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Abstract

For a real random variable X with distribution function F' define
A={AeR:K(\) :=Ee* < o0}.

The distribution F' generates a natural exponential family of distribution functions
{F, A € A}, where
dFy\(z) := eMdF(z)/K()\) X €A.

We study the asymptotic behaviour of the distribution functions F as A increases to
Ao :=sup A. If Ao = oo then F) | 0 pointwise on {F' < 1}. It may still be possible to
obtain a non-degenerate weak limit law G(y) = lim F)\(a)y + by) by choosing suitable
scaling and centering constants ax > 0 and by and in this case either G is a Gaussian
distribution or G has a finite lower endpoint yo = inf{G > 0} and G(y — yo) is a
gamma distribution. Similarly if A\ is finite and does not belong to A then G is a
Gaussian distribution or G has a finite upper endpoint ¥y, and 1 — G(yeo — ¥) is a
gamma distribution. The situation for sequences A, T Ao is entirely different: Any
distribution function may occur as the weak limit of a sequence Fy, (anz + by,).
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1. Introduction

Suppose X is a real random variable with df F. Let
A= {AER|K(A) = B X <oo} (1.1)

be the set where the moment generating function (mgf) K(\) of X is finite. The set A
is a connected subset of R which contains the origin and on which the mgf \ — K())
is continuous and strictly positive. Associated with F' is the natural exponential family

{F\, X € A} where
dFy\(z) := MdF(z)/K()\) X € A. (1.2)

For convenience, we let X be a random variable with distribution F\. We study the
asymptotic behaviour of the df’s F)\ for A — Ay, := sup A. Note that Ay, > 0. We assume
Aoo > 0.

If Aw € A then F) | F)_ pointwise; see Corollary 2.1. If Ao ¢ A, then F) | 1, )
where zo, = sup{F < 1} is the upper endpoint of the df F'; see Proposition 2.3. In the
latter case, the types in the exponential family {Fy, A € A}, may have a limit law for
A — Ao. This means that it may sometimes be possible to normalize the variables X of
the exponential family by translation and positive scaling so that for some nonconstant

random variable Y,
A Xy =—"72= =Y, A= Ao (1.3)

Here -5 denotes convergence in distribution.

This paper determines the possible non-degenerate limit laws in (1.3). Our main result,
Theorem 3.3, states that if there is a non-constant limit variable Y in (1.3), then one can
choose the centering by and scaling a) so that Y is a standard normal variable, or so that
Y or —Y has a gamma distribution. In a subsequent publication, we shall describe the
domains of attraction of the limit laws.

This paper is partially motivated by Balkema, Kliippelberg and Resnick [1993], where
it was found that asymptotic normality of F\ has useful implications for the study of sums
of independent rv’s. A class of thin tailed densities was identified which is closed under
convolution This closure property is dependent on the fact that each density of the family

had an associated exponential family which is asymptotically normal. Rootzen [1987] and
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Davis and Resnick [1991] use related ideas for applications to extremes of moving aver-
ages. Feigin and Yashchin [1983] and Balkema, Kliippelberg and Stadtmiiller [1995] give
Tauberian results based on the asymptotic normality of exponential families. If asymp-
totic normality of exponential families was useful for such things as convolution closure
problems and Tauberian theory, we wondered what other weak limits could arise when
converging to the boundary of A and what applications were possible when convergence
was to a nonnormal weak limit. The present paper is a first step in the exploration of
applications of nonnormal limits.

The importance of exponential families in statistics and for asymptotics in probability
theory can hardly be overestimated. In analysis exponential families occur as Esscher
transforms and are used in Laplace’s principle and for saddlepoint approximations. A sur-
vey of their use in statistics is Barndorff-Nielsen [1978], Barndorff-Nielsen and Cox [1994]
or Brown [1986]. For connections with saddlepoint approximations, see Barndorff-Nielsen
and Klippelberg [1997] and Jensen [1995]. Limit behaviour of F) is of mathematical
interest and moreover the exponential family offers an effective way to investigate the
asymptotic behaviour of the mgf K and the cumulant generating function (cgf) x = log K.

Convergence in (1.3) depends on the behaviour of the cgf x at A. The behaviour of
the analytic function x at a fixed point Ay < Ay is well known:

t o’t?
nk(Xo + —=) —nu(N) — ptv/n — — n — 00. (1.4)

Vvn

Here u = uy, = '(\o) is the expectation of X, and 02 = 0/2\0 = k" (Ao) the variance.
Relation (1.4) is the formula for the second derivative of x at Ag. It also is the Central Limit
Theorem for sums of independent observations from the df F), since n(k(Xg + &) — k(o))
is the cgf of the df Fy". Teicher [1984] has investigated relation (1.4) for a sequence
An — 00, extending work of Feller [1969] on large deviations. More recently Broniatowski
and Mason [1994] have looked at very large deviations. There the behaviour of the mgf
for A = Ay plays a decisive role.

To understand the behaviour of the cgf k for A = Ay, assume existence of the following

limit:
kx(t) = k(A +t/o) — k(A) —ut/o — n(t) A= Ao (1.5)

The right hand side of (1.5) describes the convex function s around the point A normalized

so as to have a horizontal tangent at £ = 0 and curvature 1. It is not surprising that the
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parabola 7(t) = t?/2 occurs as a limit — corresponding to the normal law for the limit
variable Y in (1.3). The second limit function, the logarithm, corresponds to two families
of gamma distributions. In Theorem 3.4 we prove that weak convergence (1.3) entails
convergence of the cgf’s. Hence we may use the first two moments of X to normalize,
thus obtaining the limit relation (1.5).

Statistical applications have motivated interest in exponential families closed under
certain transformation groups. Lehmann [1983] mentions exponential location families.
Casalis [1991] classifies natural exponential families on R¢ which are invariant under certain
groups of affine transformations and Bar-Lev and Casalis [1994, 1998] describe exponential
families G, v € I, on R which are invariant under certain groups of affine transformations.
For each v € I there exist an a > 0 and b € R so that G, (z) = G(az +b).

The paper is organized as follows: In Section 2 we first prove certain continuity results.
From these we derive a stability property for the limit variable Y which allows us to obtain
in Section 3 the possible limit distributions, the normal and gamma distributions. Section 4
comments briefly on limit relation (1.3) when convergence is only along sequences A\, T Axo
which makes the situation complex since then the cgf’s need not converge. Example 4.6
shows that the Cauchy distribution may occur as weak limit and Theorem 4.8 shows that
the behaviour of the convex function k may be quite bizarre.

In a following paper we shall describe domains of attraction and give an application to
saddlepoint approximations.

This paper treats the asymptotic behaviour of the exponential family in the neighbour-
hood of the upper endpoint of A. The transformation X’ = —X allows us to translate
these results into statements about the asymptotic behaviour in the neighbourhood of the
lower endpoint, inf A. If Y is a limit variable for the exponential family generated by X
in the upper endpoint then —Y is a limit variable for the exponential family generated by
—X in the lower endpoint.

Obviously the multivariate case is the really interesting situation. The setting there is
simple: The cgf of a random vector is a convex function defined (finite) on a convex subset
A C R?. For simplicity assume A is open. The cgf is analytic. What is its behaviour as one
approaches the boundary? Normalize the cgf for Ay € A so that the tangent hyperplane in
Ap is horizontal and the second derivative is the standard inner product. The associated

random vector X3 has zero expectation vector and the identity matrix as covariance. What
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happens to the distribution of X} as A approaches a point on the boundary of A or tends
to infinity? Do there exist non-degenerate limit laws? Do the mgf’s of X3 converge? Is
it possible that X} does not converge in distribution but that X does converge for some
other normalization?

This paper will answer some of these questions in the univariate case.

2. Stability of the limit laws

Random variables arising from a limit procedure frequently satisfy a stability condition.
For the df G of the limit Y of the exponential family in (1.3), the stability relation takes

on the form
G, (z) = G(az + b) a>0,beR. (2.1)

Indeed G satisfies a large number of such relations. The random variables Y, in the
exponential family of the limit variable Y all are of the same type! The essential step in
establishing this stability for the limit variable is Proposition 2.12.

We start by studying the behaviour of {F)} as A 1 Ay = sup A without using any
normalization. We then consider the following question: Suppose a sequence of df’s F),
converges weakly to a non-degenerate df F. Let G, = (Fy)y, be a df in the exponen-
tial family of F), and suppose G, — G weakly. What is the relation between the limit
distributions F' and G7 We answer this question in Theorem 2.7. In the second part of
this section we consider weak limit behaviour under positive affine transformations and
consider Fy(ayz + b)) for A = As. The norming constants ay > 0 and by may be chosen
to vary continuously with A. The limit distribution will depend on the normalization.
By Khintchine’s convergence of types theorem different non-degenerate limit distributions

will belong to the same type.

Proposition 2.1 For any fized © for which 0 < F(z) < 1 the function A — Fy(x)
is strictly decreasing on A and continuous. It is also true that X\ — Fy\(x—) is strictly

decreasing and continuous on A.

Proof For monotonicity see Brown [1986, Cor. 2.22]. For continuity, if A — X, conver-

gence of

[ 1somaF @) = KOVR (&) - K Oa) iy (0)
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follows by dominated convergence with dominating function e®* V ef* with o, 5 € A. The
continuity of the mgf K on A gives F)(z) — Fy,(x). O
Corollary 2.2 If A\, =supA € A, then F\ | Fx_ for A1 As.

The interesting case is when the upper endpoint A\, does not lie in A.

Proposition 2.3 Suppose Aoo & A. Let 2o, = sup{F < 1} < oo denote the upper
endpoint of the df F. Then Fx | 1j; «)-

Proof If A\ is finite, then 2, = 0o and K(\) = oo for A = Aeo. (Else K(Aoo — 0) < 00
and Ao € A by Fatou’s lemma.) Hence for any z; > 0
1
F\(z1) = / AR (z)/K(\) < e /K(A) =0 A= As.
o
Now assume Ay = 0o. If F' is degenerate the statement is obvious. Else choose 1 <

Zo < oo 0 that F(z1) > 0. Then 1 — F(x3) =p > 0, and

[ eMdF(z) N
1 — Fy(z2) _ (22,0) e p
= > A .
F\(z1) [ eMdF(z) = el - -
(700711]
Since 1 — F)\(z2) < 1, we have F)(z1) — 0. O

For convenience, we associate to each A € A a rv X, with df F). We shall write
Xy =: B\ X where E) denotes the Esscher operator. The Esscher operators E) satisfy the
additive law

E”E)\ = E/\_|_M A, A+ p €A

Now suppose X,, are rv’s and Y,, = E,_ X, for some sequence ,. Let X,, converge to
Tn

X in distribution and Y;, to ¥;. Does it follow that v, — vo and ¥ < E, X7

Proposition 2.4 Suppose X, 4 Xo and v, — vo- Let X, have mgf K, for n > 0.
Assume that Ky, () is finite for n > 1 and write Y,, = E,, X,,.

(1) If Kn(m) = Ko(70) < 00, then Y, 5 Yi.

(2) If Yn, Sy for some rvY, then Y = E, Xy and K, (yn) = Ko(y0) < 00.

Proof Let a, = K,(v,) and let 7, be the distribution of X,, for n > 0. Set du,(z) =

e"®dm,(x). Then a, = p,(R) for n > 0 and Y,, has distribution p,, := p,/a, for n > 1.
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Convergence [ ¢du, — [ @dug holds for continuous functions ¢ with compact support.
This means that p, — po vaguely and hence po(O) < liminf p,,(O) for open sets O. For
O = R this implies

ap < liminfa,,. (2.2)

To prove (1), note if a, — ag < oo, then u, — po weakly and this also holds for the
normalized measures so that Y, 4 Y.

For (2), suppose p, — p weakly for some probability measure p. Write
dmp(z) = ane” "™ dpp(z) .

If a,, — oo then p,(K) — 0 for any compact interval K, and hence p,, — 0 vaguely. This
contradicts the assumption that p, — p weakly. Similarly a,, — 0 implies m,(K) — 0
which contradicts the weak convergence m, — m. Hence the sequence (a,) is bounded.
We claim that ag is the only limit point (which proves (2)). Any limit point “a” satisfies
ap < a from (2.2). On interchanging the role of X,, and Y;,, we find 1/ag < 1/a. The two

inequalities combined give a = ayp. a

Example 2.5 The sequence K,(v,) in Proposition 2.4 may converge to a finite limit

a # Ko(vo)-

Construction Take 7, = 1 for all n and let p, have mass 1/2 in the two points 0 and

Zp=n. Then X, 5 Xo=0anda, =1/(1/2+¢ "/2) >a=2>1=aq. 0
Example 2.6 It may happen that X, N X, Y,=FE, X, 4 Y and Y — O0.

Construction Let p be a finite measure which charges both (—o0,0) and (0, 00). Let m,
be the probability measure ¢, (1 Ae”"")du(z) for n > 0. Take v, =n. ThervY, = E, X,
has distribution dp, () = b, (™ A1l)du(z). It is clear that X, converges in distribution to
a rv X with probability distribution dw = cl(_, gjdp and Y, to a rv Y with distribution
dp = bl o0)dpt- a

We can now prove a kind of convergence of types theorem where “type” has to be

interpreted as belonging to the same exponential family.

Theorem 2.7 LetY, = E, X, forn>1 and a, = EemXn . Suppose X, i) X with X

d
non-constant, and Y, — Y.
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If (yn) is bounded, then v, — 7, an — a = Ee’X <00 and Y = E, X.
If supy, = 0o then v, — 0o and there exists a point ¢ € R so that X <c < Ya.s.

If inf~y,, = —o0 then v, — —oo and there exists a point ¢ so that Y < c¢ < Xa.s.

Proof First consider the case v, — oco. Suppose the distributions overlap: There exist
a < b so that P{X > b} > 0 and P{Y < a} > 0. Let § denote the minimum of these
two positive numbers. Then P{X,, > b} and P{Y,, < a} eventually exceed §/2. Thus
eventually

5/2 < P{Y, <a} < e P{X, <a} ——C—) 1-4/2
1—46/2 = P{Y, >b} — emP{X, >b} — 5/2

This contradicts the assumption that v, — oco.

The case v, — —oo is treated in the same way.

There are three mutually exclusive alternatives: Either (i) X <c¢ <Y, or (ii) Y <c¢ <
X, or (iii) neither (i) nor (ii) hold. Hence the sequence =, is bounded, or it diverges to
+o00 or it diverges to —oo. If (7,) is bounded, then by Proposition 2.4, v, converges to
some value v since the Esscher transforms E,X and EgX are different for o # 3 if X is

not constant. a

Now return to the exponential family {X), A € A} and assume that A, ¢ A. To
obtain a non-degenerate limit distribution for the variables X in the case Ao ¢ A, we
have to normalize these variables, so assume (1.3) holds, (X — by)/ax 4 Y for some
non-constant random variable Y. By Proposition 2.1 the family {Fy} of X is weakly
continuous in A. This makes it possible to choose the coefficients a) > 0 and by € R to be

continuous on A.

Lemma 2.8 The constants ay and by in (1.3) can be chosen to be continuous functions

of X on the set A.

Proof Write Y = ¢(U) with 1 increasing and U uniform (0,1). One may take for 1) the
left-continuous inverse of the df of Y. Choose p € (0,1/2) so small that ¢ (p) < (1 —p).

bim /pl_p/Qz/)(u)du 0= /11_p/2¢(u)du—/pp b (u)du.

/2 —p /2
Let Y’ denote the normalized variable (Y — b)/a. Similarly write X\ = ¢, (U) and define

Set

the smoothed median by and smoothed range a) as above with ¢, replacing . Then
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ay > 0 eventually and convergence Ay X, E) Y for some family of normalizations A)
implies convergence (X, — by)/ax 4V Weak continuity of A — ¢, is equivalent
to weak continuity of the exponential family F) and implies continuity of the norming

constants a) and by. O

We will need the fact that Esscher operators react in a simple way with scaling and

translation:
Ey(aX +b) L aByX +b (2.3)

for A € A, a > 0 and b € R This follows since both sides of (2.3) have the same mgf
2z e K(az + \)/K(\).

We now discuss the stability property of the limit variable Y in (1.3). Let M(y) = Ee?¥
be the mgf of Y and {Y,,,y € I'}, the associated exponential family with I' = {M < oo}.
We shall see below that there exist many pairs (v, C) with v € T and C in the group G of
positive affine transformations z — C(z) = (x — b)/a with @ > 0 and b € R which satisfy

the stability relation

4

E.Y Cy . (2.4)

Example 2.9 The extended gamma family.

Construction The following variables satisfy (2.4) for all v for which the mgf of YV is
finite.

1) If Y is N, 02)-distributed then Y, £ Y + o2y for y e T =R

2) The standard exponential rv satisfies the relation Y, 4 Y/(1 — ) for v < 1. Simi-
larly Z = =Y satisfies the relation Z, 4 Z[(1+7) for v > —1.

3) More generally if Y (or —Z) has a gamma density 2° ‘e ?/T'(s) on (0,00) then
Y, £ Y/(1—y)fory<1(and Z, & Z/(1+~) for y > —1).

These rv’s generate exponential families whose df’s are all of the same type. O

Since the gamma distribution with shape parameter s is asymptotically normal for
¢ =1/s — 0 we have a continuous three parameter family of df’s H.(ax +b), a > 0, b and
c real. Here Hj is the standard normal df, H_.(z) = 1 — H.(—z) for ¢ > 0, and H, is the
df of the normalized gamma variable V. = (Y — s)/+/s, with ¢ = 1/s, where Y has density
5~ 1e™® /T'(s) on (0,00).
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Our main result states: This three parameter extended gamma family is the set of limit
laws for exponential families, both for A — sup A and for A — inf A.

Note the resemblance to extreme value limit theory where there also is a continuous
three parameter family of limit distributions. See de Haan [1970, p. 104]. This resemblance
is not due to some innate relation between extremes and exponential families, but results
from the structure of the group G of positive affine transformations on R. The group G has
two kinds of elements: Translations, and multiplications with a given center. The normal
distributions are stable for translations; the gamma distributions with a given endpoint
are stable for multiplications having the endpoint as center. The extended gamma family
reflects this structure.

We now want to show that the limit variable Y in (1.3) has to satisfy a number of
stability relations of the form (2.4).

With the positive affine transformation A in G, given by Az = (z — b) /a we associate

the point (loga,b) in the plane. It is then natural to set
|A]l := [|(log a, b)[|2 = V/(log a)* + b>. (2.5)
The function || - || is not a norm on the group G, in particular |A~!|| # ||A||, but it does

describe the topology of G adequately for our purpose.

Proposition 2.10 Let U,, v € I', be the exponential family generated by the non-constant
ro U. Suppose Cp, € G, 7 €T, CLU,, Y Z with Z non-constant, v, — v > 0. Then

[Cull = 00 iff v ¢T.

Proof Supposey € I'. Then E, U 4 E.,Y by Proposition 2.1. The convergence of types
theorem implies that Z = CU, and C,, = C with ||C|| < oo. For the converse assume that
(Cy) contains a convergent subsequence, say C,, = C' as n — co. Then E, U 4 oz

Proposition 2.4 implies v € I'. a

In order to characterise the possible limit distributions in (1.3), we need equation (2.4)

to hold for a large collection of ~y-values.

Lemma 2.11 Suppose (1.3) holds. For anyr > 0 and p € [0, \o) there ezists X € (1, Aoo)
such that

1AL AV (A = p)ay =7 (2.6)
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Proof Write Y* = A,X). (The upper index notation is used here to avoid confusion
with the exponential family generated by the variable Y.) Fix p € A. Use (2.3) and write

AAYY £ Ep ., Y" AEA (2.7)

By assumption YA LY for A — Aoo- Apply Proposition 2.10 with E(, ), Y* in the
role of U, and (A,A,")~" in the role of C,, to conclude that [|(4,4,")7!| — oo as
XA = Aso. Check that [|Cy| — oo if |[C;!|| = co. By Lemma 2.8 the quantity || A, A" ||
varies continuously from 0 to oo as A increases from p to As. So the leftmost term in

(2.6) will equal r before A reaches the value A. |

Fix r > 0. Let p, — Ao and choose A, > py, as in the Lemma. Choose a subsequence

k1 < kg < --- so that
Ck, = Ay, A;kln —Ceg, Ve 7= (Mo = Bk ) Opry, —> -

This is possible since ||Cy|| and 7, are bounded by r. Then Cp Y tn 4 E,,, YHen

by (2.7). Theorem 2.7 gives CY 4 Y, with ||C|| Vv = r by continuity. This establishes

the next result:

Proposition 2.12 If (1.8) holds and Y is non-degenerate then for each r > 0 there exists
a constant y > 0 and a positive affine transformation C with ||C|| Vv = r such that (2.4)

holds: E,Y £ CY. 0

The question whether all distributions in the exponential family of the limit distribution

are of the same type will be settled by algebraic arguments in the next section.

3. Solutions of the stability equation

The stability equation (2.4), E,Y 4 CY, allows us to determine the possible limit laws
for the exponential family X, for A — .

For statistical applications it is of importance to characterize exponential families which
are invariant under a given group H of transformations. Lehmann [1983, p.35] observes
that the normal distributions with fixed variance constitute an exponential family which
also is a location family, and that the random variable clogY with Y gamma is the only
other variable which generates such a family. This result is due to Dynkin in 1951. For

the simpler case of natural exponential families Casalis [1991] in a very readable paper has
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solved the characterization problem when # is a group of translations on R? and for some
other classical groups of affine transformations on R?. Bar-Lev and Casalis [1994, 1998]
solve the problem for the case when H is a subgroup of the group of affine transformations
on R. We are grateful to a referee of a previous version of this paper for pointing out these
two references. We understand that full proofs of the statements in the second paper will
be published shortly and restrict ourselves here to a short exposition of the results of this
paper which are relevant to us.

If a natural exponential family is invariant under a group H of positive affine transfor-
mations, and the df’s are non-degenerate then H is a closed commutative subgroup of G.
If H is a group of translations then the smallest interval which supports the distribution
functions G¢, £ € I', of the invariant exponential family is the whole line. If H is a group
of multiplications with center ¢ the smallest interval is the half line (—ooc,q) or (g, 00).
From these results one may conclude that the group H either is the discrete group C*¥,
k € 7, generated by a positive affine transformation C' # id, or the one dimensional group
C', t € R. There are other closed subgroups of G but these do not enter the picture.

In the present paper we are concerned with the more elementary question of describing
all df’s G which satisfy one or more stability relations of the form (2.1). Let F(y,C) denote
the set of all df’s G’ which satisfy the relation G(az +b) = G,(z) for Cz = (z — a)/b.

Example 3.1 There exist rv’s V' which satisfy the relation V, 4y + B only if v and B

are integers.

Construction Let V be the random integer with distribution
PlV=kl=p=eF"/c kez (3.1)

with ¢ a norming constant. The rv Vg has distribution P{V; =k} = e k=120 (¢). Tf ~
is an integer then V, 4y 7, but if v is not an integer then V and V, are not of the

same type. d

We shall now show that for G € F(v,C) the exponential family G¢, { € I', generated

by G is invariant under the discrete affine group H generated by C.

Proposition 3.2 Let Y, { € T', be an exponential family. Suppose a # B3 lie in T' and
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Ys L CY, where Cz = (x — b)/a with a > 0. Then for all integers t and all £ € T
{+(B—a)t ifa=1

¢ at —1 .

a'é+——(B—aa) ifa#l.

CY L Yo Cle= —~ (3.2)
a—1

IfY belongs to the extended gamma family then these relations hold for allt € R. Moreover
for each g €T the map t — v = Clvyg is a strictly increasing function from R onto T'. It

satisfies the differential equation
y=ry  70) =, v(1) =a(y —a) +p, r =loga.

Proof Equation (3.2) is an application of the relation (2.3). First assume « # 1. Write
¢ =a+v. Then

d
CY = CYayr = CE,Ya = EupCYa = Eo,Ys = Yy0y = Youe

with
Cik=p+all—a)=al—m)+m (1l —a) =0 —aa.

Hence C'Y 4 Yete with CLE = a'é + (1 — a)m = o’ + (o' — 1)(B — aa)/(a — 1).
The case ¢ = 1 is simpler.
The second part follows by a continuity argument (or direct inspection). Surjectivity

of the map v results from Proposition 2.10. a

Since the limit variable Y in (1.3) satisfies a stability relations of the form (2.1) with
|C|| Vv = r for each r > 0 the exponential family is invariant under a continuous group
‘H. From the results of Bar-Lev and Casalis [1994, 1998] it follows that ¥ has a Gaussian
distribution if H is the group of translations and that there exists a real d # 0 so that
(Y — q)/d has a standard gamma distribution on (0, 00) if H is the group of all multipli-

cations with center ¢q. This gives:

Theorem 3.3 Let F\, A € A, be the exponential family (1.1). If A\oo = supA does not
belong to A and if there exist constants ay > 0 and by € R so that F)\(ayz+by) — G weakly

for some non-degenerate df G then G belongs to the extended gamma family introduced in

Ezxample 2.9.

The exponential families of gamma, distributions are generated by Radon measures with

densities z°1(g o) on R with s > —1. They converge to the Gaussian exponential famlily if
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s — oo provided we apply a proper normalization. What happens if s - —17 For s < —1
the measure 2°1 (g o (z)dz is no longer a Radon measure on R. However one can truncate
this measure and ask for the limit behaviour of the exponential family of probability
measures with densities f,(r) = c(s,7)e7* 21} )(7), as ¥ T 700 = 0. For s < —1 the
answer is simple: o, lies in I' and Corollary 2.2 applies. If s = —1 the situation is
more delicate. There exists a non-degenerate limit distribution, but only under non-linear
normalization. See Example 4.10.

Weak convergence in (1.3) implies convergence of the mgf’s. The significance of this

result will become apparant in the next section.

Theorem 3.4 Let (1.3) hold. Suppose Y is non-constant and oo € A. Then the mgf’s of
the normalized variables Ay Xy converge to the mgf of the limit variable Y on the interval

I'={y:Ee" < o0}

Proof Let v € I'. There exists a unique positive affine transformation C = C(vy) so that
cy & Y, by Proposition 3.2.

Let pn T Ao and set Y, = A, X, . We write Axz = (z — by)/a) and assume that
ay > 0 and by depend continuously on A\. We claim that there is a sequence A\, — A s0
that v, = (Ap — ptn)ay, — v and Cy, = AMnA;: —C.

First assume v < 0. Set r := sup{||C(§) | v < £ < 0}. Then [|A,,|| = oo by
Proposition 2.10 and hence [|A,, Ayt| > 7+ 1 and p, > 0 for n > ng. Let n > ng.
Let A decrease from p, to 0. By continuity there is a maximal value A, for which 7, :=
(An — pp)ay, = v or ||Cy, = ||AunA;\nl|| = r + 1. (In the latter case v, € [0,7].) Note
that A\, = A since A\g, — A € [0, Aso) implies that ||C|| — oo by Proposition 2.10. Now
assume 7, — (3 and C,, — B. (Take subsequences if need be.) Then E,, Y, 4 Cp,Y A 4
BY by (2.7). Hence BY 2 EgY and Ee™Y» — EefY by Proposition 2.4. So B = C(f),
and B € [vy,0] implies ||B|| < r. Hence eventually ||C,|| < r + 1 which implies v, = 7.

Thus we see that 7, — y. The proof for v > 0 is similar. O

Corollary 3.5 If (1.3) holds, convergence to a nondegenerate limit still takes place if F

is centered and scaled by expectation and standard deviation.
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4. Sequential limits

In this section we only assume that the limit relation (1.3) holds for a sequence A, T Aoo.
As above A\ = sup A € A. We adapt the notation slightly. V is a non-degenerate random

variable such that
d
Vo= Ap Xy, = (X, —bn)/an, — V. (4.1)

We treat two questions. 1) What information does the sequence (4,) give about the

distribution of the limit variable V'? 2) What limit distributions are possible in (4.1)?

Proposition 4.1 Suppose (4.1) holds. If A, 1A;' — id then (1.8) holds: There erist
functions a(X) > 0 and b(\) so that (X — b(N))/a(\) 4 .

Proof Khintchine’s convergence of types theorem implies A, X, 4 V. Set AN) = A,

+1
for A, < A < Apy1. Monotonicity of A — F)\(x), see Proposition 2.1, ensures that

ANXy SV for A = s O

Now assume A,;1A4,! — C # id. In the asymptotic theory of sums or maxima
this implies that the limit, if it exists, is semistable. See Hazod & Scheffler [1993]. For
exponential families semistability means that the limit distribution belongs to F (v, C) for
some v # 0. However the situation for exponential families is more complex than for sums

or maxima. We shall investigate the behaviour for translations.
Example 4.2 An integer valued limit variable.

Construction Let the random integer X have a logconcave distribution with P{X = k}
=pr=¢e * >0 for all k. So pr_1prr1 < pz. Assume pkﬂpk,l/pz — e 7 € (0,1) for
k — 00. Let A, = (a_1 + cp1)/2. Then Xy —n > V with V as defined in (3.1).
Now suppose (A, — A\,)/y = o € R Then Xy —n % V' where P{V' =k} =
e k=2)/2 /¢(o). All limit variables V' belong to F(v,C) where C is the translation
Cx=x+1. 0

The exponential family Fy of the rv X in the example above gives rise to a one-
parameter exponential family of limit distributions G, A € R. We are only interested in
limit types. Since Gy 11/2,(7) = Gx(7 — 1) the limit types in this example form a compact
family. Topologically this family is a circle. Let [F] denote the type of the df F. As

in the case of semi-stable limit distributions for sums and maxima one may describe the
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behaviour of the family of types [Fy], A € A, for A — A as a curve which spirals to a
limiting circle in the space of distribution types.

For exponential families there is an additional limit family. This limit family has no
counterpart in the asymptotic theory of sums or maxima.

Choose the weights p; above so that pk+1pk_1/p% — 0. The possible non-constant
limit distributions of the sequence X,, — n then are members of the exponential family
of Bernoulli variables, P{Vy = 1} = 1/(1 + e *) = 1 — P{V), = 0}, together with the
constant variable V = 0.

We shall now adapt this example so as to obtain a compact “circle” of non-degenerate

limit types.

Example 4.3 A rv X so that the set of limit types of the exponential family is a “circle”
consisting of the types of the following rv’s: U,, vy €R, E, W,, -1 <~y <1, —E. Here E
is exponentially distributed, U, is the exponential family generated by the uniform (0,1) rv

U and W, is the exponential family generated by the rv W with Laplace density e*|"’3|/2.

Construction Let X have density f = e™¥ where ¢ : R — R is a convex function which
is piecewise linear on each interval [k, k + 1] with slope Ag. Assume that Ay11 — Ay — 00
for k — 0o. Then X, —n % U where U is uniformly distributed on the interval [0, 1].

The reader can easily check that the set of limit types has the given form. O

The rv X with density f = e¥ in the example above has the following property: There
is a continuous family of non-degenerate limit distributions G?, 0 < 6 < 2, all of different
type, except that G° = G?", a continuous curve A : A — G and a continuous strictly

increasing function ¢ : A — R tending to infinity for A — A so that for each 6 € [0, 27]

AD) Xy, S V0~ gf

whenever A\, T Ay and eW(n) _y @il

In particular the set of df’s F\, A € ANJ0,00) is stochastically compact: Any sequence
F),, contains a subsequence which may be normed to converge weakly to a non-degenerate
limit distribution. See de Haan & Resnick [1984]. The family of all possible limit variables
aV? 4+ b is closed under the Esscher transform. It contains rv’s from the extended gamma,

family but also bounded rv’s and unbounded rv’s which are not semi-stable.
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These two examples give an indication of the behaviour of the sequence X  under the
condition that AnATj_il_1 — C # id. However in order that the limit distribution in (4.1)
belong to the class F (v, C) it is not necessary that the sequence AnA;}H converge. Large
gaps may occur. From Section 2 we know that the limit V' belongs to F (v, C) if there
exist integer sequences ¢, — oo and k,, > gy, so that A, A,;nl — C and (Mg, — g, )aq, — 7-
We therefore introduce the set Hy of all C' € G, C' # id, which are limit of a sequence
C, = Aan,;nl with k&, > ¢, — .

Relation (2.7) gives

where we write C), = Aan,;nl as above and v, = (Ag, — Ag,)aq,. Since we assume that
C,, — C Theorem 2.7 applies: v, — 7 € [0,00]. If v = oo there exists a constant ¢ such
that V < ¢ < CV and the rv V is bounded. If 7 is finite then CV 4 V, and V' belongs
to the set F(vy,C).

This yields the following dichotomy:

Theorem 4.4 If Hy is non-empty then either
V' is bounded and v = oo for each C' € Hy, or
V' is unbounded and vy is finite for each C € H,.

Our next result extends Proposition 4.1 and is a partial converse to Theorem 3.3.

Theorem 4.5 Suppose (4.1) holds and the sequence (||AnA;_|1_1||) is bounded. If the limit

variable belongs to the extended gamma family then (1.3) holds.

Proof The limit variable V satisfies the stability relations C*V 4

BV, t € R,

see Proposition 3.2. Write (A\,11 — A\n)an = ¥ = ¥(tn). The sequence (t,) is bounded.

Equivalent are: ¢, — to, vk, — Yo = Y(to) and Ay, A,;nl s C~". These relations imply

By, Vi, = Api1 A5 Vi, S CV = B,V and (by Proposition 2.4) EenVin — EemV.
Now define

AN :=C °A, A=Xp+7(s)/an, 0<s <ty

We have to prove that A(u,)X,, 4V for any sequence i, T Aoo- It suffices to consider

sequences [, = \j, + an/aj, with o, = y(sp) = a9 = y(so) for 0 < s, < t;,. Then

Apn) Xy S O A5 By s, X, = C "y, V.

n/a‘jn
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Now observe s, — sg, @, — . The bound 0 < a,, < 7, implies Ee®Vin — Ee®V

and hence E,,Vj, i> EoV and A(pn)X,, 3) C*SEV(S)V 4 V. 0

The condition that the limit variable belong to the extended gamma family is less
restrictive than it seems. Since the sequence Anzﬁl;_il_1 is bounded, the set Hg is non-
empty. Hence the condition will be satisfied if 1) #; contains a sequence C,, — id, or 2)
V is unbounded and H; is not contained in a discrete subgroup C*, k € Z, of G.

Without conditions on the sequence A,, every limit law is possible in (4.1).
Example 4.6 A Cauchy-distributed limit variable V is possible in (4.1).

Proof We shall construct a rv X with density f so that X, — A, converges to arv V'
with density 1/7(1 + z2) for A, = n?.
Let I, be the interval [—y/n, /n] and define
e’ /2
b (1) :mhﬂ(u) n>1.
Now introduce h as maximum of translates of the functions h,: Set h(n? 4+ u) = h,(u)
for n > 1 and u € I,, and set h(x) = 0 elsewhere. Similarly define h*(n? + u) = e” for
n>1and u € I, and h*(z) = 0 elsewhere. Then h < h*. Define g(z) := h(z)e *"/? and

gr(x) == g(x)e/\x/e)‘2/2. A simple computation gives

g (u) == gr, (n” +u) = h(n® +u)e™ /2,

this means that g (u) = 1/7(1 4+ u?) on I, and g (u) = 0 for /n < |u| < n. The tails of

g, are negligible: Lemma 4.7 below implies that
* *(, 2 —u?/2 —u?/6
gn(u) < h*(n” +ue <e n >4, |ul > n.

Hence [|g}]|1 — 1. Now let the rv X have density f = g/c with ¢ = ||g||. Then X, —n?

has density g} /¢, for n > 1 where ¢, = ||g}|l1 — 1. O
Lemma 4.7 The function h* in Example 4.6 satisfies the inequality
h*(n2 +u) < eu’/3 lu| >n, n>4.

Proof Introduce the concave piecewise linear function 1) : [0,00) — [0, 00) with the value
n inn? —n for n > 1. Then h* < e¥ and 9(m? +u) < u?/3 for |u| > m and m > 4. (The

inequality holds in u = +m and ¥'(m? +u) = 1/(2m + 1) < 2u/3 in u = m +0.) 0
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Doeblin introduced the concept of universal distributions in his study of the asymptotic
behaviour of sums of iid rv’s. Let S, be the sum of the first n terms of a sequence of
independent samples from the df F'. The distribution F' is universal if for each rv V there
exists a subsequence k1 < ko < --- and a sequence of positive affine normalizations A,
so that A, Sk, <% V. Doeblin [1946] established the existence of universal distributions.
See Feller [1966, vol. 2, p. 555] for details. One can introduce a similar concept for
exponential families. An exponential family X, A € A, is universal if for each rv V there
exists a sequence A\, T Ay = sup A and a sequence of positive affine transformations A,

so that A, X, 4 v
Theorem 4.8 Universal exponential families exist.

Proof First note that there exists a sequence of df’s (),, on R which is dense in the space
of all probability distributions with the topology of weak convergence. We can choose the
df’s Q,, to have a continuous density g, which is bounded by €"/? and which vanishes
outside the interval I, = [—+/n, y/n]. The construction of Example 4.6 yields a rv X with
density f such that X, — A, has density g,/c, where g, agrees with ¢, on [—n,n] and
¢n — 1 since the function g is bounded by e=#"/6 outside the interval [—n,n] for n > 4.
As in the example we take )\, = n?.

Let V' be a rv with df Q. There is a sequence k,, T oo so that Q, — @ weakly. Then

Xyn — Hn 4V if we choose pn = k2. a

Universal exponential families have the property that any df Q(z) is limit of some
sequence Fy (apx + by) with Ay, 1 As. With more effort one can show that this is also
possible under the additional restriction that the sequences A, are asymptotically dense:
An+1 — Ap — 0. This result will be published elsewhere.

A further question of interest is: Do there exist non-degenerate df’s F' such that only
degenerate limit distributions are possible in (4.1)?

If the df F' of X has a jump in its upper endpoint 7, then P{X) = 2} — 1 and only

a degenerate limit is possible in (4.1). Less trivial examples are:

Example 4.9 Let F have density f(x) = ce™/x on x > 1. Then (4.1) will hold only for
constant limit variables V.

Proof Z, = eX;_, has density f(z) = c(e)e™/z on [e,00). If € | 0 then fc(z)/c(e) —
e ®/xz on (0,00) and c(€) ~ log(1/€). Hence Fe(e"*) — 1 —u for u € (0,1) for € | 0. Take
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0 < u << 1. The half line [¢*,00) carries weight u > 0, but a large part, 1 — 2u, of
the probability lives on the relatively short interval [0, 2%]. Since €2* = o(e") there is an
atom of weight > 1 — 2u in the limit. Because u > 0 is arbitrary the limit can only be

degenerate. a

Note that F(e") — 1 —u implies that log(X;_.)/log(1/e) 4 U where U is uniformly
distributed on (0,1). This means that the exponential family X, has a non-degenerate

limit under power norming: Take c¢(\) = —log(1l — X) then
D SR LA W

For recent work on power norming for extremes, see Pancheva [1984] and Ravi [1991].

With the arguments of Example 4.9 one may show:

Example 4.10 Let F have density f(z) = ce *(logz)*/z on (e,o00). For a > —1 the
limit relation (4.1) has only constant limits. Let U be uniformly distributed on [0,1]. If

a > —1 then
log X d rr1/0
_ g Xy 4 pere) y Ly
log(1/(1 — X)) >
If a = —1 then even power norming yields only constant limit variables but

(loglog X)/loglog(1/(1 — X)) N U, A— 1.

Let [F'] denote the type of the non-degenerate df F. In this paper we have studied the
behaviour of the curve [F)] in the space of non-degenerate probability types. Introduce
E(F) as the set of limits of sequences [F), ]| with A, T A. If [F)\] converges to a point [G]
then Z(F) is a singleton and [G] belongs to the one-parameter extended gamma type family
of Example 2.9. We have seen examples where the limit set Z(F') is a circle, a line, the
whole space of types (for universal exponential families) and the empty set (Examples 4.9
and 4.10).

The asymptotic behaviour of the tail of the df F is reflected in the asymptotic behaviour
of the tail of the mgf. The exponential family F for A 1 A\ describes the tail behaviour
of F. In terms of the cgf x the exponential family consists of translates of the graph of
this convex function k. It is not clear how the wide range of behaviour of the curve [F)]
hinted at in this section is reflected in the asymptotic behaviour of the convex analytic
function k. More insight in this question should lead to a better understanding of the

relation between the tail behaviour of a df and its mgf.
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