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SUMMARY

The behaviour of complex fluids with macromolecular constituents plays an im-
portant role in countless industrial applications, biological processes and in our
daily life. When put under flow, such fluids exhibit a variety of non-Newtonian
properties, which are usually related to an out-of-equilibrium conformation of
the macromolecules in the fluid. Despite decades of intensive research on poly-
mer solutions with significant progress, the sophisticated interplay between the
microscopic dynamics of the polymers and the macroscopic properties of the
solution is not yet fully resolved.

In this work we demonstrate, how properly designed microfluidic devices
can be used to both monitor macromolecular dynamics and measure bulk fluid
properties. To this purpose, steady and oscillatory flows of model polymer
fluids were established in microfluidic channels. We surveyed single polymers
in flow, developed new methods to determine macroscopic response functions
and investigated fluid-structure interactions. The demonstrated versatility turns
microfluidic lab-on-a-chip devices into ideal platforms for studying the physics
of complex fluids and mimicking biological systems in vitro.

In the first part of this thesis, individual fluorescently labelled actin fila-
ments were followed with a moveable microscope stage while flowing down a
microchannel. The full conformational dynamics of the tumbling filaments in
shear could be resolved and evaluated. Based on the experimental findings, a
telescopic rod model describing the tumbling of semiflexible polymers was pro-
posed. A force balance between the frictional drag and the restoring bending
forces in the filament allowed for the calculation of the filament’s typical bending
radius RU and the average tumbling time τT . In first approximation, the orien-
tational dynamics of semiflexible tumbling filaments were found to be equivalent
to those of stiff Brownian rods in shear. The experimentally determined values
of τT and RU for stiff and semiflexible filaments are in good agreement with the
theoretical predictions. Motivated by the success of the rather simple U-turn
model, an extension describing the tumbling dynamics in the entire regime of
rigidities has been developed. Literature data for flexible DNA in shear flow
was shown to be in accordance with the proposed model.

Apart from the tumbling dynamics, microfluidic devices also enable the anal-
ysis of higher order effects in flow. As an example, lift forces induced by a hy-
drodynamic interaction of shear-aligned polymers with the channel walls were
studied by monitoring the evolution of a depletion layer in a solution of fluores-
cent λ-DNA in shear flow. Hereby, a sufficiently long residence time of the fluid
in the channel was achieved by using low-frequency, high amplitude oscillatory
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shear.
In the second part of the work, novel differential microfluidic viscometers for

measuring the rate dependence of the shear and extensional viscosities η(γ̇) and
Λ(ε̇) in non-Newtonian fluids were proposed and tested with polymer- and worm-
like-micellar solutions. Experiments with prototypes of the proposed shear vis-
cometer showed, that the device is well suited for measurements of the local
power-law exponent n of η(γ̇), which expresses the fluid’s shear-thinning prop-
erties. An apparent transient extensional viscosity of dilute polymer solutions
could successfully be determined in realisations of the extensional differential
rheometer. As no purely extensional, steady homogeneous flowfield is estab-
lished in the extensional rheometer device, the determined transient viscosity
can serve as an estimate for the true extensional viscosity Λ(ε̇).

The last part of the thesis focusses on the coupling of oscillatory flows to
channel deformations induced by the driving pressure of the flow. We demon-
strate, how the viscoelastic response of PDMS channel walls to forces can be uti-
lized as a microfluidic pressure sensor. The propagation of periodically applied
pressure pulses and the corresponding flow rates have been measured along a mi-
crochannel. The experimental results could be described with a one-dimensional
equivalent circuit model of the channel. Pressure and flow are governed by a
diffusion equation, and the observed dispersion and damping of pressure and
flow rate step pulses could be quantitatively explained.

The results shown in this thesis demonstrate, that microfluidic devices offer
a multisided approach for studying complex fluid dynamics. Especially the
possibility to bundle different analytical and functional tools in a single lab-
on-a chip implementation opens promising perspectives for prolific microfluidic
applications beyond the examples presented here.

.
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1. INTRODUCTION

Many liquids in our everyday life are complex fluids, including industrial fluids
such as paints or paper pulp as well as foods like mayonnaise or biofluids like
blood, spittle or mucus. In general, complex fluids are viscoelastic, which means
that their response to an external force is inbetween that of a purely viscous
liquid and an elastic solid. According to the specific flow conditions applied, the
same fluid can behave very differently. The observed non-Newtonian rheological
properties like shear-thinning, rod-climbing or drag reduction in turbulent flows
can be traced back to the complex dynamical behaviour of the fluids building
blocks. Thus, identifying the dynamics of macromolecules like polymers in flow
is of fundamental importance for understanding the non-linear rheology of fluids.
As the size of the constituents of complex fluids is typically on the scale of several
nanometers to hundreds of microns, microfluidic devices offering channel widths
in a range of 10µm to 1 mm provide an ideal platform to study the microscopic
mechanisms of complex fluids in flow.

Besides this well-founded interest in revealing the fluid dynamics on the
molecular level, there is a growing need for small-sized analytical instruments,
which are capable of measuring bulk fluid properties and open for incorpora-
tion into numerous emerging lab-on-a-chip applications. Driven by the trend of
miniaturization in biotechnology, manufacturing and chemical processing indus-
tries, a range of microfluidic devices to measure bulk rheological properties like
the shear and extensional viscosity has been developed [82]. The high surface-
to-volume ratio, the absence of inertial effects up to high deformation rates and
the small amount of required sample volumes allow microrheometers to explore
a regime unavailable to conventional viscometers. Especially measurements of
the extensional viscosity are still challenging, and simple and robust methods
would be desirable. The extensional viscosity of dilute polymer solutions with
near-Newtonian shear viscosity can exceed the shear viscosity by up to 3 orders
of magnitude, which is utilized in oil recovery to increase the flow resistance
of liquids in porous media [79, 43]. Extensional viscosity is also important in
polymer-induced drag reduction in turbulent pipe flows [72]. Moreover, it gov-
erns the stringiness of physiological fluids like saliva, cervical mucus, synovial
fluid and sputum, which can be used as a diagnostic tool [43].

The proper operation of increasingly complex microfluidic devices requires an
efficient control of spatiotemporally changing pressure and flow rates, which is
still posing a major challenge for the broad applicability of microfluidic devices.
The majority of microfluidic devices consists of channels imprinted into a block
of the elastomeric material PDMS which is bonded to a glass substrate [75].
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The cheap and easy lithographic production, the optical transparency, the good
thermal stability, the high biocompatibility of the surface and the high gas
permeability, which enables oxygen supply for living cells, makes PDMS par-
ticularly suited for life-science applications. While in simple steady-state flows
with moderate operating pressures the effects of the deformation of the mate-
rial under pressure are negligible, fluid-structure-interactions due to the elastic
response of the channel material can significantly alter the flow conditions in
transient flows. A long standing interest in pulsatile flows of complex fluids
in soft environment comes from medical applications — understanding vessel
diseases needs a quantitative understanding of cardiovascular flow behavior in
elastic channels. As with standard microfluidic technology almost any complex
2D geometry is readily available and the viscoelastic properties of the PDMS
walls can be tuned by varying the amount of crosslinkers, microfluidics present
an ideal system for studying fluid-structure interactions in elastic fluidic net-
works. Increasingly more complex model systems of the capillary system may
be built and examined. This sets the stage for an experimental link between
the macro- and microcirculatory regime [4, 85, 114, 83, 30, 98, 3], as well as for
testing simulations in well defined circumstances.

In this thesis, we investigate the dynamics of complex fluids in microchannels
in a multi-lateral approach: After a short introduction on basic fluid dynam-
ics in microchannels, we study the dynamics of individual polymers in simple
shear flow in the first part of the work. As model polymers we chose semiflex-
ible, fluorescently labelled actin filaments, whose conformations in flow can be
fully resolved using a motorized microscope stage. The direct observation of the
entire conformational dynamics allows for the formulation of a simple theoret-
ical description of the filament dynamics on the basis of a balance of thermal
fluctuations, frictional drag and elastic bending forces. The discussion of the
proposed U-turn model for the tumbling dynamics of the semiflexible polymer
reveals some generic bulk features of polymer solutions in the non-Newtonian
flow regime.

In the second part, we target the bulk properties of complex fluids by propos-
ing and testing novel differential viscometers for measuring shear- and exten-
sional viscosity in microchannels. To this purpose, an equal pressure drop is ap-
plied to a reference and an analyzer channel and the ratio of flow rates between
the channels is detected. By an appropriate design of reference and analyzer
channel, the local power-law exponents of shear and extensional viscosity can
be determined from the measured flow rate ratio. This enables the calculation
of relative values for η(γ̇) and Λ(ε̇).

Finally, we probe the response of a Newtonian fluid in a viscoelastic mi-
crochannel to transient periodic pressure pulses in order to study the occuring
fluid-structure interactions. We describe the modulation of the flow due to the
channel deformations with a one-dimensional equivalent circuit model, which
yields a diffusive pressure propagation along the channel. For all applications,
a simple physical basis for the frequency response of the transport properties
of microfluidic devices is provided, enabling a quantitative design approach for
more complex devices.



2. MATERIALS AND METHODS

2.1 Microfluidic Channels and Measurement Setup

Microfluidic channels with rectangular cross sections were fabricated following
the standard protocol [75]. Unless inidcated differently, PDMS and cross-linker
(SYLGARD 184 Silicone Elastomer Kit) were mixed in a ratio of 10:1 and cured
for 2 hours at 70 ◦C. For studying the fluid-structure interactions in chapt. 6,
PDMS and cross linker were mixed in a ratio of 20:1 to yield soft channels with
well defined viscoelasticities with a length of l = 20 mm , width w = 60µm
and height h = 80µm. For the study of the tumbling dynamics in chapter 4,
channels with a higher aspect ratio w = 30µm and h = 60µm were used, so
that in the vicinity of the observation plane at z = h/2 the velocity gradient was
predominantly aligned with the xy-plane. High aspect ratio channels of width
w = 45µm and height h = 150µm were used for the oscillatory measurements
of the λ-DNA solution in section 4.5 to minimize wall effects from the channel
top and bottom. The hyperbolic constrictions with circular cross section

Figure 2.1: Channels with cylindri-
cal semihyperbolical constrictions were
produced by filling Polyethylen tubes
with PDMS. Removable brass molds
were used to obtain the hyperbolic
shape of the constrictions.

used in the differential extensional viscometer (sect. 5.4.4) were fabricated from
polyethylen tubings with an inner diameter of 6.5 mm. The tubings were stuffed
with two opposing brass molds giving the semihyperbolic shape (see fig. 2.1).
PDMS mixed with cross linker was injected with a syringe to fill the constriction.
After curing, the brass molds were removed resulting in a constriction with
the desired shape. To prevent a slipping of the PDMS constriction at higher
operating pressures, additional syringe needles were pinched through the tube
in the convergion region before PDMS curing. After curing, the needles fixed
the PDMS constriction within the tube (see fig. 5.16).

The measurement setup consisted of a Zeiss Axiovert 200 microscope with
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Figure 2.2: Schematics of measurement setup: The microfluidic device is placed
on a motorized microscope stage. For steady flow generation, a syringe pump is
connected to the device. For oscillatory flows, a fluid reservoir with a membrane
which is coupled to a speaker can be connected.

a motorized microscopy stage (Thorlabs Max 203) on which the microchannels
were mounted. Videos wer captured in the midplane of the channel at z = 0.5h
using a Hamamatsu orca camera with OpenBox [91] software for recording, ex-
cept as noted otherwise. For the study of the fluid-structure-interactions in
chapter 6, videos were recorded with a high-speed camera (Phantom V5.1, Vi-
sion Research) at 500 fps. For experiments in oscillatory flow, a speaker was
coupled to the membrane of a fluid reservoir which in turn was connected with
the microfluidic channels via d = 0.5 mm metal and polymeric tubings. Rect-
angular and sinusoidal voltage signals of different frequencies and amplitudes
were applied to the speaker to generate periodic pressure pulses at the channel
entrance (x = 0), while the other end of the channel (x = 20 mm) was con-
nected to a small reservoir exposed to ambient pressure. For experiments with
steady flow, a motorized syringe pump (WPI SP 200) was connected to the
channel inlet. Fig. 2.2 shows the schematics of the measurement setup, fig. 2.3
shows a picture of the oscillatory flow setup. In some experiments, a pressure
sensor (WPI, BLPR2) was connected via a T-crossing before the inlet of the
microfluidic device, so that the applied pressure could be monitored.

Rheological properties of the solutions in shear were determined by mea-
surements with a conventional cone-plate rheometer (AR-G2, TA-Instruments).
CaBER measurements were performed in a self-made capillary breakup exten-
sional rheometer [84].

2.2 Materials

Actin filaments were prepared following standard protocols [92]. Polymerized
F-Actin was suspended in F-Buffer containing 45.5% (w/v) sucrose at a final
concentration of 0.5 nM. The concentration of the sucrose was chosen to adjust
the refractive index of the actin solution to the refractive index of the PDMS
for minimizing refraction effects at the channel walls. In order to decrease
photodamage effects ascorbic acid was added to an amount of 1 mM.
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Figure 2.3: Picture of the setup in the oscillatory mode showing the microscope
stage with microfluidic device (left) and the speaker (right), which is connected
to the membrane of the fluid reservoir. The membrane is stretched onto the
front half of a dissected 5 ml syringe tube and sealed by twirled copper wire
(middle). An additional pressure sensor is connected for measuring the gener-
ated pressure (middle, located beneath the fluid reservoir on the (x, y)-stage).
The fluid reservoir which is coupled to a speaker is placed on a (x, y, z)-stage.
By adjusting the relative position of the reservoir with respect to the speaker,
a net drift can be induced or suppressed in the oscillatory flow.

λ-DNA was purchased from New England BioLabs GmbH and labelled with
YOYO-1 iodide (invitrogen). A 10 pM solution of the labelled λ-DNA was
prepared in 40mM EDTA, 50mM NaCl, 50% (w/w) Glycerol, 15% (wt/wt)
Glucose buffer with 10mg/ml BSA and each 2.5% (v/v) glucose oxidase and
catalase for the experiments in section 4.5.

Model polymer fluids used in chapter 5 were prepared as aqueous solutions
in deionized water with Polyacrylamide (PAA, 5-6 MDa, Sigma Aldrich) in dif-
ferent concentrations. For a variation of the solvent viscosity, PAA solutions in
various mixtures of glycerol (Sigma Aldrich) were used. Water-glycerol solutions
were also used as Newtonian reference fluids. A commercially available shower
gel (Lavera, basis sensitiv Duschbad) was used as worm-like-micellar solution.

For the experiments in chapter 5 and 6, fluorescently labelled melamin
resin beads of 1µm diameter (microparticles GmbH, Berlin; Rhodamin B MF-
Polymerpartikel) were used to determine the flowrate ratio and track the motion
of the fluids and the channel walls. They were suspended in the working fluid
and in the crosslinker solution prior mixing with PDMS at concentrations be-
low 0.5% (v/v). Fig. 2.2a shows a bright field image of the fluid filled channel
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(a) (b)

Figure 2.4: (a) Bright-field-videoframe of the fluid filled channel with stracer
beads in the fluid and in the PDMS matrix; the dotted lines indicate the po-
sition of the channel walls, the scalebar represents 20µm. The inset shows a
fluorescence microscopy image of tracer beads in the fluid in the same chan-
nel. (b) For low and moderate pressures, the amplitude of the measured wall
displacement in a f = 0.5 Hz sinusoidal flow depends linearly on the pressure.

with melamin beads in both fluid and the walls. The inset shows a fluorescence
microscopy picture of the tracer fluid in the channel.

2.3 Determination of Polymer Dynamics and Velocity Fields

Polymer dynamics and velocity fields were determined by image-analysis of the
recorded videos. The conformation of the actin filaments was traced semi-
automatically by applying self-written path finding algorithms in Matlab. Lc is
determined as the average length traced for each filament, so that the measured
values for the contour length slightly exceed Lc in some frames due to the tracing
error. The position of the channel walls was easily recognized by a quantitative
analysis of the jump in intensity which occurs at the boundary solution-PDMS.
The shear-rate was determined by assuming a parabolic flow profile with known
positions of the channel walls and the filament.

For the purpose of comparison between experiment and theory we performed
a limited number of Brownian dynamics simulation runs of a single semiflexible
multibead-chain subjected to shear flow at constant shear rate, in the presence
of implicit solvent and isotropic friction, and taking into account metric forces,
following standard recipes [77]. For the reported results the chain is composed
of 30 beads interacting via (i) a finitely extendable nonlinear elastic (FENE)
spring as in [62], (ii) purely repulsive Lennard–Jones potential, and (iii) bending
HamiltonianHbend ∝

∑N−2
i=1 ti·ti+1, where ti denotes the unit vector connecting

adjacent beads i and i+ 1.
Additional simulations for the dynamics of Brownian rods in shear were done

with a self-written MATLAB script.
The velocity field of solutions with tracer particles in straight channels in

steady and oscillatory shear was determined by evaluating recorded videos with
self-written Matlab scripts [57]. The channel wall mations were analyzed by
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using particle tracking algorithms implemented in OpenBox [91].
All FEM-simulations were done with COMSOL Multiphysics.

2.4 Local Pressure Sensing with Channel Wall Deflection

The viscoelastic response of the PDMS material to changes in pressure allows
for the use of the channel itself as a local pressure sensor. To this end, the
displacement Y (x, t) of the channel wall caused by transient pressures has to
be measured with sufficient accuracy, which was achieved by tracking visible
particles embedded in the PDMS (see fig. 2.2a). The tracking algorithm applies
bidirectional Gaussian fits over the intensity profiles of the beads, giving a spatial
resolution beyond the optical diffraction limit. By averaging traces from a high
number of tracked beads, a very high resolution of the wall motion on the order
of several nm can be achieved. If periodic pressure changes with frequency ω0

are applied, the according wall movement Y (x, t) will have the same periodicity
and it is conveniently expressed by its Fourier components

Y (x, t) =
N∑

n=0

Yn(x, t) exp(iω0nt+ φn) (2.1)

where the highest mode number N = ω0/ωs is determined by the data sampling
frequency ωs of the wall motion measurement. In the linear regime, the strain ε
of the PDMS deformation is related to the wall displacement Y (x, t) and channel
width w via a geometrical factor fgeom

ε = fgeomY/w, (2.2)

which depends on the channel and measurement geometry and can be deter-
mined from finite elemente method simulations (see section 6.2.1). The de-
formation of viscoelastic solids can be calculated with a complex, frequency
dependent Young modulus E? = E′ + iE′′ relating stress σ and strain ε of a
periodic deformation ε(t) = ε0eiωt:

σ(t) = E?(ω)ε(t) (2.3)

The pressure for each Fourier component εn of the strain can thus be calculated
as

pn = |E?(ωn)|εn exp[i(ωnt+ φn − δ(ωn))] (2.4)

where tan δ(ω) = E′′(ω)/E′(ω) and ωn = nω0. The Young modulus E? of an
isotropic material is related to the complex shear modulus G? via the Poisson
ratio ν:

E? = 2G?(1 + ν) (2.5)

The shear modulus G?(ω) can be measured in a conventional rotational rheome-
ter. Altogether, the pressure can be determined from the measurable wall dis-
placement Y (x, t) as:

p(x, t) =
N∑

n=0

2(1 + ν)|G?(ωn)|fgeom
w

Yn(x, t)ei(ωnt+φn−δ(ωn)). (2.6)
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This calculation only holds in the linear regime, where the amplitude of the wall
deflection is proportional to the pressure amplitude. Figure 2.2b shows the wall
deflection amplitude measured with sinusoidal pressure of different ampitudes
applied to a 60×80µm cross sectional PDSM channel. The measurement shows
a linear deformation up to wall displacements of ∼ 150nm.

2.5 Determination of Flowrate Ratio in Differential Viscometer

For the differential microfluidic viscometer introduced in chapter 5, the flowrate
ratio X = Qa/Qr of the fluid streams Qa, Qr flowing through a reference and an
analyzer channel has to be measured. In the rectangular microfluidic devices,
this has been done optically with a microscope by unifying both streams in a
detection channel Kd with small aspect ratio h/w � 1 resulting in Hele-Shaw
flow, where h and w are height and width of the channel Kd. In the region
of fully developed flow all streamlines are parallel to the channel walls and the
lateral velocity profile across the channel is flat except for a small region of
width on the order of h next to the channel walls. Thus, the relative width of
the fluid streams dr, da is approximately proportional to the flowrates Qr, Qa

as long as dr, da � h. Hence, the flowrate ratio X can be determined as

X =
Qa

Qr
=
da

dr
(2.7)

by measuring dr, da, which was done in two ways:

Optical Determination of dr, da with Marker Fluid

The widths dr, da of the fluidstreams can be determined by visually seperating
Qr and Qa with a stream of marker fluid Qm introduced into the detection
channel inbetween analyzer and reference channel (see fig. 2.5). The marker
fluid was produced by mixing a small amount of colored tracer particles into the
analyte fluid, which ensures equal viscosity properties and avoids surface tension
effects between analyte and marker fluid. The flowrate Qm of the marker fluid
is set an order of magnitude lower than the feeding channel flowrate Q resulting
in a thin stream of marker fluid Qm between Qa and Qr.

Determination with Depletion Layer

Alternatively, the marker fluid channel was omitted and marker particles were
directly suspended in the analyzing fluid stream Q. As the center of the spher-
ical marker particles cannot get nearer to the wall than the particle radius rp,
restricted volume effects create a depletion zone seperating the unifiying streams
of Qr and Qa in the detection zone (see fig. 2.6a). The depletion zone can be
observed in the microscope image and has a width of at least 2rpwd/(wa +wr),
where wd, wawr are the widths of detection, analyzer and reference channel.
Fig. 2.6b 1-3 shows a 1% (w/w) PAA solution with fluorescently labeled melamin
resin beads with rp ≈ 0.5µm radius as tracer particles at different positions
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Figure 2.5: To determine the flowrate ratio Qa/Qr an additional channel Km

with marker fluid flowing into the detection zone between analyzer and reference
channel is inroduced. If the aspect ratio of the detection zone is small h/w � 1,
the flowrate ratio is given by the ratio of the width of the reference and analyzer
channel streams da/dr in the region of fully developed flow.

while flowing along a channel of width 300µm and length l = 4 cm, where the
arrows indicate the position of the channel walls. The resulting depletion zone
between two unifying fluid streams is marked by the arrow in fig. 2.6b 4. Clearly,
a depletion layer much wider than rp evolves along the channel. This could be
caused by a lift force, which is known to act on spherical particles in shear near
walls with no slip boundary condition [59]. Although the lift force is an inertial
effect, it occurs even at low Reynolds numbers in creeping flow conditions, and
its magnitude decreases with increasing distance to the wall. Moreover, any
local enhancement of the streaming velocity near the wall will be accompanied
by a locally reduced distance of the streamlines to the wall. Thus, the roughness
of the channel walls as well as flows around corners will cause the particles to
bump with the wall resulting in a widening of the restricted layer. Both optical

(a) (b)

Figure 2.6: (a) Due to the finite size of the fluid markers a restricted area for
the center of mass of the tracer particles develops in the detection zone, which
can be optically detected to evaluate the flowrate ratio X = Qa/Qr. (b) 1 %
wt. PAA solution wuth fluorescently labeled markers of 1µm diameter flowing
in a straight channel with 300× 60µm cross section, arrows on the left indicate
the position of the channel walls. Pict. 1-3: While flowing along the channel
a depletion zone wider than the particle radius develops at the walls. After
unification of two streams with depletion layers at the wall, a visible depletion
zone seperates the fluid streams (pict. 4, see arrow.)

detection methods require that the markers have a sufficiently low diffusion con-
stant to prevent a vanishing of the seperation line due to diffusion of the tracer
particles before the region of fully developed flow is reached. This condition
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sets a lower limit for the flowrate Q at which the differential viscometer can be
operated with the optical detection method for X.

Determination with Balance

In the devices where channels with circular cross sections were used, reference
and analyzer channels where open to atmospheric pressure at the ends (see
fig. 5.10). The flowrate ratio has been determined by weighing the amounts of
liquids ma,mr flowing through Kr and Ka in equal time intervals, which gives
X = ma/mr.



3. BASIC FLUID DYNAMICS IN MICROFLUIDIC CHANNELS

3.1 Flow Classification

Any velocity field u(x, t) of a flow can be decomposed into the sum of a uniform
flow, a rotational flow and an extensional flow. Therefore, the transformation
that a fluid element represented by a small distance vector h connecting two
nearby points x and y undergoes in a small time step dt consists of a rigid
translation, a rigid rotation and a deformation [20]:

u(y) = u(x) +∇u(x) · h +O(h2) (3.1)

= u(x)︸︷︷︸
translation

+ D · h︸ ︷︷ ︸
deformation

+ S · h︸︷︷︸
rotation

+O(h2). (3.2)

Herein, the velocity gradient tensor A = (∇u) has been split into its deforma-
tional and rotational components A = D + S given by the deformation and
vorticity tensors [20]

D =
1
2
[∇u + (∇u)T ] = γ̇ and S =

1
2
[∇u− (∇u)T ]. (3.3)

Depending on the time evolution of the seperation of two nearby fluid elements,
it is common to classify flows as strong, marginally weak and strictly weak [34,
11, 103]:

• In strong flows, two material points seperate exponentially.

• In marginally weak flows, two material points seperate linear or quadrati-
cally.

• In strictly weak flows, the distance between two material points varies
sinusoidally and material lines get shrinked and expanded periodically.

A more detailed discussion is given in section A.1 in the apppendix.

3.1.1 Planar Flows

A very descriptive explanation for the classification of flows into strong, marginally
weak and strictly weak flows can be given for planar flows, where the velocity-
component in one direction is zero, e.g. u(x) = (ux(x, y, ), uy(x, y), 0). Then, it
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(a) coordinate sys-
tem

(b) ρ = 0 (c) ρ2 < 1

(d) ρ2 = 1 (e) ρ2 > 1 (f) ρ2 =∞

Figure 3.1: The ratio of the rotational to the deformational component changes
the type of flow from strong (b,c) to marginally weak (d) to strictly weak (e,f).

is sufficient to discuss the flow field in 2D, and the velocity gradient tensor can
be written in the principal coordinate system of D as [35]:

A =
(
ε̇ ω
−ω −ε̇

)
(3.4)

The fluid elements in planar flows are rotated with rotation rate ω around an
axis perpendicular to the flow plane xy. Simultaneously, they get deformed in
the flow plane, namely getting stretched along e1 and shrinked along e2 (see
fig 3.1a) with rate ε̇. Depending on the ratio of rotation and deformation rate
ρ = ω/ε̇, the flow is strong (ρ2 < 1) or strictly weak (ρ2 > 1). For ρ = 0 and
ρ = ∞ the flow is planar extensional, resp. purely rotational. The special case
of equal rotation and deformation rate (ρ2 = 1) represents the velocity field
of simple shear with parallel streamlines. Fig. 3.1 b–f schematically shows the
appending velocity fields in the different regimes.

3.1.2 Simple Shear Flow

The velocity field of simple shear flow can be generated by two parallel plates
sliding past each other (see fig. 3.2): In an affine deformation, the displacement
of the upper plate by a distance a in the x-direction induces a strain in the fluid
of γ = a/d, where d is the plate separation in the y-direction. Moving the upper
plate with a constant velocity v = γ̇d by applying a constant stress σ to the fluid
(where σ is the dragging force per unit area) creates a uniform velocity field
u = (γ̇y, 0, 0) with straight, parallel streamlines. The corresponding velocity
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Figure 3.2: A uniform planar shear flow can be generated by two parallel plates
sliding past each other.

gradient tensor is given by

(∇u) =

(
0 γ̇ 0
0 0 0
0 0 0

)
=

1
2

(
0 γ̇ 0
−̇γ 0 0
0 0 0

)
︸ ︷︷ ︸

S

+
1
2

(
0 γ̇ 0
γ̇ 0 0
0 0 0

)
︸ ︷︷ ︸

D

. (3.5)

In cylindrical coordinates, the velocity field u = (γ̇y, 0, 0) of simple shear reads:

u=

(
ṙ
φ̇
ż

)
=

(
γ̇r sinφ cosφ
−γ̇ sin2 φ

0

)
. (3.6)

3.1.3 Extensional Flow

Generally, extensional flow is a rotation free, purely deformational flow (i.e.
S = 0) with a homogeneous flow field. The velocity field of a rotation free flow
is given by [10] (

ux
uy
uz

)
=

1
2

(
−ε̇(1 + b)x
−ε̇(1− b)x

2ε̇z

)
, (3.7)

where 0 ≤ b ≤ 1 and ε̇ is the elongation rate. Several special extensional flows
are obtained for particular choices of the parameter b [10]:

Uniaxial elongational (extensional) flow: (b = 0, ε̇ > 0) (3.8)
Biaxial stretching flow: (b = 0, ε̇ < 0) (3.9)
Planar elongational flow: (b = 1) (3.10)

Fig. 3.3 shows a cylindrical filament in uniaxial extensional flow with the corre-
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Figure 3.3: Hyperbolic radial streamlines created by stretching of a cylindrical
filament in uniaxial extensional flow.

sponding hyperbolic radial streamlines. The flow field in cylindrical coordinates
is given as

u(x) =

(
ur
uφ
uz

)
=

(
− 1

2 ε̇r
0
ε̇z

)
. (3.11)

Biaxial extensional flow is equivalent to uniaxial extensional flow with reversed
flow-direction.

The velocity field of planar extensional flow (b = 1) is shown in fig. 3.1b and
given in cartesian and cylindrical coordinates as(

ux
uy
uz

)
=

(
−ε̇x
ε̇y
0

)
, and

(
ur
uφ
uz

)
=

(
rε̇(cosφ− sinφ)

ε̇ sin(2φ)
0

)
. (3.12)

3.2 Channel Flows in Low Reynolds Regime

3.2.1 Navier Stokes Equations

The motion of the fluid with velocity field u(x, t) and mass density ρ(x, t) is
described by the equations of conservation of mass, momentum and energy [10]:
For incompressible fluids, the conservation of mass equation ∂ρ

∂t + (∇ · ρu) = 0
reduces to the continuity equation:

(∇ · u) = 0. (3.13)

The conservation of momentum yields the equation of motion:

ρ
∂u
∂t

+ ρ(u · ∇)u = −[∇ · π] + f, (3.14)

where π is the total stress tensor and f are body forces acting on the fluid. The
total stress tensor of incompressible fluids π = pδ + σ contains the hydrostatic
pressure p and the stresses due to velocity gradients in the fluid. These stresses
occur during deformation of a fluid element in flow and are expressed in the
stress tensor σ[10]. In a Newtonian fluid, σ is related to the deformation rate
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tensor D by the steady-state viscosity η, which is a material function of the
fluid (see sec. 3.3.1):

σ = −2ηD (3.15)

With this constitutive equation the total stress tensor becomes π = pδ − 2ηD
Together with eq. (3.14) we obtain the Navier-Stokes equations for an incom-
pressible Newtonian fluid:

ρ(
∂u
∂t

+ (u · ∇)u) = −∇p+ η∆u + f. (3.16)

With given flow geometry and boundary conditions, the flow of a Newtonian
fluid is uniquely defined by eq. 3.16 and can be solved numerically or in simple
cases analytically.

3.2.2 Reynolds Number in Microfluidic Flows

By introduction of a characteristic length L0 and a characteristic velocity u0

the Navier-Stokes equation (3.16) can be made dimensionless [12]:

Re
(
∂ũ
∂t̃

+ (ũ · ∇̃)ũ
)

= −∇̃p̃+ ∇̃2ũ, with Re ≡ ρu0L0

η
. (3.17)

Re is the dimensionless Reynolds number and r̃ = r/L0, ũ = u/u0, t̃ = tu0/L0,
p̃ = pL0/(ηu0) are the dimensionless coordinates, velocity, time and pressure,
and ∇̃ = L0∇ is the dimensionless Nabla-operator. The Reynolds number is a
measure for the ratio between the inertial and the viscous forces in the flow. For
Reynolds numbers up to Re ≈ 2000 the flow in straight channels is generally
laminar, for Re > 2000 the flow becomes turbulent [102]. For small Reynolds
numbers, the flow is viscosity dominated and the left hand side of eq. (3.16) can
be neglected, yielding Stokes flow described by the linear Stokes equation [12]:

0 = −∇p+ η∆u. (3.18)

Due to the small characteristic length L0 on the order of typically 10-1000 µm,
the Reynolds number in microfluidic flows is usually Re < 2000, so that laminar
flow is guaranteed. However, Re� 1 is often not fulfilled, so that inertial effects
may not be generally neglected, especially in oscillatory flows.

3.2.3 Laminar Channel Flow

In laminar flow conditions, analytical solutions can be obtained for the pressure-
driven, steady-state flow of Newtonian and power-law fluids in straight, rigid
channels with constant cross section and no-slip boundary condition at the chan-
nel walls in some geometries. For the simple case of a Newtonian fluid in a
circular channel, the dependence of the flowrate on the pressure drop along
the channel is given by the Hagen-Poiseuille equation Q = πR4∆p

8ηL . The corre-
sponding parabolic flow profile and the Newtonian wall shearrate γ̇w are given
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by:

uz(r) =
∆pR2

4ηL

[
1−

( r
R

)2
]
, γ̇w =

4Q
πR3

. (3.19)

While for circular channels an analytical solution can be given for power-law
fluids1 as well, no analytic solution is available in general. Some special cases
with analytical solutions are given in section A.3. Moreover, in non-circular
ducts, the shear rate is not constant along the wall. Nevertheless, semi-analytical
solutions for Q(p) using average wall shearrates can be given with the help of
numerically determined shape factors. Generally, the averaged wall shearrate
of a power-law fluid flowing through a channel with an arbitrary constant cross
section of area D can be given in the form

γ̇w =
Q

h̃3
· Fγ̇(n), (3.20)

where h̃ =
√
D is the average diameter of the channel and Fγ̇(n) is a shape

factor depending on the cross sectional geometry of the channel and the power-
law index n of the fluid (comp. eqs. A.78, A.83, A.85). The shearrate dependent
viscosity η(γ̇w) of the fluid can be determined by measuring the pressure drop
∆p along a channel section of length L in fully developed flow as

η(γ̇w) =
D2∆p
QL

F ?(n), (3.21)

where F ?(n) is a function of the cross sectional geometry and the power-law
index n of the fluid (see eq. A.79, A.86). Thus, the hydrodynamic resistance of
a channel with constant cross section and length L is given by

R =
∆p
Q

=
η(γ̇w)L
D2F ?(n)

(3.22)

for power-law fluids.

3.2.4 Numerical Determination of Shape Factors Fγ̇ and F ?

For the flow of non-Newtonian fluids in channels with rectangular cross section
the hydrodynamic resistance R = ∆p/Q and the dependence of the wall shear
rate on flowrate Q and powerlaw index n have to be determined numerically.
For a power-law fluid, channel resistance and shearrate can be expressed by
eqs. 3.22 and 3.20 with the numerical factors F ?(h/w, n) and Fγ̇(h/w, n) which
depend on the channel aspect ratio h/w and the exponent n of the shear viscos-
ity. For the evaluation of experiments with channels of different aspect ratios,
the flowrate and the averaged wall shear rate of a powerlaw fluid with exponents
n ∈ [0.2; 1] have been determined by FEM-simulations in rectangular channels

1 the viscosity of a power-law fluid depends on the shear rate as η(γ̇) = Aγ̇n−1, see section
3.3.1
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with aspect ratios from h/w = 0.4 to 1. Fig. 3.5 shows contour plots of the eval-
uated shape factors F ?(h/w, n) and Fγ̇(h/w, n). Comparison of the numerical
results for the Newtonian fluid (n = 1) with the analytical expressions given
in section 3.2.3 showed a numerical error smaller than 10% for all geometries
under investigation. The velocity profiles u(x) across the midplane of the chan-
nel at z = h/2 show that a decreasing power-law index n corresponds with an
increase of the exponent in the curve describing the shape of the flow profile.
Fig. 3.4 exemplarily shows the numerically determined flow profiles in a channel
with h/w = 0.8 for a Newtonian fluid (n = 1, blue curve) and a strongly shear
thinning fluid (n = 0.35, red curve). The flow profiles can be fitted with the
shape obtained in cylindrical and slit flow geometry (h/w = 0, see eq. A.77):

u(x) = umax

[
1−

( x

w/2

)m
]
. (3.23)

The fits are shown by the dashed black curves in fig. 3.4. The comparison to
curves fitted with the analytically predicted exponents for cylindrical channels
m = 1/n+1 (dotted lines) shows, that the flow profiles in rectangular and cylin-
drical geometry are similar, yet the fits for cylindrical geometry yield slightly
higher exponents mfit.

Figure 3.4: Flow profiles in a rectangular
channel with aspect ratio h/w = 0.8 de-
termined by FEM-simulation at z = h/2.
Blue curve: Flow profile of Newtonian fluid
n = 1, dashed curve: fit according to eq. 3.23
yielding an exponent mfit = 2.1, which is
slightly above the theoretical value mth =
m = 1/n + 1 = 2 of a parabolic flow pro-
file in a circular channel shown by the dot-
ted curve. Red curve: Flow profile of shear-
thinning fluid with n = 0.35; dashed curve:
fit according to eq. 3.23, exponent mfit = 4.3,
dotted curve : theoretical flow profile for cir-
cular channel with m = 1/n+ 1 = 3.9.

3.3 Viscosity of Complex Fluids

Generally, the viscosity of a fluid is a material function relating the stresses
caused by friction in a fluid under flow to the underlying velocity gradient in a
constitutive equation. Especially in complex fluids, the stress tensor σ is not
only depending on the geometry of the deformation but also on the deformation
history of the fluid. According to the deformation properties, different constitu-
tive equations can thus be formulated, which define different viscosity functions
for the same fluid.
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Figure 3.5: Shape factors Fγ̇(h/w, n) and F ?(h/w, n) in dependence of shear
viscosity exponent n and channel aspect ratio h/w. Fγ̇(h/w, n) and F ?(h/w, n)
have been evaluated for n = 0.2, 0.3, ..., 1 and h/w = 0.4, 0.6, 0.8, 1 from FEM
simulations. For n < 0.4 and h/w > 0.6 the simulation did not converge.

3.3.1 Steady State Viscosity

In many flows the fluid is deformed on a time scale much longer than the fluid’s
relaxation time. It is therefore useful to analyze fluids in flows with constant
stretch history, where the velocity gradient along the streamlines is constant, so
that for long times the stress tensor σ is solely depending on the velocity gradient
tensor A. This relationship defines the steady state viscosity of the fluid. For
Newtonian fluids the steady-state viscosity is a constant which is independent
of the form of the velocity gradient tensor and the flowrates. Furthermore, the
stress is not altered by the rotational component of the flow, so that the stress
in a Newtonian fluid depends only on the deformation rate tensor and is given
by the constitutive equation (3.15) introduced in section 3.2.1:

σ = −2ηD (3.24)

In contrast, the stress occuring in non-Newtonian fluids generally changes with
the flow rate and can be substantially different when the deformation is accom-
panied by a simultaneous rotation. Thus the relation between σ and A depends
on both the flow rates and the exact form of A which makes it very difficult
to find a constitutive equation defining the general steady-state viscosity of a
complex fluid. The fluid properties are therefore usually described by defining
material functions for special flow fields, namely the shear viscosity in viscomet-
ric flows and the extensional or elongational viscosity in extensional flows [10].
Consequently, in the literature on the rheology of complex fluids it is common
to classify steady flows according to these two basic flow types into shear flows,
extensional flows and mixed flows (i.e. a superposition of shear and extensional
flow) rather than into strong, marginally weak and strictly weak flows (see. sec-
tion A.1), although a mixed flow in this sense can either be strong or strictly
weak with completely different behaviour of the fluid [65].
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Steady-State Shear Viscosity

The steady state shear viscosity η(γ̇) is defined in simple shear flow with u =
(γ̇y, 0, 0) as the proportionality factor between Axy = γ̇ and the corresponding
element of the stress tensor which is the shear stress σxy[10]:

σxy = η(γ̇)Axy = η(γ̇)γ̇. (3.25)

Generally η(γ̇) is a function of the shear rate γ̇. The viscosity of Newtonian
fluids is frequently named µ, the kinematic viscosity ν is defined as ν = µ/ρ.
Note that although Axy is the only nonzero element of A, the other elements
of σ do not necessarily all vanish in non-Newtonian fluids. These normal forces
manifest in many non-Newtonian phenomena like the rod climbing observed in
stirred polymer solutions. To characterize the normal stresses in shear, two more
material functions Ψ1,Ψ2 similar to the steady-state shear viscosity are defined,
which are called the first normal stress difference and the second normal stress
difference. A detailed explanation is given in reference [10].

There are many well-established devices to measure shear viscosity in dif-
ferent flow geometries including capillary rheometers, rotational cylinders and
plate-plate rotational rheometers. To determine the shear viscosity curves η(γ̇)
for the complex fluids used in the experiments in this work, a cone-plate rheome-
ter was used, where the viscosity is determined by measuring the torque needed
to shear the fluid in the gap between the bottom plate and the rotating cone.

Steady-State Extensional Viscosity

The velocity field of rotation free flows is described by eq. 3.7 and the according
stress tensor in its most general form reads [10]:

π = pδ + σ =

(
p+ σxx 0 0

0 p+ σyy 0
0 0 p+ σzz

)
(3.26)

For incompressible fluids there are only two normal stress differences of experi-
mental interest [10] and corresponding material functions Λ1,Λ2 are defined:

first normal stress difference: σzz − σxx = −Λ1(ε̇, b)ε̇ (3.27)
second normal stress difference: σyy − σxx = −Λ2(ε̇, b)ε̇. (3.28)

As in the steady state the stress in the fluid depends only on the velocity gradient
A, the two viscosity functions depend only on the elongation rate ε̇ and the flow
type parameter b [10]. The extensional viscosity Λ(ε̇) (or elongational viscosity)
is defined as the viscosity function for the special rotation free flow with b = 0
(uniaxial extensional flow) where due to the cylindrical symmetry the second
normal stress difference vanishes σyy − σxx = 0 [10]:

Λ(ε̇) = Λ1(ε̇, 0) (3.29)
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Similarly, we can define an extensional viscosity Λp(ε̇) for planar extensional
flow (b = 1):

Λp(ε̇) = Λ1(ε̇, 1). (3.30)

With σ = −2ηD the first normal stress difference for a Newtonian fluid in
rotation free flow gives

σzz − σxx = −(3 + b)ηε̇ (3.31)

which yields an extensional viscosity of Λ = 3η. The ratio between extensional
and shear viscosity is called Trouton ratio Tr and is thus Tr = 3 for a Newtonian
fluid in uniaxial extensional flow. For non-Newtonian fluids with rate dependent
viscosities, the Trouton ratio is defined as Tr = Λ(ε̇)/η(γ̇) with ε̇ = γ̇ and can
reach values on the order of Tr = 103 . . . 104.

Constitutive Equations in Steady State Flows

A constitutive equation frequently used to describe rate dependent viscosities is
the power-law equation. A power-law fluid is defined as a fluid, where the shear
or extensional viscosity follows the deformation rate with

η(γ̇) = Aγ̇n−1 Λ(ε̇) = Bε̇k−1, (3.32)

where n, k > 0 are the power-law exponents of shear and extensional viscosity.
For n = k = 1 the fluid is Newtonian, for 0 < n < 1 the viscosity drops with
the shear rate and the fluid is called shear-thinning, for n > 1 the fluid is shear-
thickening. For most complex fluids the viscosity is well described by eq. 3.32
only in a certain range of flow rates, so we can rewrite eq. 3.32 locally around
γ̇0, ε̇0:

η(γ̇) = η0 ·
( γ̇
γ̇0

)n−1

, Λ(ε̇) = Λ0 ·
( ε̇
ε̇0

)k−1

(3.33)

Many non-Newtonian fluids, especially polymer solutions, behave like a New-
tonian fluid at low flow rates, obey a shear-thinning powerlaw at intermediate
flow rates until the viscosity drops down to the solvent viscosity in the high
shear rate regime. A suitable constitutive equation describing this behaviour is
the Carreau-Yasuda model [10]:

η(γ̇)− η∞
η0 − η∞

= (1 + (λγ̇)a)(n−1)/a (3.34)

Here, η0 is the viscosity at zero shear rate, η∞ is the solvent viscosity, λ is a time
constant, n corresponds to the powerlaw exponent n in the powerlaw regime and
a is a dimensionless parameter describing the transition between the Newtonian
and the shear-thinning regime.



4. POLYMER DYNAMICS IN SHEAR FLOW

Due to the inherently large number of degrees of freedom involved, deciphering
the configurational dynamics of individual macromolecules in flow remains a
challenging task even in the relatively simple case of linear polymers in dilute
solution without intermolecular hydrodynamic interactions. Intensive research
has been performed studying the complex behaviour of single flexible polymers,
which has been first observed experimentally and described by Chu, Shaqfeh et
al. [100, 93]. The polymer’s response to flow was found to be determined by
its entropic elasticity and it was possible to model its behavior via simulations
or dumbbell models [18, 15, 31] and to study ensemble properties rather than
the dynamics of individual flexible molecules[41, 48]. Results based on a normal
mode analysis of a perturbation extension of stiff filaments are available for the
description of semiflexible filaments [78]. For flexible filaments, three modes of
shear-induced stretching transitions have been discussed [107]: recoil, restretch,
and tumble. Cross-correlations between thickness and extension fluctuations
revealed a causal chain relationship leading to four phases of motion: thicken-
ing, stretching, thinning, and crumpling recoiling. In the limit of thermal [26]
and non-thermal [50] rodlike filaments their conformation is set by the bending
energy. With increasing flexibility of the filaments the coupling of the flow to
their conformational dynamics and the effect of persistence length needs yet to
be explored. A transition from enthalpic to entropic response of polymers in
shear flow has been proposed based on a Gaussian semiflexible polymer model
and solved analytically for the two limiting cases of stiff rods and fully flexible
polymers [115, 116]. An experimental confirmation as well as the continuous
description, which captures all the regimes from stiff to flexible is still lacking.
To this end the origin and effect of the force balances acting on single polymers
need to be identified. Yet, the experimental observations are limited by the op-
tical resolution, which does not allow the resolution of the local configurational
dynamics of flexible polymers. Due to the optical accessibility, semiflexible actin
filaments can thus be used as an ideal model system to study the coupling of
the flow to the conformational dynamics. Microfluidic channels combined with
fluorescence microscopy provide a defined flow field in which both the spatial
conformation of the polymer and its temporal evolution can be captured and
studied.

In this chapter, we show how a microfluidic device combined with a semiauto-
mated moving microscope stage enables us to directly observe the full conforma-
tional dynamics of actin filaments in simple shear flow. After a brief discussion
of conformations and thermal motion of polymers in equilibrium, the coupling
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of the diffusive motion to the deterministic drift due to shear-induced friction
forces is addressed. Based on the experimental findings, an analytical model de-
scribing the balance of frictional drag, bending and elastic forces is derived for
the dynamics of filaments in the stiff and semiflexible regime. Comparison with
experimental data for flexible polymers of other groups as well as additional
Brownian dynamics simulations shows, that a straightforward extension of the
model to the flexible regime, which is most important in practical applications,
can be done. Subsequently, we discuss how the observed dynamics of individual
polymers is linked to the non-Newtonian bulk properties of polymer solutions.

4.1 Equilibrium Properties of Polymers in Dilute Solution

To understand and quantify the experimentally observed dynamics of polymers
in shear, we make use of some well established concepts for the description of
equilibrium polymers in dilute solution. Generally, there are several coarse-
grained models to represent the conformation and dynamics of flexible linear
polymer chains in solution. These include discrete models like the bead-stick
model, the bead-spring model and the pearl-necklace model [108], where the
polymer is modeled by a large number of pearls or beads representing a monomer
subunit, which are connected either by rigid rods or springs. Alternatively, for
a description of the polymer in the flexible as well as in the semiflexible and
stiff regime, continuos models like the worm-like-chain model (WLC-model) are
used [47]. In the discrete description, the polymer conformation is given by
the n position vectors of the monomers Ri. For the continuous description we
parametrize the polymers conformation by the arc length σ ∈ [0;Lc], so that
the local position of a polymer segment is given by r(σ).

We will neglect excluded volume effects and intermolecular hydrodynamic
interactions. In this case, the equilibrium conformation of a linear flexible poly-
mer in dilute solution can be described as a 3-D random walk of n steps. A
chain with such a random walk conformation is called ideal chain and a solvent
in which a polymer adopts this conformation is called theta solvent.

4.1.1 Persistence Length Lp and Kuhn length bk

The mechanical stiffness of a polymer filament in the continuous ideal chain
model is determined by the flexural rigidity EI, where E is the filaments elas-
tic Young modulus and I is the geometrical moment of inertia, which depends
on the filaments cross section. In solution, the chain undergoes thermal fluc-
tuations. The average cosine of the difference in the local orientational angle
∆θ(σ) = θ(σ)− θ(0) between two points of the chain seperated by a distance σ
along the chain is found to decay exponentially with the distance σ in 3D as [47]

〈cos[∆θ3D(σ)]〉 = exp
(
− σ

Lp

)
, where Lp =

EI

kBT
(4.1)

is the characteristic decay length of the orientational correlation of the chain
called the persistence length. With σ = Lc it follows from eq. 4.1 that in the
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flexible limit Lc/Lp � 1 the average orientational angle between the polymer
ends is expected to be ∆θ = π/2. This indicates a completely random orienta-
tion of the polymer ends: The probability density for the angle α between two
randomly orientated vectors in 3D is p(α) = sin α

2 , so that the average angle
between them follows as

〈α〉 =
∫ π

0

αp(α)dα =
1
2

∫ π

0

α sinα =
1
2
[sinα− α cosα]π0 =

π

2
(4.2)

In the flexible limit, the worm-like-chain model is thus equivalent with the dis-
crete model of a freely jointed chain, where the polymer is represented by
Nk = Lc/bk freely rotating chain segments of length b performing a random
walk (FJC-model). The segment length bk is given by the persistence length
and is called the Kuhn length bk = 2Lp, and Nk gives the number of Kuhn steps
of the random walk [47]. With a persistence length of Lp = 16µm, the actin
filaments with lengths of 3 − 40µm used in the experiments fall in the regime
of stiff (Lc � Lp) and semiflexible (Lc ≈ Lp) polymers.

4.1.2 End-to-End Vector Length Ree

The worm-like-chain model gives an analytical formula for the mean squared
length of the end-to-end vector Ree as a function of contour and persistence
length Lc, Lp [47]:

〈R2
ee〉 = 2L2

p

[
exp

(
−Lc

Lp

)
− 1 +

Lc

Lp

]
(4.3)

In the stiff limit, the polymer can be approximated with a rod conformation,
consequently eq. 4.3 reveals an end-to-end length equal to the contour length Lc.
In the flexible limit we get 〈R2

ee〉 = 2LpLc, which corresponds to the random
walk result of the discrete FJC-model: The i-th step with length bk of the
random walk is always independent of the (i − 1) steps taken before. With
an average perpendicular orientation of two random vectors, the mean-squared
end-to-end length Ree

i
2 of a random walk with i steps can thus be calculated as

〈Ree
i

2〉 = 〈Ree
i−1

2〉+ b2k, so that 〈Ree
n

2〉 = nb2k =
Lc

2Lp
(2Lp)2 = 2LpLc (4.4)

follows from iteration from i = 2...n.
The mean squared end-to-end distance can be used for extending the defi-

nition of the Kuhn-length bk and number of Kuhn steps Nk to the semiflexible
regime by setting

bk ≡
〈R2

ee〉
Lc

and Nk = L2
c/〈R2

ee〉. (4.5)

Radius of Gyration Rg

Another important quantity characterizing the polymers equilibrium conforma-
tion is the radius of gyration Rg. In the discrete description of the polymer as a
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chain of n connected monomers with position vectors Ri, the radius of gyration
is defined as [88]

R2
g ≡

1
n

n∑
i=1

(Ri −Rcom)2 with Rcom ≡ 1
n

n∑
i=1

Ri, (4.6)

where Rcom is the position of the center of mass of the polymer. Adopting
eq. 4.6 to the continuous description, the radius of gyration is given as

R2
g =

1
Lc

∫ Lc

0

(r(σ)− rcom)2dσ, with rcom =
1
Lc

∫ Lc

0

r(σ)dσ. (4.7)

For the worm-like-chain model, the mean-square of the radius of gyration can
be calculated as [116]

〈R2
g〉 =

1
3
LpLc

{
1− 3Lp

Lc
+

6L2
p

L2
c

[
1− Lp

Lc
(1− exp(−Lc/Lp))

]}
, (4.8)

which gives a radius of gyration of R2
g = L2

c/12 for the rod in the stiff limit
and R2

g = LpLc/3 = R2
ee/6 in the flexible limit. The same result for the flexible

limit can be derived in the discrete description for a random walk conformation
of the polymer [88]:

〈R2
g〉 =

b2N

6
=
〈R2

ee〉
6

(4.9)

4.1.3 Diffusion of Linear Polymers

Lateral Diffusion

The three dimensional mean-square displacement for the lateral diffusive motion
of a colloidal particle during the time t is given as [88]:

〈[r(t)− r(0)]2〉 = 2NDt N=3= 6Dt (4.10)

where N is the number of spatial dimensions for the diffusion. According to
the Einstein relation, the diffusion coefficient D is given by the ratio of thermal
energy and friction coefficient ζ of the particle [88]: D = kBT/ζ. Assuming
an isotropic friction coefficient ζb per monomer and neglecting hydrodynamic
interactions between polymer subunits, the diffusion coefficient for the center
of mass motion of the polymer is independent of the internal conformation and
given as

D =
kBT

nζb
=
kBT

cLLc
(4.11)

where the second expression represents the continuous description with the
isotropic friction coefficient cL per unit length. When an anisotropic fric-
tion coefficient is used (see section 4.2.1), the lateral diffusion becomes con-
formation dependent. For a straight rod conformation with drag coefficients
ζ⊥ = 2ζ‖ ≈ nζb, resp. c⊥ = 2c‖ ≈ cLLc the diffusion parallel to the rod is
enhanced, because hydrodynamic interaction reduces the friction tangential to
the rod: D‖ = 2D⊥ = 2D.
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Rotational Diffusion of Stiff, Semiflexible and Flexible Polymers

Apart from the lateral displacement of the center of mass, thermal motion also
randomly changes the polymer orientation. If internal rearranging motions of
the polymer are neglected, for short times the diffusion of the orientational
vector u(t) ≡ Ree/

√
R2

ee can be described as a 2D random walk with an angular
mean-square displacement of

〈α(t)2〉 = 4Drt (4.12)

where α(t) is the angle between u(t) and u(0), and Dr is the rotational dif-
fusion coefficient. As the available angular space is finite, for long times the
angular mean-square displacement saturates at the value corresponding to the
value expected for two uncorrelated vectors, which can be calculated with the
probability density p(α)dα = sinαdα as 〈α2(t → ∞)〉 = (π2 − 4)/2. Thus,
the angular mean-squared-displacement of a polymer saturates at π2/2− 2. It
is more convenient to discuss the rotational diffusion in terms of the differ-
ence of the orientation vectors (u(t) − u(0)) instead of the angular difference
α(t). For small angular differences α � 1, both descriptions are equivalent
α(t) ≈ u(t) − u(0). The mean-square-displacement MSDr(t) of the orienta-
tional vector can be calculated from the correlation function of the orientation
vectors [27]:

MSDr(t) ≡ 〈(u(t)− u(0))2〉 = 2(1− 〈u(t)u(0)〉). (4.13)

The average correlation function decays exponentially with the orientational
relaxation time τr[27]:

〈u(t)u(0)〉 = exp(−t/τr) = exp(−2Drt), (4.14)

where τr = 1/(2Dr) is given by the rotational diffusion coefficient Dr. Thus,
the orientational diffusion of a polymer without internal rearrangements is given
as [27]

MSDr(t) = 2(1− exp(−2Drt)), (4.15)

which reproduces the linear mean-square displacement MSDr(t) = 4Drt of a
2D random walk for short times. For long times t → ∞, the orientational
vectors are uncorrelated and thus on average perpendicular to each other, so
that their average distance is

√
2 and the mean-square displacement saturates

at MSDr(t→∞) = 2.
As there is no analytical expression available in the literature describing

Dr in the entire regime of rigidities, the rotational diffusion coefficient Dr has
been derived for the average equilibrium conformation of the polymer in the
appendix B.3 yielding

Dr =
kBT

γ
=

12kBT

c⊥LcR2
= Drod

L2
c

R2
, (4.16)
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where we introduced the rotational diffusion coefficient of the stiff rod

Drod =
12kBT

c⊥L3
c

=
24kBTLp

ζbL3
c

(4.17)

and an effective polymer extension

〈R2〉 ≡ 1
2
(
〈R2

ee〉+ 12〈R2
g〉
)

(4.18)

calculated from the equilibrium end-to-end vector length 〈R2
ee〉 and the radius of

gyration 〈R2
g〉. In the stiff limit, R2 approaches R2

ee = L2
c and eq. 4.16 reproduces

the diffusion coefficient of the rod Drod = 1/(2τr). In the flexibe limit, the
effective extension approaches R2 → 3

2R
2
ee = 3LpLc giving Dr = 1/(3τR), where

τR =
∞∑

i,odd

τi =
π2

8
τ1 =

c⊥LpL
2
c

12kBT
(4.19)

is the Rouse relaxation time of the polymer with [27]

τi =
ζbn

2b2k
3π2kBTi2

=
2

3π2

c⊥LpL
2
c

kBTi2
. (4.20)

Herein, we used an isotropic friction coefficient cL = c⊥ = ζb/bk, n = Lc/bk
and bk = 2Lp to yield the continuos description. To crosscheck with existing
theories, eq. 4.16 was compared with the rotational diffusion constant obtained
from the numerical results for the characteristic times τi of semiflexible and
flexible polymers given in Winkler et al [41], where

Dr =
1

2τr
, τr =

3
2

∞∑
i,odd

τi (4.21)

was used. Remarkably, an excellent agreement with a deviation below 3% was
discovered, which confirms the use of eq. 4.16 for the calculation of the rotational
diffusion coefficient.

Eq. 4.15 only holds for polymers without any internal motion, meaning that
they are ”frozen” in an averaged conformation. Thus, eq. 4.15 can be understood
as describing the average orientation of the polymer on a longer timescale, where
fast internal conformational changes are averaged out. On the short timescale,
the internal rearranging motions of the polymer additionally contribute to the
mean-square displacement of the end-to-end vector orientation. Thus, MSDr(t)
becomes nonlinear in time with increasing flexibility of the polymer. In the flex-
ible limit, MSDr(t) is subdiffusive with MSDr(t) ∼ t0.5. An approximate ex-
pression for the nonlinear mean-square displacement of semiflexible and flexible
polymers is derived in the appendix in section B.1 yielding

MSDr(t) = 2
∞∑

i,odd

D1

Di
ai (1− exp(−2Dit)) (4.22)
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where a1 = 1 and ai = 2
3 for i > 1 and Di = 1/(3τi) given by the relaxation

times τi as defined in [41]. Note that this is only a first order approximation,
namely the resulting saturation value of MSDr(t = ∞) = π2/4 is too high by
a factor of π2/8.

The above results have been determined by assuming an isotropic friction
coefficient cL = c⊥. We can approximately include the reduction of the friction
tangential to the filament by hydrodynamic interactions by using c‖ = 1

2c⊥ for
the tangential friction. In the stiff rod limit, all friction occuring upon a rotation
of the polymers end-to-end vector is perpendicular to the rod. Thus, introducing
c‖ leaves the obtained result for Dr unchanged in the stiff limit. With increasing
flexibility, the monomeric segments of the polymer are increasingly randomly
orientated with respect to the frictional drag. Splitting the drag into the parallel
and perpendicular components and averaging over all possible orientation angles
yields an effective friction coefficient of ceff = c⊥/

√
2 for the completely random

orientation in the flexible limit. On the other hand, the calculated diffusion
coefficient Dr = DrodL

2
c/R

2 decreases from Dr = DrodL
2
c/R

2
ee in the stiff limit

by a factor of 2/3 to Dr = 2
3DrodL

2
c/R

2
ee during the transition from stiff to

flexible. With
√

2× 2
3 ≈ 1 this suggests, that

Dr = Drod
L2

c

R2
ee

(4.23)

can be taken as a fairly good approximation for the diffusion coefficient in the
entire regime of rigidities under the assumption of an anisotropic friction coef-
ficient c⊥ = 2c‖.

4.2 Tumbling Dynamics of Single Polymers in Shear Flow:
Theoretical Framework

Since the behaviour of single DNA filaments in extensional flow was first ob-
served [100, 93], a lot of progress has been made in describing the dynamics
of flexible polymers with simulations or dumbbell models [18, 15, 31, 96, 24].
From theoretical analysis [41, 48] and experimental observations, three modes
of shear-induced stretching transitions had been discussed for the entropy dom-
inated flexible polymers [107]: recoil, restretch and tumble. In contrast, the
polymer conformation in the stiff and semiflexible regime is rather dominated
by the bending energies in the filament. While the transition between enthalpic
and entropic response of the filament to the shear forces has been proposed
and analytically solved for the limiting cases of stiff and fully flexible poly-
mers [115, 116], a continuos description applying to the entire regime of rigidities
including the semiflexible regime is still lacking.

In this section we will derive a theoretical framework describing the dynamics
of linear polymers in shear. The model is based on the experimental findings
with semiflexible actin filaments, which will be shown and discussed in the
subsequent section.
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(a) (b)

Figure 4.1: (a) The rotational and elongational flow components of simple shear
lead to a rotation and simultaneous deformation of a molecule subjected to
shear. (b) Center of mass coordinate system with shear gradient into the nega-
tive y-direction and conformation coordinate σ ∈ [0;Lc].

4.2.1 Dynamics of Center of Mass

The flow-gradient plane shall be aligned with the x, y plane of the coordinate
system with the gradient of the shear flow γ̇ pointing into the negative direction
of the y-axis (see fig. 4.1b). With an isotropic friction coefficient per unit length
cL, the local frictional force exerted on a polymer segment of length dσ is directly
proportional to the relative velocity between the rod segment ṙ(σ) ≡ v(σ) and
the surrounding fluid u(r(σ)):

dFfrict(σ) = cLvreldσ = cL · (u(r(σ))− v(σ)) dσ. (4.24)

As all the intermolecular forces mutually exerted by parts of the polymer have
to vanish in total, the polymers center of mass motion Ṙcom is determined by
the sum over the frictional forces on the local segments

Ffrict
com =

∫ Lc

0

dFfrict(σ) =
∫ Lc

0

cL · (u(r(σ))− v(σ)) dσ. (4.25)

Let ucom be the fluid velocity at the center of mass, and y(σ) be the y-distance
of a polymer segment with respect to the center of mass. Then, the fluid velocity
u(r(σ)) is given by u(r(σ)) = ucom − y(σ)γ̇ex and we can rewrite eq. 4.25 as:

Ffrict
com =

∫ Lc

0

cL · (ucom − y(σ)γ̇ex − v(σ)) dσ = cLLc(ucom − Ṙcom), (4.26)

where we used
∫
y(σ)dσ = 0 from eq. 4.7 and Ṙcom = 1

Lc

∫ Lc

0
v(σ)dσ from

differentiation of eq. 4.7. As long as the thermal motion is negligible with
respect to the frictional forces, friction dominates the polymer dynamics and we
get the equation of motion for the center of mass as

mR̈com = cLLc(ucom − Ṙcom) = cLLcvcom
rel . (4.27)

Hence, the polymer gets accelerated into the direction of the relative velocity
between the polymer and the fluid at the center of mass vcom

rel until the polymer’s
center of mass velocity equals the fluid’s velocity. In an overdamped system
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where the frictional forces dominate over the inertial forces we can therefore
assume, that the polymer’s center of mass follows the fluid streamlines and
vcom

rel = 0.
The above considerations neglect any hydrodynamic interaction between the

local polymer segments. However, the friction coefficient cL is anisotropic for
non-spherical objects. For a long rod with length L and diameter d and L� d,
end effects can be neglected and the frictional force for dragging the rod with
velocity vrel through the water is given as [47]:

Ffrict = ζ⊥u⊥ + ζ‖u‖, with ζ⊥ = 2ζ‖ and ζ‖ =
2πηL

ln(L/d)
. (4.28)

Hereby, ζ⊥, ζ‖ are the anisotropic drag coefficients of the rod. In a WLC repre-
sentation of the polymer as a ”snake” with cylindrical cross section of diameter
d it is therefore reasonable to introduce an anisotropic friction coefficient per
unit length with

c⊥ =
4πη

ln(L/d)
and c‖ =

2πη
ln(L/d)

, (4.29)

which accounts for hydrodynamic interactions between neighbouring, aligned
monomers reducing the friction tangential to the polymer segment. It is obvious
that the local lengthscale L over which the polymer friction is approximated by
the rod expression in eq. 4.29 should be in the range of the persistence length Lp.
Due to the anisotropy in the friction coefficient, an asymmetric conformation
of the polymer may lead to rheophoretic forces [61, 60] inducing a small drift
of the center of mass which will be neglected here. It is therefore convenient to
discuss the dynamics in the center of mass system of the polymer where only
rotational motions and conformational changes occur.

The local fluid velocity at the center of mass Rcom can thus be determined
from the measured filament trajectory. From the known flowprofile of the New-
tonian dilute actin solution and the optically detected lateral position of the
filament in the channel, the local shearrate γ̇ in the vicinity of Rcom was eval-
uated for the tumbling filaments.

Weissenberg number

The dimensionless Weissenberg number Wi characterising the flow strength ex-
perienced by the polymers is given as the product of the flow rate and the
characteristic relaxation time τrel of the polymer. For polymers tumbling in
shear, the characteristic timescale is given by the rotational relaxation time
τr = 1/(2Dr), which is determined by the rotational diffusion coefficient Dr.
Together with the shear rate γ̇, the flow strength is characterized by

Wi = γ̇τr =
γ̇

2Dr
. (4.30)
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4.2.2 Tumbling Time τT

As we do not distinguish between the polymer ends, we define the characteristic
timescale of the rotational motion in shear as the tumbling time τT in which
the orientation of the polymer is reversed. The tumbling time τT is hence
given by the time interval, in which the end-to-end vector of the polymer is
rotated by an angle π in the direction of the rotational component of the flow.
In the experiments, τT was determined as the average time interval between
consecutive end-to-end vector orientations in the direction of the shear gradient
(φ = π/2 + nπ, with φ denoting the angle between the end-to-end vector Ree

and the flow direction).
The shear flow is a mixture of a rotational flow with ω = γ̇/2 and an elonga-

tional flow with ε̇ = γ̇/2 (see section A.2). For spherical, rigid objects like hard
spheres, the friction forces originating from the pointsymmetric elongational
flow field cancel out. Thus, the rotational component of the flow will cause a
rigid sphere in shear to rotate with an angular velocity of φ̇ = γ̇/2. As the
thermal motion of the sphere is undirected, this is valid for both non-thermal
and Brownian spheres. Thus, the tumbling time of a sphere in shear is given as

τT =
π

φ̇
=

2π
γ̇
, (4.31)

so that the tumbling frequency fT = 2π/τT = γ̇ is equal to the shear rate.
In general, linear polymers like the used actin filaments are non-spherical

and deformable in substantially strong flows. Thus, the tumbling dynamics
are more complicated and will be discussed for stiff, semiflexible and flexible
polymers in detail in the following.

4.2.3 Stiff Polymers: Brownian Rod Dynamics

If the persistence length Lp is much higher than the contour length Lc, the shear
forces cannot effectively bend the polymer and the polymer conformation can
be approximated by a stiff rod with length Lc. Since then the conformation is
fixed, the dynamics is reduced to rotational motion around the center of mass
located at σ = Lc/2. We first restrict the discussion to thin rods lying aligned
in the shear plane xy, so that the position of the rod is solely determined by
the orientational angle φ (see fig. 4.2). The frictional force on a segment dσ of
the rod is given by eqs. 4.24, 4.28 as:

dFfrict(σ) = ffrict(σ)dσ =
(
c⊥(u⊥(σ)− v⊥(σ)) + c‖(u‖(σ)− v‖(σ))

)
dσ

=
(
c⊥vrel

⊥ + c‖vrel
‖

)
dσ (4.32)

With cylindrical coordinates in the center of mass frame we get r(σ) = σ −
Lc/2, and the tangential and perpendicular velocity components point into the
direction of the coordinates r and φ. With u known from eq. 3.6 we can calulate
the frictional force as

dFfrict(r) =
(

dFfrict
r

dFfrict
φ

)
=
(
−c‖γ̇ sinφ cosφ
c⊥(γ̇ sin2 φ− φ̇)

)
rdr (4.33)
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(a) (c)

Figure 4.2: (a) Schematics of stiff rod in shear flow. For simplification, the rod
is assumed to be aligned to the shear plane xy. (b) The tumbling of thermal
rods in shear can be divided into a deterministic, advective phase (blue) and a
stochastic diffusive phase (red) located symmetrically around the flow aligned
conformation at φ = 0. The seperating angle is denoted as critical angle φc.

with r ∈ [−Lc/2;Lc/2]. As the rod is symmetric about the center of mass at
r = 0, the frictional forces in the radial direction cancel each other in total,
giving Ṙcom = 0. The frictional forces into the angular direction give rise to a
torque of

M =
∫ Lc/2

−Lc/2

rdFfrict
φ =

c⊥L
3
c

12
(γ̇ sin2 φ− φ̇), (4.34)

which will accelerate the rod and make it rotate.

Non-Thermal Rod Dynamics

Without thermal motions, the rod rotation is set by a vanishing frictional force
in the angular direction in the overdamped case, so that the rod will rotate in
shear flow with an angular velocity of

φ̇ = γ̇ sin2 φ. (4.35)

In the above derivation we only considered drag forces arising from a relative
velocity difference which was equal on the length scale of the rod diameter.
However, in the case of full flow alignment at φ = 0 where eq. 4.35 predicts
a metastable fixpoint of the dynamics, there is a non-negligible flow gradient
across the width of the rod, which causes a remaining torque on the rod at
φ = 0. Thus, eq. 4.35 is only strictly valid in the case of thin rods with negligible
aspect ratio d/L ≈ 0. The angular dynamics of a non-thermal cylinder with
finite aspect ratio in shear is described by Jeffery’s equation [26]:

φ̇ = γ̇(sin2 φ+ κ2 cos2 φ), (4.36)

with κ2 = 3
2 (d/L)2 ln(L/d) for long cylinders with negligible end-effects. Eq. 4.36

can be integrated. With φ(t = 0) = 0 it gives

tan[φ(t)] = −κ tan(γ̇κt), and τT = π/(γ̇κ) (4.37)

for the dynamics and the tumbling time of the non-thermal rod[26].
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Brownian Rod Dynamics

For an infinitely thin rod, the advective motion is described by eq. 4.35 with
a stationary point in the fully aligned conformation at φ = 0 and φ = π. As
the rod approaches φ = 0, the diffusive motion becomes non-negligible and
eventually helps the rod to overcome the stationary point. Thus, we can divide
the tumbling motion into two distinct phases: A deterministic advective phase
with insignificant thermal motion, in which the dynamics is set by eq. 4.35,
and a stochastic diffusive phase governed by the rotational diffusion of the rod.
Due to the symmetry of the advective contribution in the Jeffery equation, we
suppose that the angular interval of the diffusive phase is symmetrical about
the aligned state [−φc;φc], where φc is the critical angle seperating advective
and diffusive phase (see fig. 4.2b). The contribution of each phase to the total
tumbling time can now be calculated seperately:

τT = τadv + τdiff (4.38)

The critical angle φc of tumbling thermal rods has been shown [58] to satisfy
〈(d/dt)(φ2/2)〉 = Drod or equivalently φφ̇ = Drod = φγ̇ sin2 φ ≈ γ̇φ3, yielding
the critical angle φc as:

φc =
(
Drod

γ̇

)1/3

. (4.39)

A more demonstrative qualitative derivation of φc can be given as follows: To
determine the angular interval dominated by diffusion [−φc;φc], we approximate
the advective drift strength in the interval by 〈φ̇〉 ≈ φ̇(φc) = γ̇ sin2 φc ≈ γ̇φ2

c for
small critical angles φc � 1. Diffusion and drift are equally strong at φ = φc,
meaning that the time τ−φc→φc

diff = (∆φ)2/(2Drod) = 2φ2
c/Drod needed to pass

the interval of length ∆φ = 2φc by diffusion is equal to the time τ−φc→φc

adv =
∆φ/〈φ̇〉 = 2/γ̇φc needed for an advective drift with velocity 〈φ̇〉. This directly
gives the above result φc = (Drod/γ̇)1/3. With eqs. 4.39 and 4.30 we can express
φc in terms of the Weissenberg number as φc = (2Wi)−1/3 showing that the
condition φc � 1 is fulfilled in strong shear flows where Wi� 1.

The deterministic time τadv can be calculated by integrating the inverse of
eq. 4.35 over the angular interval of advection:

τadv =
∫ π−φc

φc

dφ
φ̇(φ)

=
1
γ̇

∫ π−φc

φc

dφ
sin2 φ

= − 1
γ̇

[
1

tanφ

]π−φc

φc

=
2

γ̇ tanφc
=

φc�1
≈ 2

γ̇φc
= 2D−1/3

rod γ̇−2/3 (4.40)

In the diffusive phase, for φc � 1 a mean first passage time 〈τdiff〉 can be
calculated analytically using standard methods starting out from the Langevin
equation corresponding to eq. 4.35:

φ̇ = γ̇ sin2 φ+
√

2Drot η, 〈η(t)〉 = 0, 〈η(t)η(t′)〉 = δ(t− t′). (4.41)
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where η is the stochastic term describing the thermal motion. It is convenient to
introduce a potential U(φ) = −γ̇φ3/3 so that the deterministic term γ̇ sin2 φ ≈
γ̇φ2 = −U ′(φ) can be regarded as the corresponding force. For φ > φc, the
advective drift force prevents the filament from diffusing back towards φ < φc.
At the other edge of the diffusive interval at φ = −φc, the positive drift force
pushes filaments with φ < −φc back towards φ > −φc. We thus consider an
angle φ sitting in potential U(φ), leaving the valley at barrier located at φ = φc

(adsorbing boundary), and assuming a reflecting boundary at −φc (assuming
positive rate γ̇), using the methods described in ref. [46]. The result is

〈τdiff〉 ≈ (5/3)φ2
c/Drod = (5/3)D−1/3

rod γ̇−2/3, (4.42)

a detailed derivation is given in sec. B.4. Then, with φc = (D/γ̇)1/3 the total
average tumbling time can be calculated from eq. 4.38 as

τT = τadv + 〈τdiff〉 = 2D−1/3
rod γ̇−2/3 +

5
3
D
−1/3
rod γ̇−2/3 =

11
3
D
−1/3
rod γ̇−2/3. (4.43)

With Drod ∼ L−3
c , the tumbling time of the rod is thus directly proportional to

the rod length Lc. We can rewrite eq. 4.43 in terms of the Weissenberg number
as

τT
τr

=
11× 21/3

3
Wi−2/3 (4.44)

Orientational Distribution Function

The stationary probability density function pstat(φ) for the orientation of Brow-
nian rods in shear can be calculated from the Fokker-Planck equation for the
orientational distribution function p(φ, t), see appendix B.5:

∂p(φ)
∂t

=
∂(φ̇(φ)p(φ))

∂φ
+Drod

∂2p(φ)
∂φ2

, (4.45)

with φ̇(φ) = γ̇ sin2 φ from Jeffery’s equation. According to [58], the center of the
peak in the stationary probability density function is in a good approximation
with the critical angle −φc, so that the most probable angle for the rod is
slightly before reaching the fully aligned state. If the rod located at φ = −φc

diffuses into the negative angular direction away from the aligned state, the
advective forces will drive it back to −φc, making −φc a reflective boundary for
the diffusion. If the diffusing rod reaches φc, it escapes the diffusive interval
[−φc;φc] and the advection induces another tumbling flip of the rod. Thus, the
maximum of pstat(φ) is located at the backward boundary between dominating
advective forces and diffusion at −φc.

Out-of-Shear Plane Fluctuations of Brownian Rods

So far we assumed a perfect alignment of the Brownian rod within the shear
plane (xy-plane) for the calculation of the rod dynamics. In reality, the Brow-
nian rod may diffuse out of the shear plane resulting in a non-zero azimuthal
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angle θ 6= 0 betwen the rod and the xy-plane. The velocity field of simple shear
with shear rate γ̇ in spherical coordinates is given as

u =

ṙφ̇
θ̇

 = γ̇

(−r sin2 θ sinφ cosφ
sin2 φ

sin θ cos θ sinφ cosφ

)
. (4.46)

In the advective phase, an infinitely thin rod in overdamped conditions with
θ 6= 0 will thus perform a kayaking motion with [26]:

θ̇ = γ̇ sin θ cos θ sinφ cosφ, φ̇ = γ̇ sin2 φ. (4.47)

Hence, the advective dynamics in the rotational direction of the shear φ are not
affected by θ 6= 0. If θ � 1 is small during the diffusive phase, the diffusive
motion into the φ direction is also not altered by a small azimuthal angle. Then,
the angular dynamics along the φ-axis are correctly described within the θ ≈ 0
approximation used above.
The magnitude of the azimuthal angle in the diffusive phase can be estimated
as follows: As the above discussion for the orientational distribution revealed,
within the diffusive phase the rod spends most of the time near −φc. In the
interval φ ∈ [−π/2; 0], a rod with θ 6= 0 experiences an advective drag of
θ̇ = γ̇ sin θ cos θ sinφ cosφ driving it towards the shear plane with θ = 0. This in-
duced drift makes θ = 0 a stable stationary point with θ̇ = 0 for the θ-advection.
Contrary, θ = ±π/2 is an unstable fixpoint, so that thermal fluctuations will
drive rods away from a perpendicular alignment to the shear plane. Thus,
thermal rods do not stay aligned with the z-axis, although the conformation
perpendicular to the shear plane would be the optimal conformation to reduce
the frictional dissipation.
Within φ ∈ [−φc; 0] the rod thus azimuthally diffuses in a potential well, which
limits the maximum angle that the rod can reach to a critical azimuthal angle
|θ| ≤ θc. The frictional torque T acting on a rod with θ̇ = 0 in the azimuthal di-
rection can be calculated from the velocity component vθ = r sin θ cos θ sinφ cosφ
of the shear as

T (θ, φ) = 2
∫ Lc/2

0
rf frict(r)dr = 2

∫ Lc/2

0
rc⊥vθdr

=
∫ Lc/2

0
r2γ̇c⊥ sin θ cos θ sin 2φdr = 1

24c⊥γ̇L
3
c sin θ cos θ sin 2φ. (4.48)

By integration we get the azimuthal potential U(θ, φ) = −
∫ θ

0
T (θ′)dθ′ for the

diffusing rod:

Uθ(θ, φ) = − 1
48
c⊥L

3
c γ̇ sin 2φ sin2 θ (4.49)

If the time tφc the rod spends in the vicinity of −φc in the diffusive phase is
long enough to explore the potential, the rods averaged absolute value for the
azimuthal angle at −φc can be calculated by equating the potential and thermal
energy Uθ(θc,−φc) = 1

2kBT , which yields

θ2c =
24kBT

c⊥L3
c γ̇

1
sin(2φc)

=
Drod

γ̇
.

2
sin(2φc)

=
2φ3

c

sin(2φc)
≈ φ2

c (4.50)
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Therefore, the typical azimuthal rod orientation at −φc should be given as
〈|θc|〉 = φc. The timescale tUθ

to explore the potential is then tUθ
≈ θ2c/2Drod =

3
10τdiff well below the time spent in the diffusive phase. While the rod diffuses
from φc to φ = 0, it experiences a positive drift in the φ-direction and a focussing
drift towards θ = 0, which vanishes as the rod approaches φ = 0. Thus, the
mean squared azimuthal angle is expected to be slightly higher at φ = 0 than at
φ = φc. Due to the focussing drift, the additional mean squared displacement
away from the flow aligned state θ = 0should be less than φ2

c , and as a lower
limit we will assume 〈θ2〉(φ = 0) ≈ φ2

c . During [0;φc] the rod experiences a
small drift in θ directed away from θ = 0 of strength γ̇ sinφ cosφ and a positive
drift in φ of γ̇ sin2 φ. In the region where the drift is non negligible (φ . φc) the
drift in θ and φ is of comparable strength. Therefore we can assume the mean
squared angle θ2 to increase by the same amount as φ2 during the passage from
φ = 0 to φ = φc, resulting in a lower estimate for θ(φc):

〈θ2(φc)〉 ≥ θ2c + φ2
c = 2φ2

c . (4.51)

In the range of sufficiently strong flow (Wi � 1), the assumption, that the rods
are approximately aligned in the shear plane within [−φc;φc] should therefore
be justified in the calculation of the angular φ-dynamics. As the diffusive forces
dominate over the aligning advective forces once the rod passes −φc, we can
expect the minimum for the mean square azimuthal angle to occur at −φc,
which means that it coincides with the maximum of the probability density
function p(φ).

In the advective regime, the azimuthal trajectory of the rod can be deter-
mined: Division of the two equations of motion in the advection regime for θ and
φ eq. 4.47,4.36, seperation of the variables and integration yields for infinitely
thin rods [26]:

tan[θ(t)]−1 = tan[θ(t = 0)]−1

√
1− cos2[φ(t = 0)]

1− cos2[φ(t)]
= tan[θ(t = 0)]−1 sin[φ(t = 0)]

sin[φ(t)]
.

(4.52)

4.2.4 Semiflexible Polymers: ”U-turn” Tumbling

Buckling Length Lb

A polymer in a straight rodlike conformation rotating in shear following Jeffery’s
equation only experiences frictional forces in the tangential direction. The local
magnitude of the friction force is given by eq. 4.33. In the advective phase above
φc, these radial forces may overcome the critical buckling force of the filament,
which can be calculated from the Euler force

Fc = π2EI

L2
, (4.53)

which gives the critical force for a beam of length L to collapse under com-
pression [47]. For a given flow rate γ̇ we can deduce the critical length Lb at
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which we can expect buckling to occure during the tumbling motion as (see
appendix B.6, eq. B.114):

Lb = 2π3/4RU with RU =
(

4
π

kBTLp

c‖γ̇

)1/4

. (4.54)

Thus, for polymers with length Lc < Lb, the rodlike description is a good
approximation, whereas for longer contour lengths Lc > Lb the polymer buck-
les and its conformation strongly deviates from the rodlike shape during the
tumbling. For non-thermal rods, the critical buckling angle αb at which a poly-
mer rotating away from the aligned state starts to buckle can be estimated
as αb = 1

2 (Lb/Lc)4(see appendix B.6). Thus, in the angular interval between
[αb;π − αb] we cannot expect polymers with Lc > Lp to follow the Brownian
rod dynamics.

Force Balance between Frictional and Bending Forces

To describe the polymer filaments in a strongly bent conformation, the frictional
forces have to be balanced with the elastic bending forces occuring along the
filament for non-zero curvature. With α(σ) being the local angle between the
filament and the flow direction, the curvature κ and the local bending radius
Rbend are given by the first derivative of the local angle R−1

bend = κ = dα/dσ.
The local curvature is related to the local bending moment Mb(σ) by the beam
equation [47]:

κ(σ) =
Mb(σ)
EI

=
1

kBTLp

∫ σ

0

dFfrict(σ′)× (R(σ′)−R(σ))dσ′ (4.55)

where Mb is given by integrating the vector product of the local frictional force
dFfrict(σ′) and the acting leverarm (R(σ′) − R(σ)). The frictional forces are
depending on the local velocity difference vrel between fluid and filament, which
in turn is dependent on the conformational vector R, its derivative R′ and its
dynamics Ṙ (see eq. 4.32). The curvature κ depends on the second derivative
of the conformation vector with respect to the arc length R′′ = d2R/dσ2.
Differentiation of eq. 4.55 with respect to σ yields the differential equation for
the semiflexible filaments conformation, which is of the type

F (R(σ),R′(σ),R′′′(σ), Ṙ(σ)) = 0 (4.56)

and generally cannot be solved analytically. However, an analytical solution
for the dynamics can be calculated if the complexity of the conformational
space is reduced by approximating the motion of the filament with a basic
conformational cycle.

U-turn Model

Motivated by the characteristic tumbling conformations observed in the ex-
periments shown in section 4.3, we assume that the conformational space is
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restricted to a stadium shaped track during an interval φ ∈ [φmin;φmax] =
[φmin;π − φmin] with

φmin = arctan (2RU/(Lc − πRU)) . (4.57)

where RU is the stadium radius. A detailed discussion of the resulting force
balance calculations is given in the appendix (B.6) and will be sketched in the
following.

In this ”U-turn”-model, the filament is supposed to run on a stadium track
with constant radius RU and track velocity v(σ). This assumption is a priori
postulated by the experimental observation and will be legitimated by the results
posterior. Depending on an asymmetry due to initial thermal fluctuations, a
polymer starting from the flow aligned conformation can begin a U-turn run
either on the left or on the right half-circle of the stadium. After completing the
run towards full alignment, another tumbling cycle can be started. As we do not
distinguish between the polymer ends, we only discuss an angular interval of φ ∈
[0;π] for the orientation of the end-to-end vector to capture the entire tumbling
dynamics. Fig. 4.3a shows a filament performing a counterclockwise U-turn
run on the right halfcircle of the stadium. It is convenient for the calculations

Figure 4.3: (a) Schematics and coordinate systems of the U-turn/stadium
model: The semiflexible filament in the strongly bent state is supposed to run on
a U-turn track with fixed radius RU. The coordinate system of the U–turn frame
(x∗, y∗) is shown in black, the center of mass frame (x, y) is shown in red. (b)
Extremal filament conformations with corresponding interrelated coordinates χ,
s, and φ (Eqs. B.117 and B.148).

to introduce a conformation coordinate χ(σ) running from χ ∈ [−1; 1] which
defines the conformation of the filament during the U-turn. Fig. 4.3b shows the
filament conformations for the three extremal conformations corresponding to
χ = −1, 0, 1 representing a letter l, U and J conformation.
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Force Balance in U-turn model

The track velocity v(χ,RU) can be calculated by assuming that the tangential
frictional forces along the filament vanish:∫ Lc

0

c‖vrel
‖ dσ = 0. (4.58)

This should be approximately fulfilled in overdamped conditions, where the ac-
celerative forces along the U-turn track are negligible compared to the frictional
forces. The local tangential relative velocity vrel

‖ is given as the difference of the
fluid velocity and the filament velocity, which can be calculated from the track
velocity v(χ) and the local conformation set by RU and χ (see schematics in
fig 4.4a). Thus, the track velocity v(RU, χ) for a conformation specified by χ
is given in terms of the yet unknown U-turn radius RU. If the filament is long

Figure 4.4: (a) The friction acting on the filament is determined by the rel-
ative velocity between fluid and filament. From the track velocity v and the
conformation given by (RU, χ) the local filament velocity can be calculated in
the U-turn model. The local fluid velocity is set by the shearrate and the dis-
tance to the center of mass streamline y = 0. In overdamped conditions, the
integral over the relative velocity tangential to the filament vanishes, which sets
v(RU). (b) At the point of maximum curvature κmax(σb), the filament bending
can be treated analogous to a rod fixed in a wall. There, the bending moments
Mb exerted by the flow aligned parts of the filament are equal, which yields a
condition determining the leverarms y. Then, the inverse of κmax is taken as a
measure for the U-turn radius RU(v).

with respect to the U-turn half-circle Lc � πR, the calculation shows that the
track velocity depends only weakly on the conformation coordinate χ. In 0-th
order in terms of πR/Lc, the track velocity is obtained from eq. B.130 as

v(RU) = γ̇RU +O(πR/Lc). (4.59)

The equation for the bending forces eq. 4.55 is evaluated at the point of max-
imum curvature κ(σb) = κmax by only considering the frictional forces arising
from the flow aligned parts of the filament. At σb the bending moments Mb

exerted from both flow aligned parts are equal and the inverse of the maximum
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curvature is taken as an approximation for the U-turn radius RU ≈ κ−1
max (see

fig 4.4b). Thus, eq. 4.55 gives the U-turn radius in dependence of the track ve-
locity and the conformation coordinate RU(v, χ). Together with v(RU, χ) from
eq 4.59, the track velocity and the U-turn radius can be determined in the limit
of long filaments Lc � πRU. The result for RU shows only a slight dependence
on χ, which supports the assumption of a constant U-turn radius, and RU can
be determined as

RU =
(

4
π

kBTLp

c‖γ̇

) 1
4

. (4.60)

A detailed calculation of RU and v is given in the appendix B.6.

Angular Dynamics and Tumbling Time

The result for the track velocity v implies, that within the interval [φmin;φmax]
the velocity of the filaments ends is approximately given by the velocity of
the surrounding fluid. Consequently, the angular dynamics of the semiflexible
filament in this interval is equivalent to the stiff rod dynamics with φ̇ = γ̇ sin2 φ.
For filaments with Lb < Lc ≤ Lp to which the semiflexible description applies, it

Figure 4.5: Schematics for the angular dynamics of semiflexible filaments tum-
bling in shear showing the critical angle φc, the buckling angle αb and the
U-turn region [φmin;φmax]. (a) For Weissenberg numbers Wi < Wib the dynam-
ics is rodlike. (b) For very high Weissenberg numbers Wi > Wib the filament is
strongly bent within the diffusive phase (gray region) and the dynamics resemble
those of flexible polymers.

can be shown that the buckling angle αb describing the onset of strong bending
is always smaller than the minimum U-turn angle φmin (see B.6). This supports
the use of the U-turn model in the angular interval [φmin;φmax].

According to the relation between the buckling angle and the critical angle,
two different regimes can be distinguished for the dynamics of the semiflexible
filament (see fig. 4.5). The regimes are seperated by the Weissenberg number
Wib at which the buckling angle equals the critical angle φc seperating advective
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and diffusive phase of the Brownian rod. Wib is obtained as (see B.6):

Wib = 540
(
Lp

Lc

)3/2

. (4.61)

A Weissenberg number Wi < Wib implies φc < αb, so that the interval, where
the filament is only weakly bent, includes the entire diffusive phase (see fig. 4.5a).
We assume that the angular dynamics in the small remaining advective intervals
[αb;φmin] and [φmax;π−αb] shown in light blue can also be approximated by the
stiff rod advection dynamics of Jeffery’s equation. Then we can conlude, that
the entire dynamics of the semiflexible polymers is equivalent to the dynamics of
the Brownian rod. Consequently the average tumbling time for the semiflexible
filament with Lb < Lc < Lp is given by eqs. 4.43, 4.44 as

τT =
11
3
D
−1/3
rod γ̇−2/3,

τT
τr

=
11× 21/3

3
Wi−2/3

(
Dr

Drod

) 1
3

, (4.62)

where Dr/Drod ≈ 1 for filaments shorter than Lp.
If the flow strength gets very high with Wi > Wib, the buckling angle be-

comes smaller than the critical angle. This means, that the shear forces are
able to strongly bend the nearly flow aligned filament even within the diffusive
phase determined for the rod (grey interval). Then, we cannot use the diffusion
coefficient of the stiff rod Drod to describe the motion in the diffusive phase.
Instead, an effective diffusion coefficient depending on the average conforma-
tion of the polymer in the diffusive phase has to be used. Such a correctional
term is introduced in paragraph 4.2.5 for the description of flexible polymers.
Therefore, under very strong flow conditions, the semiflexible polymers can be
rather described analogous to flexible polymers. Effectively, the strong shear
forces reduce the lengthscale on which segments of the polymer can move in-
dependently of each other, which is usually given by the Kuhn length bk, resp.
by the persistence length Lp. In very strong flow, the shear forces thus induce
beffk < bk. This may result in N eff

k > 1 even for polymers with Lc < Lp, making
the polymer appear more flexible.

4.2.5 Flexible Polymers: Generalized Model Description

For polymers with longer contour lengths Lc > Lp the tumbling motion gets
more complicated. Due to compressive forces and thermal fluctuations, seg-
ments of the chain can start tumbling motions independently, so that ”multiple
tumblings” are induced by the shear forces, which means that several U-turn
runs can be performed simultaneously before a reorientation of Ree is reached.
Therefore, the conformations during the tumbling get more and more stochas-
tic with increasing flexibility of the filament. This is accompanied by a growing
importance of entropic effects. For flexible polymers in shear with Lc � Lp,
the U-turn radius RU typically becomes larger than the persistence length Lp

indicating that mechanical bending energies are negligible with respect to the
thermal energy. In the flexible limit, entropic forces dominate over the mechanic
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bending forces described in the U-turn model and determine the filaments re-
sponse to the flow field. The semiflexible polymers with an equilibrium end-to-
end length Req

ee near Lc get compressed by the shear flow, and the mechanical
spring of the bent filament acts against the compression. In contrast, the ran-
dom coil of a flexible filament with an end-to-end length Req

ee ≈
√

2LpLc gets
stretched by the shear forces, which act against the contractile entropic spring
of the polymer.

We can extend the model description of the stiff and semiflexible regime to
the flexible regime by using ensemble averaged values for the angular velocity
φ̇(φ) and the length of the end-to-end vector Ree(φ).

Advective Phase

If the flow strength is sufficiently high, there will be an advective dominated
phase during the rotation of Ree(φ). Assuming that in this advective phase
the average entropic spring force acting on the ends of the polymer points into
the direction of the center of mass, we can conclude that the polymer’s angular
and radial dynamics are decoupled in the advective phase. Thus, the end-to-
end vector Ree is expected to rotate with an angular velocity given by Jeffery’s
equation φ̇ = sin2 φ during the advective phase. This can be exemplified with
the two limiting cases for the spring stiffness: If the deformation of the poly-
mer is small with respect to the equilibrium conformation, the entropic spring
force can be neglected. Then, the polymer ends in first order simply follow the
surrounding fluid, so that φ̇ equals the rotational component of the shear flow.
Thus, the end-to-end vector Ree(φ) shrinks in the first quadrant φ ∈ [0;π/2] and
is stretched in the second quadrant φ ∈ [π/2;π] of the coordinate system, while
simultaneously being rotated with φ̇ = sin2 φ (comp. with the velocity field of
simple shear illustrated in fig. 4.1a). Once the entropic spring force accompa-
nied by the extension is strong enough to stop the extension, the shear forces
further align the stretched polymer in the same way as they align a stiff rod.
This is accompanied by a drag of the polymer parts towards the center of mass
streamline in the y-direction, which is absent during the shrinking/extension
phase. However, the angular velocity is still given by Jeffery’s equation, which
illustrates that the advective rotational motion does not depend on the spring
force.

Diffusive Phase

With increasing alignment of the polymer, the average advective forces acting
on the polymer decrease. Thus we can expect the occurence of a diffusive phase
around the aligned state at φ = 0, where the rotational diffusion governs the
dynamics of Ree(φ). As the shear forces decrease, the entropic forces tend to
recoil the polymer. Thus, a stretched polymer in the nearly flow aligned state
can take several tumbling pathways:

• recoil : If the time spend in the diffusive phase is much longer than the
polymer relaxation time τdiff � τrel, the polymer completely recoils in the



4. Polymer Dynamics in Shear Flow 42

diffusive phase.

• flipping : For τdiff � τrel the polymer will pass the diffusive phase in a
stretched configuration. After passing φc, the shear forces will induce a
tumbling of the stretched polymer.

• restretch: If τdiff ≈ τrel are on the same order of magnitude, a partly
recoiled polymer at φ > π − φc can diffusive backwards towards π − φc

into a region with higher shear forces causing a restretching of the polymer.

Due to the stochastic nature of the diffusive process, a polymer can randomly
take all three pathways during the tumbling. For τdiff � τrel we assume that the
diffusive process can be described by an effective average diffusion coefficient
Ddiff in the diffusive phase, which is approximately constant throughout the
diffusive phase. Thus, Ddiff neglects internal conformational changes during
the diffusive phase, where the polymer has a mean-square extension L2

diff =
〈R2

ee(φ = 0)〉. Then, we can extend the description of the tumbling dynamics of
the stiff and semiflexible regime with a symmetrical diffusive phase [−φc;φc] to
the flexible regime simply by replacing Drod with Ddiff(Ldiff). Then, eqs. 4.39
and 4.43 give a generalized critical angle and a generalized tumbling time of

φc =
(
Ddiff

γ̇

)1/3

, τT =
11
3
D
−1/3
diff γ̇−2/3. (4.63)

We assume that the conformation of the stretched polymer in the diffusive phase
with averaged end-to-end length Ldiff can be approximated by the conforma-
tion of an equivalent equilibrium polymer of higher persistence length L̃p and
equal contour length resulting in an equal end-to-end length Ldiff = Ree(Lc, L̃p).
Then, we can use the approximate expression for the diffusion coefficient of poly-
mers of all rigidities (eq. 4.23) to get:

Dr = Drod
L2

c

L2
diff

(4.64)

Thus, the generalized expression for the tumbling time of stiff, semiflexible and
flexible polymers in shear flow is given as:

τT =
11
3
D
−1/3
rod γ̇−2/3

(
Ldiff

Lc

)2/3

,
τT
τr

=
11× 2

1
3

3

(
Ldiff

Req
ee

)2/3

Wi−2/3. (4.65)

In the latter form, our result extends the considerations in Ref. [31] for dumb-
bells to semiflexible chains, recovers the limits of stiff chains and the one for
flexible chains under strong flows for Ldiff = Lc [115], while providing in addi-
tion a novel prefactor. While Ldiff is accessible in experiments, it is usually not
reported, and could be estimated numerically based on a model such as the one
for semiflexible chains [115] or via simulation.
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4.3 Tumbling Dynamics of Polymers in Shear Flow: Results &
Discussion

To test the theoretical considerations of the previous section, actin filaments
with varying contour lengths ranging from Lc = 3 − 40 µm were subjected
to shear flow with flowrates γ̇ = 4 − 20s−1 in a microfluidic channel. To this
purpose, a flowrate of 2µl/h was applied to a channel with a cross section of
30µm× 60µm using the steady flow setup shown in fig. 2.2. A semi-automated
moveable microscope stage was used to follow the fluorescently labelled fila-
ments in the shear plane and record movies of up to 40 tumbling events for an
individual filament. As the actin filaments have a persistence length of about
Lp = 16 µm, experimental data for the tumbling dynamics and conformations
in the range of rodlike (Lc � Lp) and semiflexible filaments (Lc ≈ Lp) could be
evaluated. To further test the predictions of the theoretical models in section 4.2
over the entire range of stiff to flexible polymers, additional non-equilibrium
Brownian dynamics simulations (NEBD) of polymers with varying rigidity have
been performed and evaluated. Furthermore, results from experiments with
flexible DNA molecules in shear performed by other authors were compared to
the proposed theory. The experiments with the actin filaments were performed
by Markus Harasim1, NEBD-simulations were done by Martin Kröger2.

4.3.1 Regime I: Rodlike Polymers in Shear Flow

Fig. 4.6a shows snaphots of a short, rather stiff filament of length Lc = 4 µm
tumbling in shear flow with γ̇ = 5s−1 while the camera follows the filament’s
center of mass. The conformation of the filaments has been tracked to evaluate
the time course of the angular motion φ(t) and the temporal evolution of the
end-to-end vector length Ree shown in Fig. 4.6 b,c for a 3µm filament in a
shear flow with γ̇ = 7 s−1. The filament shows no significant bending during
the tumbling. This is in accordance with the theoretical prediction of eq. 4.54,
which yields a buckling length of about Lb ≈ 5µm for the actin filaments at the
given experimental flow strength.

Timecourse of orientational angle φ(t)

The timecourse of the end-to-end vector angle φ(t) of the tumbling 3µm filament
in fig. 4.6b shows a characteristic stairstep shape reflecting the angular dynamics
of a Brownian rod in shear. Each step corresponds to a flip of the filament by
π in the direction of the rotational component of the flow and thus represents
one tumbling event. Starting from a flow aligned conformation in the diffusive
phase, the filament performs a random walk in the orientational angle φ. If
the random walk leads the filament into the negative φ direction (φ ∈ [−φc; 0]),
the filament feels an increasing forward drift due to the advective drag given by
Jeffery’s equation 4.35. Thus, motion against the rotational component of the

1 Lehrstuhl für Biophysik, Technische Universität München
2 Dept. of Materials, Polymer Physics, ETH Zürich
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Figure 4.6: A: Snapshots of short rodlike filament of length Lc = 4µm tumbling
in shearflow with γ̇ = 5s−1, timeline from top to bottom. B: Timecourse of the
orientational angle φ of the end-to-end vector of a Lc = 3µm filament in flow
with γ̇ = 7s−1. C: Timecourse of the measured end-to-end vector length Ree(t)
corresponding to the filament in B. The red line shows the dip in Ree presumably
caused by a azimuthal out of shear-plane motion simultaneous with the flip in
φ-direction as predicted theoretically by eq. 4.67.

flow is hindered, and the advective forward drag acts as a reflective boundary
for the diffusion at φ = −φc. On the other hand, a random walk leading to
the positive end of the angular interval of the diffusive phase is enhanced by
the advective drift. Once the filament passes the point of no return at φc, the
advective drift dominates and makes it impossible for the filament to diffuse
backward again, and a deterministic forward flip of the filaments orientation is
initiated. Thus, the advective drift rectifies the diffusive motion of the filament
leading to the overall monotonic increase of φ(t), where each of the regular
shaped, steep steps corresponds to a flip with the high rotational speed of the
advective phase around φ = π/2. The flat plateaus located at multiples of
π between tumblings correspond to the diffusive phase around the flow aligned
state at φ = nπ, where the dynamics of the filament is governed by the rotational
diffusion of the filament. The stochastic nature of the diffusive passage from
−φc to φc is reflected in the varying length of the plateaus.

Angular Velocity φ̇

The recorded movies allow for a determination of the angular velocity φ̇(φ) of
the tumbling filaments. The diamonds in fig. 4.7a show the resulting angular
velocity of an actin filament with Lc = 4µm, where φ̇(φ) has been averaged over
many tumbling cycles. The angular velocity predicted by Jeffery’s equation 4.35
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is shown as the black line for comparison. The excellent agreement between
theory and experiment shows, that actin filaments with Lc � Lp follow the
dynamics of Brownian rods within the advection phase.

The relatively high number of observed tumbling events of up to 40 tum-
blings per filament allows to determine experimental values for the average
tumbling time 〈τT 〉 by dividing the observed time by the number of tumbling
events detected. The results for two filaments evaluated in the rodlike regime
(Lc = 3 & 4µm) are shown in fig. 4.8, where the normalized tumbling time is
shown in dependence of the Weissenberg number Wi. The rodlike filaments are
represented by the two blue diamonds with Wi < 102. In the stiff regime, the
correction factor Dr/Drod = (Req

ee/Ldiff)2 = 1. The experimental values are in
good agreement with the theoretical prediction from eq. 4.44 which is shown by
the black line.

Figure 4.7: (a) Angular velocity φ̇ normalized by shearrate γ̇ vs. orientation
angle φ of actin filaments with lengths of 3µm(�), 8µm(×) and 16µm(◦). All
filaments follow the dynamics predicted by Jeffery’s equation for thin rods (solid
black line). (b) and (c): Probability distributions of the orientational angle φ in
the vicinity of flow alignment at φ = 0 for a 4µm (b) and a 16µm filament (c)
at shearrate γ̇ ≈ 4 s−1. The critical angles ±φc and the probability distribution
predicted by the theory for a stiff polymer are indicated by the dashed and solid
lines.

Orientational Distribution Function

The stationary probability density function pstat(φ) has been evaluated experi-
mentally and compared with the theoretical prediction derived from the Fokker-
Planck equation (see. section 4.2.3). Fig. 4.7b shows the experimental orienta-
tional distribution of a tumbling filament with length Lc = 4µm (histogram)
and the theoretical function for pstat(φ) (solid line) around the flow aligned
state. The diffusive angular interval [−φc;φc] as calculated by eq. 4.39 is indi-
cated by the dashed vertical lines confirming that the center of the orientational
distribution function lies approximately at −φc. The sharp peak of the proba-
bility density function at φc in the vicinity of φ = 0 shows that the filaments are
strongly aligned by the shear flow. The high degree of alignment corresponds
to the plateaus of φ(t) in fig. 4.6. The filament spends most of its time in the
shear flow near φ = 0.



4. Polymer Dynamics in Shear Flow 46

Figure 4.8: Normalized tumbling times of actin filaments in shear in depen-
dence of the Weissenberg number Wi. Data spans actin with contour lengths
Lc = 3 − 40µm, different shear rates are indicated by color. For comparison,
non-equilibrium Brownian Dynamics simulations for filaments with different
rigidities have been performed (squares). Measured tumbling times are in good
agreement with the theoretical prediction of the model (solid line).

Azimuthal Motion

Although the snapshots of the polymer conformations in fig. 4.6a do not show
a pronounced bending of the filament during the tumbling, the evaluation of
the end-to-end vector length in Fig. 4.6c shows some significant dips in the
normalized end-to-end length Ree/Lc occuring simultaneously with the flipping
of the end-to-end vector. Rather than indicating a bending of the filament,
these dips can be attributed to a non-negligible azimuthal angle of the filament
occuring around φ = π/2. Due to the short length of the filament, a filament
with an azimuthal angle θ 6= 0 appears as projected onto the focal plane of
the microscope, which is the shear plane xy. As described in section 4.2.3, a
Brownian rod which is not perfectly aligned with the shear plane performs a
kayaking-like motion, where the trajectory of the azimuthal angle θ is given
by eq. 4.52. Taking the starting point of the advective motion at the critical
angle θ(t = t0) = θ(φc) we can use the derived value for the mean-square
azimuthal angle 〈θ2(φc)〉 = 2φ2

c to calculate the expected mean-square value for
the azimuthal angle at φ = π/2 and get:

tan[θ(φ = π/2)] = tan[
√

2φc]
1

sinφc
(4.66)

With φc � 1 we can use tan[
√

2φc] ≈
√

2φc and sinφc ≈ φc. Simple geometrical
considerations lead to the result that the timecourse of the projected, normalized
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length 〈Lxy
c 〉/Lc = cos[θ(t)] should follow

Lxy
c (t)
Lc

=

√
1 + (γ̇t)2

3 + (γ̇t)2
, (4.67)

where t = 0 corresponds to the conformation with φ = π/2. Thus, the minimum
length at the flip is predicted as

Lxy
c (t = 0)/Lc =

√
1/3 ≈ 0.58. (4.68)

The red line in fig. 4.6c shows the timecourse Lxy
c (t) during a flip predicted from

eq 4.67 for γ̇ = 7 s−1 in good agreement with the observed dips in the measured
values for Ree. To further test the theoretical predictions for the azimuthal

Figure 4.9: Solid lines: NEBD-simulation data show-
ing the averaged azimuthal angle

√
〈θ2(φ)〉 for fila-

ments with rigidities of Lc/Lp ∼ 0.3, Wi ∼ 440
(blue), Lc/Lp ∼ 2.3, Wi ∼ 250 (green) and Lc/Lp ∼
28, Wi ∼ 42 (yellow) in shear flow. Theoretical pre-
dictions from eq. 4.51 are shown by the open circles.

motion, data for the azimuthal angle θ of nonequilibrium Brownian dynam-
ics (NEBD) simulations of filaments with varying rigidities has been evaluated.
Fig. 4.9 shows

√
〈θ2(φ)〉 in the vicinity of −φc, where the theory predicts a mini-

mum for the average azimuthal angle. The comparison of the NEBD simulations
with the predicted values of

√
〈θ2(−φc)〉 = φc and

√
〈θ2(φc)〉 =

√
2φc shown by

the open circles confirms the location of the predicted minimal azimuthal angle
at −φc for the studied filaments ranging from stiff (Lc/Lp ∼ 0.1, blue line),
to semiflexible (Lc/Lp ∼ 1, green) and rather flexible filaments (Lc/Lp ∼ 10,
yellow). Both the minimum value at φ = −φc and the estimated value at φ = φc

are higher than predicted. For φ = φc this could be caused by the neglected
positive drift for θ2 in the interval [0;φc]. Obviously, further work is necessary
to quantitatively understand the azimuthal dynamics in the diffusive phase.

4.3.2 Regime II: Semiflexible Polymers in Shear Flow

Conformation and Dynamics

Fig. 4.10a shows the timecourse of the conformations during a tumbling event
for two actin filaments of Lc = 8µm and Lc = Lp = 16µm length. Both fila-
ments exhibit the typical U-turn motion of the tumbling during the advective
phase. For φ ∈ [−π/2; 0], the filament gets stretched by the frictional forces,
so that bending fluctuations get damped. In contrast, for φ ∈ [0;φc], the fila-
ment gets compressed, and bending fluctuations in a filament with near straight
conformation are enhanced. Once the end-to-end vector of the filament passes
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Figure 4.10: (a) Successive images of two fluorescently labelled actin filaments
of length Lc = 8µm and 16µm in a shear flow with γ̇ = 6s−1. The direction of
the shear is indicated by the arrows, the scale bar is 10µm. (b) Timecourse of
the normalized orientational angle φ(t)/π of the end-to-end vector Ree(t). (c)
Mean curvature radius RU of the filament’s U-turn conformation vs. contour
length Lc for shear rates of 6 (filled circles), 12 (squares) and 19 s−1 (triangles).
Inset: Timetrace of normalized end-to-end vector length Ree/Lc corresponding
to the φ(t) trace of the Lc = 16µm filament shown in (b). (d) Overlay of the
conformations in (a) illustrating the filament motion on a U-turn track with
approximately constant radius during the tumbling.

the point of no return at φc, a tumbling motion is induced. Depending on
the initial asymmetry of the associated bending fluctuation, either the front or
the back end of the filament becomes the leading end in the tumbling. In the
center of mass system, the filament performing a flip of π in the end-to-end
vector angle resembles a train running on a U-turn track. The timecourse φ(t)
(fig. 4.10b) shows the same characteristic stairsteps with stochastic plateaus
around multiples of π as discussed for regime I. The corresponding timetrace of
the end-to-end vector length shown in the inset of fig. 4.10c exhibits sharp dips
associated with the strongly bent U-turn conformation in the advective phase.

Advective Phase: U-turn model

The overlay of the conformations in the different stages of the tumbling in
fig. 4.10d shows, that the radius of the U-turn RU is approximately constant
throughout the U-turn. This motivates the approximation of the filament’s con-
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formations in the strongly bent state with the U-turn model described in section
4.2.4, which enables an analytical solution of the dynamics via a forcebalance
between the frictional forces and the elastic bending forces in the filament. The
theoretical conclusions can now be compared with the experimental observa-
tions. Note that the experimental stadium tracks are slightly tilted, which is
neglected in the theoretical framework.

The model predicts RU to be independent of the filament length and only
weakly dependent on the shear rate RU ∼ γ̇−1/4 with RU ≈ 1.1µm for actin
filaments exposed to the experimental shearrates. As the stadium width of the
model is determined by ∆y = 2RU, the experimental U-turn radius has been
evaluated as half of the average maximum y-extension of the filament during
the tumbling. Fig. 4.10c shows that the experimental values of RU for various
contour lengths Lc are in good agreement with the theoretical prediction con-
firming the independence of RU on the contour length. Note that the theoretical
value RU ≈ 1.1µm does not contain any fitting parameter and is solely based
on the known diameter of the actin filaments, the experimentally determined
shear rate and the buffer viscosity.

The constant track velocity v derived in the force-balance calculation pre-
dicts an end-to-end vector angular dynamics following Jeffery’s equation 4.35
for thin rods. The averaged angular velocity φ̇(φ) for two filaments of 8µm and
16µm is shown in fig. 4.7a in excellent agreement with the theory. The U-turn
model also gives an analytical solution for the dynamics of the end-to-end vector
length Ree(t) (see appendix, B.6). In the interval [φmin;φmax] the track velocity
v predicts the timecourse of the end-to-end vector length to follow (eq. B.152)

Ree(t) = 2RU

√
1 + (γ̇t)2, (4.69)

where φ(t = 0) = π/2 has been chosen. Fig. 4.11 shows the experimental
Ree(t) timetraces of filaments with different contour lengths in good agreement
with the model predictions. Together with the angular dynamics, the U-turn
model thus describes the full dynamics of the end-to-end vector of semiflexible
polymers in shear flow by a telescopic Brownian rod model.

Diffusive Phase and Tumbling Time

The presented experimental data shows, that the advective dynamics of the
semiflexible filaments are described by Jeffery’s equation derived for the ad-
vection of stiff rods. As the conformation of the semiflexible filaments is nearly
rodlike within the diffusive phase, also the dynamics in the diffusive phase should
be comparable to those in the stiff regime. Thus, the entire angular dynamics of
tumbling semiflexible filaments should be equivalent to those of stiff rods with
the same contour lengths, so that eq. 4.43 should be valid in both regimes. The
experimentally determined tumbling times are shown in fig 4.8. For equal shear
rates, longer filaments correspond to higher Weissenberg numbers Wi. Compar-
ison with the theoretical prediction (dashed line) shows a fairly well agreement
between the experimental data and the model.
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Figure 4.11: Experimental
data for the reduced end-to-
end distance Ree(t)/Lc vs. re-
duced time γ̇t. The solid lines
show the theoretical predic-
tion following from the tele-
scopic Brownian rod model.

Orientational Distribution Function

Figure 4.12: (a) Measured stationary orientational distribution function pstat(φ)
is shown for a semiflexible actin filament with Lc = 8µm in shear. Good
agreement with the theoretical curve calculated for a stiff Brownian rod (solid
line) is observed. The theoretical critical angle ±φc is indicated by the vertical
lines. (b) Cumulative plot of the data in (a).

The experimentally determined orientational distribution function for a semi-
flexible filament with length Lc = 8µm is shown in fig. 4.12a. As suggested by
the equivalence in the angular dynamics, the stationary probability density func-
tion is in accordance with the Brownian rod model curve shown in red. The
maximum of pstat is in good agrement with the predicted position at φc (the di-
rection of shear was reversed in this experiment). The diffusive interval [−φc;φc]
is indicated by the vertical blue lines. The cumulative plot in fig. 4.12b shows
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that the experimental distribution is in accordance with the theoretical calcula-
tion in the entire angular interval [−π/2;π/2]. For long semiflexible filaments,
the measured distribution starts to deviate from the theoretical curves, as can
be seen in the data for a 16µm filament shown in fig. 4.7c.

Multiple U-turns for Lc > Lp

For long filaments with Lc > Lp, the measured tumbling times in fig 4.8 tend
to be a bit shorter than theoretically predicted. These filaments belong to
a regime, where several U-turn motions can occur simultaneously during the
tumbling. With increasing contour length Lc, thermal fluctuations may disalign
the flow aligned sections of the filament during the U-turn motion. Compressive
forces occuring in the rear part of the filament (see eq. B.135) can further
reinforce fluctuations. Such independent fluctuations of parts of the filament
may induce more than one U-turn runs to be started simultaneously, where the
turns can propagate separately through the filament. Such multiple tumblings
can be induced at the ends of the filament as well as in the middle, so that
even loop formations may occure. Fig. 4.13 exemplarily shows one of the many
conformational pathways the filament can take for a complete reversal of the
end-to-end vector. Despite this complex behaviour, the averaged dynamics in
the advective phase still follows Jeffery’s equation and the overall tumbling
time is in reasonable agreement with eq. 4.43. A change in the scaling from

Figure 4.13: Snapshots of tumbling Lc = 40µm actin filament showing multiple
simultaneous U-turn motions characteristic for the Lc > Lp regime. The veloc-
ity gradient direction is indicated by the arrows. With increasing length, the
number of possible pathways for an end-to-end reversal drastically increases.

τT ∼ Wi−2/3 to τT ∼ Wi−0.8 has been found in simulations of flexible polymers
for the regime of high Peclet-numbers, where Kuhn segments start to tumble
individually [24]. This suggests, that the observed shorter tumbling times at
Wi � 1 where the multiple tumbling sets in, could correspond to a similar
scaling change. Clearly, further investigations are necessary to gain a deeper
insight into the mechanisms governing the polymer dynamics in the transition
regime from semiflexible to truly flexible filaments.
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4.3.3 Regime III: Flexible Regime, Lc � Lp

In the truly flexible regime, the contour length is much higher than the per-
sistence length and the polymers are dominated by entropy rather than by
mechanical elastic bending energy. Consequently, for typical shearrates reached
in experiments, the calculated bending radius is bigger than the filaments per-
sistence length indicating the negligibility of the bending energies (e.g. for DNA
with Lc = 80µm and Lp = 50 nm in the experiments in [106], RU ∼ 150 nm).

However, the theoretical treatment for the stiff and semiflexible regime can
be extended to the flexible regime by assuming an effective diffusion coefficient
Ddiff in the diffusive phase, based on the asumption that the polymer relaxation
time is larger than the time spent in the diffusive phase (see section 4.2.5). Then,
a unified description for the entire regime of rigidity from stiff to fully flexible
can be given by equation 4.65:

τT
τr

=
11× 2

1
3

3

(
Ldiff

Req
ee

)2/3

Wi−2/3

This general formula for the tumbling time was tested with simulated data
of nonequilibrium Brownian dynamics simulations with rigidities ranging from
Lc/Lp ≈ 0.1− 60. The resulting tumbling times are shown by the open squares
in fig. 4.14 and are in good agreement with the theoretical prediction (dashed
line). The diffusive length was evaluated as L2

diff = 〈R2
ee(φ = 0)〉. Addition-

ally, experimental data for flexible polymers from Gerashchenko et al.[31] (blue
squares) and Teixeira et al. [106] (DNA, green triangles: 22 µm, red trian-
gles: 80 µm) is shown, demonstrating the excellent agreement with eq. 4.65.
The experimental data from the actin filaments is shown by the gray circles for
comparison.

The extension of the tumbling time formula to the flexible regime was based
on the assumption that τdiff < τrel. The relaxation time of the polymer is on the
order of the rotational relaxation time τr, so that with τdiff = 5/11τT we can
estimate the assumption to be fulfilled for τT /τr < 2. Due to the absence of data
for Ldiff for the DNA data, the correctional factor (Req

ee/Ldiff)2/3 was calculated
by assuming an average stretch of Ldiff = 0.75Lc in the diffusive phase, which
yields a correctional factor of about 0.16 and 0.1 for the 22µm and the 80µm
DNA. Thus, τdiff < τrel should be fulfilled for data points with values below
0.32 resp. 0.2 for the 22µm and the 80µm DNA (green and red triangles). This
implies that more than half of the DNA data points do not fulfill τdiff < τrel
while still obeying eq. 4.65 surprisingly well. For data points with Wi < 10, the
assumed extension in the diffusive phase Ldiff = 0.75 is certainly too high. With
Ldiff → Req

ee for Wi → 1, the data points are expected to be shifted increasingly
upwards with decreasing Wi if the real (unfortunately unavailable) values for
Ldiff had been used. These higher values reflect the transition to the τT ∼ Wi−1

scaling expected from eq. 4.31 for undeformed polymers at low Wi. However
it should be noted, that for Wi < 1 the rectifying nature of the shear flow for
the rotational diffusion as well as the alignment of the end-to-end vector with
the shear plane is lost, so that in the 3-dimensional case the tumbling time is
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no longer reasonably defined. Nonetheless, the agreement between data with
Wi � 1 and the theory supports the validity of the model, yet more detailed
analysis of experimental and simulated polymers in shear needs to be done
particularly in the flexible regime to fully unravel the dynamic behaviour.

Figure 4.14: Dimensionless tumbling times τT /τr multiplied by (Req
ee/Ldiff)2/3

for flexible DNA molecules. Blue squares denote experimental data extracted
from Gerashchenko et al. [31], and green and red triangles denote experimental
DNA data for a 22µm and 80µm DNA extracted from Teixeira et al [106]. For
the extracted data the diffusive length Ldiff is assumed to be 0.75Lc. Experi-
mental data of fig. 4.8 for stiff and semiflexible actin is shown by the grey circles.
Open squares denote simulated data points of nonequilibrium Brownian dynam-
ics simulations where L2

diff = 〈R2
ee(φ = 0)〉 was used for the simulation data with

different flexibilities and shearrates. The tumbling times for the different shear
rates fall onto a master curve (dashed line), following the theoretical prediction,
eq. 4.65. Inset: Angular velocity φ̇ vs. orientation angle φ of simulated flexible
filament data (violet open squares). The actin data of fig. 4.7a is shown for
comparison (3µm: green diamonds, 8µm: blue diamonds, 16µm: red circles).
There is a first order agreement with the Jefferey dynamics (solid line) for the
simulated flexible filament, but the deviation from theory is higher than for the
experimental data.

4.4 Microscopic Origin of Non-Newtonian Properties

The findings about the dynamics and conformations of polymers in shear flow
now enable us to give qualitative explanations for bulk phenomena such as
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shear thinning, drag reduction and viscoelastic effects observed in dilute poly-
mers solutions. To understand how these macroscopical properties are linked to
the microscopical dynamics of the individual polymers, we start discussing the
simple case of thermal Brownian rods. A one-dimensional Brownian dynamics
simulations based on the Langevin equation 4.41 was performed to study the
dynamics over a wider range of flow strengths Wi as possible in the experiments
with actin filaments. The φ(t) trajectories of the simulations with Weissenberg
numbers Wi � 1 exhibit the same characteristic stairstep shape with stepheight
π and stochastically varying plateau lengths as observed for the rodlike actin
filaments. Fig. 4.15a-e shows the obtained orientational distribution functions
of the simulated rods in a range of Wi = 0.1− 1000 (blue lines). While in weak
flow the distribution function is near constant indicating an almost completely
random orientation of the rods, a peak in pstat(φ) emerges for Wi > 1. For
higher flow strengths, the peak gets sharper and its center approaches φ = 0.
The critical angle is written in terms of Wi as φc = 2−1/3Wi−1/3 (see eq. 4.39)
and is indicated by the vertical red lines in fig. 4.15. The peak center position
can be identified with −φc for suffiently strong flows with Wi � 1.

a) b) c)

d) e)

Figure 4.15: Stationary orientational distribution of a stiff Brownian rod in a
1-D simulation for different Weissenberg numbers Wi = 0.1− 1000 (blue). The
vertical red line indicates −φc as calculated by eq. 4.39. The black line shows
the functional form of sinφ cosφ, which is proportional to the friction at the
rod. With increasing Wi, the increasing alignment towards φc � 1, the rod
predominantly spends its time in a region of low frictional dissipation, which
can explain shear-thinning observed in solutions with rods.
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Shear-Thinning in Dilute Polymer Solutions: Stiff Regime

The energy dissipation rate pV of the amount of energy per time and unit volume
dissipated in a viscous, simple shear flow can be calculated by

pV = σγ̇, (4.71)

where σ is the shear stress in the fluid. With σ = ηγ̇, we can relate the shear
viscosity with the energy dissipation rate as

η =
pV

γ̇2
(4.72)

The steady state shear viscosity of dilute polymer solutions is determined by the
solvent viscosity ηs and the viscosity contribution ηpol linked to the dissipation
caused by friction between the polymer and the surrounding fluid. With C
denoting the concentration of polymers in a dilute solution, where we neglect
intermolecular hydrodynamic interactions between the individual polymers, we
can thus calculate the polymer contribution to the viscosity from the energy
dissipated per time P at a single polymer :

ηpol =
C〈P 〉
γ̇2

. (4.73)

Here, 〈P 〉 is the ensemble average over all polymers in the solution, resp. the
time average of a single polymer. As the thermal motion of the polymer does
not contribute to the dissipation, ηpol is related to the occuring friction due
to the advective part of the polymer motion. We can thus relate the local
microscopic advective friction forces Ffrict(φ) and the orientational distribution
function pstat to the bulk shear viscosity. The energy dissipation rate dP of a
polymer section of length dσ is given as

dP (φ) = ffrict(φ, σ)dσvrel(φ, σ) = cLv
2
reldσ (4.74)

so that the molecular energy dissipation rate is obtained as

P (φ) =
∫ Lc

0

dP =
∫ Lc

0

cLv
2
rel(φ, σ)dσ. (4.75)

to finally yield

〈P 〉 =
∫ π

0

pstat(φ)P (φ)dφ. (4.76)

In the case of stiff rods in shear, the frictional forces occur only tangential to
the rod and are given by eq. 4.33, so that the friction at the rod is strongly
depending on its orientation:

ffrict(r, φ) = c‖vrel = c‖rγ̇ sinφ cosφ (4.77)

where r = σ − Lc/2 is the local distance to the center of mass of the rod with
σ ∈ [0;Lc]. This orientational dependance of the friction is shown by the black
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lines in fig. 4.15. It is immediately evident that with the flow strength getting
bigger, the increasing alignment concentrates the rods more and more in a region
of less frictional dissipation. Consequently, the steady state shear viscosity η(γ̇)
of dilute stiff rod solutions is expected to drop with increasing flowrate. Indeed,
dilute solutions of rigid rod-like molecules like the tabac mosaic virus exhibit a
shear-thinning of the steady state viscosity[112].

The energy dissipation rate at the rod is obtained as

P (φ) = 2
∫ Lc/2

0

(γ̇rc‖ sinφ cosφ)2dr =
1
6
c‖γ̇

2L3
c sin2 φ cos2 φ. (4.78)

For weak flows Wi � 1, the rods are equally distributed in their orientation (see
fig. 4.15), making pstat(φ) = const. Thus, we can conclude, that the zeroshear
viscosity contribution of the rods η(γ̇ = 0) = η0 should rise with increasing
length of the rods as ηpolym ∼ L3

c . For solutions with equal weight per volume
(w/v) concentrations of polymers, this indicates a quadratic increase of η0 with
polymer length.

Eq. 4.78 allows for an estimation of the polymer contribution to the overall
friction in dilute solution. We assume that hydrodynamic interactions are negli-
gible if the concentration of the stiff polymers does not exceed one stiff polymer
of length Lc in a volume of L3

c . The dissipation of the background solvent is
given by eq. 4.72 as Psolv = ηγ̇2L3

c . With the friction coefficient from eq. 4.29
we can thus calculate the ratio of dissipated energy at the rod in comparison to
the energy dissipated in the sheared solvent as

Prod

Psolv
=
c‖ sin2 φ cos2 φ

6η
≈ sin2 φ cos2 φ

ln(Lc/d)
� 1 (4.79)

As the rod spends about half of the tumbling time in the diffusive phase nearly
flow aligned, the viscosity contribution of thin rods in dilute solution will be
small compared to the solvent viscosity and we cannot expect to measure large
non-Newtonian effects. Nevertheless its worthwhile discussing the basic effects
of flow alignment and deformation in the simple case without hydrodynamic
interactions, although a direct experimental quantification is difficult in the
dilute regime.

For γ̇ > 0, the alignment increases with increasing filament length, because
the critical angle scales as φc ∼ L−1

c . The ratio of time spent in the diffusive
and advective phase τdiff/τadv = 5/6 is independent of Lc, so that the stationary
probability density function padv in the advective phase can be approximated by
3
11

φc

sin2 φ
. 3 Thus, the higher friction P (φ) for longer rods is partly compensated

by the higher alignment, predicting ηpol ∼ γ̇−1/3Lc for solutions of equal (w/v)
concentrations.

3 The probability density in the advective phase is approximatly proportional to the inverse

of φ̇(φ): padv ∼ sin−2 φ[115]. With
∫ π−φc

φc
padv
stat = 6/11 we get padv

stat ≈
3
11

φc
sin2 φ

.



4. Polymer Dynamics in Shear Flow 57

Shear-Thinning in Dilute Polymer Solutions: Semiflexible Regime

If the frictional forces are strong enough to bend the rods onto the U-turn
track of the tumbling semiflexible filament, the dissipation is reduced. The
force-balance model derived in section B.6 yields a relative velocity between the
dominating straight parts of the filament and the fluid of vrel ∼ γ̇R2

U/Lc (see
eq. B.131) which is approximately constant throughout the U-turn and along
the filament. This corresponds to a dissipation of

P = c‖Lcv
2
rel ∼ c‖γ̇

2R4
U/Lc ∼ γ̇kBT

Lp

Lc
(4.80)

during the U-turn motion φ ∈ [φmin;φmax]. Thus, by bending the rod into a
stripe of width 2RU, the frictional dissipation is reduced from a term of the order
c‖γ̇

2L3
c for the straight rod to a term on the order of c‖γ̇2R4

U/Lc for the bent rod.
Due to this additional reduction of the dissipation, the shear-thinning caused by
the alignment effects discussed for the stiff rods is further increased. Therefore,
dilute solutions of semiflexible polymers with contour length Lc should exhibit
a more pronounced shear thinning than solutions with an equal concentration of
stiffer polymers of the same length. Indeed, a reduced viscosity for semiflexible
filaments in shear compared to stiff filaments of the same length is found in
simulations of non-thermal dilute suspensions of rods [118].

The result for the energy dissipation rate in eq. 4.80 is somewhat puzzling. It
implies the rather counterintuitive finding, that during the U-turn phase a longer
filament dissipates less frictional energy than a shorter one. This is reflected in
the independence of the U-turn radius on the filament length Lc, which has been
directly observed in the experiments in fig. 4.10c: A bending radius independent
of the filament length suggests that the bending forces exerted by the flow-
aligned straight parts of the filament are independent of Lc, meaning that for
Lc � πRU the frictional force per unit length f along the flow aligned parts of
the filament scales with f ∼ 1/Lc. The frictional force is proportional to the
relative velocity of the surrounding fluid vrel, whereas the energy dissipation rate
P in turn scales with Lcv

2
rel resulting in the observed P ∼ 1/Lc proportionality.

This is in strong contrast to the rising dissipation for tumbling stiff rods P ∼ L3
c .

Obviously, the U-turn motion helps to keep large parts of the filament aligned
with the fluid, which reduces the friction. The higher the fraction of aligned
parts of the filament is, the less energy is being dissipated. However, this unusual
implication is restricted to the small regime of Lb < Lc < Lp. For longer contour
lengths Lc > Lp, the filament segments tumble independently. As the obserevd
U-turn radius for multiple tumblings is comparable to RU in single tumbling,
this means that the dissipated energy on average rises linearly with the number
of involved U-turns and thus with contour length Lc.

The unusual prediction for the length dependence of the dissipation implies
that the U-turn model might be oversimplified for quantifying the shear viscosity
correctly. All the more, these considerations show the importance of microscopic
models to unravel the macroscopic bulk features of complex solutions and the
need for further investigations.
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Shear-Thinning in Dilute Polymer Solutions: Flexible Regime

Figure 4.16: Mean polymer thickness 〈δ2〉 in veloc-
ity gradient direction of DNA in shear normalized by
equilibrium thickness 〈δ2,0〉 in dependence of the Weis-
senberg number. The contour length of the DNA is
22µm (black circles) and 80µm (open circles), graph
taken from [106]. In strong flow, the thickness scales
as Wi−1/4.

For flexible polymers in shear, a confinement into a small strip in the y
- direction of the shear gradient similar to the U-turn track of semiflexible
filaments is observed. The average extension δ2 in the gradient direction of
80 µm DNA in shear was found to scale with δ2 ∼ Wi−0.26 for higher shear
rates (see fig. 4.16). Thus, a shear thinning comparable to that of semiflexible
polymers is expected for dilute solutions of flexible polymers as well. Note that
the experimentally observed exponent for δ2 of -0.26 coincides with the exponent
of the U-turn radius RU ∼ Wi−1/4, which gives the scaling of the shear gradient
extension in the U-turn model for the semiflexible filament. This scaling can
be theoretically rationalized by a simple model: We assume that the shear
deformed polymer conformation can be decomposed into several undisturbed
random walks on a small lengthscale, analogous to a Pincus-blob representation
of the polymer [22]. The maximum length l of the undisturbed chain in random
walk conformation is assumed to match the length of a Rouse chain with a
relaxation time matching the inverse of the shear rate:

τ l
rel =

c⊥Lpl
2

12kBT
= γ̇−1 (4.81)

where we used the Rouse relaxation time τ l
rel given by eq. 4.19. Thus, the length

of the undisturbed chain portion for a polymer in flow is given as

l =

√
12kBT

c⊥Lpγ̇
=

√
2Drod

γ̇

L2
c

R2
ee

Lc = LcWi−1/2 (4.82)

where eq. 4.23 was used for the last step to yield the dependence of the length
of the random walk section of the polymer on the Weissenberg number. The
dimension of the polymer in shear gradient direction can then be estimated by
the radius of gyration of the random walk section of length l as

δ2 ∼
√

2Lpl

6
= Req

g Wi−1/4. (4.83)

Thus, both the theory for semiflexible and flexible filaments predicts a Wi−1/4

dependence of the lateral polymer extension, which implies comparable shear
thinning properties for the bulk steady state viscosity in dilute solutions.
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In summary, the properties of the shear flow allow the shear forces to align
the polymers with the flow and elastically deform them. Both effects lead to a
decrease of the average extension of the polymers in the flow gradient direction,
which reduces the frictional forces. Therefore, dilute solutions of linear polymers
are generally shear-thinning for Wi > 1 in laminar flow conditions.

Viscoelasticity of Dilute Polymer Solutions

An elastic deformation of the polymers in shear, which reduces the friction
between the polymer and the fluid, is automatically accompanied by an elastic
component of the fluid. A deformation in the flow only occurs if the time that
the polymer needs to relax to the equilibrium conformation is longer than the
timescale of the flow τrel > 1/γ̇. Consequently, the relaxation motion taking
place after a sudden stop of the flow or at a flow reversal in oscillatory flow
drags the fluid into the opposite direction of the initial deformation. Thus, the
fluid appears as viscoelastic.

By taking a closer look at the stationary probability function of the orien-
tational angle φ in fig. 4.15, it becomes clear, that even solutions with stiff rods
which cannot be deformed by the flow are expected to exhibit some elasticity:
The maximum in pstat located around −φc is slightly asymmetric with a higher
slope on the left side of the peak. If the flow is suddenly stopped, diffusion will
drive the flow aligned rods back towards an equal angular distribution. With
the gradient of pstat being higher on the left side, the flux of diffusing rods
against the rotational direction of the shear flow will be higher than the flux of
diffusing rods into the flow direction. Thus, the majority of the rods diffuses
backward. On average, the diffusing rods will therefore drag the fluid along in
the backward direction and cause an elastic retraction motion of the fluid after
a sudden stop of the applied shear stress. Therefore, the asymmetric alignment
of the rods in the flow is accompanied by an entropic elasticity of the fluid.

Normal Forces

The asymmetric orientational distribution function pstat leads to an asymmetry
in the occuring frictional forces. Due to these asymmetries, the frictional forces
exerted onto the fluid by the tumbling polymers do not cancel out. On average,
this leads to non-vanishing normal forces in the directions perpendicular to the
flow, which give rise to many prominent features of non-Newtonian flows such
as the rod-climbing Weissenberg effect.

Drag Reduction in Turbulent Flows

With the microscopical insight gained by the shear flow experiments, phenomena
in more complex flows can be addressed, for which the experimental approach
with fluorescently labelled actin filaments could be equally well suited as in the
case of simple shear. One example are mixed flows from purely rotational to
purely elongational flows. Amongst others, such flows are of special interest
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when laminar flows cross over into turbulent flows at high Reynolds numbers.
Then, the homogeneous 1:1 mixture of rotational and elongational flow is het-
erogenously split into dynamically changing areas with locally predominantly
rotational flows and predominantly elongational flows, giving rise to the typical
vortex structures in turbulent flows. The addition of a small amount of poly-
mers with high molecular weight has been found to decrease the flow resistance
of fluids in the high Reynolds number regime, despite an enhancement of the
zero-shear viscosity η0 by the polymers. Although this effect of drag reduction
is known for a long time[110], its microscopical mechanisms are not yet fully
resolved.

However, analogously to the shear-thinning discussion above, a qualitative
explanation for one of the mechanisms involved can be given by considering
the dynamics of the individual polymers. In the absence of rotational flow
components, polymers in elongational flows will be aligned in the flow gradient
direction. In contrast to the shear flow, where alignment occurs perpendicular
to the shear gradient direction, this increases the local frictional forces at the
polymers. As a consequence, flexible polymers being deformed in elongational
flows exhibit even stronger frictional forces leading to a stronger deformation.
This causes a deformation feedback mechanism leading to a steep increase of the
elongational viscosity once the threshold of deformation is overcome. Therefore,
both stiff and flexible long polymers, will significantly damp occuring elonga-
tional flow fields. On the other hand, due to the shear thinning effects discussed
above, the shear viscosity is only moderately increased by the polymers in shear
flows with Wi � 1. Thus, the added polymers can efficiently damp the tur-
bulences in the high Reynolds regime Re � 1 explaining the observed drag
reduction.

4.5 Surface Effects: Cross Stream Migration

If the size of the fluid constituents reaches the same order of magnitude as the
distance to the channel walls, surface effects can occur in complex fluids under
flow. Due to the high surface to volume ratio, boundary layer effects are par-
ticularly important in microfluidic devices and offer potential applications for
particle segregation and manipulation. Accordingly, microfluidics feature excel-
lent conditions to study interactions of particles or molecules with the channel
walls. With contour lengths of tens of microns, the size of many polymers is
within the range of typical microfluidic channel dimensions, so that confinement
effects can possibly influence the flow conditions in the entire channel. In this
section, the flow behaviour of flexible polymers in high aspect ratio channels
with w = 45µm, h = 150µm was studied to test for an influence of theoretically
predicted lift-forces near the channel walls. As currently a lot of effort is put
into developing lab-on-a-chip devices for high throughput analysis of DNA, the
behaviour of DNA molecules in microfluidic flows is of special interest. There-
fore fluorescently labelled λ-DNA with a contour length of 21µm was chosen
as model polymer for the experiments. Instead of directly looking at the dy-
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namics of individual polymers as done with the actin filaments, local changes in
the bulk concentration of the polymers under flow were observed by averaging
and comparing long time exposure pictures of DNA solution in equilibrium and
under flow. To this end, movies were recorded in fluorescence microscopy in
the channel midplane at z = h/2. Due to the high aspect ratio of the chan-
nel, the lateral fluorescence intensity profiles should be essentially unaffected by
interactions with the channel’s bottom and top walls.

4.5.1 Lift Forces: Theory

Spherical particles in shear near no slip boundaries are known to migrate cross-
streamline due to inertia effects at non-zero Reynolds number [52, 59], which
could give rise to the depletion layer observed in microfluidic channels with par-
ticle laden fluids (see section 2.5). For non-spherical particles, a shear-induced
repulsion caused by hydrodynamic interactions with the channel wall has been
described by Sendner et al.[95]. Provided that the flow is strong enough to
stretch the flexible polymers, both stiff, semiflexible and flexible polymers ex-
perience a flow alignment with a peak around −φc in an unbounded shear flow
(see discussion in the previous sections). As long as the tumbling filaments are
not sterically hindered by the walls, the dynamics remain essentially unchanged
in the presence of the wall. Due to the non-vanishing average orientational
angle between filament and wall, the hydrodynamic interaction with the wall
generates a net lift force driving the polymer away from the wall.

The magnitude of the lift force acting on an individual polymer in steady
shear has been simulated for dumbbells as well as rods [95]. Due to the in-
duced drift on individual polymers directed away from the walls, a depletion
layer develops. Its thickness Ld is set by a balance of the flux induced by the
lift force and the diffusive flux due to the developing concentration gradient.
Consequently, it takes at minimum a time on the order of t = L2

d/2D to reach
a steady state density profile in the channel. For DNA molecules it is therefore
difficult to reach the required residence times in the channel for the concentra-
tion profile to fully develop, especially at higher shearrates. To circumvent this
problem, the use of oscillatory flow with large strain amplitudes has been pro-
posed to keep the molecules in the channel flow for unlimited durations [16, 51],
and both simulations and experiments have been performed to determine the
evolution of the steady state concentration profile.

4.5.2 Experimental Results & Discussion

A 10 pM solution of YOYO-labelled λ-DNA was prepared and put under oscilla-
tory shear by applying sinusoidal pressure pulses with a frequency of f = 0.5 Hz
to the microfluidic channel. This resulted in an effective oscillatory strain of the
solution with an amplitude of about γ = 50 ± 10, which was estimated by di-
viding the amplitude of the fluid displacement in the channel center by half of
the channel width. This corresponds to an effective shearrate with a maximum
of γ̇ = 2πf ≈ 150s−1. Fig. 4.17 shows the development of a depletion layer of
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Figure 4.17: A 10 pM solution of fluorescently labelled Λ-DNA is put under
oscillatory shear with f = 0.5 Hz and γ = 50 in a microchannel of 45µm width.
The picture shows a time series of 30 second averages of the recorded fluorescence
intensity under shear. The picture at t = 0 was recorded with a very small drift
velocity in the channel in near equilibrium.

Ld ≈ 10µm. The evolution of the appendant cross-sectional fluorescence inten-
sity profile is shown in fig. 4.18a. The intensity profiles have been normalized
to an equal amount of integrated intensity to account for a loss of intensity
during the measurement due to partial bleaching of the dye. Note that the
equilibrium profile recorded at t = 0 is not flat. This might be attributed to
background fluorescence of blurred out of focus DNA-molecules from throughout
the channel. Therefore, a determination of the DNA concentration profile from
the intensity profile is tedious. As a rough estimate, the intensity profiles have
been divided by the equilibrium profile resulting in the concentration profiles in
fig. 4.18b. While the concentration of the DNA has to be zero outside of the
channel in the PDMS walls, the recorded fluorescence intensity is not (the chan-
nel walls are indicated by the vertical dashed lines in fig. 4.18a). This might be
attributed to light from out of focus planes, and the estimated concentration pro-
files have been normalized to zero at the channel walls at x = 0µm, x = 45µm
in fig. 4.18b. The comparison with the concentration profiles determined in
simulations taken from [16] shown in fig. 4.18c shows a qualitative agreement.
The width of the zone filled with DNA has been evaluated by determining the
full width at half maximum of the concentration profiles. The timecourse of
the resulting depletion layer thickness Ld is shown in fig. 4.18d and shows an
exponential development of the depletion layer. With a timeconstant of τ = 34 s
the steady state depletion layer of Ld ≈ 10µm is reached after about 1.5 min. of
oscillatory shearing. The concentration profile takes about 3 minutes to reach
its steady state with a pronounced dip in the middle of the channel. The dif-
fusion constant D of the DNA-molecules has been experimentally determined
by tracking single molecules in equilibrium in the channel before the oscillatory
shear. Evaluation of the mean-square displacement yields D ≈ 0.3µm2/s. Both
the depletion layer thickness and the width of the dip are on the order of 10 µm,
which predicts a timescale of tequ ≈ (10µm)2/2D ≈ 170s for the system to equi-
librate. This is within the range of the observed equilibration times, supporting
the idea of a diffusion influenced shape of the concentration profile.

Both the timescale of the profile developement and the width of the observed
depletion layer are consistent with the simulation and the experiments in [51],
where the dip has been attributed to a competition of lift force induced DNA
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migration away from the walls and migration away from the center due to a gra-
dient in chain mobility[51]. The difference in chain mobility may be explained
by the anisotropic friction coefficient of the DNA, which causes a smaller dif-
fusion coefficient for extended chains for motion perpendicular to the extension
compared to coiled molecules in equilibrium. While the dip has been reported
to repeatedly diminish and reappear in the experiments in reference [51], the
dip in the experiment evaluated in this work was permanent once the steady
state profile had developed.
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(a) (b)

(c) (d)

Figure 4.18: (a): Time evolution of the fluorescence intensity profile of labelled
λ-DNA solution in the channel under oscillatory shear with f = 0.5 Hz and
γ = 50. The equilibrium (red line) and steady shear (black line) profiles are
shown for comparison. To account for bleaching effects, the intensity in each
profile was adjusted to get equal amounts of total fluorescence intensity. (b):
Intensity profiles were normalized by the equilibrium profile. Afterwards, the
intensity at the channel walls was set to zero by substracting a linear profile
given by the normalized intensities at the walls. The resulting profiles were
adjusted to matching total intensities again. (c) Simulation data showing the
distribution of the center of mass of a polymer solution in oscillatory channel
flow for parameters describing λ-DNA (graph taken from[16]). Frequencies f =
0, 0.1, 1.5, 10, 50 Hz correspond to strains of γ = ∞, 2300, 150, 23, 4.6, so that
our experiment with f = 0.5 Hz, γ = 50 lies inbetween the f = 0.1 Hz and
f = 1.5 Hz curves. Qualitatively, our results for the concentration profile in
steady state is in good agreement with the theoretical prediction. (d) Temporal
evolution of the depletion layer thickness Ld, which was measured via the full
width at half maximum (FWHM) of the concentration profiles in (b) as Ld =
(FWHM − w)/2, where w = 45µm is the channel width. The dashed line
shows an exponential fit to the measured values of Ld.



5. DIFFERENTIAL MICROFLUIDIC VISCOMETER

In the previous chapter we showed, that microfluidics open the way to observe
and characterize the dynamics of individual polymers in flow. With typical
widths on the order of 100µm, microfluidic channels are still much bigger than
the lateral dimensions of the polymers in the flowfield. Thus, microfluidic de-
vices are equally suited for directly measuring bulk viscosity properties like the
shear viscosity η and the extensional viscosity Λ. The opportunity to com-
bine bulk property measurements with simultaneous observation of individual
macromolecular dynamics provides an excellent field for studying complex fluids
in flow.

Apart from offering these exciting possibilities, microfluidic viscometers may
feature several other advantages compared with macroscopic rheometers. While
classical shear rheometers such as capillary and rotational rheometers typically
require sample fluids on the order of 1 ml, viscometers on the 100µm lengthscale
can be operated with liquid amounts in the µl range. Moreover, microfluidic
rheometers may offer advantages in the high shear rate regime, where macro-
scopic flows are affected by inertial effects and viscous heating. With its closed
geometry, measurements in a microfluidic viscometer do not suffer from arte-
facts due to protein films adsorbed at the air-water interface which occur in
cone-plate rheometers [97]. With the intensive efforts that have been made in
developing numerous lab-on-a-chip applications for the manipulation and anal-
ysis of complex fluids in microfluidic devices in recent years, a growing interest
in microfluidic rheometric techniques has emerged to open the way for new
microfluidic tools and lines of application. A good overview over existing tech-
niques and devices for measuring shear viscosities and extensional viscosities in
microfluidics is given in [82].

In this chapter we will introduce a novel differential technique to measure
the non-Newtonian properties of the shear viscosity η(γ̇) and extensional vis-
cosity Λ(ε̇). As the proposed differential viscometer does not require a pressure
sensor, the technique is both simple and robust. Rather than absolute values of
the viscosity, the device determines the powerlaw exponents n, k of the viscosi-
ties, which give the slope of the flowrate dependence of ln(η(γ̇)) and ln(Λ(ε̇))
(see eq. 3.32). Thus, the technique is especially suited for characterizing non-
Newtonian fluids. The method is open to miniaturization and parallelization,
so that the device could be used for online monitoring of fluid properties in a
production line as well as being incorporated into existing lab-on-a-chip appli-
cations.

We will start by briefly rationalizing the different response of polymer so-
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lutions to shear and extensional flow. Then we will explain the working prin-
ciple of the proposed differential viscometer, show some possible microfluidic
realisations and discuss the possibilities and limitations of the approach with
experimental results obtained from measurements in both shear and extensional
differential viscometers.

5.1 Shear and Extensional Viscosity of Polymer Solutions

While the velocity field of simple shear flow is a 1:1 mixture of rotational and
elongational flow, purely extensional flow fields do not contain any rotational
component (see section 3.1.3). As a consequence, the properties of polymer solu-
tion are fundamentally different in shear and extensional flows, although flexible
polymers get aligned and stretched in both cases. In shear flow (see fig. 5.1 left),
stretching and alignment occurs in the direction of flow (see chapter 4), which
is perpendicular to the velocity gradient. Thus, the frictional dissipation is re-
duced by the alignment leading to the typical decrease in the viscosity η(γ̇)
with increasing shear rate γ̇, which sets in once the flow is sufficiently strong to
deform the equilibrium conformation of the polymer. The typical rate depen-
dence of the shear viscosity is shown by the red curve in the graph in fig. 5.1
right. Simultaneously, the rotational component of the flow induces tumbling of
the polymer, so that the polymer never reaches a stationary state. In contrast,
in extensional flow the stretching and aligning occurs in the direction of the
velocity gradient (see fig. 5.1 middle). Thus, a deformation in extensional flow
increases the frictional forces acting on the polymer. Hence, a deformation of
the polymer induces a feedback mechanism, so that the polymer undergoes a
coil-stretch transition. The polymer in purely extensional flow is thus either
essentially undeformed or almost completely stretched. Consequently, the ex-
tensional viscosity Λ(ε̇) shows a threshold behaviour with a steep increase once
a critical deformation rate ε̇ is overcome (blue curve in fig. 5.1 right).

5.2 Capillary Rheometer

The microfluidic differential viscometer is an extension of the capillary rheome-
ter, which can be used to extract the shear viscosity of a fluid: A pressure driven
flow with flowrate Q is established through a circular capillary with a radius
R by applying a pressure difference ∆p between a fluid reservoir connected to
one capillary die end and the open other end of the capillary die (see fig. 5.2).
The shear viscosity η(γ̇) can be determined from the pressure drop along the
capillary pc and the flow rate Q with eq. A.79. Eq. 3.21 can be used in the
general case of a capillary with arbitrary constant cross-section. To calculate
the viscosity η(γ̇w), the power-law index n of the fluid must be known. In case
of unknown n, several measurements at different pressure drops and flowrates
∆p,Q have to be performed and the power law index can be identified as [74]:

1
n

=
d lnQ
d ln pc

. (5.1)
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Figure 5.1: The difference in the rate dependency of the viscosity in shear
and elongational flow can be traced back to the individual polymer dynamics:
Equilibrium conformation (Wi < 1, up) vs. stretched conformation (Wi � 1,
down) of flexible polymers in shear and extensional flow. In shear flow (left),
stretching and alignment leads to a reduction of the frictional forces acting
on the polymer. In extensional flow (middle), the polymer deformation and
alignment increases the frictional forces. Right: Consequently, the shear visosity
drops with the shear rate (red curve), while the extensional velocity rises once
a threshold elongational rate is overcome (blue curve).

Figure 5.2: Schematics of a capillary
rheometer, taken from [74]. The pres-
sure difference ∆p needed to drive a
flow with flowrate Q through a capil-
lary of known diameter is measured to
determine the shear viscosity η(γ̇) of
the fluid (see text).

There are different contributions to the measured total pressure drop ∆p besides
the capillary pressure drop pc. Hereby, the entrance pressure drop pent and the
exit pressure drop pexit are the most important ones. While the exit pressure
drop arising from elastic effects of the fluid is usually small and can often be ne-
glected [33], the entrance pressure drop can be very large for polymer solutions
with high extensional viscosities. A way to extract the capillary pressure pc is
to measure the total pressure drop ∆p for a fixed flowrate Q with capillaries of
different lengths L. By plotting ∆p over L and extrapolating to L = 0, the en-
trance pressure pent can be determined, so that pc can be extracted (see. fig 5.3).
This procedure is known as Bagley correction. Some capillary rheometers work
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with two capillaries of different length (double barrel rheometers), so that by
simultaneously pushing the fluid with the same flowrate through both capillaries
and measuring the corresponding pressure drops the capillary pressure pc can
be extracted assuming a linear Bagley plot. The entrance pressure is often

Figure 5.3: The entrance pres-
sure pent and the pressure drop
over the capillary pc can be de-
termined by measuring the total
pressure drop ∆p for capillaries
with various lengths and extrap-
olating to L = 0 (here, the capil-
lary length L is given in terms of
L/R1 where R1 is the radius of
the capillary). Fig. taken from
[33].

neglected for very long capillaries with a length to radius ratio L/R > 60 [74].

5.3 Differential Shear Rheometer

5.3.1 Existing Microfluid Differential Rheometers

Figure 5.4: Comparative microfluidic rheometer [19]: The fluid to be analyzed
flows in a channel Ka parallel to a Newtonian reference fluid in a reference
channel Kr with a known flowrate Qr. The flowrate of the analyte fluid Qx is
adjusted to equalize the pressure drop across reference and analyzer channel.
Assuming a Newtonian flow profile in the analyzer channel the viscosity of the
analyte fluid can be determined (see text, fig. taken from [19]).

While in the standard double barrel capillary rheometer, the principle of
measuring viscosity by comparing two parallel flows is used to eliminate the
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entrance and exit pressures, a microfluidic rheometer using two identical chan-
nels but different fluids has been introduced in [19] and is shown in fig 5.4. A
reference channel Kr and an analyzing channel Ka of same length and cross
section are connected with a branch and end in a common channel Kd. The
reference channel is fed with a Newtonian reference fluid of known viscosity ηr

and flowrate Qr which is marked with a dye. The analyzing channel is fed with
the fluid of unknown viscosity ηx, and the flowrate Qx in the analyzing channel
is adjusted in such a way, that no fluid passes through the branch (see fig 5.4).
Then, the pressure drop ∆p along Kr and Ka from the branch to the common
end is equal for both channels. From the electronic-hydraulic analogy (see sec-
tion 6.1.1), the steady state laminar, incompressible flow inside the channel is
described by [19]:

Q =
∆p
R

(5.2)

where R is the hydraulic resistance of the channel, which is given for a rectangu-
lar channel and a Newtonian fluid by eq. A.82. As the geometries of comparator
channels Kr and Ka are equal, the unknown viscosity can be determined by
equating eq. 5.2 for both channels [19]:

ηx = ηr
Qr

Qx
. (5.3)

The big advantage in this measurement is that no external pressure transducers
are needed. However, there are some drawbacks remaining:

• Due to the long equilibration times in microfluidic systems, the adjustment
of the flowrates until no fluid flows through the branch can be tedious and
time-consuming.

• As the reference fluid and the fluid to be analyzed stream into the same
channel where they start to mix, the measurement cannot be performed
in series for further analyzation of the fluid.

• Eq. (5.3) is only valid if the fluid of unknown viscosity ηx behaves New-
tonian.

5.3.2 Working Principle of Differential Viscometer

To overcome these drawbacks, a differential shear rheometer is proposed here
and its working principle is shown in fig. 5.5: A common feeding channel Kf fed
with a known flow rate Q of the fluid to be analyzed splits into two comparator
channels: a reference channel Kr and an analyzer channel Ka which have the
same cross section but different lengths Lr and La. Analyzer and reference
channels reunify in a common detection channel Kd, where the ratio Qa/Qr of
fluid passing the two comparator channels is determined. If the difference in the
entrance pressure drops can be neglected, the pressure drop across both channels
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Figure 5.5: Lithography mask for the production of a microfluidic differential
viscometer showing the channel geometry. A common feeding channel splits
into a reference and an analyzer channel of same width and height but different
lengths. The channels lead into a wide detection zone, where the flowrate ratio
of analyzer and reference flow X = Qa/Qr is optically detected. The shear
viscosity exponent n can be calculated from X(Q) (see text).

is equal. The hydrodynamic resistances of analyzer and reference channel are
given by eq. 3.22, and the wall shear rates γ̇a,r are obtained from eq. 3.20:

Ra,r = η(γ̇a,r)
La,r

F ?(n)
, with γ̇a,r = Qa,r · Fγ̇(n) (5.4)

The measured flowrate ratio X is given by the inverse of the ratio of the hydro-
dynamic resistances of the comparator channels:

X =
Qa

Qr
=
Rr

Ra
=
η(γ̇r)
η(γ̇a)

· Lr

La
(5.5)

The flowrates in analyzer and reference channel can be calculated from the
known flowrate Q = Qa +Qr as

Qa =
X

X + 1
Q, Qr =

1
X + 1

Q. (5.6)

Assuming a power law for the viscosity η(γ̇) = Aγ̇n−1 we get

X =
(
γ̇r

γ̇a

)n−1

· Lr

La
=
(
Qr

Qa

)n−1

· Lr

La
=
(

1
X

)n−1

· Lr

La
(5.7)

Thus, the power law exponent n can be determined from the known ratio of the
lengths of analyzer and reference channel and the measured flow rate ratio X:

n =
ln(Lr/La)

lnX
=

ln(XN )
lnX

, (5.8)

where XN ≡ Lr/La is the flowrate ratio expected for a Newtonian fluid. In the
experiments, the measured Newtonian flowrate XN can slightly deviate from
the value predicted by the device geometry. To account for such deviations
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we calibrate the measurement geometry with a Newtonian fluid and use the
experimentally determined value of XN for the data evaluation.

In a conventional rheometer the absolute value η(γ̇) of the viscosity at a given
shearrate is determined, which is illustrated schematically by the red curve in
the log-log plot in fig. 5.6 on the left. In contrast, the differential measurement
directly identifies the local power law index n, which is reflected in the slope of
the viscosity curve η(γ̇) in a log-log plot shown by the green curve in fig. (5.6)
right:

d(ln η)
d(ln γ̇)

= n− 1 (5.9)

As the measurement thus yields the differential n−1 of the viscosity, the method

Figure 5.6: Schematics of the shear viscosity measurement in the differential
viscometer. From the measured flowrate ratio X, the ratio of the apparent
shear viscosities in analyzer and reference channel η(γ̇a)/η(γ̇r) and the ratio
of the shear rates in the channels γ̇a/γ̇r can be determined (left). Thus, X
determines the slope of the logarithm of η(γ̇), which gives the power-law index
n(γ̇) of the shear viscosity at the intermediate shear rate ¯̇γ shown on the right.

is especially suited to characterize non-Newtonian fluids. While a Newtonian
fluid with n = 1 has a constant shear viscosity, n < 1 and n > 1 correspond
to a shear-thinning, resp. shear-thickening fluid. Thus, the powerlaw index
n specifies how ”non-Newtonian” the fluid is in the vicinity of the averaged
flowrate ¯̇γ =

√
γ̇aγ̇r in the channels Ka,Kr. To determine the absolut values of

the viscosity with eq. (3.21), an additional measurement of the pressure drop
along the channels is needed. Alternatively, the whole curve of n versus ¯̇γ can
be measured and the viscosity η can be identified by integration of the curve if
one basic value η(γ̇) is known.

Generally, for a complex fluid the powerlaw description will only be valid lo-
cally in a certain interval of shearrates around γ̇0 according to eq. (3.33). For the
measurement of n it is therefore mandatory that the channel shearrates γ̇a, γ̇r

fall within the interval where the powerlaw description is sufficiently fulfilled.
The shearrates γ̇a, γ̇r are proportional to the flowrates Qa, Qr in analyzer and
reference channel, which themselves are inversely proportional to the hydrody-
namic resistance Ra, Rr of the channels. As the hydrodynamic resistances are
proportional to the channel lengths, the accuracy and the sensitivity of the mea-
surement can be tuned by the length ratio of the channels La/Lr. For a strongly
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non-Newtonian fluid with a powerlaw index far away from n = 1, a length ratio
La/Lr relatively close to unity ensures that the shearrate interval [γ̇a, γ̇r] does

not get too wide while still giving a good measurable signal X =
(

Lr

La

) 1
n

not too
close to the Newtonian value XN = La/Lr. On the other hand, to detect only
a small deviation from n = 1, a big ratio of La/Lr will result in a resolvable
measurement signal X − XN . For fluids with unknown properties it can be
convenient to measure X in series with different length ratios La/Lr and pick
the best fitting geometry for evaluation.

5.3.3 Design of Experimental Measurement Geometries

The principle of the differential viscometer illustrated above has been tested
experimentally by performing measurements with complex fluids of different
rheological properties, which have been determined with a rotational rheometer
in cone-plate geometry for comparison. Measurements in various realisations
of the differential shear viscometer have been performed to test for a possible
influence of the measurement geometry on the results.

Basic Setup

The basic setup consists of one analyzer and one reference channel with the same
constant, rectangular cross section and different lengths La 6= Lr. Its geometry
is depicted in fig. 5.5.

”2×2L vs.L” - Setup

Figure 5.7: To keep the flow rate ratio close to X = 1, the differential shear
viscometer has been tested with a reference channel of length Lr and an analyzer
channel consisting of two parallel channels with twice the length La = 2Lr =
36 mm.

The ”2×2L vs.L” - setup shown in fig. 5.7 is a modified version with 2 parallel
analyzer channels of length La = 2Lr. The hydrodynamic resistance Ra of the
two parallel analyzer channels can be calculated by the hydrodynamic analogy
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to electric circuits (see section 6.1.1) from the resistance of the single analyzer
channel R2L:

1
Ra

=
1
R2L

+
1
R2L

=
2
R2L

. (5.10)

Then, the flowrate ratio in the ”2×2L vs.L” - device is given by (comp. eq. 5.5):

X =
Qa

Qr
=
Rr

Ra
=

2η(γ̇r)
η(γ̇a)

· Lr

La
=
η(γ̇r)
η(γ̇a)

. (5.11)

Hence, the Newtonian flowrate ratio in this setup is XN = 1. With the flowrate
Qa splitting equally on the two analyzer channels we get for the shearrate in the
analyzer channels

(
γ̇r

γ̇a

)
=
(

Qr

Qa/2

)
so that eq. 5.8 reads for the ”2×2L vs.L” -

device:
n =

ln 2
ln(2XN/X)

=
ln 2

ln(2/X)
(5.12)

The advantage of this setup is that the flowrate ratio X is kept close to unity,
where the experimental error in determining X by measuring the width of the
streams Qa, Qr is lowest. Fig. 5.8 shows fluorescence microscopy images of the
setup on a microfluidic chip in operation. The pictured section shows the out-
flux of the reference channel and the two analyzer channels into the detection
channel. The analyzer fluid contains fluorescently labelled melamin resin beads
with a diameter of 1 µm as marker particles. The depletion layer seperating
the fluid streams Qr and Qa,1, Qa,2 is clearly visible and indicated by the arrow
(see section 2.5) . A measurement for a Newtonian fluid (50% (w/w) glycerol in
water, left) is shown in comparison with a mildly and strongly shear thinning
fluid (1% (w/w) PAA (middle) and 2% (w/w) PAA (right) in aqueous solution).
While for the glycerol solution the depletion layer is in the channel center indi-
cating X ≈ 1, the flowrate ratio X = Qa/Qr is significantly decreased for the
shear thinning polymer solutions of 1% PAA and 2% PAA. This is caused by the
higher shearrate in the reference channel Kr, which results in a lower viscosity
of the fluid and thus a higher flowrate in Kr. At the given shearrates in the
channels, the powerlaw index n of the 2% PAA soluion is apparently lower than
n of the 1% PAA solution, while n = 1 for the glycerol solution.

Wide-Narrow Setup

Another setup (wide-narrow setup) to achieve the advantageous XN ≈ 1 Newto-
nian flowrate ratio uses a narrow, short analyzer channel and a wider and longer
reference channel (da < dr, La < Lr). The length of the analyzer channel is cho-
sen in such a way, that the hydrodynamic resistance of reference and analyzer
channels is approximately equal for a Newtonian fluid. Then, for equal flow
rates Qa ≈ Qr the shearrate is higher in the narrow analyzer channel. There-
fore, the flowrate ratio X will change for a non-Newtonian fluid with n 6= 1,
which enables the determination of the viscosity exponent n. Fig. 5.9 shows
a series of microscopy images from measurements in a wide-narrow setup with
da = 50µm, dr = 100µm, La = 16mm, Lr = 52mm and ha = hr = 61µm. The
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Figure 5.8: Microscopy images of the detection channel of the 2 × 2L vs.L -
setup with analyte fluids containing fluorescently labelled tracer particles. The
flow direction is from left to right, the exit of the reference channel (up) and
the two analyzer channels (down) are visible on the left edge of the images.
The exposure time is set long enough to show average particle densities instead
of individual tracer particles. The depletion layer seperating the fluid streams
of Ka and Kr is marked with an arrow. While for the Newtonian glycerol
solution (left) the depletion layer is in the channel center indicating X ≈ 1,
the flowrate ratio X = Qa/Qr is significantly decreased for the shear thinning
polymer solutions of 1% PAA (middle) and 2% PAA (right). This is caused
by the higher shearrate in the reference channel Kr, which results in a lower
viscosity of the fluid and a higher flowrate in Kr.

setup contains an additional channel Km through which a stream of analyzer
fluid with fluorescent markers Qm is inserted in-between the fluid streams of
analyzer and reference channel. The upper pictures in fig. 5.9 show the area at
the outlet of the channels Kr,Ka and Km into the detection channel (comp. to
fig. 2.5), the lower pictures are recorded further downstream in the detection
zone, where the flow profile is fully developed and the width of the streams dr, da

is evaluated. The measurement was taken with 2% PAA in aqueous solution as
analyzer fluid.

Tube-Setup

To demonstrate the simplicity of the device, we tested a very basic tube setup,
where the feeding channel, analyzer and reference channel are replaced by stan-
dard polypropylen tubings with a diameter of d = 1/32 inch connected by a
T-crossing. Analyzer and reference channels had different lengths of La = 15 cm
, Lr = 30 cm. The feeding channel was connected to a syringe pump providing
known flow rates of the analyzer fluid and the flowrate ratio was determined
by weighing the amounts of fluid Va, Vr flowing out of reference and analyzer
channels during an arbitrary measurement time. Fig. 5.10 shows a scheme of
the tube setup.

5.3.4 Entrance and Exit Effects

The cross section of the feeding channel Df in the microfluidic devices is bigger
than the cross section of the comparator channelsDr = Da, but smaller than the
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Figure 5.9: Detection zone in wide-narrow setup with additional channel Km

with marker fluid for the determination of X during a measurement with a 2%
(w/w) PAA solution under different flowrates Q = 2 − 200µl/h. The upper
pictures are taken right at the beginning of the detection zone, the low picture
series shows a region more downstream where the flow profile is fully developed.
The exit of the narrow, short analyzer channel lies above the marker channel, the
wider and longer reference channel exit is beneath Km. With increasing flowrate
Q, the fraction flowing through the analyzer channel increases, which reflects
the shear-thinning behaviour of the polymer solution at higher shearrates.

Figure 5.10: Schematics of the
tube-setup: The tube with
fluid coming from the syringe
pump is split into analyzer
and reference tube with a T-
crossing. The flowrate ratio
is determined by weighing the
amounts of fluid Va, Vr flow-
ing through analyzer and ref-
erence tube in an equal time
interval.

sum of the cross sectional area of both comparator channels (Dr < Df < 2Dr).
Thus, the average Hencky strain of the elongation during the entrance flow
from the feeding channel into the comparator channels cannot exceed the value
of ε = ln 2 ≈ 0.69. The dependence of the entrance pressure drop of polymer
solutions on the Hencky strain is strongly nonlinear and the pressure drops
expected for Hencky strains ε < 1 can be expected to be small [5]. Thus,
the geometry of the feeding channel ensures the limited influence of entrance
flow pressure drops due to extensional viscosity effects. To satisfy the proposed
constant pressure gradient (dp/dz) = ∆p/L for different channel lengths, which
corresponds to a linear Bagley plot, the flow should be fully developed along
most of the channel. This requires, that the residence time tr = L/v̄ of the fluid
in the channel is long compared to the relaxation time of the fluid τ0 where
v̄ = Q/D is the average fluid velocity in the channel. This corresponds to a
small Deborah number De, which gives the ratio of fluid relaxation time and
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time of observation [86]:

De = τ0/tr = Q/(DL) � 1 (5.13)

The exit pressure loss is generally smaller than the entrance pressure and can
be neglected. This can be understood as follows: In a cylinder-symmetrical
constriction, the Hencky strain and the elongational rates are twice as big in
the direction of the flow as perpendicular. Thus, the polymers are stretched
way more in the direction of flow at the channel entrance than in the perpendic-
ular direction at the channel exit. Moreover, the shear in the channel already
prestretches the polymer in the direction of flow. Hence, the stretching per-
pendicular to the flow at the exit coincides with the relaxation of the polymer
due to the reduced shearrate. Thus, both pent and pexit are neglected in the
differential shear viscometer.

5.3.5 Measurements with Semi-Dilute Polymer Solution

Measurements in several of the aforementioned setups have been performed to
determine the power-law exponent n of the shear viscosity of 1% and 2% (w/w)
PAA (5-6 MDa) in aqueous solution as model polymer fluids. Fig. 5.11 shows
the measurement results for the flowrate ratio X = Qa/Qr in the ”2×2L vs. L” -
setup depicted in fig. 5.7 as evaluated from fluorescence microscopy images anal-
ogous to those shown in fig. 5.8. For slow flowrates, the images were obtained by
averaging long-time exposure shots of the channels with the fluorescent mark-
ers. The Newtonian flowrate ratio XN for the device calibration was obtained
by averaging the measured X(Q)-values of a 50% (w/w) glycerol solution at
different flowrates (blue squares). At low flowrates, both PAA solutions show
a flowrate ratio near the Newtonian value XN . For increasing flowrates, X(Q)
of the polymer solutions rises (green squares: 1% PAA, red squares: 2% PAA),
indicating the shear-thinning behavior of the solutions. As expected from the
cone-plate rotational rheometer measurements (see fig. C.1), the shear thinning
is much more pronounced for the higher concentrated polymer solution which
manifests in the higher X(Q) values for the 2% PAA solution. At very high
shearrates (γ̇ > 1000s−1) a slight decrease in X indicates a viscosity function
η(γ̇) with a less steep slope. The according values for the shear viscosity expo-
nent n(γ̇) calculated from X(Q) are shown in fig. 5.12. To test for a potential
influence of the measurement geometry, the viscosity exponent of the 2% PAA
solution has been measured in different geometries and all results are plotted
together in fig. 5.12. Filled circles and upward triangles represent measurements
with the basic setup with La/Lr = 3/2, filled squares represent measurements
in the 2×2L vs. L - setup and downward triangle values were obtained with
the wide-narrow setup shown in fig. 5.9. Measurements for the 1% PAA so-
lution are shown in green, measurements for the 2% PAA solution are shown
in red. For comparison, the viscosity exponent obtained by differentiation of
η(γ̇)-curves from rotational cone-plate rheometer measurements is displayed for
both polymer solutions by the open squares. The differential viscometer re-
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Figure 5.11: Evaluated flowrate ratios X(Q)
for a differential viscosity measurement in
the ”‘2x 2L vs L”’-setup depicted in fig. 5.7
and 5.8. �: 50% (w/w) glycerol solution;
�: 1% (w/w) PAA solution, �: 2% (w/w)
PAA solution. The higher values of X for
the polymer solutions in comparison with the
glycerol solutions reflect the non-Newtonian
shear-thinning characteristics of these fluids.

sults are in good agreement with the rotational rheometer measurements and
no dependence on the specific measurement geometry used could be observed.

Figure 5.12: �, �: Shear viscosity exponent n determined by cone-plate rheome-
ter measurement for 1% w/w. and 2% w/w. polyacrylamid (PAA) solutions
with a molecular weight of ca. 5-6 MDa. Measurements with the differential
microfluidic viscometer were performed in the basic setup (•,N), the 2×2L vsL-
setup (�,�) and the wide-narrow geometry (H). The results are in agreement
with data extracted from measurements in cone-plate rheometry (�, �) and no
sytematic dependence on the specific measurement geometry is evident.

5.3.6 Measurements with Worm-like Micellar Solution

As a test for the suitability of the differential viscometer for extremely shear-
thinning solutions, the shear exponent of a commercially available shower gel
(Lavera) has been measured. The shower gel consists predominantly of a highly
concentrated lipid solution. The lipids in such solutions are known to form
long worm-like micelles (WLM), which can entangle with each other. Thus,
the rheological characteristics resemble much of a highly entangled polymer
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(a) (b)

Figure 5.13: (a) Dynamic shear moduli G′ (�) and G′′ (4) of the shower gel.
(b) Cole-Cole plot of the normalized storage and loss moduli G′/G0, G′′/G0,
where G0 is the plateau storage modulus (◦). The dashed black line shows the
semicircle expected for an ideal Maxwell element.

solution with a high zero-shear viscosity and a pronounced minimum in G′′ [9].
If breaking and formation of the wormlike micelles is faster than reptation of
the micelles, the linear viscoelastic properties of worm-like micellar solutions
are known to correspond to those of a Maxwell element with a monoexponential
stress relaxation function. Then, the normalized relaxation spectrum describes
a semicircle in a Cole-Cole plot, where G′′/G0 is plotted against G′/G0 and G0

is the storage modulus in the stress plateau region [9]. The measurement of the
dynamic modulus with the rotational oscillatory rheometer shown in fig. 5.13a
and the appendant Cole-Cole plot in fig. 5.13b show, that the shower gel indeed
exhibits the expected properties of a WLM-solution. In steady shear, the shear
forces can rupture the wormlike micelles so that entanglement points are released
if the shear forces exceed a certain threshold. This leads to an extreme shear
thinning in such solutions with a shear viscosity exponent near zero (n ≈ 0).
A viscosity exponent n < 0 has been proposed for WLM-solutions, which leads
to shear-banding [29]. As the worm-like micelles can be newly formed again,
the high zero shear viscosity η0 is quickly recovered when the shear rate is
reduced. The steady-state shear viscosity measured with the conventional cone-
plate rheometer shows the expected strong shear-thinning behaviour with a
powerlaw exponent n ≈ 0 (green squares in fig. 5.14 c,d).

The measurements with the WLM-solution have been performed in the sim-
ple tube setup with tubes of d = 1/32 inch diameter and a length of La = 15 cm
and Lr = 30 cm. For each measurement point, a fixed amount of 0.5-12 ml
WLM-solution was pumped through the T-crossing with a syringe pump, and
the amount of fluid flowing through the reference and the analyzer tube was
measured by weighing the collected fluid. Measurements with a 50% w/w.
glycerol solution were performed to determine the Newtonian flowrate ratio XN

in good agreement with the expected theoretical value of XN = Lr/La = 2 (see
fig. 5.14a, •). Starting from X ≈ XN , the data for the WLM-solution show a
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Figure 5.14: Viscosity measurements with a WLM-solution in the tube-setup:
(a) Flowrate ratio for 50% (w/w) glycerol solution (•) to determine XN and
for the WLM-solution (•). (b) The shearrates according to the measurments
in (a) show a stagnation of the flowrate in the reference channel once γ̇ ≈
20 s−1 is exceeded in the analyzer channel. (c) Shear viscosity η(γ̇) determined
in the cone plate rheometer (�) and differential viscometer (red line). The
differential viscometer curve contains an arbitrary offset, as the absolute value
is not determined in the differential measurement. (d) Local power-law index
n of the shear viscosity as determined in the cone-plate rheometer (�) and in
the microfluidic viscometer (red). The directly determined values according to
eq. 5.8 (�) are compared with the result of the numerical method (solid red
line).

strong increase of the flowrate ratio with a more than 500-fold higher flowrate
in the analyzer channel at high flowrates (fig. 5.14a, •). The comparison of the
appendant shear rates (�) in fig. 5.14b shows, that once the shear rate in the
analyzer channel gets higher than 20 s−1, the shearrate in the reference channel
stagnates. This corresponds with the onset of the strong shear thinning in the
viscosity curve at γ̇ ≈ 20 s−1 in fig. 5.14c. Obviously, with increasing Q more
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and more fluid is flowing through the analyzer channel while Qr stays approx-
imately constant. This indicates a plateau in the p(Q)-curve of the analyzer
channel, that corresponds to the typically observed shear stress plateau σ(γ̇) in
wormlike micellar solutions. Functionally, the parallel circuit element Ka with
a lower hydrodynamic resistance operates as a flow and pressure limiter for the
reference channel Kr with the WLM-solution.

From the measured flowrate ratios the values for the shear exponent n have
been evaluated according to eq. 5.8 (fig. 5.14d, �) and compared to the values
determined from the cone-plate rheometer measurement (�). Due to the strong
shear thinning, the flowrate interval [γ̇r; γ̇a] gets very large (see fig. 5.14b). For
the derivation of eq. 5.8 the shear viscosity is assumed to follow a power-law
within [γ̇r; γ̇a]. This assumption gets increasingly poor for higher shear rates
¯̇γ. Consequently, the sharp transition from n ≈ 1 to n ≈ 0 measured with the
cone-plate rheometer gets smeared out in the differential measurement yielding
systematically higher values n > 0 for high shear rates. A geometry with a
smaller Newtonian flowrate ratio XN < 2 would allow for a more accurate
measurement of n.

Numerical evaluation of shear exponent n

Figure 5.15: Schematics of the numerical evaluation method: The N measure-
ment values of X on [Qmin, Qmax] (•, left) correspond to 2N unknown viscosity
values at 2N shearrates on [γ̇min; γ̇max] (•, right). The 2N viscosity values are
apporoximated by interpolation between N viscosity values (�), for which a
linear equation system containing the N measured values for X can be solved.

To circumvent this problem without changing the setup-geometry, a nu-
merical method to determine η and n has been developed in cooperation with
Christian Cyron1. By simultaneously using N measured values of X on an in-
terval [Qmin;Qmax] it is possible to determine j = 1 . . . N interpolation values
HS

j for the shear viscosity on the interval of shear rates [γ̇min; γ̇max] associated
with [Qmin;Qmax]. Instead of assuming a powerlaw, the method is based on a

1 TUM, Institute for Computational Mechanics, Chair of Prof. W.A. Wall
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linear interpolation for the logarithmic values of the viscosity between the N
values HS

j . Due to the differential nature of the measurement, the resulting
viscosity curve is indefinite in its absolute value, yet the shape of the viscosity
curve and the corresponding values for the viscosity exponent n are fixed. As
the viscosity must be monotonic on each of the interpolated intervals [γ̇j , γ̇j+1]
once the width of the shear rate intervals (γ̇min − γ̇max)/(N − 1) is sufficiently
small, the method gives much more accurate values than the direct evaluation
with eq. 5.8. With the p(Q)-curve being monotonically increasing, the rough-
ness of X(Q) is physically limited, so that strong fluctuations in X have to be
attributed to experimental error (see discussion in section C.6). Therefore, with
a sufficient density of measurement values on [Qmin;Qmax], the N measurement
values Xj(Q) can be fitted with a smoothing function without losing informa-
tion on the viscosity. A more detailed explanation of the numerical method is
given in section 5.4.2. The solid red line in fig. 5.14a shows a polynomial fit of
order 7 to the measured values, the resulting curves for the viscosity η and the
viscosity exponent n are shown by the red lines in fig. 5.14c,d. The numerical
method reproduces the low values of n ≈ 0 observed for high shear rates with
the rotational rheometer, and the shape of the viscosity curve η(γ) from the dif-
ferential measurement is in excellent agreement with the cone-plate rheometer
values.

The powerlaw index n can thus be determined in an approach that is open to
miniaturisation and parallelization, the measurement can be performed online
and in series.

5.4 Differential Extensional Rheometer

As introduced in sec. 3.3.1 the extensional viscosity Λ is defined as the mate-
rial function relating the first normal stress difference in uniaxial extensional
flow with the extension rate ε̇. It is experimentally challenging to design a flow
geometry creating a homogeneous uniaxial extensional flow to measure Λ(ε̇).
Filament stretching rheometers of the Meissner or Muenstedt type [74] require
a high sample viscosity and are thus only suited for polymer melts and not for
(semi-)dilute polymer solutions. In a Capillary Breakup Extensional Rheome-
ter (CaBER) the extension rate is established by the surface tension and the
viscosity of the fluid itself, so that the measurement of Λ(ε̇) cannot be done over
a range of rates ε̇. Moreover, sample necking inhibits measurements for low vis-
cosity fluids [8]. If the fluid compartments are surface active or form a film at
the air-water interface, CaBER measurements can be distorted by rheological
properties of the surface films.

As an alternative, an estimate of the extensional viscosity can be evaluated
by determining the hydrodynamic resistance Rhyd,ent associated with the pres-
sure drop Pent across the converging section of a channel, especially in a flow
regime where other methods do not work well [33]. A constant, tunable exten-
sion rate can be imposed on the fluid by using hyperbolic constrictions, which
consist of two consecutive dies with hyperbolic shape D(z) = a

z , where D is
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the cross sectional area of the die and a is a shape parameter (see fig. 5.16).
By using analyzer and reference channels with such hyperbolic constrictions,

Figure 5.16: Channel constrictions with hyperbolically varying cross sections
D(z) = a

z . Each constriction is made of two identical opposing dies. Left:
Cylindrical constriction with semihyperbolically changing radius R(z) ∼ 1/

√
z.

The constriction shown in the photography has an outer radius Rout = 3.25 mm
and an inner radius Rin = 0.73 mm, which corresponds to a Hencky srain
of ε = 3, the shape constant is a = 12mm3. As the PDMS constric-
tion is not covalently bound to the surrounding polyethylen tube it is fixed
by syringe needles to prevent a slipping along the tube at higher operating
pressures. Right: Microfluidic rectangular constriction with constant channel
height h and hyperbolically varying width w. The picture shows a microscopy
image of a 0.1 % (w/w) PAA solution flowing through a constriction with
h = 50µm, wout = 400µm, win = 40µm, shape constant a = 2.2 · 10−3mm3

and Hencky strain ε = 2.3. The streamlines of the polymer solution are visual-
ized by fluorescent marker particles and approximately follow the shape of the
channel.

the concept of the differential shear viscometer described in sec. 5.3 can be ex-
tended towards measuring Λ(ε̇). As a drawback of the converging die methods,
the no-slip boundary condition at the channel wall will inescapably generate a
region dominated by shear flow near the walls with a non-negligible component
of rotational flow. Even for a hyperbolic die with complete wall slip the result-
ing pressure driven flow through the constriction will not be completely shear
free [8]. Thus, the flow within the channel constriction is not an ideal, rotation
free, uniaxial extensional flow and the contribution of the shear flow component
to the pressure drop Pent has to be considered.



5. Differential Microfluidic Viscometer 83

5.4.1 Determination of Extensional Viscosity from Entrance Pressure Drops

The extensional viscosities Λ,Λp are defined as the first normal stress differences
in uniaxial extensional and planar extensional flow (see 3.3.1). To determine the
extensional viscosity from the entrance pressure drop in a converging channel,
we consider cylindrical converging dies and rectangular converging dies with
constant channel height h. In these constrictions, the flow is considered as
a superpositon of a pure shear flow and an uniaxial extensional flow resp. a
planar extensional flow. A schematic picture and an experimental realisation of
a cylindrical hyperbolic channel constriction is shown in fig. 5.16.

Hencky Strain and Extension Rate in Hyperbolic Constriction

The extensional Hencky strain ε is defined by ε =
∫

dε =
∫

δL
L where δL is

the incremental length change of a fluid element of length L in the extensional
direction. Thus, a total extension by a factor λ from L → λL corresponds
to a total extensional strain of ε = lnλ. Volume conservation requires that a
fluid slice at the entrance of the hyperbolic constriction with cross-section Dout

and length dz gets stretched to a length λdz = (Dout/Din)dz at the narrow
end of the constriction, so that the total Hencky strain of the constriction is
ε = ln(Dout/Din).

The averaged local extension rate ¯̇ε in the converging channel is determined
by differentiating the averaged flow velocity ū = Q/D(z) with respect to the
flow direction z [33]. In a hyperbolic constriction with D(z) = a/z the average
extension rate of the fluid is thus constant along the converging region:

¯̇ε(z) =
∂ū

∂z
=

∂

∂z

Q

D
=

∂

∂z

Qz

a
=
Q

a
. (5.14)

Contributions of Shear and Extensional Resistance to the Entrance Pressure
Drop

For the determination of the extensional viscosity from the entrance pressure
drop it is assumed, that mixed flow effects can be neglected, so that the shear
viscosity of the fluid is unaffected by the simultaneous extensional flow and vice
versa. A detailed discussion of this assumption will be given in section 5.4.6.
Therefore, the pressure drop across a converging die associated with a flowrate
Q can be divided into two terms

P ent = P ent
S + P ent

E , (5.15)

which correspond to the shear resistance RS = P ent
S /Q and the extensional

resistance RE = P ent
E /Q of the channel constriction. The contributions P ent

S

and P ent
E have been calculated for both cylindrical and rectangular channel

constrictions in section C.3 adapting the treatment of tapered channels given
in [33]:
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The shear and extensional resistance of a power-law fluid flowing through
the constriction can be expressed as (eqs. C.28, C.29):

Rent
S =

P ent
S

Q
= η(γ̇in)

a

D3
infhyp(n)

; Rent
E =

P ent
E

Q
=

Λ(¯̇ε)
a

ln
Dout

Din
, (5.16)

where the shape factor fhyp(n) depends on the geometry of the cross section
and the power-law index n. The associated shear- and extension rates γ̇, ¯̇ε in
the die are given by (see eqs. 3.20, 5.14)

γ̇ =
Q

h̃3
in

Fhyp
γ̇ (n), ¯̇ε =

Q

a
(5.17)

where Fhyp
γ̇ (n) depends on the die geometry and the power-law index n.

In the cylindrical constriction in fig. 5.16 left the fluid flowing through the
narrowing die subsequently flows through an expanding die which is equivalent
to the narrowing die with reversed flow direction. Assuming fully developed
flow profiles, the shear resistance RS of the entire constriction is thus twice the
resistance of the narrowing die: RS = Rent

S + Rex
S = 2Rent

S . While the average
extensional flow in the converging die corresponds to an uniaxial elongational
flow with ¯̇ε and strain ε, the flow in the expanding die corresponds to a biaxial
extension with extensional rate and Hencky strain of only ¯̇εex = 1

2
¯̇ε, εex = 1

2ε.
Hence, the pressure drop of the extensional contribution in the expanding die
is expected to be much smaller than in the narrowing die and can usually be
neglected [33]. The extensional resistance is thus dominated by the contribution
of the entrance flow in the narrowing die: RE = Rent

E +Rex
E ≈ Rent

E . Contrary, in
the rectangular hyperbolic geometry (fig. 5.16 right), the fluid in the expanding
die undergoes a planar extension with the same extension rate and total exten-
sional strain as in the narrowing die. Thus, in a first approximation the pressure
contribution from the expanding die can be estimated to be approximately equal
to the pressure drop in the narrowing die (RE = Rent

E + Rex
E ≈ 2Rent

E ). As the
direction of extension is now perpendicular to the channel axis instead of par-
allel and due to flow history effects the pressure drop in the expanding die is
expected to be smaller nevertheless if mixed flow effects are non-negligible (see
discussion in section 5.4.6).

Altogether, a symmetrical hyperbolic constriction composed of a narrowing
and a subsequent extending die then has a shear resistance of Rhyp

S = 2Rent
S

and an approximate extensional resistance of RE = bRent
E where b depends on

the flow type given by the flow geometry:

b ≈
{ 1 for uniaxial extensional flow

2 for planar extensional flow (5.18)

With eqs. 5.16, the elongational viscosity can be calculated from the total pres-
sure drop P ent if the shear viscosity of the fluid is known. For Newtonian
fluids, the calculations for constrictions with shape factors a applicable in prac-
tice show, that the contribution of the extensional resistance is negligible with
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respect to the shear resistance for both cylindrical (eq C.19) and rectangular
(eq C.27) constrictions. Therefore, the entrance pressure drop can only be used
to measure Λ(ε̇) for non-Newtonian fluids in a regime where the Trouton ratio
is high.

5.4.2 Working Principle of Differential Extensional Rheometer

The differential extensional rheometer expands the working principle of the
differential shear rheometer towards measuring the extensional viscosity:

• In the differential shear rheometer, analyzer and reference channel have
different lengths La, Lr, which leads to different hydrodynamic resistances
Ra ∝ Laη(γ̇a), Rr ∝ Lrη(γ̇r) and different shear rates γ̇a, γ̇r in the chan-
nels. For Newtonian fluids with constant shear viscosity η(γ̇a) = η(γ̇r),
the measured flowrate ratio XN = Qa/Qr = Rr/Ra = Lr/La in analyzer
and reference channel is therefore different from the flowrate ratio for non-
Newtonian fluids X = (Laη(γ̇a))/(Lrη(γ̇r)), where the viscosity changes
with the shear rate and η(γ̇a) 6= η(γ̇r). Thus, the flowrate ratio X gives a
measure for the local powerlaw index n of the shear viscosity expressing
how non-Newtonian the shear viscosity is.

• In the differential extensional viscometer the fluid in analyzer and refer-
ence channel flows through constrictions with the same extensional strains.
However, the different shape constants aa,r in the constriction geometries
generate different extension rates ε̇a,r in analyzer and reference channels
(see fig. 5.17). For a Newtonian fluid, where the extensional visosity
Λ(ε̇a) = Λ(ε̇r) is constant and independent of the extension rate, the
flowrate ratio XN = Rr/Ra is therefore different from the flowrate ra-
tio X for a non-Newtonian fluid with Λ(ε̇a) 6= Λ(ε̇r). Thus, the measured
flowrate ratio X depends on the ratio Λ(ε̇a)/Λ(ε̇r), which can be expressed
by the local power-law index k of the extensional viscosity. As not only
the extension rates ε̇a,r but also the shearrates γ̇a,r in reference and ana-
lyzer channels are different, the flowrate ratio X depends on both k and n
and on the ratio of the viscosities Λ(Λ(ε̇a,r)/η(γ̇a,r). Thus the analysis to
extract k and Λ from a measurement of X(Q) is more complicated than
in the differential shear rheometer. Generaly, X gives a combined mea-
sure for the non-Newtonian characteristics of η and Λ. Analogous to the
differential shear viscometer, relative values Λ/η and slopes of the Λ(ε̇)
and η(γ̇) curves can be directly determined from measured X-values and
pressure measurements are only required to extract absolut values for Λ
and η.

In the following we will discuss how the extensional viscosity Λ can be extracted
from a measurement in a properly designed differential extensional viscometer,
where the analyzer and reference channels contain constrictions with hyperbol-
ically varying cross sectional area D(z) = a/z.
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5.4.3 Design of Experimental Measurement Geometries

Differential microfluidic devices with hyperbolic constrictions were tested both
in cylindrical and rectangular cross sectional geometry. The latter were fabri-
cated with PDMS molds bonded to glass slides with the standard microfluidic
lithography procedure. The cylindrical channels with constrictions were build
by filling PVC tubes with PDMS using removable brass molds (see fig.2.1 in
section 2). While the outer and inner cross sections Dout, Din of all constric-
tions in one device were equal, the shape constants aa 6= ar were chosen to
be different in analyzer and reference channel. Analyzer and reference channel
contained one or more identical constrictions in series with Na, Nr indicating
the number of constrictions. The hyperbolic sections, the feeding channel and
the detection zone were connected by straight channel segments with a shared
equal constant cross section Dout. The total length La,r of these connecting
channels was chosen such, that their ratio in analyzer and reference channel
La/Lr is given by

La

Lr
=
Naaa

Nrar
. (5.19)

This ensures, that the total shear resistance in the connecting straight segments
in analyzer and reference channel has the same ratio as the total shear resistance
of the constriction segments (given the same power-law index n describes the
viscosity at the representative wall shear rates in the straight parts and the
constrictions). Especially an equal length of the connecting channels La =
Lr is of advantage in designing a microfluidic device, because then the shear
resistances of reference and analyzer channel are equal (RSr = RSa) if the
flowrates are equal (Qa = Qr). As the extensional resistance for a Newtonian
fluid in the hyperbolic constrictions is negligible (see eqs. C.19, C.27), this results
in an equal, constant Newtonian flowrate ratio XN = Rr/Ra ≈ RSr/RSa = 1.
Only if the Trouton ratio increases significantly (Λ(ε̇)/η(ε̇) � 3), the flowrate
ratio changes (X 6= 1), indicating a high, non-negligible extensional viscosity.

For the experiments, three basic sets of constrictions were designed: A rect-
angular set with extensional strain ε = 3.0 and two circular sets with strains
ε = 3.0 and ε = 4.2. For each set, three types of constrictions (S,M,L) with
equal cross sections Dout, Din and different shape factors a were produced.
These basic shapes S,M,L were combined in various ways for the differential de-
vices. Fig. 5.17 exemplarily shows a differential viscometer where 4 constrictions
of type S were combined in series for the analyzer channel and one constriction
of type L was used for the reference channel (Na = 4, Nr = 1, ar = aL = 4aa,
”4xS vs. L’ - setup). In this design, the total length of reference and analyzer
channel is equal resulting in XN = 1. The geometric properties of all constric-
tions used are listed in table 5.1, and an overview over the different combinations
of the constrictions used in the setups is given in table 5.2. The experimental
setup for the determination of the flowrate ratio was equivalent to the setup
used in the differential shear viscometer with rectangular channels. The setups
with cylindrical cross sections were run analogously to the simple tube setup of
the shear viscometer (see sec. 5.3.3).
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constriction geometrical properties
type shape flow type a [mm3] ε Dout [mm2] Din[mm2]

S 4.21 · 10−3

M rect. planar ext. 8.42 · 10−3 3.0 4.0 · 10−2 2.0 · 10−3

L 1.68 · 10−2

S 6.0
M circ. 1 uniax. ext. 12 3.0 33.2 1.66
L 24
S 6.0
M circ. 2 uniax. ext. 12 4.2 33.2 1.66
L 24

Table 5.1: Properties of the hyperbolic constrictions used in the experiments.
The rectangular constrictions change from a cross section of 800µm× 50µm to
40µm × 50µm. The circular constrictions of type 1 and 2 have outer radii of
3.25 mm and inner radii of 0.726 and 0.4 mm.

Figure 5.17: Lithography mask showing the geometry of the microfluidic rectan-
gular ”4xS vs. L” - setup. The device fulfills the condition given in eq. 5.19, which
results in a Newtonian flowrate ratio XN = 1. As the extensional resistance of
the channels is negligible as long as the Trouton ratio is small, a deviation from
XN can be directly associated with a high non-Newtonian extensional viscosity.

FEM-simulations of the geometries were performed to determine the geome-
try factors fhyp, Fhyp of the constrictions. Fig. 5.18 shows the resulting pressure
drop and fluid velocity at the channel center line for a Newtonian fluid in the
planar (left) and circular (right) constriction. Inside the converging section,
the velocity rises linearly along the channel, which corresponds to the desired
constant extension rate of the fluid. The course of the pressure drop in the
circular constriction shows, that the shear resistance in the connecting channel
with constant radius rout can be neglected. The ratio of shear and extensional
resistance for a Newtonian fluid (RE/RS)N was determined with the simula-
tions as (RE/RS)N = 5.3 · 10−4 for the rectangular constrictions of shape S,

setup Na Nr ar/aa

4xS vs. L 4 1 4
2xM vs. L 2 1 2
M vs. 2xS 1 2 0.5
3xS vs. L 3 1 4

Table 5.2: Overview of the geometric properties of the differential viscometer
setups tested in the experiments.
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(RE/RS)N = 2.23 · 10−3 and 2.6 · 10−2 for the circular constrictions of type M
with ε = 4.2 and ε = 3.0.

Figure 5.18: Results of a FEM-simulation for the hyperbolic rectangular con-
striction with ε = 3.0 (left) and for the converging half of a circular semi-
hyperbolic ε = 4.2 constriction (right). Both constrictions shown are of type
M. The graphs show the evolution of the pressure (red curves) and the fluid
velocity (blue curves) along the center lines of the constrictions.

5.4.4 Data Evaluation Methods

The total resistance of analyzer and reference channel is given by the sum of
the shear and extensional resistances

Ra,r = RSa,r(η(γ̇a,r)) +REa,r(Λ(ε̇a,r)). (5.20)

The shear resistance of a constriction is dominated by the wall shear rate γ̇w

at the tightest part of the constriction. Therefore, the shear resistance of the
constrictions is mainly determined by the viscosity values η(γ̇wr), η(γ̇wa), which
will be referred to as η(γ̇r), η(γ̇a) in the following. Then, each measurement
value X(Q) = Rr(Qr)/Ra(Qa) is determined by the four unknown viscosity
values η(γ̇a), η(γ̇r),Λ(ε̇a),Λ(ε̇r):

X(Q) =
Rr(Qr)
Ra(Qa)

=
RSr(η(γ̇r)) +REr(Λ(ε̇r))
RSa(η(γ̇a)) +REa(Λ(ε̇a))

(5.21)

The shear and extension rates can be determined from X(Q) with eqs. 5.6
and 5.17. As the method is differential, X(Q) contains no information on the
absolute viscosity values and only relative values Λ(ε̇)/η(γ̇) can be determined.
Yet, even for relative values eq. 5.21 is underdetermined, so that no values for
Λ(ε̇)/η(γ̇) can be extracted from a single measurement.

By assuming power-laws for the viscosities η(γ̇),Λ(ε̇), the viscosity values
η(γ̇a), η(γ̇r) and Λ(ε̇a),Λ(ε̇r) can be related by the power law exponents n, k. By
connecting measurements at three different flowrates X1(Q1), X2(Q2), X3(Q3)
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an analytical equation can be found for the relative viscosity Λ(ε̇)/η(γ̇). If n
is known from a differential shear viscometer, two values of X are sufficient. If
absolute values for η(γ̇) have been determined with a cone-plate rheometer, two
values X1, X2 are sufficient to calculate absolute values for Λ(ε̇). The analytical
solution is given in the appendix C.5.

Due to the threshold-type behaviour of the extensional viscosity especially of
dilute polymer solutions the power-law description of the extensional viscosity
is a poor approximation in the vicinity of the onset of the rise in Λ(ε̇). For eval-
uation of the experimental data the semianalytical solution proved impractictal
and repeatedly resulted in negative or imaginary viscosity values.

Numerical Method for Evaluation of X(Q)-Data Differential Extensional
Viscometer Data

To circumvent this problem, a numerical method to evaluate X(Q) analogous
to the one introduced in sect. 5.3.6 for the differential shear viscometer has
been developed in cooperation with Christian Cyron2, which does not require
a powerlaw description of the viscosity functions η(γ̇),Λ(ε̇). The concept of the
method is illustrated in fig. 5.19: The flow rate ratio is measured on an interval
[Qmin;Qmax] with N measurement values Xi(Qi) (left). These measurement
values are associated with 4N unknown viscosity values. The 4N unknowns are
reduced to N unknowns by interpolation between N basic values for the vis-
cosity, and a linear equation system can be formulated and numerically solved.
The detailed explanation of the method is discussed in the appendix (5.4.4).

Figure 5.19: N measurement points Xi(Q) (shown left) correspond to 4N un-
known viscosity values Λ( ˙εa,ri), η( ˙γa,ri) represented by the filled circles on the
viscosity curves (right). The unknowns are reduced to N values by interpolation
between the N viscosity values HE

j ,H
S
j .

As the possible values for the slope of the viscosity functions are limited, η(γ̇)
and Λ(ε̇) can be approximated by a sufficient number of interpolation values.
Conversely, it can be shown that the slope of X(Q) is limited by the condition:

−X(X + 1)
Q

≤ dX
dQ

≤ X + 1
Q

(5.22)

2 TUM, Institute for Computational Mechanics, Chair of Prof. W.A. Wall
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(see sect. C.6). Thus, high local variations in X(Q) can be attributed to the
measurement uncertainty, so that a smoothed function X̃(Q) can be determined
from X(Q) and used for the data evaluation.

For the experiments, fluids with Newtonian shear viscosity have been used
where RSa, RSr are independent of the shear rates γ̇a, γ̇r. Then, the numerical
method directly yields values for RE(ε̇)/RS for the constrictions on the mea-
surement interval [ε̇min; ε̇max]. With the Newtonian values for (RE/RS)N known
from the FEM-simulations, the extensional visosity can be calculated from its
Newtonian value ΛN = 3η, resp. Λp = 2η, which has been determined in a
cone-plate rheometer:

Λ(ε̇) = ΛN
RE(ε̇)/RS

(RE/RS)N
= (3 + b)η

RE(ε̇)/RS

(RE/RS)N
(5.23)

where b = 0 for uniaxial extensional flow and b = 1 for planar extensional
flow. However, the relative hydrodynamic resistance RE(ε̇)/RS is not nec-
essarily uniquely defined by the linear equation system derived for the mea-
sured values Xi(Q). This problem can be overcome if the measurement interval
[Qmin;Qmax] includes the range of low shear and extension rates where the an-
alyte solution behaves Newtonian Λ = ΛN = (3 + b)η. Alternatively, measure-
ments X(Q), Y (Q) from two different measurement geometries can be combined
to extract a unique solution for RE(ε̇)/RS (see discussion in C.7).

In principle, the derivation of Λ(ε̇) can be done analogously for fluids with
non-Newtonian shear viscosity η(γ̇). However, for an arbitrary shape of the
shear viscosity function it could not be shown whether the solution RE(ε̇)/RS(γ̇)
determind by solving the linear equation system is generally unique. Still, from
the measured X(Q) - curves it can be concluded if the Newtonian regime is
included in the measured interval:

In the trivial case, that the contribution of the extensional viscosity to
the flow resistance REa,r is negligible with respect to the shearflow resistance
(RE0/RS0 → 0), eq. (C.40) reduces to eq. (5.7): X = Lr

La
X1−n, which yields

the shearflow power-law index n = ln(Lr/La)
ln X analogous to the differential shear

viscometer. For a Newtonian fluid with n = k = 1, eq. (C.40) gives

XN =
Lr

La

1 + aa

ar

RE0
RS0

1 + ar

aa

RE0
RS0

(5.24)

As shown in eqs. (C.19, C.27), for constrictions with Dout/Din > 10 and a
maximum steepness of the constriction given by a wall slope of 2, the extensional
resistance can usually be neglected yieldingXN ≈ Lr

La
. Thus, if the flowrate ratio

X(Q) equals the Newtonian value X(Q) = XN = Lr

La
over a certain interval of

flowrates, it can be concluded that the extensional resistance is negligible and
the shear viscosity η(γ̇) of the fluid is in the Newtonian range at the according
shear rates. As both shear and extensional viscosity can be assumed to be
steady functions, a unique solution for the relative values of Λ(ε̇)/η(γ̇) can
then be determined from the differential measurements starting from the known
Newtonian Trouton ratio.



5. Differential Microfluidic Viscometer 91

Empirical Approximation Method

For many complex fluids, an educated guess for the overall shape of the exten-
sional viscosity curve Λ(ε̇) and thus the RE(ε̇)/RS(γ̇) function can be made.
Then, a quantification of Λ can be achieved by putting the assumed viscosity
functions into the flow rate ratio equation eq. 5.21 and calculating the expected
X(Q)-values. By comparing the obtained Xrev(Q) values, the paramters of the
input viscosity functions can be gradually adjusted until a match of the the-
oretical and the measured curves is achieved (X(Q) ≈ Xrev(Q)). Due to the
differential nature of the measurement, any multiple (η′,Λ′) = c · (η,Λ) results
in the same flowrate ratios as (η,Λ), so that an absolute value for Λ(ε̇) can be
extracted only with a known shear viscosity value η(γ̇0). Still, the obtained
solutions of this reverse method are not necessarily unique.

5.4.5 Experimental Results & Discussion

Dilute polymer solutions of 0.1% (w/w) PAA with high molecular weight (5-6
MDa) in water and in 80% (w/w) glycerol in water were chosen as analyte fluids.
The shear viscosity was measured with a cone-plate rheometer and appeared as
approximately Newtonian in the relevant range of shear rates with η ≈ 1.8 mPas
for the aqueous solution and η ≈ 0.1 Pas for the solution in 80% glycerol. Mea-
surements with the low-viscosity aqueous polymer solution were performed in
the rectangular microfluidic setups, the polymeric glycerol solutions were mea-
sured in the circular constrictions.

Measurements in Planar Rectangular Hyperbolic Constrictions

Fig. 5.20a shows the measured flowrate ratios X(Q) (blue squares) and Y (Q)
(red circles) in the microfluidic rectangular ”2xMvs. L” and ”4xS vs. L” - setups
for a low viscosity aqueous 0.1% PAA solution. Smoothing functions X̃(Q), Ỹ (Q)
were fitted to the data and are shown by the dashed red and blue lines. As ex-
pected, the flow rate ratios were observed to be approximately constant in a
regime of low flow rates, which can be interpreted as a regime with negligi-
ble extensional resistance in the constrictions (RE/RS � 1). Experimental
Newtonian values were determined directly as XN = X̃(Q), YN = Ỹ (Q) in
this constant flow rate regime. For flow rates corresponding to extension rates
higher than ε̇ ≈ 30 s−1 a monotonic decrease is observed in X̃(Q), Ỹ (Q). This
can be attributed to a rise in the extensional viscosity, which leads to a non-
negligible extensional resistance in the constrictions: The extensional rate is
higher in the steeper, short constrictions of the analyzer channel and the num-
ber of constrictions is higher in the analyzer channel (Na > Nr). Therefore,
the extensional resistance in the analyzer channel is higher than in the reference
channel (REa > REr). This leads to the measured monotonic decrease in X̃(Q)
and Ỹ (Q) with increasing Q. If the extensional viscosity Λp(ε̇) reaches a plateau
value, the decreasing flowrate ratios X(Q), Y (Q) are expected to saturate at a
constant level again.
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(a) (b)

Figure 5.20: (a) Flowrate ratios X(Q) (blue squares) and Y (Q) (red circles)
measured in a ”2xMvs. L” and a ”4xS vs. L” differential viscometer with rect-
angular planar constrictions. The analyte fluid is 0.1% (w/w)PAA in aqueous
solution. Smoothing functions X̃(Q), Ỹ (Q) used for data evaluation are shown
by the dashed blue and red curves, the dotted blue and red curves indicate the
experimental Newtonian flowrate ratios XN . The dotted light blue and orange
curves indicate the flowrate ratios Xrev, Yrev calculated from the approximated
Λ(Q) functions shown by the light blue and orange curve in (b). (b) Appar-
ent planar extensional viscosity determined from X̃(Q), Ỹ (Q). The purple line
shows the numerically determined viscosity based on a combined evaluation of
X̃(Q) and Ỹ (Q). The light blue and orange curve were obtained by empirical
approximation for X̃(Q) and Ỹ (Q) seperately. The dashed black line indicates
the Newtonian value of Λp = 4η.

Based on the assumption of an additivity of the extensional and the shear
resistance in the channel constrictions [21], an apparent extensional viscosity
can be determined from the measured curves X̃(Q), Ỹ (Q) following the methods
described in sec. 5.4.4. To account for slight deviations between the measured
and the theoretical Newtonian values for the geometry of the setups (Xtheo

N =
Y theo

N = 1), a geometrical correction factor fc = XN/X
theo
N was introduced into

the equations for the evaluation. Hereby, the factor was considered to alter
solely the shear resistances RSa,r without affecting the extensional resistances
REa,r. The extensional viscosity determined by the numerical method using
X̃(Q), Ỹ (Q) simultaneously is shown by the purple line in fig. 5.20b. As the
corresponding linear equation system has no exact solution, the curve represents
a least square fit solution.

Geometry Dependence of Determined Extensional Viscosity

To check for any dependencies of the determined viscosity on the evaluation
method or the setup used, an additional evaluation by empirical approximation
was done for the X̃(Q) and Ỹ (Q) curve seperately. The resulting viscosity func-
tions are shown by the orange and light blue lines in fig. 5.20b. The dotted or-
ange and light blue curves in fig. 5.20a show the flowrate ratios Xrev(Q), Yrev(Q)
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calculated from the approximated viscosity curves in excellent agreement with
the smoothing functions X̃(Q) and Ỹ (Q) of the experimental data.

In the Newtonian limit the extensional resistance of the constrictions is neg-
ligible with respect to the shear resistance, and RE/RS lies well below the
measurement error of ±1% for the flowrate ratios X̃(Q), Ỹ (Q). Therefore only
a significantly enhanced extensional viscosity can be detected as a deviation
from XN , YN , and ΛpN = 0 has been assumed for the empirically approximated
extensional viscosities instead of ΛpN = 4η for convenience. The measurement
error of about 1% corresponds to a lower detection limit of Λdet ≈ 5ΛN for
the measurements in the rectangular constrictions. Consequently, viscosity val-
ues in fig. 5.20b below 0.04 Pas can be considered artificial. The Newtonian
extensional viscosity value ΛpN = 4η is indicated by the black dashed line.

The difference in the results for Λ(ε̇) obtained from the seperate evaluation
of X̃(Q) and Ỹ (Q) (light blue and orange curves in fig. 5.20b) is higher than the
measurement uncertainty in X and Y suggests. Apparently, there is an inherent
dependence between the measurement geometry and the obtained extensional
viscosity. Most likely this is caused by the fact, that the additivity assumption of
shear and extensional resistance underlying the theoretical description does not
exactly hold for polymer solutions. For a more accurate data evaluation, mixed
flow effects would have to be considered, which will be discussed seperately later
on. Mixed flow efffects are expected to be most prominent in the planar rect-
angular constrictions, where the ratio of shear to extensional resistance RS/RE

is the highest.

Measurements in Hyperbolic Constrictions with Circular Cross-section

Measurements with a 0.1% PAA in 80% glycerol solution with circular hyper-
bolic constrictions are shown in fig. 5.21. The measurements were performed in
three different setups with a Hencky strain of ε = 4.2 (flow rate ratios X,Y, Z
shown in a) and two setups with ε = 3.0 (X,Y shown in b). Additionally, a mea-
surement of the overall pressure drop across the differential viscometer has been
performed for the measurements in the ε = 4.2 setups. The results are shown by
the black symbols in (a), the solid black lines represent a linear pressure drop.
The onset of a non-negligible extensional resistance in the constrictions should
be accompanied by a nonlinear increase of the pressure curve p(Q). A compar-
ison with the flowrate ratio curves shows, that the onset of the non-Newtonian
regime is much more obvious from the X(Q), Y (Q), Z(Q) signals than from the
p(Q) curves. The expected non-linear increase in the pressure curves might be
partially masked by the slight shear-thinning of the solution. As the difference
in the shear rates in reference and analyzer channel is small, the shear-thinning
can be neglected in the differential signal. The appendant extensional viscosi-
ties determined from the different setups and evaluation methods are shown
in fig. 5.21c, the Newtonian value ΛN is represented by the black dashed line.
The uncertainty of 4% in the flowrate ratio signals yields a detection limit of
Λdet ≈ 5ΛN and Λdet ≈ ΛN for the ε = 4.2 and 3.0 setups.
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Figure 5.21: Results from measurements in circular hyperbolic constrictions.
(a) Flowrate ratios from three different setups with strain ε = 4.2 (colored sym-
bols) and corresponding pressure drops across the device (black symbols). The
light blue symbols represent measurements with a Newtonian glycerol solution.
Smoothing functions are shown by the colored solid lines, the black lines show a
linear fit to the pressure drops obtained in the Newtonian flowrate regime. (b)
Flowrate ratios (symbols) and smoothing functions (lines) in two setups with
strain ε = 3.0. (c) Apparent extensional viscosities determined from the mea-
surements in a and b. Results from empirical approximation of X(Q) and Z(Q)
(red and green lines), numerical evaluation of Y (Q) (blue line) and combined
numerical evaluation of X(Q) and Y (Q) (purple solid line) are shown for the
ε = 4.2 measurements for comparison. The dashed purple line shows the result
of a combined numerical evaluation from X(Q) and Y (Q) in the ε = 3.0 devices.

Strain Dependence of Determined Extensional Viscosities

To check whether the determined extensional viscosities can be regarded as
measures for the steady state extensional viscosity, the results from setups with
matching shape factors but different Hencky strains ε = 3.0 and ε = 4.2 have
been compared in fig. 5.21. The Newtonian ratio of extensional to shear resis-
tance (RE/RS) is more than 10-fold higher in the ε = 3.0 constrictions, which
suggests that the detection limit for an enhanced extensional resistances is lower
than in the ε = 4.2 constrictions. Nevertheless, flowrates approximately an or-
der of magnitude higher than in the ε = 4.2 setups are required to observe a
measurable deviation from the Newtonian regime in the ε = 3.0 setups. Con-
sequently, the evaluated extensional viscosity is about two orders of magnitude
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lower for the ε = 3 setup compared to the ε = 4.2 setups. This suggests, that at
a strain of ε = 3 the fluid is far from having reached a steady state in the elon-
gational flow. Systematic measurements with geometries testing further strains
would be necessary to decide whether a steady state is reached in the ε = 4.2
constrictions.

However, we can estimate a lower limit for the required strain to reach a fully
stretched chain configuration in purely extensional flows of dilute polymer solu-
tions: For the occurence of a stretching frictional force at the polymer ends, the
polymer has to be extended slowlier than the surrounding fluid. Consequently,
the fluids extensional strain required for a full stretching of the molecule has to
be higher than the ratio of the polymers end-to-end vector in the fully stretched
and in the equilibrium state: εmin = ln(Lc/R

eq
ee ) = 0.5 lnNK . From the de-

termined overlap concentration of about c? ∼ 0.4% for the PAA (see fig. C.1),
the number of Kuhn segments NK can be estimated to be on the order of 104

(see C.1), which suggests a minimum extensional strain of ε = 4.6 for a full
stretching of the PAA chain. Indeed, a saturation of the extensional viscosity
measured for 0.1% PAA and 0.2% PAA solutions in 80% glycerol with a cap-
illary breakup extensional rheometer was observed for ε = 6 (see fig. C.2). In
mixed flows however, a possible prestretching of the molecules due to the shear
flow could significantly reduce the required extensional strain for full stretching.

The observed striking difference of about two orders of magnitude for the vis-
cosity measurements with ε = 3.0 and ε = 4.2 might be surprising at first sight.
However, in filament stretching rheometers a rapid rise of the transient exten-
sional viscosity with increases of several orders of magnitude within ∆ε ∼ 1 has
been both theoretically predicted and experimentally reported for model elastic
fluids [5], see fig. 5.23b. Qualitatively, the sudden increase in the dissipation
can be rationalized as follows: The extensional viscosity contribution of the
polymers is proportional to the frictional forces stretching the polymer. In the
regime where the entropic spring force is negligible compared to the frictional
forces, the polymer segments follow the motion of the fluid. Thus, the polymer
extension grows exponentially with ε at low strains, which is accompanied by
an exponential growth of the entropic spring force in its linear regime. As the
polymer dissipational contribution to Λ is proportional to the stretching force,
this implies an exponential growth of Λpolym with ε. For a dilute polymer solu-
tion however, the polymer contribution may still be negligible with respect to
the solvent contribution of Λsolv = 3η. As the polymer reaches higher exten-
sions, the non-linear force-extension relation of the entropic spring force causes
an even over-exponential increase of the dissipation with ε. This causes the
very rapid increase observed for Λ once the spring forces get strong enough to
compete with the friction and stop the polymers further elongation.

As a conclusion for the measurements, the fluid neither experiences a purely
extensional flow in the constrictions, nor can we decide whether it reaches a
steady state within the experienced extensional strain. Consequently, the mea-
sured extensional viscosities have to be considered as apparent, transient ex-
tensional viscosities rather than being identified with the steady state uniax-
ial extensional and planar extensional viscosities Λ,Λp which are defined by
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eqs. 3.29, 3.30.

Comparison with FSR and CaBER measurements

Figure 5.22: Left: Microscope image of microfluidic filament stretching rheome-
ter (FSR) measurement taken from [6]. Right: Extensional viscosity data from
the FSR measurement from [6] (red dots, 0.01% PAA (18MDa) in 85% glycerol))
in comparison with data from the differential extensional viscometer (purple
and orange +, 0.1% PAA (5-6 MDa) in 80% glycerol). The blue square indi-
cates a measurement performed with the 0.1% PAA in 80% glycerol solution
in a CaBER. The horizontal lines indicate the Newtonian extensional viscosity
of the 0.01% PAA (dashed red) and the 0.1% PAA solution (solid purple). The
0.01% PAA solution is expected to have about 0.75% of the extensional viscosity
of the 0.1% PAA solution (see explanations in the text).

The above results clearly demonstrate that an apparent extensional viscosity
of the dilute polymer solutions can be determined with the proposed differential
viscometer. For a quantitative rating of the results, the obtained extensional
viscosities have been compared with results in established extensional viscome-
ters. Literature values measured in a microfluidic filament stretching rheometer
(FSR) are available from Arratia et al. [6] for a 18 MDa PAA solution of 100 ppm
in an 85% (w/w) glycerol/water mixture. While in a conventional FSR a steady
uniaxial extensional flow is created by seperating two cylinders with a liquid
bridge inbetweeen, the fluid filament in the microfluidic FSR is stretched in
a cross flow. The measurement setup and the results from [6] are shown in
fig. 5.22 by the red dots; the purple and orange markers show the results of
the differential viscometer measurements in the ε = 4.2 and ε = 3.0 circular
constriction setups.

For dilute polymer solutions we can assume that the extensional viscosity is
proportional to the polymer concentration and the solvent viscosity. Thus, for
PAA of the same molecular weight we would expect the extensional viscosity
of a 0.1% PAA in 80% glycerol solution to be about 4.3 times higher than for
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a 100 ppm in 85% glycerol solution. However, the molecular mass of the PAA
used in [6] is about 3.3 times higher than the PAA used in this work. For a fully
stretched chain in extensional flow, we would theoretically expect a quadratic
increase of the viscous dissipation with the chain length. For solutions with
equal same mass concentration, this results in a linear increase of the extensional
viscosity with the molecular mass. As a rough estimate we would thus expect
the extensional viscosity of the 0.01% PAA (18 MDa) in 85% glycerol to have
about 3.3/4.3 ≈ 0.75% of the value of the solution examined here. Indeed, the
values determined in the differential viscometer with ε = 4.2 are comparable to
the values of the FSR measurement. This suggests that the values measured in
the differential viscometer with ε = 4.2 are reasonably within the range expected
for a purely extensional measurement in steady-state.

To enable a more direct comparison, an additional measurement was per-
formed with the 0.1% PAA in 80% glycerol solution in a capillary breakup ex-
tensional rheometer (CaBER), see fig. C.2. In a CaBER, the extensional rate
is determined by the surface tension and the viscosity of the fluid. Therefore
it cannot be tuned and only data for one extensional rate can be obtained,
which is shown by the blue square in fig. 5.22. The extensional viscosity mea-
sured in the CaBER is slightly above the differentially measured values. This
might suggest that the steady-state value is not yet reached in the differential
measurement. Moreover, mixed flow effects may cause deviations between the
steady-state and the apparent extensional viscosity measured in purely uniaxial
extension (CaBER) and in the differential viscometer.

Operation Range of Differential Extensional Viscometer

Apart from potential mixed flow effects, the results show that the differential
viscometer measurements are comparable to FSR measurements. Similarly as
in the microfluidic filament stretching device, the deformation rate of the fluid
in the constrictions can be set via the applied flow rate. This only works as
long as the fluid streamlines follow the hyperbolic geometry of the constrictions.
Once the extensional resistance becomes comparable to the shear resistance, the
streamlines decouple from the geometry to decrease the extension rate in the
fluid, resulting in more flat hyperbolic streamlines and occuring eddies. As the
dominating shear forces keep the fluid on the track set by the channel geometry,
the ratio of extensional to shear resistance in the channel both sets the sensi-
tivity of the differential viscometer and the upper limit for the accomplishable
extensional rate. The higher the Newtonian ratio (RE(ε̇)/RS(γ̇))N in a chan-
nel, the easier an increase of Λ(ε̇) can be measured. As soon as (RE(ε̇)/RS(γ̇))
approaches the order of unity we can expect the flow to decouple from the
channel wall. Thus, Trmax = (RE/RS)−1 sets an upper limit for the Trouton
ratio measurable in the differential viscometer. With the shear forces being
lowest at the wide part of the constriction, streamline decoupling is expected to
start at the entrance of the constriction. Advantageously, the occurence of ed-
dies can directly be monitored in the optical accessible microfluidic viscometer.
Fig. 5.23a shows an example of extensional resistance induced eddies occuring in
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a 1% (w/w) PAA aqueous solution flowing into a rectangular step constriction.

Figure 5.23: (a) Microscope image of a 1% PAA in water solution with fluo-
rescent tracer beads flowing through a rectangular step constriction. In the
entrance region, the high extensional viscosity causes the fluid streamlines to
follow a hyperbolic shape, which lowers and homogenizes the extensional rate
in the fluid. Eddies with circular flow occur in the corners of the constric-
tion. (b) Measured extensional viscosities in filament stretching rheometry
(•, De = ε̇τ = 15.2, τ : fluid relaxation) and CaBER filament thinning (◦,
De ≈ 0.66) and corresponding theoretical predictions (dotted lines) showing
that while for small Hencky strains ε < 1 the extensional viscosity is small,
the extensional viscosity increases drastically within ∆ε ≈ 1.5 under filament
stretching. Graph (b) taken from [5].

Advantages and Drawbacks of the Differential Extensional Viscometer

The most obvious limitation of the differential viscometer in comparison to FSR
and CaBER devices is that the fluid in the differential device is elongated in
a mixture of shear and extensional flow. Moreover, the higher Hencky strains
reached in FSR and CaBER rheometers usually enable a steady-state evaluation
of the extensional viscosity. However, the results measured in the ε = 4.2 differ-
ential device are similar to those obtained in FSR and CaBER measurements.
This shows that at least for dilute polymer solutions the differential viscometer
can yield reasonable estimates for the steady-state uniaxial extensional viscos-
ity. Furthermore, numerous practical applications as well as biological processes
involve transient extensional flows as well as flows with an additional shearing
component. Therefore, the microfluidic differential viscometer can serve as an
ideal tool for characterizing fluids in mixed and transient extensional flows as
well as for studying their physics. Also, a lubrication of the channel walls could
significantly reduce the shear flow component, so that essentially uniaxial ex-
tensional flow filed can be generated in a hyperbolic die [8].

Apart from that, the differential viscometer may offer several advantages in
comparison to filament stretching and capillary breakup rheometers:
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• While in FSR and CaBER the dependence of Λ on the strain can be
studied, the extensional rate is fixed in a CaBER. The comparison of
the differential and the FSR data in fig. 5.22 shows that the range of
accessible extensional rates is wider in the differential viscometer. As dis-
cussed above, the operating range can be further adjusted to the needs by
choosing geometries with different Newtonian RE/RS ratios. The addi-
tional shear flow involved enables measurements in a range where FSR and
CaBER measurements may suffer from occuring inertial or gravitational
effects.

• In contrast to the CaBER and FSR technique, neither an air-water in-
terface nor another liquid-liquid interface is involved in the differential
measurement. Therefore, the differential measurement does not have to
be corrected for surface tension effects. Moreover, any artifacts possibly
occuring due to interfacial adsorption of molecules in the solutions can be
excluded.

• The differential viscometer can be easily used with dilute, low viscosity
fluids, where conventional FSR and CaBER measurements requiring the
stable formation of a fluid filament may fail.

Due to the inherent oppportunities and restrictions of each of the techniques
available, determining extensional viscosity functions Λ(ε̇) generally remains
challenging. The proposed differential extensional viscometer can be a valuable
tool in addition to existing devices. Its simple and robust design enables a cheap
production and makes it open for parallelization and miniaturization for appli-
cation in lab-on-a-chip devices. In combination with the optical accessibility
and the techniques used for monitoring the single polymer dynamics in flow in
chapter 4 it may serve as an ideal platform to study the connection between bulk
fluid properties and the underlying macromolecular dynamics in mixed flows.

5.4.6 Mixed Flow Effects

The experimental results suggest that the additivity assumption of the hydro-
dynamic extensional and shear resistances RE , RS in the constrictions is not
strictly valid. The no-slip condition at the walls inevitably evokes a shear flow
component with high shear rates in the fluid near the channel walls. The result-
ing heterogenity in the elongational flow field could in principle be considered
with an adjustment analogous to the Rabinowitsch correction (see eq. A.78), if
the flow field in the constrictions can be determined. However, the combination
of shear and extensional flow could significantly alter the polymer dynamics
and thus query the additivity assumption for the extensional and shear resis-
tances RE , RS in the constrictions. Based on the discussion of the dynamics of
individual polymers in shear flow in chapter 4 we will briefly consider how an
additional shear component could affect the polymer dynamics in elongational
flow and discuss the resulting influence on the apparent extensional viscosity in
mixed flows.
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The fundamental difference in the response of polymers to shear and exten-
sional flow has been discussed in section 5.1: Polymers in purely extensional
flows reach an equilibrium state and can get fully stretched in a sharp coil-
stretch transition, which occurs at De = ε̇τ > 0.5 [100]. This explains the
threshold type behaviour of the extensional viscosity, which saturates when the
polymers are completely stretched. In contrast, the 1:1 mixture of extensional
and rotational deformation in the shear flow induces a gradual stretching for
Wi = τ γ̇ > 1 [99], which is accompanied by cyclic tumblings of the polymers.
Hence, the individual polymers do not reach a stationary state. An additional
shear flow component with a velocity gradient perpendicular to the extensional
direction could thus in principle have two effects on the apparent extensional
viscosity:

• The shear flow stretches and aligns the polymers in the direction of the
flow. Thus, the friction of the polymers in the extensional flow is enhanced,
so that the apparent extensional viscosity begins to rise at lower extension
rates and the threshold for the rise in Λ(ε̇) is lowered. Consequently, an
additional shear flow could increase the apparent extensional viscosity in
the regime below the saturation.

• The rotational component of the flow rotates the polymers away from the
alignment in the extensional direction. During the induced tumbling, the
extension of the polymer in the extensional flow direction is lowered due to
a partial recoil, so that the additional shear flow could reduce the apparent
extensional viscosity in the fully stretched regime.

The dominating of these mechanisms is determined by the ratio of shear and
extensional flow and the relative orientation of the flow components.

Polymer Dynamics in Mixed Planar Flows

In the following we try to elucidate the interplay between rotational and exten-
sional components of different strength on the polymer dynamics in more detail.
Some simple considerations can be made by looking at the dynamics of non-
thermal particles suspended in planar mixed flows, which has been discussed
in [35]. The particle is represented by crossed dumbbells of lengths l1, l2 with
an anisotropy coefficient b = (l21 − l22)/(l

2
1 + l22) ∈ [0; 1] (see fig.5.24). Then, the

differential equation for the motion of the particle in its center of mass system
in a velocity field with extension rate ε̇ and rotational component ω is given
by [35]:

φ̇ = bε̇ cos(2φ) + ω (5.25)

For shear flow (ε̇ = ω = 0.5γ̇) eq. 5.25 reduces to

φ̇ = γ̇

[
l21

l21 + l22
cos2 φ+

l22
l21 + l22

sin2 φ

]
. (5.26)

Note that for a single dumbbell particle with l2 = 0 eq. 5.26 reduces to φ̇ =
γ̇ cos2 φ, which is equivalent to Jeffery’s equation 4.35 with a coordinate system
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rotated by π/2. As explained in section 3.1.1 (see fig. 3.1), planar flows can be
classified with a single flow parameter ρ = ω/ε̇ to be strong (i.e extensionally
dominated) for ρ2 < 1, marginally weak (i.e. shear flow, ρ2 = 1) or strictly
weak (rotationally dominated, ρ2 > 1). According to eq. 5.25, the dynamics of
the suspended particle is determined by the ratio of ρ/b. Fig. 5.24 shows a plot
of eq. 5.25 for various values of ρ/b. For strictly weak flow with (ρ/b)2 > 1,
the particle performs a continuos rotation. For (ρ/b)2 = 1, the particle follows
the Jeffery orbit for a rod in shear flow. In strong flow with (ρ/b)2 < 1 the
differential equation exhibits two stationary points. The stationary point within
[0;π/2] is stable, so that the particle gets trapped at a fixed orientation φstat

in the flow. For (ρ/b)2 � 1 the particle is aligned near the direction of the
extensional deformation axis, reaching a perfect alignment in purely extensional
flow with ρ/b = 0.

Figure 5.24: Dynamics of non-thermal particles suspended in planar mixed flow
(graphs taken from [35]). The particle consists of two crossed dumbbells of
length l1, l2 (right). The differential equation φ̇(φ) for the angular dynamics is
plotted for several values of the flow parameter ρ/b (left). For ρ/b = ±1 the
particle follows the Jeffery orbits of rodlike particles in simple shear flow.

In the absence of thermal rotational diffusion of the polymer we could thus
expect the polymer in strong flow to be trapped at φstat and get permanently
stretched if the frictional forces overcome the deformation threshold. In strictly
weak flow, the polymer is expected to rotate continuously accompanied by a
subsequent stretching and relaxing motion.

Analogously to the discussion in section 4.2.3 we can now consider the influ-
ence of the thermal rotational diffusion on the dynamics. A diffusive phase is
expected to occur in angular intervals where the rotational diffusion dominates
over the advective drift. This happens for |φ̇(φ)| ≈ 0 and has been discussed
for the case of a turning point of φ̇ with a tangent at φ̇ = 0 in the shear flow
case ((ρ/b)2 = 1). In strong flow with (ρ/b)2 < 1, |φ̇(φ)| ≈ 0 is fulfilled in
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the vicinity of the two fixpoints: While the thermal motion drives the polymer
away from the unstable fixpoint, the polymer diffuses around the stable fixpoint
in a potential well, which is set by the strength of the advective drift. When
the intersecting interval of the φ̇(φ) curve becomes small as (ρ/b)2 approaches
unity, the potential barrier set by the advective drift may be overcome by the
diffusive motion. Then, the particle may escape the potential well, so that the
rotational diffusion makes the stable fixpoint unstable if (ρ/b)2 → 1. Conse-
quently the polymer performs diffusion-induced tumbling motions analogous to
those observed in shear flow. Similarly to the discussion for the critical angle
φc seperating the diffusive and advective polymer dynamics in shear flow, we
can thus define a critical value δc > 0, which seperates the regime of ”effectively
strong flow” without tumblings ((ρ/b)2 < 1− δc) and the regime of ”shear-alike
strong flow” ((ρ/b)2 > 1 − δc) where polymer tumbling is expected. While a
stretching to 〈Ree〉 = 0.4 . . . 0.5Lc is observed in shear flow for high Wi, an al-
most complete stretching of the polymer is only expected in ”effectively strong
flow”. However, the additional gradual stretching with Wi due to the shear
flow is expected to smear the sharp coil-stretch transition observed in purely
extensional flow.

Although the simple description with the flow parameter ρ cannot be directly
applied for three dimensional flows, the qualitative behaviour of suspended par-
ticles should be conserved [35]. We can therefore calculate a lower limit for ρ
in the geometries used in the experiments. This estimate of ρ then allows for
a characterization of the expected polymer dynamics in the mixed flow. For
simplicity, we assume a perfect alignment of the extensional flow components
of the shear flow and the extension imposed by the converging die. Then, the
total extension rate of the flow is calculated by adding the extension rate given
by the die ε̇die = Q/a with the extensional component of the shear ε̇S = 1

2 γ̇.
Hereby, we average γ̇(r) across the circular channel cross section assuming a
Newtonian flow profile,

〈γ̇〉 =
1
Q

∫ R

0

2πrv(r)γ̇(r)dr =
32
15

Q

πR3
≈ 2Q
πR3

=
1
2
γ̇w (5.27)

where γ̇w is the wall shear rate in the channel with radius R. Then, we can
estimate the typical ratio of rotational and extensional components of the flow
as:

ρ =
ω

ε̇sum
=

1
2 〈γ̇〉

1
2 〈γ̇〉+ ε̇die

=
1

1 + πR3/a
(5.28)

For a circular type M constriction, this yields a change of ρ from about 0.10 at
the wide end to about 0.904 resp. 0.984 for the ε = 3.0 and ε = 4.2 constrictions
in the narrow part. As ρ is close to unity at the tight end of the constrictions,
shear induced tumblings might occur in the narrow part of the constrictions.

Influence of the Relative Orientation of Shear and Extensional Flow

The flow type resulting of the combination of the shear flow and the die exten-
sional flow is also influenced by the orientation of the extensional flow fields of
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shear and die. The velocity field of planar extensional flow can be written in
polar coordinates (r, φ) as: (

ṙ
φ̇

)
= ε̇

(
r cos(2φ)
− sin(2φ)

)
(5.29)

Unfortunately, there is no compact analytical solution for the result of the ad-
dition of two extensional flow fields of different strength ε̇S , ε̇die and orientation.
Generally, the extension rate of two combined extensional flowfields with ε̇a, ε̇b
ranges from |ε̇a + ε̇b| to |ε̇a− ε̇b| depending on their relative orientation. Adding
two planar extensional velocity fields with equal extension rates ε̇ with an an-
gular difference of ∆φ = θ results in a velocity field of(

ṙ
φ̇

)
sum

= ε̇

(
r(cos(2φ) + cos(2(φ− θ)))
−(sin(2φ) + sin(2(φ− θ)))

)
= ε̇

(
r(cos(2φ− θ) cos θ)
−2(sin(2φ− θ) cos θ)

)
(5.30)

The principal axes of the combined elongational flow field can be determined by
calculating the angles where φ̇ = 0 as φ+ = θ/2, φ− = θ/2 + π/2. The resulting
extension rate is given as ε̇sum = 2ε̇ cos θ, so that for θ = π

2 the extensional flow
fields cancel each other.

During the passage through the constriction, the relative orientation of
the extensional components of shear and die continuously varies, and the flow
changes from being extensionally dominated in the wide part of the constriction
(ε̇die � ε̇S) to being shear dominated in the narrow part (ε̇die � ε̇S). Fig. 5.25a
shows the resulting flow type according to the classification given in section 3.1
for a circular constriction of type M with ε = 4.2. The velocity field was de-
termined in a FEM simulation with a Newtonian fluid. The flow is found to
be strong almost throughout the entire constriction. In fig. 5.25b, the varying
direction of the extensional flow flield of the shear (green) and the die (red)
is illustrated in the converging and diverging section of the constriction. Due
to the complicated, nonuniform flowfield in the constrictions we can only make
some qualitative statements on the expected polymer dynamics. Depending on
the ratio of the extension rates given by the shear flow and the die ε̇S , ε̇die we
can distinguish several regions:

• Extension dominated region (ε̇die � ε̇S): The polymers are only slightly
influenced by the shear, consequently they get aligned near the direction
of the die extension, which sets the overall extension rate ε̇sum ≈ ε̇die. The
apparent extensional viscosity is presumably similar to the extensional
viscosity in shear free flow (Λapp ≈ Λ).

• Extension comparable to shear (ε̇die ≈ ε̇S): Depending on the relative
direction between the extensional flow component of shear and die, the
overall extension rate ε̇sum can be bigger or smaller than ε̇S , which results
in strong or strictly weak flow.

• Shear dominated region (ε̇die � ε̇S): If the shear flow dominates, the poly-
mers get stretched and aligned near the flow direction of the streamlines,
which are almost parallel to the constriction centerline.
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In the converging section, the shear-stretched polymers are thus approxi-
mately aligned with the direction of the die extension (see fig. 5.25b left).
The shear flow thus enhances the frictional forces occuring in the exten-
sional flow of the die. Consequently, the shear flow lowers the threshold for
the coil-stretch transition of the polymers in the extensional flow of the die,
so that the sharp transition of Λ(ε̇) may be smeared by the shear. Below
the saturation level of Λ(ε̇), the apparent extensional viscosity is thus ex-
pected to be higher than in purely extensional flow (Λapp(ε̇) > Λ(ε̇)). The
saturation level of Λapp at the fully stretched state should stay essentially
unchanged, unless the shear flow is strong enough to induce polymer tum-
blings (Λapp(ε̇) ≈ Λ(ε̇)). Reversely, the apparent shear viscosity should be
lowered if the polymers are prevented from tumbling by the extensional
flow.

The situation is different in the diverging narrow section: Here, the di-
rection of the die extension is approximately perpendicular to the flow
direction (see fig. 5.25b right). Thus, the die extension compresses the
polymer along the flow direction and acts against the stretching of the
shear flow. The shear strength decreases along the flow direction, so that
the polymers elastic restoring force is able to recoil the polymer along the
flow. Thus, the entropic elastic force induces a similar deformation onto
the stretched polymer as the die extension. Consequently, we can expect
the apparent extensional viscosity to be reduced. In a similar way, the
entropic elasticity causes the die swell observed at the exit of capillary
flows: As the no-slip condition is removed at the capillary exit, the shear
component of the flow vanishes, and the shear-stretched polymers start to
recoil. The polymer recoil induces a compression of the fluid in the flow
direction and an extension lateral to the flow, which is observed as the
characteristic swell of the exiting fluid stream. The reduction of Λapp in
the diverging section of the constriction thus explains, why in capillary
viscometers the exit pressure drop usually can be neglected, while the
entrance pressure drop has to be considered (see section 5.2).

5.4.7 Conclusion

Generally, the above discussion shows, that mixed flow effects are expected to
alter both the apparent shear and extensional viscosity, because the mixed flow
changes the dynamics of the polymers. A quantitative discussion is challeng-
ing, and more research has to be conducted for a better understanding of the
involved mechanisms. For the experimental geometries used in the differential
extensional viscometer, the shear and extensional flow components continuously
alter both in their ratio and their relative direction while the fluid passes the
constrictions. In combination with additional flow history effects this poses ma-
jor difficulties for a quantitative analysis. To test for a possible influence of flow
history effects on the results, a dependance of X(Q) on the length of the con-
necting channel between subsequent constrictions has to be excluded to ensure
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(a)

(b)

Figure 5.25: (a) Flow classification as given in section 3.1 for the flow of a
Newtonian fluid in a type M circular constriction with ε = 4.2. The under-
lying flowfield has been determined in a FEM simulation with a flowdirection
from right to left. (b) Schematics illustrating the orientation of the extensional
flowfield of the shear (green) and the die (red). The local coordinate system
of the shear flow is shown by the black arrows. In the shear dominated nar-
row region of the constriction, the fluid streamlines are approximately aligned
with the channel centerline (β small). Therefore, polymers which are stretched
and aligned with the flow direction by the shear get stretched by the die exten-
sion in the converging section (left) and compressed by the die extension in the
diverging section (right).

the same fluid conditions at the constriction entrances. Experimentally, sys-
tematic measurements in devices with connection channels of varying lengths
could indicate a possible bias due to an insufficient fluid relaxation between
the elongational flow segments. Concurrent studies of microfluidic flows after
a step constriction showed, that the timescale to reach steady state conditions
in microchannel flows can be significantly reduced compared to the equilibrium
relaxation time of the fluid [57].

Despite these limitations, qualitative conclusions can be drawn on the basis
of the discussion in section 5.4.6: In the converging sections, polymers are hin-
dered from tumbling, and the stretching of the polymers in the flow direction
is enhanced by the combination of shear and extensional flow. This should be
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accompanied by a higher apparent extensional viscosity below the saturation
level and a lower contribution of the polymers to the shear viscosity. In the di-
verging sections, the situation is reversed with counteracting stretching forces of
shear and extensional flow. Thus, the apparent extensional viscosity should be
lowered, while the shear viscosity should be enhanced. If the shear flow is strong
enough to induce tumblings, the aforementioned effects should be weakened.

The dilute polymer solutions used in the experiments exhibit an almost
Newtonian shear viscosity, which implies that the shear viscosity is dominated
by the solvent contribution. Thus, the shear resistance may be considered as
essentially unaffected by the die extensional flow. Then, only changes in the
apparent extensional viscosity should be observed due to mixed flow effects. As
discussed above, the transient values at the onset of the rise of the apparent
extensional viscosity measured in mixed flow should be higher than the values
measured in purely extensional flow in FSR or CaBER experiments, because the
shear flow contributes to the stretching of the polymers. Contrary, the plateau
value of the extensional viscosity reached at high strains and at high extension
rates might be expected to be lower in mixed flows in comparison to purely
extensional flow due to shear induced tumbling in the narrow section of the
constrictions.

As a conclusion, the different mixture ratios of shear and extensional flow in
the varying constrictions may explain the observed differences in the obtained
values for the apparent extensional viscosity measured in the various setups.
While the additivity assumption for the shear and extensional resistance in
the constrictions is not valid generally, for the case of the investigated dilute
polymer solutions with near Newtonian shear viscosity, extensional viscosities
comparable to literature values measured in shear free flow are obtained with
the differential viscometer. Clearly, more research has to be conducted on poly-
mer solutions in mixed flows for a more accurate evaluation of Λ. Experiments
with direct comparisons between extensional viscosities determined from hy-
perbolic dies and in shear free flows have shown, that reasonable values for Λ
can be determined with hyperbolic die measurements [8]. However, an accurate
quantitative evaluation remains challenging to date, even when a wall slip is
introduced by lubrication of the walls [8].

Generally, the significance of extensional viscosity measurements suffers from
the fact, that neither in most technical applications nor in many established
techniques for measuring Λ(ε̇) a steady, spatially uniform, purely extensional
flow is ever achieved. As discussed in [81], reported literature results for tran-
sient extensional viscosities measured in different devices for the same fluid vary
by three orders of magnitude due to the different deformation history, so that
the validity of absolute values of Λ has to be challenged. Nonetheless, the con-
ducted experiments can serve as a successful proof of principle for the differential
extensional rheometer, and both the signal generating mechanism and the eval-
uation yields results comparable to existing techniques. Thus, the device offers
a complementary approach to existing extensional rheometers with benefits and
drawbacks according to the particular needs.



6. FLUID-STRUCTURE INTERACTIONS: TRANSIENT
FLOW IN VISCOELASTIC MICROFLUIDIC CHANNELS

In order to elucidate how the microscopic dynamics determine the macroscopic
response of a fluid, we studied the flow of complex fluids in microchannels by
observing the dynamics of the individual fluid constituents and measuring the
bulk viscosity functions η(γ̇) and Λ(ε̇) in the previous chapters. Aside from
these inherent properties of the fluid, microfluidic flows can also be impacted by
interactions with the channel walls. While a hydrodynamic interaction between
individual polymers and the walls has been examined in section 4.5, the coupling
of transient flows to deformations of flexible microfluidic channel walls will be
investigated in this chapter.

Microfluidic channels consisting of blocks of the elastomeric material PDMS,
which are bonded to a glass substrate, are widely-used, so that tethered elastic
channels are of special interest. The cheap and easy lithographic production,
the optical transparency, the high biocompatibility of the surface and the high
gas permeability, which enables oxygen supply for living cells, makes PDMS es-
pecially suited for life-science applications. An efficient control of spatiotempo-
rally changing pressure and flow rates is mandatory for the broad applicability
of microfluidic devices. The elastic properties of PDMS have been exploited
in different promising approaches for the construction of flow-regulatory de-
vices [56, 119], valves [111, 1, 7, 55, 39, 71, 42, 37, 66] and pumps [67, 38].
An emerging concept is the exploitation of the frequency response of microflu-
idic devices for the fluid control comprising mixing, valves and droplet posi-
tions [68, 63]. While membrane valves are constructed by constricting the fluid
channels, pumps can be constructed on the base of membrane valves rectifying
a previously generated oscillatory flow [67, 68, 70]. The frequency response of
devices is also important for microrheological applications, where the behavior
of complex fluids is studied in such devices [16, 51]. A long standing interest
in complex fluid flows in different geometries comes from medical applications
— understanding vessel diseases needs a quantitative understanding of cardio-
vascular flow behavior in elastic channels. The transport of blood flow through
elastic tubes has been modeled by the telegraphers equation and experimentally
tested on the lengthscale of macrocirculation [104, 105, 117, 73, 53, 54], where
inertia effects are important [13]. Microfluidic technology now enables us also
to explore the regime of microcirculation, where inertia is negligible but the
non-Newtonian properties of blood may dominate [13].

The aim of this chapter is to provide a simple basis for the frequency re-
sponse of Newtonian fluids in microfluidic channels. To this end, the 1D-model
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description of purely elastic tubes by the telegraphers equation [104] has been
expanded by incorporating the viscoelastic response of the PDMS as a complex
impedance. The predicted diffusive spreading of the pressure propagation and
the corresponding flow profiles have been tested by applying periodic rectan-
gular pressure pulses to a straight rectangular PDMS channel and monitoring
the dynamic response of a glycerol solution in the channel. The combination of
different microparticle tracking techniques allows the determination of pressure
and flow profiles at any point in the channel. The experimental confirmation
of the proposed model paves the way for a quantitative design approach for
increasingly more complex devices.

6.1 1D - Modelling of Microfluidic Channel with Viscoelastic
Walls

6.1.1 Hydrodynamic Analogy of Laminar Flows to Electric Circuits

Laminar fluid flow problems of Newtonian fluids in complex geometries can often
be modelled one-dimensionally with the help of equivalent circuits analogous
to electric circuits, where flow and pressure Q, p correspond to current and
voltage Iel, U el [104, 12]. A three-dimensional channel is then represented by
its hydrodynamic resistance

R =
∆p
Q
, (6.1)

which is determined by the channel geometry and the viscosity η of the fluid
(see section 3.2.3). For networks consisting of several connected channels, the
continuity equation for incompressible fluids is reduced to the analog of Kirch-
hoff’s junction rule, stating that the sum of all flow rates Qn at a channel
junction vanishes. The conservation of energy leads to the analog of Kirchhoff’s
loop rule, stating that the sum of the pressure drops pn along a closed path
of n channels in a fluidic network is zero, implying equal pressure drops over
channels in parallel arrangement [12]:∑

n

Qn = 0
∑

n

pn = 0. (6.2)

The concept of hydrodynamic analogy can be readily extended to capacitance
and inductance. From Cel = Qel/U el we can deduce that a hydrodynamic
capacitance C is a fluid reservoir which can uptake fluid proportional to the
applied pressure. As an example, a liquid column with cross-sectional area A
would have a hydrodynamic capacitance given by the amount of liquid V = Ah
divided by the corresponding hydrostatic pressure p = ρgh, so that C = A

ρg ,
where ρ is the fluid density. The fluid inertia in the 1D-model is analogous to an
inductance L: The hydrodynamic inductance per unit length Lx for a channel
with cross-sectional area A is given as Lx = ρ/A [80]. For transient flows,
complex resistances Z = 1/(iωC) and Z = iωL can be used to incorporate fluid
capacities and inertial effects into 1-D models of fluidic networks.
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Figure 6.1: (a) Schematic representation of a deformable microfluidic PDMS
channel showing the dispersion of a pressure pulse travelling along the channel.
(b) Equivalent circuit with the hydrodynamic resistance Rxdx and hydrody-
namic inductance Lxdx characterising the undeformed channel. The complex
impedance Zx(ω)/dx describes the coupling of the viscoelastic PDMS wall de-
formations to the fluid flow.

6.1.2 Equivalent Circuit Model of Microfluidic Channel with Viscoelastic
Walls

With these basic elements the equivalent circuit model for the fluid-structure
interactions between a Newtonian fluid and a tethered channel with viscoelastic
walls can be formulated. Hereby we suppose, that the cross-sectional defor-
mation of the channel due to the transient pressure is small compared to the
overall cross-section, so that the hydrodynamic resistance per unit length re-
mains approximately unchanged (Rx ≈ const). This is a good assumption for
channels with aspect ratios near unity under moderate operating pressures. Es-
pecially in shallow channels and at high operating pressures, the dependence of
the hydrodynamic resistance Rx(p(x)) on the pressure can be quite significant
and has to be considered [32, 40]. A series connection of Rxdx with the inertial
inductance Lxdx then describes the 1D-model equivalent circuit element of a
stiff, undeformable channel segment of length dx.

As a widening of the channel cross section under pressure provides an extra
volume to be filled by the fluid, the coupling of the wall deformation to the fluid
flow can be represented by a capacitive element in the circuit. In the regime
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where the generated extra volume is linear to the applied pressure, a purely
elastic channel wall is simply described by a hydrodynamic capacitance per unit
length Cx. Unlike in a purely elastic channel, pressure and wall deformation are
out of phase in the PDMS channel. This is due to a phase shift between stress
and strain, which is caused by the viscous dissipation in the deforming PDMS.
To account for this phaseshift, we describe the viscoelastic PDMS walls with a
complex impedance per unit length

Zx(ω) =
1

gx(ω)
+

1
iωCx(ω)

, (6.3)

which consists of a resistance 1/(gxdx) connected in series with a capacitance
Cxdx. By using a frequency dependent resistance Zx(ω) we can match the com-
plex resistance with the actual elastic properties of the PDMS (see section 6.1.3).
Due to the small amplitudes of the deformation, the inertia of the PDMS walls
is negligible in the frequency range under investigation.

Note that due to the parallel arrangement of the capacities Cxdx and the
PDMS viscous resistances along the channel in x-direction, we express the resis-
tance by the conductance per unit length RPDMS

x = 1/(gx). Thus, the fluid flow
in the deformable channel can be described with the equivalent electric circuit
depicted in fig. 6.1b. This equivalent circuit leads to the following differential
equations for pressure p(x, t) and flowrate Q(x, t)

−∂p
∂t

=
1
gx
· ∂

2Q

∂x∂t
+

1
Cx

∂Q

∂x
(6.4)

−∂p
∂x

= RxQ+ Lx
∂Q

∂t

which are similar to the telegraphers equation. Applying a periodic pressure
difference ∆p(t) with frequency ω0 at the channel ends, where one end is held
at ambient pressure, the resulting periodic pressure and flowrate pulses can be
best described as the discrete sum over all frequencies

p(x, t) =
∑∞

n=0 pn(x, t)
Q(x, t) =

∑∞
n=0Qn(x, t), (6.5)

where pn(x, t) = Πn(x) exp(iωnt) andQn(x, t) = Θn(x) exp(iωnt) are the Fourier
components with frequencies ωn = nω0 and complex amplitudes Πn and Θn.
With the boundary conditions p(L, t)=0, p(0, t)=∆p(t) the solution to eq. 6.4
can easily be obtained using the applied pressure pulse at the channel entrance
p(0, t) =

∑∞
n=0 Π0n exp (iωnt):

pn(x, t) = Π0n
sinh[λn(l − x)]

sinh[λnl]
exp(iωnt) (6.6)

Qn(x, t) = Π0n
λn

Rx + iωnLx

cosh[λn(l − x)]
sinh[λnl]

exp(iωnt)

where λn =
√

[iωnRxCx(1 + iωnLx/Rx)]/(1 + i tan δn) with tan δn = ωnCx/gx.
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If the Womersley parameter α =
√
whωρ/η is small (α < 1), the inertial

terms in eq 6.6 can be neglected (Lx ≈ 0). For water and blood in channels of
microcirculatory diameter (100x100µm2 channel) α ≤ 1 holds up to frequencies
of ωα=1 ≈ 100 rad s−1 resp. 350 rad s−1. Only in larger elastic channels like
bigger blood vessels inertial effects must be taken into account, e.g. for blood in
an aorta with 1 cm2 cross-section: ωα=1 ≈ 0.035 rads−1. Inertial terms due to
transversal acceleration of the fluid (convectional terms) will be even smaller,
so that the use of the 1D model is a good approximation for flow in typical
microfluidic channels. With Lx = 0 eq. 6.4 reduces for each Fourier component
to

∂pn

∂t
=

1 + i tan δn
RxCx

∂2pn

∂x2
(6.7)

which is solved by eq. 6.6 with Lx = 0. Except for the small viscoelastic
correction term i tan δn eq. 6.7 resembles the 1D-diffusion equation with the
pressure diffusion coefficient

Dp =
1

RxCx
. (6.8)

Thus eq. 6.7 describes the pressure propagation along the channel basically as
a diffusive process like the development of a chemical concentration gradient or
the heat distribution over time. Together with the channel length l the diffusion
coefficient Dp defines a characteristic time

τRC =
l2

Dp
= l2RxCx (6.9)

for the transmission of pressure steps along the channel and the relaxation after
a pressure step in steady state flow. For oscillatory flows, the channel acts as
a low-pass filter with a cut-off frequency ωcutoff = 2π

τRC
so that pressure and

flowrate pulses disperse and get smoothed while they travel along the channel.
Thus, ωcutoff sets an upper limit for the frequency of switching operations in
microfluidic devices. Fig. 6.1a schematically shows the dispersion of a pressure
pulse propagating along the channel.

6.1.3 Complex Wall Resistance Zx(ω) of Viscoelastic Material

The circuit representation of the viscoelastic PDMS wall (see fig.6.1b) as a con-
ductance gxdx in series with a capacitance Cxdx represents a Maxwell model
of the PDMS (dashpot in series with a spring). To reproduce the correct fre-
quency behaviour with this simple model, the values of gx and Cx have to be
adjusted to the viscoelastic properties of PDMS, which are given by its complex
viscoelastic modulus E?(ω) for each frequency. The charge Qel

x dx on the capac-
itance corresponds to the extra volume dAdx created by the elastic expansion
of the channel. For a sinusoidal excitation with U el(t) = U0 exp(iωt) we get
with Iel

Cdx = U el/(Zel
x (ω)dx) being the current loading the capacitance:

Qel
x =

∫
Iel
Cdt =

1
iω
Iel
C =

1
iω

U el

Zel
x

=
U elCel

x

1 + i tanα
, (6.10)
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respectively

U el =
Qel

x

Cel
x

(1 + i tanα), (6.11)

where tanα = ωCel
x /g

el
x .

For a purely elastic channel wall, the hydrodynamic capacitance per unit
length Cx is given by the extra cross-sectional area per pressure dA/dp which
is created by the channel expansion. In a viscoelastic channel, there is a phase
difference δ between the stress and the strain in the wall material. The stress
is proportional to the local pressure, and the extra cross-sectional area dA is
proportional to the strain ε, the channel cross section A and a geometrical factor
kgeom: dA = kgeomAε. In an analogous description to the electric equation 6.11,
the relation between pressure and strain in the model thus reads:

p =
kgeomAε

Cx
(1 + i tanα). (6.12)

The phase difference of α between p and ε is matched to the viscoelastic proper-
ties of PDMS by setting δ = α = ωCx/gx, where δ is the phase difference of the
complex elastic modulus E?, resp. shear modulus G? of PDMS. Comparing the
absolut value of p following from eq. 6.12 with the absolut value of each Fourier
component of the pressure in eq. 2.4

|pn| =
kgeomA

Cx cos δ
ε = |E?|ε = 2(1 + ν)|G?|ε (6.13)

reveals the correct values for Cx(ω) and gx(ω):

Cx(ω) = Cx,0
|G?(ω)/G?

ω0
| cos δ

gx(ω) = ωCx,0
|G?(ω)/G?

ω0
| sin δ (6.14)

where Cx,0 = kgeomA
2(1+ν)|G?

ω0
| .

6.2 Results & Discussion

To quantitatively test the implications of the 1-D diffusion equation model, a
pressure step pulse was applied periodically to a microfluidic channel. The re-
sulting local pressure and the flow rate were measured at different positions along
the channel. Theoretical predictions for the dispersion of pressure and flowrate
were calculated with equation 6.7 based on the experimentally determined pres-
sure at the channel entrance at x = 0 and compared to the measurements.

The pressure step pulse of f0 = 0.5 Hz was generated with the oscillatory
flow setup described in sect 2.1 and applied to a straight microfluidic channel
filled with an approximately 60% (w/w) glycerol solution. The channel had a
rectangular cross-section of width w = 60µm, height h = 80µm and length
l = 20mm. To yield a channel slightly softer than usual, the PDMS was mixed



6. Fluid-Structure Interactions: Transient Flow in Viscoelastic Microfluidic Channels 113

with crosslinker in a ratio of 20:1 instead of the standard 10:1 ratio given in [75].
The channel end at x = l was exposed to ambient pressure p(l, t) ≈ 0. The local
pressure and flow conditions as a function of the position in the channel were
observed at different positions along the channel at x = 0 mm, x = 7.5 mm,
x = 12.5 mm and x = 17.5 mm distance to the channel entrance. To this end
1µm beads were embedded in the PDMS as well as suspended in the fluid
(Fig. 2.2) and movies with 500 frames per second were recorded in the midplane
of the channel at z = 0.5h to determine the motion of both the fluid and the
channel walls.

6.2.1 Determination of Pressure p(t) from Channel Deformations

The wall movement was determined by tracking the particles embedded in the
PDMS with the custom made software OpenBox [91]. Approximately 80 beads
within the first 30µm to the wall were tracked and averaged over 3 oscillation
periods on each side of the channel to obtain the lateral motion Yleft, Yright

on each side of the channel. The geometrical factor fgeom relating the strain
ε to the wall movement was determined in a FEM-simulation for a channel
(w x h = 60 x 80µm2) with a 1000 x 1000 x 80 µm3 inlet section (see fig. 6.2).
To this purpose, static simulations with constant pressure were performed with
a strain of 1% set by the ratio of pressure and elastic modulus ε = p/E = 1%.
The wall displacement Y in half height of the channel z = h/2 was evaluated
to calculate the geometrical factor according to eq. 2.2. For the experimental
geometry the simulations yield a constant value of fgeom ≈ 0.95 except within
the first 1mm next to the channel entrance and exit (see Fig. 6.2b). Thus
fgeom = 0.95 was used for all evaluated channel positions except for x = 0, where
the average wall displacement in the recording area of the video (indicated by the
green box in fig. 6.2b) was used to determine fgeom ≈ 0.72. The complex shear
modulus G? needed to calculate the pressure from the strain ε was measured
in an oscillatory rheometer with a 2◦ cone-plate geometry for a constant strain
ε = 0.1% (see Fig. 6.3). Using the Poisson ratio of ν = 0.5 for PDMS, the
pressure pulse can then be computed directly from the Fourier components of
the wall movement Y (x, t) = 0.5(Yleft − Yright) with eq. 2.6. The resulting
experimental local pressures in the channel are shown in fig. 6.4a by the solid
lines. From the obtained results a Fourier transformation is computed in order
to resolve the frequency dependencies of the pressure depicted in Figs. 6.6 and
6.7a.

6.2.2 Determination of the Flowrate Q(t)

Videos of the channel with fluorescent beads were divided into i = 11 strips
across the width. The fluid velocity vi(t) in each stripe was determined by
cross-correlation of subsequent video frames and three oscillation periods were
averaged to yield the fluid velocity during one period for each strip. For each
frame, a parabolic fit in the y-direction lateral to the flow was applied to the
flow profiles obtained from the 11 strips to extract the maximum fluid velocity
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Figure 6.2: FEM-simulations to determine fgeom and kgeom. (a) Channel expan-
sion corresponding to ε = 0.01 in cross-section of PDMS channel. For clarity
the wall displacement has been 20x enlarged. (b) Wall displacement Y (z = h/2)
along the channel. Near the channel entrance at x = 0 the expansion of the
channel is higher than inside the channel. The green box shows the area recorded
in the video for Y (x = 0), Q(x = 0).

Figure 6.3: Oscillatory rheometer mea-
surement of the complex shear modulus
G? = G′+ iG′′ of PDMS with phase angle
δ between stress and strain.

vmax for each frame. The flowrates Q(x, t) were then calculated from vmax by
using eq. A.81 and A.82 for w < h:

vmax

Q
=

48
π3hw

∑∞
n,odd

(−1)
n−1

2

n3

[
1− 1

cosh(nπ h
2w )

]
1− 0.63w

h

(6.15)

The flowrate curves Q differ less than 5 % from their steady state values Qs.s.

at the end of half the period of the driving oscillation T0/2 = π/ω0 = 1s.
The steady state flowrate has to be equal at all channel positions — yet the



6. Fluid-Structure Interactions: Transient Flow in Viscoelastic Microfluidic Channels 115

Figure 6.4: Pressure p and flowrate Q pulses at x = 0, 7.5, 12.5, 17.5 mm in
the time domain. (a) pressure pulses, (b) flowrates (solid: measured, dashed:
theory); flowrates at x = 7.5, 12.5, 17.5 mm were offset in Q for better visibility.
Inset: close up of the measured flowrates without offset showing the lag-time
between flowrate pulses.

measured steady state maximum velocities vary up to 20 %, possibly due to local
inhomogeneities in the channel geometry and variations in the z-position of the
measurement. To account for these sources of uncertainty the absolut values of
the velocity curves were scaled to yield matching steady state flowrates Qs.s.

for the different channel positions. This does not alter the shape of the flowrate
pulses and the frequency dependencies discussed. The resulting experimental
flowrates are shown in fig. 6.4b. The frequency dependencies shown in Figs.
6.6a and 6.7b have been obtained by a Fourier transformation of Q(x, t).

6.2.3 Calculation of Theoretical Curves

The measured pressure curve at the channel entrance was Fourier analysed to
yield the N frequency components Π0n exp(iωnt) of the input pressure at x = 0
(N is set by the framerate fvid of the recorded videos as N = fvid/2f0). Sum-
ming up the solution given by eq. 6.6 for each Fourier component of pressure and
flowrate pn, Qn for x = 7.5, x = 7.5, 12.5 and 17.5 mm yields theoretical curves
for p and Q along the channel p(x, t) =

∑N
n=0 pn(x, t), Q(x, t) =

∑N
n=0Qn(x, t),.

Hereby the values for the wall resistance Zx(ω), the channel’s hydrodynamic re-
sistance per unit length Rx and the inertial inductance Lx were determined as
follows:

The complex resistance Zx(ω) (see eq. 6.3) can be calculated from eq. 6.14
once the geometrical factor kgeom describing the relation between the extra
cross-sectional area dA and expansional strain ε is known. The FEM-simulation
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(Fig. 6.2a) suggests a geometrical factor kgeom = 2.4. The best accordance with
the experimental data was achieved with kgeom = 2.0, which has been used for
the theoretical calculations.

The hydrodynamic resistance per unit length Rx for a rectangular channel
filled with fluid of viscosity η for w < h is calculated from eq. A.82 as:

Rx ≈
12η
w3h

(
1− 0.63

w

h

)−1

. (6.16)

As the changes of the channel cross-section due to the applied pressure in the
experiment are small (< 3%), the resistance can be assumed to be independent
of the applied pressure Rx = const. A consistent value for the viscosity η
can be extracted from the periodic measurement in the channel itself: Since
ω0 < ωcutoff , p and Q at the end of the period of the step pulses are good
estimates for the steady state values ps.s. and Qs.s. in constant flow. The overall
resistance of the channel Rxl has to fulfill the equation Rxl = ps.s.

Qs.s.
which

directly sets an experimental value for the viscosity of

η =
ps.s.

Qs.s.l

h3w

12

(
1− 0.63

h

w

)
(6.17)

The hydrodynamic inductance per unit length Lx is given by Lx = ρ/A,
where A = wh and ρ = 1.2 gcm−3 was used for the calculation of the theoretical
curves.

The resulting theoretical curves for pressure and flowrate in the time-domain
are shown by the dashed lines in fig. 6.4. An excellent agreement in the shape be-
tween experimental and theoretical curves is achieved. The pressure amplitudes
show an uncertainty of at most 20% (x = 7.5 cm curve) between theory and
experiment, which might result from uncertainties in the local structure of the
PDMS channel and measuring height z. The flowrate curves, which have been
calibrated by using the common steady state value, show an excellent overall
agreement between experiments and theoretical predictions validating the used
equivalent circuit model.

6.2.4 Discussion with Purely Elastic Channel Model

The equivalent circuit model revealed that the pressure and fluid propagation in
the microfluidic channel can be described by the telegraphers equation eq. 6.6.
The Fourier decomposition of the experimental pressure and flowrate pulses
shows that sufficient accuracy in the data is only available up to frequencies of
25-50 Hz (see fig. 6.7). In this regime, the phase difference δ between the pressure
and the wall deformation in the PDMS is relatively small with δ ≤ 10◦ (see
fig. 6.3). Moreover, the fluid inertia is negligible (Lx ≈ 0) in the low-Reynolds
regime. To understand the underlying physics and the characteristic features
of the flow dynamics in PDMS channels, it is therefore instructive to discuss a
purely elastic model of the channel with δ = 0, Lx = 0 as an approximation.
In this simple model, the channel is described by the one-dimensional diffusion
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equation
∂pn

∂t
= Dp

∂2pn

∂x2
(6.18)

where Dp = 1/(RxCx) and ωcutoff = 2π/RxCxl
2 are independent of the fre-

quency. In a classical diffusion picture, the periodic pressure pulses correspond
to a varying concentration gradient, and the resulting volume flow in the chan-
nel can be identified with the diffusive flux. The implications of this simple 1-D
model shall be discussed in a deeper analysis of the experimental findings in the
following paragraphs.

The timescale for pressure and flow pulse propagation is given by the pressure
diffusion constant Dp.

In bulk fluids and in rigid channels, pressure excitations can propagate with
the speed of sound of the fluid vc. With an elastic modulus of G(PDMS) ∼
2 · 104 Pa for the channel and a compressive modulus of K(water) ∼ 2 · 109 Pa
in the fluid, the propagation of a pressure pulse in a microfluidic device will
be set by the channels mechanical and geometrical properties rather than vc.
Thus, for an oscillating pressure driving an overdamped liquid column in laminar
flow, the propagation of the pressure is determined by the wall compliance and
the hydrodynamic resistance of the channel, which set the diffusion constant
Dp = 1/CxRx.

It can be shown (see appendix D) that the traveling time for a pressure wave
to cross the entire channel length l in the low frequency limit (ω � ωcutoff =
2πDpl

−2) is given by τ(0 → l) = l2

6·Dp
. For the 20mm long channel used here

the characteristic time τRC = RxCxl
2 is approximately 0.35 s. This gives an

average low frequency phase velocity for pressure propagation across the channel
of v̄ph ≈ 0.34 ms−1, which is 3 orders of magnitude below vc. The increasing
lag time in the onset of the flow rate pulses (see close up in Fig. 6.4b) shows
clearly the predicted time delay of the concomitant flowrate propagation at the
different positions along the channel.

Pressure and flow pulses are subject to dispersion.

Figure 6.5: Schematics explaining the ob-
served phase difference between pressure
and flow rate and the decrease in the oscil-
latory flow rate amplitude along the chan-
nel. Both effects are evident by the fact,
that a fraction of the flow Q fills the extra
volume created by the channel expansion.

The description by a diffusion equation implies that generally the phase
velocity becomes frequency dependent and higher frequency components prop-
agate faster. Consequently, the phase velocity shows dispersion which is fre-
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quency and spatially dependent. This results in a phase difference between the
pressure pn and flow Qn along the channel, which is frequency dependent and
decreases along the channel length reaching zero at the exit. The phase shift can
maximally be ∆φp−Q = π/4 in the high frequency limit, which results directly
from the solution for λn =

√
iωnRxCx for the case of an ideal elastic bound-

ary (δ = 0) (see eq.D.12). Mechanistically, one can imagine that the elastic
expansion of the channel creates a local extra volume Vex ∝ pn in phase with
the pressure. In turn, the flow into this extra volume Qex ∝ ∂Vex/∂t needs to
be π/2 ahead of the pressure (see sketch in fig. 6.5). The phase shift of the
flow into the extra volume results in a phase difference ∆φp−Q between the
total flow and the applied pressure. As the pressure drops along the channel,
this extra volume decreases. Consequently, the contribution of the flow into the
extra volume decreases with respect to the transported volume, so that ∆φp−Q

approaches zero. With increasing frequency, the phase shift ∆φp−Q increases
due to the simple fact, that the total volume transported per oscillation period
is smaller at high frequencies, yet the extra volume is essentially independent
of the frequency.

In the low and high frequency limit, analytical expressions for the phase
velocity can be calculated (see appendix D). For ω � ωcutoff the phase velocity
vph(x) ≈ 3Dp/(l−x) is independent of ω, and pn andQn are in phase everywhere
in the channel. For ω�ωcutoff the phase velocity becomes independent of x and
grows with ω1/2: vph(ω) ≈

√
2ωDp/(cos δ(1− sin δ)). Now the flowrate Qn is

generally ahead of the pressure pn (up to ∆φp−Q = π/4− δ/2) and only at the
exit (at x ≈ l) pn and Qn are in phase. Fig. 6.6a shows the theoretically and
experimentally determined values for the phase difference ∆φp−Q as a function
of the frequency f = ω

2π , which are in excellent agreement for f ≤ 20 Hz.
To enable a direct comparison of the computed phase velocity vph(x, ω) with

experimental results we need to define an averaged phase velocity vph(xi, ω). To
this end the phase of a pressure pulse is determined at two points (x = 0 and
x = xi) for each frequency component and the resulting phase difference ∆φn,p

0−xi

is used to obtain vph(ωn) = xiωn/∆φ
n,p
0−xi

. Fig. 6.6b shows that the frequency
dependence of the measured propagation speeds is in excellent agreement with
the theoretical calculations. As an important consequence from the dispersion
relation, the occurrence of peaks in the flow rate is expected once a step pulse
is applied. Indeed, Fig. 6.4 shows the dispersion of pressure p and flowrate Q
pulses in the time-domain. For steep pressure pulses, the phaseshift of the high-
frequency components generates peaks in the flow rate at the channel entrance
which can significantly exceed the steady state value (Qpeak � ppeak/Rxl). This
is an important consequence of the susceptibility of microfluidic devices, which
needs to be accounted for if critical shear rates need to be considered. In the
same way, local pressure peaks may occur if the flow is suddenly stopped by
a closing valve. Especially in macrofluidic flows with inertial effects involved,
very high pressure peaks associated with transient flows are observed. This
phenomenon is known as water hammer and may cause severe damage to pipes
[109].
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Figure 6.6: Dispersion of propagating pulses (symbols: experimental values,
solid lines: theoretical values): (a) phase difference ∆φp−Q between pn and
Qn at x = 0, 7.5, 12.5, 17.5 mm. ∆φp−Q grows with frequency and decreases
towards the channel exit. (b) averaged phase velocity of pressure components
pn travelling from x = 0 to xi = 7.5, 12.5, 17.5 mm.

The microfluidic channel is a lowpass to pressure and flow pulses.

In addition to the dispersion, high-frequency components are damped in the
diffusive propagation, resulting in an effective low-pass filter property of mi-
crofluidic devices. If the frequency of a pressure signal is faster than the time
it takes to propagate to a certain position in the device, it will be smeared
out beyond the diffusion length of the device. Consequently, high frequency
components pn, Qn of pressure and flowrate pulses get damped.

The characteristic time τRC sets a cutoff frequency ωcutoff = 2π/τRC for
the transmission of flow and pressure pulses for the whole device length. For
ωn � ωcutoff eq. (6.18) becomes

∂2p

∂x2
≈ 0 (6.19)

and the pressure drops linearly across the channel. For ωn�ωcutoff the damping
becomes exponential and can be calculated for the pressure and flowrate:

|pn(x)| ≈ |Π0ne
−2λnx|

|Qn(x)| ≈ |Π0n

Rx
λne

−2λnx|. (6.20)

Fig. 6.7 shows the lowpass characteristics of the channel for normalized pressure
and flowrate pulses |pn(x)/pn(0)|, |Qn(x)/Qn(0)|. Experimental values (sym-
bols) and theoretical curves (solid lines) are again in good agreement.
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Figure 6.7: Frequency dependence of the pressure (a) and flowrate (b) trans-
mission along the channel: Fourier components |pn(x)|, |Qn(x)| normalized to
their values |pn(0)|, |Qn(0)| at the channel entrance. Symbols: measured values,
solid lines: theoretical curves calculated from eq. (6.6).

Conclusion

The flow of Newtonian liquids in viscoelastic microfluidic channels can be de-
scribed with a pressure diffusion equation. The PDMS channel acts as a low-pass
filter: Fourier components with frequencies higher than ωcutoff are dispersed
and damped. Thus the channel effectively smoothes incoming pressure and flow
pulses. To generate a uniform flow along the channel, PDMS devices should only
be operated with ω < ωcutoff which gives an upper limit e.g. for the operat-
ing frequency of switches and microchannel-rheometers. Sharp pressure pulses
result in peaks of high flowrates in the channel entrance region and must be
avoided in all applications that are sensitive to high wall shear stresses. Al-
though these high flow rate peaks are limited to the channel entrance region,
sharp changing pressure pulses that temporarily give rise to very high wall shear
stresses could e.g. be used to enhance the effectivity of cleaning processes in
elastic channels. The introduced method of pressure sensing by wall-motion-
tracking provides a tool for further detailed investigation of transient flows in
viscoelastic channels. The presented experimental approach as well as the mod-
eling may provide a useful basis for studies of non-Newtonian-liquids in any
2-D geometry achieved with the standard PDMS soft lithography procedure. It
should be well suited for simulating flows in small to intermediate blood vessels
with different geometries - although in bigger vessels inertia effects need to be
accounted for.
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The present work has demonstrated that microfluidic devices are ideally suited
to gain insight into the dynamics of complex fluids under flow. The discussion
of the tumbling dynamics of actin filaments in chapter 4 showed, that the di-
rect experimental observation of the conformational dynamics of polymers in
flow facilitates developing theoretical models describing the underlying physical
mechanisms. Due to the huge number of degrees of freedom encountered with
large molecules, even in the relative simple case of linear polymers in dilute
solution many non-linear effects observed in experiments or simulations are not
yet fully understood. Just recently, a previously unknown regime of polymer
stretching in high shear rates has been theoretically proposed and studied in
simulations, yet an experimental evidence is still lacking [96, 24]. Hereby, a
decrease in the average stretching length has been predicted to occur at high
shear rates, where the Peclet number Pe = γ̇τK , given by the product of shear
rate and the relaxation time of a single Kuhn segment, gets bigger than one.
While for flexible polymers this regime is hardly realized without rupturing the
polymers, Pe > 1 is easily reached in our experiments. Thus, the behaviour of
long actin filaments with Lc ≥ bK = 2Lp in the regime of multiple tumblings
resembles the motion of segments of flexible polymer chains at Pe > 1. There-
fore, experiments with semiflexible polymers in the Lc ≥ 2Lp regime shown here
could help to experimentally elucidate the dynamics of flexible polymers in the
proposed regime of reduced stretch.

A variety of interesting fields of research emerges from a variation of the
experimental conditions used in the tumbling studies: For instance, an increase
of the background viscosity could enable the direct observation of shear de-
gredation of polymers, so that the rupture force of actin filaments could be
measured. By mixing fluorescently labelled actin filaments with a high concen-
tration of unlabelled filaments, the tumbling assay can readily be extended to
the semi-dilute and entangled regime, and first experiments at high actin con-
centrations have already been conducted. A direct measurement of entangled
semiflexible polymer dynamics in shear provides a powerful tool to further test
and improve existing theories on entangled polymer solutions under flow. This
is of special interest, as exisiting models of entangled solutions are based on
the description of single polymer dynamics, where interactions with neighbour-
ing polymers are considered by a confinement potential following the famous
tube reptation model developed by de Gennes, Doi and Edwards [25, 27]. The
confinement potential of entangled actin filaments in equilibrium has been deter-
mined experimentally and discussed theoretically recently [87, 36, 44, 45, 113].
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For concentrated suspensions of rod-like polymers, excluded volume potentials
induced by the neighbouring polymers can suppress the tumbling motion in flow
at intermediate shear rates [64].

The experiments in chapter 5 confirmed the functionality of the proposed
differential shear rheometer in a wide range of shear-viscosity exponents n. An
apparent transient extensional viscosity of dilute polymer solutions has been suc-
cessfully measured with the differential extensional rheometer and was found to
be in accordance with values in the literature. The performance of the exten-
sional device for use with entangled solutions, which exhibit pronounced shear
thinning, has to be further inspected to establish an appropriate working range
for solutions of arbitrary shear properties. While the signal generating mecha-
nism has successfully been tested in first experiments with worm-like-micellar
solutions, the determination of the extensional viscosity from the measured data
gets difficult for solutions with very low shear exponents n ≈ 0. This shows,
that more research is necessary to correctly account for the combination of shear
and extensional flows in the data evaluation.

The differential nature of the measurements with the proposed viscome-
ters makes the technique especially qualified for comparative implementations,
where rather a fluid characterization instead of the determination of an absolute
viscosity value is required. For instance, the flowrate ratio X could be used as
a regulatory parameter for process-control in industrial applications. Moreover,
the flowrate ratio could be used analogously to the melt flow indexMFI in poly-
mer melts, which serves as a measure to determine the molecular weight and
the polydispersity in polymer melts [89]. Hereby, the combination of the shear
and the extensional viscometer could proof especially advantageous: Within a
two-dimensional parameter space (X,Y ) representing the fundamentally differ-
ent flow properties in shear (X) and extensional flow (Y ), a far more accurate
characterization of the fluid could be achieved than with a single quantity like
the MFI. The very simple and robust design makes the shear and extensional
viscometer open for miniaturization, parallelization and cheap production, so
that both devices can be readily incorporated into existing lab-on-a-chip de-
vices. As especially in R&D applications the majority of lab-on-a-chip devices
already include a microscopic survey of the externally applied sample flow, no
extra external equipment is needed to run the differential viscometers.

Another exciting field for experimental studies opens up when the strategies
for observation of individual polymer dynamics in chapter 4 are combined with
the differential viscometers proposed in chapter 5: A non-Newtonian flowrate
ratio X 6= XN indicates a different bulk rheology of the fluid in analyzer and
reference channel, which is caused by the different shear and extension rates.
Can we directly see a difference in the polymer dynamics related to the shear-
thinning in analyzer and reference channel when we follow fluorescent poly-
mers flowing down the channels in the shear viscometer? Can we observe the
stretching of flexible labelled polymers in the constrictions of the extensional
viscometer and relate the measured apparent extensional viscosity to the degree
of stretching? How do the mixed flow effects in the devices influence the sharp
coil-stretch transition observed in purely extensional flows? Is it possible to
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watch shear-induced tumblings in shear-dominated strong flows as proposed in
section 5.4.6?

Beyond the determination of the steady state viscosities η and Λ in chapter
5, the examination of the fluid-structure interactions carried out in chapter 6
opens the way for developing an oscillatory lab-on-a-chip rheometer to measure
the dynamic viscosity of viscoelastic fluids: For frequencies below the cut-off
frequency ωcutoff of the system, the velocity field is uniform along the chan-
nel and the pressure inside the channel is in phase with the pressure at an
externally connected pressure sensor (see fig 2.2). Then, the relation between
stress and strain in the fluid can be determined from the measured pressure
and flow velocities in the channel. Fig. 7.1a shows Lissajous-plots of the fluid
velocity in the channel center vs. the applied pressure in a f = 0.1 Hz large
amplitude oscillatory shear measurement (LAOS) with a 2% (w/w) PAA solu-
tion. The viscoelasticity of the polymer solution causes a phase shift between
stress and velocity, resulting in flat elliptical v(p) curves at low pressure ampli-
tudes. The increasing slope of the ellipses at high amplitudes clearly indicates
the shear-thinning of the solution at higher oscillatory strains, which illustrates
the potential for measuring non-linear rheological properties in LAOS [49]. As

Figure 7.1: (a) Lissajous plot of a 2% (w/w) PAA solution with 5-6 MDa in
large amplitude oscillatory shear (f = 0.1 Hz). The shape of the curves indicates
shear-thinning of the fluid at higher oscillatory strains. (b) The phasedifference
between external pressure sensor and fluid flow for 2% PAA solution in oscil-
latory shear (f = 0.5 Hz) depends on the lateral position in the channel (the
channel width is w = 50µm, the abscissa gives the index of the picture strip in
the PIV-evaluation indicating the lateral position). Due to the fluids non-linear
viscoelasticity, the fluid in the channel center is not in phase with the fluid near
the channel walls.

the phase difference between stress and strain is generally strain dependent in
viscoelastic fluids, a measurable phase difference occurs throughout the channel
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cross section (see fig 7.1b), so that the fluid in the channel center is out-of-phase
with the fluid near the channel walls. A meta-stable shear-banding state has
been recently observed for well-entangled polymer solutions in large amplitude
oscillatory shear [17].

For frequencies above ωcutoff, fluid-structure interactions have to be consid-
ered. Transient flows of complex fluids in elastic channels are of big importance
for understanding vascular deseases as well as for precise control in the opera-
tion of lab-on-a-chip devices. Thus, a lot of effort has been devoted to model
oscillatory flows of non-Newtonian fluids in elastic channels, and both analyti-
cal formulations and improved numerical simulations are the subject of ongoing
research [14, 28, 94]. Standard PIV techniques and the local pressure sensing
method exploiting the wall deformations developed in this thesis enable the
determination of local pressure and flowfield at various points in a channel net-
work. Thus, microfluidic devices can be used as optimal test systems with model
fluids as well as for mimicking microcirculation networks in vitro in arbitrary
2-dimensional geometry.
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A. BASIC FLUID DYNAMICS

A.1 Flow Classification

Decomposition of Flow Field: Uniform Flow + Rotational Flow + Extensional
Flow

We specify the flow of a fluid by the velocity field u(x, t) where u = (ux, uy, uz)
represents the velocity of the fluid at time t at the point x = (x, y, z) in
space [20]: According to the types of deformation that a fluid element undergoes
during flow it is common to classify different types of flows. For that purpose
we will discuss the transformation that the distance vector h connecting two
nearby points x and y = x + h in the fluid undergoes in a small time step dt.
The trajectory of the fluid element at the position x is given by the differential
equation

dx
dt

= u(x) (A.1)

so after a small time step dt the fluid element at x has been translated to
x(t + dt) = x(t) + u(x)dt. The time evolution of the distance vector h is
governed by

dh
dt

=
dy
dt

− dx
dt

= u(y)− u(x) (A.2)

As h is small we can use the Taylor expansion of the velocity field for u(y) =
u(x + h) [20]:

u(y) = u(x) + (∇u(x)) · h +O(h2) (A.3)

where

(∇u(x)) =


∂ux(x)

∂x
∂ux(x)

∂y
∂ux(x)

∂z
∂uy(x)

∂x
∂uy(x)

∂y
∂uy(x)

∂z
∂uz(x)

∂x
∂uz(x)

∂y
∂uz(x)

∂z

 ≡ A(x) (A.4)

is the velocity gradient tensor of u(x) and get

dh
dt

= A(x) · h =
∂u(x)
∂h

. (A.5)

Thus, u(x) induces merely a rigid translation of h and only A = (∇u) con-
tributes to changes of the length and orientation of h. To further examine the
properties of the flow we split A into its symmetric and antisymmetric part[20]:

A = D + S (A.6)
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with
D =

1
2
[∇u + (∇u)T ] = γ̇ (A.7)

and
S =

1
2
[∇u− (∇u)T ]. (A.8)

Rate of Deformation Tensor D

To elucidate the role of D and S we look at the differential equation (A.5) for
D and S seperately following [20]:

dh
dt

= D · h (A.9)

As the matrix D is symmetric, there is always an orthonormal basis ẽ1, ẽ2, ẽ3

in which D is diagonal:

D =

(
d1 0 0
0 d2 0
0 0 d3

)
(A.10)

In this coordinate system, eq. (A.9) seperates into three linear differential equa-
tions

dh̃i

dt
= dih̃i, i = 1, 2, 3 (A.11)

that are solved by

h̃i(t) = h̃i,(t=0) exp(dit), i = 1, 2, 3. (A.12)

Hence, the vector field D · h is merely expanding or contracting along each of
the axes ẽi with a rate of change di for a unit length, and D is called the rate
of deformation tensor. A flow of this type is called purely extensional, and the
volume of a box with sides of length h̃1, h̃2, h̃3 parallel to the ẽ1, ẽ2, ẽ3 axes
changes with a rate of:

d
dt

(h̃1h̃2h̃3) = (d1 + d2 + d3)(h̃1h̃2h̃3) (A.13)

As the trace of a matrix is invariant under orthogonal transformations,

d1 + d2 + d3 = Tr(D) = divu. (A.14)

For the incompressible fluids discussed here Tr(D) = 0.

Vorticity Tensor S

The differential equation for the antisymmetric part of A reads:

dh
dt

= S · h (A.15)
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Using the vorticity of the velocity field ξ = ∇× u, S can be expressed as

S · h =
1
2
ξ × h, (A.16)

Hence, S · h induces a flow which is equivalent to a rotation around ξ(x):

dh
dt

=
1
2
ξ(x)× h. (A.17)

This differential equation is solved by

h(t) = R(t, ξ(x))h(0). (A.18)

where R(t, ξ(x)) is the matrix that represents a rotation through an angle t
about the axis ξ(x). The rotation rate is related to the magnitude of S and S
is called the vorticity tensor of u; the flow induced by S is a purely rotational
flow corresponding to a rigid rotation of the fluid. Writing S in the principal
coordinate system of D yields [34]:

S =

(
0 −ω3 ω2
ω3 0 −ω1
−ω2 ω1 0

)
(A.19)

where ξ = (ω1, ω2, ω3) gives the rotation rates about the axes ẽ1, ẽ2, ẽ3.

Flow Decomposition

Thus, we can attribute the physical meaning to the terms in eq. (A.3):

u(y) = u(x) +∇u(x) · h +O(h2) (A.20)

= u(x)︸︷︷︸
translation

+ S · h︸︷︷︸
rotation

+ D · h︸ ︷︷ ︸
deformation

+O(h2) (A.21)

Any velocity field u(x, t) can be decomposed into the sum of a uniform flow, a
rotational flow and an extensional flow, so that the transformation that a fluid
element undergoes in a small time step dt consists of a rigid translation, a rigid
rotation and a deformation.

Classification of Flow Fields: Strong, Marginally Weak and Strictly Weak
Flows

For a classification of flows we follow [34] and [11] and look at a steady homoge-
meous flow field with constant stretch history and u(0) = 0. Then eq. (A.1)
reads

u(x) = ẋ = x ·A (A.22)

with A = (∇u). The solution of eq. (A.22) depends upon the three eigenvalues
λ of A which fulfill the equation

λ3 − I1(A)λ2 + I2(A)λ− I3(A) = 0 (A.23)
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where Ii(A), i = 1, 2, 3 are the principal invariants of A which are independent
of the base of the coordinate system:

I1(A) = tr(A) = λ1 + λ2 + λ3 (A.24)
I2(A) = 1

2 [I2
1 (A)− tr(A)2] = λ1λ2 + λ1λ3 + λ2λ3 (A.25)

I3(A) = det(A) = λ1λ2λ3 (A.26)

For incompressible fluids I1 = 0. We now use the flow decomposition into
rotational and deformational components A = S + D introduced in eq. (A.6)
and write A in the principal coordinate system of D in which D is diagonal:

A =

(
ε1 −ω3 ω2
ω3 ε2 −ω1
−ω2 ω1 ε3

)
(A.27)

where εi = Dii and ω1 = S23, ω2 = S31, ω3 = S12 are the components of D and
S. The 3 invariants Ii(A) can now be expressed by 5 invariants Ki depending
on the components of D and S:

K1 = I1(D) = ε1 + ε2 + ε3 = 0 (A.28)
K2 = I2(D) = ε1ε2 + ε2ε3 + ε3ε1 (A.29)
K3 = I3(D) = ε1ε2ε3 (A.30)
K4 = I2(S) = ω2

1 + ω2
2 + ω2

3 (A.31)
K5 = I3(A)− I3(D) = ε1ω

2
1 + ε2ω

2
2 + ε3ω

2
3 , (A.32)

so that

I1(A) = 0 (A.33)
I2(A) = K2 +K4 (A.34)
I3(A) = K3 +K5. (A.35)

K1 describes the compressibility of the fluid,
√
−K2/3 gives the deformation

rate, K3 is related to the shape of D,
√
K4 gives the rotation rate and K5 is

related to the relative orientation of the fluid rotation and deformation.

Strong Flow

If I3(A) 6= 0 or I3(A) = 0 ∧ I2(A) < 0 the real part Re(λ) of at least one
eigenvalue λi is positive and the flow is classified as strong flow [103]. As a
result of Re(λ) > 0, two material points in the fluid will seperate exponentially
in time. The fluid pathways in homogeneous strong flows can have different
shapes according to the value of I3 and the parameter p = (−I2/3)3/(I3/2)2.

• I3 6= 0 ∧ p > 1:

For I3 6= 0 and p > 1 all three eigenvalues λi are real and different, and
the solution of eq. (A.22) gives

x(t) = α1r1 exp(λ1t) + α2r2 exp(λ2t) + α3r3 exp(λ3t). (A.36)
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Herein, r1, r2, r3 are the eigenvectors associated with the eigenvalues λ1, λ2, λ3

and α1, α2, α3 are path parameters describing the coordinates of a point
on the path at time t = 0. Because of the shape of the projections of the
streamlines onto the planes spanned by each pair of eigenvalues this flow
class is called hyperbolic-parabolic.

• I3 6= 0 ∧ p = 1:

For I3 6= 0 and p = 1 two eigenvalues are equal, and with λ1 = λ2 =
λ′, λ3 = −λ′ the streamlines are given by

x(t) = β[r′ + r′′(t− t0)] exp(λ′t) + α3r3 exp(−2λ′t) (A.37)

where r′′, r3 point into fixed directions, r′ can be chosen in a fixed plane
and β, α3, t0 are the path parameters of the fluid trajectories. In homoge-
neous flow fields this is the class of hyperbolic logarithmic flows. It includes
the special case of hyperbolic radial flows (see sec. 3.1.3).

• I3 6= 0 ∧ p < 1:

For I3 6= 0 and p < 1 two eigenvalues of A are conjugate complex and
with λ1 = λ′ + iλ′′, λ2 = λ′ − iλ′′, λ3 = −2λ′ eq. (A.22) is solved by

x(t) = β[r′ cos(λ′′(t− t0)) + r′′ sin(λ′′(t− t0))] exp(λ′t) +α3.r3 exp(−2λ′t)
(A.38)

These flows are called elliptic spiral flows because the projection of the
fluid trajectories into the r′, r′′ - plane yields elliptic spirals.

• I3 = 0 ∧ I2(A) < 0:

For I3 = 0 and I2(A) < 0 (which corresponds to p = ∞) one eigenvalue
of A is zero and the other two are real:

λ1 =
√
−I2, λ2 = −

√
−I2, λ3 = 0 (A.39)

The fluid trajectories are hyperbolas in planes parallel to the r1, r2 plane
with the center on α3r3

x(t) = α1r1 exp(
√
−I2t) + α2r2 exp(−

√
−I2t) + α3r3, (A.40)

so that these flows are called planar hyperbolic (see sec. A.2 with ρ2 < 1).

Marginally Weak Flow

If I3 = I2 = 0 (which is equivalent to λ1 = λ2 = λ3 = 0) the flow is classified as
marginally weak and eq. (A.22) is solved by

x(t) = β[r′ + r′′(α1 + a1t) + r′′′(α2 + 2(a2 + bα1t) + a1bt
2)]. (A.41)

Thus, material points in marginally weak flows seperate linearly or quadratically
in time and the velocity gradient tensor A is nilpotent (i.e. there is a n ∈ N
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for which An = 0). With n = 2, marginally weak flows include the important
class of viscometric flows which fulfill A2 = 0 and can be described with a local
coordinate system in which A has the form of a simple shear flow :

A′ = a

(
0 1 0
0 0 0
0 0 0

)
. (A.42)

As each fluid element is subject to a simple shear flow with a constant shear rate
along the streamlines, viscometric flows are used to measure the shear viscosity
of a fluid (see sec. 3.3.1) Fig. A.1 shows some common examples of viscometric
flows[74]. A more detailed discussion of simple shear flow is following in sec. A.2.

Strictly Weak Flow

If I3 = 0, I2 > 0 the flow is called strictly weak and the fluid trajectoriess are
given by

x(t) = β(r′ cos(
√
I2(t− t0)) + r′′ sin(

√
I2(t− t0))) + α3r3. (A.43)

These curves are ellipses in planes parallel to r′, r′′ - plane with centers on
α3r3. Thus, the particle distance in strictiy weak flows just varyies sinusoidal in
time and material lines get expanded and shrinked periodically. (Note that in
Couette Flow, particle distances vary sinusoidal, but material lines get stretched
continuosly).

A.2 Planar Flows

A very descriptive explanation for the classification of flows into strong, marginally
weak and strictly weak flows can be given for planar flows, where the velocity-
component in one direction is zero, e.g. u(x) = (ux(x, y, ), uy(x, y), 0). Follow-
ing [35], we write A = ∇u in the principal coordinate system of D:

A =

(
ε̇1 −ω3 0
ω3 ε̇2 0
0 0 0

)
(A.44)

Thus, it is sufficient to discuss the flow in 2D with A =
(
ε̇ −ω
ω −ε̇

)
. In planar

flows the axis of the rotational component is perpendicular to the plane of
deformation. Here, the fluid elements are rotated around an axis parallel to e3

while the deformation takes place in the e1, e2 - plane. From A.44 we get

I1 = 0 (A.45)
I2 = ω2 − ε̇2 (A.46)
I3 = 0. (A.47)

Hence, we can classify planar flows with a single flow parameter ρ = ω/ε̇ which
gives the ratio of the rotational and the deformational component of the flow.
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Figure A.1: Various common viscometric flows (picture taken from [74]). In
a viscometric flow, each fluid element is subject to a simple shear flow with
a constant shear rate along the fluid pathway. The sliding plates, concentric
cylinders and cone and plate geometries create homogeneous flow fields.

It is convenient to write A in a coordinate system that is rotated by π/4 with
respect to the principal coordinate system of D (see fig. A.2):

A =
( 0 ε̇+ ω
ε̇− ω 0

)
. (A.48)
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(a) coordinate system (b) ρ = 0 (c) ρ2 < 1

(d) ρ2 = 1 (e) ρ2 > 1 (f) ρ2 =∞

Figure A.2: The ratio of the rotational to the deformational component changes
the type of flow from strong (b,c) to marginally weak (d) to strictly weak (e,f).

The eigenvalues of A are found as λ1,2 = ±
√
−I2 = ±ε̇

√
1− ρ2, and the differ-

ential equation ẋ = Ax reads:

ẋ = (ε̇− ω)y (A.49)
ẏ = (ε̇+ ω)x. (A.50)

Depending on whether the rotation rate ω is smaller, larger or equal than the
deformation rate ε̇ a planar flow can be strong, strictly weak or marginally weak:

• ρ2 < 1:

For |ω| < |ε̇| we get I2 < 0 and the flow is strong and purely hyperbolic;
the fluid trajectories are given by

x(t) = x0 cosh(
√
ε̇2 − ω2t) + y0

√
ε̇− ω

ε̇+ ω
sinh(

√
ε̇2 − ω2t) (A.51)

y(t) = y0 cosh(
√
ε̇2 − ω2t) + x0

√
ε̇+ ω

ε̇− ω
sinh(

√
ε̇2 − ω2t) (A.52)

where (x0, y0) are the coordinates of a fluid point at time t = 0. The
trajectories given by eq.(A.51) are hyperbolas with common asymptotes

x2

χ(1− ρ)
− y2

χ(1 + ρ)
= 1 (A.53)

and

χ =
x2

0

1− ρ
− y2

0

1 + ρ
(A.54)
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as a path parameter. The inclination angle of the asymptotes to the x -
axis is given by

tanα = ±
√

1 + ρ

1− ρ
. (A.55)

Therefore, for a rotation-free planar flow (ρ = 0), the asymptotes are
perpendicular into the directions of the principal axes of D and get tilted
more and more towards the x (y) - axis with increasing negative (positive)
rotation (see fig. A.2)

• ρ2 > 1:

If the rotational rate is larger than the deformation rate, I2 > 0 and the
flow is strictly weak. The solutions to eq. (A.49) are

x = x0 cos(
√
ω2 − ε̇2t)− y0

√
ω − ε̇

ω + ε̇
sin(

√
ω2 − ε̇2t) (A.56)

y = y0 cos(
√
ω2 − ε̇2t)− x0

√
ω − ε̇

ω + ε̇
sin(

√
ω2 − ε̇2t), (A.57)

where (x0, y0) are the coordinates of a point at t = 0. These curves are
similar ellipses with common center and principal axes along the x and y
axes:

x2

χ(1− ρ)
+

y2

χ(1 + ρ)
= 1 (A.58)

where

χ =
x2

0

1− ρ
+

y2
0

1 + ρ
(A.59)

is a path parameter.

• ρ2 = 1: If the rotational rate is equal to the deformational rate, I2 = 0
and the flow is marginally weak. The homogeneous flow field solution of
eq. (A.49) is a simple shearflow with streamlines parallel to the x or y -
axis. With ε̇ = ω = γ̇/2 the fluid pathways are given by

x = x0 (A.60)
y = y0 + x0γ̇t, (A.61)

for ε̇ = ω = γ̇/2 we get

x = x0 + y0γ̇t (A.62)
y = y0 (A.63)

where (x0, y0) are the coordinates of a point at t = 0. A detailed discussion
of simple shearflow is given in the following section.
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Figure A.3: Velocity field of simple shear flow in cartesian and cylindrical coor-
dinate system.

Unfortunately, it is not possible to classify three-dimensional flows with a single
parameter similar to ρ. Even for the case of axisymmetric flows with no flow in
the azimuthal direction u = (ur, uφ, uz) = (ur, 0, uz) the simple flow classifica-
tion with ρ fails (a more detailed discussion of this case is given in sec. C.8). In
2D, the axis of the rotational component is always fix and perpendicular to the
deformation plane, whereas in 3D the rotational axis can be in arbitrary ori-
entation with respect to the principal axes of the deformation D, which brings
about the complications in the 3D case.

Simple Shear Flow

Eq. 3.5 shows the decomposition into the rotational and the deformational com-
ponent. The orthonormal base in which D is diagonal is found by rotation of
the coordinate system by π/4:

ẽ1 =
1√
2

(
1
−1
0

)
ẽ2 =

1√
2

(
1
1
0

)
, ẽ3 =

(
0
0
1

)
(A.64)

with

D̃ =
1
2

(
γ̇ 0 0
0 −γ̇ 0
0 0 0

)
. (A.65)

The composition of simple shear as a mixture of rotation and deformation
is directly obvious in the velocity field in a cylindrical coordinate sytem (see
fig. A.3), where from

v =

(
ẋ
ẏ
ż

)
=

(
−γ̇y

0
0

)
=

(
−γ̇r sinφ

0
0

)
(A.66)

it follows that

v=

(
ṙ
φ̇
ż

)
=

(−γ̇r sinφ cosφ
γ̇ sin2 φ

0

)
=

(
ext./compression

rotation
0

)
(A.67)

Comparison with eq. 5.29 yields that the radial component of the shear flow is
equivalent to the radial component of a planar extensional flow with extension
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rate ε = γ̇/2 and coordinate axes tilted by π/4. The difference in rotational
component between the shear and this extensional flow is φ̇ = γ̇/2 confirming
that simple shear flow is a mixture of a purely rotational flow and a planar
extensional flow with equal rates ω = ε̇ = γ̇/2.

Extensional Flow

For the flow classification introduced in A.1 we evaluate

I1 = 0, I2 = −1
4
(3 + b2)ε̇2, I3 = −1

4
(1− b2)ε̇3 (A.68)

p =
(1 + 1

3b
2)3

(1− b2)
. (A.69)

for 0 ≤ b ≤ 1, which yields that rotation free flows are always strong flows:

b = 0 → I3 6= 0 ∧ p = 1, hyperbolic radial flow (A.70)
0 < b < 1 → I3 6= 0 ∧ p > 1, hyperbolic parabolic flow (A.71)

b = 1 → I3 = 0 ∧ I2 < 0, planar hyperbolic flow, see sec. A.2 with ρ2 < 1.
(A.72)

Hyperbolic radial flow is of cylindrical symmetry and has no velocity component
in the azimuthal direction. The streamlines of uniaxial extensional flow in the
r, z - plane are given by

r(z) =
√
a

z
. (A.73)

Fig. 3.3 shows a cylindrical filament in uniaxial extensional flow with the corre-
sponding hyperbolic radial streamlines. Its flow field, velocity gradient and the
fluid trajectories in cylindrical coordinates are given by

u(x) =

(
ur
uφ
uz

)
=

(
− 1

2 ε̇r
0
ε̇z

)
(A.74)

A =

− 1
2 ε̇ 0 0
0 − 1

2 ε̇ 0
0 0 ε̇

 . (A.75)

x(t) =

(
r(t)
φ(t)
z(t)

)
=

(
r0 exp(−1

2 ε̇t)
φ0

z0 exp(ε̇t)

)
. (A.76)

where x(0) = (r0, φ0, z0) are the coordinates of the fluid element at t = 0.
Biaxial extensional flow is equivalent to uniaxial extensional flow with reversed
flow-direction.
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A.3 Laminar Flow in Channels with Constant Cross Section

Channels with Circular Cross Section

The steady-state flow profile for a power-law fluid with η(γ̇) = Aγ̇n−1 flowing
down a straight, rigid tube with Radius R, length L and no-slip condition u = 0
at r = R is given by [10]:

uz(r) =
(

∆pR
2AL

)1/n
R

(1/n) + 1

[
1−

( r
R

)(1/n)+1
]
, ur = 0, uφ = 0, (A.77)

where ∆p is the pressure drop along the channel and the tube axis is parallel
to the z-direction. The corresponding flow rate Q is yielded by integration over
the tube cross sectional area [10], and the wall shearrate γ̇w can be determined
with the Weissenberg-Rabinowitsch equation [74]:

Q =
πnR3

3n+ 1

[
∆pR
2AL

]1/n

, γ̇w =
Q

R3

3n+ 1
πn

(A.78)

With eq. (A.78) the viscosity η(γ̇) can be calculated from pressure drop ∆p and
flowrate Q:

η(γ̇w) = Aγ̇n−1
w =

nπ

3n+ 1
∆pR4

2QL
. (A.79)

For a Newtonian fluid with n = 1 and A = η, eq. (A.78) reduces to the Hagen-
Poiseuille equation Q = πR4∆p

8ηL . The corresponding parabolic flow profile and
the Newtonian wall shearrate γ̇w are given by:

uz(r) =
∆pR2

4ηL

[
1−

( r
R

)2
]

γ̇w =
4Q
πR3

(A.80)

Channels with Rectangular Cross Section

For a channel with a rectangular cross section of width w and height h there
is an analytical solution for flowprofile and flowrate only for a Newtonian fluid
[12]:

uz(x, y) =
4h2∆p
π3ηL

∞∑
n,odd

1
n3

[
1−

cosh(nπ x
h )

cosh(nπ w
2h )

]
sin
(
nπ

y

h

)
(A.81)

and

Q =
h3w∆p
12ηL

[
1−

∞∑
n,odd

1
n5

192
π5

h

w
tanh

(
nπ

w

2h

)]

≈ h3w∆p
12ηL

[
1− 0.630

h

w

]
, for h < w (A.82)
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where the channel spans a width−0.5w < x < 0.5w and a height 0 < y < h. The
approximation in eq. (A.82) is exactly valid in the limit of flat, wide channels
( h

w → 0), but is only 13 % off in the worst case h = w[12]. The wall shearrate
is not constant in a rectangular duct, but an apparent shearrate γ̇a averaged on
the perimeter can be given for Newtonian fluid flow[101]:

γ̇a =
6Q
wh2

(
1 +

h

w

)
f?

(
h

w

)
(A.83)

where f?(x) is a numerically calculated function taking values from f?(0) = 1
to f?(1) = 0.5928.

A solution for the flow of a power-law fluid in a duct with arbitrary constant
cross section can be given with the help of a numerically determined shape
factor [69]:

Q =
λ(n)h̃3+(1/n)

(
−dp

dz

)1/n

A1/n
(A.84)

where h̃ is the characteristic width of the duct defined by h̃2 = D (D being
the cross sectional area of the duct) and λ(n) is the shape factor defined as
λ(n) ≡

∫
D

∫
ũdx̃dỹ with x̃, ỹ, ũ as the dimensionless coordinates x, y and the

dimensionless velocity in the channel direction u. The shape factor λ depends
on the power-law index n of the fluid and on the geometry of the duct. For some
special geometries, λ is tabulated in [69], a method to calculate λ for rectangular
ducts is given in [90] and in [76]. An expression for the corresponding averaged
wall shearrate is given in [101]:

γ̇w =
4Q
wh2

(
1 +

h

w

)(
b?(h/w) +

1
n
a?(h/w)

)
, (A.85)

where a?(x) ranges from a?(0) = 0.5 to a?(1) = 0.2121 and b?(x) from b?(0) = 1
to b?(1) = 0.6771. The functions a?, b?, f? are tabulated in [101]. By combina-
tion of eqs. (A.84) and (A.85) we can determine the viscosity as

η(γ̇w) =
pch

4

QL

(w
h

) 3+n
2
λn(n)

[
4
(

1 +
h

w

)(
b?(h/w) +

1
n
a?(h/w)

)]n−1

.

(A.86)

Channels with rectangular cross section and aspect ratio h/w → 0

The flow of a power-law fluid between two parallel plates at y = −h/2 and
y = h/2 in the z-direction with a channel length L can be solved analytically
to give the solution for the special case of very flat rectangular channel with
(h/w → 0) known as Hele-Shaw flow [12]: There, the flow profile is given by

uz(y) =
1

1 + 1/n

[
∆p
AL

]1/n
[(

h

2

)1+1/n

− y1+1/n

]
, for 0 < y <

h

2
, (A.87)
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and the flowrate is

Q =
wh2

2(2 + 1/n)

[
h∆p
2AL

]1/n

. (A.88)

The wall shear rate can be calculated as [101]:

γ̇w =
2n+ 1

3n

(
6Q
wh2

)
=

2n+ 1
3n

γ̇a (A.89)

where γ̇a = 6Q
wh2 is the apparent Newtonian wall shearrate for a Hele-Shaw cell

flow.



B. POLYMER DYNAMICS

B.1 Rotational Diffusion of Flexible Chains (Rouse Model)

MSD of a Rigid Rod

For t → ∞, φ(t) and φ(0) are totally uncorrelated. This suggests that the
orientational vectors u(t) and u(0) are perpendicular to each other

〈u(t) · u(0)〉limt→∞ = 0 (B.1)

and the average angle between them is 〈α(t)〉 = 〈∆φ(t)〉 = 〈(φ(t)−φ(0))〉 = π/2.
This follows also from the probability calculation:

In a random orientation between 2 vectors, the probability density for the
angle α between them is given by

p(α) =
sinα

2
(B.2)

The average angle between them is thus given as

〈α〉 =
∫ π

0

αp(α)dα =
1
2

∫ π

0

α sinαdα =
1
2

[sinα− α cosα]π0 =
π

2
(B.3)

In the same way, the mean squared angle between two uncorrelated vectors is
calculated as

〈α2〉 =
∫ π

0

α2p(α) =
1
2

∫ π

0

α2 sinαdα

=
1
2
[
2α sinα− (α2 − 2) cosα

]π
0

=
π2 − 4

2
(B.4)

For long times, the angle of a diffusing rod is uncorrelated to its original orien-
tation, so that the angular mean-squared-displacement of the rod saturates at
π2−4

2 . For short times, the mean-square displacement is approximated by a 2D
random walk givingMSD(t) ≈ 4Drodt. Unfortunately, the author didn’t find an
analytical expression describing the time evolution of the angular mean-square
displacement of the rigid rod in the standard literature.

Therefore, we will discuss the orientational diffusion in terms of the difference
of the orientation vectors (u(t) − u(0)) instead of the angle (φ(t) − φ(0)). For
small angular differences, both are equivalent. The mean-square-displacement
MSD(t) of the orientational vector can be calculated in the usual way:

MSD(t) = 〈(u(t)− u(0))2〉 = 2(1− 〈u(t)u(0)〉). (B.5)
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With the known exponential decay of the correlation function [27]

〈u(t)u(0)〉 = exp(−t/τ) = exp(−2Dt) (B.6)

the orientational MSD of the diffusing rod is given as

MSD(t) = 〈(u(t)− u(0))2〉 = 2 (1− exp(−2Drodt)) . (B.7)

As the timescale of the saturation must be the same for the angular diffusion
and the difference in orientational vector diffusion, we could approximate the
mean-squared angle between the rod at time t and the rod at time 0 as

MSDang = α2(t) ≈ π2 − 4
2

(
1− exp

8Drodt

π2 − 4

)
(B.8)

but we tried to use the difference of orientational vectors MSD for the following
calculations.

Rouse Modes

We discuss a chain of N beads. The motion of the the chain is desribed by
the independent motion of the (N − 1) Rouse modes of the chain. The normal
coordinates of the Rouse model are defined as [108]

qi(t) =
1
N

N∑
n=1

cos
(
inπ

N

)
rn(t) (B.9)

where i is the modenumber and rn(t) is the position vector of the n-th bead of
the chain. Reversely, the position of the n-th bead is given by the normal mode
vectors qi(t) as:

rn(t) = 2
N−1∑
i=1

cos
(
inπ

N

)
qi(t) + q0(t) + (−1)nqN (t) (B.10)

Thus, the displacement contributed by the i-th mode for the i-th bead is given
as

ri,n(t) = 2 cos
(
inπ

N

)
qi(t) for i = 1, ...N − 1 (B.11)

Calculation of end-to-end vector length

From the definition of the Rouse modes we see immediately, that only modes
with odd i contribute to changes of the end-to-end vector of the chain: Even
modes displace the first and last bead of the chain by a length 2qi into the
direction of qi and change neither the length nor the direction of the end-to-end
vector Ree = rN − r1. Odd modes shift the first bead by 2qi into the direction
of qi and the n-th bead by 2qi into the opposite direction. Thus, length and
direction of Ree are only changed by the odd Rouse modes.
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We can now subsequently construct the end-to-end vector length by adding
up the odd Rouse modes. Each higher Rouse mode vector qi is uncorrelated
with the end-to-end vector constructed by the other rouse modes Ri=1,..i−2

ee .
The relative angle δ between qi and Ri=1,..i−2

ee can vary between 0 and π. The
average angle (as expected for uncorrelated vectors) is < δ >= π/2. Therefore
the length Ri=1

ee is calculated as

Ri=1,..i
ee =

√(
Ri=1,..i−2

ee

)2
+ 42q2

i (B.12)

giving

R2
ee =

N∑
i=1

16q2
i . (B.13)

With [108]

< q2i >=
Nb2

2π2i2
(B.14)

where b is the bead seperation, we get:

R2
ee =

N∑
i=1

16
Nb2

2π2i2
= 16

Nb2

2π2

N∑
i=1

i−2 =
Nb2

2π2

π2

8
= Nb2. (B.15)

Consider a random walk of n steps of length a: The n-th step is uncorrelated
to the path of the n−1 steps before. Thus, the expected average angle between
n-th step and end-to-end vector of the n− 1 steps is π/2, which gives an overall
path length for n steps

R2
ee(n) = (n− 1)b2 + a2 = nb2 (B.16)

giving the same result.

Rotational Diffusion Coefficient of the Rouse Modes

The rotational diffusion coefficient of each mode is given as

Di =
kBT

γi
(B.17)

where γi is the friction coefficient of each Rouse mode vector given by ri,n from
eq B.11. With the friction coefficient ζb for each bead we can calculate γi as

γi =
N∑

n=1

ζbr2
i,n (B.18)

giving

γi = ζb

N∑
n=1

(
2 cos

(
inπ

N

)
qi(t)

)2

= 4ζbq2i
N∑

n=1

cos2
(
inπ

N

)
(B.19)
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For N � 1 we can approximate this as

γi = 4ζbq2i
N

π

∫ π

0

cos2(iφ)dφ

= 4ζbq2i
N

π

[
φ

2
+

1
iπ

sin(2iφ)
]π

0

= 2ζbNq2i (B.20)

With
〈q2i 〉 =

3kBT

ki
(B.21)

where

ki =
6π2kBT

Nb2
(B.22)

is the spring force constant of the i-th mode [108] we get

〈q2i 〉 =
Nb2

2π2i2
(B.23)

and thus

γi =
ζbN

2b2

π2i2
(B.24)

which gives

Di =
π2kBT

ζbN2b2
i2 (B.25)

Comparing this with the Rouse time

τi =
ζbN

2b2

3π2kBT

1
i2

(B.26)

gives

Di =
1

3τi
(B.27)

which is in accordance with Winkler et al [41].

MSD-contribution of the Rouse modes

As a first approximation to calculate the oriental MSD by the diffusing Rouse
modes, we assume that the length of the modevectors qi is constant and given
by their mean value qi =

√
〈q2

i 〉. This will of course not give the exact results,
because we neglect fluctuations in the angle caused by fluctuations in qi. On the
other hand, we suppose that the main contribution to angular changes originates
from the reorientation of the qi vectors rather than from fluctuations in qi.

The rotational diffusion of the first Rouse mode reorients the entire molecule.
Thus, the rotational diffusion of the first Rouse mode directly contributes to the
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mean-square displacement of the end-to-end vector orientation. We thus get a
mean-squared displacement contribution of the first Rouse mode of

MSD1(t) = 2 (1− exp(−2D1t)) . (B.28)

The contribution of the higher odd modes (i > 1) can now be calculated as
follows: We denote αi as the orientational angle between the i-th mode vector
qi and the cumulative end to end vector of the lower modes Ree,1,..,i−2. A
change (ui(t)− ui(0)) in the orientation of the modevector qi causes a change
in the orientation of Ree,1,..,i−2 of

tan(∆φ)i(t) ≈
4qi(t)

Ree,1,..,i−2(t)
sinαi(ui(t)− ui(0)) (B.29)

on short timescales, where sinαi ≈ sinαi(t) = sinαi(0). As tan(∆φ)i(t) � 1
is fulfilled, eq. B.29 directly gives the contribution of the i-th mode to the
displacement of the orientation vector. For the contribution to the mean-square-
displacement of the orientation of Ree we need to calculate

〈sin2 αi(ui(t)− ui(0))2〉 (B.30)

As the random change in orientation is independent of the actual orientation,
we get

〈sin2 αi(ui(t)− ui(0))2〉 = 〈sin2 αi〉〈(ui(t)− ui(0))2〉 (B.31)

Calculating the first term with the probability density p(α) = sin(α)/2 yields

〈sin2 αi〉 =
1
2

∫ π

0

sin3 αidα =
2
3
. (B.32)

The second term is given by the usual orientational diffusion

〈(ui(t)− ui(0))2〉 = 2(1− exp(2Dit)) (B.33)

The contribution of mode i to the mean-square-displacement of the Rouse chain
is thus given as

MSDi(t) =
2
3

q2i∑i−2
k=1 q

2
i

2(1− exp(2Dit))

≈ 4
3
q2i
q21

(1− exp(2Dit))

=
4
3

1
i2

(1− exp(2Dit))

=
4
3
D1

Di
(1− exp(2Dit)) (B.34)

This gives an overall orientational mean-square-displacement of the Rouse
chain of

MSD(t) = 2
N∑

i,odd

ai
D1

Di
(1− exp(−2Dit)) (B.35)
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where a1 = 1 and ai = 2
3 for i > 1. We might suspect that all ai = 1 for the

calculation including the fluctuations of qi. On the other hand, keeping 2/3 in
the higher modes makes the solution equivalent to the suggestion for the angular
diffusion of slightly bending rods given in the next paragraph. However, the first
mode will dominate, so this question is of secondary importance.

Comparison with MSD of stiff chains

The solution for the angular MSD of stiff filaments in 2D with hydrodynamic
bending modes in the case that Ree ≈ Lc is (see eq. B.54)

MSD(t) = 2Drod

(
t+

2
3

∞∑
n>1,even

τHoward,n(1− exp(−t/τHoward,n))

)
, (B.36)

with τHoward,n from eq. B.41. Herein, we didn’t take into account the saturation
of the rotational diffusion of the rod, because for filaments confined to a plane
in 2D, the angular MSD does not saturate. Defining τWinkler,n as the τn which
is defined in Winkler et. al [41], we see that τWinkler,n+1 = 2/3τHoward,n in the
stiff limit. While Winkler et. al use Dn = 1/(3τn), we used Dn = 1/(2τn).
Therefore by changing n → n + 1 and using Dn instead of τn we can rewrite
eq. B.36 for comparison with the Rouse mode solution as:

MSD(t) = 2Drodt+
∞∑

n>1,odd

2DrodτWinkler,n(1− exp(−2Dnt))

= 2Drodt+
∞∑

n>1,odd

2
3
D1

Dn
(1− exp(−2Dnt)) (B.37)

Expanding this to the 3D case and incorporating the saturation for the stiff rod
diffusion suggests

MSD(t) = 2
∞∑

i,odd

D1

Di
ai (1− exp(−2Dit)) (B.38)

where a1 = 1 and ai = 2
3 for i > 1, which is the same solution as obtained for

the MSD of the Rouse modes, only with Dn given by the Winkler times in the
stiff limit instead of the Rouse times. This suggests, that the orientational MSD
is approximated over the entire range of rigidity by eq. B.38 using the rotational
diffusion constants Di = 1/(3τi) given by the Winkler times τWinkler,n.
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B.2 Rotational Diffusion of Semiflexible Filament

Hydrodynamic bending modes (2D calculation)

The hydrodynamic bending modes with n even contribute to angular fluctua-
tions of the end-to-end vector. The even modes are given by Howard [47]:

yn(x, t) = An(t)·
[
coshαn sin

(
2αn

L
(x− L/2)

)
+ cosαn sinh

(
2αn

L
(x− L/2)

)]
(B.39)

where
αn = (n+

1
2
)
π

2
(B.40)

and

τn =
γ⊥,L

kBTLp

(
L

2αn

)4

. (B.41)

The relaxation of a bending mode is given by An(t) = A0 exp(−t/τn).

Figure B.1: The first two hydrodynamic modes of the semiflexible filament.
Changes in amplitude of the even modes are accompanied by a change in the
end-to-end vector angle αee.

Calculation of bending energy of an even mode n

Differentiation of eq. (B.39) two times with respect to x yields the curvature of
the mode as

yn(x, t)′′ = An(t)
(

2αn

L

)2

·
[
− coshαn sin

(
2αn

L
(x− L/2)

)
+ cosαn sinh

(
2αn

L
(x− L/2)

)]
(B.42)

The bending energy of the mode is given by

Ubend = kBTLp

∫ L

0

1
R2

ds

= kBTLp

∫ L

0

(y′′)2ds

= kBTLpA
2
n

(
2αn

L

)4
L

8

[
3
sinh(2αn)

αn
+ 4 cosh2 αn − 2

]
(B.43)
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Setting Ubend = 1
2kBT yields the thermal amplitude of the mode Ath

n :

Ath
n =

L

2

√
L

Lp

1
α2

n

1√
3 sinh(2αn)

αn
+ 4 cosh2 αn − 2

(B.44)

which gives for αn � 1:

Ath
n ≈ L

2

√
L

Lp

1
α2

n

1
coshαn

, n even (B.45)

The thermal amplitude is connected to the fluctuation angle φn by

tanφn =
yn(0)− yn(L)

L
= (−1)n/2+1 1

2

√
2Ath

n (coshαn + sinhαn) (B.46)

so that Ath
n corresponds to a fluctuation angle of the mode of

tanφth
n ≈ φth

n =
1
2

√
2

√
L

Lp

1
α2

n

(B.47)

For the 2nd mode (n = 2) this yields φth
n = 4.6 · 10−2

√
L
Lp

.

Angular Diffusion of End-to-End Vector

The fluctuation angle φn of each mode diffuses in the potential of the bending
energy. For small angles, the bending energy potential is a harmonic potential
for the bending mode angle φn: Ubend ∼ (Ath

n )2 ∼ φ2
n. Thus, the mean-square

displacement for the bending mode angle is given by

MSDn(t) = 2τnDfree,n (1− exp(−t/τn)) (B.48)

where Dfree,n is the diffusion coefficient that the angular fluctuation of the n-th
mode would have without the bending energy potential. The author unfortu-
nately did not find an analytical proof for eq. B.48, but the result is strongly
suggested by a simulation of the diffusion in the potential which has been per-
formed. Dfree,n can be calculated as follows: Consider the energy dissipated
by a bending mode fluctuation from φn = 0 to φ0 with a constant velocity φ̇.
Setting this energy equal to 1/2kBT , we can calculate the diffusion constant
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Dfree,n for the thermally driven change in angle φ0:

Ubend =
1
2
kBT =

∫ L

0

γ⊥,L(σ(x))2A0Ȧdx

=
1
4

L2

(σ(0))2
γ⊥,Lφ0φ̇

∫ L

0

(σ(x))2dx

=
1
8

L2

(σ(0))2
γ⊥,L

dφ2
0

dt

∫ L

0

(σ(x))2dx

=
1
8

L2

(σ(0))2
γ⊥,L2Dfree,n

∫ L

0

(σ(x))2dx

(B.49)

where σ(x) is defined by yn(x, t) = An(t)σ(x), which gives

Dfree,n =
2kBT

γ⊥,L

(σ(0))2

L2

1∫ L

0
(σ(x))2dx

. (B.50)

Performing the integration yields:

Dfree,n =
2kBT

γ⊥,LL3

(coshαn + sinhαn)2

cosh2 αn + 1
2αn

coshαn(coshαn − sinhαn)− 1
2

. (B.51)

For αn � 1 we get

Dfree,n =
8kBT

γ⊥,LL3
=

2
3
Drot (B.52)

For times much larger than the relaxation time of the mode we get a mean
square displacement due to the bending mode of

MSDn,∞ = 2Dfree,nτn =
L

Lp

1
α4

n

= 2(φth
n )2. (B.53)

If the above derivation ofDfree,n does not sound convincing to the reader, Dfree,n

can be alternatively derived from eq. B.48 by setting MSDn,∞ = 2(φth
n )2.

Together with the rotational diffusion of the 0-th mode (rod-rotation), the
mean-square displacement of the end-to-end-angle of a semiflexible filament in
2-D is given by

MSD(t) = 2Drod

(
t+

2
3

∞∑
n>1,even

τn(1− exp (−t/τn))

)
(B.54)

For long times t� τ2 we get

MSD(t� τ2) = 2Drod

(
t+

2
3

∞∑
n>1,even

τn

)
≈ 2Drodt (B.55)

and the bending mode fluctuations are negligible.
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Figure B.2: Lateral diffusion along the contour is accompanied by a change in
the end-to-end vector angle αee due to the anisotropy of the friction coefficient.

Coupling of translational diffusion to rotational diffusion

Consider a curved filament which is translated in the direction of the end-to-
end vector Ree. As the friction coefficient for movement perpendicular to the
local filament orientation is twice the friction coefficient parallel to the filament
ζ⊥,L = 2ζ‖,L, the translational motion is accompanied by a net torque rotating
the filament (unless the filament is pointsymmetric and the net torque van-
ishes). Thus, the translational and rotational diffusive motions of the filament
are coupled.

To estimate the contribution of the translational diffusion to the rotational
diffusion we consider relatively stiff filaments, where the local orientational angle
θ(s) is always close to the angle of the end-to-end vector αee θ(s) − αee � 1.
Looking at short times, where the orientational difference of the filament ends is
nearly constant θ(Lc)− θ(0) ≈ const., we split the translational diffusion into a
diffusional motion along the end-to-end vector of the filament and perpendicular
to Ree. To estimate an upper limit for the coupling influence, we assume that
diffusion into the direction of Ree is restricted to motion along the contour of
the filament (i.e. ζ⊥,L � ζ‖,L). Thus, diffusion of a distance ∆s along the
contour is coupled to a change in angle ∆α of

tan(∆α) =
∆s(sin(θ(Lc)− αee)− sin(θ(0)− αee))
L+ cos(θ(Lc)− αee)− cos(θ(0)− αee)

(B.56)
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With cos(θ(Lc)− αee) ≈ cos(θ(0)− αee) we get

tan(∆α) =
∆s
L

(sin(θ(Lc)− αee)− sin(θ(0)− αee)) =

= 2
∆s
L

cos
(
θ(Lc) + θ(0)− 2αee

2

)
sin
(
θ(Lc)− θ(0)

2

)
≈ 2

∆s
L

sin
(
θ(Lc)− θ(0)

2

)
≈ ∆s

L
sin (θ(Lc)− θ(0))

=
∆s
L

√
1− cos2 (θ(Lc)− θ(0)) (B.57)

The mean angular difference between the filament ends is given by the persis-
tence length Lp:

〈cos(θ(Lc)− θ(0))〉 = exp(−L/(2Lp)) (B.58)

so that for small diffusing angles ∆α we can calculate for Lc/Lp � 1:

〈∆α〉 = 〈tan(∆α)〉 =
∆s
L

√
1− 〈cos (θ(Lc)− θ(0))〉2

=
∆s
L

√
1− exp(−Lc/Lp) ≈

∆s√
LcLp

. (B.59)

The diffusion along the contour is given by the diffusion coefficient D‖ of the
rod: 〈

(∆s)2
〉

= 2D‖t (B.60)

so that the upper limit for the coupled extra angular diffusion is given as:

MSDα,trans(t) =
〈
(∆α)2

〉
=

2D‖t

LcLp

= 2
1
6
Lc

Lp
Drodt (B.61)

where Drod is the rotational diffusion coefficient of the rod with length Lc. We
suppose that this effect is only significant on short and intermediate timescales.
For times longer than the rotational relaxation time we suppose a translational
diffusion with an diffusion coefficient Dlong,x = Dlong,y = 0.5(D‖ + D⊥) for
the rod in 2D and a decoupling of rotational and translational diffusion for
the semiflexible filament. We do not know how much the ”diffusion along the
contour”-approach sugested above overestimates the coupling effect, but the
above consideration should give an upper limmit estimate for the effect.

Correction for Ree < Lc-effect

The fluctuating semiflexible filament has a shorter mean end-to-end distance
than the stiff rod: 〈Ree〉 < Lc. Assuming an evenly distributed mass along the
end-to-end vector of the semiflexible filament, this reduces the rotational friction
by a factor of (Ree/Lc)2, so that the modified rotational diffusion constant of
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the semiflexible filament becomes Drot = Drod(Lc/Ree)2. The mean end-to-end
distance can be calculated as (adapted from [47] for 2D):〈

R2
ee

〉
= 4L2

p

(
2 exp

(
− Lc

2Lp

)
− 2 +

Lc

Lp

)
(B.62)

For Lc/Lp � 1 this is approximated by
〈
R2

ee

〉
≈ L2

c(1 − 1
6

Lc

Lp
), so that the

rotational diffusion constant can be expressed as Drot = Drod(1 + 1
6

Lc

Lp
).

Altogether we get an angular rotational diffusion of semi-flexible filaments
of

MSD(t) = 2Drod(1 +
1
6
Lc

Lp
)

(
(1 +

1
6
Lc

Lp
)t+

2
3

∞∑
n>1,even

τn(1− exp (−t/τn))

)
.

(B.63)

B.3 Rotational Diffusion Coefficient Dr for Stiff, Semiflexible and
Flexible Polymers

As there is no analytical expression available in the literature, the angular ro-
tational diffusion constant for the rotation of the end-to-end vector of a flexible
polymer in equilibrium is calculated. To this end the average gyration tensor
of a flexible polymer is determined in the average center of mass coordinate
system, where we put the direction of the axes such, that the average gyration
tensor is diagonal:

〈S〉 =

(
S‖ 0 0
0 S⊥ 0
0 0 S⊥

)
(B.64)

The direction of the parallel axis is given by the direction of the end-to-end
vector Ree, the other axes are perpendicular to Ree. Due to symmetry reasons,
the components of the gyration tensor perpendicular to Ree are equal.

We can consider the conformation of the flexible polymer as a random walk
of N = Lc/b steps, where b = 2Lp, respectively (in a discrete description) as an
ideal chain with N + 1 beads with a bead-to-bead distance b. The average end
to end vector length is thus Ree =

√
Nb. To determine the average position of

the n-th bead with respect to the end-to-end vector we can consider the chain
to do a RW with n-steps from bead 1 to bead n and N −n steps from bead n to
bead N . As the two RWs are uncorrelated, they are on average perpendicular to
each other. Hence, with respect to the end-to-end vector, the average positions
of the other beads are located on a sphere with radius R = Ree/2 around the
midpoint of Ree/2 (on average, each bead must lie on a circle of Thales with
diameter Ree).

We now want to calculate the contribution of each bead n to the gyration
tensor element S‖. To this purpose we denote the angle φn as the angle between
rN − rn and Ree/2. Then, for n = 1...N , φn runs from 0 to π/2. We can now
calculate the average angle φn by using the condition, that the length of the
random walk from the first bead is given as

√
nb , so that
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sinφn =
√
nb

Ree
=

n

N
(B.65)

We can thus write
n =

Ree

b2
sin2 φ = N sin2 φ (B.66)

so that
dn
dφ

= 2N sinφ cosφ = N sin(2φ) (B.67)

Separation of the variables yields∫ φn

0

sin(2φ′)dφ′ =
∫ n

0

1
N

dn′[
−1

2
cos(2φ′)

]φn

0

=
[
n′

N

]n

0

1
2
(1− cos(2φn)) =

n

N
(B.68)

so that
cos(2φn) = 1− 2

n

N
. (B.69)

The average position of bead n lies on a circle of radius rn = 1
2Ree sinα around

the end to end vector. Although the positions on the circle average out to a
position on the axis (so that the average c.o.m. lies in the middle between the
chain ends), we cannot directly determine the gyration tensor elements S⊥ from
rn, because picking a position on the circle implies shifting the c.o.m away from
Ree. However, due to symmetry reasons the center of mass of the polymer will
lie somewhere on the symmetry plane between the polymer ends. Thus, picking
a particular position of the n-th bead on the circle with rn shifts the c.o.m. only
perpendicular to Ree leaving S‖ unchanged. Hence we can calculate the average
contribution of the n-th bead to S‖ as

S‖,n =
(

1
2
Ree cos(2φn)

)2

=
1
4
Nb2

(
1− 2

n

N

)2

(B.70)

Hence, we can determine S‖ as

S‖ =
N∑

n=1

1
4
Nb2

(
1− 2

n

N

)2

=
1
4
Nb2

∫ 1

0

(1− 2x)2dx

=
1
4
Nb2(1− 2 +

4
3
) =

1
12
Nb2 (B.71)

To determine S⊥ we consider the gyration tensor of the flexible polymer with
random end-to-end vector orientation. Symmetry implies 〈r2g〉 = 3S̄ for the
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diagonal elements of the gyration tensor of the randomly oriented flexible poly-
mer. As the trace of the gyration tensor in diagonal form must be the same in
the random orientation case and in the coordinate system parallel to Ree case,
we have

3S̄ = S‖ + 2S⊥ = 3S⊥ + Sp = 〈r2g〉 (B.72)

where we split the parallel tensor component S‖ into the perpendicular part S⊥
and the excess part Sp:

S‖ = S⊥ + Sp =
1
12
〈R2

ee〉 (B.73)

From eq. B.72 and B.73 we can determine S⊥ and Sp and get:

S⊥ =
1
2
〈r2g〉 −

1
24
〈R2

ee〉 (B.74)

Thus, for a rotation of the flexible polymer perpendicular to the end-to-end
vector, we can calculate the friction coefficient assuming an isotropic friction
coefficient per unit length cL

γ⊥ = cLLc(S‖ + S⊥) = cLLc

(
1
24
〈R2

ee〉+
1
2
〈r2g〉

)
=
cLLc

12
1
2
(
〈R2

ee〉+ 12〈r2g〉
)

(B.75)
whereas a rotation around the end-to-end vector yields a friction coefficient of

γ‖ = 2cLLcS⊥ = cLLc

(
〈r2g〉 −

1
12
〈R2

ee〉
)
. (B.76)

With cL = c⊥ and 〈r2g〉 = 1/6R2
ee this yields for the flexible polymer a rotational

diffusion constant of

Dr =
kBT

γ⊥
=

2
3

12kBT

c⊥LcR2
ee

=
2
3
Drod

L2
c

R2
ee

(B.77)

Note that in the limit of stiff polymers 〈r2g〉 = L2
c/12 and 〈R2

ee〉 = L2
c , which

gives the correct results

γ⊥ =
c⊥L

3
c

12
(B.78)

and
γ‖ = 0, (B.79)

of the stiff rod. This implies that the above expressions should be a useful
approximation for the entire range of rigidities. Introducing an effective polymer
extension

〈R2〉 ≡ 1
2
(
〈R2

ee〉+ 12〈r2g〉
)

(B.80)

we can express the diffusion constant Dr for rotation perpendicular to the end-
to-end vector as

Dr =
kBT

γ
=

12kBT

c⊥LcR2
= Drod

L2
c

R2
. (B.81)
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B.4 Calculation of Diffusive Time τdiff

1

A mean first passage time τdiff can be calculated analytically using standard
methods starting out from the Langevin equation corresponding to eq 4.35,

φ̇ = γ̇ sin2 φ+
√

2Drot η,

〈η(t)〉 = 0,
〈η(t)η(t′)〉 = δ(t− t′) (B.82)

We note in passing that the Langevin equation could be solved numerically via
Brownian dynamics, φ(t+ ∆t) = φ(t) + γ̇ sin2(φ(t))∆t+

√
2Drot∆tWN, where

WN is a Gaussian distributed random number with variance unity, and ∆t a
time step.

Solving the mean first passage time problem

To calculate the mean first passage time we notice that φ ≤ φc � 1 characterizes
the diffusive regime (cf. Section 4.2.3). It is convenient to introduce a potential
U(φ) = −γ̇φ3/3 so that the deterministic term γ̇ sin2 φ ≈ γ̇φ2 = −U ′(φ) can
be regarded as the corresponding force. We thus consider an angle φ sitting
in potential U(φ), leaving the valley at barrier located at φ = φc (adsorbing
boundary), and assuming a reflecting boundary at −φc (assuming positive rate
γ̇). The mean first passage time for the angle to reach φc, when starting from
φ = φ0 = 0 at t = 0, and with a reflecting boundary at −φc, is [46]

τdiff =
1

Drot

∫ φc

φ0

dφ
1

ψ(φ)

∫ φ

−φc

ψ(φ′) dφ′ (B.83)

with

ψ(φ) = exp

(
1

Drot

∫ φ

γ̇φ′
2
dφ′

)
= exp(Mφ),

Mφ ≡ γ̇φ3

3Drot
(B.84)

The double integral in eq B.83 thus becomes

τdiff =
1

Drot

∫ φc

0

dφ

∫ φ

−φc

dφ′ exp(M1φ
′3−M1φ

3) (B.85)

and evaluates, with the help of MathematicaTM, as follows

τdiff =
B(Mφc

)

2DrotM
2/3
1

, (B.86)

B(x) ≡ x2/3
pF

∗
q (x) +

π(ξ0 − 2ξ(x))√
3Γ(−4/3)

+
2ξ2(x)

9
(B.87)

1 This section was written in cooperation with Martin Kroeger, ETH Zuerich
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Figure B.3: B(x) given in eq B.87. It is basically a constant for x� 1 and well
approximated by B(x) = 3x2/3 for x� 1, cf. eqs B.90.

thus involving both an incomplete Gamma and the hypergeometric function
pFq, defined as [2],

ξ(y) ≡ Γ
(

1
3
, y

)
=
∫ ∞

y

t−2/3e−t dt, , (B.88)

pF
∗
q (x) ≡ pFq

(
{2
3
, 1}, {4

3
,
5
3
},−x

)
≡

∞∑
k=0

(2/3)k(1)k

(4/3)k(5/3)k

(−x)k

k!
(B.89)

with ξ0 ≡ ξ(0) = 2.67894 and the Pochhammer symbol (a)n ≡ Γ(a + n)/Γ(a).
The function B(x) is shown in Fig. B.3, it exhibits the asymptotic features

lim
x→∞

B(x) =
3π2

Γ2(−4/3)
≈ π,

lim
x→0

B(x) = 3x2/3 + o(x4/3). (B.90a)

Diffusion time τdiff

We are in the position to evaluate τdiff upon inserting the appropriate limiting
case of eq B.90 into eq B.86. To this end we make use of eq 4.39 and then notice
that Mφc defined in eq B.84 is actually a constant and small compared to unity,

Mφc
=

γ̇φ3
c

3Drot
=

1
3
� 1 (B.91)

so that B(Mφc
) = B(1/3) ≈ 31/3 according to eq B.90. Exact numerical eval-

uation yields B(1/3) = 1.25762 ≈ 5/4. With M1 = γ̇/3Drot already defined in
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eq B.84 we insert into eq B.86 to arrive at τdiff ≈ (5/4)φ2
c/Drot. Redoing the

whole analysis with φ0 = −φc at t = 0, we obtain a slightly different prefactor,
namely 5/3 instead of 5/4, but the calculation is less compact, and thus only
illustrated above, for φ0 = 0. We finally obtain

τdiff ≈
5
3
φ2

c

Drot
=

5

3D1/3
rot γ̇

2/3
(B.92)

B.5 Orientational Distribution Function of Brownian Rods in
Shear Flow

2 The Fokker-Planck equation for the orientational probability distribution func-
tion p(φ, t), that is, the stochastic differential equation corresponding to the
Langevin equation 4.41 of a tumbling (including telescopic) Brownian rod with
diameter–to–length ratio κ = d/Lc � 1, reads

∂p(φ)
∂t

=
∂(φ̇(φ)p(φ))

∂φ
+Drod

∂2p(φ)
∂φ2

(B.93)

with the deterministic contribution φ̇(φ) = γ̇(sin2 φ+κ2 cos2 φ) as already men-
tioned in Section 4.2.3 (κ = 0 for an infinitely thin rod). The stationary orien-
tational distribution function thus obeys

dpstat(φ)
dφ

+
φ̇(φ)pstat(φ)

Drod
= C (B.94)

Solving this eq with the variation of the constant results in

pstat(φ) =
C

ψ(φ)

∫ φ

φ0

ψ(φ′) dφ′, (B.95)

with ψ(φ) ≡ exp [aφ+ b sin(2φ)] and coefficients a = γ̇(κ2 + 1)/2Drod and b =
γ̇(κ2−1)/4Drod. The prefactor C is determined by the normalization condition∫ 2π

0
p(φ)dφ = 1. If we neglect, as before, the thickness of the filament (κ → 0)

one has a = γ̇/2Drod = −2b and ψ(φ) in eq B.95 simplifies to

ψ(φ) = exp
[
a

(
φ− sin(2φ)

2

)]
. (B.96)

The orientational distribution function pstat(φ) can be numerically calculated
upon inserting ψ(φ) from eq B.96 into eq B.95. The cumulative probability
density function is then obtained via pcumultative(φ) =

∫ 2π

0
pstat(φ′)dφ′. We

notice that ψ(φ) for φ � 1 reduces to the expression ψ(φ) = exp(Mφ) used
to calculate the mean first passage time in Section B.4. According to [58] we
can identify φc in a good approximation with the center–position of the peak
occurring around zero, in agreement with eq 4.39.

2 This section was written by Martin Kroeger, ETH Zuerich.
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B.6 Forcebalance Description for Tumbling Dynamics of
Semiflexible Filaments in Shear Flow

We sit in the c.o.m. frame of the filament. The filament has a contour of
length Lc, which fulfills Lc ≤ Lp, and the filament conformation is given by
Rcom(σ) = (xcom(σ), ycom(σ)), σ ∈ [0;Lc]. The y-coordinate of the center of
mass yS is given by ∫ Lc

0

(ycom(σ)− yS)dσ = 0. (B.97)

A filament in the stiff and semiflexible regime free of loops with a monotonic
y-coordinate function y(σ) can then be divided in an upper an lower part
[0;σS ], [σS ;Lc] where the y-coordinate of the dividing point σS is given by yS :∫ σS

0

(ycom(σ)− yS)dσ = −
∫ Lc

σS

(ycom(σ)− yS)dσ (B.98)

The relative velocity

vrel(σ) = vfluid − Ṙ
com

(σ) = (γ̇(y(σ)− yS)− vx(σ), vy(σ)) (B.99)

determines the local friction force acting on the filament, which is approximated
with a friction coefficient per unit length cL, resp. c⊥, c‖:

dFfrict(σ) = ffrict(σ)dσ = cLvrel(σ)dσ (B.100)

respectively

dFfrict(σ) = ffrict(σ)dσ = (c‖vrel,‖(σ) + c⊥vrel,⊥(σ))dσ, (B.101)

where the relative velocity is divided into its components vrel = vrel,‖ + vrel,⊥
parallel and perpendicular to the filament. The filament ends are free and have
to satisfy the boundary conditions of the beam equation with a zero curvature
κ(σ) = ∂α/∂σ on both ends of the filament κ(0) = 0, κ(Lc) = 0, where α denotes
the local angle between the filament and the flow-direction. At the point with
the maximum curvature (bending point σb), the first derivative of the curvature
∂κ
∂σ = ∂2α

∂σ2 (σb) = 0. This is the boundary condition of a fixed beam, so for the
bending in a conformation at one single point in time we can treat the rear part
[0;σb] and the front part [σb;Lc] of the filament as if they were fixed in a wall
with an orientation angle α(σb). Then, the bending moment of the filament
M(σ) which determines the local curvature radius r−1(σ) = M(σ)/(kBTLp) in
the filament is given by

Mrear(σ) =
∫ σ

0

ffrict(σ)× (R(σ)−R(σ′))dσ′ (B.102)

for 0 < σ < σb, and

Mfront(σ) =
∫ σ

Lc

ffrict(σ)× (R(σ)−R(σ′))dσ′ (B.103)
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for σb < σ < Lc, where the continuity condition

Mrear(σb) = Mfront(σb) (B.104)

has to be fulfilled.

Static Description

In a static conformation of the filament with Ṙ(σ) = 0, the friction force is
given by f friction

x (σ) = cLγ̇(y(σ) − yS), f friction
y (σ) = 0. To keep the bending

point R(σb) stationary in the c.o.m.-frame, the total force acting on the rear
part of the filament must be balanced with the force on the front part of the
filament: ∫ σb

0

ffrictdσ = −
∫ Lc

σb

ffrictdσ (B.105)∫ σb

0

cLγ̇(y(σ′)− yS)dσ′ = −
∫ Lc

σb

cLγ̇(y(σ′)− yS)dσ′, (B.106)

which leads to the conclusion, that the dividing point is equal to the bending
point σb = σS . Inserting this into the bending moment equation eq. (B.104) in
the static conformation yields∫ σS

Lc

cLγ̇(yS − y(σ′))2dσ′ = −
∫ σS

0

cLγ̇(yS − y(σ′))2dσ′. (B.107)

whereas the force balance is given by∫ σS

0

cLγ̇(yS − y(σ′))dσ′ = −
∫ Lc

σS

cLγ̇(yS − y(σ′))dσ′ (B.108)

Both equations can only be fulfilled simultaneously in the trivial case of a com-
pletely straight, flow aligned filament y(σ) = yS ∀ σ ∈ [0;Lc]. Therefore, the
completely aligned case is the only stationary point for the system, in any other
conformation the force and bending moment balance can only be satisfied with
a conformational change Ṙ(σ) 6= 0. Hence, thermal fluctuations away from the
aligned state can induce a tumbling cycle. This leads to the conclusion:

To describe the conformational cycle during the tumbling and the dynamics
(estimation of τT ) with a force-balancing approach, the dynamics Ṙ have to be
taken into account.

Note that the bending moment balance is based on the assumption that there
is a point with a maximum curvature σb. If the filament is completely straight,
but not flow aligned, the flow will induce a rotation with φ̇ = γ̇ sin2 φ as for a
rod. We can now perform a stability analysis for the rod-like conformation:

• For π/2 < φ < π the filament will be stretched along the length, so
that fluctuations are suppressed and get damped out. Thus, the stretched
conformation with π/2 < φ < π leads to a nearly rodlike rotation. Near π
the rotation gets very slow and the filament appears to be in a metastable
quasistatic state (waiting time).
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• For 0 < φ < π/2 the filament gets compressed by the shear flow. The local
frictional force in the tangential direction is given by eq. 4.33 in cylindrical
coordinates as

dffrictrdr = −c‖γ̇ sinφ cosφrdr. (B.109)

The compressive force Fcomp(x) at the position σ = Lc/2(1 + x), where
we introduced x = 2σ/Lc − 1 with x ∈ [−1; 1] is then calculated as

Fcomp(x) =
∫ Lc/2

xLc/2
dFfrict

r = 1
2c‖γ̇ sinφ cosφ[L2

c/4− x2L2
c/4]

= 1
16c‖L

2
c γ̇ sin(2φ)(1− x2). (B.110)

where we used r = xLc/2.

When during the rotation the compressional force F (x) gets bigger than the
critical buckling force Fc = π2 EI

l2 [47] exerted by the outer parts onto the middle
part of the filament with length l = xLc, the filament will buckle and end up in
a strongly bent conformation. Thus, the filament is expected to buckle, if

1
16
c‖L

2
c γ̇ sin(2φ)(1− x2) > π2 kBTLp

x2L2
c

(B.111)

The maximum of the compressive force on the left occurs at φ = π/4. Thus we
get

L4
c > 16π2 kBTLp

c‖γ̇

1
x2(1− x2)

(B.112)

The maximum of 1/[x2(1−x2)] is located at x =
√

1/2. Therefore, the minimum
buckling length Lbuckle is determined by

L4
b = 64π2 kBTLp

c‖γ̇
. (B.113)

By introducing the U-turn radius RU of the semiflexible filament (see eq: 4.60)
we can express Lbuckle as:

Lb = 2π3/4RU (B.114)

If the compression force during the advective phase never excesses the buckling
force we can describe the filament as a rodlike filament in first order approx-
imation. Thus eq. (B.114) marks the division between the rodlike (Lc < Lb)
and the semiflexible regime (Lc > Lb). For filaments with Lc > Lb we can
estimate the angle αbuckle at which the frictional forces overcome the buckling
force: With x =

√
1/2 it follows from eq. B.111 for the buckling condition

sin(2φ) > 64π2 kBTLp

c‖γ̇L4
c

= 16π3

(
RU

Lc

)4

=
(
Lb

Lc

)4

. (B.115)

If RU � Lc, we can conclude that 2φ� 1 to calculate a buckling angle of

αbuckle =
1
2

(
Lb

Lc

)4

. (B.116)
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Dynamic Description

We now try to estimate the filaments conformation in a dynamic description,
taking Ṙ into account, but still neglecting inertial forces R̈ ≈ 0, overdamped
case. To this end, we describe the filament conformation during the tumbling
motion in a simple two-state-model:

• For end-to-end angles φ near flow alignment φ < αbuckle, φ > π − αbuckle,
both the filament conformation and dynamics are rod-like.

• For end-to-end angles αbuckle < φ < π − αbuckle, the filament is strongly
bent and its conformation is approximated by a stadium model. The
filament is assumed to perform a U-turn run on a stadium with radius RU

and straight parts of length Lc − πRU. The center of the right stadium
half-circle is located in the origin of the coordinate system x∗, y∗ of the
U-turn frame. The conformation of the filament is given by a U-turn
coordinate s, which is given by the arc length of the filaments leading
end on the stadium track, measured with respect to the start of right
U-turn at (x∗, y∗) = (0,−RU. The dynamics Ṙ in the U-turn model are
incorporated by the track velocity v(s), with which the filament runs on
the stadiums U-turn track.

We will firstly restrict the calculations in the U-turn description to the con-
formational interval s ∈ [πRU;Lc], which corresponds to an end-to-end angle
interval of [φmin;π − φmin]. Furthermore we introduce the coordinate χ as

s =
Lc

2
[(1 +

πRU

Lc
) + χ(1− πRU

Lc
)], (B.117)

so that s ∈ [πRU;Lc] corresponds to χ ∈ [−1; 1]. We will switch between s and
χ according to convenience, an overview over the different coordinates is given
in fig. 4.3.

Calculation of relative velocity between filament and fluid

To calculate the drag forces in the c.o.m. frame correctly, we need to calculate
the relative velocity between the filament and the fluid. To this purpose, we
first calculate how the c.o.m moves in the stadium frame. The x-coordinate of
the com in the stadium frame x?

S is given by:

x?
S(χ) =

1
Lc

∫ Lc

s−Lc

x?(σ)dσ =

=
1
Lc

[∫ 0

s−Lc

σdσ +
∫ πRU

0

RU sin
(
σ

RU

)
dσ +

∫ s

πRU

−(σ − πRU)dσ

]

= . . . = 2
R2

U

Lc
− 1

4
Lc

(
1− πRU

Lc

)2

(1 + χ2) (B.118)



B. Polymer Dynamics 161

where x ? (σ) is the x-coordinate in the stadium frame. Analogously we get the
y-coordinate of the com in the stadium frame y?

S :

y?
S(χ) = RUχ

(
1− πRU

Lc

)
(B.119)

This yields in a stadium frame velocity

v?
frame =

(
ẋ?

S(χ)
ẏ?

S(χ)

)
=

(
dx?

S(χ)
dχ

dχ
ds

ds
dt

dy?
S(χ)
dχ

dχ
ds

ds
dt

)
. (B.120)

With the stadium track velocity v = ds/dt and

dχ
ds

=
2

Lc

(
1− πRU

Lc

) (B.121)

we get

v?
frame(χ) = v

(
−χ
(
1− πRU

Lc

)
2RU
Lc

)
. (B.122)

The local filament velocity in the stadium frame is given by

v?
fil = v

(cosα
sinα

)
, (B.123)

where α is the local angle between the filament and the flow direction. Thus,
the filament velocity in the c.o.m. system is given by

vfil
S = v?

fil − v?
frame = v

(
cosα+ χ

(
1− πRU

Lc

)
sinα− 2RU

Lc

)
, (B.124)

The fluid velocity at the position of the filament in the com-frame is given as

vfl
S =

(−γ̇(y?(χ, α)− y?
S(χ, α))

0

)
= γ̇RU

(
cosα+ χ

(
1− πRU

Lc

)
0

)
(B.125)

The relative velocity between fluid and filament (which gives rise to the friction
forces acting on the filament) is thus given as

vrel
S = vfl

S − vfil
S =

(γ̇RU − v)
(
cosα+ χ

(
1− πRU

Lc

))
−v
(
sinα− 2RU

Lc

)  , (B.126)

where v is the still unknown track velocity in the stadium frame. To deter-
mine the track velocity v we calculate the tangential component of the relative
velocity:

vrel,tang
S (χ, α) = vrel

S · (cosα, sinα) (B.127)

= (γ̇RU−v)
(

cosα+χ
(

1− πRU

Lc

))
cosα−v

(
sinα−2

RU

Lc

)
sinα
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The filament is not accelerated along the track when the integral over the tan-
gential component of the relative velocity vanishes:∫ s

s−Lc

vrel,tang
S (χ, α)dσ = 0 (B.128)∫ 0

s−Lc

vrel,tang
S (χ, α=0)dσ +

∫ πRU

0

vrel,tang
S (χ, α=

σ

RU
)dσ +

∫ s

πRU

vrel,tang
S (χ, α=π)dσ = 0

With

vrel,tang
S (χ, α = 0) = (γ̇RU − v)

(
1 + χ

(
1− πRU

Lc

))
vrel,tang

S (χ, α = π) = (γ̇RU − v)
(

1− χ

(
1− πRU

Lc

))
vrel,tang

S (χ, α =
σ

RU
) = γ̇RU cos2

σ

RU
+ γ̇RUχ

(
1− πRU

Lc

)
cos

σ

RU
− v + 2v

RU

Lc
sin

σ

RU

(B.129)

the above integrals can be evaluated resulting in a track velocity of:

v = γ̇RU

1− π
2

RU
Lc
− χ2

(
1−

(
πRU
Lc

)2
)

1− 4
(

RU
LC

)2

− χ2

(
1−

(
πRU
Lc

)2
) (B.130)

Inserting this into the relative velocity yields

vrel
S =


π
2 γ̇

R2
U

Lc

(
1− 8

π

RU
Lc

)(
cos α+χ

(
1−πRU

Lc

))
1−4

(
RU
Lc

)2
−χ2

(
1−

(
πRU
Lc

)2
)

−γ̇RU

(
sinα− 2RU

Lc

) 1−π
2

RU
Lc

−χ2
(

1−
(

πRU
Lc

)2
)

1−4
(

RU
LC

)2
−χ2

(
1−

(
πRU
Lc

)2
)

 (B.131)

Estimation of U-turn radius RU from frictional drag forces

To estimate the U-turn radius RU we first neglect the forces arising from drag
along the stadium arc (0 < σ < πRU) and just consider the forces Fup, Flow

arising from drag on the straight ends of the stadium-”U” (this will be a good
approximation for long filaments as long as 1 − |χ| � πRU

Lc
). Then, we will

calculate the maximum curvature κmax in the arc arising from these bending
forces, which acts as an estimate for the inverse of the stadium radius RU ≈
κ−1

max. The ”upper” straight end has a length

Lup = s− πRU =
Lc

2

(
1− πRU

Lc

)
(1 + χ), (B.132)
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the lower ends length is given by

Llow = −s+ Lc =
Lc

2

(
1− πRU

Lc

)
(1− χ). (B.133)

The forces with which the upper and the lower end are pulling / pushing on the
arc at σ = πRU, σ = 0 are thus given by

Fup = c‖Lupv
rel,χ
S (α = π)

= −π
4 c‖γ̇R

2
U

(
1− πRU

Lc

)
(1 + χ)

(
1− 8

π

RU
Lc

)(
1−χ

(
1−πRU

Lc

))
1−4

(
RU
Lc

)2
−χ2

(
1−

(
πRU
Lc

)2
) (B.134)

Flow = c‖Llowvrel,χ
S (α = 0)

=
π

4
c‖γ̇R

2
U

(
1− πRU

Lc

)
(1− χ)

(
1− 8

π
RU
Lc

)(
1 + χ

(
1− πRU

Lc

))
1− 4

(
RU
Lc

)2

− χ2

(
1−

(
πRU
Lc

)2
)

(B.135)

With these forces, the y-coordinate of the ”bending point” with the maximum
curvature in the stadium frame y?

b can be calculated:

Fup(RU − y?
b ) = −Flow(−RU − y?

b ) (B.136)

which yields

yb =
χπ

R2
U

Lc

1− χ2
(
1− πRU

Lc

) . (B.137)

This gives the bending point coordinate σb = RUαb = RU arccos(−y?
b/RU).

With the bending point known, the bending moment Mb at the bending point
can be calculated as the product of the force Fup and the lever (RU − y?

b ):

Mb = Fup(RU − y?
b )

= FupRU

1− χ2
(
1− πRU

Lc

)
− χπRU

Lc

1− χ2
(
1− πRU

Lc

)
= −π

4
c‖γ̇R

3
U

(
1− πRU

Lc

)
(1+χ)

(
1− 8

π
RU
Lc

)(
1− χ

(
1− πRU

Lc

))
1−4

(
RU
Lc

)2

−χ2

(
1−
(

πRU
Lc

)2
) ·

1−χ2
(
1− πRU

Lc

)
−χπRU

Lc

1− χ2
(
1− πRU

Lc

)

= −π
4
c‖γ̇R

3
U

(
1− 8

π
RU
Lc

)(
1− χ2

(
1− πRU

Lc

)2
)

1− 4
(

RU
Lc

)2

− χ2

(
1−

(
πRU
Lc

)2
) ·

(1− χ2)
(
1− πRU

Lc

)
1− χ2

(
1− πRU

Lc

)
(B.138)
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The relation between the bending moment and the Radius RU is given by the
beam equation 4.55

1
RU

= −Mb

EI
= − Mb

kBTLp
(B.139)

In the limit of long filaments (πRU/Lc � 1) we get Mb = −π
4 c‖γ̇R

3
U and thus

RU =
(

4
π

kBTLp

c‖γ̇

) 1
4

. (B.140)

Thus, the stadium radius is approximately constant for χ ∈ [−1; 1] for long
filaments, which supports the assumption of a constant RU without considering
terms of dRU/dχ in the above calculations.

Determination of angular velocity ˙phi of the end-to-end vector

With RU(χ) ≈ const. we can now estimate the angular velocity φ̇(φ) of the
filaments end-to-end vector Ree in dependence of the angle φ between the fil-
aments end-to-end vector and the flow direction. In the stadium conformation
with χ ∈ [−1; 1], the x-component of the end-to-end vector is given by

Ree,x = 2RU
cosφ
sinφ

(B.141)

The angular velocity φ̇ can be obtained by differentiating Ree,x with respect to
the time:

Ṙee,x =
dRee,x

dφ
φ̇ = − 2RU

sin2 φ
φ̇ (B.142)

The stadium track velocity is related to the x-component of the end-to-end
vector as

v = −1
2
Ṙee,x (B.143)

so that the angular velocity φ̇ is obtained as

φ̇(φ) =
v

RU
sin2 φ (B.144)

Taking the limit of long filaments, the U-turn track velocity is given by v = γ̇RU,
which results in

φ̇(φ) = γ̇ sin2 φ (B.145)

which should be a good first-order approximation for angles corresponding to
χ ∈ [−1; 1]. At χ = ±1, the end-to-end vector is given by

Ree =
(
±(Lc − πRU)

2RU

)
, (B.146)

which gives the interval of angles [φmin;φmax] for the stadium conformation as

φmin = arctan
2RU/Lc

1− πRU
Lc

, φmax = π − φmin, (B.147)
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which is in a first order approximation for long filaments:

φmin ≈ 2
RU

Lc
, φmax = π − φmin (B.148)

By comparing with the buckling angle from eq. B.116 we get that φmin > φbuckle

if
Lc > 2πRU ≈ Lb. (B.149)

Thus, in the range where the U-turn description can be used, the minimum U-
turn angle is bigger than the buckling angle. On the other hand, a comparison
between the buckling angle and the critical angle φc seperating the advective
and diffusive phases of the tumbling Brownian rod shows, that for

Wi =
γ̇

2Drod
< (4π)3

√
2

33/2

(
Lp

Lc

)3/2

≈ 540
(
Lp

Lc

)3/2

(B.150)

the critical angle φc is smaller than the buckling angle. This is the range, where
we can approximate the rotational diffusion coefficient of the filament by Drod,
as long as Lp/Lc ≤ 1, because the filament is not bent by the shear force in the
diffusive phase. In this regime, we hence have φc < αbuckle < φmin.

With φc < αbuckle, the conformation of the semiflexible filament can be
approximated by the stiff rod conformation in the angular intervals [0;αbuckle]
and [π−αbuckle;π]. Consequently, the dynamics of the filament are expected to
be equivalent to the Brownian rod dynamics in these intervals. As φmin > φc,
the interval φmin, φmax is dominated by advection, and we have shown that
the dynamics of the strongly bent filament is also equivalent to the stiff rod
dynamics. In first order, the dynamics of the strongly bent filament on the
U-turn track and of the unbent filament are equivalent. This suggests, that
also in the remaining small intervals [αbuckle;φmin] and [φmax;π − αbuckle] the
dynamics should be well approximated by the stiff rod dynamics. Thus, the
entire angular dynamics of the semiflexible filament is approximately equivalent

to the tumbling dynamics of the Brownian rod, if Wi < 540
(

Lp

Lc

)3/2

.

If Wi > 540
(

Lp

Lc

)3/2

it follows that αbuckle < φc < φmin. Then, the fila-
ment gets buckled by the shear flow already in the diffusive phase. Thus, we
cannot approximate the rotational diffusion of the end-to-end vector by using
Drod anymore. Instead Dr has to be corrected and we can treat semiflexible
filaments in very strong flow equivalently to flexible polymers. The same applies
to semiflexible polymers with Lc > Lp.

Telescopic Rod Model

Within [φmin;φmax] the U-turn description also predicts the length of the end-
to-end vector Ree. With setting φ(t = 0) = π/2, the end-to-end vector length
can be calculated from the distance in x-direction between the filament ends,

Ree,x(t) = 2vt = 2γ̇RUt (B.151)
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with Ree,y = 2RU as
Ree(t) = 2RU

√
1 + (γ̇t)2. (B.152)



C. DIFFERENTIAL VISCOMETER

C.1 Rheology of (Semi)-Dilute Polymer Soluions

Steady-State Shear Viscosity of Polymer Solutions

Polymer solutions of polyacrylamid (PAA) polymers with a molecular weight
of about 5-6 MDa were prepared in aqueous solution in various concentrations
to investigate the shear-thinning and the concentration dependence of the shear
viscosity. The shear viscosity of the polymer solutions was measured with a
rotational rheometer in cone-plate geometry over a range of shear rates from
γ̇ = 10−2−104s−1 for polymer concentrations from c = 10−2−2 % (w/w) PAA
in deionized water. Fig. C.1a shows a set of viscosity measurements for con-
centrations ranging from c = 10−1 − 2 % (w/w). For concentrations c >
2 % (w/w) PAA gelation occured. The zero-shear viscosity η0 was determined

Figure C.1: (a) Rate dependence of the shear viscosity η(γ̇) for PAA (5-6MDa)
aqueous solutions in various concentrations measured with a cone-plate rheome-
ter. (b) Zero-shear viscosities of PAA-solutions extracted by fitting Carreau-
Yasuda model to η(γ̇)-curves in dependence of the concentration (+). By sub-
straction of the solvent viscosity of 1 mPAS the polymer contribution ηpolym(c)
to the zero-shear viscosity was determined (◦). The green line shows a linear fit
to the polymer contribution at low concnetrations. The overlap concentration
c? marks the onset of the nonlinear regime of ηpolym(c).

by fitting a Carreau-Yasuda model to the viscosity curves (see eq. 3.34), its
concentration dependence is shown in fig. C.1b by the red crosses. Subtract-
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ing the solvent viscosity η(water) = 1 · 10−3 Pas from the zero shear viscosity
η0 yields the polymer contribution ηpolym(c) to the shear viscosity (green cir-
cles). For small polymer concentrations c < 0.5% PAA the polymer viscosity
rises linearly with the concentration indicating a dilute polymer solution. The
onset of the more rapid rise in the viscosity marks the overlap concentration
c? of the polymer solution and is identified as c? ≈ 0.4 % (w/w) PAA from
fig. C.1b. A PAA polymer with a molecular mass of u ≈ 5.5 MDa consists of
approximately n = 77 · 103 monomers, which corresponds to a contour length
of Lc ≈ n · l · 0.82 = 20µm, where a monomer length of l = 2 · 154 pm and
a tetrahedral bonding angle of 109◦ has been assumed [65]. From the over-
lap concentration c? = 0.4% (w/w) we can calculate a radius of gyration of
Rg ≈ 82 nm for the polymers. With R2

g = NKb
2
K/6 and NKbK = Lc this

corresponds to a number of Kuhn segments of about NK = 1 · 104 and a Kuhn
length of bK ≈ 2 nm.

Extensional Viscosity of PAA solutions determined by CaBER

For comparison with the results in the differential extensional rheometer, mea-
surements in a capillary breakup extensional rheometer were performed. The
results for a 0.1% and a 0.2% (w/w)PAA solution of 5-6 MDa in a glycerol/water
mixture of 80% (w/w) glycerol and the result for the worm-like-micellar solution
are shown in fig. C.2. Hereby, literature values for the surface tension σ for an
80% glycerol solution were used as estimates for the surface tension of the dilute
polymer solutions. The value used for the surface tension of the WLM-solution
is just a rough estimate, and ΛWLM is only shown to demonstrate the 2 orders
of magnitude difference for Λ in comparison to the dilute polymer solutions.

Figure C.2: Results of CaBER measurements for dilute polymer solutions and
worm-like-micellar solution. A prestrain occurs during the seperation of the
cylinders. Data from the filament width is evaluated to get Λ once the cylin-
ders have reached their final seperation distance. Inset: Picture of CaBER
measurement taken from [5]
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C.2 Numerical Evaluation of Differential Shear Viscometer Data

For strongly shear thinning fluids the power-law description of the shear viscos-
ity may be a poor approximation if the interval of the shearrates [γ̇r; γ̇a] spans
the region where the local powerlaw index changes a lot. If the flowrate ratio is
measured for an interval of flowrates [Qmin;Qmax] with N measured flowrates
Qi, an improved evaluation of the measurement data Xi can be done numer-
ically. The principle of the method, which has been developed in cooperation
with Christian Cyron1 is illustrated in fig. C.3. The flowrate ratio X is given
by eq. 5.5 as:

X =
η(γ̇r)
η(γ̇a)

· Lr

La
(C.1)

Thus, N measurement values Xi(Qi) correspond to 2N unknown values of the

Figure C.3: Schematics of the numerical evaluation method: The N measure-
ment values of X on [Qmin, Qmax] (•, left) correspond to 2N unknown viscosity
values at 2N shearrates on [γ̇min; γ̇max] (•, right). The 2N viscosity values are
apporoximated by interpolation between N viscosity values (�), for which a
linear equation system containing the N measured values for X can be solved.

shear viscosity η(γ̇a,i), η(γ̇r,i), where the 2N corresponding shearrates are given
by Qi via eqs. 5.6, 3.20. As the roughness of the viscosity functions η and Λ
is limited by n ≥ 0, the function η(γ̇) can be approximated by interpolation
between a sufficient number of basic values. To this purpose, N interpolation
points Γj are distributed over the interval [γ̇min, γ̇max]

Γj = γ̇min ·
(
γ̇max

γ̇min

)j/(N−1)

(C.2)

where the according interpolation values are set:

HS
j ≡ η(Γj) (C.3)

1 TUM, Department for Numerical Mechanics, Chair of Prof. W.A. Wall
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The 2N unknown values η(γ̇a,i), η(γ̇r,i) can thus be expressed by the N unknown
interpolation values HS

j using the interpolation hat function

Fh(x) =


0 for x < −1
x+ 1 for −1 ≤ x ≤ 0
1− x for 0 < x ≤ 1
0 for x > 1

(C.4)

as

η(γ̇k,i) =
∑

j

NS
k,ij(γ̇k,i)HS

j , with NS
k,ij(γ̇k,i) = Fh(xS

k,ij(γ̇k,i)) (C.5)

where k = a, r and

xS
k,ij(γ̇k,i) = (N − 1)

log γ̇k,i − log γ̇min

log γ̇max − log γ̇min
− j + 1 (C.6)

Using eq. (C.5) we can rewrite eq. (C.1) as:

(XiLa

∑
j

NS
a,ijH

S
j − Lr

∑
j

NS
r,ijH

S
j ) = 0. (C.7)

This is a linear, homogeneous equation system with N equations, which can be
written with the vector H = (HS

1 , ...,H
S
N )T as:

MS ·H = 0, (C.8)

where
MS

i,j = XiLaGSN
S
a,ij − LrGSN

S
r,ij , i, j = 1, ..., N (C.9)

Eq. C.8 does not define a unique solution for the viscosity, and any multiple
H′ = aH of a solution H is a solution too. To obtain absolute values of the
viscosity, one value of η(γ̇) on the interval has to be known. However, the local
powerlaw exponents which can be obtained by differentiating the numerical
solution given by H are uniquely defined.

C.3 Pressure Drop in Hyperbolical Constrictions

Pressure Drop in Semihyperbolical Cylindrical Constriction

Adapting Cogswells model for power-law fluids fulfilling eqs. (3.32) in a conical
constriction[21, 33] we will calculate P ent

S and P ent
E for the semi-hyperbolic

constrictions used in this work.

Shear Flow Contribution P ent
S

For the shear contribution to the pressure drop, we determine P ent
S for a small

segment of length dz of a circular channel constriction with a local radius R(z)
first and then integrate along z over the entire constriction. For dP ent

S it is
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assumed that the flow profile u(r, z) at the position z with the channel radius
R(z) can be approximated locally by the flow profile of fully developed flow
in a straight tube of radius R [33]. Then, dP ent

S can be calculated by solving
eq. (A.78) for ∆P and setting ∆p→ dP ent

S and L→ dz:

dP ent
S =

2A
R3n+1

(
3n+ 1
nπ

)n

Qndz (C.10)

With

R(z) =
√

a

πz
(C.11)

and thus dz = −2a/(πR3)dR we can calculate the contribution of the shear
resistance to the pressure drop as

P ent
S = −4AaQn

π

(
3n+ 1
nπ

)n ∫ Rin

Rout

dR
R3n+4

=
4

(3n+ 3)π

(
3n+ 1
nπ

)n
AaQn

R3n+3
in

[
1−

(
Rin

Rout

)3n+3 ]
(C.12)

where Rout and Rin are the outer and inner radius of the hyperbolic die. From
eq. (C.12) it becomes clear, that the shear resistance is mainly determined by
the resistance of the die at the smallest diameter and the dominating shearrate
will be the wall shearrate γ̇in at R = Rin which is obtained for a power-law fluid
by the Rabinowitsch relation (eq. A.78) as γ̇in = Q

R3
in

3n+1
πn . Thus we can relate

P ent
S to the viscosity η(γ̇in) at the dominating wall shear rate γ̇in as:

P ent
S = η(γ̇in)

4
nπ2

3n+ 1
3n+ 3

aQ

R6
in

[
1−

(
Rin

Rout

)3n+3
]
. (C.13)

Extensional Flow Contribution P ent
E

The extensional contribution to the pressure drop dP ent
E is calculated by approx-

imating the flow field as an uniaxial extensional flow u(r, z) ≈ (− 1
2 ε̇(z)x,−

1
2 ε̇(z)y, ε̇(z)z).

The local average extension rate ¯̇ε(z) is approximated by differentiating the flow
velocity averaged over the cross section of the channel ūz(z) = Q/(πR2) with
respect to the flow direction, which yields a constant extension rate along the
die in the semihyperbolic constriction with R(z) =

√
a

πz :

¯̇ε(z) =
∂ū

∂z
=

∂

∂z

Q

πR2
=

∂

∂z

Qz

a
=
Q

a
. (C.14)

The differential contribution dP ent
E of the extensional energy dissipation to the

pressure drop in a short segment is given by[33]:

dP ent
E = σdε = Λ(¯̇ε)¯̇εdε = B¯̇εkdε (C.15)
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where ε is the extensional Hencky strain. Volume conservation requires that a
cylindrical fluid slice at the entrance of the die with radius Rout and length dz
gets stretched to a length λdz = (Rout/Rin)2dz at the orifice of the die, so that
the total Hencky strain of the die is ε = 2 ln(Rout/Rin). As the extension rate
¯̇ε is constant along the constriction, the total pressure drop P ent

E is yielded by
integration of eq. (C.15) as

P ent
E = Λ(¯̇ε)¯̇εε = 2Λ(¯̇ε)

Q

a
ln(Rout/Rin). (C.16)

For a power-law fluid the solution reads:

P ent
E = 2B

(
Q

a

)k

ln(Rout/Rin). (C.17)

For a Newtonian fluid in a semi-hyperbolic cylindrical die (n = k = 1, A =
B/3 = η), the ratio of the extensional hydrodynamic resistance RE and the
shear resistance RS for a flow Q in the converging die is:

Rent
E

Rent
S

=
P ent

E

P ent
S

=
9π2

4
R6

in

a2
ln(Rout/Rin) (C.18)

where (Rin/Rout)6 � 1 was used. If the constriction entrance becomes too steep,
the fluid streamlines will not follow the semi-hyperbolic geometry of the wall.
Therefore, we choose an upper limit for the absolute value of the slope of R(z) for
the geometries used in the differential viscometers as |dR(z)/dz|Rout

≤ 2. With

Rout = 4Rin this condition corresponds to R3
in
a ≤ 1

42π , so that for Newtonian
fluids the extensional resistance of the constriction can be neglected:

Rent
E

Rent
S

(Rout = 4Rin) =
9
29

ln 2 ≈ 0.012 (C.19)

Pressure Drop in Hyperbolical Rectangular Constriction

Shear Flow Contribution P ent
S

Analogously to the semi-hyperbolical die we can calculate the shear contribution
of the pressure drop across the die P ent

S by calculating the shear resistance of a
thin rectangular channel segment with width w and length dx and integrating
from the wide end wout to the thin end win.

The pressure drop for a small straight channel segment of length dx for a
Newtonian fluid is given by eq. (A.82) as:

dPS =
12ηQ
h3w

dz
1− 0.630 h

w

(C.20)

With dz = −a/(hw2)dw we can integrate and evaluate the pressure drop across
the narrowing die:
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P ent
S =

∫ win

wout

dP ent
S = −

∫ win

wout

12ηaQ
h4

dw
w2(w − 0.63h)

= −12ηaQ
0.63h5

[
1
w

+
1

0.63h
ln(1− 0.63h/w)

]win

wout

=
6ηaQ
h4w2

[
1 +

2
3
(0.63

h

w
) +

1
2
(0.63

h

w
)2 +

2
5
(0.63

h

w
)3 + ...

]win

wout

wout�win≈ 6ηaQ
h4w2

in

[
1 +

2
3
(0.63

h

win
) +

1
2
(0.63

h

win
)2 +

2
5
(0.63

h

win
)3 + ...

]
(C.21)

For a power-law fluid, we use eq. (A.84) and get:

dP ent
S = − AQndz

(λ(n))nh̃3n+1
=

AaQndw
(λ(n))n(hw)

3
2 (n+1)w

(C.22)

As the shape factor λ(n) depends on the aspect ratio of the rectangular channel,
which changes along the convergence, a direct integration of eq. (C.22) is not
possible and P ent

S has to be determined numerically, yielding a shape factor
f ′hyp(n) depending on the power-law index n of the fluid and the geometric
measures win, wout, h of the constriction:

P ent
S = AaQn

∫ win

wout

dw
(λ(n))n(hw)3(n+1)/2w

=
AaQn

h̃
3(n+1)
in f ′hyp(n)

(C.23)

where h̃in =
√
Din =

√
hwin is the average diameter at the tight end of the die.

Using eq. (3.20) for the shearrate γ̇in at w = win and η(γ̇in) = A ˙γin
n−1 we can

rewrite eq. (C.23) as

P ent
S = η(γ̇in)

aQ

Fγ̇in(n)n−1
f ′hyp(n)D3

in

= η(γ̇in)
aQ

D3
infhyp(n)

(C.24)

where fhyp(n) is defined as fhyp(n) ≡ Fγ̇in(n)n−1
f ′hyp(n).

Extensional Flow Contribution P ent
E

The total extensional strain for a die narowing from wout to win is given by ε =
ln(wout/win) and integration of dP ent

E = σdε = Λp(¯̇ε)¯̇εdε yields the extensional
pressure drop for a power-law fluid as

P ent
E = Λp(¯̇ε)¯̇εε = Λp(¯̇ε)

Q

a
ln
wout

win
= B

(
Q

a

)k

ln
wout

win
(C.25)

and is thus analogous to the cylindrical case described by eq. (C.17). For a
Newtonian fluid with n = k = 1 and B = 4A = 4η the ratio of the extensional
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and shear resistance in the die is given by

P ent
E

P ent
S

=
2h4w2

in ln wout
win

3a2
[
1 + 2

3 (0.63 h
win

) + 1
2 (0.63 h

win
)2 + ...

] (C.26)

With the same constraint for the steepness of the die at the beginning of

the constriction as in the cylindrical case
(∣∣∣dw(z)

dz

∣∣∣
wout

< 2
)

it follows for a

wout/win = 10 : 1 constriction

P ent
E

P ent
S

< 6 · 10−2 h
2

w2
in

, (C.27)

so that for a Newtonian fluid the contribution of the extensional viscosity can be
neglected. The total shear resistance of a narrowing and expanding constriction
composed of two identical dies in series is given by twice the shear resistance
of a single die: RS = Rent

S + Rex
S = 2Rent

S . In the rectangular hyperbolic
geometry, the fluid in the expanding die undergoes a planar extension with
the same extension rate and total extensional strain as in the narrowing die,
only the direction of extension is now perpendicular to the channel axis instead
of parallel. Thus, in a first approximation the pressure contribution from the
expanding die can be estimated to be approximately equal to the pressure drop
in the narrowing die (RE = Rent

E + Rex
E ≈ 2Rent

E ), although due to mixed flow
and flow history effects the pressure drop in the expanding die is expected to
be smaller (see discussion in section 5.4.6).

Pressure Drop in Hyperbolical Dies of Arbitrary Cross Section

Generalizing the above approach, the extensional viscosity can be determined
from any constriction with a cross sectional area D that varies from Dout to
Din along the flow direction as D(z) = a

z . This generates an average extension
rate ¯̇ε = Q

a that is constant along the narrowing die. The shear resistance of
a power-law fluid flowing through the constriction can be expressed as (comp.
eq. (C.13,C.24))

Rent
S =

P ent
S

Q
= η(γ̇in)

a

D3
infhyp(n)

, (C.28)

where the shape factor fhyp(n) depends on the geometry of the cross section
and the power-law index n. The extensional resistance for flow through the
narrowing die is given by (comp. eq. (C.16, C.25))

Rent
E =

P ent
E

Q
=

Λ(¯̇ε)
a

ln
Dout

Din
. (C.29)
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C.4 Calculation of Flowrate Ratio X in Differential Extensional
Viscometer

The total shear resistance of the straight connecting channel sections RSc in the
reference or analyzer channel is given by eq. (3.22) , the shear resistance of the
constrictions is determined by eq. (C.28) . Thus, the total shear resistances of
analyzer and reference channel are given as:

RSa = RSc,a +NaR
hyp
S,a =

η(γ̇w,a)La

D2
outF

?(n)
+

2η( ˙γin,a)Naaa

D3
infhyp(n)

(C.30)

RSr = RSc,r +NrR
hyp
S,r =

η(γ̇w,r)Lr

D2
outF

?(n)
+

2η( ˙γin,r)Nrar

D3
infhyp(n)

=
η(γ̇w,r)La

D2
outF

?(n)
Lr

La
+

2η( ˙γin,r)Naaa

D3
infhyp(n)

Lr

La

where γ̇w,a, γ̇w,r are obtained from eq. (3.20) and γ̇in,a, γ̇in,r from eq. (5.17) as

γ̇w,a =
Qa

h̃3
out

· Fγ̇(n) γ̇w,r =
Qr

h̃3
out

· Fγ̇(n)

γ̇in,a =
Qa

h̃3
in

· Fhyp
γ̇ (n) γ̇in,r =

Qr

h̃3
in

· Fhyp
γ̇ (n) (C.31)

Using the local power-law description of eq. (3.33) and defining the local shear-
rate

γ̇0 ≡
√
γ̇in,aγ̇in,r =

√
QaQr

h̃3
in

Fhyp
γ̇ (n) (C.32)

we get

RSa =

√
Qa

Qr

n−1√
La

Lr
·RS0, RSr =

√
Qr

Qa

n−1√
Lr

La
·RS0 (C.33)

where RS0 is defined as

RS0 ≡
√
RSaRSr =

η0
√
LaLr

D2
in

( Fγ̇(n)

Fhyp
γ̇ (n)

)n−1√
Din

Dout

3n+1
1

F ?(n)
+

2Naaa

fhyp(n)DinLa


(C.34)

and RS0 depends on the power-law index n and the chosen geometry.
The extensional resistance in analyzer and reference channel can be deter-

mined with eqs. (C.29, 5.18) as

REa = Λ(¯̇εa)
Nab

aa
ln
Dout

Din

REr = Λ(¯̇εr)
Nrb

ar
ln
Dout

Din
(C.35)
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The extension rates ¯̇εa, ¯̇εr are obtained from eq. (5.17). Defining an average
extension rate

¯̇ε0 ≡
√

¯̇εa¯̇εr =
√
QaQr

aaar
Fε̇ (C.36)

and using eq. (3.33), we can rewrite eq. (C.35) as

REa = Λ0

√
Qa

Qr

ar

aa

k−1

Nab

aa
ln
Dout

Din
=

√
Qa

Qr

k−1√
ar

aa

k+1√
La

Lr
RE0

REr = Λ0

√
Qr

Qa

aa

ar

k−1

Nrb

ar
ln
Dout

Din
=

√
Qr

Qa

k−1√
aa

ar

k+1√
Lr

La
RE0 (C.37)

where RE0 is defined as

RE0 =
√
REaREr = Λ0

Nab

ar

√
Lr

La
ln
Dout

Din
(C.38)

Thus, the total resistances of the analyzer and reference channel are

Ra = RSa +REa =

√
Qa

Qr

n−1√
La

Lr
·RS0 +

√
Qa

Qr

k−1√
ar

aa

k+1√
La

Lr
RE0

Rr = RSr +REr =

√
Qr

Qa

n−1√
Lr

La
·RS0 +

√
Qr

Qa

k−1√
aa

ar

k+1√
Lr

La
RE0.

(C.39)

Calculating the ratio of the hydrodynamic resistances Rr/Ra and using X =
Qa/Qr yields an equation defining the resulting flowrate ratio X:

X =
Lr

La

√
X

1−n
+
√
X

1−k
√

aa

ar

k+1
RE0
RS0

√
X

n−1
+
√
X

k−1
√

ar

aa

k+1
RE0
RS0

(C.40)

C.5 Determination of Extensional Viscosity from Flowrate
Measurements X(Q)

Based on eq. C.40 different methods to extract the power-law exponent of the ex-
tensional viscosity k and the ratio of extensional and shear resistance RE0/RS0

have been derived and tested in the evaluation of the experimental data. For
simplicity, the evaluation methods will be discussed for the case of a known
viscosity exponent n and a known shear viscosity η(γ̇) In this case, Λ(ε̇) can
be directly calculated once RE0/RS0 is determined from the measured X(Q)
values.
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Semi-Analytical Determination of Extensional Viscosity

For a semi-analytical solution with known n eq. (C.40) is solved for RE0/RS0:

RE0

RS0
=

Lr

La

√
X
−n −

√
X

n

√
X

k
√

ar

aa

k+1
− Lr

La

√
X
−k
√

aa

ar

k+1
(C.41)

With assuming a local power-law description of Λ(ε̇) and η(γ̇) we can calculate
RE0
RS0

for two different measurement points X1(Q1), X2(Q2) and get:

RE0(Q2)
RS0(Q2)

=
RE0(Q1)
RS0(Q1)

·

(√
X2

X1

(X1 + 1)
(X2 + 1)

Q2

Q1

)k−n

(C.42)

Replacing RE0(Q1)
RS0(Q1)

, RE0(Q2)
RS0(Q2)

with eq. (C.41) for X1(Q1), X2(Q2), k can be nu-

merically determined from eq. (C.42), yielding RE0(Q1)
RS0(Q1)

with the determined k

afterwards.
Alternatively, two viscometers with different geometry constants (ar, aa)X ,

(ar, aa)Y can be used in series yielding X(Q) and Y (Q).
As the powerlaw assumption is only valid locally, the accuracy of this method

can be improved by forming the limit Q2 → Q1 and using the first derivative
dX/dQ and X(Q) instead of the two values X1, X2 to determine k and RE0(Q1)

RS0(Q1)

and thus Λ(ε̇).

C.6 Smoothing Function for Flowrate Measurement Data X(Q)

As eq. (C.40) is only valid in the power-law regime, it is mandatory for an eval-
uation of the measurement points Xi(Qi) that the shear and extension rates
involved in RE0i, RS0i for the different flowrates Qi fall within an interval in
which the local power-law description is fairly accurate. Then, the same n, k are
valid for at least 2Xi(Qi) values which can be simultaneously evaluated to elim-
inate the two unknowns k,RE0/RES0. With the viscosity curves η(γ̇),Λ(ε̇) of a
complex fluid to be analyzed being a priori unknown, the validity of the power-
law approach on the rate intervals [γ̇min,i−1, γ̇max,i], [ε̇min,i−1, ε̇max,i] resulting
from the chosen measurement interval [Qi−1, Qi] is unclear.

Thus, the smaller the measurement interval [Qi−1, Qi] can be chosen, the
more accurate the power-law assumption will be. Contrary, the difference
Xi−Xi−1 between adjacent measurement points gets small for a small interval
[Qi−1, Qi], so that the uncertainty due to the experimental error ∆X rises with
a decreasing measurement interval. This problem can be adressed by fitting a
smoothing function to the measured values Xi(Qi):

As the slope of the viscosity curves η(γ̇),Λ(ε̇) is subject to physical limita-
tions, the slope of the X(Q) curves is also limited. Generally, the power-law
index of the shear viscosity n is positive and the shear stress σ increases with the
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shearrate. However, in special fluids (e.g. wormlike micellar solutions) a pow-
erlaw index n ≈ 0 can occur [23]. In this case, the fluid in a viscometric flow
geometry splits into subdomains with different shearrates (shear banding) lead-
ing to a plateau in the apparent shear stress function σ(γ̇), so that the apparent
power-law index n stays positive and approaches zero at the utmost. Analogous
considerations suggest k ≥ 0. Thus, the shear stress and the extensional stress
rise monotonically with the flow rate, so that the pressure drop p(Q) across Ka

and Kr has to increase with rising Q: Q2 > Q1 → p2 ≥ p1. Consequently,
Qr,2 ≥ Qr,1 and Qa,2 ≥ Qa,1. With Qa = 1/(X + 1)Q,Qr = X/(X + 1)Q this
leads to the inequations

X1

X1

(
Q2
Q1
− 1
)

+ Q2
Q1

≤ X2 ≤ X1
Q2

Q1
+
(
Q2

Q1
− 1
)

(C.43)

which gives a lower and upper limit for the slope of X(Q):

−X(X + 1)
Q

≤ dX
dQ

≤ X + 1
Q

. (C.44)

Therefore, the measurement points Xi(Q) can be fitted with a smoothing func-
tion X̃(Q) that fulfills eq (C.44) without losing any information, and X̃(Q) can
be used to evaluate eq. (C.40).

C.7 Numerical Evaluation of Differential Extensional Viscometer
Data

Due to the threshold-type behaviour of the extensional viscosity especially of
dilute polymer solutions the power-law description of the extensional viscosity
may be a poor approximation in the vicinity of the onset of the rise in Λ(ε̇). To
circumvent this problem, a similar numerical method to evaluate X(Q) as in-
troduced above for the differential shear viscometer has been developed2, which
does not require a powerlaw description of the viscosity functions η(γ̇),Λ(ε̇).

Starting from equation (C.30), the total shear resistance in the reference and
analyzer channel is given as a function of the shear viscosity η by:

RSa(η(γ̇a)) =
2η(γ̇in,a)Naaa

D3
infhyp(n)

= η(γ̇a)
√
La

Lr
GS (C.45)

RSr(η(γ̇r)) =
2η(γ̇in,r)Naaa

D3
infhyp(n)

Lr

La
= η(γ̇r)

√
Lr

La
GS

where we set γ̇in,a ≡ γ̇a, γ̇in,r ≡ γ̇r, introduced the geometry factor

GS =
2Naaa

D3
infhyp(n)

√
Lr

La
, [GS ] = m−3 (C.46)

2 development has been assisted by Christian Cyron, TUM, Institute for Computational
Mechanics
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and assumed for simplicity, that the shear resistance in the straight connecting
channels is negligible:

La,r

D2
outF

?(n)
� 2Na,raa,r

D3
infhyp(n)

. (C.47)

(A non-negligible contribution of the connecting channels can be accounted for
analogously.) The dependence of the extensional flow resistance of the channels
on the extensional viscosity Λ is given by eq. (C.37) as

REa(Λ(ε̇a)) = Λ(ε̇a)
√
La

Lr

ar

aa
GE

REr(Λ(ε̇r)) = Λ(ε̇r)
√
Lr

La

aa

ar
GE (C.48)

where we ommitted the bar ¯̇ε ≡ ε̇ for simplicity and introduced a geometry
factor for the extensional resistance

GE =
√
NaNr

aaar
b ln

Din

Dout
, [GE ] = m−3. (C.49)

Then, each measurement point Xi(Qi) corresponds to four unknown viscosity
values

η(γ̇a,i), η(γ̇r,i),Λ(ε̇a,i),Λ(ε̇r,i):

Xi(Qi) =
RSr(η(γ̇r,i)) +REr(Λ(ε̇r,i))
RSa(η(γ̇a,i)) +REa(Λ(ε̇a,i))

=
Lr

La
·
η(γ̇r,i)GS + Λ(ε̇r,i)aa

ar
GE

η(γ̇a,i)GS + Λ(ε̇a,i) ar

aa
GE

(C.50)
where the shear- and flowrates are given by Qi via eq. (C.31). The main prin-
ciple of the numerical method is illustrated in fig. 5.19: The function X(Q)
is determined by taking N measurement points X1(Q1)...XN (QN ) on an in-
terval of flowrates [Q1, Qn]. These measurement points correspond to 2N un-
known values of the shear viscosity function η(γ̇) and 2N unknown values of
the extensional viscosity function Λ(ε̇) which lie on the intervals [γ̇min, γ̇max] and
[ε̇min, ε̇max].

As the roughness of the viscosity functions η and Λ is limited by n, k ≥ 0
(see sec. 5.4.2), the functions η(γ̇),Λ(ε̇) can be approximated by interpolation
between a sufficient number of basic values. To this purpose, N/2 interpo-
lation points Γj ,Ej are distributed among the two intervals [γ̇min, γ̇max] and
[ε̇min, ε̇max],

Γj = γ̇min ·
(
γ̇max

γ̇min

)j/(N/2−1)

Ej = ε̇min ·
(
ε̇max

ε̇min

)j/(N/2−1)

j = 0, ..., N/2− 1 (C.51)
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where the according interpolation values are set:

HS
j ≡ η(Γj)

HE
j ≡ Λ(Ej) (C.52)

The 4N unknown values η(γ̇a,i), η(γ̇r,i),Λ(ε̇a,i),Λ(ε̇r,i) can thus be expressed
by the N unknown interpolation values HS

j ,H
E
j using the interpolation hat

function from eq. C.4 as:

η(γ̇k,i) =
∑

j

NS
k,ij(γ̇k,i)HS

j , with NS
k,ij(γ̇k,i) = Fh(xS

k,ij(γ̇k,i))

Λ(ε̇k,i) =
∑

j

NE
ki,j(ε̇k,i)HS

j , with NE
k,ij(ε̇k,i) = Fh(xE

k,ij(ε̇k,i)), (C.53)

where k = a, r and

xS
k,ij(γ̇k,i) = (N/2− 1)

log γ̇k,i − log γ̇min

log γ̇max − log γ̇min
− j + 1

xE
k,ij(ε̇k,i) = (N/2− 1)

log ε̇k,i − log ε̇min

log ε̇max − log ε̇min
− j + 1. (C.54)

Using eq. (C.53) we can rewrite eq. (C.50) as:

(XiLa

∑
j

NS
a,ijH

S
j −Lr

∑
j

NS
r,ijH

S
j )GS+(XiLa

ar

aa

∑
j

NE
a,ijH

E
j −Lr

aa

ar

∑
j

NE
r,ijH

E
j )GE = 0.

(C.55)
This is a linear, homogeneous equation system with N equations, which we can
write with the vector H = (HS

1 , ...,H
S
N/2,H

E
1 , ...,H

E
N/2)

T as:

M ·H = 0, M = (MSME) (C.56)

where

MS
i,j = XiLaGSN

S
a,ij − LrGSN

S
r,ij , i = 1, ..., N j = 1, ..., N/2

ME
i,j = XiLa

ar

aa
GEN

E
a,ij − Lr

aa

ar
GEN

E
r,ij , i = 1, ..., N j = 1, ..., N/2.

(C.57)

Note that if there is a non-trivial solution H to eq. (C.56), then any multiple
of H is also a solution. This reflects the fact that the differential measurement
values Xi(Qi) only depend on the ratio of Λ(ε̇)/η(γ̇) and not on the absolute
values of Λ, η. Thus, to solve for absolute values of the extensional viscosity,
more information is needed. This information could be provided by additionally
measuring the pressure drop along reference or analyzer channel or by putting
a known value of the shear viscosity curve η(γ̇1) (e.g. from a shear rheometer
measurement) into eq. (C.56).

However, even if η(γ̇) is known and all the values (HS
1 , ...,H

S
N/2) are put into

eq. (C.56), there may be multiple solutions for (HE
1 , ...,H

E
N/2). This problem

will be illustrated for the simple case of Newtonian shear viscosity (n = 1) and
measures to overcome it will be adressed in the following section.
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Differential Extensional Viscometer in Constant Shear-Viscosity Regime
(n = 1)

For some complex fluids, the shear viscosity is nearly constant (n ≈ 1), while the
extensional viscosity can be highly non-Newtonian if the extension rate passes
a threshold rate ε̇ > ε̇t. A typical example for such fluids are dilute polymer
solutions with very long polymers of high molecular weight. If n = 1, we can
set GSη(γ̇) ≡ RS = const., so that eq. (C.50) simplifies to

Xi(Qi) =
Lr

La
·
RS + Λ(ε̇r,i)aa

ar
GE

RS + Λ(ε̇a,i) ar

aa
GE

. (C.58)

This can be rewritten as a linear equation system for HE = (HE
1 , ...,H

E
N )T :

M ·HE = RS (C.59)

with

Mi,j = XiLa
ar

aa
GEN

E
a,ij − Lr

aa

ar
GEN

E
r,ij i, j = 1, ..., N (C.60)

and
R = (R1, ..., RN )T , Ri = (Lr −XiLa)RS , (C.61)

where NE
r,ij is defined as in eq. (C.53), only this time N interpolation values

HE
j are distributed on [ε̇min, ε̇max]:

Ej = ε̇min ·
(
ε̇max

ε̇min

)j/(N−1)

j = 0, ..., N − 1. (C.62)

Then, by setting a known value for the shear viscosity RS = Gsη, the N mea-
surement values Xi give a linear equation system eq. (C.59) with N equations
to determine the N interpolation values HE

j of the extensional viscosity.
However, H is not uniquely defined by eq. (C.59). The ratio of the exten-

sional flowrates in reference and analyzer channel is given by

ε̇a,i =
ar

aa

Qa,i

Qr,i
ε̇r,i = Xi

ar

aa
ε̇r,i (C.63)

Thus, if Λ(ε̇) is a solution to eq. (C.58), then Λ?(ε̇) with

Λ?(ε̇) = Λ(ε̇) + cε̇p,with p = −
ln La

Lr
+ ln ar

aa

lnXi + ln ar

aa

− 1 (C.64)

is also a possible solution, which can be seen by putting HE?
j into eq. (C.58).

This problem can be solved in different ways:

• The measurement interval [Qmin, Qmax] includes the low flowrate regime
where the extensional viscosity is Newtonian. Then, the extensional vis-
cosity can be obtained from the numerical solution Λnum(ε̇) by substract-
ing cε̇p, where p is determined from the measured X(Q)-curve and c is
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chosen by setting the extensional viscosity Λ(ε̇) to the Newtonian value
in the Newtonian regime where X(Q) ≈ Lr/La. For the determination of
ε̇p, the exponent p(X(Q)) is taken as the exponent at the average exten-
sion rate ε̇0 =

√
ε̇aε̇r associated with Q and ε̇p is obtained by numerical

integration.

• Alternatively HE
j can be determined by measuring two geometries with

different numbers of constrictions (Na/Nr)X 6= (Na/Nr)Y yielding Xi(Qi)
and Yi(Qi). Then, [ε̇min, ε̇max] is determined from both measurements, and
N interpolation values HE

j are set on the interval. The two measurements
Xi(Qi), Yi(Qi) provide a set of 2N linear equations for the N unknown
values HE

j , so that the equation system is overdetermined and can be
numerically solved with a least square method. Because of the different
geometries of the measurement sets, the multiple solution cε̇p has a differ-
ent exponent p for X(Q) and Y (Q), so that only the actual extensional
viscosity Λ(ε̇) fulfills the 2N equations simultaneously and is obtained in
the numerical solution.

Like in the semi-analytical solution, the measurement on two different
geometries is a useful test for the postulated additivity of the shear and
extensional resistance. If the two equation sets for different geometries
Xi(Qi), Yi(Qi) cannot be fulfilled with a common extensional viscosity
function Λ(ε̇), the underlying additivity assumption obviously does not
hold for the tested fluid.

Differential Extensional Viscometer in non-Newtonian Shear Viscosity Regime
(n 6= 1)

If the shear viscosity is in the non-Newtonian regime, and η(γ̇) can be measured
seperately, the extensional viscosity can be determined numerically by solving
the linear equation system

M ·H = RS (C.65)

where M = ME is defined by eq. (C.57) with i, j = 1...N , H = (HS
1 , ...,H

S
N ) is

set analogous to eq. (C.52) and

R = (R1, ..., RN )T , Ri = (Lrη( ˙γr,i)−XiLaη( ˙γa,i))GS , (C.66)

are the shear viscosity resistance values set by the known shear viscosity.

C.8 Flow Classification of Cylindrical Semi-Hyperbolic
Constrictions

To analyze the flow in the cylindrical constrictions we will generally discuss flow
fields with cylindrical symmetry without velocity in the azimuthal direction:

u(r, φ, z) =

(
ur
uφ
uz

)
=

(
ur(r, z)

0
uz(r, z)

)
. (C.67)
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The velocity gradient of the flow is given by [10]

A =

∂ur

∂r 0 ∂ur

∂z
0 ur

r 0
∂uz

∂r 0 ∂uz

∂z

 =

(
ε̇rr 0 ε̇rz

0 −(ε̇rr + ε̇zz) 0
ε̇rz 0 ε̇zz

)
︸ ︷︷ ︸

D

+

(
0 0 ω
0 0 0
−ω 0 0

)
︸ ︷︷ ︸

S

(C.68)
where ε̇rr = ∂ur

∂r , ε̇rz = 1
2 (∂ur

∂z + ∂uz

∂r ), ε̇zz = ∂uz

∂z and ω = 1
2 (∂ur

∂z − ∂uz

∂r ). It is
obvious from S that the axis of the rotational flow component flow is always
perpendicular to the r, z - plane and the rotational rate is given by ω. The
eigenvalues of A are obtained as

λ1 =
ur

r
(C.69)

λ2,3 =
ε̇rr + ε̇zz

2
± 1

2

√
(ε̇rr − ε̇zz)2 − 4(ω2 − ε̇2rz) (C.70)

(C.71)

The classification given in sec. A.1 depends on the values of the components of
the velocity gradient tensor A:

• If the radial velocity ur = 0, the streamlines are parallel to the z-axis and

I3 = 0 (C.72)

I2 = ω2 + ε̇rr ε̇zz − ε̇2rz (C.73)

In a homogeneous flow field ∂ur

∂r = ∂ur

∂z = 0, so that ε̇rr = 0 and ε̇rz = −ω.
Thus, I2 = 0, all the streamlines are parallel in the z-direction and the
flow is viscometric. In inhomogeneous flows, the flowtype then depends
on the value of I2. For ω2 < ε̇rr ε̇zz − ε̇2rz (i.e. I2 < 0) the flow is locallly
strong and purely hyperbolic, for ω2 = ε̇rr ε̇zz − ε̇2rz (i.e. I2 = 0) the flow
is locally marginally weak and for ω2 > ε̇rr ε̇zz − ε̇2rz (i.e. I2 > 0) the flow
is locally strictly weak.

• If the radial velocity ur 6= 0 and ω2 = ε̇2rz − ε̇rr ε̇zz, then I3 = 0 and
I2 = −(ur

r )2 < 0. Consequently, the flow is strong and purely hyperbolic.

• If ur 6= 0 and ω2 6= ε̇2rz − ε̇rr ε̇zz the flow is strong. The type of strong
flow is determined by the parameter p = ((ε̇rr − ε̇zz)2 + 4ε̇2rz)/4ω

2. For
p > 1 the flow is hyperbolic-parabolic, for p = 1 the flow is hyperbolic
logarithmic and for p < 1 the flow is elliptic spiral.

As already mentioned in sec. A.1 it is not possible to distinguish between the
several flow types with a single flow parameter although the axis of the rotational
component is fixed. The principal axes of the coordinate system in which D is
diagonal are given by

E1 =

(
0
1
0

)
, E2 =

 1
0

ε̇rr−ε̇zz

2ε̇rz
+
√

( ε̇rr−ε̇zz

2ε̇rz
)2 + 1

 , E3 =

 1
0

ε̇rr−ε̇zz

2ε̇rz
−
√

( ε̇rr−ε̇zz

2ε̇rz
)2 + 1


(C.74)
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D.1 Apparent Phase Velocity vph(ωn) of Pressure Propagation

To calculate the phase velocity of the pressure propagation we evaluate the phase
difference ∆Φn,p

0−xi
of the Fourier component of the pressure pn(ωn) between the

channel entrance x = 0 and position x = xi. From there we can determine the
apparent phase velocity vph(ωn) with which a point with a given phase of pn

travels along the channel[105]:

vph(xi, ωn) = −ω/k = −ωn/
(d(∆Φn,p

0−xi
)

dxi

)
(D.1)

To enable a comparison with the experimental data, we define an average phase
velocity vph(ωn) for the propagation from the channel entrance x = 0 to x = xi

by replacing d(∆Φn,p
0−xi

)/dxi with the phase difference and the traveled distance
∆x = xi: vph(ωn, xi) = −xiωn/∆Φn,p

0−xi
. The ratio of the pressure at position

x with respect to the channel entrance is given for each Fourier component as:

pn(xi, t)
pn(0, t)

=
sinh[λn(l − x)]

sinh[λnl]
(D.2)

In the low frequency limit ω � ωcutoff the viscous dissipation of the PDMS
channel wall is negligible (δ ≈ 0). Together with negligible inertia Lx ≈ 0 we
get λn =

√
iωnRxCx, so that we can write λn in the form of λn = a + ia

(imaginary and real parts are of equal absolute value). We can now calculate
the real and imaginary parts Re(λn) and Im(λn) of pn(xi,t)

pn(0,t) from eq. D.2. The
phase difference ∆Φ between pn(xi, t) and pn(0, t) can then be calculated from

tan∆Φn,p
0−xi

=
Im(λn)
Re(λn)

, (D.3)

which yields

∆Φn,p
0−xi

= arctan
[
tanh(al) tan(a(l − xi))− tan(al) tanh(a(l − xi))
tanh(al) tanh(a(l − xi))− tan(al) tan(a(l − xi))

]
(D.4)

For ω → 0 we have al � 1 and a(l − xi) � 1. Taylor expansion of eq. D.4
yields:

∆Φn,p
0−xi

≈ arctan
[
1
3
a2(x2

i − 2lxi)
]
≈ −1

6
ωnRxCx(2lxi − x2

i ) (D.5)
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The phase velocity is then calculated as

vph(xi) =
ωn

∂∆Φn,p
0−xi

/∂xi
=

ω
1
3ωRxCx(l − xi)

(D.6)

In the low frequency limit ω � ωcutoff we thus obtain a phase velocity of

vph(xi) =
3Dp

l − xi
. (D.7)

Eq. D.1 yields an average phase velocity vph(ωn)(0 → xi)

vph(xi) =
ωxi

∆Φn,p
0−xi

=
6Dp

2l − xi
(D.8)

which are independent of the frequency but dependent on the x-position along
the channel. Thus, the time for a pulse to cross the entire channel is given as
τ(0 → l) = l

vph(l) = l2

6·Dp
.

For high frequencies ω � ωcutoff with δ � 0 and amplitudes where inertia is
still negligible Lx ≈ 0 we get

λn =

√
ωnCxRx

1 + tan2 δn
(tan δn + i) ≡ K ′

√
tan δn + i (D.9)

with λn � 1. Away from the channel end x 6= l the arguments of sinh and cosh
in eq. 6.6 are big and we can approximate

pn(x, t) ≈ Π0n exp(−λnx+ iωnt) (D.10)

Qn(x, t) ≈ Π0n
λn

Rx + iωnLx
exp(−λnx+ iωnt).

For negligible inertia, the phase difference ∆θ between the pressure and the
flowrate is thus given by the ratio of imaginary and real parts of λn. From
λ = K ′√tan δn + i it follows

tan(2∆θ) =
1

tan δn
(D.11)

which can be written as

tan(∆θ) =
1− sin δn

cos δn
= cot

δn + π/2
2

= tan(−π/4− δn/2), (D.12)

The phase difference between p and Q for x away from x = l is thus given as

∆θ = −(π/4 + δn/2). (D.13)

The phase difference ∆Φn,p
0−xi

between the pressure at x = 0 and x = xi is
directly given by the imaginary part of λn:

∆Φn,p
0−xi

= xiIm(λn) (D.14)
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The calculation of the imaginary part of λn yields

∆Φn,p
0−xi

= xi

√
1
2
ωnCxRx cos δn(1− sin δn) (D.15)

which gives a phase velocity of

vph(ωn) = vph(ωn) =
ωn

∂∆Φn,p
0−x/∂x

=

√
2ωnDp

cos δn(1− sin δn)
(D.16)

which is independent of xi and thus equal to the averaged phase velocity. For a
purely elastic channel we get a phase difference of π/4 between p and Q and a
phase velocity of vph =

√
2ωnDp.
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• Markus Harasim und Martin Kröger für die kurzweilige Zusammenarbeit
bei der Untersuchung der Aktin Dynamik. Es hat mir immer sehr viel
Spaßgemacht mit Euch (nicht nur) über Vorfaktoren zu diskutieren. Da
müssen wir noch unbedingt mal zusammen 3 Halbe drauf trinken.

• Uli Kleßinger für das PIV-Programm, den Verstärker für meinen Tieftöner
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