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LA STATISTICA

di Trilussa

Sai ched’è la statistica? È na’ cosa
che serve pe fà un conto in generale
de la gente che nasce, che sta male,

che more, che va in carcere e che spósa.

Ma pè me la statistica curiosa
è dove c’entra la percentuale,

pè via che, lì, la media è sempre eguale
puro co’ la persona bisognosa.

Me spiego: da li conti che se fanno
seconno le statistiche d’adesso

risurta che te tocca un pollo all’anno:

e, se nun entra nelle spese tue,
t’entra ne la statistica lo stesso

perch’è c’è un antro che ne magna due.





Abstract

Turbulence is a wide and fascinating subject, dating back to over two centuries, and still
offering new challenges to the scientific community as a whole. The theory of turbulence
involves a wide range of fields, from very applied disciplines, such as engineering and
climatology, to fundamental theoretical questions, such as the uniqueness of a strong so-
lution of the three-dimensional Navier-Stokes equation. As a consequence, a considerable
deal of attention has been paid to turbulence, engaging physicists and mathematicians
alike. The phenomenological similarities between turbulent time-series and high-frequency
financial data, together with the importance of wind as an energy resource, have more
recently triggered a huge amount of interest on the subject. Classical simulation methods
of a turbulent flow, based on discretising the Navier-Stokes equation, involve daunting
calculations, defying the computational power of most recent supercomputers. There is,
therefore, an interest in obtaining a parsimonious stochastic model, which is able to repro-
duce the rich phenomenology of turbulence. Since the most interesting aspect of turbulence
lies in its behaviour at the smallest scale, a large number of high-frequency time-series
are available.
The asymptotic behaviour of second order properties of CARMA processes, as the

frequency of observation tends to infinity, is investigated in Chapter 1. A CARMA process
is an element of the larger class of the continuous-time moving average processes (CMA)
Xt =

∫∞
−∞ g(t − s)dWs, for t ∈ R, where the kernel function g is deterministic, square

integrable, and W is a process with stationary and uncorrelated increments and finite
variance. Under some necessary and sufficient conditions, classical non-parametric time-
series methods can be employed to estimate the kernel function g and the increments of
the driving noise W , when X is a CARMA process. The flexibility of CARMA processes
and the non-parametric nature of the employed methods hint that our results hold for
a larger subclass of CMA processes. In Chapters 2 and 3. we show the consistency of
the kernel and of the driving process estimation procedures, respectively. In Chapter 4,
the processing techniques commonly employed to obtain samples of the velocity of a
turbulent flow are reviewed. In Chapter 5, the results obtained in the previous Chapters
are applied to atmospheric turbulence datasets. Based on the results of the estimation
methods mentioned earlier, a parametric model reproducing the most commonly observed
features of turbulence is proposed.
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Introduction

In this Introduction we will illustrate some of the concepts employed throughout this
thesis, giving when needed reference to the literature detailed in the bibliography at the
end of this thesis.
In Section I we give a brief account of the theory of stationary turbulence, relevant for

this thesis, presenting some stylised facts and theoretical results.
In Section II we shall recall the basic properties of continuous-time moving average

(CMA) processes with finite variance. These processes constitute a general class of station-
ary processes, which have been proposed as possible models for the time-wise behaviour
of turbulence (see e.g. Barndorff-Nielsen et al. (2011), Barndorff-Nielsen and Schmiegel
(2009, 2008a)).
From a mathematical point of view, most of the results of this thesis will be obtained for

a specific yet flexible subclass of CMA processes, namely the class of the continuous-time
autoregressive moving-average (CARMA) processes. One of the advantages of this kind
of processes is that many relevant quantities can be explicitly calculated. The definition
of a CARMA process and basic properties are given in Section III.
Throughout this thesis we will investigate the asymptotic behaviour of the samples of

the underlying continuous-time processes, when the sampling frequency tends to infinity.
A brief overview of the subject will be given in Section IV.
We conclude this Introduction with a chapter-by-chapter outline of the thesis in Section

V.

I. Turbulence

Turbulence is the complex behaviour of a particle in a fluid, under certain conditions,
described by its velocity. Its modelling is a long-standing problem in both physics and
mathematics. The Navier–Stokes equations, the basic mathematical equations describing
turbulence, are well-known since the 19th century. Actual comprehension of this phe-
nomenon, however, is scarce. Since the seminal work of Kolmogorov (1941a,b, 1942),
henceforth referred to as K41 theory, there is a wide-spread conviction that turbulence
can be regarded and analysed as a random phenomenon. In particular, the velocity of a
turbulent flow can be modelled as a spatio-temporal stochastic process which preserves
some statistical structure. We emphasise that high-resolution measurements with actual
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I Turbulence Introduction

probes in both space and time, are difficult to gather. The theory developed in a spatio-
temporal setting is reduced to a time-series framework by utilising Taylor frozen-field
hypothesis (Pope 2000, p. 223), which allows to exchange spatial with time increments.
For an exhaustive account of the turbulence theory we refer to Frisch (1996) and Pope
(2000). For a more intuitive description of turbulence we refer to Tsinober (2009). We note
that virtually every observed turbulent flow displays several stylised statistical facts. Ex-
perimental investigations highlighted that the magnitude of these features only depends
on a control parameter called the Reynolds number ; it is proportional to the mean flow
velocity over the kinematic viscosity. The final goal of this thesis is to analyse and model
turbulent flows with a Reynolds number above a critical threshold, called fully developed
turbulence. We focus on the modelling of the velocity V = {Vt}t∈R along the main flow
direction at some fixed point in space of a weakly stationary turbulent flow.
As customary in both statistics and physics, our analysis is mostly data driven. There-

fore in the latter Chapter of this thesis we shall consider many dataset, coming from
high-quality physical experiments. The most remarkable amongst the dataset employed
is the so-called Brookhaven wind speed data set (see Drhuva 2000). It consists of mea-
surements taken at the atmospheric boundary layer, about 35m above the ground and it
displays a rather high Reynolds number.
The transmission and dissipation of energy are of paramount importance in the de-

scription of turbulence. In the K41 theory, the former is based on the phenomenology
called energy cascade (see Richardson 2007). It is suggested that the kinetic energy en-
ters the turbulent motion at its largest scale, called energy containing range. An example
can be fall winds (e. g., Föhn in the Bavarian alps) downwards flowing from the top of
a mountain, due to the pressure difference between the peak and the valley. These large
scale phenomena are, in general, non-stationary and very specific models are needed. The
kinetic energy is then transmitted by an inviscid mechanism to smaller scale vortices in
the so-called inertial range, until it gets dissipated at its smallest scale, called dissipation
range. In the frequency domain, these partitions correspond to low (energy containing
range), intermediate (inertial range), and high frequencies (dissipation range). The extent
of these ranges depends on the Reynolds number. Kolmogorov assumed that the trans-
mission and dissipation mechanisms are independent from the one injecting the kinetic
energy; moreover, he supposed that these mechanisms is universal for every fully devel-
oped turbulent flow. Along with other simplifications such as stationarity, the K41 theory
gives an elegant and quantitative description of the energy transmission mechanism. It is
essentially based on second order properties, in particular spectral density and autoco-
variance; the behaviour of the energy dissipation mostly remains unspecified. The most
prominent result is Kolmogorov 5/3-law : in the inertial range, the spectral density of the
velocity of a turbulent flow decays as ω−5/3 with the frequency ω.
In the development of his theory Kolmogorov did not take into account that turbu-

lence is a highly non-Gaussian phenomenon. Although the K41 theory has been proven
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Introduction II Continuous-time moving average processes

to be correct to a fair degree concerning second order properties, it fails to make accurate
predictions regarding higher-order statistics. Physicists subsume all phenomena deviating
from the predictions of the K41 theory under the term intermittency. Our paramount aim
in this thesis is to advocate a statistical model, which is able to reproduce the following
key “intermittent” features, virtually observed in every fully developed turbulent flow.
First, sample paths are rather smooth; physicists’ conjecture that they are infinitely often
differentiable in the L2-sense. Unfortunately, to obtain experimental data with a good
resolution at very small scales is still a daunting task, so no last word has been said on
this matter. Nevertheless, the Navier–Stokes equation to be well defined requires that the
turbulent velocity is an – at least – twice continuously differentiable process. Second, the
velocity increments display a distinctive clustering: the phenomenon is originally called
intermittency. In particular, the squared increments of turbulent flow velocities are signifi-
cantly correlated; their autocorrelation is positive and slowly decaying. Third, the velocity
increments are semi-heavy tailed and display a distinctive scaling. Their distribution is
approximately Gaussian on large time-scales, but has exponential tails and is positively
skewed on small time-scales. The skewness is given by Kolmogorov 4/5-law ; for all t ∈ R
and a s > 0 in the inertial range, we have

E[(Vt+s − Vt)3] ≈ 4

5
εs,

where ε > 0 is the mean rate of energy dissipation. Under some ideal conditions, ε is
proportional to E[(∂tV )2]; it is the physical analogue of return volatility in finance. This
law is a direct consequence of Navier–Stokes equations; it is one of the few exact results in
turbulence theory. For a different approach to connect the classical Navier–Stokes equation
with stochastic processes, see Birnir (2013).

II. Continuous-time moving average processes

We are concerned in this thesis with continuous-time moving average processes of the
form

Xt :=

∫ ∞

−∞
g(t− s)dWs, t ∈ R, (II.i)

where g ∈ L2(R) and {Wt}t∈R is a process stationary and uncorrelated increments, such
that E[W1] = 0, E[W 2

1 ] = σ2 < ∞ and W0 = 0 a.s.. The process X defined by (II.i) is
then a stationary process with mean zero and finite variance σ2‖g‖2L2 . Throughout this
thesis, we will employ the weak concept of second order (weak) stationarity, that is, E[Xt]

is constant for every t and the autocovariance function

γX(τ) := E[(Xt+τ − E[Xt+τ ])(Xt − E[Xt])], τ ∈ R,

IX



II Continuous-time moving average processes Introduction

is independent of t. For every second order stationary process the spectral density fX is
defined as the inverse Fourier transform of the autocovariance function. i.e.

fX(ω) = F−1{γX(·)}(ω), ω ∈ R.

The operator F is the linear Fourier-transform operator, F{g(·)}(ω) :=
∫
R g(s)eiωsds,

defined for every function g ∈ L2(R) (see Hörmander (1990), Ch. VII and references
therein for a review of the properties of the Fourier operator). A detailed account of the
spectral theory of second order stationary processes can be found in Priestley (1981).
The integral in (II.i) is understood in the L2-sense, as in Doob (1990) Ch. IX. More
specifically, for a CMA process the second order properties can be obtained with the
convenient formulas (Doob (1990), Ch XI, Section 8).

γX(τ) = σ2

∫

R
g(s)g(s+ τ)ds, τ ∈ R,

fX(ω) =
σ2

2π
|F{g(·)}|2(ω), ω ∈ R.

The class of continuous-time moving average constitute a large subclass of the second
order stationary processes. To be more precise, every process having a spectral density
fX has a representation in the L2-sense as a CMA process, that is, there exists a CMA
process having the same autocorrelation function and spectral density (Doob (1990), pg.
533).
From a time-series perspective, the case of causal continuous-time moving average pro-

cesses is of particular interest, that is, when the kernel function g is assumed to be zero
on (−∞, 0]. Since g is deterministic, the randomness in a causal model is solely given
by the driving process W . In many time-series applications a causal model, i.e. a model
depending only on the past values of W , have a strong intuitive motivation.
The class of causal CMA process, although appealing from a modelling point of view,

is slightly smaller than the one of continuous-time moving average. In order for a process
to have a causal moving average representation (II.i), it must satisfy the Paley-Wiener
condition (Yaglom (2005), Section 26.8), that is, its spectral density satisfies

∫

R

| log fX(ω)|
1 + ω2

dω <∞. (II.ii)

The Paley-Wiener condition clearly rules out spectral densities either decaying as or faster
than e−|ω| or vanishing on sets having positive measure. This result descents from some
beautiful results of Paley and Wiener (1934), equivalent to those of Titchmarsh (1948),
connecting the behaviour of a function g with some regularity of its Fourier transform,
when extended to the complex plane.
The rates of decay of the spectral density also relates to the order of differentiability

of the process. As shown in Doob (1990), Example 1, pg. 535, if
∫
R ω

2pfX(ω)dω < ∞

X



Introduction III CARMA processes

for some p ∈ N, then the process X admits p derivatives in the L2-sense. That implies
differentiability of the sample paths in probability. Let us assume without any loss of
generality that there exist an ε such that fX(ω) > ε for every fixed ω ∈ R. The differ-
entiability condition, in conjunction with the Paley-Wiener condition (II.ii), tells us that
processes having infinitely differentiable sample paths might not have a causal represen-
tation, while, on the other hand, processes with only a finite number of derivatives will
always have one. This is a crucial point in turbulence, since it is still not clear whether
the turbulent time-series are infinitely differentiable or not. An additional layer of confu-
sion is given by the fact that most of the turbulence theory is developed in space; these
results are often translated into a time context employing the Taylor hypothesis. We shall
investigate the matter in Chapter 5.
In this thesis we assume that the driving noise W of a causal CMA process is a weak

Lévy process L. By weak Lévy process, we understand a Lévy process (see e.g. Sato
(1999)), where the hypothesis of independent increments is relaxed to the weaker one of
uncorrelated increments. The assumptions of independent increments is too restrictive to
incorporate non-linear effects in the model, such as volatility clustering, which is widely
observed in turbulent and financial data.
Examples of causal CMA processes are the Ornstein-Uhlenbeck process, with g(t) =

e−λt1(0,∞), where λ > 0, and the more general continuous-time autoregressive moving
average (CARMA) processes studied by Doob (1944) for Gaussian L. Another notable
example of causal CMA processes is the so-called Brownian semistationary process of
Barndorff-Nielsen and Schmiegel (2008a), where the kernel function is assumed to be a
gamma kernel, i.e., for ν > 1/2 and λ < 0,

g(t) = tν−1eλt1(0,∞)(t), t ∈ R. (II.iii)

A causal CMA process equipped with the kernel (II.iii) has an autocorrelation function of
the Whittle-Matérn family (see e.g. Guttorp and Gneiting (2005)). The spectral density,
that is the inverse Fourier transform of the autocorrelation function, of such a process
decays as ω−2ν as ω tends to infinity. Power-law spectral densities are often observed, and
they have a role of prime importance in turbulence, where Kolmogorov 5/3 law predicts
ν = 5/6. Therefore, such spectral densities have widely been employed in turbulence
modelling, see e.g. von Kármán (1948) and the international standard IEC 61400-1 (1999).

III. CARMA processes

In this thesis a great deal of attention will be directed to CARMA processes driven by
a second order zero-mean weak Lévy process L with E[L1] = 0 and E[L2

1] = σ2. They
represent a very tractable and flexible subclass of the CMA processes class, defined in the
previous section. The process is defined as follows.

XI



III CARMA processes Introduction

For non-negative integers p and q such that q < p, a CARMA(p, q) process Y = {Yt}t∈R,
with coefficients a1, . . . , ap, b0, . . . , bq ∈ R, and driving Lévy process L, is defined to be
the strictly stationary solution of the suitably interpreted formal equation,

a(D)Yt = b(D)DLt, t ∈ R, (III.i)

where D denotes differentiation with respect to t, a(·) and b(·) are the polynomials,

a(z) := zp + a1z
p−1 + · · ·+ ap and b(z) := b0 + b1z + · · ·+ bp−1z

p−1,

and the coefficients bj satisfy bq = 1 and bj = 0 for q < j < p. Throughout this thesis we
shall denote by λi, i = 1, . . . , p, and−µi, i = 1, . . . , q, the roots of a(·) and b(·) respectively,

such that these polynomials can be written as a(z) =

p∏

i=1

(z − λi) and b(z) =

q∏

i=1

(z + µi).

Throughout this thesis we will further assume, to avoid non-interesting cases, that a(·)
and b(·) have no common zeroes. For a study of the general case we refer to Brockwell
and Lindner (2009).
Since the derivative DLt does not exist in the usual sense, we interpret (III.i) as being

equivalent to the observation and state equations

Yt = bTXt , (III.ii)

dXt = AXtdt+ epdLt , (III.iii)

where

Xt =




X(t)

X(1)(t)
...

X(p−2)(t)

X(p−1)(t)



, b =




b0
b1
...

bp−2

bp−1



, ep =




0

0
...
0

1



,

A =




0 1 0 . . . 0

0 0 1 . . . 0
...

...
... . . . ...

0 0 0 . . . 1

−ap −ap−1 −ap−2 . . . −a1




and A = −a1 for p = 1.

It is easy to check that the eigenvalues of the matrix A, which we shall denote by λ1, . . . , λp,
are the same as the zeroes of the autoregressive polynomial a(·).
If the roots of the polynomial a(·) lie in the left half-plane, it has been shown (Brockwell

and Lindner (2009), Lemma 2.3) that these equations have the unique stationary solution

Yt =

∫ ∞

−∞
g(t− u)dLu, t ∈ R, (III.iv)
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Introduction IV Sampling Schemes

where

g(t) =





1
2πi

∫

ρ

b(z)

a(z)
etzdz =

∑

λ

Resz=λ

(
ezt

b(z)

a(z)

)
, if t > 0,

0, if t ≤ 0.

(III.v)

and ρ is any simple closed curve in the open left half of the complex plane encircling
the zeroes of a(·). The integral in (III.iv) is again defined in L2, as outlined in Section
II. Therefore, the CARMA process is a causal, continuous-time moving average, whose
kernel belongs to a specific parametric family, fully specified by the roots of a(·) and b(·).
We outline that the condition on the roots of a(·) to lie in the interior of the left half

of the complex plane in order to have causality arises from Theorem V, p. 8, Paley and
Wiener (1934), which is intrinsically connected with the Theorems in Titchmarsh (1948),
pp. 125-129, on the Hilbert transform. A similar condition on the roots of b(·) will be
needed in Chapters 2 and 3.
A more concise form for the kernel g is (Brockwell and Lindner (2009), equations (2.10)

and (3.7))
g(t) = b>eAtep1(0,∞)(t), t ∈ R. (III.vi)

Gaussian CARMA processes, of which the Gaussian Ornstein-Uhlenbeck process is
an early example, were first studied in detail by Doob (1944) (see also Doob (1990)).
The state-space formulation, (III.ii) and (III.iii) (with b> = [1 0 · · · 0]), was used by
Jones (1981) to carry out inference for time-series with irregularly spaced observations.
This formulation naturally leads to the definition of Lévy-driven and non-linear CARMA
processes (see Brockwell and Lindner (2009) and the references therein).

IV. From continuous to discrete time: sampling
schemes

In this thesis we will deal with the relationship between a continuous time process Y and
the sampled process Y ∆ := {Yn∈∆}n∈Z on a discrete grid, where ∆ > 0. The behaviour of
the continuous-time process between two sequent observations at times i∆ and (i+ 1)∆

is of course unknown. A legitimate question is, whether it is possible to retrieve informa-
tion about the continuous time process by using the sampled process when the sampling
spacing ∆ tends to zero. A recent reference on the subject is Jacod and Protter (2012).
A classical result, bridging the continuous-time and the sampled spectral density, is the
aliasing formula (Bloomfield (2000), p. 196, Eq. 9.17)

f∆
Y (ω) =

1

∆

∑

k∈Z

fY

(
ω + 2πk

∆

)
, −π ≤ ω ≤ π.
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IV Sampling Schemes Introduction

As shown by the formula above, for a generic ∆ > 0, the discrete-time spectral density f∆
Y

may bear little resemblance to the continuous-time spectral density fY . Most of the data
available are discrete, therefore a numerous methods to estimate the discrete-time spectral
density have been developed (see e.g. Priestley (1981), Brockwell and Davis (1991)). The
problem of the convergence of the estimate of f∆

Y to the continuous time fY as ∆ ↓ 0 for
the class of CMA processes is discussed in Fasen (2012)
A classical time-series model for discrete-time data is the moving average (MA(∞))

process

Y ∆
n =

n∑

j=−∞

ψ∆
n−jZ

∆
j , n ∈ Z, (IV.i)

where, for ∆ > 0, {ψ∆
j }j∈N is a deterministic, square-summable sequence with ψ∆

0 = 1;
moreover, the process Z∆ := {Z∆

n }n∈Z is a discrete-time white noise process with vari-
ance σ2

∆. Similarly to the continuous-time setting, the Wold representation (Brockwell
and Davis (1991), p. 187) states that a large class of discrete-time weakly stationary pro-
cesses admits a MA(∞) representation. Moreover, under some technical conditions, the
deterministic parameters of such a MA(∞) process can be directly computed from the
discrete-time spectral density f∆

Y solving a spectral factorisation problem (see e.g. Sayed
and Kailath (2001)). Notwithstanding, the parameters in (IV.i) depend in complicated
fashion on the spacing ∆ > 0 and, therefore, via the aliasing formula, on the under-
lying continuous-time spectral density fY as well. The moving-average processes (IV.i)
and (II.i) share a similar structure, where the kernel function g, respectively the coeffi-
cients {ψ∆

j }j∈N, act as weight of the influence that the differential dL, respectively the
white noise Z∆, has on the process Y , respectively Y ∆. Moreover, in both discrete and
continuous-time, a suitable stationary process can be represented as a moving average
process. It is then natural to suppose that the framework of moving-average processes
is the right setting to investigate the relationship between continuous-time and sampled
processes.
The sampled sequence of a CARMA process satisfies the ARMA equation (see e.g.

Brockwell and Brockwell (1999), Brockwell (1995), Brockwell and Lindner (2009))

Φ∆(B)Y ∆
n = Θ∆(B)Z∆

n , n ∈ Z, ∆ > 0, (IV.ii)

where Φ∆(·) :=

p∏

i=1

(1− eλi∆·), Θ∆(·) is a polynomial of order less or equal to p−1 and B

is the discrete-time back-shift operator, defined as BXn := Xn−1. The white-noise Z∆ in
(IV.ii), under some technical condition, coincides with the one appearing in the MA(∞)

(IV.i).
The ARMA processes, introduced by Whittle (1951) and popularised by Box et al.

(1994), constitute a popular class of linear model for discrete-time data. An extensive
review on the subject can be find in the classic Brockwell and Davis (1991).
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Introduction V Outline of the thesis

Confronting (IV.ii) and (III.i), one can note that a CARMA process preserve a linear
structure after sampling. In general the polynomial Θ∆(·) has a complicated dependence
on a(·) and b(·) as ∆ > 0 and its order will be different from q. Results concerning the
asymptotic behaviour of Θ∆(·), as ∆ tends to zero, is given in Chapter 1.
In Chapter 2 and 3 we will investigate the relationship between the MA(∞) represen-

tation (IV.i) of the sampled sequence of a CARMA process and its CMA representation
(II.i), once again as the spacing ∆ tends to 0.

V. Outline of the thesis

As every of the following chapters of this thesis is based on a paper, they are basically
self-contained and the notation is only unified within the individual chapters.

Chapter 1 We analyse the asymptotic behaviour of a CARMA process from the second order
point of view, that is, we give asymptotic expression for the autocovariance function
and the spectral density as ∆ tends to zero. This Chapter is based on Brockwell,
Ferrazzano and Klüppelberg (2012)

Chapter 2 We refine the results of Chapter 1, giving a asymptotic expression of the spectral
density of higher order than the one given in Theorem 1.2.1. Moreover, we show
that, under some assumptions, the coefficients in the Wold representation (IV.i)
may be used to estimate the kernel g as the sampling spacing ∆ tends to zero. This
Chapter is based on Brockwell et al. (2013).

Chapter 3 We show that, under the same assumptions as in Chapter 2, the white noise Z∆ in
(3.2.1) approximates the increments of the driving process L, if properly rescaled.
Moreover, we study the analogies between the representation (IV.i) of a CARMA

process and the discretisation of (III.iv). This Chapter is based on Ferrazzano and
Fuchs (2013).

Chapter 4 We illustrate the best practices to collect and to process the velocity samples of
a turbulent flow. Due to the liquid status of a fluid, the velocity of a flow is hard
to measure directly. Therefore a tiny electronically device is immersed in the flow,
and the velocity of the flow itself is inferred from the electric signal of the device,
which undergoes a complicated manipulation procedure. This Chapter is based on
Ferrazzano (2010).

Chapter 5 We employ the results of Chapter 2 and 3 to estimate the kernel and the driving
process of a CMA model from the Brookhaven data. Firstly, we fully characterise the
CMA model from the physical point of view. Then we propose parametric models
for the kernel and the driving noise, which are able to reproduce the stylised features

XV



V Outline of the thesis Introduction

of turbulence. After fitting the model, we simulate thereupon, and we compare the
obtained simulation with the original data. This Chapter is based on the working
paper Ferrazzano, Klüppelberg and Ueltzhöfer (2012), due in March 2013.
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1. High-frequency sampling of a
continuous-time ARMA process

Continuous-time autoregressive moving average (CARMA) processes have re-
cently been used widely in the modelling of non-uniformly spaced data and
as a tool for dealing with high-frequency data of the form Yn∆, n = 0, 1, 2, . . .,
where ∆ is small and positive. Such data occur in many fields of application,
particularly in finance and the study of turbulence. This Chapter is concerned
with the characteristics of the process {Yn∆}n∈Z, when ∆ is small and the
underlying continuous-time process {Yt}t∈R is a specified CARMA process.

This Chapter is organised as follows. In Section 1.1 we derive an expression for the spectral
density of the sampled sequence Y ∆ := {Yn∆}n∈Z. It is known that the filtered process
{Φ∆(B)Y ∆

n }n∈Z, where Φ∆(B) is the filter defined in (3.1), is a moving average of order at
most p− 1. In Section 1.2, we determine the asymptotic behaviour of the spectral density
and autocovariance function of {Φ∆(B)Y ∆

n }n∈Z as ∆ ↓ 0 and the asymptotic moving
average coefficients and white noise variance in the cases p− q = 1, 2 and 3. In general we
show that for small enough ∆ the order of the moving average {Φ∆(B)Y ∆

n }n∈Z is p− 1.

1.1. The spectral density of Y ∆ := {Yn∆}n∈Z
From (III.v) we immediately see, since g(t) = 0 for t < 0, that the Fourier transform of g
is

F{g(·)}(ω) :=

∫

R
g(t)eiωtdt = − 1

2πi

∫

ρ

b(z)

a(z)

1

z + iω
dz =

b(−iω)

a(−iω)
, ω ∈ R. (1.1.1)

Since the autocovariance function γY (·) is the convolution of σg(·) and σg(−·), its Fourier
transform is given by

F{γY (·)}(ω) = σ2F{g(·)}(ω)F{g(·)}(−ω) = σ2

∣∣∣∣
b(iω)

a(iω)

∣∣∣∣
2

, ω ∈ R.

The spectral density of Y is the inverse Fourier transform of γY . Thus

fY (ω) =
1

2π

∫

R
e−iωhγY (h)dh =

1

2π
F{γY (·)}(−ω) =

σ2

2π

∣∣∣∣
b(iω)

a(iω)

∣∣∣∣
2

, ω ∈ R.

1



1.2 The filtered sequence {Φ∆(B)Y ∆
n }n∈Z

Substituting this expression into the relation

γY (h) =

∫

R
eiωhfY (ω)dω, h ∈ R,

and changing the variable of integration from ω to z = iω gives,

γY (h) =
σ2

2πi

∫

ρ

b(z)b(−z)

a(z)a(−z)
e|h|zdz = σ2

∑

λ

Resz=λ

(
b(z)b(−z)

a(z)a(−z)
ez|h|

)
, (1.1.2)

where the sum is again over the distinct zeroes of a(·).
We can now compute the spectral density of the sampled sequence Y ∆ := (Yn∆)n∈Z.

This spectral density f∆ will play a key role in the subsequent analysis. We have, from
Corollary 4.3.2 in Brockwell and Davis (1991),

f∆
Y (ω) =

1

2π

∞∑

h=−∞

γY (h∆)e−ihω, −π ≤ ω ≤ π,

and, substituting for γY from (1.1.2),

f∆(ω) =
−σ2

4π2i

∫

ρ

b(z)b(−z)

a(z)a(−z)

sinh(∆z)

cosh(∆z)− cos(ω)
dz, −π ≤ ω ≤ π. (1.1.3)

1.2. The filtered sequence {Φ∆(B)Y ∆
n }n∈Z

If λ1, . . . , λp are the (not necessarily distinct) zeroes of a(·), then we know from Brockwell
and Lindner (2009), Lemma 2.1, that if we apply the filter

Φ∆(B) :=

p∏

j=1

(1− eλj∆B) (1.2.1)

to the sampled sequence, Y ∆, we obtain a strictly stationary sequence which is (p − 1)-
correlated and is hence, by Lemma 3.2.1 of Brockwell and Davis (1991), a moving average
process of order p− 1 or less.
Our goal in this Section is to study the asymptotic properties, as ∆ ↓ 0, of the moving

average Θ∆(B)Z∆
n in the ARMA representation,

Φ∆(B)Y ∆
n = Θ∆(B)Z∆

n , n ∈ Z, (1.2.2)

of the high-frequency sequence Y ∆. Here B denotes the backward shift operator and
(Z∆

n )n∈Z is an uncorrelated sequence of zero-mean random variables with constant vari-
ance which we shall denote by σ2

∆.

2



1.2 The filtered sequence {Φ∆(B)Y ∆
n }n∈Z

We shall denote by f∆
MA the spectral density of {Θ∆(B)Z∆

n }n∈Z. Then, observing that
the power transfer function of the filter (1.2.1) is

ψ(ω) = |
p∏

j=1

(1− eλj∆+iω)|2 = 2pe−a1∆

p∏

i=1

(cosh(λi∆)− cos(ω)), −π ≤ ω ≤ π, (1.2.3)

we have
f∆

MA(ω) = ψ(ω)f∆
Y (ω), −π ≤ ω ≤ π, (1.2.4)

where ψ(ω) and f∆
Y (ω) are given by (1.2.3) and (1.1.3) respectively.

In principle the expression (1.2.4) determines the second order properties of the moving
average process {Θ∆(B)Z∆

n }n∈Z and in particular the autocovariances γ∆
MA(h) for h =

0, . . . , p − 1. Ideally we would like to use these autocovariances to find the coefficients
θ1, . . . , θp−1 and white noise variance σ2

∆, all of which are uniquely determined by the
autocovariances, if we impose the condition that θ(·) has no zeros in the interior of the
unit circle. Determination of these quantities is equivalent to finding the corresponding
factorisation of the spectral density f∆

MA (see Sayed and Kailath (2001) for a recent paper
on spectral factorisation).
From (1.1.3), (1.2.3) and (1.2.4) we can calculate the spectral density f∆

MA(ω) as
−σ2ψ(ω)/(2π) times the sum of the residues in the left half plane of the integrand in
(1.1.3) , i.e.

f∆
MA(ω) = −σ

2

2π
ψ(ω)

∑

λ

D
m(λ)−1
z

(
sinh(∆z)b(z)b(−z)

(cosh(λ∆)− cos(ω))a(−z)
∏

µ6=λ(z − µ)
m(µ)

)

z=λ

,(1.2.5)

where the sum is over the distinct zeroes λ of a(·) and the product in the denominator
is over the distinct zeroes µ of a(·), which are different from λ. The multiplicities of the
zeroes λ and µ are denoted by m(λ) and m(µ) respectively. When the zeroes λ1, . . . , λp
each have multiplicity 1, the expression for f∆

MA(ω) simplifies to

f∆
MA(ω) =

(−2)pe−a1∆σ2

2π

p∑

i=1

b(λi)b(−λi)
a′(λi)a(−λi)

sinh(λi∆)
∏

j 6=i

(cosω−cosh(λj∆)), −π ≤ ω ≤ π.

Although in principle the corresponding autocovariances γ∆
MA(j) could be derived from

f∆
MA, we derive a more direct explicit expression later as Proposition 1.2.6. The asymptotic
behaviour of f∆

MA as ∆ ↓ 0 is derived in the following theorem by expanding (1.1.3) in
powers of ∆ and evaluating the corresponding coefficients. Here and in all that follows we
shall use the notation, a(∆) ∼ b(∆), to mean that lim∆↓0 a(∆)/b(∆) = 1.

Theorem 1.2.1. The spectral density f∆
MA of {Θ∆(B)Z∆

n }n∈Z in the ARMA representa-
tion (1.2.2) of the sampled process Y ∆ has the asymptotic form, as ∆ ↓ 0,

f∆
MA(ω) ∼ σ2

2π
(−1)p−q−1∆2(p−q)−1cp−q−1(ω)2p−1(1− cosω)p, −π ≤ ω ≤ π, (1.2.6)

3



1.2 The filtered sequence {Φ∆(B)Y ∆
n }n∈Z

where ck(ω) is the coefficient of x2k+1 in the power series expansion

sinhx

coshx− cosω
=

∞∑

k=0

ck(ω)x2k+1. (1.2.7)

In particular, c0(ω) = 1
1−cosω , c1(ω) = − 2+cosω

6(1−cosω)2 , c2(ω) =
33+26 cosω+cos(2ω)

240(1−cosω)3 , . . . .

Proof. The integrand in (1.1.3) can be expanded as a power series in ∆ using (1.2.7). The
integral can then be evaluated term by term using the identities, (see Example 3.1.2.3. of
Mitrinović and Kečkić (1984))

1

2πi

∫

ρ

z2k+1 b(z)b(−z)

a(z)a(−z)
dz = −1

2
Resz=∞

(
z2k+1b(z)b(−z)

a(z)a(−z)

)
, k ∈ {0, 1, 2, . . .},

from which we obtain, in particular,

1

2πi

∫

ρ

z2k+1 b(z)b(−z)

a(z)a(−z)
dz =

{
0 if 0 ≤ k < p− q − 1,
(−1)p−q

2 if k = p− q − 1.

Substituting the resulting expansion of the integral (1.1.3) and the asymptotic expres-
sion ψ(ω) ∼ 2p(1 − cosω)p into (1.2.4) and retaining only the dominant power of ∆ as
∆ ↓ 0, we arrive at (1.2.6).

Corollary 1.2.2. The following special cases are of particular interest.

p− q = 1 : f∆
MA(ω) ∼ σ2∆

2π
2q(1− cosω)q. (1.2.8)

p− q = 2 : f∆
MA(ω) ∼ σ2∆3

2π

(
2

3
+

cosω

3

)
2q(1− cosω)q. (1.2.9)

p− q = 3 : f∆
MA(ω) ∼ σ2∆5

2π

(
11

20
+

13 cosω

30
+

cos(2ω)

60

)
2q(1− cosω)q. (1.2.10)

Proof. These expressions are obtained from (1.2.6) using the values of c0(ω), c1(ω) and
c2(ω) given in the statement of the theorem.

Remark 1.2.3. (i) The right-hand side of (1.2.8) is the spectral density of a q-times
differenced white noise with variance σ2∆. It follows that, if q = p− 1, then the moving
average polynomial Θ∆(B) in (1.2.2) is asymptotically (1 − B)q and the white noise
variance σ2

∆ is asymptotically σ2∆ as ∆ ↓ 0. This result is stated with the corresponding
results for p− q = 2 and p− q = 3 in the following corollary.

(ii) By Proposition 3.32 of Marquardt and Stelzer (2007) a CARMA(p, q)-process has
sample paths which are (p−q−1)-times differentiable. Consequently to represent processes

4



1.2 The filtered sequence {Φ∆(B)Y ∆
n }n∈Z

with non-differentiable sample-paths it is necessary to restrict attention to the case p−q =

1. It is widely believed that sample-paths with more than two derivatives are too smooth
to represent the processes observed empirically in finance and turbulence (see e.g. Jacod
and Todorov (2010), Jacod et al. (2010)) so we are not concerned with the cases when
p− q > 3. 2

Corollary 1.2.4. The moving average process X∆
n := Θ∆(B)Z∆

n in (1.2.2) has for ∆ ↓ 0

the following asymptotic form.

(a) If p− q = 1, then
X∆
n = (1−B)qZ∆

n , n ∈ Z,

where σ2
∆ := V ar(Z∆

n ) = σ2∆.

(b) If p− q = 2, then

X∆
n = (1 + θB)(1−B)qZ∆

n , n ∈ Z,

where θ = 2−
√

3 and σ2
∆ := V ar(Z∆

n ) = σ2∆3(2 +
√

3)/6.

(c) If p− q = 3, then

X∆
n = (1 + θ1B + θ2B

2)(1−B)qZ∆
n , n ∈ Z,

where θ2 = 2
(
8 +
√

30
)
−
√

375 + 64
√

30, θ1 = 26θ2/(1 + θ2) = 13−
√

135 + 4
√

30 and

σ2
∆ =

(
2
(
8 +
√

30
)

+
√

375 + 64
√

30
)

∆5σ2/120.

Proof. (a) follows immediately from Theorem 4.4.2 of Brockwell and Davis (1991).
To establish (b) we observe from (1.2.9) that the required moving average is the q times

differenced MA(1) process with autocovariances at lags zero and one, γ(0) = 2σ2∆3/3 and
γ(1) = σ2∆3/6. Expressing these covariances in terms of θ and σ2

∆ gives the equations,

(1 + θ2)σ2
∆ = 2σ2∆3/3,

θσ2
∆ = σ2∆3/6,

from which we obtain a quadratic equation for θ. Choosing the unique solution which
makes the MA(1) process invertible gives the required result.
The proof of (c) is analogous. The corresponding argument yields a quartic equation

for θ2. The particular solution given in the statement of (b) is the one which satisfies the
condition that θ(z) is nonzero for all complex z such that |z| < 1.

Although the absence of the moving-average coefficients, bj , from Corollary 3.4 suggests
that they cannot be estimated from very closely-spaced observations, the coefficients do
appear if the expansions are taken to higher order in ∆. An higher order expansion will

5



1.2 The filtered sequence {Φ∆(B)Y ∆
n }n∈Z

be shown in Chapter 2. The apparent weak dependence of the sampled sequence on the
moving-average coefficients as ∆ ↓ 0 is compensated by the increasing number of available
observations.
In principle the autocovariance function γ∆

MA can be calculated, as indicated earlier,
from the corresponding spectral density f∆

MA given by (1.2.4) and (1.1.1). Below we derive
a more direct representation of γ∆

MA and use it to prove Theorem 1.2.7, which is the time-
domain analogue of Theorem 1.2.1.
Define B∆g(t) = g(t−∆) for t ∈ R. We show that Φ∆(B∆)g(·) ≡ 0 for t > p∆.

Lemma 1.2.5. Let Y be the CARMA(p, q) process (III.iv) and ∆ > 0. Define Φ∆(B) as
in (1.2.1). Then

Φ∆(B∆)g(t) :=

p∏

j=1

(1− eλj∆B∆)g(t) = 0, t > p∆. (1.2.11)

Proof. Rewriting the product in (1.2.11) as a sum we find Φ∆(B∆)g(t) =
∑p

j=0A
p
jg(t−

j∆), which has Fourier transform (invoking the shift property and the right hand side of
(1.1.1)) ∏

λ

(1− e∆(λ+iω))m(λ) b(−iω)

a(−iω)
, ω ∈ R,

where the product is taken over the distinct zeroes of a(·) having multiplicity m(λ). Using
the fact that the product of Fourier transforms corresponds to the convolution of functions,
we obtain from (III.v)

Φ∆(B∆)g(t) = − 1

2πi

∫

ρ

∏

λ

(1− e∆(λ−z))m(λ) b(z)

a(z)
etzdz

= −
∑

λ

Resz=λ

(
eztb(z)

∏

λ

(1− e∆(λ−z))m(λ)

(z − λ)m(λ)

)
.

Now note that, for every of the distinct zeroes λj ,

lim
z→λi

(1− e∆(λj−z))m(λj)

(z − λj)m(λj)
= ∆m(λj).

The singularities at z = λj are removable and, therefore, using Cauchy residue theorem,
Theorem 1 of Section 3.1.1, p. 25, and Theorem 2 of Section 2.1.2, p. 7, of Mitrinović and
Kečkić (1984), the filtered kernel is zero for every t ∈ R.

Proposition 1.2.6. Let Y be the CARMA(p, q) process (III.iv) and ∆ > 0. The autoco-
variance at lag n of (Φ∆(B)Y ∆

j )j∈Z is, for n = 0, 1, . . . , p− 1,

γ∆
MA(n) = σ2

p−n∑

i=1

n+i−1∑

k=0

i−1∑

h=0

ApkA
p
h

∫ i∆

(i−1)∆

g(s− h∆)g(s− (k − n)∆)ds, (1.2.12)
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1.2 The filtered sequence {Φ∆(B)Y ∆
n }n∈Z

with
Apk = (−1)k

∑

{i1,...,ik}∈Cpk

e∆(λi1+···+λik ), k = 1, . . . , p. (1.2.13)

The sum in (1.2.13) is taken over the
(
p
k

)
subsets of size k of {1, 2, . . . , p}.

Proof. We note that γ∆
MA(n) is the same as E[(Φ∆(B∆)Y )t(Φ∆(B∆)Y )t+∆n] and use the

same expansion as in the proof of Lemma 1.2.5, i.e.

Φ∆(B∆) =

p∏

j=1

(1− eλj∆B∆) =

p∑

k=0

ApkB
k
∆, (1.2.14)

which we apply to Y . Observe that for t ∈ R, setting tk := t − k∆ for k = 0, . . . , p, and
tp+1 := −∞,

Bk
∆Yt = Bk

∆

∫ t

−∞
g(t− u)dLu =

∫ tk

−∞
g(tk − u)dLu =

p∑

i=k

∫ ti

ti+1

g(tk − u)dLu. (1.2.15)

Applying the operator (1.2.14) to Yt, using (1.2.15) and interchanging the order of sum-
mation gives

(Φ∆(B∆)Y )t =

p∑

m=0

∫ tm

tm+1

m∑

k=0

Apkg(tk − u)dLu. (1.2.16)

From Lemma 1.2.5 we know that the contribution from the term corresponding to m = p

is zero. By stationarity, the autocovariance function is independent of t, hence we can
choose t = ∆n. Then we obtain

(Φ∆(B∆)Y )n∆ =

p−1∑

j=0

∫ ∆(n−j)

∆(n−j−1)

j∑

k=0

Apkg((n− k)∆− u)dLu

=

p∑

j=1

∫ ∆(n−j+1)

∆(n−j)

j−1∑

k=0

Apkg((n− k)∆− u)dLu.

For t = 0, we obtain analogously

(Φ∆(B∆)Y )0 =

p∑

i=1

∫ −∆(i−1)

−∆i

i−1∑

h=0

Aphg(−∆h− u)dLu.

For the autocovariance function we obtain for n = 0, . . . , p − 1 by using the fact that L
has orthogonal increments,

γ∆
MA(n) = E[(Φ∆(B∆)Y )0(Φ∆(B∆)Y )n∆]

= σ2

p−n∑

i=1

i+n−1∑

k=0

i−1∑

h=0

ApkA
p
h

∫ −(i−1)∆

−i∆
g((n− k)∆− u)g(−∆h− u)du.

Finally, (1.2.12) is obtained by changing the variable of integration from u to s = −u.
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1.2 The filtered sequence {Φ∆(B)Y ∆
n }n∈Z

Theorem 1.2.7. The autocovariance function γ∆
MA(n) for n = 1, . . . , p− 1 has for ∆ ↓ 0

the asymptotic form

γ∆
MA(n) ∼ σ2∆2(p−q)−1

((p− q − 1)!)2

p−n∑

i=1

n+i−1∑

k=0

i−1∑

h=0

(−1)h+k

(
p

k

)(
p

h

)
C(h, k, i, n; p−q−1), (1.2.17)

where for N ∈ N0

C(h, k, i, n;N) :=

∫ 1

0

(s+ i− 1− h)N (s+ i− 1− k + n)Nds.

Proof. The kernel g can also be expressed (Brockwell and Lindner (2009), equations (2.10)
and (3.7)) as

g(t) = b>eAtep1(0,∞)(t). (1.2.18)

From this equation we see at once that g is infinitely differentiable on (0,∞) with kth

derivative,
g(k)(t) = b>eAtAkep, 0 < t <∞.

Since bq = 1 and bj = 0 for j > q, the right derivatives g(k)(0+) satisfy

g(k)(0+) = b>Akep =

{
0 if k < p− q − 1,

1 if k = p− q − 1,
(1.2.19)

and in particular g(0+) = 1 if p− q = 1 and g(0+) = 0 if p− q > 1.
We can rewrite the integral in (1.2.12) as

∆

∫ 1

0

g((s+ i− 1− h)∆)g((s+ i− 1− k + n)∆)ds. (1.2.20)

Since g is infinitely differentiable on (0,∞) and the right derivatives at 0 exist, the inte-
grand has one-sided Taylor expansions of all orders M ∈ N,

M∑

l=0

dl [g((s+ i− 1− h)∆)g((s+ i− 1− k + n)∆)]

d∆l

∣∣∣∣
∆=0+

∆l

l!
+ o
(
∆M
)

=

M∑

l=0

l∑

m=0

(
l

m

)
(s+ i− 1− h)l−m(s+ i− 1− k + n)mg(l−m)(0+)g(m)(0+)

∆l

l!
+ o
(
∆M
)
,

as ∆ ↓ 0. Choose M = 2(p− q− 1). Then by (1.2.19) there is only one term in the double
sum which does not vanish, namely the term for which m = p − q − 1 = l −m. Setting
N := p− q − 1 (so that M = 2N) the sum reduces to

(
2N

N

)
(s+ i− 1− h)N (s+ i− 1− k + n)N

1

(2N)!
∆2N + o

(
∆2N

)
.
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1.2 The filtered sequence {Φ∆(B)Y ∆
n }n∈Z

Since
(

2N
N

)
/(2N)! = (N !)−2, the integral in (1.2.20) is for ∆ ↓ 0 asymptotically equal to

∆2N+1

(N !)2

∫ 1

0

(s+ i− 1− h)N (s+ i− 1− k + n)Nds+ o(∆2N+1), (1.2.21)

and, since

lim
∆↓0

∑

{i1,...,ih}∈Cph

e∆(λi1+···+λih) =

(
p

h

)
,

we also have

ApkA
p
h = (−1)h+k

(
p

k

)(
p

h

)
+ o(1) as ∆ ↓ 0. (1.2.22)

Combining (1.2.21) and (1.2.22), we obtain (1.2.17).

Remark 1.2.8. (i) For computations the following expansion may be useful (as usual we
set 00 = 1)

C(h, k, i, n;N) :=

∫ 1

0

(s+ i− 1− h)N (s+ i− 1− k + n)Nds

=

N∑

l1,l2=0

(
N

l1

)(
N

l2

)
(i− 1− h)N−l1(i− 1− k + n)N−l2

∫ 1

0

sl1+l2ds

=

N∑

l1,l2=0

(
N

l1

)(
N

l2

)
1

l1 + l2 + 1
(i− 1− h)N−l1(i− 1− k + n)N−l2 .

Furthermore, we observe that C depends on p and q only through p− q.
(ii) Note that the right hand sides of (1.2.5) and (1.2.6) are the discrete Fourier transforms
of (1.2.12) and (1.2.17), respectively. Note also the symmetry between (1.2.5) and (1.2.12)
in the dependence on ∆ and p− q − 1. 2

So far we know that the moving average process X∆
n = Θ∆(B)Z∆

n from (1.2.2) is of
order not greater than p − 1 but possibly lower. Our next result presents an asymptotic
formula for γ∆

MA(p− 1), which shows clearly that this term is not 0.

Corollary 1.2.9. For lag n = p− 1 the autocovariance formula (1.2.17) reduces to

γ∆
MA(p− 1) ∼ (−1)q

σ2∆2(p−q)−1

(2(p− q − 1))!
(1.2.23)

and γ∆
MA(p− 1) is therefore non-zero for all sufficiently small ∆ > 0.
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1.2 The filtered sequence {Φ∆(B)Y ∆
n }n∈Z

Proof. From the expansion (1.2.17) we find

γ∆
MA(p− 1) ∼ σ2∆2(p−q)−1

((p− q − 1)!)2

p−1∑

k=0

(−1)k
(
p

k

)
C(0, k, 1, p− 1; p− q − 1). (1.2.24)

Set d := p− q ≥ 1, then

C(0, k, 1, p− 1; d− 1) =

∫ 1

0

sd−1(s− k + p− 1)d−1ds,

and, from Remark 1.2.8, this is a polynomial of order d−1. In order to apply known results
on the difference operator, we define the polynomial f(x) =

∫ 1

0
sd−1(x+ s+ p− 1)d−1ds.

Then, using Eq. (5.40), p. 188, and the last formula on p. 189 in Graham et al. (1994),
the sum in (1.2.24) can be written as

p−1∑

k=0

(−1)k
(
p

k

)
C(0, k, 1, p− 1; d− 1)

=

p∑

k=0

(−1)k
(
p

k

)
f(x− k)|x=0 − (−1)p

(
p

p

)
C(0, k, 1, p− 1; d− 1)

= 0 + (−1)p+1

∫ 1

0

sd−1(s− 1)d−1ds = (−1)p+d
∫ 1

0

sd−1(1− s)d−1ds, (1.2.25)

where we have used the fact that d−1 = p−q−1 < p. To obtain Eq. (1.2.23) it suffices to
note that (−1)p+d = (−1)2p−q = (−1)q and that the integral in (1.2.25) is a beta function.
Hence ∫ 1

0

sd−1(1− s)d−1ds =
(Γ(d))2

Γ(2d)
=

((d− 1)!)2

(2d− 1)!
> 0, d ∈ N.

Remark 1.2.10. If Y is a CARMA(p, q) process, then, from Theorem 1.2.1, the spectral
density of (1−B)p−qY ∆ is asymptotically, as ∆ ↓ 0,

σ2

2π
∆(−2∆2)p−q−1cp−q−1(ω)(1− cosω)p−q, π ≤ ω ≤ π.

If p − q = 1, 2 or 3 this reduces to the corresponding spectral densities in Corollary 3.2,
each divided by 2q(1− cosω)q. The corresponding moving average representations are as
in Corollary 3.4 without the factors (1−B)q .
In particular, for the CAR(1) process, (1−B)Y ∆ has a spectral density which is asymp-

totically σ2∆/(2π) so that, in the Gaussian case, the increments of Y ∆ for small ∆ ap-
proximate those of Brownian motion with variance σ2t. 2
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1.3 Conclusions

p− q 1 2 3 4
γ∆

MA(p− 1) ∆(−1)p−1σ2 6−1∆3(−1)p−2σ2 120−1∆5(−1)p−3σ2 5040−1∆7(−1)p−4σ2

Table 1.1.: Values of γ∆
MA(p− 1) for p− q = 1, . . . , 4.

In this Chapter we have considered only second order properties of Y ∆. It is pos-
sible (see Brockwell (2001), Theorem 2.2) to express the joint characteristic functions,
E exp(i

∑m
k=1 θkY

∆
k ), for m ∈ N, in terms of the coefficients aj and bj and the function

ξ(·), where ξ(θ), for θ ∈ R, is the exponent in the characteristic function, EeiθL1 = eξ(θ),
of L1. In particular the marginal characteristic function is given by E exp(iθY ∆

k ) =

exp
∫∞

0
ξ(θb′eAue)du, where b, A and e are defined as in (III.ii)-(III.iii).

These expressions are awkward to use in practice, however Brockwell et al. (2011) have
found that least squares estimation (which depends only on second order properties) for
closely and uniformly spaced observations of a CARMA(2,1) process on a fixed inter-
val [0, T ] gives good results. They find in simulations that for large T the empirically-
determined sample covariance matrix of the estimators of a1, a2 and b0 is close to the
matrix calculated from the asymptotic (as T → ∞) covariance matrix of the maximum
likelihood estimators based on continuous observation on [0, T ] of the corresponding Gaus-
sian CARMA process.

1.3. Conclusions

When a CARMA(p, q) process Y is sampled at times n∆ for n ∈ Z, it is well-known
that the sampled process Y ∆ satisfies discrete-time ARMA equations of the form (1.2.2).
The determination of the moving average coefficients and white noise variance for given
grid size ∆, however, is a non-trivial procedure. In this Chapter we have focussed on
high frequency sampling of Y . We have determined the relevant second order quantities,
the spectral density f∆

MA of the moving average on the right-hand side of (1.2.2) and
its asymptotic representation as ∆ ↓ 0. This includes the moving average coefficients as
well as the variance of the innovations. We also derived an explicit expression for the
autocovariance function γ∆

MA and its asymptotic representation as ∆ ↓ 0. This shows, in
particular, that the moving average is of order p− 1 for ∆ sufficiently small.
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1.3 Conclusions
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2. High-frequency sampling and
kernel estimation for
continuous-time moving average
processes

Interest in continuous-time processes has increased rapidly in recent years,
largely because of high-frequency data available in many applications. We
develop a method for estimating the kernel function g of a second-order sta-
tionary Lévy-driven continuous-time moving average (CMA) process Y based
on observations of the discrete-time process Y ∆ obtained by sampling Y at
∆, 2∆, . . . , n∆ for small ∆. We approximate g by g∆ based on the Wold repre-
sentation and prove its pointwise convergence to g as ∆ ↓ 0 for CARMA(p, q)

processes. Two non-parametric estimators of g∆, based on the innovations al-
gorithm and the Durbin-Levinson algorithm, are proposed to estimate g. For
a Gaussian CARMA process we give conditions on the sample size n and the
grid-spacing ∆(n) under which the innovations estimator is consistent and
asymptotically normal as n → ∞. The estimators can be calculated from
sampled observations of any CMA process and simulations suggest that they
perform well even outside the class of CARMA processes. We illustrate their
performance for simulated data and apply them to the Brookhaven turbulent
wind speed data. Finally we extend results of Chapter 1 for sampled CARMA
processes to a much wider class of CMA processes.

This Chapter is organised as follows: in Section 2.1 we derive higher-order asymptotics
for Y ∆ which apply (unlike those of Chapter 1) to all CARMA(p, q) processes. In Section
2.3 we generalise the first order asymptotic results of Chapter 1 in a different direction
by deriving analogous results for a broader class of CMA processes with strictly positive
spectral density. In Section 2.2 we use the results of Section 2.1 to establish the pointwise
convergence of a family of functions g∆, defined in terms of the Wold representation of
Y ∆, to g as ∆ ↓ 0. In Section 2.4, we show under some conditions the consistency and
asymptotic normality of the innovation algorithm as n→∞ and ∆ ↓ 0. Moreover, these
results are confirmed by a small simulation study. The algorithm is applied to a turbulent

13



2.1 Asymptotic behaviour of Y ∆ as ∆ ↓ 0

velocity time-series in Section 2.5. The outcome of a more detailed statistical analysis for
turbulence data is presented in Chapter 5.
We use the following notation throughout: <(z) denotes the real part of the complex

number z; B denotes the backward shift operator, BY ∆
n := Y ∆

n−1 for n ∈ Z; a(∆) ∼ b(∆)

means lim∆↓0 a(∆)/b(∆) = 1. As g can have a singularity in 0, the spectral densities of
Y or Y ∆ may have a singularity in 0 as well, and we may have to restrict the range of
frequencies for their spectral densities to Ωc := R\{0} and Ωd := [−π, π]\{0}.

2.1. Asymptotic behaviour of Y ∆ as ∆ ↓ 0

In Chapter 2 and 3 we need some more precise hypothesis on the nature of the roots of
a(·) and b(·).

Assumption 1. (i) The zeroes of the polynomial a(·) satisfy <(λj) < 0 for every j =

1, . . . , p,

(ii) the zeros of b(·) have non-vanishing real part, i.e. <(µj) 6= 0 for all j = 1, . . . , q.

The part (i) is the assumption under which a CARMA process is causal, and part (ii)

is a technical assumption.
In analogy to the discrete-time case, we establish the notion of invertibility for the

continuous-time ARMA process.

Definition 2.1.1. A CARMA(p, q) process is said to be invertible if the roots of the
moving average polynomial b(·) have negative real parts, i.e. <(µi) > 0 for all i = 1, . . . , q.

The CMA process Y defined by (II.i) has autocovariance function

γY (h) = σ2

∫ ∞

−∞
g(x)g(x+ h)dx, h ∈ R,

and spectral density

fY (ω) =
1

2π

∫ ∞

−∞
e−iωhγ(h)dh =

σ2

2π
|F{g(·)}|2(ω), ω ∈ Ωc, (2.1.1)

where

F{g(·)}(ω) :=

∫ ∞

−∞
g(x)eiωxdx.

The spectral density of the sampled process, Y ∆ := (Yn∆)n∈Z is (Bloomfield (2000),
p. 196, Eq. 9.17)

f∆
Y (ω) =

1

∆

∞∑

k=−∞

fY

(
ω + 2kπ

∆

)
, ω ∈ Ωd. (2.1.2)
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2.1 Asymptotic behaviour of Y ∆ as ∆ ↓ 0

For the causal, finite variance Lévy-driven CARMA(p, q) process, autoregressive poly-
nomial a(z) and moving average polynomial b(z), the spectral density is

fY (ω) =
σ2

2π

∣∣∣∣
b(iω)

a(iω)

∣∣∣∣
2

, −π ≤ ω ≤ π, (2.1.3)

where a(z) = zp + a1z
p−1 + · · · + ap, b(z) = b0 + b1z + · · · + bqz

p−1, p > q, bq = 1, and
the zeros of a(z) all have strictly negative real parts. Without loss of generality we can
also assume that a(z) and b(z) have no common zeros (see Brockwell and Lindner (2009),
Theorem 4.1). The kernel is

g(t) =
1

2πi

∫

ρ

b(z)

a(z)
etzdz 1(0,∞)(t) =

∑

λ

Resz=λ

(
ez
b(z)

a(z)

)
1(0,∞)(t), (2.1.4)

where the integration is anticlockwise around any simple closed curve ρ in the interior of
the left half of the complex plane, encircling the distinct zeroes λ of a(z), and Resz=λ(f(z))

denotes the residue of the function f at λ. For such processes it was shown in Chapter 1,
Section 2, that the spectral density f∆

Y of the sampled process Y ∆ is

f∆(ω) =
−σ2

4π2i

∫

ρ

b(z)b(−z)

a(z)a(−z)

sinh(∆z)

cosh(∆z)− cos(ω)
dz, −π ≤ ω ≤ π, (2.1.5)

where the integral, as in (2.1.4), is anticlockwise around any simple closed contour ρ in
the interior of the left half of the complex plane, enclosing the zeroes of a(z). It is known
that the sampled process Y ∆ satisfies the ARMA equations,

Φ∆(B)Y ∆
n = Θ∆(B)Z∆

n , n ∈ Z, {Z∆
n }n∈Z ∼WN(0, σ2

∆) (2.1.6)

where B is the backward shift operator, Θ∆(z) is a polynomial of degree less than p,
(Z∆

n )n∈Z is an uncorrelated sequence of zero-mean random variables with variance, which
we denote by σ2

∆,

Φ∆(z) =

p∏

j=1

(1− eλj∆z), z ∈ C,

and λ1, . . . , λp are the zeroes of the polynomial a(z). Since the polynomial Φ∆(z) is known
precisely for any given CARMA process, the second order properties of the sampled
process Y ∆ for small ∆ can be determined by studying the properties of the moving
average term, X∆

n := Θ∆(B)Z∆
n in (2.1.6), as ∆ ↓ 0. Denoting by f∆

MA the spectral
density of X, we find from (2.1.6) that

f∆
MA(ω) = 2pe−a1∆f∆

Y (ω)

p∏

j=1

(cosh(λj∆)− cos(ω)), −π ≤ ω ≤ π. (2.1.7)
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2.1 Asymptotic behaviour of Y ∆ as ∆ ↓ 0

Chapter 1 determined the leading terms in the expansions of f∆
Y and f∆

MA in powers of
∆. These terms determine the local second order behaviour of the corresponding processes.
In Section 4 we extend these results to a more general class of CMA processes.
In the following Section we introduce a small-∆ approximation g∆ to the kernel g of

Y based on the Wold representation of the sampled process Y ∆. In order to show the
convergence of g∆ to g as ∆ ↓ 0 for CARMA(p, q) processes, we need to consider higher
order expansions of the spectral densities f∆

Y and f∆
MA than were considered in Chapter

1. We conclude this Section by deriving the required expansions.
From (2.1.5) it follows at once that the spectral density f∆

Y (ω) is −σ2/(2π) times the
sum of the residues at the singularities of the integrand in the left half-plane, or more
simply σ2/(4π) times the residue of the integrand at∞, which is much simpler to calculate.
Thus,

f∆
Y (ω) =

σ2

4π
Resz=∞

[
b(z)b(−z)

a(z)a(−z)

sinh(∆z)

cosh(∆z)− cos(ω)

]
, −π ≤ ω ≤ π.

The spectral density can also be expressed as a power series,

f∆
Y (ω) =

σ2

4π

∞∑

j=0

σ2∆2j+1rjcj(ω), −π ≤ ω ≤ π, (2.1.8)

where ck(ω) is the coefficient of z2k+1 in
∞∑

k=0

ck(ω)z2k+1 =
sinh z

cosh z − cosω
, −π ≤ ω ≤ π,

and

rj := Resz=∞

[
z2j+1 b(z)b(−z)

a(z)a(−z)

]
,

i.e. the coefficient of z2j in the power series expansion,
∞∑

j=0

rjz
2j = (−z2)p−q−1

∏q
i=1(1− µ2

i z
2)∏p

i=1(1− λ2
i z

2)
, (2.1.9)

where a(z) =
∏p

i=1(z − λi) and b(z) =
∏q

i=1(z + µi). The power series (2.1.8) is the
required expansion for f∆

Y . The expansion for f∆
MA is obtained from (2.1.7) and (2.1.8) as

f∆
MA(ω) =

2pσ2e−a1∆

4π

p∏

i=1

(
1− cosω +

∞∑

j=1

(λi∆)2j

(2j)!

) ∞∑

k=0

rkck(ω)∆2k+1, −π ≤ ω ≤ π.

This can be simplified by re-expressing it in terms of x := 1− cosω. Thus

f∆
MA(ω) =

2pσ2e−a1∆

4π

p∏

i=1

(
x+

∞∑

j=1

(λi∆)2j

(2j)!

) ∞∑

k=0

rkαk(x)∆2k+1, (2.1.10)
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2.1 Asymptotic behaviour of Y ∆ as ∆ ↓ 0

where αk(x) is the coefficient of z2k+1 in the expansion,
∞∑

k=0

αk(x)z2k+1 =
sinh z

cosh z − 1 + x
.

In particular α0(x) = 1/x, α1(x) = (x − 3)/(3!x2) and α2(x) = (x2 − 15x + 30)/(5!x3).
More generally, αk(x) has the form.

αk(x) =
1

(2k + 1)!xk+1

k∏

i=1

(x− ξk,i), (2.1.11)

where
k∏

i=1

ξk,i = (2k + 1)! 2−k, (2.1.12)

and the product, when k = 0, is defined to be 1. Since αp−q−1(x) plays a particularly
important role in what follows, we shall denote its zeroes more simply as

ξi := ξp−q−1,i, i = 1, . . . , p− q − 1.

From (2.1.10), with the aid of (2.1.9) and (2.1.11), we can now derive the required
higher-order approximation to f∆

MA(ω). Observe first that the expression on the right
of (2.1.10), in spite of its forbidding appearance, is in fact a polynomial in x of degree
less than p. We therefore collect together the coefficients of xp−1, xp−2, . . . , x0. This gives
(using the identity (2.1.12) and defining y := ∆2) the asymptotic expression as ∆ ↓ 0,

f∆
MA(ω) =

2pσ2e−a1∆∆2(p−q)−1

4π

[
xprp−q−1αp−q−1(x) + o(1) +

q∑

j=1

ρjx
q−jyj

]
, (2.1.13)

with

ρj = (−2)−(p−q−1+j)
[
rp−q−1+j − rp−q−2+j

p∑

i=1

λ2
i

]
+ o(1)

= 2−(p−q−1+j)
∑

µ2
i1 . . . µ

2
ij + o(1),

where the second line follows from (2.1.9) and the sum on the second line is over all
subsets of size j of the q zeroes of the polynomial b(z).
Finally, replacing rp−q−1 in (2.1.13) by (−1)p−q−1, substituting for αp−q−1(x) from

(2.1.11) and using the continuity of the zeroes of a polynomial as functions of its coeffi-
cients, we can rewrite (2.1.13) (recalling that x := 1 − cosω and ξi, i = 1, . . . , p − q − 1

are the zeroes of αp−q−1(x)) as

f∆
MA(ω) =

∆(−∆2)p−q−12pσ2e−a1∆

[2(p− q)− 1]!4π

p−1−q∏

i=1

[x− ξi(1 + o(1))]

q∏

k=1

[
x+

µ2
k∆

2

2
(1 + o(1))

]
.

(2.1.14)
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2.1 Asymptotic behaviour of Y ∆ as ∆ ↓ 0

Observe now that we can write

x+
µ2
k∆

2

2
(1 + o(1)) =

1

2ζk
(1− ζke−iω)(1− ζjeiω), −π ≤ ω ≤ π,

where
ζk = 1± µk∆ + o(∆), (2.1.15)

and the sign is chosen so that |ζk| = 1±2<(µk)+ |µk|2∆2 < 1 for sufficiently small ∆. For
each k = 1, . . . , q, we would then choose the plus if <(µk) < 0, or the minus if <(µk) > 0.
The Assumption 1 (ii) excludes the case <(µk) = 0, since either signs gives a root greater
than 1.
Similarly we can write

x− ξi(1 + o(1)) = − 1

2η(ξi)
(1 + η(ξi)e

−iω)(1 + η(ξi)e
iω),

where
η(ξi) = ξi − 1±

√
(ξi − 1)2 − 1 + o(1), (2.1.16)

and the sign is chosen so that lim∆↓0 |η(ξi)| ≤ 1. If the zero ξi of αp−q−1(x) is such that
both choices of sign cause the limit to be 1, then either choice will do provided the same
choice is made for η(ξi), where ξi denotes the complex conjugate of ξi. A more precise
characterisation of the roots ξi, i = 1, . . . , p− q − 1, will be given in Chapter 3.
These factorisations allow us to give the following asymptotic representation of the

moving average process X∆
n = Θ∆(B)Z∆

n appearing in (2.1.6).

Theorem 2.1.2. The moving average process {X∆
n }n∈Z with spectral density f∆

MA has the
asymptotic representation, as ∆ ↓ 0,

X∆
n =

p−1−q∏

i=1

(1 + η(ξi)B)

q∏

k=1

(1− ζkB)Z∆
n , {Z∆

n }n∈Z ∼WN(0, σ2
∆), (2.1.17)

where

σ2
∆ =

∆2(p−q)−1e−a1∆σ2

[2(p− q)− 1]!
∏p−q−1

i=1 η(ξi)
∏q

k=1 ζk
, (2.1.18)

with ζk and η(ξi) as in (2.1.15) and (2.1.16).

Proof. The result follows at once from (2.1.14), (2.1.15) and (2.1.16).

Remark 2.1.3. (i) The parameters η(ξi) and ζk may be complex but the moving average
operator will have real coefficients because of the existence of corresponding complex
conjugate parameters in the product.

(ii) The representation in Theorem 2.1.2 is a substantial generalisation of the one in
Corollary 2 of Chapter 1, since it is not only of higher-order in ∆, but it applies to all
CARMA(p, q) processes, not only to those with p− q ≤ 3. 2
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2.2 The Wold approximation to the CARMA kernel

2.2. The Wold approximation to the CARMA(p, q)

kernel

In this Section we introduce an approximation g∆ to the kernel g of the CMA process Y ,
which depends only on the Wold representation,

Y ∆
n =

∞∑

j=0

ψ∆
j Z

∆
n−j , n ∈ Z, {Z∆

n }n∈Z ∼WN(0, σ2
∆), (2.2.1)

of the sampled process Y ∆. The approximation is

g∆(x) :=

∞∑

j=0

σ∆√
∆
ψ∆
j 1[j∆,(j+1)∆)(x). (2.2.2)

Using Theorem 2.1.2, we shall show that, for all CARMA(p, q) processes, as ∆ ↓ 0,
g∆ converges pointwise to σg, or to g if L is standardised so that E[L2

1] = 1. We first
illustrate the convergence in the simplest case, namely when Y is a CARMA(1,0) (or
stationary Ornstein-Uhlenbeck) process, for which the quantities ψ∆

j and σ∆ can easily
be found explicitly. The example also illustrates the role of the scale factor σ∆/

√
∆ which

multiplies the Wold coefficients, ψ∆
j in (2.2.2).

Example 2.2.1. [The CARMA(1,0) process] This a special case of (II.i) with kernel

g(x) = eλx1(0,∞)(x) where λ < 0.

The sampled process Y ∆ is the discrete-time AR(1) process satisfying

Y ∆
n = eλ∆Y ∆

n−1 + Z∆
n , n ∈ Z,

where Z∆ =
{
Z∆
n

}
n∈Z is the independent and identically distributed sequence defined by

Z∆
n =

∫ n∆

(n−1)∆

eλ(n∆−u)dLu, n ∈ Z.

In this case it is easy to write down the coefficients ψ∆
j and the white noise variance σ2

∆

in the Wold representation of Y ∆. From well-known properties of discrete-time AR(1)
processes, they are ψ∆

j = ejλ∆, j = 0, 1, 2, . . ., and σ2
∆ = σ2

2λ(e2λ∆ − 1). Substituting these
values in the definition (2.2.2) we find that

g∆(x) =

∞∑

j=0

σ

√
e2λ∆ − 1

2λ∆
ejλ∆1[j∆,(j+1)∆)(x),

which converges pointwise to σg as ∆ ↓ 0. 2
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2.2 The Wold approximation to the CARMA kernel

The approximation (2.2.2) is well defined for all processes (II.i) and there are standard
methods for estimating the coefficients and white noise variance appearing in the definition
from observations of Y ∆. Example 3.1 shows that g∆ converges pointwise to σg for CAR(1)
processes. Our aim now is to establish this convergence for all CARMA(p, q) processes.
We give the proof under the assumption that the zeroes λ1, . . . , λp of the autoregressive
polynomial a(z) all have multiplicity one. Multiple roots can be handled by supposing
them to be separated and letting the separation(s) converge to zero.
The kernel (2.1.4) of a causal CARMA(p, q) process Y whose autoregressive roots each

have multiplicity one reduces (see e.g. Brockwell and Lindner (2009)) to

g(x) =

p∑

j=1

b(λi)

a′(λi)
eλix1(0,∞)(x), (2.2.3)

where a(z) =
∏p

i=1(z − λi) and b(z) =
∏q

i=1(z + µi) are the autoregressive and moving
average polynomials respectively and a′ denotes the derivative of the function a. We now
establish the convergence, as ∆ ↓ 0, of g∆ as defined in (2.2.2) to σg. Theorem 2.1.2 is
used to determine the parameters of the Wold representation appearing in the definition
of g∆.

Theorem 2.2.2. If Y is the CARMA(p, q) process with kernel (2.2.3),
(i) the Wold coefficients and white noise variance of the sampled process Y ∆ are

ψ∆
j =

p∑

r=1

∏p−1−q
i=1 (1 + η(ξi)e

−λr∆)
∏q

k=1(1− ζke−λr∆)∏
m6=r(1− e(λm−λr)∆)

ejλr∆, (2.2.4)

and

σ2
∆ =

∆2(p−q)−1e−a1∆σ2

[2(p− q)− 1]!
∏p−q−1

i=1 η(ξi)
∏q

k=1 ζj
, (2.2.5)

with ζk and η(ξi) as in (2.1.15) and (2.1.16) and
(ii) the approximation g∆ defined by (2.2.2) with ψ∆

j and σ2
∆ as in (2.2.4) and (2.2.5)

converges pointwise to σg with g as in (2.2.3), if and only the CARMA process is invertible.
That is, if <(µi) > 0 for every i = 1, . . . , q.

Proof. (i) The expression for σ2
∆ was found already as part of Theorem 2.1.2. The coeffi-

cient ψ∆
j is the coefficient of zj in the power series expansion,

∞∑

j=0

ψ∆
j z

j =

∏p−1−q
i=1 (1 + η(ξi)z)

∏q
k=1(1− ζkz)∏p

m=1(1− eλm∆z)
,

which can be seen, by partial fraction expansion, to be equal to (2.2.4).
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2.3 Asymptotics for a class of sampled CMA processes as ∆ ↓ 0

(ii) We start noticing that, as ∆ ↓ 0

q∏

k=1

(1− ζke−λr∆) = ∆q

q∏

k=1

(λr ∓ µk) + o(∆q),

where the sign is taken to be the same as <(µk), for each k = 1, . . . , q, as in (2.1.15). It
easy to see that the product above is asymptotically equal to ∆qb(λr) if and only if the
process is invertible, that is, <(µk) > 0.

Under this assumptions, the convergence of g∆ to (2.2.3) follows by substituting for
ψ∆
j and σ2

∆ from (2.2.4) and (2.2.5) into (2.2.2), substituting for ζk from (2.1.15), letting
∆ ↓ 0 and using the identities

a′(λr) =
∏

m6=r

(λr − λm)

and
p−q−1∏

i=1

(1 + η(ξi))
2

η(ξi)
=

p−q−1∏

i=1

ξi
2

= [2(p− q)− 1]!,

the last equality following from (2.1.12).

Remark 2.2.3. Although we have established the convergence of g∆ only for CARMA
processes, the non-parametric nature of g∆ strongly suggests that the result is true for
all processes defined as in (II.i). In practice we have found that estimation of σg by
estimation of g∆ with ∆ small works extremely well for simulated processes with non-
rational spectral densities also. The assumption on the roots of b will appear in Chapter
3 to be the continuous-time analogue of the invertibility condition for the discrete-time
ARMA processes. 2

2.3. Asymptotics for a class of sampled CMA
processes as ∆ ↓ 0

Brockwell et al. (2012) derived first-order asymptotic expressions, as ∆ ↓ 0, for the spectral
density f∆

Y when Y is a CARMA(p, q) process with p− q ≤ 3. Although, as pointed out
in Section 2, these asymptotic expressions are not sufficiently precise to establish the
convergence of g∆ to g, they do reveal the local second order behaviour of the process
Y . For example, if Y is a CARMA(p, p − 1) process driven by a Lévy process L with
Var(L1) = σ2 then equations (15) and (19) of Brockwell et al. (2012) give, as ∆ ↓ 0,

f∆
Y (ω) ∼ σ2∆

4π(1− cosω)
, −π ≤ ω ≤ π,
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2.3 Asymptotics for a class of sampled CMA processes as ∆ ↓ 0

showing that the spectral density of the normalised differenced sequence
{(Yn∆−Y(n−1)∆)/

√
∆}n∈Z converges to that of white noise with variance σ2 as ∆ ↓ 0. In

other words, for any fixed positive integer k, the sequence of observations Yn∆/
√

∆, n =

1, . . . , k, from a second order point of view, behaves as ∆ ↓ 0 like a sequence of observations
of integrated white noise with white-noise variance σ2.
In this Section we derive analogous asymptotic approximations for the spectral densities

of more general CMA processes and the implications for their local second order behaviour.
Since we allow in this Section for spectral densities with a singularity at zero we recall
the definition of the spectral domains,

Ωd := [−π, π]\{0} and Ωc := (−∞,∞)\{0}.

We require the CMA processes to have spectral density satisfying a weak regularity con-
dition at infinity. To formulate this condition we first need a definition.

Definition 2.3.1 (Regularly varying function (cf. Bingham et al. (1987)). Let f be a
positive, measurable function defined on (0,∞). If there exists ρ ∈ R such that

lim
x→∞

f(λx)

f(x)
= λρ, for all λ > 0,

holds, f is called a regularly varying function of index ρ at ∞. The convergence is then
automatically locally uniform in λ. We shall denote this class of functions by Rρ(∞).
Furthermore we shall say that f(·) ∈ Rρ(0+) if and only if f(1/·) ∈ R−ρ(∞).

The characterisation theorem for regularly varying functions (Theorem 1.4.1. in Bing-
ham et al. (1987)) tells us that f ∈ Rρ(∞) if and only if f(x) = xρL(x), where L ∈ R0(∞).

Theorem 2.3.2. Let Y be the CMA process with strictly positive spectral density fY such
that fY ∈ R−α(∞), where α > 1, i.e., for L ∈ R0(∞),

fY (ω) = |ω|−αL(|ω|), ω ∈ Ωc. (2.3.1)

Then the following assertions hold.

(a) The spectral density of the sampled process Y ∆ has for ∆ ↓ 0 the asymptotic repre-
sentation

f∆
Y (ω) ∼ L(∆−1)∆α−1

[
|ω|−α + (2π)−αζ

(
α, 1− ω

2π

)
+ (2π)−αζ

(
α, 1 +

ω

2π

)]
, ω ∈ Ωd,

(2.3.2)
where ζ(s, r) is the Hurwitz zeta function, defined as

ζ(s, r) :=

∞∑

k=0

1

(r + k)s
, <(s) > 1, r 6= 0,−1,−2, . . . .
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2.3 Asymptotics for a class of sampled CMA processes as ∆ ↓ 0

(b) The right hand side of (2.3.2) is not integrable for any ∆ > 0. However, the corre-
sponding asymptotic spectral density of the differenced sequence (1−B)α/2Y ∆ is integrable
for each fixed ∆ > 0 and the spectral density of

(1−B)α/2

L(∆−1)1/2∆(α−1)/2
Y ∆ (2.3.3)

converges as ∆ ↓ 0 to that of a short-memory stationary process, i.e. a stationary process
with spectral density bounded in a neighbourhood of the origin.

(c) The variance of the innovations {Z∆
n }n∈Z in the Wold representation (2.2.1) of Y ∆

satisfies
σ2

∆ ∼ 2πCαL
(
∆−1

)
∆α−1, ∆ ↓ 0,

where

Cα = exp

{
1

2π

∫ π

−π
log
[
|ω|−α + (2π)−αζ

(
α, 1− ω

2π

)
+ (2π)−αζ

(
α, 1 +

ω

2π

)]
dω

}
.

(2.3.4)

Proof. (a) Since fY is positive, Eq. (2.1.2) can be rewritten as

f∆
Y (ω) = ∆−1fY (∆−1)

∞∑

k=−∞

fY (|ω + 2πk|∆−1)

fY (∆−1)
, ω ∈ Ωd. (2.3.5)

Each of the summands converges by regular variation to |ω+ 2πk|−α. It remains to show
that we can interchange the infinite sum with this limit. Invoking the Potter bounds
(Theorem 1.5.6 (iii) of Bingham et al. (1987)), for every ε > 0 there exists a ∆ε, such that
for all ∆ ≤ ∆ε and |2πk + ω| > 0

(1− ε)|2πk + ω|−α−ε < fY (|ω + 2πk|∆−1)

fY (∆−1)
< (1 + ε)|2πk + ω|−α+ε. (2.3.6)

We take ε > 0 such that α− ε > 1. Then, using (2.3.6), we can bound (2.3.5) as follows:

(1−ε)fY (∆−1)

∆

∞∑

k=−∞

|2πk+ω|−α−ε < f∆
Y (ω) < (1+ε)

fY (∆−1)

∆

∞∑

k=−∞

|2πk+ω|−α+ε, ω ∈ Ωd.

(2.3.7)
Since ε can be chosen arbitrarily small, we conclude that as ∆ ↓ 0

f∆
Y (ω) ∼ fY (∆−1)

∆

∞∑

k=−∞

|ω + 2kπ|−α, ω ∈ Ωd.
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2.3 Asymptotics for a class of sampled CMA processes as ∆ ↓ 0

We can rewrite the sum above as
∞∑

k=−∞

|ω + 2kπ|−α = (2π)−α
∞∑

k=−∞

∣∣∣ ω
2π

+ k
∣∣∣
−α

= |ω|−α + (2π)−α
∞∑

k=0

[(
k + 1− ω

2π

)−α
+
(
k + 1 +

ω

2π

)−α]
, ω ∈ Ωd.

(2.3.8)

From this and the definition of ζ we obtain (2.3.2).

(b) We first note that the Hurwitz zeta function ζ(−α, 1±ω/2π) is bounded and strictly
positive for all ω ∈ Ωd, therefore, its integral over [−π, π] is positive and finite. On
the other hand, since α > 1, the term ω−α is not integrable over [−π, π]. However, the
differenced sequence (1−B)α/2Y ∆, has spectral density

h∆(ω) = 2α/2(1− cosω)α/2f∆
Y (ω), ω ∈ Ωd. (2.3.9)

As ∆ ↓ 0 we can write, for ω ∈ Ωd, by (2.3.2)

h∆(ω) ∼ 2α/2(1− cosω)α/2L(∆−1)∆α−1 ×[
|ω|−α + (2π)−αζ

(
α, 1− ω

2π

)
+ (2π)−αζ

(
α, 1 +

ω

2π

)]
.

The right hand side is integrable over [−π, π] and bounded in a neighbourhood of the
origin, since 2α/2(1 − cosω)α/2ω−α → 1 as ω → 0. Thus we conclude that the spectral
density of the rescaled differenced sequence (2.3.3) converges to that of a short-memory
stationary process.

(c) It is easy to check that the sampled CMA process has a Wold representation of the
form (2.2.1) and that its one-step prediction mean-squared error based on the infinite past
is σ2

∆. Kolmogorov formula (see, e.g., Theorem 5.8.1 of Brockwell and Davis (1991)) states
that the one-step prediction mean-squared error for a discrete-time stationary process with
spectral density f is

τ2 = 2π exp

{
1

2π

∫ π

−π
log f(ω)dω

}
(2.3.10)

Applying it to the differenced process we find that its one-step prediction mean-squared
error is

2π exp

{
1

2π

∫ π

−π
log h∆(ω)dω

}

= 2π exp

{
α

4π

∫ π

−π
log(2− 2 cosω)dω

}
× exp

{
1

2π

∫ π

−π
log f∆

Y (ω)dω

}
= σ2

∆.
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2.3 Asymptotics for a class of sampled CMA processes as ∆ ↓ 0

Hence the differenced sequence has the same one-step prediction mean-squared error as
Y ∆ itself. Since from (2.3.7), as ∆ ↓ 0,

log f∆
Y (ω)− log(L(∆−1)∆α−1)− log

[ ∞∑

−∞
|2πk + ω|−α

]
→ 0

pointwise on Ωd, and since the left side is dominated by an integrable function on Ωd, we
conclude from the dominated convergence theorem that, as ∆ ↓ 0,

1

L(∆−1)∆α−1
exp

{
1

2π

∫ π

−π
log f∆

Y (ω)dω

}
→ exp

{
1

2π

∫ π

−π
log

[ ∞∑

−∞
|2πk + ω|−αdω

]}
,

which, with (2.3.8) and (2.3.10), shows that as ∆ ↓ 0,

σ2
∆ ∼ 2πCαL

(
∆−1

)
∆α−1. (2.3.11)

Remark 2.3.3. (i) Theorem 2.3.2(b) means that, from a second order point of view, a
sample {Y ∆

n , n = 1, . . . , k} with k fixed and ∆ small resembles a sample from an (α/2)-
times integrated short-memory stationary sequence. If in (b) we replace (1 − B)α/2 by
(1−B)γ where γ > (α− 1)/2, then the conclusion holds for the over-differenced process.
If, for example, we difference at order γ = b(α + 1)/2c (the smallest integer greater than
(α − 1)/2) we get a stationary process. In particular, if 1 < α < 3, then b(α + 1)/2c = 1

and, by (2.3.2) and (2.3.9), the differenced sequence (1−B)Y ∆ has the asymptotic spectral
density, as ∆ ↓ 0,

L(∆−1)∆α−12(1−cosω)
[
|ω|−α + (2π)−αζ

(
α, 1− ω

2π

)
+ (2π)−αζ

(
α, 1 +

ω

2π

)]
, ω ∈ Ωd.

This is the spectral density of the increment process of a self-similar process with self-
similarity parameterH = (α−1)/2 (see Beran (1992), eq. (2)). Moreover, for a generic α >
1 the asymptotic autocorrelation function of the filtered sequence has unbounded support.
The only notable exception is when α is even, where the asymptotic autocorrelation
sequence is the one of a moving-average process with order α/2, as in Brockwell et al.
(2012) or in Example 2.3.7.

(ii) The constant Cα of (2.3.4) is shown as a function of α in Figure 1. The values,
when α is an even positive integer, can be derived from (2.2.5) since CARMA processes
constitute a subclass of the processes covered by the theorem (see Example 2.3.7). It is
clear from (2.3.4) that Cα is exponentially bounded as α→∞. 2

25



2.3 Asymptotics for a class of sampled CMA processes as ∆ ↓ 0
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Figure 2.1.: The constant Cα, as a function of the index of regular variation α, is shown
on the left using a linear scale and on the right using a logarithmic scale.
From Corollary 3.4 (a) of Brockwell et al. (2012) we know that C2 = 1. The
horizontal line indicates the value 1.

Corollary 2.3.4. Let Y be a CMA process satisfying the assumptions of Theorem 2.3.2
with 1 < α < 2p+ 1. Then for ∆ ↓ 0,

E[((1−B)pY ∆
n )2] ∼ 2pSp,αL(∆−1)∆α−1,

where

Sp,α =

∫ π

−π
(1− cosω)p

[
|ω|−α + (2π)−αζ

(
α, 1− ω

2π

)
+ (2π)−αζ

(
α, 1 +

ω

2π

)]
dω.

Proof. By stationarity we have E[(1 − B)pY ∆
n ] = 0 and, hence E[((1 − B)pY ∆

n )2] is the
variance, of ((1− B)pY ∆

n ) which can be calculated as the integral of its spectral density.
Thus

E[((1−B)pY ∆
n )2] = 2p

∫ π

−π
(1− cosω)pf∆

Y (ω)dω.

Using the inequalities (2.3.7) and Lebesgue dominated convergence theorem, we find that
as ∆ ↓ 0,

1

L(∆−1)∆α−1

∫ π

−π
(1− cosω)pf∆

Y (ω)dω →
∫ π

−π
(1− cosω)p

∞∑

k=−∞

|2kπ + ω|−αdω,

which, with the previous equation and (2.3.8), gives the result.
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2.3 Asymptotics for a class of sampled CMA processes as ∆ ↓ 0

The kernel of the CMA process and its spectral density are linked by formula (2.1.1).
Moreover, it has long been known that local properties of a function imply global prop-
erties of its Fourier transform (see e.g. Titchmarsh (1948), Theorems 85 and 86).
An Abelian theorem of Cline (1991) allows us to show, under the conditions of the

following proposition, that CMA processes with regularly varying kernels at the origin
have regularly varying spectral densities at infinity.

Proposition 2.3.5. Let Y be a CMA process with kernel g ∈ Rν−1(0+) for ν > 1/2.
Assume that the derivatives in 0 satisfy the assumptions

(A1) g(bνc)(0+) 6= 0;
(A2) g(bν−1c) ∈ Rα(0+) for α ∈ [0, 1) (with g(−1) :=

∫ t
0
g(s)ds);

(A3) For some x0 > 0,

q(u) := sup
x≤x0

sup
0≤w≤v≤1

∣∣∣∣∣g(bν−1c)((u+ v + w)x)− g(bν−1c)((u+ v)x)− g(bν−1c)((u+ w)x) + g(bν−1c)(ux)

g(bν−1c)(x)

∣∣∣∣∣ ,
is bounded and integrable on [1,∞).

Then
fY (| · |) ∈ R−2ν(∞).

Proof. Under conditions (A1)-(A3) we can apply Theorem 2 of Cline (1991), which yields

F (g)(|ω|) ∼ Γ(ν + 1)e±iνπ/2
∫ 1/|ω|

0

g(s)ds, ω → ±∞. (2.3.12)

Moreover, Karamata theorem (Theorem 1.5.11(ii) in Bingham et al. (1987)) gives
∫ 1/|ω|

0

g(s)ds =

∫ ∞

|ω|
s−2g(1/s)ds ∼ |ω|−1g(1/|ω|)/ν, ω → ±∞,

where we used the fact g(·) ∈ Rν−1(0+) means g(1/·) ∈ R−ν+1(∞).
Substituting (2.3.12) into (2.1.1) and recalling that Γ(ν + 1) = νΓ(ν), we obtain

fY (|ω|) =
1

2π
|F (g)|2(ω) ∼ Γ2(ν)

2π
|ω|−2g2(1/|ω|), ω → ±∞,

which gives the desired result.

Remark 2.3.6. Condition (A2 ) can be replaced by a monotonicity condition on the
derivative g(bνc)(·) near the origin, so that the monotone density theorem (Bingham et al.
(1987), Theorem 1.7.2) can be applied. 2

Example 2.3.7. [CARMA(p, q) process]
The CARMA(p, q) process Y has spectral density (2.1.3), which clearly has the form

fY (ω) = |ω|−αL(|ω|), ω ∈ R,
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2.3 Asymptotics for a class of sampled CMA processes as ∆ ↓ 0

where α = 2(p− q) and limω→∞ L(|ω|) = σ2/(2π). Hence, by Theorem 2.3.2(c), the white
noise variance in the Wold representation of Y ∆ satisfies as ∆ ↓ 0,

σ2
∆ ∼ σ2C2(p−q)∆

2(p−q)−1, (2.3.13)

where C2(p−q) can be calculated from (2.3.4). However C2(p−q) can also be calculated from
(2.2.5) as C2(p−q) = [(2(p − q) − 1)!

∏p−q−1
i=1 lim∆↓0 η(ξi)]

−1, where η(ξi) was defined in
(2.1.16). Theorem 2.3.2(b) implies that the spectral density of ∆q−p+1/2(1 − B)p−qY ∆

converges to that of a short memory stationary process. From Theorem 2.1.2 we get
the more precise result that the spectral density of C1/2

2(p−q)∆
q−p+1/2(1−B)p−q

∏q
i=1(1 +

η(ξi)B)−1Y ∆ converges to that of white noise with variance σ2. 2

Example 2.3.8. [FICARMA(p, d, q) process, Brockwell and Marquardt (2005)]
The fractionally integrated causal CARMA(p, d, q) process has spectral density

fY (ω) =
σ2

2π

1

|ω|2d

∣∣∣∣
b(iω)

a(iω)

∣∣∣∣
2

, ω ∈ Ωc, (2.3.14)

with a(·) and b(·) as in (2.1.3) and 0 < d < 0.5. Hence

fY (ω) = |ω|−αL(|ω|), ω ∈ Ωc,

where α = 2(p+d− q) and limω→∞ L(|ω|) = σ2/(2π). The spectral density (2.3.14) has a
singularity at frequency 0 which gives rise to the slowly decaying autocorrelation function
associated with long memory. Applying Theorem 2.3.2(c) as in Example 2.3.7, the white
noise variance in the Wold representation of Y ∆ satisfies as ∆ ↓ 0

σ2
∆ ∼ σ2C2(p+d−q)∆

2(p+d−q)−1, (2.3.15)

where C2(p+d−q) can be calculated from (2.3.4). As ∆ ↓ 0, the asymptotic spectral density
f∆
Y of Y ∆ is given by (2.3.2) with α = 2(p+ d− q) > 1 and is therefore not integrable for
any ∆ > 0. However Theorem 2.3.2(b) implies that the spectral density of ∆q−p−d+1/2(1−
B)p+d−qY ∆ converges to that of a short memory stationary process. 2

Our next two examples are widely used in the modelling of turbulence. Kolmogorov
famous 5/3 law (see Frisch (1996) Section 6.3.1, Pope (2000) Section 6.1.3) suggests a
regularly varying spectral density model for turbulent flows.

Example 2.3.9. [Two turbulence models]
Denote by U the mean flow velocity, with ` the integral scale parameter and define ` =

`/U .
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2.3 Asymptotics for a class of sampled CMA processes as ∆ ↓ 0

(i) The von Kármán (1948) spectrum models the isotropic energy spectrum. Its spectral
density is, for C and c` positive, given by

fY (ω) = CU
−2/3|ω|−5/3

(
ω2

ω2 + c`/`
2

)17/6

, ω ∈ Ωc.

Moreover, fY ∈ R−5/3, so it has a representation (2.3.1) and the conclusions of Theo-
rem 2.3.2 hold with α = 5/3.

(ii) The Kaimal spectrum for the longitudinal component of the energy spectrum is
the current standard of the International Electrotechnical Commission; cf. IEC 61400-1
(1999). The spectral density is given by

fY (ω) = v
4`

(1 + 6`ω)5/3
, ω ∈ Ωc, (2.3.16)

where v is the variance of Y . Moreover, fY ∈ R−5/3, so it has a representation (2.3.1)
and the conclusions of Theorem 2.3.2 hold with α = 5/3. 2

Example 2.3.10. [Gamma kernels and Whittle-Matérn autocorrelations]
The CMA process (II.i) with gamma kernel,

g(t) = tν−1e−λt1(0,∞)(t), λ > 0, ν > 1/2, (2.3.17)

has variance
γY (0) = σ2(2λ)1−2νΓ(2ν − 1)

and autocorrelation function

ρY (h) =
23/2−ν

Γ(ν − 1/2)
|λh|ν−1/2Kν−1/2(|λh|), (2.3.18)

which is the Whittle-Matérn autocorrelation function (see Guttorp and Gneiting (2005))
with parameter ν − 1/2, evaluated at λh. The function Kν−1/2 in (2.3.18) is the modified
Bessel function of the second kind with index ν − 1/2 (Abramowitz and Stegun (1974),
Section 9.6).

Note that g ∈ Rν−1(0+) and that it satisfies the assumptions of Proposition 2.3.5. From
(2.1.1) with F{g(·)}(ω) = Γ(ν)(λ− iω)−ν , we obtain the spectral density

fY (ω) =
σ2

2π
|F{g(·)}|2(ω) =

σ2

2π

Γ2(ν)

(λ2 + ω2)ν
= ω−2ν σ2Γ2(ν)

2π ((λ/ω)2 + 1)
ν , ω ∈ Ωc.

which belongs to R−2ν(∞) and slowly varying function L such that limω→∞ L(ω) =

σ2Γ2(ν)/2π.
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2.4 Estimation of g∆

Note that if ν = 5/6, then fY , like the von Kármán spectral density of Example 4.9 (i),
decays as ω−5/3 for ω →∞, in accordance with Kolmogorov 5/3 law.

Theorem 2.3.2 gives the asymptotic form of the spectral density of the sequence {(1 −
B)νY ∆

n }n∈Z as ∆ ↓ 0,

h∆(ω) ∼ σ2Γ2(ν)(2π)−12ν∆2ν−1(1− cosω)ν ×[
|ω|−2ν + (2π)−2νζ

(
2ν, 1− ω

2π

)
+ (2π)−2νζ

(
2ν, 1 +

ω

2π

)]
, ω ∈ Ωd.

The second order structure function, S2(∆) := E[(Y∆ − Y0)2], plays an important role
in the physics of turbulence. For the kernel (2.3.17) with 1/2 < ν < 3/2 its asymptotic
behaviour as ∆ ↓ 0 is given by

S2(∆) = 2γY (0)(1− ρY (∆)), ∆ > 0,

which, by the asymptotic behaviour as ∆ ↓ 0 of Kν−1/2(∆) (see Abramowitz and Stegun
(1974), Section 9.6), gives the asymptotic formulae,

S2(∆)

2γY (0)
=





21−2ν Γ(3/2− ν)
Γ(ν + 1/2)

(λ∆)2ν−1 +O(∆2), 1/2 < ν < 3/2,

1
2(λ∆)2| log ∆|+O(∆3), ν = 3/2,

1
4(ν − 3/2)

(λ∆)2 +O(∆2ν−1), ν > 3/2,

which can be found in Pope (2000), Appendix G, and Barndorff-Nielsen et al. (2011). The
first of these formulae can also be obtained as a special case of Corollary 2.3.4 with p = 1.
2

2.4. Estimation of g∆

Given observations of Y ∆ with ∆ small, we estimate the kernel g by estimating the
approximation g∆ defined in (2.2.2) which, as shown in the preceding section, converges
pointwise to σg as ∆ ↓ 0 for all CARMA(p, q) processes. If the driving Lévy process
is standardized so that Var(L1)=1, then g∆ converges pointwise to g. From now on we
make this assumption since without it g is identifiable only to within multiplication by a
constant.
To estimate g∆ it suffices to estimate the coefficients and white noise variance in the

Wold representation (2.2.1) of Y ∆, for which standard non-parametric methods are avail-
able. Being non-parametric they require no a priori knowledge of the order of the un-
derlying CARMA process and moreover they can be applied to the sampled observations
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2.4 Estimation of g∆

of any CMA of the form (5.1.2). The most direct estimator of the Wold parameters of a
causal invertible ARMA process is based on the innovations algorithm (see Brockwell and
Davis (1991), Section 8.3). Noting that the definition (2.2.2) is equivalent to

g∆(t) =
σ∆√

∆
ψ∆
bt/∆c, (2.4.1)

where bt/∆c denotes the integer part of t/∆, we obtain the following asymptotic result
for the estimation of g∆(t) for fixed ∆ as n→∞ in the important cases when Y is either
a Gaussian CARMA process of arbitrary order or a CARMA(1,0) process with arbitrary
second-order driving Lévy process. It follows directly from Theorem 2.1 of Brockwell and
Davis (1988).

Theorem 2.4.1. Suppose that Y is a Gaussian CARMA(p, q) process or a general Lévy-
driven CARMA(1, 0) process observed at times k∆, k = 1, . . . , n. For any fixed t ≥ 0

and ∆ > 0, let r = bt/∆c. Then the innovations estimators θ̂m,r and v̂m of ψ∆
bt/∆c and

σ2
∆, respectively, have the following asymptotic properties. For any sequence of positive

integers {m(n), n = 1, 2, . . .} such that m < n, m → ∞ and m = o(n1/3) as n → ∞,
θ̂m(n),r is consistent for ψ∆

bt/∆c and asymptotically normal. More specifically,

√
n(θ̂m(n),r − ψ∆

bt/∆c) ⇒ N(0, a∆), (2.4.2)

where a∆ :=

r−1∑

j=0

(ψ∆
j )2, and

v̂m(n) →P σ2
∆. (2.4.3)

Remark 2.4.2. (i) The restriction to either Gaussian or CARMA(1,0) processes stems
from the fact that in these cases the driving noise sequence {Z∆

n }n∈Z is i.i.d. as required
by Theorem 2.1 of Brockwell and Davis (1988). By Lemma 2.1 of Brockwell and Lindner
(2009) the driving noise sequence is in general uncorrelated but not i.i.d. For general Lévy-
driven CARMA processes, Ferrazzano and Fuchs (2013) show that the sequence Z∆, with
appropriate normalisation, is a consistent estimator, as ∆ ↓ 0, of the increments of the
driving Lévy process, suggesting that the sequence {Z∆

n }n∈Z is approximately i.i.d. for
small ∆ even in the general case.
(ii) In the following corollaries and in Theorem 2.4.6 we retain the assumptions on Y

and the sequence {m(n)} made in the statement of Theorem 2.4.1. 2

Corollary 2.4.3. In the notation of Theorem 2.4.1, the estimator,

ĝ∆(t) :=

√
v̂m(n)√

∆
θ̂m(n),r, (2.4.4)
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2.4 Estimation of g∆

of g(t) has error,
ĝ∆(t)− g(t) = g∆(t)− g(t) + εn(t), (2.4.5)

where εn(t) is asymptotically normal as n → ∞, with asymptotic mean and variance, 0
and a∆σ

2
∆/(n∆), respectively.

Proof. Using (2.4.1), (2.4.3) and (2.4.4) we deduce from (2.4.2) that, as n→∞,
√
n∆

σ∆
εn(t) =

√
n∆

σ∆
(ĝ∆(t)− g∆(t)) ⇒ N(0, a∆), (2.4.6)

which is equivalent to the statement of the corollary.

Example 2.4.4. [The CARMA(1,0) process] Application of Corollary 4.2 to the CARMA(1, 0)

process using the results of Example 2.2.1 (with σ2 = 1) immediately yields the represen-
tation

ĝ∆(t)− g(t) = εn(t) +

(√
e2λ∆ − 1

2λ∆
− 1

)
eλt, (2.4.7)

where, as n → ∞, εn(t) is asymptotically normal with mean 0 and variance (e2λt −
1)/(2λn∆). The last term in (2.4.7) tends to zero as ∆ ↓ 0 and εn(t) converges in proba-
bility to 0 if we allow ∆ to depend on n in such a way that ∆(n) → 0 and n∆(n) → ∞
as n→∞. 2

In the following we shall suppose, as in Example 2.4.4, that ∆ depends on n in such a
way that ∆(n) → 0 and n∆(n) → ∞ as n → ∞ and study the asymptotic behaviour of
ĝ∆(t) as n→∞.

Corollary 2.4.5. If ∆(n) → 0 and n → ∞ in such a way that n∆(n) → ∞ (i.e. such
that the time interval over which the observations are made goes to ∞) then ĝ∆(t) is
consistent for g(t) for each fixed t.

Proof. Under the conditions stated, the random variables εn(t) in (2.4.5) converge in prob-
ability to zero by Corollary 2.4.3 and the fact that a∆σ

2
∆ ≤ Var(Y (t)). The deterministic

component of (2.4.5), g∆(t)− g(t), converges to zero by Theorem 2.2.2.

If we impose an additional condition on the rate at which ∆(n) converges to zero we
obtain the following central limit theorem for our estimator ĝ∆(t). Its proof is given in
the Appendix.

Theorem 2.4.6. Suppose that Y is a Gaussian CARMA(p, q) process or a general Lévy-
driven CARMA(1,0) process observed at times k∆(n), k = 1, . . . n. If ∆(n)→ 0, n∆(n)→
∞ and n(∆(n))3 → 0 as n→∞, then, for fixed t ≥ 0,

√
n∆(ĝ∆(t)− g(t)) ⇒ N(0,

∫ t

0

g2(u)du) as n→∞.
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2.4 Estimation of g∆

Proof. Without loss of generality, we assume that ∆ < 1. We assume also, as in Section
4, that σ2 = 1. Then the error of the innovations estimator, given by Corollary 2.4.3, is

ĝ∆(t)− g(t) = g∆(t)− g(t) + εn(t).

We multiply both sides by
√
n∆, obtaining

√
n∆(ĝ∆(t)− g(t)) =

√
n∆(g∆(t)− g(t)) +

√
n∆εn(t). (2.4.8)

In order to prove our result, we need to ensure that, as n → ∞ with ∆(n) satisfying
the conditions specified in the statement of the theorem, (i) the first term on the right
of (2.4.8) converges to zero and (ii) the last term converges in distribution to a normal
random variable with variance

∫ t
0
g2(u)du. The proofs follow.

(i) Note first that

g∆(t)− g(t) =

p∑

r=1

[
C(r,∆)− b(λr)

a′(λr)

]
eλrt, (2.4.9)

where C(r,∆) is the coefficient obtained plugging (2.2.4) and (2.2.5) into (2.4.1). The
function C(r,∆) is a rational bounded function, whose parameters depend continuously
on ∆. Therefore we can write the series expansion

C(r,∆) =

∞∑

k=0

c̄k(r)∆
k (2.4.10)

where, from Theorem 2.2.2(ii), c̄0(r) = b(λr)/a
′(λr). This implies that

C(r, 1) = c̄0(r) +

∞∑

k=1

c̄k(r) <∞, 1 ≤ r ≤ p.

Then the deterministic part of (2.4.8) can be written as

√
n∆
∣∣g∆(t)− g(t)

∣∣ =

∣∣∣∣∣

p∑

r=1

(
√
n

∞∑

k=1

c̄k(r)∆
k+1/2

)
eλrt

∣∣∣∣∣ .

≤
p∑

r=1

∣∣∣∣∣
√
n

∞∑

k=1

c̄k(r)∆
k+1/2

∣∣∣∣∣
∣∣eλrt

∣∣ .

Since ∆ < 1, for k ≥ 1

0 <
√
n∆k+1/2 = ∆k−1√n∆3/2 ≤ √n∆3/2.

Therefore,

0 <
√
n∆|g∆(t)− g(t)| ≤ ∆3/2√n

p∑

r=1

∣∣∣∣∣
∞∑

k=1

c̄k(r)

∣∣∣∣∣
∣∣eλrt

∣∣→ 0
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2.4 Estimation of g∆

if n(∆(n))3 → 0 as n→∞.

(ii) For fixed ∆ > 0 Corollary 2.4.3 implies that
√
n∆εn(t) ⇒ N(0, a∆σ

2
∆) as n → ∞.

We shall show now that lim∆→0 a∆σ
2
∆ =

∫ t
0
g2(u)du. Then it follows that if ∆ depends

on n in such a way that ∆(n)→ 0 and n∆(n)→∞ as n→∞, we have the convergence
in distribution,

√
n∆(n)εn(t)⇒ N(0,

∫ t

0

g2(u)du), as n→∞,

which, with (i), completes the proof of the theorem.
Now a∆σ

2
∆ is the mean squared error of the best linear predictor of Y∆bt/∆c based on

Yk∆, k = 0,−1,−2, . . ., and
∫ ∆bt/∆c

0
g2(u)du is the mean squared error of the best linear

predictor of Y∆bt/∆c based on Yt, t ∈ (−∞, 0]. The mean-square continuity of Y means
that the difference converges to zero as ∆→ 0, which in turn implies that

a∆σ
2
∆ −

∫ t

0

g2(u)du→ 0 as ∆→ 0.

Remark 2.4.7. We shall refer to the estimator (2.4.4) as the innovations estimator of
g(t). Instead of using the innovations estimates of ψ∆

bt/∆c and σ
∆ as in (2.4.4), we could

also use the coefficients and white-noise standard deviation obtained by using the Durbin-
Levinson algorithm to fit a high-order causal AR process with white-noise variance τ2 to
the observed values of Y ∆

k , k = 1, . . . n, and numerically inverting the fitted autoregressive
polynomial φ(z) = 1− φ1z − . . .− φpzp to obtain the moving average representation

Y ∆
n =

∞∑

j=0

βjZn−j , {Zn}n∈Z ∼WN(0, τ2).

where β(z) :=
∑∞

j=0 βjz
j = 1/φ(z), |z| ≤ 1. Substituting the estimators τ2 for vm and

βr for θm(n),r gives the Durbin-Levinson estimator (of order p) for g∆(t). Both of these
estimators will be used in the examples which follow. In practice it has been found that
the Durbin-Levinson algorithm gives better results except when the fitted autoregressive
polynomial has zeroes very close to the unit circle. 2

Example 2.4.8. [Simulation results] We now illustrate the performance of the estimators
by applying them to realizations of the Gaussian CMA process Y defined by (5.1.2) with
gamma kernel function, Example 2.3.10

g(t) = tν−1e−λt1(0,∞)(t), λ > 0, ν > 1/2, (2.4.11)

with standard Brownian motion as the driving Lévy process.
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2.5 An application to real data: mean flow turbulent velocities

The simulations were carried out with λ = 1 and two values of ν, namely ν = 1.05 and
ν = 2. The kernel with ν = 2 is actually the kernel of the CARMA(2, 0) process (3.1.1)
with a(z) = (z + λ)2, b(z) = 1 and σ2 = 1. The gamma kernel with ν = 1.05 however is
the kernel of a CMA process but not of any CARMA process.
We first estimated ĝ∆ by applying both the Durbin-Levinson and innovations algorithms

to the true autocovariance functions which are known for the simulated processes. The
purpose was to assess the effect of the sampling error when the sample autocovariances of
the data are used. The estimated kernel functions are shown in the upper rows of Figures
1-4.
The continuous-time sample-paths of Y were simulated at the very finely-spaced times

k∆ with ∆ = 10−6. The sequences Y ∆ used to estimate g were then sampled from these
values using two different spacings, ∆ = 0.25 and ∆ = 0.0625 We then estimated the
kernel function g(·) up to time T = 8, and plotted ĝ∆((j + 1

2)∆) for j = 0, . . . , N = 32

and for j = 0, . . . , N = 128, respectively. In the case of the innovations algorithm, we
used (for the true as well as for the estimated autocovariances) values of the discrete
autocovariance functions up to 3N , i.e. we chose m in (2.4.4) to be 3N . We could equally
well have plotted ĝ∆((j + h)∆) for any h ∈ [0, 1), where the bias depends on h. However
the variation becomes negligible as ∆ ↓ 0. Some partial results regarding the optimal
choice of h are given in Chapter 3.
The results are shown in the bottom rows of Figures 1-4, where the squares denote the

estimates from the innovations algorithm, and the circles denote those from the Durbin-
Levinson algorithm. For reference the true kernel function is plotted with a solid line.
Comparing the top and bottom rows of Figures 1-4 we find for the estimated autocovari-
ance function an intrinsic finite-sample error, which influences the kernel estimation. We
notice that in all cases considered, the Durbin-Levinson algorithm gives better estimates.
Furthermore, as expected, the estimates for both algorithms improve with decreasing grid
spacing. The Durbin-Levinson algorithm provides estimates which are in good agreement
with the original kernel function even for the coarse grid with ∆ = 0.25. 2

2.5. An application to real data: mean flow turbulent
velocities

We now apply the Durbin-Levinson algorithm of Section 2.4 to the Brookhaven turbulent
wind-speed data, which consists of 20 × 106 measurements taken at 5000Hz (i.e. 5000
data points per second). The series thus covers a total time interval of approximately
67 minutes and the sampling interval ∆ is 2 × 10−4 seconds. This dataset displays a
rather high Reynolds number (about 17000), typical of turbulent phenomena. A more
detailed presentation of turbulence phenomena and an application of the CMA model
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2.5 An application to real data: mean flow turbulent velocities

Figure 2.2.: Estimation of the gamma kernel for ν = 1.05 and ∆ = 2−2.

Figure 2.3.: Estimation of the gamma kernel for ν = 1.05 and ∆ = 2−4.
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2.5 An application to real data: mean flow turbulent velocities

Figure 2.4.: Estimation of the gamma kernel for ν = 2 (CAR(2) process) and ∆ = 2−2.

Figure 2.5.: Estimation of the gamma kernel for ν = 2 (CAR(2) process) and ∆ = 2−4.
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2.5 An application to real data: mean flow turbulent velocities

(5.1.2) in the context of turbulence modelling is given in Chapter 5; moreover we refer
to Drhuva (2000), Ferrazzano (2010) for a precise description of the data, and to Pope
(2000), Frisch (1996) for a comprehensive review of turbulence theory. A CMA model
(5.1.2) with a gamma kernel as in Example 2.3.10 has been suggested as a parametric
model in Barndorff-Nielsen and Schmiegel (2009).
Figure 2.6 a) shows the sample autocorrelation function up to 120 seconds, which ap-

pears to be exponentially decreasing. In general, the data are not significantly correlated
after a lag of 100 seconds.
The estimated spectral density f̂Y of Y ∆ is shown in Figure 2.6 b), plotted against the

frequency ϕ, measured in cycles per second (Hz). The estimates marked by circles were
estimated by Welch’s method (Welch (1967)) with segments of 222 data points (circa 14
minutes), windowed with a Hamming window and using an overlapping factor of 50%.
This method allows a significant reduction of the variance of the estimate, sacrificing
some resolution in frequency. In order to have a better resolution near frequency zero, we
estimated the spectral density for ϕ ≤ 10−3 Hz with the raw periodogram (Brockwell and
Davis (1991), p. 322), which provides a better resolution in frequency at cost of a larger
variance. The results are plotted in the leftmost part of Figure 2.6 b) with diamonds, and
the two ranges of estimation are indicated by a vertical solid line. The spectral density is
plotted on a log-log scale, so that any power-law relationship will be reflected by linearity
of the graph. The spectral density in the neighborhood of zero appears to be essentially
constant, as is compatible with an exponentially decreasing autocorrelation function (such
as the gamma kernel function of Example 2.3.10).
For frequencies ϕ between 10−2 and 200Hz, log f̂Y decreases linearly with logϕ with a

slope of approximately −5/3, in accordance with Kolmogorov’s 5/3-law. For comparison,
the solid line corresponds to a spectral density proportional to ϕ−5/3. For ϕ larger than
200Hz, the spectral density deviates from the 5/3-law, decaying with a steeper slope. We
note that a spectral density decaying as prescribed by Kolmogorov’s law in the neigh-
borhood of ∞ would require a kernel behaving like t−1/6 near to the origin, according to
Proposition 2.3.5 (see below).
The estimated kernel function ĝ∆(t) is plotted in Figure 2.6 c) on a log-linear scale in

order to highlight the behaviour of the kernel estimate at both very large and very small
values of t. The estimated g(t) decays rapidly with t, with small oscillations around zero
for t > 100 seconds. As t decreases from this value to roughly 10−3 seconds, the esti-
mated kernel increases in accordance with Kolmogorov’s 5/3-law, dropping off to zero as
t decreases further, matching the steeper decay of the spectral density at high frequencies
evident in Figures 5 b) and 5 d).
Figure 6 d) shows the spectral density computed directly from the estimated kernel

function ĝ∆. Its close resemblance to the spectral density calculated by Welch’s method
provides justification for our estimator of g even when there is no underlying parametric
model.
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2.5 An application to real data: mean flow turbulent velocities

Figure 2.6.: Estimates for the Brookhaven dataset: a) autocorrelation function b) spec-
tral density (Welch estimator and periodogram) c) kernel function (linear-log
scale) d) spectral density computed using the estimated kernel.
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3. Noise recovery for Lévy-driven
CARMA processes and
high-frequency behaviour of
approximating Riemann sums

We consider high-frequency sampled continuous-time autoregressive moving
average (CARMA) models driven by finite-variance zero-mean Lévy processes.
An L2-consistent estimator for the increments of the driving Lévy process with-
out order selection in advance is proposed if the CARMA model is invertible.
In the second part we analyse the high-frequency behaviour of approximating
Riemann sum processes, which represent a natural way to simulate continuous-
time moving average processes on a discrete grid. We shall compare their au-
tocovariance structure with the one of sampled CARMA processes, where the
rule of integration plays a crucial role. Moreover, new insight into the kernel
estimation procedure of Chapter 2 is given.

The outline of the Chapter is as follows. In Section 3.1 we are going to recall the def-
inition of finite-variance CARMA models and summarise important properties of high-
frequency sampled CARMA processes. In particular, we fix a global assumption that guar-
antees causality and invertibility for the sampled sequence. In the third Section we then
derive an L2-consistent estimator for the increments of the driving Lévy process starting
from the Wold representation of the sampled process. It will turn out that invertibility of
the original continuous-time process is sufficient and necessary for the recovery result to
hold. Section 3.2 is completed by an illustrating example for CAR(2) and CARMA(2, 1)

processes. Thereafter, the high-frequency behaviour of approximating Riemann sum pro-
cesses is studied in Section 3.3. First, an ARMA representation for the Riemann sum
approximation is established in general and then the role of the rule of integration is anal-
ysed by matching the asymptotic autocovariance structure of sampled CARMA processes
and their Riemann sum approximations in the cases where the autoregressive order is less
or equal to 3. The connection between the Wold representation and the approximating
Riemann sum yields a deeper insight into the kernel estimation procedure introduced in
Chapter 2. A short conclusion can be found in Section 3.4 and some auxiliary results are
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established in the Section 3.5.

3.1. Preliminaries

3.1.1. Finite-variance CARMA processes

Throughout this Chapter we shall be concerned with a CARMA process driven by a
second order zero-mean Lévy process L = {Lt}t∈R with E[L1] = 0 and E[L2

1] = 1. It is
defined as follows.
For non-negative integers p and q such that q < p, a CARMA(p, q) process Y = (Yt)t∈R

with coefficients a1, . . . , ap, b0, . . . , bq ∈ R and driving Lévy process L is defined to be a
strictly stationary solution of the suitably interpreted formal equation

a(D)Yt = σb(D)DLt, t ∈ R, (3.1.1)

where D denotes differentiation with respect to t, a(·) and b(·) are the characteristic
polynomials,

a(z) := zp + a1z
p−1 + · · ·+ ap and b(z) := b0 + b1z + · · ·+ bp−1z

p−1,

the coefficients bj satisfy bq = 1 and bj = 0 for q < j < p, and σ > 0 is a constant. The
polynomials a(·) and b(·) are assumed to have no common zeroes.
Since the derivative DLt does not exist in the usual sense, we interpret (3.1.1) as being

equivalent to the observation and state equations

Yt = bTXt , (3.1.2)

dXt = AXtdt+ epdLt , (3.1.3)

where

Xt =




X(t)

X(1)(t)
...

X(p−2)(t)

X(p−1)(t)



, b =




b0
b1
...

bp−2

bp−1



, ep =




0

0
...
0

1



,

A =




0 1 0 . . . 0

0 0 1 . . . 0
...

...
... . . . ...

0 0 0 . . . 1

−ap −ap−1 −ap−2 . . . −a1




and A = −a1 for p = 1.

It is easy to check that the eigenvalues of the matrix A are the same as the zeroes of the
autoregressive polynomial a(·).
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Under Assumption 1 (i) it has been shown in (Brockwell and Lindner (2009), Theo-
rem 3.3) that Eqs. (3.1.2)-(3.1.3) have the unique strictly stationary solution,

Yt =

∫ ∞

−∞
g(t− u)dLu, t ∈ R, (3.1.4)

where

g(t) =





σ
2πi

∫

ρ

b(z)

a(z)
etzdz = σ

∑

λ

Resz=λ

(
ezt

b(z)

a(z)

)
, if t > 0,

0, if t ≤ 0,

(3.1.5)

and ρ is any simple closed curve in the open left half of the complex plane encircling the
zeroes of a(·). The sum is over the distinct zeroes λ of a(·) and Resz=λ(·) denotes the
residue at λ of the function in brackets. The kernel g can also be expressed (Brockwell
and Lindner (2009), equations (2.10) and (3.7)) as

g(t) = σb>eAtep1(0,∞)(t), t ∈ R, (3.1.6)

and its Fourier transform is

F {g(·)} (ω) :=

∫

R
g(s)eiωsds = σ

b(−iω)

a(−iω)
, ω ∈ R. (3.1.7)

In the light of Eqs. (3.1.4)-(3.1.7), we can interpret a CARMA process as a continuous-
time filtered white noise, whose transfer function has a finite number of poles and zeros.
We outline that the request on the roots of a(·) to lie in the interior of the left half of
the complex plane in order to have causality arises from Theorem V, p. 8, Paley and
Wiener (1934), which is intrinsically connected with the Theorems in Titchmarsh (1948),
pp. 125-129, on the Hilbert transform. A similar request on the roots of b(·) will turn out
to be necessary for recovering the driving Lévy process.

3.1.2. Properties of high-frequency sampled CARMA processes

We now recall some properties of the sampled process Y ∆ := {Yn∆}n∈Z of a CARMA(p, q)

process where ∆ > 0; cf. Brockwell et al. (2013, 2012) and references therein. It is known
that the sampled process Y ∆ satisfies the ARMA(p, p− 1) equations

Φ∆(B)Y ∆
n = Θ∆(B)Z∆

n , n ∈ Z, {Z∆
n } ∼WN(0, σ2

∆), (3.1.8)

with the AR part Φ∆(B) :=
∏p

i=1(1 − e∆λiB), where B is the discrete-time backshift
operator, BY ∆

n := Y ∆
n−1. Finally, the MA part Θ∆(·) is a polynomial of order p − 1,

chosen in such a way that it has no roots inside the unit circle. For p > 3 and fixed ∆ > 0

there is no explicit expression for the coefficients of Θ∆(·) nor the white noise process
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Z∆. Nonetheless, asymptotic expressions for Θ∆(·) and σ2
∆ = var(Z∆

n ) as ∆ ↓ 0 were
obtained in Brockwell et al. (2013, 2012). Namely we have that the polynomial Θ∆(z) can
be written as (see Theorem 2.1, Chapter 2)

Θ∆(z) =

p−q−1∏

i=1

(1 + η(ξi)z)

q∏

k=1

(1− ζkz), z ∈ C, (3.1.9)

σ2
∆ =

σ2∆2(p−q)−1

(2(p− q)− 1)!
∏p−q−1

i=1 η(ξi)
(1 + o(1)), as∆ ↓ 0, (3.1.10)

where, again as ∆ ↓ 0,

ζk = 1± µk∆ + o(∆), k = 1, . . . , q,

η(ξi) = ξi − 1±
√

(ξi − 1)2 − 1 + o(1), i = 1, . . . , p− q − 1. (3.1.11)

The signs ± in (3.1.11) are chosen respectively such that, for sufficiently small ∆, the
coefficients ζk and η(ξi) are less than 1 in absolute value, to ensure that (3.1.8) is invertible.
Moreover, ξi, i = 1, . . . , p − q − 1, are the zeros of αp−q−1(·), which is defined as the
(p− q − 1)-th coefficient in the series expansion

sinh(z)

cosh(z)− 1 + x
=

∞∑

k=0

αk(x)z2k+1, z ∈ C, x ∈ R\{0}, (3.1.12)

where the L.H.S. of Eq. (3.1.12) is a power transfer function arising from the sampling
procedure (cf. Brockwell et al. (2012), Eq. (11)). Therefore the coefficients η(ξi), i =

1, . . . , p− q− 1, can be regarded as spurious, as they do not depend on the parameters of
the underlying continuous-time process Y , but just on p− q.

Remark 3.1.1. Our notion of sampled process is a weak one, since we only require that
the sampled process has the same autocovariance structure as the continuous-time process,
when observed on a discrete grid. We know that the filtered process on the LHS of (3.1.8)
(Brockwell and Lindner (2009), Lemma 2.1) is a (p− 1)-dependent discrete-time process.
Therefore there exist 2p−1 possible representations for the RHS of (3.1.8) yielding the same
autocovariance function of the filtered process, but only one having its roots outside the
unit circle, which is called minimum-phase spectral factor (see Sayed and Kailath (2001)
for a review on the topic). Since it is not possible to discriminate between them, we always
take the minimum-phase spectral factor without any further question. This will be crucial
in our main result.
Moreover, the rationale behind Assumption 1 (ii) becomes clear now: if <(µk) = 0 for

some k, then the corresponding |ζk|2 is equal to 1+∆2|µk|2 +o(∆2), for either sign choice.
Then the MA(p− 1) polynomial in (3.1.9) will never be invertible for small ∆.
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3.2 Noise recovery

In order to ensure that the sampled CARMA process is invertible, we need to verify
that |η(ξi)| will be strictly less than 1 for all i = 1, . . . , p− q− 1 and sufficiently small ∆.

Proposition 3.1.2. The coefficients η(ξi) in Eq. (3.1.11) are uniquely determined by

η(ξi) = ξi − 1−
√

(ξi − 1)2 − 1 + o(1), i = 1, . . . , p− q − 1,

and we have that ξi − 1−
√

(ξi − 1)2 − 1 ∈ (0, 1) for all i = 1, . . . , p− q − 1.

Proof. It follows from Proposition 3.5.1 that ξi ∈ (2,∞) for all i = 1, . . . , p− q − 1. This
yields ξi − 1 +

√
(ξi − 1)2 − 1 > 1 for all i and hence, we have that

η(ξi) = ξi − 1−
√

(ξi − 1)2 − 1 + o(1), i = 1, . . . , p− q − 1.

Since the first-order term of η(ξi) is positive and monotonously decreasing in ξi, the
additional claim follows.

3.2. Noise recovery

In this Section we are going to prove the first main statement of this Chapter, which is
a recovery result for the driving Lévy process. We start with some motivation for our
approach.
We know that the sampled CARMA process Y ∆ = {Yn∆}n∈Z has the Wold represen-

tation (cf. Brockwell and Davis (1991), p. 187)

Y ∆
n =

∞∑

j=0

ψ∆
j Z

∆
n−j =

∞∑

j=0

(
σ∆√

∆
ψ∆
j

)(√
∆

σ∆
Z∆
n−j

)
, n ∈ Z, (3.2.1)

where
∑∞

j=0(ψ∆
j )2 <∞. Moreover, Eq. (3.2.1) is the causal representation of Eq. (3.1.8),

and it has been shown in Chapter 2 that for every causal and invertible CARMA(p, q)

process, as ∆ ↓ 0,
σ∆√

∆
ψ∆
bt/∆c → g(t), t ≥ 0, (3.2.2)

where g is the kernel in the moving average representation (3.1.4). Given the availability of
classical time-series methods to estimate {ψ∆

j }j∈N and σ2
∆, and the flexibility of CARMA

processes, we argue that this result can be applied to more general continuous-time moving
average processes.
Given Eqs. (3.2.1) and (3.2.2) it is natural to investigate, whether the quantity

L̄∆
n :=

√
∆

σ∆
Z∆
n , n ∈ Z,
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3.2 Noise recovery

approximates the increments of the driving Lévy process in the sense that for every fixed
t ∈ (0,∞),

bt/∆c∑

i=1

L̄∆
i

L2

→ Lt, ∆ ↓ 0. (3.2.3)

As usual, convergence in L2 implies also convergence in probability and distribution.
The first results on retrieving the increments of L were given in Brockwell et al. (2011),

and furthermore generalised to the multivariate case by Brockwell and Schlemm (2013).
The essential limitation of this parametric method is that it might not be robust with
respect to model misspecification. More precisely, the fact that a CARMA(p, q) process is
(p− q − 1)-times differentiable (see Proposition 3.32 of Marquardt and Stelzer (2007)) is
essential for the procedure to work (cf. Theorem 4.3 of Brockwell and Schlemm (2013)).
However, if the underlying process is instead CARMA(p′, q′) with p′ − q′ < p − q, then
some of the necessary derivatives do not longer exist. In contrast to the aforementioned
procedure, in the method we propose there is no need to specify the autoregressive and
the moving average orders p and q in advance.
Our main theorem is the following:

Theorem 3.2.1. Let Y be a finite-variance CARMA(p, q) process and Z∆ the noise on
the RHS of the sampled Eq. (3.1.8). Moreover, let Assumption 1 hold and define L̄∆ :=√

∆/σ∆Z
∆. Then, as ∆ ↓ 0,

bt/∆c∑

i=1

L̄∆
i

L2

→ Lt, t ∈ (0,∞), (3.2.4)

if and only if the roots of the moving average polynomial b(·) on the RHS of the CARMA

Eq. (3.1.1) have negative real parts, i.e. if and only if the CARMA process is invertible.

Proof. Under Assumption 1 (ii) and using Proposition 3.1.2, the sampled ARMA equation
(3.1.8) is invertible. The noise on the RHS of Eq. (3.1.8) is then obtained using the classical
inversion formula

Z∆
n =

Φ∆(B)

Θ∆(B)
Y ∆
n , n ∈ Z,

where B is the usual backshift operator. Let us consider the stationary continuous-time
process

Z∆
t :=

Φ∆(B∆)

Θ∆(B∆)
Yt =

∞∑

i=0

a∆
i

∫ t−i∆

−∞
g(t− i∆− s)dLs, t ∈ R, (3.2.5)

where the continuous-time backshift operator B∆ is defined such that B∆Yt := Yt−∆

for every t ∈ R and the series in the RHS of (3.2.5) is the Laurent expansion of the
rational function Φ∆(·)Θ−1

∆ (·). Moreover, Z∆
n∆ = Z∆

n for every n ∈ N; as a consequence,
the random variables Z∆

s ,Z∆
t are uncorrelated for |t − s| ≥ ∆ and var(Z∆

t ) = var(Z∆
n ).
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3.2 Noise recovery

Exchanging the sum and the integral signs in (3.2.5), and the fact that g(·) = 0 for
negative arguments, we have that Z∆ is a continuous-time moving average process

Z∆
t =

∫ t

−∞
g∆(t− s)dLs, t ∈ R,

whose kernel function g∆ has Fourier transform (cf. Eq. (3.1.7))

F{g∆(·)}(ω) =
Φ∆(eiω∆)

Θ∆(eiω∆)
F{g(·)}(ω) = σ

Φ∆(eiω∆)

Θ∆(eiω∆)

b(−iω)

a(−iω)
, ω ∈ R, ∆ > 0.

Since we can write Lt−Lt−∆ =
∫ t
−∞ 1(0,∆)(t− s)dLs, t ∈ R, the sum of the differences

between the rescaled sampled noise terms and the increments of the Lévy process is given
by

n∑

j=1

L̄∆
j − Ln∆ =

∫ n∆

−∞

n∑

j=1

[√
∆

σ∆
g∆(j∆− s)− 1(0,∆)(j∆− s)

]
dLs =

∫ n∆

−∞
h∆
n (n∆− s)dLs,

(3.2.6)

where, for every n ∈ N,

h∆
n (s) :=

n∑

j=1

[√
∆

σ∆
g∆(s+ (j − n)∆)− 1(0,∆)(s+ (j − n)∆)

]
, s ∈ R,

and the stochastic integral in Eq. (3.2.6) w.r.t. L is still in the L2-sense. It is a standard
result, cf. (Gikhman and Skorokhod 2004, Ch. IV, §4), that the variance of the moving
average process in Eq. (3.2.6) is given by

E

[
n∑

j=1

L̄∆
j − Ln∆

]2

=

∫ n∆

−∞

(
h∆
n (n∆− s)

)2
ds = ‖h∆

n (·)‖2L2 , (3.2.7)

where the latter equality is true since h∆
n (s) = 0 for any s ≤ 0.

Furthermore, the Fourier transform of h∆
n (·) can be readily calculated, invoking the

linearity and the shift property of the Fourier transform. We thus obtain

F{h∆
n (·)}(ω) =

[√
∆

σ∆
F{g∆(·)}(ω)−F{1(0,∆)(·)}(ω)

] n∑

j=1

eiω(n−j)∆

=

[
σ

√
∆

σ∆

∏p
j=1(1− e∆(λj+iω))

Θ∆(eiω∆)

b(−iω)

a(−iω)
− eiω∆ − 1

iω

]
1− eiω∆n

1− eiω∆

=:
[
h∆,1(ω)− h∆,2(ω)

]
· h∆,3

n (ω), ω ∈ R.
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Due to Plancherel Theorem, we deduce

var

[
n∑

i=1

L̄∆
j − Ln∆

]
= ‖h∆

n (·)‖2L2 =
1

2π

∫

R
|F{h∆

n (·)}|2(ω)dω,

=
1

2π

∫

R

[∣∣h∆,1 · h∆,3
n (ω)

∣∣2 +
∣∣h∆,2 · h∆,3

n (ω)
∣∣2 − 2<

(
h∆,1 · h∆,2(ω)

) ∣∣h∆,3
n (ω)

∣∣2
]
dω.

(3.2.8)

It is easy to see that the first two integrals in Eq. (3.2.8) are, respectively, the variances
of
∑n

i=1 L̄
∆
j and Ln∆, both equal to n∆. Setting n := bt/∆c yields for fixed positive t, as

∆ ↓ 0,

var



bt/∆c∑

i=1

L̄∆
j − Lbt/∆c∆


 = 2bt/∆c∆− 1

π

∫

R
<
(
h∆,1 · h∆,2(ω)

) ∣∣∣h∆,3
bt/∆c(ω)

∣∣∣
2

dω

= 2t(1 + o(1))− 1

π

∫

R
<
(
h∆,1 · h∆,2(ω)

) ∣∣∣h∆,3
bt/∆c(ω)

∣∣∣
2

dω.

Thus, in order to show Eq. (3.2.4), it remains to prove that

1

π

∫

R
<
(
h∆,1 · h∆,2(ω)

) ∣∣∣h∆,3
bt/∆c(ω)

∣∣∣
2

dω = 2t(1 + o(1)) as ∆ ↓ 0,

which in turn is equivalent to

1

2πt

∫

R
σ

√
∆

σ∆

1− cos(ωbt/∆c∆)

1− cos(ω∆)

[
sin(ω∆)

ω
<
(∏p

j=1(1− e∆(λj+iω))

Θ∆(eiω∆)

b(−iω)

a(−iω)

)

+
1− cos(ω∆)

ω
=
(∏p

j=1(1− e∆(λj+iω))

Θ∆(eiω∆)

b(−iω)

a(−iω)

)]
dω = 1 + o(1) as ∆ ↓ 0.

(3.2.9)

Now, Lemma 3.5.2 shows that the integrand in Eq. (3.2.9) converges pointwise, for
every ω ∈ R\{0}, to 2(1− cos(ωt))/ω2 as ∆ ↓ 0. Since, for sufficiently small ∆, the inte-
grand is dominated by an integrable function (see Lemma 3.5.3), we can apply Lebesgue
Dominated Convergence Theorem and deduce that the LHS of Eq. (3.2.9) converges, as
∆ ↓ 0, to

1

πt

∫

R

1− cos(ωt)

ω2
dω =

2

π

∫ ∞

0

1− cos(ω)

ω2
dω = 1.

This proves Eq. (3.2.9) and concludes the proof of the “if”-statement.
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As to the “only if”-statement, let J := {j = 1, . . . , q : <(µj) < 0} and suppose that
|J | ≥ 1. Then we have, by (3.1.9) for ∆ ↓ 0,

b(−iω)

Θ∆(eiω∆)
=

p−q−1∏

j=1

(1 + η(ξj))
−1

q∏

j=1

µj − iω
1− ζj eiω∆

=

p−q−1∏

j=1

(1 + η(ξj))
−1 ∆−q

∏

j∈J

µj − iω
−µj − iω

(1 + o(1))

=

p−q−1∏

j=1

(1 + η(ξj))
−1 ∆−q(1 +D(ω))(1 + o(1)), ω ∈ R, (3.2.10)

where D(ω) := −1 +
∏

j∈J(µj − iω)/(−µj − iω). By virtue of Lemmata 3.5.2 and 3.5.3,
we then obtain that the LHS of Eq. (3.2.9) converges, as ∆ ↓ 0, to

1

πt

∫

R

1− cos(ωt)

ω2

(
1 + <(D(ω))

)
dω = 1 +

1

π

∫

R

1− cos(ω)

ω2
<(D(ω/t)) dω.

Since |
∏

j∈J(µj − iω)/(−µj − iω)| = 1, we further deduce that <(D(ω)) ≤ 0 for any
ω ∈ R. Obviously, <(D(ω)) 6≡ 0 and hence,

1

πt

∫

R

1− cos(ωt)

ω2

(
1 + <(D(ω))

)
dω < 1,

which, in turn, shows that the convergence result (3.2.4) cannot hold.

Remark 3.2.2. (i) It is an easy consequence of the triangle and Hölder inequality that,
if the recovery result (3.2.4) holds, then also

bt/∆c∑

i=1

L̄∆
i

bs/∆c∑

j=bt/∆c+1

L̄∆
j

L1

→ Lt(Ls − Lt), t, s ∈ (0,∞), t ≤ s,

is valid.

(ii) Minor modifications of the proof above show that the recovery result in Eq. (3.2.4)
remains still valid if we drop the assumption of causality (i.e. Assumption 1 (i)) and
suppose instead only <(λj) 6= 0 for every j = 1, . . . , p. Hence, invertibility of the
CARMA process is necessary for the noise recovery result to hold, whereas causality
is not. In the non-causal case, the obtained white noise process will not be the same
as in the Wold representation (3.2.1).

(iii) The necessity and sufficiency of the invertibility assumption descends directly from
the fact that we always choose the minimum-phase spectral factor, as pointed out in
Remark 3.1.1.
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(iv) The proof suggests that this procedure should work in a much more general frame-
work. Let I∆(·) denote the inversion filter in Eq. (3.2.5) and ψ∆ :=

{
ψ∆
i

}
i∈N the

coefficients in the Wold representation (3.2.1). Then the proof of Theorem 3.2.1
essentially needs, apart from the rather technical Lemma 3.5.3, that, as ∆ ↓ 0,

I∆(eiω∆)F{g(·)}(ω) =

∫∞
0
g(s)eiωsds∑∞

k=0 ψ
∆
k e

ikω∆
→ 1, ω ∈ R, (3.2.11)

provided that the function
∑∞

k=0 ψ
∆
k z

k does not have any zero inside the unit cir-
cle. In other words, we need that the discrete Fourier transform in the denominator
of (3.2.11) converges to the Fourier transform in the numerator; this can be eas-
ily related to the kernel estimation result in (3.2.2). Given the peculiar structure
of CARMA processes, this relationship can be calculated explicitly, but the results
should hold true for continuous-time moving average processes with more general
kernels, too.

We illustrate Theorem 3.2.1 and the necessity of the invertibility assumption by an
example where the convergence result is established using a time domain approach. That
gives an explicit result also when the invertibility assumption is violated.
Unfortunately this strategy is not viable for a general CARMA process, due to the

complexity of calculations involved when p > 2.

Example 3.2.3 (CARMA(2, q) process). The causal CARMA(2, q) process is the strictly
stationary solution to the formal stochastic differential equation

(D − λ2)(D − λ1)Yt = σDLt, q = 0,

(D − λ2)(D − λ1)Yt = σ(b+D)DLt, q = 1,

and it can be represented as a continuous-time moving average process, as in (3.1.4), for
λ1, λ2 < 0, λ1 6= λ2 and b ∈ R\{0}, with kernel

g(t) =σ
etλ1 − etλ2

λ1 − λ2
, q = 0,

g(t) =σ
b+ λ1

λ1 − λ2
etλ1 + σ

b+ λ2

λ2 − λ1
etλ2 , q = 1,

for t > 0 and 0 elsewhere. The corresponding sampled process Y ∆
n = Yn∆, n ∈ Z, satisfies

the causal and invertible ARMA(2, 1) equations, as in (3.1.8) where, from (1.2.15) and
for n ∈ Z,

Φ∆(B)Y ∆
n =

∫ n∆

(n−1)∆
g(n∆− u)dLu +

∫ (n−1)∆

(n−2)∆
[g(n∆− u)− (eλ1∆ + eλ2∆)g((n− 1)∆− u)]dLu.

(3.2.12)
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The corresponding MA(1) polynomial in (3.1.8) is Θ∆(B) = 1 − θ∆B, with asymptotic
parameters

θ∆ =
√

3− 2 + o(1), σ2
∆ = σ2∆3(2 +

√
3)/6 + o(∆3), q = 0,

θ∆ = 1− sgn(b) b∆ + o(∆), σ2
∆ = σ2∆ + o(∆), q = 1.

The inversion of (3.1.8) and (3.2.12) gives, for every ∆ > 0,

Z∆
n =

Φ∆(B)

Θ∆(B)
Y ∆
n =

∞∑

i=0

(θ∆B)i
2∏

i=1

(1− eλi∆B)Y ∆
n ,

=

∫ n∆

(n−1)∆

g(n∆− u)dLu

+

∞∑

i=0

θi∆

∫ (n−i−1)∆

(n−i−2)∆

[g((n− i)∆− u)− (eλ1∆ + eλ2∆ − θ∆)g((n− i− 1)∆− u)]dLu.

Then Z∆ := {Z∆
n }n∈Z is a weak white-noise process. Moreover, using that ∆Ln =∫ n∆

(n−1)∆
dLs, we have

E[Z∆
n ∆Ln−j ] =





0, j < 0,∫ ∆

0
g(s)ds, j = 0,

θj−1
∆

∫ ∆

0
[g(∆ + s)− (eλ1∆ + eλ2∆ − θ∆)g(s)]ds, j > 0.

(3.2.13)

For a fixed t ∈ (0,∞), using the fact that ∆L and L̄∆ are both second order stationary
white noises with variance ∆, we have that

E



bt/∆c∑

i=1

(L̄∆
i −∆Li)




2

= 2bt/∆c∆− 2

bt/∆c∑

i=1

E[L̄∆
i ∆Li]− 2

∑

i6=j

E[L̄∆
i ∆Lj ]

= 2bt/∆c∆− 2
√

∆

σ∆
bt/∆c

∫ ∆

0

g(s)ds

− 2
√

∆

σ∆

∫ ∆

0

[g(∆ + s)− (eλ1∆ + eλ2∆ − θ∆)g(s)]ds

bt/∆c∑

i=1

i−1∑

j=1

θj−1
∆

where the last equality is obtained using (3.2.13). Moreover, for every a 6= 1,

n∑

i=1

i−1∑

j=1

aj−1 =
an + (1− a)n− 1

(1− a)2
, n ∈ N.
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3.3 High-frequency behaviour of approximating Riemann sums

Then the variance of the error can be explicitly calculated as

E



bt/∆c∑

i=1

(L̄∆
i −∆Li)




2

= 2bt/∆c∆− 2
√

∆

σ∆
bt/∆c

∫ ∆

0

g(s)ds

− 2
√

∆

σ∆

θ∆
bt/∆c + bt/∆c(1− θ∆)− 1

(1− θ∆)2

∫ ∆

0

[g(∆ + s)− (eλ1∆ + eλ2∆ − θ∆)g(s)]ds.

We now compute the asymptotic expansion for ∆ ↓ 0 of the equation above. We obviously
have that 2bt/∆c∆ = 2t(1+o(1)) and, using the explicit formulas for the kernel functions
g,

q = 0 q = 1
2
√

∆
σ∆
bt/∆c

∫∆

0
g(s)ds =

(
3−
√

3
)
t+ o(1), 2t+ o(1),

2
√

∆
σ∆

∫∆

0
[g(∆ + s)− (eλ1∆ + eλ2∆ − θ∆)g(s)]ds =

(
4
√

3− 6
)

∆(1 + o(1)), 2(b− sgn(b) b)∆2 + o(∆2),

(θ∆
bt/∆c + bt/∆c(1− θ∆)− 1)(1− θ∆)−2 = 1

6

(
3 +
√

3
)
t/∆(1 + o(1)), (e−sgn(b)bt + sgn(b)bt− 1)/(b∆)2 + o(∆−2).

Hence, for a fixed t ∈ (0,∞) and ∆ ↓ 0, we get

E



bt/∆c∑

i=1

(L̄∆
i −∆Li)




2

=

{
o(1), q = 0,

2(e−sgn(b)bt + sgn(b)bt− 1)(sgn(b)− 1)/b+ o(1), q = 1,

i.e. (3.2.4) holds always for q = 0, whereas for q = 1 if and only if b > 0. If b < 0, the
error approximating the driving Lévy by inversion of the discretised process grows as 4t

for large t.

3.3. High-frequency behaviour of approximating
Riemann sums

The fact that, in the sense of Eq. (3.2.3), L̄∆
n ≈ ∆Ln = Ln∆−L(n−1)∆ for small ∆, along

with Eq. (3.2.2), gives rise to the conjecture that the Wold representation Eq. (3.2.1) for
Y ∆ behaves on a high-frequency time grid approximately like the MA(∞) process

Ỹ ∆,h
n :=

∞∑

j=0

g(∆(j + h))∆Ln−j , n ∈ Z, (3.3.1)

for some h ∈ [0, 1] and g is the kernel function as in (3.1.6). In other terms, we have
for a CARMA process, under the assumption of invertibility and causality, that the
discrete-time quantities appearing in the Wold representation approximate the quanti-
ties in Eq. (3.3.1) when ∆ ↓ 0. The transfer function of Eq. (3.3.1) is then defined as

ψ∆
h (ω) :=

∞∑

j=0

g(∆(j + h))e−iωj , −π ≤ ω ≤ π, (3.3.2)
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3.3 High-frequency behaviour of approximating Riemann sums

and its spectral density can be written as

f̃∆
h (ω) =

1

2π
|ψ∆
h |2(ω), −π ≤ ω ≤ π.

It is well known that a CMA process can be defined (for a fixed time point t) as the
L2-limit of Eq. (3.3.1); this fact is naturally employed to easily simulate a CMA process,
when all the relevant quantities are known a priori. Therefore we will name the pro-
cess Ỹ ∆,h approximating Riemann sum of Eq. (3.1.4), and h is the so-called rule of the
approximating sum; e.g. if h = 1/2, we have the popular mid-point rule.
In order to give an answer to our conjecture, we will investigate properties of the

approximating Riemann sum Ỹ ∆,h of a CARMA process and compare its asymptotic
autocovariance structure with the one of the sampled CARMA process Y ∆. This will
yield more insight into the role of h for the behaviour of Ỹ ∆,h as a process.
We start with a well known property of approximating sums.

Proposition 3.3.1. Let g be in L2 and Riemann-integrable. Then, for every h ∈ [0, 1],
as ∆ ↓ 0:

(i) Ỹ ∆,h
k − Y ∆

k
L2

→ 0, for every k ∈ Z.

(ii) Ỹ ∆,h
bt/∆c

L2

→ Yt, for every t ∈ R.

Proof. This follows immediately from the hypotheses made on g and the definition of
L2-integrals.

This result essentially says only that approximating sums converge to Yt for every fixed
t. However, for a CARMA(p, q) process we have that the approximating Riemann sum
process satisfies for every h and ∆ an ARMA(p, p − 1) equation (see Proposition 3.3.2
below), meaning that there might exist a process, whose autocorrelation structure is the
same as the one of the approximating sum. Given that the AR filter in this representa-
tion is the same as in Eq. (3.1.8), it is reasonable to investigate whether Φ∆(B)Y ∆ and
Φ∆(B)Ỹ ∆,h have, as ∆ ↓ 0, the same asymptotic autocovariance structure, which can be
expected but is not granted by Proposition 3.3.1.
The following proposition gives the ARMA(p, p−1) representation for the approximat-

ing Riemann sum.

Proposition 3.3.2. Let Y be a CARMA(p, q) process, satisfying Assumption 1, and
furthermore suppose that the roots of the autoregressive polynomial a(·) are distinct. Then
the approximating Riemann sum process Ỹ ∆,h of Y defined by Eq. (3.3.1) satisfies, for
every h ∈ [0, 1], the ARMA(p, p− 1) equation

Φ∆(B)Ỹ ∆,h
n = σΘ̃∆,h(B)∆Ln, n ∈ Z, (3.3.3)
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3.3 High-frequency behaviour of approximating Riemann sums

where
Θ̃∆,h(z) := θ̃∆,h

0 − θ̃∆,h
1 z +− . . .+ (−1)p−1θ̃∆,h

p−1z
p−1 (3.3.4)

and

θ̃∆,h
k :=

p∑

l=1

b(λl)

a′(λl)
eh∆λl

∑
e∆(λj1+λj2+...+λjk ), k = 0, . . . , p− 1,

where the right-hand sum is defined to be 1 for k = 0 and it is evaluated over all possible
subsets {j1, . . . , jk} of {1, . . . , p}\{l}, having cardinality k, for k > 0.

Proof. Write Φ∆(z) =
∏p

j=1(1− e∆λjz) = −
∑p

j=0 φ
∆
j z

j and observe that

Φ∆(B)Ỹ ∆,h
n = −

p∑

j=0

φ∆
j Y

∆,h
n−j

= −σb>
p−1∑

k=0

(
k∑

j=0

φ∆
j e

A(k−j)∆

)
eAh∆ep ·∆Ln−k

−σb>
p∑

j=0

∞∑

k=p−j

φ∆
j e

A(h+k)∆ep ·∆Ln−j−k

= −σb>
p−1∑

k=0

(
k∑

j=0

φ∆
j e

A(k−j)∆

)
eAh∆ep ·∆Ln−k

−σb>
∞∑

k=p

(
−

p∑

j=0

φ∆
j e
−Aj∆

)
eA(h+k)∆ep ·∆Ln−k.

By virtue of the Cayley-Hamilton theorem (cf. also (Brockwell and Lindner 2009, proof
of Lemma 2.1)), we have that

−
p∑

j=0

φ∆
j e
−Aj∆ = 0,

and hence, Φ∆(B)Ỹ ∆,h
n = −σb>

∑p−1
k=0

(∑k
j=0 φ

∆
j e

A(k−j)∆
)
eAh∆ep·∆Ln−k. We conclude

with (Fasen and Fuchs 2013, Lemma 2.1(i) and Eq. (4.4)).

Remark 3.3.3. (i) The approximating Riemann sum of a causal CARMA process is
automatically a causal ARMA process. On the other hand, even if the CARMA

process is invertible in the sense of Definition 2.1.1, the roots of Θ̃∆,h(·) may lie
inside the unit circle, causing Ỹ ∆,h to be non-invertible.

(ii) It is easy to see that θ̃∆,h
0 = g(h∆). Then for p − q ≥ 2, if h = 0, we have that

θ̃∆,0
0 = 0, giving that Θ̃∆,0(0) = 0. This is never the case for Θ∆(·), as one can
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3.3 High-frequency behaviour of approximating Riemann sums

see from (3.1.9) and Proposition 3.1.2. Moreover, it is possible to show that for
h = 1 and p − q ≥ 2, the coefficient θ̃∆,1

p−1 is 0, implying that Eq. (3.3.3) is actually
an ARMA(p, p − 2) equation. For those values of h, the ARMA equations solved
by the approximating Riemann sums will never have the same asymptotic form as
Eq. (3.1.8): therefore we shall restrict ourselves to the case h ∈ (0, 1) from now on.

(iii) The assumption of distinct autoregressive roots might seem restrictive, but the omit-
ted cases can be obtained by letting distinct roots tend to each other. This would, of
course, change the coefficients of the MA polynomial in Eq. (3.3.4). Moreover, as
shown in Brockwell et al. (2013, 2012), the multiplicity of the zeroes does not matter
when L2-asymptotic relationships as ∆ ↓ 0 are considered.

Due to the complexity of retrieving the roots of a polynomial of arbitrary order from
its coefficients, finding the asymptotic expression of Θ̃∆,h(·) for arbitrary p is a daunting
task. Nonetheless, using Proposition 3.3.2, it is not difficult to give an answer for processes
with p ≤ 3, which are the most used in practice.

Proposition 3.3.4. Let Ỹ ∆,h be the approximating Riemann sum for a CARMA(p, q)

process, with p ≤ 3, let Assumption 1 hold and the roots of a(·) be distinct.
If p = 1, the process Ỹ ∆,h is an AR(1) process driven by Z∆

n = σe∆hλ1∆Ln, for every
∆ > 0.
If p = 2, 3, we have

Φ∆(B)Ỹ ∆,h
n =

q∏

i=1

(1− (1−∆µi + o(∆))B)

p−q−1∏

i=1

(1− χp−q,i(h)B)

(
σ

(h∆)p−q−1

(p− q − 1)!
∆Ln

)

(3.3.5)
where, for h ∈ (0, 1) and ∆ ↓ 0, χ2,1(h) = (h− 1)/h+ o(1) and

χ3,j(h) =
2(h− 1)2

2(h− 1)h− 1− (−1)j
√

1− 4(h− 1)h
+ o(1), j = 1, 2.

Proof. Since p ≤ 3, Θ̃∆,h(z) is a polynomial of order p− 1 with real coefficients; therefore
the roots, if any, can be calculated from the coefficients, and asymptotic expressions can
be obtained by computing the Taylor expansions of the roots around ∆ = 0.
If p = 1, the statement follows directly from Eq. (3.3.3). For p = 2, 3, the roots of

Eq. (3.3.4) are {1 + ∆µi + o(∆)}i=1,...,q and {1/χp−q,i(h)}i=1,...p−q−1, giving that

Θ̃∆,h(z) = θ̃∆,h
p−1

q∏

i=1

(1 + ∆µi + o(∆)− z)

p−q−1∏

i=1

(1/χp−q,i(h)− z), z ∈ C.
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3.3 High-frequency behaviour of approximating Riemann sums

Vieta theorem gives that the product of the roots of Eq. (3.3.4) is equal to θ̃∆,h
0 /θ̃∆,h

p−1,
which yields

Θ̃∆,h(z) = θ̃∆,h
0

q∏

i=1

(1− (1−∆µi + o(∆))z)

p−q−1∏

i=1

(1− χp−q,i(h)z).

Since θ̃∆,h
0 = g(h∆) = σ(h∆)p−q−1/(p−q−1)!(1+o(1)), we have established the result.

In general the autocorrelation structure will depend on h through the parameters
χp−q,i(h), i = 1, . . . , p− q− 1. In a time-series context, it is reasonable to require that the
approximating Riemann sum process has the same asymptotic autocorrelation structure
as the CARMA process we want to approximate.

Corollary 3.3.5. Let the assumptions of Proposition 3.3.4 hold. Then Φ∆(B)Y ∆ and
Φ∆(B)Ỹ ∆,h have the same asymptotic autocovariance structure as ∆ ↓ 0

for every h ∈ (0, 1), if p− q = 1,

for h = (3±
√

3)/6, if p− q = 2,

and for h =
(

15±
√

225− 30
√

30
)
/30, if p− q = 3.

Moreover, the MA polynomials in Eqs. (3.1.9) and (3.3.5) coincide if and only if the
CARMA process is invertible and |χp−q,i(h)| < 1, that is

for every h ∈ (0, 1), if p− q = 1,

for h = (3 +
√

3)/6, if p− q = 2.

For p− q = 3, such h does not exist.

Proof. The claim for p−q = 1 follows immediately from Proposition 3.3.4 and Eqs. (3.1.9)-
(3.1.10). For p = 2 and q = 0, we have to solve the spectral factorization problem

σ2
∆(1 + η(ξ1)2) = σ2∆3(1 + χ2,1(h)2)h2

σ2
∆η(ξ1) = −σ2∆3χ2,1(h)h2

with η(ξ1) = 2−
√

3+o(1) and χ2,1(h) = (h−1)/h+o(1). Eq. (3.1.10) then yields the two
solutions h = (3 ±

√
3)/6. For p = 3 and q = 1, analogous calculations lead to the same

solutions. Finally, consider the case p = 3 and q = 0. We have to solve asymptotically the
following system of equations

σ2
∆(1 + (η(ξ1) + η(ξ2))2 + η(ξ1)2η(ξ2)2) =

σ2∆5

4
(1 + (χ3,1(h) + χ3,2(h))2 + χ3,1(h)2χ3,2(h)2)h4

σ2
∆(η(ξ1) + η(ξ2))(1 + η(ξ1)η(ξ2)) = −σ

2∆5

4
(χ3,1(h) + χ3,2(h))(1 + χ3,1(h)χ3,2(h))h4

σ2
∆η(ξ1)η(ξ2) =

σ2∆5

4
χ3,1(h)χ3,2(h)h4
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3.3 High-frequency behaviour of approximating Riemann sums

where η(ξ1,2) =
(
13±

√
105−

√
270± 26

√
105
)
/2 + o(1) and χ3,1(h) and χ3,2(h) are as

in Proposition 3.3.4. Solving that system for h gives the claimed values.
To prove the second part of the Corollary, we start observing that, under the assumption

of an invertible CARMA process, the coefficients depending on µi will coincide automat-
ically, if any. Then it remains to check whether the coefficients depending on h can be
smaller than 1 in absolute value. The cases p − q = 1, 2 follow immediately. Moreover,
to see that there is no such h for p − q = 3, it is enough to notice that, for h ∈ (0, 1),
|χ3,1(h)| > 1 and 0 < |χ3,2(h)| < 1, i.e. they do never satisfy the sought requirement for
h ∈ (0, 1).

Corollary 3.3.5 can be interpreted as a criterion to choose an h such that the Riemann
sum approximates the continuous-time process Y in a stronger sense than the simple
convergence as a random variable for every fixed t. The second part of the corollary says
that there is an even more restrictive way to choose h such that Eqs. (3.1.9) and (3.3.5)
will coincide. If the two processes satisfy asymptotically the same causal and invertible
ARMA equation, they will have the same coefficients in their Wold representations as
∆ ↓ 0, which are given in the case of the approximating Riemann sum explicitly by
definition in (3.3.1).
In the light of (3.2.2) and Theorem 3.2.1, the sampled CARMA process will asymptot-

ically behave like its approximating Riemann sum process for some specific h = h̄, which
might not even exist, as in the case p = 3, q = 0. However, if such an h̄ exists, the kernel
estimators (3.2.2) can be improved to

σ∆√
∆
ψ∆
bt/∆c = g(∆(bt/∆c+ h̄)) + o(∆), t ∈ R.

For invertible CARMA(p, q) processes with p−q = 1, any choice of h would accomplish
that. In principle an h̄ can be found matching a higher order expansion in ∆, where higher
order terms will depend on h.
For p−q = 2, there is only a specific value h = h̄ := (3+

√
3)/6, such that Ỹ ∆,h̄ behaves

as Y ∆ in this particular sense, and therefore it advocates for a unique, optimal value for,
e.g., simulation purposes.
Finally, for p− q = 3, a similar value does not exist, meaning that it is not possible to

mimic Y ∆ in this sense with any approximating Riemann sum.
In order to confirm this, we now give a small numerical study. We consider three different

causal and invertible processes, a CARMA(2, 1), a CAR(2) and a CAR(3) process, with
parameters λ1 = −0.7, λ2 = −1.2, λ3 = −2.6 and µ1 = 3. Of course, for the CARMA(2, 1)

we use only λ1, λ2 and µ1, while for the CAR processes there is no need for µ1. Then we
estimate the kernel functions from the theoretical autocorrelation functions using (3.2.2)
as in Chapter 2, for moderately high sampling rates, namely 22 = 4 (Figure 3.1) and
26 = 64 samplings per unit of time (Figure 3.2). In order to see where the kernel is being
estimated, we plot the kernel estimations on different grids. The small circles denote the
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3.4 Conclusion

extremal cases h = 0 and h = 1, the vertical sign the mid-point rule h = 0.5, and the
diamond and the square are the values given in Corollary 3.3.5, if any. The true kernel
function is then plotted with a solid, continuous line. For the sake of clarity, only the first
8 estimates are plotted.
For the CARMA(2, 1) process, the kernel estimation seems to follow a mid-point rule

(i.e. h = 1/2). For the CAR(2) process, the predicted value h̄ = (3+
√

3)/6 (denoted with
squares) is definitely the correct one, and for the CAR(3) for every h ∈ [0, 1] the estimation
is close but constantly biased. Of course in the limit ∆ ↓ 0, the slightly weaker results
given by Eq. (3.2.2) still hold, giving that the bias vanishes in the limit. The conclusion
expressed above is true for both considered sampling rates, which is remarkable since they
are only moderately high, in comparison with the chosen parameters.
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Figure 3.1.: Kernel estimation for a sampling frequency of 22 samplings per unit of time,
i.e. ∆ = 0.25. The diamond and the square symbols denote, where available,
the values of h suggested by Corollary 3.3.5.

3.4. Conclusion

In this Chapter we have dealt with the asymptotic behaviour of two classes of discrete-time
processes closely related to the one of CARMA processes, when the sampling frequency
tends to infinity.

58



3.4 Conclusion

0 0.02 0.04 0.06 0.08 0.1 0.12

0.57

0.58

0.59

0.6

0.61

0.62

0.63

CARMA(2,1) process

t

g
(t

)

0 0.02 0.04 0.06 0.08 0.1 0.12
0

0.05

0.1

0.15

0.2

0.25

CAR(2) process

t

g
(t

)

0 0.02 0.04 0.06 0.08 0.1 0.12
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

CAR(3) process

t

g
(t

)

Figure 3.2.: Kernel estimation for a sampling frequency of 26 samplings per unit of time,
i.e. ∆ ≈ 0.016. The diamond and the square symbols denote, where available,
the values of h suggested by Corollary 3.3.5.

First, we studied the behaviour of the white noise appearing in the ARMA equation
solved by the sampled sequence of a CARMA process of arbitrary order. Then we showed,
under a necessary and sufficient identifiability condition, that the aforementioned white
noise approximates the increments of the driving Lévy process of the continuous-time
model. The proposed procedure is non-parametric in nature, and it can be applied without
assuming any knowledge on the order of the process. Moreover, it is argued that such
results should be extendable to CMA processes with more general kernel functions. This
is left for future research.

The results in the first part of this Chapter, considered jointly with those in Brock-
well et al. (2013), show that the Wold representation of a sampled causal and invertible
CARMA process behaves somehow like a Riemann sum as ∆ ↓ 0. Then in the second part
of this Chapter the converse is investigated, i.e. whether a Riemann sum approximating a
causal CARMA process satisfies the same ARMA(p, p−1) equation of the process we want
to approximate, as the spacing of the grid tends to zero. This is in particular important
for simulations, where such approximating Riemann sums constitute a natural choice.

It has been shown that these processes satisfy an ARMA(p, p − 1) equation, but in
general they are not invertible. For p ≤ 3, the roots of the moving average polynomial
of such discrete-time processes depend, apart from the roots of b(·), also on the rule h.
Moreover, in the case p = 3, q = 0, the Riemann sum is invertible for no choice of h,
implying that the Riemann sum and the sampled process will never satisfy asymptotically

59



3.5 Auxiliary Results

the same causal and invertible ARMA equation. Although only a finite number of cases
has been considered, it shows that in general a causal and invertible CARMA process
cannot be approximated by a Riemann sum, at least not in the sense of the second part
of Corollary 3.3.5. Further investigations on this matter are left for future research.

3.5. Auxiliary Results

Throughout this section, we shall use the same notation as in the preceding sections.

Proposition 3.5.1. The function αn(x), as defined in Eq. (3.1.12), has the form

αn(x) =
1

(2n+ 1)!

Pn(x)

xn+1
, x 6= 0, n ∈ N, (3.5.1)

where Pn(x) is a polynomial of order n in x, namely

Pn(x) =
n∑

j=0

xn−j
n∑

k=j+1

(2k)!

{
2n+ 1

2k

}
k∑

i=j

[(
i+ 1

j + 1

)(
2k

2i+ 1

)
−
(

i

j + 1

)(
2k

2i

)]
(−2)j+1−2k

+
n∑

j=0

xn−j
n∑

k=j

(2k + 1)!

{
2n+ 1

2k + 1

}
k∑

i=j

[(
i+ 1

j + 1

)(
2k + 1

2i+ 1

)
−
(

i

j + 1

)(
2k + 1

2i

)]
(−2)j−2k,

(3.5.2)

with
{·
·
}
being the Stirling number of the second kind. Moreover, all the zeroes of αn(x)

are real, distinct and greater than 2.

Proof. Using the definition of the hyperbolic functions, we can write

sinh(z)

cosh(z)− 1 + x
=

e2z − 1

e2z + 1 + 2(x− 1)ez
=: f(z, x), z ∈ C, x 6= 0,

i.e. f(z, x) = g(ez, x), where g(y, x) :=(y2−1)/(y2+1+2(x−1)y). Then the n-th derivative
of the function f(·, x) is, by the Faà di Bruno formula

∂n

∂zn
f(z, x) =

∂n

∂zn
g(ez, x) =

n∑

k=1

{
n

k

}
∂k

∂yk
g(y, x)

∣∣∣∣
y=ez

ekz, z ∈ C, x 6= 0,

where the coefficients
{
n
k

}
are the Stirling numbers of the second kind. Using the previous

formula and the definition of αn(x), for x 6= 0,

(2n+ 1)!αn(x) =
∂2n+1

∂z2n+1
f(z, x)

∣∣∣∣
z=0

=

2n+1∑

k=1

{
2n+ 1

k

}
∂k

∂yk
g(y, x)

∣∣∣∣
y=1

=

2n+1∑

k=1

k!

{
2n+ 1

k

}
1

2πi

∫

ρ

(z − 1)(z + 1)

(z − a2(x))(z − a1(x))(z − 1)k+1
dz

=

2n+1∑

k=1

k!

{
2n+ 1

k

}
1

2πi

∫

ρ

z + 1

(z − a2(x))(z − a1(x))(z − 1)k
dz (3.5.3)
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where the latter equality comes from the Cauchy differentiation formula, a1(x) = 1 −
x −

√
x(x− 2), a2(x) = 1 − x +

√
x(x− 2), i.e. they are the roots of the polynomial

y2 +1+2(x−1)y, and ρ is a counter-clockwise oriented closed curve in the complex plane
encircling z = 1. The case x = 0 has been excluded because f(·, 0) is not defined in z = 0,
and limz→0 |f(z, 0)| =∞.
Let us denote the integrand in Eq. (3.5.3) by fk(z, x); it is a rational function having

one pole of order k in z = 1. Moreover, there are two simple poles in z = a1(x) and
z = a2(x) if x 6= 2, or just a simple one in z = −1 if x = 2, due to cancellation with
the zero at z = −1 in the numerator. The case x = 2 can be also obtained by letting
the difference between a1(x) and a2(x) tend to zero in the upcoming calculations and is
therefore not treated by itself.
Then by the Cauchy theorem of residues, Theorem 1, p. 24 of Mitrinović and Kečkić

(1984), we have that the integral in Eq. (3.5.3) is, for x 6= 0, 2,

1

2πi

∫

ρ

fk(z, x)dz = Resz=1fk(z, x) = −Resz=a1(x)fk(z, x)−Resz=a2(x)fk(z, x)−Resz=∞fk(z, x),

where the latter identity is obtained using Theorem 2, p. 25 of Mitrinović and Kečkić
(1984). Moreover, since the difference of orders between the polynomials in the denomi-
nator and in the numerator of fk(z, x) is k + 1 > 1, the residue at infinity is always zero
(Section 3.1.2.3, pp. 27-28, Mitrinović and Kečkić (1984)). For x 6= 0, 2, we have that
z = a1(x) and z = a2(x) are simple poles, yielding

1

2πi

∫

ρ
fk(z, x)dz =

1 + a1(x)

(a1(x)− 1)k(a2(x)− a1(x))
− 1 + a2(x)

(a2(x)− 1)k(a2(x)− a1(x))

=(2x)−k
bk/2c∑

i=0

[
2

(
k

2i+ 1

)
(−x)−1 +

(
k

2i+ 1

)
−
(
k

2i

)]
(−x)k−2i(x(x− 2))i

=

bk/2c−1∑

j=0

bk/2c∑

i=j

[(
i+ 1

j + 1

)(
k

2i+ 1

)
−
(

i

j + 1

)(
k

2i

)]
(−2)j+1−kx−j−1 (3.5.4)

+ (k mod 2)(−2)bk/2c+1−kx−bk/2c−1;

where the last equality is obtained by using the Binomial theorem. Plugging Eq. (3.5.4)
in Eq. (3.5.3), and dividing the outermost sum in odd and even k, we get, still for x 6= 0, 2,

(2n+ 1)!αn(x)

=
n∑

k=1

k−1∑

j=0

k∑

i=j

(2k)!

{
2n+ 1

2k

}[(
i+ 1

j + 1

)(
2k

2i+ 1

)
−
(

i

j + 1

)(
2k

2i

)]
(−2)j+1−2kx−j−1

+
n∑

k=0

k−1∑

j=0

k∑

i=j

(2k + 1)!

{
2n+ 1

2k + 1

}[(
i+ 1

j + 1

)(
2k + 1

2i+ 1

)
−
(

i

j + 1

)(
2k + 1

2i

)]
(−2)j−2kx−j−1

+
n∑

k=0

(2k + 1)!

{
2n+ 1

2k + 1

}
(−2)−kx−k−1.
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Then Eq. (3.5.1) can be obtained by merging the last two lines and rearranging the
indices.
Using Eq. (3.5.2), we easily see that, for Pn(x) = p0 + p1x+ . . .+ pnx

n,

p0 = (−2)−n(2n+ 1)!, pn = 1, (3.5.5)

i.e. Pn(x) will have n, potentially complex, roots, and they can not be zero. Moreover it
is easy to verify that f(z, x) solves the mixed partial differential equation

∂2

∂z2
f(z, x) =

[
(x− 1)

∂

∂x
+ x(x− 2)

∂2

∂x2

]
f(z, x), z ∈ C, x 6= 0. (3.5.6)

Then we take 2n − 1, n ∈ N, derivatives in z on both sides of Eq. (3.5.6); invoking
the Schwarz theorem, the product rule for the derivatives and evaluating the resulting
expression at z = 0, we obtain that the function αn(x) is given by recursion, for x 6∈ (0, 2),

(2n+ 3) (2n+ 1)αn+1(x) =
√
x(x− 2)

∂

∂x

[√
x(x− 2)

∂

∂x
αn(x)

]
, (3.5.7)

α0(x) = 1/x.

We now prove by induction the claim regarding the roots being real, distinct and greater
than 2. The cases α0(x) = 1/x and 6α1(x) = (x− 3)/x2 have respectively no and one
zero, so the claim can only be partially verified; then we start from α2(x) = (30− 15x+

x2)/(120x3), whose zeros are ξ2,1 = 1/2
(
15−

√
105
)
≈ 2.37652, ξ2,2 = 1/2

(
15 +

√
105
)
≈

12.6235, and they satisfy the claim. We now assume that the claim holds for αn(x), n ≥ 2,
and its zeros are 2 < ξn,1 < ξn,2 < . . . < ξn,n.
The derivative of αn(x) is of the form Qn(x)/xn+2, where (2n+ 1)!Qn(x) = x ∂

∂xPn(x)−
(1 + n)Pn(x). By Rolle theorem, Qn(x) has n − 1 real roots χn,i, i = 1, . . . , n − 1, such
that 2 < ξn,1 < χn,1 < ξn,2 < χn,2 < . . . < χn,n−1 < ξn,n. Using the product rule and the
value of the coefficients in Eq. (3.5.5), we get

∂

∂x
αn(x) ∼ −x−2/(2n+ 1)!→ 0, x→∞. (3.5.8)

Again by Rolle theorem, since ∂
∂xαn(x) → 0 and αn(x) → 0 as x → ∞, Qn(x) has a

zero at some point ξn,n < χn,n < ∞. For x ≥ 2, the function
√
x(x− 2) ∂

∂xαn(x) is well
defined and it is zero for x = 2 and x = χn,i, i = 1, . . . , n. With the same arguments as
before, we then obtain that ∂

∂x [
√
x(x− 2) ∂

∂xαn(x)] is zero for x = ξn+1,i, i = 1, . . . , n+ 1,
where 2 < ξn+1,1 < χn,1 < ξn+1,2 < χn,2 < . . . < χn,n < ξn+1,n+1 < ∞. Then by
Eq. (3.5.7), those zeros are also roots of, respectively, αn+1(x) and Pn+1(x). Since Pn+1(x)

is a polynomial of order n + 1, it can have only n + 1 roots, which were already found.
Moreover, they are all real, distinct and strictly greater than 2, and the claim is proven.
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Lemma 3.5.2. Suppose that <(µj) 6= 0 for all j = 1, . . . , q. Then we have, for any
t ∈ (0,∞) and ω ∈ R\{0},

lim
∆↓0

σ

√
∆

σ∆

1− cos(ωbt/∆c∆)

ω

sin(ω∆)

1− cos(ω∆)
<
(∏p

j=1(1− e∆(λj+iω))

Θ∆(eiω∆)

b(−iω)

a(−iω)

)

=
2− 2 cos(ωt)

ω2

(
1 + <(D(ω))

)

and

lim
∆↓0

σ

√
∆

σ∆

1− cos(ωbt/∆c∆)

ω
=
(∏p

j=1(1− e∆(λj+iω))

Θ∆(eiω∆)

b(−iω)

a(−iω)

)
= 0,

where D(ω) := −1 +
∏

j∈J(µj − iω)/(−µj − iω) and J := {j = 1, . . . , q : <(µj) < 0}.
Obviously, if <(µj) > 0 for all j = 1, . . . , q, then D(ω) = 0 for all ω ∈ R.

Proof. By Proposition 3.1.2, we have that η(ξj) ∈ (0, 1) for sufficiently small ∆. Hence,
for any ω ∈ R,
∏p

j=1(1− e∆(λj+iω))

Θ∆(eiω∆)

b(−iω)

a(−iω)
=

1∏p−q−1
j=1 (1 + η(ξj)eiω∆)

p∏

j=1

e∆(λj+iω) − 1

iω + λj

q∏

j=1

µj − iω
1− ζjeiω∆

= ∆p−q(1 +D(ω))

p−q−1∏

j=1

(1 + η(ξj))
−1 · (1 + o(1)) as ∆ ↓ 0.

Moreover, using Eq. (3.1.10), we obtain

σ

√
∆

σ∆
=

√
[2(p− q)− 1]! ·

∏p−q−1
j=1 η(ξj)

∆p−q−1
(1 + o(1)) as ∆ ↓ 0.

Since cos(ωbt/∆c∆) → cos(ωt) and ∆ sin(ω∆)/(1 − cos(ω∆)) → 2/ω as ∆ ↓ 0 for any
ω ∈ R\{0}, we can use the equality (cf. (Brockwell et al. 2013, proof of Theorem 3.2))
√

[2(p− q)− 1]! ·
∏p−q−1

j=1 η(ξj)
∏p−q−1

j=1 (1 + η(ξj))
=

∏p−q−1
j=1 |1 + η(ξj)|

∏p−q−1
j=1 (1 + η(ξj))

· (1 + o(1)) = 1 + o(1) as ∆ ↓ 0

to conclude the proof.

Lemma 3.5.3. Suppose that t ∈ (0,∞) and <(µj) 6= 0 for all j = 1, . . . , q, and let the
functions h∆,1(·), h∆,2(·) and h∆,3

bt/∆c(·) be defined as in the proof of Theorem 3.2.1. Then
there is a C > 0 such that, for any ω ∈ R and any sufficiently small ∆,

∣∣∣2<
(
h∆,1 · h∆,3

bt/∆c(ω) · h∆,2 · h∆,3
bt/∆c(ω)

)∣∣∣ ≤ h(ω),

where h(ω) :=
(
72p/22p+q + 1

)
t21(−1,1)(ω) +Cω−21R\(−1,1)(ω). Moreover, h is integrable

over the real line.
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Proof. We obviously have
∣∣∣2<

(
h∆,1 · h∆,3

bt/∆c(ω) · h∆,2 · h∆,3
bt/∆c(ω)

)∣∣∣ ≤
∣∣∣h∆,1 · h∆,3

bt/∆c(ω)
∣∣∣
2

+
∣∣∣h∆,2 · h∆,3

bt/∆c(ω)
∣∣∣
2

(3.5.9)
for any ω ∈ R and any ∆. Let us first consider the second addend on the RHS of
Eq. (3.5.9).
We obtain |h∆,2 · h∆,3

bt/∆c(ω)|2 = 2(1− cos(ωbt/∆c∆))/ω2 and since bt/∆c∆ ≤ t holds,
we can bound, for any ∆, the latter function by t2 on the interval (−1, 1) and by 4/ω2 on
R\(−1, 1).
As to the first addend on the RHS of Eq. (3.5.9), we calculate

∣∣∣h∆,1 · h∆,3
bt/∆c(ω)

∣∣∣
2

= σ2 ∆

σ2
∆

∏p
j=1

∣∣1− e∆(λj+iω)
∣∣2

|Θ∆(eiω∆)|2
|b(−iω)|2

|a(−iω)|2
· 1− cos(ωbt/∆c∆)

1− cos(ω∆)
.

(3.5.10)
Let now |ω| < 1 and suppose that ∆ is sufficiently small, i.e. the following inequalities

will be true for any |ω| < 1 whenever ∆ is sufficiently small. Using |1 − ez| ≤ 7/4|z| for
|z| < 1 (see, e.g., (Abramowitz and Stegun 1974, 4.2.38)) yields

∏p
j=1

∣∣1− e∆(λj+iω)
∣∣2

|a(−iω)|2
≤
(

7

4
∆
)2p

.

Then, (1 − cos(ω∆))/(ω∆)2 ≥ 1/4 together with 4(1 − cos(ωbt/∆c∆))/ω2 ≤ 2t2 (see
above) implies

1− cos(ωbt/∆c∆)

1− cos(ω∆)
≤ 2
(
t

∆

)2

.

As in the proof of Lemma 3.5.2 we write Θ∆(z) =
∏p−q−1

j=1 (1+η(ξj)z)·
∏q

j=1(1−ζjz), where
ζj = 1 − sgn(<(µj))µj ∆ + o(∆) (see Chapter 2, Theorem 2.1). Since∏q

j=1

(∣∣1− ζjeiω∆
∣∣ /∆

)2 ≥
∏q

j=1 1/2 |sgn(<(µj))µj − iω|2, we further deduce

|b(−iω)|2∏q
j=1 |1− ζjeiω∆|2

≤ 2q

∆2q
.

Again due to Eq. (3.1.10), we obtain

σ2 ∆

σ2
∆

p−q−1∏

j=1

∣∣1 + η(ξj)e
iω∆
∣∣−2 ≤ 2 · [2(p− q)− 1]!

∆2(p−q−1)

p−q−1∏

j=1

|η(ξj)|
|1 + η(ξj)eiω∆|2

and since |η(ξj)| < 1 for all j (see Proposition 3.1.2) we also have that |1 + η(ξj)e
iω∆| ≥

1
2 |1 + η(ξj)| for all j, resulting in

σ2 ∆

σ2
∆

p−q−1∏

j=1

∣∣1 + η(ξj)e
iω∆
∣∣−2 ≤ 22(p−q)−1

∆2(p−q−1)
· [2(p− q)− 1]!

p−q−1∏

j=1

|η(ξj)|
|1 + η(ξj)|2

=
22(p−q)−1

∆2(p−q−1)
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where the latter equality follows from (Brockwell et al. 2013, proof of Theorem 3.2). All
together the RHS of Eq. (3.5.10) can be bounded for any |ω| < 1 and any sufficiently
small ∆ by (7/2)2p 2−qt2.

It remains to bound the RHS of Eq. (3.5.10) also for |ω| ≥ 1. Hence, for the rest of the
proof let us suppose |ω| ≥ 1 and in addition we assume again that ∆ is sufficiently small
in order that all the following inequalities hold. We are going to show that

σ2 ∆

σ2
∆

∏p
j=1

∣∣1− e∆(λj+iω)
∣∣2

|Θ∆(eiω∆)|2
|b(−iω)|2

|a(−iω)|2
1− cos(ωbt/∆c∆)

1− cos(ω∆)
≤ C

ω2

for some C > 0. Since
∣∣σ2∆/σ2

∆

∣∣ ≤ const.·
∣∣∆2/∆2(p−q)

∣∣ (see (3.1.10)) and since
∏p−q−1

j=1 |1+

η(ξj)e
iω∆|−2 ≤

∏p−q−1
j=1 (1 − |η(ξj)|)−2 ≤ const. (cf. Proposition 3.1.2), it is sufficient to

prove

(ω∆)2

∆2(p−q)

∏p
j=1

∣∣1− e∆(λj+iω)
∣∣2

∏q
j=1 |1− ζjeiω∆|2

|b(−iω)|2

|a(−iω)|2
1− cos(ωbt/∆c∆)

1− cos(ω∆)
≤ C (3.5.11)

for some C > 0. The power transfer function satisfies |b(−iω)|2/|a(−iω)|2 ≤ const./(ω2(p−q)+

1) for any ω ∈ R. Thus, Eq. (3.5.11) will follow from

(ω∆)2

(ω∆)2(p−q) + ∆2(p−q)

∏p
j=1

∣∣1− e∆(λj+iω)
∣∣2

∏q
j=1 |1− ζjeiω∆|2

1− cos(ωbt/∆c∆)

1− cos(ω∆)
≤ C. (3.5.12)

We even show that Eq. (3.5.12) is true for any ω ∈ R. However, using symmetry and
periodicity arguments it is sufficient to prove Eq. (3.5.12) on the interval [0, 2π

∆ ]. We split
that interval into the following six subintervals

I1 :=

[
0, min
j=1,...,q

|µj |
2

]
, I2 :=

[
min

j=1,...,q

|µj |
2
, max
j=1,...,q

2|µj |
]
, I3 :=

[
max
j=1,...,q

2|µj |,
π

∆

]
,

I4 :=

[
π

∆
,
2π

∆
− max
j=1,...,q

2|µj |
]
, I5 :=

[
2π

∆
− max
j=1,...,q

2|µj |,
2π

∆
− min
j=1,...,q

|µj |
2

]
and

I6 :=

[
2π

∆
− min
j=1,...,q

|µj |
2
,
2π

∆

]
.

For any ω ∈ I1∪ I6, the fraction
1−cos(ωbt/∆c∆)

1−cos(ω∆)
can be bounded by bt/∆c2. In the other

intervals we have the obvious bound 2
1−cos(ω∆)

for that term.
Now, for any j = 1, . . . , p, we have, as ∆ ↓ 0,

∣∣1− e∆λj · eiω∆
∣∣2 ≤ 2

∣∣1− eiω∆
∣∣2 + 4∆2 |λj |2 = 8 sin2

(
ω∆

2

)
+ 4∆2 |λj |2 ≤ 4∆2

(
ω2 + |λj |2

)
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if ω ∈ I1 ∪ I2 ∪ I3, and
∣∣1− e∆λj · eiω∆

∣∣2 ≤ 4∆2
(
(2π/∆− ω)2 + |λj |2

)
if ω ∈ I4 ∪ I5 ∪ I6.

The first fraction on the LHS of Eq. (3.5.12) satisfies

(ω∆)2

(ω∆)2(p−q) + ∆2(p−q) ≤





min
j=1,...,q

|µj |
2 · ∆2

∆2(p−q) , if ω ∈ I1,

(ω∆)2

(ω∆)2(p−q) , if ω ∈ I2 ∪ I3,
(2π)2

π2(p−q) , if ω ∈ I4 ∪ I5 ∪ I6.

Then, for any j = 1, . . . , q and ω ∈ I1 ∪ I6, we obtain

∣∣1− ζjeiω∆
∣∣2 =

∣∣1− (1− sgn(<(µj))µj∆ + o(∆))eiω∆
∣∣2 ≥ 1

2
∆2 |sgn(<(µj))µj − iω|2

≥ 1

8
∆2 |µj |2 .

If ω ∈ I3, then we have

∣∣1− ζjeiω∆
∣∣2 ≥

(∣∣1− eiω∆
∣∣− |µj + o(1)|∆

)2
=

(
2 sin

(
ω∆

2

)
− |µj + o(1)|∆

)2

≥ ∆2
(

3

5
ω − |µj + o(1)|

)2

and likewise, for ω ∈ I4, we deduce
∣∣1− ζjeiω∆

∣∣2 ≥ ∆2
(

3
5(2π

∆ − ω)− |µj + o(1)|
)2
. On I2

we get for arbitrary ε > 0

∣∣1− ζjeiω∆
∣∣2 = 2(1− cos(ω∆)) · (1−∆ sgn(<(µj))<(µj) + o(∆))

+ 2 sin(ω∆) · (−∆ sgn(<(µj))=(µj) + o(∆)) + ∆2|µj |2 + o(∆2)

≥ (ω∆)2 · (1− ε)− 2(ω∆) ·∆ |=(µj)| · (1 + ε) + ∆2
(
|µj |2 + o(1)

)
=: f∆

ε (ω∆).

Since f∆
ε (ω)/ω2 → 1− ε (ω →∞) and f∆

ε (ω)/ω2 →∞ (ω → 0), a (global) minimum of
f∆
ε (ω)/ω2 on (0,∞) could be achieved in any ω∗ with

(
d

dω
f∆
ε (ω)
ω2

)
(ω∗) = 0. The only such

value is ω∗ =
∆(|µj |2+o(1))
(1+ε)|=(µj)| . Since

f∆
ε (ω∗)

(ω∗)2
= 1− ε− (1 + ε)2 |=(µj)|2

|µj |2 + o(1)
≥ (1 + ε)

<(µj)
2

|µj |2
− 3ε− ε2 ≥ 1

2

<(µj)
2

|µj |2
;

if we choose ε = 1
6
<(µj)

2

|µj |2 , we obtain f∆
ε (ω)
ω2 ≥ 1

2
<(µj)

2

|µj |2 for any ω ∈ (0,∞). Hence,

∣∣1− ζjeiω∆
∣∣2 ≥ f∆

ε (ω∆) ≥ 1

2

<(µj)
2

|µj |2
(ω∆)2 for all ω ∈ I2.

Using periodic properties of the sine and cosine terms, we likewise get

∣∣1− ζjeiω∆
∣∣2 ≥ 1

2

<(µj)
2

|µj |2
∆2
(

2π

∆
− ω
)2

for any ω ∈ I5.
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Putting all together, we can bound the LHS of Eq. (3.5.12) in I1 by

min
j=1,...,q

|µj |
2
· (bt/∆c∆)2

∆2(p−q)

4p∆2p ·
∏p

j=1

(
mink=1,...,q |µk|2/4 + |λj |2

)

8−q∆2q
∏q

j=1 |µj |2

≤ min
j=1,...,q

|µj |
2
· t2 ·

4p+q ·
∏p

j=1

(
mink=1,...,q |µk|2/4 + |λj |2

)
∏q

j=1
1
2 |µj |2

= C,

in I2 by

2(ω∆)2

1− cos(ω∆)

4p∆2p ·
∏p

j=1

(
4 maxk=1,...,q |µk|2 + |λj |2

)

(ω∆)2p ·
∏q

j=1
1
2
<(µj)2

|µj |2

≤
5 · 42p ·

∏p
j=1

(
4 maxk=1,...,q |µk|2 + |λj |2

)

minj=1,...,q |µj |2p ·
∏q

j=1
1
2
<(µj)2

|µj |2
= C,

in I3 by

2(ω∆)2

1− cos(ω∆)

4p(ω∆)2p ·
∏p

j=1

(
1 +

|λj |2
4 maxk=1,...,q |µk|2

)

(ω∆)2(p−q) · ( 1
20ω∆)2q

≤ π2 4p 202q

p∏

j=1

(
1 +

|λj |2
4 maxk=1,...,q |µk|2

)
= C,

in I4 by

(2π)2

π2(p−q)
2

1− cos(ω∆)

4p(2π − ω∆)2p ·
∏p

j=1

(
1 +

|λj |2
4 maxk=1,...,q |µk|2

)

20−2q (2π − ω∆)2q

≤ 4p+1 202q

p∏

j=1

(
1 +

|λj |2
4 maxk=1,...,q |µk|2

)
2 · (2π − ω∆)2

1− cos(2π − ω∆)

≤ π2 4p+1 202q

p∏

j=1

(
1 +

|λj |2
4 maxk=1,...,q |µk|2

)
= C,

in I5 by

(2π)2

π2(p−q)
2

1− cos(ω∆)

4p∆2p ·
∏p

j=1

(
4 maxk=1,...,q |µk|2 + |λj |2

)

∆2q
∏q

j=1
1
8 mink=1,...,q |µk|2(<(µj)/|µj |)2

≤ (2π)2

π2(p−q)

4p ·
∏p

j=1

(
4 maxk=1,...,q |µk|2 + |λj |2

)
∏q

j=1
1
8 mink=1,...,q |µk|2(<(µj)/|µj |)2

2∆2

1− cos(2π − ω∆)

≤ (2π)2

π2(p−q)

4p ·
∏p

j=1

(
4 maxk=1,...,q |µk|2 + |λj |2

)
∏q

j=1
1
8 mink=1,...,q |µk|2(<(µj)/|µj |)2

5 · 4
minj=1,...,q |µj |2

= C,
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and, finally, in I6 by

(2πbt/∆c)2

π2(p−q)

4p∆2p ·
∏p

j=1

(
mink=1,...,q |µk|2/4 + |λj |2

)

8−q∆2q
∏q

j=1 |µj |2

≤ (2πt)2

π2(p−q)

4p+q ·
∏p

j=1

(
mink=1,...,q |µk|2/4 + |λj |2

)
∏q

j=1
1
2 |µj |2

= C.

This shows Eq. (3.5.12) and thus concludes the proof.
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4. On the data acquisition process
in turbulence experiments

The recording process of windspeed data and subsequent data processing are
discussed. Those operations can lead to artefacts that can be misinterpreted
or can affect the estimation of physically meaningful quantities.

4.1. Introduction

This Chapter is organised as follows: in Section 2 we review the data acquisition process
and we present possible issues that can arise in the analysis of the data; in Section 3
we show that the discretisation error is approximately uniform and independent of the
measured value if the discretisation level is small and it can be safely ignored in the esti-
mation of second order quantities. In Section 4 we analyse the Brookhaven dataset, which
presents a very pathological histogram of the increments, especially for small increments.

4.2. Experimental data

A direct measurement of a physical quantity is often difficult or impossible to perform
directly. Therefore, the interested quantity must be indirectly inferred from other, more
accessible measurements. The inference mostly involves electronic devices, whose output
can be related with the quantity of interest.
To measure turbulent velocities for scientific purposes hot-wire anemometery is widely

employed. A hot-wire consists of a thin wire of metal, with two or more prongs, charac-
terised by a high electric resistance, being flown through by an electric current. The wire
is heathen up to a temperature much higher than the one of the flow being measured,
and this temperature will be kept constant by an ad-hoc circuitry. Finally, the hotwire is
immersed in the fluid and its temperature will drop as the colder fluid flows around it.
This cooling effect, which is proportional to the flow velocity, will be compensated with
a variation of the voltage at one end of the circuitry. What we actually observe is then a
function of the velocity of the flow. The whole process is afflicted by various errors, which
can be kept at bay, but not eliminated, by a correct preparation of the experiment. For
further reference and details we refer to Tropea et al. (2008) and Bruun (1995).
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4.2 Experimental data

4.2.1. Data acquisition process: hotwire anemometer

Here we schematise the operations performed to collect windspeed data. We will denote
the voltage, which is the actual output of the hotwire, with V 0. Moreover, to stress when
a quantity X is a continuous time signal, we will use Xt, where t ∈ R. For the discrete
time values, the notation Xi, for i ∈ Z, is used.

Figure 4.1.: Succession of typical operations performed on the data, as reported in Bruun
(1995).

As mentioned before, the output of a hotwire is not a windspeed, but the voltage differ-
ence V 0

t between the two ends of the anemometer. This signal will be filtered by applying
a low-pass filter, with cut off frequency set at half (or less) of the sampling frequency.
The rationale for this operation is the Shannon-Nyquist theorem that assures that a good
reconstruction of the signal in the time domain can be obtained only for information
contained in the part of the spectrum with frequency f < f0/2. All those operations are
applied to the analog (i.e. continuous time) signal through electronic devices.
The filtered signal Ṽ 0

t is passed through an amplifier, yielding the amplified signal
V 1
t = aṼ 0

t , where a > 0 is the gain factor.
After these manipulations the amplified signal is passed through an analog-to-digital

converter (A/C) in order to get a discretised sequence of values, to be used by a computer.
The output of the A/C can only assume a discrete number p of values, called bits. Let
us assume that the signal to be sampled is included in the interval E = [V , V ], then
we call |E| = V − V the voltage scale. The voltage scale can be adjusted, depending on
the amplitude of the incoming signal, remaining fixed during the experiment. Since only
signals with values in E can be properly sampled, it is necessary to consider |E| large
enough in order such that

V ≤ aṼ 0
t ≤ V t ∈ [0, T ],

otherwise the experiment must be performed again, since the exceeding values will be
censored, i.e. set to the nearest value inside E. Then the digital data will have a truncation
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4.2 Experimental data

level of
α =

|E|
2p − 1

, (4.2.1)

that is, every variation of the voltage smaller than α will not be visible in the discretised
data. Now we obtain discrete-time data Vi, for i = 0, . . . , bT/nc :

V
{α}
i = α

⌊
Ṽ 1(i/n)

α
+ 1/2

⌋
= α

⌊
Ṽ 0(i/n)

α′
+ 1/2

⌋
; (4.2.2)

where α′ = |E|/a(2p − 1) is the equivalent truncation level of the signal V 0
t .

In general, the behaviour of the A/C converter is non-linear, i.e. the output and the
input are not related by a simple linear dependence. The voltage scale |E| and the amplifier
gain have to be chosen in order to minimise the truncation level but considering the
specifics of the electronic equipment. In fact, every electronic device has precise operative
ranges, where the behaviour of each instrument is, to a satisfying level, linear. Usual values
in the field of hotwire anemometry are p = 12 bit, |E| = 20 volt, implying α ≈ 0.005, i.e.
the voltage increment has no more than 2 reliable decimal places.
The last step to get velocity data is the calibration curve: there exists a determin-

istic relationship between voltage and windspeed, which has to be determined for each
anemometer. An anemometer is normally tested in a turbulence facility, like a wind tun-
nel, with a stable, constant and known speed and turbulence; the output voltage is then
recorded. The procedure is repeated for some wind speeds (usually 10-30 values) and
then results are interpolated, to obtain a calibration curve which is a continuous function
fθ : [Vl, Vh]→ [0, vmax] depending on a vector θ of parameters.

Example 4.2.1. The most common interpolating function is given by King law

V 2
t = k0 + k1v

r
t , V ∈ E, (4.2.3)

where the exponent n depends on the geometry of the sensor. Then, for real positive k0,
k1 and r,

fθ (Vt) =
((
V 2
t − k0

)
/k1

)1/r

and the vector is θ = (k0, k1, r). Note also that fθ is increasing and concave. Even if the
voltage signal had symmetric increments, the windspeed will in general not.

This procedure is normally too expensive to be performed for each commercially avail-
able anemometer, therefore it is reserved only to those to be employed in high precision
scientific measurements. For all other purposes the producer provides a standard calibra-
tion curve, i.e. factory values for the parameter list θ.
Although the discretisation procedure in the voltage data is clear, for wind data it is

not the case. That can be seen by using the chain rule

∂v

∂t
=

∂v

∂V

∂V

∂t
≈ f ′θ(V

{α}
i )

V
{α}

(i+1)
− V {α}i

∆
.
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4.2 Experimental data

Now the discretisation step depends on the derivatives of the calibration curve, which is
not usually available with the time-series. We shall now use an argument to recover the
original voltage data.

4.2.2. Recovering the parameters

Let us suppose that the interpolation function fθ is smooth enough to have all the needed
derivatives. Using the Taylor expansion for fθ (V ) we obtain, for some integer K and a
small ∆V ,

∆v = fθ(V
{α} + ∆V )− fθ(V {α}) =

K∑

i=1

1

i!
f

(i)
θ (V {α})(∆V )i + o

(
(∆V )K

)
. (4.2.4)

We conclude from the RHS of (4.2.4) that the new discretisation steps depend on the
derivatives of the calibration curve f at voltage V and on the discrete increments ∆V .
Since Taylor formula is precise only for small ∆V and, by smoothness of f , for small ∆v,
it makes sense to consider only the increments smaller than a threshold β. Then for all
ji ∈ N such that |∆jiv| < β:

∆[β]v = (∆j0v, . . . ,∆jnv)

where ∆jv = vj+1 − vj . Then we summarise the associated levels v[β] as

v[β] = (vj0 , . . . , vjn).

Plotting ∆[β]v versus v[β] a striking visualisation of the discretisation effect can be ob-
served, as shown in Figure 4.2.
Null increments are of course distributed along all the measurement levels, but other

increments move along solid curves, as the speed varies; this is due to the variation of the
derivatives of fθ. Then we fix V and we get discretised increments δiv := fθ(V + i∆V )−
fθ(V ); using Taylor formula:

δ1v =
K∑
i=1

1
i!f

(i)
θ (V )(∆V )i + o

(
(∆V )K

)

...
...

δKv =
K∑
i=1

1
i!f

(i)
θ (V )(K∆V )i + o

(
(∆V )K

)
(4.2.5)

Since we only have velocity data, we express the formulas above in terms of the latter
with the change of variable V = f−1

θ (v). Then, in the light of (4.2.5) we can interpret
Figure 4.2 in two different manners:
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4.2 Experimental data

Figure 4.2.: ∆[β]v vs. v[β] for the Brookhaven dataset (see Section 4.3), β = 0.05. The non-
linear behaviour of the curves is given by derivatives of King law. Note that
92.36% of all increments of Brookhaven dataset belongs to ∆0.05v, including
the already mentioned 23% of null increments (in red).

• We fix v and we look at the different branches of the increments: here we see how the
velocity can only discretely jump to some predefined values. That happens because
the voltage is moving with step ∆V .

• We look only at the first, upper branch (i.e. the one composed by the smallest non-
null increments). If we move along this curve, we have fixed ∆V and we vary v, that
is, we see how the derivatives of fθ influence the increments.

The first outlook gives us an immediate feeling of the discreteness of our data, but the
second one is more productive. Since ∆V ∼ (212 − 1)−1 = 2.4420 · 10−4, we should be
able to reach a good approximation with low order Taylor series.
We propose the following strategy to recover the parameter vector θ.
Take increments ∆(1)v := {∆v : belongs to the first branch} and the levels v(1) := {v :

belongs to the first branch}. Furthermore, let φ = (θ,∆V ) be the extended parameter
vector of the Taylor series and let φ(0) be a guess on φ, which we take as initial value.
Then we perform a non-linear least squares fitting on the first order Taylor series

∆(1)v = f ′θ(f
−1
θ (v(1)))∆V (4.2.6)

returning the estimate φ(1) + o(∆V ). If the estimate is too crude, we may need to take
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4.3 A concrete example

higher order Taylor polynomials into account, getting the estimate, for instance, φ(2) from
a least squares fitting on the second order:

∆(1)v = f ′θ(f
−1
θ (v(1)))∆V + f ′′θ (f−1

θ (v(1)))
∆V 2

2
+ o((∆V )2) (4.2.7)

improving φ(1), and so on. If the function fθ is complicated, as the one in Example 4.2.1, it
may be a good idea to start with a Taylor expansion to the first order. If the interpolating
function fθ is polynomial, we can directly use the Taylor series of the same order as fθ.

4.3. A concrete example

We shall recover the voltage data from an atmospheric turbulence time-series, the Brookhaven
dataset. It is a high frequency dataset, recorded via hot-wire anemometry techniques; a
full account of the data can be found in Drhuva (2000) and in Chapter 5. The Brookhaven
dataset consists of 20 · 106 data points sampled at 5 kHz (i.e. 5 · 103 points per second).
The acquisition process with this kind of technique was described in Section 4.2.
We will use the strategy explained in Section 4.2.2 on the Brookhaven dataset, in order

to recover its true discretisation pattern. As stated in Drhuva (2000), the Brookhaven
data were obtained by using King law (Example 4.2.1). For this interpolating function we
report here the derivatives up to order 3:

f ′θ(f
−1
θ (v)) =

2v1−r√k0 + k1vr

k1r

f ′′θ (f−1
θ (v)) =

2v1−r

k1r
+

4 (1− r) v1−2r (k0 + k1v
r)

k2
1

f ′′′θ (f−1
θ (v)) =

12 (1− r) v1−2r
√
k0 + k1vr

k2
1

+
8r (1− 2r) (1− r) v1−3r (k0 + k1v

r)3/2

k3
1

For the first branch the behaviour mainly depends on the first derivative, allowing us to
make a guess on the parameter r, which gives the shape of the curve. For small values of
v the curve tends to zero, and for big values of v it grows somehow linearly, we can then
suppose r ∈ (0, 1), with an initial guess r(0) = 0.5.
Since the mean value of the windspeed was unfortunately subtracted from the Brookhaven

data, instead of the actual velocities v, we have to consider the Reynolds decomposition

vt = ut + v0, t ∈ [0, T ],

where v0 is the unknown average windspeed. Since the derivatives depend in a nonlin-
ear way on the values of the windspeed, this information is important and it has to be
recovered as well.
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4.3 A concrete example

In Drhuva (2000), Table 1, for entry 3 (BNL) v0 = 8.3 is reported, but it was calculated
on 4 × 107 values, while our dataset has "only" 2 × 107 data points. Two strategies are
viable: we can either assume that the average speed given in Drhuva (2000) is correct, or
we can use it as a guess, increasing the numbers of parameters to be fitted by 1.
We tried both strategies, getting similar results; it is very interesting to notice how a

slight variation in the value of v0 causes a relatively better fit, similarly for the residuals
listed in Table 1. Nonetheless, the really close estimation of average windspeed on only
half the dataset is, at least, a good indication of the stationarity of this dataset.

Table 4.1.: Non-linear least squares fitting for Brookhaven dataset.

k0 k1 r ∆V v0 max(res) max(res/∆(1)v)
φ(0) 12 12 0.5 10 · (212 − 1)−1 8.3 - -
φ(1) 13.0084 10.4190 0.5005 13.40× 10−4 8.3 8.78× 10−6 0.0051
φ(2) 12.9990 10.4449 0.5010 13.40× 10−4 8.3 8.97× 10−6 0.0052
φ(1) 13.0386 10.5953 0.5000 13.31× 10−4 8.3115 9.87× 10−9 3.23× 10−6

φ(2) 13.0316 10.5653 0.4999 13.32× 10−4 8.3120 1.05× 10−8 3.21× 10−6

Once we have estimated θ, we can proceed to reconstruct the voltage data and to
compare them to the windspeed data. In Figure 4.3 a,d) we report the histogram of the
increments, for increments within three standard deviations. We divide the data in 10000
bins in order to highlight the fine discretised structure of the considered data. In Figure
4.3 a) the peculiar structure already seen in Figure 4.2 produce an erratic behaviour in
the density for the increments smaller than a standard deviation. On the other hand, the
voltage data now clearly show the neat discretised structure imposed by the sampling
process described in Section 4.2.
From the voltage data we obtain that ∆V = 0.0011, which is not that far from the

value estimated by the least squares fitting. We do stress that the parameter ∆V is not a
parameter of King law, but it is necessary, since it gives the scaling in the Taylor series.
Eq. (4.2.1) yields a voltage scale |E| = 0.0011 · (212 − 1) ≈ 4.5V . This is in agreement
with the recovered data, as

max
i=1,...,n

Vi − min
i=1,...,n

Vi = 2.8763.

It suggests that the experimenter took a large, but reasonable voltage scale to be able to
sample the whole signal, sacrificing some accuracy.
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4.3 A concrete example

4.3.1. Comparison of voltage and windspeed

Since we have voltage and windspeed, we can perform a standard analysis on both of them,
in order to understand how we can profit from the additional knowledge of the sampling
process. Due to some inertia of the components of every electric device, a circuitry reacts
to a generic input with a smoother output. Therefore, the voltage (and as a consequence
the windspeed) must enjoy a rather strong form of continuity. A first comparison between

Table 4.2.: normalized moments of ∆V and ∆v.

mean variance µ3 µ4 µ5 µ6 µ7

∆V −1.54× 10−8 1.87× 10−5 0.62 31.48 143.61 1.84×104 3.76×105

∆v −1.22× 10−7 9.62× 10−4 0.64 25.93 82.37 4.69×103 3.55×104

the two datasets can be performed by looking at their normalised moments. In general, the
voltage increments have higher normalised moments (see Table 4.2) than the windspeed,
suggesting that the voltage increments are more heavy tailed than windspeed ones. This
is clearly showed by the log-histograms of both considered increments, Figure 4.3 b, e).
A popular choice for fitting the distribution of the time increments of turbulence is the

Normal-Inverse Gaussian distribution (Barndorff-Nielsen and Schmiegel (2008b)) and the
Generalised Hyperbolic distribution (Birnir (2013)), which are able to capture skewness
and semi-heavy tails. Within our CMA framework, we will propose and fit a model for the
distribution of the driving noise W in Chapter 5. Since the second-order properties are of
paramount importance in this dissertation, especially in Chapter 2 and 3 and we compare
the spectral densities of both voltage and wind data. As customary in physics, we show
in Figure 4.3 c, f) the so called compensated spectral densities, which are defined to be
ϕ5/3f∆(ϕ). Through the compensation, the region where the spectral density decays as
prescribed by the 5/3-law should appear flat. Regardless of the non-linearity of the relation
linking the voltage and the windspeed, the respective spectral density look similar, with a
well-developed inertial range, and a fast decaying dissipation range for high frequencies.
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Figure 4.3.: Statistical comparison between voltage and wind data. a, d) Histograms of
the increments of the voltage and the windspeed (10000 bins). Only values
between ±3

√
E[(∆V )2] and ±3

√
E[∆v]2 are shown. b, e) Log-histograms

of the increments (1000 bins). The solid line denotes a standard Gaussian
distribution. c, f) Compensated spectral density f̂∆(ϕ)ϕ5/3 for the velocity
and the voltage. The spectral density is estimated with the Welch method
(Welch (1967)). The flat regions denote where the Kolmogorov 5/3 law holds.
The spikes can be attributed to some periodicity effects in the experimental
settings.
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5. Empirical modelling of turbulence

A general model for stationary, time-wise turbulent velocity is presented and
discussed. This approach, inspired by modelling ideas of Barndorff-Nielsen and
Schmiegel (2008a), is coherent with the K41 hypothesis of local isotropy, and
it allows us to separate second order statistics from higher order ones. The
model can be motivated by Taylor hypothesis and a relation between time
and spatial spectra. The non-parametric method analysed in Chapter 3 will
be employed to estimate the increments of the driving noise of the CMAmodel.
A parametric model for the driving noise is proposed, able to reproduce the
main features of the non-parametric estimate.

5.1. Introduction

TheWold-Karhunen representation (Doob (1990), p. 588) states that every non-deterministic,
one dimensional, stationary stochastic process X = {Xh}h∈R, whose two-sided power
spectrum E(ξ) satisfyies the Paley-Wiener condition

∫ ∞

−∞

| logE(ξ)|
1 + ξ2

dξ <∞, (5.1.1)

can be written as a causal moving average (CMA)

Xh = E[X] +

∫ h

−∞
g(h− s)dWs, h ∈ R, (5.1.2)

where W = {Wh}h∈R is a process with uncorrelated and weakly stationary increments,
E[dWh] = 0 and E[(dWh)2] = dh. The kernel g is an element of the Hilbert space L2, i.e.
‖g‖2L2 :=

∫∞
0
|g(s)|2ds <∞ and it is causal, i.e. it vanishes on (−∞, 0).

The converse is also true, i.e. every stationary stochastic process of form (5.1.2) satisfies
(5.1.1). If we consider h to be time, the representation (5.1.2) has the physically amenable
feature of being causal, i.e. X depends only on the past values of W . The autocovariance
function of X has a simple expression: for τ ∈ R,

γX(τ) = E[(Xh+τ − E[X])(Xh − E[X])] =

∫ ∞

0

g(s+ |τ |)g(s)ds, (5.1.3)
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while the two-sided power spectrum is E(ξ) = (2/π)
∫∞

0
γX(s) cos(ξs)ds = |F{g(·)}|2(ξ),

where

F{g(·)}(ξ) =
1√
2π

∫ ∞

0

g(s)e−iξsds, ξ ∈ R,

denotes the Fourier operator. Condition (5.1.1) is crucial, since for a general stationary
process a representation similar to (5.1.2) holds, but the kernel g may not vanish on
(−∞, 0) and the integrals in (5.1.2) and (5.1.3) are extended to the whole real line (Yaglom
(2005), Ch. 26). The rate of decay of the spectrum plays a pivotal role in determining
whether a given process has representation (5.1.2) or not, since (5.1.1) excludes spectra
decaying at infinity as exp(−ξ) or faster. In this context h or ξ do not necessarily denote
time or frequency. In the following x will denote a stream-wise spatial coordinate, κ1 the
associate wavenumber, t a time coordinate, and ω = 2πf the associated angular velocity
with frequency f .
In the turbulence literature the spectral properties of turbulent velocity fields were

intensively investigated, starting from Kolmogorov K41 theory (Kolmogorov (1941b,a,
1942)). In the Wold-Karhunen representation (5.1.2) the second order properties of X
depend only on the function g, with no necessity to specify the driving noise W . This is
analogous to K41 theory, where the second order properties of the velocity field can be
handled without considering the intermittent behaviour of the turbulent flow.
From now on, we shall denote the mean flow velocity component by V . Moreover, we

work with the usual Reynolds decomposition V = U + u, where U denotes the mean
velocity and u is the time-varying part of V . Then Re := UL/ν is the Reynolds number
of the flow, by L we denote a typical length, and ν is the kinematic viscosity of the flow.
In K41 the first universality hypothesis claims that, for locally isotropic and fully devel-

oped turbulence (i.e. Re � 1), the spatial power spectrum EL of the mean flow velocity
fluctuations, has the universal form (see e.g. Pope (2000), Section 6.5.4)

EL(κ1) = (εν5)1/4ΦL(ηκ1) = v2
ηηΦL(ηκ1), (5.1.4)

where η = (ν3/ε)1/4 and vη = (εν)1/4 are, respectively, Kolmogorov length and velocity,
and ΦL(·) is a universal, a-dimensional function of a-dimensional argument. As a cor-
nerstone of the K41 theory, much effort has been devoted to verify Eq. (5.1.4) and to
determine the functional form of ΦL. For finite Re we stress the dependence of ΦL in
(5.1.4) on Re with the notation ΦRe

L .
In an experimental setting with a probe in a fixed position, the Taylor hypothesis (Taylor

(1938)) can be used to estimate the spatial power spectrum with the time spectrum EτL,
with the formula (Gledzer (1997), Eq. (7))

EL(κ1) = UEτL(Uκ1), (5.1.5)

where κ1 = 2πf/U . This is regarded as a good approximation, when the turbulence
intensity I =

√
E[u2]/U � 1 (Wyngaard and Clifford (1977), Lumley (1965)). Relation
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(5.1.5) is a first order approximation, where in general higher order corrections are feasible
(Gledzer (1997), Lumley (1965)), and also error bounds can be obtained.
Comparison of a large number of experimental low-intensity data sets (Gibson and

Schwarz (1963), Saddoughi and Veeravalli (1994), Saddoughi (1997)) shows that in the
dissipation range ΦRe

L is unvarying on a wide range of Reynolds numbers. On the other
hand, the inertial range does not exist for small Reynolds number (Champagne (1978)),
however, its length increases with the Reynolds number. The supposed infinite differen-
tiability of the solution of the Navier-Stokes equation yields ΦL to decrease faster than
any power in the far dissipation range (κ1η > 1) (Von Neumann (1961-1963)). Moreover,
the link between second order properties and third order ones is given by von Kármán-
Howart-Monin relation (Kolmogorov (1941a), Pope (2000), Eq. 6.83, Lindborg (1999))

S3(x, t) = −4

5
εx+ 6ν

dS2

dx
− 3

x4

∫ x

0

z4dS2

dt
dz, (5.1.6)

where Sn(x, t) = E[(u(s+x, t)−u(s, t))n] is the n-th order longitudinal structure function.
Formula (5.1.6) has been used in Sirovich et al. (1994) to determine an expression for the
spatial spectrum which decreases like κα1 exp(−βκ1) as κ1 tends to infinity and α and β
depend on the Reynolds number. Numerical (see e.g. Chen et al. (1993), Martínez et al.
(1997), Ishihara et al. (2007), Schumacher (2007), Lohse and Müller-Groeling (1995)) and
experimental (Saddoughi and Veeravalli (1994), Saddoughi (1997)) studies confirmed such
exponential decay in the dissipation range. Under the hypothesis of local isotropy the local
rate of energy dissipation is (see e.g. Pope (2000), Eq. 6.314)

εx = 15ν(∂xV )2 ≈ 15ν

U2
(∂tV )2 = εt, t ∈ R, (5.1.7)

where the approximation with the instantaneous rate of energy dissipation εt follows from
Taylor hypothesis (see e.g. Gledzer (1997), Eq. (1)). As customary in physics literature,
we will drop the term rate for the sake of simplicity. The average energy dissipation can be
calculated directly from the spatial spectrum (Batchelor (1953)) as (see e.g. Pope (2000),
Section 6.5.4)

ε := E[εx] = 15ν

∫

R
κ2

1EL(κ1)dκ1≈ E[εt], (5.1.8)

where the integrand κ2
1EL(κ1) for κ1 > 0 is the dissipation spectrum. An important

fingerprint of the non-linearity of turbulence is given by it intermittent behaviour, that
is, that the energy dissipation is highly correlated. That means that we observe period
of high energy dissipation and periods of low energy dissipation, in analogy to what
is called volatility clustering in finance. The estimated autocovariance function of the
surrogated energy dissipation usually behaves as power law, decaying almost universally
with exponent −0.25 (Sreenivasan and Kailasnath (1993), Pope (2000), Eq. 6.317), with
a weak dependence on the Reynolds number. The observed power law behaviour of the
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empirical autocovariance function cannot hold for every lag, but it must not near to the
origin and for large lags. The matter was studied in great detail by Cleve (2004).
Since the model (5.1.2) is a linear model, and the surrogate energy dissipation (5.1.7) is a

non-linear function of the velocity, this behaviour cannot be reproduced by the kernel only.
Therefore we advocate that the intermittency processW = {Wt}t∈R can be appropriately
modelled by a two-sided, time-changed Lévy process

Wt = L∫ t
0
Ysds

, t ∈ R, (5.1.9)

where L is a purely discontinuous martingale with tempered stable Lévy measure (see
Rosiński 2007) and Y is itself a positive, ergodic, causal continuous-time moving average
process − independent of L. In detail: we suppose there exists an 0 < α < 2 and there are
two completely monotone functions q+, q− : R+ → R+, called the tempering functions,
such that the Lévy measure of L is given by

F (dx) =
q+(x)

x1+α
1{x>0}(x)dx+

q−(|x|)
|x|1+α

1{x<0}(x)dx; (5.1.10)

and we suppose that Y is – again – a CMA process.
To model volatility clustering, time-changed Lévy processes have been introduced to

mathematical finance by Geman et al. (2001) and Carr and Wu (2004). Likewise, these
processes have been introduced to turbulence modelling by Barndorff-Nielsen et al. (2004)
and Barndorff-Nielsen and Schmiegel (2004, 2008a). Since the processes B ◦

∫ ·
0
Ysds and∫ ·

0
Y

1/2
s dBs are indistinguishable in the case of a Brownian motion B, the relation to

other stochastic volatility models like the BNS Ornstein–Uhlenbeck (Barndorff-Nielsen
and Shephard 2001, 2002) and the COGARCH model (Klüppelberg et al. 2004) is ap-
parent. Treating these estimated increments as true observations, first, we estimated the
time-change using a Method of Momentsapproach (see Kallsen and Muhle-Karbe 2011).
Second, we estimated the Lévy density of the Lévy process L using the projection estima-
tor of Figueroa-López (2009), Figueroa-López (2011) and the penalisation method which
Ueltzhöfer and Klüppelberg (2011) studied in the case of Lévy processes. Third, under a
constraint on the moments of the time-changed Lévy process, we calculate least squares
fits of certain parametric families of tempered stable Lévy densities to our non-parametric
estimate. We minimise an information criterion to find an optimal choice of parameters.
The generality of the CMA model (5.1.2) requires in the context of turbulence modelling

some interpretation of the parameters, in particular, the kernel function g. This Chapter is
articulated in two parts. In the first we characterise the model (5.1.2) from a physical point
of view, focussing on the kernel function g. In the second part we focus on modelling the
increments of the driving noise W ; we propose a model that is able to reproduce certain
features of turbulence, and we fit it to the increments of W , which have been recovered
using the method illustrated in Chapter 3.
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In Section 5.2 the model (5.1.2) for the time-wise behaviour of the time-varying com-
ponent u of a turbulent velocity field is motivated first by an analysis of the literature
yielding a discussion on the errors of Taylor hypothesis and consequences for our model.
Physical scaling properties of the kernel lead to a model for g in the inertial and energy
containing range. In Section 5.3 the estimation methods of Section 5.2 are applied, using
a non-parametric estimation of the kernel on 13 turbulent data sets, having Reynolds
numbers Re spanning over 5 orders of magnitude. In Section 5.4 we illustrate a para-
metric model for the intermittency process, inside the larger class of time-changed Lévy
processes. More specifically, we will propose and fit to the data a parametric model, mo-
tivating it by the physical point of view. In order to validated the fitted model, in Section
5.5 we simulate it and we compare the results with the original data.

5.2. Time-wise turbulence model

In this Section we present the theoretical aspects of our turbulence model. Section 5.2.1
is devoted to motivating the model by a discussion of Taylor hypothesis and certain
refinements. In Section 5.2.2 a rescaling of the kernel similar to (5.1.4) is obtained, such
that the rescaled kernel depends on the Reynolds number Re and the turbulence intensity
I only. In Section 5.2.3 we present a model for the inertial range and the energy containing
range in order to deduce the scaling with Re of some features of the rescaled kernel.

5.2.1. Does the Paley-Wiener condition hold?

First note that an exponentially decaying power spectrum E violates (5.1.1) and, therefore,
it leads to a non-causal representation, regardless of any power-law factors. For spatial
spectra this is not against intuition: the basic balance relations leading to the Navier-
Stokes equation must hold in every spatial direction; on the other hand, the causality of
representation (5.1.2) makes sense, when considering the time-wise turbulence behaviour.
It is known that the spatial spectra estimated via Taylor hypothesis (5.1.5) give larger

errors in the dissipation range rather than in the inertial range, and that the error is in
general positive, i.e. the time spectrum decays at a slower rate than the spatial spectrum.
Lumley (1965) derived from a specific model an ordinary differential equation relating
time and space spectra. Lumley ODE was solved in Champagne (1978) and used on jet
data with I = 0.30, resulting that the time spectrum obtained via (5.1.5) at κ1η ≈ 1 is
238% higher than the spectrum obtained with Lumley model. Moreover, Gledzer (1997)
showed that the power-law scaling in the inertial range is substantially left unchanged by
Lumley model. A similar effect has been already observed in Tennekes (1975), comparing
Eulerian and Lagrangian spectra; such spectra decay as ω−2 and ω−5/3, respectively.
Based on such facts we postulate that the time spectrum for every flow with turbulence
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intensity I > 0 satisfies (5.1.1), and it is related to the spatial spectrum by

EL(κ1) = UEτL(ΛI(Uκ1)), (5.2.1)

where Λ depends on I, such that ΛI(κ1)/κ1 → 1 uniformly in κ1 as I ↓ 0. The classical
Taylor hypothesis in (5.1.5) assumes that all eddies are convected at velocity U ; however,
it is likely that larger eddies propagate with a velocity of the order U , whilst the smaller
eddies travel at lower velocity, resulting in a less steep decay (Moin (2009), del Álamo and
Jiménez (2009)). The function ΛI accounts for such spectral distortion. In our framework
we will not take the limit I ↓ 0 for two reasons: firstly, since the variance E[u2] is finite,
I ↓ 0 would imply that the mean velocity tends to infinity, and, secondly, if I ↓ 0, in virtue
of Taylor hypothesis, the time spectrum (5.1.5) would decay exponentially like the spatial
one, violating the Paley-Wiener condition (5.1.1). Therefore, in the considered setting,
the limit I ↓ 0 is singular, and we shall consider only the approximation for I � 1. We
shall do the same with the singular limit for Re tending to infinity (Frisch (1996), Section
5.2), denoting it by Re� 1.
To date the resolution of experimental data is limited to scales in the order of η but, if

the data are not too noisy in the dissipation range, it is still possible to check, whether
(5.1.1) holds. In Figure 5.1a) the time spectrum for the data set h3 is depicted; Figure 5.1b)
shows that the integral in (5.1.1) converges and that the dissipation range does not make
any significant contribution to the integral.

5.2.2. Rescaling the model

The CMA representation (5.1.2) for the time-wise behaviour of the mean flow velocity
component of a fully developed turbulent flow in the universal equilibrium range (i.e.
inertial and dissipation ranges) can be rewritten as

Vt = U + C2

∫ t

−∞
g(C1(t− s))dWs, t ∈ R, (5.2.2)

where g is a positive universal function, depending on the Reynolds number Re and the
turbulence intensity I; C1 and C2 are normalising constants to be determined. The integral
represents the time-varying part u in the Reynolds decomposition. The scaling property
of the Fourier transform, i.e. that for c > 0, cF{g(c ·)}(ξ) = F{g(·)}(ξ/c), gives

EτL(ω) = (C2/C1)2|F{g(·)}|2 (ω/C1) .

Using (5.1.4) replacing ΦL with ΦRe
L , i.e. without considering the limit for Re � 1, and

(5.2.1), the relation between the rescaled spatial spectrum and the time spectrum is given
by

v2
ηηΦRe

L (ηκ1) = U(C2/C1)2|F{g(·)}|2 (ΛI(Uκ1/C1)) . (5.2.3)
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Figure 5.1.: a) Time spectrum for data set h3, the solid line indicates Kolmogorov 5/3

law. b) Convergence of the Paley-Wiener integral (5.1.1). The spectral density
is estimated with the Welch method, using a Hamming window of 214 data
points and 60% overlap.
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Matching both sides of (5.2.3), we get C1 = U/(2πη) = fη, i.e. the Kolomogorov
frequency, and C2

2 = U/vηε. The Reynolds decomposition can be rewritten as

Vt = U +

√
U

vη

∫ t

−∞
g(fη(t− s))dW̃s, (5.2.4)

where dW̃s =
√
εdWs such that E[(dW̃s)

2] = εds. The time-wise increments of the mean
flow velocity, at time scale ∆, can be calculated from (5.2.4) as

δ∆
t V = Vt − Vt−∆ =

∫ t−∆

−∞
[ḡ(t− s)− ḡ(t−∆− s)]dW̃s +

∫ t

t−∆

ḡ(t− s)dW̃s,

where ḡ(·) :=
√
U/vη g(fη·). If ∆−1

∫ t
t−∆

ḡ(t− s)dW̃s → 0 a.s. as ∆ ↓ 0, we have that the
derivative process is, with the limit assumed to exist a.s.,

∂tV = lim
∆↓0

∆−1δ∆
t V =

√
U

vη
fη

∫ t

−∞
g′(fη(t− s))dW̃s,

i.e. it is again a model of the form (5.1.2) and we essentially exchanged integration and
differentiation. Moreover, plugging (5.1.4) into (5.1.8) we obtain

ε = 15ν
v2
η

η2

∫

R
s2ΦL(s)ds,

and, recalling the definition of vη and η and (5.2.3), we get

‖F{g(·)}(ΛI(·)) · ‖−2
L2 = 15. (5.2.5)

The Plancherel theorem, the fact that

iξF{g(·)}(ξ) = F{g′(·)}(ξ)

and (5.2.5) give that ‖g′‖−2
L2 ≈ 15/2π for I � 1.

Eq. (5.1.7) gives the instantaneous energy dissipation

εt :=
15ν

U2
(∂tV )2 =

15fη
2π

∫ t

−∞

∫ t

−∞
g′(fη(t− s2))g′(fη(t− s1))dW̃s1dW̃s2 , (5.2.6)

whose mean value is ε = E[εt] = 15/2π‖g′‖2L2ε ≈ ε when I � 1.
The constant U/vη is a-dimensional, serving as a scaling factor of the model. Moreover,

the rescaled model (5.2.4) indicates that {(dW̃s)
2}s∈R can account for the observed in-

termittency, i.e. it must provide all the higher order features of turbulence that can not
be reproduced by a Gaussian model, as, for instance, the non-Gaussian behaviour of the
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instantaneous energy dissipation {εt}t∈R as indicated by (5.2.6). Moreover, we stress that
g is a second order parameter of V , and so is g′.
The model dW̃s =

√
σsdBs with Brownian motion {Bt}t∈R has been suggested in

Barndorff-Nielsen and Schmiegel (2008a), where
√
σs is the random intermittency process,

assumed to be independent of B, and {σs}s∈R is the instantaneous energy dissipation,
with mean rate E[σs] = ε. The major shortcoming of this model is that the Brownian
motion assumption implies that the distribution of the increment process {δ∆

t V }t∈R is
symmetric around zero for every scale ∆, which is against experimental and theoretical
findings, especially at small scales (see e.g. Frisch (1996), Section 8.9.3). Such shortcoming
amended in Barndorff-Nielsen and Schmiegel (2009) by assuming the presence of a possibly
non-stationary drift Z, in addiction to the CMA X, where Z is smoother than X (see
e.g. Barndorff-Nielsen and Schmiegel (2009), Remark 6). The assumed smoothness of Z
implies that the drift has a negligible effect on small scales increments, and is therefore
more suitable for modelling phenomena at larger scales, such as the energy containing
range.
From a second order point of view, everything depends on U , Re, ε and ν, which are

the parameters of (5.2.4). Moreover, given that the dependence of g on Re is known, it is
easy to simulate a process having the prescribed time spectrum. As long as only second
order properties are of interest, one can indeed take {Wt}t∈R = {Bt}t∈R. If realistic higher
order properties are desired, a realistic model for W is needed.

5.2.3. Dependence of the kernel function on the Reynolds number

It has been observed from experimental evidence (see e.g. Frisch (1996), Section 5.2) that
the mean energy dissipation ε is independent of the Reynolds number provided Re� 1.
Since vηη/ν = 1, as in (4), U/vη = Re η/L holds. From Eq. (6.8) of Pope (2000) we

have that U/vη ∝ Re1/4. From (5.1.3), the variance of the mean flow velocity V is

E[u2] = E[(V − U)2] = v2
η‖g‖2L2 , (5.2.7)

where vη is independent of Re, when Re� 1, and ‖g‖L2 depends on Re (and to a lesser
extent on I). Then the turbulence intensity of (5.2.4) is, using (5.2.7),

I =

√
E[u2]

U
=
vη
U
‖g‖L2 ∝ Re−1/4‖g‖L2 .

Since I must be independent of Re, we have ‖g‖L2 ∝ Re1/4.
A parametric model, suggested in Barndorff-Nielsen and Schmiegel (2008a) for the

kernel g, is the gamma model

g(t) = CRet
µRe−1e−δRet, t ≥ 0, (5.2.8)
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where µRe > 1/2 and δRe, CRe > 0. This model yields a power-law time spectrum Pope
(2000)

EτL(ω) = (2π)−1C2
ReΓ

2(µRe)(δ
2
Re + ω2)−µRe , (5.2.9)

where Γ(·) is Euler gamma function. For instance, the von Kármán spectrum von Kármán
(1948) is a special case of (5.2.9), where µRe = 5/6 and CRe =

√
πC/Γ(µRe) ≈ 1.1431,

and C is the Kolmogorov constant, which has been found to be around 0.53 over a large
number of flows and Reynolds numbers, and therefore universal and independent of the
Reynolds number Sreenivasan (1995). For ω � δRe, the spectrum (5.2.9) is constant;
hence ω ≈ δRe can be interpreted as the transition frequency from the inertial range
to the energy containing range; moreover, since the upper limit of the inertial range is
independent of the Reynolds number, the size of the inertial range varies as δ−1

Re .
The gamma model has two essential shortcomings: firstly, it fails to model the steeper

spectral decay in the dissipation range, but can be regarded as a good model for the
inertial range. Secondly, the kernel has unbounded support, implying that the process is
significantly autocorrelated even for large times, although the autocorrelation is exponen-
tially decaying.
From now on, we shall assume that the kernel function g has compact support, i.e.

g(t) = 0 for t > TRe and t < 0, where TRe is the decorrelation time (O’Neill et al. (2004)).
Since the inertial range increases with Re (see e.g. Pope (2000), p. 242) we expect δRe to
decrease. For the same reason we expect TRe to increase with Re.
Explicit computations can be carried out for the truncated gamma model, considering

a truncation at TRe and assuming that the failure of the gamma model in the dissipation
range does not significantly affect ‖g‖L2 . Then

‖g‖2L2 =C2
Re

∫ TRe

0

s2(µRe−1)e−2δResds =
Γ (2µRe − 1)− Γ (2µRe − 1, 2TReδRe)

C−2
Re 22µRe−1

(δRe)
1−2µRe ,

where Γ(a, z) :=
∫∞
z
sa−1e−sds. If TReδRe � 0 and it does not vary too much with Re,

with the choice of the parameters as in the von Kármán spectrum and the fact that
‖g‖L2 ∝ Re1/2, we get δRe ∝ Re−3/4.

5.3. Estimation of the kernel function

5.3.1. The data

In this Section we estimate the kernel function g non-parametrically, the parameters of
model (5.2.4), and the increments of the driving noise W . Not surprisingly, the quality of
the data in the present study does not allow us to perform a reliable estimation in the dis-
sipation range. For the kernel in the universal equilibrium range, the gamma model (5.2.8)
is estimated by the non-parametric kernel estimation method as suggested in Chapter 2.
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Data ε · 102 η λ Rλ F fη I ‖g‖L2 µRe δRe · 104 TRe · 10−2 C2

m2s−3 µm mm kHz kHz %

h1 2.72 36.42 0.76 112 5.74 1.14 20.56 5.37 0.76 363.85 0.98 0.84
h2 0.52 55.07 1.11 105 2.87 0.52 19.19 5.21 0.73 387.11 1.05 0.38
h3 20.14 22.08 0.55 162 22.97 3.57 21.47 6.46 0.85 276.51 1.38 2.46
h4 0.85 15.7 0.49 253 5.74 1.74 24.04 8.08 0.81 120.81 3.06 0.53
h5 13.14 24.56 0.66 184 45.94 6.01 10.98 6.9 0.95 316.1 1.25 2.87
h6 10.98 8.28 0.36 495 22.97 9.02 23.34 11.31 0.83 63.57 5.95 2.31
h7 64.37 5.32 0.26 640 91.88 25.66 22.58 12.85 0.87 49.87 7.53 6.05
h8 1995.62 2.25 0.14 930 367.5 175.68 22.15 15.5 0.84 22.95 13.81 37.37
h9 2120.81 2.22 0.14 978 367.5 190.05 21.64 15.89 0.84 21.78 15.79 39.46
h10 5192.01 1.78 0.11 1005 367.5 285.13 22.88 16.11 0.83 18.13 18.42 60.46
h11 13580.72 1.4 0.1 1336 735 570.02 21.34 18.58 0.8 11.76 26.57 108.72
a1 1.38 837.47 140.01 7216 10 1.21 15.29 43.16 0.77 0.55 282.72 1.97
a2 9.41 442.42 115.85 17706 5 2.99 28.23 67.61 0.81 0.24 882.39 4.75

Table 5.1.: h1-h11: Helium data (Chanal et al. (2000)), a1: Sils-Maria data (Gulitski et al.
(2007)), a2: Brookhaven data (Drhuva (2000)). The norm ‖g‖L2 is evaluated
using (5.2.7).

We analysed 13 different data sets, whose characteristics are summarised in Table 5.1.
Also dependence of the parameters on Re is considered. Two of the data sets examined
here come from the atmospheric boundary layer (a1, described in Gulitski et al. (2007),
and a2, see Drhuva (2000)) and eleven from a gaseous helium jet flow (records h1 to h11,
see Chanal et al. (2000)). Since the data sets come from different experimental designs,
characteristic quantities such as Taylor microscale Reynolds number Rλ =

√
E[u2]λ/ν

based on Taylor microscale λ =
√

15E[u2]ν/ε are considered. This Reynolds number is
unambiguously defined and the rough estimate Rλ ∝

√
2 Re holds (Pope (2000), p. 245).

In all data sets the turbulence intensity I is rather high and, therefore, the expectation of
the RHS of (5.1.7) would not be a good approximation for ε. Moreover, in most of the data
sets the inertial range is hard to identify due to low Reynolds numbers. The mean energy
dissipation ε has been estimated from (5.1.6), following Lindborg (1999). Estimation of ε
is a challenging and a central task, since the rescaling constants in (5.2.4) depend, in the
K41 spirit, only on ε, ν and U .

5.3.2. Kernel estimation

The kernel function g characterises the second order properties of the mean flow velocity
V , i.e. spectrum, autocovariance and second order structure function. Classical time-
series methods have been employed to estimate the kernel function of high frequency data
Chapter 2 with a non-parametric method. The method is essentially based on finding the
unique function g solving (5.1.3), when the autocovariance function γX is given. We esti-
mate the discrete autocovariances γ∆

X(i) := γX(i∆), where ∆ is the sampling grid size and
i are integer values. It has been shown in Chapter 2 that the coefficients of a high order
discrete-time moving average process fitted to such closely observed autocovariance func-
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tion, when properly rescaled, estimate consistently the kernel function. We shall assume
that the estimation of the kernel function is on the mid-point grid; i.e, ĝ(i) ≈ g((i+1/2)∆)

for integers i.
The results are presented in Figure 5.2a), where all the estimated kernels are plotted on

a logarithmic time axis. Due to instrumental noise, the high turbulence intensity of the
data sets and the non-infinitesimal dimension of the hot-wires, estimates in the dissipation
range (tfη < 1) differ significantly from one data set to another. In general we notice that
the steeper decay of the spectrum in the dissipation range is reflected by the fact that
the kernel functions tend to 0 for tfη � 1, instead of exploding as the gamma model for
µRe = 5/6. The only estimation of the kernel that is not perfectly aligned with the others
is the one for h5, which looks slightly shifted to the left. This can be attributed to the
difficulty in estimating ε, and consequently fη. In Figure 5.2c) the estimated ‖g‖L2 based
on (5.2.7) are plotted against Rλ, and the power-law fitting shown in the figure returned
‖g‖L2 = 0.5081 Rλ

0.5 ∝ Re0.25.
The decorrelation time TRe has been estimated by the first zero-crossing of the esti-

mated g. It increases with Rλ (Figure 5.2a)) and it follows empirically the law TRe =

0.1408 Rλ
1.3613 ∝ Re0.6806 (Figure 5.2c)).

The transition frequency δRe is obtained via least squares fitting of the gamma model
(5.2.8) to the non-parametric estimate of g for tfη > 5 (Figure 5.2b)). The statistical fits
in Figure 5.2b) are very good for all data sets considered, at least when not too close
to TRe. The transition frequency follows the empirical law δRe = 61.4917 Rλ

−1.5127 ∝
Re−0.7564 (Figure 5.2e)), which is exceptionally close to the exponent −3/4 obtained from
the gamma model, and δReTRe is between 1.5 and 4.1 in all data sets. The estimated
values of µRe are also close to the reference value of 5/6 ≈ 0.834, with a mean value of
0.8218. The only notable outlier is the data set h5, which has been already proven to be
somewhat anomalous.
As said in Section 2.3, the truncated gamma model is not able to capture the sharp

cutoff in the neighbourhood of TRe nor the rapid decrease in the dissipation range.
To estimate how the variance of the model (5.1.2) is affect by the truncation at TRe,

we consider the quantity

H(Re) =
‖g(·)Θ(TRe − ·)‖2L2

‖g(·)‖2L2

= 1− Γ(2/3, 2c1c2Reβ−α)

Γ (2/3)

where the latter is obtained using the gamma kernel (5.2.8) with parameters µRe = 5/6,
TRe = c1Reβ and δRe = c2 Re−α, where c1, c2 > 0 and α > β > 0, as indicated by the least
squares in Figure 5.2.H represents the ratio between the variance (5.2.7) using a truncated
gamma model and a non-truncated one, and it is a decreasing function of Re, and it tends
to 0 as Re � 1, indicating that the truncation is important when Re � 1; i.e., when
TReδRe � 1. Nonetheless, using the values of c1, c2, α, β returned by the least squares
fitting, we obtain H ≈ 0.991 for the dataset a2, which exhibits the highest Reynolds
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number among the considered datasets. Then we can conclude that, for the wide range of
Reynolds numbers considered, the variance of the model (5.1.2) with a kernel following
the truncated gamma model does not differ in a sensible way from the variance of the
classical von Kárman model.
Finally, the behaviour of δRe as function of Re estimated via the gamma model agrees

significantly with the data, showing that the dissipation range does not contribute ap-
preciably to ‖g‖L2 , which is in agreement with the idea that there is few energy in the
dissipation range.

5.4. A model for the driving noise

In this section, we present our intermittency model from Eqs. (5.1.9)-(5.1.10) in a rigorous
manner. We outline its specific features in detail. In addition, we discuss the statistical
methods for its estimation from discrete observations.
On the filtered probability space (Ω,F , (Gt)t∈R,P), let L = {Lt}t∈R be a two-sided,

real-valued Lévy process without Gaussian part and Lévy measure F given by (5.1.10).
We suppose that E[Lt] = 0; its characteristic exponent takes the form

logE[eitL1 ] =

∫ (
eitx − 1− itx

)
F (dx)

and, for n ≥ 2, its cumulants are given by cn := cn[L1] :=
∫
xnF (dx). The time-change

process

Tt :=

∫ t

0

Ysds is aGt-stopping time for allt ∈ R.

The process Y is, in the light of the previous formula, is called the activity process. We
shall suppose, that E[Y0] = 1, so that E[Tt] = t.
From now on, we shall assume that the intermittency process, which acts as driving

process of the CMA process (5.2.2), is a time-changed Lévy process, that is

Wt = LTt , t ∈ R.

By Corollaire 10.12 of Jacod (1979), the time-changed Lévy process W = {Wt}t∈R
given by 5.1.9 is a purely discontinuous martingale w.r.t. the filtration given by Ft := GTt ;
the process has càdlàg sample paths and W0 = 0. The integer-valued random measure m
on R×R given by

m(ω; dt, dx) :=
∑

{s:∆Ws(ω)6=0}

δ(s,∆Ws(ω))(dt, dx),

where δx denotes the Dirac measure at x, is called its jump measure. By Theorem II.2.34
of Jacod and Shiryaev (2003), moreover, the increments Wt+s−Wt can be represented as
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the stochastic integral, for s > 0,

Wt+s −Wt =

∫

]t,t+s]×R
x(m− n)(dr, dx), t ∈ R, (5.4.1)

where n(ω; dt, dx) = Yt(ω)dtF (dx) is the predictable compensator ofm. The moments and
autocovariance function of the intermittency increments and their squares are determined
by the cumulants of L and the mean and autocovariance of Y (see e.g. Kallsen and
Muhle-Karbe (2011), Theorem 2.2).
In particular, the autocovariance function of the squared increments of the intermittency

process is linked to the activity process Y by the formula

γ̄∆
Y (k∆) :=Cov

[
(Wk∆ −W(k−1)∆)2, (W(k+j)∆ −W(k+j−1)∆)2

]
(5.4.2)

= var[L1]2 Cov

[∫ ∆

0

Y(k−1)∆+sds,

∫ ∆

0

Y(k+j−1)∆+rdr

]

for every k ∈ Z, j ∈ N and ∆ > 0. W.l.o.g. we assume that var[L1] = 1, then, for t > 0,
we have (see, e.g., Barndorff-Nielsen and Shepard 2006, Proposition 5)

γ̄∆
Y (t) =

∫ t+∆

0

∫ u

0

γY (s)dsdu− 2

∫ t

0

∫ u

0

γY (s)dsdu+

∫ t−∆

0

∫ u

0

γY (s)dsdu

=γY (t)∆2 + o(∆2) ∆ ↓ 0,

where γY is the autocorrelation function of the activity process Y .
By construction, we have

E[Wt] = 0, var[Wt] = tc2E[Y0], t ∈ R+.

Recalling thatW is supposed to be the driving process of the CMA model for the velocity
V , furthermore, we assume that the intermittency process is normalised such that c2 =

var[W1] = 1. Under this assumptions, we note that

E[W 3
t ] = tc3, E[W 4

t ] = tc4 + 3(γ̃Y (t) + t2), t ∈ R+, (5.4.3)

where

γ̃Y (t) := 2

∫ t

0

∫ u

0

γY (s)dsdu

(see, e.g., Barndorff-Nielsen and Shepard 2006, Proposition 2). Dividing both sides of
(5.4.2) by var[W 2

∆] = E[W 4
∆]− (E[W 2

∆])2, moreover, we obtain that the autocorrelation

ρ∆
W 2(k) := cor[(W∆ −W0)2, (W(k+1)∆ −Wk∆)2]
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of the squared intermittency increments for k ∈ N∗, in addition, is given by

ρ∆
W 2(k; θ) =

γ̄∆
Y (k∆)

c4∆ + 2∆2 + 3γ̃Y (∆)
. (5.4.4)

From (5.4.4) it is clear that the autocorrelation function of the increments of the inter-
mittency process is, for small ∆, given, up to a scaling factor, by the autocovariance of
the activity process Y .
Therefore we let the activity Y = {Yt}t∈R be again a CMA process, independent of L,

namely

Yt :=

∫ t

−∞
gY (t− s; θ)dZs, t ∈ R, (5.4.5)

where Z is a Lévy subordinator, gY is square integrable function, depending on a list of
parameters θ. Since the driving subordinator Z of Y satisfies var[Z1] = 1 by assumption,
the autocovariance function γY : R→ R+ of Y is given by the usual formula

γY (t; θ) := Cov[Y0, Yt] =

∫ ∞

0

gY (s; θ)gY (|t|+ s; θ)ds, t ∈ R. (5.4.6)

The autocorrelation given by the gamma kernel (see Example II.i) tends to a constant
as the argument goes to zero, with the leading term in the Taylor expansion having order
2ν− 1. This model not able to reproduce the sharp decay observed autocorrelation of the
squared increments of the velocity, which is widely believed to follow a power law τ−0.2 for
τ finite and bigger than zero (Cleve (2004)). The squared increments of the intermittency
process W show a rather similar behaviour(see e.g. Figure 5.4).
The most obvious choice would be to allow the gamma kernel to have 0 < ν < 0.5, but

that would lead to a gamma kernel with infinite L2 norm, and it would not be a legitimate
kernel for a CMA process with finite variance. A solution, inspired by Cleve (2004), is to
truncate the kernel near to the origin at some cut-off ζ, yielding a square-integrable kernel
for every value of ν. More specifically, we assume the kernel gY belongs to the family

gY (t) = gY (t; θ) =

{
Cσζν−1 exp(−λζ) if0 ≤ t < ζ,

Cσtν−1 exp(−λt), ift ≥ ζ,
(5.4.7)

with strictly positive parameters θ = (σ, ν, λ, ζ), and C = Cν,λ,ζ > 0 is a normalising
constant such that

∫
gY (t; θ)2dt = σ2. Then the autocovariance function given by this

kernel will be flat for τ � ζ and it will behave as τ2ν−1 for τ � ζ, as suggested in Cleve
(2004), Section 4.2.
We stress that, at this point, Z remains some unspecified Lévy subordinator with

var[Z1] = 1 such that Y is independent of L, non-negative, and with finite fourth moment.
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5.4.1. Estimation of the intermittency model from discrete
observations

We suppose to observe the intermittency processW on a discrete-time grid with sampling
interval ∆ > 0. In particular for some n ∈ N∗, we observe a realisation of the increments

∆n
kW := Wk∆ −W(k−1)∆, for k = 1, . . . , n.

The jumps of the process and the time-change are latent.
First, we turn to the estimation of the parameters θ = (σ, ν, λ, ζ) of the kernel gY given

by (5.4.7). For typographical convenience, set µ4 := E[W 4
∆]. Solving (5.4.3) for c4 and

plugging it into (5.4.4), we obtain

ρ∆
W 2(k; θ, µ4) =

γ̄∆
Y (k; θ)

µ4 −∆2
, (5.4.8)

where we emphasise the dependence on µ4. We estimate the parameters θ, performing a
least squares fit of ρ∆

W 2(k; θ, µ4) to its empirical version: In particular, let µ̂4 (resp., ρ̂∆
W 2)

denote the empirical fourth moment of the observed increments ∆n
kW (resp., the empirical

autocorrelation function of the squared increments (∆n
kW )2). Then, our estimator of θ is

given by
θ̂ := argmin

θ∈R4
+

∑

k∈N∗

∣∣ρ̂∆
W 2(k)− ρ∆

W 2(k; θ, µ̂4)
∣∣2 .

Second, we turn to the estimation of the Lévy density of the Lévy process L. The
class of tempered stable Lévy measures (5.1.10) is truly of semi-parametric nature. By
Bernstein (1929), every bounded, completely monotone function is the Laplace transform
of some finite measure Q on R∗+; that is, x 7→

∫∞
0
e−λxQ(dλ). In literature, parametric

estimation of tempered stable Lévy densities is often based on the assumption that – for
known orders p+, p− ∈ N∗ – it belongs to the 2(p+ + p−) + 1-parametric sub-family

f(x; θp+,p−) =

{
x−1−α∑p+

k=1 c
+
k exp(−λ+

k x) for x > 0,

|x|−1−α∑p−
k=1 c

−
k exp(−λ−k |x|) for x < 0,

(5.4.9)

where all parameters θp+,p− := (α, (c+k , λ
+
k )k=1,...,p+

, (c−k , λ
−
k )k=1,...,p−) are strictly positive

and, in addition, α < 2. In view of the number of parameters, (5.4.9) is frequently used for
low orders. The issue of order selection is rarely addressed. We use a two-step approach
to circumvent the latter issue. First, we estimate the Lévy density employing an adaptive
non-parametric method. Second, we calculate the least squares fits of the parametric
model (5.4.9) to our non-parametric estimate for orders p+ + p− up to some constant;
we normalise our estimates so that the variance var[W1] of our fitted model is equal to
one; and we penalise for deviations from the third and fourth empirical moments. Last,
we minimise an information criterion to find our optimal choice for p+ and p−.
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Various non-parametric estimators for the Lévy density of a Lévy process have been
suggested in literature. Here, we focus on the projection estimator of Figueroa-López
(2009), Figueroa-López (2011) which employs Grenander method of sieves. In particular,
let µ be some absolutely continuous Borel measure on R∗, called the reference measure.
We denote the µ-density of the Lévy measure F by fµ; that is F (dx) = fµ(x)µ(dx).
Moreover, let D ⊂ R∗ be a compact interval not containing zero, called the domain
of estimation. Throughout, we suppose that fµ is µ-square integrable over D. For each
m ∈ N∗, let Km := {ym,0, . . . , ym,m} ⊂ D be such that {[ym,k−1, ym,k] : k = 1, . . . ,m}
forms a µ-uniform partition of D. Then the space Sm := S(3, Km) of cubical C2-splines
with control points Km is an m + 3-dimensional subspace of L2(D,D, µ). The minimum
contrast estimator f̂mµ of fµ w.r.t the sieve Sm, given by

f̂mµ := argmin
h∈Sm

− 2

n∆

n∑

k=1

h(∆n
kW ) +

∫

D

h(x)2µ(dx), (5.4.10)

coincides with the respective projection estimator (cf. Lemma 2.1 of Ueltzhöfer and Klüp-
pelberg 2011).
By Figueroa-López (2009), under some hypothesis on Y , the estimator f̂mµ is consistent

for the µ-density fµ of the Lévy measure F if n∆→∞, ∆→ 0 fast enough, and m→∞.
For some related, pointwise central limit theorem, we refer to Figueroa-López (2011).
For a numerically stable computation of f̂mµ , we construct the B-spline basis Bm :=

{hm,j : j = 1, . . . ,m + 3} of the space Sm := S(3, Km), and denote the Gramian matrix
w.r.t µ by A = (aij)i,j=1,...,m+3; that is,

aij :=

∫

D

hm,i(x)hm,j(x)µ(dx).

Let hm : R→ Rm+3 be the mapping with components hm,j . Then the unique minimiser
in (5.4.10) is given by

f̂mµ (x) =

m+3∑

j=1

ĉmjhm,j(x), where ĉm := A−1

(
1

n∆

n∑

k=1

hm(∆n
kW )

)
.

For each m ∈ N∗, we are given an estimator f̂mµ of fµ on D; its associated contrast
value is equal to −(ĉm)>Aĉm. As a data driven sieve selection method, we employ the
penalisation method which Ueltzhöfer and Klüppelberg (2011) studied in the pure Lévy
case. For ζ1 ≥ 1 and ζ2, ζ3, ζ4 > 0, in particular, let pen : N∗ → R be the penalty function
given by

pen(m) := ζ1(n∆)−2 tr
(
(hm(∆n

kW ))>k≤nA
−1(hm(∆n

kW ))k≤n
)

+ ζ2

(
Dm

n∆
∨ D3

m

(n∆)4

)
+ ζ3

(
D′m
n∆
∨ D′3m

(n∆)4

)
+ ζ4

(
m+ 3

n∆
∨ (m+ 3)3

(n∆)4

)
,
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where

Dm := sup
h∈Sm

supx∈D |h(x)|2∫
D
h(x)2µ(dx)

, and D′m := sup
h∈Sm

(
∫
D
|h′(x)|µ(dx))2

∫
D
h(x)2µ(dx)

. (5.4.11)

Then the estimator f̂ m̂µ where

m̂ := argmin
m∈N∗

{
−(ĉm)>Aĉm + pen(m)

}
, (5.4.12)

is called the minimum penalised contrast estimator of fµ (w.r.t the penalty pen). We
plug-in this estimator into the least squares fitting of the parametric family (5.4.9).
In practice, we calculate an estimator f̂ m̂+

µ on some domainD+ ⊂ ]0,∞[ and, separately,
an estimator f̂ m̂−µ on some domain D− ⊂ ]−∞, 0[. For the Lebesgue density f of the Lévy
measure F , we are thereby given the non-parametric estimate

f̂(x) = f̂ m̂+
µ (x)µ′(x)1D+

(x) + f̂ m̂−µ (x)µ′(x)1D−(x). (5.4.13)

In general, this estimate is not the restriction of a tempered stable Lévy density to the
domain D+∪D−. For orders p+, p− up to a specified order, we calculate the least squares
fit of the parametric family given by (5.4.9) to our estimate given by (5.4.13) under the
constraint that the variance var[W1] of our fitted model equals one; and we penalise for
deviations of the fitted third and fourth cumulant from the empirical ones (recall (5.4.3)).
In particular, our estimator of θp+,p− is given by

θ̂p+,p− := argmin
{θp+,p− :c2(θp+,p−)=1}





∫

D+∪D−

|f̂(x)− f(x; θp+,p−)|2dx

+ ζ

(∣∣∣∣
c3(θp+,p−)∆

µ̂3
− 1

∣∣∣∣+

∣∣∣∣
c4(θp+,p−)∆

µ̂4 − 3∆2(σ̂2 + 1)
− 1

∣∣∣∣
)}

,

(5.4.14)

where

cn(θp+,p−) := Γ(n− α)

p+∑

k=1

c+k (λ+
k )α−n + (−1)nΓ(n− α)

p−∑

k=1

c−k (λ−k )α−n

denotes the n-th cumulant of L1 corresponding to the Lévy density f(·, θp+,p−), ζ > 0

denotes some penalisation constant, µ̂n denotes the n-th empirical moment of the observed
increments, and σ̂2 belongs to the fitted parameters θ̂ of the kernel gY .

5.4.2. An empirical study of the Brookhaven data set

We shall employ the methods illustrated in the Subsection 5.4.1 on the estimation of the
noise W for the Brookhaven dataset (entry a2 of Table 5.1). The estimation is carried out
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the method illustrate in Chapter 3. This dataset consists of n = 20 × 106 measurements
taken at a frequency of 5000Hz; the data covers a total time interval of 4000s (66min 40s).
We remark that the data set displays a Taylor microscale Reynolds number of approxi-
mately 17 000 and is regarded a good representative of fully developed turbulence.
The coefficients of the AR filter in (3.2.5) has been estimated from the sample autocor-

relation function of the windspeed with the Durbin-Levinson algorithm, up to a time-lag
of 78.8424 s. Consequently, the estimated increments of the intermittency process cover a
total time interval of 65min 21.1276 s. For the remainder, we treat these estimates as if
they were observed true increments of the intermittency process; henceforth, we refer to
them as the “(intermittency) data” W .
We summarise the data in Figure 5.3: at the top, we plotted the intermittency incre-

ments; the clustering of the increments is clearly observable. At the bottom, we present
histograms of the incrementsWk∆−W(k−j)∆ of the intermittency process at time-lags j∆
for j = 1, 1000, 10 000; for comparison, we also present the densities of a Gaussian random
variable scaled to the empirical variance of the intermittency increments. At small-scale,
we observe a heavy-tailed distribution; at large-scale, we observe an approximately Gaus-
sian distribution.
For the estimation of the parameters θ of the moving-average kernel gY of the CMA

process Y given by (5.4.5), first, we calculated the empirical autocorrelation function ρ̂∆
W 2

of the squared, observed intermittency increments (∆n
kW )2. We obtain from Cleve et al.

(2004, Table I, data set “a2”) that the surrogacy cutoff time is given by 2.5∆; for this
reasons we regard ρ̂∆

W 2(k) reliable for k ≥ 3 only. In addition, we observe a significant
influence on the empirical autocorrelation function by non-stationary, large scale effects.
For the estimation, thus, we consider ρ̂∆

W 2(k) reliable up to one tenth of the de-correlation
time – the lag p̂ := 26 698 – only as well. We note that the empirical fourth moment of the
increments is given by µ̂4 = 2.166× 10−6. With these considerations in mind, in practice,
our estimator for the parameters θ is given by

θ̂ := argmin
θ∈R4

+

p̂∑

k=3

∣∣ρ̂∆
W 2(k)− ρ∆

W 2(k; θ, µ̂4)
∣∣2 ,

where ρ∆
W 2(k; θ, µ̂4) is given by (5.4.8). We remark that no closed-form solution is known

for the autocorrelation γY (·; θ) of Y given by (5.4.6). In practice, hence, we utilise the
convolution theorem, and employ the numerical approximation

(
γY (k∆/100; θ)

)
|k|≤250p̂

≈ D−1
∣∣∣D
[(
gY (k∆/100; θ)

)
k=0,...,500p̂

]∣∣∣
2

,

where we sample gY with a 100-times higher frequency and on a 5-times longer interval
than used afterwards; D denotes the discrete Fourier transform, and | · |2 is understood
component-wise. Our estimate is summarised in Figure 5.4 and Table 5.2. We plotted the
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Table 5.2.: Least squares estimates of the parameters θ̂ of gY (·; θ)

σ ν λ ζ

3.6017 0.2881 0.0325 1.152 · 10−3

empirical autocorrelation function ρ̂∆
W 2(k) (black points) for the lags k = 1, . . . , p̂ and

compare it to the estimated autocorrelation function ρ∆
W 2(k; θ̂, µ̂4) (red solid line). We

observe an excellent fit.

Estimation of the Lévy density
For the non-parametric estimation of the Lévy measure, we choose µ(dx) = x−4dx as ref-
erence measure. The main advantage of our particular choice for µ over Lebesgue measure
is that the µ-density fµ of a tempered stable Lévy measure F does not have a pole at
zero; in particular,

fµ(x) = q+(x)x3−α1{x>0} + q−(|x|)|x|3−α1{x<0}.

We employ the minimum penalised contrast method (5.4.10) and (5.4.12) to estimate fµ
separately on the domains D+ = [0.015, 0.8] and D− = [−0.8,−0.015]; we choose the
end points ±0.8 as there are no observations with absolute value larger than 0.8 and we
choose the end points ±0.015 ≈ ±

√
∆ to exclude an interval with a radius of about one

standard deviation centred at the origin. As penalty coefficients we choose ζ1 = 2, ζ2 = 1,
ζ3 = 0.5 and ζ4 = 0.1. As no closed-form solution is known for the constants Dm and
D′m in (5.4.11), in practice, we replaced their true value by numerical approximations. In
(5.3), we summarised the penalised contrast values (PCV) for the estimators (f̂mµ )m=1,...,5

on D+ and D−. We note that a local minimum is attained at m̂+ = 4 and m̂− = 1,
respectively.
For the Lebesgue density f of the Lévy measure F of the Lévy process L, we are given

the non-parametric estimate

f̂(x) := f̂ m̂+
µ (x)x−41D+

(x) + f̂ m̂−µ (x)x−41D−(x);

(recall (5.4.13)). We observe that the non-parametric estimate oscillates around zero for
|x| > 0.3; since no more than 591 observations – that is, 0.003% of the data – are larger
in absolute value than 0.3, for the remainder, we consider our estimate reliable on the
set D = [−0.3,−0.015] ∪ [0.015, 0.3] only. For all orders p+ + p− ≤ 4, we calculated the
penalised least squares estimator θ̂p+,p− defined in (5.4.14); we replaced the integral over
the set D by the discrete residual sum of squares given by

RSS(θp+,p−) :=

300∑

k=15

∣∣f̂ (xk)− f(xk; θp+,p−)
∣∣2 +

∣∣f̂ (−xk)− f(−xk; θp+,p−)
∣∣2 ,
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Table 5.3.: Penalised contrast value (PCV) for the estimator f̂mµ on D+ and D−

m PCV on D+ PCV on D−

1 -1.283414 -1.016977
2 -1.283749 -1.016962
3 -1.283912 -1.016947
4 -1.283924 -1.016933
5 -1.283870 -1.016879

where xk = k/1000; and chose the penalty constant ζ = 5×105. To find an optimal choice
for (p+, p−), we also calculated the corrected Akaike information criterion

AICc(p+, p−) := N log(RSS(θ̂p+,p−)/N) + 2Kp+,p− +
2Kp+,p−(Kp+,p− + 1)

N −Kp+,p− − 1
,

where Kp+,p− := 2(p+ + p−) + 1 is the number of parameters and N := 572 is the number
of squared residuals evaluated for RSS. Our results are summarised in Table 5.4.
We observe that AICc is minimised for p+ = 1 and p− = 2. We present the correspond-

ing estimated density in (5.5). The parametric fit f(x; θ̂1,2) (red solid line) is compared to
the non-parametric estimate f̂(x) (black points). On the left, both axes are in linear scale
whereas, on the right, the y-axis is in logarithmic scale. In linear scale, the parametric
and the non-parametric estimate are indistinguishable to the eye.

5.5. Simulation study

First, we specify the Lévy process Z and simulate the CMA process Y of the time change.
Second, we simulate the increments of the time-changed Lévy process Wt = L(

∫ t
0
Ysds)

based on the realisation of Y . Finally, we compare our simulated path and the intermit-
tency data.
In our model, the activity process Y is a causal continuous-time moving-average. We

simulate from it using some numerical approximations. In particular, we approximate the
stochastic integral defining the CMA process by a stochastic Riemann sum: for ∆1 > 0,
let {Ỹ ∆1

t }t∈R be given by

Ỹ ∆1

t :=

bt/∆1c∑

k=−∞

gY
(
(bt/∆1c − k) ∆1; θ̂

) (
Zk∆1

− Z(k−1)∆1

)
; (5.5.1)

then E[|Ỹ ∆1

t − Yt|2]→ 0 as ∆1 → 0 for every t ∈ R. To achieve a good approximation of
Y on some time interval [t1, t2], we simulate from the driving process Z on a much longer

99



5.5 Simulation study

Table 5.4.: (Penalised) least square fitting of the parametric families f(x; θp+,p−) in (5.4.9)
to the non-parametric estimate f̂(x) given by (5.4.13).

p+ ĉ+k λ̂+
k p− ĉ−k λ̂−k α̂ AICc

1 2.542 14.35 1 3.101 24.17 1.314 4361.4

1 0.618 10.33 2 0.740 19.86 1.390 3911.4

16.879 438.58

2 0.177 6.67 1 0.219 17.17 1.487 4059.6

16.156 1031.79

2 63.279 37.81 2 76.977 47.44 0.701 5544.7

782.867 2346.48 4.229 243.94

1 0.012 9.57 3 0.014 19.68 1.411 3937.4

0.001 162.75

0.539 518.30

3 0.180 6.74 1 0.222 17.14 1.487 4062.6

0.000 198.51

15.238 928.82
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interval [t0, t2] with t0 � t1 and with a smaller time-lag ∆2 � ∆1. Then, we discard
the samples on [t0, t1] which are corrupted by numerical errors, and reduce the sampling
frequency of the remainder.

We remark that the Lévy subordinator Z is left unspecified apart from its mean and
variance. For this simulation study, we aim for a simple, yet likely choice for Z. For two
reasons, we work with a gamma process: first, subordinators with infinite activity seem
appropriate to us, since turbulent motion requires permanent injection of energy. Second,
the gamma process is a well-understood subordinator and, moreover, is uniquely specified
by its mean and variance.

We chose ∆2 = 10−5 s. On the interval ]−200 s, 1000 s], we simulated 1.2 · 108 in-
dependent and identically gamma distributed increments Zk∆2

− Z(k−1)∆2
with mean

∆2/(‖gY (t; θ̂)‖1) and variance ∆2, where ‖gY (t; θ̂)‖1 = 0.1385. To calculate the convolu-
tion (5.5.1) we truncated the MA-kernel gY at t∗ = 200 s, where gY (t∗; θ̂)/gY (0+; θ̂)) <

3.4 · 10−7. We discarded the observations on the interval ]−120 s, 0 s] which are corrupted
by numerical errors and down-sampled to a time-lag of ∆1 = 1/5000 s. Consequently, we
obtained 5 · 106 (approximate) observations Ỹk∆1

on the interval ]0 s, 1000 s].

As a time-changed Lévy process, the intermittency process W has independent incre-
ments conditionally on Y. By (5.4.1), moreover, we have

logE
[
eiu(Wt+∆1−Wt)

∣∣∣Y
]

=

∫ t+∆1

t

Ysds

∫ (
eiux − 1− iux

)
f(x; θ̂p+,p−)dx.

For each k, approximating the increment of the time-change by ∆1Ỹk∆1
, we simulated

the increment W(k+1)∆1
− Wk∆1

using the shot-noise representation (5.19) of Rosiński
(2007). All jumps with absolute value larger than 10−6 where simulated exactly; the
small jumps where approximated by a Gaussian random variable of appropriate variance.
Consequently, we obtained a sample of 5 · 106 (approximate) increments ∆n

kW̃ on the
interval ]0 s, 1000 s]. We present our simulation result in Figure 5.6. At the top, we plotted
the increments of the intermittency at the sampling frequency of 5000Hz. In comparison to
the data as presented in 5.3, we observe a convincing similarity. At the bottom, we compare
the simulation and the data in more detail: On the left, we present a quantile-quantile
plot comparing the empirical quantiles of the data (x-axis) to those of the simulation
(y-axis). On the interval [−0.3, 0.3], which carries more than 99.996% of the data, the
fit is excellent. Since the least squares fitting of the Lévy density has been performed
on the domain [−0.3,−0.015] ∪ [0.015, 0.3] only, we are very satisfied with the fit of the
stationary distribution of the intermittency increments. On the right, we compare the
empirical autocorrelation function of the squared intermittency data (black points) to the
empirical autocorrelation of the square simulated increments (red solid line). Both axes
are in logarithmic scale. Again, their agreement is excellent.
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5.6. Discussion and conclusion

In this Chapter we proposed application of a large class of stochastic processes in the
context of time-wise turbulence modelling. The class of CMA processes (5.1.2) is rather
flexible, with the only constraint of having a spectral density satisfying the Paley-Wiener
condition (5.1.1), which excludes processes with spectrum decaying too fast but it still
allows them to have sample path infinitely differentiable with probability 1. Although
causality is a reasonable feature of time-wise behaviour of turbulence, it is not in the spa-
cial one, and the link between the two is the often criticised Taylor frozen field hypothesis.
To the authors’ knowledge, this is the first time the question is raised and it is worthy to
be studied in more detail, e.g. using DNS simulation as in del Álamo and Jiménez (2009).
Essentially the CMAmodel distinguishes between second order properties, accounted by

the kernel function, and higher order ones, depending on the noise, which can be specified
independently from each other, in agreement with the K41 theory. The dependence of the
kernel function on the Reynolds number is analysed, with a special regard to its behaviour
far away from the origin. The analysis in the time domain allows higher resolution of
second order properties at higher lags, which corresponds to the leftmost part of the one-
sided spectrum, showing in a clear way how the inertial range, proportional to δ−1

Re , and
the decorellation time TRe increases with the Reynolds number.
We propose a modification of the gamma model of Barndorff-Nielsen and Schmiegel

(2008a), with the parameters depending explicitly on the Reynolds number, modelling
well the inertial range and the transition to the energy range. Unfortunately the present
data, due instrumental noise, does not allow a precise analysis of the behaviour of the
kernel function near to the origin, which corresponds to the dissipation range. Such an
analysis would be possible using data coming from computer simulations, and it is left for
future research.
Moreover, the method to recover the driving noise of Chapter 3 is employed. The

obtained noise, which is dimensionally the square root of the energy dissipation, shows
some of the features of the energy dissipation εt, collectively known as intermittency. That
shows that the second order dependence does not play an important role in determining
the high order statistics. Moreover, a parametric mode is proposed and fitted to the
data. The distribution of the increments and the autocorrelation function of the squared
increments is excellent.
We conclude mentioning that the analysis performed in this Chapter holds in great gen-

erality for one-dimensional processes. It is possible to model the full three-dimensional,
time-wise behaviour of turbulent velocity field with a similar CMA model, and under
the hypothesis of isotropy a model for the three-dimensional kernel function can be ob-
tained from a one-dimensional one, since the two point correlator depends only on the
longitudinal autocorrelation function (see e.g. Pope (2000), p. 196).
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Figure 5.2.: a) Estimated kernels, against logarithmic time scale. b) Estimated kernels,
plotted in log-log scale. Solid lines are the fitted gamma models (5.2.8). c-e)
Decorrelation times TRe, transition frequency δRe and ‖g‖2L2 as a function of
Taylor microscale-based Reynolds number. Solid lines represents power-law
fittings of the considered quantities vs. Rλ.
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Figure 5.3.: Increments of the intermittency process W . Top: (estimated) increments
Wk∆ −W(k−1)∆ of the intermittency process covering a total time interval
of 65 min 21.1276 s. Bottom: histograms of the intermittency increments at
time-lags j∆ for j = 1 (left), j = 1000 (middle) and j = 10 000 (right). The
y-axes are in logarithmic scale. The solid black line represents the Gaussian
density scaled to the empirical variance of the intermittency increments.
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Figure 5.4.: Comparison of the empirical autocorrelation ρ̂∆
W 2 of the squared intermittency

increments (∆n
kW )2 (black points) for lags k = 1, . . . , 26 698 corresponding

to a time-lag of 5.3396s and of the parametric estimate ρ∆
W 2(·; θ̂) (red solid

line). Both axes are in logarithmic scale. Right: least squares estimates of the
parameters θ̂ of gY (·; θ).

Figure 5.5.: Estimation of the tempered stable Lévy density. Left and right: the paramet-
ric estimate f(x, θ̂1,2) (red line) and the non-parametric estimate f̂ m̂µ (x)x−4

(black points) are compared on the domain 0.15 ≤ |x| ≤ 0.3.
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Figure 5.6.: Simulation from the fitted model. Top: simulated increments Wk∆−W(k−1)∆

of the intermittency process on an interval of length 1000 s. Bottom-Left:
quantile-quantile plot (black points) of the observed increments ∆n

kW of the
data (x-axis) against the simulated increments (y-axis). The red line indi-
cates the identity diagonal. The fit is excellent on [−0.3, 0.3] which carries
more than 99.996% of the data. Bottom-Right: comparison of the empirical
autocorrelation ρ̂∆

W 2 of the squared intermittency increments (∆n
kW )2 (black

points) for lags k = 1, . . . , 26 698 corresponding to a time-lag of 5.3396s and
of the empirical autocorrelation of the squared simulated intermittency incre-
ments (red solid line).
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