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Abstract

The Polyakov–Nambu–Jona-Lasinio (PNJL) model is used to investigate properties of strongly
interacting matter in the non-perturbative regime. It features both spontaneous chiral symmetry
breaking and statistical color confinement, i. e. the suppression of color non-singlets. A consis-
tent cutoff scheme for the 2 + 1 flavor PNJL model is introduced and shown to be superior to
previously existing schemes: it ensures both the propagation of quarks as free particles at high
temperatures as well as the correct treatment of thermodynamics.

The main points of interest of this work are the location, and conditions for the existence,
of a critical point in the phase diagram of Quantum Chromodynamics (QCD), according to the
PNJL model. Particular emphasis is put on the influence of two important parameters: first, the
axial U(1) breaking Kobayashi-Maskawa-’t Hooft interaction strength K. Second, the repulsive
vector interaction coupling gv. We discuss state-of-the-art knowledge about these parameters
and give our own estimate of gv, based on a comparison to recent lattice QCD data for the
curvature of the chiral crossover. We find that a reasonable choice of parameters results, by a
large margin, in a phase diagram without a critical point or a first-order chiral phase transition.

Zusammenfassung

Wir verwenden das Polyakov–Nambu–Jona-Lasinio–(PNJL–)Modell, um die Eigenschaften
stark wechselwirkender Materie im nicht-perturbativen Bereich zu untersuchen. In diesem Mod-
ell ist sowohl die spontane Brechung der chiralen Symmetrie realisiert, als auch eine statistische
Beschreibung des Farb-Confinements möglich, d.h. die Unterdrückung von Objekten, die keine
Farb-Singuletts sind. Wir führen ein selbstkonsistentes Regularisierungsschema für das 2 + 1-
dimensionale PNJL-Modell ein und zeigen, dass es gegenwärtigen Schemata überlegen ist: es
stellt sicher, dass sowohl Quarks bei hohen Temperaturen wie freie Teilchen propagieren, als
auch thermodynamische Größen korrekt behandelt werden.

Der hauptsächliche Fokus dieser Arbeit liegt auf der Bestimmung der Position, und Bedin-
gungen für die Existenz, eines kritischen Punktes im Phasendiagramm der Quantenchromody-
namik (QCD), basierend auf dem PNJL-Modell. Besonderes Augenmerk gilt dabei dem Einfluss
zweier wichtiger Parameter: erstens der Kobayashi–Maskawa–’t Hooft– Wechselwirkungsstärke
K, und zweitens der repulsiven Vektorwechselwirkungsstärke gv. Wir diskutieren den aktuellen
Forschungsstand zu diesen Parametern und geben eine eigene Abschätzung von gv an. Diese
beruht auf dem Vergleich der Krümmung des chiralen Crossovers zu jüngsten Gitter-QCD-
Ergebnissen. Es zeigt sich, dass für eine sinnvolle Wahl von Parametern das Phasendiagramm
weder einen kritischen Punkt noch einen Phasenübergang erster Ordnung enthält.
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Chapter 1

Introduction

Quantum chromodynamics (QCD), the theory of strong interactions, has been studied for
decades. It has played a major role in three research areas awarded with Nobel Prizes in
Physics so far1 and still continues to offer plenty of challenges and puzzles. Many open ques-
tions relate to the search for the phase diagram of QCD, which shows how strongly interacting
matter behaves under different thermodynamic conditions. Depending on parameters such as
temperature, chemical potential and density, one maps out regions (phases) where matter is
characterized by common properties and specific symmetry patterns. The implications of the
phase diagram reach from physics shortly after the big bang to the structure and composition
of dense astronomical objects like neutron stars. Our work contributes to the study of impor-
tant aspects of this hotly discussed topic, combining model calculations with input from other
sources, both experimental and theoretical.

QCD is characterized by the deceptively simple Lagrangian

LQCD =
∑
f

ψ̄f (iγµDµ −mf )ψf −
1

2
tr [GµνG

µν ] . (1.1)

The ψf are the quark fields, fundamental fermions of flavors species f . They carry SU(3)c color
charges and are therefore subject to the strong interaction; effects of the other interactions are
comparably weak and neglected in this work. We also include only the three quark flavors
with the smallest bare masses mf : the u-quark (“up”), the d-quark (“down”) and the s- quark
(“strange”) in our considerations; the three heavy quarks do not contribute at scales relevant
for our study. Additional ingredients of the Lagrangian are the gluonic field strength tensor
Gµν := i

g [Dµ, Dν ] and the covariant derivative Dµ := ∂µ − i g λa2 Aaµ, with the eight gluon fields
Aaµ, eight Gell-Mann matrices λa, a ∈ {1, . . . , 8}, and the coupling strength g.

The Lagrangian in eq. (1.1) respects several symmetries on the classical level. In nature, a
complex symmetry pattern emerges, with some symmetries conserved, some explicitly broken,
some spontaneously broken and one anomalously broken. Among these effects, two can be
considered the most important: on the one hand, the spontaneous breaking of the so-called
chiral symmetry governs physics at low energy and density. On the other hand, the spontaneous
breaking of the SU(3)c center symmetry Z(3) is related to color confinement: only color-neutral
objects are observed as free particles. Studying the interplay between these effects is complicated
by the non-Abelian nature of QCD: its coupling strength is small at high energy (“asymptotic
freedom“) but becomes large with decreasing energy so that perturbative methods, based on
an expansion in the coupling, break down. This rich structure is one of the features that make
QCD a very challenging, but equally fascinating subject of study. The model we use in this
work mimics the observed symmetry pattern which is a crucial condition for calculations of the
phase diagram.

1Murray Gell-Mann in 1969, Gross, Politzer and Wilczek in 2004 and Nambu in 2008
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2 Introduction

One of the most frequently discussed possible features of the phase diagram is the existence
and location of a critical end point2. At such a point, a first-order transition line between
two phases, characterized by a discontinuous order parameter, turns into a crossover, where
thermodynamical observables undergo a rapid change. The most common example is the critical
point at the end of the liquid/gas transition in the pressure–temperature phase diagram of water.
Beyond that point, it is impossible to distinguish clearly between the two states of matter.

The notion of a critical point of QCD is in large parts based on models like the one we are
using in this work. It has long been known, however, that its location is strongly dependent on
the parameters of the model. Our goal in this work is to investigate how likely the existence of a
critical point is when state-of-the-art results from many different approaches are considered. The
method is characterized by two simple steps: First, we systematically study the robustness of
the critical point under a change of model parameters that are not yet under strong constraints.
Second, we discuss the implications of the most probable values of these parameters for the
critical point.

This thesis is organized as follows. First, in Chapter 2, we give a brief overview over known
as well as commonly expected features of the QCD phase diagram. The main methods of
determining its properties are listed and some advantages and disadvantages presented.

Chapter 3 introduces the Polyakov–Nambu–Jona-Lasinio (PNJL) model. We start from the
underlying effective Lagrangian mimicking the symmetry patterns of the QCD Lagrangian and
show the important steps and approximations in the calculation of the thermodynamic potential
Ω. The used input parameters are listed and their origins discussed.

The PNJL model is non-renormalizable so that a cutoff has to be applied. In Chapter 4,
we discuss three different cutoff schemes. We show that the “soft” cutoff scheme we are using
has distinct advantages over the commonly used methods. In the second half of that chapter,
we show our standard results for the phase diagram and thermodynamic quantities in the 2 + 1
flavor case. That diagram will be the baseline of comparison throughout the thesis. Some results
in the two flavor scenario are given for reference. We also compare to recent results from lattice
QCD calculations.

Chapter 5 continues the discussion of lattice QCD results, especially of the so-called “Columbia
plot” and its continuation to finite chemical potential, the “critical surface”. Special emphasis
is put on the influence of the strength of the axial U(1) anomaly, in the model given by the
Kobayashi–Maskawa–’t Hooft coupling strength K. We discuss some experimental as well as
theoretical indications for its possible dependence on temperature and chemical potential. It is
seen that the critical surface can change considerably with K. Interestingly,the main differences
appear in µ–T regions that lattice QCD calculations will have considerable difficulty reaching.
In the context of the curvature κ of the chiral crossover determined, again, from lattice QCD,
we discuss the influence of several likely functional forms of K (T, µ) on the curvature result
from our model. We find that none of these forms yields a small enough curvature.

In chapter 6 we focus on the Polyakov loop effective potential U . Two popular forms are
presented and the role of its parameters investigated. Since recent lattice QCD results show
the Polyakov loop crossover to be very smooth, it is one goal of this chapter to study which
modifications of U would be necessary to achieve this effect. We show how such changes would
impact pure glue calculations. The last part of the chapter presents the strong influence of
cutoff schemes on the interplay between the chiral and the (de-)confinement crossovers. In this
context, we also show the results of allowing the pure glue transition temperature T0 to run
with µ.

Chapter 7 introduces a vector-type interaction into the model. It consists of two parts: in the
first, a relatively simple interaction Lagrangian is studied that is common in the literature. The
second part treats a more complex vector interaction term that does not mix flavors. We discuss

2Usually it is just called “the critical point” for convenience. However, in some works it is speculated that
more than one critical point could exist.
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differences between the two interaction variants; where they are identical, we use the simpler
one. The dependence of the critical point on the vector interaction strength gv is studied in
detail, especially in combination with a change in the strength of the axial anomaly. The chiral
first-order transition is presented in the T–ρB plane with ρB the net baryon density. Constraints
from the phase transition of nuclear matter are used to infer likely values for K and gv. Finally,
we find our own estimate of gv by again calculating the crossover curvature κ.

We give a summary, our conclusions and an outlook for the future in chapter 8.





Chapter 2

The QCD phase diagram

2.1 Introduction

The thermodynamic properties of matter under the influence of quantum chromodynamics are
described by the QCD phase diagram. It is usually displayed with temperature T and quark
chemical potential µ as the axes, corresponding to the independent variables of a grand canonical
ensemble1. The phase diagram, though a subject of studious research since the 70s [27], is still
largely a matter of conjecture.

In this chapter, we give a brief overview of its expected features and the main research
approaches, as far as relevant to our work: computational approximations of QCD on a grid
(so-called ”lattice QCD”, section 2.4), information gleaned from experiments and astrophysical
observation (section 2.5), and model calculations (section 2.6). For more information, we refer
to some of the excellent reviews on this topic, e. g. [122, 54].

A commonly used sketch of expectations about the phase diagram is shown in Fig. 2.1. The
most striking, and most debated, feature is certainly the critical point: it is speculated that
the smooth chiral crossover (see section 2.2) becomes a first-order transition with increasing
µ; indications of this stem mostly from predictions of chiral models (section 2.6). However,
firmly known facts are rather scarce; we discuss them in the following. Theoretical arguments

Fig. 2.1: Common basic expectations about the QCD phase diagram. Dashed: chiral
crossover, see sections 2.2 and 2.4. Beyond the critical point (red), the transition is
first-order (solid line). Line to the right: separation of color-superconducting (CSC)
matter from quark-gluon matter.

1In chapter 7 we will discuss the benefits of switching µ for the net baryon density ρB. They are related by
ρB = − 1

3
∂Ω
∂µ

, where Ω is the grand canonical potential.

5



6 The QCD phase diagram

determine what to expect at large T and large µ: At high temperatures T & ΛQCD, in accordance
with the QCD property of asymptotic freedom [59, 60, 107, 108], the ground state is expected
to be a so-called quark-gluon plasma (QGP), i. e. deconfined “partonic” matter with quarks and
gluons as active degrees of freedom. The scale parameter ΛQCD is, apart from the current quark
masses, the only free parameter in QCD. Its numerical value varies with the renormalization
scheme used to connect to experimental values; it is about ΛQCD & 200 MeV.

For large chemical potentials, on the other hand, it was found that the gap energy of a color
superconducting state is of the order of ΛQCD [4]. The ground state at asymptotically high
densities is expected to be the color-superconducting color-flavor locked (CFL) phase: quark-
quark Cooper pairs (”diquark condensates”) break the (approximate) SU(3)c×SU(3)L×SU(3)R

symmetry down to the diagonal subgroup SU(3)c+L+R, where even the baryon number is not
conserved [4]. At low temperature and intermediate µ, a plethora of diverse color superconduct-
ing phases with non-vanishing diquark condensates, e. g. a crystalline phase, is being discussed
[3]. In this work, we will not include diquark degrees of freedom; this remains as an objective
of future work. Instead, we focus on the region of intermediate temperatures and chemical
potentials.

That region is governed by the interplay of two important properties of QCD: the first is the
spontaneous breaking of chiral symmetry, and the second is color confinement.

2.2 Chiral symmetry and the chiral condensate

The QCD vacuum at T = 0 and µ = 0 is a much more interesting phase than the completely
symmetric system that was initially expected (Wigner-Weyl realization). Although a symmetry
of the QCD Lagrangian, chiral symmetry is spontaneously broken2 in nature (Nambu-Goldstone
realization of the vacuum). It is defined by invariance under the transformation of quark fields
as

ψ −→ exp [iλaθ
a]ψ, (2.2.1)

with the Gell-Mann matrices in flavor space λa, a = 1 . . . 8 and parameters θb, b = 1 . . . 8. One
empirical proof is that the pseudoscalar mesons are much lighter3 than their scalar counterparts.
For example the pseudoscalar neutral pion π0 with quantum numbers IGJPC = 1−0−+ has a mass
of about 135 MeV, while the scalar a0 meson with IGJPC = 1−0++ has a mass of 980± 20 MeV
[16]. The most common measure of chiral symmetry breaking is the so-called “chiral condensate”
or “quark condensate”,〈

ψ̄ψ
〉

= 〈0| ψ̄ψ |0〉 = 〈0| ūu |0〉+ 〈0| d̄d |0〉+ 〈0| s̄s |0〉 (2.2.2)

for the three lightest quark flavors. With ψL := 1/2 (1− γ5)ψ and ψR := 1/2 (1 + γ5)ψ, with
the definition, based on the Dirac gamma matrices, γ5 := iγ0γ1γ2γ3, we have

ψ̄ψ = ψ̄RψL + ψ̄LψR. (2.2.3)

This operator is clearly not invariant under separate chiral SU(3)L and SU(3)R transformations
with

ψL/R

SU(3)L/R−−−−−−→ exp
[
i θL/R
a λa

]
ψL/R. (2.2.4)

Consequently, the mass term in the QCD Lagrangian, mψ̄ψ, breaks chiral symmetry explicitly,
and from a non-vanishing expectation value of

〈
ψ̄ψ
〉

follows a ground state with broken chiral
symmetry (Nambu-Goldstone phase).

2For this discovery, Yoichiro Nambu was awarded one half of the Nobel Prize in Physics in 2008.
3Although they are the Goldstone bosons of a broken continuous gauge symmetry, they are not exactly massless

because of the non-vanishing current quark masses. These masses are comparatively small, however, so that the
mechanism of spontaneous symmetry breaking is still a good description of physics.



2.3 Color confinement and the Polyakov loop 7

The Gell-Mann–Oakes–Renner relation [56] based on the symmetries of QCD and their
breaking patterns connects the the chiral condensate

〈
ψ̄ψ
〉

to the pion mass mπ. In two flavors,
it reads, with the pion decay constant fπ and the up- and down quark current masses mu and
md, respectively,

m2
π f

2
π = − (mu +md)

〈
ūu+ d̄d

〉
. (2.2.5)

It follows that the chiral condensate has a finite value in the vacuum4. On the other hand, for
T →∞ (Stefan–Boltzmann limit), a gas of free quarks and gluons should be a good description
of the system. The pressure Pq for each quark flavor q can be calculated as

Pq (T ; mq) ≈ 4Nc
7

8

[
π2

90
T 4 − 1

42
m2
qT

2 +O
(
m4
q

)]
(2.2.6)

and, since one can easily show that

〈
ψ̄ψ
〉

= −∂P (T, µ)

∂mq
, (2.2.7)

the condensate vanishes at high temperature in the chiral limit mq → 0 [141]. Therefore, a phase
transition must occur somewhere at intermediate temperatures. For the study of this region,
lattice QCD calculations have proved an invaluable tool (see section 2.4).

2.3 Color confinement and the Polyakov loop

Close to the vacuum, matter is in the hadronic phase. Hadrons like pions or nucleons are
colorless; SU(3)c colored objects like the constituent quarks or gluons are confined and not
observed freely. For asymptotically high temperatures, the quark kinetic energy becomes large
with respect to the confining potential (strongly coupled quark gluon plasma, sQGP) and matter
is deconfined. Similarly, for very large densities, mean free distances between the quarks become
small and color confinement ceases.

In a system without dynamical quark degrees of freedom (the heavy quark limit), the ex-
pectation value 〈Φ〉 of the renormalized Polyakov loop is an order parameter for the confine-
ment/deconfinement transition. The Polyakov loop L itself is a Wilson loop winding around the
periodic imaginary time direction,

L (~x) = P exp

{
i

∫ β

0
dτA4(~x, τ)

}
(2.3.1)

and the order parameter is

〈Φ(~x)〉 =

〈
1

Nc
tr [L (~x)]

〉
. (2.3.2)

In the confined phase, the SU(3) center symmetry Z(3) for the elements of SU(3)c under periodic
boundary conditions in the inverse temperature direction is exact; in the deconfined phase, it
is spontaneously broken. This symmetry is also explicitly broken by the presence of dynamical
quarks: their antiperiodicity in imaginary time requires fermionic fields to transform trivially
under Z(3). For 〈Φ〉, one finds the transformation pattern

〈Φ〉 Z(3)−−−−→ z 〈Φ〉 with z ∈
{
e

2nπ i
3

∣∣n = 0, 1, 2
}
. (2.3.3)

If 〈Φ〉 = 0, it is trivially invariant and the symmetry is intact. For 〈Φ〉 6= 0, only z = 1 is
allowed, and the symmetry is broken. A simple but intuitive interpretation of the Polyakov loop

4This is also true in the chiral limit, where mπ = mu = md = 0.



8 The QCD phase diagram

was worked out in [94, 95]. They showed for the thermal expectation value of the correlation of
two Polyakov loops:

e−βFq̄q(~x−~y,T ) =
〈

Φ (~x) Φ† (~y)
〉
, (2.3.4)

where Fq̄q (~x− ~y, T ) is the free energy of two static color sources at ~x and ~y. It was then argued,
using the cluster decomposition theorem, that one can write

〈Φ〉 = e−
1
2
βF∞q (2.3.5)

for the asymptotic free energy of a hypothetical “single” quark5. Clearly, when Z(3) symmetry
is intact and 〈Φ〉 = 0, it takes infinite free energy F∞q to liberate the quark – it is confined. If
the symmetry is broken and 〈Φ〉 → 1, then F∞q → 0, signalling deconfinement. In the following,
in accordance with the usage in the literature, we drop the braces and denote the expectation
value 〈Φ〉 from now on simply as “the Polyakov loop” Φ.

Lattice QCD calculations are very well suited to calculate the Polyakov loop at µ = 0, both
in the pure glue scenario and with dynamical quarks. Recent results are presented in Fig. 6.1
and Fig. 6.2 in section 6.1.

2.4 Lattice QCD

The lattice approach to study non-perturbative QCD physics was proposed by Wilson in 1974
[139]: the functional integration in the QCD partition function is carried out by importance
sampling on a discrete (usually Euclidean) space time grid with a lattice spacing a and real
time extent Nτ . The smallest describable wavelength on a lattice extends over two units of a,
so that momenta are restricted to |k| ≤ π/a, giving a natural ultraviolet cutoff scale. For the
transcription of QCD onto the lattice, statistical mechanics methods can be used.

The definition of the action is, however, highly non-trivial. The discretization of the theory
leads naturally to errors in powers of the lattice spacing, in addition to effects from the finite
volume and the continuum extrapolation a → 0. Depending on the formulation of the action
and the inclusion of terms that do not contribute in the continuum limit, these discretization
errors can be reduced. A multitude of techniques has been developed that we cannot cover in
any detail in this work (for an introduction, see e. g. [62]). For our purposes it is important to
note that the common lattice actions like Wilson or staggered fermions break chiral symmetry
to some degree. However, it can still be mimicked and studied approximately and relations
like the Gell-Mann–Oakes–Renner relation, eq. (2.2.5), have been reproduced. In principle, the
overlap fermion formulation [100] or an approximation, domain wall fermions, are able to describe
(almost) chirally invariant fermions. The downside is the enormous amount of computing power
required, even compared to the other actions that already necessitate the use of large computer
clusters. Nevertheless, quite recently calculations at finite temperature from this approach have
been forthcoming [74, 36]. First results indicate that findings with dynamical overlap fermions
[17] and domain wall fermions [11] are compatible with those from the other actions.

Regardless of the formalism, lattice QCD calculations usually show a smooth crossover of
the chiral condensate at µ = 0. The study of the order of this transition, i. e. first or second
order, or crossover, is depicted in the so-called Columbia plot as a function of the current quark
masses. Reasonable estimates then put the physical point in the crossover region. We discuss
the Columbia plot, and our result for it, in more detail in chapter 5.

Two major collaborations, the hotQCD collaboration [10] (mainly based in Bielefeld and
Brookhaven) and the Budapest–Wuppertal group [19] using different fermion realizations, have
found results for the chiral transition at µ = 0 that essentially agree with each other after

5For antiquarks, the relation is, analogously,
〈
Φ†

〉
= e−

1
2
βF∞

q̄ .
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careful treatment of discretization errors and extrapolations to the continuum limit6 and physical
current quark masses [10], see black diamonds and green triangles in Fig. 2.3. We cannot cover
these procedures in detail, for which we refer to the respective publications, but it should be
kept in mind that there is still some freedom in determining what exactly is the “physical”
extrapolation. We show results for the chiral condensate7 in Figs. 2.2 and 2.3.

It should be noted that the transition occurs at lower temperatures than in our calcula-
tions in the following chapters; this is a known problem of the PNJL model that is remedied
to some degree by its nonlocal extension (see section 2.6). We will see that our framework
nevertheless achieves good agreement with lattice QCD results when they are normalized to the
critical temperature, see e. g. the comparison of the results seen in Fig. 2.3 to ours, presented
in Fig. 4.5. Lattice QCD groups provide us also with information about the order parameter
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of deconfinement, the Polyakov loop Φ (definition in 3.5, results in Fig. 6.1 and Fig. 6.2). It
is a subject of ongoing research what the relation between the chiral, and the Polyakov loop
(de-)confinement transition is. Lattice QCD results tend to show two essentially coinciding
crossovers (“entanglement”); no fundamental reason is known for this effect. Casher [29] and
’t Hooft [124] have argued that confinement implies chiral symmetry [50]. Then, deconfinement
should, as a tendency, set in earlier than chiral restoration. This scenario will be evident in our
version of the phase diagram, see e. g. Fig. 4.6b. We comment on the degree of entanglement
and its dependence on model settings in sections 4.5, 6.3.6 and 6.3.7.

So far, we have restricted the discussion along the T axis to µ = 0. The extension of lattice
calculations to finite chemical potentials suffers from the notorious “fermion sign problem”: in
the “quenched” evaluation of the partition function, quark fields are integrated out to give

Z =

∫
DUe−Sg[U ]

∏
f

detM (mf , µf ) , (2.4.1)

where detM is the fermion determinant for the flavor f and Sg the pure gauge action. Since

for the Dirac operator the hermeticity relation /D (µ)† = γ5 /D (−µ∗) γ5 holds, the fermion deter-
minant is complex for color group SU(3) and real chemical potential. This prohibits its use as
a probability weight in the Monte-Carlo algorithms (see e. g. review [106]). The problem itself
remains unsolved, but there exist several ways of circumventing it: these include, among others,

6In addition, the kaon decay constant fK instead of the more common Sommerfeld scale was used to produce
physical temperature values.

7The quantity ∆ls is a combination the chiral condensates for different flavors, see def. (4.5.2) and the following
discussion.
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reweighting, calculations with imaginary chemical potential (µ∗ = −µ then makes the fermion
determinant real) and a Taylor expansion around µ/T . So far, no direct evidence for a change
of the crossover at µ = 0 into a first-order transition was found for µ/T . 1. Extrapolations of
the curvature of the “critical surface” in the Columbia plot could be expected to give indication
of such a change. We discuss this practice in chapter 5 and show that one has to be careful not
to infer too much from the small µ/T region to the domain of intermediate µ.

Therefore, although lattice QCD is immensely useful for small fractions µ/T , one needs
additional input to complete the phase diagram.

2.5 Experimental and empirical information

The region at low temperature and small but finite densities is the domain of nuclear matter
(NM). It is known to exhibit no indications of chiral symmetry restoration or deconfinement; its
successful description is realized on the level of mesonic and hadronic degrees of freedom. It exists
in a gaseous and a liquid phase, separated by a first-order phase transition. At T = 0, nuclear
matter net baryon density starts to form around8 µB = µNM ≈ 924 MeV. Multi-fragmentation
experiments suggest that the first-order transitions ends in a critical end point with µ ≈ µNM

and T = 15 ∼ 20 MeV [77, 78]. Calculations with state-of-the-art in-medium chiral perturbation
theory yield very similar results [46]. We will use this accurate information in chapter 7, arguing
that the nuclear matter liquid/gas coexistence region should not overlap with a phase of (even
partially) restored chiral symmetry. This constraint allows us to determine limiting values for
model input parameters (section 7.5.4).

So far, no direct9 indications of a first-order transition in the phase diagram other than
the NM transition have been found in experiments. Indeed, it is still an open question which
observables might be best suited for the search for a first-order phase transition and a possible
critical point. Lattice QCD calculations at vanishing µ suggest that the fluctuations of conserved
quantities as a function of µ are sensitive to the correlation length ξ which diverges10 at a critical
temperature. The sensitivity is increased for cumulant ratios of these fluctuations in baryon
number, charge or strangeness [102, 34]. However, a recent publication [103]11 reports that first
results from the RHIC beam energy scan (BES) program “did not confirm any of the suggested
[critical point] signals” in the “most ’suspected’ area of the QCD phase diagram”. The lack of
signals is rendered more significant by the fact that the hypothetical critical point is expected to
be an “attractor of isentropic trajectories” [101]. As a consequence, it is believed that it should
be enough to create a thermalized medium with initial conditions close to the critical point [2].
It is then not possible to “narrowly miss” the critical point in an experiment and the lack of
signals must be taken seriously. Data analysis will probably continue for some time; an update
on results should be given soon.

We will not go further into details of this expansive and hotly debated topic on the experi-
mental side of physics; for a list and discussion of proposed measurements, see e. g. [2].

Apart from experiments, empirical findings from astrophysics recently advanced the quest
for the phase diagram and sparked a lot of renewed discussion. The mass of the neutron star
“PSR-J1614-2230” was measured with extraordinary precision [41] as M = (1.97 ± 0.04)M�
with M� the mass of our sun. The strong requirements this entails for the “stiffness” of the
equation of state, i.e., the large increase of pressure with energy density, eliminates several more
“exotic” phases from the phase diagram [64, 89, 88, 137] at low temperature and moderate

8The nucleon mass is about 939 MeV and the binding energy in isospin-symmetric nuclear matter around
16 MeV.

9In section 6.3.7 and the following summary, we discuss cautious claims of an indirect observation of the phase
transition.

10In collision experiments with a “fireball” of finite size, this quantity is necessarily finite as well.
11It might be worth noting that this work was published only by a member of the STAR collaboration and not

by the STAR collaboration as a whole.
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density. We do not make use of these constraints in this work but they certainly suggest further
studies in this direction in the future.

2.6 Model calculations

After the discussion in the foregoing, it is clear that only the edges of the phase diagram in
Fig. 2.1 are known with some certainty. The situation is still unclear in the middle of the
phase diagram, where the first-order phase transition and the critical point are conjectured.
Non-perturbative approaches that – in principle – take full QCD into account, like functional
renormalization group [138, 105] and Dyson–Schwinger techniques [114, 5, 47, 113], are being
rapidly developed. So far they have not arrived at a level that allows reliable calculations of the
area in the middle of the phase diagram by themselves. Thus, that region can presently only
be investigated with nonperturbative models that do not suffer from the fermion sign problem.
Results from the mentioned “full QCD” approaches is often used as fruitful input. Probably
most prominent among models are the Polyakov–Quark–Meson (PQM) model [119, 69] and the
Polyakov-extended Nambu–Jona-Lasinio model which we will present in the next chapter.

There exists an updated version of the usual local PNJL model, namely a nonlocal approach
[57, 68, 67]. In that framework, no artificial cutoff (cf. chapter 4) is necessary and the running of
the QCD coupling strength is incorporated in a natural and consistent way. The disadvantage of
such a model closer to physical reality is the added complexity of its equations. This translates
directly into computational costs that are higher by a factor of ∼ 100. Our work in the local
model may therefore serve as a trailblazer for later studies with the nonlocal formalism: the
relatively cheap calculations allow us to scan large parameter spaces and thus identify important
aspects and interesting phenomena of the QCD phase diagram.





Chapter 3

The three-flavor
Polyakov–Nambu–Jona-Lasinio
model

3.1 Introduction

In this chapter we give an overview over the three-flavor PNJL model. We follow largely the
exposition in [21], in particular in terms of nomenclature and definitions. Several detailed
introductory works are available, e. g. [26, 81, 82, 134].

The NJL model was invented by Nambu and Jona-Lasinio in 1961 [98, 99] to describe the
nucleon mass as stemming mostly from the “self-energy of some primary fermion field” and
physical nucleons as quasi-particle excitations. It was conceived in analogy to the formation of
an energy gap in the Bardeen–Cooper–Schrieffer (BCS) theory of superconductivity [8] with the
pion playing the role of the phonon. After the development of quantum chromodynamics, the
NJL model was re-interpreted with quarks instead of nucleons as the basic fermionic degrees
of freedom [24]. In analogy to the electron-electron pairing in the BCS theory, it features the
spontaneous formation of quark-antiquark pairs

〈
ψ̄ψ
〉
, the chiral condensate (see section 2.2),

if an attractive interaction with a certain minimum strength is given1. Thus, NJL-type models
are a successful framework for the study of QCD properties related strongly to chiral symmetry
and its breaking pattern.

3.2 Lagrangian

The original NJL Lagrangian for two flavors in Minkowski space-time is

LNJL = ψ̄
(
i/∂ − m̂0

)
ψ +

G

2

[(
ψ̄ψ
)2

+
(
ψ̄iγ5~τψ

)2]
. (3.2.1)

with the Pauli matrices ~τ = (τ1, τ2, τ3)> in flavor space and m̂0 = diag (mu, md). This La-
grangian displays exact chiral symmetry in the limit m0 = 0. For three flavors, a natural
generalization is the sum of a kinetic term

Lkin = ψ̄
(
i/∂ − m̂0

)
ψ (3.2.2)

with ψ = (u, d, s)> and m̂0 = diag (mu, md, ms), and an interaction term

Lint =
G

2

N2
f −1∑
a=0

[(
ψ̄λaψ

)2
+
(
ψ̄λaiγ5ψ

)2]
, (3.2.3)

1With the strongly attractive color singlet channel, this is certainly true for QCD.

13



14 The three-flavor Polyakov–Nambu–Jona-Lasinio model

where the λi, i = 1 . . . 8, are the eight Gell-Mann matrices in flavor space and λ0 :=
√

2/3 1.
In the chiral limit mu = md = ms = 0 it respects, like the QCD Lagrangian, the full symmetry
structure of

SU(3)color × SU(3)L × SU(3)R ×U(1)V ×U(1)A . (3.2.4)

A non-vanishing chiral quark condensate
〈
ψ̄ψ
〉

implies that chiral symmetry is spontaneously
broken2 and we remain with

SU(3)color × SU(3)V ×U(1)V ×U(1)A . (3.2.5)

in the case of degenerate current quark masses3. However, we know that the classical axial U(1)
symmetry is broken by quantum effects, which constitutes the so-called “axial anomaly”4: the
four-dimensional axial vector current is not conserved, as one finds, even for vanishing current
quark masses,

∂µj
µ5 = ∂µψ̄γµγ5ψ = −g

2Nf

32π2
εµνλσGaµνG

a
λσ (3.2.6)

with the gluonic field strength tensor Gaµν and the four-dimensional totally antisymmetric Levi-

Civita symbol εµνλσ [1, 15]. In the NJL model the anomaly is realized by the inclusion of the
following term that conserves chiral symmetry but breaks U(1)A:

LKMT = K

[
detf

(
ψ̄

1 + γ5

2
ψ

)
+ detf

(
ψ̄

1− γ5

2
ψ)

)]
. (3.2.7)

Interactions of the type (3.2.7) have been first considered by Kobayashi and Maskawa [84, 83]
and further developed by ’t Hooft [125, 126]. In that work it was also shown that the term
arises naturally from instanton interactions which solves the so-called “UA(1) puzzle”: before, it
was unknown why the empirical mass of the η′ meson, the SU(3) singlet, is more than twice as
large as that of its octet counterpart, the η meson, see Fig. 3.1 and Table 3.1. The Kobayashi–
Maskawa–’t Hooft (KMT) term is repulsive in the η′ channel so that mη′ is lifted away from
the Goldstone sector. The KMT coupling strength K is equivalent to the strength of the axial
anomaly in the model.

Following these considerations we use the following Lagrangian in the calculation:

L = Lkin + Lint + LKMT. (3.2.8)

In chapter 7, it will be augmented by a vector interaction term. This combination, plus an
axial vector term, is a natural result if one Fierz transforms a color current-current interaction
motivated by QCD, and then drops color non-singlet channel terms [135].

For our calculations, we construct an effective thermodynamic potential5 Ω, which is defined
by

Z =: exp−ΩV/T or, equivalently, Ω = − lnZ
V (4)

, (3.2.9)

where V (4) = β V is the 4-dimensional volume and Z is the partition function

Z =

∫
Dψ̄Dψ e−SE . (3.2.10)

with the Euclidean action SE =
∫

d4xE LE and LE = −L. In the following the subscript “E”
for the Euclidean formulation will be dropped. Details about these definitions as well as the

2as well as explicitly by the nonvanishing current quark masses to a small degree
3The flavor symmetry SU(3)V is then broken by non-degenerate current quark masses with ms > mu ≈ md.
4also called Adler-Bell-Jackiw anomaly [1, 15]
5More precisely, it is the thermodynamic potential density, i. e. the thermodynamic potential per volume V .

This designation is usually omitted.
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Wick rotation from real to imaginary time, which is then identified with the inverse temperature
dimension, the evaluation of thermal propagators and Matsubara sums etc. are part of standard
thermal field theory textbook knowledge so that we will not elaborate them here. The goal of
this chapter is to give an understanding of the necessary steps taken and the approximations
that were used to arrive at the effective thermodynamic potential Ω.

3.3 Bosonization for three quark flavors

We proceed by “bosonizing’ the Lagrangian, by which fermionic degrees of freedom are replaced
by effective bosonic degrees of freedom. In the two-flavor case, this procedure is easily done
with a Hubbard-Stratonovich transformation [70, 123]. For three flavors, the process is more
involved. It is instructive to follow the process to some degree, in particular to see where various
approximations are applied. We outline here the major steps and refer for details to [21] based on
work from [80, 111, 118], or to [67], where the framework is generalized to non-local interactions.

Our first goal is to re-write the KMT interaction term (3.2.7) into a more suitable form. For
this, we define

(J± (x))fg = ψ̄f (x)
1

2
(1∓ γ5)ψg (x) (3.3.1)

with flavor indices f and g so that

LKMT = K (detf J+ + detf J−) . (3.3.2)

The flavor structure of the matrices J± can be expressed in terms of the Gell-Mann matrices,

J± =

8∑
a=0

c±a λ
a with 18 coefficients c±a =

1

2
tr [λaJ±] , (3.3.3)

where we have used tr
[
λaλb

]
= 2δab. Applying the Newton-Girard formulae, the determinant

of any 3× 3 matrix can be written as

detA =
1

6
(tr [A])3 − 1

2
tr [A] tr

[
A2
]

+
1

3
tr
[
A3
]
. (3.3.4)

We then have

det J± =

(√
2

3

)3 (
c±0
)3 − √2

3

8∑
m=1

c±0
(
c±m
)2

+
2

3

8∑
l,m,n=1

d lmnc±l c
±
mc
±
n (3.3.5)

with the totally symmetric anticommutator structure constants dlmn of SU(3) (see appendix A.1.1).
The interaction term Lint in (3.2.3) can also be expressed in term of c±a . The generators

tm = 1
2λ

m of SU(N) in the fundamental representation fulfill the relation

(tm)ij (tm)kl =
1

2

(
δilδkj −

1

N
δijδkl

)
(3.3.6)

with a summation over m = 1, . . . , 8. From this we derive, with the λa instead of the tm and an
a = 0 term included:

8∑
a=0

(λa)ij (λa)kl = 2

(
δilδkj −

1

3
δijδkl

)
+

2

3
δijδkl = 2δilδkj . (3.3.7)

Using (J±)ij = 1
2

(
ψ̄iψj ± ψ̄iγ5ψj

)
, we then find

c+
a c
−
a =

1

4
tr
[
λaJ+

]
tr
[
λaJ−

]
=

1

4
λaijJ

+
ji λ

a
kjJ
−
lk =

1

2
δilδjk J

+
jiJ
−
lk =

1

2
J+
jiJ
−
ij

=
1

8

(
ψ̄iψj − ψ̄iγ5ψj

) (
ψ̄jψi − ψ̄jγ5ψi

)
=

1

8

[(
ψ̄iψj

) (
ψ̄jψi

)
−
(
ψ̄iγ5ψj

) (
ψ̄jγ5ψi

)]
. (3.3.8)
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Again with the help of relation (3.3.7) we write(
ψ̄λaψ

)2
= ψ̄iλ

a
ijψj ψ̄kλ

a
klψl = 2ψ̄iψjψ̄jψi (3.3.9)

and then, combining eqs. (3.3.8) and (3.3.9), obtain

16 c+
a c
−
a =

(
ψ̄λaψ

)2
+
(
ψ̄iλaγ5ψ

)2
. (3.3.10)

Finally, Lint can be expressed as

Lint =
G

2

8∑
a=0

[(
ψ̄λaψ

)2
+
(
ψ̄λaiγ5ψ

)2]
= 8G

8∑
a=0

c+
a c
−
a . (3.3.11)

We now introduce 18 bosonic fields M+
a , M−a as well as 18 auxiliary fields ξ+

a , ξ−a by inserting
into the Euclidean partition function

Z =

∫
DψDψ̄ exp

{∫
d4x (Lkin + L3-flavor + LKMT}

)
, (3.3.12)

unity in the form (in Euclidean formulation):

1 =

∫ ∏
a

Dξ+
a

∫ ∏
a

Dξ−a δ
(
ξ+
a − c+

a

)
δ
(
ξ−a − c−a

)
=

∫ ∏
a

Dξ+
a

∏
a

Dξ−a
∏
a

DM+
a

∏
a

DM−a exp

{∫
d4x

[
M+
a

(
ξ+
a −K c+

a

)
+M−a

(
ξ−a −K c−a

)]}
.

(3.3.13)

The integration over the fermionic fields ψ̄ and ψ is performed first; the relevant parts have been
collected in

Z̃ψ =

∫
DψDψ̄ exp

{∫
d4x

[
ψ̄f
(
i/∂ − m̂0

)
ψf −KM+

a c
+
a −KM−a c−a

]}
. (3.3.14)

Note that the c±a are functions of those fields, see eqs. (3.3.1) and (3.3.3). With the definition of
the c±a in eq. (3.3.3), we find∑

a

M±a c
±
a =

1

2

∑
a

M±a
∑
f,g

(λa)fg J
±
gf (x) = ψ̄g(x)

∑
a

[
1

2
M±a (x)λa

(
1± γ5

2

)]
ψf (x) .

(3.3.15)

Using this relation and
∫
Dη
∫
Dη̄ exp

(
−η̄Ôη

)
= det Ô for a matrix (operator) Ô, we evaluate

the integration in eq. (3.3.14) to
Z̃ψ = exp (log detX) , (3.3.16)

where we have defined the matrix X implicitly by

log detX = tr log

[
i/∂ − m̂0 −

K

2

∑
a

M−a (x)

(
1 + γ5

2

)
λa −

K

2

∑
a

M+
a (x)

(
1− γ5

2

)
λa

]
.

(3.3.17)
Integrations over the ξ±a and the M±a remain. A possible next step would be the integration
over the fields ξ±a ,

Z̃ξ =

∫ ∏
a

(
Dξ−a Dξ+

a

)
exp

{∫
d4x

[
8G

K2
ξ+
a ξ
−
a +K det J+ +K det J− + iM+

a ξ
+
a + iM−a ξ

−
a

]}
.

(3.3.18)
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Instead, it is more convenient to change the auxiliary fields here. Looking at the compara-
tively simple interaction term (3.2.3), we define, inspired by the treatment of the pure 4-point
interaction formalism, scalar and pseudoscalar fields:

Sa = ψ̄λaψ , (3.3.19)

Pa = ψ̄iγ5λ
aψ , (3.3.20)

with a = 0, . . . , 8. Comparing with eq. (3.3.10), we find

16 c+
a c
−
a = S2

a + P 2
a . (3.3.21)

Moreover,

c±a =
1

2
tr [λaJ±] =

1

4

(
λa ψ̄ (1∓ γ5)ψ

)
=

1

4

(
ψ̄ (λa)>(1∓ γ5)ψ

)
. (3.3.22)

Because of the structure of the Gell-Mann matrices we have

(λa)> = (λa)∗ = vaλ
a , (3.3.23)

where we have defined

va =

{
−1, a ∈ {2, 5, 7} ,
+1, a ∈ {0, 1, 3, 4, 6, 8} , (3.3.24)

discerning between the symmetric and the antisymmetric λa. Inserting this into eq. (3.3.22), we
write

c±a = va
1

4

(
ψ̄λa (1∓ γ5)ψ

)
= va

1

4

[(
ψ̄λaψ

)
± i
(
ψ̄iγ5λ

aψ
)]

= va
1

4
[Sa ± iPa] . (3.3.25)

To stay consistent, we also have to introduce new auxiliary fields ρa and πa instead of M±a :

ρa =
K

4

(
M+
a +M−a

)
, (3.3.26)

πa = i
K

4

(
M+
a −M−a

)
, (3.3.27)

and conversely

M±a =
2

K
(ρa ∓ iπa) . (3.3.28)

The relation ξ±a = Kc±a is enforced by the delta distributions in eq. (3.3.13). Together with
eq. (3.3.5) we have all necessary pieces to rewrite Z̃ξ 7→ Z̃S, P :

Z̃S, P =

∫ ∏
a

(DSaDPa) exp

{∫
d4x

K

64

[
4

3

√
2

3

(
S3

0 − 3S0P
2
0

)
−

− 2

√
2

3

8∑
m=1

(
S0S

2
m − S0P

2
m − 2SmP0Pm

)
+

4

3

8∑
l,m, n=1

dlmn (Sl SmSn − 3Sl PmPn)

]
+

+
8∑

a=0

(ρaSa + πaPa) +
8∑

a=0

G

2

(
S2
a + P 2

a

)}
. (3.3.29)

We have used v2
a = 1 for all a and v0 = +1. The only other place where the va still occurred

was in front of the the totally symmetric dlmn. It can, however, be shown (see appendix A.1.2)
that

vlvmvnd
lmn = dlmn (3.3.30)
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so that all va are eliminated from the calculation. The result in eq. (3.3.29) can be displayed in
an elegant compact form by defining

Aabc :=
1

3!
εijkεmnlλ

a
imλ

b
jnλ

c
kl, (3.3.31)

with a, b, c = 0, . . . , 8. Then, Z̃S, P is written more neatly as

Z̃S, P =

∫ ∏
a

(DSaDPa) exp

[∫
d4x

8∑
a=0

{
ρaSa + πaPa +

G

2

[
S2
a + P 2

a

]
+
K

4
Aabc [SaSbSc − 3SaPbPc]

}]
(3.3.32)

after a tedious but straight-forward calculation, where an overall constant has been neglected.
The same variable change in the fermion determinant (3.3.17) results in

log detX = tr log

[
i/∂ − m̂0 −

∑
a

λaρa − iγ5

∑
a

λaπa

]
. (3.3.33)

The integral in eq. (3.3.32) is not analytically solvable because of the cubic term. We therefore
proceed by applying the stationary phase approximation, where the integral over the exponen-
tial function is assumed to be dominated by the extremal configuration of the exponent. The
minimizing values S̃a (ρb, πc) and P̃a (ρb, πc) are given implicitly by the conditions

ρa +GS̃a +
3K

4
Aabc

[
S̃bS̃c − P̃bP̃c

]
= 0 (3.3.34)

and

πa +GP̃a −
3H

2
AabcS̃bP̃c = 0. (3.3.35)

We then have

Z =

∫ ∏
a

(DρaDπa) e−S
bos
, (3.3.36)

where

Sbos = − log detX −
∫

d4x

{
ρaS̃a + πaP̃a +

G

2

[
S̃2
a + P̃ 2

a

]
+
K

4
Aabc

[
S̃aS̃bS̃c − 3S̃aP̃bP̃c

]}
.

(3.3.37)
In this work, we consider only the mean field scenario. In this approximation, we assume non-
vanishing global mean field values ρ̄a for the scalar6 fields ρa and zero mean field values of the
pseudoscalar fields πa as follows:

ρa (x) = ρ̄a + δρa (x) ,

πa (x) = δπa (x) . (3.3.38)

Fluctuation terms δρa and δπa will be dropped in this expansion. Further, only fields invari-
ant under the charge conjugation operation C can be non-vanishing. From the infinitesimal
transformation law

ψ
C−−→ ψ̄λaψ + ψ̄iα

[
λa, Q̂

]
ψ +O(α2) (3.3.39)

6The symmetry properties of these auxiliary fields can be inferred from eqs. (3.3.13), (3.3.26) and (3.3.27).
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it follows that only the expectation values ρ̄0, ρ̄3 and ρ̄8 remain in the physical realm. The same
is true for the fields S̄a := S̃a (ρ̄b, 0). For them and for the ρ̄a it is then convenient to switch to
the physical quark flavor basis by defining

S̄u :=

√
2

3
S̄0 + S̄3 +

1√
3
S̄8 ,

S̄d :=

√
2

3
S̄0 − S̄3 +

1√
3
S̄8 ,

S̄s :=

√
2

3
S̄0 −

2√
3
S̄8 , (3.3.40)

and the same for the ρ̄a. The following steps are lengthy but straight-forward textbook calcu-
lations and we arrive at the bosonized Euclidean mean field action

SMFA

V (4)
= −2

∫
d4p

(2π)4
Trf Trc log

[
p213×3 + M̂2

]
− 1

2

[∑
i

(
ρ̄iS̄i +

G

2
S̄iS̄i

)
+
K

2
S̄uS̄dS̄s

]
.

(3.3.41)
The fermion determinant was transformed to momentum space and we left unevaluated the
traces in flavor space, Trf, and in color space, Trc. We have defined a preliminary effective mass
matrix, M̂ = diag (Mu,Md,Ms), with effective quark masses Mi = mi + ρ̄i. In order to be
consistent with previous work, we redefine at this point

σa := G S̄a and K → −2K . (3.3.42)

The sign change in K renders this important quantity positive. It amounts to a definition of

LKMT = −K
[
detf

(
ψ̄ (1 + γ5)ψ

)
+ detf

(
ψ̄ (1− γ5)ψ)

)]
. (3.3.43)

The fields σu, σd and σs are the mean field chiral condensates. In our convention they are given
by

σq = 2G 〈q̄q〉 (3.3.44)

for each quark flavor q and turn out negative in the calculations7. Evaluating the equations
self-consistently in the flavor basis, we arrive at the final effective quark masses

Mu = mu − σu +
K

2G2
σdσs ,

Md = md − σd +
K

2G2
σsσu ,

Ms = ms − σs +
K

2G2
σuσd . (3.3.45)

With these definitions, we find for the effective thermodynamic potential defined in eq. (3.2.9):

Ω = Ωfermion +
σ2

u

4G
+
σ2

d

4G
+
σ2

s

4G
− K

2G3
σuσdσs, (3.3.46)

where Ωfermion is from the evaluation of the fermion determinant. For that part, we can apply
standard thermal field theory methods, as the differences to the free fermion case so far can be
absorbed in to the effective mass definitions as above. So far, we have then

Ω
(1)
fermion = −T

∑
n

∫
d3p

(2π)3 Tr log
[
β
(
iωnγ0 + ~γ · ~p+ M̂

)]
. (3.3.47)

7Provided a consistent cutoff scheme is used with the effective thermodynamic potential, see chapter 4.
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For details on fermionic Matsubara propagator and frequencies ωn = (2n+ 1)π T , see [75]. For
calculations at finite quark chemical potentials, one has to replace

ωn −→
{
ωn − iµ̂ for quarks ,
ωn + iµ̂ for antiquarks ,

(3.3.48)

with the flavor chemical potential matrix µ̂ = diag (µu, µd, µs). For the different treatment
of quarks and antiquarks, we use the Nambu-Gor’kov representation [58, 97] of the inverse
propagator:

S−1 (ωn, ~p ) =
1

2

(
(iωn + µ̂) γ0 + ~γ · ~p+ M̂ 0

0 (iωn − µ̂) γ0 + ~γ · ~p+ M̂

)
. (3.3.49)

The trace in

Ω
(2)
fermion = −T

∑
n

∫
d3p

(2π)3 Tr log
[
β S−1 (ωn, ~p )

]
. (3.3.50)

then includes the trace over the Nambu-Gor’kov space
In this work, we will for the most part use a flavor-independent chemical potential µ :=

µu = µd = µs. In chapter 7, we will discuss consequences of µu = µd 6= µs and conduct some
exploratory studies for three independent flavor chemical potentials.

3.4 NJL parameter sets

The model has several parameters: the four-fermion coupling strength G, the KMT coupling
strength K, the cutoff scale Λ (see chapter 4) and the current quark masses mu, md and ms.
We have not produced our own parameter set, but use numbers available in the literature that
fit the vacuum masses of the pseudoscalar meson octet and singlet (see Fig. 3.1 and Table 3.1)
well.

S = 0

S = +1

S = -1

Π+Π-

K-

K+K0

K0

Η Π0

Η'

Fig. 3.1: Pseudoscalar meson nonet. The observed particles η and η′ are products of the mixing
between the singlet η1 particle and the octet η8 particle. Approximately, the η′ is a singlet (red)
whereas the η meson belongs to the octet (blue). Plot from [21].

Several input parameter sets for the NJL model with 2+1 flavors are available, see Table 3.2.
Differences between the “HK” set from [63] and the “RKH” set from [110] stem from the different
treatment of the η′ mass. Since it is larger than the q̄q decay threshold, an imaginary part appears
in the q̄q polarization diagram [26] that has to be dealt with to find a physical, real-valued mass.
The “LKW” set from [92] has been determined with an extended Lagrangian including vector
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particle π± [MeV] π0 [MeV] K± [MeV] K0 [MeV] η [MeV] η′ [MeV]

mass 140 135 494 498 548 958

Table 3.1: Masses of the light pseudoscalar mesons [16]

and axial-vector interaction terms. Despite the apparent differences, all sets produce very good
fits to the empirically determined mass spectrum in Table 3.1. In this work, we will mostly use
the RKH parameter set for easier comparison with earlier work [127, 26, 21]. Results for the
particle masses from this set are shown in Table 3.3.

For chapter 7, we examine all three sets in calculations including vector interaction terms.
We find that the “RKH” parameter set produces results notably different from those of the other
two sets. For that reason, we will switch to the “LKW” set as a standard set in that chapter.
Results for the physical quantities from that set are presented in Table 3.4. Note that, because
of the inclusion of vector and axial vector interactions, they also produce numbers for mρ, ω,
mK∗ and mφ.

acronym Λ [MeV] GΛ2 KΛ5 mu,d [MeV] ms [MeV] reference

RKH 602.3 3.67 12.36 5.5 140.7 [110]

HK 631.4 3.67 9.29 5.5 135.7 [63]

LKW 750 3.64 8.9 3.6 87 [92]

Table 3.2: Selection of different three-flavor NJL parameter sets with their respective sources

fπ [MeV] mπ [MeV] mK [MeV] mη [MeV] mη′ [MeV]

92.4 135 479.7 514.8 957.8

Mu,d [MeV] Ms [MeV]
∣∣〈ψ̄uψu〉

∣∣1/3 [MeV]
∣∣〈ψ̄sψs〉

∣∣1/3 [MeV]

367.7 549.5 -241.9 -257.7

Table 3.3: Physical quantities resulting from the “RKH” parameter values from [110], see Ta-
ble 3.2

fπ [MeV] mπ [MeV] mK [MeV] mη [MeV] mη′ [MeV] Mu,d [MeV]

93 139 498 519 963 361

Ms [MeV]
∣∣〈ψ̄uψu〉

∣∣1/3 [MeV]
∣∣〈ψ̄sψs〉

∣∣1/3 [MeV] mρ, ω [MeV] mK∗ [MeV] mφ [MeV]

501 -287 -306 765 864 997

Table 3.4: Physical quantities resulting from the “LKW” parameter values from [63], see Ta-
ble 3.2
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3.5 Polyakov loop dynamics

As the NJL model was originally developed to describe nucleon dynamics, it has no notion of
confinement. Color confinement is, however, a feature of prime importance for the QCD phase
diagram. We have discussed in section 2.3 that the Polyakov loop, defined in eq. (2.3.2), is an
order parameter of the associated symmetry.

It was mainly Fukushima’s idea8 that an effective potential, determined from pure glue re-
sults, could be used to govern the behavior of the Polyakov loop as a function of temperature,
while connecting it to the quarks (implemented in the NJL formalism) via the gluonic back-
ground [50]. Interestingly, the two notions, conceived at different ends of the mass spectrum,
namely the heavy quark limit for the Polyakov loop, and the chiral limit for the NJL model,
could be meaningfully combined in a single model. In this so-called Polyakov–Nambu–Jona-
Lasinio, or PNJL, model, both Polyakov loop and chiral condensate retained their status as
order parameters9.

Requiring little computational power compared to lattice QCD (see section 2.4), the model
is well suited to reproduce its results, as well as extend calculations to finite chemical potentials.
In particular, the “locking” of the chiral transition and the Polyakov loop, i.e. (de-)confinement,
transition is considered a great success.

In the model, spontaneous Z(3) symmetry breaking is enforced by means of an effective
Polyakov loop potential U . Assuming a constant, purely temporal gluonic background field
(working in the Polyakov gauge), the Polyakov loop is expressed solely by the diagonal Gell-
Mann matrices λ3 and λ8:

Φ =
1

3
tr
[
ei(φ3λ3+φ8λ8)

]
, (3.5.1)

where we have defined φa := Aa4/T . Nondiagonal matrices can be integrated out from the
gluonic partition function [50]; their influence is contained in the group structure, i. e. in the
Haare measure, expressed in terms of the Polyakov loop:

J(Φ,Φ∗) =
9

8π2

(
1− 6ΦΦ∗ + 4

(
Φ3 + Φ∗3

)
− 3 (ΦΦ∗)

)
. (3.5.2)

This piece is included in the Polyakov loop effective potential U (T, Φ, Φ∗). The most common
ansatz is the phenomenological one from [117] that we will also use in this work:

U (T,Φ,Φ∗)

T 4
= −1

2b2(T )ΦΦ∗ + b3

(
T0

T

)3

ln
[
1− 6ΦΦ∗ + 4

(
Φ3 + Φ∗3

)
− 3 (ΦΦ∗)2

]
(3.5.3)

with

b2(T ) = a0 + a1

(
T0

T

)
+ a2

(
T0

T

)2

. (3.5.4)

Its construction is based on the notion that the potential should first reproduce lattice QCD
results in the pure glue system. Results for the parameters are listed in Table 3.5.

T0 a0 a1 a2 b3
270 MeV 3.51 -2.47 15.2 −1.7

Table 3.5: Parameters for the Polyakov loop effective potential in (3.5.3),
from [117].

8Based on an earlier suggestion by Meisinger and Ogilvie [96]
9More precisely:approximate order parameters, as both pertinent symmetries are in addition explicitly broken

be the non-vanishing, non-infinite current quark masses. The effects are small.
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The fits are presented in Figures 3.2a (Polyakov loop Φ) and 3.2b (pressure p, energy density ε
and entropy density s). The potential U is then added unchanged to the effective thermodynamic

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.
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1.

T @GeVD

F

(a) Fit to the Polyakov loop

1 2 3 4
0

1

2

3

4

5

T �Tc

(b) From top to bottom: fit to normalized en-
ergy density ε/T 4 (red), entropy density 3/4 s/T 4

(green) and pressure 3p/T 4 (blue)

Fig. 3.2: Simultaneous fit of Polyakov loop effective potential parameters in (3.5.3) to
lattice QCD data. Polyakov loop from [73], thermodynamic quantities from [20].

potential from the NJL part of the model. We discuss this ansatz and the effects of variations of U
on the 2+1 flavor calculations in more detail in chapter 6. The rescaled potential U (T,Φ,Φ∗) /T 4

is plotted in Fig. 3.3 for a series of ratios T/T0 for illustration, with Φ = Φ∗ ∈ R. Indeed, in
the mean field scenario we can, without loss of generality, set φ8 ≡ 0 from which Φ = Φ∗ follows
[115].

There is an ongoing effort to develop a Polyakov loop effective potential from underlying
principles, e. g. [23, 55]. Kondo has shown that the nonlocal version of the PNJL model [57, 68,
67] can be deduced from first principles QCD [85]. The local variant used in this work is then
just another simplifying assumption.

The fermionic propagator is minimally coupled to the gluonic background with the additional
replacement rule

ωn −→
{
ωn +A4 for quarks
ωn −A4 for antiquarks.

(3.5.5)

in the fermionic propagator matrix S−1 in def. (3.3.49).

3.6 Thermodynamic potential and quasiparticle energy eigen-
values

The thermodynamic potential in def. 3.3.50 is then evaluated by performing the Matsubara
summation (see e. g. [75]) and we find:

Ω′ = −1

2

∫
d3p

(2π)3Ep − T

∫
d3p

(2π)3 log
[
1 + e−Ep/T

]
+

σ2
u

4G
+
σ2

d

4G
+
σ2

s

4G
− K

2G3
σuσdσs + U (Φ,Φ∗, T ) . (3.6.1)
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Fig. 3.3: Pure gauge Polyakov loop effective potential U according to def. (3.5.3) as a
function of Φ = Φ∗ at different temperatures, expressed in relation to T0 = 270 MeV

The designation Ω′ is given because this is still a preliminary result: as a consequence of the
non-renormalizability of NJL models, a cutoff has to be applied. We will discuss our choice and
alternatives in detail in chapter 4. The Ep are the positive quasiparticle energy eigenvalues of the
fermionic propagator matrix. They are given in Table 3.6, where we have used the definitions:

µr = µ+ i
φ8√

3
T,

µb = µ− i2φ8√
3
T. (3.6.2)

With the exception of Chapter 7, we work in the isospin symmetric case and therefore treat “up”
and “down” quarks as indistinguishable. The Ep from Table 3.6 then reduce to the eigenvalues
given in Table 3.7 for the 2+1 flavor case. Finally, our calculations are performed by evaluating
the mean field equations

∂Ω

∂σu
=
∂Ω

∂σs
=

∂Ω

∂φ3
= 0 (3.6.3)

for each choice of T and µ.
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Name Number Formula

E+,+
u,r E1

√
M2
u + p2 + µr + iφ3T

E+,+
d,r E2

√
M2
d + p2 + µr + iφ3T

E+,+
s,r E3

√
M2
s + p2 + µr + iφ3T

E+,−
u,r E4

√
M2
u + p2 + µr − iφ3T

E+,−
d,r E5

√
M2
d + p2 + µr − iφ3T

E+,−
s,r E6

√
M2
s + p2 + µr − iφ3T

E−,+u,r E7

√
M2
u + p2 − µr + iφ3T

E−,+d,r E8

√
M2
d + p2 − µr + iφ3T

E−,+s,r E9

√
M2
s + p2 − µr + iφ3T

E−,−u,r E10

√
M2
u + p2 − µr − iφ3T

E−,−d,r E11

√
M2
d + p2 − µr − iφ3T

E−,−s,r E12

√
M2
s + p2 − µr − iφ3T

E+
u,b E13

√
M2
u + p2 + µb

E+
d,b E15

√
M2
d + p2 + µb

E+
s,b E14

√
M2
s + p2 + µb

E−u,b E16

√
M2
u + p2 + µb

E−d,b E17

√
M2
d + p2 + µb

E−s,b E18

√
M2
s + p2 + µb

Table 3.6: Quasiparticle energy eigenvalues, each with multiplicity 2, in the scenario of three
distinct quark flavors.

Name Number Formula Multiplicity

E+,+
u,r E1

√
M2
u + p2 + µr + iφ3T 4

E+,+
s,r E5

√
M2
s + p2 + µr + iφ3T 2

E+,−
u,r E2

√
M2
u + p2 + µr − iφ3T 4

E+,−
s,r E6

√
M2
s + p2 + µr − iφ3T 2

E−,+u,r E3

√
M2
u + p2 − µr + iφ3T 4

E−,+s,r E7

√
M2
s + p2 − µr + iφ3T 2

E−,−u,r E4

√
M2
u + p2 − µr − iφ3T 4

E−,−s,r E8

√
M2
s + p2 − µr − iφ3T 2

E+
u,b E9

√
M2
u + p2 + µb 4

E+
s,b E11

√
M2
s + p2 + µb 2

E−u,b E10

√
M2
u + p2 + µb 4

E−s,b E12

√
M2
s + p2 + µb 2

36

Table 3.7: Quasiparticle energy eigenvalues in a 2 + 1 flavor scenario





Chapter 4

Cutoff schemes

4.1 Introduction

The contact interactions in the Lagrangian render the (P)NJL model non-renormalizable. Sev-
eral regularization methods are available, both Lorentz covariant and non-covariant. The most
prominent covariant methods are the Euclidean four-momentum cutoff, the Pauli-Villars scheme,
and regularization in proper time [81]. Most widely used are, however, non-covariant three-
momentum cutoff schemes that are less involved. In these schemes, momentum space integrals
are only carried out for |~p|2 < Λ2. Lorentz symmetry is broken in the system by finite tem-
peratures and chemical potentials so that the additional breaking by the cutoff scheme is of
no relevance. The three-momentum cutoff can be performed in several ways. In this chapter,
we will investigate three different prescriptions to apply a three-momentum cutoff. It will be
evident that the commonly used “minimal” cutoff prescription suffers from inconsistencies. A
new “soft” cutoff prescription is the better choice.

First, in section 4.2, we study the high temperature limit where the differences between the
cutoff schemes can be calculated analytically. For simplification, we perform the calculations
first for two degenerate quark flavors in the NJL model in its basic version with chiral scalar and
pseudoscalar four-quark couplings. The inclusion of Polyakov loop dynamics into the system
does not affect the discussion, because the Polyakov loop (expectation value) Φ behaves as

Φ −→ 1 for T −→ ∞ (4.1.1)

and drops out of the equations in the high-temperature limit. Following the two-flavor calcula-
tions, we discuss the case of 2 + 1 flavors in the NJL model in section 4.3. We then show results
for the condensates and the QCD phase diagram in the two-flavor PNJL model in section 4.4.
Results for 2 + 1 flavors are presented in section 4.5.

4.2 High temperature limit in the two-flavor NJL model

The NJL thermodynamic potential in the two-flavor scenario (in analogy to the three-flavor
thermodynamic potential in def. 3.6.1), before the application of any cutoff, is

Ω = −4NcNf
1

2

∞∫
0

d3p

(2π)3Ep − 4NcNf T

∞∫
0

d3p

(2π)3 log
[
1 + e−Ep/T

]
+
σ2

2G
(4.2.1)

with
Ep =

√
p2 +M2 and M = m− σ, (4.2.2)

so that we can already note for later use

∂Ep
∂σ

= −M
Ep
. (4.2.3)

27
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The first term of (4.2.1) diverges and has to be regularized, whereas the other two terms are
well behaved.

Using the terminology from [52], we identify terms of (4.2.1) as follows: The second term
is the temperature-dependent thermal quark energy. It describes the contributions due to the
quark quasiparticles at non-vanishing temperatures. The last term is the condensation energy.
The three cutoff schemes that we discuss in this section are:

1. Maximal cutoff : all integrals are integrated only up to the cutoff Λ, so that

Ωmax = −12

Λ∫
0

d3p

(2π)3Ep − 24T

Λ∫
0

d3p

(2π)3 log
[
1 + e−Ep/T

]
+
σ2

2G
(4.2.4)

This is the original NJL cutoff scheme. It turns out, however, that this prescription fails
to produce the correct thermodynamics, primarily the important Stefan-Boltzmann limit.
To remedy this, the “minimal“ cutoff scheme was introduced [109].

2. Minimal cutoff: only the divergent first term of (4.2.1) is cut off, the converging thermal
quark energy integral is integrated to infinity.

Ωmin = −12

Λ∫
0

d3p

(2π)3Ep − 24T

∞∫
0

d3p

(2π)3 log
[
1 + e−Ep/T

]
+
σ2

2G
(4.2.5)

This scheme takes the high momentum modes into account, so that the Stefan-Boltzmann
limit of the pressure at high temperatures is reproduced. It is, however, conceptually
inconsistent, since it includes fermionic interactions at momenta beyond the cutoff. In
addition, there is no reason to treat the two terms differently since they stem from the
same source. For calculations in the chiral limit, where there is no explicit chiral symmetry
breaking, the condensates die off so rapidly that this inconsistency does not cause problems.
With finite current quark masses and the resulting explicit chiral symmetry breaking, this
scheme has flaws that we will show in this section. They are taken care of with the following
new cutoff scheme which will be seen to be superior to the previous two.

3. New, “soft” cutoff: the divergent term is cut off, and the thermal quark energy term is
modified such that for momenta p > Λ, all quark condensates are set to zero1:

Ωsoft = −12

Λ∫
0

d3p

(2π)3Ep − 24T

Λ∫
0

d3p

(2π)3 log
[
1 + e−Ep/T

]

− 24T

∞∫
Λ

d3p

(2π)3 log
[
1 + e−Ep|σ=0/T

]
+
σ2

2G
(4.2.6)

This cutoff scheme captures the correct high temperature limit by including high momen-
tum modes. It adheres strictly to the NJL prescription that, for momenta p > Λ, the
4-fermion interaction is turned off2. Note that in the PNJL model case the quasi particle
energy eigenvalues Ep depend on the Polyakov loop variables. Quasi particles still feel
the Polyakov loop Φ even for p > Λ. It is natural that Polyakov loop dynamics, defined

1More precisely, the coupling strength G should be set to zero. In our formulation, it is equivalent and
numerically easier to instead set σq = 0 for all q. Such a prescription has already been discussed but not applied
in [117].

2All other fermionic couplings, e. g. the 6-fermion KMT coupling strength K appearing in the three flavor
calculations or the vector interaction coupling strength gv (see section 7.1), are turned off as well.
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independently of the chiral symmetry breaking scenario, are not affected by the NJL cutoff
discussion. At very high temperatures, the Polyakov loop expectation value becomes 1 so
that the Stefan-Boltzmann limit is unaffected.

The self-consistent gap equation ∂Ω
∂σ = 0 derived from (4.2.1) for the chiral condensate σ reads

∂Ω

∂σ
= 12

∞∫
0

d3p

(2π)3

M

Ep
− 24

∞∫
0

d3p

(2π)3

M

Ep
(
eEp/T + 1

) +
σ

G
= 0. (4.2.7)

To study the consequences of different cutoff schemes, we split this expression into four
terms:

∂Ω

∂σ
= 12

Λ∫
0

d3p

(2π)3

M

Ep
− 24

Λ∫
0

d3p

(2π)3

M

Ep
(
eEp/T + 1

) − 24

∞∫
Λ

d3p

(2π)3

M

Ep
(
eEp/T + 1

) +
σ

G
, (4.2.8)

where we have already applied the cutoff to the divergent term which all three cutoff schemes
demand.

With the maximal cutoff, the third term is missing, since no integration is carried out beyond
the cutoff Λ. The gap equation then becomes

∂Ω

∂σ
= 12

Λ∫
0

d3p

(2π)3

M

Ep
− 24

Λ∫
0

d3p

(2π)3

M

Ep
(
eEp/T + 1

) +
σ

G
= 0 (4.2.9)

Because of the strict cutoff, the Ep from eq. (4.2.2) are bounded as

Ep ≤
√
M2 + Λ2 =

√
(m− σ)2 + Λ2 ≤

√
(m− σ|T=0)2 + Λ2. (4.2.10)

Since therefore eEp/T ≤ e
√

Λ2+M2/T , we have

−24

Λ∫
0

dp

2π2

p2M

Ep
(
eEp/T + 1

) → −12

Λ∫
0

dp

2π2

p2M

Ep
for T →∞, (4.2.11)

so that the second and first term in (4.2.9) cancel. In the case of the maximal cutoff, we are
then only left with the equation

∂Ω

∂σ
=
σ

G
= 0, (4.2.12)

so that
σ = 0 (4.2.13)

is the only solution. According to formula (4.2.2), this means that the effective quark mass
is reduced to the current quark mass at extremely high temperatures, which is the physically
correct limit:

M = m− σ −→ m for T −→∞. (4.2.14)

However, as mentioned, the correct Stefan-Boltzmann limit is not reached in this scheme (see
Fig. 4.8). In the case of the “soft” cutoff, where the condensates are set to zero for p > Λ, the
result is exactly the same, because the σ-independent part for p > Λ of the fermionic integral of
Ω does not survive the derivative ∂/∂σ. Accordingly, the third term in (4.2.8), in the following
called the “extra term”, is not present, and σ = 0 is again the asymptotic solution.
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However, in the case of the minimal cutoff, we have to take the extra term into account.
Because the momentum is integrated to infinity there, the exponential in the denominator can
no longer be easily evaluated in the high temperature limit, and no obvious expansion suggests
itself. We introduce the substitution

x ≡ Ep/T =

√
M2 + p2

T
, so that Ep = xT. (4.2.15)

Then

p2 = (xT )2 −M2 and dp =
xT 2√

(xT )2 −M2

dx. (4.2.16)

The lower integration limit is now determined by

p = Λ ⇔ x =

√
M2 + Λ2

T
→ 0 for T −→∞ (4.2.17)

and the upper limit by
p −→∞ ⇔ x −→∞ (4.2.18)

for any given, arbitrarily high value of T . The substitution then gives for the extra term

−24

∞∫
Λ

dp

2π2

p2M

Ep
(
eEp/T + 1

) −→ −12

π2

∞∫
0

dx
TM

√
(xT )2 −M2

ex + 1
. (4.2.19)

This evaluates to3

−12

π2

∞∫
0

dx
T 2M

√
x2 −

(
M
T

)2
ex + 1

−→ −12

π2

∞∫
0

dx
xT 2M

ex + 1
for T −→∞ (4.2.20)

and finally we get

−12M
T 2

π2

∞∫
0

dx
x

ex + 1
= −2MT 2, (4.2.21)

where in the last step we have used that the integral is simply the Riemann zeta function
ζ (2) = π2

6 . In contrast to (4.2.12), the gap equation for the minimal cutoff is then

∂Ω

∂σ
= −2MT 2 +

σ

G
= 0, (4.2.22)

which yields4

M =
σ

2T 2G
−→ 0 for T −→∞. (4.2.23)

In the calculation, this shows up directly by a sign change in the chiral condensate: since
M = m − σ at T = 0 with σ < 0, it would appear that σ > 0 as T → ∞. Note that this
unphysical sign change happens already at finite temperatures of around 1.5Tc, with Tc the
chiral transition temperature. For two flavors, the sign change effect itself is negligible [109]
because of the small light quark current mass m. However, there are large differences in the
phase diagram, see section 4.4. In summary, the new “soft” cutoff scheme is the only one that
establishes the correct thermodynamics in the hight-T limit. This cutoff will primarily be pur-
sued for the remainder of this work.

3Note that x =
Ep

T
> 0 always, because Ep is by definition always positive.

4The condition that σ is finite for high temperatures is trivially the case for a physical system.
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4.3 High temperature limit in the 2 + 1 flavor NJL model

In the 2 + 1 flavor scenario, the sign change effect just mentioned is more pronounced, as the
strange-quark current mass is of the order of 100 MeV. The calculation goes essentially in
analogy with the two-flavor case; it is only slightly more involved because of the flavor mixing
KMT determinant. We will see in the end that its effects on the high T limit are negligible. For
a three-flavor NJL model including the KMT interaction we have

Ω = −6
∑
q

∞∫
0

d3p

(2π)3E
q
p − 12T

∑
q

∞∫
0

d3p

(2π)3 log
[
1 + e−E

q
p/T
]

+
σ2

u + σ2
d + σ2

s

4G
− K

2G3
σuσdσs

(4.3.1)
with q = u, d, s and

Eqp =
√
p2 +M2

q and Mq = mq − σq +
K

4G2
hqjkσjσk. (4.3.2)

We have defined

hqjk =

{
1/2 if {q, j, k} = {u, d, s} or any permutation thereof
0 if q = j, q = k or j = k.

(4.3.3)

Then
∂Eqp
∂σr

= −Mq

Eqp
Γqr (4.3.4)

with

Γqr = δqr −
K

4G2
hqjk (σjδkr + δjrσk) . (4.3.5)

In the case of the new cutoff (the analogue of (4.2.6)) as well as for the maximal cutoff
(analogous to (4.2.4)), we have, for T →∞, the same cancellation of terms as in the two-flavor
case. We therefore, in analogy to (4.2.22), end up with the following gap equations purely from
the condensation energy terms:

∂Ω

∂σr
=

σr
2G
− K

2G3
hrjkσjσk = 0. (4.3.6)

The three coupled gap equations (4.3.6) have the five solutions presented in Table 4.1, where

a = G2

K ≈ 660 MeV. The only physically sensible solution is the first one with

σu = σd = σs ≡ 0 at T →∞ (4.3.7)

As in the two-flavor case, this means that

Mq −→ mq for all flavors as T −→∞, (4.3.8)

which agrees with our physical understanding.

solution no. 1 2 3 4 5

σu 0 -a -a a a
σd 0 -a a -a a
σs 0 a -a -a a

Table 4.1: Solutions of the three coupled gap equations (4.3.6), with a = G2

K ≈ 660 MeV.
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In the case of the widely used minimal cutoff, we have to consider the “extra term” again,
i. e. the remaining integration in the second term of (4.3.1) from Λ to infinity. The three-flavor
analogue to eq. (4.2.22) is

∂Ω

∂σr
= −2MqT

2Γqr +
σr
2G
− K

2G3
hrjkσjσk = 0. (4.3.9)

The physically correct high-temperature result σq → 0 for all flavors is not a solution of this
equation: setting σq = 0 for all q would yield −2mqT

2Γqr = 0. For finite quark masses, this
equation is false, as Γqr 6= 0 always, see eq. (4.3.3) and eq. (4.3.5).

4.4 PNJL model results for 2 flavors

Although the unphysical sign change effect in two flavors is marginal, it has a strong effect on
the QCD phase diagram. Fig. 4.1 shows the normalized chiral condensate σ as a function of
T at µ = 0 for two degenerate flavors mu = md, using both the minimal and the new cutoff
scheme. The σ from the minimal cutoff changes its sign at T = 381 MeV, or T = 1.7Tc. Fig.
4.2a shows the two-flavor phase diagram calculated with the minimal cutoff; Fig. 4.2b the same,
but calculated with the new cutoff scheme. For the two-flavor scenario, we use the same values
for NJL and Polyakov loop effective potential input parameters as in [117], where a minimal
cutoff scheme was used.
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Fig. 4.1: Comparison of normalized chiral condensate σ for two degenerate
flavors as a function of T at µ = 0 for two different cutoff schemes. Left curve
(red) from the minimal cutoff prescription in eq. (4.2.5), right curve (blue)
from the new cutoff prescription in eq. (4.2.6).

Next, we present the QCD phase diagram. It is shown in a format that we will keep through-
out this work. Instead of giving transition lines for crossovers, we show transition bands. In
this way, the smooth nature of the crossovers is evident. For the chiral transition, we determine
the lower bound, central value and upper bound by the values at which σu has decreased from
its vacuum value at T = 0 and µ = 0 to 75%, 50% and 25% of that value, respectively. The
first-order transition is naturally given by the gap at the critical temperature Tc. For the con-
finement/deconfinement transition we determine lower bound, central value and upper bound by
the temperatures where the Polyakov loop has reached values of 0.2, 0.35 and 0.5, respectively.
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These choices are basically equivalent to schemes based on the slopes of the curves but they are
numerically more stable.

In the phase diagrams, we show the chiral crossover as a red band and the Polyakov loop
crossover as a blue band. When we normalize temperatures to a “critical” temperature Tc at
µ = 0, in the case of a crossover we use for Tc the center Tχcross of the chiral crossover band,
defined by

σu (Tχcross, µ = 0)

σu (0, 0)
= 0.5. (4.4.1)

Fig. 4.2a and Fig. 4.2b demonstrate that there the cutoff scheme has considerable effect on
the QCD phase diagram even in two flavors. The main consequences of the new cutoff are a
smoother transition (broader crossover band) and a shift of the band towards slightly higher
temperatures. In the chiral limit, m ≡ mu = md ≡ 0, the high temperature limit of the chiral
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(a) Minimal cutoff, see (4.2.5).
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(b) New “soft” cutoff, see (4.2.6).

Fig. 4.2: Two-flavor QCD phase diagrams resulting from two different cutoff pre-
scriptions. The (de-) confinement crossover band is shown in blue (dashed), the chiral
crossover band in red (dashed). The critical point is marked by a star and the chiral
first order transition by a solid red line.

condensate is 0 for all cutoff schemes. However, considerable differences between the cutoff
prescriptions remain: Fig. 4.3a and Fig. 4.3b show location and width of the crossover bands
for chiral and Polyakov loop transition at µ = 0 as a function of the light quark current mass
m. Fig. 4.3a gives the result of the maximal cutoff prescription and Fig. 4.3b that of our new
cutoff scheme.



34 Cutoff schemes

10 20 30 40
200

225

250

275

300

m @MeVD

T
@M

eV
D

Μ = 0

(a) Minimal cutoff, see (4.2.5).
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(b) “Soft” cutoff, see (4.2.6).

Fig. 4.3: Crossover band of chiral (red) and Polyakov loop (blue) crossover at µ = 0 as
a function of the light current quark mass m ≡ mu = md. Calculated for two different
cutoff prescriptions. Vertical line marks value from standard parameter set.

4.5 PNJL model results for 2 + 1 flavors

Next, we turn to the 2 + 1 flavor case, where we treat up and down quarks as equal (“2”)
and include the strange quark (“+1”). The thermodynamic potential Ω with the “soft” cutoff
scheme is now

Ωsoft = −1

2

Λ∫
0

d3p

(2π)3Ep − T

Λ∫
0

d3p

(2π)3 log
[
1 + e−Ep/T

]
− T

∞∫
Λ

d3p

(2π)3 log
[
1 + e−E

free
p /T

]
+

σ2
u

2G
+

σ2
s

4G
− K

2G3
σ2

uσs + U (Φ,Φ∗, T ) , (4.5.1)

where the quasi particle energy eigenvalues Ep are given in Table 3.7 and the Efree
p are obtained

from the Ep by setting G = K = 0, or, equivalently, σu = σs = 0. The “minimal“ cutoff for
2 + 1 flavors is given simply by replacing the Efree

p with the Ep in eq. (4.5.1).
We present light quark (σu) and strange quark (σs) condensate and Polyakov loop as a

function of T at µ = 0 in Fig. 4.4a (minimal cutoff) and Fig. 4.4b (new cutoff). The high tem-
perature limits of vanishing condensates (new cutoff) and finite values for the minimal cutoff
are clearly visible. In [52], where a minimal cutoff is used, it is argued that the “s-quark sector
behaves unnaturally at extremely high temperatures” and that this is “of no importance practi-
cally”. At this point we disagree: the observed “unnatural” behavior is just the consequence of
a physically inconsistent cutoff scheme. The unphysical sign change of the s-quark condensate
appears already at T ∼ 350 MeV∼ Λ/2, below twice the transition temperature Tc, and renders
conclusions based on the minimal cutoff prescription questionable.

In lattice QCD publications, instead of the individual condensates σu and σs at µ = 0,
usually the “subtracted chiral condensate” introduced in [31] is given. It is defined by

∆ls :=
σu (T )− mu

ms
σs (T )

σu (0)− mu
ms
σs (0)

∣∣∣∣∣
µ=0

. (4.5.2)
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(a) Minimal cutoff, cf. (4.2.5).
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(b) “Soft” cutoff, see (4.5.1).

Fig. 4.4: Normalized chiral condensates and Polyakov loop as a function of the tem-
perature at µ = 0 for two different cutoff schemes.

This definition removes “unphysical, quadratically divergent, additive” contributions that “show
no finite temperature effects and obscure the physically important contribution from vacuum
chiral symmetry breaking”[31].

In Fig. 4.5, we show our results for ∆ls as a function of T/Tc and compare to two different
sets of lattice QCD results from the hotQCD collaboration [10]. We chose the HISQ/tree points
with fK as the scale to convert raw results into physical values for the temperature. With
this prescription, points from calculations with various lattice actions and temporal extents Nτ

collapse into a narrow band [10]. In Fig. 4.5a, we compare to Nτ = 12 results with ms/mu = 20.
Fig. 4.5b shows an interpolation (based on Nτ = 8 results) to the physical light quark mass with
ms/mu ≈ 27. This ratio is close to our ratio from the RKH parameter set of ms,0/mu,0 ≈ 26.
The latter results also overlap with continuum extrapolated results with physical pion masses,
mπ = 135 MeV, calculated with staggered fermions and one-link stout improvement [19]. It is
evident that in Fig. 4.5b the subtracted chiral condensate is steeper and reproduced well by our
results, depicted by the red band. The band represents that there is no single clearly determined
Tc but a broad crossover range. The center curve is given by Tχcross from def. (4.4.1).

The effects on the 2 + 1 flavor QCD phase diagram are shown in Fig. 4.6a (minimal cutoff)
and Fig. 4.6b (new cutoff). This comparison shows the sensitivity of the phase diagram on the
cutoff scheme: the crossover bands are considerable broader with our new prescription. These
smooth transitions are also seen in recent lattice QCD results [13], in particular for the Polyakov
loop (see chapter 6.)

The entanglement between the chiral and the (de-)confinement crossover is stronger with
the “minimal” cutoff. The explanation is straight-forward: in the second term of def. (4.2.5),
Polyakov loop and chiral condensates influence each other over the whole momentum range from
p = 0 to p = ∞. Lattice QCD data indeed show notable entanglement of the transitions [13].
However, the “minimal” cutoff with its unphysical foundation and consequences cannot be the
correct mechanism to model this feature. In chapter 6 we investigate the relationship between
Polyakov loop and chiral condensates in more detail; particular emphasis is placed on the cutoff
prescriptions as well as the Polyakov loop effective potential. Fig. 4.8 presents the total pressure
p/T 4 in the 2 + 1 flavor PNJL model at µ = 0 as a function of T/Tc.
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(a) Result with Nτ = 12 and ms/mu = 20.
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(b) Result with Nτ = 8, interpolated to the phys-
ical light quark mass with ms/mu ≈ 27.

Fig. 4.5: Comparison of our results (red band) for ∆ls with ms,0/mu,0 ≈ 26 (see
eq. (4.5.2)) as a function of T/Tc with two different sets of lattice QCD results from
[10].
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(a) Minimal cutoff, cf. (4.2.5).
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(b) New “soft” cutoff, see (4.5.1).

Fig. 4.6: 2 + 1 flavor QCD phase diagrams resulting from two different cutoff pre-
scriptions. The (de-) confinement crossover band is shown in blue (dashed), the chiral
crossover band in red (dashed). The critical point is marked by a star and the chiral
first order transition by a solid red line.
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The pressure is simply the negative thermodynamic potential (density),

p = −Ω, (4.5.3)

normalized such that p (T = 0, µ = 0) ≡ 0. The lower, dark green curve in Fig. 4.8 is the
result from the “maximal” cutoff scheme used e. g. in [26]. The omission of higher momentum
modes in the thermodynamic potential (4.2.4) leads to the wrong high temperature limit for
the pressure. It is evident that the “maximal” cutoff prescription cannot yield physical results
for the thermodynamic quantities. By contrast, the red curve with an orange band in Fig. 4.8
is the result from the soft cutoff scheme. The band is again a consequence of the width of the
crossover band at µ = 0, cf. Fig. 4.6b. This curve features the correct high temperature limit.

Establishing the correct behavior of the pressure p allows us to display the phase diagram
from Fig. 4.6b accurately in the p–T plane. This is useful for comparing to known phase diagrams
such as those of water or liquid Helium [136]. Our result is presented in Fig. 4.7. The liquid/gas
phase transition is calculated using in-medium chiral perturbation theory [46].
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Fig. 4.7: Double-logarithmic phase diagram of QCD with pressure p and
temperature T as external parameters. Chiral first order transition in solid
red, crossover band dashed, critical point denoted by a star. Results for the
nuclear matter (NM) liquid/gas transition from [46].

From the pressure we calculate the energy density ε and the entropy density5 s via the
standard thermodynamic relations at µ = 0

s =
∂p

∂T
and ε = Ts− p. (4.5.4)

Figures 4.9, 4.10 and 4.11 present the energy density ε, entropy density s and the trace anomaly
ε − 3p as functions of T/Tc at µ = 0. For each curve, a band has been added that stems from
the choice of Tc within the chiral crossover bands (see Fig. 4.6b). Lattice QCD results from [33]
and [12] have been added for comparison. Our curves describe the data quite well.

5The source of the discrepancy between upper points peaking at 6 ∼ 7 [32] and lower points peaking around
4 [18] is at present unknown.
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Fig. 4.8: Normalized total pressure p/T 4 as a
function of T/Tc at µ = 0 in the 2 + 1 flavor
PNJL model. Red with orange band: result
from soft cutoff prescription (4.5.1). Dark
green: result from maximal cutoff prescrip-
tion (4.2.4). “SB” marks the correct Stefan–
Boltzmann limit.
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Fig. 4.9: Normalized energy density ε/T 4 as
a function of T/Tc at µ = 0 in the 2 + 1
flavor PNJL model, calculated with the soft
cutoff prescription (4.5.1). Orange band cor-
responds to the crossover band. Circles are
lattice QCD results from [33].

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

5

10

15

20

T � Tc

s
�

T
3

Fig. 4.10: Normalized entropy density s/T 3 as
a function of T/Tc at µ = 0 in the 2 + 1 flavor
PNJL model, calculated with the soft cutoff
prescription (4.5.1). Blue band corresponds
to the crossover band. Circles are lattice QCD
results from [33].
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Fig. 4.11: Normalized trace anomaly
(ε− 3p) /T 4 as a function of T/Tc at µ = 0 in
the 2 + 1 flavor PNJL model, calculated with
the soft cutoff prescription (4.5.1). Band
corresponds to the crossover band. Points
with error bars from collection in [12].
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4.6 Summary

We have shown in this chapter that the violation of chiral symmetry by the “minimal” cutoff is
well understood. It is quite strong and its consequences should not be dismissed as negligible,
even in a two-flavor scenario. The “soft” cutoff (4.2.6) eliminates the unphysical sign change of
the chiral condensates that appears when using a “minimal” cutoff prescription. Calculations
with this scheme are numerically only slightly more expensive and easily implemented. In
addition, results for thermodynamic quantities are in good agreement with lattice QCD results.
We conclude that there is a strong preference for the new “soft” cutoff.





Chapter 5

Axial anomaly and Columbia plot

5.1 Introduction

The 2 + 1 flavor PNJL model introduces two new features not present in the two-flavor model:
the first is the increased explicit chiral symmetry breaking by the large strange-quark mass ms.
The second is the Kobayashi-Maskawa-’t Hooft (KMT) interaction. One of its effects is the
coupling of the effective mass of the light quarks also to the strange quark condensate and vice
versa, cf. (3.3.45). Consequently, the influence of the strange current quark mass is not restricted
to the chiral transition of the strange-quark condensate alone; this transition is very slow in any
case and therefore not a good indicator of chiral restoration. More importantly, it also affects
the transition of the light quark condensate σu which is used to determine the location of the
critical point in both the two- and 2 + 1 flavor models.

By varying the quantities which govern these two new features, i.e. the strange-quark current
mass ms and the KMT coupling strength K, we gain deeper insight into the nature of their effects
on the critical point.

Our procedure is, at this level, straightforward: We change the value of the parameter under
consideration while keeping all others fixed. Then we calculate the phase diagram with each of
these changed parameter sets. To distinguish between the parameter used in a calculation and
the standard value from the parameter fixing to vacuum properties, we denote the latter with
the subscript “0”. Thus, the standard values are K0, mu,0, md,0 and ms,0. It should be noted
that by changing one parameter independently of the others, the meson spectrum is no longer
reproduced: in the case of the coupling strength K, the η′ mass mη′ is changed predominantly,
while changing the strange quark ms affects primarily the kaon mass.

This chapter is organized as follows: First, in section 5.2 we investigate some consequences
of a change in the KMT coupling K. We briefly discuss available information about its possible
dependence on T and µ. In sections 5.3 and 5.4 we extend the study to variations in the current
quark masses, including the chiral limit and a scenario of three degenerate flavors.

Changes in the transition lines under a variation of K prompts us to calculate the curvature
of those lines and compare them to recent lattice results in section 5.5.

We then move on to produce the lower part of the so-called Columbia plot in section 5.6.
It is a concise way of displaying possible phase transition orders at µ = 0 as a function of the
current quark masses [87] and a subject of intense interest by lattice communities.

5.2 Kobayashi–Maskawa–’t Hooft interaction strength K

As stated in 3.2, the KMT coupling strength K governs the axial anomaly in the PNJL model.
It also determines, as the solution of the “U(1) puzzle”, the main mechanism behind the large
mass of the η′ meson. This is shown in Fig. 5.1, where we display the η′ meson mass in the
vacuum as a function of K/K0 with K0 being the “standard” value from the parameter fixing

41
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to vacuum properties. The other meson masses are affected only very little by this change.
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Fig. 5.1: Mass of the pseudoscalar η′ meson as a function of the KMT coupling
strength K/K0. Circle marks standard result at K = K0.

Why is the variation of K interesting to us when we know how strong it must be to generate
the large mη′ in the vacuum? It is by no means obvious that the couplings of the PNJL model
are constants with T and µ. For the four fermion scalar coupling G this is almost universally
assumed in models. The KMT interaction, on the other hand, is based on instanton dynamics
[126]. Therefore, finite temperature and finite chemical potential effects might be gauged by
properties of instanton ensembles, e. g. the instanton density and size scale. There are several
theoretical attempts to determine these properties, e. g. [30, 61]. It is believed that at finite
temperature and density the η′ mass is reduced [76].

Experimental indications have been reported in [38, 131, 133, 132], based on two pion Bose-
Einstein correlations measured in

√
s = 200 GeV Au+Au collisions at RHIC. An η′ mass reduc-

tion from 958 MeV in the vacuum to, according to them, 340+50 +280
−60 −140 ± 42 in medium, would

certainly indicate a large reduction of K (cf. Fig. 5.1). A finite temperature generalization [86] of
the Witten-Veneziano formula [130, 140] comes to quantitatively similar conclusions. Recently,
lattice QCD calculations using the chiral symmetry respecting, but very expensive “overlap
fermion” discretization have been performed [74, 36]. They find, close to the chiral limit, first
indications of U(1)A restoration for T & 192 MeV.

The reduction of K as a function of µ and T is one way of modeling such effects in our
framework. In section 5.5 we briefly describe some forms of K as a function of temperature
or chemical condensate based on instanton dynamics and explore their effect on the curvature
of the chiral transition line. Recently, an ansatz for the combined dependence K (T, µ) has
been proposed [37], but its complex form and additional momentum-dependence put it beyond
the scope of this thesis. As the simplest possible choice, for the most parts of our work we
study variations of a globally constant K that does depend on neither temperature nor chemical
potential.

The trajectory of the critical point resulting from a change in K for a PNJL model has been
studied first in [52]. After verification, we want to expand on these results. Fig. 5.2 shows the
dependence of the critical point location on this quantity. It is evident that the influence of this
coupling constant is significant. Increasing K – and with it the strength of the axial anomaly –
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shifts the critical point towards lower chemical potential1 and enlarges the range of the first-order
phase transition. Conversely, lowering K drives the critical point down in the phase diagram,
shortening the first-order phase transition line. By changing K substantially, it is even possible
to eliminate the critical point completely. In chapter 7, we combine this effect with the inclusion
of vector-type interactions in the PNJL model and draw important conclusions for the QCD
phase diagram.
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Fig. 5.2: Trajectory of the critical point for
different fraction of K/K0 in our model. Note
the vast difference in scales between the T and
the µ axis. Some of the corresponding phase
diagrams are displayed in Fig. 5.3.
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Fig. 5.3: Phase diagrams resulting from dif-
ferent choices for K/K0. From innermost to
outermost: K/K0 = 0, 1/3, 1/2, 2/3, 1, 4/3.
Solid lines are first-order transitions, dashed
lines denote crossovers. The critical points
(stars) are located along the trajectory shown
in Fig. 5.2. For this plot, we have left out
crossover bands for the sake of lucidity.

Fig. 5.2 reproduces some findings of [52], where a different parameter set [63] and the “min-
imal” cutoff prescription 4.2.5 was used. Both approaches give in this respect equivalent qual-
itative results, although they differ quantitatively for thermodynamic quantities and the chiral
condensates. There is, however, a clear difference in comparison with the same plot calculated
in a nonlocal PNJL model (cf. Fig. 11 in [67]). This comparison indicates that the existence of
the cutoff itself influences the behavior of this trajectory tremendously, while the specifics of the
cutoff procedure have relatively little influence.

5.3 Dependence of the critical point on the current quark masses

In this section and the next one we perform critical point trajectory studies as in Fig. 5.2, but as
functions of a change in the current quark masses. This is a preparation for the determination
of the Columbia plot in this chapter; it is also instructive to see the relative influence of the
different parameters on this elusive point.

In Fig. 5.4 we show the dependence of the location of the critical point in the phase di-
agram on the strange-quark current mass ms. One solid marker denotes the starting point,

1after an intermediate range from 1 . K/K0 . 1.5
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i.e. the unchanged value which results from the parameter fit to the meson spectrum. This
is ms,0 = 140.7 MeV for the RKH parameter set [110]. The left solid marker corresponds to
the case of three degenerate quark masses with mu = md = ms = 5.5 MeV. As can be seen, the
location of the critical point depends sensitively on the value of the strange quark mass for small
ms. The cross at the left end of the trajectory is the value for ms = 0; the dashed line at the
right end is an extrapolation.

Interestingly, the location of the critical point does not vary greatly when ms stays in the
relatively wide range between 70 and 280 MeV. We recall that most parameter sets give values
of ms between 120 and 150 MeV. Evidently, the location of the critical point is quite stable
with respect to a change in ms alone. This is not surprising, as it is associated with the light
quark transition that is influenced only slightly by the strange quark sector, at least as long as
we confine ourselves to a flavor-independent chemical potential µ ≡ µu = µd = µs (cf. section
7.8.2). Now that we have information about the impact of the large strange current quark mass,
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Fig. 5.4: Trajectory of the location of the crit-
ical point as a function of the strange quark
current mass ms.
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Fig. 5.5: Trajectory of the location of the crit-
ical point as a function of the light quark cur-
rent mass mu = md.

we can ask how the light quark mass, one order of magnitude smaller than the strange-quark
mass, influences our model. The results are shown in Fig. 5.5. The standard parameter set
value is again denoted by the solid plot marker. At the left end of the curve we have added a
short dashed line, because we cannot determine the end point here exactly: for mu ≈ 0 it is
numerically expensive to determine the order of the transition.

Regarding the question of its existence, it is clear that ceteris paribus there will always be
a critical point in the phase diagram for reasonable choices of the masses. In section 5.7 we
will see how large current quark masses would have to be in order to smoothen the first-order
transition line into a crossover altogether. The result depends strongly on K.

5.4 Chiral limit and degenerate quark masses

After having considered the impact of mu = md and ms, varied separately, on the critical point,
we proceed to change both parameters simultaneously. The first step in this direction is to check
effects of degenerate quark masses, starting with the chiral limit, i. e. mu = md = ms = 0.
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With no explicit chiral symmetry breaking in the model any more, the influence of the
KMT interaction strength K is more evident. In Fig. 5.6 we show the transition lines in the
phase diagram for different values of K. A stronger U(1)A symmetry breaking term delays the
restoration of chiral symmetry, visible in the increased areas under the curves.

The rate of increase of the transition parameters is examined in more detail in Fig. 5.7. With
red diamonds, we have plotted the relative change of Ttrans (µ = 0) as a function of K/K0. The
relative change of µtrans (T = 0) as a function of K/K0 is shown with blue circles. Because of
the large change in µ and the comparatively small change in T , the relative change in the area
under the curves is almost identical to the µtrans curve for K ≤ K0 and is therefore not explicitly
shown.

Since the effects in the µ-direction are significantly larger, increasing K/K0 means decreasing
the curvature of the phase transition line. In the following section 5.5 we will compare this
quantity to some recent lattice QCD results to check if a preference for a certain value of K
can be determined. We continue with a scenario with three quark flavors of degenerate masses
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Fig. 5.6: Transition lines in the phase diagram
for different values for the KMT interaction
strength K in the chiral limit. From inner-
most to outermost: K/K0= 0, 1/3, 1/2, 1,
4/3. Solid lines are first-order transitions, the
dashed line is the second order transition for
K = 0. There is no crossover anywhere for
any value of K.
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chiral limit. Circles: relative change of
µtrans (T = 0) as a function of K/K0 in the
chiral limit.

(mq ≡ mu = md = ms). In Fig. 5.8 we have plotted the chiral condensate, −σq at µ = 0 as
a function of temperature, for different values of mq. Curves on the left-hand side result from
lower values of mq (starting from mq = 1 MeV), curves on the right-hand side from higher
values (up to mq = 3 MeV). It is clearly visible how the first-order transition in the chiral
limit (not depicted) is weakened with increasing current quark mass until, at a critical point
with mq = 2.43(1), it becomes second-order. From there on, it turns into a crossover. As a
consequence, a critical point appears in the phase diagram. The trajectory of the critical point
with increasing current quark mass is shown in Fig. 5.9. Further studies of this subject could
be compared to e.g. lattice calculations within the imaginary chemical potential approach [40],
where two tricritical points in the T -mq-phase diagram are found.
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Fig. 5.8: Chiral condensate at µ = 0 as a
function of T for different (but equal) cur-
rent quark masses, mq ≡ mu = md = ms;
masses increase from left (1.0 MeV) to right
(3.0 MeV) in steps of 0.1 MeV.
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5.5 Curvature of the phase transition line

We have seen in the last section how changing K influences the curvature of the chiral transition
line. In the chiral limit mu = md = ms = 0, we had plotted the termination points of the
transition lines at the T = 0 and µ = 0 axes in Fig. 5.7. The different rate of increase leads to
a changing curvature of the transition line as a whole. The same behavior is found in the case
of mu = mu,0 and ms = ms,0.

For the curvature of the transition line, recent lattice QCD results [72, 43] are available.
Although lattice calculations cannot, because of the fermion sign problem, be extended to large
values of µ/T , the curvature can be determined by Taylor expansion to the leading (second)
order in µ/T .

In the chiral limit the transition is first-order at µ = 0 and the determination of the cur-
vature is straight-forward. For a crossover we calculate the curvature of the line of constant
σu (Tχcross, µ) /σu (T = 0, µ = 0) = 0.5. Characterizing crossovers by a band means that we
should take the whole band into account also when we are interested in κ. By determining the
curvatures of the line of constant σu (Tlow, µ) /σu (T = 0, µ = 0) = 0.75 as well as of the line of
constant σu (Thigh, µ) /σu (T = 0, µ = 0) = 0.25, we specify error bands for the curvature.

The curvature κ of the transition is defined by

Tc(µ)

Tc(0)
= 1− κ

(
µ2

T 2
c

)
, or equivalently, κ = −Tc

dTc(µ)

dµ2

∣∣∣
µ2=0

(5.5.1)

with Tc denoting the critical temperature in the chiral limit, or either Ttrans, Tlow, or Thigh in
the case of a crossover. Two independent lattice calculations [72, 43] give κ ' 0.06 with com-
paratively small errors.

We show the curvature κ as a function of K/K0 in Fig. 5.10. Chiral limit results are marked
by orange crosses (no errors given), physical quark mass results (crossovers) by blue dots with
error bars according to the transition bands. Lattice results are added as solid lines with gray
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Fig. 5.10: Curvature κ - given by (5.5.1) - as a function of K/K0 in the chiral
limit (red crosses) and for physical quark masses (blue circles). The error
bars show the range of κ corresponding to the crossover width at µ = 0. The
thick green line shows a result from lattice calculations [72]. The slim gray
line and shaded area are lattice results from [43].

and green error ranges. The plot has two main messages. First, κ is quite insensitive to a
globally constant K. Chiral limit values range between 0.18 . κ . 0.22. For finite current
quark masses, κ is for all error bars consistent with 0.15 . κ . 0.19. Second, all values are far
from the lattice QCD values κ ' 0.05 ∼ 0.07.

In principle, we imagine K “in nature” to be some function Kphys (T, µ), see section 5.2. The
next simplest assumption after a globally constant K as in Fig. 5.10 is a coupling that depends
only on temperature or chemical potential.

We start with the temperature dependence of K. One possible estimate for K (T ) is based
on the semi-classical instanton tunneling amplitude n (T, ξ) [121]:

K (T ) /K0 ∼ n (T, ξ) ∼ exp

[
−8

3
(π ξ T )2

]
, (5.5.2)

where ξ is the instanton size. Its average is usually estimated as ξ ≈ 1/3 fm. In Fig. 5.11 we
show K as a function of T based on (5.5.2) for this, as well as some other choices of ξ. Already
for ξ & 1/6 the restoration of U(1)A is very quick and takes place at T . Tc. Recent lattice
QCD results show no indication of a restoration of U(1)A below or around Tc. We present
results2 for the curvature κ as a function of the instanton size ξ in Fig. 5.12. The influence
of the T -dependence of K on κ is evidently small. This goes especially for the low values of ξ
which, according to Fig. 5.11, seem to be the more reasonable ones.

Next, we study K as a function of µ. The effect on the curvature at µ = 0 of a µ-dependent
K is expected to be small as well. It is instructive to see the quantitative effect of even extreme
assumptions for K (µ). Let us first assume a linear decrease of K with µ of the form

K (µ) = K0 −
µ

Λ

(
K0 −KΛ

min

)
, (5.5.3)

2The early restoration of U(1)A has strong effects on the chiral condensates. For this plot only, we determined
the crossover boundary by σu (T ) /σu (0) = 0.6, 0.4 and 0.2 instead of the usual 0.75, 0.5 and 0.25.
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Fig. 5.11: Normalized KMT coupling
K (T ) /K0 as a function of the temperature
for different values of the instanton size ξ
according to eq. (5.5.2). From right to left:
ξ = 1/12, 1/6, 1/3, 1/2 and 2/3.
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Fig. 5.12: Curvature κ of the crossover bound-
ary near Tc as a function of the instanton size
ξ, see eq. (5.5.2) and Fig. 5.11. Lattice data
and error bars as in Fig. 5.10.

so that K (µ) decreases linearly from K = K0 at µ = 0 to K = KΛ
min at µ = Λ as depicted in Fig.

5.13. Fig. 5.14 then shows the curvature κ as a function of the minimal value KΛ
min ≡ K (µ = Λ).

Evidently the effect is so weak that within error bars it is negligible.
As an alternative to the linear form, we have also investigated the effects of an exponentially

decreasing K (µ) of the form

K (µ) = K0 e−(µ2/µ2
0) (5.5.4)

with a free scale parameter µ0. This Gaussian ansatz is motivated by the suppression of the
instanton density due to Debye screening [30].

Fig. 5.15 shows the functions K (µ) for some choices of µ0. The impact on the curvature is
then depicted in Fig. 5.16. Only for µ . 0.375 Λ (second point from the left) do the error bars
for κ move away from the standard result (K = K0) significantly. This choices corresponds to
the second curve from the bottom in Fig. 5.15, which already shows a drastic decrease of K
with µ. In this scenario, the axial anomaly would have almost completely disappeared already
within the hadronic phase and far below the cutoff, which is very unlikely.

Physically reasonable choices of K (µ) are therefore seen to have little impact on κ. The case
of Kphys (T, µ) may then be decently approximated by our studies for a globally changed K,
under the assumption that the degrees of susceptibility of K to T and µ are not extraordinarily
skewed.

In conclusion, we notice a discrepancy between results of our model at this stage and results
of lattice QCD calculations for the phase transition curvature κ. Neither global changes of K
nor sensible choices for K as a function of T or µ were able to improve matters in this respect.
A solution is found in the inclusion of a repulsive vector type interaction with a large coupling
gv (see section 7.7, especially Fig. 7.36).
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5.6 Type of the phase transition at µ = 0

A concise way to display the information about different classes of phase transitions at µ = 0 in
the mu–ms–plane is the so-called “Columbia plot” [25, 71, 87]. In section 5.4 we have already
calculated one line in this plane. In the following, we present a number of Columbia Plots for
different scenarios. For some of these scenarios, similar calculations done with the unphysical
“minimal” cutoff scheme and different parameter set can be found in [52].

The first plot, shown in Fig. 5.17, is the standard case, as calculated in our model with all
input values (except the current quark masses) according to the parameter fit. The plotted
curve is the line of second-order phase transitions. Mass combinations between this curve and
the origin (chiral limit) result in a first-order transition along the temperature axis in the phase
diagram. Mass combinations beyond the line signify a crossover at µ = 0. For very heavy quark
masses the system is dominated by gluon dynamics. In the upper right corner of the Columbia
plot another first-order transition region is expected [87]. The lower dashed line marks the case
of three degenerate flavors mu = md = ms. The evolution of the chiral condensate along this line
was shown in Fig. 5.8. The trajectory of critical points in the first-order region was presented
in Fig. 5.9.

Our result for the form of the second-order curve with its smooth convergence toward to the
mu and ms axes compares well with qualitative results from chiral random matrix calculations
[49]. This close correspondence confirms that the Columbia plot, at least for µ = 0, is almost
exclusively determined by chiral dynamics3.

Our finding also compare quite well with lattice QCD results. In [42], the authors estimate
upper bounds for a specific point on the second order line, namely the point where the ms/mu

ratio equals the ratio in their input parameter set. Their ratio of about 27.3 is well comparable
with ours of about 25. As it turns out, our point with ms/mu=27.3 on the second-order line
lies at (mu = 0.36 MeV, ms = 9.9 MeV). Expressed as a fraction of the mu input parameter
mu,0 = 5.5 MeV, the coordinates of this point are (mu = 0.066mu,0, ms = 1.8ms,0). The value
of 0.066mu,0 is in good agreement with the upper limit of about 0.07mu,0 found for NT = 4 in
[42]. However, at this point the predictive power of these lattice data is still somewhat uncertain,
since the authors state that their upper boundary estimate increases by about 50% (to 0.12mu,0)
when increasing NT by 50% (from NT = 4 to NT = 6): the continuum limit has obviously not
yet been reached.

Fig. 5.18 investigates the very low mu region of the Columbia plot. The horizontal axis now

shows m
2/5
u so that the resulting curve is a straight line, as it should be according to a generic

Landau-Ginzburg analysis [71, 141, 49]. We extrapolate and find that the tri-critical point lies
at about ms = 18.4 MeV. For all higher values of ms with mu = 0, the transitions are expected4

to be second-order [87].

Next, we examine the influence of the KMT interaction on the Columbia plot. The results of
this study are collected in Fig. 5.20a. The area under the curve in each case represents a region
of a first-order transitions, the curve itself is second-order and the area above the curve implies
crossovers. The K = K0 = 156 GeV−5 curve is the same as in Fig. 5.17. For K = 0 there is
only a single point of second-order transition at mu = ms = 0 and crossovers everywhere else.

The growing areas under the curves in Fig. 5.17 show that at µ = 0 an increasing KMT
interaction strength K influences the phase transition in the opposite way of an increase in the
bare quark masses. From the quark mass gap equations (3.3.45) we would intuitively expect
that the KMT term effectively increases the quark mass and thus a change in K acts in the same

3In this context it might be important to keep in mind that, with the exception of the overlap fermion
discretization [74], chiral symmetry is broken to some extent by all lattice formulations of QCD.

4Determining the difference between a first and a second order transition is not possible with our numerical
setup.
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has been included to compare the absolute
values to results in [42] (see text above).
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direction as a change in the bare masses. However, in the self-consistent calculation, this term
is overpowered by the condensation term (last term in 4.2.6) and the relationship is reversed.

Note that combinations of current quark mass that result in a first-order transition in our
Columbia plot of Fig. 5.17 are far below the parameter values of mu,0 = 5.5 MeV and ms,0 =
141 MeV. It is evident that for all studied values of K, there is a crossover at µ = 0 for our
standard parameter values.

5.7 Transition systematics in mu–ms–µ space

Calculating “Columbia” curves as in Fig. 5.20a for different chemical potentials, one constructs
the so-called “critical surface”. In the literature, the curvature of this sheet of critical points
is still under discussion. Even just for the low µ/T scenario, arguments for curvatures of both
signs can be found [39, 106]. In this context, a negative curvature means a shrinking first-order
transition region when µ is increased. The notion of back-bending has also been brought up,
where the critical surface first curves away from the physical point, then turns around and hits
it at higher chemical potentials [51, 30].

In our model we can construct the full three-dimensional “Columbia” structure in µ–mu–
ms–space. In contrast to lattice QCD groups, we do not have to extrapolate and can therefore
check explicitly the curvature and signs of back-bending. For our standard parameter set with
K0 = 156 GeV−5 , we get the picture shown in Fig. 5.19. With these settings we find a
monotonous bending of this second order transition surface towards the “physical” (or model
parameter) combination of mu and ms. This is the expected result of a positive curvature for
all µ. Next, we look into the effects on the standard Columbia plot when varying the U(1)A.
In Fig. 5.20 we have collected results for four different values of K, namely K = 50 GeV−5,
K = 100 GeV−5, K = K0 = 156 GeV−5 and K = 200 GeV−5, or, in relative terms, K = 0.32K0,
K = 0.64K0, K = K0 and K = 1.28K0. Fig. 5.20a shows the patterns at µ = 0 and Fig. 5.20b
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Fig. 5.19: Columbia plots (second order transition lines as functions of mu

and ms) as a function of µ for K = K0. The surface terminates at the border
on the right and the one in the rear, but continues on the left and in front.
The dashed red lines therefore denote where we stopped the calculations,
while the solid black lines are the physical boundaries for µ ≥ 0 and mu ≥ 0.

at µ = 100 MeV. Evidently, the first-order phase transition regions expand with increasing µ for
all studied values of K. Accordingly, the curvature of the critical surface is always positive in
these scenarios. Fig. 5.21 presents the analogue of Fig. 5.19 for a smaller K of K = 1/3K0. In
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Fig. 5.20: “Columbia Plot” describing the transition orders for different values of
K at two different chemical potentials µ. Areas left of the curves denote first-order
transitions, areas right of the curves crossovers. The curve itself indicates second order
transitions, i. e. critical points.

this scenario, there is no longer a first-order transition in the phase diagram for physical quark
masses, see Fig. 5.2 and Fig. 5.3. The critical surface ends at about µ ∼ 250 MeV, where the
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transition temperature has decreased to T = 0 (Fig. 5.3). A third interesting scenario, between
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Fig. 5.21: Columbia plots (second order transition lines as functions of mu

and ms) as a function of µ for K = 1
3K0. The surface terminates at the

border on the right and in front (blue, black), but continues on the left and
in the rear (dashed red). From the spectators point of view, the first-order
transition volume lies before the surface and the crossover region beyond.

the standard scenario with a critical point (K = K0) and a scenario with a pure crossover
(K = K0/3) is the setting of K = K0/2. According to Fig. 5.2 that is the value at which the
critical point vanishes from the phase diagram. The mu–ms–µ space “Columbia” plot in this
case is somewhat involved. We present it in 5.22 for comparison but will not go into a detailed
description.

The comparison of Figs. 5.19, 5.21 and 5.22 sends a message of caution: in all cases, the
curvature of the critical surface is small until about µ ∼ 150 MeV. From then on, it increases
considerably, and the surface is changed also qualitatively. It is evident from the comparison
of these three plots that one has to be extremely careful in extrapolating lattice QCD data for
small µ in order to determine the existence of a critical point. In order to stress this point, we
show the “Columbia” plot for K = K0/2 at µ = 270 MeV in Fig. 5.23. For low current masses,
a phase of restored chiral symmetry (χSR) has appeared. The first-order transition region has
split up into two separate areas. It should be noted that these effects are far from the physical
point, as ms � m0

s . In addition, the choice of T ∼ 0 and µ ∼ 250 MeV puts them deep into the
domain of nuclear physics. The plot is simply a demonstration that increasing µ in the Columbia
plot can lead to complex scenarios that are not evident from the low µ behavior – compare Fig.
5.20 and Fig. 5.23. The phase of restored chiral symmetry (χSR) is the large µ boundary of
the critical surface. Its shape can be partially seen from Figs. 5.24 and 5.25. They show a
slice at ms = 0 through the three–dimensional plots in Fig. 5.22 and Fig. 5.19, respectively.
The χSR phase trivially intersects with the critical surface at T = 0. The plots confirm again
that the curvature of the critical surface is strongly sensitive to µ and K. In addition, e. g. for
K = K0 the curvature at ms = 0 in Fig. 5.25 is almost constant, in contrast to the situation at
ms > 0 and mu = 0, visible in Fig. 5.19. These effects are another factor in the challenges when
extrapolating from small to large chemical potentials.

In section 2.4 we mentioned that, for lattice QCD calculations at finite µ, approximations
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Fig. 5.22: Columbia plots (second order transition lines as functions of mu

and ms) as a function of µ for K ≈ 1
2K0. The surface terminates at the

border on the right and in front, but continues on the left and in the rear.
The green bar represents the “physical point” line that the right hand border
of the Columbia surface will hit eventually.
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Fig. 5.23: Columbia plot at µ = 270 MeV for K ≈ 1
2K0. In the two areas

between the bold lines, there is a first-order transition. Dashed line between
the crossover region and the region with restored chiral symmetry (“χSR”)
marks second order transitions at T = 0.

have to be made that have limited ranges of applicability (“fermion sign problem”). The
reweighting and Taylor expansion techniques are limited to µ/T . 1, while the imaginary chem-
ical potential approach breaks down at µB ≈ 500 MeV, or µ ≈ 183 MeV [106]. Fig. 5.26 gives
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Fig. 5.24: Slice through Fig. 5.22 at ms = 0
for K ≈ 1

2K0, including the upper boundary
determined by the T = 0 condition (upper
solid line). The lower solid line is the second
order transition line.
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Fig. 5.25: Slice through Fig. 5.19 at ms = 0
for K = K0, including the upper boundary
determined by the T = 0 condition (upper
solid line). The lower solid line is the second
order transition line.

an impression how far lattice QCD can (at most) determine the critical surface. We present
the ratios µ/T for the critical points at µs = 0 and varying µu at K = K0/2 and K = K0,
corresponding to the red lines in Fig. 5.24 and Fig. 5.25, respectively. We have shaded the
regions inaccessible to the lattice in gray. Interestingly, all three techniques seem to be limited
to µ . 150 MeV: up to this chemical potential, results for all values of K were qualitatively sim-
ilar, with major differences occuring only for higher µ. However, one should keep in mind that
the curvature of the chiral transition in lattice QCD results is smaller than in our calculation
(without vector interaction).

We conclude this chapter with a short study of the T = 0 curves of the critical surface,
presented in Fig. 5.27. They mark the boundary between the crossover, first-order transition,
and χSR regions in the µ–mu–ms space. Even for the small range of K from 0.32K0 ∼ 0.51K0,
there are large qualitative as well as quantitative differences. Note that at µ = 0 the respec-
tive Columbia plots would be qualitatively identical (cf. Fig. 5.20a), with no indication of the
enormous differences at large µ and small T .

5.8 Summary

We have performed extensive studies of the transition patterns of the chiral condensate, starting
from µ = 0 (Columbia plot) and extending to finite chemical potentials. As one result, we have
shown that certain areas in µ − mu − ms space, especially for µ ≤ 150 MeV, have the same
Columbia plot structure for all values of the axial U(1) symmetry breaking interaction K > 0
and that other areas are strongly influenced by changes of this quantity. We have provided
several examples for this fact, which serve to underline an important message: the curvature of
the critical surface at small chemical potential µ is not necessarily a good indication of physics
at large µ, especially regarding the existence of the critical point. Our work shows that the axial
anomaly is of paramount importance and can influence high density physics.

At this point, further input about the critical surface and the Columbia plot from lattice
QCD is necessary. Even more important would be a better theoretical understanding of the µ
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Fig. 5.27: “Columbia Plot” describing the
transition orders at T ≈ 0 for different values
of K. Areas left of the curves denote first-
order transitions, areas right of the curves
crossovers. The curve itself indicates second
order transitions, i. e. critical points.

and T dependence of K. In [51], some exploration of the critical surface under the influence of
an exponentially decreasing K was performed; while promising, the assumed functional form is
only one option out of many.

We also studied the curvature of the chiral phase transition line κ for a large variety of
T - or µ-dependent forms for the KMT interaction strength K. In all cases the results were
incompatible with recent, very precise lattice QCD results. For one possible solution, we refer
to section 7.7.



Chapter 6

Parameters of the Polyakov loop
effective potential

6.1 Introduction

In the last few years, lattice QCD has made significant progress in determining the chiral con-
densate and the Polyakov loop as functions of T at µ = 0. In Fig. 6.1 we show lattice QCD
results for the renormalized Polyakov loop at µ = 0 as a function of T/Tc, collected in [13]. A
recent update by the same group, the hotQCD collaboration, is found in [9]. Results by the
independent Budapest-Wuppertal group are very close [19]. Fig. 6.2 shows results from both
groups combined as a function of absolute values of T . It is remarkable how close all the curves
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Fig. 6.1: Renormalized Polyakov loop Lren

as a function of T/Tc at µ = 0 with Tc =
157 MeV. Pure gauge results in black, 2 + 1
flavor results in color. Plot taken from [13].

Fig. 6.2: Low temperature region of the renor-
malized Polyakov loop Lren as a function of T
at µ = 0, showing detailed results from both
the hotQCD and the Wuppertal-Budapest
collaborations. Plot taken from [10].

are to one another, especially taking into account the different lattice QCD actions and spacings
used. All data sets apart from the Nτ = 8 asqtad set are reported to be insensitive to cutoff
effects [10] so that the convergence of the calculations appears to be well under control. This
motivates our strong focus on the Polyakov loop in this chapter. The main goal is to find a mech-
anism that produces a Polyakov loop crossover as shown in Fig. 6.1. The second objective is to
determine the influence that cutoff schemes (see chapter 4) have on the interplay between chiral
and Polyakov loop dynamics. The behavior of the Polyakov loop is determined by the Polyakov

57
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loop effective potential U (Φ), see section 3.5. Our potential is designed [109, 117] by fitting to
pure glue lattice results [20, 73]. It is then added unchanged to the effective thermodynamic
potential (density) Ω. The assumption that this is a good approximation to real physics is not
trivial. In fact, recently the discussion of matter back-reactions from quark loops onto Polyakov
loop dynamics has gained a lot of momentum. The standard PNJL model is incomplete in this
regard. One of the simplest proposed back-reaction mechanisms is a reduction of T0, depending
on the number of flavors [119, 120]. A more involved ansatz [53] is motivated by the chemical
freeze-out curve derived from experimental data and combined with an interpretation based
on the Statistical Model [6, 14, 35]. It sets T0 as function of µ and fits the parameters of the
function according to the freeze-out points. We will examine both of these ideas in section 6.3.4
and section 6.3.7, respectively.

In principle, there are two main methods for modeling1 a pure glue quantity such as the
Polyakov loop effective potential. One can either adhere strictly to the information from pure
glue theory, as described in 3.5. Or one can determine U (Φ) in such a way as to reproduce
2 + 1 flavor lattice QCD results. Having set the former method as our standard, we will in
this chapter vary the parameters of U (Φ) and investigate the consequences this has on the final
results.

If a Polyakov loop effective potential is supposed to reproduce pure glue lattice results for the
Polyakov loop and thermodynamic quantities, there are two main requirements: First, the loca-
tion of the minimum of the curve UT (Φ) for a given temperature T determines Φ (T ). Therefore,
the requirement of a good fit to Polyakov loop lattice data makes strong demands on the location
of the minima of UT (Φ) as a function of T . Secondly, thermodynamic quantities are calculated
from the pressure p = −U (T ), where U (T ) is determined via U (Φ) and Φ (T ). Consequently,
the depth of the minimum as a function of T determines pure glue thermodynamics. Given these
two facts and the boundary conditions, there is almost no freedom to tune the Polyakov loop
effective potential.

In this chapter we investigate two different potentials U (Φ). Section 6.2 will deal with
the comparatively simple Fukushima potential (6.2.1), an instructive model due to its clear
structure. In section 6.3 we treat our own potential, the Rößner–Ratti–Weise ansatz [117].
Keeping the functional forms, we will vary the respective parameters. The first step is to
understand the effects of parameter choices for U (Φ) on results both in pure glue calculations
as well as in scenarios including quark degrees of freedom. In a second step we will find a
parameter combination that reproduces 2 + 1 flavor lattice results well and investigate what the
consequences are for pure glue results. Results are presented and discussed in section 6.3.5.

In section 6.3.6, we investigate the strong influence of the cutoff procedure on the interplay
between chiral condensate and Polyakov loop. The variation of the pure gauge transition tem-
perature T0 proves useful for this. Section 6.3.7 follows the recent suggestion [53] to orient PNJL
type calculations of the QCD phase diagrams more towards the freeze-out curve determined by
the “Statistical Model” from experimental data [6, 14, 35]. We discuss the utility of this ap-
proach, in particular in connection with the choice of the cutoff prescription. A summary of the
chapter is given in section 6.4.

1Apart from semi-phenomenologic modeling, there are also attempts at determination from underlying princi-
ples, e. g. [23, 85, 55].
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6.2 Fukushima Potential

6.2.1 Preliminary Remarks

The potential suggested by Fukushima in [52] involves only two parameters:

UFuku = −b T
[
54e−a/TΦ∗Φ + J (Φ,Φ∗)

]
. (6.2.1)

The piece

J (Φ,Φ∗) = log
(

1− 6Φ∗Φ− 3 (Φ∗Φ)2 + 4
(

Φ3 + Φ∗3
))

(6.2.2)

is the Haar measure term from integrating out the non-diagonal group elements in color space
[50, 65]. In the original paper, the author chose

a = 664 MeV and bΛ−3 = 0.03 (6.2.3)

with Λ = 602.3 MeV (this and the other NJL parameters stem from [63]) such that the pure glue
transition occurs at T0 = 270 MeV and the transition region in the 2+1 flavor scenario including
quarks is around T ≈ 200 MeV. We denote this parameter set in the following as a0 and b0.
The ansatz (6.2.1, 6.2.3), motivated by the strong-coupling limit, does not reproduce pure glue
thermodynamics accurately. It does not include dynamical transverse gluons which dominate the
pressure at high temperature. It is now understood [53] that transverse gluon dynamics are also
controlled by the Polyakov loop and their effects can be incorporated in U (Φ). The potential
UT (Φ) with input values from [52] for the parameters a0 and b0 at different temperatures is
shown in Fig. 6.3. Compared to the same figure with our standard choice, Fig. 3.3 in section
3.5, it is notably shallower.
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Fig. 6.3: Polyakov loop effective potential from eq. (6.2.1) as a function of the
Polyakov loop Φ with the original choices for a = a0 and b = b0 at different tem-
peratures. From top to bottom: T = 250 MeV, T = 270 MeV = T0 (critical),
T = 300 MeV and T = 350 MeV.
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6.2.2 Variation of the parameter a

From the ansatz (6.2.1) it is evident that the parameter a sets a temperature scale. In Fig. 6.4
we show U as a function of Φ at a fixed temperature of T = 300 MeV for three different values
of a. The minima as a function of Φ are shifted and their depth is changed when varying a.
The physical implications are evident when one compares the curves at different temperatures,
chosen such that the minima coincide. We have plotted this in Fig. 6.5. For each temperature,
the Polyakov loop takes the value at which the minimum is localized.

Next, in Figs. 6.6 and 6.7, we compare the pure glue quantities to lattice QCD calculations.
Fig. 6.6 shows the Polyakov loop as a function of T for three different choices of a. Its shape fits
lattice results reasonably well for a . 700 MeV, at least up to 2Tc . Changes in the parameter
a systematically shift the curves as expected. A reduced pure glue critical temperature T0 of
190 MeV as suggested by [119, 120] corresponds to a choice of a ≈ 500 MeV.
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Fig. 6.4: Comparison of the Polyakov loop ef-
fective Potential UT (Φ) at fixed temperature
T = 300 MeV as a function of Φ in a pure
glue scenario for to different values of a in the
potential (6.2.1).
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Fig. 6.5: Comparison of the Polyakov loop ef-
fective Potential UT (Φ) as a function of Φ in
a pure glue scenario for different values of a
in the potential (6.2.1), each curve at a differ-
ent temperature. The temperature is deter-
mined such that the minima roughly coincide.
From top to bottom: a = 600 MeV and T =
300 MeV, a = 700 MeV and T = 344 MeV,
and a = 800 MeV and T = 387 MeV.

In Fig. 6.7 we compare the pure glue pressure derived from the potential (6.2.1) to lattice
QCD results. All curves are significantly too low and fail to match the lattice QCD points. This
can be traced back to the shallowness of U in Fig. 6.3. For other thermodynamic quantities such
as the entropy density s and the energy density ε, the situation is essentially the same.

6.2.3 Variation of the parameter b

The parameter b determines the overall depth of the Polyakov loop effective potential. In the
pure glue scenario, Φ as a function of T is therefore not affected by a change of b. The strong
influence on pure glue thermodynamic properties is seen in Fig. 6.8. It shows the pure glue
system pressure as a function of T for different values of b. Lattice results are reproduced best
with b ≈ b2 = 2.7 b0, at least up to T ∼ 1.5Tc.



6.3 Effective potential used in this work 61

a = 600 MeV

a = 700 MeV

a = 800 MeV

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.

0.2

0.4

0.6

0.8

1.

T @GeVD

F

Fig. 6.6: Comparison of the Polyakov loop as
a function of T in the pure glue scenario for
different values of a in the potential (6.2.1).
From left to right, result from the choices of
a = 600 GeV, a = 700 GeV and a = 800 GeV,
respectively. Circles with error bars are lat-
tice results of [73].

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.

0.5

1.

1.5

T @GeVD
3p

p
g

�T4
@G

eV
4 D

a = 600 MeV

a = 664 MeV

a = 700 MeV

L
at

ti
ce

Fig. 6.7: Pure glue system pressure as a func-
tion of T for different values of a in the poten-
tial (6.2.1), compared to lattice QCD results
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top to bottom, correspond to a = 600 MeV,
a = a0 = 664 MeV (dashed) and a =
700 MeV.

In the full calculation, the gluon contribution to the pressure is even less than Fig. 6.8
suggests. Fig. 6.9 shows the pressure of the full system (gluons and quarks) as a function of T .
Already at T ∼ Λ/2 there is virtually no difference between the curves for different values of b.

6.3 Effective potential used in this work

6.3.1 Preliminary Remarks

In the previous section we have seen that the potential from (6.2.1) is conceptually interesting
but falls short in several respects. The reproduction of pure glue data is still the most reliable
foundation to construct a physically meaningful Polyakov loop effective potential. The potential
that we use in our work (see section 3.5) is the one developed in [116] and [117]:

U(Φ,Φ∗, T ) = −1

2
b2(T )Φ∗Φ + b4(T ) log [J (Φ,Φ∗)] (6.3.1)

with

b2(T ) = a0 + a1

(
T0

T

)
+ a2

(
T0

T

)2

(6.3.2)

and

b4(T ) = b4

(
T0

T

)3

(6.3.3)

with the values for a0, a1, a2 and b4 given in Table 3.5 in section 3.5. The Haar measure term
J (Φ,Φ∗) is the same as in (6.2.2). In the following study we permit two variations: an overall
re-scaling of the potential by a factor c; and a relative re-weighting of the b2 and b4 terms by
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re-scaling b̄2 (T ) = d b2 (T ):

U(Φ,Φ∗, T ) = c

{
−1

2
b̄2(T )Φ∗Φ + b4(T ) log [J (Φ,Φ∗)]

}
. (6.3.4)

The parameter c controls the total magnitude of the potential and corresponds to b in the
Fukushima potential 6.2.1. The parameter d controls the weight of the ΦΦ∗ term independent
of the Haar measure term.

6.3.2 Variation of the parameter c

In analogy to the parameter b in section 6.2.3, the Polyakov loop in the pure glue scenario is not
affected by a change in c. In Fig. 6.10 we present the pure glue pressure as a function of T for
different values of c. The choice of c = 1 reproduces our standard settings which by construction
result in the perfect fit to lattice QCD data from [33] and the Stefan–Boltzmann limit. Changes
of the order of 20% make the curve deviate considerably. It was seen in Figs. 6.8 and 6.9 that
large differences in the pure glue pressure do not necessarily carry over into the full system. In
contrast to the Fukushima potential, the high temperature limit of the pressure is finite with
our ansatz but depends strongly on c. This has significant effects on the thermodynamics of
the full quark-gluon system. As an example, we show the normalized energy density ε/T 4 as a
function of T/Tχcross for the same three values of c as in Fig. 6.10. As a reminder, Tχcross is the
center of the chiral crossover band at µ = 0. The red circles are lattice QCD results from [33].

In the full 2 + 1 flavor calculation, increase of c leads to a stronger degree of entanglement
between chiral and Polyakov loop transition. This effect is evident e. g. in [55].
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Fig. 6.10: Pure gauge system pressure as a
function of T for different values of c in the
potential (6.3.4), compared to lattice results
(black circles) from [20]. Pressure curves,
from top to bottom, correspond to c = 1.2,
c = 1.0 and c = 0.8.
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Fig. 6.11: Rescaled energy density ε/T 4 at
µ = 0 as a function of T/Tχcross for c = 0.8,
c = 1.0 and c = 1.2 from bottom to top. Tχcross

is defined in eq. (4.4.1). Red circles are lattice
QCD results from [33].

6.3.3 Variation of the parameter d

The parameter d in (6.3.4) is the equivalent of the parameter a in (6.2.1) so that we expect
similar results upon variation of d. Fig. 6.12 shows the shift of the Polyakov loop in the pure
glue system for several values of d. In the pure glue pressure, even small changes in d lead to
considerable differences already at T & 1.5T0. (Fig. 6.13).

In the full 2+1 flavor calculation, the pressure is affected to a lesser degree, as shown in Fig.
6.14. The Polaykov loop crossover tends to become smoother with decreasing d. At the same
time, the transitions are shifted towards higher T and their degree of entanglement increases.

6.3.4 Variation of parameter T0

The third parameter in our potential (6.3.4) is the pure glue transition temperature T0. In
contrast to the Fukushima potential parameter a in the Fukushima potential, it shifts the pure
gluonic quantities on the T axis entirely. For 2 + 1 flavors we present as an example the rescaled
energy density ε/T 4 in Fig. 6.15. The chiral condensate and Polyakov loop crossover widths at
µ = 0 are collected in Fig. 6.16. Lowering T0 to about 190 MeV as suggested in [119, 120] makes
the Polyakov loop crossover steep and separates it from the chiral transition, features that are
not present in 2 + 1 flavor lattice QCD results. For very small T0 . 150 MeV the Polyakov loop
transition turns into a crossover.

6.3.5 Fit to lattice QCD results and discussion

The most efficient way to broaden the Polyakov loop transition was found to be a reduction of
the parameter d. The same effect was achieved with an increase in a in the Fukushima potential
(see 6.2.2). At the same time, lowering d also raises the transition temperatures considerably.
The best way to lower them is a reduction of T0, as suggested in [119, 120]. In the interplay
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Fig. 6.12: Polyakov loop as a function of T for
a selection of values for d. From left to right:
d = 1.4, d = 1.0, d = 0.6. Circles with error
bars are lattice results of [73].
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Fig. 6.13: Pure glue system pressure as a func-
tion of T/T0 (d) for a selection of values for
d. From top to bottom: d = 1.05, d = 1.00
(dashed), d = 0.95. Black circles correspond
to lattice results from [20].
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Fig. 6.14: Rescaled pressure p/T 4 as a function of T/Tχcross for a selection of values
for d. From bottom to top: d = 0.95, d = 1.00 and d = 1.05. Circles correspond to
lattice results from [33].

between these two effects, we fit the results from [13] best by choosing

T0 = 190 MeV and d = 0.25 (6.3.5)

in the potential (6.3.4). This means that the high-pressure limit in the pure glue scenario is only
a quarter of its physical value. Polaykov loop and normalized chiral condensate with this choice
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Fig. 6.15: Rescaled energy density ε/T 4 as
a function of T/Tχcross for different values of
T0 in (6.3.1). From top to bottom: T0 =
230 MeV, T0 = 270 MeV, T0 = 310 MeV and
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from [33].
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Fig. 6.16: Transition bands for the chiral con-
densate (upper band, red) and the Polyakov
loop (lower band, blue) at µ = 0 as a function
of T0 in (6.3.1).

are presented in Fig. 6.17 as a function of T . The gray band represents lattice QCD results
collected in [13]. The chiral transition takes place at too high temperature Tχcross in comparison
to the lattice – a known issue with standard PNJL type models. However, it should be noted that
Tχcross is essentially unchanged with respect to our standard parameter choice of T0 = 270 MeV
and d = 1. The phase diagram resulting from the settings (6.3.5) is shown in Fig. 6.18. In
comparison to our “standard” phase diagram (Fig. 4.6b in section 4.5), the temperature Tcp of
the critical point is lowered2 from around 150 MeV to about 125 MeV, mostly as a consequence
of the reduced T0. Its chemical potential µcp is unaltered.

6.3.6 Influence of cutoff schemes

In sections 4.4 and 4.5, we mentioned that the degree of entanglement between the chiral and
the Polyakov loop transition is strongly affected by the cutoff procedure. It is instructive to
study the analogue of Fig. 6.16 for the other two cutoff procedures described, namely (4.2.4)
and (4.2.5) in section 4.2, as they are the most widely used ones.

In the case of the minimal cutoff (4.2.5), the crossover bands are entangled to the highest
degree (Fig. 6.19). The complete overlap at T0 = 270 MeV is remarkable, but the bands are
too narrow, i. e. the transitions too fast, in comparison to the lattice QCD results. This is true
especially for the chiral transition, and at all values of T0.

For the maximal cutoff (4.2.4), the chiral transition is about as wide as with our new cutoff
scheme. Remember, however, that 2 + 1 flavor thermodynamics cannot be reproduced with the
maximal cutoff (cf. section 4.5).

2We show in chapters 5 and 7 that the existence, let alone the location of the critical point is strongly
dependent on a several parameters. It is interesting to note that already this result suggests a shorter chiral
first-order transition line. Additional findings to this effect will be forthcoming in the cited chapters.
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Fig. 6.17: Normalized chiral condensate
σu (T ) /σu (0) and Polyakov loop Φ (T ) with
the parameter choices of d = 0.25 and T0 =
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Fig. 6.18: QCD phase diagram resulting from
the parameter choices of d = 0.25 and T0 =
190 MeV in ansatz (6.3.4). The (de-) con-
finement crossover band is shown in blue
(dashed), the chiral crossover band in red
(dashd). The critical point is marked by a
star and the chiral first-order transition by a
solid red line.
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Fig. 6.19: Transition bands for the chiral con-
densate (upper band, red) and the Polyakov
loop (lower band, blue) at µ = 0 as a function
of T0 in (6.3.1), calculated with the ”minimal”
cutoff (4.2.5).
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Fig. 6.20: Transition bands for the chiral con-
densate (upper band, red) and the Polyakov
loop (lower band, blue) at µ = 0 as a function
of T0 in (6.3.1), calculated with the ”maxi-
mal” cutoff (4.2.4).
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6.3.7 Freeze-out curve and µ–dependent T0

The “Statistical Model” [6, 14, 35] works remarkably well reproducing particle ratios at chemical
freeze-out in heavy-ion collisions, using just temperature and chemical potential as input. In
[53], it is suggested to bring PNJL model results phenomenologically in agreement with the
freeze-out curve. To this end, a µ–dependent T0 is proposed3. The main argument is that the
entropy density s counts the effective degrees of freedom and therefore its increase should be
connected to deconfinement. In the PNJL model results, s is connected more strongly to the
chiral transition, so that it seems natural to attempt to bring the two transitions closer together.

The freeze-out curve is parametrized in [35]. The assumed correlation between the freeze-out
curve and the running of T0 with µ motivates the use of the same curvature:

T0 (µ)

T0 (µ = 0)
= 1− κf

µ2

T0 (µ = 0)2 (6.3.6)

with κf = 0.238. For easier comparison, we use in this section the same parameter set4 as in
[53], namely the Hatsuda–Kunihiro set [63].

Again, we find that the choice of a cutoff scheme is crucial. The following figures show the
QCD phase diagram resulting from a running T0 according to (6.3.6). Figs. 6.21a and 6.21b
show the case of an initial T0 (µ = 0) = 270 MeV with the new cutoff (left, Fig. 6.21a) and
the minimal cutoff (right, Fig. 6.21b). Figs. 6.22a and 6.22b show the analogue for an initial
T0 (µ = 0) = 190 MeV. This value was again motivated by the renormalization group arguments
in [119, 120] and is close to the choice of T0 (µ = 0) = 200 MeV used in [53]. Fig. 6.21a presents
the result with the new cutoff and Fig. 6.21b the result with the minimal cutoff. In black, with
error bars, are the “Statistical Model” freeze-out points. As always, dashed lines with bands
are crossovers, solid lines denote first-order transitions. Note that in all of the four diagrams,
for chemical potentials larger than that of the critical point, µcp, the Polyakov loop transition
becomes first-order. We have encountered this effect already for low, but fixed T0 in section
6.3.4. The unusual behavior of the Polyakov loop at T . 25 MeV has numerical causes and
carries no physical meaning.

Both transitions, in particular the Polyakov loop transition, come only close to the freeze-out
points when the initial T0 (µ = 0) ∼ 190 MeV. The effect that all transitions/crossovers become
very close and parallel as described in [53] is only true in the case of the minimal cutoff scheme.
We already saw in the last section, especially Fig. 6.19, that this prescription tends to put the
transitions close to each other. Because of its clearly unphysical properties (see chapter 4),
results based on it should be treated with caution. It is obvious that, if the chiral condensates
go to the wrong high temperature limit (namely towards negative current quark masses instead
of vanishing), then their melting must happen faster and earlier. Thus the minimal cutoff puts
the chiral transition closer to the Polyakov loop transition band in Fig. 6.22b than in Fig. 6.22a,
but for reasons that are unphysical.

6.4 Summary

In this chapter, we have investigated systematic connections between the Polyakov loop effective
potential U (Φ) and 2 + 1 flavor lattice QCD results. They have been verified with two different
potential forms separately, namely the Fukushima potential (6.2.1) and our potential (6.3.1).
We have found that the smooth transition of the Polyakov loop indicated by recent lattice
QCD results [13, 10, 19] can be reproduced in our calculation with the parameter choices of

3An explicit µ dependence of the Polyakov loop effective potential, based on renormalization group arguments,
is also suggested in [119]. This is a very promising approach to include effects of a matter back-reaction to the
Polyakov loop.

4The differences are negligible for this study; they consist mainly in a slightly shifted critical point.
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(a) New “soft” cutoff from (4.2.6).
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(b) Minimal cutoff from (4.2.5).

Fig. 6.21: QCD phase diagram with running T0 according to (6.3.6). Blackcircles
with error bars from the ”Statistical model”. Polyakov loop transition in blue, chiral
transition in red. Dashed lines are crossovers, solid lines first-order transitions. Here,
we have used T0 (µ = 0) = 270 MeV.
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(a) New “soft” cutoff from (4.2.6).
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(b) Minimal cutoff from (4.2.5).

Fig. 6.22: QCD phase diagram with running T0 according to (6.3.6). Black circles
with error bars from the ”Statistical model”. Polyakov loop transition in blue, chiral
transition in red. Dashed lines are crossovers, solid lines first-order transitions. Here,
we have used T0 (µ = 0) = 190 MeV.

(6.3.5) in (6.3.4). Doing so, one gives up the primary fit of the effective potential to pure glue
lattice results. The phase diagram resulting from this choice (Fig. 6.18) is very similar to our
standard phase diagram (Fig. 4.6b). For the remainder of this work, we will, however, stick to
our original prescription for U (Φ) found in section 3.5, which is based on reproducing pure glue
lattice results.
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We have also shown, by varying T0 in section 6.3.6, that the degree of entanglement between
the chiral and the Polyakov loop crossover is strongly sensitive to the combination of the cutoff
scheme and the choice of T0.

In section 6.3.7, we have followed a recent suggestion [53] to model T0 (µ) such that PNJL
model results for the chiral transition come closer to the freeze-out points indicated by the
Statistical Model [6, 14, 35]. We have found that the effects shown in that work are mostly due
to the use of the unphysical “minimal” cutoff. In addition, by comparing to the lattice QCD
data presented in the introduction (section 6.1) it is clear that the assumption of a close relation
between the freeze-out points and the Polyakov loop is not supported by the lattice QCD results.
Regarding the possible connection between the freeze-our curve and the chiral phase transition,
a recent study with a linear nuclear-meson model shows that the freeze-out curve reflects neither
a phase transition nor a rapid crossover line [48].





Chapter 7

Vector Interactions

7.1 Introduction

In PNJL type models, a vector current interaction can appear together with a correspond-
ing axial vector current interaction, with each of the terms separately invariant under chiral
SU(3)L×SU(3)R transformations:

δL = −GV
2

8∑
a=0

[(
ψ̄γµλ

aψ
)2

+
GA
GV

(
ψ̄γµγ5λ

aψ
)2]

. (7.1.1)

A simple schematic vector interaction

δLv = −gv

2

(
ψ̄γµψ

)2
(7.1.2)

is also used. This “reduced” interaction is quite common in current research [52, 93, 142, 143]. Its
use is motivated by the simpler case of two degenerate flavors. There, the two vector interaction
types described above differ only by a factor. One of the major aims of this chapter is to
investigate the differences between these two interactions in the 2 + 1 flavor scenario. Further
goals are the investigation of the influence of the vector interaction on the QCD phase diagram,
as well as of the interplay between the KMT interaction strength K and the vector coupling
strength gv.

The inclusion of δL or δLv adds the vector interaction coupling strength gv to the set of
input parameters. Constraining its value range is part of an ongoing effort. We collect here a
few numbers from different approaches as a guideline for our work, all of which turn out to paint
a quite consistent picture.
One of the simplest systems motivated by QCD is a color-current interaction:

Lc
int = −Gc

8∑
a=1

(
ψ̄γµt

aψ
)2

(7.1.3)

with the SU(3)c generators ta and a coupling strength Gc. The color singlet part of its Fierz
transform [135] is then

Lc,singlet
int = GS

8∑
i=0

[(
ψ̄
λi

2
ψ

)2

+

(
ψ̄γ5

λi

2
ψ

)2
]
−GV

8∑
i=0

[(
ψ̄γµ

λi

2
ψ

)2

+

(
ψ̄γµγ5

λi

2
ψ

)2
]

(7.1.4)
with

GS = 2GV =
8

9
Gc, so that GV =

1

2
GS (7.1.5)

which would point towards gv = 0.5G in our convention.

71
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In [79] the authors explore a two-flavor nonlocal PNJL model at imaginary chemical poten-
tials. It reproduces the 2π/3 periodicity of the QCD partition function, called Roberge-Weiss
(RW) periodicity and the RW transition [112]. For the best fit, the value gv = 0.4G is given. In
the three-flavor model, K influences the pion vacuum masses only slightly. The role of G in two-
and three-flavor models is therefore very similar. Accordingly, we expect gv/G to be roughly
comparable in the two scenarios1.

In this chapter we use as a standard the parameter set from [92]. The authors include a
vector interaction of the type shown in eq. (7.1.1). By fitting to the vector meson spectrum,
they arrive at a value of gv ≈ 1.1G in our notation.

The study [93] investigates so-called “hybrid stars” which are neutron stars with an exotic
core. Based on a number of assumptions about a crossover from hadronic matter with hyperons
to a quark matter core with strangeness, they calculate mass–radius ratios for these hybrid stars
using the Tolman–Oppenheimer–Volkoff equation [128, 129, 104]. It is shown that values of
gv/G ∼ 1 produce results compatible with the recently found two solar mass neutron star PSR
J1614-2230 [41].

For the sake of completeness, we mention two other promising approaches that, at the present
stage, only give rough estimates but continue to be improved. The first is described in [91]. In
this very recent work, two flavor PNJL model results and relativistic mean field hadronic model
results [90] are matched. The vector interaction in the former is intended as the counterpart of
the nucleon–nucleon interaction in the latter framework. Their current level of precision allows
only to deduce 0.8 < gv/G < 3.

The second is an example of an attempt to extract numbers from lattice QCD calculations.
In [44] a two flavor mean field model is used to extrapolate vector coupling strengths from flavor
diagonal and off-diagonal susceptibilities of light quarks at vanishing chemical potential. The
results indicate absolute values of gv between 4 GeV−2 and 19 GeV−2. Given the usual values
of G between 6 GeV−2 and 12 GeV−2, one finds a range of about 0.3 < gv/G < 3.

In conclusion, the range indicated by all these sources is roughly

0.4 . gv/G . 1.1 (7.1.6)

with a tendency towards larger gv. For now, we treat gv as a free parameter and vary it mostly
between gv = 0 and gv = G.

We start our investigations by using the “reduced” vector interaction of eq. (7.1.2) in section
7.2. Our consistent cutoff scheme (4.5.1), described in chapter 4, is again shown to be important
for the model to agree with physical constraints. In particular, switching off gv for p > Λ turns
out to be crucial.

The goal of section 7.3 is to show the consistency of our model setup with physical constraints.
In sections 7.3.1 and 7.3.2 the baryon number density ρB as a function of temperature and
chemical potential is studied. We then move on to the object of prime interest throughout this
thesis, the light quark chiral condensate. Its behavior as a function of the total baryon density
ρB is explored in 7.3.3.

The location of the critical point and its trajectory under a change of gv are investigated
in section 7.4. We compare results of four different parameter choices: three NJL parameter
sets [92, 63, 110], one of which calculated with both of the two different Polyakov loop effective
potentials expounded in chapter 6. From the comparison a clear preference for one of the models
emerges which is used throughout this chapter as a standard choice.

Section 7.5 contains a systematic study of the first-order transition in the temperature–
density plane. We explain the phenomenon of the chiral coexistence region and discuss its
overlap with a domain that is dominated by well known nuclear physics. Using our knowledge

1It is important to note that this does not mean that the numbers of flavors is of little consequence for the
results. In section 7.8.2 we discuss differences between the two- and the three-flavor case due to the influence of
the strange quark chiral condensate when a vector interaction like (7.1.1) is included.
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about this field we put constraints on our parameter choices for the vector interaction strength
gv as well as the Kobayashi–Maskawa–’t Hooft coupling K.

The complete phase diagram in the T–µ–plane is discussed in section 7.6, both in the chiral
limit and for physical quark masses.

In section 7.7 we show that with an appropriate choice of gv, lattice QCD results for the
chiral transition line curvature κ (see also section 5.5) are reproduced remarkably well.

The vector part of δL of eq. (7.1.1) is studied in section 7.8. We show the differences in
the results from this interaction and the “reduced” version δLv of (7.1.2) in section 7.8.1. We
then investigate scenarios of fixed ratios of the different flavor densities ρu, ρd and ρs. As an
application of this, we present results for the order of the chiral transition at T ≈ 0 as a function
of different, but fixed flavor density ratios.

Our findings are summarized in section 7.9.

7.2 Reduced vector interaction

We write the reduced interaction δLv of (7.1.2) without its prefactor out as

(
ψ̄γµψ

)2
=

 ∑
q∈{u, d, s}

q̄γµq

2

. (7.2.1)

Here ψ denotes the column vector (u, d, s)> in flavor space, whereas q designates any one of

its components. Note that
(
ψ̄γµψ

)2
= 3

2

(
ψ̄γµλ0ψ

)2
, with λ0 :=

√
2
3 1. The terms are now

expressed as expectation values and fluctuations:

q̄γµq = 〈q̄γµq〉+ (q̄γµq − 〈q̄γµq〉) , (7.2.2)

where the second term on the right hand side is the fluctuation term, which we take to be small
in the mean field approach. Let us first look at the spatial components γi with i ∈ {1, 2, 3}. In
that case, the expectation value 〈

q̄γiq
〉
≡ 0 (7.2.3)

because of spatial isotropy. Only the γ0 terms remain at mean field level. Defining the single
flavor density n̂q, its expectation value ρq and the fluctuation δn̂q as their difference,

n̂q := q†q, ρq = 〈n̂q〉 and δn̂q = n̂q − ρq for q ∈ {u, d, s} , (7.2.4)

we have
q̄γ0q = q†q = n̂q = ρq + (n̂q − ρq) = ρq + δn̂q. (7.2.5)

This means

n̂2
q = (ρq + δn̂q)

2 = ρ2
q + 2ρqδn̂q + δn̂2

q ≈ ρ2
q + 2ρq (n̂q − ρq) = 2n̂qρq − ρ2

q , (7.2.6)

where in the second step we have neglected the squared fluctuation term δn̂2
q . From the expres-

sion (7.2.1) we then have(
ψ̄γ0ψ

)2 −→ 2n̂uρu − ρ2
u + 2n̂dρd − ρ2

d + 2n̂sρs − ρ2
s + 2 (ρu + δn̂u) (ρd + δn̂d)

+ 2 (ρu + δn̂u) (ρs + δn̂s) + 2 (ρd + δn̂d) (ρs + δn̂s) . (7.2.7)

After simplifications and omitting products of fluctuation terms, we have

Lred
v = −gv

2

[
2 (ρu + ρd + ρs) (n̂u + n̂d + n̂s)− (ρu + ρd + ρs)

2
]
. (7.2.8)

= −gv

2

[
2ρudsn̂uds − ρ2

uds

]
(7.2.9)
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with
n̂uds = n̂u + n̂d + n̂s and ρuds = ρu + ρd + ρs ≡ 〈n̂uds〉 . (7.2.10)

We elucidate in the following the effects of including the vector interaction from a thermo-
dynamics viewpoint. The fermionic grand canonical partition function Z can be defined [142]
by

Z =

∫
Dψ̄Dψ ei

∫
d4x(L+ψ†µ̂ψ). (7.2.11)

For a flavor-diagonal chemical potential matrix µ̂ = diag (µu, µd, µs) we have

ψ†µ̂ψ =
∑
q

µqn̂q, (7.2.12)

where µq is the chemical potential for a specific quark flavor q. Following basic statistical physics
techniques, we find that the (grand canonical) thermodynamic potential (density) Ω in the mean
field approximation is only slightly changed by the addition of δLv:

Ω (T, V, µq)→ Ω′ (T, V, µq) = Ω (T, V, µq − gvρuds)−
gv

2
ρ2

uds (7.2.13)

with q = u, d, s. In the literature [7, 52] the shifted chemical potential is often denoted as:

µr
q := µq − gvρuds (7.2.14)

and
Ω′ = Ω

(
T, V, µr

q

)
− gv

2
ρ2

uds. (7.2.15)

The state variables remain, however, the unshifted chemical potentials µq.
Evidently we retrieve the quark number density via the usual thermodynamic formula

∂Ω′

∂µq
= −ρq. (7.2.16)

It is interesting to note that the last term in (7.2.13) acts in favor of an unbounded increase of
ρuds, whereas the effective shift µq → µr

q suppresses the total quark density. Already in [52] it
has been stated that the latter effect prevails, as we expect from a repulsive interaction.

This general form for Ω can be further simplified to study specific scenarios. We will explore
two variants: First, the case where all µq are increased equally. This has been done in a large
number of 2+1 flavor (P)NJL calculations as well as in all of the previous chapters of this work.
The second variant sets µu = µd but µs = 0 so that there is zero net strangeness: fermionic
occupation number functions of flavor q are identical at µq = 0 for particles and antiparticles.
Strangeness, or net strange quark number density, as the difference of strange quark and anti-
quark numbers must then vanish. This situation is relevant, for example, for standard nuclear
matter. We will see that for effects concerning the light quark chiral transition the difference
between µs = µu and µs = 0 scenarios is negligible; this is a consequence of the relatively large
strange quark current mass. Therefore, after having verified this, we will mostly work with
degenerate chemical potentials µu = µd = µs.

Let us see how the equations turn out in these two scenarios. For identical chemical potentials
µ := µu = µd = µs, the term (7.2.12) turns into

ψ†µ̂ψ = µ
∑
q

n̂q = µ n̂uds, (7.2.17)

and eq. (7.2.13) reduces to

Ω′ (T, V, µ) = Ω (T, V, µ− gvρuds)−
gv

2
ρ2

uds. (7.2.18)
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The condition of a minimized Ω as a function of the quark number densities ρq then reads

0 =
∂Ω′

∂ρq
=
∂Ω′

∂µ
(−gv)− gvρuds =

∂Ω′

∂µ
+ ρuds (7.2.19)

so that we retrieve
∂Ω′

∂µ
= −ρuds. (7.2.20)

The situation is very similar when we set µud := µu = µd and µs = 0, i. e. with vanishing net
strange quark number density, ρs = 0. Using isospin invariance we also know that ρu = ρd =:
1/2ρud. The only difference to the previous case is then the formal substitution

ρuds → ρud with ρud = ρu + ρd = 〈n̂ud〉 . (7.2.21)

The differences between scenarios with symmetric chemical potentials on the one hand and
vanishing strange quark chemical potential on the other hand are explored in Figs. 7.1 and
7.2. In both cases, the temperature is set to 10 MeV. We choose gv = 0 and plot functions of
µud = µu = µd.

In Fig. 7.1 we show the total baryon number densities in the two scenarios. The baryon
number density is defined as

ρB =
1

3
(ρu + ρd + ρs) . (7.2.22)

For the lower curve, µs ≡ 0 so that ρs ≡ 0 for all µud and ρB = ρu + ρd. For the upper curve,
µs is set equal to µud. Note that symmetric chemical potentials do not mean flavor-symmetric
matter because the current quark masses are different; this is only the case if in addition we
have degenerate quark masses, mu = md = ms. Evidently, net baryon strangeness starts to
contribute around µud ≈ 440 MeV. The discontinuity in the light quark density is unaffected by
the strange quark chemical potential choices. This continues to be true for all temperatures and
values of gv in our studies. It follows that as long as we restrict ourselves to the chiral transition
in the light quark sector, we do not have to distinguish between µs = 0 and µs = µud.

Fig. 7.2 shows the chiral condensates for the same parameters as in Fig. 7.1. The two upper
curves on top of each other show the light quark condensates, unaffected by µs. The two lower
curves are the strange quark condensates for µs = µud in the middle and for µs = 0 on the
bottom. Around 380 MeV the light quark condensate transition effects a small discontinuity
in σs. The important thing this figure helps to keep in mind is the following: if the strange
quark chemical potential µs is fixed at a small value µs . 440 MeV, the strange quark chiral
condensate does not undergo the chiral transition.

Fig. 7.1 prompts us to show another instructive curve: the net strangeness fraction of the
total quark number density ρuds for all flavors. It is depicted in Fig. 7.3 as a function of µ, where
µ = µu = µd = µs. In the case of µs = 0 the fraction is trivially zero. The strangeness fraction
rises, over a range of only about 150 MeV, quickly from zero to the proximity of the perturbative
limit of 1/3 (dashed line), as the influence of the different current quark masses dwindles. In
section 7.8.2 of this chapter we will investigate, using the complete vector interaction (7.1.1),
different relative abundances of the quark flavors by allowing for independent flavor-specific
chemical potentials.
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Fig. 7.5: Baryon density ρB as a function of T and µ for gv = 0.5G. Lighter color (yellow)
signifies low density, darker color (red) higher density. The lines are lines of constant ρB. The
same color coding is used for both plots.

In chapter 4 we have presented a consistent cutoff scheme that differs significantly from
the most commonly applied schemes. It adheres strictly to the NJL precept of turning the
interactions off for momenta larger than the cutoff. This applies also to the vector coupling
strength gv. The effect is briefly addressed by Fig. 7.4. It shows the total baryon number
density as a function of the temperature at µ ≡ µu = µd = µs = 100 MeV for three different
scenarios: 1) gv = 0 (top curve), 2) gv = 0.5G for p ≤ Λ and gv = 0 for p > Λ (middle curve)
and 3) gv = 0.5G for all momenta (bottom curve). In all cases we have set the other couplings
to zero for p > Λ so that the pure effect of the vector interaction and its coupling gv is evident.
Fig. 7.4 shows how strongly the picture changes by the consistent cutoff procedure. Even for
T & Tc, the behavior of the net quark density is notably different. The high temperature limit is
completely off for the option of constant gv, if we expect the particles to become asymptotically
free. At high T and large µ, the abrupt change of gv → 0 at p = Λ introduces some numerical
intricacies in the determination of the density. Since that region is not of interest to us in this
work, the issue is left to future work.

In the following, we study in detail the case of identical chemical potentials as a common
option. We therefore dispense with the flavor indices and just use ρB as the baryon number
density according to (7.2.22) and a single chemical potential µ = µu = µd = µs.

7.3 Baryon number density and chiral condensate

First we show in Fig. 7.5a the baryon number density ρB as a function of T and µ as it results
from the model with gv = 0, i. e. without vector interaction. The light colors around the origin
denotes low density, the dark colors high density. Note that ρB increases asymmetrically in T
and µ. This fact will become important later in section 7.6. Fig. 7.5b shows again ρB, but for
gv = 0.5G. By comparison with Fig. 7.5a it is seen that with higher gv the influence of the
chemical potential on the density is increased with respect to the influence of the temperature.
The color tones and curves of equal density in Fig. 7.5a and Fig. 7.5b correspond to each other.
Slight irregularities Fig. 7.5a in the figure at large µ and low T are due to numerical issues of
the interpolation around the first-order transition.
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7.3.1 Baryon number density as a function of temperature

In this section we have a closer look at the baryon density ρB for different values of gv as a
function of temperature, especially regarding the high temperature limit. The results for ρB

are presented in two different ways: first, normalized to the empirical nuclear matter saturation
density ρ0 = 0.16 fm−3. Second, normalized to the T - and µ-dependent density ρfree

B of a free
Fermi gas of massless quarks . The pressure of such a system [75] is given by

P0 (m = 0) = Nc

(
7π2T 4

180
+
µ2T 2

6
+

µ4

12π2

)
. (7.3.1)

Using Ω′ = −p with the pressure p and µ = µu = µd = µs, the quark density for each flavor is

ρquark = −∂Ω′

∂µ
=
∂P0

∂µ
, (7.3.2)

and therefore we have for the baryon density, ρB = 1
3ρquark, with Nf = Nc = 3,

ρfree
B =

Nf

3

∂P0

∂µ
=
µ3

π2
+ µT 2. (7.3.3)

We show both normalization variants for two fixed values of the chemical potential: µ = 1 MeV
and µ = 200 MeV, both below the chemical potentials at which a first-order transition is found2.

First, we plot ρB/ρ0 at µ = 1 MeV in Fig. 7.6a and at µ = 200 MeV in Fig. 7.6b for
orientation. The large difference in scales between between the two figures is simply due to the
behavior of the free Fermi gas. This is proved by the next two diagrams.

Fig. 7.7a and Fig. 7.7b show, for the same cases as before, the baryon number density ρB

normalized to the baryon density of free massless quarks ρfree
B . The results for µ = 1 MeV

and µ = 200 MeV are then almost identical for high T and show only small differences around
T ∼ Tc. With our new consistent cutoff scheme, the high temperature limit of the system at
different chemical potentials is, correctly, the free Fermi gas scenario.

The stronger repulsive the vector interaction is, the more the increase of ρB towards this
limit is suppressed. The suppression is sub-linear in gv/G; Fig. 7.8 shows ρB at µ = 1 MeV for
different values of gv, normalized to the baryon density of a system without a vector interaction,
i. e. with gv = 0.

7.3.2 Baryon number density as a function of chemical potential

The next two figures show the baryon density as a function of the chemical potential µ for
different values of the vector interaction coupling strength gv at a fixed temperature of
T = 10 MeV. Fig. 7.9 presents ρB/ρ0, while Fig. 7.10 shows the baryon density normalized to
the corresponding value for a free massless quark gas, cf. (7.3.3). In these figures we encounter
for the first time the fact that for large enough gv, the first-order transition in the phase diagram
turns into a crossover even for T ∼ 0. The next section will show that the discontinuities in the
chiral condensates and the density interlocked.

The curves for ρB/ρ
free
B in Fig. 7.10 do not increase towards ρB/ρ

free
B = 1 as in the case of Fig.

7.6, where we investigated the high T behavior. This is a consequence of the shifted chemical
potential µr (7.2.14) and the fact that ρB increases faster with µ than with T (cf. Figs. 7.5a
and 7.5b). At µ & 450 MeV, cutoff effects start to play a role. Note that for large chemical
potentials, the ground state is in any case expected to be given by color superconducting matter
and not by asymptotically free quark-gluon matter, cf. chapter 2.

2We use µ = 1 MeV instead of µ = 0, because ρq ≡ 0 for µ = 0.
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Fig. 7.6: Baryon density curves ρB/ρ0 as a function of T/Tc for different values of the vector in-
teraction coupling strength gv. Curves are normalized to the empirical nuclear matter saturation
density ρ0 = 0.16 fm−3.
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Fig. 7.7: Baryon density ρB normalized to the free massless baryon density ρfree
B of (7.3.3) as

a function of T/Tc for different values of the vector interaction coupling strength gv at two
different chemical potentials.
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7.3.3 Chiral condensates as functions of density

Next, we study the chiral condensate as a function of the baryon number density ρB for different
choices of gv at T = 10 MeV. Fig. 7.11a presents the chiral light quark condensate σu (T ) /σu (0)
as a function of ρB for gv = 0.2G, where it still undergoes a first-order phase transition. The
dashed line is an extrapolation from the linear behavior at low ρB. Fig. 7.11b shows σu for
gv = 0.66G, where the transition has turned into a crossover. Plot points are ∆µ = 1 MeV
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Fig. 7.11: Normalized light quark chiral condensate σu as a function of the baryon number
density ρB at T = 10 MeV for different values of gv.

apart from each other in terms of the chemical potential. The horizontal as well as vertical gap
in Fig. 7.11a shows that the discontinuities in chiral condensate and the density are connected.
This has been called a non-trivial finding of the PNJL model [52].

The curves from Fig. 7.11a and Fig. 7.11b are congruent with each other. We found that at
any fixed temperature T , for all values of gv, the curves of σu (µ) /σu (T = 0, µ = 0) as functions
of ρB are superimposable, at least for µ ≤ Λ. The only qualitative differences are the possible
existence of a gap as in Fig. 7.11a, and its size. Both features are dependent on the combination
of values of T and gv. Quantitatively, for larger gv, a smaller value of ρB is reached at µmax = Λ.

In Fig. 7.13 we show ρB as function of the normalized chiral condensate3, calculated with
gv = 0.5G at the temperatures T = 0, 25 MeV, . . . , 200 MeV. For µ ≤ Λ, all results for all
values of gv at a specific temperature T were congruent with the curve for that temperature
T in this plot. The explanation is straight-forward: an increase in gv delays the restoration of
chiral symmetry in terms of µ. Fig. 7.12 demonstrates this for the same parameters as in Fig.
7.9. At the same time, it suppresses the baryon density ρB. These two effects are connected
precisely in such a way that the curves of σu (ρB) for fixed T are always congruent.

For T . 200 MeV, we make an at first counter-intuitive observation: for a fixed baryon
density, the chiral condensate becomes larger instead of melting. Only for T & 200 MeV, the
expected reverse situation sets in at low ρB (lower right corner of Fig. 7.13). This effect is carried
over into the QCD phase diagram in the T–ρB plane. Such a diagram is shown in section 7.6,
where we also discuss the mechanism behind the effect.

7.4 Location of the critical point

We have already seen, e. g. in Fig. 7.12, that with increasing gv, the transition order at a fixed
temperature changes from first-order to a crossover. The systematics of this effect are best
studied by plotting the trajectory of the critical point with varying gv as in [52].

We present results with the “RKH” parameter set from [110] in Fig. 7.14. The critical point
is pushed out of the phase diagram for gv & 0.71G. This value is larger than the corresponding

3Note that for Fig. 7.13 we have flipped the axes with respect to Fig. 7.11 for easier plotting.
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value found in [52] by a factor of almost 2.

We therefore calculated the trajectory of the critical point also for other parameter sets in
order to check their consistency. Fig. 7.15 presents results with the standard “LKW“ parameter
set of this chapter [92]. In this case, the critical point vanishes for gv & 0.38G.

In [52], the “HK” parameter set from [63] was used, in addition to a “minimal” cutoff (see
eq. (4.2.5) scheme and the simplified Polyakov loop effective potential shown in eq. (6.2.1). We
have reproduced their results in the lower curve of Fig. 7.16. The upper curve shows results
from our model setup, using the same “HK” parameter set. In both cases, the critical point
vanishes for gv & 0.41G.

For easier comparison, we collect the results for the trajectories of the critical point of these
four scenarios. Fig. 7.17 shows the trajectories in the T–µ–plane. The “RKH” and the “LKW”
curve at first seem to be very similar, while the “HK” results appear to be incompatible with
them. It is instructive to study the relative change of the temperature of the critical point
Tcp (gv) /Tcp (gv = 0) as a function of gv/G, as we have done in Fig. 7.18.

Here it becomes obvious that all parameter sets except the “RKH” set produce essentially
equivalent results. The “critical” value gc

v above which the phase transition is all crossover is
consistently at about gc

v ≈ 0.4G. The apparent differences in Fig. 7.17 are revealed to be mostly
due to the different locations of the critical point in the gv = 0 case. These results motivate our
use of the “LKW” parameter set as a standard in this chapter.

Note that the critical value gc
v ≈ 0.4G is the low end of the range of likely physical values

for gv that we determined in 7.1.6. This is a first indication that the chiral phase transition in
the QCD phase diagram is all crossover.

Next, we consider the termination point µt of the chiral first-order transition on the µ axis
at T ∼ 0. Fig. 7.19 shows that µt is quite robust under variation of gv. Again, the “HK”
and “LKW” parameter set results are consistent with each other, whereas the “RKH” curve is
clearly separate. This underlines the reliability of the “LKW” and “HK” parameter set results
for quantitative studies of vector interaction effects.
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7.5 First-order transition in the temperature–density plane

So far we have focused on the critical point itself. Fig. 7.20 shows the complete first-order
transition lines starting at the critical point for three different combinations4 of values of the

4For easier comparison with results in chapter 5, we use the “RKH” parameter set for these exploratory studies.
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Fig. 7.19: Termination point chemical potential µt of the chiral first-order
transition on the µ axis as a function of gv/G. Color coding is the same as
in Fig. 7.17. Detached curve is a result of the “RKH” parameter set.

KMT coupling strength K and gv. The variation of these two input parameters results in
considerable shifts of the location of the critical point.

To put constraints on the system, we use our knowledge of nuclear physics at low T and µ.
The short black line labeled “NM” in Fig. 7.20 marks the nuclear matter liquid/gas transition
with its critical point marked by a dot. The numerical values for this first-order transition stem
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from an in-medium chiral perturbation calculation, which realistically uses nucleons as dynamic
degrees of freedom [46]. Their results are calculated for symmetric nuclear matter with µu = µd

and µs = 0, whereas we used µs = µd = µu. However, Fig. 7.1 showed that strangeness has no
influence on the chiral light quark transition in that area of the phase diagram. Results from
both approaches are therefore well comparable. We find that the chiral transition for gv = 0
and K = 0.56K0 overlaps unphysically with the nuclear matter phase transition, whereas the
results for the other two scenarios in Fig. 7.20 seem to be allowed.

The complete situation is revealed only when we show the chiral first-order transition in the
T–ρB plane in Fig. 7.21. As we saw in the previous sections of this chapter, the discontinuity in
the chiral condensate is linked to the discontinuity in the baryon number density ρB. Plotted as
a function of ρB, the chiral transition takes the form of a coexistence region. To the left of this
bell-shaped region, chiral symmetry is broken, to its right it is restored5. Inside the “bell”, both
types of matter coexist like in the water/vapor coexistence region in the p–V phase diagram of
water.

In Fig. 7.21 we present the coexistence regions for the same parameter combinations as in
Fig. 7.20. In the lower left, we have included the coexistence region for the nuclear matter
phase transition [46] corresponding to the small “NM” line in Fig. 7.20. To the left of the bell,
nuclear matter is in a gaseous, to its right in a liquid state. The coexistence region extends
up to the empirical nuclear matter saturation density of ρ0 = 0.16 fm−3. In contrast to the
expectation from Fig. 7.20, all of the shown chiral coexistence regions overlap with the nuclear
matter transition.

This would mean that even in well known nuclear matter systems there should be indications
of restored chiral symmetry. This is not the case, therefore the overlap is unphysical. Comparing
Fig. 7.17 and Fig. 7.18 sends an important message to model builders: the compatibility of a
given QCD phase diagram result with nuclear matter constraints is not necessarily revealed by
the T–µ plot. The T–ρB diagram can look decidedly different and should be used as the more
relevant benchmark.

It is also seen that in the region of low density the chiral condensate from in-medium chiral
perturbation theory [45] does not match well with the results of PNJL model calculations. For
these reasons, in our studies of the chiral coexistence regions we put special emphasis on the
question for which values of gv and K the situation agrees with constraints from nuclear matter.
In order to be compatible with known properties, the chiral coexistence region, if it exists, should
be situated well above the nuclear saturation density, somewhere around twice or three times
ρ0. In the following, we study locations and widths of the chiral coexistence regions as functions
of either gv or K. As we have seen some dependence on the parameter set in previous results,
these studies are done for all the three different parameter sets introduced above.

The“ RKH” set from [110] is treated in section 7.5.1. This is the set that was used throughout
the previous chapters of this work so that comparisons are possible. Section 7.5.2 contains an
analogous study for the “HK” parameter set [63]. Finally, the “LKW” set [92] is used in section
7.5.3. The discussion about the combined dependences of the coexistence region on gv and K is
found in section 7.5.4, where Fig. 7.28 summarizes the findings.

At low T ∼ 0 the numerical cost of calculation is quite high. We therefore in all cases study
the situation at T = 10 MeV as an excellent approximation6.

7.5.1 RKH parameter set

The coexistence region from the “RKH” parameter set at gv = 0 has already been shown in
Fig. 7.21. Fig. 7.22a shows the location and width of the chiral coexistence region at T = 10 MeV
as a function of gv/G. At the tip of the shape, to the right, the vector coupling gv becomes so

5Explicit chiral symmetry breaking by the current quark masses is neglected in this discussion.
6The widths of the coexistence regions are therefore estimated conservatively.
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large that the temperature of the critical point drops to 10 MeV. The critical point disappears
from the phase diagram soon thereafter (cf. Fig. 7.14).

In the diagram we have also included the nuclear matter saturation density of ρ0 = 0.16 fm−3

as a horizontal red line to help with the comparison. Remember that it also marks the high
density boundary of the nuclear matter liquid/gas coexistence region according (Fig. 7.21). Ev-
idently, the chiral coexistence “bell” simply shrinks as a function of gv/G without moving away
from ρ0. As long as there is a critical point in the phase diagram, the chiral coexistence region
in this scenario will overlap with nuclear matter saturation density.

The possible reduction of K due to in-medium effects (cf. discussion in section 5.2) motivates
the study shown in Fig. 7.22b. It is similar to Fig. 7.22a, but instead of gv/G, the horizontal axis
is now K/K0. The plot exhibits how the width of the coexistence bell systematically decreases
with lowered K. For a given reduction of Tcp, the coexistence bell is consistently narrower if
the reduction is done by lowering K, rather than by increasing gv. An example was already
seen in Fig. 7.21. Again, there is an overlap of the bell with ρ0 for almost all values of K. In
contrast to the change in gv, the coexistence region also shifts slightly towards lower ρB so that
it eventually even moves below ρ0.

7.5.2 HK parameter set

In this section we gather some interesting results calculated with the HK parameter set from
[63]. Fig. 7.23 shows the chiral first-order coexistence region at gv = 0 in the T–ρB plane. Fig.
7.24a shows its width at T = 10 MeV for different choices of gv/G; it is the HK counterpart to
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Fig. 7.22: Baryon density values within the first-order coexistence regions (colored blue) at
T = 10 MeV, calculated with the “RKH” parameter set [110]. The red line marks empirical
nuclear matter saturation density ρ0. The phase of broken chiral symmetry lies below the
lower boundary of the shaded area, the phase with restored chiral symmetry above the
upper boundary.

the RKH calculation in Fig. 7.22a. Fig. 7.24b shows the same quantity, but as a function of a
change in K/K0, with gv = 0 fixed. It corresponds to Fig. 7.22b from the “RKH” parameter
set.

The large quantitative differences between the “RKH” and the “KH” set have already been
discussed in section 7.4. Qualitatively, they are quite similar, including the tendency of the
coexistence region to move below ρ0 for small K.

7.5.3 LKW parameter set

This section shows results calculated with the “LKW” parameter set from [92]. The shown
quantities are the same, and are presented in the same order, as in the previous section. Findings
in section 7.4 already suggested that results from the “HK” and the “LKW” parameter sets might
be generally similar.

From Fig. 7.26 we see that this is not always the case. In Fig. 7.26a location and width of
the chiral coexistence region at T = 10 is presented as a function of gv/G. In Fig. 7.26b, it is
given as a function of K/K0. In both cases, there is a small parameter range where the complete
coexistence region is clearly above ρ0 = 0.16 fm−3. The largest difference is visible in Fig. 7.26b:
the vanishing of the coexistence “bell” takes place at ρB > ρ0. For the “RKH” parameter set
(Fig. 7.22b) and the “HK” parameter set (Fig. 7.24b) it was the opposite.

It should be noted that the parameter ranges for which the existence of the first-order
transition is compatible with nuclear matter constraints is very small.

7.5.4 Change of gv for non-standard values of K

In the foregoing section, we have seen that with the “LKW” parameter set, there is a narrow
range of gv even for K = K0 where the existence of a critical point is compatible with nuclear
matter constraints, at least to the extent that the coexistence bells do not directly overlap. A
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[63]. The coexistence region is shaded, the region of broken chiral symmetry
is situated to the left, chirally restored matter to the right.
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Fig. 7.24: Baryon density values within the first-order coexistence regions (colored blue)
at T = 10 MeV, calculated with the “HK” parameter set [63]. Red line: nuclear matter
saturation density ρ0. The phase of broken chiral symmetry lies below the lower boundary
of the shaded area, the phase with restored chiral symmetry above the upper boundary.

similar range has been found for varying K at fixed gv = 0. The next step is to combine these
variations to determine the parameter “window” in which a critical point might be possible in
this way.

Fig. 7.27 shows, as an example, results for the coexistence region at K = 0.75K0 in the
LKW parameter set for different values of gv/G. The parameter window for the critical point
remains narrow, but is shifted to smaller values of gv/G. In section Fig. 7.26a we saw that for



7.5 First-order transition in the temperature–density plane 89

0. 0.1 0.2 0.3 0.4
0

50

100

ΡB @fm-3D

T
@M

eV
D

Fig. 7.25: Chiral first-order coexistence region in the T–ρB phase diagram,
calculated without vector interaction (gv = 0) for the “LKW” parameter set
[92]. The coexistence region is shaded, the region of broken chiral symmetry
is situated to the left, chirally restored matter to the right.
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Fig. 7.26: Baryon density values within the first-order coexistence regions (colored blue)
at T = 10 MeV, calculated with the “LKW” parameter set [92]. Red line: nuclear matter
saturation density ρ0. The phase of broken chiral symmetry lies below the lower boundary
of the shaded area, the phase with restored chiral symmetry above the upper boundary.

K = K0 in the “LKW” set the window for the critical point was 0.29G ≤ gv ≤ 0.38G with a
width of 0.09G. For K = 0.75K0 we find the window 0.006G . gv . 0.056G with the width of
about 0.05G.

It is important to note that even though the chiral coexistence region has been shifted above
ρ0, it is still very close to it. That such an effect would have gone unnoticed in the extensive
study of nuclear matter is very unlikely.
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Continuing along those lines, we show in Fig. 7.28 the gv–K parameter plane. It displays
which combinations of these two parameters would result in which of the two main scenarios:

1. the unphysical scenario where there is a first-order transition in the phase diagram (gray
areas)

2. the scenario with a purely crossover chiral transition (white area above the solid line)

The light gray area just below the solid line is the band for which there is a small first-order
transition line but where the coexistence region is slightly shifted away from the direct overlap
with ρ0. Such an area was only found with the “LKW” parameter set.

Recall now our collection of likely values for gv from sources outside of our model in section
7.1. We find that the low end of the range of values in (7.1.6) is consistently above the area in
parameter space that results in a critical point. This is the case already for K = K0 but even
more so for K < K0. Given the expected effective in-medium reduction of K (see section 5.2)
and the tendency towards even higher gv that we discussed around (7.1.6), the existence of a
critical point in the phase diagram seems very unlikely.
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Fig. 7.27: Baryon density values within the
first-order coexistence region (gray) at T =
10 MeV as a function of gv/G with K =
0.75K0. Nuclear matter saturation density
ρ0 is added in red.
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7.5.4 (see discussion there), calculated with
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7.6 Phase diagram in the temperature–density plane

So far, we have only discussed the first-order phase transition. In this section, we show the
complete chiral symmetry structure, including the crossover region, in the T–ρB plane. The
Polyakov loop crossover plays no important role here and is therefore left out of the phase
diagrams for the sake of clarity.

It is instructive to first have a look at the chiral limit case, where there is no explicit chiral
symmetry breaking and there is a first-order phase transition all the way. In Fig. 7.29 we show
the chiral first-order transition line of the chiral limit scenario in the T–µ plane as a basis for
comparison. Fig. 7.30 then shows the corresponding plot for the T–ρB plane.
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Fig. 7.29: Chiral first-order transition line in
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ken, “χS restored” the phase with restored
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Fig. 7.30: Chiral first-order transition in the
T–ρB plane in the chiral limit (mu = md =
ms = 0). “χSB” denotes the phase with bro-
ken, “χS restored” the phase with restored
chiral symmetry.

Next, Fig. 7.31 shows the phase diagram in the T–µ plane for three different choices of gv/G
in the “LKW” parameter set, two of them larger than the “critical” gc

v ≈ 0.38G that marks the
disappearance of the critical point from the phase diagram. For the sake of lucidity, only the
center lines of the transition bands are shown. As expected, there is little difference between the
scenarios for small µ: the quark number density, and with it the influence of the vector interac-
tion, is very low, even for temperatures around T ∼ 200 MeV (see Fig. 7.6a and Fig. 7.6b). A
pronounced difference between the scenarios is found in the curvature of the crossover transition
lines that we have investigated in section 5.5. This motivates its study and comparison to lattice
QCD results in section 7.7.

Translating the results of Fig. 7.31 for gv = 0.5G and gv = G again into the T–ρB plane, we
find that the two phase diagrams are identical within tolerances for the numerical methods. We
explained this effect already in section 7.3.3. The result for gv = 0.5G is shown in Fig. 7.32. In
fact, the same shape is visible for all values of gv, also those with gv < gc

v. The only difference is
that the crossover curves in Fig. 7.32 are then overlapped at low T by the respective first-order
chiral coexistence “bell”.

The T–ρB transition band exhibits a peculiar feature that we found already in section 7.3.3.
A priori, one expects the chiral condensate to melt with increasing temperature: for higher
temperatures T , the entropy density s in the free energy density

f = ε− Ts (7.6.1)

becomes important and pushes the system towards a state with higher symmetry, i. e. towards
the restoration of chiral symmetry. However, when we look at physics at a fixed density, we
must keep in mind that we will move along one of the lines of constant density in figures like
Fig. 7.5a or Fig. 7.5b.

For a more detailed study, we have plotted two trajectories through the T–µ phase diagram
for fixed densities through a background of the chiral condensate in Fig. 7.33. Dark gray signifies
regions of large σu, light gray regions of small σu. The regions are chosen arbitrarily for instruc-
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tive purposes and are not equidistant. The picture shows that for temperatures T . 0.6Tc, a
little increase in temperature is accompanied by a comparatively large7 decrease in µ. There-
fore, in a certain temperature range, the lowering of µ increases σu more than the raising of T
decreases it and the condensate increases with temperature instead of melting.

Let us follow in Fig. 7.34 the trajectory for a fixed density of ρ ≡ 5ρ0, corresponding to
the upper (red) trajectory in Fig. 7.33. It starts out coinciding with a curve of constant σu

up to about T ∼ 0.2Tc, then curves towards higher values of σu. Only at about T ∼ 0.8Tc

it crosses the same curve again and moves towards higher values of σu. This behavior results
in the counter-intuitive shape of the T–ρ phase diagram in Fig. 7.32. From a thermodynamics
point of view, in

Ω = −p = ε− Ts− µρ (7.6.2)

the number density term −µρ acts in the same direction as the entropy (density) term −Ts: the
phase with higher entropy is also the phase of higher quark number density, where the number
of degrees of freedom is significantly larger. Fig. 7.34 shows the components of Ω, or −p, as
a function of temperature at gv = 0.5G, again for ρB ≡ 5ρ0. The −µρ term looses about as
much in absolute value as the −Ts term gains, until about T ∼ 0.65Tc. The combined weight
of the two terms then starts growing, and it is in that temperature range that the curvature of
the upper trajectory in Fig. 7.33 is reversed. From there on, the expected melting of the chiral
condensate with increasing temperature is found.

We present here also the phase diagram for gv = G in the pressure–temperature plane for
comparison to the gv = 0 case given in Fig. 4.7, calculated with the “RKH” parameter set. The
differing parameter sets have only some small quantitative effects.

7Note that the scale of the vertical axis in Fig. 7.33 is, with ∼ 200 MeV, roughly half of that of the horizontal
axis with 400 MeV.
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7.7 Transition line curvature as a function of gv

In section 5.5 we already investigated the dependence of the curvature κ of the phase transition
line close to µ = 0 as a function of the KMT interaction strength K. It was found that the model
results for the curvature were consistently too high in comparison with lattice QCD results.
Fig. 7.31 has shown that varying gv shifts the termination point of the transition on the µ axis,
but not the termination point on the T axis. Consequently, increasing gv reduces the curvature
κ. The definition of κ is, again,

Tc(µ)

Tc(0)
= 1− κ

(
µ2

T 2
c

)
, or equivalently, κ = −Tc

dTc(µ)

dµ2

∣∣∣
µ2=0

. (7.7.1)

Again, because of the smooth crossover transitions at µ = 0, the κ points have error bars cor-
responding to the crossover bands. The result is shown in Fig. 7.36, where we also compare it
to recent lattice QCD results [43, 72]. Only for gv & 0.6G is the curvature compatible to the
ranges given by the lattice groups. A strong coupling of gv ≈ G yields almost perfect overlap
with the more precise data of [72].

We had pointed out in section 5.2 that the KMT coupling strength K might depend on µ. In
principle, this applies also to the four fermion coupling strength G. It could be argued that this
would strongly affect κ, thus rendering the present discussion irrelevant. However, one should
keep in mind that κ results from a leading (second) order expansion in µ/T . The µ dependence
of e. g. the four point coupling G would therefore only play a role at higher orders [22].

The good agreement between lattice QCD results for κ and our result for gv ∼ G points
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again to a likely large gv in the physical scenario. This numerical value for gv is not only within
the range given in (7.1.6), but also very close to the value suggested by our parameter set,
gv ∼ 1.1G, from [92]. The curvature of the phase transition line did not play any role in its
determination.
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7.8 Complete vector interaction

We turn now to the complete vector interaction,

Lcom
v = −gv

2

8∑
a=0

(
ψ̄γµλ

aψ
)2
. (7.8.1)

The axial-vector term in (7.1.1) is omitted and left for future work. As in the previous section, we
can restrict ourselves to the terms proportional to γ0. In addition, because of charge conservation
(see section 3.3), we can drop the non-diagonal Gell-Mann matrices in flavor space and proceed
with

Lcom
v = −gv

2

[(
ψ̄γµλ

0ψ
)2

+
(
ψ̄γµλ

3ψ
)2

+
(
ψ̄γµλ

8ψ
)2]

. (7.8.2)

Although seemingly more involved, the result is simpler than in the previous case. Using the
same definitions as in (7.2.4), we arrive at

Lcom
v = −gv

[
2 (ρun̂u + ρdn̂d + ρsn̂s)−

(
ρ2

u + ρ2
d + ρ2

s

)]
. (7.8.3)

The shifted effective thermodynamic potential is

Ω′ (T, V, µ) = Ω (T, V, µq − 2gvρq)− gv

(
ρ2

u + ρ2
d + ρ2

s

)
, (7.8.4)

so that the chemical potential for each flavor is only directly connected to the quark number
density of that flavor, in contrast to the reduced vector interaction in eq. (7.2.13).

7.8.1 Comparison between reduced and complete vector interaction

The “reduced” vector interaction (7.1.2) in the previous sections of this chapter is most com-
monly used in the literature. On the other hand, the “complete” vector interaction is certainly
closer to physical reality. It is worthwile investigating the differences between the two inter-
actions. To this end, let us first compare the effective change in µu from eq. (7.2.18) and eq.
(7.8.4): in the first case, µu is shifted by −gvρuds = −gv (ρu + ρd + ρs) and in the second case
by −2gvρu. With isospin symmetry, we have ρu = ρd so that the two shifts are exactly equal
until the strange quark density ρs takes on a finite value.

From this it is already clear that the net strange quark density ρs plays the crucial role
for the differences between the two interactions. For easier comparison, we define two effective
vector coupling strengths for the reduced vector interaction, one for the light flavors (g̃v,u) and
one for the strange sector (g̃v,s). The shift of the light quark chemical potential is then

µu → µ′u = µu − gv (ρu + ρd + ρs) = µu − 2gvρu

(
1 +

ρs

2ρu

)
= µu − 2g̃v,uρu (7.8.5)

and for the strange quark chemical potential as

µs → µ′s = µs − gv (ρu + ρd + ρs) = µs − 2gvρs

(
1 +

2ρu

ρs

)
= µs − 2g̃v,sρs. (7.8.6)

The definitions for the effective couplings are

g̃v,u = gv

(
1 +

ρs

2ρu

)
and g̃v,s = gv

(
1 +

2ρu

ρs

)
. (7.8.7)

From µu = µd = µs and the current quark mass relations mu = md and mu � ms follow ρu = ρd

and 0 ≤ ρs < ρu (see Fig. 7.37). This allows us to determine the bounds

gv ≤ g̃v,u <
3

2
gv and

3

2
gv ≤ g̃v,s. (7.8.8)
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Note that the effective couplings g̃v,u and g̃v,s in the reduced interaction are always stronger
than their counterpart gv in the complete interaction. In Fig. 7.38 they are plotted in terms of
multiples of gv and as functions of µ; the shaded areas for g̃v,u and g̃∗v (defined later in (7.8.12))
signify their respective range.

The analysis is not yet complete: the shifts in µ to lower values µ′ result in decreased densities,
so that a shift with the stronger effective coupling indeed suppresses the net quark densities more
than a shift with just gv. However, the term quadratic in the densities (condensation term)
contributes with a negative sign to Ω and therefore acts towards an increase of the densities.

Setting again ρd = ρu explicitly, we have for the reduced interaction

−gv

2
ρ2

uds = −gv

2
(2ρu + ρs)

2 = −gv

(
2ρ2

u + 2ρuρs +
1

2
ρ2

s

)
(7.8.9)

and for the complete interaction for the same term

−gv

(
2ρ2

u + ρ2
s

)
. (7.8.10)

The two are equivalent as long as ρs ≈ 0. Because of the larger current quark mass, the onset
of ρs is delayed to large µ with respect to ρu and ρd (see e. g. Fig. 7.37 for gv = 0.5G). If we
focus on the transition pattern of the chiral light quark condensate as we did in the previous
parts of this chapter, then the two vector interaction forms yield very similar results and our
findings still hold. In the isospin symmetric scenario with zero net strangeness they are exactly
identical.

To compare in terms of effective couplings, we rewrite the term (7.8.9) from the reduced
interaction into a form similar to (7.8.10):

−gv (2ρu + ρs)
2 = −gv

(
2ρ2

u + ρ2
s

)
+ 2gv

(
ρ2

u + 2ρuρs

)
= −g̃∗v

(
2ρ2

u + ρ2
s

)
(7.8.11)
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with

g̃∗v = gv

(
1 +

2ρ2
u + 4ρuρs

2ρ2
u + ρ2

s

)
(7.8.12)

and
2gv ≤ g̃∗v < 3gv. (7.8.13)

We have added g̃∗v as a function of µ and a shaded band depicting its bounds to Fig. 7.38. For
small µ ≡ µu = µd = µs the relative strength of the strange quark density-increasing coupling
g̃∗v with respect to the density-decreasing coupling g̃v,s is much lower than in the case of the
complete interaction, where they are identical. At around 520 MeV the ratio g̃v,s/g̃

∗
v becomes

of the order of 1. This is where, with the reduced vector interaction, the onset of strangeness is
indeed found in this scenario of T = 10 MeV and gv = 0.5G.

We show the total baryon number density (Fig. 7.39) and the strange quark chiral condensate
σs (Fig. 7.40) as functions of µud ≡ µu = µd at T = 10 MeV and with a vector interaction
strength of gv = 0.5G for both vector interaction forms. In both cases we plot the curves for
µs = µud as well as for µs = 0. As has been discussed, for µs = 0, where ρs = 0 follows, the two
interactions are identical so that their curves coincide exactly (orange line lying on top of the
blue line). The delayed onset of strangeness for the reduced vector interaction follows from our
foregoing discussion. However, the chiral light quark crossover is still unaffected. This means
that that our main results from the reduced interaction are valid even when using the complete
interaction.

It is important to keep in mind that the statements regarding the relative abundance of
flavors and, accordingly, of the “effective couplings” to compare the two interaction types, are
only valid for either µu = µd and µs = 0 or µs = µu = µd. In the next section, we will make use
of the complete vector interaction formalism and study the effects of independent flavor-specific
chemical potentials µu, µd and µs. The reduced interaction is less suited for this task, as the
shifting of all the chemical potentials by the same term obfuscates the effects.
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7.8.2 Fixed density ratios

The matter mix that is usually studied in the three flavor QCD phase diagram with a single µ is
neither symmetric in the three flavors, because of the differences in the current quark masses, nor
is it purely composed of two flavors, see e. g. Fig. 7.37. By freeing the flavor chemical potentials
from fixed ratios we can study different types of matter, for example pure neutron matter with
2ρu = ρd and ρs = 0 or actually flavor symmetric matter with ρu = ρd = ρs. In this section, we
choose a different approach than before: instead of setting flavor-specific chemical potentials,
we fix a relation between the three quark flavor densities. As a free parameter we use the down
quark chemical potential µd, and by the fixed density ratio conditions we can then solve for µu

and µs. We restrict ourselves to a few instructive studies with this setup, out of a large number
of possible topics which we leave for future work.

So far in this chapter, we have stressed that the chiral light quark transition was unaffected
by the different scenarios, i. e. µs = 0 or µs = µu = µd and the usage of the reduced or the
complete vector interaction. The reasons for this, discussed in the foregoing, boil down to the
different strange quark mass and the resulting suppression of strangeness. Allowing indepen-
dent variation of the flavor-chemical potentials changes the situation drastically: if µs & µu,
then ρs/ρu can become of the order of 1 or even larger.

In Fig. 7.41a and Fig. 7.41b we investigate the transition behavior of the light quark chiral
condensate for different flavor density ratios. On the vertical axis is the strange quark fraction
ρs/ (ρu + ρd + ρs). The horizontal axis shows the fraction of ρu/ρd. It can be easily converted
into the often used asymmetry parameter δ by

δ =
ρu − ρd

ρu + ρd
=
ρu/ρd − 1

ρu/ρd + 1
. (7.8.14)

On this plane, three distinct points are pointed out: a cross marks pure neutron matter with
ρs = 0 and ρd = 2ρu. A diamond signifies totally flavor symmetric matter ρu = ρd = ρs. The
empty circle marks symmetric nuclear matter with ρu = ρd and ρs = 0. In the two plots, we
draw, for different parameter choices, a boundary band between two areas: On the one hand,
the area where the chiral light quark transition is first-order, starting from the top right corner.
On the other hand, there is the area where the transition is a crossover, starting from the lower
left corner. Within the bands the transitions are second order or very close to it from either
side. In Fig. 7.41a, we vary gv and depict how the boundary band moves from the lower left
(gv = 0) to the middle (gv = 0.25G) and finally to the right (gv = 0.5G). In Fig. 7.41b we
do the same thing but instead of gv we decrease the Kobayashi–Maskawa–’t Hooft interaction
strength K from K = K0 (lower left) to K = 0.7K0 (top right).

There are a few interesting observations from the two figures:

1. Pure neutron matter will have a chiral crossover for all repulsive vector interactions and
K ≤ K0. In [46] it was shown that pure neutron matter also undergoes a crossover from a
gas to a liquid, as opposed to the first-order transition of symmetric nuclear matter. The
phase diagram of pure neutron matter is then completely free of first-order transitions.

2. The explicit inclusion of strangeness in the system has an effect similar to the increasing
of gv or the decreasing of K. That it, for a given ratio of ρu/ρd, model builders can turn
the transition into a crossover by a) increasing gv, by b) decreasing K, or by c) adding
some net strangeness to the system.

To explain this latter fact, we start with pure nuclear matter, symmetric or asymmetric. Re-
member that the increase in strange density and the strong decrease of the strange quark chiral
condensate σs always coincide (see e. g. Figs. 7.39 and 7.40). Small values of ρs then in turn
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Fig. 7.41: Transition type of the chiral light quark transition as a function of the strange quark
fraction of the total density (vertical axis) and of the up-to-down quark ratio (horizontal axis)
at T = 10 MeV. To the lower left of the bands is a crossover, to the upper right of the respective
band the transition is first-order. A cross marks pure neutron, and a diamond totally flavor
symmetric, and an empty circle symmetric nuclear matter. The left band marks the boundary
between crossover and first-order transitions for gv = 0.

mean large values of σs. The flavor mixing KMT interaction introduces an additional term to
the effective mass of the light quark flavors,

Mu = mu − σu +
K

2G2
σdσs and Md = md − σd +

K

2G2
σsσu. (7.8.15)

In the parameter sets we collected in section 3.4, K
2G2 ranges between 0.45 GeV−1 (LKW)

and 0.76 GeV−1 (RKH) with the HK value in between at 0.55 GeV−1. For low µs, ρs is around
−0.37 GeV and ρu and ρd range between 0 and about−0.3 GeV. In effect, then, the strange quark
condensate contributes a term of around 30 MeV to the effective light quark mass, compared
to the bare quark mass of the order of 5 MeV of the light flavors. An increased effective quark
mass acts towards the reduction of the first-order transition line (see section 5.3). This is why
the bands in Fig. 7.39 and Fig. 7.40 are oriented in such a way that scenarios with little net
strangeness tend towards crossovers. Increasing net strangeness is equivalent to decreasing σs

so that the system tends more towards a first-order transition.

It is important to remember these relations when one tries to use two flavor models to predict
actual physical systems: in nature, the strange quark degree of freedom is always available. As
a specific example, it is found that in a nonlocal two flavor model the value of gv necessary to
remove the first-order transition from the phase diagram completely is considerably higher than
for three flavors [66]. Apart from other differences, this might be attributed to the fact that in
the two flavor system there is no strong background strange quark condensate that contributes
in smearing out the transition.
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7.9 Summary

In this chapter we have investigated two types of vector interactions added to the PNJL La-
grangian: the “reduced” version (7.1.2) that is commonly used in the literature, and the “com-
plete” version (7.8.1) that is closer to physical reality. An analysis in section 7.8.1 has shown
that for most fields of interest, the two yield identical results. This changes drastically if systems
with large net strangeness are studied (see section 7.8.2).
For the more common scenario with low ρs, we have found three main results:

First, the “RKH” parameter set from [110] that we have used through most of this work was
seen to be not ideal for studies including the important vector interaction. More advisable is
the usage of the “HK” parameter set from [63] or the “LKW” set from [92], which are largely
compatible with one another, see discussion in section 7.4.

The second finding, in section 7.7, is that lattice QCD results for the curvature κ of the
chiral crossover are well reproduced by a large vector coupling strength of gv ∼ G. This result,
together with the observation that the first-order chiral coexistence region always overlaps with
the nuclear matter coexistence region, points towards a large value of gv in a realistic scenario.

Thirdly, in section 7.5.4, we have shown it to be very unlikely that there is a critical point
in the QCD phase diagram. Reasonable values of gv from a wide range of different approaches
(see section 7.1), including our own determination of gv ∼ G from the chiral crossover curvature
κ, as well as the notion of a KMT strength probably reduced in-medium (section 5.2), put the
“physical point” of the gv–K plane in Fig. 7.28 far into the crossover region.



Chapter 8

Summary and outlook

8.1 Summary

In this thesis, we studied features of the QCD phase diagram using the Polyakov–Nambu–Jona-
Lasinio (PNJL) model. This model is nonrenormalizable; as a consequence, a cutoff has to be
applied in the thermodynamic potential. We implemented a physically consistent cutoff scheme
in the scenario with 2 + 1 flavors: for momenta larger than the cutoff scale Λ, the quarks
propagate interaction-free in a background set by the Polyakov loop. The predominantly used
“minimal” cutoff scheme was shown to be unphysical and the mechanism behind the inconsis-
tencies explained. We demonstrated that the QCD phase diagram resulting from PNJL type
models is strongly influenced by the choice of the cutoff scheme, even in a two-flavor scenario.
Especially the degree of entanglement between chiral and Polyakov loop crossover was seen to
be sensitive to it, which sheds new light on arguments based on this effect at finite µ.

Most of our results with this “soft“ cutoff, e. g. for thermodynamic quantities or the “flavor-
combined” chiral condensate ∆ls (see def. (4.5.2)), as functions of T/Tc, agree very well with
lattice QCD results. Where a discrepancy due to the recent calculation of better lattice QCD
results was noted, e. g. regarding the slope of the Polyakov loop transition, we have investigated
the systematics and pointed out how improvements could be made within the model.

A major focus was the Kobayashi-Maskawa-’t Hooft (KMT) coupling strength K that con-
trols the axial U(1) anomaly in the model. We explored its effect on the model for a large
number of quantities such as the location of the critical point, the bending of the critical surface
in the µ–mu–ms Columbia plot and the curvature of the chiral crossover line.

We then explored in considerable detail the effects of the inclusion of vector-type interactions
in the model. Two different forms where used; a simple “reduced” ansatz that is found most
commonly in the literature, and a more complete form with a complex flavor structure. We
discussed differences between the two approaches and showed that for the purpose they are
usually employed for, both are essentially equivalent. An important condition for this was the
use of the same chemical potential for all quark flavors.

Finally, we used the quark flavor densities ρu, ρd and ρs independently as variables instead of
the flavor-specific chemical potentials in order to discuss phase transitions at low T for different
types of matter, e. g. pure neutron or symmetric nuclear matter.

8.2 Discussion

We have studied a large number of effects and hypotheses in this work, but we would like to
emphasize again two primary results.

First, in chapter 5 we showed that the continuation of the µ = 0 Columbia plot to finite
chemical potentials is highly non-trivial. The strengthK of the axial anomaly plays a crucial role,
and the differences between scenarios with different K manifest themselves only for intermediate
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values of µ & 150 MeV. This suggests that the curvature of the critical surface of Columbia plots,
calculated with lattice QCD, might not be as useful a tool in the determination of the existence
of a critical point as was expected: the observed structure at intermediate µ cannot be fully
specified in terms of the curvature alone.

The second main result concerns the existence of the critical point. For a long time, it were
chiral models like the (P)NJL model that predicted a first-order transition in the QCD phase
diagram at low T , while lattice QCD calculations showed crossovers for µ/T . 1. Recently, how-
ever, it has become increasingly doubtful if the existence of a first-order transition is compatible
with all facts that are already known. We contribute arguments pointing strongly towards a
phase diagram with a crossover for all T and µ.

Since we feel that this is the most important point of this work, we briefly recapitulate
the line of thought. It is well known that in the T–ρB rendition of the phase diagram, the
chiral coexistence “bell” appears as long as there is a first-order chiral transition present. The
region of low T and ρB . ρ0 = 0.16 fm−3, the empirically confirmed domain of nuclear matter,
has been probed for decades in countless experiments with no indication of restored chiral
symmetry effects. Therefore the separation of these two domains, described by different degrees
of freedom, is a strong constraint on models. We systematically studied the location and width
of the chiral coexistence region as functions of the KMT interaction strength K and the vector
coupling strength gv. It was found that the coexistence region, as long as it exists, is not clearly
separated from the liquid/gas coexistence region of nuclear matter for any combination of these
parameters. For two out of three studied NJL input parameter sets, the chiral coexistence “bell“
always directly overlapped the density region dominated by nuclear dynamics – contrary to our
empirical knowledge.

This observation was complemented by discussions of probable values for gv and in-medium
values of K (sections 5.2 and 7.1) based on a large number of independent sources. According
to the current state of research, likely combinations of the values of K and gv are far from those
that produce a critical point in the phase diagram.

Our own determination of gv is based on a fit of the chiral transition curvature κ (cf. section
5.5). A large value of gv ∼ G was found to reproduce the small curvature found in lattice
publications. This number is perfectly compatible with the results of the other sources. For a
gv of this magnitude, the existence of a critical point is almost impossible, regardless of other
parameter choices.

8.3 Outlook

Throughout this work, the Kobayashi-Maskawa-’t Hooft interaction strength K and the strength
gv of the vector interaction played a prominent role. For K, at the moment only the vacuum
value is known but not its dependence on temperature T and chemical potential µ which is
expected to be considerable (see our discussion in section 5.2). A recent work based on instanton
dynamics [37] suggests an expression for the instanton density and therefore K as a function of
4-momentum p as well as T and µ. It appears promising to start including such an ansatz in
our framework.

In chapter 7, we discussed the vector interaction term in eq. (7.1.1) and used it in our
calculations, while the axial-vector term was omitted. It is a logical next step to include this
term in the model, especially since it could appear with a weight comparable to the vector term,
see eqs. (7.1.4) and (7.1.5). Given the indications pointing towards a large value of gv/G that
we found, the influence of this term may be considerable. This is particularly interesting in the
context of recent speculation about the formation of inhomogeneous chiral symmetry breaking
phases [28] which might be suppressed by a repulsive axial-vector interaction.

We also mentioned that in the limit of very large chemical potentials, the ground state of QCD
is given by color superconducting matter. Numerous studies with (P)NJL type models suggest
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that some diquark condensate types form already close to the T = 0 termination point µt of the
chiral transition line. It has also been shown that certain interaction forms including diquark
degrees of freedom in the usual NJL Lagrangian can induce the appearance of a second critical
point, realizing quark-hadron continuity at very low T . The study of vector type interactions
in combination with that sort of ansatz is a natural extension of our discussion about the
improbable existence of a critical point in the QCD phase diagram. An investigation of how
our consistent cutoff scheme influences the found patterns – and the diquark phase structure in
general – also promises to be a rewarding topic.

Finally, the extremely precise measurement [41] of the two-solar mass neutron star PSR-
J1614-2230 has given new, strong constraints on the equation of state of neutron stars [64, 89,
88, 137], i. e. matter at low temperature and moderate density. This fact can be used to further
limit the parameter space of our model, allowing for an ever more precise prediction of the
structure of the QCD phase diagram [93, 66]. The elusive critical point is not yet completely
ruled out – but its chances are dwindling.
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Appendix

A.1 Intermediate calculations in the bosonization procedure

In this part of the appendix we derive some of the more technical relations used in section 3.3,
where we discussed the three-flavor NJL bosonization formalism.

A.1.1 The Transformation of det J±

First, in this section we will prove that det J± can be recast into eq. (3.3.5),
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This is done using two auxiliary formulae: The formula already presented in eq. (3.3.4),
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3
tr
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, (A.1.2)

is proven either explicitly or by the Newton-Girard formulae, which give relations between power
sums (in this case, the traces of powers of the matrix A) and elementary symmetric polynomials
(here the determinant of the matrix).

The second auxiliary formula is eq. (3.3.3),
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1

2
tr (λaJ±) .

We go through the terms of eq. (A.1.2) with A = J± step by step:
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Finally, with careful counting of multiplicities of the terms and using the trace relations,
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so that

det J± =
1

6

(
tr [J ]±

)3 − 1

2
tr [J±] tr

[
J2
±
]

+
1

3
tr
[
J3
±
]

=

=

√
2

3

3 (
c±0
)3 − √2

3

8∑
m=1

c±0
(
c±m
)2

+
1

3

8∑
l,m,n=1

tr
[
λlλmλn

]
c±l c
±
mc
±
n . (A.1.7)

From SU(3) group theory it is known that[
λa, λb

]
= 2 i

∑
c

fabcλc, (A.1.8){
λa, λb

}
=

4

3
δab1+ 2

∑
c

d abcλc, (A.1.9)

where
[
λa, λb

]
is the commutator and

{
λa, λb

}
is the anticommutator. The quantities d abc (fabc)

are the totally symmetric (antisymmetric) structure constants of SU(3). With these relations,
we express

λaλb =
1

2

[
λa, λb

]
+

1

2

{
λa, λb

}
= i
∑
c

fabcλc +
2

3
δab1+

∑
c

d abcλc. (A.1.10)

Now we write a trace over three Gell-Mann matrices λa, a = 1, . . . , 8 as

tr
[
λaλbλd

]
= i
∑
c

fabctr
[
λcλd

]
+
∑
c

dabctr
[
λcλd

]
+

2

3
tr [λc] δab

= 2i
∑
c

fabcδcd + 2
∑
c

d abcδcd

= 2i fabd + 2 d abd. (A.1.11)

In the last term in eq. (A.1.7), we sum over all indices a, b, c . Since fabc is totally antisymmetric,
this term in (A.1.11) cancels out and only the totally symmetric term with the d abd remains. In
conclusion, inserting eq. (A.1.11) into eq. (A.1.7), we get

det J± =

√
2

3

3 (
c±0
)3 − √2

3

8∑
m=1

c±0
(
c±m
)2

+
2

3

8∑
l,m,n=1

d lmnc±l c
±
mc
±
n . (A.1.12)
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A.1.2 Symmetry properties of products of Gell-Mann matrices

Eq. (3.3.29) in section 3.3 contained the expression vlvmvn d
lmn, where the d lmn are defined by

equation (A.1.9) and the va by the relation (3.3.24). We stated there that we can write

vlvmvn d
lmn ≡ d lmn (A.1.13)

We will prove this relation in this short section. First, we take an arbitrary symmetric Gell-
Mann matrix λS , i. e. S ∈ {1, 3, 4, 6, 8} and another arbitrary, but antisymmetric, Gell-Mann
matrix λA, i. e. A ∈ {2, 5, 7}. In component notation, for their anticommutator we find

{
λA, λS

}
ik

=
∑
j

(
λSijλ

A
jk + λAijλ

S
jk

)
=
∑
j

(
λSji
(
−λAkj

)
+
(
−λAji

) (
λSkj
))

= −
∑
j

(
λAkjλ

S
ji + λSkjλ

A
ji

)
(A.1.14)

which means that the anticommutator is antisymmetric:

{
λA, λS

}
= −

{
λA, λS

}>
. (A.1.15)

Using eq. (A.1.9) and δAS ≡ 0, we express it now as a sum over all Gell-Mann matrices λc with
some coefficients, {

λA, λS
}

= 2
∑

A′ asym.

dASA
′
λA
′
+ 2

∑
S′ sym.

dASS
′
λS
′
, (A.1.16)

where we have divided the whole set of Gell-Mann matrices again into symmetric and antisym-
metric ones. Since the anticommutator on the left-hand side of this equation is an antisymmetric
quantity, it cannot be composed of any symmetric Gell-Mann matrices. Therefore the second
term on the right-hand side has to vanish:

dASS
′ ≡ 0 (A.1.17)

with A′ ∈ {2, 5, 7} and S, S′ ∈ {1, 3, 4, 6, 8}. Next, because the d lmn are totally symmetric,
eq. (A.1.17) means that every d lmn where exactly one index (l,m or n) corresponds to an
antisymmetric matrix must vanish. The same reasoning can be applied to a combination of

three antisymmetric matrices. We find that
{
λA, λA

′
}

with A, A′ ∈ {2, 5, 7} is symmetric and

therefore, in a split-up like in eq. (A.1.16),{
λA, λA

′
}

= 2
∑

A′′ asym.

dAA
′A′′λA

′′
+ 2

∑
S sym.

dAA
′SλS , (A.1.18)

the first term has to vanish. It follows that

dAA
′A′′ ≡ 0, (A.1.19)

for A, A′, A′′ ∈ {2, 5, 7}. We have then found that d lmn ≡ 0 if one or three of the indices
l, m, n′ ∈ {2, 5, 7}. Coming back to the definition of the va in eq. (3.3.24), it is evident that
the expression vlvmvn can only take the value of −1 in exactly the same two cases. In all other
cases, it is simply 1. In conclusion, we find that

vlvmvn d
lmn ≡ d lmn (A.1.20)

which was what we wanted to show.
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a b c 3
√

3Aabc

0 0 0 2
√

2

0 8 8 −
√

2

8 8 8 − 2

0 1 1 −
√

2

0 2 2 −
√

2

0 3 3 −
√

2

8 i j 2 δij

Table A.1: Non-vanishing entries of the 9× 9× 9 matrix Aabc, a, b, c = 0 . . . 8, in def. (3.3.31).

A.2 Influence of parameters on the crossover bands

We collect here plots that show the dependence of location and width of the crossover bands at
µ = 0 as functions of the parameters of Polyakov loop effective potentials, as discussed in chapter
6. In the main text, we omitted them to keep the focus on more important points. However, a
systematic collection is useful for comparing different Polyakov loop effective potentials.

The style of the plots is the same as in Fig. 6.16. In all cases, the upper, red band is the
chiral crossover band, where the three lines mark σu (T ) /σu (0) = 0.25, 0.5 and 0.75 from top to
bottom. The lower, blue band marks the Polyakov loop crossover, with the three lines denoting
Φ = 0.2, Φ = 0.35 and Φ = 0.5, respectively.
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Fig. A.1: Transition bands as a function of a
in potential ansatz (6.2.1). The vertical line
denotes a0 = 664 MeV as the choice of [52].
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Fig. A.2: Transition bands as a function of
b/b0 in potential ansatz (6.2.1). The vertical
line marks b0.
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Fig. A.3: Transition bands as a function of c
in (6.3.4).
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Fig. A.4: Transition bands as a function of d
in (6.3.4).
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[116] Rößner, Simon and Hell, T. and Ratti, C. and Weise, W. The chiral and deconfinement
crossover transitions: PNJL model beyond mean field. Nucl.Phys., A814:118–143, 2008.
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