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Limit laws for exponential families 11. IntroductionSuppose X is a real random variable with df F . Let� = n� 2 R j K(�) := E e�X <1o (1.1)be the set where the moment generating function (mgf) K(�) of X is �nite. The set �is a connected subset of R which contains the origin and on which the mgf � 7! K(�)is continuous and strictly positive. Associated with F is the natural exponential familyfF�; � 2 �g wheredF�(x) := e�xdF (x)=K(�) � 2 �: (1.2)For convenience, we let X� be a random variable with distribution F�. We study theasymptotic behaviour of the df's F� for �! �1 := sup�. Note that �1 � 0. We assume�1 > 0.If �1 2 � then F� # F�1 pointwise; see Corollary 2.1. If �1 =2 �, then F� # 1[x1;1)where x1 = supfF < 1g is the upper endpoint of the df F ; see Proposition 2.3. In thelatter case, the types in the exponential family fF�, � 2 �g, may have a limit law for�! �1. This means that it may sometimes be possible to normalize the variables X� ofthe exponential family by translation and positive scaling so that for some nonconstantrandom variable Y ,A�X� := X� � b�a� d! Y; �! �1: (1.3)Here d! denotes convergence in distribution.This paper determines the possible non-degenerate limit laws in (1.3). Our main result,Theorem 3.3, states that if there is a non-constant limit variable Y in (1.3), then one canchoose the centering b� and scaling a� so that Y is a standard normal variable, or so thatY or �Y has a gamma distribution. In a subsequent publication, we shall describe thedomains of attraction of the limit laws.This paper is partially motivated by Balkema, Kl�uppelberg and Resnick [1993], whereit was found that asymptotic normality of F� has useful implications for the study of sumsof independent rv's. A class of thin tailed densities was identi�ed which is closed underconvolution This closure property is dependent on the fact that each density of the familyhad an associated exponential family which is asymptotically normal. Rootzen [1987] and



Limit laws for exponential families 2Davis and Resnick [1991] use related ideas for applications to extremes of moving aver-ages. Feigin and Yashchin [1983] and Balkema, Kl�uppelberg and Stadtm�uller [1995] giveTauberian results based on the asymptotic normality of exponential families. If asymp-totic normality of exponential families was useful for such things as convolution closureproblems and Tauberian theory, we wondered what other weak limits could arise whenconverging to the boundary of � and what applications were possible when convergencewas to a nonnormal weak limit. The present paper is a �rst step in the exploration ofapplications of nonnormal limits.The importance of exponential families in statistics and for asymptotics in probabilitytheory can hardly be overestimated. In analysis exponential families occur as Esschertransforms and are used in Laplace's principle and for saddlepoint approximations. A sur-vey of their use in statistics is Barndor�-Nielsen [1978], Barndor�-Nielsen and Cox [1994]or Brown [1986]. For connections with saddlepoint approximations, see Barndor�-Nielsenand Kl�uppelberg [1997] and Jensen [1995]. Limit behaviour of F� is of mathematicalinterest and moreover the exponential family o�ers an e�ective way to investigate theasymptotic behaviour of the mgf K and the cumulant generating function (cgf) � = logK.Convergence in (1.3) depends on the behaviour of the cgf � at �1. The behaviour ofthe analytic function � at a �xed point �0 < �1 is well known:n�(�0 + tpn)� n�(�0)� �tpn ! �2t22 n!1 : (1.4)Here � = ��0 = �0(�0) is the expectation of X�0 and �2 = �2�0 = �00(�0) the variance.Relation (1.4) is the formula for the second derivative of � at �0. It also is the Central LimitTheorem for sums of independent observations from the df F�0 since n(�(�0 + �)��(�0))is the cgf of the df F �n�0 . Teicher [1984] has investigated relation (1.4) for a sequence�n !1, extending work of Feller [1969] on large deviations. More recently Broniatowskiand Mason [1994] have looked at very large deviations. There the behaviour of the mgffor �! �1 plays a decisive role.To understand the behaviour of the cgf � for �! �1 assume existence of the followinglimit:���(t) := �(�+ t=�)� �(�)� �t=� ! �(t) �! �1 : (1.5)The right hand side of (1.5) describes the convex function � around the point � normalizedso as to have a horizontal tangent at t = 0 and curvature 1. It is not surprising that the



Limit laws for exponential families 3parabola �(t) = t2=2 occurs as a limit { corresponding to the normal law for the limitvariable Y in (1.3). The second limit function, the logarithm, corresponds to two familiesof gamma distributions. In Theorem 3.4 we prove that weak convergence (1.3) entailsconvergence of the cgf's. Hence we may use the �rst two moments of X� to normalize,thus obtaining the limit relation (1.5).Statistical applications have motivated interest in exponential families closed undercertain transformation groups. Lehmann [1983] mentions exponential location families.Casalis [1991] classi�es natural exponential families on Rd which are invariant under certaingroups of a�ne transformations and Bar-Lev and Casalis [1994, 1998] describe exponentialfamiliesG ,  2 �, on R which are invariant under certain groups of a�ne transformations.For each  2 � there exist an a > 0 and b 2 R so that G(x) = G(ax+ b).The paper is organized as follows: In Section 2 we �rst prove certain continuity results.From these we derive a stability property for the limit variable Y which allows us to obtainin Section 3 the possible limit distributions, the normal and gamma distributions. Section 4comments briey on limit relation (1.3) when convergence is only along sequences �n " �1which makes the situation complex since then the cgf's need not converge. Example 4.6shows that the Cauchy distribution may occur as weak limit and Theorem 4.8 shows thatthe behaviour of the convex function � may be quite bizarre.In a following paper we shall describe domains of attraction and give an application tosaddlepoint approximations.This paper treats the asymptotic behaviour of the exponential family in the neighbour-hood of the upper endpoint of �. The transformation X 0 = �X allows us to translatethese results into statements about the asymptotic behaviour in the neighbourhood of thelower endpoint, inf �. If Y is a limit variable for the exponential family generated by Xin the upper endpoint then �Y is a limit variable for the exponential family generated by�X in the lower endpoint.Obviously the multivariate case is the really interesting situation. The setting there issimple: The cgf of a random vector is a convex function de�ned (�nite) on a convex subset� � Rd . For simplicity assume � is open. The cgf is analytic. What is its behaviour as oneapproaches the boundary? Normalize the cgf for �0 2 � so that the tangent hyperplane in�0 is horizontal and the second derivative is the standard inner product. The associatedrandom vector X�� has zero expectation vector and the identity matrix as covariance. What



Limit laws for exponential families 4happens to the distribution of X�� as � approaches a point on the boundary of � or tendsto in�nity? Do there exist non-degenerate limit laws? Do the mgf's of X�� converge? Isit possible that X�� does not converge in distribution but that X� does converge for someother normalization?This paper will answer some of these questions in the univariate case.2. Stability of the limit lawsRandom variables arising from a limit procedure frequently satisfy a stability condition.For the df G of the limit Y of the exponential family in (1.3), the stability relation takeson the formG(x) = G(ax+ b) a > 0; b 2 R : (2.1)Indeed G satis�es a large number of such relations. The random variables Y in theexponential family of the limit variable Y all are of the same type! The essential step inestablishing this stability for the limit variable is Proposition 2.12.We start by studying the behaviour of fF�g as � " �1 = sup� without using anynormalization. We then consider the following question: Suppose a sequence of df's Fnconverges weakly to a non-degenerate df F . Let Gn = (Fn)�n be a df in the exponen-tial family of Fn and suppose Gn ! G weakly. What is the relation between the limitdistributions F and G? We answer this question in Theorem 2.7. In the second part ofthis section we consider weak limit behaviour under positive a�ne transformations andconsider F�(a�x+ b�) for �! �1. The norming constants a� > 0 and b� may be chosento vary continuously with �. The limit distribution will depend on the normalization.By Khintchine's convergence of types theorem di�erent non-degenerate limit distributionswill belong to the same type.Proposition 2.1 For any �xed x for which 0 < F (x) < 1 the function � 7! F�(x)is strictly decreasing on � and continuous. It is also true that � 7! F�(x�) is strictlydecreasing and continuous on �.Proof For monotonicity see Brown [1986, Cor. 2.22]. For continuity, if �! �0, conver-gence of Z 1(�1;x]e�udF (u) = K(�)F�(x)! K(�0)F�0(x)



Limit laws for exponential families 5follows by dominated convergence with dominating function e�u _ e�u with �; � 2 �. Thecontinuity of the mgf K on � gives F�(x)! F�0(x). 2Corollary 2.2 If �1 = sup� 2 �, then F� # F�1 for � " �1.The interesting case is when the upper endpoint �1 does not lie in �.Proposition 2.3 Suppose �1 62 �. Let x1 = supfF < 1g � 1 denote the upperendpoint of the df F . Then F� # 1[x1;1).Proof If �1 is �nite, then x1 =1 and K(�)!1 for �! �1. (Else K(�1 � 0) <1and �1 2 � by Fatou's lemma.) Hence for any x1 > 0F�(x1) = Z x11 e�xdF (x)=K(�) � e�1x1=K(�)! 0 �! �1:Now assume �1 =1. If F is degenerate the statement is obvious. Else choose x1 <x2 < x1 so that F (x1) > 0. Then 1� F (x2) = p > 0, and1� F�(x2)F�(x1) = R(x2;1) e�x dF (x)R(�1;x1] e�x dF (x) � e�x2 pe�x1 ! 1 �!1:Since 1� F�(x2) � 1, we have F�(x1)! 0. 2For convenience, we associate to each � 2 � a rv X� with df F�. We shall writeX� =: E�X where E� denotes the Esscher operator. The Esscher operators E� satisfy theadditive law E�E� = E�+� �; �+ � 2 �:Now suppose Xn are rv's and Yn = EnXn for some sequence n. Let Xn converge toX0 in distribution and Yn to Y0. Does it follow that n ! 0 and Y d= EX0?Proposition 2.4 Suppose Xn d! X0 and n ! 0. Let Xn have mgf Kn for n � 0.Assume that Kn(n) is �nite for n � 1 and write Yn = EnXn.(1) If Kn(n)! K0(0) <1, then Yn d! Y0.(2) If Yn d! Y for some rv Y , then Y = E0X0 and Kn(n)! K0(0) <1.Proof Let an = Kn(n) and let �n be the distribution of Xn for n � 0. Set d�n(x) =enxd�n(x). Then an = �n(R) for n � 0 and Yn has distribution �n := �n=an for n � 1.



Limit laws for exponential families 6Convergence R 'd�n ! R 'd�0 holds for continuous functions ' with compact support.This means that �n ! �0 vaguely and hence �0(O) � lim inf �n(O) for open sets O. ForO = R this impliesa0 � lim inf an: (2.2)To prove (1), note if an ! a0 < 1, then �n ! �0 weakly and this also holds for thenormalized measures so that Yn d! Y0.For (2), suppose �n ! � weakly for some probability measure �. Writed�n(x) = ane�nxd�n(x) :If an !1 then �n(K)! 0 for any compact interval K, and hence �n ! 0 vaguely. Thiscontradicts the assumption that �n ! � weakly. Similarly an ! 0 implies �n(K) ! 0which contradicts the weak convergence �n ! �0. Hence the sequence (an) is bounded.We claim that a0 is the only limit point (which proves (2)). Any limit point \a" satis�esa0 � a from (2.2). On interchanging the role of Xn and Yn we �nd 1=a0 � 1=a. The twoinequalities combined give a = a0. 2Example 2.5 The sequence Kn(n) in Proposition 2.4 may converge to a �nite limita 6= K0(0).Construction Take n = 1 for all n and let �n have mass 1=2 in the two points 0 andxn = n. Then Xn d! X0 � 0 and an = 1=(1=2 + e�n=2)! a = 2 > 1 = a0. 2Example 2.6 It may happen that Xn d! X, Yn = EnXn d! Y and n !1.Construction Let � be a �nite measure which charges both (�1; 0) and (0;1). Let �nbe the probability measure cn(1^e�nx)d�(x) for n � 0. Take n = n. The rv Yn = EnXnhas distribution d�n(x) = bn(enx^1)d�(x). It is clear that Xn converges in distribution toa rv X with probability distribution d� = c1(�1;0]d� and Yn to a rv Y with distributiond� = b1[0;1)d�. 2We can now prove a kind of convergence of types theorem where \type" has to beinterpreted as belonging to the same exponential family.Theorem 2.7 Let Yn = EnXn for n � 1 and an = EenXn. Suppose Xn d! X with Xnon-constant, and Yn d! Y .



Limit laws for exponential families 7If (n) is bounded, then n ! , an ! a = EeX <1 and Y = EX.If supn =1 then n !1 and there exists a point c 2 R so that X � c � Y a:s:If inf n = �1 then n ! �1 and there exists a point c so that Y � c � Xa:s:Proof First consider the case n ! 1. Suppose the distributions overlap: There exista < b so that PfX > bg > 0 and PfY < ag > 0. Let � denote the minimum of thesetwo positive numbers. Then PfXn > bg and PfYn < ag eventually exceed �=2. Thuseventually �=21� �=2 � PfYn < agPfYn > bg � enaPfXn < agenbPfXn > bg � e�n(b�a) 1� �=2�=2 :This contradicts the assumption that n !1.The case n ! �1 is treated in the same way.There are three mutually exclusive alternatives: Either (i) X � c � Y , or (ii) Y � c �X, or (iii) neither (i) nor (ii) hold. Hence the sequence n is bounded, or it diverges to+1 or it diverges to �1. If (n) is bounded, then by Proposition 2.4, n converges tosome value  since the Esscher transforms E�X and E�X are di�erent for � 6= � if X isnot constant. 2Now return to the exponential family fX�, � 2 �g and assume that �1 =2 �. Toobtain a non-degenerate limit distribution for the variables X� in the case �1 =2 �, wehave to normalize these variables, so assume (1.3) holds, (X� � b�)=a� d! Y for somenon-constant random variable Y . By Proposition 2.1 the family fF�g of X� is weaklycontinuous in �. This makes it possible to choose the coe�cients a� > 0 and b� 2 R to becontinuous on �.Lemma 2.8 The constants a� and b� in (1.3) can be chosen to be continuous functionsof � on the set �.Proof Write Y =  (U) with  increasing and U uniform (0; 1). One may take for  theleft-continuous inverse of the df of Y . Choose p 2 (0; 1=2) so small that  (p) <  (1 � p).Set b := Z 1�p=2p=2  (u)du a := Z 1�p=21�p  (u)du� Z pp=2  (u)du:Let Y 0 denote the normalized variable (Y � b)=a. Similarly write X� = '�(U) and de�nethe smoothed median b� and smoothed range a� as above with '� replacing  . Then



Limit laws for exponential families 8a� > 0 eventually and convergence A�X� d! Y for some family of normalizations A�implies convergence (X� � b�)=a� d! Y 0. Weak continuity of � 7! '� is equivalentto weak continuity of the exponential family F� and implies continuity of the normingconstants a� and b�. 2We will need the fact that Esscher operators react in a simple way with scaling andtranslation:E�=a(aX + b) d= aE�X + b (2.3)for � 2 �, a > 0 and b 2 R. This follows since both sides of (2.3) have the same mgfz 7! ebzK(az + �)=K(�).We now discuss the stability property of the limit variable Y in (1.3). LetM() = EeYbe the mgf of Y and fY ;  2 �g, the associated exponential family with � = fM < 1g.We shall see below that there exist many pairs (;C) with  2 � and C in the group G ofpositive a�ne transformations x 7! C(x) = (x� b)=a with a > 0 and b 2 R which satisfythe stability relationEY d= CY : (2.4)Example 2.9 The extended gamma family.Construction The following variables satisfy (2.4) for all  for which the mgf of Y is�nite.1) If Y is N(�; �2)-distributed then Y d= Y + �2 for  2 � = R.2) The standard exponential rv satis�es the relation Y d= Y=(1� ) for  < 1. Simi-larly Z = �Y satis�es the relation Z d= Z=(1 + ) for  > �1.3) More generally if Y (or �Z) has a gamma density xs�1e�x=�(s) on (0;1) thenY d= Y=(1� ) for  < 1 (and Z d= Z=(1 + ) for  > �1).These rv's generate exponential families whose df's are all of the same type. 2Since the gamma distribution with shape parameter s is asymptotically normal forc = 1=s! 0 we have a continuous three parameter family of df's Hc(ax+ b), a > 0, b andc real. Here H0 is the standard normal df, H�c(x) = 1�Hc(�x) for c > 0, and Hc is thedf of the normalized gamma variable Vc = (Y � s)=ps, with c = 1=s, where Y has densityxs�1e�x=�(s) on (0;1).



Limit laws for exponential families 9Our main result states: This three parameter extended gamma family is the set of limitlaws for exponential families, both for �! sup� and for �! inf �.Note the resemblance to extreme value limit theory where there also is a continuousthree parameter family of limit distributions. See de Haan [1970, p. 104]. This resemblanceis not due to some innate relation between extremes and exponential families, but resultsfrom the structure of the group G of positive a�ne transformations on R. The group G hastwo kinds of elements: Translations, and multiplications with a given center. The normaldistributions are stable for translations; the gamma distributions with a given endpointare stable for multiplications having the endpoint as center. The extended gamma familyreects this structure.We now want to show that the limit variable Y in (1.3) has to satisfy a number ofstability relations of the form (2.4).With the positive a�ne transformation A in G, given by Ax = (x� b) =a we associatethe point (log a; b) in the plane. It is then natural to setkAk := k(log a; b)k2 =p(log a)2 + b2: (2.5)The function k � k is not a norm on the group G, in particular kA�1k 6= kAk, but it doesdescribe the topology of G adequately for our purpose.Proposition 2.10 Let U,  2 �, be the exponential family generated by the non-constantrv U . Suppose Cn 2 G, n 2 �, CnUn d! Z with Z non-constant, n !  > 0. ThenkCnk ! 1 i�  =2 � :Proof Suppose  2 �. ThenEnU d! EY by Proposition 2.1. The convergence of typestheorem implies that Z = CU and Cn ! C with kCk <1. For the converse assume that(Cn) contains a convergent subsequence, say Cn ! C as n!1. Then EnU d! C�1Z.Proposition 2.4 implies  2 �. 2In order to characterise the possible limit distributions in (1.3), we need equation (2.4)to hold for a large collection of -values.Lemma 2.11 Suppose (1.3) holds. For any r > 0 and � 2 [0; �1) there exists � 2 (�; �1)such thatkA�A�1� k _ (�� �)a� = r: (2.6)



Limit laws for exponential families 10Proof Write Y � = A�X�. (The upper index notation is used here to avoid confusionwith the exponential family generated by the variable Y .) Fix � 2 �. Use (2.3) and writeA�A�1� Y � d= E(���)a�Y � � 2 �: (2.7)By assumption Y � d! Y for � ! �1. Apply Proposition 2.10 with E(���)a�Y � in therole of Un and (A�A�1� )�1 in the role of Cn to conclude that k(A�A�1� )�1k ! 1 as� ! �1. Check that kCnk ! 1 if kC�1n k ! 1. By Lemma 2.8 the quantity kA�A�1� kvaries continuously from 0 to 1 as � increases from � to �1. So the leftmost term in(2.6) will equal r before � reaches the value �1. 2Fix r > 0. Let �n ! �1 and choose �n > �n as in the Lemma. Choose a subsequencek1 < k2 < � � � so thatCkn := A�knA�1�kn ! C 2 G; kn := (�kn � �kn)a�kn ! :This is possible since kCnk and n are bounded by r. Then CknY �kn d= EknY �knby (2.7). Theorem 2.7 gives CY d= Y with kCk _  = r by continuity. This establishesthe next result:Proposition 2.12 If (1.3) holds and Y is non-degenerate then for each r > 0 there existsa constant  > 0 and a positive a�ne transformation C with kCk _  = r such that (2.4)holds: EY d= CY . 2The question whether all distributions in the exponential family of the limit distributionare of the same type will be settled by algebraic arguments in the next section.3. Solutions of the stability equationThe stability equation (2.4), EY d= CY , allows us to determine the possible limit lawsfor the exponential family X� for �! �1.For statistical applications it is of importance to characterize exponential families whichare invariant under a given group H of transformations. Lehmann [1983, p.35] observesthat the normal distributions with �xed variance constitute an exponential family whichalso is a location family, and that the random variable c log Y with Y gamma is the onlyother variable which generates such a family. This result is due to Dynkin in 1951. Forthe simpler case of natural exponential families Casalis [1991] in a very readable paper has



Limit laws for exponential families 11solved the characterization problem when H is a group of translations on Rd and for someother classical groups of a�ne transformations on Rd . Bar-Lev and Casalis [1994, 1998]solve the problem for the case when H is a subgroup of the group of a�ne transformationson R. We are grateful to a referee of a previous version of this paper for pointing out thesetwo references. We understand that full proofs of the statements in the second paper willbe published shortly and restrict ourselves here to a short exposition of the results of thispaper which are relevant to us.If a natural exponential family is invariant under a group H of positive a�ne transfor-mations, and the df's are non-degenerate then H is a closed commutative subgroup of G.If H is a group of translations then the smallest interval which supports the distributionfunctions G�, � 2 �, of the invariant exponential family is the whole line. If H is a groupof multiplications with center q the smallest interval is the half line (�1; q) or (q;1).From these results one may conclude that the group H either is the discrete group Ck,k 2 Z, generated by a positive a�ne transformation C 6= id, or the one dimensional groupCt, t 2 R. There are other closed subgroups of G but these do not enter the picture.In the present paper we are concerned with the more elementary question of describingall df'sG which satisfy one or more stability relations of the form (2.1). Let F(;C) denotethe set of all df's G which satisfy the relation G(ax+ b) = G(x) for Cx = (x� a)=b.Example 3.1 There exist rv's V which satisfy the relation V d= V + � only if  and �are integers.Construction Let V be the random integer with distributionPfV = kg = pk = e�k2=2=c k 2 Z (3.1)with c a norming constant. The rv V� has distribution PfV� = kg = e�(k��)2=2=C(�). If is an integer then V d= V + , but if  is not an integer then V and V are not of thesame type. 2We shall now show that for G 2 F(;C) the exponential family G�, � 2 �, generatedby G is invariant under the discrete a�ne group H generated by C.Proposition 3.2 Let Y�, � 2 �, be an exponential family. Suppose � 6= � lie in � and



Limit laws for exponential families 12Y� d= CY� where Cx = (x� b)=a with a > 0. Then for all integers t and all � 2 �CtY� d= YCt�� Ct�� = 8<: � + (� � �)t if a = 1at� + at � 1a� 1 (� � a�) if a 6= 1. (3.2)If Y belongs to the extended gamma family then these relations hold for all t 2 R. Moreoverfor each 0 2 � the map t 7! t = Ct�0 is a strictly increasing function from R onto �. Itsatis�es the di�erential equation� = r _ (0) = 0; (1) = a(0 � �) + �; r = log a:Proof Equation (3.2) is an application of the relation (2.3). First assume � 6= 1. Write� = �+ . ThenCY� = CY�+ = CEY� d= EaCY� = EaY� = Y�+a = YC��with C�� = � + a(� � �) = a(� � �) + � �(1� a) = � � a�:Hence CtY� d= YCt�� with Ct�� = at� + (1� at)� = at� + (at � 1)(� � a�)=(a � 1).The case a = 1 is simpler.The second part follows by a continuity argument (or direct inspection). Surjectivityof the map  results from Proposition 2.10. 2Since the limit variable Y in (1.3) satis�es a stability relations of the form (2.1) withkCk _  = r for each r > 0 the exponential family is invariant under a continuous groupH. From the results of Bar-Lev and Casalis [1994, 1998] it follows that Y has a Gaussiandistribution if H is the group of translations and that there exists a real d 6= 0 so that(Y � q)=d has a standard gamma distribution on (0;1) if H is the group of all multipli-cations with center q. This gives:Theorem 3.3 Let F�, � 2 �, be the exponential family (1.1). If �1 = sup� does notbelong to � and if there exist constants a� > 0 and b� 2 R so that F�(a�x+b�)! G weaklyfor some non-degenerate df G then G belongs to the extended gamma family introduced inExample 2.9.The exponential families of gamma distributions are generated by Radon measures withdensities xs1(0;1) on R with s > �1. They converge to the Gaussian exponential famlily if



Limit laws for exponential families 13s!1 provided we apply a proper normalization. What happens if s! �1? For s � �1the measure xs1(0;1)(x)dx is no longer a Radon measure on R. However one can truncatethis measure and ask for the limit behaviour of the exponential family of probabilitymeasures with densities f(x) = c(s; )exxs1[1;1)(x), as  " 1 = 0. For s < �1 theanswer is simple: 1 lies in � and Corollary 2.2 applies. If s = �1 the situation ismore delicate. There exists a non-degenerate limit distribution, but only under non-linearnormalization. See Example 4.10.Weak convergence in (1.3) implies convergence of the mgf's. The signi�cance of thisresult will become apparant in the next section.Theorem 3.4 Let (1.3) hold. Suppose Y is non-constant and �1 62 �. Then the mgf's ofthe normalized variables A�X� converge to the mgf of the limit variable Y on the interval� = f : EeY <1g.Proof Let  2 �. There exists a unique positive a�ne transformation C = C() so thatCY d= Y by Proposition 3.2.Let �n " �1 and set Yn = A�nX�n . We write A�x = (x � b�)=a� and assume thata� > 0 and b� depend continuously on �. We claim that there is a sequence �n ! �1 sothat n = (�n � �n)a�n !  and Cn = A�nA�1�n ! C.First assume  < 0. Set r := supfkC(�) j  � � � 0g. Then kA�nk ! 1 byProposition 2.10 and hence kA�nA�10 k > r + 1 and �n > 0 for n � n0. Let n � n0.Let � decrease from �n to 0. By continuity there is a maximal value �n for which n :=(�n � �n)a�n =  or kCn := kA�nA�1�n k = r + 1. (In the latter case n 2 [0; ].) Notethat �n ! �1 since �kn ! � 2 [0; �1) implies that kCnk ! 1 by Proposition 2.10. Nowassume n ! � and Cn ! B. (Take subsequences if need be.) Then EnYn d= CnY �n d!BY by (2.7). Hence BY d= E�Y and EenYn ! Ee�Y by Proposition 2.4. So B = C(�),and � 2 [; 0] implies kBk � r. Hence eventually kCnk < r + 1 which implies n = .Thus we see that n ! . The proof for  � 0 is similar. 2Corollary 3.5 If (1.3) holds, convergence to a nondegenerate limit still takes place if F�is centered and scaled by expectation and standard deviation.



Limit laws for exponential families 144. Sequential limitsIn this section we only assume that the limit relation (1.3) holds for a sequence �n " �1.As above �1 = sup� 62 �. We adapt the notation slightly. V is a non-degenerate randomvariable such thatVn := AnX�n = (X�n � bn)=an d! V: (4.1)We treat two questions. 1) What information does the sequence (An) give about thedistribution of the limit variable V ? 2) What limit distributions are possible in (4.1)?Proposition 4.1 Suppose (4.1) holds. If An+1A�1n ! id then (1.3) holds: There existfunctions a(�) > 0 and b(�) so that (X� � b(�))=a(�) d! V .Proof Khintchine's convergence of types theorem impliesAnX�n+1 d! V . Set A(�) = Anfor �n � � < �n+1. Monotonicity of � 7! F�(x), see Proposition 2.1, ensures thatA(�)X� d! V for �! �1. 2Now assume An+1A�1n ! C 6= id. In the asymptotic theory of sums or maximathis implies that the limit, if it exists, is semistable. See Hazod & Sche�er [1993]. Forexponential families semistability means that the limit distribution belongs to F(;C) forsome  6= 0. However the situation for exponential families is more complex than for sumsor maxima. We shall investigate the behaviour for translations.Example 4.2 An integer valued limit variable.Construction Let the random integer X have a logconcave distribution with PfX = kg= pk = e��k > 0 for all k. So pk�1pk+1 � p2k. Assume pk+1pk�1=p2k ! e� 2 (0; 1) fork !1. Let �k = (�k�1 + �k+1)=2. Then X�n � n d! V with V as de�ned in (3.1).Now suppose (�0n � �n)= ! � 2 R. Then X�0n � n d! V 0 where PfV 0 = kg =e�(k��)2=2=c(�). All limit variables V 0 belong to F(;C) where C is the translationCx = x+ 1. 2The exponential family F� of the rv X in the example above gives rise to a one-parameter exponential family of limit distributions G�, � 2 R. We are only interested inlimit types. Since G�+1=2(x) = G�(x� 1) the limit types in this example form a compactfamily. Topologically this family is a circle. Let [F ] denote the type of the df F . Asin the case of semi-stable limit distributions for sums and maxima one may describe the



Limit laws for exponential families 15behaviour of the family of types [F�], � 2 �, for � ! �1 as a curve which spirals to alimiting circle in the space of distribution types.For exponential families there is an additional limit family. This limit family has nocounterpart in the asymptotic theory of sums or maxima.Choose the weights pk above so that pk+1pk�1=p2k ! 0. The possible non-constantlimit distributions of the sequence X�n � n then are members of the exponential familyof Bernoulli variables, PfV� = 1g = 1=(1 + e��) = 1 � PfV� = 0g, together with theconstant variable V � 0.We shall now adapt this example so as to obtain a compact \circle" of non-degeneratelimit types.Example 4.3 A rv X so that the set of limit types of the exponential family is a \circle"consisting of the types of the following rv's: U,  2 R, E, W, �1 <  < 1, �E. Here Eis exponentially distributed, U is the exponential family generated by the uniform (0; 1) rvU and W is the exponential family generated by the rv W with Laplace density e�jxj=2.Construction Let X have density f = e�' where ' : R ! R is a convex function whichis piecewise linear on each interval [k; k + 1] with slope �k. Assume that �k+1 � �k !1for k !1. Then X�n � n d! U where U is uniformly distributed on the interval [0; 1].The reader can easily check that the set of limit types has the given form. 2The rv X with density f = e' in the example above has the following property: Thereis a continuous family of non-degenerate limit distributions G�, 0 � � � 2�, all of di�erenttype, except that G0 = G2�, a continuous curve A : � ! G and a continuous strictlyincreasing function  : �! R tending to in�nity for �! �1 so that for each � 2 [0; 2�]A(�n)X�n d! V � � G�whenever �n " �1 and ei (�n) ! ei�.In particular the set of df's F�, � 2 �\ [0;1) is stochastically compact: Any sequenceF�n contains a subsequence which may be normed to converge weakly to a non-degeneratelimit distribution. See de Haan & Resnick [1984]. The family of all possible limit variablesaV � + b is closed under the Esscher transform. It contains rv's from the extended gammafamily but also bounded rv's and unbounded rv's which are not semi-stable.



Limit laws for exponential families 16These two examples give an indication of the behaviour of the sequence X�n under thecondition that AnA�1n+1 ! C 6= id. However in order that the limit distribution in (4.1)belong to the class F(;C) it is not necessary that the sequence AnA�1n+1 converge. Largegaps may occur. From Section 2 we know that the limit V belongs to F(;C) if thereexist integer sequences qn !1 and kn > qn so that AqnA�1kn ! C and (�kn��qn)aqn ! .We therefore introduce the set H0 of all C 2 G, C 6= id, which are limit of a sequenceCn = AqnA�1kn with kn > qn !1.Relation (2.7) givesCnVkn d= EnVqn (4.2)where we write Cn = AqnA�1kn as above and n = (�kn � �qn)aqn . Since we assume thatCn ! C Theorem 2.7 applies: n !  2 [0;1]. If  = 1 there exists a constant c suchthat V � c � CV and the rv V is bounded. If  is �nite then CV d= V and V belongsto the set F(;C).This yields the following dichotomy:Theorem 4.4 If H0 is non-empty then eitherV is bounded and  =1 for each C 2 H0, orV is unbounded and  is �nite for each C 2 H0.Our next result extends Proposition 4.1 and is a partial converse to Theorem 3.3.Theorem 4.5 Suppose (4.1) holds and the sequence (kAnA�1n+1k) is bounded. If the limitvariable belongs to the extended gamma family then (1.3) holds.Proof The limit variable V satis�es the stability relations CtV d= E(t)V , t 2 R,see Proposition 3.2. Write (�n+1 � �n)an = n = (tn). The sequence (tn) is bounded.Equivalent are: tkn ! t0, kn ! 0 = (t0) and AknA�1kn+1 ! C�t0 . These relations implyEknVkn = Akn+1A�1kn Vkn d! Ct0V = E0V and (by Proposition 2.4) EeknVkn ! Ee0V .Now de�ne A(�) := C�sAn � = �n + (s)=an; 0 � s < tn:We have to prove that A(�n)X�n d! V for any sequence �n " �1. It su�ces to considersequences �n = �jn + �n=ajn with �n = (sn)! �0 = (s0) for 0 � sn < tjn . ThenA(�n)X�n d= C�snAjnE�n=ajnX�jn = C�snE�nVjn :



Limit laws for exponential families 17Now observe sn ! s0, �n ! �0. The bound 0 � �n � n implies Ee�nVjn ! Ee�0Vand hence E�nVjn d! E�0V and A(�n)X�n d! C�sE(s)V d= V . 2The condition that the limit variable belong to the extended gamma family is lessrestrictive than it seems. Since the sequence AnA�1n+1 is bounded, the set H0 is non-empty. Hence the condition will be satis�ed if 1) H0 contains a sequence Cn ! id, or 2)V is unbounded and H0 is not contained in a discrete subgroup Ck, k 2 Z, of G.Without conditions on the sequence An every limit law is possible in (4.1).Example 4.6 A Cauchy-distributed limit variable V is possible in (4.1).Proof We shall construct a rv X with density f so that X�n � �n converges to a rv Vwith density 1=�(1 + x2) for �n = n2.Let In be the interval [�pn;pn] and de�nehn(u) = eu2=2�(1 + u2)1In(u) n � 1:Now introduce h as maximum of translates of the functions hn: Set h(n2 + u) = hn(u)for n � 1 and u 2 In and set h(x) = 0 elsewhere. Similarly de�ne h�(n2 + u) = en forn � 1 and u 2 In and h�(x) = 0 elsewhere. Then h � h�. De�ne g(x) := h(x)e�x2=2 andg�(x) := g(x)e�x=e�2=2. A simple computation givesg�n(u) := g�n(n2 + u) = h(n2 + u)e�u2=2:this means that g�n(u) = 1=�(1 + u2) on In and g�n(u) = 0 for pn < juj � n. The tails ofg�n are negligible: Lemma 4.7 below implies thatg�n(u) � h�(n2 + u)e�u2=2 � e�u2=6 n � 4; juj � n:Hence kg�nk1 ! 1. Now let the rv X have density f = g=c with c = kgk1. Then X�n � n2has density g�n=cn for n � 1 where cn = kg�nk1 ! 1. 2Lemma 4.7 The function h� in Example 4.6 satis�es the inequalityh�(n2 + u) � eu2=3 juj � n; n � 4:Proof Introduce the concave piecewise linear function  : [0;1)! [0;1) with the valuen in n2 � n for n � 1. Then h� � e and  (m2 + u) � u2=3 for juj � m and m � 4. (Theinequality holds in u = �m and  0(m2 + u) = 1=(2m+ 1) � 2u=3 in u = m+ 0.) 2



Limit laws for exponential families 18Doeblin introduced the concept of universal distributions in his study of the asymptoticbehaviour of sums of iid rv's. Let Sn be the sum of the �rst n terms of a sequence ofindependent samples from the df F . The distribution F is universal if for each rv V thereexists a subsequence k1 < k2 < � � � and a sequence of positive a�ne normalizations Anso that AnSkn d! V . Doeblin [1946] established the existence of universal distributions.See Feller [1966, vol. 2, p. 555] for details. One can introduce a similar concept forexponential families. An exponential family X�, � 2 �, is universal if for each rv V thereexists a sequence �n " �1 = sup� and a sequence of positive a�ne transformations Anso that AnX�n d! V .Theorem 4.8 Universal exponential families exist.Proof First note that there exists a sequence of df's Qn on R which is dense in the spaceof all probability distributions with the topology of weak convergence. We can choose thedf's Qn to have a continuous density qn which is bounded by en=2 and which vanishesoutside the interval In = [�pn;pn]. The construction of Example 4.6 yields a rv X withdensity f such that X�n � �n has density gn=cn where gn agrees with qn on [�n; n] andcn ! 1 since the function g�n is bounded by e�x2=6 outside the interval [�n; n] for n � 4.As in the example we take �n = n2.Let V be a rv with df Q. There is a sequence kn " 1 so that Qkn ! Q weakly. ThenX�n � �n d! V if we choose �n = k2n. 2Universal exponential families have the property that any df Q(x) is limit of somesequence F�n(anx + bn) with �n " �1. With more e�ort one can show that this is alsopossible under the additional restriction that the sequences �n are asymptotically dense:�n+1 � �n ! 0. This result will be published elsewhere.A further question of interest is: Do there exist non-degenerate df's F such that onlydegenerate limit distributions are possible in (4.1)?If the df F of X has a jump in its upper endpoint x1 then PfX� = x1g ! 1 and onlya degenerate limit is possible in (4.1). Less trivial examples are:Example 4.9 Let F have density f(x) = ce�x=x on x � 1. Then (4.1) will hold only forconstant limit variables V .Proof Z� = �X1�� has density f�(x) = c(�)e�x=x on [�;1). If � # 0 then f�(x)=c(�) !e�x=x on (0;1) and c(�) � log(1=�). Hence F�(�u) ! 1� u for u 2 (0; 1) for � # 0. Take



Limit laws for exponential families 190 < u << 1. The half line [�u;1) carries weight u > 0, but a large part, 1 � 2u, ofthe probability lives on the relatively short interval [0; �2u]. Since �2u = o(�u) there is anatom of weight � 1 � 2u in the limit. Because u > 0 is arbitrary the limit can only bedegenerate. 2Note that F�(�u)! 1� u implies that log(X1��)= log(1=�) d! U where U is uniformlydistributed on (0; 1). This means that the exponential family X� has a non-degeneratelimit under power norming: Take c(�) = � log(1� �) thenX1=c(�)� d! eU �! 1:For recent work on power norming for extremes, see Pancheva [1984] and Ravi [1991].With the arguments of Example 4.9 one may show:Example 4.10 Let F have density f(x) = ce�x(log x)�=x on (e;1). For � � �1 thelimit relation (4.1) has only constant limits. Let U be uniformly distributed on [0; 1]. If� > �1 then logX�log(1=(1 � �)) d! U1=(1+�) �! �1 = 1:If � = �1 then even power norming yields only constant limit variables but(log logX�)= log log(1=(1 � �)) d! U; �! 1:Let [F ] denote the type of the non-degenerate df F . In this paper we have studied thebehaviour of the curve [F�] in the space of non-degenerate probability types. Introduce�(F ) as the set of limits of sequences [F�n ] with �n " �1. If [F�] converges to a point [G]then �(F ) is a singleton and [G] belongs to the one-parameter extended gamma type familyof Example 2.9. We have seen examples where the limit set �(F ) is a circle, a line, thewhole space of types (for universal exponential families) and the empty set (Examples 4.9and 4.10).The asymptotic behaviour of the tail of the df F is reected in the asymptotic behaviourof the tail of the mgf. The exponential family F� for � " �1 describes the tail behaviourof F . In terms of the cgf � the exponential family consists of translates of the graph ofthis convex function �. It is not clear how the wide range of behaviour of the curve [F�]hinted at in this section is reected in the asymptotic behaviour of the convex analyticfunction �. More insight in this question should lead to a better understanding of therelation between the tail behaviour of a df and its mgf.
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