then be transformed to

∂p̂1

∂t̂
+ ρ̂0ĉ

2 ∂û1

∂x̂
= 0. (2.6.5)

Together with the momentum equation, this forms a closed system for the evolution of û1 and p̂1.
Combining the two equations with the definition of the velocity potential,

û =
∂ϕ̂

∂x̂
, (2.6.6)

finally results in
∂2ϕ̂

∂t̂2
+

ĉ2

M2
r

· ∂
2ϕ̂

∂x̂2
= 0. (2.6.7)

This is the well-known linear wave-equation which permits forward and backward propagating
sound waves at speeds ±ĉ/Mr.

Two important facts can be inferred form the above derivation. First of all, the Euler equa-
tions permit sound waves with arbitrary small velocity fluctuations and thus at arbitrary small
(reference) Mach numbers. Secondly, the relative velocity fluctuations have the same order as
the pressure fluctuations. Therefore, sound waves may be recognized by the fact that pressure
fluctuations scale linearly with the reference Mach number, i.e. p̂ = p̂0 +Mrp̂1.

2.6.2 Incompressible flow

In the following, the asymptotic behavior of the compressible Euler equations in the limit of
zero Mach number is analyzed. The presentation mostly follows the work by Guillard & Viozat
(1999). They performed an expansion of the non-dimensional equations in terms of reference
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Mach number. Therefore, the non-dimensional density, velocity, pressure and energy are written
in the following way:

ρ̂ = ρ̂0 + ρ̂1Mr + ρ̂2M
2
r + O

(
M3

r

)
q̂ = q̂0 + q̂1Mr + q̂2M

2
r + O

(
M3

r

)
p̂ = p̂0 + p̂1Mr + p̂2M

2
r + O

(
M3

r

)
Ê = Ê0 + Ê1Mr + Ê2M

2
r + O

(
M3

r

) (2.6.8)

Each term in the expansion may be a function of space and time. The terms of zeroth order
describe the zero Mach number limit. Inserting these expressions into the non-dimensional Euler
equations and keeping only terms up to zeroth order results in

∂
∂t̂
ρ̂0 + div (ρ̂0q̂0) = 0

∂
∂t̂

(ρ̂0q̂0) + div (ρ̂0q̂0 ⊗ q̂0) + 1
M2

r
∇p̂0 + 1

Mr
∇p̂1 +∇p̂2 = 0

∂
∂t̂

(
ρ̂0Ê0

)
+ div

(
ρ̂0Ê0q̂0 + p̂0q̂0

)
= 0

. (2.6.9)

In order to achieve convergence for Mr → 0, it is required that pressure is constant in space up
to first order, i.e.

∇p̂0 = ∇p̂1 = 0. (2.6.10)

The expansion in Mach number is also applied to the equation of state. For simplicity in the
presentation, an ideal gas is assumed. To zeroth order the equation of state becomes p̂0 =
(γ − 1)ρ̂0Ê0. Using the fact that ∇p̂0 = 0, the zeroth order energy equation can be transformed
to

∂p̂0

∂t̂
+

γ

γ − 1
p̂0 div (q̂0) = 0. (2.6.11)

Since the zeroth order pressure has to be constant in space, time variations may only be imposed
by boundary conditions, which are assumed to be zero. Therefore, it can be concluded that the
velocity field has to be divergence-free in zero Mach number limit:

div (q̂0) = 0 (2.6.12)

Inserting this constraint into the zeroth order continuity and momentum equation results in

∂ρ̂0

∂t̂
+ q̂0 · ∇ρ̂0 = 0, (2.6.13)

∂q̂0

∂t̂
+ div (q̂0 ⊗ q̂0) +

1

ρ̂0
∇p̂2 = 0. (2.6.14)

The last three expressions form the well-known incompressible Euler equations in non-dimensional
form, which are the zero Mach number limit of the compressible Euler equations. Their name
originates from the fact that the density of a fluid element can not change, as it is advected with
the flow (Equation 2.6.13). Moreover, it should be stressed that the asymptotic behavior of the
pressure field is now known, i.e.

p (x, t) = p0 + p2 (x, t)M2
r . (2.6.15)

Thus, pressure fluctuations within the compressible Euler equations scale with the square of the
reference Mach number, as the solution convergences to a solution of the incompressible equations.

2.6.3 General behavior

In the last section, it was shown that the compressible Euler equations approach the incompressible
Euler equations as the Mach number is decreased to zero. However, in Section 2.6.1, it was shown
that the compressible equations permit sound waves with arbitrary small velocity fluctuations.
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These waves can not be described by the incompressible Euler equations, since they do not permit
density fluctuations at all. So, it may be concluded that the compressible Euler equations permit
two distinct solutions in the low Mach number regime, namely nearly incompressible flow and
sound waves. It was proven by Schochet (1994) and Dellacherie (2010) that these two types of
solutions decouple from each other as the Mach number is decreased. Therefore, setting up an
incompressible flow as initial condition for the compressible Euler equations, the solutions should
stay in the incompressible regime. This is an important criterion for the quality of numerical
schemes, which should maintain this property.

2.6.4 Kinetic energy

Another important process in the low Mach number regime is the behavior of kinetic energy. It
is defined (per unit volume) as

εkin =
1

2
ρq2 =

1

2
ρ
(
u2 + v2 + w2

)
(2.6.16)

and is usually contained in the total energy ρE in the Euler equations. However, a separate
evolution equation for the kinetic energy can be derived as follows. Therefore, each momentum
equation is multiplied by its corresponding velocity component, e.g. for the momentum is x-
direction:

u
∂ρu

∂t
+ u

∂ρu2

∂x
+ u

∂ρuv

∂y
+ u

∂ρuw

∂z
+ u

∂p

∂x
= 0 (2.6.17)

Summing up the three transformed momentum equation and applying some basic theorems of
vector calculus results in an evolution equation for the kinetic energy:

∂εkin

∂t
+∇ · ((εkin + p)q) = p ∇ · q (2.6.18)

This equation is in strong conservation form, except for the source term on the right hand side.
However, as seen in Section 2.6.2, the velocity divergence vanishes for incompressible flow. There-
fore, the total kinetic energy is conserved in this case. This will be a further test for numerical
discretizations, whether they are able to maintain an incompressible flow regime.

2.7 Low Mach number approaches

As seen in the previous sections, the compressible Euler equations tend towards the incompressible
Euler equations as the Mach number decreases. Since the simulation of sound waves is usually not
of interest in this regime, it is common practice (e.g. in the engineering community) to discretize
the incompressible equations for low Mach number flows. However, the previous considerations
are only valid in the absence of gravity. Therefore, two very popular approaches to include this
source term into the incompressible equations are briefly described the following. It will, however,
be shown that their applicability for simulations of stellar interiors is very limited.

2.7.1 Boussinesq approximation

The first approach to include gravity into the incompressible Euler equations is the so-called
Boussinesq approximation, which is briefly reviewed in the following. Details about the method
and its derivation can be found in the book by Sutherland (2010). For gas dynamics, the equations
are most conveniently derived in terms of potential temperature which is defined for an ideal gas
by

ϑ = T

(
p

p0

)− γ−1
γ

. (2.7.1)
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The pressure p0 is a reference value at a certain height within an atmosphere. The potential
temperature describes the temperature of a fluid element with is adiabatically brought to this
reference height. As only adiabatic motions are considered here, the potential temperature has
the same significance as the entropy of an ideal gas. Thus, the potential temperature is conserved
along the motion of a fluid element, which can be expressed by

Dϑ

Dt
= 0, (2.7.2)

where the Lagrangian derivative D
Dt = ∂

∂t + q · ∇ has been introduced. It should be noted that

the Boussinesq approximation is usually expressed in terms of density, such that Dρ
Dt = 0. This

is a very good approximation for stratified liquids, which are nearly incompressible. However, in
gaseous atmospheres the density may change due to adiabatic (reversible) motions. Therefore,
the above formulation in terms of potential temperature is more reasonable here.

Next, the gravitational source term is added to the momentum equations, which can be written
in the following form:

ρ
Dq

Dt
+∇p = ρg (2.7.3)

It is assumed that a time-independent hydrostatic equilibrium (hse) state exists, which is defined
by

∇phse = ρhse g. (2.7.4)

It should be noted that the hydrostatic equilibrium also depends on a given profile of the potential
temperature because ρhse = ρhse(phse, ϑhse). In the following, all thermodynamic variables are
expressed in terms of deviations (marked by a tilde) from the hydrostatic values such that

p = phse + p̃, ϑ = ϑhse + ϑ̃, ρ = ρhse + ρ̃. (2.7.5)

Subtracting the hydrostatic balance equation (2.7.4) from the momentum equation (2.7.3) results
in

ρ
Dq

Dt
+∇p̃ = ρ̃g. (2.7.6)

The actual Boussinesq approximation then assumes that all thermodynamic variables are very
close to a spatially constant reference value at a certain height, i.e.

p ≈ p0, ϑ ≈ ϑ0, ρ ≈ ρ0. (2.7.7)

The momentum equation can then be simplified to

ρ0
Dq

Dt
+∇p̃ = ρ0

ϑ̃

ϑ0
g, (2.7.8)

where the density fluctuations were replaced by potential density fluctuations through a lineariza-
tion of the corresponding ideal gas law.

The decomposition (2.7.5) can also be used to rewrite Equation (2.7.2) in terms of potential
temperature fluctuations:

Dϑ̃

Dt
+ q · ∇ϑhse = 0 (2.7.9)

In total, the Boussinesq system for a gaseous atmosphere consists of the simplified momentum
equation (2.7.8), Equation (2.7.9) for the evolution of potential temperature and the requirement
of a divergence-free velocity field, i.e. ∇ · q = 0. The latter was derived in Section 2.6.2 for
incompressible flow fields and is responsible for the desired filtering of sound waves. However, the
Boussinesq system may only be used to simulate very small vertical sections of an atmosphere
where (2.7.7) is approximately true. It is therefore not suitable for stellar atmospheres, where
the length scales of interest involve several pressure scale heights. Since the Boussinesq system
is quite simple from a mathematical point of view, it is still useful to derive some theoretical
properties of nearly hydrostatic flows (see Chapter 6).
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2.7.2 Anelastic equations

Some of the limitations of the Boussinesq approximation can be circumvented by using the so-
called anelastic approximation. It also uses a time-independent hydrostatic background state
which has to be given. Moreover, the resulting equations are conveniently formulated in terms of
potential temperature of an ideal gas. Using the same notation as for the Boussinesq approxima-
tion, the anelastic equations result in

∇ · (ρhseq) = 0, (2.7.10)

Dq

Dt
+∇

(
p̃

ρhse

)
=

ϑ̃

ϑhse
g, (2.7.11)

Dϑ̃

Dt
+ q · ∇ϑhse = 0. (2.7.12)

A detailed derivation and discussion of these equations can be found in the book by Sutherland
(2010). It is worth noting that velocity field is now only divergence free with respect to the
background density field. This approximation still filters out the sound waves from the compress-
ible Euler equations. Unlike the Boussinesq approximation, the anelastic equations are able to
describe arbitrary large vertical regions of a stratified atmosphere.

The anelastic equations have successfully been used to study stellar atmospheres, mostly in
the context of convective flow phenomena (e.g. Glatzmaier 1984; Miesch et al. 2000; Talon et al.
2003; Browning et al. 2004). However, the anelastic approach also has some drawbacks. Most
importantly, the derivation of the anelastic equations assumes that the hydrostatic background
state has a vanishing gradient in potential temperature. This means that the actual temperature
gradient has to be very close to the adiabatic temperature gradient. For the investigation of
convective phenomena, this criterion is reasonably well fulfilled. However, in radiative regions in
stellar interiors, the temperature gradients may be highly non-adiabatic such that the anelastic
approximation can formally not be applied. Moreover, the anelastic equations as presented here
are only valid for an ideal gas and a hydrostatic background state which does not evolve in time.
These latter limitations may be circumvented by some different derivations of the anelastic equa-
tions (see e.g. Miesch 2005, and references in there). However, the description of the anelastic
atmosphere get much more complicated in these cases. Generally, it should be noted that there
are various different anelastic approximations (see e.g. Brown et al. 2012, and references in there),
which only share Equation 2.7.10 but involve different approximations on the thermodynamic
quantities. Although, some formulations seem to perform well on slightly non-adiabatic atmo-
spheres, the anelastic results remain at least very questionable for more complex temperature
profiles. The anelastic equations are therefore not further investigated in this work.

2.7.3 Fully compressible approach

Due to the drawbacks of the Boussinesq and the anelastic approximation, it has been decided to
develop a simulation code for the fully compressible Euler equations. This has the advantage that
all flow regimes, from incompressible over moderate (0.1 < M < 1) Mach numbers to supersonic
flows involving shock waves can in principle be modeled by the equations. Moreover, all thermal
and buoyancy effects are included and the extension with other source terms should be simpler.

Unfortunately, simulations of low Mach number flows with the compressible Euler equations
pose some severe numerical challenges. First of all, it has to be guaranteed that the low Mach
number asymptotics as presented in Section 2.6 are maintained by the numerical scheme. Secondly,
the system of equations may become very stiff due to the large disparity of time scales as the
Mach number decreases. This stiffness may be further enhanced by source terms. However, it is
believed that the numerical challenges are solvable and therefore suitable discretization techniques
for low Mach number flows were developed, which are presented in the following chapters. These
techniques have been implemented in a new simulation code which aims to simulate low Mach
number flows in an accurate and efficient way.
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3 Basic discretization techniques

In this chapter, some fundamental discretization techniques are presented, which form the basis for
the new simulation code which is called LHC (Low Mach number Hydro Code). Since the fully
compressible Euler equations are to be simulated, standard approaches for their discretization
are considered as a starting point. These approaches are common techniques which are widely
used in many astrophysical and engineering applications to simulate high Mach number flows.
The suitability of these numerical schemes for low Mach number flows is examined in the next
chapters, where some of the methods have to be modified in order to resolve these kind of flows
in an accurate and efficient way.

The equations to be discretized are the compressible Euler equations in non-dimensional form
as presented in Section 2.5. In order to simplify notation, it is assumed for this chapter that all
quantities are non-dimensional and the hat is thus omitted.

3.1 General coordinate transformations

So far, all equations have been formulated in a Cartesian coordinate system. However, for many
applications it is important to adapt the coordinates to the underlying physical problem. By
selecting a suitable system, it is easier to choose an appropriate domain for the discretization and
to apply suitable boundary conditions. Moreover, the spacing of the discrete mesh may be easily
adapted in such a system, in order to achieve a uniform spatial resolution of the physical processes
of interest.

In order to avoid the adaption of the code to many specialized coordinate systems, the equations
are transformed to general curvilinear coordinates. The ideas for this treatment are adapted from
the work by Kifonidis, K. & Müller, E. (2012).

The new coordinates ξ, η, ζ are introduced by transformation of a global Cartesian coordinate
system using the functions

ξ (x, y, z) , η (x, y, z) , ζ (x, y, z) . (3.1.1)

These functions have to be invertible, but can be chosen arbitrary; the resulting coordinate system
can even be non-orthogonal. The only constraint is that the second derivatives of the transforma-
tion must commute. The first derivatives form the Jacobian matrix of the transformation, while
its inverse is given by the Jacobian matrix of the inverse transformation:

T =

 ξ,x ξ,y ξ,z
η,x η,y η,z
ζ,x ζ,y ζ,z

 T−1 =

 x,ξ x,η x,ζ
y,ξ y,η y,ζ
z,ξ z,η z,ζ

 (3.1.2)

Moreover, the determinants of these Jacobians are important for the further calculations and are
denoted by:

J = det (T ) J−1 = det
(
T−1

)
(3.1.3)
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3.1.1 Transformation of the Euler equations

With these definitions, the derivatives of the flux vectors can be written in the following way:

J−1 ∂Fx
∂x = J−1 ∂Fx

∂ξ ξ,x + J−1 ∂Fx
∂η η,x + J−1 ∂Fx

∂ζ ζ,x
= ∂

∂ξ

(
J−1ξ,xFx

)
+ ∂

∂η

(
J−1η,xFx

)
+ ∂

∂ζ

(
J−1ζ,xFx

)
−

−Fx ·
(
∂
∂ξ

(
J−1ξ,x

)
+ ∂

∂η

(
J−1η,x

)
+ ∂

∂ζ

(
J−1ζ,x

))
= ∂

∂ξ

(
J−1ξ,xFx

)
+ ∂

∂η

(
J−1η,xFx

)
+ ∂

∂ζ

(
J−1ζ,xFx

) (3.1.4)

The corresponding expressions for Fy and Fz can be obtained in a similar fashion. Inserting these
expressions in the Euler equations and rearranging the terms results in

J−1 ∂U

∂t
+
∂Fξ
∂ξ

+
∂Fη
∂η

+
∂Fζ
∂ζ

= J−1S (3.1.5)

with
Fξ = J−1 (ξ,xFx + ξ,yFy + ξ,zFz)
Fη = J−1 (η,xFx + η,yFy + η,zFz)
Fζ = J−1 (ζ,xFx + ζ,yFy + ζ,zFz) .

(3.1.6)

These are the Euler equations in general curvilinear coordinates. The new flux functions may
now be formulated in a direction-independent way.

Fχ =



ρ Qχ
ρu Qχ + J−1 χ,x

p
M2

r

ρv Qχ + J−1 χ,y
p
M2

r

ρw Qχ + J−1 χ,z
p
M2

r

ρ(E + p/ρ) Qχ
ρX Qχ


χ ∈ {ξ, η, ζ} (3.1.7)

Qχ = J−1χ,xu+ J−1χ,yv + J−1χ,zw (3.1.8)

This expression can be further simplified with the substitutions

aχ =
√

(J−1χ,x)
2

+ (J−1χ,y)
2

+ (J−1χ,z)
2

nχ = J−1

aχ

 χ,x
χ,y
χ,z


qn = nxu+ nyv + nzw

χ ∈ {ξ, η, ζ}, (3.1.9)

leading to the final expression for the transformed flux vectors

Fχ = aχ ·



ρ qn
ρu qn + nx

p
M2

r

ρv qn + ny
p
M2

r

ρw qn + nz
p
M2

r

ρ(E + p/ρ) qn
ρX qn


. (3.1.10)

Here, nχ = (nx, ny, nz) is the unit vector along the corresponding coordinate direction (expressed
in global Cartesian coordinates) and qn is the projected velocity in that direction. aχ has the
meaning of a differential surface area. A further advantage of the transformed Euler equations is
the fact that the flux vectors have the same analytic form in each direction. Therefore only one
implementation for the simulation code is necessary instead of three in the old coordinates.
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It must be stressed that only the flux derivatives were transformed to the new coordinate
system. Vector quantities such as the velocity and the gravitational acceleration stay in the
global Cartesian coordinate system. This has the huge advantage that the homogeneous system
(i.e. S = 0) stays in strong conservation form. Transforming the vector quantities would lead
to additional geometric source terms which would be problematic for the discretization of the
equations.

3.1.2 Transformations for thermal radiation

The fluxes for thermal radiation are transformed analogous to the Euler equations. However, the
Cartesian flux functions contain temperature derivatives, which need to be transformed as well:

frad,ξ = J−1 (ξ,xfrad,x + ξ,yfrad,y + ξ,zfrad,z)

= K
Per

J−1
(

∂T
∂ξ ξ,xξ,x + ∂T

∂η η,xξ,x + ∂T
∂ζ ζ,xξ,x+

∂T
∂ξ ξ,yξ,y + ∂T

∂η η,yξ,y + ∂T
∂ζ ζ,yξ,y+

∂T
∂ξ ξ,zξ,z + ∂T

∂η η,zξ,z + ∂T
∂ζ ζ,zξ,z

)
= K

Per
J−1

(
g11 ∂T

∂ξ + g12 ∂T
∂η + g13 ∂T

∂ζ

)
(3.1.11)

frad,η =
K

Per
J−1

(
g21 ∂T

∂ξ
+ g22 ∂T

∂η
+ g23 ∂T

∂ζ

)
(3.1.12)

frad,ζ =
K

Per
J−1

(
g31 ∂T

∂ξ
+ g32 ∂T

∂η
+ g33 ∂T

∂ζ

)
(3.1.13)

In the last step, the components of the metric tensor,

gij = hi · hj with h1 =

 ξ,x
ξ,y
ξ,z

 ,h2 =

 η,x
η,y
η,z

 ,h3 =

 ζ,x
ζ,y
ζ,z

 , (3.1.14)

where introduced. These expressions may then again be added to the fluxes of the transformed
Euler system as given by Equation 3.1.10. It should be noted that each flux function contains
temperature derivatives in all coordinate directions. However, for numerical reasons (see Sec-
tion 3.5.4) this is not desirable. Therefore, coordinate transformations are limited to orthogonal
transformation at the moment, where the off-diagonal entries of metric tensor vanish. Then, the
radiative fluxes contain only temperature derivatives in the same coordinate direction again.

3.2 Finite volume discretization

The discretization of the physical domain of interest is performed in curvilinear coordinates ξ, η, ζ.
There, the domain is partitioned by a regular, equidistant grid with Nξ ×Nη ×Nζ cells. Without
loss of generality, the transformation functions may always be chosen such that the extents of the
domain are

ξ ∈ [1/2, Nξ + 1/2]
η ∈ [1/2, Nη + 1/2]
ζ ∈ [1/2, Nζ + 1/2]

. (3.2.1)

This has the advantage that the cell widths are uniform, i.e. ∆ξ = ∆η = ∆ζ = 1, and will
simplify some of the further expressions. Integer values of the coordinates refer to cell centers,
e.g. (ξ, η, ζ) = (i, j, k). Cell faces are denoted by half integer values in the corresponding direction.
For example, (ξ, η, ζ) = (i, j + 1/2, k) refers to the interface at the right-hand side of cell (i, j, k)
in η-direction.
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The discretization is performed on the non-dimensional Euler equations in curvilinear coordi-
nates, which may be written in the following form:

J−1 ∂U

∂t
+∇ξηζ · F = J−1S with F =

 Fξ
Fη
Fζ

 . (3.2.2)

These equations are integrated over the volume Ωi,j,k of a cell in curvilinear coordinates (where
dΩ = dξ dη dζ): ∫

Ωi,j,k

J−1 ∂U

∂t
dΩ +

∫
Ωi,j,k

∇ξηζ · F dΩ =

∫
Ωi,j,k

J−1S dΩ. (3.2.3)

After exchanging the integral and the derivative in the first term, it can be recognized that the
integral represents the average of the conservative variables times the cell’s volume V i, j, k in
global Cartesian space. The same holds for the integral over the source term on the right-hand
side of the equation. Therefore, new cell-averaged quantities are introduced by

Ui,j,k =
1

Vi,j,k

∫
Ωi,j,k

J−1U dΩ, Si,j,k =
1

Vi,j,k

∫
Ωi,j,k

J−1S dΩ. (3.2.4)

Moreover, the divergence theorem can be applied to the flux integral, replacing the volume inte-
gration by an integration over the surface of the cell:

∂Ui,j,k

∂t
+

1

Vi,j,k

∮
∂Ω

F · n dS = Si,j,k (3.2.5)

This surface integral can be further decomposed by assuming that the integrated fluxes through
the six surfaces of a three dimensional cell are known. Defining these numerical fluxes by

Fi+1/2,j,k =
∮
∂Ω(i+1/2,j,k)

Fξ dS
Fi,j+1/2,k =

∮
∂Ω(i,j+1/2,k)

Fη dS
Fi,j,k+1/2 =

∮
∂Ω(i,j,k+1/2)

Fζ dS
, (3.2.6)

the finite volume discretization of the Euler equation finally leads to

∂Ui,j,k

∂t + 1
Vi,j,k

(
Fi+1/2,j,k − Fi−1/2,j,k +

Fi,j+1/2,k − Fi,j−1/2,k +
Fi,j,k+1/2 − Fi,j,k−1/2

)
= Si,j,k

. (3.2.7)

Therefore, cell-averaged quantities are stored in the simulation code. Their values may change
exclusively by fluxes through the interfaces of the corresponding cell or by source terms. Since
the flux through the common interface of two neighboring cells are the same, the sum of the
cell-averaged conservative variables over the whole domain can not change (as long as there
are no source terms and fluxes through the boundary interfaces). Therefore, this finite volume
discretization perfectly reflects the conversation properties of the continuous equations.

The remaining challenge for the discretization is to find suitable expressions for the numerical
fluxes which must be constructed from the surrounding cell-averaged quantities. Moreover, it
should be stressed that Equation 3.2.7 is only in semi-discretized form as the temporal derivatives
are not discretized yet. The spatial and temporal discretization is performed separately for this
work. This has the advantage that several discretization techniques may be combined in a very
flexible way. This procedure is known as method of lines and reduces the partial differential
equations to a set of coupled ordinary differential equations for the cell-averaged values, i.e.

∂Ui,j,k

∂t
+ Ri,j,k = 0. (3.2.8)
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where the vector Ri,j,k is denotes the spatial residual of a cell. In general, it may depend on
all other cell-averaged values on the grid. Suitable numerical discretizations for this ordinary
differential equation will be presented in Chapter 5.

Discretizations of the one and two-dimensional Euler equations can be obtained by setting the
number of grid cells of dispensable dimensions to one and omitting the numerical fluxes in the
corresponding directions. Moreover, the cell volumes in global Cartesian space Vi,j,k have to be
replaced by the cell widths in 1D or the cell areas in 2D.

3.3 Computation of the geometric terms

3.3.1 General strategy

The finite volume discretization presented in the last section requires the computation of numerical
fluxes at the cell interfaces. It was seen in Section 3.1 that the flux computation in general curvi-
linear coordinates involves derivatives of the corresponding transformation functions. Specifically,
numerical values for the interface normal vectors nd and the interface areas are needed (see Equa-
tion 3.1.9). Moreover, discrete values of the cell volumes in global Cartesian space are required
by the finite volume scheme.

In order to compute these terms, it should first be noted that the transformation functions to
curvilinear coordinates are usually given by their inverse, i.e.

x(ξ, η, ζ), y(ξ, η, ζ), z(ξ, η, ζ). (3.3.1)

These functions describe the coordinates of each grid cell in global Cartesian space. They can
either by given by an analytic expression or by a set of coordinates for all cell corners or centers.

From Equation 3.1.9 it can be seen that only products of the inverse Jacobian determinant
J−1 and the partial derivatives of the transformation functions ξ, η, ζ are required. Moreover, the
thermal radiative fluxes require an additional factor J−1. These expressions can all be formulated
in terms of derivatives of x, y, z after some trivial algebraic manipulations:

M = J−1T = J−1

 ξ,x ξ,y ξ,z
η,x η,y η,z
ζ,x ζ,y ζ,z

 = J−1

 x,ξ x,η x,ζ
y,ξ y,η y,ζ
z,ξ z,η z,ζ

−1

=

 y,ηz,ζ − y,ζz,η −x,ηz,ζ + x,ζz,η x,ηy,ζ − x,ζy,η
−y,ξz,ζ + y,ζz,ξ x,ξz,ζ − x,ζz,ξ −x,ξy,ζ + x,ζy,ξ
y,ξz,η − y,ηz,ξ −x,ξz,η + x,ηz,ξ x,ξy,η − x,ηy,ξ

 (3.3.2)

J−1 = x,ξ (y,ηz,ζ − y,ζz,η) + x,η (−y,ξz,ζ + y,ζz,ξ) + x,ζ (y,ξz,η − y,ηz,ξ) (3.3.3)

For analytic expressions of x, y, z, the derivatives can be calculated directly. Otherwise, the
derivatives can be approximated by finite differences between the coordinates of the given set of
points (see next section). The required areas and normal vectors can then be evaluated at the
positions of all cell interfaces by:

aξ =
√
M2

11 +M2
12 +M2

13 nξ =
1

aξ

 M11

M12

M13

 (3.3.4)

aη =
√
M2

21 +M2
22 +M2

23 nη =
1

aη

 M21

M22

M23

 (3.3.5)

aζ =
√
M2

31 +M2
32 +M2

33 nζ =
1

aζ

 M31

M32

M33

 (3.3.6)
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It should be noted that J−1 corresponds to the cell volume V in global Cartesian space (because
the curvilinear grid spacing is always set to unity). However, this expression is not used to compute
the cell volumes when the transformation is not given analytically. Since the finite differences
which are used for computing J−1 contain some discretization error, it is not guaranteed that the
sum of the resulting cell volumes equals the total volume of the domain. Therefore, the volume
of a cell is computed by connecting the cell’s corners with given coordinates by straight lines as
explained by Vinokur & Kordulla (1983). The resulting total volume is thus conserved.

Moreover, it should be noted that only the three-dimensional case is explained here. Expressions
for the geometry terms for one- and two-dimensional grids can easily be derived in a similar way.

3.3.2 Consistency relations

Given the inverse coordinate transformations x(ξ, η, ζ), y(ξ, η, ζ), z(ξ, η, ζ), it was shown in the last
section how the required geometry terms can be computed by evaluating the partial derivatives of
these functions. However, it is well known in the literature that an improper calculation of these
derivatives leads to spurious geometric source terms within the discretized equations, which may
deteriorate the solution (see e.g. Thompson et al. 1982; Thompson et al. 1985; Flores et al. 1984).

There are two constraints for the numerical evaluation of the partial derivatives. The first
constraint concerns the homogeneous part of the Euler equations. It was shown in Section 3.1
that the second derivatives of the transformation functions have to be symmetric. This property
has to be fulfilled also in the discrete sense, e.g. for a two-dimensional transformation (Kifonidis,
K. & Müller, E. 2012):

(y,η)i+1/2,j − (y,η)i−1/2,j = (y,ξ)i,j+1/2 − (y,ξ)i,j−1/2

(x,η)i+1/2,j − (x,η)i−1/2,j = (x,ξ)i,j+1/2 − (x,ξ)i,j−1/2
(3.3.7)

When evaluating the partial derivative of the transformation functions by finite differences, it
has to be ensured that the difference stencil fulfills the above relations. Moreover, it must be
emphasized that these relations are usually not fulfilled if the derivatives are given by analytic
expressions. Therefore, it is suggested that the derivatives are always computed by appropriate
finite differences between the coordinates of cell corners or centers, even if the transformation
functions are given analytically.

The second constraint for the partial derivatives only concerns the evaluation of the fluxes
for thermal radiation. It is shown in Section 3.5.4 that the involved temperature gradients are
evaluated numerically by finite differences. The corresponding stencils have to be equal to the
stencils used to derive the geometric terms (see Flores et al. 1984; Bian 2008).

3.3.3 Cartesian geometry

An important special case is Cartesian geometry. Here, the geometric terms may be evaluated
analytically as shown in the following. The physical domain extends over [x1, x2]×[y1, y2]×[z1, z2]
and is to be discretized into Nξ ×Nη ×Nζ cells. The transformation functions are thus given by

x(ξ, η, ζ) = x1 +
(
ξ − 1

2

)
·∆x,

y(ξ, η, ζ) = y1 +
(
η − 1

2

)
·∆y,

z(ξ, η, ζ) = z1 +
(
ζ − 1

2

)
·∆z,

(3.3.8)

where the cell widths are denoted by

∆x =
x2 − x1

Nξ
, ∆y =

y2 − y1

Nη
, ∆z =

z2 − z1

Nζ
. (3.3.9)

Using the formulas from Section 3.3.1, the geometric terms result in the following expressions:

V = ∆x∆y∆z (3.3.10)
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aξ = ∆y∆z, aη = ∆x∆z, aζ = ∆x∆y (3.3.11)

nξ =

 1
0
0

 , nη =

 0
1
0

 , nζ =

 0
0
1

 (3.3.12)

Inserting these expressions into the discrete curvilinear Euler equations, it can be seen that they
become identical to the Euler equations which are discretized directly in Cartesian space. There-
fore, the analytic evaluation of the geometric terms is justified in this particular case.

3.4 Reconstruction of interface values

3.4.1 General considerations

For the finite volume discretization present before, only the cell-averaged quantities of the grid
are stored. In order to evolve these quantities, numerical fluxes have to be computed at the
cell interfaces. It is a common approach to divide the flux computation into two different steps.
First, interface-centered values are calculated by interpolation from the cell-centered values. In a
second step, the numerical flux is calculated solely from the interpolated values at the interface
(see Section 3.5). The remainder of this section briefly describes the basic interpolation routines
that are used by LHC. The implementation is based on Toro (2009) where further details can be
found.

The interpolation routines used here are applied in curvilinear space along a coordinate direc-
tion. Since the interpolation routines are all one dimensional, the further notation is simplified
by only specifying one index. For example, Ui+1/2 could denote an interface state in ξ, η or ζ
direction.

The interpolation methods assume that the solution is represented on the grid by some piecewise
defined functions. The integral of such a function over a grid cell has to be consistent with the
cell-averaged value. Since each interface is surrounded by two cells, there are usually two different
states approaching each interface from the left and the right hand side. For this work, it is
assumed that two interface states (denoted by L and R) are reconstructed by a function R from
the cell-averaged values with the following dependencies:

ULR
i+1/2 = RLRi+1/2 (Ui−1, Ui, Ui+1, Ui+2) (3.4.1)

Usually, the reconstruction is performed directly on the cell-averaged conservative variables.
However, it is also possible to perform the reconstruction in the so-called primitive variables
defined by:

V =


ρ
u
v
w
p
X

 (3.4.2)

After the reconstruction step, the interface centered primitive variables are transformed back to
conservative variables, leading to

ULR
i+1/2 = U

(
RLRi+1/2 (Vi−1, Vi, Vi+1, Vi+2)

)
. (3.4.3)

Moreover, it should be noted that the first and last two interfaces along each coordinate direction
may depend on cell-averaged values which are outside of the domain. Therefore, the grid is
usually extended by two layers of so-called ghost cells which are filled by appropriate values (see
Section 3.6). Alternatively, the reconstruction method can be altered near the boundaries in order
to avoid the use of ghost cells. In this case, it is sufficient to compute the interface values at the
inner side of the domain, i.e. UR

1/2 and UL
N+1/2 (see Section 3.6).
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3.4.2 Constant reconstruction

The most simple reconstruction is performed by assuming that the values within a cell are con-
stant. In this case, the reconstruction function simply reads

RLi+1/2 = Ui, RRi+1/2 = Ui+1. (3.4.4)

Using this reconstruction leads to a discretization which is only first-order accurate in space.

3.4.3 Linear reconstruction

Assuming that the solution on the grid is represented by piecewise linear functions leads to the
reconstruction function

RLi+1/2 = Ui +
1

2
∆i (3.4.5)

RRi+1/2 = Ui+1 −
1

2
∆i+1. (3.4.6)

Thus, the variables within the cell have the slope ∆i which can generally be approximated by

∆i =
1

2
(1 + ω) (Ui −Ui−1) +

1

2
(1− ω) (Ui+1 −Ui) , (3.4.7)

where the parameter ω ∈ [−1, 1] determines whether the slope is weighted to the left or to the right
hand side. If not stated differently, ω = 0 is used which results in central difference approximation.
Using this reconstruction, the overall scheme is second-order accurate in space.

If the use of ghost cells should be avoided, the slopes in the boundary cells 1 and N are modified
by a one-sided finite difference approximation:

∆1 = −3

2
U1 + 2U2 −

1

2
U3 (3.4.8)

∆N = −3

2
UN + 2UN−1 −

1

2
UN−2 (3.4.9)

These slopes are constructed to be second-order accurate, but they involve an additional de-
pendence which would not be allowed according to Equation 3.4.1. However, this is justified at
the boundary cells because it does not destroy the overall numerical stencil of the scheme (see
Section 5.4.3).

Moreover, it is well-known that the linear reconstruction as presented here may lead to spurious
oscillations in the solution in the presence of step gradients (Toro 2009). Therefore, it is common
practice to use so-called slope limiters which restrict the size of ∆i in certain regions of the
flow. For LHC, various slope limiters have been implemented (Van Leer, minmod, Superbee,
etc.). However, if not stated differently, slope limiters are disabled because they do not have a
continuous derivative which cause problems with implicit time stepping (see Chapter 5). However,
this is usually not harmful since typical flows in the low Mach number regime are expected to be
very smooth.

3.5 Numerical flux functions

3.5.1 The Riemann problem

The finite volume discretization presented in Section 3.2 defined numerical flux functions which
represent the integrated fluxes over the corresponding surface. Note that the surface integration is
trivial (since the curvilinear grid spacing is always unity) assuming that an average flux is given.
However, the numerical fluxes have to be defined in way that the properties of the continuous
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Euler equations are maintained on a discrete level as far as possible. A common way to do that
(e.g. Toro 2009) is by considering one-dimensional Riemann problems at each cell interface:

∂U

∂t
+
∂Fχ
∂χ

= 0 χ ∈ {ξ, η, ζ} (3.5.1)

U (χ, t = 0) =

{
ULi+1/2 for χ > 0

URi+1/2 for χ < 0
(3.5.2)

It can be shown that the analytic solution of this problem with piecewise constant initial data is
self-similar, i.e.

U (χ, t) = U∗ (χ/t) . (3.5.3)

Assuming that this solution is known, a numerical flux function can be defined by

Fi+1/2 = F (U∗ (0)) . (3.5.4)

In combination with constant extrapolation, this forms the well-known Godunov method. Other
reconstruction algorithms lead to higher-order extensions of that method. These Godunov-type
schemes are the most common way to discretize the compressible Euler equations. They were
designed to capture supersonic flows involving shock waves in a proper way. Their ability to
handle low Mach number flows will be analyzed in Chapter 4. Moreover, it should be noted that
Godunov methods solve a homogeneous Riemann problem in the absence of source terms, which
are discretized separately. Therefore, it should be kept in mind that the resulting numerical flux
functions have no information about physical processes governed by source terms.

In order to solve the above Riemann problem, various methods have been developed in literature.
First of all, the exact self-similar solution can be calculated numerically. However, since this
involves a lot of computational effort (and cannot be done for more complex systems), many
so-called approximate Riemann solvers have been developed. The resulting fluxes are easier to
compute, while maintaining most (but not all) of the scheme’s desirable properties. For the new
simulation code LHC, several approximate Riemann solvers have been implemented which are
presented in the following sections.

3.5.2 Roe’s approximate Riemann solver

The most important Riemann solver in the context of this thesis was constructed by Roe (1981).
The scheme approximates the (non-linear) Riemann problem by a local linearization. The solution
to the simplified system is then calculated exactly. The resulting numerical flux function can be
written in a simple way,

Fi+1/2 =
1

2

(
F
(
UL
i+1/2

)
+ F

(
UR
i+1/2

)
− |Aroe|

(
UR
i+1/2 −UL

i+1/2

))
, (3.5.5)

where A denotes the flux Jacobian matrix defined by

A =
∂F

∂U
= RΛR−1. (3.5.6)

This matrix can be decomposed into a set of right eigenvectors (the columns of R) and a diagonal
matrix containing the corresponding eigenvalues

Λ = diag

(
qn −

1

Mr
c, qn +

1

Mr
c, qn, qn, qn, qn

)
. (3.5.7)

This decomposition shows the characteristic waves present in the Euler equations, i.e. sound
waves traveling in negative and positive direction and advective/shear waves traveling with the
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fluid velocity. Here, the decomposition is just used to define the absolute value of the flux Jacobian
matrix:

|A| = R |Λ|R−1 (3.5.8)

The flux Jacobian matrix and its absolute value are evaluated at the so-called Roe-averaged state.
It is mainly constructed by the requirement

F
(
UR
)
− F

(
UL
)

= Aroe

(
UR −UL

)
(3.5.9)

which ensures conversation across discontinuities. However, the original work of Roe only describes
the derivation of the Roe-averaged state for ideal gases. For a general equation of state, the
derivation of the corresponding average is not unique anymore. Therefore, many slightly different
extensions to the original Roe scheme have been proposed (see e.g. Mottura et al. 1997; Cinnella
2006). For this work, the approach of Vinokur & Montagne (1990) has been implemented. They
define predictors for the Roe averages for the velocities uroe, vroe, wroe, the total enthalpy Hroe

and the partial derivatives of the pressure
(
∂p
∂ρ

)
roe

,
(
∂p
∂ε

)
roe

by

(.)roe =

√
ρL(.)L +

√
ρR(.)R√

ρL +
√
ρR

. (3.5.10)

The pressure derivatives are then projected to a final state which complies with Equation 3.5.9.
However, it is shown in Chapter 4 that the term involving |Aroe| in the numerical flux function
is further modified in order to achieve accurate results for low Mach number flows. Since this
modification is not unique at all, the projection step for the pressure derivatives is disabled for
simplicity. Numerical tests (not presented here) have shown that this has no influence on the
simulation results for low Mach number flows.

Moreover, it should be noted that the term involving |Aroe| in Equation 3.5.5 just balances the
flux evaluation either towards the left or right approaching state, depending on the characteristic
decomposition and its eigenvalues. This process enforces that the characteristic waves are dis-
cretized at the upwind state of the fluid and guarantees the numerical stability of the scheme.
For example, if the flow is supersonic in the corresponding coordinate direction, all eigenvalues

are positive and the resulting numerical flux becomes Fi+1/2 = F
(
UL
i+1/2

)
, because the other

terms cancel out (assuming Equation 3.5.9 holds). For subsonic flows, the numerical flux is thus
a mixture where each characteristic wave is discretized in the upwind direction.

3.5.3 Other flux functions

In addition to the above presented Roe scheme, several other numerical flux functions are imple-
mented in LHC. The first class of these functions can all be formulated by (Toro 2009)

Fi+1/2 =
1

2

(
F
(
UL
i+1/2

)
+ F

(
UR
i+1/2

)
− s

(
UR
i+1/2 −UL

i+1/2

))
, (3.5.11)

where s is a scalar, local signal propagation speed.
The first subtype of these schemes is called central flux has s = 0. It is just the arithmetic mean

of the fluxes approaching from the left and right hand side. Although this flux is fully consistent
with the Euler equations, it is known to be numerically unstable, leading to spurious growth of
discretization errors which deteriorate the solution. Nonetheless, it can be used on short time
scales to compare the results against other numerical flux functions.

The second subtype defines the local signal propagation speed by the maximum of the eigen-
values of the flux Jacobian matrix, i.e.

s = max

(∣∣qRn ∣∣+
1

Mr
cR,

∣∣qLn ∣∣+
1

Mr
cL
)
. (3.5.12)
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The resulting flux function is called local Lax-Friedrich or Rusanov flux. It can be seen that it
is a further simplification of the Roe flux, where the upwinding is solely determined by fastest
sound wave.

The last subtype of this class is schemes is the so-called Lax-Wendroff flux where the signal
propagation speed is determined by ratio of the local grid spacing to the time step:

s =
∆x

∆t
(3.5.13)

Since the discretization is performed in curvilinear space, the grid spacing is estimated by the cell
volume over the interface area:

∆x =
min (Vi, Vi+1)

ai+1/2
. (3.5.14)

For a Cartesian geometry, this results in the correct values for the grid spacing. However, it should
be noted that the upwinding for this flux function depends on the time step. This is usually not
desirable, since it is unlikely that the solution will converge with respect to the time step.

A different approach to compute the numerical flux is the VFRoe scheme (Masella et al. 1999;
Buffard et al. 2000). It is very similar to Roe’s approximate Riemann solver except that the self-
similar solution of the Riemann problem is directly approximated with the following expressions:

U∗ =
1

2

(
UL
i+1/2 + UR

i+1/2 − sgn (A)roe

(
UR
i+1/2 −UL

i+1/2

))
(3.5.15)

sgn (A) = R sgn (Λ)R−1 (3.5.16)

The numerical flux is then defined by

Fi+1/2 = F (U∗) . (3.5.17)

Since the upwinding of this flux resembles the Roe-scheme, the results of this scheme are expected
to be similar.

The last kind of numerical flux functions that are implemented in LHC are so-called AUSM+ and
AUSM+-up schemes (Liou 1996, 2006). These fluxes belong to the class of flux-vector splittings
and are derived in a very different way compared to Godunov-type schemes. Details on the
implementation are postponed to Section 4.3.5 where the behavior of these fluxes in the low Mach
number regime is analyzed.

3.5.4 Thermal radiation

In the following, the thermal radiative flux is discretized. However, it should be emphasized
that the grid geometry is limited to orthogonal coordinate transformations in this case (see Sec-
tion 3.1.2). The resulting flux function then involves only temperature derivatives in the direction
of the flux:

frad,χ =
K

Per
· a

2
χ

J−1
· ∂T
∂χ

χ ∈ {ξ, η, ζ} (3.5.18)

This flux is discretized at the cell interfaces by approximating the temperature derivative by a
finite difference between the neighboring cell-averaged values:

frad,i+1/2 =
Ki +Ki+1

2Per
· a

2
χ

J−1
· (Ti+1 − Ti) (3.5.19)

This central difference is second-order accurate in space. The thermal conductivity at the interface
is approximated by the arithmetic mean of the neighboring cells. It should be noted that only
cell-averaged values and not the reconstructed interface values are used for this discretization.

Note that if non-orthogonal grids would be allowed for thermal radiation, it would be necessary
to approximate temperature derivatives in all coordinates directions at each interface. However,
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all possible finite difference stencils with second-order accuracy would necessarily involve cell
averaged-values next to the corners of the corresponding cell. The spatial residual of a certain
grid cell would then depend on at least 27 other grid cells (in 3D). Since this is very undesirable
for implicit temporal discretizations (see Chapter 5), the grid geometry is limited to orthogonal
transformations at the moment.

3.6 Boundary conditions

In order to specify the behavior of the discretized Euler equations at the boundaries, two different
approaches are implemented in LHC which are presented in the remainder of this section. In
general, there are various classes of physical boundary conditions which should be reproduced
by the discretized equations. The boundaries may be transmissive or reflective to certain kinds
of waves. Moreover, the boundaries may have a predefined rate of inflow or outflow of mass,
momentum, energy, etc. A physical boundary can even be omitted if the domain is considered to
be periodic in a certain coordinate direction.

3.6.1 Ghost cells

The first approach to specify the boundary conditions is the so-called ghost cell method, where
the computational grid is extended by several layers of these artificial cells. The reconstruction
methods for the interface values may then depend on the ghost cells (see Section 3.4). Due to
the stencil of the linear reconstruction schemes described in Section 3.4.3, two layers of ghost
cells are needed. Afterwards, the usual numerical flux function is also used for the interfaces at
the boundaries. However, the values within the ghost cells have to be chosen in a way that the
resulting numerical flux complies with the desired physical boundary condition.

For this work, the ghost cells are always set in curvilinear space along the one-dimensional line
perpendicular to the boundary. The following presentation of different boundary treatments is
therefore also one-dimensional and can be applied in any coordinate direction.

The most simple case where ghost cells are applicable are periodic boundaries. The values of
the ghost cells are just filled with the values for the other end of the domain:

Ui := UN+i for i ∈ {−1, 0}, UN+i := Ui for i ∈ {1, 2} (3.6.1)

Another method to fill the ghost cells is to extrapolate the values from the interior. For constant
extrapolation, this reads

Ui := U1 for i ∈ {−1, 0}, UN+i := UN for i ∈ {1, 2} (3.6.2)

whereas a linear extrapolation is obtained by

Ui := 2U1 −U2 for i ∈ {−1, 0}, UN+i := 2UN −UN−1 for i ∈ {1, 2}. (3.6.3)

These boundary conditions are mostly transmissive for the waves within the fluid.
In order to define reflective boundaries, a reflection operator is defined as

refl (U) =


ρ

ρu− 2nx · ρqn
ρv − 2ny · ρqn
ρw − 2nz · ρqn

ρE
ρX

 , (3.6.4)

which changes the sign of the momenta normal to the boundary. The geometry terms are taken
from the boundary interface. The ghost cells may then be filled by a reflected state defined by

Ui := refl (U1−i) for i ∈ {−1, 0}, UN+i := refl (UN−i+1) for i ∈ {1, 2}. (3.6.5)
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After applying a reconstruction scheme for the interface values at the boundary, the mass flux
ρqn is approximately zero, enforcing that no mass or energy enters or leaves the domain. Sound
waves are typically reflected by this kind of boundary condition. However, it should be noted that
depending on the reconstruction scheme, the mass flux is not exactly zero. This leads typically to
a spurious behavior in the cells near the boundary. Moreover, it should be emphasized that this
boundary also reflects the density and energy profile. For nearly hydrostatic flows, this leads to
unphysical values at the boundary interface.

For the last boundary condition implemented by this method, the ghost cells are set to a time-
independent, predefined state. This method mimics a far-field boundary condition, which is open
to the waves within a flow but specifies a ’quiet’ state of the fluid far away from the numerical
domain.

Although there are much more elaborated methods to fill the ghost cells (see e.g. Hirsch 1990),
it can be seen from the above presentation that the ghost cell method provides only an indirect
way of controlling the numerical fluxes at the boundary interfaces. Especially for complicated
flow structures possibly involving a hydrostatic background the ghost cell method faces various
problems.

3.6.2 Flux boundary conditions

Due to the shortcomings of the ghost cell method, an alternative approach for the boundary
treatment is implemented in LHC. There, the numerical flux for the boundary interfaces is com-
puted directly. Since the ghost cells are not filled in this case, the reconstruction schemes (see
Section 3.4) have to use one-sided interpolation methods near the boundary. The goal of the
new boundary conditions is to solve the Riemann problem at the boundary interfaces under the
assumptions and constraints of the physical boundary conditions. A very elegant and flexible
way to achieve this is described by Ghidaglia & Pascal (2005), whose approach is implemented in
LHC.

As an example for such a flux boundary condition, the case of a rigid wall is illustrated in the
following. The first constraint for this is that the velocity normal to the interface vanishes, i.e.
qn = 0. The continuous flux function then reduces to

F =
1

Mr


0

nx · pwall

ny · pwall

nz · pwall

0
0

 . (3.6.6)

Therefore the flux is solely determined by the wall pressure, which can be calculated by considering
the characteristic waves. At the boundary, only the sound wave propagating towards the boundary
can leave the domain. With this assumption, the wall pressure reads

pwall = p∓ ρ qnc
2Mr

c±
(
∂p
∂ε

)
qnMr

, (3.6.7)

This expression is evaluated with the quantities approaching the boundary (e.g. the reconstructed
values at the right hand side of the first interface). The different signs are related to first and last
interface in the corresponding coordinate direction. More importantly, it can be seen that this
kind of boundary treatment does not permit any mass transport through the boundary. For the
corresponding reflective ghost cell boundary, this property can only be fulfilled approximately.

Besides wall boundary, several other flux boundary conditions like a far-field boundary and
various inlet and outlet boundary conditions with different thermodynamic assumptions have been
implemented. Details can be found in (Ghidaglia & Pascal 2005). In general, it can be concluded
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that the flux boundary conditions are more physically motivated than the ghost cell boundaries
because they permit an easy way of controlling the characteristic waves at the boundary and the
corresponding numerical flux. Moreover, the second-order accuracy of the overall scheme can be
maintained by the boundary conditions as long as the one-sided reconstruction methods permit.
For the ghost-cell method this is a much more complicated task. Unfortunately, it will be seen in
the next chapters that the implemented flux boundary conditions also face some problems in the
presence of gravity. However, it is believed that flux boundary conditions are superior to ghost
cells for the future development of suitable boundary conditions which represent the physical
conditions accurately.
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4 Numerical flux functions in the low Mach
number regime

The numerical flux functions presented in Section 3.5 were mainly developed for transsonic and
supersonic flows involving shock waves. Their behavior in the low Mach number regime is an-
alyzed in this chapter. It is shown that the asymptotic limits of the Euler equations presented
in Section 2.6 can only be reproduced when the numerical flux functions are modified in some
way. It should be noted that the discretization has only been performed in space so far. For the
simulation results presented in this chapter, it is therefore assumed that the time derivative in
the semi-discrete Euler equations is approximated by a suitable method. The results presented in
the following sections do not depend on the specific choice of a time-marching scheme. The dis-
cussion of appropriate temporal discretizations for low Mach number flows is therefore postponed
to Chapter 5.

4.1 Numerical viscosity

4.1.1 Gresho vortex

In order to study the behavior of the numerical discretization in the low Mach number regime,
the so-called Gresho vortex is used. It is a time-independent solution of the incompressible Euler
equations which consists of a rotating flow where the centrifugal forces are exactly balanced by the
pressure gradients. The setup is taken from Liska & Wendroff (2003) and is slightly modified here
in order to adjust the maximum Mach number Mmax of the rotating fluid. Note that the Gresho
vortex is initialized in dimensional units. If the setup would be considered in a non-dimensional
way, the maximum Mach number could also serve as reference Mach number.

The two-dimensional physical domain in Cartesian geometry containing the vortex has the
extents [0, 1] × [0, 1]. The boundaries are assumed to be periodic. The gas of uniform density
ρ(x, y) = 1 is governed by an ideal gas equation of state with γ = 5/3. The vortex is centered at
(x, y) = (1/2, 1/2) and its angular velocity reads

uφ =


5r, 0 ≤ r < 0.2

2− 5r, 0.2 ≤ r < 0.4

0, 0.4 ≤ r
(4.1.1)

with the radius r =

√(
x− 1

2

)2
+
(
y − 1

2

)2
. Note that the maximum velocity uφ,max = 1 is

reached at r = 0.2. The background pressure is adjusted such that it matches the maximum
Mach number Mmax:

p0 =
ρ u2

φ,max

γM2
max

. (4.1.2)

The total pressure is then calculated by adding a dynamic pressure such that the centrifugal forces
are balanced:

p =


p0 + 25

2 r
2, 0 ≤ r < 0.2

p0 + 25
2 r

2 + 4 · (1− 5r − ln 0.2 + ln r), 0.2 ≤ r < 0.4

p0 − 2 + 4 ln 2, 0.4 ≤ r
(4.1.3)
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Figure 4.1: Initial Mach number distribution of the Gresho vortex

From this distribution, it is easy to show that the relative pressure fluctuations scale with the
square of the Mach number, i.e.

p− p0

p0
∝M2

max. (4.1.4)

According to Section 2.6.2, the flow is therefore definitely in the incompressible regime here and
sound waves are absent. Since the setup is a stationary solution of the incompressible Euler
equations, it should not change in time. Deviations seen in numerical simulations are therefore
caused by discretization errors.

4.1.2 Godunov-like schemes

In following, it is investigated whether the Gresho vortex can be maintained on a discrete grid in
time-dependent simulations. Therefore, the physical domain is discretized by 40 × 40 grid cells
which are initialized with the values given in the previous section (see Figure 4.1). The chosen
resolution seems to be rather low here. However, such a vortex might also emerge during the
simulation of a more complex flow setup where the vortex takes up only a very small part of the
domain. In this respect, the resolution chosen here can be considered to be rather high. The initial
conditions are advanced in time with a suitable method from t = 0 to t = 2, which corresponds to
approximately 1.5 rotations of the vortex. The simulations are performed with several numerical
flux functions, i.e. with the central flux, Roe’s approximate Riemann solver, the Rusanov flux
and the AUSM+ scheme. Each flux function is tested with Mmax = 0.1, Mmax = 0.01 and
Mmax = 0.001.

The first tests are performed with Roe’s approximate Riemann solver. The Mach number
distributions at the end of the simulation time are shown in the first three plots of Figure 4.2.
It can be seen that the vortex looks reasonable for Mmax = 0.1 although it is a bit smeared out.
However, as the Mach number is further decreased the vortex structure becomes very faint and
even unrecognizable at Mmax = 0.001. This behavior is also confirmed by the evolution of the
total kinetic energy (relative to its initial value) which is shown in the first plot of Figure 4.3.
As the Mach number is decreased, the dissipation of kinetic energy increases drastically. This
behavior is in contradiction with the asymptotic behavior of the Euler equations, where the kinetic
energy should be exactly conserved in the zero-Mach number limit. The dissipation is therefore
attributed to artificial/numerical viscosity inherent of the discretization.
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Figure 4.2: Mach number distributions at the end of the simulation time
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A totally different behavior of the discretized equations is obtained when the central flux func-
tion is used. This can be seen in the last plot of Figure 4.2 where the Mach number distributions
for Mmax = 0.001 are shown. Besides some noise, the vortex seems to be perfectly conserved.
However, the total kinetic energy slightly increases during the simulation time (second plot of
Figure 4.3). This absolutely unphysical behavior can be explained by the fact that this flux
function is numerically unstable. Therefore, it cannot be used for practical simulations because
discretization errors grow in time. However, it can also be seen from the evolution of kinetic
energy that it does not depend on the Mach number. This interesting result gives a strong hint
on the origins of the excessive dissipation of Roe’s flux. Comparing both numerical flux functions
(Equation 3.5.5 and Equation 3.5.11 with s = 0), it can be seen that they are equal except that
Roe’s flux has an additional upwinding term

|Aroe|
(
UR
i+1/2 −UL

i+1/2

)
, (4.1.5)

which can be suspected to be the origin of the numerical dissipation. This will be further inves-
tigated in the next sections. As explained in Section 3.5, the upwinding term balances the flux
evaluation either to the right or to the left hand side of the interface. However, it was already
shown by Dellacherie (2010) that a discretization of the compressible Euler equation only resolves
the incompressible limit when the pressure terms within the flux functions are evaluated centrally
at the interface. This is the case for the central flux used here. Unfortunately, the central eval-
uation of the pressure is only justified in the zero Mach number limit. For small, but non-zero
Mach numbers, such a discretization usually leads to numerically unstable schemes.

Finally, the results of the other numerical flux functions are briefly discussed. The relative total
kinetic energy at the end of each simulation is summarized in the following table:

numerical flux Mmax = 0.1 Mmax = 0.01 Mmax = 0.001
Roe 0.885 0.548 0.450
central 1.002 1.002 1.002
Rusanov 0.652 0.146 0.000
AUSM+ 0.820 0.442 0.474

It can be seen that the other flux functions show a Mach number dependent dissipation similar to
the Roe flux. The Rusanov flux has the strongest dissipation and here the vortex has completely
vanished at the end of the simulation. The dissipation rate of the AUSM+ flux is comparable
to the Roe flux. Therefore, it can be concluded that the excessive numerical dissipation is not a
peculiarity of Roe’s flux function or Godunov-like methods, since flux vector splitting shows the
same behavior.

4.2 Low Mach number scaling

4.2.1 Artificial sound waves

The failure of numerical flux functions for the compressible Euler equations in predicting the
incompressible flow field at low Mach numbers is well-known in literature of the engineering
community (see e.g. Volpe 1993; Guillard & Viozat 1999). There, simulations of steady-state
flow profiles around airfoils show spurious oscillations in the pressure field as the Mach number is
decreased and even overwhelm the incompressible flow field at some point. In an extensive analysis
Guillard & Murrone (2004) performed an expansion in terms of reference Mach number of the
Riemann problem with is solved in Godunov-like methods at the interfaces. The expansion was
performed on the non-dimensional Euler equations in a similar way as presented in Section 2.6.2.
They showed that the pressure of the self-similar solution of the Riemann problem takes the
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following form:

p∗ = ρrc
2
r

(
p0 −

1

2
Mr
√
γp0ρ0∆u1 + ...

)
(4.2.1)

Thus, the pressure at the interface is governed by the incompressible pressure p0 (constant in
space), but contains a fluctuation which scales linearly with the reference Mach number Mr. As
explained in Section 2.6.1 this scaling corresponds to sound waves, which are always produced by a
first-order velocity jump ∆u1 at the interface. Therefore, the incompressible solution (scaling with
M2

r ) cannot be maintained by Godunov-like methods. From a heuristic view, this behavior is not
very surprising since Godunov-like methods were developed to advance the piecewise discontinuous
solutions in order to capture shock waves. The smooth flow field of nearly incompressible flows
is therefore not accurately represented in this picture. The excessive dissipation of the Gresho
vortex presented in the last section can be related to this behavior. It is assumed that artificial
sound waves are generated in this case, but quickly get dissipated into heat since they are not
resolved on this grid. Moreover, it should be noted that Godunov-like methods just ensure a
proper upwinding of the numerical flux. Therefore, non-Godunov methods like AUSM+, which
rely on similar principles for the upwinding, also show an excessive dissipation.

4.2.2 Analysis of numerical flux functions

In this work, the numerical flux functions are further analyzed in a different way. The scaling of
the non-dimensional flux functions is examined in terms of reference Mach numbers. The method
is inspired by the work of Turkel (1999) and is applied to all Godunov-like numerical flux functions
here. First, it should be noted that the Euler equations fulfill a so-called homogeneity property.
The flux function can therefore be written in the quasi-linear form

F =
∂F

∂U
U = A U, (4.2.2)

where A denotes the flux Jacobian matrix. The Godunov-like numerical flux function from Sec-
tion 3.5 can then be transformed to

Fi+1/2 =
1

2

(
ALUL +ARUR −D

(
UR −UL

))
, (4.2.3)

where D represents the corresponding upwinding matrix of the scheme. The goal of the analysis
is to determine how the matrix elements of A and D scale with the reference Mach number.
This is presented in the set of primitive variables V = (ρ, u, v, w, p,X)

T
, where the corresponding

(non-dimensional) flux Jacobian matrix takes a very simple form:

AV =
∂V

∂U

∂F

∂U

∂U

∂V
=



qn ρnx ρny ρnz 0 0
0 qn 0 0 nx

ρM2
r

0

0 0 qn 0
ny
ρM2

r
0

0 0 0 qn
nz
ρM2

r
0

0 ρc2nx ρc2ny ρc2nz qn 0
0 0 0 0 0 qn


(4.2.4)

The Jacobian matrices for this transformation can be found in Appendix C. Since the non-
dimensional variables are all of order one, the scaling in the low Mach number regime can be read
off directly and results in

AV ∝



O (1) O (1) O (1) O (1) 0 0

0 O (1) 0 0 O
(

1
M2

r

)
0

0 0 O (1) 0 O
(

1
M2

r

)
0

0 0 0 O (1) O
(

1
M2

r

)
0

0 O (1) O (1) O (1) O (1) 0
0 0 0 0 0 O (1)


. (4.2.5)
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The same procedure can be applied to the upwinding matrix of Roe’s approximate Riemann
solver. After a lengthy calculation (performed with a symbolic algebra computer program) the
asymptotic scaling in the low Mach number regime was found to result in

DV,Roe = |AV| ∝



O (1) O (Mr) O (Mr) O (Mr) O
(

1
Mr

)
0

0 O
(

1
Mr

)
O
(

1
Mr

)
O
(

1
Mr

)
O
(

1
Mr

)
0

0 O
(

1
Mr

)
O
(

1
Mr

)
O
(

1
Mr

)
O
(

1
Mr

)
0

0 O
(

1
Mr

)
O
(

1
Mr

)
O
(

1
Mr

)
O
(

1
Mr

)
0

0 O (Mr) O (Mr) O (Mr) O
(

1
Mr

)
0

0 0 0 0 0 O (1)


. (4.2.6)

The discrepancy to the flux Jacobian matrix can clearly be seen. In fact, many entries of the
upwinding matrix overwhelm the flux Jacobian for low Mach numbers. Therefore, the purpose of
the upwinding matrix to balance the flux evaluation to the left or right hand side of an interface
can not be fulfilled anymore. The numerical flux is solely governed by this matrix causing the
excessive artificial viscosity of the scheme. Especially the 1/Mr terms in the velocity equations
(2nd-4th row of D) can be identified as a source of this behavior. Therefore, the upwinding
matrix is modified in the next section in order to achieve a scaling which is compatible with the
flux Jacobian matrix.

The Rusanov and the Lax-Wendroff flux functions can be analyzed in a similar way. Here, the
upwinding matrix is diagonal with the scalar value s. For the Rusanov flux, the low Mach number
scaling can be read off directly, i.e.

DV,Rusanov =

(
|qn|+

c

Mr

)
1 ∝ O

(
1

Mr

)
1. (4.2.7)

Thus, the scaling is also incompatible with the flux Jacobian matrix. A slightly different behavior
is seen for the Lax-Wendroff flux where the scaling is independent of the reference Mach number.
Instead, it solely depends on the ratio of the grid spacing to the time step. The latter has therefore
to be adjusted such that the amount of upwinding is sufficient for a numerically stable scheme
and to ensure that the overall dissipation is not to high. Since this may not be achievable in all
situations, the use of this numerical flux function is usually avoided.

4.3 Low Mach number fluxes

4.3.1 Roe-Turkel scheme

The deficiencies of Godunov-like numerical flux functions for the simulation of low Mach number
flows have been recognized by the engineering community since the late 1980s (e.g. Volpe 1993).
However, the main interest for such applications focused on simulations of the steady-state Euler
equations, where the time derivative vanishes (e.g. steady flow profiles around an airfoil). A
common technique to solve these equations is to advance the solution in time until a steady state
is reached. In order to speed up the convergence, the time derivative of the semi-discrete equations
is multiplied by the inverse of a preconditioning matrix (e.g. Turkel 1999):

∂U

∂t
→ P−1 ∂U

∂t
(4.3.1)

This type of preconditioning does not alter steady-state solutions, where this derivative vanishes,
as long as the preconditioning matrix is invertible. The goal of the preconditioning is to reduce
the stiffness of the Euler equations in the low Mach number regime by equalizing the eigenvalues
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Figure 4.4: Eigenvalues of the Turkel-preconditioned flux Jacobian PA

of the preconditioned flux Jacobian P ∂F
∂U . A very popular preconditioner was proposed by Weiss

& Smith (1995) and can be expressed in primitive variables by

PV =


1 0 0 0 δ2−1

c2 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 δ2 0
0 0 0 0 0 1

 . (4.3.2)

The parameter δ should be chosen to equal the local Mach number of the fluid. However, its lower
value has to be bounded to a cut-off Mach number Mcut in order to avoid that the preconditioning
matrix becomes singular. Moreover, the upper value is limited to one to turn off preconditioning
for supersonic flows. The parameter is therefore chosen as

δ = min (1,max (M,Mcut)) . (4.3.3)

The eigenvalues of the preconditioned flux Jacobian then read

λ1,2 =
1

2

((
1 + δ2

)
qn ∓

1

Mr

√
4c2δ2 + (δ2 − 1)

2
M2

r q
2
n

)
(4.3.4)

λ3,4,5,6 = qn. (4.3.5)

Their behavior is shown in Figure 4.4 under the assumption that the non-dimensional variables
are of order one for δ = 1 (no preconditioning) and δ = Mr (ideal preconditioning). This shows
that only the acoustic eigenvalues (λ1, λ2) of the preconditioned system are modified such that
they have the same order of magnitude as the advective eigenvalues.

As a side effect, it has been recognized that this kind of flux preconditioning not only speeds up
the convergence to a steady state but significantly improves the accuracy of the results in the low
Mach number regime. This indicates that Godunov-like numerical fluxes have to be computed
according to the preconditioned Riemann problem

∂U

∂t
+ P

∂Fχ
∂χ

= 0 χ ∈ {ξ, η, ζ}, (4.3.6)
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U (χ, t = 0) =

{
ULi+1/2 for χ > 0

URi+1/2 for χ < 0
. (4.3.7)

In fact, it has been shown mathematically by Guillard & Viozat (1999) and Guillard & Murrone
(2004) that preconditioned Roe-schemes and Godunov methods are able to resolve the incom-
pressible limit of the Euler equations. This is because no artificial sound waves are generated at
the interfaces and thus numerical dissipation does not increase in the low Mach number regime.

Due to the successes of the flux preconditioning technique for steady state flows, it is also
desirable to use them for time-dependent flows. For Roe’s approximate Riemann solver, this can
be achieved by modifying only the upwinding term in the following way (Turkel 1999):

Fi+1/2 =
1

2

(
F
(
UL
i+1/2

)
+ F

(
UR
i+1/2

)
−
(
P−1 |PA|

)
roe

(
UR
i+1/2 −UL

i+1/2

))
(4.3.8)

Other terms, such as the time derivative are left unmodified. Therefore, the flux preconditioning
only alters the way the numerical flux is balanced at the interfaces. The modified approximate
Riemann in combination with the Weiss-Smith preconditioner is referred to as Roe-Turkel scheme
in the following.

4.3.2 Analysis of the Roe-Turkel scheme

Despite the proven ability of the Roe-Turkel scheme to resolve nearly incompressible flows, its
behavior in the low Mach number regime is further analyzed in the following. To this end, the
analysis presented in Section 4.2.2 is applied here to the preconditioned upwind matrix P−1|PA|.
Assuming that the preconditioning parameter is of order δ = O (Mr), it can be shown that the
upwinding matrix scales as

DV = P−1
V |PVAV| ∝



O (1) O (1) O (1) O (1) O
(

1
M2

r

)
0

0 O (1) O (1) O (1) O
(

1
M2

r

)
0

0 O (1) O (1) O (1) O
(

1
M2

r

)
0

0 O (1) O (1) O (1) O
(

1
M2

r

)
0

0 O (1) O (1) O (1) O
(

1
M2

r

)
0

0 0 0 0 0 O (1)


. (4.3.9)

This behavior is much more consistent with the scaling of the flux Jacobian (Equation 4.2.5)
compared to the unpreconditioned Roe scheme (Equation 4.2.6). Incorrect scaling in the low Mach
number regime is only observed for the 1/M2

r terms in the first and fifth row, which correspond
to a dissipative flux in the density and pressure depending on pressure differences on the grid. It
is expected that this behavior is a severe drawback especially for nearly hydrostatic flows, where
pressure differences in the vertical direction are not necessarily small. Assuming a hydrostatic
equilibrium where all velocities vanish, the upwinding term of the Roe-Turkel scheme can be
written in conservative variables as

∂U

∂V
DV ∆V =

∆p

cδMr



1
0
0
0
ε+p
ρ

X

 . (4.3.10)

Assuming that the preconditioning parameter δ is also of order Mr (possibly limited by Mcut), it
is therefore obvious that hydrostatic pressure differences between grid cells are scaled by 1/M2

r .
This leads to an artificial diffusive flux in the mass, energy and scalar equations. It is therefore
expected that the Roe-Turkel scheme is unable to maintain a hydrostatic equilibrium on a discrete
grid, which is confirmed by further theoretical considerations and numerical tests (see Chapter 6).
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4.3.3 A new Low Mach number preconditioner

For astrophysical simulations of stellar interiors, it is vital to capture nearly hydrostatic and nearly
incompressible flows accurately. The Roe-Turkel scheme presented in the last Sections resolves
nearly incompressible flows, but has a potentially strong deficiency for nearly hydrostatic flows.
Therefore, a new numerical flux function has been developed in the context of this thesis, which
also relies on the flux preconditioning technique. Here, the numerical flux function can also be
written as

Fi+1/2 =
1

2

(
F
(
UL
i+1/2

)
+ F

(
UR
i+1/2

)
−
(
P−1 |PA|

)
roe

(
UR
i+1/2 −UL

i+1/2

))
. (4.3.11)

A new preconditioning matrix is proposed which takes the following form in primitive variables:

PV =



1 nx
ρδMr

c ny
ρδMr

c nz
ρδMr

c 0 0
0 1 0 0 −nx δ

ρcMr
0

0 0 1 0 −ny δ
ρcMr

0

0 0 0 1 −nz δ
ρcMr

0

0 nxρcδMr nyρcδMr nzρcδMr 1 0
0 0 0 0 0 1


(4.3.12)

Unlike in the Roe-Turkel scheme, the preconditioning parameter δ is expected to be of order 1/Mr.
Note that δ = 0 corresponds to the unpreconditioned case here. With this assumption, it can be
shown that the upwinding matrix scales with the reference Mach number as

DV = P−1
V |PVAV| ∝



O (1) O (1) O (1) O (1) O (1) 0

0 O (1) O (1) O (1) O
(

1
M2

r

)
0

0 O (1) O (1) O (1) O
(

1
M2

r

)
0

0 O (1) O (1) O (1) O
(

1
M2

r

)
0

0 O (1) O (1) O (1) O (1) 0
0 0 0 0 0 O (1)


. (4.3.13)

This asymptotic behavior is fully consistent with the scaling of the flux Jacobian matrix (see
Equation 4.2.5). Therefore, the new numerical flux is expected to have a numerical viscosity
independent of the Mach number. Moreover, artificial diffusion should be limited since none of
the entries of the upwinding matrix overwhelms the flux Jacobian as the Mach number decreases.
The eigenvalues of the preconditioned flux Jacobian PA read

λ1,2 = qn ∓
1

Mr
τ with τ =

√
c2 (1 + δ2)− δ2M2

r q
2
n (4.3.14)

λ3,4,5,6 = qn. (4.3.15)

The convective eigenvalues are left unmodified, whereas the speed of sound in the acoustic eigen-
values is replaced by an artificial speed of sound τ . The eigenvalues are plotted in Figure 4.5. It
can be seen that the acoustic eigenvalues increase even faster than in the unpreconditioned case.
Therefore, this preconditioner would be absolutely useless to accelerate convergence to a steady
state. However, since this does not matter for time-dependent flows, the preconditioner can be
chosen such that the accuracy of the numerical scheme is increased. However, the large disparity
of the eigenvalues may lead to strong numerical round-off errors for very slow velocities. For the
choice of the preconditioning parameter, the lower bound of the Mach number is therefore limited
to a cut off Mach number Mcut. Moreover, it is desirable that the numerical flux recovers the
unpreconditioned Roe-scheme for supersonic flows. In order to fulfill these two requirements, the
preconditioning parameter is set to

δ =
1

min (1,max (M,Mcut))
− 1. (4.3.16)

51



10−2 10−1 100

reference Mach number Mr

−20

−10

0

10

20

ei
ge

nv
al

ue

λ1, δ = 0
λ1, δ = 1/Mr − 1
λ2, δ = 0
λ2, δ = 1/Mr − 1
λ3,4,5,6

Figure 4.5: Eigenvalues of the low Mach preconditioned flux Jacobian PA

The new numerical flux function is referred to as Roe-Lowmach scheme in the following. Its
detailed implementation in LHC is presented in Appendix A. Special care has to be taken in
order to avoid large numerical round-off errors. However, so far it must be stressed that the
new preconditioning method is neither unique nor proven to be numerically stable. There are
several possibilities to choose a preconditioning matrix in order to achieve the same scaling of the
upwinding term. However, other preconditioners which were formulated and tested in the context
of this thesis either showed a slightly higher artificial viscosity or were numerically unstable and
are therefore not presented here. The numerical stability of the new Roe-Lowmach scheme is
demonstrated by numerical tests shown later in this thesis.

4.3.4 VFRoe-Lowmach scheme

Apart from Roe’s approximate Riemann solver, the VFRoe scheme presented in Section 3.5.3 can
also be modified in order to incorporate the low Mach number preconditioning. To this end, it is
proposed to approximate the solution of the Riemann problem at the interfaces by

U∗ =
1

2

(
UL
i+1/2 + UR

i+1/2 −
(
P−1sgn (PA)

)
roe

(
UR
i+1/2 −UL

i+1/2

))
. (4.3.17)

The numerical flux is then again defined by

Fi+1/2 = F (U∗) . (4.3.18)

The preconditioning matrix is taken from the Roe-Lowmach scheme. The resulting numerical flux
function is then denoted by VFRoe-Lowmach. To the author’s knowledge, flux preconditioning
has not been applied to the VFRoe scheme yet. Therefore, some numerical tests for this new
scheme are presented in the remainder of this thesis, although its behavior is expected to be very
similar to the Roe-Lowmach flux.

4.3.5 AUSM+ schemes

A very popular method to calculate numerical fluxes are the so-called AUSM+ schemes. They
were originally developed by Liou (1996) as an alternative to Godunov-like methods. Common
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to the AUSM+ schemes is that they split up the continuous flux function into a pressure part in
the momentum equations and a convective flux, i.e.

F = p


0
nx
ny
nz
0
0

+ ṁψ, ṁ = ρqn, ψ =


1
u
v
w

E + p
ρ

X

 . (4.3.19)

Note that this subsection uses dimensionalized quantities in order to be consistent with the original
publications of the schemes (Liou 1996, 2006). The implementation in LHC is performed in a
non-dimensional way. The two parts of the flux vector are discretized separately in the following
way:

Fi+1/2 = pi+1/2


0
nx
ny
nz
0
0

+ ṁi+1/2

{
ψLi+1/2 for ṁi+1/2 ≥ 0

ψRi+1/2 otherwise
(4.3.20)

Therefore the further discretization relies on a suitable definition of the interface pressure pi+1/2

and the interface mass flux ṁi+1/2 which determines the upwinding of the vector ψ. However,
with the original definition of these interface values, it has been recognized that the numerical
flux suffers from similar problems as Roe’s approximate Riemann solver in the low Mach number
regime. This is also confirmed by simulations of the Gresho vortex presented in Section 4.1.2.
Liou (2006) developed an extension to the AUSM+ scheme, called AUSM+-up, which is able to
resolve the incompressible limit of the compressible Euler equations. To this end, a scaling Mach
number and a corresponding scaling factor were introduced by

M2
o = min

(
1,max

(
M̄2,M2

cut

))
, (4.3.21)

fa = Mo (2−Mo) . (4.3.22)

The scaling Mach number is delimited by a cut-off Mach number at the lower side and by one at
the upper end, similar to the low Mach number Roe schemes. The original AUSM+ scheme can
be recovered from the AUSM+-up scheme by simply setting Mcut = 1 and fa = 1.

The interface pressure of the AUSM+-up scheme is calculated with the following expression:

pi+1/2 = P+
(5)

(
ML
i+1/2

)
pLi+1/2 + P−(5)

(
MR
i+1/2

)
pRi+1/2−

KuP+
(5)P−(5)faci+1/2

(
ρLi+1/2 + ρRi+1/2

) (
qRn − qLn

) (4.3.23)

The definition and meaning of terms not explained here is given in the original publication (Liou
2006). Note that the last term (second row) corresponds to a velocity diffusion term, which scales
with fa and is thus important for the behavior in the low Mach number regime. The interface
mass flux is determined by

ṁi+1/2 = Mi+1/2 ci+1/2

{
ρLi+1/2 for Mi+1/2 > 0

ρRi+1/2 otherwise
, (4.3.24)

where the interface Mach number is defined as

Mi+1/2 = M+
(4)

(
ML
i+1/2

)
+M−(4)

(
MR
i+1/2

)
−

Kp
fa

max
(
1− σM̄2, 0

) pRi+1/2−pLi+1/2

ρi+1/2c
2
i+1/2

. (4.3.25)
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The last term corresponds to a pressure diffusion term, which was explicitly added in order “to
enhance calculations of low Mach number or multi-phase flow” (Liou 2006). However, it can
be seen that this term scales with 1/fa ∝ 1/Mo and the pressure difference at the interface.
Therefore, the AUSM+-up flux is suspected to have an excessive artificial diffusion for nearly
hydrostatic flows, similar to the Roe-Turkel scheme (see Section 4.3.2). This is confirmed by a
simple numerical test of a one-dimensional hydrostatic atmosphere with zero velocity. There, the
low Mach number scaling is solely determined by the cut-off Mach number which is varied. The
initial AUSM+-up fluxes at the first interface result in:

Mcut F1/2,ρ F1/2,ρu F1/2,ρE

100 −0.85 · 10−7 0.12 · 101 −0.21 · 10−6

10−1 −0.45 · 10−6 0.12 · 101 −0.11 · 10−5

10−2 −0.43 · 10−5 0.12 · 101 −0.11 · 10−4

10−3 −0.43 · 10−4 0.12 · 101 −0.11 · 10−3

10−4 −0.42 · 10−3 0.12 · 101 −0.11 · 10−2

It can clearly be seen that the numerical diffusive flux scales with 1/Mcut in the continuity and
energy equation. This behavior is similar to the Roe-Turkel scheme (see Equation 4.3.10) where
the diffusive flux scales with 1/δ ∝ 1/Mcut.

In order to reduce the excessive numerical diffusion, a small modification of the AUSM+-up
scheme is proposed in this work. To this end, the low Mach number scaling is disabled in the
pressure diffusion term. Thus, the scaling variables fa is set to unity in the definition of the
interface Mach number (Equation 4.3.25), while the normal value for fa is used to calculate the
interface pressure (Equation 4.3.23). The modified flux function is denoted as AUSM+-Lowmach.
Using this new scheme to calculate the numerical flux of the same hydrostatic atmosphere as
above results in:

Mcut F1/2,ρ F1/2,ρu F1/2,ρE

100 −0.85 · 10−7 0.12 · 101 −0.21 · 10−6

10−1 −0.85 · 10−7 0.12 · 101 −0.21 · 10−6

10−2 −0.85 · 10−7 0.12 · 101 −0.21 · 10−6

10−3 −0.85 · 10−7 0.12 · 101 −0.21 · 10−6

10−4 −0.85 · 10−7 0.12 · 101 −0.21 · 10−6

Thus, the diffusive flux does not depend on the local Mach number anymore, which is vital for
the simulation of nearly hydrostatic flows. However, the modification proposed here was justi-
fied by heuristic arguments only. It cannot be excluded that the new scheme lost some of its
robustness. Numerical tests presented later in this thesis therefore have to investigate whether
the AUSM+-Lowmach scheme provides enough stability for the desired applications.

4.3.6 Low Mach number reconstruction

A very different method to resolve low Mach number flows without excessive artificial viscosity
was proposed by Thornber et al. (2008). They recognized that the solution of the Riemann
problem at the interfaces (as shown by Guillard & Murrone 2004) contains a pressure term that
supports the generation of artificial sound waves which are the source of the excessive numerical
dissipation. This term (appearing in Equation 4.2.1) scales with the first order velocity difference
with respect to the reference Mach number at the interfaces. Therefore, it was proposed to
scale this difference with the local Mach number making the pressure term second order in Mach
number. This method can be applied directly after the reconstruction of the interface values
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where scaled velocity components (denoted by a tilde) are defined by ũL
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 , (4.3.26)
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ṽR

w̃R

 =
1

2


 ũL
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 . (4.3.27)

For supersonic flows the velocities are left unmodified. The scaling parameter is therefore defined
as s = min (1,M). Numerical tests have shown that this scaling suppresses the excessive numerical
dissipation in the low Mach number regime. The big advantage of the modified reconstruction is
that it can principally be used in combination with any numerical flux function. Moreover, the
scaling parameter does not have a lower limit in order to avoid some kind of singularity.

Here, the low Mach number reconstruction applied to Roe’s approximate Riemann solver is
analyzed in the same manner as the other numerical flux functions. The resulting numerical flux
function is denoted by Roe-LMRC in the following. Assuming that the scaling parameter is of
order Mr the modified upwinding term scales as

|AV|∆Ṽ ∝



O (1) O (Mr) O (Mr) O (Mr) O
(

1
Mr

)
0

0 O (1) O (1) O (1) O (1) 0
0 O (1) O (1) O (1) O (1) 0
0 O (1) O (1) O (1) O (1) 0

0 O (Mr) O (Mr) O (Mr) O
(

1
Mr

)
0

0 0 0 0 0 O (1)


∆V. (4.3.28)

Compared to the scaling of the flux Jacobian (Equation 4.2.5) it can be seen that the upwinding
matrix does not overwhelm the continuous flux in the velocity equations making the artificial
dissipation independent of the Mach number. However, some entries have a much weaker scaling
than the flux Jacobian leading to an upwinding which may be significantly to small in the low
Mach number regime. Thus, the resulting numerical flux is suspicious to be numerically unstable
under certain conditions. In fact, it has been reported that the low Mach number reconstruction
is at least prone to checkerboard-like instabilities in the pressure field (see Rieper 2011, and
references in there).

4.4 Validation and comparison

In the previous sections, several numerical flux functions were discussed which are supposed to
be suitable for simulations in the low Mach number regime. Here, some of the properties of these
numerical schemes are compared by simulation results of the LHC code. To this end, the Gresho
vortex is set up in the same way as described in Section 4.1.2. For each numerical flux function,
the solution is advanced in time to t = 2 with four different Mach numbers.

At first, the total kinetic energy relative to its initial value is examined at the end of the simu-
lation time. The results are presented in the following table:

numerical flux Mmax = 0.1 Mmax = 0.01 Mmax = 0.001 Mmax = 0.0001
Roe-Turkel 0.961 0.961 0.961 0.961
Roe-Lowmach 0.972 0.973 0.973 0.973
VFRoe-Lowmach 0.972 0.973 0.973 0.973
Roe-LMRC 0.987 0.990 0.990 0.990
AUSM+-up 0.955 0.957 0.957 0.957
AUSM+-Lowmach 0.966 0.969 0.969 0.969
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It can be seen that all numerical fluxes have a numerical dissipation independent of the Mach
number. Moreover, it should be noted that all schemes have a lower dissipation than the unpre-
conditioned Roe scheme at Mmax = 0.1 (see Section 4.1.2). The use of low Mach number methods
is therefore recommendable even for moderately low Mach numbers. Moreover, the Roe-Lowmach
and the VFRoe-Lowmach scheme behave as expected in precisely the same way. Moreover, the
numerical viscosities of all numerical flux functions tested here are comparable.

In the next step of the analysis, the global pressure fluctuations pfluc = pmax−pmin

pmax
are calculated

on the grid at the end of each simulation:

numerical flux Mmax = 0.1 Mmax = 0.01 Mmax = 0.001 Mmax = 0.0001
Roe-Turkel 1.2 · 10−02 1.3 · 10−04 1.3 · 10−06 1.3 · 10−08

Roe-Lowmach 1.3 · 10−02 1.3 · 10−04 1.3 · 10−06 1.3 · 10−08

VFRoe-Lowmach 1.3 · 10−02 1.3 · 10−04 1.3 · 10−06 1.3 · 10−08

Roe-LMRC 1.3 · 10−02 1.3 · 10−04 1.3 · 10−06 1.3 · 10−08

AUSM+-up 1.2 · 10−02 1.3 · 10−04 1.3 · 10−06 1.3 · 10−08

AUSM+-Lowmach 1.3 · 10−02 1.3 · 10−04 1.3 · 10−06 1.3 · 10−08

These results prove that the pressure fluctuations scale exactly with M2
max. The flow is there-

fore in the incompressible regime (see Section 2.6.2), which can be resolved by all numerical flux
functions.

The last part of the analysis concerns the numerical stability of the different discretizations.
All schemes seem to be stable because plots of the flow fields do not show any apparent spurious
features. Since a rigorous mathematical stability analysis of the numerical flux functions is hardly
possible, a heuristic measure of stability is developed in the following. To start with, it should
be noted that numerical instabilities manifest mostly in the high-frequency modes on the discrete
grid. Therefore, the two-dimensional, discrete Fourier transformation (DFT2D) of the pressure
field is calculated at the end of each simulation. The component with the largest frequency is
the so-called Nyquist frequency which describes checkerboard-like modes on the discrete grid.
The strength of this component is compared to the (0, 0)-mode which just specifies the pressure
offset. Since an incompressible flow field admits relative pressure fluctuations of order M2

max, only
fluctuations above this level are considered. Therefore, the final measure for numerical stability
is defined as

α =
1

M2
max

·
|DFT2D (pi,j)|Nyquist

|DFT2D (pi,j)|0,0
. (4.4.1)

At the beginning of each simulation, this value is always zero. Since the Gresho vortex is a time-
independent solution of the incompressible Euler equations, it is expected that the amplitude of
high-frequency modes stays zero. However, it will be shown in Chapter 5, that the temporal
evolution of the grid is only performed with a predefined relative accuracy. For the simulations
of the Gresho vortex the minimum accuracy was set to 10−7. Therefore, values of α may also
contain random fluctuations up to this level. Only significantly larger values originate from the
spatial discretization. The following table summarizes the values of α for each simulation:

numerical flux Mmax = 0.1 Mmax = 0.01 Mmax = 0.001 Mmax = 0.0001
Roe-Turkel 5.4 · 10−14 1.1 · 10−12 2.9 · 10−11 1.2 · 10−10

Roe-Lowmach 2.7 · 10−07 2.4 · 10−07 5.9 · 10−08 9.1 · 10−08

VFRoe-Lowmach 3.3 · 10−11 2.2 · 10−13 3.9 · 10−09 5.6 · 10−10

Roe-LMRC 3.5 · 10−16 1.2 · 10−07 1.1 · 10−04 3.5 · 10−04

AUSM+-up 2.6 · 10−16 1.1 · 10−13 1.3 · 10−11 4.3 · 10−10

AUSM+-Lowmach 1.6 · 10−15 1.8 · 10−07 3.0 · 10−05 3.5 · 10−04

It can be seen that the amplitude of the high-frequency mode is significantly above the relative
accuracy of the simulation for the Roe-LMRC and the AUSM+-Lowmach scheme. Therefore,
it is inferred that the fluctuations are presumably supported by the respective numerical flux
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Figure 4.6: Time evolution of the high-frequency pressure mode

functions. Fortunately, these fluctuations do not further grow in time after they have reached
a saturation level. This can be seen in Figure 4.6, where the temporal evolution of α is exem-
plary plotted for the AUSM+-Lowmach scheme. Thus, these schemes can also be considered to
be numerically stable. However, all other numerical flux functions have high-frequency pressure
fluctuations which are orders of magnitude smaller and should be preferred from this point of
view.

Summarizing the theoretical and numerical properties of the low Mach number flux functions,
it can be stated that their use is essential in order to capture the asymptotic properties of the
compressible Euler equations. However, the discussion of artificial diffusion in the presence of a
nearly hydrostatic background shown in Section 4.3.2 and Section 4.3.5 revealed that the Roe-
Turkel and the AUSM+-up flux are presumably not suited for this kind of flow. Numerical
simulations given in Chapter 6 support this result. From theoretical considerations presented in
Section 4.3.6, the Roe-LMRC scheme with the modified reconstruction method is suspicious to
have an insufficient upwinding in order to be numerically stable under all flow conditions. This
statement is supported by the results presented in this section. The AUSM+-Lowmach scheme
revealed a similar behavior. Contrary to that, the Roe-Lowmach and VFRoe-Lowmach seem to
be quite robust so far, have a small Mach number independent dissipation and are theoretically
well-suited for nearly hydrostatic flows. Thus, the new flux preconditioning technique developed
in the context of this thesis is the most promising method for an accurate simulation of stellar
interiors. Therefore, further investigations presented in this work are mainly focused on the
(VF)Roe-Lowmach scheme.

57



5 Temporal discretization

So far, the discretization of the compressible Euler equations was only performed in space leading
to semi-discrete equation of the form

∂Ui,j,k

∂t
+ Ri,j,k (U) = 0. (5.0.1)

It should be noted that the spatial residual Ri,j,k at a certain grid point may generally depend
on the conservative variables at all other grid points. Therefore, U does not have any indices
in Ri,j,k(U) in the above equation. The separation of the spatial and temporal discretization is
known as method of lines and allows to combine several discretization methods in a very flexible
way.

In order to solve the remaining system of ordinary differential equations, several approaches are
discussed in this chapter. In general, the temporal evolution of the cell-averaged variables Ui,j,k

is approximated by a series of discrete steps Un
i,j,k starting from the given initial conditions U0

i,j,k.
The temporal spacing between two steps is denoted by ∆t and does not have to be uniform.

5.1 Explicit time stepping

The simplest way to approximate Equation 5.0.1 is the so-called forward Euler method:

Un+1
i,j,k −Un

i,j,k

∆t
+ Ri,j,k (Un) = 0 (5.1.1)

Here, the time derivative is approximated by a simple finite difference at each grid point, where the
spatial residual is evaluated at the old time step. The conservative variables at the new time step
can be directly obtained by solving Equation 5.1.1 for Un+1

i,j,k. Since this is possible analytically,
the forward Euler scheme belongs to the class of so-called explicit time steppers. However, the
above discretization is only first-order accurate in time, meaning that the approximation error of
the finite difference scales with (∆t)

1
which is not satisfactory for most practical applications.

However, a huge variety of higher-order explicit time steppers can be found in literature, each
with slightly different properties. For the use in LHC, a so-called explicit Runge-Kutta developed
by Shu & Osher (1988) has been implemented. It advances the solution to the next time step in
a three-stage process:

U
(1)
i,j,k = Un

i,j,k −∆t Ri,j,i (Un)

U
(2)
i,j,k =

3

4
Un
i,j,k +

1

4
U

(1)
i,j,k −

1

4
∆t Ri,j,k

(
U(1)

)
Un+1
i,j,k =

1

3
Un
i,j,k +

2

3
U

(2)
i,j,k −

2

3
∆t Ri,j,k

(
U(2)

) (5.1.2)

This scheme is denoted by RK3 as it is formally third-order in time. Special emphasis in its
derivation has been put on non-linear stability as it fulfills the total variation diminishing (TVD)
property.

In general, the advantage of explicit time stepping methods is that they are easy to implement
and the resource usage (on the computer) is very low per time step. However, they have stringent
conditions on the maximum allowable time step δt. Violating these conditions leads to numerical
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instabilities which quickly deteriorate the solution. For the homogeneous Euler equations, the
time step is usually determined by the (acoustic) CFL condition

∆tuc =
CFLuc
Ndim

min

(
∆x

|qn|+ c/Mr

)
, (5.1.3)

where the minimum has to be taken over all coordinate directions and grid cells. Ndim denotes
the spatial dimension of the grid. The condition limits the propagation of fastest waves relative
to the width ∆x of grid cells. For the homogeneous Euler equations, the restriction applies to
sound waves traveling at the velocity |qn|+ c/Mr. The dimensionless CFLuc number determines
how many cells a sound wave may travel per time step. However, all explicit time steppers have
an upper limit of the CFLuc number which is of the order one. Therefore, the time step scales
with the Mach number, i.e. ∆t ∝Mr. In the low Mach number regime, this is a big disadvantage
since 1/Mr time steps are required to advect the fluid from one cell to another. This restriction
applies even when no sound waves are present on the grid, which is a typical case for low Mach
number flows. Moreover, it has been shown by Birken & Meister (2005) that using the Roe-Turkel
scheme results in an even more stringent time step limitation:

∆tuc,lm =
CFLuc
Ndim

min

(
M · ∆x

|qn|+ c/Mr

)
(5.1.4)

Here, M denotes the local Mach number. Thus, the resulting time step scales as ∆t ∝ M2
r .

Numerical experiments with LHC have shown that this restriction also applies to some other low
Mach number flux functions. Therefore, it can be concluded that explicit time stepping methods
are highly inefficient in the low Mach number regime. Even with strongly optimized codes for the
flux evaluation, practical simulations for Mach numbers . 0.01 are hardly feasible.

5.2 Implicit time stepping

The time step limitations of explicit schemes can be avoided by using implicit schemes. Their
properties and their implementation are described in the remainder of this chapter.

5.2.1 The Backward Euler scheme

The simplest implicit scheme is the commonly used backward Euler method. The solution is
advanced in time with the following formula:

Un+1
i,j,k −Un

i,j,k

∆t
+ Ri,j,k

(
Un+1

)
= 0 (5.2.1)

The fundamental difference to the forward Euler method is that the spatial residual is evaluated
at the new time step. The solution Un+1 is only given by this implicit equation, which can
not be solved analytically in general. The reason why this temporal discretization admits larger
time steps can be illustrated by a simple heuristic arguments as shown in Figure 5.1. There, the
analytic solution of some variable (e.g. the pressure) at some grid point is sketched in gray. It
consists of a wave with large amplitude and a large wavelength which symbolizes a slow advection
wave. Superimposed to that is a wave with a small amplitude and wavelength which refers to a
fast acoustic wave. Starting from a known solution at t = 0, an approximation for the solution at
t = 1 should be found in one step. Using the explicit forward Euler, the derivative is calculated
at the initial point and the solution is extrapolated to the final point. From the figure, it can be
seen that this results in a huge approximation error because the derivative is solely determined by
the fast acoustic wave, but the time step is chosen on the time scale of the advective wave. This
explains the stringent time step limitation of explicit methods. However, the backward Euler
method performs the extrapolation in the other direction. Therefore, a point at t = 1 has to

59



−2 −1 0 1 2 3 4 5 6 7 8
time

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

so
m

e
va

ri
ab

le

forward Euler

true solution

unkown
point

backward Euler

Figure 5.1: Simplified illustration of implicit time stepping

be found where its derivative points backwards to the initial value. Although the details of the
fast acoustic wave are not captured by this method, the result is a rather good approximation
to the slow advective wave. However, it was shown in Section 2.6 that the nearly incompressible
flow field and the sound waves decouple in the low Mach number regime. Since sound waves are
usually not of interest, implicit time stepping algorithms are well suited for low Mach number
flows.

The stability of implicit schemes can also be analyzed in a mathematically rigorous way (Hairer
& Wanner 1996). It can be shown that the backward Euler method applied to linear differential
equations is numerically stable for arbitrary large time steps. Although the discretization of the
Euler equations forms a non-linear system of differential equations, implicit time steppers are
expected to be very stable in this case.

Moreover, it must be stressed that the numerical stability of implicit methods for very large time
steps does not imply that the approximation of the solution fulfills any accuracy requirements.
The simplistic illustration from above suggests that the time step has to be chosen such that
the physical time scale of interest is well resolved. This is confirmed by numerical experiments
presented in Section 5.6. Moreover, it should be noted that the backward Euler method is only
first order accurate in time. Since this is usually not desirable for practical simulations, higher
order implicit methods are presented in the next section.

Considering the computational efficiency of the backward Euler scheme, the solution of the
implicit equation 5.2.1 must be taken into account. Since an analytic inversion of the spatial
residual is not possible, the system has to be solved numerically (see Section 5.4). Therefore, the
implicit equation is rewritten in the standardized form

Di,j,k

(
Un+1

)
= Ri,j,k

(
Un+1

)
+ ctU

n+1
i,j,k + Ci,j,k = 0, (5.2.2)

which is suitable for the numerical solvers. Here, the so-called defect D has to be zero for all
variables at all grid points. For the backward Euler method the two constants within the defect
are defined in the following way:

ct =
1

∆t
, Ci,j,k = − 1

∆t
Un
i,j,k (5.2.3)

The numerical solution of this non-linear system may require substantial computational effort
compared to an explicit time step. Therefore, implicit time stepping can only be efficient if the
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increase of the size of the time step is large enough to compensate the additional computational
work.

5.2.2 ESDIRK schemes

It was seen in the last section that the backward Euler method is only first-order accurate in time.
Among the various implicit methods of higher order described in literature (e.g. Hairer & Wanner
1996), a special class of implicit Runge-Kutta methods has been chosen for the implementation
in LHC and is briefly presented in the following. In general, a Ns-stage Runge-Kutta method
requires the computation of Ns intermediate steps by

U
(s)
i,j,k = Un

i,j,k −∆t

Ns∑
r=1

αs,rRi,j,k

(
t+ τr∆t, U

(r)
)
. (5.2.4)

The solution at the new time step can then be computed with

Un+1
i,j,k = Un

i,j,k −∆t

Ns∑
r=1

βrRi,j,k

(
t+ τr∆t, U

(r)
)
. (5.2.5)

Thus, a Runge-Kutta method is characterized by the coefficients α (Ns × Ns matrix), β (row
vector of size Ns) and τ (column vector of size Ns) which are conveniently written in a so-called

Butcher-tableau:
τ α

β
Note that a certain Runge-Kutta scheme is explicit if α contains non-zero values only below the
diagonal. If α is a full matrix, all intermediate steps are implicitly coupled, resulting in a huge
non-linear system to be solved. A good alternative are so-called ESDIRK schemes (Explicit first
stage, Singly Diagonally Implicit Runge-Kutta). They require α to have only zeros above the
diagonal and that he first stage is explicit (α1,1 = 0). Moreover, the values for β have to be equal
to the last row of α. Assuming that the spatial residual contains no explicit time dependence, an
ESDIRK scheme may then be written in the following form:

U
(1)
i,j,k = Un

i,j,k, (5.2.6)

U
(s)
i,j,k = Un

i,j,k −∆t

s∑
r=1

αs,rRi,j,k

(
U(r)

)
s = {2, . . . , Ns} , (5.2.7)

Un+1
i,j,k = U

(Ns)
i,j,k . (5.2.8)

It can be seen that the intermediate stages (2, ..., Ns) are given by an implicit equation which
only depends on the results of the previous stages. Hence, an Ns-stage ESDIRK scheme requires
the subsequent solution of Ns − 1 non-linear systems. These systems can also be written in the
standardized form which was already used for the backward Euler scheme:

Di,j,k

(
U(s)

)
= Ri,j,k

(
U(s)

)
+ ctU

(s)
i,j,k + Ci,j,k = 0 (5.2.9)

The only difference is that the two constants are now defined as

ct =
1

αs,s∆t
, Ci,j,k = − 1

αs,s∆t
Un
i,j,k +

s−1∑
r=1

αs,r
αs,s

Ri,j,k

(
U(r)

)
. (5.2.10)

Thus, the interface for the non-linear solver does not have to be rewritten for these implicit
Runge-Kutta schemes.

Several ESDIRK schemes described by Hosea & Shampine (1996) and Kennedy & Carpenter
(2001) have been implemented in LHC. They are denoted by ESDIRK23, ESDIRK34, ESDIRK46
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and ESDIRK58 where the first digit represents the formal order of accuracy while the second digit
denotes the number of stages Ns. The corresponding Butcher tableaux are listed in Appendix B.
Theoretical considerations discussed by the author’s of the corresponding ESDIRK schemes show
that they share the advantages of the backward Euler method concerning numerical stability.
Their accuracy for the simulation of the compressible Euler equations is compared in Section 5.6.

5.3 Time step determination

5.3.1 CFL-like criteria

Previously, it has been shown that the time step is restricted by a so-called acoustic CFL criterion
for explicit time steppers which limits the propagation of sound waves to a certain number of grid
cells. Although implicit time steppers are not subject to such a restriction in terms of numerical
stability, accuracy requirements on the solution may limit the time step. Therefore the concept
of a limited signal propagation is generalized here. The time step is thus determined by

∆t =
CFL

Ndim
min

(
∆x

s

)
, (5.3.1)

where s is the speed of some kind of signal which is to be resolved temporally. Note that the
minimum has to be taken over all grid cells and in all curvilinear coordinate directions. Since
the geometry terms are only evaluated at cell interfaces, the cell width and the direction of the
coordinate line in global Cartesian space are approximated by simple arithmetic means between
the right (+) and left (−) interface of a cell:

∆x =
2Vi,j,k(
a+
χ + a−χ

) (5.3.2)

n =
1

2

(
n+
χ + n−χ

)
(5.3.3)

For Cartesian geometries, these formulas are exact whereas they may be only a rough estimate for
strongly deformed grids. However, since the proposed CFL-like criteria do not limit the temporal
accuracy in an absolute sense anyway, such estimates are expected be sufficient.

The acoustic CFLuc criterion can be recovered by setting the signal speed to

s = |qn|+
c

Mr
. (5.3.4)

In this case, it is expected that sound waves are well resolved even with implicit schemes although
the computational efficiency may be poor.

For low Mach number flows, it is proposed to set the signal speed to the local fluid velocity, i.e.

s = |qn| . (5.3.5)

Thus, the time step is determined such that the fluid moves CFL. 1 grid cells per time step. The
criterion, which is independent of the Mach number, is referred to as advective or CFLu criterion.
It is expected that implicit time steppers smear out sound waves because they are not resolved
temporally, but capture the advective flow accurately.

In the presence of gravity, further physical time scales may be relevant for the flow field (see
Chapter 6). Since the exact requirements on the time step are not quite clear in this case, a new
CFL-like criterion is proposed here which takes gravity into account in its extreme limiting case.
To this end, the strength of gravity (compared to advection) along a certain coordinate direction
(given by the unit vector n) is defined as

gn =
n · g
F 2

r

. (5.3.6)
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It is assumed that a fluid element with initial velocity qn is not influenced by hydrodynamic
processes. Therefore, it is in free fall with its relative position after a time ∆t given by

x = gn (∆t)
2

+ qn∆t. (5.3.7)

Solving this equation for ∆t and applying some algebraic manipulations results in

∆t =
2x

qn ±
√
q2
n + 4gnx

. (5.3.8)

Limiting the relative position change to

|x| = CFL ∆x, (5.3.9)

this formula fits into the schemes for CFL-like criteria defined above. A free fall signal propagation
speed can therefore be defined as

s =
1

2

(
aqn +

√
q2
n + 4a gn CFL ∆x

)
. (5.3.10)

The constant a is determined by evaluating the various cases given by different directions of
gravity and velocity:

condition a
qn > 0, gn > 0 +1
qn < 0, gn < 0 −1

qn > 0, gn < 0,
q2n
4gn

+ CFL ∆x ≤ 0 +1

qn > 0, gn < 0,
q2n
4gn

+ CFL ∆x > 0 −1

qn < 0, gn > 0,
q2n
4gn
− CFL ∆x > 0 −1

qn < 0, gn > 0,
q2n
4gn
− CFL ∆x < 0 +1

(5.3.11)

The new criterion is referred as free-fall or CFLug criterion. It is expected that it ensures grav-
itational effects to be well resolved temporally, although it might be a bit too restrictive since
it does not take into account hydrodynamic effects caused by pressure gradients. It should also
be noted that the advective CFL criterion becomes singular if all velocities are zero. This is the
case when starting a simulation from a quiet hydrostatic atmosphere. However, the free-fall CFL
criterion provides a meaningful time step for this case. Moreover, it approaches the advective
CFL criterion as gravity becomes weaker.

5.3.2 ESDIRK error estimator

A very different way to calculate the time step is inherently provided by the ESDIRK schemes.
To see this, it should be noted that these schemes calculate the solution at the new time step by
combining the results from the intermediate stages applying the corresponding set of coefficients
β. These coefficients where derived such that the overall method has a certain order of accuracy.
However, it is also possible to derive a second set of coefficients β̃ that result in a lower order
approximation of the solution (see Hairer & Wanner 1996):

Ũn+1
i,j,k = Un

i,j,k −∆t

Ns∑
r=1

β̃rRi,j,k

(
U(r)

)
(5.3.12)

Note that this does not involve much computational overhead, since the spatial residuals at the
intermediate steps need to be stored anyway. Comparing the low order approximation to the high
order approximation provides an estimate of the absolute error for the conservative variables in
each grid cell:

Qn+1
i,j,k = Ũn+1

i,j,k −Un+1
i,j,k (5.3.13)
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Strictly speaking, this is an error estimate for the lower order approximation. However, the high-
order approximation must have an error well below that value, which serves as an upper bound
in this case. For each conservative variable, the maximum norm of the error is computed over the
whole grid. These values are scaled by a typical value of the corresponding conservative variable
in order to obtain a relative error estimate:

Qmax =
1

||Un| | max
i,j,k

∣∣∣Qn+1
i,j,k

∣∣∣ (5.3.14)

If the relative error in any conservative variable exceeds a given threshold, the time step is rejected.
The size of the time step is then reduced until the required accuracy is reached. In case a time
step was successful, the size of the next time step is calculated by (Hairer & Wanner 1996)

∆tnew = ∆told

(
threshold

max (Qmax)

)1/5

. (5.3.15)

This ensures that the size of the time step may also grow, if the error is well below the threshold.
With the above algorithm, a suitable time step is determined automatically. However, exper-

iments with low Mach number flows have shown that this method often reduces the time step
to unnecessary small values. This behavior can be attributed to the appearance of very weak
sound waves. The error estimator recognizes that they are better resolved with smaller time
steps, although it is not desired to follow them. A possible solution to this problem is described
by Hairer & Wanner (1996) where a stiff error estimator is proposed. However, this has not been
implemented in LHC yet. Instead, the allowed range of automatically determined time steps is
limited by some kind of CFL criterion, e.g. limiting the CFLu number to values between 0.1 and
10. Numerical experiments have shown that this kind of treatment is usually sufficient.

5.4 Non-linear equations

The implicit time steppers introduced in this chapter require the solution of one or more non-
linear algebraic systems per time step. In the engineering community, similar systems occur in
the context of steady-state flow problems and are commonly solved by non-linear multigrid (FAS)
or pseudo-transient methods. However, it has been shown in the author’s diploma thesis (Miczek
2008) that it is very challenging to extend these methods for time-dependent problems in the
low Mach number regime. Therefore, a different approach is used here which is presented in this
section.

5.4.1 General properties and the treatment of scalar fields

Before solving the actual equations, their structure is analyzed in order to simplify the solution
process. It has been shown in the previous section that the non-linear equations may always be
written in the following form:

Di,j,k (U) = Ri,j,k (U) + ctUi,j,k + Ci,j,k = 0 (5.4.1)

Assuming that the vector of conserved quantities U contains Ncons variables per grid cell, the
total number of equations (and unknowns) for a grid with Nξ ·Nη ·Nζ cells is given by

Neqn = Ncons ·Nξ ·Nη ·Nζ . (5.4.2)

The spatial residual R couples each equation to the variables in the other grid cells. The de-
pendencies may be analyzed by computing the Jacobian matrix ∂D

∂U of the defect D. Since this
matrix needs to be evaluated numerically in order to solve the equations (see next section), the
number of dependencies per equation and thus the number of non-zero elements of the matrix is
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of vital importance. If each equation would be coupled to the unknowns in all other grid cells,
this Jacobian matrix would be dense, i.e. having N2

eqn entries. For reasonable three-dimensional
grids, the amount of data would exceed the memory limits of any modern computer system. For-
tunately, the coupling between the equations is very limited making the matrix sparse. This can
be seen by analyzing the flux evaluation. The spatial residual at a certain grid cell depends on the
flux differences between the interfaces in each coordinate direction. The corresponding interface
values are reconstructed along one-dimensional lines of cell-averaged values from the two grid cells
in positive and negative direction. Therefore, the spatial residual at a certain grid cell depends
on a stencil of 13 grid cell (in three dimensions). The coupling between grid cells is always dense.
Hence, for a general Ndim-dimensional grid, the number of non-zero entries in the Jacobian matrix
can be written as

Nmatrix = N2
cons · (4 ·Ndim + 1) ·Nξ ·Nη ·Nζ . (5.4.3)

Assuming a memory requirement of 8 bytes (double precision float) per entry, the defect Jacobian
matrix for a three dimensional grid of size 5123 with 5 unknowns per grid cell would require 325
GB of memory. Although this is quite substantial, it is manageable on modern computer systems.

Unfortunately, a severe issue is encountered at this point. If a simulation requires a lot of
scalar fields, the increased number of conservative variables leads to a quadratic growth of the
size of the defect Jacobian matrix. Therefore, a new technique is proposed here in order to
handle such situations efficiently. To start with, it can be seen from the Euler equations that
scalar fields only appear in their corresponding advection equation. However, if scalar fields are
used to describe chemical abundances, they may also influence the pressure via the equation of
state. In this case, all conservative variables are fully coupled and the scalar field is called active
scalar. Alternatively, when a scalar field is only advected with the fluid, but does not influence
the hydrodynamic evolution, it is called passive scalar. Then the coupling between the passive
scalar and the remaining conservative variables is only in one direction. The conservative variables
influence the evolution of the passive scalar but not in opposite way.

Therefore, it is proposed to split the vector of conservative variables into a hydrodynamic part
containing the active scalars and a passive scalar part:

Uh =



ρ
ρu
ρv
ρw
ρE
ρXa,1

ρXa,2

. . .


Up =

 ρXp,1

ρXp,2

. . .

 (5.4.4)

The same splitting is applied to the discretized Euler equations. For the implicit time steppers,
this results in a non-linear system of equations for the hydrodynamic part:

Dh (Uh) = Rh (Uh) + ctUh + Ch = 0. (5.4.5)

Having a large amount of passive scalars Np, this system is drastically reduced in size. The
number of entries of the corresponding Jacobian matrix is

Nhmatrix = (Ncons −Np)2 · (4 ·Ndim + 1) ·Nξ ·Nη ·Nζ . (5.4.6)

More importantly, the hydrodynamic part can be solved without any knowledge of passive scalars.
After obtaining a solution for Uh, the remaining equation for each passive scalar Up,i reads

Dp,i (Up,i) = Rp,i (Uh,Up,i) + ctUp,i + Cp,i = 0 i ∈ {1, .., Np}. (5.4.7)

Since passive scalars are usually not coupled to each other, these equations can be solved inde-
pendently. Therefore each of these non-linear equations is scalar, having a Jacobian matrix of
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size
Npmatrix = (4 ·Ndim + 1) ·Nξ ·Nη ·Nζ . (5.4.8)

Hence, the total complexity of the system is greatly reduced by applying the splitting in a hy-
drodynamic and a passive scalar part. The computational overhead for all passive scalars scales
linearly with their total number. Moreover, it should be stressed that the solution remains equal
to the original system.

However, scalar fields are often used to describe chemical abundances which may have an impact
on the hydrodynamic pressure. The scalar fields therefore need to be active because they enter the
equation of state. However, in most cases it can be assumed that this influence is only very weak.
The chemical abundances may then also be described by passive scalars. The hydrodynamic part
of the equations is then solved under the assumption that the passive scalars remain constant on
their previous values (i.e. at the last Runge-Kutta stage or at the last time step):

Dh (Uh) = Rh

(
Uh,U

old
p

)
+ ctUh + Ch = 0 (5.4.9)

Having obtained the solution of the hydrodynamic part, the passive scalars are advected with
the fluid as usual. Although the solution only approximates the solution of the original system,
it can be shown by numerical experiments that the differences are usually very small, justifying
this approach. For rare situations where this approximation causes significant errors, it may be
sufficient to treat some abundances or thermodynamic properties like the mean molecular weight
actively while keeping all other abundances passively. In LHC, any scalar value can either be
treated actively or passively. In the latter case, the approximation described here is automatically
used.

5.4.2 Newton-Raphson method

In order to solve the non-linear systems of equations, the so-called Newton-Raphson method is
used here. This is an iterative process, starting from an initial guess U0 for the solution. The
subsequent iterations are then calculated by

Uk+1 = Uk −
(
λ
∂Dk

∂U

)−1

Dk. (5.4.10)

Instead of inverting the Jacobian matrix of the defect (evaluated at the previous iteration step),
the following system of linear equations can be solved for the change ∆U = Uk+1 −Uk of the
conservative variables in each iteration step:

λ
∂Dk

∂U
∆U = −Dk (5.4.11)

Thus, the solution of the non-linear equations is reduced to the subsequent solution of several
linear systems of equations. This Newton-Raphson process is known to converge quadratically
to the solution under certain conditions. Most importantly, the initial guess must not be too far
away from the solution. This is accomplished by choosing the initial guess to the solution from
the last Runge-Kutta stage (ESDIRK) or to the last time step (backward Euler), because changes
in one time step are expected to be moderate. Other requirements for a good convergence of the
Newton-Raphson method are that the Jacobian matrix is evaluated accurately and that the linear
systems are solved to machine precision. If one of the requirements for quadratic convergence is
not met, the method may also converge but at a slower rate. In case the method does not converge,
it may be helpful to set the scalar damping parameter λ to values > 1. Otherwise, this parameter
is set to unity corresponding to an undamped scheme.

In order to monitor the convergence of the Newton-Raphson method, the L2-norm of the defect
is computed after every iteration for each conservative variable c ∈ {ρ, ρu, ρv, ...} separately:

‖D‖c =

√∑
i,j,k

(
Dc
i,j,k

)2

. (5.4.12)
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The resulting values would ideally decrease to zero during the iteration. However, from the
non-linear equations it can be seen that they contain a constant vector C:

D = R (U) + ctU + C = 0. (5.4.13)

This addition is a source of numerical cancellation errors. Therefore, the convergence is always
monitored in relation to the norm of the constant vector, i.e.

‖D‖c
‖C‖c . (5.4.14)

The lowest values achievable in this scaled norm are related to the machine precision (≈ 10−16

for double precision floating point values). Moreover, this scaling ensures that the convergence is
monitored independently of the units in which the equations are formulated.

However, reaching machine precision is not always possible. Further numerical round-off errors
in the discretization (e.g. by the low Mach number flux function) or in the solution process (e.g.
linear solvers) may limit the achievable precision. Moreover, the convergence may be limited
by slightly inexact defect Jacobian matrices or by an inaccurate solution of the linear systems.
However, reaching machine precision is not always desirable at all. The discretization of the
Euler equations contains an inherent discretization error, depending on the numerical schemes
and on the grid resolution. Therefore, solving the non-linear systems to a higher precision than
the discretization admits may be a waste of computational resources. This is underlined by the
fact that a single Newton-Raphson iteration may be sufficient in order to maintain second-order
accuracy in time (see e.g. Keppens et al. 1999). However, since higher-order time stepping schemes
are used here and the discretization error is usually not known, it is hard to set a precise limit
for the desired accuracy. If the ESDIRK error estimators are used, the accuracy of the solution
of the non-linear system should be at least one order of magnitude below the ESDIRK tolerance.
For this work, the Newton-Raphson iteration is usually terminated when the scaled norm drops
below ≈ 10−7 in each conservative variable.

Besides monitoring the scaled norm at each iteration step, the convergence history is also
analyzed automatically. If the dominant component of the scaled norm does not change for several
iteration steps, the Newton-Raphson method is also terminated. Nevertheless, the simulation
is continued in this case and the reasons for the stalled convergence are analyzed in the post
processing. If they can be attributed to round-off errors and the iteration terminated at a fairly
low level, the results may still be useful.

5.4.3 Computation of the defect Jacobian matrix

The Newton-Raphson method presented in the previous section relies on an accurate evaluation
of Jacobian matrix of the defect. Due to the complexity of the numerical discretization, a direct
derivation of formulas for the entries of this matrix is nearly impossible. Therefore, the evaluation
of the defect Jacobian matrix is split into several logical parts which closely follow the algorithmic
structure of the defect evaluation. Afterwards, the pieces are combined by applying the chain rule
of differentiation.

It should be recalled that the numerical flux is computed along one-dimensional lines in curvi-
linear space. Therefore, the evaluation of the corresponding derivatives is also presented in a
one-dimensional way in the following, but it can be applied to any coordinate direction. In the
first step, the derivatives of interface reconstruction algorithms presented in Section 3.4 are com-
puted. Since these algorithms are fairly simple, this can be done analytically. It should be noted
that the left and right states approaching an interface may depend on the cell-averaged values of
two grid cells in positive and negative direction. Therefore, the corresponding derivatives need to
be computed and stored separately which results in

∂UL
i+1/2

∂Ul
,

∂UR
i+1/2

∂Ul
with l ∈ {i− 1, i, i+ 1, i+ 2}. (5.4.15)
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Note that each expression denotes a Ncons ×Ncons matrix block. For example, the density ρLi+1/2

may generally depend on the total energy (ρE)i of the neighboring cell. This is not the case if the
reconstruction is performed in conservative variables, where the matrix blocks become diagonal.
For a reconstruction scheme in primitive variables, the matrix blocks can be evaluated by two
successive matrix multiplications:

∂ULR
i+1/2

∂Ul
=
∂ULR

i+1/2

∂VLR
i+1/2

·
∂VLR

i+1/2

∂Vl
· ∂Vl

∂Ul
(5.4.16)

The last factor on the right hand side denotes the Jacobian matrix of the primitive variables with
respect to the conservative variables in a certain grid cell (see Appendix C). This is multiplied by
the diagonal matrix of the reconstruction algorithm in primitive variables. Finally, the Jacobian
of the reverse transformation evaluated at the interface state is multiplied in order to determine
the dependencies between the conservative variables. This procedure is the first example where
the derivative of the algorithm “transformation to primitive variables, reconstruction, reverse
transformation“ is computed by splitting up the calculation in several logical parts which are
combined by the chain rule.

In the next step, the partial derivatives of the numerical fluxes with respect to the interface
values are evaluated, i.e.

∂Fi+1/2

∂UL
i+1/2

,
∂Fi+1/2

∂UR
i+1/2

. (5.4.17)

It should be recalled that most numerical flux functions defined in this work can be written as

Fi+1/2 =
1

2

(
F
(
UL
i+1/2

)
+ F

(
UR
i+1/2

)
−D

(
UR
i+1/2 −UL

i+1/2

))
, (5.4.18)

where D denotes the upwinding matrix which usually contains very complicated expressions.
Therefore, the derivative of this flux with respect to the interface values is approximated by

∂Fi+1/2

∂ULR
i+1/2

=
1

2

(
∂F

∂ULR
i+1/2

±D
)
. (5.4.19)

Hence, the partial derivative of the upwinding matrix is neglected here. In addition to its al-
gorithmic simplicity, numerical experiments have shown that this approximation can be quite
useful. It is sufficiently accurate if the upwind state does not change significantly over one im-
plicit time step. Otherwise, the resulting defect Jacobian matrix also gets inaccurate and the
Newton-Raphson method does not converge anymore. For low Mach number flows, this is a good
indicator that the advection is not resolved accurately in time. Therefore, the size of the time
step has to be reduced.

Another method for computing the derivatives of the numerical flux is obtained by using finite
differences. To this end, the conservative variables at each side of the interface are successively
distorted by a small fraction (typically 10−7). Modifying the c-th conservative variable (e.g. at the
left hand side of the interface) then results in a distorted state ŨL

c and a corresponding distorted
numerical flux F̃i+1/2. The c-th column of the Jacobian matrix of the numerical flux can then be
approximated by (

∂Fi+1/2

∂UL
i+1/2

)
c

=

(
F̃i+1/2 − Fi+1/2

)
r

ŨL
c −UL

. (5.4.20)

A similar expression can be obtained for the derivative with respect to the right approaching state.
Although this method is quite general, it is only used for comparison with other evaluations of
the derivative, because the finite difference always contains an approximation error which may
be hard to control. In particular, if the velocity field is nearly zero in some regions, the above
expression tends to become singular.
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For the numerical fluxes of the AUSM+ and VFRoe families, the corresponding derivatives are
calculated directly by using a technique called automatic differentiation. For this, each expression
in the implementation is augmented by the corresponding expression for its derivative combined
by the chain rule of differentiation. However, since the derivatives are hard-coded in LHC, the
method is not automatic anymore.

In the next step towards the evaluation of the defect Jacobian matrix, the derivatives of the
numerical flux with respect to the cell-centered values are computed by using the chain rule again,
i.e.

∂Fi+1/2

∂Ul
=
∂Fi+1/2

∂UL
i+1/2

·
∂UL

i+1/2

∂Ul
+
∂Fi+1/2

∂UR
i+1/2

·
∂UR

i+1/2

∂Ul
. (5.4.21)

The derivatives of the spatial residual along a certain coordinate line may then be assembled by

∂Ri

∂Ul
=

1

Vi

(
∂Fi+1/2

∂Ul
− ∂Fi−1/2

∂Ul

)
− ∂Si
∂Ul

l ∈ {i, i± 1, i± 2}. (5.4.22)

This results in five Ncons×Ncons matrix blocks per dimension. Since the diagonal block (l = i) is
shared by each dimension, the corresponding entries have to be added up in order to obtain the
complete Jacobian matrix of the spatial residual. Finally, the defect Jacobian matrix reads

∂Di,j,k

∂Ul,m,n
=

∂Ri,j,k

∂Ul,m,n
+ ct 1 δ

l,m,n
i,j,k , (5.4.23)

where only a single block has to be added to the diagonal block in each row.

5.5 Solvers for the linear systems

The Newton-Raphson method presented in the previous section reduced the solution of the non-
linear equations for the implicit temporal discretization to the solution of several linear systems
of the form

λ
∂Dk

∂U
∆U = −Dk. (5.5.1)

It has also been shown that the matrix describing the linear system is very sparse. However,
the inverse matrix or the LU-decomposition of the system is usually not sparse anymore. Since
it is not possible (nor desirable) to store such a non-sparse matrix for moderately large three-
dimensional grids, alternative methods are explored in this section. However, it is shown that the
solution of the linear systems still consumes most of the computational time for low Mach number
simulations. Therefore, essential requirements for these algorithms are robustness, efficiency and
the possibility of being parallelized on modern distributed or shared-memory computer systems.

5.5.1 Direct solvers

The first class of algorithms are direct sparse matrix solvers. They actually perform a LU-
decomposition (or similar) on the linear system, but ensure that the result is as sparse as possible.
This is achieved by using complex reordering mechanisms described by graph theories. Such linear
solvers are not implemented in LHC directly but are used though external software libraries.
Specifically, interfaces to the PARDISO library (Schenk & Gärtner 2004), the SuperLU library
(Li & Demmel 2003) and IBM’s WSMP library have been implemented. However, numerical tests
with all libraries have shown that the memory requirements during the solution process are quite
substantial limiting their use to rather small grids. Moreover, the absolute performance is quite
disappointing for the linear systems described here. Although all libraries are parallelized, the
actual scaling on parallel systems is rather poor. Since the total memory and computing time
requirements scale super-linearly with the grid size, direct solvers are not suited for production
runs of low Mach number simulations. However, the libraries are very robust, providing solutions
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up to machine accuracy. Therefore, they are at least on small grids an excellent tool to investigate
situations where the Newton-Raphson method does not converge.

5.5.2 Iterative solvers

The other class of algorithms for large, sparse linear systems are iterative solvers. Starting from
an initial guess, the solution is refined by several iteration steps until the desired accuracy is
reached. Since the solution of the linear system describes a change in conservative variables, the
iteration is always started from the zero vector. The convergence is measured by computing the
linear residual,

L = λ
∂Dk

∂U
∆U + Dk, (5.5.2)

and calculating its L2-norm (separately for each conservative variable) relative to the norm of the
right hand side:

‖L‖
‖Dk‖ (5.5.3)

Ideally, this scaled norm should reach machine accuracy (≈ 10−16) in every component. However,
the solution is only used to update the surrounding Newton-Raphson process. Even if machine
accuracy is reached for the solution of the linear system, the non-linear error (the scaled defect
norm) typically reduces by a factor of α only. Therefore, it is usually also sufficient to reach an
accuracy of α in the linear process. Any further linear iterations only consume computing time
without speeding up the non-linear convergence. Moreover, it should be noted that the defect
Jacobian matrix contains an approximation for the flux derivatives. Therefore, the Newton-
Raphson method rarely convergences quadratically but only linearly with typical convergence
rates of 10−2. It is thus sufficient in most cases to also solve the linear systems to an accuracy of
10−2.

The disadvantage of iterative solvers is that they are usually not very robust. These algorithms
usually do not guarantee that the iteration process convergences to the solution at all. In case the
iteration converges, the rate of convergence (i.e. the reduction of the linear residual per iteration
step) may be very close to unity, rendering the specific algorithm so inefficient that it is not usable
for practical applications. Therefore, a suitable iterative linear solver has to be found specifically
for each application. For the linear systems described here, an iterative solver should ideally
provide a robust convergence with a rate independent of the specific flow field (e.g. the Mach
number), the grid resolution and the details of the spatial discretization.

In the context of this thesis, many iterative solvers have been implemented and tested. Al-
gorithms which totally failed to meet the requirements are not further explained and tested in
this work. They include the Richardson method (e.g. Meister 2008), block symmetric Gauss-
Seidel with over-relaxation (e.g. Meister 2008), line relaxation (e.g. Trottenberg et al. 2001),
non-overlapping domain decomposition (e.g. Toselli & Widlund 2005), block ILU(0) (e.g. Meis-
ter 2008), sparse approximate inverses (e.g. Kallischko 2008) and induced dimension reduction
IDR(s) (Sonneveld & van Gijzen 2008). All of these methods were tested in combination with
suitable preconditioners (see next section) and multigrid but did not provide an acceptable rate
of convergence for low Mach number flows.

More promising iterative linear solvers belong to the class of Krylov-subspace methods (see
Meister (2008) for an overview). Specifically, the following solvers have been implemented in
LHC: GMRES(r) (Saad & Schultz 1986; Meister 2008), Bi-CGSTAB(`) (Sleijpen & Fokkema
1993), TFQMR (Freund 1993), QMRCGSTAB (Chan et al. 1994). Especially, the Bi-CGSTAB(`)
method usually shows very fast convergence for low Mach number flows. Only in rare situations,
this method does not converge. However, the GMRES method seems to converge quite well
for such rare events. Therefore, these two methods are usually applied successively. After a
few steps with GMRES, the iteration is continued with Bi-CGSTAB(`). Numerical tests of the
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efficiency of this approach are presented in Section 5.6. A further beneficial property of Krylov-
subspace methods is that they basically only require the computation of matrix-vector products
and vector-vector scalar products during the solution process. Therefore, they are relatively easy
to parallelize.

A drawback of the Krylov-subspace methods is that the convergence rate sometimes decreases
as the grid resolution is increased. In order to circumvent such problems, a linear multigrid solver
is implemented in LHC. Here, another iterative solver, which is called smoother in this context
is used to obtain an approximate solution. Then the linear system is scaled down in size by a
restriction matrix R. The coarser system corresponds to a discretization where the number grid
cells is halved in each dimension. On this coarse mesh, a correction to the solution on the fine
mesh is computed. This coarsening is recursively repeated until the solution of the system becomes
trivial. Details on such multigrid methods can be found in the book by Trottenberg et al. (2001).
Here, a so-called V-cycle and a Galerkin coarse grid discretization is used. The latter choice seems
to be substantial for the linear systems discussed here in order to obtain good convergence rates
for the overall method. Assuming that the linear system is written as Ax+ b = 0, the pseudocode
of the algorithm in use is given by:

function multigrid(A, x0, b) :

x := smoother (x0)

if coarsest mesh is reached then return x

Lc := R (Ax+ b)

Ac := RART

xc := multigrid(Ac, 0, Lc)

x := x+RTxc

x := smoother (x)

return x

(5.5.4)

The smoothing algorithm is usually set to the combination of GMRES and Bi-CGSTAB(`) de-
scribed above. For the restriction operator, the piecewise constant and the Kwak interpolation
described by Mohr & Wienands (2004) are implemented. However, for most simulations the piece-
wise constant interpolation is used because it avoids a complicated handling of the boundaries of
the grid. Note that the adjoined operator RT is used to prolongate the solution from the coarse to
the fine grid. The transfer operators R and RT are both described by rectangular sparse matrices.
In order to obtain the matrix Ac on the coarse grid, two multiplications between sparse matrices
need to be performed. Suitable algorithms for this task were described by Pissanetzky (1984),
which were parallelized for the use in LHC. The efficiency of the multigrid algorithm described
here is demonstrated in Section 5.6.

5.5.3 Matrix preconditioning

The iterative solution of the linear systems consumes most of the computational resources and is
especially challenging for low Mach number simulations. In order to support the iterative solvers,
a technique called matrix preconditioning is applied to the linear system (see Meister (2008) for
an overview on this topic). It should be noted that this technique is completely independent of
the flux preconditioning technique that was described in Chapter 4. Assuming that the linear
system is written in the form Ax + b = 0, two different kinds of matrix preconditioning can be
devised. The first kind is left preconditioning, where the linear system is multiplied by a matrix
PL from the left:

PLAx+ PLb = 0 (5.5.5)

As long as the preconditioning matrix PL is invertible, the solution x of the linear system does
not change. However, the preconditioned system may be more easy to solve with an iterative
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method. The other kind of matrix preconditioning is the so called right preconditioning, where a
matrix PR and its inverse are multiplied to the original matrix A from the right hand side:

(APR)
(
P−1
R x

)
+ b = 0 (5.5.6)

This defines a new linear system for a new unknown variable x̃:

(APR) x̃+ b = 0, (5.5.7)

After solving this system, the solution of the original system can be obtained by

x = PRx̃. (5.5.8)

The effect of the preconditioning can be seen if one of the preconditioning matrices is set to the
inverse of A. In this case, the solution becomes trivial. The inverse of A is clearly not known and its
computation would require more computational work than solving the unpreconditioned system.
However, if the preconditioning matrices are set to a very rough approximation of the inverse, an
iterative solver may achieve a better convergence rate. The success of such an approach depends
on the specific linear system and the iterative solver in use. For the linear systems described in
this work, only block diagonal preconditioning matrices are used. This has the advantage that
the thus arising matrix-matrix and matrix-vector products are trivial to compute. The methods
to choose the diagonal blocks of the preconditioning matrices are described in the following. The
best method for accelerating the convergence of the iterative linear solvers may depend on the
specific setup of a simulation and has to be determined by numerical experiments.

The first preconditioning method is applied from the left and is called block Jacobi method.
The diagonal blocks in PL are set to the inverse of the corresponding diagonal block of A. The
diagonal blocks of the preconditioned system therefore become identity matrix blocks.

The next method belongs to the class of matrix scalings and can be applied as right or left
preconditioning. To this end, the maximum absolute values of density, momentum and energy
are determined over the whole grid. The diagonal blocks of the preconditioning matrix are all set
to the same value. For left preconditioning each block is given by

1

∆t


ρmax

(ρu)max

(ρu)max

(ρu)max

(ρE)max

ρmax

 . (5.5.9)

For right preconditioning the inverse of this matrix is used. The intention of this preconditioning
is to scale the entries of the linear system such that the biggest components are of order one.
This may be especially be useful if a simulation is performed in dimensionalized units. In this
case, numerical values for the density and the energy may be orders of magnitude different in
size. The preconditioner scales these values to the same order of magnitude during the solution
of the linear system, which may be advantageous for the overall convergence rate. This kind of
preconditioning is also referred as non-dimensional preconditioning in the following.

The last class of preconditioners described here are transformations to different sets of variables.
For left preconditioning, the block diagonal entries may be set to the Jacobian matrix ∂V

∂U

∣∣
i,j,k

of

the transformation from conservative variables U to primitive variables V. These Jacobians are
evaluated at the grid point which corresponds to a certain row in the preconditioning matrix. For
right preconditioning, the Jacobian of the inverse transformation ∂U

∂V

∣∣
i,j,k

can be used. Moreover,

transformations to primitive variables containing the temperature instead of the pressure and
to so-called symmetrizing variables may be used (see Appendix C). If such a transformation is
applied from the left, the preconditioned matrix system corresponds to system which is formulated
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in these variables. For right preconditioning, the independent variables in x are transformed during
the solution of the linear system.

The left preconditioners for different sets of variables may be further improved by a technique
developed in the context of this thesis which is especially useful for low Mach number flows. It was
shown in Section 4.3.1 that the Roe-Turkel flux preconditioning was originally developed in order
to accelerate the convergence of steady-state flow problems. This is achieved by equalizing the
eigenvalues of the preconditioned flux. Therefore, it is proposed here to use the Roe-Turkel flux
preconditioner as matrix preconditioning. The diagonal blocks of a left preconditioning matrix
are thus filled with

PV,Turkel
∂V

∂U

∣∣∣∣
i,j,k

. (5.5.10)

Similar preconditioning methods may be applied with transformations to other sets of variables.
It must be stressed that this kind of matrix preconditioning is independent of the numerical
flux function in use and does not change the discretization. However, it is shown in the next
section that the convergence of the iterative linear solvers is accelerated for low Mach number
flow problems.

5.6 Validation

5.6.1 Accuracy

In order to investigate the behavior of the numerical discretization and especially the influence
of different time marching schemes, a very simple test problem is constructed here, where the
analytic solution is approximately known. It consists of a one-dimensional sound wave traveling
to the right and an advective wave traveling to the left direction. Note that all quantities are
assumed to be non-dimensional in the following.

In Section 2.6.1, the asymptotic theory for linear sound waves was presented for a fluid at rest.
The theory holds for very small pressure fluctuations which are measured in terms of the reference
Mach number Mr here. It was shown that an arbitrary profile for the velocity potential ϕ fulfills
the wave equation 2.6.7 and may thus travel in positive or negative direction with the speed of
sound ±c/Mr. Here, a Gaussian profile traveling to the right is chosen. The analytic solution of
the wave equation therefore reads

ϕ (x, t) =
1

Mr
exp

(
−
(
x− x0 −

ct

Mr

)2
)
. (5.6.1)

The first order (with respect to the reference Mach number Mr) velocity, pressure and density
fluctuations are then given by

u1 =
∂ϕ

∂x
, p1 = −ρ0M

2
r

∂ϕ

∂t
, ρ1,sound =

p1

c2
. (5.6.2)

Note that ϕ was normalized such that the pressure and density fluctuations are of order one.
In order to construct an advective wave, it should be noted that arbitrary density profiles are

a solution to the compressible Euler equations for a zero velocity field and a constant pressure
field. Hence, the first order density field is disturbed by a Gaussian function located at a position
different from that of sound wave, i.e.

ρ1,advection = exp
(
− (x− x1)

2
)
. (5.6.3)

It must be emphasized that the corresponding pressure field is not modified. Since the fluid is at
rest, the density fluctuation is a stationary solution and does not propagate with time.
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For the test problem which is constructed here, the fluctuations of the sound wave and the
advective density fluctuation are superposed. In the low Mach number regime (Mr � 1), it is
expected that the sound wave passes the advective density fluctuation without being modified,
because the incompressible flow field decouples from the sound waves (see Section 2.6.3). The
superposition of the two waves is thus considered as an analytic solution of full problem for small
Mach numbers.

So far, the analytic solution of the test problem was constructed for a fluid at rest. However,
since the compressible Euler equations are Galilean invariant, the frame of reference may be
changed such the fluid globally moves to the left direction with a Mach number Mu. The advective
density fluctuation thus moves with the corresponding velocity −Mu/Mrc. The sound wave then
propagates at the speed c/Mr −Mu/Mrc. Adding the velocity offset, the analytic solution in the
moving frame of reference is given by replacing the x coordinate by

x→ x+
Mu

Mr
ct (5.6.4)

in the above expressions. Note that the Mach number Mu does not need to be small, although
only values ≤ 0.1 are considered here.

The final one-dimensional setup is denoted as sound-advection test problem in the following.
The analytic solution for the velocity field is given by

u(x, t) =
Mu

Mr
c− 2x′ exp

(
− (x′)

2
)
, (5.6.5)

where the scaled coordinate

x′ = x− x0 −
ct

Mr
+
Mu

Mr
ct (5.6.6)

has been introduced. With the first order pressure fluctuation

p1(x, t) = −2ρ0 c x
′ exp

(
− (x′)

2
)
, (5.6.7)

the total pressure field and the density field are given by the following expressions:

p(x, t) = p0 +Mrp1(x, t) (5.6.8)

ρ(x, t) = ρ0 +Mr

(
p1(x, t)

c2
+ exp

(
− (x− x1 +Muct)

2
))

(5.6.9)

For numerical simulations with LHC, a physical domain of size [0, 20] containing an ideal gas
is chosen. The sound wave is initially located at x0 = 5 while the advective wave is located at
x1 = 15. The non-dimensional density and pressure offsets are set to ρ0 = 1 and p0 = 1/γ such
that the non-dimensional speed of sound becomes c = 1. The reference Mach number is chosen
as Mr = 10−6 to ensure that the linear theory of sound applies to a very good approximation
and that the advective wave decouples from the sound wave. The physical domain is discretized
by Nx grid cells, which are initialized with the analytic solution at t = 0. The boundaries are
treated by the far-field flux boundary conditions, which are expected to be perfectly transmissive
for both kinds of waves. The initial density and pressure fluctuations are plotted in Figure 5.2.

At two instants in time, the numerical solution computed with LHC is compared with the
analytic solution. At the first time step of interest,

t1 =
+10

c/Mr −Mu/Mrc
, (5.6.10)

the sound wave has propagated 10 non-dimensional units to the right. Here, the error in the first
order pressure fluctuations are computed by

∆p1 = max

(∣∣∣∣p− p0

Mr
− p1,analytic

∣∣∣∣) . (5.6.11)
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Figure 5.2: Initial conditions for the sound-advection test problem

The second time step of interest,

t2 =
−10

−Mu/Mrc
, (5.6.12)

denotes the point where the advective wave has traveled −10 non-dimensional units to the left.
The first order density fluctuations are compared to the analytic solution here, i.e.

∆ρ1 = max

(∣∣∣∣ρ− ρ0

Mr
− ρ1,analytic

∣∣∣∣) . (5.6.13)

Both error estimates do not need to be further normalized as the non-dimensional first order
fluctuations are of order unity.

In the following, the numerical results of different time marching schemes are compared for
Mu = 0.1 and Mu = 0.001. All simulations use Roe’s approximate Riemann solver combined
with a linear interface reconstruction which is second order accurate in space. At first, numerical
solutions are computed at different grid resolutions Nx using the explicit 3rd order Runge-Kutta
method presented in Section 5.1. The time step is chosen according to the acoustic CFL criterion
with CFLuc = 0.5 here. Figure 5.3 shows the computed first order pressure and density fluctua-
tions at t = t1 and t = t2 respectively (with Nx = 256 and Mu = 0.1). It can be seen that the
advective and the sound wave are both captured accurately. In the right panel the sound wave
has already left the domain, showing that the boundary conditions work very well as the do not
reflect any part of the sound wave. The maximum deviations from the analytic solution are shown
in the following table for different grid resolutions for Mu = 0.1:

Nx Nsteps(t2) ∆p1(t1) conv. ∆ρ1(t2) conv.
128 1408 2.065 · 10−1 − 7.377 · 10−2 −
256 2816 5.995 · 10−2 0.29 2.008 · 10−2 0.27
512 5632 1.529 · 10−2 0.25 4.995 · 10−3 0.25
1024 11264 3.818 · 10−3 0.25 1.244 · 10−3 0.25

(5.6.14)

It can clearly be seen that the error decreases by a factor of ≈ 1/4 every time the number of grid
cells is doubled. This is fully consistent with the expectation for a second-order spatial discretiza-
tion. However, this also shows that the error is not dominated by the temporal discretization
here. Thus, taking smaller time steps would not increase the accuracy in this case. The number
of time steps Nsteps necessary to reach t = t2 is also listed in the above table. Each time the grid
spacing is halved the number of steps is doubled, which is a result of the acoustic CFL criterion
for the time step. Assuming that the computational work to calculate one time step scales linearly
with the number of grid cells, the overall work increases thus by a factor of four as the resolution

75



0 5 10 15 20
position x

−1.0

−0.5

0.0

0.5

1.0

fir
st

or
de

r
pr

es
su

re
flu

ct
ua

ti
on

p
1

t = t1, Nx = 256,Mu = 0.1

simulation
analytic

0 5 10 15 20
position x

0.0

0.2

0.4

0.6

0.8

1.0

fir
st

or
de

r
de

ns
it

y
flu

ct
ua

ti
on

ρ
1

t = t2, Nx = 256,Mu = 0.1

simulation
analytic

Figure 5.3: First order pressure and density fluctuations for 3rd order explicit time stepping

is increased by a factor of two. In the next set of simulations the advective Mach number is
decreased to Mu = 0.001. The results are shown in the following table:

Nx Nsteps(t2) ∆p1(t1) conv. ∆ρ1(t2) conv.
128 128128 2.068 · 10−1 − 7.377 · 10−2 −
256 256256 6.032 · 10−2 0.29 2.008 · 10−2 0.27
512 512512 1.530 · 10−2 0.25 4.983 · 10−3 0.25
1024 1025024 3.818 · 10−3 0.25 1.271 · 10−3 0.26

(5.6.15)

It can be seen that the errors are nearly equal to the errors obtained for Mu = 0.1. However, the
number of time steps needed to advect the density fluctuation to t = t2 has nearly increased by
a factor of 100. This is a result of the stringent CFL criterion for the time step which follows the
time scale of the propagation of the sound wave. This criterion has also be fulfilled after the sound
wave has left the domain in order to ensure numerical stability. For example, the simulation with
Mu = 0.001 and Nx = 1024 reaches the time t = t1 after only 1026 steps. Shortly after that,
the sound wave leaves the domain and the remaining one million steps are needed just to advect
the density fluctuation. The overall computing time for this simple setup is already several hours
on a modern desktop computer. This again demonstrates that explicit time stepping is highly
inefficient for low Mach number advective flows. Hence, multidimensional simulations at such
Mach numbers quickly become impractical even on large supercomputer systems.

In order to circumvent the stringent time step limitations, implicit temporal discretizations
were presented in this chapter and are tested in the following. At first, the third-order ESDIRK34
scheme is used to simulate the sound-advection problem with the same parameters as above. Even
the time step is chosen according to the acoustic CFL criterion with CFLuc = 0.5, although this
is not required to ensure numerical stability. The maximum errors for Mu = 0.1 result in

Nx Nsteps(t2) ∆p1(t1) conv. ∆ρ1(t2) conv.
128 1408 2.058 · 10−1 − 7.377 · 10−2 −
256 2816 5.987 · 10−2 0.29 2.008 · 10−2 0.27
512 5632 1.528 · 10−2 0.26 4.995 · 10−3 0.25
1024 11264 3.817 · 10−3 0.25 1.244 · 10−3 0.25

(5.6.16)

whereas the simulations with Mu = 0.001 result in

Nx Nsteps(t2) ∆p1(t1) conv. ∆ρ1(t2) conv.
128 128128 2.054 · 10−1 − 7.377 · 10−2 −
256 256256 6.010 · 10−2 0.29 2.008 · 10−2 0.27
512 512512 1.528 · 10−2 0.25 4.996 · 10−3 0.25

. (5.6.17)
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Figure 5.4: ESDIRK34 time stepping at different acoustic CFL numbers

These tables show that the errors are nearly equal to the errors obtained with explicit time
stepping. Thus, the implicit time marching scheme is able to resolve acoustic and advective
waves with the same accuracy as the explicit scheme if the same size of the time step is used.
However, these implicit calculations are even more inefficient for low Mach number flows, because
the computational work per time step is much higher. The simulation with Nx = 1024 and
Mu = 0.001 could therefore not be performed in a reasonable amount of computing time and is
thus omitted here.

More interesting is the behavior of the implicit time marching schemes as the size of the time
step is increased. For this, the grid resolution is fixed to Nx = 1024 and the acoustic CFL number
is successively increased by factors of 10. For Mu = 0.1 the results obtained with the ESDIRK34
time stepper are shown in Figure 5.4. It can be seen that neither the acoustic wave at t = t1
shown in the left panel nor the advective wave at t = t2 shown in the right panel is modified
as the CFLuc number is increased from 0.5 to 5. For CFLuc = 50, the sound wave gets heavily
damped while the advective wave still looks reasonable accurate. Note that the size of the time
step corresponds to an advective CFL number of 5 in this case. If the time step is further increased
by a factor of 10, the advective wave is also strongly damped, while the acoustic wave is not even
propagated to the right position anymore. The detailed results of this test with the ESDIRK34
scheme at Mu = 0.1 are shown in the following table:

CFLuc CFLu Nsteps(t2) ∆p1(t1) ∆ρ1(t2)
0.5 · 103 0.5 · 102 11 8.954 · 10−1 3.110 · 10−1

0.5 · 102 0.5 · 101 113 6.076 · 10−1 2.361 · 10−3

0.5 · 101 0.5 · 100 1126 5.826 · 10−3 1.243 · 10−3

0.5 · 100 0.5 · 10−1 11264 3.817 · 10−3 1.244 · 10−3

(5.6.18)

Performing similar simulations at with an advective Mach number Mu = 0.001 and the ESDIRK34
scheme results in the following data:

CFLuc CFLu Nsteps(t2) ∆p1(t1) ∆ρ1(t2)
0.5 · 105 0.5 · 102 10 n/a 3.412 · 10−1

0.5 · 104 0.5 · 101 103 n/a 2.943 · 10−3

0.5 · 103 0.5 · 100 1025 8.834 · 10−1 1.244 · 10−3

0.5 · 102 0.5 · 10−1 10250 6.882 · 10−1 1.244 · 10−3

0.5 · 101 0.5 · 10−2 102502 8.644 · 10−3 1.244 · 10−3

(5.6.19)

Here, the acoustic CFL number is even increased to 0.5 · 105 which corresponds to the same
maximum advective CFL number of 0.5 ·102. It can be seen that the advective wave is accurately
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resolved at both Mach numbers for CFLu ≤ 5, whereas an accurate treatment of the sound wave
requires CFLuc ≤ 5. Note that it is not possible to determine the error of the sound wave at
t = t1 for Mu = 0.001 and CFLuc >= 0.5 · 104, because the sound wave leaves the computational
domain within the first time step. However, the behavior of the advective wave is not influenced
by that, emphasizing that the boundary conditions work very well in this case. Beside that, it
should be noted that the ESDIRK34 time stepper is third order accurate in time. Reducing the
time step by a factor of 10 should therefore decrease the errors by a factor of 1000. This behavior
is not observed in the simulations presented here, because the error stagnates at some early point
where it gets dominated by the spatial discretization error.

The sound-advection test problem was also simulated with different implicit time marching
schemes. For the backward Euler method with Nx = 1024 and Mu = 0.001 the errors result in:

CFLuc CFLu Nsteps(t2) ∆p1(t1) ∆ρ1(t2)
0.5 · 105 0.5 · 102 10 n/a 7.774 · 10−1

0.5 · 104 0.5 · 101 103 n/a 4.185 · 10−1

0.5 · 103 0.5 · 100 1025 8.651 · 10−1 8.532 · 10−2

0.5 · 102 0.5 · 10−1 10250 8.632 · 10−1 9.838 · 10−3

0.5 · 101 0.5 · 10−2 102502 6.409 · 10−1 1.782 · 10−3

(5.6.20)

It can be seen that the sound wave is not well resolved in any simulation. In order to get accurate
results for the advective wave, very small time steps with acoustic CFL numbers of order one are
required here. This shows that although the backward Euler method is very stable, it is also very
inaccurate as it is only first order in time. Contrary to that the ESDIRK58 method is fifth order
accurate. Simulations with this time marching method at Mu = 0.001 result in the following
errors:

CFLuc CFLu Nsteps(t2) ∆p1(t1) ∆ρ1(t2)
0.5 · 105 0.5 · 102 10 n/a 3.811 · 10−2

0.5 · 104 0.5 · 101 103 n/a 1.250 · 10−3

0.5 · 103 0.5 · 100 1025 9.202 · 10−1 1.244 · 10−3

0.5 · 102 0.5 · 10−1 10250 1.207 · 10−1 1.244 · 10−3

0.5 · 101 0.5 · 10−2 102502 3.831 · 10−3 1.244 · 10−3

(5.6.21)

For an advective CFL number of 50, the error of the advective wave is approximately ten times
smaller than in the computations with the ESDIRK34 scheme, whereas the sound wave is only
slightly better resolved here. However, with the ESDIRK58 method the errors become quickly
dominated by the spatial discretization error. Therefore, the ESDIRK58 scheme provides only
slightly better results than the ESDIRK34 scheme for advective CFL number of order unity.
Moreover, the fifth order method needs eight Runge-Kutta stages whereas the third order method
only needs four of them. The computational work per ESDIRK58 time step is thus approximately
twice the work needed for an ESDIRK34 time step. Therefore, it is usually preferred to use the
ESDIRK34 method for practical computations.

In summary, it can be stated that the implicit time marching schemes provide accurate solutions
for the advective waves for CFLu numbers of order unity. The size of the time step is independent
of the Mach number of the problem. Sound waves are not well resolved with such large time steps
by the implicit schemes. However, the propagation of sound is usually not of particular interest
for low Mach number simulations as discussed in Section 2.6. Therefore, implicit time marching
schemes are an excellent way to capture the incompressible flow regime of low Mach number
flows. The under-resolved sound waves get damped out very quickly and do not influence the
incompressible flow. However, it has also been shown by the sound-advection test that implicit
methods are able to resolve waves on any time scale, as long as the dynamics of the wave of
interest is temporally resolved.
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5.6.2 Efficiency

Implicit time stepping methods admit time steps based on an advective CFL criterion and are
therefore well suited to resolve the incompressible regime of low Mach number flows. However,
the computation of each implicit time step is computationally very expensive, because several
non-linear and linear algebraic systems need to be solved in each step. In contrast, explicit time
stepping methods are computationally very cheap but require very small time steps based on an
acoustic CFL criterion in order to maintain numerical stability. Therefore, the question arises
whether implicit time stepping methods are really superior in terms of computational efficiency.

Here, the performance of an implicit method is analyzed in detail for a simple test case. To this
end, the Gresho vortex defined in Section 4.1.1 is simulated at different Mach numbers and grid
resolutions. First, the third-order explicit Runge-Kutta method (Equation 5.1.2) with an acoustic
CFL number of 0.5 is used. The numerical flux is computed with Roe’s approximate Riemann
solver. Due to the excessive numerical dissipation in the low Mach number regime, the results are
very inaccurate. Using a low Mach number numerical flux function would require an even more
stringent time step limitation (see Section 5.1), where the size of the time steps is reduced by a
factor of the Mach number. Therefore, the efficiency of the explicit time marching scheme would
decrease by the same amount in this case. However, since explicit time stepping in combination
with Roe’s approximate Riemann solver is very common for many existing hydrodynamic codes,
this setup will serve as a reference case in terms of computational performance.

Next, the Gresho vortex is simulated with the implicit ESDIRK34 scheme. The time step
is chosen according to an advective CFL number of 0.5. The numerical flux is computed with
the Roe-Lowmach scheme here, which is much less dissipative then the original Roe method.
Therefore, the results of the implicit calculations are much more accurate than the results from
the explicit method. The arising non-linear systems are solved by the Newton-Raphson method
with a relative accuracy of 10−6. In order to solve the linear equations, four different strategies
are explored in the following:

• direct solver PARDISO

• BiCGSTAB(5) with an accuracy goal of 10−2

• BiCGSTAB(5) with an accuracy goal of 10−2 and block Jacobi preconditioning

• Multigrid (V11 cycle) with block Jacobian preconditioning; smoothing: GMRES(20) fol-
lowed by BiCGSTAB(5), both with a relative accuracy goal of 0.25 on each multigrid level

The simulations are performed on a single processor on a dedicated machine. For each setup,
the grid resolution is successively doubled in both directions, ranging from 64×64 to 1024×1024.
Each simulation is stopped after a few time steps where the physical time has evolved to tphys.
The computational performance is then measured by the ratio of the computational time tcomp

(i.e. the wall-clock time) needed for the simulation to the physical time:

r =
tcomp

tphys
(5.6.22)

The values for this number have no significance in an absolute sense, because they strongly depend
on the physical time scale and the units chosen for the simulation. Only relative changes between
different simulations provide further insight. Therefore, the ratio r is always compared to the
value of the corresponding simulation of the explicit time stepper (at the same grid resolution
and Mach number):

s =
rexplicit

r
(5.6.23)

This quantity describes the computational speedup which is gained by using the implicit time
marching scheme. Values below unity denote the case when explicit time stepping would have
been more efficient (although less accurate here), whereas values above unity indicate the increase
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in computational efficiency achieved by the implicit method. Another interesting quantity is
the value of r compared to the corresponding value where the grid resolution is halved in each
direction (at the same Mach number and with the same time stepping method):

c =
r

rhalf res
(5.6.24)

Doubling the grid resolution in each direction, the amount of work should increase by a factor of
four. However, due to the smaller grid spacing, the time step determined by a CFL-like criterion
halves. Therefore, the ratio r should ideally increase by a factor of eight in total. In the case
c > 8, the computational efficiency deteriorates as the grid gets finer, indicating that the overall
method is not suited for practical applications.

The results of all simulations are presented in Table 5.6.2. For the explicit time stepping scheme,
it can be seen that the ratio of computational to physical time increases by factors of 10 as the
Mach number is decreased. For this reason, the use of explicit schemes is highly undesirable for
low Mach number flows. However, all values of c are close to eight. Thus, the efficiency does not
break down further as the grid resolution is increased. For the implicit time stepping with the
PARDISO solver, the ratio r of computational to physical time does not depend on the Mach
number for a given grid resolution. This method becomes superior to explicit time stepping for
Mach numbers below 0.01 in this test. However, the speedup decreases as the grid resolution
is increased. The values for c are significantly above eight, indicating that the efficiency breaks
down for larger grids. In fact, the simulations could only be performed up to a grid resolution of
256 × 256. For larger grids, the internal memory requirements of the PARDISO solver exceeded
the 12GB memory limit of the machine on which the simulations were performed. This is a result
of the fact that the LU decomposition of a sparse matrix is generally not sparse anymore. The use
of direct solvers is therefore limited to very small grids. Due to this poor efficiency, direct solvers
are inapplicable for three-dimensional simulations and are only used for diagnostic purposes in
LHC.

From the results presented in the table, it can be seen that BiCGSTAB(5) without matrix
preconditioning is also not suited for low Mach number simulations. The ratio r of computing
to physical time usually increases by factors larger than 10 as the Mach number is decreased
by factors of 10. The computational speedup shows that this method is not significantly more
efficient than explicit time stepping. Moreover, in some simulations at M = 10−4 the linear
solver did not converge at all. However, the situation changes drastically if block Jacobi matrix
preconditioning is used. For a given grid resolution, the ratio of computational to physical time is
nearly independent of the Mach number. For M = 10−2 the method starts to become superior to
explicit time stepping and it achieves large speedups for very low Mach numbers. Only the scaling
of the computational work with the grid resolution is not satisfactory. The linear solver needs
successively more iterations to reach the desired accuracy as the grid is refined, deteriorating the
overall computational efficiency.

Finally, the results of the implicit time marching scheme with the multigrid solver are evaluated.
From Table 5.6.2, it can be seen that the ratio r of computational to physical time stays nearly
constant as the Mach number is decreased, which is highly desirable. Moreover, the speedup
compared to explicit time stepping nearly increases by factors of 10 as the Mach number is
decreased. The implicit method is superior even for moderately low Mach numbers in the range
between M = 0.1 and M = 0.01. Beside that, it can be seen that the quantity c is mostly below
eight. Thus, the iterative linear solver needs less steps to converge at higher grid resolutions.
However, it must be emphasized that this curious behavior is most likely related to the fact that
the Gresho vortex is a very simple test problem. As the grid resolution is increased, no additional
flow structures on very small scales need to be resolved. The solution consists of successively
lower wave numbers compared to the grid spacing, which can efficiently be solved on the coarser
levels of the multigrid procedure, whereas the smoothing on the fine grid levels becomes more and
more trivial.

In total, this test of the computational efficiency of implicit time stepping methods has shown
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that they can indeed be superior to explicit time stepping methods. It should also be emphasized
that the implicit calculations provide much more accurate results due to the use of the Roe-
Lowmach scheme. Using this numerical flux for explicit calculations would require even smaller
time steps, such that the speedup s of the implicit method would further increase by a factor
1/M . However, it has also been shown that implicit time stepping strongly depends on a suitable
combination of matrix preconditioning and a proper linear solver. The multigrid/block Jacobi
combination presented here may not be optimal for all kinds of flow structures. According to the
author’s experience, it is always necessary to select a suitable matrix preconditioning method and
tune the accuracy goals for the multigrid smoother for each problem setup differently in order to
gain optimal performance. For very complicated flow problems it is sometimes not possible to
find suitable parameters to reach the same computational efficiency as presented in this section.
However, the tests of the Gresho vortex showed that implicit time stepping methods can be highly
efficient and are therefore well suited for low Mach number flows.
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6 Nearly hydrostatic flows

So far, the discretization of the compressible Euler equations was performed in the absence of the
gravitational source term. It was shown in Section 2.3.2 that the inclusion of this term permits
a quiet steady state, called hydrostatic equilibrium, where a non-vanishing pressure gradient is
balanced by gravity. For the simulation of stellar atmospheres, it is expected that the flow fields
are very close to such a hydrostatic state because stars usually do not evolve significantly on a
dynamical time scale. For a numerical simulation of stellar processes, it is therefore of major
importance that the discretization is able to maintain a hydrostatic equilibrium and also resolves
small deviations from it accurately.

6.1 Discretization of gravity

6.1.1 Pointwise gravity

In order to discretize the gravitational source term in the finite-volume framework used in this
work, the volume integral

Si,j,k =
1

Vi,j,k

∫
Ωi,j,k

J−1S dΩ. (6.1.1)

has to be approximated on the discrete grid. The easiest way to do that is by recognizing that
the conservative variables stored on the grid are in fact volume averages. With these values, the
discrete gravitational source term may be written as

Sgi,j,k =
1

F 2
r


0
ρgx
ρgy
ρgz

M2
r ρ q · g

0


i,j,k

. (6.1.2)

The vector of the gravitational acceleration g has to be provided as a proper cell-averaged value
at each grid point. For implicit time marching schemes, the derivative of the discrete source term
with respect to the conservative variables is also needed. Here, this derivative can be evaluated
analytically and results in

∂Sgi,j,k
∂Ul,m,n

=
1

F 2
r


0 0 0 0 0 0
gx 0 0 0 0 0
gy 0 0 0 0 0
gz 0 0 0 0 0
0 M2

r gx M2
r gy M2

r gz 0 0
0 0 0 0 0 0


i,j,k

δl,m,ni,j,k . (6.1.3)

This term has to be added to the diagonal block of the Jacobian matrix of the spatial residual.
In the following, the ability of this discretization to maintain a hydrostatic equilibrium is in-

vestigated theoretically. As such an analysis quickly becomes very complicated, it is restricted to
a one-dimensional setup of a hydrostatic atmosphere of an ideal gas with constant gravitational
acceleration g. Moreover, the analysis is performed with dimensional quantities in this section
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(the reference quantities are all assumed to be unity). The spatial residual at a certain grid cell i
can then be written as

Ri =
1

∆x

(
Fi+1/2 − Fi−1/2

)
− Sgi . (6.1.4)

For a perfect hydrostatic equilibrium, the time derivative of the conservative variables has to be
zero everywhere (compare Equation 5.0.1). Thus, the spatial residual has to vanish everywhere
on the domain. Any deviations from zero will lead to non-stationary behavior within the first
time step and some fluid motions set in.

In order to further simplify the analysis, it is assumed that the interface values are computed by
constant extrapolation (see Section 3.4.2) and a flux-preconditioned version of Roe’s approximate
Riemann solver (e.g. the Roe-Lowmach or Roe-Turkel scheme). The numerical flux can then be
written in the form

Fi+1/2 =
1

2

(
F (Ui+1) + F (Ui)−Di+1/2 (Ui+1 −Ui)

)
, (6.1.5)

where Di+1/2 denotes the corresponding upwinding matrix. Evaluating the flux difference under
hydrostatic conditions (i.e. with zero velocity), the spatial residual at a certain grid cell i can be
written as

Ri =

 0
pi+1−pi−1

2∆x − ρig
0

+
1

2∆x

(
−di+1/2 + di−1/2

)
, (6.1.6)

di+1/2 = Di+1/2 · (Ui+1 −Ui) . (6.1.7)

The first term corresponds to a discrete approximation of the hydrostatic balance equation ∂p
∂x =

ρg. Note that the pressure difference in the spatial residual is just a central finite difference
approximation of the derivative, emphasizing the consistency with the continuous equations. This
approximation can be further evaluated by assuming that the initial grid values are set up with
a hydrostatic equilibrium of an isothermal atmosphere,

ρ(x) = ρ0 exp

(
− g x
R̃T

)
p(x) = ρ(x)R̃T, (6.1.8)

which is simply discretized on a regular spaced grid by

xi = i ∆x ρi = ρ (xi) pi = p (xi) ui = 0. (6.1.9)

The discrete pressure gradient then be simplified in the following way:

pi+1 − pi−1

2∆x
=
ρ0R̃T

2∆x

(
exp

(
−g∆x(i+ 1)

R̃T

)
− exp

(
−g∆x(i− 1)

R̃T

))
(6.1.10)

=
ρ0R̃T

∆x
exp

(
−g∆xi

R̃T

)
sinh

(
−g∆x

R̃T

)
(6.1.11)

= ρig

(
1 +

∆x2

6
+ . . .

)
. (6.1.12)

In the last step, a Taylor expansion of hyperbolic sine was introduced. It can be seen that the
pressure gradient equals the gravitational source term up to first order in the grid spacing ∆x.
The first deviation from the discrete hydrostatic equilibrium is thus second order in ∆x. This
behavior is remarkable as the constant interface reconstruction method is only first-order accurate
in space. However, these small deviations from the discrete hydrostatic balance may cause non-
stationary movements of the fluid, if the initial conditions are advanced in time. Ideally, these
movements damp out after a while such that a new discrete hydrostatic equilibrium is formed
which is only slightly different from the initial conditions. However, such a behavior can only be
investigated by numerical simulations.
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So far, only the first term of Equation 6.1.6 has been analyzed. The second term depends on the
upwinding matrix of a specific numerical flux function. Under the assumption of zero velocity, the
upwinding term at an interface can be evaluated for the Roe-Lowmach numerical flux function:

di+1/2 =
∆pi+1/2√

1 + δ2

 1
c
δ
c

γ−1

 ≈ ∆pi+1/2

 Mcut

c
1−Mcut
cMcut

γ−1

 . (6.1.13)

Note that since the velocity is assumed to be zero, the preconditioning parameter is solely deter-
mined by the cut-off Mach number, i.e. δ = 1/Mcut − 1. The second term of the spatial residual
then reads

1

2∆x

(
−di+1/2 + di−1/2

)
= −∆x

2
· pi+1 − 2pi + pi−1

∆x2
·

 Mcut

c
1−Mcut
cMcut

γ−1

 (6.1.14)

≈ −∆x

2
· ∂

2p(x)

∂x2
·

 Mcut

c
1−Mcut
cMcut

γ−1

 . (6.1.15)

It can be seen that the term contains a pressure difference, which is a finite difference approxima-
tion of the second derivative of the pressure. The overall expression is thus an artificial pressure
diffusion term. It scales linearly with the grid spacing rendering the overall discretization first
order accurate in space (as expected for constant interface reconstruction). However, the artificial
diffusion is considered to be very harmful for the discrete hydrostatic equilibrium as it affects
all three equations. Since the hydrostatic equilibrium can be constructed for arbitrary temper-
ature profiles, it is expected that such a profile can not be maintained as the initial conditions
are advanced in time. However, it can also be seen that the diffusion coefficient scales with the
cut-off Mach number, which is introduced by the preconditioning matrix of the newly developed
Roe-Lowmach scheme. Setting this parameter to very low values, the artificial diffusion can be
greatly inhibited in the continuity and the energy equation. It is therefore expected that the
new numerical flux function can maintain a discrete hydrostatic equilibrium much better than
Roe’s original approximate Riemann solver, which corresponds to Mcut = 1. Unfortunately, some
additional artificial diffusion is introduced in the momentum equation, which does not vanish as
Mcut → 0. Although this analysis reveals some basic properties of the numerical discretization
concerning the stability of hydrostatic atmospheres, the detailed behavior can only be explored
by numerical experiments.

The artificial diffusion term can also be computed analytically for the Roe-Turkel numerical
flux function (Section 4.3.2). The final expression for this term reads

1

2∆x

(
−di+1/2 + di−1/2

)
= −∆x

2
· pi+1 − 2pi + pi−1

∆x2
·

 1
cMcut

0
c

(γ−1)Mcut

 . (6.1.16)

This is very similar to the Roe-Lowmach scheme, except that the diffusion coefficient scales with
the inverse of the cut-off Mach number. Thus, the diffusion is enhanced for low Mach number
flows and it is even more complicated to maintain the hydrostatic equilibrium. This is basically
the reason which triggered the development of the Roe-Lowmach scheme, because the Roe-Turkel
scheme can not be used for stratified flows where the second derivative of the pressure is not
necessarily small in the vertical direction.

Finally, it must be emphasized that the above analysis is only valid for hydrostatic initial con-
ditions where the velocity field is identically zero. If the grid contains finite velocities, additional
terms may arise in the spatial residual which may either further deteriorate the hydrostatic equi-
librium or enforce a slightly modified equilibrium state. Such a behavior can only be investigated
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by numerical experiments which are presented in the following sections. Nevertheless, the anal-
ysis reveals the basic properties of the numerical flux functions in the presence of the discrete
gravitational source term. While the Roe-Turkel flux is considered to be very harmful to the
hydrostatic equilibrium, the Roe-Lowmach flux lowers the artificial diffusion terms significantly
compared to the original Roe method. However, as none of the numerical flux functions seems
to be able to maintain a hydrostatic equilibrium on the discrete level exactly, these schemes are
called non well-balanced. Numerical discretizations of the gravitational source term which are
potentially well-balanced are presented in the following two subsections.

6.1.2 F-wave Riemann solver

Numerical discretizations which are potentially able to maintain hydrostatic equilibria exactly on
a discrete level are for example described in the book by Bouchut (2004). In the following, the
derivation of one particular method, named F-wave Riemann solver, is briefly reviewed. Further
details can be found in the book and references therein. Moreover, an extension of this method
for low Mach number flows is proposed here.

Assuming a one-dimensional Cartesian geometry, the system of Euler equations including the
gravitational source can be written as

∂U

∂t
+
∂F

∂x
= Sg. (6.1.17)

The system is now augmented by an auxiliary variable Z extending the vector of conserved
quantities to

W =

(
U
Z

)
. (6.1.18)

Defining Z = x, Equation 6.1.17 can be rewritten in the following form:

∂W

∂t
+

(
A −Sg
0 0

)
︸ ︷︷ ︸

=B

∂W

∂x
= 0 with A =

∂F

∂U
. (6.1.19)

The system is now in quasi-linear form where the source term has been absorbed into the matrix.
Note that since the last row of B is identically zero, the auxiliary variable Z may not change in
time. In the transformed system, a Riemann problem can be defined by piecewise constant initial
data, i.e.

W (χ) =

{
WL

i+1/2 for χ > 0

WR
i+1/2 for χ < 0

. (6.1.20)

The main idea of the new discretization technique is to solve such a Riemann problem of the
augmented system at each cell interface in order to define numerical fluxes for the original system,
which take the following form:

∂U

∂t
+

1

∆x

(
F−i+1/2 − F+

i−1/2

)
= 0. (6.1.21)

The source term is now absorbed in the numerical fluxes, which are necessarily not conservative
anymore, i.e. F+

i+1/2 6= F−i+1/2. However, the intention of this procedure is that the discretization

errors of the hydrodynamic fluxes and the source term are now much more consistent. It is shown
in the book by Bouchut (2004) that such a scheme can indeed be well-balanced.

The remaining task is to find an appropriate Riemann solver for the non-conservative system.
As an exact Riemann solver is very hard to derive for the system considered here, an approximate
solver is used instead. The combination of the non-conservative system approach and the Roe
solver is actually called F-wave Riemann solver then. Besides the well-balancing properties of the
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overall scheme, the numerical viscosity in the low Mach number regime is also of importance here
(cf. Chapter 4). In order to account for this, the low Mach number preconditioning technique
described in Section 4.3.3 is extended to the non-conservative Riemann solver in the following.

It is shown by Bouchut (2004) that the F-wave fluxes can be constructed by the following
expressions:

F−i+1/2 = F
(
UL
i+1/2

)
+
∑
λk<0

δFk, (6.1.22)

F+
i+1/2 = F

(
UR
i+1/2

)
−
∑
λk>0

δFk. (6.1.23)

These expressions are only valid for a constant interface reconstruction, rendering the overall
method first-order accurate in space. An extension to higher order interface reconstruction meth-
ods is possible, but is beyond the scope of this thesis. In order to define the split fluxes δFk in
the above expressions, the eigensystem of the preconditioned quasi-linear system is computed:

PB = RΛL. (6.1.24)

Here, R denotes the matrix whose k-th column contains the right eigenvector of PB, whereas the
k-th row of L contains the corresponding left eigenvector belonging to the eigenvalue λk. The flux
preconditioning matrix is defined similarly to the Roe-Lowmach method (see Equation 4.3.12)
with an additional identity row/column for the auxiliary variable Z. The split fluxes are then
computed by

δFk = λk

(
Lk ·

(
WR

i+1/2 −WL
i+1/2

))
P−1Rk. (6.1.25)

It can be shown that the numerical fluxes defined by Equation 6.1.22 are equal to fluxes of the
Roe-Lowmach scheme in the absence of gravity, as long as the split fluxes are evaluated at the
Roe-averaged state. Moreover, it can be shown by some complicated algebraic transformations
(not presented here), that the presence of the gravitational source term only adds the following
two terms to the numerical flux compared to the original Roe-Lowmach flux:

Sqn−τi+1/2 = − g∆x

2τ F 2
r

∂U

∂V
·

 ρ
c (c+ δMrqn)
1
Mr

(cδ − τMr)

ρc (c+ δMrqn)

 (6.1.26)

Sqn+τ
i+1/2 = +

g∆x

2τ F 2
r

∂U

∂V
·

 ρ
c (c+ δMrqn)
1
Mr

(cδ + τMr)

ρc (c+ δMrqn)

 (6.1.27)

For a detailed explanation of the quantities refer to Appendix A. With these expressions, the
non-conservative numerical fluxes can be computed by the following algorithm:

if qn ± τ < 0 then
F−i+1/2 = Fg=0

i+1/2 + Sqn±τi+1/2 (6.1.28)

else
F+
i+1/2 = Fg=0

i+1/2 − Sqn±τi+1/2 (6.1.29)

end if

It should be noted that the sum of the of the two additional terms equals the original source
times the grid spacing:

Sqn−τi+1/2 + Sqn+τ
i+1/2 =

g∆x

F 2
r

∂U

∂V
·

 0
1
0

 =
g∆x

F 2
r

 0
ρ

ρuM2
r

 = ∆xSg (6.1.30)
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The F-wave Riemann solver can thus be seen as a method to split the source term at the cell
interfaces, which is consistent with the upwinding of the original Roe-type solver. Beside that, the
F-wave Riemann solver without flux preconditioning can indeed be well-balanced if the average
values for the evaluation of the split fluxes δFk are chosen in a proper way (see Bouchut 2004). As
explained before, the consistency with the g = 0 fluxes requires that the split fluxes are evaluated
at the Roe average. The only additional variable that needs to be defined at the cell interfaces
is the gravitational acceleration g. For simplicity, it is assumed in the following tests, that g
is spatially constant and thus takes this value also at the cell interfaces. The unpreconditioned
scheme is thus expected to be well-balanced. Whether the flux preconditioned F-wave solver is
also well-balanced is theoretically not quite clear at this point. The behavior of this scheme is
examined by numerical experiments presented in Section 6.2.

The F-wave Riemann solver can generally be extended to two or three spatial dimensions.
However, this has only been implemented yet for the special case of Cartesian geometries where
the gravitational acceleration is aligned with one coordinate axes. The non-conservative fluxes
along this axes are then computed similar to the method described above, whereas the numerical
fluxes in the other directions are computed with the original Roe-Lowmach scheme (cf. Bouchut
2004).

6.1.3 Hydrostatic reconstruction

A very different method to obtain a well-balanced numerical scheme for the gravitational source
term is described by Fuchs et al. (2010), which is briefly reviewed in the following. The main idea
of this method is to change the interface reconstruction method in a way that only deviations
from a discrete hydrostatic equilibrium may produce waves which are computed by the unmodified
numerical flux function.

As in the previous section, the method has only been implemented for spatially first order
scheme on a Cartesian grid, where the gravitational acceleration is aligned with one of the coordi-
nate axes. Moreover, it has to be assumed that an ideal gas equation of state is used. Extensions
to more general conditions are possible but are beyond the scope of this work.

For the coordinate axes not aligned with the gravitational acceleration, the piecewise constant
reconstruction is performed in the usual manner as described in Section 3.4.2. For the other
coordinate axis (denoted by z in the following), piecewise constant profiles are assumed for the
density and the velocities. The corresponding interface values are thus given by

ρLi+1/2 = ρi ρRi+1/2 = ρi+1 (6.1.31)

qLi+1/2 = qi qRi+1/2 = qi+1. (6.1.32)

In order to compute the pressure at the cell interfaces, a hydrostatic pressure profile is assumed
within each cell:

p̃i(z) = pi exp

(
− z

Hp,i

)
(6.1.33)

Here, the (non-dimensional) pressure scale height is computed by assuming a constant temperature
and species profile within each cell:

Hp,i =
F 2

r

M2
r

· pi
gz,iρi

(6.1.34)

Note that the reference Froude number Fr and the reference Mach number Mr used for non-
dimensionalization (see Section 2.5) are globally constant. The pressure at the cell interface is
then evaluated by:

pLi+1/2 = p̃i (+∆z/2) pRi+1/2 = p̃i+1 (−∆z/2) (6.1.35)

With the interface values calculated with this method, the numerical fluxes are computed by an
arbitrary scheme. It should be noted that the pressure difference at a certain interface is greatly
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reduced compared to the original constant reconstruction scheme and thus inhibits the creation
of potentially unphysical waves.

The gravitational source term is then discretized in the momentum equation of the correspond-
ing coordinate axes by

Sgi,ρw =
1

M2
r F

2
r

·
pRi+1/2 − pLi−1/2

∆z
, (6.1.36)

which is a second-order approximation, although the overall scheme is only first-order accurate.
The source term in the energy equation is discretized similar to the pointwise gravity, i.e.

Sgi,ρE =
M2

r

F 2
r

· (ρw gz)i. (6.1.37)

Although this discretization is slightly inconsistent to the momentum equation, very good results
concerning the well-balancing of the overall method are reported by Fuchs et al. (2010). The
behavior of the hydrostatic reconstruction in combination with the Roe-Lowmach numerical flux
is examined by numerical tests in the following sections.

6.2 Stability of 1D hydrostatic atmospheres

The first numerical test for the various discretization methods presented above is a one-dimensional
quiet hydrostatic atmosphere, which should ideally be maintained without any distortions as it
is advanced in time. As explained in Section 2.3.2, a hydrostatic equilibrium is described by the
differential equation

∂p̂

∂ŷ
= −ĝM

2
r

F 2
r

ρ̂, (6.2.1)

which is written in non-dimensional units here (the hat is not omitted in this section for clarity).
The reference pressure and temperature are chosen to their corresponding values at zero height,
i.e. pr = p0 and Tr = T0. The gravitational acceleration is assumed to be constant here and also
chosen as corresponding reference value, such that ĝ = 1. The reference length is chosen to the

pressure scale height at ŷ = 0, i.e. yr = R̃T0

g . Moreover, an ideal gas equation of state is used
here, which provides the necessary additional relation between the density and the pressure. With
these assumptions, the hydrostatic balance equation can be simplified to

∂p̂

∂ŷ
= − p̂

T̂
. (6.2.2)

Note that the hydrostatic pressure can be constructed for an arbitrary temperature profile, which
has to be given. For the numerical tests presented here, a hyperbolic tangent temperature profile
is chosen:

T̂ = 1 + α̂ tanh (ŷ/ŵ) (6.2.3)

The parameters α̂ and ŵ denote the non-dimensional strength and width of the temperature
gradient. The hydrostatic pressure can then be integrated analytically and results in

p̂ = exp

(
− ŷ − α̂ŵ log (cosh (ŷ/ŵ) + α̂ sinh (ŷ/ŵ))

1− α̂2

)
. (6.2.4)

The temperature and pressure profiles serve as initial conditions for the numerical tests. The
corresponding density profile can be obtained by the equation of state. The initial velocity field
is set to zero identically. The Brunt-Väisälä-frequency at zero height for this setup is given by

N0 =

√
R̃T0

H2
p,0

(
γ − 1

γ
+
α̂

ŵ

)
, (6.2.5)
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Figure 6.1: Initial density, pressure and temperature profiles

which is used to define the reference time tr = 2π/N0 for this non-dimensional setup (cf. Sec-
tion 6.4).

For the numerical tests, the computational domain is chosen to [−1, 1] which is discretized by
N ∈ {64, 128, 256} grid cells. The parameters for the temperature profile are set to α̂ = −0.1
and ŵ = 0.5. The initial density, pressure and temperature profiles are shown in Figure 6.1.
The numerical tests are performed with the implicit backward Euler method at fixed time step
∆t̂ = 0.1 until t̂ = 100 is reached. This integration method is known to be rather inaccurate in
resolving transient phenomena because it damps out waves rather quickly. However, for the tests
performed here, this behavior is even advantageous because the main interest lies on the long
term stability of the discrete hydrostatic atmosphere, where transient phases are not important
anymore.

In order to analyze the results, three different quantities are measured at the end of each
simulation. First, the maximum Mach number on the grid

Mf = max
i
|Mi| (6.2.6)

is computed. As explained in Section 2.3.2, the Euler equations reduce to the hydrostatic balance
equations if the velocity field is identically zero. Thus, the maximum Mach number measures
how non-hydrostatic a result is. Ideally, Mf should reduce to values of the order of the machine
precision, which is approximately 10−16 here. The second quantity that is computed at the end
of each simulation is the average distortion in the temperature field compared to the initial profile
and relative to the strength of the temperature gradient:

σT (t̂) =
1

α̂N

∑
i

∣∣∣T̂i(t)− T̂i(0)
∣∣∣ (6.2.7)

As explained above, hydrostatic equilibria can be constructed for arbitrary temperature profiles.
Once the initial hydrostatic equilibrium gets distorted (e.g. by discretization errors), a velocity
field builds up. Even if these motions damp out again, it is not guaranteed that the initial
temperature profile is maintained during this relaxation process. This is a result of the fact that
the hydrostatic equilibrium is not uniquely defined by the Euler equations. Therefore, σT is
an important measure for the quality of a numerical discretization for hydrostatic atmospheres.
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Finally, the time derivative of σT is computed at the end of each simulation, which is simply
approximated by

σ̇T (t̂) =
σT (t̂)− σT (t̂− 5)

5
. (6.2.8)

With this value, it is possible to estimate the temperature changes on time scales which exceed
the simulation time.

The first numerical tests are performed with constant interface reconstruction, the Roe-Lowmach
flux with different cut-off Mach numbers Mcut and the pointwise discretization of gravity described
in Section 6.1.1. The following table summarizes the results:

Mf σT σ̇T

Mcut

Nx
64 128 256 64 128 256 64 128 256

1e0 2.7e-02 1.4e-02 7.4e-03 3.8e-01 3.4e-01 3.1e-01 4.4e-15 -1.8e-08 -5.8e-06
1e-3 1.1e-05 5.9e-06 3.0e-06 5.5e-02 2.8e-02 1.4e-02 2.2e-04 1.1e-04 5.7e-05
1e-6 1.0e-08 5.2e-09 2.7e-09 4.1e-02 2.1e-02 1.0e-02 1.3e-08 1.3e-08 6.6e-09
1e-9 1.0e-11 5.2e-12 2.7e-12 4.1e-02 2.1e-02 1.0e-02 1.3e-11 1.3e-11 6.6e-12
1e-12 1.0e-14 5.2e-15 2.7e-15 4.1e-02 2.1e-02 1.0e-02 1.3e-14 1.3e-14 6.6e-15
1e-15 1.6e-17 8.6e-18 3.4e-17 4.1e-02 2.1e-02 1.0e-02 -1.7e-17 0.0e+00 -7.6e-17

It can be seen that the final Mach numbers with the original Roe flux (Mcut = 1) are of the
order 10−2. Although, doubling the grid resolution approximately halves the final Mach number,
the values are much too high for practical applications. When flux preconditioning is switched
on the final Mach numbers decrease approximately linear with the cut-off Mach number. Fig-
ure 6.2 shows the temporal evolution of the maximum Mach number for N = 64, depending on
the amount of flux-preconditioning. It can be seen that the Mach number increases from zero to
approximately 10−2 within the first time step. With the unpreconditioned (Mcut = 1) flux, the
Mach number stays at this level. With flux preconditioning, the Mach number quickly decreases
again, until a saturation level is reached, which linearly scales with the cut-off Mach number.
These results fully comply with the theoretical considerations presented in Section 6.1.1 about
the artificial diffusion terms produced by the numerical flux function. Thus, the saturation of the
maximum Mach number can be attributed to a balance between the artificial diffusion terms and
a finite velocity field.

In the above table, it can further be seen that the temperature distortions, measured by σT , are
rather high for the unpreconditioned flux (Mcut = 1). Increasing the grid resolution improves the
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results only marginally. Using the preconditioned flux reduces the temperature fluctuations by
approximately a factor of ten. Unfortunately, the distortions are not reduced significantly as the
cut-off Mach number is further decreased. However, the temperature distortions decrease linearly
as the grid resolution is increased in the flux preconditioned case. The actual temperature profiles
at the beginning and the end of the simulations are shown in the right panel of Figure 6.2 for
Mcut = 1 and Mcut = 10−9 in the N = 64 case. It can be seen that the initial temperature profile
gets completely distorted with the unpreconditioned numerical flux. This kind of discretization is
thus not suited at all to compute nearly hydrostatic flows. Contrary to that, the final temperature
profile is much closer to the initial profile in the preconditioned case, although the deviations are
quite substantial.

Looking at the time derivative of the temperature distortions, σ̇T , it can be seen that the
values decrease linearly with the cut-off Mach number. The temperature deviations are expected
to increase substantially on a time scale of the order 1/σ̇T . For Mcut = 10−3 this would correspond
to a timescale of the order of 104 non-dimensional units, which is already quite large. For Mcut =
10−15 the derivative σ̇T nearly vanishes. Therefore, it can be concluded that the preconditioned
Roe-Lowmach flux is able to maintain a discrete hydrostatic equilibrium state if the cut-off Mach
number is low enough, although the temperature profile gets somewhat distorted during the initial
relaxation phase.

The next group of tests is also performed with the Roe-Lowmach flux and a pointwise dis-
cretization of gravity, but uses the linear interface reconstruction method, which is second order
accurate in space. The other parameters of the setup are equal to those in the tests described
before. The results are shown in the following table:

Mf σT σ̇T

Mcut

Nx
64 128 256 64 128 256 64 128 256

1e0 1.8e-06 2.5e-07 3.3e-08 6.4e-03 8.3e-04 1.1e-04 6.1e-05 7.9e-06 9.9e-07
1e-3 4.6e-08 1.1e-08 2.8e-09 9.6e-05 2.3e-05 5.7e-06 -8.4e-07 -2.1e-07 -5.1e-08
1e-6 5.7e-11 1.4e-11 3.6e-12 2.0e-04 4.8e-05 1.2e-05 -1.2e-09 -3.0e-10 -7.4e-11
1e-9 5.7e-14 1.4e-14 3.6e-15 2.0e-04 4.8e-05 1.2e-05 -1.2e-12 -3.0e-13 -7.4e-14
1e-12 5.7e-17 2.0e-17 1.7e-17 2.0e-04 4.8e-05 1.2e-05 -8.8e-16 -3.1e-17 -2.0e-16
1e-15 3.0e-17 4.6e-17 7.1e-18 2.0e-04 4.8e-05 1.2e-05 2.1e-16 2.3e-17 8.6e-17

The behavior of the final Mach number, Mf , is similar to the tests with constant reconstruction.
However, the actual values are much lower for the second-order scheme. Even the unprecondi-
tioned flux reaches fairly low Mach numbers. Interestingly, the final Mach numbers decrease by
a factor of > 7 as the grid resolution is doubled in this case, whereas only a factor of four would
be expected for a second-order scheme. When flux preconditioning is switched on, the final Mach
numbers again decrease with the cut-off Mach number and quickly approach values of the order of
the machine precision. Doubling the grid resolution decreases the final Mach numbers by roughly
a factor of four in this case, which is the expected behavior.

The results for the temperature distortions and its temporal derivative show the same behav-
ior as the Mach number. The actual values are again much lower compared to the results with
constant reconstruction and show the same scaling with the grid resolution as the final Mach
numbers. Thus, even the unpreconditioned numerical flux is roughly able to maintain the hydro-
static equilibrium with linear reconstruction, although the deviations are still a bit too high for
practical applications, where a long-term stability is very desirable. This goal is quite accurately
reached when the preconditioned flux is used with cut-off Mach numbers of the order of ≈ 10−10.

For the next numerical tests the F-wave Riemann solver described in Section 6.1.2 was used
instead of the Roe-Lowmach flux. It should be noted that this scheme is only first order ac-
curate in space as it can only be used with constant reconstruction at the moment. Thus, the
results presented in the following table should be compared to first order results shown above.
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Mf σT σ̇T

Mcut

Nx
64 128 256 64 128 256 64 128 256

1e0 7.8e-16 6.9e-16 8.5e-16 4.1e-04 1.0e-04 2.5e-05 1.2e-15 1.7e-15 2.7e-16
1e-3 2.5e-08 6.2e-09 1.5e-09 5.4e-05 1.4e-05 3.5e-06 -9.8e-08 -2.5e-08 -6.4e-09
1e-6 3.1e-11 7.8e-12 1.9e-12 9.3e-05 2.4e-05 5.9e-06 -6.2e-10 -1.6e-10 -3.9e-11
1e-9 3.1e-14 7.8e-15 1.9e-15 9.3e-05 2.4e-05 5.9e-06 -6.2e-13 -1.6e-13 -3.8e-14
1e-12 7.1e-17 1.4e-16 2.3e-17 9.3e-05 2.4e-05 5.9e-06 -9.2e-16 2.3e-16 2.3e-16
1e-15 4.0e-17 3.6e-17 9.5e-17 9.3e-05 2.4e-05 5.9e-06 -5.7e-16 2.2e-16 1.3e-15

The behavior of the F-wave Riemann solver is especially interesting when it is used without the
flux preconditioning. The final Mach numbers quickly reach machine precision, whereas the tem-
perature distortions decreased by a factor of 103 compared to the results with the Roe-Lowmach
flux. Moreover, σT decreases by a factor of four as the grid resolution is increased although the
method is only first order accurate in space. The temporal derivative of the temperature distor-
tions reaches machine precision with every grid resolution. Thus, it should be possible to maintain
this discrete hydrostatic equilibrium forever. Only the temperature profile gets slightly disturbed
during the relaxation process. From these results, the F-wave Riemann solver seems to be indeed
well-balanced.

From the above table, it can be seen that the final Mach numbers do not reach machine pre-
cision anymore, if the flux preconditioning is used with a cut-off Mach number of Mcut = 10−3.
Although the temperature deviations are slightly smaller than with the unpreconditioned flux, the
corresponding temporal derivative is substantially higher. Thus, the flux preconditioning some-
what conflicts with well-balancing provided by the basic method. However, the situation changes
again as the cut-off Mach number is further decreased. For Mcut < 10−9 the preconditioned
F-wave Riemann solver reaches the same accuracy as in the unpreconditioned case.

For the last group of tests, the hydrostatic reconstruction presented in Section 6.1.3 which is
also first order accurate is used in combination with the Roe-Lowmach flux. The following table
summarizes the results:

Mf σT σ̇T

Mcut

Nx
64 128 256 64 128 256 64 128 256

1e0 3.7e-16 3.4e-16 5.4e-16 2.4e-05 6.0e-06 1.5e-06 7.6e-16 4.0e-16 1.1e-16
1e-3 1.2e-09 3.1e-10 7.6e-11 2.6e-05 6.3e-06 1.6e-06 -3.1e-08 -7.6e-09 -1.9e-09
1e-6 1.5e-12 3.8e-13 9.5e-14 2.9e-05 7.2e-06 1.8e-06 -3.9e-11 -9.7e-12 -2.4e-12
1e-9 1.6e-15 3.8e-16 3.8e-16 2.9e-05 7.2e-06 1.8e-06 -3.8e-14 -1.0e-14 2.9e-17
1e-12 1.7e-16 6.6e-16 1.9e-16 2.9e-05 7.2e-06 1.8e-06 8.0e-16 -1.6e-17 4.3e-18
1e-15 1.5e-16 5.1e-16 4.4e-16 2.9e-05 7.2e-06 1.8e-06 5.8e-16 7.8e-16 9.4e-16

Although the hydrostatic reconstruction is very different from the approach with the F-wave
Riemann solver, the results and the overall behavior is very similar. The scheme seems to be
well-balanced for the unpreconditioned Riemann solver, while preconditioning requires low cut-off
Mach numbers in order to reach this goal. Moreover, the temperature deviations are even slightly
smaller for the hydrostatic reconstruction compared to the F-wave Riemann solver.

In order to conclude this section, a few results should be recapitulated. First of all, the use of a
pointwise discretization of gravity combined with an unpreconditioned Riemann solver does not
seem to suitable for nearly hydrostatic flows. The residual Mach numbers and the temperature
deviations from the initial conditions are too high for practical applications in the low Mach
number regime. Contrary to that, using the flux preconditioned Roe-Lowmach solver with very
low cut-off Mach numbers, the hydrostatic equilibrium can be maintained very accurately for very
long time scales. Thus, the method seems to be mostly well-balanced, although no formal proof
on this property can be given. The F-wave Riemann solver and the hydrostatic reconstruction,
which are intended to be well-balanced show very promising results in maintaining the hydrostatic
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atmosphere. If these methods are used in combination with flux preconditioning, the cut-off Mach
number needs to very low in order to maintain this property. Moreover, it is expected that an
extension of these methods to second-order accurate versions would further improve their ability to
maintain hydrostatic temperature profile with even greater accuracy. It should further be noted
that the flux preconditioning is expected to be very important although the one-dimensional
results do not indicate a need for them, because the unpreconditioned well-balanced methods
also provide very accurate results. However, in multi-dimensional simulations, it is expected that
the numerical viscosity for low Mach number flows is still too high with an unpreconditioned
flux function, especially in the directions normal to the gravitational acceleration which are not
modified by the special treatment of the gravitational source term.

6.3 Stability of 2D hydrostatic atmospheres

6.3.1 Basic setup

In the last section the ability of several numerical discretizations to maintain a hydrostatic equi-
librium state was investigated. Here, these tests are extended to a two-dimensional setup in order
to check whether the conclusions drawn in the last section also hold in this case.

For the setup considered here, the same assumptions on the gas properties and the gravi-
tation as in Section 6.2 are chosen. The gravitational acceleration is assumed to be aligned
with the y-axis of a Cartesian coordinate system. Moreover, similar reference quantities for the
non-dimensionalization are used here (with the exception that α̂/ŵ has to be replaced by α̂ in
Equation 6.2.5 in the following for consistency). However, a different vertical temperature profile
is chosen here as it illustrates the effects presented in this section more clearly. It is assumed that
the temperature varies linearly with height and is thus given by

T̂ = 1 + α̂ · ŷ, (6.3.1)

where the parameter α̂ denotes a non-dimensional temperature gradient. For this profile, the
hydrostatic balance equation 6.2.2 can also be integrated analytically. The resulting hydrostatic
pressure is given by

p̂ = (1 + α̂ · ŷ)
−1/α̂

. (6.3.2)

The corresponding density profile is computed by the ideal gas law. These profiles are used as
initial conditions for the following simulations. Note that the profiles have no dependence on the
horizontal coordinate x̂ and are thus constant in this direction. The initial velocity field is set to
zero.

The Cartesian computational domain is chosen to [−0.1, 0.1] × [−0.1, 0.1] which is discretized
by Nx × Ny grid cells. If not stated otherwise, Nx = Ny = 64 is used. Note that length scales
are measured in units of the pressure scale height at ŷ = 0. The vertical extent of the domain
is thus relatively small. However, for the temperature gradient α̂ = 4.0 is chosen which is quite
large. The initial vertical density, pressure and temperature profiles for this setup are illustrated in
Figure 6.3. The boundary conditions are periodic in the horizontal direction, while constant ghost
cells with the hydrostatic values are used in the vertical direction. So far, the setup is perfectly
symmetric with respect to the horizontal direction. Thus every column should exactly behave
like a one-dimensional hydrostatic atmosphere as no fluxes can be generated in the horizontal
direction, because the velocity field is zero everywhere. However, this symmetry between the grid
cells in a horizontal layer is purely numerical as it is caused by the alignment of the gravitational
acceleration with the ŷ axes. Using a slightly rotated coordinate system would, for example, break
up this numerical symmetry. Here, the symmetry is broken by adding a tiny random velocity field
in the horizontal direction, where the corresponding Mach numbers are limited to ±10−15. The
velocity noise is thus just slightly above the machine precision. It should also be noted that
noise of such a level could also be instantaneously created during (more practical) simulations,
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Figure 6.3: Initial density, pressure and temperature profiles

e.g. by numerical round-off errors, more complicated equations of state which need some kind
of internal iteration or errors resulting from the imperfect solution of the non-linear systems for
implicit time stepping. In total, the addition of the initial velocity noise is well justified. Ideally,
the noise should just stay at its initial level or even damp out again and thus should not affect
the simulation results at all.

6.3.2 Hydrostatic numerical instability

The first numerical tests of the two-dimensional hydrostatic atmosphere are performed with the
implicit backward Euler time stepper at a fixed time step of ∆t̂ = 0.05 until t̂max = 50 is reached.
The gravitational source term is discretized with the pointwise method. The numerical flux is
computed with the Roe-Lowmach method, first without flux preconditioning (Mcut = 1) and
then with flux preconditioning at Mcut = 10−12. In the latter case, the hydrostatic atmosphere
is expected to be very stable according to the one-dimensional results from the last section.
For both cut-off Mach numbers, a constant (first order) and a linear (second order) interface
reconstruction is tested. In order to analyze the results, the maximum Mach number (over all
grid cells) is computed as a function of time. The results for the four test cases are illustrated in
Figure 6.4.

For the unpreconditioned numerical fluxes, the behavior of the maximum Mach number is very
similar to the one-dimensional results. In the first time step, the Mach number increases to a
certain value and basically stays at this level as the numerical scheme is not well-balanced at
all. Similarly to the one-dimensional results, the linear reconstruction performs much better as it
achieves lower Mach numbers. It should also be noted that the absolute values of the final Mach
numbers are somewhat smaller here than in the one-dimensional tests. This can be attributed
to the fact that the vertical extent of the domain is by a factor of ten smaller here leading to a
better resolution of the initial vertical profiles relative to the pressure scale height.

On the contrary, it can be seen from Figure 6.4 that the temporal evolution of the maximum
Mach number changes dramatically compared to the one-dimensional results if flux precondition-
ing is switched on. In the first time step, the Mach number also increases to a certain value
and decreases again until t̂ ≈ 2 where it reaches fairly low values. However, instead of staying
at this low level, the Mach number starts growing exponentially. For the constant interface re-
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Figure 6.4: Temporal evolution of the maximum Mach number

construction, this exponential growth is very fast until it reaches a saturation level at ≈ 10−2.
For the linear interface reconstruction, the behavior is similar although the growth rate and the
saturation level are somewhat smaller.

The unexpected growth of the Mach number for the preconditioned fluxes was not observed
in one-dimensional tests. It can be suspected that the growth is related to the new horizontal
dimension in space. In order to analyze this behavior in a more detailed way, the horizontal
average of a quantity s is defined in the following way:

< s >hor
i,j =

1

Nx

Nx∑
i′=1

si′,j (6.3.3)

The quantity s can be any variable that is defined on the grid cells, like the density, temperature
or pressure. With this average, relative horizontal fluctuations of a quantity can measured by

hfi,j (s) =
si,j− < s >hor

i,j

< s >hor
i,j

. (6.3.4)

The horizontal density and temperature fluctuations are plotted in Figure 6.5 for the test with
constant reconstruction and Mcut = 10−12 at t̂ = 2.5 where the maximum Mach number just starts
to grow exponentially. It can be seen that the fluctuations show a very pronounced checkerboard-
like structure which is nearly equal in the density and the temperature field. Figure 6.7 (left
panel) shows the temporal evolution of the maximum of the horizontal density, temperature and
pressure fluctuations compared to the maximum Mach number. It can clearly be seen that all
horizontal fluctuations grow exponentially until a certain saturation level is reached. Interestingly,
the amplitude of the Mach number starts to rise at exactly the same point where the density (or
temperature) fluctuations reach a similar amplitude. Thus, the growth of the velocity field seems
to be triggered by the density fluctuations. The pressure fluctuations are generally a bit smaller in
magnitude than the other quantities, but show qualitatively the same behavior. At time t̂ = 10,
where the saturation level is reached in all quantities, the density fluctuations and the Mach
number distribution is shown in Figure 6.6. Here, the checkerboard structures have vanished and
some large-scale chaotic velocity field with corresponding density fluctuations has established.
As these motions do not damp out during the simulation time, the atmosphere starts to build
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Figure 6.5: horizontal density and temperature fluctuations at t̂ = 2.5 with Mcut = 10−12 and
constant reconstruction

0 10 20 30 40 50

non-dimensional time t̂

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100
Mcut = 10−12

max hf(ρ), max hf(T )
max hf(p)
maxM

0 10 20 30 40 50

non-dimensional time t̂

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100
Mcut = 1

max hf(ρ), max hf(T )
max hf(p)
maxM

Figure 6.6: temporal evolution of horizontal fluctuations for the preconditioned (left) and the
unpreconditioned (right) flux with constant reconstruction

up large scale motions which mix the atmosphere on relatively short time scales. The initial
hydrostatic equilibrium thus gets completely destroyed. This behavior is clearly unphysical and
can not be explained by the continuous Euler equations. The checkerboard-like structures during
the exponential growth of the horizontal fluctuations is also very typical for a numerical instability.
Such instabilities are usually powered by non-linear interactions between waves which produce
higher-order harmonics that cannot be resolved on the grid anymore (see e.g. Riddaway & Hortal
2001; Hirsch & Hirsch 1991). These harmonics thus get aliased and may lead to a resonant self-
interaction if the numerical discretization does not prevent such a behavior. In Figure 6.6 (right
panel) the maximum horizontal fluctuations and the maximum Mach number are also plotted for
the test with the unpreconditioned Roe-Lowmach solver. There, the horizontal fluctuations stay
at a constant level near the machine precision and do not show any sign of a growth. The Mach
number saturates at M ≈ 10−3 which is compatible with the one-dimensional tests. Thus, the
velocity field stays nearly vertically orientated in this case.

From the tests presented in this section, the preconditioned Roe-Lowmach flux seems to be the
origin of the numerical instability at first sight. However, such a behavior never showed up during
the development of this method and the tests presented in the previous chapters if the numerical
flux is used in the absence of the gravitational source term. Therefore, the discretization of gravity
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Figure 6.7: horizontal density fluctuations and Mach number at t̂ = 10 with Mcut = 10−12 and
constant reconstruction

and its interplay with the numerical flux function may also be potential sources for the numerical
instability. Moreover, it is not very remarkable the unpreconditioned Roe solver is numerically
stable as it suffers from an unphysically high artificial viscosity in the low Mach number regime (cf.
Chapter 4) which effectively damps out any kind of fluid motion. For these reasons, the stability
of the hydrostatic atmosphere is examined with several different numerical discretizations in order
to shed some light on the origins of the numerical instability.

6.3.3 Different numerical discretizations

In the last subsection a numerical instability was discovered in a hydrostatic atmosphere in combi-
nation with the Roe-Lowmach flux. It has been shown that the instability develops with constant
and linear reconstruction. It can thus be excluded that the instability is caused by a missing lim-
iter on the linear reconstruction. Moreover, the instability was even more pronounced for constant
reconstruction. This subsection investigates several modifications of the first-order discretization
only in order to gain some more insight in the behavior of the numerical instability. This is done
by a series of numerical experiments where only one part of the original discretization from the
last subsection is modified. Other methods and parameters, not mentioned in a certain test case
are left unmodified compared to the original setup. Moreover, it can be seen from the last sub-
section that the numerical instability can be identified by analyzing the horizontal fluctuations of
the density, temperature or pressure field. As these fluctuations grow qualitatively in the same
way for each field, only the behavior of the horizontal density fluctuations are presented in the
following tests in order to identify the numerical instability.

The first interesting question concerning the numerical instability is the influence of the cut-off
Mach number of the Roe-Lowmach flux. With Mcut = 10−12 the setup was unstable, whereas
the original Roe flux corresponding to Mcut = 1 is stable. Therefore, it can be speculated
that limiting the flux preconditioner to some intermediate cut-off Mach number might keep the
hydrostatic atmosphere stable. In order to test this hypothesis, the original setup is simulated
with several different values for Mcut. The results are presented in Figure 6.8 (left panel). It
can be seen that limiting the flux preconditioner to Mcut = 10−3 has nearly no influence on the
numerical instability, whereas a value of Mcut = 10−2 slightly decreases the growth rate. Stability
on the time-scale of the simulation can be achieved if the cut-off Mach number is further increased
to Mcut = 10−1. However, such a high value for the cut-off Mach number contradicts the aim
of the Roe-Lowmach flux to reduce the artificial viscosity for low Mach number flows. With
Mcut = 10−1 velocity fields below this Mach number would get damped out on relatively short
time scales. In total, limiting the cut-off Mach number does not seem to be a reasonable way to
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Figure 6.8: horizontal density fluctuations for different cut-off Mach numbers (left) and different
grid resolutions (right)

inhibit the numerical instability.
In the next numerical experiment, the grid resolution is varied in order to see if the numerical

instability is caused by a physical process which is not resolved accurate enough in the original
setup. In order to investigate this, additional simulations with Nx = Ny = 16 and Nx = Ny = 256
were performed whose results are shown in Figure 6.8 (right panel). It can be seen that the
numerical instability grows nearly in the same way for every grid resolution. If the instability
would be caused by an unresolved process, it would be expected that the instability becomes
weaker as the grid gets finer. However, the numerical instability grows even a bit faster at the
highest resolution compared to the lowest resolution here. It can thus be concluded that the grid
spacing only has a minor influence on the numerical instability for this test case.

In a next step, the influence of different numerical flux functions on the stability of the hydro-
static atmosphere is investigated. However, only ’low Mach number’ flux functions are considered
here as they do not show an excessive artificial viscosity in the low Mach number regime. Specif-
ically, the central flux (cf. Section 3.5.3), the Roe flux in combination with low Mach number
reconstruction (cf. Section 4.3.6) and the AUSM+-Lowmach (cf. Section 4.3.5) are compared to
the Roe-Lowmach flux. The results on the horizontal density fluctuations are shown in Figure 6.9
(left panel). It can be seen that the Roe flux with low Mach number reconstruction quickly
becomes unstable and even results in a failure of the simulation due to the occurrence of NaN
values. The central flux shows a similar behavior, although the growth rate of the instability is
slightly lower. The central flux is generally known to be numerically unstable, although this effect
is usually not as severe for implicit calculations as for explicit ones. However, it has been used
for testing purposes here in order to demonstrate that the hydrostatic numerical instability also
develops in the same manner as for other flux functions. As the central flux does not contain any
upwinding terms, this is at least a small hint that the numerical instability is not directly caused
by a deficiently modeled upwinding term within the other numerical flux functions. Moreover, the
simulation results show that the numerical instability is somewhat inhibited with the AUSM+-
Lowmach flux compared to the Roe-Lowmach flux. However, the growth rate and the saturation
level are still too high for practical applications. In total, it can be stated that the hydrostatic
numerical instability develops with any ’low Mach number’ flux function tested here. Particularly,
the instability is not specific to the Roe-Lowmach flux, which was derived within this work in a
somewhat ad-hoc fashion. Especially the AUSM+-Lowmach flux shows a similar behavior but is
based on a very different discretization concept. Therefore, the above results seem to indicate
that the numerical instability appears solely due to the reduction of the artificial viscosity by the
’low Mach number’ fluxes. However, it should be noted that this does not necessarily imply that
these flux functions are also the direct source of the numerical instability.
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Figure 6.9: horizontal density fluctuations for different numerical flux functions (left) and different
time stepping methods (right)

For the next numerical experiments, the influence of different temporal discretizations is exam-
ined. To this end, the size of the time step of the backward Euler method (BDF1) is first reduced
from ∆t̂ = 0.05 to ∆t̂ = 0.01. Besides that, the hydrostatic setup is evolved with the implicit ES-
DIRK34 method at ∆t̂ = 0.05. Moreover, the explicit 3-stage Runge-Kutta (RK3) is tested with
an acoustic CFL numbers of 0.5 and 0.1 which corresponds ∆t̂ ≈ 1.7 · 10−4 and ∆t̂ ≈ 3.4 · 10−5.
The results on the evolution of the horizontal density fluctuations are shown in Figure 6.9 (right
panel). It can be seen that the numerical instability still grows in all test cases. The BDF1
method with the reduced time step and the ESDIRK34 shows nearly the same behavior with an
exponential growth rate which is only slightly smaller than with the original setup. Although
the instability grows somewhat slower with the explicit RK3 stepper at CFLuc = 0.5, it can be
seen that a further reduction of the time step has no influence on the stability of the hydrostatic
atmosphere. These results show that the numerical instability is not caused by the use of implicit
time stepping methods nor by an inaccurate solution of non-linear and linear algebraic systems
involved in the solution process.

The next numerical tests are performed with different vertical boundary conditions. Besides
the constant ghost cells filled with the hydrostatic values from the original setup, solid wall and
far-field boundary conditions are tested in several combinations. The results are shown in the
left panel of Figure 6.10, where the legend first denotes the lower and then the upper boundary
condition. It can be seen that the boundaries only have a minor impact on the growth of the
horizontal density fluctuations and are thus not considered to origin of the numerical instability.

Finally, it is investigated whether the well-balanced discretizations of gravity presented in Sec-
tion 6.1 are able to inhibit the numerical instability within the hydrostatic atmosphere. To this
end, the hydrostatic reconstruction method is examined in combination with the Roe-Lowmach
and the AUSM+-Lowmach flux functions. Moreover, the preconditioned F-wave Riemann solver
is compared to the original setup with the Roe-Lowmach flux and the pointwise discretization
of gravity. The temporal evolution of the resulting horizontal density fluctuations is shown in
Figure 6.10 (right panel) for each method. The F-wave solver and the hydrostatic reconstruc-
tion with the Roe-Lowmach method show a similar growth of the numerical instability which
is somewhat smaller than with the original setup. With the hydrostatic reconstruction and the
AUSM+-Lowmach flux the instability is significantly reduced. Due to this very interesting behav-
ior, this test case is further evolved in time until t̂ = 400 is reached. The result is illustrated in
Figure 6.11. It can be seen that after 50 units of time, the growth rate of the numerical instability
even flattens further down. However, the instability does not seem to be completely resolved.
This is also confirmed by the plot of the horizontal density fluctuations at the end of the simu-
lation. The checkerboard-like pattern, typical for numerical instabilities can also be recognized
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Figure 6.10: horizontal density fluctuations for different vertical boundary conditions (left) and
different discretizations of gravity (right)
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Figure 6.11: horizontal density fluctuations with hydrostatic reconstruction and the AUSM+-
Lowmach flux

in this test case. In total, the well-balanced schemes tested here, seem to have some potential in
suppressing the numerical instability. However, none of them reaches this goal at the moment.

In summary, none of the variations of the numerical discretization tested in this subsection is
able to resolve the problem of the hydrostatic numerical instability. It should be noted that in the
tests presented above only one discretization feature was modified at each test. However, during
the work for this thesis, many more combinations of numerical discretization method were tested,
but none of them resolved the problem. Moreover, no particular part of the discretization can
be identified here which is solely responsible for the numerical instability. It seems to be vital
for the stability of the atmosphere that the numerical flux function and the discretization of the
gravitational source term are properly adapted to each other. In this respect, the failure of the F-
wave Riemann solver is somewhat disappointing, because the method approximates the solution
of the inhomogeneous Riemann problem at each cell interface. Thus the numerical upwinding
should reflect the coupled hydrodynamic and gravitational problem. On the one hand, it is still
possible that the specific preconditioning approach to reduce the artificial viscosity in the low
Mach number regime chosen here is not suitable for the problem. On the other hand, different
low Mach number approaches which are based on different concepts show similar problems. In
total, the exact reasons for the failure of the numerical discretization methods remain unclear.
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ŷmax = 0.1
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Figure 6.12: Horizontal density fluctuations for an isothermal atmosphere

6.3.4 Different atmospheres

In this subsection, it is shown that the numerical instability presented above is not bound to
the specific choice of the hydrostatic atmosphere used in the previous tests. First, an isothermal
atmosphere of an ideal gas with constant gravitational acceleration is considered. Using the same
reference quantities for non-dimensionalization as in the last subsections (setting α̂ = 0), the
hydrostatic initial conditions can be written as

ĝ (x̂, ŷ) = −1, T̂ (x̂, ŷ) = 1, p̂ (x̂, ŷ) = ρ̂ (x̂, ŷ) = exp (−ŷ) . (6.3.5)

Thus, the only parameter left for this setup is the size of the computational domain which is
chosen to [−ŷmax, ŷmax]× [−ŷmax, ŷmax] here. Note that ŷmax is measured in units of the pressure
scale height, which is constant here. The domain is discretized by 64× 64 grid cells with periodic
horizontal and constant ghost cell vertical boundary conditions. The interface reconstruction is
performed with constant extrapolation (if not stated differently) and the numerical fluxes are
computed with the Roe-Lowmach method at Mcut = 10−12. The initial horizontal velocity field
is initialized with a tiny random noise as in the previous subsections. The setup is advanced
in time with the implicit backward Euler method at fixed time step ∆t̂ = 0.05. The temporal
evolution of the horizontal density fluctuations is shown in Figure 6.12 for different sizes of the
computational domain. It can be seen that the hydrostatic numerical instability also develops
in all test cases considered here. The growth rates of the numerical instability are significantly
lower compared to the setup with a linear temperature gradient from Section 6.3.1 and do not
seem to depend on the box size. Thus, temperature gradients seem to strengthen the numerical
instability. Moreover, it can be seen from the results, that the saturation level of the horizontal
density fluctuations depends on the size of the computational domain. Smaller boxes tend to
weaken the numerical instability. For the largest box size, where 2 · 5 = 10 pressure scale heights
where resolved, the numerical test is also performed with linear interface reconstruction, which
results in a second-order accurate scheme in space. The numerical instability is nearly completely
inhibited in this case. In total, it can be stated that the numerical instability is also present in
the most simple hydrostatic atmosphere, although the effects are much weaker than in the tests
before.

The hydrostatic atmospheres considered before had only a model character to demonstrate the
effects of the numerical instability but were not very realistic from the position of real stellar
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atmospheres. A model of a main-sequence star with a total mass of 20 solar masses which was
thankfully provided by Weiss (2009) is thus considered next. The model is an output of the 1D
stellar evolution code GARSTEC (Weiss & Schlattl 2008) in which the star was evolved up to
an age of 4.65 Myr. As the star is in its main-sequence stage, it basically consists of a core in
which hydrogen (H) is converted to helium (He) by nuclear reactions, surrounded by a hydrogen
rich envelope. At the age of the star considered here, the core is already substantially enriched by
helium. A relatively small region of the star at the interface between the core and the envelope
is chosen for the numerical tests in LHC. The corresponding radial profiles of density, pressure,
gravity and mass fraction are mapped from the 1D stellar evolution code into a plain-parallel
Cartesian grid in LHC by a seconder-order interpolation function. Each quantity is thus constant
along the x-axes of the two-dimensional grid. The initial vertical profiles are plotted in the left
panel of Figure 6.13, where the quantities are normalized to their values at the center (denoted
by subscript c) of the box for better readability. It should be noted that the gravity is not
spatially constant for this setup. In LHC, a fully ionized ideal gas with radiation pressure is used
as equation of state (see Section 2.2.3). This allows to reproduce the temperature profile of the
1D stellar evolution code up to a relative accuracy of ≈ 10−3. The radiation pressure makes up
about 10% of the total pressure within the box considered here and can thus not be neglected.
Moreover, it should be noted that the setup should reflect a hydrostatic equilibrium state to very
high accuracy. Within the stellar evolution model, the hydrostatic equilibrium may only change
due to nuclear reactions and thermal radiation whose time scales are orders of magnitude higher
than the time scales considered in the following tests.

The two-dimensional computational domain is chosen with an aspect ratio of 2 : 1 and is
discretized into 128 × 128 grid cells. For the further discretization, the interface values are re-
constructed with piecewise linear functions here and the numerical fluxes are computed with the
Roe-Lowmach method at Mcut = 10−12. The initial hydrostatic atmosphere is evolved with the
implicit backward Euler method. The time step is chosen by the free-fall CFL criterion described
in Section 5.3.1 with CFLug = 0.5 which corresponds to a time step of ∆t ≈ 41.3 s. In order to
test the stability the hydrostatic atmosphere, the maximum Mach number and the maximum hor-
izontal density fluctuations on the two-dimensional grid are recorded as a function of time. The
results are illustrated in the right panel of Figure 6.13. It can be seen that the horizontal density
fluctuations also grow exponentially in this test case and reach their saturation level after a phys-
ical simulation time of approximately two hours only. The spatial distribution of the horizontal
density fluctuations is shown in Figure 6.14 at a certain instant in time. A checkerboard-like
pattern can also be observed in this case. Interestingly, this numerical instability is concentrated
at the vertical center of the box and is very closely aligned with the gradients of the mass faction
of hydrogen and helium. Thus, besides the temperature gradients discussed before, concentration
gradients also seem to support the numerical instability. Moreover, it can be seen from Fig-
ure 6.13 that the maximum Mach number increases to about 5 · 10−4 within the first time step
and slowly decreases for some time as the atmosphere tries to relax to its discrete equilibrium
state. However, the Mach number rises again with the density fluctuations and finally reaches a
saturation level of ≈ 5 · 10−2 at the end of the simulation. Such high velocity fields are certainly
too large to study any real physical processes which might occur in this atmosphere. Plotting
the spatial distribution of the hydrogen mass fractions at the end of the simulation (see right
panel of Figure 6.14), it can also be seen that the abundances heavily start to mix. The initially
hydrostatic atmosphere thus gets completely destroyed solely due the numerical instability. In
total, this test demonstrates that better discretization techniques are needed in order to study
physical processes in stellar atmospheres. Moreover, it should again be emphasized that switching
to numerical flux functions not designed for low Mach number flows may suppress the numerical
instability reported here. However, the excessive artificial viscosity involved in these methods
would also suppress important physical processes.
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Figure 6.13: main sequence star: initial vertical profiles (left) normalized to their value at the
center of the box; temporal evolution of the maximum Mach number and horizontal
density fluctuations (right)
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6.3.5 Artificial physical viscosity

In Section 6.3.3, it was shown that the hydrostatic numerical instability can not be suppressed
sufficiently by any of the discretization methods available in LHC so far. A general method to
stabilize numerical discretizations in fluid mechanics is by adding some amount physical viscosity.
Here, this approach seems to be somewhat counterproductive because the only aim for the inven-
tion of the low Mach number numerical functions was to reduce the artificial viscosity which is
normally inherent in ordinary schemes for low Mach number flows. However, adding physical vis-
cosity to the fluid might inhibit the hydrostatic numerical instability, while having full control on
the amount of viscosity. Moreover, an additional viscosity does not depend on the Mach number
of the flow (as it is the case for an unpreconditioned Roe solver). It is tested in this subsection
whether such an artificial physical viscosity is able to stabilize a hydrostatic equilibrium.

The additional viscous source term to the Euler equations is taken from the incompressible
Navier-Stokes equations. Although such a term is only strictly physically valid for divergence-free
flows, it is a good approximation of the compressible viscosity in the low Mach number regime.
Apart from that, the additional viscosity is artificial anyway and is only intended to suppress nu-
merical oscillations. The incompressible viscous source term may be written in primitive variables
for the velocity equations as (e.g. Drikakis & Rider 2005)

SµV,mom = µ/ρ ∇ · ∇q. (6.3.6)

Assuming a two-dimensional Cartesian geometry, this source term may be rewritten in conserva-
tive variables in divergence form:

Sµ =
∂Fµx
∂x

+
∂Fµy
∂y

(6.3.7)

The viscous fluxes are then defined by:

Fµx = µ


0
∂xu
∂xv

u · ∂xu+ v · ∂xv
0

 , Fµy = µ


0
∂yu
∂yv

u · ∂yu+ v · ∂yv
0

 (6.3.8)

The variable µ denotes a dynamic viscosity which is assumed to be spatially and temporally
constant in the following.

The divergence form of the viscous source term has the advantage that it is very easy to discretize
in the finite-volume context used here. The viscous fluxes can be discretized similarly to the fluxes
used for thermal radiation (cf. Section 3.5.4). The resulting numerical flux (exemplary for the
x-direction)

Fµx,i+1/2 =
µ

∆x


0

ui+1 − ui
vi+1 − vi

(ui+ui+1)
2 (ui+1 − ui) + (vi+vi+1)

2 (vi+1 − vi)
0

 (6.3.9)

is second-order accurate in space and can simply be added to the numerical hydrodynamic fluxes
at each cell interface. It should be noted that this numerical flux is only valid for two-dimensional
Cartesian grids for dimensionalized calculations. More general cases are not yet implemented in
LHC as the above formulation is sufficient for testing purposes.

With the above formulation of the viscous source term, the hydrostatic atmosphere of the main-
sequence star presented in the last subsection is re-simulated. In doing so, the dynamic viscosity
(measured in poise, 1 P = 1 g

cm s ) is successively increased in each run until the hydrostatic atmo-
sphere becomes stable. Figure 6.15 shows the corresponding evolution of the horizontal density
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Figure 6.15: main sequence star: horizontal density fluctuations with different values for the dy-
namic viscosity

fluctuations compared to the original setup. It can be seen that a dynamic viscosity of 5 · 1013

P is needed in order to substantially decrease the growth rate of the numerical instability. At
µ = 5 · 1015 the hydrostatic atmosphere finally becomes stable, at least on the time scales con-
sidered here. While such a high dynamic viscosity is clearly unphysical, as it rather corresponds
to a solid material than to a gaseous fluid, it should be kept in mind that the viscosity is purely
artificial here. It is intended to remove the density oscillations at the grid scale. Due to the
relatively large grid spacing, the dynamic viscosity takes such high values. In order to get an
impression of the actual amount of viscosity, a different measure is used in the following. To this
end, it is assumed that the atmosphere is intended to be used to study large-scale flows at very
low Mach number, like some wave-propagation phenomena, shear flows or convection. For such a
flow, a dimensionless measure of the relative strength of viscosity, named Reynolds number, can
be computed by

Re =
ρ̄q̄L

µ
=
ρ̄M̄ c̄L

µ
, (6.3.10)

where the bars denote typical average quantities of the setup. Setting the typical length scale L
to the vertical size of the computational domain and assuming a mean Mach number of M̄ = 10−4

for the flows of interest, the Reynolds number for a dynamic viscosity of µ = 5 · 1015 P results in

Re = 0.07. (6.3.11)

In general, Reynolds numbers below unity denote flows in which even the inertial forces of the
fluid elements are overwhelmed by viscous effects. For Reynolds numbers up to ≈ 1000 the flow
regime is laminar whereas even higher Reynolds numbers describe turbulent flows. For the stellar
atmosphere considered here, the viscosity required to stabilize the atmosphere is thus far to high
for any practical application. Ideally, the turbulent flow regime should be reached in order to
gain new insights into stellar evolutionary processes. As this is totally out of scope here, the
use of artificial physical viscosity to resolve the hydrostatic numerical instability is dismissed
in the following. In total, this test revealed how strong the numerical instability is for this
atmosphere. Besides that, it is interesting to note that the atmosphere is numerically stable if
the unpreconditioned numerical Roe flux is used. Thus, this test also gives an impression about
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the strength of the artificial viscosity which is inherent in numerical fluxes not designed for low
Mach number flows.

6.3.6 Fire Dynamics Simulator

After the presentation of the hydrostatic numerical instability in the last subsections, two questions
may arise. First, is it possible that the various low Mach number numerical flux functions or even
the basic discretization techniques used in LHC are just not suitable for hydrostatic atmospheres?
Secondly, can the instability be caused by a simple programming bug in LHC? The second question
seems somewhat unlikely as the numerical instability shows up with various different discretization
techniques which are coded in well-separated modules of the source code. However, the possibility
of a severe bug can never be excluded entirely.

In order to answer the two questions, a cross-check to the results of another simulation code
which is based on very different discretization techniques is very helpful. In the search for such a
different code a few technical requirements should be kept in mind. At first, the other simulation
code should be based on the same set of continuous equations. For the hydrostatic atmospheres
considered here, this means that at least two independent thermodynamic variables should be
evolved in time (e.g. density and energy or pressure and temperature) and may contain arbitrary
large fluctuations. This guarantees that the hydrostatic equilibrium is not bound to a predefined
temperature profile. Moreover, the other code should have an accurate treatment of gravity. The
last two requirements basically exclude all codes which make use of the Boussinesq approximation.
Finally, a different code should resolve low Mach number flows accurately without an inherent
excessive artificial viscosity.

To the author’s knowledge, the only code which meets the above requirements and is additionally
publicly available is the so-called Fire Dynamics Simulator1 (FDS) developed by the National
Institute of Standards and Technology (NIST). This code is intended to be used to simulate
the propagation of fires inside buildings. The code is based on the compressible Navier-Stokes
equations and has an accurate treatment of thermally-driven flows. Moreover, it seems to be
well-balanced as it subtracts a hydrostatic equilibrium state from the governing equations and
evolves the hydrostatic state and deviations from it separately. Moreover, the code employs a low
Mach number assumption which is strictly valid only in the limit of M → 0. This limits FDS
to low-speed flows, which is sufficient for the tests considered here. As the flow field becomes
divergence-free in the absence of source terms in FDS, the code should not contain an excessive
artificial viscosity for low Mach number flows. In general, FDS is a finite-difference code with
second-order accuracy in space and time. Further details about the numerical discretization can
be found in the corresponding technical reference guide. It should be noted that FDS is used by
a broad community and is subject excessive verification and validation tests. In total, FDS seems
to be perfectly suitable for cross-checks against LHC.

As FDS is not intended to simulate large scale hydrostatic atmospheres, a very simple setup
is chosen here in order to facilitate the grid setup. For convenience with FDS, this subsection
also uses SI units. For the following numerical test an isothermal atmosphere of an ideal gas
with a mean molecular weight of 1 g/mol at T = 303.15 K is considered under the action of the
constant gravitational acceleration of g = 9.81 m/s2. The two-dimensional Cartesian computa-
tional domain of size [100km, 100km] × [100km, 100km] is discretized with 64 × 64 nodes. The
boundary conditions are solid walls at each side of the box. It should be noted that the more
sophisticated features of FDS, like humidity, radiation, viscosity, turbulence models and chemical
reactions are all switched off. Besides the initial hydrostatic atmosphere, a random velocity field
with a peak Mach number of ≈ 10−14 is also added to this atmosphere in order to break up
the perfect numerical symmetry in the horizontal direction. The setup is evolved in time until
t = 60000 s is reached. As in the previous hydrostatic setups with LHC, the results are also
analyzed by recording the maximum of the horizontal density fluctuations as a function of time.

1available via http://fire.nist.gov/fds/index.html
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Figure 6.16: comparison of growth rates of the hydrostatic numerical instability (left); spatial
structure of the numerical instability in FDS (right)

The results are illustrated in Figure 6.16 (left panel). For comparison, an identical hydrostatic
atmosphere was evolved with LHC (Roe-Lowmach, constant reconstruction) which is also shown
in the figure. It can be seen that the horizontal density fluctuations also grow exponentially in
FDS. The hydrostatic numerical instability seems also to be present here. The corresponding
spatial structure of the horizontal density fluctuations at a certain instant in time is shown in the
right panel of Figure 6.16. Interestingly, the instability does not show a checkerboard-like pattern
as in LHC but only a horizontal zig-zag pattern between the grid nodes. The growth rate of the
numerical instability is even a bit higher in FDS than in LHC. It should be noted that the LHC
results are first-order accurate in space. Using a linear interface reconstruction for second-order
accuracy would nearly inhibit the numerical instability at all for this atmosphere.

In summary, it can be concluded that the hydrostatic numerical instability also shows up with
FDS. The reason that this failure was not discovered before, is probably due to the fact that FDS is
mainly used to simulate fires inside buildings. The typical height of computational domains is thus
not greater than ≈ 500 m, which is only a tiny fraction compared to the corresponding pressure
scale of 257 km. In order to answer the questions from the beginning of this subsection, it can
be stated that the numerical methods used in LHC may be inappropriate for nearly hydrostatic
flows. However, they may just be as inappropriate as the methods used by FDS which are very
different. Thus, it seems unlikely that a specific choice of a certain discretization technique used
in LHC is responsible for the hydrostatic numerical instability. Moreover, the cross-check with
FDS revealed that it is very unlikely that the numerical instability is caused by a programming
error in LHC.

6.3.7 Conclusions

In the following, the results from the previous sections are briefly recapitulated. Concerning the
stability of one-dimensional hydrostatic atmospheres, it can be stated that well-balanced dis-
cretizations of gravity are clearly advantageous compared to a pointwise discretization of gravity.
Using non low Mach number flux functions with pointwise gravity results in large residual Mach
numbers and substantial distortions of the initial temperature profile in a hydrostatic atmosphere.
Therefore, such a discretization is clearly not suited for nearly hydrostatic flows. However, using
a low Mach number flux function in combination with pointwise gravity, the hydrostatic atmo-
spheres seem to be nearly well balanced. The residual Mach number reach very low values down to
the machine precision while distortions of the initial temperature profile are still in an acceptable
range. Using well-balanced discretizations of gravity, the initial hydrostatic setup can be main-
tained with even greater accuracy. Low Mach number flux functions do not interfere with the well
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balancing as long as the cut-off Mach number is set low enough. Thus, extending the well-balanced
discretizations of gravity to more general situations, like second-order accuracy, non-ideal gases
and non-Cartesian geometries should be a goal in the design of future developments in LHC.

Unfortunately, the hydrostatic numerical instability reported here limits the use of LHC to
simple atmospheres at the moment, where the growth of the instability can be slowed down by
a proper choice of discretization techniques such that the instability does not become dominant
on the time scales of interest. It has been shown that the numerical instability occurs with all
kinds of numerical discretizations suitable for low Mach number flows. From the results presented
above, the numerical instability does not seem to be caused by an erroneous design of the low
Mach number flux functions itself. The instability seems to emerge as soon as the numerical
viscosity of ordinary flux functions is reduced in order capture low Mach number flows accurately.
The specific choice the low Mach number technique only seems to have a minor influence on the
stability, which is clearly emphasized by the results presented from the Fire Dynamics Simulator.
It should be stressed that the use of a well-balanced discretization of gravity in combination
with an ordinary numerical flux function does not seem to be an option for practical applications
although hydrostatic atmospheres are stable in this case. The numerical viscosity, especially in
directions perpendicular to the gravitational acceleration (which are not influenced by the well-
balancing at all) is still excessive such that low Mach number flow fields are damped out on rather
short time scales. Thus, for a proper modeling of turbulent stratified flows in stellar atmospheres,
a low Mach number flux function seems to be vital. However, it has also been shown that certain
combinations of well-balanced methods for gravity and low Mach number flux functions may
substantially decrease the growth rate of the numerical instability. Thus, future research should
probably concentrate on this topic in order to find a discretization of gravity and hydrodynamics
which are more compliant with each other.

6.4 Internal gravity waves

6.4.1 Motion of a displaced fluid element

So far, only hydrostatic atmospheres and their stability in numerical simulations has been inves-
tigated. Assuming that a fluid element of density ρint of such an atmosphere is slightly vertically
displaced from its equilibrium position r0, it will fulfill an adiabatic motion described by the
following equation (Maeder 2009):

ρint
d2r

dr2
+ g (ρint − ρext) = 0 (6.4.1)

The index ext denotes the density of the unperturbed atmosphere at the corresponding position.
Linearizing the densities about the equilibrium position r0, the equation of motion may be written
as

ρint
d2r

dr2
+ g

(
dρint

dr

∣∣∣∣
r0

− dρext

dr

∣∣∣∣
r0

)
(r − r0) = 0. (6.4.2)

This differential equation just describes a harmonic oscillator with a frequency N defined by

N2 =
g

ρ

(
dρint

dr

∣∣∣∣
r0

− dρext

dr

∣∣∣∣
r0

)
. (6.4.3)

Thus, the displaced fluid element fulfills a periodic motion around its equilibrium position which
is driven by the restoring force of gravity. The frequency N is called Brunt-Väisälä-frequency and
is generally defined for an ideal gas as (Maeder 2009)

N2 =
g

Hp
(∇ad −∇ext +∇µ) , (6.4.4)
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where the variables

∇ad =
d lnTad

d ln p
=
γ − 1

γ
, ∇ext =

d lnText

d ln p
, ∇µ =

d lnµext

d ln p
, (6.4.5)

denote the adiabatic, external logarithmic temperature gradients and the logarithmic gradient of
the mean molecular weight. The index ext denotes the profiles of the unperturbed hydrostatic
equilibrium state here. It should be noted that the Brunt-Väisälä-frequency may also contain
a non-vanishing imaginary part if N2 < 0. A displaced fluid element is then not forced back
to its equilibrium position, but the displacement grows exponentially until non-linear processes
stop this growth. This is the basic explanation for convection. The corresponding hydrostatic
atmosphere is said to be convectively unstable. However, the atmospheres used in this work are
all stable in this respect.

More importantly, it can be shown that oscillations of displaced fluid elements are also possible
in directions not aligned with the direction of gravity (see e.g. Sutherland 2010). Only a purely
horizontally displaced fluid element will not perform any periodic motions because there is no
restoring force in this direction. Moreover, if the fluid is not displaced at a single point, but in a
continuous way, it is possible that the oscillatory motions build up waves propagating through the
hydrostatic atmosphere. These waves are called internal gravity waves and are described more
mathematically in the following subsection.

6.4.2 Linear theory in Boussinesq approximation

Internal gravity waves are most easily described mathematically in the context of the Boussinesq
approximation (cf. Section 2.7.1). The following derivation of the basic properties of internal
gravity waves basically follows the presentation given in the book by Sutherland (2010) which is
briefly repeated here. More details can be found in this reference. It is assumed that the fluid is
described on a two-dimensional Cartesian domain in which the gravitational acceleration g > 0
is pointing towards the negative y-axes. The Boussinesq equations for the deviations from the
hydrostatic equilibrium are then given by:

Dϑ̃

Dt
+ v

dϑhse

dy
= 0 (6.4.6)

Du

Dt
+

1

ρ0
· ∂p̃
∂x

= 0 (6.4.7)

Dv

Dt
+

1

ρ0
· ∂p̃
∂y

= − g

ϑ0
ϑ̃ (6.4.8)

∂u

∂x
+
∂v

∂y
= 0 (6.4.9)

For unknown variables, the ansatz of a two-dimensional, plain wave is chosen:
ϑ̃
u
v
p̃

 =


Aϑ
Au
Av
Ap

 · exp (i (kxx+ kyy)− iωt) (6.4.10)

The wave vector is denoted by (kx, ky) whereas the temporal frequency is denoted by ω. The
amplitudes A may be arbitrary complex constants and thus permit a different phase in each
component of the solution. The only requirement on the amplitudes is that they are reasonably
small in magnitude as only small deviations of the hydrostatic equilibrium are subject of this
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investigation. Inserting the ansatz into the Boussinesq system and omitting terms with products
of the (small) amplitudes results in the following system of linear equations:

−iω 0 dϑhse

dy 0

0 −iω 0 ikx
ρ0

g
ρ0

0 −iω iky
ρ0

0 ikx iky 0

 ·


Aϑ
Au
Av
Ap

 = 0 (6.4.11)

These equations only have a non-trivial solution for the complex amplitudes if the determinant
of the matrix is zero. Evaluating this expression results in the dispersion relation for Boussinesq
internal gravity waves,

ω2 = −dϑhse

dy
· g
ρ0
· k2

x

k2
x + k2

y

, (6.4.12)

which relates the frequency ω to a given wave vector (kx, ky). This expression can further be
simplified by recognizing that the first to factors just denote the square of the Brunt-Väisälä-
frequency of the corresponding atmosphere. It should be noted that the N2

0 is always positive
here, because the gradient in potential temperature has to be negative for the atmosphere to be
stable against convection. The last factor in the dispersion relation describes the square of the
cosine of the angle of the wave vector with respect to the horizontal direction. The dispersion
relation can thus be written as

ω = N0 cos Θ. (6.4.13)

This relation has some remarkable properties. First, the frequency does not depend on the
magnitude of the wave vector, but only on its angle with respect to the horizontal direction.
Moreover, the propagation of internal gravity waves is strongly anisotropic. While horizontal plane
waves oscillate at the maximum frequency, given by N0, vertical plane waves do not propagate at
all as the frequency approaches zero in this case.

In order to further solve Equation 6.4.11, it should be noted that the linear system is still
under-determined. This just reflects the fact that one amplitude can be chosen arbitrary. Only
the three remaining amplitudes are fixed by the linear system. For example, the amplitude of the
vertical velocity Av can be chosen. The corresponding column of the linear system can then be
written on the right hand side of the linear system, resulting in

−iω 0 0

0 −iω ikx
ρ0

g
ρ0

0
iky
ρ0

0 ikx 0

 ·
 Aϑ

Au
Ap

 = −Av


dϑhse

dy

0
−iω
iky

 . (6.4.14)

With the above dispersion relation, this reduced system has the unique solution given by:

Aϑ = − i
ω

dϑhse

dy
Av (6.4.15)

Au = −ky
kx
Av (6.4.16)

Ap = −ρ0ω
ky
k2
x

Av (6.4.17)

These solutions are called polarization relations of the internal gravity waves. Together with the
dispersion relation, they may be inserted into the plane wave ansatz given by Equation 6.4.10. It
can then be seen that both velocity components and the pressure fluctuations are either in phase
or inversely phased, while the potential temperature fluctuations are always out of phase by π/2.
It should be noted that if the above ansatz is used to describe a physical internal gravity wave,
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the real parts of the ansatz functions has to be taken. Moreover, it can be seen that a plane
internal gravity wave is fully described by a given wave vector and the amplitude for one field.

The above description treats internal gravity waves in the linear regime which is reflected by the
linear system given in Equation 6.4.11. Thus, any superposition of plane waves is also a solution
of this equation. Specifically, this fact permits the construction of monochromatic wave packets,
where the amplitude of a plane wave is for example modulated by a Gaussian function. The
maximum of such a wave packet travels with the corresponding group velocity which is generally
defined by

cg = ∇kω. (6.4.18)

For the above dispersion relation the Cartesian components of the group velocity can be evaluated
to

cgx =
N0

kx
cos Θ sin2 Θ, (6.4.19)

cgy = −N0

kx
cos2 Θ sin Θ. (6.4.20)

Interestingly, the group velocity is perpendicular to the wave vector and thus also to the phase
velocity. This curious behavior is a result of the anisotropic propagation of internal gravity waves.

6.4.3 Simulation of a wave packet

In this subsection, it is investigated whether internal gravity waves can be resolved in numerical
simulations with LHC. To this end, a very simple hydrostatic atmosphere in a two-dimensional
Cartesian domain is considered. The fluid consists of an ideal gas at constant temperature T0 =
300 with a constant mean molecular weight µ = 1. The constant gravitational acceleration
g = 1000 is pointing towards the negative y-axes. Choosing a density ρ0 = 1 at zero height, the
hydrostatic density and pressure profiles are then given by

ρhse (x, y) = ρ0 exp (−y/Hp) , phse (x, y) = ρ0R̃T0 exp (−y/Hp) . (6.4.21)

The resulting pressure scale height and the Brunt-Väisälä-frequency are also spatially constant
and are given by

Hp =
RT0

g µ
, N0 =

√
g

Hp
· γ − 1

γ
. (6.4.22)

The corresponding potential temperature profile of the hydrostatic atmosphere can be obtained
by Equation 2.7.1 and results in

ϑhse = T0 exp

(
y

Hp
· γ − 1

γ

)
. (6.4.23)

In order to be able to compare the simulation results to the Boussinesq theory of internal gravity
waves discussed in Section 6.4.2, the vertical extents of the physical domain are chosen very small
compared to the pressure scale height:

y1 = −0.01 ·Hp, y2 = 0.02 ·Hp (6.4.24)

The values of the hydrostatic density and potential temperature profiles thus stay very close to
their corresponding reference values at zero height, i.e. ρhse(x, y) ≈ ρ0, ϑhse ≈ T0.

The hydrostatic atmosphere is distorted by a monochromatic wave packet of an internal gravity
wave as described by the linear Boussinesq theory. The wave vector is chosen such that the wave
length corresponds to a tenth of the physical domain, while the wave vector is inclined by −60◦

with respect to the horizontal direction:

|k| = 2π

(y2 − y1) /10
, Θ = −60◦/180◦π (6.4.25)
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The corresponding Cartesian components of the wave vector are then given by

kx = |k| cos Θ, ky = |k| sin Θ. (6.4.26)

With these values, the extents of the physical domain are chosen as [0, 2π
|kx| ] × [y1, y2], such that

one horizontal wave length fits into the domain. With periodic horizontal boundary conditions,
the plane wave approximation can then at least be maintained in the horizontal direction. In the
vertical direction, the amplitude of the internal gravity wave is modulated by a Gaussian function.
Setting the peak Mach number for vertical velocity fluctuations to 10−6, the amplitude function
of the vertical velocity is then given by

Av(y) = 10−6 ·
√
γR̃T0 · exp

(
−1

2
·
(

y

|y1|/4

)2
)
. (6.4.27)

With the polarization relations given in Section 6.4.2, the initial conditions for the internal gravity
wave setup are given by the following expressions:

ϑ (x, y, t = 0) = ϑhse + <
{
− i
ω

dϑhse

dy
Ave

i(kxx+kyy)

}
u (x, y, t = 0) = <

{
−ky
kx
Ave

i(kxx+kyy)

}
v (x, y, t = 0) = <

{
Ave

i(kxx+kyy)
}

p (x, y, t = 0) = phse + <
{
−ρ0ω

ky
k2
x

Ave
i(kxx+kyy)

}
(6.4.28)

The corresponding initial density distribution can be obtained via Equation 2.7.1 and the ideal
gas law.

From the Boussinesq theory, it is expected that the above wave packet propagates with its
group velocity in the vertical direction:

cgy = +

√
3

4
· N0

|k| (6.4.29)

Theoretically, the amplitude function (6.4.27) should just be shifted as a function of time without
changing its shape or relative size:

Av(y, t) = Av(y − cgyt) (6.4.30)

This property will be an important measure for the quality of different numerical discretizations.
For the numerical tests, the physical domain is discretized by 128× 128 grid cells. The vertical

boundary conditions are given by constant ghost cell values filled with the hydrostatic equilibrium
profiles. For the temporal discretization, the implicit ESDIRK23 stepper is chosen which is second-
order accurate. The time step is held fixed and is chosen such that one oscillation period with
the Brunt-Väisälä-frequency is resolved by 20 steps, i.e. ∆t = 1

20 · 2π
N0

.
Before simulating the actual gravity wave, it is tested whether the hydrostatic equilibrium is

stable on the grid or if the hydrostatic numerical instability described in the previous section is
also present here. In order to investigate this, the hydrostatic equilibrium profiles without the
wave disturbances are advanced in time with different spatial discretization techniques. The Roe-
Lowmach and the AUSM+-Lowmach (at Mcut = 10−12) numerical flux functions are each tested
with the constant and linear interface reconstruction schemes in combination with a pointwise
discretization of gravity. Moreover, the well-balanced hydrostatic reconstruction method is tested
with both flux functions. As in Section 6.3, the initial horizontal velocity field is initialized with
random noise with a peak Mach number of 10−15. The numerical stability of the hydrostatic at-
mosphere is again be determined by the temporal evolution of the horizontal density fluctuations,
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Figure 6.17: temporal evolution of horizontal density fluctuations on a quiet hydrostatic atmo-
sphere (left); initial conditions for the internal gravity wave packet (right)

which is shown in the left panel of Figure 6.17 for each discretization method. It can be seen
that the AUSM+-Lowmach flux is stable for constant and linear reconstruction. Interestingly,
the hydrostatic reconstruction shows a very small growth of the density fluctuations here. In
contrast, the Roe-Lowmach flux exhibits a rather strong numerical instability for the constant
and the hydrostatic reconstruction. Only the linear reconstruction scheme is stable here.

Despite the problems with the hydrostatic numerical instability which is also present in the
atmosphere under consideration, the performance of different spatial discretizations in resolving
the internal gravity wave packet is evaluated next. To this end, the grid is set up with the initial
conditions described by Equations 6.4.28. The corresponding potential temperature fluctuations
and the horizontal velocity field is exemplary shown in the right panel of Figure 6.17. The setup
is evolved in time with the same spatial and temporal discretization techniques that were used in
the hydrostatic stability test before. In order to analyze the results, it is desirable to extract the
time-dependent amplitude function of the wave packet from the simulation data which can then be
compared to the theoretical result given by Equation 6.4.30. In order to develop such an extraction
technique, it is assumed that the horizontal velocity field at a certain time can be decomposed
into a product of a vertical profile u(y) and a periodic sinusoidal horizontal fluctuation:

u(x, y) = u(y) sin (kxx+ ϕ(y)) (6.4.31)

As the phase ϕ may also depend on y, this expression is valid as long as the horizontal fluctuation
is close to a sine. In particular, the analytic solution for the velocity field given by the Boussinesq
theory fulfills this criterion exactly. Integrating the square of Equation 6.4.31 over the horizontal
box size then eliminates the sinusoidal x-dependence:∫ 2π/kx

0

u(x, y)2dx =
π

kx
u(y)2 (6.4.32)

With this expression, the vertical amplitude profile u(y) can be recovered. For the analysis of the
simulation data, the above integral is evaluated numerically and the resulting amplitude profile
is normalized to its maximum initial value:

rj =

√
kx
π

∑
i u

2
i,j∆x∣∣∣kykxAv(y = 0)

∣∣∣ (6.4.33)

Thus, rj can be used to measure the relative amplitude of the internal gravity wave from the
simulation data even after the initial conditions were evolved in time and are not necessarily
given by the analytic Boussinesq solution.
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The amplitude reconstruction procedure is performed for each simulation setup at three points
in time, after 2, 4 and 6 oscillation periods of the Brunt-Väisälä-frequency. The results for the
different spatial discretization techniques are shown in Figure 6.18. The theoretical positions of
the maximum of the amplitude function, given by cgy ·t, is marked by dashed lines within each plot.
Moreover, the spatial distribution of the velocity field at the end of each simulation (t = 6 ·2π/N0)
is shown separately for each discretization. Examining the plots for the Roe-Lowmach flux with
constant reconstruction, it can be seen that the amplitude function initially propagates at the
estimated group velocity, although the amplitude is heavily damped out. However, already at
t = 4 · 2π/N0, it can be seen that a second maximum forms in the lower part of the atmosphere,
which finally dominates the velocity field at the end of the simulation. The spatial distribution
of the velocity field clearly shows that internal gravity wave is scrambled, which is not compliant
with the theoretical considerations. In contrast to that, the AUSM+-Lowmach flux with constant
reconstruction shows a very different behavior. The internal gravity wave propagates continuously
and does not show any signs for a second maximum in the amplitude function. However, besides
that the wave packet also gets heavily damped out here, it does not propagate with the estimated
speed at all.

The Roe-Lowmach and the AUSM+-Lowmach flux exhibit a very similar behavior when they
are used in combination with the linear interface reconstruction method. The internal gravity
wave propagates exactly with the theoretically predicted speed, while the amplitude decreases
only mildly compared to the previous tests. As the linear reconstruction method provides second-
order accuracy in space, the corresponding results seem to be more reliable than the first-order
results.

With the well-balanced hydrostatic reconstruction scheme combined with the Roe-Lowmach
flux, the amplitude function of the internal gravity waves quickly increases (notice the different
scale in the amplitude function plot here). The simulation even aborts with unphysical values
shortly after t = 4 · 2π/N0. As an increase in the amplitude is not compliant with energy
conservation principles (cf. Sutherland 2010) for internal gravity waves, this behavior is clearly
unphysical and must be attributed to the numerical discretization. Opposed to that, the AUSM+-
Lowmach flux with hydrostatic reconstruction shows an excellent behavior at the beginning of
the simulation. The internal gravity wave propagates exactly with the predicted speed and the
damping is very low. It must be emphasized that the hydrostatic reconstruction is only first-
order accurate in space, but exhibits a damping behavior similar to the second-order scheme
without well-balancing. Thus, it can be suspected that a second-order extension of the hydrostatic
reconstruction would provide even better results. Unfortunately, a second maximum also builds
up here in the amplitude function at the end of the simulation. As this spurious maximum is
constantly increasing, the results would similar to the Roe-Lowmach scheme with hydrostatic
reconstruction if the simulation would be run on longer time scales.

In total, only the linear reconstruction scheme with a pointwise discretization of gravity shows
reasonable results for the low Mach number flux functions. All other discretizations show some
kind of spurious behavior, which does not seem to be physical. Comparing these results with
the growth rates of the hydrostatic numerical instability presented in Figure 6.17 shows a very
interesting correlation. The faster the hydrostatic numerical instability grows for a given dis-
cretization method, the faster the spurious amplitudes rise for the internal gravity waves. This is
a strong hint, that both numerical problems are actually caused by internal gravity waves, which
are not properly resolved by the numerical discretizations. This is underlined by the fact that
the hydrostatic numerical instability typically grows on time scales given by the Brunt-Väisälä-
frequency. This can be seen from the non-dimensional numerical tests presented in Section 6.3,
where the reference time was always chosen according to N0. However, the internal gravity wave
tests presented here also show that such a wave may spuriously rise in amplitude without ex-
hibiting a checkerboard-like pattern as it was obtained for the hydrostatic numerical instability.
Unfortunately, this also means that the use of LHC for stellar atmospheres is very limited at the
moment. It is not possible to perform more complex simulations with the existing discretization
methods and just abort them when a spurious checkerboard pattern shows up. The internal grav-
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Figure 6.18: horizontal velocity fields (pseudo-color plots) at the end of each simulation and ex-
tracted amplitude functions of the internal wave packet at different points in time
(line plots); dashed lines denote the theoretically expected position of the wave packet
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Figure 6.19: Amplitudes of the internal gravity wave packet for non-low Mach number flux
functions

ity wave dynamics may also show spurious artifacts on more resolved scales, which can probably
not be distinguished from physical flow features in more complex situations. Thus, it is of major
importance for the future development on LHC to design new discretization techniques that are
not prone to the numerical instabilities presented here. However, the internal gravity wave test
also showed up the prospects of well-balanced schemes as they capture internal gravity waves with
much greater accuracy.

Finally, it should be noted that the internal gravity wave tests were only performed with
low Mach number flux functions, which generally seem to strengthen the numerical instabilities
presented in this chapter. Hence, the above tests are repeated with the ordinary versions of the
corresponding numerical flux functions (setting Mcut = 1). The only difference is that the size
of the time step is reduced by a factor of 100 to ∆t = 1

2000 · 2π
N0

. The temporal evolution of
the amplitude function of the wave packet is shown in the left panel of Figure 6.19 for Roe’s
approximate Riemann solver with the constant interface reconstruction method. It can be seen
that the amplitude quickly decreases to very low values on extremely short time scales. The
temporal evolution of the maximum of the relative amplitude is shown in the right panel of
Figure 6.19 for all discretizations. The amplitude decreases exponentially for all discretization
methods until a certain saturation level is reached. Although the decay of the internal gravity
wave is slower with linear interface reconstruction, the damping is still way too high for any
practical application. Moreover, the results show that the use of the well-balanced hydrostatic
reconstruction does not provide any advantage here. The damping can easily be explained by the
excessive numerical viscosity of the flux functions in the low Mach number regime (cf. Chapter 4).
Thus, a low Mach number flux function combined with a proper discretization of gravity seems
to vital in order to resolve internal gravity wave accurately.

6.4.4 Non-linear behavior and astrophysical relevance

The plain wave solutions for internal gravity waves discussed in Section 6.4.2 are only valid within
the Boussinesq approximation and for sufficiently small wave amplitudes such that non-linear ef-
fects are insignificant. For internal gravity waves traveling over large parts of the pressure scale
height of the corresponding atmosphere, an analytic linear theory can also be derived for the
anelastic equations (cf. Section 2.7.2). The plain wave solutions then contain an additional am-
plitude variation with the vertical coordinate depending on the density scale height (see Sutherland
2010). However, the general behavior of these linear internal gravity waves is very similar to the
results derived within the Boussinesq approximation.

For internal gravity waves whose amplitude is large, non-linear effects have to be considered.
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Remarkably, it can easily be shown that a single plain wave, as described by Equation 6.4.10
and the corresponding dispersion and polarization relations, is in fact a solution of the non-linear
Boussinesq equations. However, as soon as some kind of wave packet is considered, this statement
does not hold anymore. It can be shown that the amplitude function of a Gaussian wave packet
may either broaden or even steepen as it advanced in time (see Sutherland 2010). In the latter
case, which occurs for cos Θ >

√
2/3, the wave packet successively narrows and increases in

amplitude. This effect is known as modulational instability but is only expected to be visible for
rather large initial amplitudes of the wave. It should be noted that the results presented in the
previous section are not affected by this phenomenon because the amplitude is very small and the
above condition on the angle of the wave is not fulfilled here anyway.

The weakly non-linear theory of internal gravity waves also predicts that different plain waves
may interact by resonant triad interactions (see e.g. Sutherland 2010). The wave vectors and
frequencies of the involved waves must satisfy the following resonance conditions,

k1 = k2 ± k3, ω1 = ω2 ± ω3, (6.4.34)

which simply express the conservation of momentum and energy during the wave interaction.
Under suitable conditions, it is therefore possible to transfer energy from one wave to a different
wave of different wave length. An important special case of these triad interactions concerns
the stability of a single wave. It can be shown that a plane internal gravity wave is inherently
unstable and may decay into two other waves of different wave numbers. A theoretical Floquet
analysis of this problem reveals that the maximum growth rates for this instability are obtained
for ω2 = ω3 = −ω1/2 and k2 ≈ k3 � k1 (Klostermeyer 1982, 1991; Staquet & Sommeria 2002).
Due to its frequency dependence, the process is called parametric subharmonic instability (PSI).
It provides a mechanism of direct energy transfer from large to small scales. Interestingly, the
instability is not confined to rather strong waves, but may also occur for waves with arbitrary
small amplitudes (Drazin 1977). The PSI has been subject to various theoretical and numerical
investigations in literature (see Bouruet-Aubertot et al. 1995; Staquet & Sommeria 2002, and
references in there) and has even been confirmed experimentally (e.g. Benielli & Sommeria 1998).

In the author’s opinion, it seems to be possible that the PSI is also responsible for the numerical
stability problems described in the last sections. The PSI may generate waves at successively
smaller length scales, which cannot be resolved on the discrete grid at some level. Due to a failure
of the numerical discretization, the unresolved waves do not get dissipated but get shifted in wave
number by numerical aliasing effects. If this process is self-sustained by some kind of resonant
interaction, this could be an explanation for the numerical stability problems. However, it should
be stressed that these arguments cannot be further reasoned or even proved at the current stage of
the investigation. In any case, a better numerical treatment of hydrostatic equilibria and internal
gravity waves seems to be vital in order to resolve the numerical problems.

The fate of non-linear internal gravity waves is generally governed by two effects. First, if the
amplitude of a wave reaches a certain critical value, the wave may break by various processes
(see Staquet & Sommeria 2002; Sutherland 2010, for an overview). For example, the amplitude
of internal waves may increase drastically due to the modulational instability or by effects of
non-uniform stratification. The density or velocity fluctuations of the wave may become so strong
that the wave breaks into a turbulent flow field by local Rayleigh-Taylor or Kelvin-Helmholtz
instabilities. The turbulence then decays to smaller scales until it is dissipated by viscous forces.
Second, if the amplitudes are not strong enough for wave breaking, the long term behavior of in-
ternal gravity waves is governed by the PSI. As the subharmonic wave components may again be
subject to resonant triad interactions, the wave energy may be transferred to successively smaller
scales. The number of involved wave components may tremendously increase during this evolu-
tion. Finally, the wave lengths may become so small, that these waves are dissipated by viscous
processes. As a detailed theoretical description of successive triad interaction is very complex
due to the large number of involved waves, the overall behavior is usually described by statistical
models (see Staquet & Sommeria 2002; Sutherland 2010, and references therein). This approach
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is very similar to turbulence modeling although the properties of internal wave turbulence may
be quite different. The corresponding wave spectra can actually be measured for atmospheric and
oceanic flows on earth, but are still subject to ongoing research in the corresponding scientific
disciplines.

In stellar interiors, internal gravity waves are expected to be an important transport mecha-
nism for chemical elements and angular momentum in radiative zones (see e.g. Schatzman 1993).
The internal gravity waves are expected to be generated at the boundaries between convective
and radiative regions by convective overshooting. The spectra of the excited waves can actually
predicted by analytic models (e.g. Garcia Lopez & Spruit 1991) or numerical simulations (e.g.
Dintrans et al. 2005; Rogers & Glatzmaier 2005). Although there is a rough agreement on the
global properties of the spectra, their details remain controversial. The propagation of gravity
waves within radiative zones has attracted much attention for the sun because they may explain
two important effects (see Garcia Lopez & Spruit 1991; Charbonnel & Talon 2005; Rogers &
Glatzmaier 2005). First, helioseismic measurements revealed that the inner radiative zone in the
sun is in nearly in solid-body rotation which is in contradiction to simple solar models which
include rotation. Internal gravity waves seem to provide a suitable mechanism for angular mo-
mentum transport in order to explain this effect. Second, the solar surfaces abundances show a
significant depletion of lithium. This may only be explained by a mechanism which mixes the
lithium sufficiently deep into the stellar interior where the temperatures are high enough for a
destruction of this element by election captures. However, the outer convective zone of the sun
does not extent to such depths. Therefore, an additional mechanism for mixing into the inner
radiative zone is necessary. Mixing by internal gravity waves seem to be a very good candidate
in order to explain this process.

In general, it can be seen that internal gravity waves may have an important impact on transport
and mixing processes in stellar interiors and may be vital in order to explain stellar rotation profiles
in a self-consistent way. Numerical simulations have mostly been performed for solar-like stars and
are often either not very suitable for low Mach number flows or use the anelastic approximation,
which restricts simulations to stellar regions near convective zones. Therefore, it can be suspected
that low Mach number codes as presented in this work may provide valuable new insights in the
modeling of mixing and transport processes by internal gravity waves.
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7 Shear instabilities

7.1 Introduction

In this chapter, the prospects of hydrodynamic modeling of stellar interiors are shown by the
example of shear flows, whose stability may have a significant impact on the evolution of certain
stars. The investigation is focused on shear flows with vertical gradients in the horizontal velocity
components. This is the typical situation in radiative zones in differentially rotating stars. If
such a shear flow is unstable, small disturbances grow in time until the flow field becomes fully
turbulent. This process is a possible source for mixing and angular momentum transport in stellar
radiative region and can only be treated by effective turbulent diffusivities in stellar evolution
models (see e.g. Hirschi et al. 2004; Mathis et al. 2004; Maeder 2009). Here, the stellar conditions
under which shear flows may become unstable are investigated by a theoretical model and detailed
multi-dimensional numerical simulations. The results may give some insight when an additional
turbulent diffusion should actually be used in stellar evolution models. In principle, the effective
diffusivities could also be derived from such numerical simulations and compared to existing
prescriptions. However, this is subject to future work.

In the absence of gravity, inviscid shear flows are always unstable to arbitrary small fluctu-
ations leading to the well-known Kelvin-Helmholtz instability. In a stratified atmosphere, the
conditions under which a shear flow may become unstable can be illustrated by very simple ener-
getic arguments (e.g. Chandrasekhar 1961). Consider two neighboring fluid elements in a stratified
atmosphere with different horizontal velocities as shown in Figure 7.1. In order to exchange the
fluid elements, some potential energy has to be provided. Raising the lower (and denser) fluid
element upwards needs more energy than the lowering of the upper (and lighter) fluid element
can provide. The difference in potential energy thus reads

∆Epot = −g δρ δy, (7.1.1)

where δρ denotes the density difference between the two fluid elements. The only energy source
available to the system is the kinetic energy of the horizontal motion. The kinetic energies of the
fluid elements before the exchange are

Ekin,1 =
1

2
ρu2 Ekin,2 =

1

2
ρ (u+ δu)

2
. (7.1.2)

u+ δu u+ δu/2

u+ δu/2u

g δy

Figure 7.1: Exchange of two fluid elements in a stratified medium
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Assuming that the fluid elements mix during the exchange, they both end up at the same average
velocity and kinetic energy

ū = u+
δu

2
Ēkin =

1

2
ρū2. (7.1.3)

The difference in kinetic energy thus reads

∆Ekin =
1

4
ρ δu2. (7.1.4)

This energy is available to overcome the potential energy and trigger vertical motions which lead
to the shear instability. Therefore, it is obvious that if the sum of the energy differences is negative,
i.e.

∆Ekin + ∆Epot < 0, (7.1.5)

the flow must be stable. Rewriting this condition leads to the so-called Richardson criterion:

Ri > 1/4 where Ri =
g

ρ

δρ

δy

1(
δu
δy

)2 (7.1.6)

It states that the flow is stable if the Richardson number is greater than the so-called critical
Richardson number (1/4). In a continuously stratified medium the Richardson number can be
defined by

Ri (y) =
g ρ′ (y)

ρ (y) (u′ (y))
2 . (7.1.7)

It should be emphasized that if the Richardson criterion is violated somewhere within an atmo-
sphere, the flow may become unstable but it does not have to.

A mathematically rigorous derivation of this result was given by Howard (1961). He performed a
linear stability analysis on the Boussinesq equations (see Section 2.7.1). He found that a necessary
condition for instability is that the local Richardson number, as defined in Equation 7.1.7, has to
be below 1/4 somewhere in the flow. This result holds for arbitrary density and velocity profiles.

The above stability criterion is only valid in the context of the Boussinesq approximation, where
density and temperature fluctuations have to be small. However, inspecting the above definition of
the Richardson number it can be seen that it contains the Brunt-Väisälä frequency for Boussinesq
flow

N2 (y) = g
ρ′(y)

ρ(y)
. (7.1.8)

This suggests to extend the definition of the Richardson number also for non-Boussinesq flows,

Ri (y) =
N2 (y)

(u′(y))
2 , (7.1.9)

where the Brunt-Väisälä-frequency is defined in a different way (e.g. as in Equation 6.4.4 for an
ideal gas). This extension is similar to the approach followed in Section 6.4 for internal gravity
waves. It should be strongly emphasized that Equation (7.1.7) and (7.1.9) are not equivalent for
non-Boussinesq flows. Concerning the stability of non-Boussinesq shear flows, the value of the
critical Richardson number has sometimes be questioned in literature. For example, Brüggen &
Hillebrandt (2001) reported shear instabilities in numerical simulations for Richardson numbers
up to 1.5. However, the increased critical Richardson number can be solely attributed to the
use of the Boussinesq definition of the Richardson number, which is not appropriate in this case.
Thus, stability results should always be carefully compared regarding the actual definition of the
Richardson number, which is unfortunately not unique. Moreover, Canuto (2002) derived a critical
Richardson number from turbulence theory. The result basically states that turbulence by shear
instabilities can be maintained up to Richardson numbers of unity. This finding is not necessarily
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in conflict with a critical Richardson number of 1/4 which assumes that the flow field is initially
not turbulent. However, Canuto’s result may raise the question if a critical Richardson number
of 1/4 is generally valid for non-Boussinesq flows. Instabilities could, for example, be excited
by non-linear effects which are usually not captured by a linear stability analysis. Moreover,
thermal effects or small but finite Mach numbers may alter the stability criterion. In order to
investigate the general behavior of shear flows, an extended stability analysis is performed in the
following. Moreover, the results are compared to hydrodynamic simulations with LHC as they
are not affected by the potential limitations of the analytic treatment.

It should be noted that the stability criterion for stratified shear flows may further be altered by
physical processes which are not discussed here. For example, thermal radiation may significantly
reduce the effective Richardson number (or alternatively increase the critical Richardson number)
in the case of small Péclet numbers (Lignières et al. 1999). Moreover, the interaction of internal
gravity waves with a mean shear flow may give rise to additional interesting phenomena (see e.g.
Staquet & Sommeria 2002; Sutherland 2010). These physical processes may be treated adequately
with hydrodynamic simulations in LHC as soon as the remaining numerical challenges are resolved.

7.2 Model problem

7.2.1 Setup and governing equations

In this work, the stability criteria for shear flows are examined in a fully compressible approach.
In order to simplify the analysis, a model atmosphere with well-defined control parameters is
constructed. The response of this equilibrium state to small disturbances is then investigated in
the following sections. If fluctuations grow in time, the equilibrium state is said to be unstable
otherwise it is stable.

The shear flow is examined on a two-dimensional Cartesian plane with infinite extents. The
gravitational acceleration g > 0 is assumed to be constant over the whole domain and is pointing
towards the negative y-axis.

The velocity profile is modeled by a hyperbolic tangent of a certain width Lu. The Cartesian
velocity components of the equilibrium state are

ueq (x, y) = uo tanh

(
y

Lu

)
, veq (x, y) = 0. (7.2.1)

The fluid consists of an ideal gas with constant mean molecular weight. The pressure p is thus
related to the density ρ and temperature T by p = ρR̃T . The ratio of specific heats is assumed
to be γ = 5/3 if not stated differently.

The vertical temperature profile is also modeled by a hyperbolic tangent, but may have a width
LT different to the width of the velocity profile:

T (y) = T0 − θ tanh

(
y

LT

)
(7.2.2)

The fluid is supposed to be in hydrostatic equilibrium, which is described by the differential
equation

∂p

∂y
= −ρg. (7.2.3)

For an ideal gas and the above temperature profile, this equation can be integrated analytically,
resulting in the equilibrium pressure profile

peq (y) = p0 exp

− gR T0y + θLT ln
(

cosh
(
y
LT

)
− θ

T0
sinh

(
y
LT

))
T 2

0 − θ2

 . (7.2.4)
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The equilibrium density structure is then determined by the equation of state. For this atmo-
sphere, the Brunt-Väisälä frequency is given by

N2 =
g

Hp
(∇int −∇ext) =

g

Hp

(
γ − 1

γ
+Hp

T ′ (y)

T (y)

)
(7.2.5)

with the pressure scale height

Hp = −peq (y)

p′eq (y)
=
R̃T (y)

g
. (7.2.6)

The Richardson number then can be calculated by

Ri (y) =
N2 (y)(
u′eq(y)

)2 , (7.2.7)

resulting in a lengthy expression not shown here. The stability of the equilibrium state will
strongly depend on the minimal Richardson number. For most parameter ranges Ri(y) has a
unique minimum at y = 0 where it approaches

Ri0 =
g2L2

u

R̃T0u2
0

(
γ − 1

γ
− R̃θ

gLT

)
. (7.2.8)

This Richardson number is used as a control parameter for the following analysis.
The dynamics of the system are governed by the compressible Euler equations. For an ideal

gas, they can be written in the non-conservative form

Dρ
Dt + ρ∇ · ~u = 0

ρDuDt + ∂p
∂x = 0

ρDvDt + ∂p
∂y = −ρg

Dp
Dt + pγ ∇ · ~u = 0

(7.2.9)

with the Lagrangian derivative
D

Dt
=

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
. (7.2.10)

The following analysis is based on these equations and is therefore not limited to the Boussinesq
or anelastic approximations, as it is commonly done in literature. The influence of divergent
velocity fields and entropy gradients on the stability of shear flows are thus potentially captured
by this analysis.

7.2.2 Non-dimensionalization

The setup of the equilibrium state depends on many parameters. In order to find the relevant ones,
it is very insightful to non-dimensionalize the system. Therefore, each variable is decomposed into
a product of its reference quantity (with subscript r) and its dimensionless value (marked with a
hat), e.g. ρ = ρr · ρ̂. The reference quantities should be chosen such that typical dimensionless
values are of order unity. Here, the reference density, length scale, temperature, gravity and
velocity are set to the following values:

ρr =
p0

RT0
xr = Lu Tr = T0 gr = g ur = u0 (7.2.11)

Other reference quantities like the reference time, sound speed, pressure, Mach number and Froude
number are derived from them:

tr =
xr

ur
cr =

√
γRTr pr = ρrc

2
r Mr =

ur

cr
Fr =

ur√
grxr

(7.2.12)
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Moreover, it is useful to define another dimensionless quantity β, which characterizes the ratio of
the length scales of the velocity and temperature gradients:

β =
Lu
LT

(7.2.13)

With these definitions, the setup of the equilibrium state can be casted to the simple non-
dimensional form

p̂eq (ŷ) =
1

γ
exp

−γM2
r

F 2
r

ŷ + βθ̂ ln
(

cosh
(
ŷ
β

)
− θ̂ sinh

(
ŷ
β

))
1− θ̂2

 , (7.2.14)

ρ̂eq (ŷ) =
γp̂eq (ŷ)

1− θ̂ tanh (ŷ/β)
, (7.2.15)

ûeq (ŷ) = tanh (ŷ) v̂eq (ŷ) = 0. (7.2.16)

The non-dimensional Euler equations read

Dρ̂
Dt̂

+ ρ̂ ∇̂ · ~̂u = 0

ρ̂Dû
Dt̂

+ 1
M2

r

∂p̂
∂x̂ = 0

ρ̂Dv̂
Dt̂

+ 1
M2

r

∂p̂
∂ŷ = − 1

F 2
r
ρ̂

Dp̂
Dt̂

+ p̂γ ∇̂ · ~̂u = 0

. (7.2.17)

Note that the setup only depends on five parameters, namely β, γ, Fr,Mr, θ̂. It is thus clear that
the temporal evolution of the system and therefore the stability properties of the shear flow may
only depend on these five dimensionless numbers. Any additional parameters are just a scaling
to specific units, but leave the results unaltered otherwise.

The non-dimensional parameters of the setup each have a distinct physical relevance. However,
the meaning of the Froude number Fr and the non-dimensional depth of the temperature gradient
θ̂ are not very instructive in this context. Therefore, these parameters are transformed to new
quantities which emphasize their physical relevance.

At first, the Froude number which is a measure for the strength of gravity is replaced by the
Richardson number at zero height as defined in equation (7.2.8). Next, the external temperature
gradient

∇ext (y) = − R̃T
′ (y)

g
=

θR̃

gLT cosh (y/LT )
2 (7.2.18)

is considered, which has a maximum at y = 0. This value is related to the adiabatic temperature
gradient by a new dimensionless factor

α =
∇ext (0)

∇int
α < 1. (7.2.19)

Here α = 0 corresponds to a constant temperature on the whole domain and α = 1 denotes the
case where the equilibrium is about to become unstable to convection at y = 0. For this work α
is limited to values below 1 corresponding to radiative regions in stars.

The new parameters α and Ri0 can now be used to replace θ̂ and Fr. After non-dimensionalizing
all involved quantities and some algebraic transformations the corresponding expressions read

θ̂ = Mrαβ

√
Ri0 (γ − 1)

1− α (7.2.20)
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F 2
r = Mr

√
(1− α) (γ − 1)

Ri0
. (7.2.21)

The ŷ-dependence of the Richardson number can also be expressed by the new parameters:

Ri(ŷ) = Ri0
cosh4 (ŷ)

(
α sech2 (ŷ/β)− 1

)
(α− 1)

(
1−Mrαβ

√
Ri0

γ−1
1−α tanh (ŷ/β)

) (7.2.22)

Since it is not possible to derive the minimum of this function in closed form, it is always computed
numerically for a given set of parameters. If not stated differently, the minimum is Ri0 at ŷ = 0.

7.3 Semi-analytical stability analysis

7.3.1 Method

The first approach to study the stability of above defined equilibrium state is to analyze the
governing equations analytically. The following calculations are based on the work by Blumen
(1970), who studied the influence of finite Mach numbers on the stability of a hyperbolic tangent
shear flow. His work is extended here to the model defined in Section 7.2 in order to examine the
effects of temperature gradients, gravity and stratification.

In order to simplify the notation, all quantities in this section are assumed to be non-dimen-
sional. The hat is thus omitted in the following. The stability of the shear flow can be investigated
by considering small disturbances to the equilibrium state. To this end, a normal-mode approach
for the solution of the non-dimensional Euler equations is considered. The solution is split into a
sum of the time-independent equilibrium state a small periodic disturbance:

ρ (x, y, t)
u (x, y, t)
v (x, y, t)
p (x, y, t)

 =


ρeq (y)
ueq (y)

0
peq (y)

+


ρ̃ (y)
ũ (y)
ṽ (y)
p̃ (y)

 eikx−iωt (7.3.1)

The disturbance is composed of a complex coefficient marked by a tilde that only has a y-depen-
dence and an oscillating part containing the x and t dependence. The spatial wave number of the
disturbance is denoted by k. The complex-valued temporal frequency is denoted by ω = ωr + iωi.
The imaginary part ωi is called growth rate. If it is positive for a given mode, the disturbance
will grow exponentially in time. The equilibrium state is said to be unstable in this case. For
negative values of ωi the disturbance decays and the equilibrium state is stable. The goal of the
analysis is to compute the dispersion relation ω(k) for any given set of parameters.

For this purpose, the ansatz (7.3.1) is inserted into the non-dimensional Euler equations (7.2.17).
Non-linear terms with products of eikx−iωt which would excite higher harmonics are omitted. The
analysis is therefore only valid in the linear regime, where the solution stays on the given spatial
wave number k. In this case, any unstable mode grows exponentially in time without any limits.
It is therefore clear that for real flows, a non-linear coupling between the modes has to stop
the growth at some time. However, the linear approach used here is sufficient to determine the
stability of the flow.

An additional requirement for the analysis is that the equilibrium state fulfills the non-dimensional
hydrostatic balance equation,

∂peq(y)

∂y
= −M

2
r

F 2
r

ρeq(y), (7.3.2)

which is the case for the model defined in the previous section. With these assumptions, the Euler
equations can be transformed to a set of coupled linear differential equations for the coefficients
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of the disturbance:

i (kueq − ω) ρ̃ + ṽ ρ′eq + ρeq (ikũ+ ṽ′) = 0
i (kueq − ω) p̃ + ṽ p′eq + peqγ (ikũ+ ṽ′) = 0

iρeq (kueq − ω) ũ + 1
M2

r
ikp̃+ ρeqṽu

′
eq = 0

iρeq (kueq − ω) ṽ + 1
M2

r
p̃′ + 1

F 2
r
ρ̃ = 0

(7.3.3)

Variables with a dash denote the derivative with respect to y. With some elementary algebraic
transformations, the system of equations can be converted to a single differential equation for the
disturbance in the vertical velocity component:

ṽ′′(y) +A(y) ṽ′(y) +B(y) ṽ(y) = 0 (7.3.4)

The derivation of this equation and the corresponding computational procedure for its solution is
described in Appendix D. It should be noted that it is necessary to impose boundary conditions in
the vertical direction in order to solve Equation 7.3.4. These can easily be obtained by requiring
that the velocity disturbance has to approach zero at infinity, i.e. limy→±∞ ṽ(y) = 0, posing a
boundary-value problem for Equation 7.3.4.

The overall challenge of this stability analysis is to find a possibly complex frequency ω such that
the above boundary value problem has a unique solution. This has to be done for any given set of
parameters for the equilibrium state and the spatial wave number k. Since this problem cannot be
solved analytically, the differential equation is solved numerically by a shooting method augmented
by a root-finding method for ω. The procedure closely follows the work by Blumen (1970), but
is implemented here with the built-in numerical functions from the commercial software package
Mathematica. It should be noted that the root-finding method for ω requires a good initial guess
which should not be too far away from the solution. Otherwise the numerical algorithm does not
converge at all. In most situations the initial guess is extrapolated from known solutions with
slightly different parameters, e.g. a different wave number k. If this approach fails, a suitable
range for the initial value of ω is tested by trial and error. However, it can not be excluded that
the numerical algorithm misses some solutions. Therefore, the absence of a solution should not
be regarded as proof for its non-existence. With this method, unstable modes with a positive
growth rate ωi > 0 are searched for various parameter values of the equilibrium state.

7.3.2 Results

The semi-analytical stability analysis is used to compute the dispersion relation ω(k) for various
sets of parameters of the equilibrium state. As the main goal of the analysis is the identification
of the parameter range for shear instabilities, the following presentation of the results is limited to
setups with ωi > 0. Some examples of such unstable modes, as computed with the stability analy-
sis, are presented in Figure 7.2. The left panel shows the growth rates ωi(k) where the parameters
are fixed to α = 0.1, β = 100,Mr = 0.001 while the minimum Richardson number is additionally
varied. This setup corresponds to a rather weak temperature gradient which varies on much
larger scales than the shear velocity field. For the smallest Richardson number considered here,
Ri0 = 0.001, the form of the dispersion relation is very close to the results obtained in the absence
of gravity and temperature gradients (cf. Blumen 1970; Miczek 2008). However, as the Richard-
son number is increased, the growth rates successively decrease. Extrapolating the Richardson
number where the maximum growth rate becomes zero results in 0.250. This is in perfect agree-
ment with the critical Richardson number of 1/4, derived within the Boussinesq approximation
(cf. Section 7.1). Moreover, it can be seen from the results that the (non-dimensional) horizontal
wave numbers of the unstable modes are limited to values in the range between zero and unity. As
the wave numbers are non-dimensionalized by the inverse of the length scale of the shear velocity
profile, i.e. Lu, it can be concluded that the typical horizontal length scale of shear instabilities
is also given by this value. However, this is not necessarily the case for different parameters of
the equilibrium state. This can be seen in the right panel of Figure 7.2, where the parameters are
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Figure 7.2: Examples of computed growth rates

chosen to α = 0.75, β = 0.1,Mr = 0.001. The length scale of the temperature gradient (β) is ten
times smaller than the length scale of the shear velocity profile here. With increasing Richardson
number, the unstable modes have wave numbers well above unity. Therefore, the typical hor-
izontal length scale of shear instability is rather determined by the temperature gradient here.
Inspecting the maximum growth rates for this setup, the critical Richardson number can also be
extrapolated to 0.250. Thus, no violation of the Boussinesq Richardson criterion is found here.

In order to examine the conditions for instability in a broader way, similar dispersion relations
ωi(k) have been computed for a large variety of parameters of the equilibrium state. At first, only
the reference Mach number is held fixed at Mr = 0.001 corresponding to a rather incompressible
flow. The strength of the temperature gradient α is chosen from {−100,−0.9, 0.1, 0.75, 0.95, 0.99},
whereas the corresponding length scale β is varied independently within {100, 10, 2, 1, 0.1}. For
each setup, the dispersion relation ωi(k) of unstable modes is computed starting with Ri0 = 0.001.
The Richardson number is then successively increased until no unstable modes are found anymore.
For each set of parameters, the maximum growth rate with respect to the wave number is identified
for the results. The corresponding values are illustrated in the plots shown in Figure 7.3. Each
plot corresponds to a certain value of β. For β = 100, it can be seen that the maximum growth
rates have nearly no α dependence. The extrapolated Richardson numbers where the maximum
growth rates becomes zero are always 0.250 here. For β = 10, the maximum growth rates decrease
more rapidly with the Richardson number for large values of α. It should be noted that α is limited
to values below unity for the setup to be stable against convection. Thus, near the convective
stability boundary, the growth rates of shear instabilities tend to decrease here. Contrary to
that, strong negative temperature gradients, i.e. α = −100, do not influence the growth rates
significantly here. The same effects can be seen for β = 2, where the growth rates and the
critical Richardson numbers become even smaller near the convective instability limit. However,
the situation changes again for β = 1. Although the growth rates decrease with increasing α,
the critical Richardson number approaches 1/4 in all cases. For β = 0.1, a similar behavior
can be observed for α > 0. For negative temperature gradients, the critical Richardson number
decreases with the strength of the temperature gradients. It should be noted that in the latter
case, the minimum Richardson number of the setup is not located at y = 0 anymore. However,
this effect was taken into account for the analysis of the data. In total, it can be summarized that
for Mr = 0.001, all growth rates of shear instabilities tend towards zero with critical Richardson
numbers below or equal to one fourth. The Boussinesq Richardson criterion is thus not violated
here.

In order to investigate the effects of small but finite Mach numbers, the above stability calculated
are repeated for Mr = 0.1 corresponding to a weakly compressible case. The results are presented
in Figure 7.4. It can be seen that the results are qualitatively similar to the previous results at
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β

100 10 2 1 0.1
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−0.9 0.250 0.250 0.250 0.250 0.225
0.1 0.250 0.250 0.250 0.250 0.250
0.75 0.250 0.249 0.239 0.250 0.250
0.95 0.250 0.219 0.118 0.249 0.250
0.99 0.250 0.159 0.052 0.249 0.250

Figure 7.3: Maximum growth rates of shear instabilities at Mr = 0.001
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lower Mach number. In general, the maximum growth rates for shear instabilities seem to be
only slightly smaller here. The critical Richardson numbers are also somewhat smaller for certain
sets of parameters and do not exceed the 1/4 limit in any case. A similar behavior was found by
Blumen (1970) in the absence of gravity and temperature gradients. There, the growth rates of
shear instabilities decrease significantly only for Mach numbers well above 0.1. A similar behavior
can be expected here within the stratified atmosphere. However, since such high Mach numbers
are probably not relevant for differentially rotating stellar interiors, the current analysis is limited
to Mr = 0.1.

In total, it can be concluded from the results of the semi-analytical stability analysis that the
Boussinesq Richardson criterion is not violated for any parameters tested here. The maximum
growth rates always tend towards zero for Richardson numbers below or equal to one fourth.
However, it should be kept in mind that computational method used for this analysis may miss
unstable modes if the initial guess for the frequency ω is too far away from the solution. In addition
to the results presented here, the parameter space for the setup and ω has been excessively sampled
in an automated way for Ri0 > 1/4. No unstable modes with ωi > 0 could be identified with this
procedure. With the results presented here, this is at least a strong indication that the Boussinesq
Richardson criterion is also valid in fully compressible stratified flows involving possibly strong
temperature gradients. Moreover, it should be noted that the results presented here can also be
transferred to atmospheres with gradients of the mean molecular weight. As the Euler equations
combined with an ideal gas equation of state are only sensitive to the ratio T/µ, the temperature
gradients analyzed here can also be interpreted as an inverse gradient in mean molecular weight.

7.4 2D simulations

The results of the semi-analytical stability analysis for shear instabilities are only valid in a linear
regime where normal modes do not interact with each other by non-linear couplings. In order
to test the validity of this analysis, results of two-dimensional numerical simulations of shear
instabilities are presented in this section. This is done despite the numerical problems with
hydrostatic atmospheres and internal gravity waves described in Chapter 6. The results have
therefore be treated with some care, as will be further explained below. For the simulations, the
non-dimensional model problem described in Section 7.2 is set up in LHC on a two-dimensional
Cartesian grid. As the simulations are intended to resolve a single normal mode of given wave
number k, the horizontal dimension of the box is chosen to the corresponding wave length, i.e.
[−π/k,+π/k]. Periodic boundary conditions are applied in this direction. In order to facilitate
the growth of a single normal mode, the initial profile of the vertical velocity component is slightly
disturbed by

veq(x, y) = v0 sin (kx) exp
(
−y2

)
. (7.4.1)

The parameter v0 is chosen such that it corresponds to a Mach number of 10−8 at y = 0 which
is well below the horizontal shear velocities under consideration. The vertical dimension of the
box is chosen to [−10,+10] such that the boundaries are sufficiently far away from the shear
layer. The vertical boundary conditions are described by constant ghost-cell values filled with
the undisturbed equilibrium profiles. The computational domain is discretized by 64 × 192 grid
cells if not stated differently. The interface reconstruction is performed by linear interpolation
in primitive variables. The numerical fluxes are computed with the Roe-Lowmach method at
Mcut = Mr, while gravity is discretized point-wise. The initial conditions are evolved in time with
the ESDIRK34 stepper where the size of the time steps is determined with the adaptive error
estimator described in Section 5.3.2 with a relative accuracy goal of 10−3. Allowable time steps
are limited to advective CFL numbers between 0.25 and 1000.

For the first simulation, the parameters of the equilibrium state are chosen to α = 0.95, β =
10, Ri0 = 0.05,Mr = 0.001. For this setup, the semi-analytical stability analysis predicts a
maximum in the growth rate at k = 0.705, which is used here to define the horizontal extents of
the box. The initial conditions for this setup are illustrated in Figure 7.5. The vertical velocity
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Figure 7.4: Maximum growth rates of shear instabilities at Mr = 0.1
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Figure 7.5: Initial conditions for a certain simulation of a single mode shear instability

field after 27 non-dimensional units in time is plotted in the left panel of Figure 7.6. It can seen
that the vertical velocities already increased by a factor of ten while the shape of the disturbance
changed slightly. As this shape remains constant up to t ≈ 80, it can be suspected that it
corresponds to the normal mode under consideration. In order to quantify the growth of the
normal mode, the total kinetic energy in the vertical direction defined by

Ekin,y = ∆x∆y
∑
i,j

1

2
ρi,jv

2
i,j (7.4.2)

is computed as a function of time. The result is illustrated in the right panel of Figure 7.6. It
can be seen that this energy grows exponentially as it is expected from linear theory. In fact, the
semi-analytical stability analysis revealed a growth rate of ωi,stab = 0.1426 for the vertical velocity
component. The vertical kinetic energy is thus expected to grow with twice this rate. This can be
confirmed by fitting an exponential function to the simulation data. The exponential growth rate
in the vertical kinetic energy results in 2 · ωi,sim = 2 · 0.1429. The simulation data thus complies
with the stability analysis with a relative difference of only 2.1 · 10−3. This is a very impressive
verification of the semi-analytical stability analysis, at least for the set of parameters used in this
test. Moreover, it should be noted that no signs of checkerboard-like patterns or spurious internal
gravity waves can be observed in this simulation. This is most likely caused by the fact that these
unphysical phenomena grow on a time scale which is significantly larger than the simulation time.
These results may therefore be seen as a verification of the employed discretization methods.
However, it should be emphasized that such a behavior may not be achievable with arbitrary sets
of parameters for this setup.

The exponential growth of the shear instability only lasts up to t ≈ 80. The vertical kinetic
energy starts to saturate at this point. This behavior can be attributed to non-linear effects which
are not captured by the stability analysis. In order to visualize the flow field in the non-linear
regime, a passive scalar field is evolved with the fluid. It is initialized with the equilibrium shear
velocity profile at t = 0 and is passively advected with the fluid during the simulation. In the
saturation regime of the shear instability, the passive scalar field is illustrated in the left panel of
Figure 7.7. It can be seen that the initial shear layer rolls up, building a vortex-like structure.
If the simulation would not have been confined to a single normal mode, several vortices would
emerge in the non-linear regime, possibly interacting with each other. Although the resulting
flow field would look very chaotic, it does not describe turbulent mixing which is an inherently
three-dimensional process as explained in the next section.

131



−4 −2 0 2 4

horizontal coordinate

−10

−5

0

5

10

ve
rt

ic
al

co
or

di
na

te

vert. Mach number, t = 27

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

×10−7

0 20 40 60 80 100 120 140
time

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

to
ta

lv
er

ti
ca

lk
in

et
ic

en
er

gy

α = 0.95, β = 10, Ri0 = 0.05,Mr = 0.001

simulation data
fitted growth rate
theoretical growth rate

Figure 7.6: vertical Mach number during the growth of the instability (left); evolution of total
vertical kinetic energy (right)
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Figure 7.7: Passive scalar field in the non-linear stage at t = 102 which was initialized with the
horizontal Mach number at t = 0 (left); time steps provided by the adaptive ESDIRK
error estimator (right)

Another interesting result of the simulation presented here concerns the performance of the
adaptive time step chooser which is provided by the error estimator of the ESDIRK schemes. The
actual time steps used in the simulation are shown in the right panel of Figure 7.7. It can be
seen that the time step is nearly constant at the beginning of the simulation. Here, the time step
is limited by the lower advective CFL restriction of 0.25. During the exponential growth of the
shear instability, the time step is raised by more than a factor of ten. In the following evolution,
the estimated error often hits the relative accuracy goal of 10−3 where the time step is halved
again. In total, it can be seen that the adaptive time stepping is very efficient here compared to
a time step with some fixed CFL number.

Two-dimensional numerical simulations of shear instabilities were also performed with various
different sets of parameters for the model problem. In order to cover the parameter range of
the stability analysis at least roughly, the parameter combinations {α = 0.1, Ri0 = 0.2}, {α =
0.75, Ri0 = 0.15} and {α = 0.95, Ri0 = 0.05} are independently used with β ∈ {100, 10, 2, 1, 0.1}
and Mr ∈ {0.001, 0.1}. For each setup, the wave number kmax with the maximum growth rate
is identified within the results of the stability analysis. This wave number is used for the cor-
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Mr = 0.001 Mr = 0.1
α β Ri0 kmax ωi,stab ωi,sim kmax ωi,stab ωi,sim

0.10 100 0.20 0.660 0.0361 0.0361 0.660 0.0357 0.0388
0.75 100 0.15 0.610 0.0737 0.0740 0.615 0.0713 0.0716
0.95 100 0.05 0.500 0.1511 0.1512 0.505 0.1444 0.1445

0.10 10 0.20 0.665 0.0361 0.0365 0.660 0.0357 0.0392
0.75 10 0.15 0.635 0.0713 0.0716 0.640 0.0680 0.0683
0.95 10 0.05 0.565 0.1426 0.1429 0.560 0.1361 0.1362

0.10 2.0 0.20 0.670 0.0357 0.0355 0.670 0.0353 0.0384
0.75 2.0 0.15 0.815 0.0543 0.0540 0.825 0.0505 0.0551
0.95 2.0 0.05 0.900 0.0874 0.0880 0.885 0.0829 0.0826

0.10 1.0 0.20 0.680 0.0354 0.0353 0.680 0.0350 0.0347
0.75 1.0 0.15 0.920 0.0526 0.0533 0.920 0.0525 0.0571
0.95 1.0 0.05 1.105 0.0909 0.0911 1.120 0.0867 0.0879

0.10 0.1 0.20 0.705 0.0324 0.0312 0.705 0.0320 0.0365
0.75 0.1 0.15 1.885 0.0402 0.0404 1.880 0.0401 0.0404
0.95 0.1 0.05 3.500 0.0805 0.0747 3.500 0.0804 0.0741

Table 7.1: Comparison of growth rates from the semi-analytical stability analysis (ωi,stab) to the
growth rates extracted from 2D numerical simulations (ωi,sim)

responding numerical simulation with LHC. The setup and the analysis procedure is similar to
the one described above. For each setup, a growth rate of the shear instability is extracted from
the simulation data and compared to the theoretical prediction from the stability analysis. The
results are presented in Table 7.1. It can be seen that the growth rates are in very good agreement
for all sets of parameters. Typical deviations are below a one percent level. It should be noted
that the simulations with β = 0.1 were performed with an increased grid resolution of 64 in order
to resolved to relatively sharp temperature gradient accurately.

In total, the results of the stability analysis can be fully confirmed by the numerical simulations
performed here. Non-linear effects which should be captured by the simulations, do not seem to
be important during the initial phase of the shear instabilities and to not alter the growth rates
predicted by the stability analysis. Moreover, the good agreement between both methods shows
that the numerical discretization techniques used here seem to describe the shear instabilities
very accurately. Therefore, it is very desirable to extend the numerical simulations to parameter
ranges which are not captured by the stability analysis. In particular, it could be tested whether
shear flows at Ri > 1/4 are really stable under all circumstances. However, due to the numerical
problems described in Chapter 6, such simulations cannot be performed yet. A possibly emerging
physical shear instability cannot be distinguished from a spuriously growing internal gravity wave
within the simulation data. Numerical tests (not presented here) have shown that this case can
indeed occur. Therefore, it is of great importance to resolve these numerical problems in order to
perform simulations that may also have predictive power on the physical behavior of a system.
However, the above results also show that the discretization techniques used are generally able to
capture shear instabilities in the low Mach number regime.

7.5 3D simulation

Shear instabilities may provide a path to turbulent mixing in differentially rotating stellar interiors
(e.g. Maeder & Meynet 2000). Since turbulence is an inherently three-dimensional process (see
e.g. Pope 2000), it is clear that two-dimensional simulations as presented in the last section are
not sufficient for modeling turbulent mixing although growth rates within the linear regime may
be accurately calculated. Here, a single numerical simulation of a three-dimensional shear layer
is presented and analyzed in detail. The aim of this analysis is to show the path from an unstable

133



configuration to a fully turbulent flow regime and to demonstrate the basic ability of LHC to
handle such flows.

The numerical simulation described in the following is based on the non-dimensional model
problem of a shear layer presented in Section 7.2. The two-dimensional equilibrium profiles are
mapped into three-dimensional space with no variations in the new coordinate axis. The vertical
coordinate is denoted by z here, whereas horizontal coordinate in the direction of the shear is
denoted by x. The setup is thus symmetric in the new horizontal coordinate y which may also
be referred to as span-wise coordinate. The parameters for the equilibrium state are chosen
to α = 0.75, β = 5.0, Ri0 = 0.1,Mr = 0.001. The semi-analytical stability analysis presented in
Section 7.3.1 predicts a maximum growth rate of ωi = 0.105 at k = 0.615. However, the simulation
presented here is not intended to be restricted to a single normal mode. The horizontal extents of
the computational domain are therefore chosen by lower wave numbers. The x−y plane is spanned
by [−π/0.125,+π/0.125]×[−π/0.1,+π/0.1] and periodic boundary conditions are assumed in both
directions. The vertical extent of the domain is chosen to [−10,+10] as in the two-dimensional
simulations. The corresponding boundary conditions are set by constant ghost-cell values filled
with the undisturbed equilibrium profiles. The computational domain is discretized by 2563

grid cells which are initialized with the equilibrium profiles. In order to facilitate the growth of
shear instabilities without forcing a specific normal mode, the horizontal velocity components are
additionally initialized with random noise at a peak Mach number of 10−8. The interface values
are reconstructed by linear interpolation in primitive variables whereas the numerical fluxes are
computed with the Roe-Lowmach method at Mcut = 10−4. Gravity is discretized with the point-
wise method. The temporal evolution is again computed with the implicit ESDIRK34 scheme
with adaptive time stepping. For visualization purposes of the three-dimensional flow field, a
passive scalar X, initialized with the horizontal shear velocity, is additionally advected with the
fluid.

The simulation was performed at the Rechenzentrum Garching of the Max Planck Society on
the IBM Power6 system. Each of the computing nodes is equipped with 32 processors. The
parallelization was performed with the Message Passing Interface (MPI), using a decomposition
of the computational grid into nx×ny×nz equally-sized blocks which are each handled by a single
processor. Before performing the actual computation of the shear layer, the parallel performance
is evaluated by calculating a single implicit time step of the setup with different numbers of
processors. Due the large memory requirements of the grid and the data structures for the linear
solvers, the smallest number of processors that can be used here is 32. The execution time of this
run serves as a reference case to calculate the speed-up factor with higher numbers of processors.
The results are summarized in the following table:

nodes domain decomposition processors execution time speed-up
1 4× 4× 2 32 2408s
2 4× 4× 4 64 1191s 2.02
16 8× 8× 8 512 141.3s 17.04

It can be seen that the execution time halves as the number of processors is doubled here. The
parallel efficiency is thus optimal. Increasing the number of processors to 512, an optimal speed-up
of 16 is expected. However, the corresponding execution time is even somewhat below this value.
The speed-up is thus super linear. This remarkable result may have several origins. First, the
amount of processor cache memory per local grid block increases with the number of processors
favoring such a behavior. Second, the solvers for the linear systems are not perfectly deterministic
anymore in parallel computations. This is caused by global reduction operations which are for
example needed to calculate scalar products between two vectors. Thus, it might happen that
the internal number of iterations within the linear solvers varies slightly for different parallel
configurations. The observed super linear speed-up would then be just incidental. In total, this
performance test shows that it is indeed possible to perform time-implicit simulations on parallel
computer architectures in an efficient way. For the actual simulation of the shear layer, the domain
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Figure 7.8: Evolution of total vertical and span-wise kinetic energy

decomposition was chosen to 8 × 8 × 8 blocks, corresponding to 512 processors. The simulation
was carried out until t = 820 in physical time was reached with needed approximately 48 hours
of computing time.

In order to analyze the simulation results, the total vertical kinetic energy, defined by

Ekin,z = ∆x∆y∆z
∑
i,j,k

1

2
ρi,j,kw

2
i,j,k, (7.5.1)

is computed as a function of time. The results are shown in Figure 7.8. It can be seen that the
vertical kinetic energy grows exponentially until t ≈ 200. The corresponding growth rate is fitted
and leads to 2 · ωi = 2 · 0.102. This is in very good agreement with the theoretical growth rate
of the fastest growing mode for this setup, given by ωi = 0.105, which can be obtained by the
(two-dimensional) semi-analytical stability analysis. This is particularly remarkable as neither the
box geometry nor the initial disturbances of the simulation setup force the growth of this specific
normal mode. Thus, so far the simulation results are fully compatible with the two-dimensional
investigation. In order to analyze three-dimensional effect, the total kinetic energy

Ekin,y = ∆x∆y∆z
∑
i,j,k

1

2
ρi,j,kv

2
i,j,k (7.5.2)

is also computed in span-wise (y) direction. The result is also shown in Figure 7.8. It can be
seen that the span-wise kinetic energy also grows exponentially with approximately the same rate.
However, compared to the vertical kinetic energy, the growth is a bit delayed here. Only in the
non-linear regime of the shear instability after t ≈ 200, the span-wise kinetic energy overtakes the
vertical kinetic energy. Both energies are slowly decreasing in this regime.

In order to get an impression about the three-dimensional evolution of the flow field, the passive
scalar X is visualized in Figure 7.9 at various instants in time. Each plot shows the isosurface
X = 0 which is colored by the background pressure for better readability. Initially, the isosurface is
flat corresponding to the z = 0 layer. At t = 187, the total kinetic energy in vertical direction has
nearly reached its maximum. It can be seen that the fluid rolls up as in the two-dimensional case
(cf. Figure 7.7). However, the setup is already not perfectly symmetric in the span-wise direction
anymore. In the further evolution, the vortex-like rolls become unstable and successively break
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up. At t = 319, the passive scalar field has become completely chaotic. It can be suspected that
the flow field becomes fully turbulent at this point. However, the turbulence seems to decay in the
further evolution as the passive scalar field gets more calm again. The overall behavior of the flow
described here is typical for the transition of a three-dimensional shear layer to a turbulent flow
regime. The two-dimensional vortex-like structures are in fact unstable to span-wise disturbances
which can be confirmed by three-dimensional stability analyses (see e.g. Peltier 2003).

In the following, the properties of the turbulent flow within the shear layer are analyzed in
more detail by examining the spectral distribution of kinetic energy. The analysis is performed
within a horizontal layer located at z = 0 where turbulence is expected to be strongest. As the
boundary conditions of the simulation in the horizontal directions are periodic, spectral properties
can be easily obtained by Fourier transformations. To this end, a two-dimensional discrete Fourier
transformation (DFT2D) is calculated for each component of the velocity field separately:

û (kx, ky) = DFT2D (u (x, y, z = 0))

v̂ (kx, ky) = DFT2D (v (x, y, z = 0))

ŵ (kx, ky) = DFT2D (w (x, y, z = 0))

(7.5.3)

A measure for the spectral kinetic energy can then be obtained by (Schmidt 2004)

Êkin (kx, ky) =
1

2
(uu? + v v? + ww?) , (7.5.4)

where the star denotes the complex conjugate. In order to further simplify the analysis, the

spectral kinetic energy is averaged on circles with constant |k| =
√
k2
x + k2

y in the two-dimensional

wave number space. The corresponding computational procedure closely follows the work by
Schmidt (2004) and leads to the spectral kinetic energy Ēkin (|k|) which only depends on the
magnitude of the horizontal wave number. Double logarithmic plots of kinetic energy spectra
are shown in Figure 7.10 (left panel) at three instants in time. It can be seen that the overall
kinetic energy decreases with time, which is consistent with the results shown in Figure 7.8.
Moreover, below a certain threshold wave number, the spectra tend towards straight lines in
double logarithmic space, corresponding to a k−5/3 scaling. This is exactly the famous theoretical
scaling found by Kolmogorov (1941) for incompressible turbulence at high Reynolds numbers.
Thus, at least in the horizontal plane under consideration, the simulation code is able to resolve
a turbulent cascade where large eddies successively decay towards smaller scales in a self-similar
way. This result also implies that the turbulence is isotropic in the horizontal direction. Only at
wave numbers above k = 2π/(8∆y), the Kolmogorov scaling and thus the turbulent cascade breaks
down. This is the expected behavior in the regime where turbulent eddies get dissipated into heat
(see e.g. Pope 2000). It should be noted that the simulation does not contain any physical viscosity.
Therefore, the turbulent cascade should ideally reach wave numbers corresponding to the size of
the grid cells. In the context of large-eddy simulations, such a behavior would be favorable. Here,
the turbulent cascade breaks down at length scales smaller than 8∆y (the span-wise grid spacing is
the coarsest here). On these length scales, the kinetic energy of the turbulent flow gets converted
into heat solely by the numerical dissipation inherent in the discretization scheme. It should be
noted that this eight grid cell limit observed here is quite good for a numerical method which
does not involve a sub-grid scale model for turbulence (cf. Schmidt et al. 2004). The simulation
results obtained with LHC in turbulent flow regimes can be regarded as an implicit large-eddy
simulation (see e.g. Grinstein et al. 2007) on scales larger than eight grid cells.

Finally, the Richardson number as a function of the vertical coordinate is calculated from the
simulation data. Defining horizontal averages of the temperature and the velocity field, the local
Richardson number can be approximated by

Ri(z) =
g2

R̃ < T >
(
d<u>
dz

)2
(
γ − 1

γ
+
R̃

g
· d < T >

dz

)
. (7.5.5)
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Figure 7.9: Temporal evolution of a passive scalar field X initialized with the horizontal shear
velocity. The plots show the isosurface X = 0.
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Figure 7.10: kinetic energy spectrum in the z = 0 plane (left); horizontally averaged local Richard-
son numbers at the beginning and the end of the simulation (right)

This function is illustrated in Figure 7.10 at the beginning and the end of the simulation at
t = 819.2. It can be seen that the initial Richardson number distribution has a rather sharp
minimum at z = 0 where it approaches Ri0 = 0.1 as given by the setup for this simulation. At
the end, the Richardson numbers are somewhat noisy which probably corresponds to the fact
that turbulence has not fully decayed at this point. However, it can be seen that the Richardson
number distribution has become somewhat broader. Averaging the Richardson number between
z = −2.5 and z = +2.5 results in

1

5

∫ +2.5

−2.5

Ri(z)dz ≈ 1.08. (7.5.6)

This is in good agreement with the results given by Canuto (2002) who theoretically derived
that shear turbulence can be maintained up to a critical Richardson number of unity. From the
results obtained here, it seems that this is a natural final state of a shear instability which is not
in contradiction with the classical Richardson criterion. However, it should be noted that the
present results are still too noisy in order to fully confirm this statement.

From the results presented in this chapter, it can be concluded that there is no indication
that the Boussinesq Richardson criterion is violated in fully compressible stratified atmospheres.
However, further numerical simulations in the Ri > 1/4 regime are needed in order to verify
this statement. Moreover, the three-dimensional simulation presented here revealed that LHC
is basically able to capture the turbulent flow field which may be produced within shear layers.
Therefore, an accurate derivation of turbulent diffusivities from numerical simulations seems to be
possible, although this is subject to future work. The simulation performed here also emphasized
that turbulence produced by shear instabilities is an inherently three-dimensional process which
cannot be modeled in a two-dimensional way. Although three-dimensional simulations of low
Mach number flows are computationally quite expensive, it has been shown that they are generally
affordable on modern parallel computer systems.
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8 Summary and outlook

Stellar evolution modeling poses extreme multi-scale problems as the disparity of involved time
scales is very large. In order to capture hydrodynamic processes in stars even on very short
periods of time by multi-dimensional numerical simulations, it is necessary to resolve low Mach
number flows in these stratified atmospheres in an accurate and efficient way. It has been shown
in Chapter 2 that the compressible Euler equations permit two classes of solutions as the Mach
number tends towards zero, namely sound waves and incompressible flow. The latter is of special
importance as incompressible flow fields stay in this regime as they are evolved in time. Opposed to
that, sound waves do not seem to be of great importance for stellar evolution modeling. However,
it has been argued in Section 2.7 that it is still desirable to simulate the fully compressible Euler
equations without restricting them to a submodel, such as the Boussinesq approximation or the
anelastic approximation which do not permit sound waves at all.

In order to perform numerical simulations of low Mach number flows, a new code called LHC
has been developed in the context of this work. In Chapter 3, the basic methods for the spatial
discretization of the Euler equations were presented which are based on a finite volume approach.
Common methods to compute numerical fluxes include Godunov-like schemes which solve Rie-
mann problems at each interface between two discrete grid cells. However, these methods were
originally designed for high Mach number flows where an accurate capturing of shock waves is
essential. As such discretizations are consistent with the Euler equations, they should reveal the
same continuous solutions as the mesh size tends towards zero. However, it has been shown in
Chapter 4 by numerical tests, that discrete solutions obtained in the low Mach number regime are
very inaccurate, even for moderately high grid resolutions. In particular, Godunov-like numerical
fluxes show an excessive numerical viscosity which increases with decreasing Mach number. Thus,
kinetic energy is converted to internal energy on very short time scales which is in severe contra-
diction with an incompressible flow field where kinetic energy should be conserved. It has been
shown that this behavior can be attributed to the upwinding terms in the numerical discretization
which are generally necessary to maintain numerical stability. However, in the low Mach number
regime, the Godunov-like upwinding terms act mainly as numerical dissipation which becomes so
strong that they even overwhelm any physically motivated flux.

A widespread method to cure this problem is provided by the Roe-Turkel scheme. It uses a
technique called flux preconditioning which alters the upwinding terms in order to reduce the
excessive numerical viscosity. However, it has been shown by an asymptotic scaling analysis that
the Roe-Turkel scheme introduces an additional numerical diffusion term in the energy equation.
This term does not seem to be harmful for typical applications in the engineering community
where the Roe-Turkel scheme was originally developed to simulate low Mach number flows. How-
ever, it has been shown that the additional numerical diffusion becomes very excessive for nearly
hydrostatic atmospheres. The potentially large pressure gradient in the vertical direction supports
the numerical diffusion and may easily lead to unphysical changes of the hydrostatic temperature
profile. In order to cure this problem, a new numerical flux function, called Roe-Lowmach was
proposed in this work. It is also based on a combination of the Roe scheme and the flux precondi-
tioning technique, but uses a different preconditioning matrix such that the resulting upwinding
terms show the same asymptotic scaling with the Mach number as the continuous fluxes of the
Euler equations. In addition to that, the new Roe-Lowmach scheme should be more appropriate
for nearly hydrostatic flows. Beside that, two different approaches from literature to construct
numerical fluxes in the low Mach number regime were discussed. First, it has been shown that
the so-called low Mach number reconstruction exhibits an asymptotic scaling of the upwinding
terms which may give rise to numerical instabilities. Second, the AUSM+-up scheme, which is
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also designed for low Mach number flows, has been analyzed in more detail. It has been shown
here that the scheme exhibits the same behavior as the Roe-Turkel scheme in the low Mach num-
ber regime and is thus potentially not suitable for nearly hydrostatic flows. Therefore, a small
modification of the scheme is proposed here in order to reduce the excessive numerical diffusion
in the energy equation. The resulting flux is called AUSM+-Lowmach here. Finally, it has been
shown that all numerical flux functions for low Mach number flows are generally able to resolve
the incompressible flow regime as the dissipation of kinetic energy does not depend on the Mach
number anymore. From theoretical considerations, the Roe-Lowmach and the AUSM+-Lowmach
fluxes are considered to be most appropriate for low Mach number flows in nearly hydrostatic
atmospheres.

In Chapter 5, it has been shown that explicit temporal discretizations are computationally very
inefficient in the low Mach number regime. Typical time steps are limited by an acoustic CFL
criterion in order to maintain numerical stability. Thus, even if sound waves are not present
in a specific setup, it takes tremendous amounts of time steps to advance a discrete solution in
the low Mach number regime. In contrast to that, the time step is not limited in this way if
implicit temporal discretizations are used. In particular, the time step can be chosen based on
an advective CFL criterion such that fluid elements within the discrete solution may propagate
of the order of one grid cell per time step. Compared to explicit methods, suitable time steps for
implicit methods may therefore be a factor of 1/M larger which may become quite substantial for
very subsonic flows. For the new simulation code LHC, the backward Euler method and a family
of implicit Runge-Kutta (ESDIRK) schemes were implemented. The latter provide numerical
solutions which are up to fifth-order accurate in time. Moreover, ESDIRK schemes provide an
inherent method to estimate the temporal discretization error. This can be used to choose the
size of the time step in an adaptive way.

The general drawback of implicit methods is that the computational work per time step is
much higher than for explicit methods. The reason for this is that huge systems of non-linear
algebraic equations have to be solved in each step. In the context of low Mach number flows, it
is very challenging to solve these equations with common techniques such as non-linear multigrid
or pseudo-transient methods (Miczek 2008). Therefore, a Newton-Raphson approach is proposed
here which reduces the non-linear problem to a sequence of linear problems. However, the cor-
responding matrices of these huge linear systems can occupy substantial amounts of memory of
modern computer systems. For a large number of scalar fields, such as chemical element abun-
dances the memory requirements may even become impracticable. Therefore, a new method is
proposed here to split the non-linear equations into a hydrodynamic part and a passive scalar
part. The first one can be solved without the knowledge of the solution of the second one. The
equations for each passive scalar can then be solved independently which greatly reduces the com-
putational complexity. The overall solution is fully compliant with the original system. Moreover,
it has been argued that this method may also be applied for active scalar fields. The overall
solution is only an approximation to the original system in this case. However, as long as active
scalars only have minor impact on the hydrodynamics, the numerical solution may still be very
accurate.

In order to compute the matrices for the linear equations, it has been shown that it is possible
to derive mostly analytic expressions for the matrix elements. This can be achieved by splitting
up the computation into logical parts corresponding to individual discretization steps with the
use of the chain rule of differentiation. The actual solution of the linear equations is then the most
critical part concerning the computational efficiency. It has been argued that direct solvers are not
able to achieve this goal as memory and computing time requirements quickly become excessive.
However, their implementation is still desirable for diagnostic purposes on very small problems.
More promising iterative linear solvers include Krylov-subspace methods such as GMRES(r) and
Bi-CGSTAB(`) combined with a linear multigrid solver. A particular advantage of these methods
is that they can easily be parallelized for the use on large-scale computing systems by domain
decomposition methods. In the context of this work, all parts of the LHC simulation code have
been parallelized in this way for computing architectures with shared and/or distributed memory
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systems. For the latter case, the parallel efficiency has been demonstrated in Section 7.5 for a
moderately large three-dimensional setup. In order to further facilitate the iterative solution of the
linear equations, several matrix preconditioning strategies were discussed in this work. The overall
efficiency of implicit time stepping compared to explicit time stepping was shown in Section 5.6.2.
In the present version of LHC, implicit time stepping becomes superior in terms of computational
work for flows with Mach numbers below ≈ 0.05. It has also been shown that the performance
does not deteriorate on large grids. These promising results may critically depend on a suitable
choice of linear solvers and matrix preconditioners. However, the “standard approach“ presented
here seems to be quite robust for various different kinds of numerical setups. Moreover, it should
be noted that there is even some potential to further improve the computational efficiency. This
could be achieved by an automatic determination of the best parameters for the linear solvers
depending on the specific flow situation. However, in terms of computational efficiency, LHC can
readily be used for practical applications for simulations of stellar interiors.

Implicit time stepping methods have also been evaluated in terms of accuracy. It has been
shown that implicit methods are generally able to resolve sound waves. However, this requires
that the size of the time step is again limited by an acoustic CFL criterion (which is not desirable
in terms of computational efficiency). The accuracy is then similar to an explicit method of equal
order in this case. As the size of the implicit time steps is increased, sound waves are successively
damped out in the numerical solution. This behavior does not affect the accuracy of advection
waves also present in such a flow. In fact, the size of the time step can be increased up to advective
CFL numbers of the order of one. Then, advection waves also become inaccurate. In total, it
can be seen that implicit methods do not restrict the size of the time step in order to maintain
numerical stability. The time step can be chosen based on the physical process of interest which
has to be accurately resolved in time. Such processes may also be given by additional physics
such as gravity, thermal radiation or nuclear reactions. Thus, implicit time stepping methods may
open a path towards the investigation of further interesting flow regimes by numerical simulations.

Hydrodynamic flows in stellar atmospheres are expected to be very close to a hydrostatic
equilibrium. The discretization of gravity is therefore of particular importance for numerical
simulations. A suitable scheme should ideally be able to maintain hydrostatic equilibria up to
machine precision and resolve small deviations from this state accurately. In Chapter 6, the
properties of several discretizations of gravity and their interplay with the numerical flux function
were discussed in detail. For a pointwise discretization of gravity, a modified equation analysis
has been conducted in order to investigate numerical diffusion terms for hydrostatic initial states.
It has been shown that the magnitude of these terms scales with the cut-off Mach number of
the Roe-Lowmach flux. The original version of Roe’s approximate Riemann solver is therefore
expected to deteriorate hydrostatic equilibria while the new Roe-Lowmach solver should exhibit
a much better behavior. Apart from that, two different discretizations of gravity were presented
which are theoretically able to maintain hydrostatic equilibria exactly and are therefore called
well-balanced schemes. Extensions of these methods were proposed here in order to reduce the
numerical viscosity for low Mach number flows.

All discretizations of gravity were first tested on a one-dimensional hydrostatic atmosphere.
The pointwise gravity combined with the Roe-Lowmach flux seems to be nearly well-balanced
although this result cannot be proved theoretically at this point. Without flux preconditioning,
the hydrostatic atmosphere deteriorates on very short time scales as expected. Contrary to that,
both well-balanced schemes show very good behavior in this test. The proposed extensions for
low Mach number flows are also able to maintain the hydrostatic equilibrium under the condition
that the corresponding cut-off Mach number is set to a very low value.

These promising results could unfortunately not be confirmed in numerical tests of a two-
dimensional hydrostatic atmosphere. During its temporal evolution, horizontal density fluctua-
tions build up in an unphysical way and grow exponentially. This hydrostatic numerical instability
manifests itself in a checkerboard-like structure on the grid which eventually becomes so strong
that the hydrostatic atmosphere is completely destroyed. The instability occurs with all kinds of
low Mach number numerical fluxes. Contrary to that, ordinary flux functions seem to be stable,
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which can be attributed to the fact that they contain an excessive numerical viscosity. These
flux functions are therefore not suitable for the simulation of nearly hydrostatic flows anyway.
Moreover, it has been shown that the hydrostatic numerical instability is neither caused by a spe-
cific part of the numerical discretization nor by a specific low Mach number numerical flux. The
instability can be seen in a broad range of hydrostatic atmospheres, but the corresponding growth
rates may differ significantly. It has further been shown that the inclusion of additional artificial
viscosity generally resolves the problem. However, the required viscosities are far too high for any
practical application. Moreover, it has been shown that the hydrostatic numerical instability can
also be seen in another simulation code which relies on a very different discretization method.
Therefore, this instability seems to be a rather general problem for numerical discretizations in
hydrostatic atmospheres with low (numerical) viscosity. However, to the author’s knowledge, this
problem has not been described in literature yet. Future investigations should therefore concen-
trate on the exact origins of this instability in order to design a numerical discretization which is
more suitable for such flows. It should be noted that well-balanced schemes combined with low
Mach number methods seem to weaken the instability. It can be suspected that a discretization of
gravity whose discretization error is more compatible to the corresponding error of the hydrody-
namic flux may provide a path to a numerically stable scheme. However, the necessary conditions
for such a method remain unknown so far and are subject to future work.

Beside maintaining a hydrostatic equilibrium, a proper numerical discretization should also be
able to resolve small deviations from this state accurately. It has been shown that such fluctuations
propagate as internal gravity waves through the stratified atmosphere. They can be described the-
oretically within the Boussinesq approximation. Numerical tests of internal gravity waves showed
that ordinary numerical flux functions are too dissipative in order to resolve such waves even when
they are combined with a well-balanced scheme. In contrast to that, low Mach number methods
generally show a very promising behavior. Unfortunately, internal gravity waves are also plagued
by a spurious rise of their amplitudes which is in contradiction with theoretical expectations. As
the corresponding growth rates seem to be directly related to the growth rates of the hydrostatic
numerical instability, it can be suspected that both problems share the same origin. However, in
an internal gravity wave setup, the numerical instability does not manifest as a checkerboard-like
pattern. Thus, using the present discretization techniques for more complicated problems, it is
generally not possible to identify spurious numerical instabilities. Practical applications of LHC
for stellar atmospheres should therefore be treated with much care at the moment. Apart from
that, the numerical tests also revealed that implicit time marching schemes are generally suitable
for resolving internal gravity waves. The size of the time step should then be determined by the
Brunt-Väisälä-frequency of the setup or by the free-fall CFL criterion proposed in this work. As
such time steps are generally much larger than time steps based on the acoustic CFL criterion,
implicit methods are also superior here in terms of computational efficiency compared to explicit
methods. In general, it can be seen from (non-linear) theoretical considerations and investigations
of earth’s atmosphere that internal gravity waves show a large variety of new physical phenomena.
In particular, they may provide a direct mechanism for energy transfer from large to small scales
and may therefore contribute to turbulent mixing and angular momentum transport in stellar in-
teriors. As such investigations have not attracted much attention in the astrophysical community,
future numerical simulations of internal gravity waves may provide import new insights.

In the last chapter, the prospects of hydrodynamic modeling of stellar interiors were shown
by the example of shear flows. The conditions and the growth rates for shear instabilities were
first investigated by a compressible stability analysis in a stratified atmosphere. The results are
fully compatible with the classical Richardson criterion with a critical Richardson number of one
fourth. This could also be confirmed by two-dimensional numerical simulations of shear flows.
The extracted growth rates of the shear instabilities actually equal the growth rates of the stability
analysis up to a relative accuracy of less than one percent. Fortunately, the simulation results do
not seem to be plagued by spurious numerical instabilities which probably grow on time scales
much longer than the typical growth time of the physical shear instability. At the moment, this
limits numerical simulations to setups which can also be treated with the semi-analytic stability
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analysis. It is very desirable to extent the numerical simulations to shear layers at Richardson
numbers above one fourth in order to test the physical stability of the flow. Such simulations can
be performed once the numerical problems are solved and thus remain subject of future work.

A single shear layer has also been investigated with a three-dimensional simulation at moder-
ately high grid resolution of 2563. In accordance to theoretical predictions, the two-dimensional
vortex-like structures of the unstable shear layer break up in the span-wise direction, leading to
a fully turbulent flow field. The corresponding kinetic energy spectrum extracted from the simu-
lation data actually shows a Kolmogorov scaling in the horizontal plane. The turbulent cascade
breaks down at length scales of only eight grid cells. This remarkably good result emphasizes
that the present discretization techniques are well-suited to capture turbulence in the low Mach
number regime. Thus, once the numerical problems are solved, LHC can be readily used to inves-
tigate turbulent mixing processes in stellar interiors. The present results also emphasize that it is
necessary to perform such simulations in three dimensions. Although the computational demand
is very high in this case, it has been shown that three-dimensional simulations are affordable due
to the good performance of LHC on parallel computing systems. It should also be noted that
future simulations of shear layers can easily be extended to setups involving strong thermal radi-
ation whose source terms are already discretized. It should then easily be possible to examine the
theoretical predictions given by Lignières et al. (1999) with numerical simulations. This could be a
first case where the thermal time scale of stellar interiors can be resolved by implicit calculations.

In total, this work showed the prospects of a hydrodynamic treatment of stellar interiors with
numerical simulations. As the Mach numbers of the involved flows are typically very low, it is
necessary to use adequate spatial discretization techniques which are able to resolve flows without
introducing an excessive numerical viscosity. In this respect, the low Mach number flux functions
presented in this work show a very promising behavior. This is also a very instructive example
that existing numerical codes should not be applied to new flow regimes without evaluating
the suitability of the numerical discretization by comprehensive numerical tests. Although a
numerical discretization may be consistent with the original equations, an accurate treatment
of certain flow regimes may require a numerical resolution that is practically not affordable. It
could further be shown in this work that temporally implicit calculations are able to resolve
stellar flow structures of interest without restricting the time step to the dynamics of sound
waves. The implementation of the implicit solver in LHC has been proven to be computationally
efficient, even on parallel computers. Interesting future applications of the code include the
various hydrodynamic and thermal instabilities in differentially rotating stars, stellar convection
and the rich phenomena introduced by internal gravity waves. Resolving the remaining numerical
challenges, such simulations may provide important new insights for stellar evolution modeling.

143



A Implementation of the Roe-Lowmach
scheme

As explained in Section 4.3.3, the implementation of the Roe-Lowmach flux is very prone to
numerical round-off errors. In fact, evaluating the expressions for the numerical flux in a straight
forward way quickly results in NaN (Not a Number) values on the computer. Therefore, the
detailed implementation of the Roe-Lowmach flux in LHC is presented in the following, where
many terms where hand-optimized by common methods in order to avoid round-off errors.

The starting point for the flux evaluation are the reconstructed conservative variables UL
i+1/2,

UR
i+1/2 approaching an interface i + 1/2 from the left and right hand side. For both states, the

corresponding pressure and its derivatives are calculated by the equation of state. With these
values, the Roe-averaged quantities as defined in Section 3.5.2 are calculated. Moreover, the
Roe-averaged interface velocity, speed of sound and Mach number are computed by

qn = nxuroe + nyvroe + nzwroe, (A.1)

c =

√
∂p

∂ρ

∣∣∣∣
roe

+
∂p

∂ε

∣∣∣∣
roe

· εroe + proe

ρroe
, (A.2)

M =
qn
c
. (A.3)

The preconditioning parameter and the preconditioned acoustic eigenvalues then read

δ =
1

min (1,max (M,Mcut))
− 1, (A.4)

τ =

√
c2

M2
r

+

(
c2

M2
r

− q2
n

)
δ2, (A.5)

λ1 = qn − τ, (A.6)

λ2 = qn + τ. (A.7)

Analyzing the structure of the upwinding matrix in primitive variables DV = P−1
V |PVAV|, it can

be shown that the matrix can be written in the following form:

DV = aχ


|qn| nxS1 nyS1 nzS1

S3−|qn|
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0
0 |qn|
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z
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n2
x + n2

z

)
+ S3n

2
y nynz (S3 − |qn|) nyS2 0
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(
n2
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y

)
+ S3n

2
z nzS2 0

0 nxc
2S1 nyc

2S1 nzc
2S1 S3 0
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(A.8)

Here, a set of auxiliary variables is defined by:

ω =
δ

1 + δ2
(A.9)

S1 = − ρ

2cτ
((c+ ωMrλ2) |λ1| − (c+ ωMrλ1) |λ2|) (A.10)
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S2 = − 1

2ρcτM2
r

((c− ωMrλ2) |λ1| − (c− ωMrλ1) |λ2|) (A.11)

S3 =
|λ1|+ |λ2|
2 (1 + δ2)

+
ωδqn (|λ2| − |λ1|)

2τ
(A.12)

These variables are very sensitive to round-off errors and have thus been strongly optimized.
With these definitions, the upwinding matrix is evaluated numerically in primitive variables.
Moreover, the transformation matrices to conservative variables are also evaluated numerically at
the Roe-averaged state. The upwinding matrix in conservative variables is then computed by two
matrix-matrix multiplications, i.e.

DU =

(
∂U

∂V
·DV ·

∂V

∂U

)
roe

. (A.13)

Finally, the numerical flux of the Roe-Lowmach scheme is computed by

Fi+1/2 =
1

2

(
F
(
UL
i+1/2

)
+ F

(
UR
i+1/2

)
−DU

(
UR
i+1/2 −UL

i+1/2

))
. (A.14)
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B Butcher tableaus for ESDIRK schemes

ESDIRK23 (Hosea & Shampine 1996):

0 0 0 0

2−
√
2 2−

√
2

2
2−
√
2

2
0

1
√
2

4

√
2

4
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√
2

2

β
√
2

4

√
2

4
2−
√
2

2

β̃ 4−
√
2

12
4+3
√
2

12
2−
√
2

6

(B.1)

ESDIRK34 (Kennedy & Carpenter 2001):

0 0 0 0 0

1767732205903
2027836641118

1767732205903
4055673282236

1767732205903
4055673282236

0 0

3
5

2746238789719
10658868560708

−640167445237
6845629431997

1767732205903
4055673282236

0

1 1471266399579
7840856788654

−4482444167858
7529755066697

11266239266428
11593286722821

1767732205903
4055673282236

β 1471266399579
7840856788654

−4482444167858
7529755066697

11266239266428
11593286722821

1767732205903
4055673282236

β̃ 2756255671327
12835298489170

−10771552573575
22201958757719

9247589265047
10645013368117

2193209047091
5459859503100

(B.2)

ESDIRK46 (Kennedy & Carpenter 2001):

0 0 0 0 0 0 0

1
2

1
4

1
4

0 0 0 0

83
250

8611
62500

−1743
31250

1
4

0 0 0

31
50
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34652500

−654441
2922500
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1
4

0 0

17
20
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1
4

0

1 82889
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0 15625
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1
4

β 82889
524892
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1
4

β̃ 4586570599
29645900160

0 178811875
945068544
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−3700637
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61727
225920

(B.3)
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C Transformations between variables

In the following, the Jacobian matrices of the transformation from conservative to primitive and
symmetrizing variables are briefly derived for non-dimensional quantities and a general equation of
state. To this end, the non-dimensional vector of conservative variables is written in the following
form:

U =


ρ
ρu
ρv
ρw
ρE
ρX

 =


U1

U2

U3

U4

U5

U6

 (C.1)

Assuming that the equation of state is given by p = p (ρ, ε,X) (cf. Section 2.2.1), the vector of
primitive variables can be expressed through the conservative variables by

V =


ρ
u
v
w
p
X

 =



U1

U2/U1

U3/U1

U4/U1

p
(
U1,U5 − 1

2U1
M2

r

(
U2

2 + U2
3 + U2

4

)
,U6/U1

)
U6/U1


. (C.2)

The Jacobian matrix of the transformation from conservative to primitive variables can then
directly be calculated as follows:

∂V

∂U
=



1 0 0 0 0 0
−uρ 1

ρ 0 0 0 0

− vρ 0 1
ρ 0 0 0

−wρ 0 0 1
ρ 0 0

p,ρ + 1
2M

2
r p,ε

(
u2 + v2 + w2

)
− p,XX

ρ −p,εM2
r u −p,εM2

r v −p,εM2
r w p,ε

p,X
ρ

−Xρ 0 0 0 0 1
ρ


(C.3)

The derivatives of the equation of state are abbreviated by

p,ρ =
∂p

∂ρ

∣∣∣∣
ε,X

p,ε =
∂p

∂ε

∣∣∣∣
ρ,X

p,X =
∂p

∂X

∣∣∣∣
ρ,ε

. (C.4)

The Jacobian matrix of the transformation from primitive to conservative variables can be calcu-
lated by inverting the above matrix:

∂U

∂V
=

(
∂V

∂U

)−1

=



1 0 0 0 0 0
u ρ 0 0 0 0
v 0 ρ 0 0 0
w 0 0 ρ 0 0

1
2M

2
r

(
u2 + v2 + w2

)
− p,ρ

p,ε
ρuM2

r ρvM2
r ρwM2

r
1
p,ε

−p,Xp,ε
X 0 0 0 0 ρ


(C.5)
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Deriving the Jacobians in this way has the advantage, that the derivative of the equation of state
do not need to be inverted. The derivatives given in Equation C.4 are computed anyway.

The so-called symmetizing variables W are actually only defined by their Jacobian matrix (see
e.g. Turkel 1999):

∂W

∂V
=



0 0 0 0 1
ρc 0

0 Mr 0 0 0 0
0 0 Mr 0 0 0
0 0 0 Mr 0 0
− c
ρ 0 0 0 1

ρc 0

0 0 0 0 0 1

 (C.6)

The variable c denotes speed of sound as defined in Equation 2.2.6. The transformation to
conservative variables can be obtained with the chain rule of differentiation:

∂W

∂U
=
∂W

∂V
· ∂V
∂U

(C.7)

Jacobian matrices of the inverse transformations can then again be calculated as the inverse of
the corresponding matrix. It should be noted that the symmetrizing variables are actually called
that way because they may be used to diagonalize the Euler equations locally.
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D Details of the semi-analytical stability
analysis

The semi-analytical stability analysis for shear flows presented in Section 7.3.1 yields the following
equations for the coefficients of the normal mode:

i (kueq − ω) ρ̃ + ṽ ρ′eq + ρeq (ikũ+ ṽ′) = 0
i (kueq − ω) p̃ + ṽ p′eq + peqγ (ikũ+ ṽ′) = 0

iρeq (kueq − ω) ũ + 1
M2

r
ikp̃+ ρeqṽu

′
eq = 0

iρeq (kueq − ω) ṽ + 1
M2

r
p̃′ + 1

F 2
r
ρ̃ = 0

(D.1)

In order to solve these equations, various algebraic transformations have to be applied which are
briefly outlined in the following. The actual computations were performed with the symbolic
computer algebra software Mathematica. The method closely follows the work by Blumen (1970)
where further details can be found.

In a first step, the third equation is solved for ũ. The result is inserted into to first and second
equation. Next, the first equation is solved for ρ̃ and inserted into the fourth equation. Then,
the fourth equation is solved for p̃ whose derivative with respect to y is computed analytically.
These results are inserted into the third equation which can then be casted into a equation for
the vertical velocity disturbance ṽ:

ṽ′′(y) +A(y) ṽ′(y) +B(y) ṽ(y) = 0 (D.2)

With this method, the original system of equations has been reduced to a single, second-order
differential equation at the expense that the coefficients A(y) and B(y) take a rather complicated
form.

Equation D.2 has to be solved under the constraint that the velocity disturbances vanish at
infinity, i.e. limy→±∞ ṽ(y) = 0, yielding a boundary-value problem. It should be noted that the
coefficients contain the complex frequency ω which is an unknown parameter for this problem.
The overall challenge is to find such a frequency that the boundary-value problem has a unique
solution. As the detailed form of ṽ(y) is thus not of importance here, the differential equation
can be further simplified by introducing a new depended variable by

w̃(y) =
ṽ′(y)

ṽ(y)
. (D.3)

The boundary-value problem then becomes a first-order differential equation again:

w̃′(y) + w̃2(y) +A(y)w̃(y) +B(y) = 0 (D.4)

The corresponding boundary conditions for the new variable w̃ can easily be obtained by assuming
that the coefficients of Equation D.2 tend towards constant values at infinity:

ṽ′′∞(y) +A∞ṽ
′
∞(y) +B∞ṽ∞(y) = 0 (D.5)

This linear differential equation can be solved analytically leading to solutions of the form

ṽ±∞(y) ∝ exp

{
1

2

(
−A±∞ ±

√(
A2
±∞ − 4B±∞

))
y

}
. (D.6)
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Transforming these solutions to the new dependent variable w̃ results in the final form of the
boundary conditions:

lim
y→±∞

w̃(y) =
1

2

(
−A±∞ ±

√(
A2
±∞ − 4B±∞

))
(D.7)

Re

(
lim

y→±∞
w̃(y)

)
≶ 0 (D.8)

As the coefficients of Equation D.4 are rather complicated, the problem can only be solved
numerically. However, the integration range from minus infinity to plus infinity is computationally
problematic. Therefore, a new independent variable is defined by

z = arctanh (y) , (D.9)

which ranges only from −1 to 1. The corresponding boundary-value problem then reads

w̃′(z) = − w̃
2(z) +A(z)w̃(z) +B(z)

1− z2
. (D.10)

Inserting the equilibrium states of the shear flow problem defined in Section 7.2 and the above
transformations into the coefficients A(y) and B(y), the differential equation can be solved numer-
ically. As the problem contains the unknown frequency ω, an initial (complex) value is guessed
or taken from the results with slightly different parameters. Equation D.10 is then integrated nu-
merically with Mathematica’s built-in methods from z = −1 to z = 0 and from z = +1 to z = 0.
The difference of both results at z = 0 is then taken as an input parameter for a root-finding
method which takes ω as independent variable. Convergence is assumed if the relative difference
of both integration steps drops below 10−6. This method is automated in a way that it produces
the dispersion relation ω(k) for a given set of model parameters.
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opportunity to work in such an interesting field of scientific research and for his
constant encouragement and guidance.

I also thank all my colleagues at MPA and especially the people from the type Ia
supernova group. They created a very pleasant and inspiring working atmosphere.
The countless scientific (and especially non-scientific) discussions really helped dur-
ing the work for this thesis. I want to thank all people from room 009 who shared an
office with me during the last years. In particular, I want to mention Rüdiger Pak-
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