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Abstract (English)

Probabilistic transducers or weighted transducers are widely applied in the fields
of natural language processing, machine translation, IT security, bioinformatics
and many other areas. The generality of probabilistic transducers allow them
capturing other existing probabilistic models such as hidden Markov models.
Due to the widespread use and applicability of probabilistic transducers, the
learnability issue of such models is an important problem.
In this thesis we investigate inference of probabilistic subsequential transducers

in an active learning environment. First, we propose a novel inference algorithm
where the learner interacts with an oracle by asking probabilistic queries on
the observed data. We prove our algorithm in an identification in the limit
model. We also provide experimental evidence to show the correctness and to
analyze the learnability of the proposed algorithm. Second, we propose another
learning algorithm where the oracle can be replaced by statistical tests over
observed data. We report some experiments with synthetic datasets. Finally,
related work concerning the implementation of grammatical inference algorithms
(optimisation, parallelisation, distribution) is reported in this thesis.
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Kurzfassung (Deutsch)

Probabilistische bzw. gewichtete Transducer finden verbreitet Anwendung in
den verschiedenen Gebieten der maschinellen bersetzung, Verarbeitung natrlicher
Sprache, IT-Sicherheit und Bioinformatik. Probabilistische Transducer sind in
der Lage existierende probabilistische Modelle, wie z.B. Hidden-Markov-Modelle,
abzudecken. Den Schwerpunkt dieser Arbeit bildet die Erlernbarkeit von prob-
abilistischen Transducern. Eine Problemstellung, die aufgrund der weiten Ver-
breitung und der vielfltigen Anwendungsmglichkeiten relevant ist.
In der vorliegenden Arbeit untersuchen wir probabilistische subsequentielle

Transducer in einer aktiven Lernumgebung. Zunchst stellen wir einen neuen
Lernalgorithmus vor, der probabilistische Anfragen ber beobachtete Daten an
ein Orakel stellt. Wir beweisen unseren Algorithmus durch eine Identifikation
im Limit-Modell. Um die Korrektheit nachzuweisen und die Erlernbarkeit des
vorgeschlagenen Algorithmus zu analysieren, liefern wir darber hinaus experi-
mentelle Belege. Im Anschluss stellen wir einen weiteren Lernalgorithmus vor,
bei dem das Orakel durch statistische Tests ber beobachteten Daten ersetzt wird.
Danach fhren wir mit diesem Algorithmus einige Experimente mit synthetischen
Datenstzen durch. Schließlich diskutieren wir verwandte wissenschaftliche Ar-
beiten im Hinblick auf die Implementierung von grammatikalischen Lernalgo-
rithmen. Hierbei gehen wir auf Aspekte wie Optimierung, Parallelisierung und
Verteilung ein.
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Chapter 1
Introduction

Mathematics must be written so
that it is impossible to
misunderstand, not merely so
that it is possible to understand.

Herman Rubin

T
ransducers, also known as finite state transducers (Fsts), can be viewed
as finite state machines where whenever an input is read, a state transi-
tion takes place and an output is emitted. In a weighted or probabilistic

setting, transducers have weights or probabilities assigned to each transition.
The title of the thesis suggests that the thesis focuses on the problem of learning
subsequential probabilistic transducers (Psts). Psts are probabilistic transduc-
ers where a probability is assigned to each transition and the machine generates
no ambiguous input-output pairs. In other words, Psts are Fsts deterministic
w.r.t. the inputs with transition probabilities. In this chapter we will first mo-
tivate the learning of probabilistic transducers as a formal model by discussing
some areas of applications of transducers and exhibiting a few motivating real
world examples. Second, we discuss the term learning in general to develop the
idea of how the term should be interpreted in the context of the thesis. Third,
we will discuss learning in terms of mathematical modeling and learning envi-
ronments where learning tasks can be achieved by means of computation. And
finally, we will define the objectives and the organization of the thesis.
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1.1. Motivation

The formal model we want to learn is a probabilistic subsequential transducer.
The natural questions that arise at this point are: why do we want to learn
transducers? What are the practical implications of learning such a model?

Transducers have been known in the computer science literature since as early
as the 1950s (Mealy, 1955) and have been used in many different areas ever
since. In this section a brief overview on diverse applicability of transducers is
presented.

1.1.1. Natural Language Processing

In a specialized domain of natural language, namely in phonology, it was dis-
covered that the morphological rules could be described as finite state models
(Johnson, 1972). Therefore, a major application of Fsts in natural language pro-
cessing is finite state morphology (Karttunen, 2000; Roark and Sproat, 2007).

Morphology is the area of computational linguistics where the formation of the
words are studied. Morphological rules are the rules for alteration of morphology.
For instance, the German word schreiben is written as geschrieben in its past
participle form and the rule for rewriting such a verb in its past participle form
is a morphological rule.

0 1 2 3 4
ε : ge schr : schr ei : ie ben : ben

Figure 1.1.: An example of morphological rule expressed by an Fst. The tran-
sition labels should be interpreted as input : output.

It has been advocated by Roark and Sproat in (2007) that transducers can be
used to represent morphological rules. Figure 1.1 shows how the rule of forming
geschrieben from the word schreiben can be expressed by an Fst.

Clark proposed to learn morphology with stochastic transducers in (2001a;
2001b; 2002). In his work he showed that morphological rules such as formation
of singular to plural in different languages, e.g., German (e.g., kraft → krfte)
can be learnt using stochastic transducers.

2



1.1.2. Machine Translation

Machine translation is a problem of mapping an input language to an output
language. It has been argued that the input-output relationship between most of
the usual natural languages can be expressed by finite state devices (Casacuberta
and Vidal, 2007). Fsts being capable of modeling input-output relations, these
have been extensively investigated for accomplishing machine translation and
transliteration tasks. Figure 1.2 depicts a toy example of English to French
translation scheme represented by an Fst. In this section we briefly discuss
some relevant work where Fsts have been used for machine translation tasks.

3

4

0 1 2 5

the:le

a:un

small:petit

large:grand

red:ε

blue:ε

circle:cercle rouge

triangle:triangle rouge

square:carré rouge

circle:cercle bleu

triangle:triangle bleu

square:carré bleu

Figure 1.2.: An example of an Fst representing an English-French translation
scheme.

In an early attempt Vilar et al. (1996) implemented an English-Spanish speech
translation system by means of learning a deterministic transducer from an
aligned training corpus. The problem of alignment is a difficult issue while
learning transducers, therefore, when heuristics based techniques from machine
translation is used for the alignment task, it improves the prediction accuracy.
Other attempts for the use of finite state models are (Casacuberta and Vidal,
2004; Vilar et al., 1996; Casacuberta and Vidal, 2007). In their work the idea
was to combine statistical machine translation and transducer learning. Ban-
galore and Riccardi employed finite state models for spoken language machine

3



translation (2002; 2001).
Syntactically, natural languages are far more complex than finite state models

(Chomsky, 1957). Syntactic structures of natural languages, such as English,
are often modeled by more powerful formalisms. Therefore, there has been work
done to model more powerful classes, for example, modeling with context free
grammars. A generalization of a context free grammar to represent a pair of
strings (similar to a transduction model) is known as synchronous grammar,
originally developed for programming language compilation (Aho and Ullman,
1969). The tree transducer model has been extensively applied in various aspects
(Koehn, 2010) including in different classes of synchronous grammars (Graehl
et al., 2008; Knight and Graehl, 2005; Maletti, 2010). Maletti presented a tree
transducer model for synchronous tree-adjoining grammars (2010), a class of
synchronous grammar represented by a tree transducer model.
As far as the scope of this thesis is concerned we will mainly focus on regular bi-

grammar or regular synchronous grammar, a subclass of synchronous grammar,
that can be modeled by Fsts.

1.1.3. IT Security

One of the newly emerging application areas of grammatical inference is the do-
main of IT security. Within the recent years several papers have been published
in the top tier security conferences where grammatical inference algorithms have
been leveraged; e.g., (Cho et al., 2010a; Babić et al., 2011, 2012). In this section
we will discuss a motivating example of application of transducer learning in IT
security.

Botnet Protocol Inference

Botnets are one of the major mechanisms of conducting cybercrimes such as
spamming, denial of service attacks, theft of personal data etc., which results
in an annual damage of billions of dollars1 world wide. Botnets are collections
of infected or compromised computers that are connected to the Internet and
perform certain tasks while the owners of the computers are unaware of it (for
details see (Eckert, 2009; Anderson, 2008)).
The combating procedure of botnets can be broadly categorized into three

interrelated sub-problems: 1) understanding and analyzing the botnet protocol,
2) detecting the botnet, and 3) taking measures to bring down the botnet. As
far as detection of botnets and taking measures are concerned, a lot of work

1The economic impact of viruses, spyware, adware, botnets, and other malicious code: Tech-
nical report, Computer Economics Inc., 2007, http://www.computereconomics.com

4



has been done by the researchers, whereas relatively less work has been done in
understanding and analyzing botnet protocols. Traditionally, for analyzing the
botnet, protocol inference (a.k.a. protocol reverse engineering) is done manually,
which is time consuming, error prone, and expensive.
Automated botnet protocol inference can ease a lot of manual work and be

a handy tool to take rapid measure against botnets. It also helps analyzing
the botnet to make effective detection mechanism and cost effective measure
to bring down the botnets. Cho et al. attempted automated botnet protocol
inference (2010a) where they have worked on the MegaD botnet protocols.

0

1

getTemplate : renew

getTemplate : template

(a)

0

1

getTemplate : renew

getTemplate : template

getTemplate : template

(b)

Figure 1.3.: The two figures are taken from (Cho et al., 2010a) where the protocol
state machines of the MegaD template server are presented. Figure
1.3(a) is the inferred machine by using the template server as an
oracle. By analyzing the inferred protocol state machines of other
servers, they discovered that the actual protocol state machine for
the template server is nondeterministic as depicted in Figure 1.3(b).

MegaD is a botnet that was first discovered in 2007. At its peak, MegaD
was responsible for generating two thirds of the total spam all over the world
in 20072. The MegaD botnet involves a Master server used as the Command
& Control (C&C) server, and other auxiliary servers: SMTP server, template
server, and drop server. A spamming MegaD bot contacts only the template
and SMTP servers (Cho et al., 2010b). Cho et al. presented in (2010a) a mech-
anism to infer protocol state machines of MegaD botnet servers by employing
transducer learning by queries. Figure 1.3 depicts the protocol state machine of
the MegaD botnet template server. Since the protocol state machine has input-
output (request-response) for each transition, it can be formally modeled as a
transducer.
In the inference model, the botnet server itself acts as an informant, i.e., it

answers by giving response to a particular request sent to it. The inference algo-
rithm asks queries by communicating with the server and after a certain number

2http://www.m86security.com/trace/i/Mega-D,spambot.896~.asp
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of queries is able to learn the protocol state machine of the server. Cho et al.
(2010a) used an algorithm derived from the L∗ algorithm (Angluin, 1987a,b),
which is a well known algorithm for learning deterministic finite state automata
by asking queries to an oracle, to learn the target transducer. The learning algo-
rithm was able to infer a deterministic transducer shown in Figure 1.3(a) as the
protocol state machine for the template server of MegaD. However, their analysis
showed that the actual protocol state machine is nondeterministic as shown in
Figure 1.3(b).

1.1.4. Bioinformatics

Bioinformatics is a research area devoted to modeling and analyzing biological
sequences (Durbin et al., 1998). Pairwise alignment of DNA, RNA, or protein
sequences and gene finding is an important and extensively studied problem
in bioinformatics. It has been investigated that pair hidden Markov models
(Phmms) (Durbin et al., 1998), which are extension of regular hidden Markov
models (Hmms) (Rabiner, 1990), can generate aligned pairs of sequences (Sakak-
ibara, 2003; Pachter et al., 2002). Phmms can be shown that they are equiva-
lent to weighted or probabilistic transducers. Another early attempt that shows
automata theoretic approach for biological sequence alignment is (Searls and
Murphy, 1995). Several surveys can be found related to applications of weighted
transducer or Phmm learning such as (Sakakibara, 2005; Bradley and Holmes,
2007; Coste, 2010; Searls, 2010).
Besides pairwise alignment, in another biological sequence prediction task,

namely transmembrane domain prediction task, Peris and López have attempted
learning deterministic transducers representing a regular language (Peris and
López, 2010).

1.1.5. Other Application Areas

Finite state transducers (Fsts) have also been applied extensively in the field of
speech processing (Mohri et al., 1996; Allauzen et al., 2007; Mohri et al., 2002),
speech synthesis (Mohri et al., 2004; Pereira et al., 1994; Sproat, 1995), pattern
recognition (Oncina et al., 1993), language understanding (Angluin and Becerra-
Bonache, 2009; Castellanos et al., 1998), and machine learning (Cortes et al.,
2002; Cortes and Mohri, 2008). One of the major attributes that makes Fsts very
useful is that in weighted or probabilistic setting they are powerful models and
are able of capturing the modeling capacities of hidden Markov models (Hmms)
(Rabiner, 1990; Vidal et al., 2005b) or pair hidden Markov models (Phmms)
(Durbin et al., 1998).
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1.2. Learning

According to Merriam Webster’s online dictionary3 the word learning is defined
as follows:

Learning: 1) the act or experience of one that learns 2) knowledge or
skill acquired by instruction or study 3) modification of a behavioral
tendency by experience (as exposure to conditioning).

The first two definitions above can be interpreted as learning being merely
about acquiring information and reproducing the same information. This can
simply be achieved by memorization techniques or rote learning. For example,
a child is taught five sentences in a language and the child is only able to recall
exactly these five instances, i.e., the child is only able to reproduce the infor-
mation it has been given. The third definition goes somewhat beyond mere rote
learning and talks about modification of behavior. The third definition can be
interpreted as generalization from the observed instances over unseen instances.
For example, after been taught five sentences in a language, the child is able to
formulate new sentences in that language, i.e., the child is able to generalize.

Learning in the context of the thesis will imply generalization ability of the
learner. By the term learner we will imply the learning algorithm that is un-
dergoing the learning process and the objective is to generalize in a meaningful
manner.

1.3. Learning Environments

The fields of machine learning, computational learning theory, and algorithmic
learning theory aim to formulate mathematical models for learning by means
of computation. Often real world scenarios are modeled formally, e.g., a lan-
guage learning scenario of a child. In the process of formalizing the scenario
mathematically, certain assumptions, simplification, and idealization have to be
incorporated in the model. This is required due to the fact that the real world
learning environment and learning capabilities of human are far too complex to
be taken into consideration in a mathematical model. Therefore, in this section
we talk about different environments or settings of learning. We will discuss two
learning models that are relevant to our work.

3http://www.merriam-webster.com/dictionary
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1.3.1. Identification in the Limit

Identification in the limit model was introduced by Gold in his seminal paper
(1967). In his learning model, Gold formulated learning as an infinite process.
The learner will be given examples of the language, and from the given example
the learner will deduce a hypothesis H . As the learner is given more examples,
the learner is allowed to modify his hypothesis H during the learning process.
This process continues forever. If after observing a finite number of examples,
the learner does not require to modify his hypothesis anymore, the learner is said
to have learnt the language.

It has been argued that this learning model is similar to how a human learns
languages (Clark and Lappin, 2011). A child receives instances of a language from
his childhood, learns a part of the language and incrementally his hypothesis
model of the language is modified. The process of receiving instances of the
language continues even during the rest of his lifetime.

Gold defined the term learnable as the following: a class of language is learn-
able w.r.t. a formal device representing that language, if there exists a learning
algorithm that has the following property - from the presentation of any lan-
guages of the class, after observing a finite number of examples the learner will
deduce a hypothesis of the formal device that will recognize every example of
that language correctly. When a new example is observed by the algorithm, it
updates the hypothesis if required. As this process of receiving examples contin-
ues forever, and the hypothesis makes no mistake, the algorithm is said to have
converged.

Modifications and extensions have been done to adapt Gold’s definition of
identification in the limit model to specific learning tasks. We will present formal
definitions of such extensions in the forthcoming chapters of the thesis. Details
about identification in the limit can be found in (de la Higuera, 2010; Jain et al.,
1999; Clark and Lappin, 2011).

1.3.2. Active Learning

Active learning (a.k.a. query learning) is a subfield of machine learning where
the learner can interact with the learning environment. In the learning process,
the learner has got access to an expert or a teacher, often termed as the oracle
or the minimally adequate teacher (Mat). It is advocated by the active learning
proponents that instead of learning from a large pool of labeled examples, if the
learner can have labeled examples on demand then the learner will learn with
fewer labeled examples. Thus, the labeling cost, i.e., the cost of designating the
correct class labels to the training data, can be minimized.
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The first active learning scenario was presented by Angluin in (Angluin, 1987b)
where she presented an algorithm to learn a deterministic finite state automaton
using membership queries and equivalence queries. Membership queries are the
queries to an oracle w.r.t. an example sentence or string where the oracle answers
if the example belongs to a language or not. For equivalence queries, the oracle
will answer if the hypothesis is equivalent to the actual learning target or not.
If the hypothesis is not equivalent to the target machine, the oracle returns
a counter example. After Angluin’s algorithm, a number of different kinds of
queries have been used in different learning tasks. In Chapter 3 we will discuss
in details about different types of queries.

The paradigm of query learning was introduced to obtain negative learnability
results. Angluin (1987b) showed that it is not possible to learn a deterministic
finite automaton (Dfa) from membership queries only. This also meant that
learning Dfas from given data is also not possible because if it is not possible to
learn when the learner can choose the training data by queries, logically it is also
not possible when the training data is given randomly to the learner. Moreover,
since equivalence queries are not practicable, the query learning paradigm was
restricted as theoretical results than practical usage.

However, today, query learning is one of the most successful applications of
grammatical inference. It is widely applied in model checking (Bréhélin et al.,
2001; Raffelt and Steffen, 2006), software engineering (Carme et al., 2007),
robotics (Rivest and Schapire, 1993; Dean et al., 1995) etc. In practice, the
oracle can be a human, the web or a corpus and queries can be simulated. One
of the main objectives of query learning is to minimize the number of queries or
the labeling costs. Recent surveys on active learning can be found in (Settles,
2009, 2011).

1.4. The Problem of Transducer Learning

The problem of learning transducers from examples can be viewed as a gen-
eralization of the problem of learning finite state automata. In case of learn-
ing a deterministic finite automaton (Dfa), the following decision problem is
NP−complete: Is there a Dfa consistent to the given examples? The problem
of finding minimal consistent Dfa from given examples has been proven to be
NP−hard (Pitt and Warmuth, 1993). As a generalization of the learning prob-
lem of finite state automata from examples, the problem of learning transducers
from examples is also nontrivial.

However, in certain restrictive forms, such as subsequential or deterministic,
number of solutions for learning transducer has been presented where the training
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data must contain a minimum number of examples with some predefined criteria,
e.g., Oncina et al. presented an algorithm for learning subsequential transducers
from positive sample in an identification in the limit model (Oncina et al., 1993;
Oncina and Garćıa, 1991), Vilar showed learning of subsequential transducers in
active learning setting (Vilar, 1996), and several others include (Wakatsuki and
Tomita, 2010; Clark, 2011; Oncina, 2008). Some of these algorithms and other
related work will be discussed in details in Chapter 3.
The problem of learning a probabilistic transducer from positive examples

remains an open problem. This thesis aims to investigate the problem of learning
probabilistic subsequential transducers.

1.5. Contributions of the Thesis

The primary focus of the thesis is the problem of learning probabilistic subse-
quential transducers. To investigate the focal problem, we develop five research
questions (RQs) that are essentially either decompositions of the broader prob-
lem statement or closely related to the actual problem statement. In this section
we will discuss the RQs.

Research Question 1 How powerful are different types of probabilistic trans-
ducers in terms of expressive power?

Formal languages modeled by different types of syntactic machines can be cat-
egorized hierarchically in terms of the expressive power of the respective machine
type. This is known as the famous Chomsky’s Hierarchy (Chomsky, 1956). Sim-
ilar to Chomsky’s hierarchy, it is also important to have an hierarchical view of
stochastic bi-languages or transduction schemes expressed by different types of
probabilistic transducers. By RQ1, we address this issue in order to show the
expressive power and limitations of our model.
Within the scope of RQ1 we show three hierarchical views: the hierarchy of

bi-languages, hierarchy of stochastic bi-languages and the hierarchy syntactic
machines that generates stochastic bi-languages.

Research Question 2 What algorithms can we use to solve typical finite state
machine tasks over different types of probabilistic transducers?

Typical tasks using a probabilistic transducer may involve computing the most
probable translation of a given string, the joint probability of a translation pairs
and other similar tasks. Computational complexity to compute translations by
different types of probabilistic transducers differ, and in some cases there exists
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no polynomial solution. If it is too difficult to parse using a type of probabilistic
transducer, learning that type of model is poorly justified. Therefore, it is impor-
tant to investigate the complexities in terms of parsing using the machines. By
RQ2, we address the parsing issue by different types of probabilistic transducers.
Here, the objectives are to present algorithms for accomplishing different tasks
using different types of machines and analyze the runtime complexities.

Research Question 3 How are our models (the syntactic machines) compared
with other existing models?

Automata theoretic approach has been adopted in diverse disciplines and even
has been named differently in different domain, e.g., probabilistic finite state
automaton (Pfa), Hmm, Phmm, and, weighted finite state transducer (Wfst).
It is important to study the similarity, differences and equivalences of the different
models in order to argue the generality of our work. Within the context of this
RQ we perform such a study.

Research Question 4 Are probabilistic subsequential transducers learnable in
the limit?

This RQ addresses the learnability problem in an identification in the limit
model. The main objective is to present a novel algorithm for learning probabilis-
tic subsequential transducers in the limit. The algorithm uses positive example
and queries to learn the target machine. This RQ also encompasses the issues
of correctness, runtime complexity, and query complexity of the presented algo-
rithm.

Research Question 5 Is it possible to learn probabilistic subsequential trans-
ducers from a positive sample?

Unlike RQ4, here the learning algorithm has no access to an oracle. The
learning algorithm is given only an empirical joint distribution of translation
pairs. The objectives are to investigate learning from joint distribution of positive
examples only, analysis of the runtime complexity of the proposed algorithm,
analysis of the algorithms in terms of the amount of training data required and
experimentation with synthetic data.

Other Contributions

Besides the five RQs, we also investigate the parallelization of grammatical in-
ference algorithms. We present a novel parallel algorithm for Dfa learning to
gain better runtime (see Appendix A). Moreover, we present an open source
library of grammatical inference algorithms (see Appendix B).
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1.6. Organization of the Manuscript

Chapter 2: In this chapter we start by defining the preliminaries and mathe-
matical background. We present a study of different classes of transduc-
tion schemes or bi-languages represented by respective syntactic machines.
We also present a Venn diagram of these classes of bi-languages to show
relative expressive power of each class. We analyze the complexities w.r.t.
parsing using the syntactic machines. Finally, we discuss equivalence of
our model w.r.t. other existing models.

Chapter 3: Here, we discuss learnability and previous work in automata and
transducer learning. We discuss different existing learning algorithms to
develop the ideas that have been used in the forthcoming chapters.

Chapter 4: This chapter focuses on the identification in the limit problem of
probabilistic subsequential transducers. We present a novel algorithm that
learns probabilistic subsequential transducer in the limit from positive pre-
sentation and by asking probabilistic queries. We present an analysis of
our algorithm in terms of correctness, runtime complexity, and query com-
plexity. We also provide experimental evidence to show the correctness of
our algorithm.

Chapter 5: In this chapter we address the problem of learning probabilistic sub-
sequential transducers from a randomly drawn sample. We leverage the
empirical distribution of the observed sample to accomplish the learning
task. We show experimental results where we compare the learnability of
our proposed learning algorithm to other existing ones.

Chapter 6: This is the epilogue chapter where the main results are summarized,
limitations, open issues and future work are discussed.

We do not claim that the survey of the related work presented in this thesis
is absolutely complete. Our objective was to cover all existing work related to
transducer learning in this thesis. However, if we have unintentionally missed
any work that relates directly or indirectly to transducer learning, we sincerely
apologize to those authors. Our intent was to make the literature review as
complete as possible.
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Chapter 2
Probabilistic Finite State Transducers

2.1. Introduction

I
n this chapter we define the preliminaries and work on RQ1, RQ2 and
RQ3 formulated in Chapter 1. We start by discussing the mathematical
background, notations, and definitions used throughout the thesis. In order

to address RQ1, we present hierarchical views on bi-languages modeled by finite
state machines. As an attempt to attack RQ2, we present a study on complex-
ities of parsing w.r.t. probabilistic transducers. Finally, within the context of
RQ3, we present a discussion on equivalence of probabilistic transducers w.r.t.
Phmms and Wfsts.

2.2. Mathematical Background

2.2.1. Semirings

Semirings have been used in automata theory to define the weights of an au-
tomaton. Semirings are useful mathematical objects in automata theory, since
they allow a general way for computation of the weights. In this section we
define the algebraic structure semiring, elaborate various types of semirings and
some of their properties. The most fundamental structures, namely, monoid and
semirings will be defined in this section. The definitions and results presented
in this section are primarily from (Berstel and Reutenauer, 1988; Droste, 2009;
Droste and Kuich, 2009; Kuich, 1997; Kuich and Salomaa, 1986; Mohri, 2002b,
2009; Rosenfeld, 1968; Salomaa and Soittola, 1978).

A monoid consists of a set M that is closed under an associative binary opera-
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tion ◦ on M and an identity element 1 such that: ∀a ∈M, 1◦a = a◦1 = a (Kuich
and Salomaa, 1986; Kuich, 1997). A monoid is called commutative if ∀a, b ∈M,
a ◦ b = b ◦ a. The binary operation is usually denoted multiplicatively.

Definition 1 (Semiring) A semiring is a set K having two binary operations
⊕ and ⊗ such that:

•
〈

K,⊕, 0
〉

is a commutative monoid where 0 is the identity element,

•
〈

K,⊗, 1
〉

is a monoid where 1 is the identity element,

• ⊗ distributes over ⊕, i.e., ∀a, b, c ∈ K :

– a⊗ (b⊕ c) = a⊗ b⊕ a⊗ c

– (a⊕ b)⊗ c = a⊗ c⊕ b⊗ c,

• ∀a ∈ K, 0⊗ a = a⊗ 0 = 0.

Intuitively, a semiring is a ring without the inverse elements for addition.
Note that in the definition, ⊗ is not a commutative operation. If however, ⊗ is
commutative, the semiring is said to be commutative. A semiring is idempotent
if ∀a ∈ K, a⊕ a = a.

The most common and widely used semiring in automata theory is the boolean
semiring. The boolean semiring is denoted as 〈B = {0, 1} ,∨,∧, 0, 1〉. A weighted
automaton defined under a boolean semiring is essentially a classical finite au-
tomaton or an acceptor.

Another important type of semiring is the probability semiring 〈R+,+,×, 0, 1〉
which is the set of all positive real numbers (R+) with two binary operations
+ and × having their conventional meanings in arithmetic. In practice, the log
semiring 〈R ∪ {−∞,+∞} ,⊕log,+,+∞, 0〉, the isomorphic counterpart of the
probability semiring through negative log transformation, is often used instead
of the probability semiring. With the probability semiring, there is a practical
problem that can occur easily while implementing; to compute probability, if we
multiply floating point numbers a large number of times, we may encounter an
underflow error. In order to overcome this practical problem, the log semiring
is often used for achieving numerical stability. The addition ⊕log operation is
defined as x⊕log y = −log(e−x + e−y).

Table 2.1 summarizes some useful types of semirings.
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Table 2.1.: Types of useful semirings.

Semiring type set ⊕ ⊗ 0 1 purpose

Boolean B = {1, 0} ∨ ∧ 0 1 recognition

Probability R+ + × 0 1 probability

Log R ∪ {−∞,+∞} ⊕log + +∞ 0 log probability

Tropical R ∪ {−∞,+∞} min + +∞ 0 distance problem

2.2.2. Definitions and Notations

Let [n] denote the set {1, . . . , n} for each n ∈ N. An alphabet Σ is a non-empty
set of symbols and the symbols are called letters. Σ ∗ is a free-monoid over Σ .
Subsets of Σ ∗ are known as (formal) languages over Σ . A string w over Σ is a
finite sequence w = a1 . . . an of letters. Let |w| denote the length of the string w.
In this case we have |w| = |a1 . . . an| = n. The empty string is denoted by ε. For
every w1, w2 ∈ Σ ∗, w1 ·w2 is the concatenation of w1 and w2. The concatenation
of ε and a string w is given by ε · w = w and w · ε = w. When decomposing a
string into substrings, we will write w = w1, . . . , wn where ∀i ∈ [n] , wi ∈ Σ ∗. If
w = w1w2 is a string, then w1 is a prefix and w2 is a suffix of the string w. Given
a language L ⊆ Σ ∗, the prefix set of L is defined as:

Pref(L) = {u ∈ Σ ∗ : ∃v ∈ Σ ∗, uv ∈ L}

and the suffix set of L is defined as:

Suff(L) = {v ∈ Σ ∗ : ∃u ∈ Σ ∗, uv ∈ L} .

Pref(w) and Suff(w) are defined as the sets of all the substrings of w that are
prefixes and suffixes of w correspondingly. The longest common prefix of L is
denoted as lcp (L), where:

lcp (L) = w ⇐⇒ w ∈
⋂

x∈L

Pref (x) ∧ ∀w′ ∈
⋂

x∈L

Pref (x)⇒ |w′| ≤ |w| .

Less formally, lcp is a function that returns the longest possible string which
is the prefix of all the strings in a given set of strings. For example, for L =
{aabb, aab, aababa, aaa}, the lcp(L) is aa.
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the bottom pad the upper pad

Figure 2.1.: Top view of a bi-directional elevator.

2.2.3. Finite State Automata

A finite state automaton is a basic and severely restricted mathematical model
for computation. The word ”automaton” is derived from the Greek word ”au-
tomatos”. According to Merriam Webster’s online dictionary1 the word automa-
ton is defined as follows:

Automaton: a machine or control mechanism designed to follow au-
tomatically a predetermined sequence of operations or respond to
encoded instructions.

To elaborate the above definition, we will take a look at a simplified real life
example. The controller used for a bi-directional elevator, designed for energy
saving, is an example of such an automaton. Figure 2.1 shows the top view of a
bi-directional elevator.
Figure 2.2 shows the state diagram of the controller. There can be three

states of the elevator at any given time: stopped, moving up, and moving down.
The controller is designed to execute some predetermined actions whenever it
encounters any of the following events: 1) the bottom pad is occupied (denoted
as B), 2) the upper pad is occupied (denoted as U), 3) the elevator is occupied
(denoted as E), and 4) if none of the pads or the elevator is occupied (denoted
as NONE). The action performed by the controller is to switch from one state to
another based on the input.

StoppedMoving up Moving down

NONE

B

U

B/U/E B/U/E

NONE

NONE

Figure 2.2.: State diagram for an automatic controller of a bi-directional elevator.

1http://www.merriam-webster.com/dictionary
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The controller receives input and based on the input, it either stays at the
current state or moves to a different state. When it is at the stopped state, it
goes to either moving up or moving down state depending on the input. When
it is at the moving up state or at the moving down state, the controller stays at
the same state unless it receives the input NONE.
The state diagram shown in Figure 2.2 is the automaton model of the scenario

described. In the following we will provide formal definitions of automata.

Definition 2 (Non-deterministic Finite State Automaton) A non-deter-
ministic finite state automaton (Nfa) over the boolean semiring B is a sextuple
A = 〈Q, I, F, R,Σ , E〉 where:

• Q is a finite set of states,

• Σ is a finite set of symbols called the alphabet,

• I ⊆ Q is the set of initial states,

• F is the partial function defined as F : Q→ B for the accept states or the
final states,

• R is the partial function defined as R : Q→ B for the reject states,

• E is a finite set of transitions defined as E ⊆ Q× Σ ∪ {ε} × B×Q.

For a state q ∈ Q, if F (q) = 1, the state q is said to be a final state or
an accept state. Similarly, if R(q) = 1 the state is said to be a reject state.
However, a state q cannot be a final and a reject state at the same time, i.e.,
∀q ∈ Q,F (q) = ¬R(q). A transition e ∈ E only exists, if the weight of e is
1. Which means all the edges in an Nfa will have a weight of 1. Essentially,
automata that are defined under boolean semiring are the unweighted automata.
For simplicity we will omit the weights.
For any transition e ∈ E, let prev [e] ∈ Q be the origin state of the transition,

next [e] ∈ Q be the destination state, and i [e] ∈ Σ ∪ {ε} is the input symbol
associated with e. For any state q ∈ Q, E [q] is the set of all the transitions going
out of the state q. A path π = e1, e2, e3, . . . , ek is a sequence of k consecutive
transitions such that next [ei−1] = prev [ei], where i = 2, . . . , k. In terms of
the definition of paths, next [π] = next [ek] and prev [π] = prev [e1]. We define
i [π] = x ∈ Σ ∗ such that x = i [e1] · i [e2] · . . . · i [ek]. We denote ΠA as the set
of all the paths in A. We define πε ∈ ΠA as the empty path, i.e., a path that
consists of no transitions.
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Definition 3 Let x = a1 . . . an be an arbitrary string where ai ∈ Σ ∪ {ε}. A
language L is recognized by an Nfa A, if ∀x ∈ L:

• ∃π = e1, . . . , en ∈ ΠA : prev [π] ∈ I, F (next [π]) = 1,

• ∀ei ∈ π, i [ei] = ai.

Definition 4 (Deterministic Finite State Automaton) A deterministic fi-
nite state automaton (Dfa) over the boolean semiring B is a sextuple A =
〈Q, I, F, R,Σ , E〉 where:

• Q is a finite set of states,

• I = {q0} is the unique initial state,

• Σ is the alphabet,

• F is the partial function defined as F : Q→ B for the accept states or the
final states,

• R is the partial function defined as R : Q→ B for the reject states,

• E is a finite set of transitions defined as E ⊆ Q×Σ ×{1}×Q and subject
to the following condition:

∀(q, a, 1, q′), (q, a, 1, q′′) ∈ E ⇒ q′ = q′′.

It is well known that an Nfa can be determinized to an equivalent Dfa. De-
terminization algorithm for Nfa to Dfa can be found in any standard textbook
of automata theory, e.g., see (Lewis and Papadimitriou, 1997; Sipser, 1996).
Languages that are recognized by Dfas are known as regular languages. We

denote the set of all regular languages as RL(Σ).

2.3. Bi-languages

In the previous section, we have discussed languages that consist of a set of
strings. There are cases where we need to work with a pair of strings or a
bi-string (Kornai, 2007). For example, machine translation tasks often require
a model having input strings and output strings. In this section we present
the definition of a bi-language, which consists of a set of pairs of strings. The
definitions presented in this section are inspired by a number of work including
(Berger and Pair, 1978; Kornai, 1995, 2007).
At this point we will use two alphabets: Σ to denote the set of input symbols

and Ω to denote the set of output symbols. Σ and Ω are not necessarily identical.
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Definition 5 A bi-language BL is a relation defined as BL ⊆ Σ ∗ × Ω∗.

The syntactic machine that recognizes a bi-language is known as a bi-automaton
or a transducer. In the next section we define such machines.

2.4. Transducers

In this section we provide definitions and examples of different types of trans-
ducers. The definitions presented in this section are primarily from (Berstel and
Reutenauer, 1988; Castellanos et al., 1998; de la Higuera, 2010; Droste, 2009;
Kuich and Salomaa, 1986; Kuich, 1997; Oncina et al., 1993; Reutenauer and
Schützenberger, 1991, 1995; Salomaa and Soittola, 1978).

2.4.1. Rational Transducers

Definition 6 A rational transducer is a quintuple T = 〈Q,Σ ,Ω , I, E〉 over
the boolean semiring B where:

• Q is a finite set of states,

• Σ is the input alphabet,

• Ω is the output alphabet,

• I ⊆ Q is the set of initial states,

• E ⊆ Q× Σ ∗ × Ω∗ × B×Q is a finite set of transitions.

Since the input label of a rational transducer is a string x ∈ Σ ∗, the input
string associated with e is i [e] ∈ Σ ∗. The output label associated with an
edge e is denoted as o [e] ∈ Ω∗. We define o [π] = y ∈ Ω∗ such that y =
o [e1] · o [e2] · . . . · o [ek]. Similar to the definition of an Nfa, an edge e ∈ E only
exists if the weight of the edge is 1. For simplicity we will omit the boolean
weights in the illustrations.

Definition 7 Let x = x1 · x2 · . . . · xn be an arbitrary string where xi ∈ Σ ∗

and y = y1 · y2 · . . . · yn be an arbitrary string where yi ∈ Ω∗. A bi-language
BL = {(x,y) : x ∈ Σ ∗,y ∈ Ω∗} is recognized by a rational transducer T , if
∀(x,y) ∈ BL:

• ∃π = e1, . . . , en ∈ ΠT : prev [π] ∈ I,
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• i [ei] = xi and o [ei] = yi.

Note that in Definition 7 xi and yi are both substrings of arbitrary length.
Therefore, although x and y are both decomposed to n substrings, the actual
length of x and y can differ.
For an input-output pair (x,y), x ∈ Σ ∗ and y ∈ Ω∗, the set of paths in a

transducer T is given by:

ΠT (x,y) = {π ∈ ΠT : i [π] = x ∧ o [π] = y} .

We define the set of valid paths in a rational transducer as:

ΠT (I) = {π ∈ ΠT : prev [π] ∈ I} .

q2

q0 q1

bbb : yx

ε : y

bb : ε

bb : xx

ba : yx

ab : xy

b : y

ab : xxy

Figure 2.3.: An example of a rational transducer.

Figure 2.3 shows an example of a rational transducer. Basically, it is a string
to string transducer without any final state. It is possible to halt at any state of
the machine.
A bi-language which is recognized by a rational transducer is known as a

rational bi-language. We will denote the set of all the rational bi-languages as
RBL(Σ ,Ω).
Notice that in Figure 2.3 the transitions (q0, bb, ε, q0) and (q0, bb,xx, q1) are one

of the causes for non-determinism. Such cases are known as ambiguity of ratio-
nal transducers. There are three ways ambiguity can be defined w.r.t. rational
transducers:

Ambiguity of input

A rational transducer T admits ambiguity of input when the following property
holds:

∃π1, π2 ∈ ΠT (I) : i [π1] 6= i [π2] ∧ o [π1] = o [π2] .
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q2

q0 q1

q3

aa : x
b : xy

ε : x

b : y

b : yy

a : ε

a : x

b : yx

a : xy

b : yb : ε

a : xy

Figure 2.4.: An example of a rational transducer with ambiguities w.r.t. input,
output, and path. Blue, green, and red edges show the causes of
ambiguities of input, output, and path respectively.

In Figure 2.4 the blue edges exemplify the input ambiguity. The input-
output pairs (ab,xy) and (ba,xy) have identical output strings but different
input strings, hence, cause input ambiguity.

Ambiguity of output

A rational transducer T admits ambiguity of output when the following property
holds:

∃π1, π2 ∈ ΠT (I) : i [π1] = i [π2] ∧ o [π1] 6= o [π2] .

In Figure 2.4 the green edges are shown to give an example of the output
ambiguity. The input-output pairs (ab,xyx) and (ab,yy) have identical input
strings and different output strings, and thus, cause output ambiguity.

Ambiguity of path

A rational transducer T admits ambiguity of path when the following property
holds:

∃π1, π2 ∈ ΠT (I) : i [π1] = i [π2] ∧ o [π1] = o [π2]
∧ π1 6= π2.

In Figure 2.4 the red edges are shown to exemplify the ambiguity of path.
The input-output pair (aab,xxy) can have two different paths and consequently
causes ambiguity of path.
When we want to map from the input language to the output language, the

input ambiguity does not cause any ambiguity in terms of parsing using the

21



q1q0 q2
1 : 0

1 : 1

0 : 0
1 : ε

0 : 1

0 : ε

Figure 2.5.: An example of a sequential transducer.

syntactic machine, and hence, computation of translation w.r.t. the input string
is not ambiguous. Since in a transduction scheme, we are interested in computing
translation from the input language to the output language, we will not consider
the case of input ambiguity. We will call a rational transducer un-ambiguous if
the ambiguity of output and the ambiguity of path do not hold and ambiguous
otherwise. Rational transducers are in general non-deterministic and hence why,
ambiguous. Next, we define some deterministic versions of rational transducers.

2.4.2. Sequential Transducers

Definition 8 (Sequential Transducer) A sequential transducer is a quintuple
T = 〈Q,Σ ,Ω , I, E〉, where T is a rational transducer such that:

• E ⊆ Q× Σ × Ω∗ × B×Q,

• I = {q0} where q0 ∈ Q,

• ∀q ∈ Q, ∀e, e′ ∈ E [q] , i [e] = i [e′]⇒ o [e] = o [e′] ∧ next [e] = next [e′] .

Notice that due to the determinism condition, a bi-language BL recognized
by a sequential transducer is functional. Therefore, in the context of sequential
transducers we will define a bi-language BL recognized by a sequential transducer
T as the function tT : Σ ∗ → Ω∗. For an input-output pair or a bi-string (x,y) ∈
BL we will write tT (x) = y.
As an example, let us consider a toy task of transduction tT , where Σ = {0, 1}

and Ω = {0, 1}. By means of the transduction tT we want to compute arithmetic
shift right operation over a binary input, i.e., we want to perform division by 2
in base 2, e.g., tT (10010) = 1001. The sequential transducer shown in Figure
2.5 is the machine that represents the transduction tT .
We will call a bi-language that is recognized by a sequential transducer: a

sequential bi-language. The set of all the sequential bi-languages is denoted as
SBL(Σ ,Ω).
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Proposition 1 Sequential transducers are un-ambiguous.

Sequential transducers admit prefix preserving property. Formally, tT (ε) =
ε and ∀x, y ∈ Σ ∗, if tT (xy) exists, then tT (x) ∈ Pref(tT (xy)) (Oncina et al.,
1993). The prefix preserving property brings certain limitations to sequential
transducers (Castellanos et al., 1998; de la Higuera, 2010). Due to the prefix
preserving property, not all transductions are possible using a sequential trans-
ducer. This argument can be best explained using an example of a transduction
task where we want to compute a rewrite operation of arithmetic shift left, i.e.,
we want to compute multiplication by 2 in base 2, e.g., tT (011) = 110. Notice
that in this example the prefix preserving property does not hold. Moreover,
there are two more interesting aspects of this transduction function. Firstly, if
we read 0 as the first symbol of the input string, the output should be an empty
string ε. Secondly, at the end of reading the whole string there has to be a
suffix 0 added to the output string. Again we observe that the second prop-
erty of the given transduction cannot be satisfied by a sequential transducer. In
order to overcome this limitation, we will introduce a modified machine called
subsequential transducer.

2.4.3. Subsequential Transducers

Definition 9 (Subsequential Transducer) A subsequential transducer (St)
is a sextuple T = 〈Q,Σ ,Ω , I, E, σ〉, where ψ(T ) = 〈Q,Σ ,Ω , I, E〉 is a sequential
transducer and σ : Q → Ω∗ is a partial function that assigns output strings to
states q ∈ Q.

The bi-language recognized by an St T is defined as tT : Σ ∗ → Ω∗ such
that, ∀x ∈ Σ ∗, tT (x) = tψ(T )(x) · σ(q), where tψ(T ) is the sequential transduction
provided by ψ(T ), q is the last state reached with the input string x and σ(q)
is the state output function. Figure 2.6 shows an example of a subsequential
transducer. In this example the subsequential transducer computes the rewrite
operation of arithmetic shift left in base 2, e.g., tT (1010) = 10100. Note that
the bi-language represented by the St in Figure 2.6 cannot be modeled by a
sequential transducer without any additional assumptions.

Proposition 2 Subsequential transducers are un-ambiguous.

Bi-languages modeled by subsequential transducers can also be modeled by
sequential transducers by means of an extra stop symbol ] /∈ Σ . The state
outputs can be replaced by special transitions from that state with input symbol
] having the transition outputs same as the state outputs. The destination of
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q1 : 0q0 : ε

1 : 1

0 : 0
1 : 1

0 : ε

Figure 2.6.: An example of a subsequential transducer.

q1q0

1 : 1] : ε

0 : 0
1 : 1

0 : ε

] : 0

Figure 2.7.: A sequential representation of the arithmetic shift left transduction
task by using the stop symbol ].

such transitions are for technical convenience always the initial state. Figure 2.7
shows a sequential representation of the subsequential transducer in Figure 2.6.
For technical convenience we will use ] edges instead of the state output function.
We will call a bi-language that is recognized by a subsequential transducer:

a regular bi-language. The set of all the regular bi-languages is denoted as
REGBL(Σ ,Ω).

Property 1 ∀BL ∈ REGBL(Σ ,Ω), for a given input string x ∈ Σ ∗, there is
either 0 or 1 translation for x.

Proof The proof is a direct consequence of Proposition 2. �

Some more auxiliary properties of sequential and subsequential transducers
are discussed in Appendix C.

2.4.4. p-Subsequential Transducers

In this section, we will introduce p-subsequential transducers, transducers which
are deterministic w.r.t. input symbols and non-deterministic w.r.t. state outputs.
p-Subsequential transducers were introduced by Allauzen and Mohri in (Allauzen
and Mohri, 2002, 2003a; Mohri, 2000b). They showed that rational transducers
(non-deterministic) having the so-called twins property can be determinized to
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q1 : x,yq0 q2 : x,xx

b : xx

b : x

a : y

a : ε

Figure 2.8.: An example of a 2-subsequential transducer.

p-subsequential transducers, and hence, p-subsequential transducers have more
expressive power than subsequential transducers.

Definition 10 (p-Subsequential Transducer) A p-subsequential transducer
(p-St) is a sextuple T = 〈Q,Σ ,Ω , I, E, σ〉, where ψ(T ) = 〈Q,Σ ,Ω , I, E〉 is
a sequential transducer and σ : Q → (Ω∗)p is a partial function that assigns
exactly p number of output strings to states q ∈ Q.

Figure 2.8 illustrates an example of 2−subsequential transducer. Here, every
state output function (partial) outputs 2 output strings. In case of p = 1, a p-St
is essentially an St.
We will call a bi-language that is recognized by a p-subsequential transducer:

a p-regular bi-language. The set of all the p-regular bi-languages is denoted as
PREGBL(Σ ,Ω).

Property 2 Let T be a p-subsequential transducer and x ∈ Σ ∗ such that x =
x1 . . . x|x|. T produces p number of different outputs for x denoted as y1, . . . ,yp
where yi ∈ Ω∗. Then the following statement is true:

o [e1] · . . . · o
[

e|x|
]

∈ Pref(lcp(y1, . . . ,yp)) where ei ∈ E and i [ei] = xi.

Proof The proof of the property can be constructed as the following:

y1 = o [e1] · . . . · o
[

e|x|
]

· σ(q) where next
[

e|x|
]

= q

. . .

yp = o [e1] · . . . · o
[

e|x|
]

· σ(q) where next
[

e|x|
]

= q

It is easy to see that o [e1] · . . . · o
[

e|x|
]

is always a prefix of the outputs, and
therefore the property holds. �

Property 3 ∀BL ∈ PREGBL(Σ ,Ω), for a given input string x ∈ Σ ∗, there
is either 0 or p translations for x.

Proof The proof follows from the definition of p-subsequential transducers (Def-
inition 10), the syntactic machine that recognizes BL. �
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2.4.5. Semi Deterministic Transducers

In this section we will define a new object called semi deterministic transducer
(Sdt), which is a machine whose expressive power and complexity is in between
rational transducers and subsequential transducers. Sdts have some determin-
istic properties, yet not totally deterministic as subsequential transducers. The
formal definition of an Sdt is the following:

Definition 11 (Semi Deterministic Transducer) A semi deterministic trans-
ducer (Sdt) is a sextuple T = 〈Q,Σ ,Ω , I, E, ρ〉 where ψ(T ) = 〈Q,Σ ,Ω , I, E〉
is a rational transducer such that:

• I = {q0},

• E ⊆ Q× Σ × Ω∗ × B×Q,

• ∀q ∈ Q, ∀e, e′ ∈ E [q] , i [e] = i [e′]⇒ next [e] = next [e′],

• a finite set of state outputs ρ ⊆ Q× Ω∗,

• and subject to the following condition: ∀q ∈ Q, ∀e′, e ∈ E [q] , if i [e] =
i [e′]⇒ o [e] /∈ Pref(o [e′]) ∧ o [e′] /∈ Pref(o [e]).

q0 : x q1 : ε,x q2 : y

a : x, a : y

b : xx, b : y

a : ε

b : x, b : y

a : xx, a : yy

b : ε

Figure 2.9.: An example of an Sdt.

Figure 2.9 shows an example of an Sdt. Notice that the state to state transi-
tions are deterministic w.r.t. input symbols. However, there are different output
strings possible for transitions with the same input string. Moreover, there can
be multiple state outputs for a given state.
The bi-languages that are recognized by Sdts are called: semi regular bi-

languages. The set of all the semi regular bi-languages is denoted as
SREGBL(Σ ,Ω).
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Property 4 ∀BL ∈ SREGBL(Σ ,Ω), for a given input string x ∈ Σ ∗, the set
{y : (x,y) ∈ BL} is finite.

Proof We will show the proof by contradiction. Let us assume to the contrary
that the set {y : (x,y) ∈ BL} is infinite and let T be an Sdt that recognizes
BL. First, that means, we will have an infinite number of paths π ∈ ΠT (I) such
that i [π] = x. Since, Sdts by definition have no ε transition w.r.t. input, we
must have an infinite number of edges e ∈ E in order to have an infinite number
of paths with the same input string. This leads to a contradiction since E is by
definition a finite set. Second, for an infinite number of translations for a given
string x with finite number of paths, we must have infinite state outputs. This
leads to another contradiction since the set of state outputs is by definition finite.
Therefore, the property holds. �

2.5. Hierarchy of Bi-Languages

In this section we examine the relative expressive power of different types of
transducers. In the previous section we have categorized the different sets of
bi-languages that can be recognized by different types of syntactic machines.
Here, our objective is to have a hierarchical view of sets of bi-languages that
can be modeled by finite state machines, which is precisely the research question
formulated in RQ1 in Chapter 1.

Lemma 1 ∀BL ∈ SREGBL(Σ ,Ω),BL ∈RBL(Σ ,Ω).

Proof The proof trivially follows from the definitions of the type of transducers
that recognizes the bi-languages in the two sets. Sdts are by definition rational
transducers having some deterministic conditions and state outputs. Therefore,
the lemma holds. �

Lemma 2 ∃BL ∈RBL(Σ ,Ω) such that BL /∈ SREGBL(Σ ,Ω).

Proof We will prove the lemma by providing a counter example. Figure 2.10(a)
precisely shows a counter example where the illustrated transducer is a ratio-
nal transducer T and there exists no equivalent Sdt that represents the bi-
language modeled by T . Figure 2.10(a) is a counter example because it vi-
olates Property Definition 11. Moreover, the bi-languages represented by the
counter example can have infinite number of translations for a given input
string, e.g., (a,y), (a,yx), (a,yxx) . . .. Therefore, it violates the Property 4 of a
SREGBL(Σ ,Ω). �
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Lemma 3 ∀BL ∈ PREGBL(Σ ,Ω),BL ∈ SREGBL(Σ ,Ω).

Proof We will show the proof by construction. Given an arbitrary p-St T =
〈Q,Σ ,Ω , I, E, ρ〉 that recognizes a p-regular bi-language, we will construct an
equivalent Sdt T ′ = 〈Q′,Σ ,Ω , I ′, E ′, ρ′〉 that recognizes a semi regular bi-language.
The construction is the following:

• Q′ ← Q;

• I ′ ← I;

• E ′ ← E;

• ρ′ ← {(q,y) : ρ(q) = y}.

Trivially T ′ is a Sdt that recognizes the same bi-language. Therefore, the
lemma holds. �

Lemma 4 ∃BL ∈ SREGBL(Σ ,Ω) such that BL /∈ PREGBL(Σ ,Ω).

Proof We will show the proof by providing a counter example of syntactic ma-
chine, namely an Sdt, representing a semi regular bi-language for which there
exists no equivalent p-St that represents a p-regular bi-language. The Sdt il-
lustrated in Figure 2.10(b) is precisely the counter example. Figure 2.10(b) is a
counter example because it violates Property 2. Moreover, in this example for
for an input an ∈ Σ ∗, n > 1, there are 2n number of translations: this violates
Property 3. Therefore, the lemma holds. �

Lemma 5 ∀BL ∈REGBL(Σ ,Ω),BL ∈ PREGBL(Σ ,Ω).

Proof The proof is trivial since Sts are essentially p-Sts with p = 1. �

Lemma 6 ∃BL ∈ PREGBL(Σ ,Ω) such that BL /∈REGBL(Σ ,Ω).

Proof Here, we show a counter example of a p-St that recognizes a p-regular
bi-language where there is no equivalent St. Figure 2.10(c) depicts such a p-St
which violates the unambiguous property of an St (Proposition 2). Moreover, it
violates Property 1. Therefore, the lemma holds. �

Lemma 7 ∀BL ∈ SBL(Σ ,Ω),BL ∈REGBL(Σ ,Ω).

Proof We will show the proof by construction. Given an arbitrary sequen-
tial transducer T = 〈Q,Σ ,Ω , I, E〉, we will construct an equivalent St T ′ =
〈Q′,Σ ,Ω , I ′, E ′, ρ〉. The construction is the following:
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• Q′ ← Q;

• I ′ ← I;

• E ′ ← E;

• ∀q′ ∈ Q′, ρ(q′)← ε.

It is easy to see that T and T ′ recognize the same bi-language. Therefore, the
lemma holds. �

Lemma 8 ∃BL ∈REGBL(Σ ,Ω) such that BL /∈ SBL(Σ ,Ω).

Proof To prove the lemma, we refer back to the example of an St given Figure
2.6 which cannot be modeled by a sequential transducer. Therefore, the lemma
holds. �

q1

q0

q2

ε : y
a : x

a : y
ε : x

(a)

q0 : ε

a : x,y

(b)

q0 : x,y

a : x

(c)

Figure 2.10.: Counter examples for Lemma 2 (Figure 2.10(a)), Lemma 4 (Figure
2.10(b)), and Lemma 6 (Figure 2.10(c)).

Theorem 1 Theorem of strict inclusion:

1. SREGBL(Σ ,Ω) ( RBL(Σ ,Ω)

2. PREGBL(Σ ,Ω) ( SREGBL(Σ ,Ω)

3. REGBL(Σ ,Ω) ( PREGBL(Σ ,Ω)

4. SBL(Σ ,Ω) ( REGBL(Σ ,Ω)

Proof The proof of 1 is a direct consequence of the lemmata 1 and 2. The
proof of 2 is a direct consequence of the lemmata 3 and 4. The proof of 3 is a
direct consequence of the lemmata 5 and 6. Finally, the proof of 4 is a direct
consequence of the lemmata 7 and 8. �
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RBL(Σ ,Ω)

SREGBL(Σ ,Ω)

PREGBL(Σ ,Ω)

REGBL(Σ ,Ω)

SBL(Σ ,Ω)

more complex bi-languages

Figure 2.11.: A Venn diagram of the sets of bi-languages modeled by finite state
transducers.

Figure 2.11 depicts the hierarchical view of the sets of bi-languages modeled
by finite state machines. In essence, the figure is a pictorial representation of
the theorem of strict inclusion (Theorem 1). As it shows that RBL(Σ ,Ω) is
the most complex set of bi-languages in this hierarchy and SBL(Σ ,Ω) is the
least complex one. Note that there are even more complex sets of bi-languages
than RBL(Σ ,Ω) which cannot be modeled by finite state machines, e.g., syn-
chronous grammar (Aho and Ullman, 1969).

At this point, we are only half way toward answering RQ1, as the research
question involves investigation of hierarchy of stochastic bi-languages and we have
only talked about bi-languages without considering any underlying distribution.
In the next sections we will elaborate bi-languages, syntactic machines that model
bi-languages, and investigate their properties.

2.6. Stochastic Languages

A stochastic language D is a probability distribution over Σ ∗. The probability of
a string x ∈ Σ ∗ under the distribution D is denoted as PrD(x) and must verify
∑

x∈Σ∗ PrD(x) = 1. If the distribution is modeled by some syntactic machine
M , the probability of x according to the probability distribution defined by M is
denoted as PrM(x). The distribution modeled by a machine M will be denoted
as DM and simplified to D if the context is not ambiguous.
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2.7. Probabilistic Finite Automata

The finite state machine that can be used to model a stochastic language is called
a probabilistic finite automaton (Pfa) (Paz, 1971). Pfas are generative devices.
The formal definition of a Pfa is the following:

Definition 12 (Probabilistic Finite Automaton) A probabilistic finite au-
tomaton (Pfa) over the probability semiring R+ is a quintuple A = 〈Q,Σ , λ, F, E〉
where:

• Q is a finite set of states,

• Σ is the alphabet,

• λ is the initial state probability,

• F is the final state probability,

• E is a finite set of transitions defined as E ⊆ Q× Σ ∪ {ε} × R+ ×Q,

• and subject to the following conditions:
∑

q∈Q

λ(q) = 1,

F (q) + ∀q ∈ Q,
∑

e∈E[q]

prob [e] = 1.

Figure 2.12 depicts an example of a Pfa. A Pfa defines a distribution over
Σ ∗. If a distribution over Σ ∗ or a stochastic language D is modeled by a Pfa

then D is known as a stochastic regular language. The set of all the stochastic
regular languages is denoted as SRL(Σ).

2.8. Stochastic Bi-Languages

Here, in order to represent a stochastic bi-language we will use the two alphabets
Σ and Ω in a way similar as used previously for bi-languages in the non-stochastic
setting. For technical reasons, to denote the end of an input string we use a
special symbol ] /∈ Σ as an end marker.
A stochastic bi-language R is given by a function PrR : Σ ∗]×Ω∗ → R+, such

that:
∑

u∈Σ∗]

∑

v∈Ω∗

PrR(u,v) = 1,
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q3(0.4)0.3

q2(0.4)q0(0.5)0.7

q1

b(0.25) a(0.8)

a(0.2)

a(0.1)

ε(0.1)

a(0.35)

ε(0.4) a(0.5)

Figure 2.12.: A graphical representation of a Pfa.

where PrR(u,v) is the joint probability of u and v. Let L ⊂ Σ ∗] and L′ ⊂ Ω ;

PrR(L,L
′) =

∑

u∈Σ∗]

∑

v∈Ω∗

PrR(u,v).

Example 1 The stochastic bi-language R where PrR(a
n], 1n) = 1

2n
, ∀n > 0, and

PrR(u,v) = 0 for every other pair.

In the sequel we will useR to denote a stochastic bi-language and T to denote a
transducer. Note that the end marker ] is needed for technical reasons only. The
probability of generating the ] symbol is equivalent to the stopping probability
of an input string.

2.9. Probabilistic Transducers

So far, we have considered transducers defined over the boolean semiring, i.e.,
the weights of the edges are either 1 or 0. Sometimes, it is necessary to model
scenarios where the weights have to be real numbers within [0, 1], e.g., in machine
translation, speech processing, and bioinformatics. If the weights of a rational
transducer are defined under the probability semiring, we call it a probabilistic
finite state transducer (Pfst). The formal definition of a Pfst is given in the
following sub-section.
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q2(0.4)

q0(0.6) q1

] : yx(0.25)

ε : y(0.75)

] : ε(0.4)

bb : xx(0.3)

ba : yx(0.7)

ab : xy(0.2)

b : y(0.3)

ab : xxy(0.1)

Figure 2.13.: An example of a Pfst. The transition labels should be interpreted
as: input :output(transition probability) and the state labels as
state:(initial state probability).

2.9.1. Probabilistic Finite State Transducers

Definition 13 (Probabilistic Finite State Transducer) A probabilistic fi-
nite state transducer (Pfst) is a quintuple T = 〈Q,Σ ∪ {]},Ω , E, λ〉 over the
probabilistic semiring R+ where:

• Q is a finite set of states,

• Σ and Ω are the input and the output alphabets,

• ] is a special input symbol,

• E ⊆ Q× Σ ∗ ∪ {]} × Ω∗ × R+ ×Q and ∀e ∈ E, i [e] = ]⇒ next [e] = q0,

• λ is the initial state probability,

• subject to the following normalization conditions:

∑

q∈Q

λ(q) = 1,

∀q ∈ Q,
∑

e∈E[q]

prob [e] = 1.

A Pfst T defines a joint probability distribution or a stochastic bi-language
RT over Σ ∗] × Ω∗. We denote the probability of an edge e ∈ E as prob [e] and
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the probability of a path π ∈ ΠT as prob [π]. The probability of a path π ∈ ΠT

is given by:

PrT (π) = λ(prev [π])

(

|π|
∏

i=1

prob [ei]

)

.

The probability of a translation pair (x,y) ∈ RT is denoted as PrT (x,y) and
can be computed as:

PrT (x,y) =
∑

π∈ΠT (x,y)

PrT (π).

Pfsts are generative models. The stochastic bi-languages that are generated
by Pfsts are called stochastic rational bi-languages. The set of all stochastic
rational bi-languages is denoted as SRBL(Σ ,Ω).
Figure 2.13 depicts an example of a Pfst. Here, the stopping probability of

a string is given by the probability of the edges with the input symbol ]. This
is equivalent to the stopping probability or the final probability of a given state.
For technical convenience, the destination state of the edges with the ] symbol
is one particular initial state, which is in case of the Pfst in Figure 2.13, the
state q0.
Similar to its non-probabilistic counterpart, rational transducers (Sub-section

2.4.1), Pfsts can also be ambiguous. We will call a Pfst un-ambiguous in terms
of translation if the following holds:

∀x ∈ Σ ∗, ∀y,y′ ∈ Ω∗,PrT (x],y) > 0 and PrT (x],y
′) > 0⇒ y = y′.

Notice that by definition a Pfst is a non-deterministic machine. Unlike a reg-
ular finite-state automaton, where for every Non-deterministic Finite Automaton
(Nfa) there exists an equivalent Deterministic Finite Automaton (Dfa), a trans-
ducer does not always have an equivalent deterministic or subsequential counter-
part. Determinization is only possible for transducers obeying the twins property
(see Appendix C) and equivalent deterministic machines can be obtained in p-
subsequential form (Allauzen and Mohri, 2003b). Therefore, it logically follows
that the expressive power of a Pfst is more than that of a deterministic form of
probabilistic transducers. In the following sub-sections we will examine Pfsts
with some deterministic properties.

2.9.2. Probabilistic Semi Deterministic Transducers

Here, we define an object having some weak deterministic characteristics. Es-
sentially we extend the definition of Pfst and impose some conditions of deter-
minism on it.
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Definition 14 A probabilistic semi deterministic transducer (Psdt) is a quin-
tuple T = 〈Σ ∪ {]},Ω , Q, E, λ〉 over the probability semiring R+ where ψ(T ) =
〈Σ ∪ {]},Ω , Q, E, λ〉 is a Pfst such that the following conditions hold:

• ∃!q0 ∈ Q : λ(q0) = 1,

• ∀q ∈ Q, ∀e, e′ ∈ E [q] , i [e] = i [e′]⇒ next [e] = next [e′],

• and subject to the following condition: ∀q ∈ Q, ∀e′, e ∈ E [q] , if i [e] =
i [e′]⇒ o [e] /∈ Pref(o [e′]) ∧ o [e′] /∈ Pref(o [e]).

q0 q2q1

b : x(0.2), b : y(0.1)
a : x(0.1), a : y(0.1)

a : x(0.4), a : y(0.1)

b : x(0.3), b : y(0.1)

a : x(0.2)

b : x(0.3), b : y(0.5)

] : xx(0.5)

] : ε(0.1)

Figure 2.14.: An example of a Psdt (weak deterministic).

Figure 2.14 depicts an example of a Psdt. Note that as per the definition
(Definition 14) there is exactly one initial state q0 where λ(q0) = 1. The initial
state probability (always equal to 1) has not been shown for simplicity.
We will call the bi-languages that are generated by Psdts: stochastic semi

regular bi-languages. The set of all the stochastic semi regular bi-languages is
denoted as SSREGBL(Σ ,Ω).

Corollary 1 ∀R ∈ SSREGBL(Σ ,Ω), for a given input string x ∈ Σ ∗], the
set {y : PrR(x,y) 6= 0} is finite.

Lemma 9 ∃R ∈ SRBL(Σ ,Ω) such that R /∈ SSREGBL(Σ ,Ω).

Proof Figure 2.15 depicts a Pfst for which there exists no equivalent Psdt,
hence, this is precisely a counter example. Because of the input ε loops, the
number of translations for the input string a] is infinite. Therefore, it violates
Corollary 1. �

Lemma 10 ∀R ∈ SSREGBL(Σ ,Ω), ∃R ∈ SRBL(Σ ,Ω).

Proof The proof is trivial and follows from Definition 13 and Definition 14. �
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q1

q0

q2

ε : y(0.2)a : x(0.7)

a : y(0.3) ε : x(0.4)

] : ε(0.6)

] : ε(0.8)

Figure 2.15.: A counter example for Lemma 9.

2.9.3. Probabilistic p-Subsequential Transducers

Definition 15 A probabilistic p-subsequential transducer (Ppst) is a quin-
tuple T = 〈Q,Σ ∪ {]},Ω , {q0}, E〉 defined over the probability semiring R+ where:

• Q is a non-empty finite set of states,

• q0 ∈ Q is the unique initial state,

• Σ and Ω are the input and the output alphabets,

• E ⊆ Q× Σ ∪ {]} × Ω∗ × R+ ×Q,

• subject to the following conditions:

– ∀q ∈ Q
∀(q, u,v, α, q′), (q, u′,v′, β, q′′) ∈ E, u = u′ 6= ] ⇒ v = v′, α =
β, q′ = q′′

– ∀q ∈ Q,
∑

a∈Σ∪{]},q′∈Q

Pr(q, a, q′) = 1,

– ∀(q, u,v, α, q′) ∈ E, u = ]⇒ q′ = q0,

– ∀q ∈ Q, |{e : e ∈ E [q] , i [e] = ]}| = p.

Figure 2.16 depicts an example of a Ppst where p = 2. We will call the bi-
languages that are generates by Ppsts: stochastic p-regular bi-languages. The
set of all the stochastic p-regular bi-languages is denoted as SPREGBL(Σ ,Ω).

Corollary 2 Let T be a probabilistic p-subsequential transducer and x ∈ Σ ∗]
such that x = x1 . . . x|x|. T produces p number of different outputs for x denoted
as y1, . . . ,yp where yi ∈ Ω∗. Then the following statement is true:

o [e1] · . . . · o
[

e|x|
]

∈ Pref(lcp(y1, . . . ,yp)) where ei ∈ E and i [ei] = xi.
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q1q0 q2

b : xx(0.4)

] : x(0.2), ] : xx(0.4)

] : ε(0.3), ] : y(0.4)

b : x(0.1)

a : y(0.2)

a : ε(0.5)

] : x(0.1), ] : y(0.4)

Figure 2.16.: An example of a probabilistic 2-subsequential transducer.

Corollary 3 ∀R ∈ SPREGBL(Σ ,Ω), for a given input string x ∈ Σ ∗],
|{y : PrR(x,y) 6= 0}| = p.

Lemma 11 ∃R ∈ SSREGBL(Σ ,Ω) such that R /∈ SPREGBL(Σ ,Ω).

Proof We show a counter example of an R ∈ SSREGBL(Σ ,Ω) which is rep-
resented by the Psdt depicted in Figure 2.17. Figure 2.17 is a counter example
because it violates Corollary 2. Moreover, the stochastic bi-language represented
by the counter example violates Corollary 3. Hence, the lemma holds. �

q0

a : x(0.3), a : y(0.5)

] : ε(0.2)

Figure 2.17.: A counter example for Lemma 11.

Lemma 12 ∀R ∈ SPREGBL(Σ ,Ω), ∃R ∈ SSREGBL(Σ ,Ω).

Proof The proof of the lemma is trivial and can be shown by construction,
because probabilistic p-subsequential transducers are essentially the special case
for a Psdt where many transitions are possible only for the ] transitions. �
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q0 q1 a : x(0.6)

] : xx(0.5)

b : y(0.2)

a : x(0.3)

] : y(0.5)

Figure 2.18.: Graphical representation of a Pst.

2.9.4. Probabilistic Subsequential Transducers

Definition 16 A Probabilistic Subsequential Transducer (Pst) is a quin-
tuple T = 〈Σ ,Ω , Q, E, λ〉 over the probability semiring R+ where ψ(T ) =
〈Σ ,Ω , Q, E, λ〉 is a Pfst such that:

• the following deterministic conditions hold:

– ∃!q0 ∈ Q : λ(q0) = 1,

– ∀q ∈ Q, ∀e, e′ ∈ E [q] , i [e] = i [e′]⇒ o [e] = o [e′]∧prob [e] = prob [e′]∧
next [e] = next [e′].

Figure 2.18 depicts an example of a Pst.
Given aPst T , for any x ∈ Σ ∗, there exists a translation y ∈ Ω∗ if PrT (x],y) 6=

0. The set of all the input strings for which there is a valid translation generated
by T is defined as:

Dom(T ) = {x : x ∈ Σ ∗ ∧ PrT (x],y) 6= 0}.

Property 5 Let T be a Pst. For a string x ∈ Dom(T ), there exists a unique
path π ∈ ΠT such that i [π] = x.

Proof Let π1, π2 ∈ ΠT be two paths such that i [π1] = i [π2] = x. We will show
that π1 = π2.
For 1 ≤ i ≤ |x|, we can write: x = x1 . . . x|x| where xi ∈ Σ , π1 = e1 . . . e|x|, and

π2 = e′1 . . . e
′
|x|. In order to prove π1 = π2, it suffices to show that for 1 ≤ i ≤ |x|,

ei = e′i. We will show ei = e′i by induction.
Induction basis: Since x ∈ Dom(T ), for i = 1,

q0 = prev [e1] = prev [e′1]∧x1 = i [e1] = i [e′1]⇒ o [e1] = o [e′1]∧next [e1] = next [e′1] .

Therefore, e1 = e′1.
Induction hypothesis: For i = n, en = e′n.
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Inductive step: From induction hypothesis we can write:

next [en] = next [e′n] = prev [en+1] = prev
[

e′n+1

]

.

Moreover, since i [en] = i [e′n] = xn, it follows that, i [en+1] = xn+1 = i
[

e′n+1

]

.
Which implies that,

o [en+1] = o
[

e′n+1

]

∧ next [en+1] = next
[

e′n+1

]

.

Therefore, for 1 ≤ i ≤ |x|, ei = e′i. �

Proposition 3 Psts are un-ambiguous.

Proof The proof of the proposition is the direct consequence of Property 5. �

We call the bi-languages that are recognized by Psts: stochastic regular bi-
languages. The set of all the stochastic regular bi-languages is denoted as
SREGBL(Σ ,Ω).

Corollary 4 ∀R ∈ SREGBL(Σ ,Ω), for a given input string x ∈ Σ ∗],
|{y : PrR(x,y) 6= 0}| = 1.

Lemma 13 ∃R ∈ SPREGBL(Σ ,Ω) such that R /∈ SREGBL(Σ ,Ω).

Proof We provide a counter example to show the proof. Figure 2.19 is precisely
such an example. The stochastic bi-language represented by Figure 2.19 is a
counter example because it violates Proposition 3 and Corollary 4. Therefore,
the lemma holds. �

q0

a : x(0.6)

] : x(0.15), ] : y(0.15)

Figure 2.19.: A counter example for Lemma 13.

Lemma 14 ∀R ∈ SREGBL(Σ ,Ω), ∃R ∈ SPREGBL(Σ ,Ω).

Proof The proof of the lemma is trivial and can be shown by construction. �
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SRBL(Σ ,Ω)

SSREGBL(Σ ,Ω)

SPREGBL(Σ ,Ω)

SREGBL(Σ ,Ω)

more complex stochastic bi-languages

Figure 2.20.: A Venn diagram of the sets of the stochastic bi-languages modeled
by probabilistic transducers.

2.10. Hierarchy of Stochastic Bi-Languages

In this section we show the hierarchy of stochastic bi-languages modeled by finite
state machines. First, we show a theorem of strict inclusion as a proof of the
hierarchy and then present the result by means of a Venn diagram.

Theorem 2 Theorem of strict inclusion:

1. SREGBL(Σ ,Ω) ( SPREGBL(Σ ,Ω);

2. SPREGBL(Σ ,Ω) ( SSREGBL(Σ ,Ω);

3. SSREGBL(Σ ,Ω) ( SRBL(Σ ,Ω).

Proof The proof of 1 is a consequence of the lemmata 9 and 10. The proof of
2 is a consequence of the lemmata 11 and 12. And finally, the proof of 3 is a
consequence of the lemmata 13 and 14. �

The hierarchy of stochastic bi-languages is summarized in Figure 2.20.

2.11. Parsing

Parsing in case of probabilistic transducers can have different meanings depend-
ing on the context. In different application areas, there are specific requirements
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of computations using the same formal device. For instance, in statistical ma-
chine translation it is often required to compute the most probable translation
of a given string using a probabilistic transducer. In this section we will look at
different types of computation problems from a generic viewpoint and indepen-
dent of its application areas with the types of probabilistic transducers we have
defined in the previous section.
In our study, we consider Pfsts having no transitions with input and output

as empty strings at the same time. We call them (ε, ε)-free Pfsts. Formally, an
(ε, ε)-free Pfst T is a Pfst with the following conditions:

∀e ∈ E, i [e] = ε⇒ o [e] 6= ε,

o [e] = ε⇒ i [e] 6= ε.

If the transducer contains such transitions, it is required to compute the prob-
ability of moving freely (i.e., without having to generate any input and output)
from one state to another, which is itself very expensive. There are algorithms
to remove (ε, ε) transitions from Pfsts, such as (Hanneforth, 2008; Hanneforth
and de la Higuera, 2010; Mohri, 2000a, 2002a). The mentioned algorithms are
for removing ε-transitions in Pfas, but can be adapted to this case. By means
of such algorithms, one can obtain an (ε, ε)-free Pfst and apply the parsing
algorithms we present here. Therefore, in our study we omit such cases and only
focus on the (ε, ε)-free probabilistic transducers.
An (ε, ε)-free Pfst is said to be in a normal form if the following condition

holds:

∀e ∈ E, (i [e] ∈ Σ ∪ {]} ∧ o [e] = ε) ∨ (o [e] ∈ Ω ∧ i [e] = ε).

Less formally, for each transition, the input-output pair can either be in the
form of (a, ε), a ∈ Σ ∪{]} or in the form of (ε,b),b ∈ Ω . Normalization is, in all
cases, polynomial. Next, we show that every (ε, ε)-free Pfst has a normal form.

Proposition 4 Let T be an (ε, ε)-free Pfst that represents a stochastic rational
bi-language BLT . There exists an (ε, ε)-free Pfst T ′ in the normal form that
represents a stochastic rational bi-language BLT ′ such that BLT = BLT ′.

Proof We will show the proof of the proposition by construction. Algorithm
1 constructs an equivalent Pfst in the normal form. The correctness of the
construction can be argued as the following: the algorithm iterates over each
edge of the input Pfst. If a particular edge is already in the normal form,
its adds a copy of the edge to the Pfst under construction (line 5). In other
cases it adds symbol by symbol for each input strings with an ε output (the
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first innermost for loop) and symbol by symbol for each output string with an ε
output. The actual probability of the edge of the input Pfst is only added once
(line 8) and the for the rest of the new edges, the probability is 1. Therefore, it
is easy to see that the constructed Pfst in the normal form is equivalent to the
input Pfst. �

2.11.1. Computing the Joint Probability of a String Pair

The problem definition: Given a pair of strings (x,y) where x ∈ Σ ∗ and
y ∈ Ω∗, and a Pfst T = 〈Q,Σ ∪ {]},Ω , E, λ〉, compute PrT (x,y).
First, as a syntactic machine, we consider a Pfst T given in the normal form.

Here we present a forward algorithm to compute PrT (x,y).
Let T be a three dimensional matrix of size |x|×|v|×|Q|, x = x1 . . . x|x| where

xi ∈ Σ , and y = y1 . . .y|y| where yi ∈ Ω . The first steps to compute PrT (x,y)
are the following:
For i = 0 to |Q| − 1,

T [0, 0, k]← λ(qk);

For i = 0 to |x| − 1, for j = 0 to |y| − 1, for k = 0 to |Q| − 1,

T [i+ 1, j + 1, k]←
∑|Q−1|

l=0 T [i, j + 1, l]PrT (ql, xi+1, ε, qk)

+
∑|Q−1|

l=0 T [i+ 1, j, l]PrT (ql, ε,yj+1, qk);

After executing the above steps, T [n,m, k] contains the joint probability of
the prefix x1 . . . xn with n ≤ |x|, y1 . . .ym with m ≤ |y|, and being in the state
qk with k ≤ |Q| − 1. The probability of the string pair (x,y) ending in the state
qk can be computed by multiplying the ] transition probabilities of qk using the
following formula:

T [|x| − 1, |y| − 1, k] ·
∑

e∈{e:e∈E[qk],i[e]=]}

prob [e].

Finally, if we sum up all the probabilities of the string pair (x,y), we obtain
PrT (x,y). Formally,

PrT (x,y) =

|Q|−1
∑

k=0

T [|x| − 1, |y| − 1, k]
∑

e∈{e:e∈E[qk],i[e]=]}

prob [e].

The runtime complexity of the presented algorithm is O
(

(|x|+ |y|) |Q|2
)

.
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Algorithm 1: Normalize
Input: a Pfst T = 〈Σ ,Ω , Q,E,λ〉 where E ⊆ Q× Σ∗ × Ω∗ × R+ ×Q
Output: an equivalent Pfst T ′ = 〈Σ ,Ω , Q′, E′, λ′〉 in the normal form.

1 for q ∈ Q do

2 Q′ ← {q} ∪Q′;
3 λ′(q)← λ(q);
4 for e ∈ E [q] do
5 if |i [e]| = 1 ∧ |o [e]| = 0 or |i [e]| = 0 ∧ |o [e]| = 1 then

6 Q′ ← {next [e]} ∪Q′;
7 λ′(next [e])← λ(next [e]);
8 E′ ← E′ ∪ (q, i [e] , o [e] , prob [e] , next [e]) ;
9 exit;

10 Let si be the ith symbol of i [e];
11 for i = 1 to |i [e]| do
12 switch value of i do

13 case i = 1
14 Q′ ← {qsi} ∪Q

′;
15 λ′(qsi)← 0;
16 E′ ← E′ ∪ (q, si, ε, prob [e] , qsi);

17 case i = |i [e]|
18 Q′ ← {next [e]} ∪Q′;
19 λ′(next [e])← λ(next [e]);
20 E′ ← E′ ∪ (qsi−1ri−1 , si, ε, 1, qsi);

21 otherwise

22 Q′ ← {qsiri} ∪Q
′;

23 λ′(qsi)← 0;
24 E′ ← E′ ∪ (qsi−1 , si, ε, 1, qsi);

25 Let ri be the ith symbol of o [e];
26 for i = 1 to |o [e]| do
27 switch value of i do

28 case i = 1
29 Q′ ← {qri} ∪Q

′;
30 λ′(qri)← 0;
31 E′ ← E′ ∪ (qs|i[e]| , ε, ri, 1, qri);

32 case i = |o [e]|
33 Q′ ← {next [e]} ∪Q′;
34 λ′(next [e])← λ(next [e]);
35 E′ ← E′ ∪ (qri−1 , ε, ri, 1, next [e]);

36 otherwise

37 Q′ ← {qsiri} ∪Q
′;

38 λ′(qsiri)← 0;
39 E′ ← E′ ∪ (qri−1 , ε, ri, 1, qri);
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A similar algorithm can be used for computing the joint probability of a string
pair using a Psdt. The algorithm is the following: let T be a three dimensional
matrix of size |x| × |v| × |Q|, x = x1 . . . x|x| where xi ∈ Σ , and y = y1 . . .y|y|
where yi ∈ Ω . Since Psdt has exactly one initial state, we initialize T as the
following:

T [0, 0, 0]← 1;

The recurrence relation is the following:

T [i+ 1, j, k]←
∑

r≤j

T [i, j, k′] · PrT (qk′ , xi, yr+1 . . . yj, qk),

where T [i, j, k] holds the probability of being in state qk after having parsed
x1 . . . xi and y1 . . .yj; qk′ is the unique state reached by parsing x1 . . . xi from

the initial state q0. The complexity will therefore be O(|x| |y|2).
For a Ppst the runtime complexity remains the same and the same algorithm

can be used to compute the joint probability.
If the syntactic machine T is a Pst, computing PrT (x,y) is rather straight

forward and can be done in linear time w.r.t. the length of x. Since Psts are
deterministic w.r.t. the input, for x = x1 . . . x|x|, there exists a unique path
π ∈ ΠT , such that π = e1 . . . e|x| and for 1 ≤ i ≤ |x|, i [e] = xi (Property 5). The
algorithm is the following:

PrT (x,y) =
(

|x|
∏

i=1

prob [ei]
)

prob [e] where prev [e] = next
[

e|x|
]

, i [e] = ].

The runtime complexity of the above algorithm is O(|x|).

2.11.2. Computing the Probability of an Input String

The problem definition: Given a string x ∈ Σ ∗ and a Pfst T =
〈Q,Σ ∪ {]},Ω , E, λ〉, compute PrT (x,Ω

∗), which is known as a marginal.
Computing the probability of an input string x in a Pfst, is essentially similar

to computing the probability of a string in a Pfa. This can be done using the
classical forward algorithm described in (Baum et al., 1970). If the Pfst is
by definition (ε, ε)-free and is in the normal form, the runtime complexity is
O(|x| |Q|2). Details about the forward algorithm can be found in (de la Higuera,
2010).
In case of a Psdt, the problem of computing the probability of an input

string can be achieved in linear time. Let T be a Psdt. There exists a unique
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sequence of states q0 . . . q|x| that forms the paths for generating x = x1 . . . x|x|.
The algorithm for computing the probability of x using T is the following:

PrT (x,Ω
∗) =

(

|x|−1
∏

i=0

∑

e∈E[qi]:i[e]=xi+1

prob [e]
)

∑

e∈E[q|x|]:i[e]=]

prob [e].

The runtime complexity of the above algorithm is bounded by O(|x| b + s)
where b is the branching factor defined as:

b = max{j : j = |{e : e ∈ E [qk−1] , i [e] = xk}| , 1 ≤ k ≤ |x|}

and s is the stopping factor defined as:

s =
∣

∣{e : e ∈ E
[

q|x|
]

, i [e] = ]}
∣

∣ .

Less formally, branching factor is the maximum of the number of outgoing edges
per state used to generate x and stopping factor is the number of outgoing edges
with the stopping symbol ] at the last state while generating x.
If the syntactic machine is a Ppst or a Pst, the computation of PrT (x,Ω

∗) is
also linear and the runtime complexities are O(|x| + p) and O(|x|) respectively.
For Ppst, the algorithm is the following:

PrT (x,Ω
∗) =

(

|x|
∏

i=1

prob [ei]
)

∑

e∈{e:e∈E[next[e|x|]],i[e]=]}

prob [e],

and for Pst the algorithm is the following:

PrT (x,Ω
∗) =

(

|x|
∏

i=1

prob [ei]
)

prob [e] where prev [e] = next
[

e|x|
]

, i [e] = ].

2.11.3. Computation of the Conditional Probability of a

Translation

The problem definition: Given a pair of strings (x,y) where x ∈ Σ ∗ and
y ∈ Ω∗, and a Pfst T = 〈Q,Σ ∪ {]},Ω , E, λ〉, compute PrT (y|x).
The conditional probability of y given an input string x can be written as:

PrT (y|x) =
PrT (x,y)

PrT (x,Ω∗)
.
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Therefore, by using the solutions presented in the previous two sub-sections, it
is possible to compute PrT (y|x). If the syntactic machine is a Pfst, then the
runtime complexity for computing PrT (y|x) is O

(

(|x| + |y| |)Q|2
)

.
If the syntactic machine is a Psdt, or a Ppst, then the runtime complexity

for computing PrT (y|x) is O(|x|+ |y|
2).

In case of a Pst, the runtime complexity of computing PrT (y|x) is O(|x|).

2.11.4. The Most Probable Translation of a String

The problem definition: Given an input string x ∈ Σ ∗, and a Pfst T =
〈Q,Σ ∪ {]},Ω , E, λ〉, compute:

argmax
y

PrT (x,y).

Otherwise stated, find y such that:

∀z ∈ Ω∗,PrT (x], z) ≤ PrT (x],y).

In case of a Pfst, the problem of finding the most probable translation is
proven to be NP-Hard by de la Higuera and Casacuberta (2000). An approach
to find an approximate solution has been presented in (Casacuberta, 1995; Picó
and Casacuberta, 2001).
However, with Psdts, Ppsts, and Psts, it is possible to obtain the most

probable translation of a given input string in linear time.
For Psdts, an algorithm for computing the most probable translation of a

given string is presented by Algorithm 2. The runtime complexity of Algorithm
2 is bounded by O(|x| b+ s).
Algorithm 3 is an algorithm for finding the most probable translation when

the syntactic machine is a Ppst. The runtime complexity of Algorithm 3 is
O(|x|+ p).
Finally, Algorithm 4 is an algorithm when the transducer is a Pst and the

runtime complexity is O(|x|).

2.11.5. Computation of all Translations of x such that
Pr(y|x) > δ

The problem definition: Given an input string x ∈ Σ ∗, and a Pfst T =
〈Q,Σ ∪ {]},Ω , E, λ〉, and 0 ≤ δ ≤ 1, compute:

{y : y ∈ Ω∗,PrT (y|x) > δ}.
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Algorithm 2: MostProbableTranslation1

Input: a Psdt T = 〈Q,Σ ∪ {]},Ω , E, λ〉, a string x = x1 . . . x|x| where
x ∈ Σ ∗ and xi ∈ Σ

Output: y ∈ Ω∗ such that ∀z ∈ Ω∗,PrT (x], z) ≤ PrT (x],y),
false if there is no such y

1 q ← q0 ∈ Q such that λ(q0) = 1;
2 for i = 1 to |x| do
3 p← 0;
4 for e ∈ E [q] : i [e] = x1 do
5 if prob [e] > p then
6 p← prob [e];
7 y′ ← o [e];

8 if p = 0 then return false;
9 y← y.y′;

10 q ← next [e];

11 p← 0;
12 for e ∈ E [q] : i [e] = ] do
13 if prob [e] > p then
14 p← prob [e];
15 y′ ← o [e];

16 if p > 0 then
17 return y.y′;

18 else
19 return false;
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Algorithm 3: MostProbableTranslation2

Input: a Ppst T = 〈Q,Σ ∪ {]},Ω , E, λ〉, a string x = x1 . . . x|x| where
x ∈ Σ ∗ and xi ∈ Σ

Output: y ∈ Ω∗ such that ∀z ∈ Ω∗,PrT (x], z) ≤ PrT (x],y),
false if there is no such y

1 q ← q0 ∈ Q such that λ(q0) = 1;
2 for i = 1 to |x| do
3 if ∃e ∈ E [q] : i [e] = x1 then
4 y ← y.o [e];
5 q ← next [e];

6 else
7 return false;

8 pr ← 0;
9 for e ∈ E [q] : i [e] = ] do

10 if prob [e] > pr then
11 pr ← prob [e];
12 y′ ← o [e];

13 if pr > 0 then
14 return y.y′;

15 else
16 return false;
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Algorithm 4: MostProbableTranslation3

Input: a Pst T = 〈Q,Σ ∪ {]},Ω , E, λ〉, a string x = x1 . . . x|x| where
x ∈ Σ ∗ and xi ∈ Σ

Output: y ∈ Ω∗ such that ∀z ∈ Ω∗,PrT (x], z) ≤ PrT (x],y),
false if there is no such y

1 q ← q0 ∈ Q such that λ(q0) = 1;
2 for i = 1 to |x| do
3 if ∃e ∈ E [q] : i [e] = x1 then
4 y ← y.o [e];
5 q ← next [e];

6 else
7 return false;

8 if ∃e ∈ E [q] : i [e] = ] then
9 return y.o [e];

10 else
11 return false;

When the syntactic machine is a Pfst, this problem is known to be NP-Hard
(Casacuberta and de la Higuera, 2000). However, in a recent work, de la Higuera
and Oncina (2011) have proposed a pseudo-polynomial solution where the length
of y must be bounded by l ∈ [n] ∪ {0}, i.e., y ∈ Ω≤l. The proposed solution
works is two steps: first, they have shown that all translations of a given string
can be represented by a Pfa; second, as a consequence of the first step, the
problem can be reduced to finding the bounded most probable strings of a Pfa

and they have presented a pseudo-polynomial algorithm for finding such strings
in a Pfa. The runtime complexity of the algorithm to compute the bounded

most probable strings of a Pfa is reported as in O( l|Σ ||QA|
2

δ
) where QA is the

set of states in the Pfa and all the arithmetic operations are assumed to be
in constant time. This result implies that, computing the set of translations of
x with probability greater than δ where the lengths of the output strings are
bounded, can be computed in pseudo-polynomial time: the runtime required for
constructing the corresponding Pfa and the runtime required for computing the
bounded most probable strings of the Pfa.

When the probabilistic transducer is one of the deterministic kinds, i.e., Psdt,
Ppst, and Pst, the problem can be solved in linear time and without the re-
striction of the output string length to be bounded. This can be achieved by
similar algorithms as computing the most probable translation presented in the

49



previous section and the runtime complexities are also the same.

2.11.6. A Conclusion about these Parsing Questions

The summary of the runtime complexities of parsing depicted in Table 2.2 shows
that Psts are the only type of probabilistic transducer where parsing in linear
w.r.t. the length of the input string in all cases. For Psdts and Ppsts some of
the computation problems can be done in linear time, however, computing the
joint probability and conditional probability are still quadratic. In case of Pfsts
the computation time for each case is either quadratic or NP-Hard. Therefore,
Psts are computationally the most inexpensive devices although they are the
most limited onces in terms of expressive power.
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Table 2.2.: Runtime complexities of different computations using different types of probabilistic transducers.

{y : ∀z ∈ Ω
∗,

Pr(x,y) Pr(x,Ω∗) Pr(y|x) Pr(x], z) ≤ Pr(x],y)} {y : Pr(y|x) > δ}

Pfst O
(

(|x|+ |y|) |Q|2
)

O(|x| |Q|2) O
(

(|x|+ |y|) |Q|2
)

NP-Hard NP-Hard, pseudo-polynomial if y ∈ Ω
≤l

Psdt O(|x| |y|2) O(|x| b+ s) O(|x| |y|2) O(|x| b+ s) O(|x| b+ s)

Ppst O(|x| |y|2) O(|x|+ p) O(|x| |y|2) O(|x|+ p) O(|x|+ p)

Pst O(|x|) O(|x|) O(|x|) O(|x|) O(|x|)
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2.12. Equivalence with Other Models

2.12.1. Pair Hidden Markov Models

The relation between Pfas and hidden Markov models (Hmms) has been exam-
ined in (Casacuberta, 1990; Dupont et al., 2005; Vidal et al., 2005a). It has been
proved that Hmms and Pfas are equivalent in terms of modeling distributions
over stochastic languages. In this section, we investigate the relation between
Pfsts and Phmms.
Phmm was first introduced by Durbin et al. in 1998 in the context of bioin-

formatics (Durbin et al., 1998). Since then, Phmm has also been used in various
tasks in the domain of natural language processing, e.g., (Clark, 2001a,b, 2002;
Mackay and Kondrak, 2005; Nabende et al., 2008; Nabende, 2009). Intuitively,
Phmm is a similar object as classical Hmm where, instead of emitting a sin-
gle symbol at each state, a pair of symbols is emitted at each state. A formal
definition of Phmm is the following:

Definition 17 A Phmm is a sextuple M = 〈Q,Σ ,Ω , I, τ, ξ〉 where:

• Q is a finite set of states,

• qf ∈ Q is a distinguished final state,

• Σ and Ω are the finite alphabets of symbols,

• I : Q\{qf} → R+ is a partial function for initial state probability,

• τ : (Q\ {qf})×Q→ R+ is a state to state transition probability function,

• ξ : (Q\ {qf})×Σ ∪{ε}×Ω ∪{ε} → R+ is a state based probability function
for emission of symbol pairs,

subject to the following normalization conditions:

∑

q∈Q\{qf}

I(q) = 1,

∀q ∈ Q\ {qf} ,
∑

q′∈Q

τ(q, q′) = 1,

∀q ∈ Q\ {qf} ,
∑

a∈Σ∪{ε}

∑

b∈Ω∪{ε}

ξ(q, a,b) = 1.
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Phmms define joint distributions over Σ ∗ × Ω∗. Unlike Hmms where the dis-
tribution is over a fixed length of string Σn, in case of Phmm, ε transitions are
allowed and therefore they define distribution over Σ ∗ × Ω∗. The halting of
Phmm is managed by transition probabilities to the final state (labeled as END).
Once the final state is reached, the parsing is halted. We denote the joint distri-
bution defined by the Phmm M as RM . An example of a Phmm is illustrated
in Figure 2.21.

s2(0.3)

s1(0.5) END

s3(0.2) a : ε

b : ε

a : u b : v

ε : u

ε : v

0.3

0.15

0.45

0.1

0.2

0.5

0.2

0.1
0.30

0.25

0.30

0.15

0.3
0.7

0.45

0.55

0.5

0.5

Figure 2.21.: An example of a Phmm. This example has been adapted from
(Durbin et al., 1998). The state labels should be interpreted as
state(initial state probability). The un-dotted lines are transitions
labeled with transition probability and the dotted lines emissions
labeled with emission probability. Each emission is a pair of input-
output symbols.

We will say that the model generates or emits a pair of strings (x,y) where
x and y are sequences given by x = x1 · . . . · xk and y = y1 · . . . · yk such that
xi ∈ Σ ∪ {ε} and yi ∈ Ω ∪ {ε} and the probability of generating (x,y) is given
by PrM(x,y). We will define PrM(x,y) in two steps. First, let a valid path π ∈
ΠM(I) such that next [π] = qf . We can write π = e1 . . . ek and ei ∈ (Q\ {qf})×Q
such that τ(ei) 6= 0. Moreover, we can write prev [ei] = next [ei−1] with i ≥ 2
and next [ek] = qf . The probability of the path π is given by:
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PrM(π) = I(prev [e1])
k
∏

i=1

τ(prev [ei] , next [ei])

and the probability of generating (x,y) through π is:

PrM((x,y)|π) =
k
∏

i=1

ξ(prev [ei] , xi,yi).

Let ΠM(x,y) be the set of all valid paths for (x,y) such that ∀π ∈ ΠM(x,y), π ∈
ΠM (I) ∧ next [π] = qf . Then, the probability that M generates or emits (x,y)
is:

PrM(x,y) =
∑

π∈ΠM (x,y)

PrM((x,y)|π)PrM(π).

Lemma 15 Let T = 〈Q,Σ ∪ {]},Ω , E, λ〉 be a Pfst where E ⊆ Q×Σ ∗×Ω∗×
R+×Q and RT be the stochastic bi-language modeled by T . There exists a Pfst

T ′ = 〈Q′,Σ ∪ {]},Ω , E ′, λ′〉 where E ′ ⊆ Q′ × Σ ∪ {ε} × Ω ∪ {ε} × R+ ×Q′ that
models a stochastic bi-language RT ′ such that RT = RT ′. The number of states
in T ′ is given by:

|Q′| =
∑

q∈Q

∑

e∈E[q]

max{|i [e]| , |o [e]|},

and the number of edges in T ′ is given by:

|E ′| =
∑

e∈E

max{|i [e]| , |o [e]|}.

Proof We will show the proof by construction. The algorithm Construct1

(Algorithm 5) takes the Pfst T as an input and constructs the equivalent Pfst
T ′.
Let (x,y) ∈ Σ ∗ × Ω∗ be an arbitrary pair of strings with PrT (x,y) 6= 0

where x = x1 · . . . · xn and y = y1 · . . . · yn such that xi ∈ Σ ∗ and yi ∈ Ω∗

with 1 ≤ i ≤ n. ∃π ∈ ΠT (I) such that π = e1 . . . en+1 and o [en+1] = ]. The
probability of generating (x,y) via π is:

λ(prev [e1])
(

prob [e1] . . . prob [en+1]
)

.

Similarly, for any pair of strings (x,y) ∈ Σ ∗ × Ω∗ with PrT ′(x,y) 6= 0, ∃π ∈
ΠT ′(I) such that π = e′1 . . . e

′
m+1 and o

[

e′m+1

]

= ] where m = max{|x| , |y|}.
The probability of generating (x,y) via π is:

λ(prev [e′1])
(

prob [e′1] . . . prob
[

e′m+1

]

)

.
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By construction:
λ(prev [e1]) = λ(prev [e′1]),

prob [e1] . . . prob [en+1] = prob [e′1] . . . prob
[

e′m+1

]

.

Therefore, RT = RT ′ . Moreover, there are three nested for loops in the algo-
rithm Construct1 (Algorithm 5) where the states and the edges are added to
T ′, therefore it is easy to see that |Q′| =

∑

q∈Q

∑

e∈E[q]max{|i [e]| , |o [e]|} and

|E ′| =
∑

e∈Emax{|i [e]| , |o [e]|} hold. �

Theorem 3 Given a Pfst T with |E| transitions, there exists a Phmm M with
at most m number of states where:

m = 1 +
∑

e∈ET

max{|i [e]| , |o [e]|}

such that RT = RM and ET is the set of transitions in T .

Proof We will show the proof of the theorem by construction in two steps. First,
we will construct an equivalent Pfst of T as T ′ = 〈Q,Σ ∪ {]},Ω , E, λ〉 using the
construction in Lemma 15 (Algorithm 5) where E ⊆ Q×Σ∪{ε}×Ω∪{ε}×R+×Q.
Second, using T ′, we will create an equivalent Phmm M =

〈

QM ,Σ ,Ω , I, δ, ξ
〉

as
follows:

• ∀e ∈ E ′, QM ← QM ∪ {(prev [e] , next [e])};

• QM ← QM ∪ {qf};

• ∀(q, q′) ∈ QM\{qf},

I(q, q′)← λ(q)
∑

e∈{e:e∈E[q],next[e]=q′,i[e]6=]}

prob [e];

• ∀(q, q′), (q′, q′′) ∈ QM\{qf},

τ((q, q′), (q′, q′′))←
∑

e∈{e:e∈E[q′],next[e]=q′′,i[e]6=]}

prob [e];

• ∀(q, q′) ∈ QM\{qf},

τ((q, q′), qf )←
∑

e∈{e:e∈E[q′],i[e]=]}

prob [e];
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Algorithm 5: Construct1

Input: a Pfst T = 〈Σ ,Ω , Q, E, λ〉 where E ⊆ Q× Σ ∗ × Ω∗ × R+ ×Q
Output: an equivalent Pfst T ′ = 〈Σ ,Ω , Q′, E ′, λ′〉 where

E ′ ⊆ Q′ × Σ ∪ {ε} × Ω ∪ {ε} × R+ ×Q′

1 for q ∈ Q do
2 Q′ ← {q} ∪Q′;
3 λ′(q)← λ(q);
4 for e ∈ E [q] do
5 if max{|i [e]| , |o [e]|} = 0 or max{|i [e]| , |o [e]|} = 1 then
6 Q′ ← {next [e]} ∪Q′;
7 λ′(next [e])← λ(next [e]);
8 E ′ ← E ′ ∪ (q, i [e] , o [e] , prob [e] , next [e]);
9 exit;

10 Let si be the ith symbol of i [e] and ri be the ith symbol of o [e];
11 if i > max{|i [e]| , |o [e]|} then si = ε and ri = ε;
12 for i = 1 to max{|i [e]| , |o [e]|} do
13 switch value of i do
14 case i = 1
15 Q′ ← {qsiri} ∪Q

′;
16 λ′(qsi)← 0;
17 E ′ ← E ′ ∪ (q, si, ri, prob [e] , qsiri);

18 case i = max{|i [e]| , |o [e]|}
19 Q′ ← {next [e]} ∪Q′;
20 λ′(next [e])← λ(next [e]);
21 E ′ ← E ′ ∪ (qsi−1ri−1

, si, ri, 1, next [e]);

22 otherwise
23 Q′ ← {qsiri} ∪Q

′;
24 λ′(qsiri)← 0;
25 E ′ ← E ′ ∪ (qsi−1ri−1

, si, ri, 1, qsiri);
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• ∀(q, q′) ∈ QM\{qf}, ∀e ∈ E [q],

ξ((q, q′), i [e] , o [e])←
prob [e]

∑

e∈{e:e∈E[q],next[q′],i[e]6=]} prob [e]
.

For any pair of strings (x,y) ∈ Σ ∗ × Ω∗ with PrT ′(x,y) 6= 0 where x =
x1 · . . . · xn and y = y1 · . . . · yn such that xi ∈ Σ ∪ {ε} and yi ∈ Ω ∪ {ε},
∃π ∈ ΠT ′(I) such that π = e1 . . . en+1 and o [en+1] = ]. The probability of
generating (x,y) through the path π is:

λ(prev [e1])
(

prob [e1] . . . prob [en+1]
)

.

For any pair of strings (x,y) ∈ Σ ∗ × Ω∗ with PrM(x,y) 6= 0, ∃π ∈ ΠM (I)
such that π = e1 . . . en and next [en] = qf . The probability of generating (x,y)
through the path π is:

I(prev [e1])
(

ξ(prev [e1] , x1,y1)τ(prev [e1] , next [e1]) . . .

ξ(prev [en] , xn,yn)τ(prev [en] , qf)
)

.

For each path in T ′, we have exactly one path inM . Moreover, by construction:

I(prev [e1])ξ(prev [e1] , x1,y1) = λ(prev [e1])
(

∑

e∈{e:e∈E[q],next[e]=q′,i[e]6=]}

prob [e]
)

( prob [e1]
∑

e∈{e:e∈E[q],next[e]=q′,i[e]6=]} prob [e]

)

= λ(prev [e1])prob [e1] ,

where q = prev [e1] and q
′ = next [e1]. Similarly, for 1 ≤ i ≤ n− 1,

τ(prev [ei] , next [ei])ξ(prev [ei+1] , xi+1,yi+1) = prob [ei] .

Finally,

τ(prev [en] , qf) = prob [en+1] .

Hence, RT ′ = RM and using Lemma 15, RT = RM . The number of states in M
is 1 + |E|. According to Lemma 15, we can write, the number of states in M is
1 +

∑

e∈ET max{|i [e]| , |o [e]|}. Therefore, the theorem holds.
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Figure 2.22.: The figure shows a Pfst (Figure 2.22(a)), an equivalent inter-
mediate Pfst (Figure 2.22(b)), and an equivalent Phmm (Figure
2.22(c)).

Theorem 4 Given a Phmm M with n states, there exists a Pfst T with at
most n states such that RM = RT .

Proof We will show the proof of the theorem by construction. Let M =
〈Q,Σ ,Ω , I, δ, ξ〉 be a Phmm. We will construct an equivalent Pfst

T ′ = 〈Q′,Σ ∪ {]},Ω , E, λ〉 as follows:

• Q′ ← Q;

• ∀q ∈ Q\{qf}, λ(q)← I(q);

• ∀q, q′ ∈ Q such that τ(q, q′) 6= 0, ∀(q, a,b) such that ξ(q, a,b) 6= 0, a ∈
Σ ∪ {ε},b ∈ Ω ∪ {ε},
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– E ← E ∪ {e : prob [e] = τ(q, q′)ξ(q, a,b), i [e] = a, o [e] = b, prev [e] =
q, next [e] = q′};

• E ← E ∪ {e : prob [e] = 1, i [e] = ], o [e] = ε, prev [e] = qf , next [e] =
q0 where q0 ∈ I};

For any pair of strings (x,y) ∈ Σ ∗ × Ω∗ with PrM(x,y) 6= 0 where x =
x1 · . . . · xn and y = y1 · . . . · yn such that xi ∈ Σ ∪ {ε} and yi ∈ Ω ∪ {ε},
∃π ∈ ΠM(I) such that π = e1 . . . en and next [en] = qf . The probability of
generating (x,y) via π is:

I(prev [e1])
(

ξ(prev [e1] , x1,y1)τ(prev [e1] , next [e1]) . . .

ξ(prev [en] , xn,yn)τ(prev [en] , qf)
)

.

Similarly, for any pair of strings (x,y) ∈ Σ ∗ × Ω∗ with PrT ′(x,y) 6= 0, ∃π ∈
ΠT ′(I) such that π = e1 . . . en+1 and o [en+1] = ]. The probability of generating
(x,y) via π is:

λ(prev [e1])
(

prob [e1] . . . prob [en+1]
)

.

By construction, I(q) = λ(q), prob [ei] = ξ(prev [ei] , xi,y1)τ(prev [ei] , next [ei]),
and prob [en+1] = 1. Hence, RM = R′T . Moreover, we can build a Pfst T with
at most |Q| = n states such that T = T ′. �
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Figure 2.23.: An equivalent Pfst of the Phmm given in Figure 2.21.
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2.12.2. Weighted Finite State Transducers

So far we have talked about transducers over the boolean semiring or the proba-
bility semiring. A generalized formalism of finite state transducers defined under
an arbitrary semiring is known as weighted finite state transducers (Wfsts). In
this section we formulate the definition of Wfst defined over an arbitrary semir-
ing. The definitions presented in this section are based on (Roark and Sproat,
2007; Allauzen et al., 2007; Mohri, 2005).

Definition 18 A Weighted Finite State Transducer is a sextuple
T = 〈Q,Σ ,Ω , E, λ, ρ〉 over a semiring K where:

• Q is a finite set of states,

• Σ and Ω are the input and the output alphabets,

• E is a finite set of transitions E ⊆ Q× Σ ∪ {ε} × Ω∗ ×K×Q,

• λ and ρ are the initial and the final weight functions respectively.

The set of initial states and final states in a Wfst are defined as I =
{

q ∈ Q : λ(q) 6= 0
}

and F =
{

q ∈ Q : ρ(q) 6= 0
}

.

Proposition 5 A Wfst is equivalent to a Pfst under the following conditions:

1. The Wfst is defined under probability semiring.

2. The following normalization condition holds:

⊕

q∈Q

λ(q) = 1,

∀q ∈ Q, ρ(q)⊕
⊕

e∈E[q]

prob [e] = 1.

Proof The proof follows from the definitions of Wfst and Pfst.
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Pfsts or Phmms

Psdts

Ppsts

Psts

more complex probabilistic machines

Figure 2.24.: A Venn diagram of the expressive power of probabilistic finite state
machines.

2.13. Chapter Summary

In this chapter we have attempted to pursue three of the research questions
defined in Chapter 1, referred as the RQ1, the RQ2, and the RQ3. Here we
will summarize the results presented in this chapter under each of these research
questions.

The RQ1 is regarding the investigation of the hierarchies of the stochas-
tic bi-languages represented by finite state machines. We have conducted the
study in two steps: first, we have shown the hierarchy of bi-languages in a non-
probabilistic setting. In order to elaborate the hierarchy of bi-languages, we have
presented the definitions and properties of several types of rational transducers.
Second, we have shown the hierarchy of stochastic bi-languages represented by
finite state machines. We have also presented the definitions and properties of
different types of probabilistic transducers. Graphical views of our results are
presented in Figure 2.11 and 2.20. Moreover, Figure 2.24 depicts the hierar-
chy in terms of the syntactic machines for the respective sets of the stochastic
bi-languages.

The RQ2 is about parsing using probabilistic transducers. The objective of
this research question is to find out the computational complexities for the dif-
ferent types of probabilistic transducers. We have presented five different types
of computation problems and how they can be solved using four different types
of probabilistic transducers defined in Section 2.9. The summary of our findings
is presented in Table 2.2 (page 51).
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Finally, the RQ3 is regarding comparison of probabilistic transducers with
other existing finite state models. First, we have conducted a study w.r.t. a well
known finite state model called the Phmm. We have proved that Pfsts and
Phmms are equivalent in terms of modeling joint distributions over translation
pairs of input and output languages. Otherwise stated, stochastic bi-languages
modeled by Pfsts can also be modeled by Phmms and vice versa. Second, we
have shown that, Pfsts are essentially equivalent to another well known model
called Wfst when they are defined under the probability semiring.

2.14. Discussion

The three research questions tackled in this chapter give us important and useful
insights for the rest of the thesis work. The answer to the RQ1 tells us that the
Psts are the least powerful in terms of the stochastic bi-languages that the Psts
represent. The natural question that one may ask at this point is: if Psts are
the least powerful, why are we learning them? If we analyze the studies w.r.t.
the RQ2 and the RQ3, we will be able to give a justified answer to this question.
The results of the RQ2 show, in terms of computational complexities, Psts

are the most efficient devices (Table 2.2). Otherwise stated, using the other types
of machines will be more computationally complex than the Psts.
Moreover, if we analyze the study w.r.t. the RQ3 we have the following: we

have shown that the Pfsts are equivalent to another well known model called
the Phmm. As the set of all the Pfsts is essentially a superset of the set of all
the Psts, it logically follows that the Psts can also be converted to its equivalent
Phmm, which is a widely used model.
Therefore, the justification to learn Psts are: 1) inexpensive to perform com-

putation and 2) can be converted to other widely used models.
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Chapter 3
Related Work

3.1. Introduction

T
he history of learning finite state transducers is related to the history
of learning finite state automata. The problem of learning finite state
automata was first addressed by Gold (1978), where he showed an algo-

rithm to learn Dfas in an identification in the limit model (Gold, 1967). Gold
proposed an algorithm for learning Dfa that converges to the minimal form of
the target Dfa from a complete presentation. However, the limitation of Gold’s
algorithm was that the inferred Dfa is guaranteed to be interesting only when
a characteristic sample is available. If the hypothesis Dfa is not consistent to
the training data, the algorithm returns the initial hypothesis Dfa, which is a
tree like Dfa representing the training data (Gold, 1978). In 1992, Oncina and
Garćıa proposed the Rpni (Regular Positive and Negative Induction) algorithm
which provides guarantee to be consistent with the training data. If the training
data includes the characteristic sample, the algorithm converges to the minimal
Dfa for the target language.
The problem of learning subsequential transducers from a given set of positive

examples in the limit was first addressed by Oncina et al. in their seminal papers
(Oncina and Garćıa, 1991; Oncina et al., 1993) where they presented their now
well known Ostia algorithm, which is based on the state merging strategies
similar to those used in the Dfa learning algorithms. Before the work of Oncina
et al., the problem of transducer learning had rarely been addressed. Only a
handful quantity of work, mostly based on heuristics had been carried out such
as (Veelenturf, 1978; Luneau et al., 1983; Takada, 1988; Vidal et al., 1990).
Besides state merging approaches, there has been work done with regards

to transducer learning in an active learning setting (Vilar, 1996; Oncina, 2008)
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which are also inspired by Angluin’s Dfa learning algorithm by means of queries
(1987a).
In this chapter we will present a survey on transducer learning. First, we will

briefly highlight the work related to transducer learning before Ostia was pro-
posed and their limitations. Second, we will describe the basic principles of the
Ostia algorithm. Third, we will discuss other approaches which are primarily
based on Ostia with some added features or heuristics. Fourth, we will con-
cisely present a sketch on how transducer learning evolved in the active learning
setting. Finally, we will discuss a few recent works on transducer learning.

3.2. Early Work

One of the early work with regards to transducer learning is the attempt from
Veelenturf (1978). In his paper, he proposed a non-incremental algorithm for
learning Mealy machines. A Mealy machine is essentially a sequential transducer
where the transition outputs can only be symbols (Mealy, 1955). The algorithm
obtains a Mealy machine which is compatible to the training data. If the target
transducer is an n-state Mealy machine and the training data contains all the
input-output pairs with lengths below 2n− 1, then the algorithm is guaranteed
to infer an exactly equivalent machine to the target transducer. Which means,
for an arbitrary number of input symbols |Σ |, and an arbitrary number of states
n, the algorithm will require exactly the following number of examples:

|Σ |(2n−1) + |Σ |(2(n−1)−1) + . . .+ |Σ | .

This number is exponential w.r.t. the number of states n.
Another related work is the result presented by Luneau et al. in (1983). In

this paper they presented a heuristic based incremental algorithm to infer Moore
machines. A Moore machine is a finite state machine where the output are only
determined by the current states (Moore, 1956). Unlike Mealy machines, Moore
machines have no transition outputs. The main drawback of their work is: it is
not guaranteed that the inferred machine will be consistent to the training data.
In another early attempt, Takada worked on transducer inference problem

in (1988). In his work he presented an inference algorithm for learning Dfas
extended to have an output transition. Essentially, the algorithm learns a se-
quential transducer which is allowed to have only one symbol as an output. This
model is a highly restricted model in the sense of being deterministic w.r.t. the
inputs and having the prefix preserving property (see Chapter 2, Section 2.4.2).
Yet another early attempt is the work done by Vidal et al. on inference of

transducer presented in (1990). They conducted this work within the context of
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pattern recognition tasks and it was based on heuristics. No theoretical guarantee
of identification in the limit was given.

The early work with regards to transducer learning we have mentioned in this
section are essentially the work done before the Ostia algorithm was proposed.
From this brief discussion it appears that before Ostia, the work was restricted
to sequential models, based on heuristics and had lack of theoretical guarantee
for identification in the limit. Next, we explain the Ostia approach for learning
subsequential transducers.

3.3. OSTIA: The State Merging Approach

The Ostia (Onward Subsequential Transducer Inference Algorithm) (Oncina
and Garćıa, 1991) algorithm can be found in three different versions in the liter-
ature having the basic principle and the result being the same, formalized using
a slightly different data structure and combinatorics. Oncina et al. showed the
basic version of Ostia in (Oncina et al., 1993) where they basically worked
with the sequential representation of the subsequential transducer to be learnt.
In (Castellanos et al., 1998) Oncina et al. have presented the same algorithm,
however, working with subsequential transducers rather than working with se-
quential representation of it. De la Higuera showed another presentation of the
same algorithm in (de la Higuera, 2010) where a recursive framework for state
merging is adopted. All these versions of Ostia essentially perform the same
task with slightly different formalisms and implementations. Here, we explain
the basic principle of the algorithm which is fundamentally the same in all its
versions.

As mentioned previously, the problem of identification of subsequential trans-
ducers from a given set of transduction examples in the limit is inspired by the
state merging algorithm for identification ofDfa in the limit (Oncina and Garćıa,
1992). The Rpni algorithm by Oncina and Garćıa presented in (1992) is the first
algorithm where the state merging approach is introduced for learning Dfa. The
algorithm is initialized by building a prefix tree acceptor (Pta) from the training
data labeled as positive, and state merging is iteratively applied making sure
that the hypothesis Dfa is consistent with the training sample. This is achieved
by rejecting a merge between two candidate states whenever a negative example
is accepted from the given sample. Therefore, the Rpni algorithm requires pos-
itive and negative data for identifying the Dfa in the limit. Based on modified
state merging strategies, a number of variants of Dfa learning algorithms have
been proposed (Trakhtenbrot and Barzdin, 1973; Lang et al., 1998; Garćıa et al.,
2010; Heule and Verwer, 2010).
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Ostia is very much analogous to Rpni; Ostia is also based on state merging
approaches similar to the Dfa learning algorithms mentioned, except that it
infers subsequential transducers. Unlike Rpni, Ostia is only given positive
examples. Therefore, the state merging strategy in Ostia has to rely on two
properties to compensate the lack of negative data; one of them is ensuring the
subsequentiality (see page 23) of the hypothesis and the other is making sure the
consistency of the outputs with regards to the given data.

The Ostia algorithm essentially executes in three phases. Here we describe
the three phases in details:

Initialization: Similar to Rpni, Ostia also starts with a tree like transducer
built from the training pairs, known as the tree subsequential transducer (Tst),
which exactly represents translations given by the training pairs. Basically a tree
is built from the prefix set of the input strings of the given sample. The outputs
of the transitions are labeled as ε. The output strings in the given sample are
then assigned to the leaf states of the tree corresponding the respective input
strings as the state outputs. Thus, the Tst only produces the translations given
in the sample.

q2 : yx q4 : yxxq0 : xx

q1 : ∅ q3 : xxx

a : ε

b : ε

a : ε

a : ε

Figure 3.1.: A Tst built from the positive sample S = {(ε,xx),
(b,yx), (aa,xxx), (ba,yxx)}.

Onwarding: The Tst is then converted to an onward (Oncina and Garćıa,
1991; Oncina et al., 1993; Castellanos et al., 1998) form, known as the onward
tree subsequential transducer (Otst). Intuitively, a subsequential transducer in
the onward form means, the output strings are always as close as possible to the
initial state. Technically, this is done by advancing the longest common prefixes
of the output strings of the edges starting from the leaves of the tree. This is
done level by level from the bottom of the tree to the initial state. Note that
since only the longest common prefixes are being moved toward the initial state,
the onward tree remains fully consistent with the given data. In other words,
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the initial Tst and the Otst produce exactly the same translations. Till this
phase of the algorithm no generalization takes place.

q2 : ε q4 : εq0 : xx

q1 : ∅ q3 : ε

a : xxx

b : yx

a : ε

a : x

Figure 3.2.: Making the Tst given in Figure 3.1 onward.

State Merging: The state merging phase of Ostia is the phase where the
algorithm attempts to generalize by state merging. Given an Otst T , theOstia

algorithm iteratively merges the compatible states, i.e., it merges the states
having identical state outputs or if the output of one of the candidate states is
still unknown. Formally, the merge acceptance conditions for the two candidate
states q and q′ can be expressed as:

(

σ(q) = ∅
)

∨
(

σ(q′) = ∅
)

∨
(

σ(q) = σ(q′)
)

.

If the subsequential condition (see Chapter 2, Section 2.4.3, Definition 9) is
violated, Ostia performs a cascade of forced merges until the Otst is reached
in a subsequential form.

q2 : ε q4 : εq0 : xx

q3 : εa : xxx

b : yx

a : ε

a : x

Figure 3.3.: Example of a merge attempt between q0 and q1. This merge is re-
jected since the merge acceptance condition is violated.

Sometimes due to the onwarding process, some outputs are too close to the
initial state and therefore merging is not possible due to the subsequentiality
condition. In order to make merges to happen in such cases, whenever necessary,
Ostia pushes back (reverse of making onward) suffixes of the output strings
toward the leaves of T ; this is known as the pushback operation. Intuitively,
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q2 : ε q4 : xq0 : xx

a : xxx

b : yx a : ε

Figure 3.4.: Example of a merge attempt between q1 and q2 which is accepted.
To preserve subsequential property q3 is merged to q4. For this merge
to happen, pushback takes place which pushes the output x toward
the leaf q4.

pushback is a process of propagating the outputs toward the leaves of the Tst

(see Figure). The process of iterative state merging is repeated until no more
states are mergeable.

Notice that throughout the state merging phase the algorithm makes sure
that the hypothesis transducer is consistent with the training data. The Ostia

algorithm has been proven to identify the subsequential transducer in the limit
from its characteristic sample if the corresponding subsequential function is total
(Oncina and Garćıa, 1991; Oncina et al., 1993). More details about Ostia e.g.,
an example run, formal proofs, experimental results etc. can be found in (Oncina
and Garćıa, 1991; Oncina et al., 1993; Castellanos et al., 1998; de la Higuera,
2010).

3.4. Variants of OSTIA

Different variants of the Ostia algorithm have been proposed ever since the
algorithm was published. Essentially, the variants are successors of the Ostia

algorithm with some added features incorporated to the basic version of Ostia.
One of the objectives of modifying Ostia is to gain better prediction accuracy.
Moreover, another objective is: with help of additional information, to be able to
learn subsequential functions which are partial functions, while Ostia can only
learn subsequential functions which are total functions.

One of such variants is the Ostia-N algorithm (Oncina and Varó, 1996). In
this algorithm, negative information with regards to the domain language is used
for making merge decisions. A negative example w.r.t. the domain language
means a string that is rejected by the automaton that represents the domain
language. Ostia-N requires positive presentation of input-output pairs similar
to Ostia and additionally, it requires negative examples of the input language
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or the domain language. For taking a merge decision of a candidate pair of
states, Ostia-N makes supplementary checks as to whether a negative instance
of the domain language is accepted or not. The merge is rejected if it accepts
a negative instance. The prediction accuracy of Ostia-N has been reported to
be better than Ostia; this is due to the fact that Ostia-N has got access to
more information than Ostia. Identification in the limit is guaranteed whenever
a characteristic sample is included in the training data. Ostia-N can learn
subsequential functions which are partial functions.

Another successor of Ostia is the Ostia-D algorithm (Oncina and Varó,
1996). This algorithm relies on the information with regards to the domain
language. Here the motivation is to utilize domain specific knowledge to accom-
plish the transducer learning task. In various applications, it often the case that
domain specific information is available and using Ostia-D methodology, such
information can be used to gain better prediction accuracy. Similar to Ostia, a
positive sample is presented and additionally it is assumed that the learner has
knowledge about the domain language in terms of the syntactic machine that
represents the domain language. Since the bi-language is regular, the syntactic
machine in case of the domain language is a Dfa. The initial Tst is augmented
with such domain information. The distinct states of the Dfa representing the
input language are labeled in the Tst and only the states having the same labels
are allowed to be merged. This approach has been shown to improve the pre-
diction accuracy drastically in comparison to the basic Ostia algorithm. Again,
the reason for better prediction accuracy is Ostia-D having access to more in-
formation than Ostia. Ostia-D also guarantees identification in the limit if
characteristic sample is included in the training data. Ostia-D can also learn
subsequential functions which are partial functions.

3.5. Heuristics Based Approaches

Although Ostia provides formal guarantee for asymptotic convergence, experi-
ments showed that for complex tasks the amount of required data is large enough
to be prohibitive. Based on the basic version of Ostia, several attempts have
been made to achieve better prediction accuracy with lesser amount of data by
applying some heuristics. In this section, we discuss some of the heuristics based
successors of Ostia.

Oncina presented a heuristics based modification ofOstia known asOstia-dd

where a data driven approach has been applied (1998). The basic Ostia algo-
rithm follows a greedy approach in the sense that the first valid merge computed
is taken into consideration. There is a risk of a wrong merge getting accepted
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due to lack of enough training data in this approach. The idea is to avoid wrong
merges by giving score to number of merges and considering the best merge from
a set of valid merges. This approach has been inspired by the data driven ap-
proach from de la Higuera et al. (1996). The metric used for scoring the merges
in Ostia-dd is chosen on the basis of reduction of the number of output symbols
in the tree as a result of a merge. Experiments reported in (Oncina, 1998) showed
significant improvement in prediction accuracy of Ostia-dd in comparison with
Ostia.

In the context of a machine translation task, Vilar used dictionaries and align-
ments along with Ostia to improve prediction rate in (2000). One of the de-
manding criteria for Ostia to infer the correct machine is the requirement of
having enough examples so that the correct alignment of the output strings w.r.t.
the input symbols can take place. If the alignments are precomputed by means
of some known heuristics from statistical machine translation, the amount of
data required reduces drastically to obtain an acceptable prediction accuracy.
This algorithm is known as the Omega (Ostia Modified for Guarantees and
Alignments) algorithm. The Omega algorithm has been reported to outperform
the Ostia and the Ostia-D algorithms.

In the context of the Tenjinno1 competition (Starkie et al., 2006), Clark pro-
posed a heuristics based algorithm in (2006). This algorithm turned out to be
the winner of the competition. The main idea of the algorithm is to combine
Dfa learning by means of state merging, expectation maximization algorithm
for alignment and the idea of state splitting. The algorithm infers the Dfa rep-
resenting the input language by means of some heuristics based state merging.
Then alignment of the outputs w.r.t. the input symbols is carried out by an ex-
pectation maximization algorithm. The inferred Dfa is then augmented by the
aligned outputs w.r.t. the input symbols. Whenever necessary state splitting is
done on the Dfa to incorporated the aligned outputs.

Besides the community of grammatical inference, the problem of learning finite
state transducers has also been explored by the evolutionary computing commu-
nity. Evolutionary algorithms appeared to be robust in presence of noise in the
context of Dfa learning (Dupont, 1994; Lucas and Reynolds, 2003, 2005). Lucas
and Reynolds worked on learning Fsts using an evolutionary algorithm in (2003;
2007). Evolutionary approaches to learn transducers also showed to exhibit bet-
ter prediction accuracy in certain tasks in comparison to the Ostia algorithm.
However, these kinds of approaches provide no guarantee of learning the target
machine.

Moreover, heuristics have been applied to adopt Fst learning to machine trans-

1Tenjinno is a machine translation competition held in 2006.
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lation (Casacuberta, 2001; Picó and Casacuberta, 2001; Vidal and Casacuberta,
2004), natural language processing (Casacuberta, 2000; González et al., 2008),
speech processing (Vilar et al., 1996). All these approaches use some domain
specific heuristics to adjust the learning task to their specific needs.

3.6. Active Learning

So far we have discussed learning settings where the learner is given examples to
accomplish the learning tasks. The learner makes no interaction with the learning
environments. As discussed in Chapter 1, active learning settings provide an
environment for the learner to interact with the learning environment. The
learner has access to a minimally adequate teacher (Mat) or an oracle to ask
queries with regards to examples. For instance, the learner may ask the oracle
if a string belongs to a language or not, and the oracle answers with either yes
or no. The learning model from queries is due to Angluin; in her seminal paper
(1987b) she introduced such learning model. In another paper, she presented
her famous L∗ algorithm (Angluin, 1987a): an algorithm for Dfa learning by
queries.

Transducer learning in an active learning setting was first addressed by Vilar
(1996). The algorithm he presented in this paper is essentially an extension of
Angluin’s L∗ algorithm to learn subsequential transducers. Vilar’s algorithm uses
two kinds of queries: translation queries and equivalence queries. In a translation
query, the learner is allowed to ask the translation of a particular string and the
oracle answers with its translation. If the translation is not defined, the oracle
returns a signal indicating that the translation does not exist. In an equivalence
query the learner can as the oracle if a hypothesis is equivalent to the target and
the oracle answers with either yes or no. The learning algorithm halts when the
hypothesis is equivalent to the target.

Another work done in Angluin’s active learning model to infer transducers is
the relatively recent work from Oncina (2008). Oncina presented an algorithm for
learning multiplicity automaton to represent transducer relations. Multiplicity
automata are devices that can implement functions from strings to fields. Oncina
formalized a restriction to represent string to string relations instead of string
to field relations; multiplicity automata were used to represent string to divisive
ring relations. He showed an algorithm for learning such devices in Angluin’s
exact learning model. The algorithm used the same set of queries that was used
in the Vilar’s algorithm. Oncina mentioned in his paper that since the proposed
algorithm works only in theoretical settings, a number of open questions remained
to be answered and the practical implications of the proposed algorithm are still
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to be investigated.

3.7. Learning Probabilistic Models

As far as learning probabilistic transducers are concerned, to the best of our
knowledge there has been no work done till date where learning the structure
of the machine is a primary objective. It is worth mentioning that there has
been work done on probabilistic transducer models such as (Clark, 2001a, 2002;
Eisner, 2001, 2002; Li and Eisner, 2009; Balle et al., 2011), primarily focused on
training the weights or probabilities based on the observed data of a predefined
structure of a transducer. This line of research is fundamentally different in the
context of the thesis since our objective is to infer the structure of the target
machine as well as the underlying probability distribution represented by the
target machine.

However, algorithms exist for learning Probabilistic Finite-State Automata
(Pfa). The learning problem of Pfa from positive sample is a well explored
problem. The first state merging algorithm for learning deterministic Pfa from
positive examples, Alergia, was introduced by Carrasco and Oncina in (1994).
Having Alergia as the pioneer, a number of modified versions has been pre-
sented, e.g., (Thollard et al., 2000; Carrasco and Oncina, 1999). They are state
merging algorithms similar to Rpni based on statistical tests to preserve the
property of the distribution of the training data. A recent survey about Pfa

learning can be found in (Verwer et al., 2012).

3.8. Recent Work

Wakatsuki and Tomita presented a polynomial time algorithm for learning strict
prefix deterministic finite state transducers from positive presentation
(2010). Strict prefix deterministic finite state transducers are proper subclass
of rational transducers. However, it has not been reported in their paper if strict
prefix deterministic finite state transducers properly include all subsequential
transducers. They proved their algorithm in Gold’s identification in the limit
paradigm.

In another recent work, Clark presented an algorithm for learning inversion
transduction grammar in an identification in the limit model (2011). Inversion
transduction grammar is a set of bi-languages that are context free bi-languages
and more powerful than rational bi-languages. Hence, it properly includes all
regular bi-languages recognized by subsequential transducers. The algorithm
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presented by Clark is generalization of distributional learning model presented
in (Clark, 2010). In his paper he reports that the theoretical results that he
presented are far from actually being applied in practice, and there was no ex-
perimental results reported.

3.9. Chapter Summary

In this chapter we have presented a bibliographical study on transducer learn-
ing. We started by discussing about the early attempts of transducer learning
starting back in the late seventies where the models were restricted to sequential
transducers. As the pioneering work for subsequential transducer learning and
also as the baseline of the thesis work, we have explained the fundamentals of
the Ostia algorithm. We also presented the ideas of several variants of Ostia.
Results with regards to the learning problem of transducers in the active learning
settings have also been discussed. From the study it evidently appears that the
problem of learning probabilistic transducers is still an open problem. Finally,
we also presented some recent work that endeavors the learning problem of more
complex classes than regular bi-languages.

  Sequential   Subsequential
    Beyond

Subsequential

Heuristics

Theoretical

Guarantee

1st wave 2nd wave 3rd wave

Luneau et al., 1983

Takada, 1988

Vidal, 1990

OSTIA-DD (Oncina, 1998)

OMEGA (Vilar, 2000)

Lucas & Reynolds, 2007

Tenjinno competition, 2006

?

Veelentruf, 1978 OSTIA (Oncina et al., 1992)

OSTIA-N, OSTIA-D 

(Oncina & Varó , 1996)

Vilar, 1996

Oncina, 2008

Clark, 2010

Probabilistic Transducers?

Figure 3.5.: Development of transducer learning.
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3.10. Discussion

The history of transducer learning can be categorized into three waves in terms of
the expressive power of the learning model. The first wave was clearly restricted
to a sequential model; the work done before Ostia was proposed, falls under this
category. The second wave is the post Ostia wave, where the learning model is
subsequential. Most of the work done within this wave is based on Ostia. The
third wave includes the attempts to go beyond subsequential model and trying to
learn more complex classes. For instance, the work that falls under this category
includes Oncina (2008) and the work of Clark (2011).
Another way of categorizing the development of transducer learning is from the

view point of the theoretical and pragmatic approaches. We clearly see that there
has been work done which is backed up by some sort of theoretical guarantee
and at the same time work that is solely based on heuristics and engineering. It
is interesting to see that developments in these two categories have been parallel.
However, the number of work done with formal guarantee is noticeably fewer
that heuristics attempts.
In Figure 3.5, a visual representation of the development of transducer learning

is presented. The horizontal axis of the figure shows the three waves in terms of
the complexity of the learning models. The vertical axis of the figure categorizes
the developments of transducer learning into the work with theoretical guarantee
and the work based on heuristics. The first wave started in the late seventies
of the last century and continued till the early nineties. In the early nineties,
Ostia was introduced as a stepping stone. In Figure 3.5, we can see that the
second wave of transducer learning has been so far the biggest wave and most of
the work done within this wave are centered around Ostia as the baseline. The
second wave continued till the middle of the first decade of this century. It was
clear by then that in order to make transducer learning more practicable, there is
a need of learning more powerful models and learning probabilistic transducers.
The third wave started with Oncina’s attempt in (2008) and continues till today
(e.g., (Clark, 2011)).
The bibliographical study shows that the problem of learning probabilistic sub-

sequential transducer is evidently an open problem. There is a need of providing
theoretical guarantee of learning in the limit for probabilistic transducers. At the
same time the theoretical assumptions should be realistic so that the approaches
are practicable.
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Chapter 4
Identification of Probabilistic
Subsequential Transducers in the Limit

4.1. Introduction

I n Chapter 1 we have stated learnability of Psts as one of our research
questions (RQ4) of the thesis. In this chapter, in the context of RQ4, we
investigate the problem of learning Psts in an active learning setting. As

a result of RQ3, where we have shown equivalence of bi-languages modeled by
other widely used syntactic machines (Chapter 2), the outcome of RQ4 can also
be applied to learn other models such as Phmms.
In the active learning paradigm used for language learning tasks, the learner

has access to an oracle or a minimally adequate teacher (Mat) (which can in
practice be a corpus, a human expert or the Web) and the learner is able to
interact with this oracle. The learner generates strings and queries the oracle
about the strings (Angluin and Smith, 1983; Angluin, 1987a). In the field of
grammatical inference, traditionally, the learner generates the data it needs and
makes a membership query, asking if the string is or isn’t in the language: the
learner asks queries about data which has not been observed. In practice, query-
ing about unseen data or data artificially generated by the learner can sometimes
lead to problems: the oracle may find it difficult to classify this nonsense data.
This has been described and analyzed in (Lang and Baum, 1992); a recent survey
in active learning and a discussion can be found in (Settles, 2011).
To mitigate such practical issues, as conversed to the L∗ approach (Angluin,

1987a) where the learner can ask questions about any data, in this chapter we
work on a scenario where positive data is given to the learner and the learner
is only allowed to ask queries about the observed data. Furthermore, we make
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use of the extra information that exists when the data has been randomly drawn
following an unknown distribution, distribution itself generated by a finite state
machine. We present a novel learning algorithm for learning probabilistic sub-
sequential transducers (Psts), which are deterministic transducers with prob-
abilities. The algorithm learns from positive examples by making probabilistic
queries only regarding the data present in the training sample.
The new proposed algorithm is essentially the hybridization of the state merg-

ing and active learning paradigms. In our proposed algorithm we build a tree
transducer from the observed positive data, which is an exact representation of
the training data and ask probabilistic queries only regarding the observed data.
In our algorithm, instead of asking queries about the data that are not present
in the training set, we utilize the lack of information to make state merging de-
cisions. This brings an improvement over the Ostia described in Chapter 3:
while Ostia can only learn transduction schemes which are total functions, the
proposed algorithm is also capable of learning transduction schemes which are
partial functions. We prove the correctness of our algorithm in an identification
in the limit model. Moreover, we report experimental evidence that shows that
our algorithm converges with relatively few training examples and produces an
acceptable translation accuracy.

4.2. A Canonical Normal Form

In this section, we recall the definition of Psts presented in Chapter 2. The
objective of this section is to define a canonical normal form of Psts. The
canonical normal form of Psts defined here will be used as the normal form of
the target machine in our learning algorithm.
At this point we introduce the concept of onward (Oncina et al., 1993) Psts,

which is required to define the minimal canonical form of Pst that our learning
algorithm infers.

Definition 19 A Pst T = 〈Q,Σ ∪ {]},Ω , {q0}, E〉 is said to be in onward form
if the following property holds:

∀q ∈ Q\{q0}, lcp

(

⋃

e∈E[q]

{o [e]}

)

= ε.

The onward form makes sure that a translation is given by the Pst as early as
possible.
Let R is a stochastic regular bi-language, i.e., R ∈ SREGBL(Σ ,Ω). There-

fore, R can be modeled by a Pst (see Chapter 2, Section 2.9.4).

78



q0 q1 a : x(0.5)

] : xx(0.1)

b : y(0.5)

a : x(0.4)

] : x(0.5)

(a)

q0 q1 a : x(0.5)

] : xx(0.1)

b : yx(0.5)

a : xx(0.4)

] : ε(0.5)

(b)

Figure 4.1.: Figure 4.1(a) shows a Pst which is not in the canonic normal
form. Figure 4.1(b) is the equivalent Pst in the canonic normal
form (onward). The labels of the edges should be interpreted as
input :output(probability).

The quotient (u,v)−1R where u ∈ Σ ∗ and v ∈ Ω∗ is the stochastic set that
obeys the following properties:

1. Pr(u,v)−1R(w],w
′) = PrR(uw],vw′)

PrR(uΣ∗],vΩ∗)
,

2. (u,v)−1R = {(w,w′)|(uw,vw′) ∈ R,v = lcp({q|(uΣ ∗],q) ∈ R})}.

If Pr(uΣ ∗],vΩ∗) = 0, then by convention (u,v)−1R = ∅ and Pr(u,v)−1R(w],w
′) =

0. If R is Sdrt, the number of different stochastic sets of (u,v)−1R is finite.
For example, there are two such nonempty stochastic sets for the example given
in Figure 4.1(b) and they are:

• (ε, ε)−1R = {(],xx)} ∪ {(an],xn+1)|n ≥ 1} ∪ {(ban],yxn)|n ≥ 1},

• for m ≥ 1, (am,xm+1)−1R = (bam,yxm)−1R = {(],x)} ∪ {(an],xn+1)|n ≥
1}.

We construct the minimal canonical Pst M =
〈

QM ,Σ ∪ {]},Ω , {q0}M , EM
〉

in onward form as the following:

QM = {(u,v)−1R 6= ∅, u ∈ Σ ∗,v ∈ Ω∗}
{q0}M = {(ε,v)−1R}
EM = {(q, a,w, α, q′)|

q = (u,v)−1R ∈ QM ,
q′ = (ua,vv′)−1R ∈ QM where,

a ∈ Σ ∪ {]},v′ ∈ Ω∗,
w = lcp({v|(uΣ ∗,vΩ∗) ∈ R})−1

lcp({vv′|(uaΣ ∗,vv′Ω∗) ∈ R}),

α = PrR(uaΣ∗,vv′Ω∗)
PrR(uΣ∗,vΩ∗)

}
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The canonical Pst generates stochastic bi-languages that are in R and have
non-zero probabilities. There have been extensions of the Myhill-Nerode theorem
(Hopcroft et al., 2006) presented in (Carrasco and Oncina, 1999; Oncina and
Garćıa, 1991) and based on the extended theorems we can say that the canonical
Pst is the minimal form and unique upto state isomorphism.

4.3. The Stochastic Sample

When learning, the algorithm will be given a randomly drawn sample: the pairs
of strings will be drawn following the joint distribution defined by the target
Pst. Therefore, such a sample is a multiset, since more frequent translation
pairs may occur more than once and is called a stochastic sample. The formal
definition of s stochastic sample is the following:

Definition 20 A stochastic sample is a multiset Sn 〈X, f〉 where X =
{(u,v) : u ∈ Σ ∗],v ∈ Ω∗}, f : (u,v) → [n], and f(u,v) is the multiplicity or
number of occurrence of (u,v) in X.

For simplicity, for a given Sn 〈X, f〉, if (u],v) ∈ X , we will write (u],v) ∈ Sn
unless the context requires to be more specific.
The training data or the stochastic Sn for the proposed algorithm are non-

conflicting or ub-ambiguous. Formally, Sn obeys the following condition:

∀(u],v), (u],v′) ∈ Sn ⇒ v = v′.

4.4. Queries Used

In the domain of grammatical inference, queries (Angluin, 1981, 1987a,b) have
been used to learn different types of automata including transducers (Vilar,
1996). There are various types of queries that have been used including member-
ship queries (Angluin, 1987a,b), equivalence queries (Angluin, 1987a,b), extended
membership queries (Bergadano and Varricchio, 1996), translation queries (Vi-
lar, 1996) etc. In our proposed algorithm we will use extended prefix language
queries. Extended prefix language queries were introduced by de la Higuera and
Oncina in (de la Higuera and Oncina, 2004) where such queries have been used
for identification of probabilistic finite state automata (Pfas) in the limit.

Definition 21 Extended prefix language queries (EXPQ) are made by
submitting a string w to an oracle. Then the oracle returns the probability
PrD(wΣ

∗), i.e., the probability of w being a prefix of the stochastic language
D.
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For example, if we ask queries w.r.t. the input language of the Pst given in
Figure 4.1(b): EXPQ(aa), the oracle should return the probability 0.2.

4.5. Probabilistic Prefix Tree Transducers

Similar to other state merging algorithms described in Chapter 3 (e.g., Rpni,
Ostia), the proposed algorithm also starts with a tree-like finite state machine,
called a probabilistic prefix tree transducer.
During the run of the learning algorithm, we may have transitions for which

at a given time the outputs are still unknown. In order to denote the outputs of
the transitions that are still unknown, we introduce a new symbol ⊥ such that,
∀a ∈ Ω∗, lcp({a} ∪ {⊥}) = a and ∀a ∈ Ω∗,⊥ · u = u · ⊥ = ⊥.
The formal construction of a Ptst and assignment of the probabilities by

means of EXPQ w.r.t. the input strings are given in the following definition:

Definition 22 A probabilistic tree subsequential transducer (Ptst) is a
5-tuple T = 〈Q,Σ ∪ {]},Ω , {q0}, E〉 where ψ(T ) = 〈Q,Σ ∪ {]},Ω , {q0}, E〉 is a
Pst and T is built from a training sample Sn such that:

• Q =
⋃

(u,v)∈Sn

{qx : x ∈ Pref(u)},

• {q0} = {qε},

• E = {e | prev [e] = qu, next [e] = qv ⇒ v = ua, a ∈ Σ , i [e] = a, o [e] = ε},

• ∀qu ∈ Q, ∀e ∈ E [q] , i [e] = ], o [e] = v if (u,v) ∈ Sn,⊥ otherwise,

• ∀e ∈ E [q0] , prob [e] = EXPQ(i [e]Σ ∗),

• ∀qu ∈ Q \ {q0}, ∀e ∈ E [qu] , prob [e] =
EXPQ(ui[e]Σ∗)
EXPQ(uΣ∗)

.

Figure 4.2 shows a toy example of constructing a Ptst. Here, the training
examples are generated from the Pst given in Figure 4.1(b).
Notice that the states in Figure 4.2 are numbered from q0 . . . qk where k ∈ [n].

It is important to note that the states in the Ptst are numbered in a special
order called the length-lexicographic order (a.k.a. the hierarchical or the length-
lex order) (see Appendix D) of the prefix set of the input strings in the sample
Sn starting from ε as q0. We will denote the number of states of a Pst or a Ptst

T as |T |. Notice that in case of a Ptst T with states numbered from q0 . . . qk,
|T | = k + 1.
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q2 q5q0

q1 q4 q7

q8

q6q3

a : ε(0.4)

b : ε(0.5)

a : ε(0.5)

a : ε(0.5)

] : xxx(0.5)

] : yxx(0.5)

] : yx(0.5)
] : xx(0.1)

Figure 4.2.: A Ptst built from S4 = {(],xx), (b],yx), (aa],xxx), (ba],yxx)}
and by asking EXPQ considering the Pst given in Figure 4.1(b)
as the target machine.

4.6. The Onward PTST

The Ptst depicted in Figure 4.2 is still not in the onward form (Definition 19).
An onward form can be obtained by the following algorithm:

• Let T be a Ptst and πq ∈ ΠT (I) be a path in T such that next [πq] = q;

• ∀e ∈ E [q0] , o [e]← lcp({y : (i [e] · (Σ ∗ ∪ {Σ ∗]}),y) ∈ Sn});

• ∀q ∈ Q\{q0}, ∀e ∈ E [q],

o [e] ← lcp({y : (i [πq] · (Σ
∗ ∪ {Σ ∗]}),y) ∈ Sn})

−1

lcp({y : (i [πq] · i [e] · (Σ ∗ ∪ {Σ ∗]}),y) ∈ Sn}).

Figure 4.3 shows the onward form of the Ptst given in Figure 4.2.

q2 q5q0

q1 q4 q7

q8

q6q3

a : xxx(0.4)

b : yx(0.5)

a : ε(0.5)

a : x(0.5)

] : ε(0.5)

] : ε(0.5)

] : ε(0.5)

] : xx(0.1)

Figure 4.3.: The onward form of the Ptst shown in Figure 4.2.
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Intuitively, the onwarding process is advancing the output as close to the initial
state as possible without causing any inconsistency w.r.t. the training data.
In practice an onward Ptst can be built from the data very efficiently. The

pseudo code for building Ptst from stochastic sample and by asking EXPQ is
presented in Algorithm 6.

Algorithm 6: OnwardPtst

Input: a sample Sn
Output: a Ptst T

1 Q← {qε};
2 qx ← qε;
3 for (u,v) ∈ Sn do
4 Let ui ∈ {ui|u1 · . . . · u|u| = u, ui ∈ Σ ∪ {]}, 1 ≥ i ≥ |u|};
5 for i = 1 to i = |u| do
6 if ∃e ∈ E [qx] such that i [e] = ui then
7 for d ∈ E [next [e]] do
8 o [d]← lcp(o [e] ,v)−1o [e] · o [d];

9 o [e]← lcp(o [e] ,v);
10 v← lcp(o [e] ,v)−1v;

11 else
12 Q← Q ∪ {qx·ui};
13 Let e′ be an edge such that:
14 prev [e′]← qx;
15 next [e′]← qx·ui;
16 i [e′]← ui;
17 o [e′]← v;
18 if i = 1 then prob [e′]← EXPQ(ui);

19 else prob [e′]← EXPQ(u1·...·ui)
EXPQ(u1·...·ui−1)

;

20 E ← E ∪ {e′};

21 return T ;

4.7. The Phantoms

Another new type of object that is used in our proposed algorithm, is the notion
of a phantom. A phantom is an imaginary arc in a Pst with zero probability.
Since phantoms have zero probabilities, adding phantoms to a Pst does not

83



change the stochastic bi-language represented by the Pst. The formal construc-
tion of a phantom w.r.t. a Ptst is the following:

Definition 23 (Phantoms) A phantom ϕ w.r.t. a Ptst T 〈Q,Σ ∪ {]},Ω , {q0}, E〉
is a triple ϕ = 〈qu, e, q′u〉 where, qu ∈ Q, e /∈ E and q′u /∈ Q. The construction of
each of these edges e is the following:

• prev [e] = qu

• i [e] = a, such that a ∈ {{Σ ∪ {]}}\{b|∀e′ ∈ E [qu] , i [e
′] = b}},

• o [e] =⊥,

• prob [e] = 0,

• next [e] = q′u = q|T |.

A phantom is only added to a given state of a Ptst if the following condition
holds:

∑

e∈E[q]

prob [e] = 1 ∧ |E [q]| < |Σ ∪ {]}| . (4.1)

Figure 4.4 depicts examples of phantoms with dotted lines. Essentially phan-
toms are edges and states that in the Ptst do not exist in the target Pst.

q2 q5q0

q1 q4 q7

q8

q6q3 q9

a : xxx(0.4)

b : yx(0.5)

a : ε(0.5)

a : x(0.5)

] : ε(0.5)

] : ε(0.5)

] : ε(0.5)

] : xx(0.1)

b : ⊥(0)

Figure 4.4.: The onward Ptst with phantoms (dotted lines). Notice, that the
condition 4.1 holds only in case of state q2 and therefore only one
phantom is added in this particular Ptst.
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Algorithm 7: Pushback

Input: a Pst T , two edges e, e′ ∈ E
Output: a Pst T updated

1 for d ∈ E [next [e]] do
2 o [d]← lcp({o [e] , o [e′]})−1o [d];

3 for d ∈ E [next [e′]] do
4 o [d]← lcp({o [e] , o [e′]})−1o [d];

5 o [e]← lcp({o [e] , o [e′]});
6 o [e′]← lcp({o [e] , o [e′]});
7 return T ;

4.8. The Pushback Operation

The pushback operation used in the proposed algorithm is same as Ostia (see
Chapter 3). For the sake of completeness we will provide pseudo code (Algorithm
7) for the pushback operation used in the proposed algorithm.

Due to the onwarding process some outputs are advanced to close to the initial
state of the Ptst. Therefore, sometimes it is required to move these outputs
back toward the leaves of the tree. Pushback operation essentially performs this
task.

Algorithm 7 is the pseudo code for pushback operation. This routine will be
used as an auxiliary function of our proposed algorithm. Figure 4.5 shows an
illustration of the pushback operation.

4.9. The RED & BLUE States

The proposed algorithm works with state merging using the Red-Blue notion
given in (de la Higuera, 2010). Basically, the algorithm maintains two sets of
states: Red and Blue. The Red states are the states which will be contained
in the resulting Pst of the algorithm. The Blue states are the states which are
under going experimentations to figure out if they can be merged to a Red state
or not. If a Blue state can not be merged to any of the current Red stated, then
the Blue state is promoted to a Red state. Whenever a Blue state becomes a
Red state, it becomes permanent and is a part of the inferred machine by the
proposed algorithm.
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q1q0

q2

q3

b : yx(1)

a : ε(0.5)

c : x(0.5)

r1r0

r2

r3

b : y(1)

] : ε(0.5)

a : x(0.5)

(a) Before performing pushback on the edges
(q0, b,yx, q1) and (r0, b,y, r1).

q1q0

q2

q3

b : y(1)

a : x(0.5)

c : xx(0.5)

r1r0

r2

r3

b : y(1)

] : ε(0.5)

a : x(0.5)

(b) After performing pushback.

Figure 4.5.: An example of the pushback operation.

4.10. The Merging and Folding Operations

State merging is one of the core operations of state merging algorithms such
as Rpni, Ostia (see Chapter 3) and also used in our proposed algorithm. In
our proposed algorithm we adapt the recursive framework of merge and fold
technique introduced by de la Higuera in (2010).

Algorithm 8: Merge

Input: a Pst T , two states q ∈ Red and q′ ∈ Blue

Output: a tuple of updated T and a boolean value
1 Let e ∈ E and qf ∈ Q such that next [e] = q′, prev [e] = qf ;
2 next [e]← q;
3 return AwstiFold(T, q, q′);

Algorithm 8 shows the pseudo code for the merge operation. Essentially, the
merge operation between two states q0 ∈ Red and q1 ∈ Blue is redirecting
all the incoming edges of the state q1 to q0 and then calling the Fold routine.
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Finally, it returns the updated Ptst and a boolean value indicating if the merge
is valid or not returned by Fold routine.

Algorithm 9: Fold

Input: a transducer T , two states q ∈ Red and q′ ∈ Blue

Output: a tuple of updated T and a boolean value
1 for a ∈ Σ do
2 if ∃e′ ∈ E [q′] : i [e′] = a then
3 if ∃e ∈ E [q] : i [e] = a then
4 if (next [e] ∈ Red ∧ o [e′] /∈ Pref(o [e])) or

(o [e] 6= o [e′] ∨ prob [e] 6= prob [e′]) then
5 return (T, false);

6 else
7 Pushback(T, e, e′);
8 Fold(T, next [e] , next [e′]);

9 else
10 prev [e′]← q;

11 return (T, true);

The fold operation is described formally in Algorithm 9. Figure 4.6 shows an
example of merge and fold operations.

4.11. The Inference Algorithm

The proposed algorithmApti (Algorithm for Probabilistic Transducer Inference)
(Algorithm 18) consists of four phases:

Initialization: In this phase the algorithm builds a tree transducer (Definition
22) in onward form, which is the exact representation of the training data.

Query: In this phase the algorithm populates the probabilities of the edges of
the tree transducer by means of EXPQ (Definition 21) on the observed
data.

Phantomization: This is the phase when phantoms are added to the tree trans-
ducer with zero probability for those states q ∈ Q, where the condition 4.1
holds.
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q1

q0 q2

q3

q4a : x(0.5)

b : y(0.5)

c : x(0.5)

b : y(0.5)

(a) Before merging q0 and q1.

q1

q0 q2

q3

q4a : x(0.5)

b : y(0.5)

c : x(0.5)

b : y(0.5)

(b) After merging q0 and q1 and before fold-
ing

q0 q2

q3a : x(0.5)

c : x(0.5)

b : y(0.5)

(c) After folding.

Figure 4.6.: An example of merge and fold operation.

State Merging: This is the phase where we iteratively keep on merging states
keeping the hypothesis transducer consistent to the training sample till the
algorithm terminates.

In the following sub-sections we describe the details of each phase of Apti.

4.11.1. The Initialization Phase & the Query Phase

The Apti (Algorithm 18) algorithm starts with an overfitted model of the train-
ing data. It builds the Ptst from the given stochastic sample Sn 〈X, f〉 (Defini-
tion 20) which is fundamentally the exact representation of X . The Ptst built
from the training data is still incomplete since we do not have the probabilities
of the edges of the Ptst. In the query phase of the algorithm the Ptst is made
complete by assigning the probabilities to its edges by asking EXPQ.

The function OnwardPtst used in Algorithm 18 performs these tasks. The
formal construction of the Ptst from Sn and by EXPQ is shown in Definition
22.
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4.11.2. The Phantomization Phase

After the initialization phase and the query phase, the algorithm Apti adds
phantoms to the Ptst.
After having built the onward Ptst, in the third phase of the algorithm,

phantoms are added to the Ptst the routine AddPhantoms (Algorithm 10).
We add such edges for every state in Ptst where the conditions in (4.1) hold.
Figure 4.4 shows an example of Ptst where new edges with zero probability

have been added. Notice, in this particular example, that this is only possible
at the state q2. After populating the tree with probabilistic queries (EXPQ) we
know that the probability of the edge from q2 with input symbols b is zero, and
hence why we add a phantom with probability 0. Syntactically the phantoms
are of no use. However, this extra bit of information in the Ptst improves the
learning capacities of the algorithm.
Finally, the state merging phase of Apti is essentially similar to the Ostia

algorithm, with modified state merging strategy. The details of Ostia can be
found in (Oncina et al., 1993; Castellanos et al., 1998; de la Higuera, 2010). Here
we follow the recursive formalism given in (de la Higuera, 2010).

Algorithm 10: AddPhantoms

Input: a Ptst T
Output: a Ptst T with phantoms added

1 for q ∈ Q do
2 if

∑

e∈E[q] prob [e] = 1 ∧ |E [q]| < |Σ ∪ {]}| then

3 for a ∈ {Σ ∪ {]}}\{b|b = i [e] ∧ e ∈ E [q]} do
4 E ← {(q, a,⊥, 0, qa)} ∪ E;

5 return T ;

Algorithm 11: RemovePhantoms

Input: a Ptst T
Output: a Ptst T without phantoms

1 for e ∈ E do
2 if prob [e] = 0 then
3 Q← Q\{next [e]};
4 E ← E\{e};

5 return T ;
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Algorithm 12: Apti

Input: a sample Sn
Output: a Pst T

1 T ← OnwardPtst(Sn);
2 T ← AddPhantoms(T );
3 Red← {qε};
4 Blue← {qa : a ∈ Σ ∩ Pref({u|(u,Ω∗) ∈ Sn})};
5 while Blue 6= ∅ do
6 q = Choose<lex

(Blue);
7 for p ∈ Red in lex-length order do
8 (T ′, IsAccept )←Merge(T, p, q);
9 if IsAccept then

10 T ← T ′;

11 else
12 Red← Red ∪ {q};

13
Blue← {q : ∀p ∈ Red, ∀e ∈ E [p] ,

q = next [e] ∧ q /∈ Red};

14 T ← RemovePhantoms(T );
15 return T ;
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4.11.3. The State Merging Phase

The proposed algorithm Apti (Algorithm 18) selects a candidate pair of Red

and Blue states in lex-length order using the Choose<lex
function. TheMerge

function merges the two selected states and recursively performs a cascade of fold-
ing of a number of edges (see (de la Higuera, 2010) for details). Some pushback
operations (Algorithm 7), which are reverse of onwarding, also take place to be
able to fold those edges where output strings are advanced too close to the initial
state due to the onwarding process. During the recursive fold operation, it is ac-
tually decided that whether a merge is accepted or not. A merge is rejected if any
one of the following holds: 1) if there is a conflict w.r.t. the outputs of any two
edges having the input symbol ] 2) if there is a conflict w.r.t. the probabilities
of any two edges. This process is repeated till the Blue set is empty. Finally
before termination, the phantoms are removed from the inferred machine using
the routine RemovePhantoms (Algorithm 11).

4.12. A Run of the APTI Algorithm

As a running example, we will consider the Pst shown in Figure 4.1(b) as
the target Pst. The given training data is S4 = {(],xx), (a],xx), (b],yx),
(aa],xxx), (baa],yxxx)}. For simplicity, we have not shown the number of oc-
currence of each translation pairs.

The initial Ptst built from S4 is shown in Figure 4.7 before the queries are
made. Notice that the Ptst is incomplete since the probabilities of the edges
are still missing. Then, the Ptst is then populated with the probabilities of
the edges by asking EXPQ (Figure 4.8). Next, we convert the Ptst into the
onward form (Figure 4.9). Building the Ptst in onward form by asking EXPQ

can be done very efficiently by using the routine OnwardPtst (Algorithm 6).

In the onward Ptst, the phantoms are then added and the Red and Blue

states are initialized (Figure 4.10).

Then the algorithm tries to merge q0 and q1. This merge fails because the
phantom (q1, b,⊥, 0, q11) can not be folded on the edge (q0, b,yx, 0.5, q2). After
that q1 is promoted to Red and consequently q4, q5, and q11 are added to the
Blue set. The algorithm selects the lowest Blue state, which is q2. The merge
between the Red state q0 and the lowest Blue state q2 is then tried and this
merge is also rejected (Figure 4.12). Then the merge between q1 and q2 is tried
and this merge is successful. The resulting machine is shown in Figure 4.13.

Now the candidate merge pair is q0 and q3. This merge is also accepted and
the resulting machine is depicted in Figure 4.14. At this point the candidate
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q2

q4

q0

q1

q3

q6

q8

q7

q5

q9 q10

a : ε

b : ε

] : xx

a : ε

] : yx

] : xx

a : ε

] : xxx

a : ε ] : yxxx

Figure 4.7.: A Ptst built from S4 = {(],xx), (a],xx), (b],yx), (aa],xxx),
(baa],yxxx)} before the queries are made.

q2

q4

q0

q1

q3

q6

q8

q7

q5

q9 q10

a : ε(0.4)

b : ε(0.5)

] : xx(0.1)

a : ε(0.5)

] : yx(0.5)

] : xx(0.5)

a : ε(0.5)

] : xxx(0.5)

a : ε(0.5) ] : yxxx(0.5)

Figure 4.8.: A Ptst built from S4 = {(],xx), (a],xx), (b],yx), (aa],xxx),
(baa],yxxx)} and by asking EXPQ.
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q2

q4

q0

q1

q3

q6

q8

q7

q5

q9 q10

a : xx(0.4)

b : yx(0.5)

] : xx(0.1)

a : xx(0.5)

] : ε(0.5)

] : ε(0.5)

a : x(0.5)

] : ε(0.5)

a : ε(0.5) ] : ε(0.5)

Figure 4.9.: Onward form of the Ptst shown in Figure 4.8.

q2

q4

q0

q1

q3

q6

q8

q7

q5

q9 q10

q11

q12

b : ⊥(0)

b : ⊥(0)

a : xx(0.4)

b : yx(0.5)

] : xx(0.1)

a : xx(0.5)

] : ε(0.5)

] : ε(0.5)

a : x(0.5)

] : ε(0.5)

a : ε(0.5) ] : ε(0.5)

Figure 4.10.: Phantoms are added to the onward Ptst and the Red and the
Blue sets are initiated.
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q2

q4

q0

q1

q3

q6

q8

q7

q5

q9 q10

q11

q12

b : ⊥(0)

b : ⊥(0)

a : xx(0.4)

b : yx(0.5)

] : xx(0.1)

a : xx(0.5)

] : ε(0.5)

] : ε(0.5)

a : x(0.5)

] : ε(0.5)

a : ε(0.5) ] : ε(0.5)

Figure 4.11.: The merge between the state q0 and q1 is tried.

q2

q4

q0

q1

q3

q6

q8

q7

q5

q9 q10

q11

q12

b : ⊥(0)

b : ⊥(0)

a : xx(0.4)

b : yx(0.5)

] : xx(0.1)

a : xx(0.5)

] : ε(0.5)

] : ε(0.5)

a : x(0.5)

] : ε(0.5)

a : ε(0.5) ] : ε(0.5)

Figure 4.12.: The merge attempt between q0 and q2.
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q1q0

q3

q4

q8q5

q9 q10

q11

b : ⊥(0)

a : xx(0.4)

b : yx(0.5)

] : xx(0.1)

a : x(0.5)

] : ε(0.5)

] : ε(0.5)

a : x(0.5) ] : ε(0.5)

Figure 4.13.: After merging and folding q1 and q2.

q1q0 q4

q8q5

q9 q10

q11

b : ⊥(0)

a : xx(0.4)

b : yx(0.5)

] : xx(0.1)

a : x(0.5)

] : ε(0.5)

] : ε(0.5)

a : x(0.5) ] : ε(0.5)

Figure 4.14.: After merging and folding q0 and q3.
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q1q0 q4

q8q5

q9 q10

q11

b : ⊥(0)

a : xx(0.4)

b : yx(0.5)

] : xx(0.1)

a : x(0.5)
] : ε(0.5) ] : ε(0.5)

a : x(0.5) ] : ε(0.5)

Figure 4.15.: The merge attempt between q0 and q4.

q1q0

q8q5

q9 q10

q11

b : ⊥(0)

a : xx(0.4)

b : yx(0.5)

] : xx(0.1) a : x(0.5)

] : ε(0.5)

] : ε(0.5)

a : x(0.5) ] : ε(0.5)

Figure 4.16.: After merging and folding q1 and q4.
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q1q0

q8

q9 q10

q11

b : ⊥(0)

a : xx(0.4)

b : yx(0.5)

] : xx(0.1) a : x(0.5)

] : ε(0.5)
] : ε(0.5)

a : x(0.5) ] : ε(0.5)

Figure 4.17.: After merging and folding q0 and q5.

q1q0 q9

q10q11

b : ⊥(0)

a : xx(0.4)

b : yx(0.5)

] : xx(0.1) a : x(0.5)

] : ε(0.5)

a : x(0.5)

] : ε(0.5)

Figure 4.18.: After merging and folding q0 and q8.
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q1q0 q9

q10q11

b : ⊥(0)

a : xx(0.4)

b : yx(0.5)

] : xx(0.1) a : x(0.5)

] : ε(0.5)

a : x(0.5)

] : ε(0.5)

Figure 4.19.: The merge attempt between q0 and q9.

q1q0

q11

b : ⊥(0)

a : xx(0.4)

b : yx(0.5)

] : xx(0.1) a : x(0.5)

] : ε(0.5)

a : x(0.5)

Figure 4.20.: After merging and folding q1 and q9.

q1q0

b : ⊥(0)

a : xx(0.4)

b : yx(0.5)

] : xx(0.1) a : x(0.5)

] : ε(0.5)

a : x(0.5)

Figure 4.21.: After merging and folding q0 and q11.
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q1q0

a : xx(0.4)

b : yx(0.5)

] : xx(0.1) a : x(0.5)

] : ε(0.5)

a : x(0.5)

Figure 4.22.: After removing the phantoms.

merge pair is q0 and q4 (Figure 4.15). This merge is rejected.
The next candidate merge pair is q1 and q4. This merge is accepted and the

resulting transducer after merging and folding is shown in Figure 4.16. As a
consequence of this merge, q8 and q9 are added to the Blue set. The next
candidate states are q0 and q5. This merge is accepted and the resulting machine
is shown in Figure 4.18. Then the merge between q0 and q8 is tried and this
merge is accepted (Figure 4.18). Then the next merge attempt between q0 and
q9 is rejected (Figure 4.20). The algorithm Apti tries to merge the blue state
q9 with another Red state q1. This merge is successful. Next, the algorithm
merges the states q0 and q11 and this merge is accepted (Figure 4.21). Finally,
the phantoms are removed from the hypothesis (Figure 4.22). As we can see, the
hypothesis machine is exactly identical to the target machine shown in Figure
4.1(b).

4.13. Analysis of the Algorithm

In this section we will present an analysis of the proposed algorithm. Here, we
prove the correctness of Apti in an identification in the limit model. Moreover,
we show the runtime complexity and query complexity of Apti.
We define the prefix set (PR) and the short prefix set (SP) with respect to a

stochastic transduction R as the following:

PR(R) = {u ∈ Σ ∗|(u,v)−1R 6= ∅,v ∈ Ω∗}
SP(R) = {u ∈ PR(R)|(u,v)−1R = (w,x)−1

R ⇒ |u| ≤ |w|}

The kernel set (K) of R is defined as follows:

K(R) = {ε} ∪ {ua ∈ PR(R)|u ∈ SP(R) ∧ a ∈ Σ}
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Note that SP is included in K.
Identification with probability one will be achieved if given any possible target

transduction R defined by a Pst, given any infinite presentation of translation
pairs drawn according to the joint distribution, and, denoting by Sn the multi-
set consisting of the n first pairs, with probability one, Apti returns a correct
hypothesis from Sn for all but a finite number of values of n.
The characteristic sample for the given algorithm essentially requires to meet

three conditions: firstly, it should include all the states and edges. Secondly,
some properties should hold that disallow wrong merges to take place. Finally,
it should have enough examples that ensure the alignments of the input and
output during the learning phase. For the first condition we only need the kernel
of the stochastic transduction or strings that contain the elements of the kernel as
prefixes to be included in the sample. For the second condition, for states to be
declared non mergeable we need any one of the following: 1) output mismatch
2) probability mismatch. Since we are adding zero probability edges for the
non existing edges in the Ptst, at least one of these conditions is guaranteed
to be eventually met by the stochastic sample. Formally, we can define the
characteristic sample as:

Definition 24 A stochastic sample Sn is said to be characteristic (CS) w.r.t. a
Sdrt R if it satisfies the following conditions:

1. ∀u ∈ K, ∃(uw,vx) ∈ Sn such that w ∈ Σ ∗,vx ∈ Ω∗, (w,x) ∈ (u,v)−1R,

2. ∀u ∈ SP, u′ ∈ K, if (u,v)−1R 6= (u′,v′)−1R where v,v′ ∈ Ω∗, then any
one of the following holds:

• ∃(uw,vx), (u′w,v′x′), (ur,vy),

(u′r,v′y′) ∈ Sn such that: PrR(uw,vx)
PrR(ur,vy)

6= PrR(u′w,v′x′)
PrR(u′r,v′y′)

• ∃(uw,vx), (u′w,v′x′),∈ Sn such that: (w,x) ∈ (u,v)−1R, (w,x′) ∈
(u′,v′)−1R, x 6= x′

3. ∀u ∈ K, ∃(uw,vx)(uw′,vx′) ∈ Sn such that lcp(x,x′) = ε ∧ w 6= w′.

Lemma 16 For any ith(i ≥ 1) call of the subroutine Merge, it recursively
computes the ith hypothesis Pst Hi such that if the merge is successful, |Hi| <
|Hi−1| and Hi is consistent with the training sample Sn.

Proof It is easy to see that |Hi| < |Hi−1| after each merge is accepted. Hi is
consistent with the training sample Sn because of the following: initially the
hypothesis H0 is the Ptst which is the exact representation of Sn. A merge
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between the two states q and q′ is accepted only when the recursive fold operation
is successful. The recursive fold operation returns a negative result if at any time
during the fold there are two candidate edges e and e′ such that i [e] = i [e′] are
incompatible w.r.t. the probabilities of e and e′ or if there is incompatibility
between the output strings when i [e] = i [e′] = ]. Therefore, at anytime during
the algorithm Hi will be consistent to the training sample. �

Lemma 17 The algorithm Apti terminates after a finite number of steps.

Proof The initial Ptst consists of a finite number of states. Therefore, there
can be only finite number of Red and Blue states. At each iteration of the outer
most loop of the algorithm (Algorithm 18) either a Blue state will disappear
(if the merge is accepted) or will be promoted to a Red state and at the same
time the offspring of the new Red states will become Blue states. Therefore, it
can be seen that eventually the set Blue will be empty, which is precisely the
terminating condition for the outermost loop. �

Theorem 5 The algorithm Apti identifies Sdrt in the limit with probability
one from positive presentation and EXPQ.

Proof The condition 1 of the CS ensures that there will be at least as many
states in the initial hypothesis H0 (the Ptst) as the target T . The condition
2 of the CS prevents merges of the non-equivalent states during the run. The
weights of the edges are populated using EXPQ w.r.t. the input language. Even
if the transduction scheme is not a total function, the phantoms added to the
Ptst will prevent merges of non-equivalent states. The condition 3 of CS ensures
factorization of the output strings and correct alignment w.r.t. the input symbols.
Moreover, any positive presentation of the target T will eventually include CS.
Thus, from lemmata 16 and 17, Apti converges to a Pst which represents the
same Sdrt as the target machine T . Therefore, Apti satisfies the conditions of
identification in the limit with probability one. �

4.14. Complexity Analysis

In this section we present a complexity analysis of the proposed algorithm. We
are primarily interested in the runtime complexity and the query complexity.
Let ‖Sn‖ =

∑

(u,v)∈Sn
|u| and m = max{|u| : (u,v) ∈ Sn}.

Theorem 6 The worst case run time complexity of the algorithm Apti is poly-
nomially bounded by O((‖Sn‖ |Σ ∪ {]}|)3(m+ n) + ‖Sn‖mn).
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Proof The worst case run time complexity of Apti is essentially similar to
Ostia with some additional computation costs. The run time complexity of
Ostia has been shown O(‖Sn‖

3 (m + n) + ‖Sn‖mn) in (Oncina et al., 1993).
In Apti we are populating the probabilities of the Ptst by asking queries and
adding phantoms. The computation cost for populating the probabilities of the
Ptst is linear w.r.t. ‖Sn‖. The computation cost for adding the phantoms is
in the worst case ‖Sn‖mn. Due to the phantoms, in the worst case the total
number of states in the Ptst will be ‖Sn‖ |Σ ∪ {]}|. Therefore, the worst case
run time complexity of Apti is O((‖Sn‖ |Σ ∪ {]}|)

3(m+ n) + ‖Sn‖mn). �

The worst case analysis shown is pessimistic and hardly occurs in practice.
Therefore, although the worst case run time complexity is shown to be cubic,
practically the runtime is much lower. We report some empirical evidence of
Apti’s run time in Section 4.15.

Proposition 6 The algorithm Apti requires at most ‖Sn‖ · |Σ ∪ {]}| extended
prefix language queries for a given training sample Sn.

Proof The total number of states in the Ptst will be ‖Sn‖ |Σ ∪ {]}| in the
worst case. Apti only asks queries to populate the Ptst and therefore will ask
at most ‖Sn‖ |Σ ∪ {]}| number of EXPQ. �

4.15. Experiments

4.15.1. Data Sets

We conduct our experiments with two types of data sets: 1) artificial data sets
generated from random transducers 2) data generated from the so-called Minia-
ture Language Acquisition (Mla) task (Feldman et al., 1990) adapted to English-
French translations. Details of the data generation protocol follows.

Data Generation Protocol

For the artificial data sets, we first generate a random Pst with m states. The
states are numbered from q0 to qm−1 where state q0 is the initial state. The
states are connected randomly; labels on transitions preserve the deterministic
property. Then the unreachable states are removed. The outputs are assigned
as random strings drawn from a uniform distribution over Ω≤k, for an arbitrary
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value of k. The probabilities of the edges are randomly assigned making sure the
following condition holds:

∀qi ∈ Q,
∑

e∈E[qi]

prob [e] = 1 (4.2)

Using the random Pst T , we generate a stochastic training sample Sn where
each translation pair is drawn i.i.d. from the joint distribution RT . The test set
S ′p is also drawn i.i.d. from the joint distribution RT , restricted to Σ ∗]×Ω∗\Sn.
Therefore S ′p ∩ Sn = ∅.
The second type of data set which is adapted from the Mla task, essen-

tially consists of pseudo-natural sentences of English and French describing vi-
sual scenes within a restricted conceptual domain. The target transducer built
under the Mla task is depicted in Figure 4.23. Random probabilities are as-
signed to the edges of the target Pst (Figure 4.23) satisfying condition (4.2).
The generation procedure of Sn and S ′p for the Mla task is as above.
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Figure 4.23.: The target Pst for an English-French translation under the Mla framework. The probabilities of
the edges are not shown for clarity.
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Evaluation

In our experiments we measure the Word Error Rate (Wer) (Koehn, 2010) as a
metric of correctness. Other types of evaluations, such as Bleu (Papineni et al.,
2002), Nist (Doddington, 2002) etc are beyond the scope of this chapter because
they are primarily for evaluating translation quality. Our objective is to analyze
the correctness and learnability of Apti for which Wer is more appropriate.
The results of the experiment conducted with the artificial data sets are shown

in Figures 4.24(a), 4.24(b), and 4.24(c). We have generated a random Pst of
size 10 and |Σ | = |Ω | = 5. Apti is executed with different sizes of inputs,
starting from 500 training pairs to 20,000 training pairs, each time incrementing
the training set size by 500. Test sets of 1,000 pairs are also being generated for
each run. For the sake of statistical significance, the procedure is repeated 10
times for each data point.
The results in Figure 4.24(a) show that the Wer gets close to 0 only with

5,000 training pairs and with 8,000 training pairs onwards the Wer converges to
0. The objective of this experiment is to show the correctness of the algorithm.
It is important to note that the translation pairs of each training sample have

been drawn i.i.d. with replacements. In order to analyze the generalization capa-
bilities of the algorithms w.r.t. the percentage of the stochastic transduction R
we define the following. Let U be the set of unique training pairs in Sn defined
as:

U =
⋃

(u,v)∈Sn

{(u,v)}.

We define the sample density d as:

d =
∑

(u,v)∈U

PrR(u,v).

Figure 4.24(b) depicts how Wer varies with the sample density of the training
set. It shows that even for less than 40% of the stochastic transduction R, the
Wer is as low as 25%. With 45% of R, the Wer almost converges to zero.
Figure 4.24(c) shows the learning rate ofApti in comparison with rote learner.

The learning rate (Lr) is defined as:

Lr = d+ (1− d) ∗ (1−Wer).

Intuitively, Lr tells us the percentage ofR the learner has learnt. In other words,
a rote learner can only translate the strings it has seen during training and will
therefore have a learning rate of d.
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Figure 4.24.: Performance of Apti reported for the artificial data set (Figures
4.24(a), 4.24(b), and 4.24(c)) and the data set for the Mla task
(Figures 4.24(d), 4.24(e), and 4.24(f)).

As expected, in Figure 4.24(c) Apti performs better than a rote learner. The
slope of the learning rate - density curve is high when the training density is low.
The slope decreases as the density gets higher and eventually approaches to 0
after a certain transition phase.

The results shown in Figures 4.24(d), 4.24(e), and 4.24(f) are based on data
sets for the Mla task. The experiments were conducted on 5000 training pairs
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and 1000 test pairs. Both the algorithms Apti and Ostia were executed with
input size starting from 500 training pairs to 5000 training pairs, incremented
by 500 at each step. Similar to the previous experiment, each run is repeated 10
times.
Figure 4.24(d) shows the Wer for Apti and Ostia for different sizes of train-

ing data. The Wer for Apti almost converges to zero from 2000 training pairs
onward, whereas Ostia continues to result more than 50% of Wer.

Apti outperforms Ostia for a number of reasons. Firstly, in Apti we are
exploiting probabilistic information by asking EXPQ to a Mat. Secondly, the-
oretically Ostia has got the limitation that it is guaranteed to converge only in
case of subsequential transductions that are total functions (Oncina et al., 1993).
Our target transducer for the Mla task (Figure 4.23) represents a transduction
which is a partial function. Therefore, Ostia is not capable of rejecting some
of the merges between states that should not be merged. As a result, Ostia

over-generalizes the hypothesis and leads to transducers with fewer number of
states than the target Pst. Figure 4.24(e) shows the ratio between the hypoth-
esis and the target size for each training size. Here, we see that in the case of
Ostia, the hypothesis-target ratio always remains below 1. On the other hand,
by introducing the notion of phantoms, we are able to overcome such limitations
in Apti. Figure 4.24(e) shows that the ratio of the hypothesis and the target
size in case of Apti always remain above 1, i.e., Apti does not over generalize.

For our experiments, we have implemented Ostia and Apti using OpenFST
(Allauzen et al., 2007), an open source C++ library for Fsts. Figure 4.24(f)
shows some timing results of OpenFST implementation of Ostia and Apti.
It shows that the execution time of Apti is more than the execution time of
Ostia. In case of Apti additional edges and states are added to the initial tree
as phantoms. Therefore, in most of the cases the size of the initial tree for Apti

is bigger than the size of the initial tree for Ostia which is the reason for longer
execution time for Apti. Nevertheless, the execution time of Apti is reasonably
low as shown in Figure 4.24(f): this always remained below 30 seconds.

4.16. Conclusion

In this chapter we have addressed RQ4, which was one of the objectives of the
thesis. We have presented an algorithm for learning Psts from positive training
sample and by asking probabilistic queries about the observed data. We have
shown that our algorithm Apti is capable of learning partial functions, which
were not guaranteed to be learnt using Ostia. We have experimentally shown
that our algorithm outperforms Ostia. We have used EXPQ w.r.t. the given
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data, and thus avoided peculiar problems as reported in (Lang and Baum, 1992).
This kind of queries can easily be simulated in real life using relative frequencies
of the observed data.
Moreover, the generality of our approach can be argued based on the results

of RQ3 given in Chapter 2. The Pst inferred by our proposed algorithm can be
converted into an equivalent Phmm and be used where Phmm is a more suitable
model.
The expressive power of our model is limited to the class of Sdrt, which surely

does not include a huge part of natural translation schemes. How to learn more
complex classes of transductions remains an open question.
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Chapter 5
Learning Probabilistic Subsequential
Transducers from Positive Data

The brain is nothing but
statistical decision organ.

Barlow

5.1. Introduction

I
n the previous chapter (Chapter 4) we have presented an algorithm for
learning probabilistic subsequential transducers (Psts) in the limit using
probabilistic queries and positive data. From a practical point of view it is

necessary to simulate the probabilistic queries using statistics over the observed
positive data. In this chapter we address this problem, which is one of the
research questions formulated in Chapter 1. This particular research question is
referred as RQ5.
The learning problem of Pfa from a positive sample is a well explored problem.

The first state merging algorithm for learning deterministic Pfa from positive
examples, Alergia, was introduced by Carrasco and Oncina in (1994). Having
Alergia as the pioneer, a number of modified versions have been presented,
e.g., (Thollard et al., 2000; Carrasco and Oncina, 1999). A recent survey about
Pfa learning can be found in (Verwer et al., 2012).
There have been lessons learnt from subsequential transducer learning algo-

rithms in non-probabilistic setting and also from Pfa learning algorithms. This
chapter aims to utilize the lessons learnt from both of these research streams and
attempts to solve the problem of learning Psts from positive examples.

109



In this chapter we present a novel algorithm for learning Psts from a positive
sample. We present an analysis of the algorithm to illustrate the theoretical
boundaries. Finally we present experimental results based on artificially gener-
ated datasets.

5.2. Distributions

Pfas represent distributions over Σ ∗ (Vidal et al., 2005b). Analogously, proba-
bilistic transducers represent join distributions over Σ ∗×Ω∗ (Vidal et al., 2005a).
In a state merging algorithm for probabilistic automata the following issue is im-
portant: given two Pfas how close are they w.r.t. the distributions represented
by the Pfas? In this section we will discuss the issues of distributions represented
Pfas and their distinguishability.

We will start with the classic example of probability theory, the coin tossing
example. The distribution given by tossing a coin (fair or biased) a number of
times, is the well known Binomial distribution. Details about Binomial distribu-
tion can be found in any standard textbook of probability theory, see for example
(Feller, 1971; Mitzenmacher and Upfal, 2005; Dubhashi and Panconesi, 2009).

q0 q1(1)

H( 1
2 )

T( 1
2 )

(a)

q0 q1(1)

H( 1
3 )

T( 2
3 )

(b)

Figure 5.1.: Pfas modeling the coin tossing scenario. Transition symbol H repre-
sents heads and T represents tails. The Pfa shown in Figure 5.1(a)
models a fair coin and the Pfa in Figure 5.1(b) models a biased coin.

The coin tossing scenario can be modeled by a Pfa; Figure 5.1 shows two such
examples: a fair coin (Figure 5.1(a)) and a biased coin (Figure 5.1(b)). Notice
that, in both the cases, during each parse from the initial state there will be
exactly one transition, either heads (represented by H) or tails (represented by
T) since, both the transitions go to q1 and the final state probability of q1 is 1.

We will call the outcome of each parse success, if the symbol H is generated,
i.e., if the outcome is heads. Which means a random variable Xn is the number
of times H is generated by one of the automata in Figure 5.1 out of n number of
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trials. Let p be the probability of generating H, i.e., in Figure 5.1(a) p = 1
2
and

in Figure 5.1(b) p = 1
3
. Note that each of these trials is an independent event.

The Binomial distribution with parameters n and p is given by:

Pr(X = Xi) =

(

n

i

)

pi(p− 1)n−i, 0 ≤ i ≤ n.

The random variable Xi associated with a binomial distribution is known as a
Bernoulli random variable.
In case of the automaton given for a fair coin (Figure 5.1(a)), for 100 parses,

ideally we will expect approximately 50 times success. On the other hand, for
the automaton given for a biased coin (Figure 5.1(b)) for 100 parses, we will
expect approximately 33 times success. So, the expected relative frequencies are
50
100

and 33
100

respectively. The difference between the relative frequencies gives us
a strong evidence that they are outcomes of two different coins. The question
remains, how close the relative frequencies should be so that they can be treated
as equivalent? This can be solved by using a bound on the probability that
the random variable does not deviate too much from the expected value. There
exist a number of bounds for concentration of measure, e.g., Chernoff bound,
Hoeffding bound etc. In this chapter we will briefly talk about Hoeffding bounds
for concentration of measure.
If we treat the outcome of each parse in Figure 5.1(a) as a Bernoulli variable

and the outcome of each parse in Figure 5.1(b) as another Bernoulli variable,
intuitively, the Hoeffding bound can tell us if two such random variables follow
the same distribution or not.

5.3. Hoeffding Bound

The Hoeffding bound was introduced by Wassilij Hoeffding in (1963). The proof
and other details of Hoeffding bound can also be found in (Casella and Berger,
2001; Feller, 1971; Dubhashi and Panconesi, 2009). In this section we will use
only one special form of Hoeffding bound.
One of the useful forms of Hoeffding bound is as follows. Let X1,X2, . . . ,Xn be

Bernoulli variables with probability p. The observed frequency is f =
∑n

i=1Xi.
With probability at least 1− δ,

∣

∣

∣

∣

p−
f

n

∣

∣

∣

∣

<

√

1

2n
log

2

δ
. (5.1)

We will use inequality 5.1 to derive the formula for testing how close are two
relative frequencies. Let f1, n1 and f2, n2 be two pairs of observed frequencies
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and number of trials respectively.
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∣
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δ

The version of the Hoeffding bound given in (Carrasco and Oncina, 1999),
which will be used in the proposed algorithm, is the following:

∣

∣

∣

∣

f1
n1

−
f2
n2

∣

∣

∣

∣

<

√

1

2

( 1

n1

+
1

n2

)

log
2

δ
. (5.2)

It is noteworthy that the Hoeffding bound relatively weak or bad approxima-
tion and there are better alternatives. However, to demonstrate the proof of
concept in our algorithm we will only use the Hoeffding bound.

5.4. Frequency Transducers

The proposed algorithm works with relative frequencies of the observed data.
We use the empirical distribution of the observed data as one of the evidences
for state merging decisions. We are primarily interested in the distribution of
the domain language. The idea of using the empirical distribution of the domain
language as a merge decision criterion is inspired by an algorithm for learning
Sts in non-probabilistic setting where knowledge of the domain language is used
(Oncina and Varó, 1996).
At this point we will define a new type of transducer, called frequency subse-

quential transducer.

Definition 25 (Frequency Finite Subsequential Transducer) A frequency
finite subsequential transducer (Ffst) is a 6-tuple T = 〈Q,Σ ∪ {]},Ω , {q0}, E, Fr〉
where ψ(T ) = 〈Q,Σ ∪ {]},Ω , {q0}, E〉 is a St and Fr is the frequency function
defined as Fr : e→ N, where e ∈ E.

A Ffst is well defined or consistent if the following property holds:

∀q ∈ Q\{q0},
∑

e∈E:next[e]=q

Fr(e) =
∑

e∈E[q]

Fr(e) (5.3)

Since q0 is the only one initial, the sum of the frequencies of the outgoing edges
are assumed to be number of frequency entering the initial state, and therefore q0
is treated specially. For example, Figure 5.2(a) depicts an example of a consistent
Ffst.
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Intuitively, an Ffst is an object where the weights are the frequencies of the
transitions instead of probabilities. Fr(e) = n should be interpreted as the edge
e is used n times.
Ffsts can be converted to equivalent Psts. Algorithm 13 shows a conversion

algorithm that converts an Ffst to a Pst.

Algorithm 13: ConvertFfstToPst

Input: a Ffst T =
〈

QT ,Σ ∪ {]},Ω , {q0}T , ET , F T
r

〉

Output: a Pst T ′ =
〈

QT ′
,Σ ∪ {]},Ω , {q0}T

′
, ET ′〉

1 QT ′
← QT ;

2 for q ∈ QT do
3 for e ∈ ET [q] do

4 α← Fr(e)∑
e∈E[e] Fr(e)

;

5 ET ′
← ET ′

∪ (q, i [e] , o [e] , α, next [e]);

6 return T ′;

q0 q1

q2

] : ε(60)

a : x(50)

b : y(35)

a : xx(30)

a : x(5)

] : x(20)

b : y(65)

b : y(15)

(a)

q0 q1

q2

] : ε(0.41)

a : x(0.35)

b : y(0.24)

a : xx(0.32)

a : x(0.13)

] : x(0.5)

b : y(0.68)

b : y(0.37)

(b)

Figure 5.2.: Figure 5.2(a) shows an example of an Ffst. Figure 5.2(b) shows
an equivalent Pst built from the Ffst of Figure 5.2(a) by means of
Algorithm 13. Notice that the Ffst in Figure 5.2(a) is consistent as
per condition (5.3).

Next we define a prefix tree transducer that is an exact representation of the
observed sample Sn and holds the frequencies of the strings.

Definition 26 (Frequency Prefix Tree Subsequential Transducer) A fre-
quency prefix tree subsequential transducer (Fptst) is a 6-tuple T =
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〈Q,Σ ∪ {]},Ω , {q0}, E, Fr〉 where ψ(T ) = 〈Q,Σ ∪ {]},Ω , {q0}, E, Fr〉 is a Ffst

and T is built from a training sample Sn such that:

• Q =
⋃

(u,v)∈Sn

{qx : x ∈ Pref(u)},

• E = {e | prev [e] = qu, next [e] = qv ⇒ v = ua, a ∈ Σ , i [e] = a, o [e] = ε},

• ∀qu ∈ Q, ∀e ∈ E [q] , i [e] = ], o [e] = v if (u,v) ∈ Sn,⊥ otherwise,

• ∀e ∈ E [q0] , Fr(e) = |{a : i [e] = a, a ∈ Pref({u : (u,v) ∈ Sn})}|,

• ∀qu ∈ Q \ {q0}, ∀e ∈ E [qu] , Fr(e) = |{a : ua ∈ Pref({x : (x,y) ∈ Sn})}| .

A Fptst is said to be in an onward form if the following condition holds:

∀q ∈ Q\{q0}, lcp

(

⋃

e∈E[q]

{o [e]}

)

= ε.

An Fptst is analogous to a Ptst (see page 81). An Fptst is essentially an
exact representation of the training data augmented with the observed frequen-
cies of the training data. The frequencies can be utilized to make statistical tests
such as Hoeffding bound during the state merging phase of the algorithm.

5.5. The Algorithm

Similar to other state merging algorithms such as Rpni (Oncina and Garćıa,
1992), Alergia (Carrasco and Oncina, 1999), Ostia (Oncina and Garćıa, 1991;
Oncina et al., 1993) and others, the proposed algorithm (Algorithm 18) starts by
constructing an initial tree transducer which is the exact representation of the
given data. The tree is built in the form of a Fptst (Algorithm 14). Notice that
the initial Fptst acts like a rote learner, i.e., the initial tree transducer overfits
the training data by simply memorizing. Generalization takes place in the state
merging phase of the algorithm.
For state merging we use the Red, Blue notations similar to the ones intro-

duced in (Lang et al., 1998), although the terminology does not exactly coincide
with the previous definitions. The recursive framework of merge (Algorithm 15)
and fold (Algorithm 17) using the Red, Blue notations has been adapted from
(de la Higuera, 2010). Initially, the root node of the tree is marked as Red

state and all its direct children nodes are marked as Blue. Whenever, a merge
is rejected, the Blue state is promoted to a Red state and consequently the
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Algorithm 14: OnwardFptst

Input: a stochastic sample Sn
Output: an Fptst T

1 Q← {qε};
2 qx ← qε;
3 for (u,v) ∈ Sn do
4 Let ui ∈ {ui|u1 · . . . · u|u| = u, ui ∈ Σ ∪ {]}, 1 ≥ i ≥ |u|};
5 for i = 1 to i = |u| do
6 if ∃e ∈ E [qx] such that i [e] = ui then
7 for d ∈ E [next [e]] do
8 o [d]← lcp(o [e] ,v)−1o [e] · o [d];

9 o [e]← lcp(o [e] ,v);
10 v← lcp(o [e] ,v)−1v;
11 Fr(e)← Fr(e) + 1;

12 else
13 Q← Q ∪ {qx·ui};
14 Let e′ be an edge such that:
15 prev [e′]← qx;
16 next [e′]← qx·ui;
17 i [e′]← ui;
18 o [e′]← v;
19 Fr(e)← 1;
20 E ← E ∪ {e′};

21 return T ;
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direct children nodes of the new Red states are marked as Blue. The algorithm
iteratively tries to merge a Red and Blue pair of states following the lex-length
order. When the first merge is accepted from the initial Ffst, some generaliza-
tion takes place, i.e. the hypothesis machine represents a stochastic bi-language
which is a superset of the training sample. Similarly, for every merge accepted
at ith iteration of the algorithm, the stochastic bi-language represented by the
hypothesis Pst Hi is a superset of the stochastic bi-language represented by hy-
pothesis Pst Hj where i ≤ j. The algorithm terminates whenever there are no
more Blue states to be merged.

Algorithm 15: StochasticMerge

Input: an Ffst T , two states q ∈ Red and q′ ∈ Blue

Output: an updated Ffst T
1 Let e ∈ E such that next [e] = q′;
2 next [e]← q;
3 if q = q0 ∧ |E [q′]| = 0 then return (T , true);
4 return StochasticFold(T );

Algorithm 16: StatisticalTest

Input: an Ffst T , two states q ∈ Red and q′ ∈ Blue, a symbol
a ∈ Σ ∪ {]}

Output: a boolean
1 f1 ← Fr(e) such that e ∈ E [q] ∧ i [e] = a;
2 f2 ← Fr(e) such that e ∈ E [q′] ∧ i [e] = a;
3 n1 ←

∑

e∈E[q] Fr(e);

4 n2 ←
∑

e∈E[q′] Fr(e);

5 return
∣

∣

∣

f1
n1
− f2

n2

∣

∣

∣
<

√

1
2

(

1
n1

+ 1
n2

)

log 2
δ
;

Notice that the merge decision is made during the recursive fold operation (Al-
gorithm 17). The merge acceptance criteria is checked by the routine
StatisticalTest (Algorithm 16) and by compatibility test w.r.t. the train-
ing data (Algorithm 17, line 7). Suppose we want to merge and fold two states
qb ∈ Blue and qr ∈ Red. The algorithm Apti2 employs the following condition
for a merge to be accepted:

• ∀eb ∈ E [qb] , ∀er ∈ E [qr] , i [eb] = i [er]⇒
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Algorithm 17: StochasticFold

Input: an Ffst T , two states q ∈ Red and q′ ∈ Blue

Output: an updated Ffst T
1 for a ∈ Σ ∪ {]} do
2 if ¬StatisticalTest(T, q, q′, a) then

3 return (T , false);
4 if ∃e′ ∈ E [q′] such that i [e] = a then
5 if ∃e ∈ E [q] such that i [e′] = a then
6 if if (next [e] ∈ Red ∧ o [e′] /∈ Pref(o [e])) or (o [e] 6= o [e′] then
7 then

8 return (T , false);
9 else

10 Pushback(T, e, e′);
11 Fr(e)← Fr(e) + Fr(e

′);
12 StochasticFold(T );

13 return (T , true);

Algorithm 18: Apti2

Input: a sample Sn
Output: a Pst T

1 T ← OnwardFptst(Sn);
2 Red← {qε};
3 Blue← {qa : a ∈ Σ ∩ Pref({u : (u,v) ∈ Sn)})};
4 while Blue 6= ∅ do
5 q = Choose<lex

(Blue);
6 for p ∈ Red in lex-length order do
7 (T ′, IsAccept )← StochasticMerge(T, p, q);
8 if IsAccept then
9 T ← T ′;

10 else
11 Red← Red ∪ {q};

12
Blue← {q : ∀p ∈ Red, ∀e ∈ E [p] ,

q = next [e] ∧ q /∈ Red};

13 ConvertFfstToPst(T );
14 return T ;
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1. o [eb] = o [er],

2. inequality (5.2) holds for f1 = Fr(eb), n1 =
∑

e∈E[qb]
Fr(e) and f2 =

Fr(er), n2 =
∑

e∈E[qr]
Fr(e).

Condition 1, is essentially similar to Ostia. In order to make merges to
happen it is necessary to push the outputs toward the leaf of the tree in the
same manner as it is done in Ostia (see (Oncina et al., 1993; de la Higuera,
2010)). In StochasticFold (Algorithm 17) this is achieved using the routine
Pushback (line 10) (see page 85 Algorithm 7). The second condition is to check
whether the two states are close enough in terms of the distribution of the out
going edges. In this case Hoeffding bound is used as a statistical test.

5.6. A Run of the Algorithm

As an example of a stochastic regular bi-language, let us consider the following:

Example 2 The stochastic regular bi-language R ∈ SREGBL(Σ ,Ω) where
PrR(a

nbam],xnyxm) = 1
2(3n4m)

, ∀n,m ≥ 0. and PrR(u,v) = 0 for every other
pairs.

Figure 5.3 shows the Pst in canonical normal form (see page 78) that generates
R. We will consider the Pst shown in Figure 5.3 as the target Pst. The training
data w.r.t. the target Pst (Figure 5.3) is given in Table 5.1.
Next, an onward Fptst is built from the data given in Table 5.1. The Fptst

is shown in Figure 5.4. The states q0 is initiated as a Red state and states q1
and q2 are initiated as Blue states. Here for the Hoeffding bound test, the value
of δ is set arbitrarily to 0.5.
The first merge candidate pair of states are q0 and q1. The merge between

them is accepted and the resulting transducer is shown in Figure 5.5.
Next, the algorithm tries to merge q0 and q0 (Figure 5.6). This merge is

rejected because the Hoeffding bound test by Algorithm 16 returns false. The
state q2 is promoted to Red and consequently the states q5 and q6 are added as
Red states (Figure 5.7).
Then the Algorithm tries to merge the states q0 and q5 which is also rejected

because the Algorithm 16 returns false. Now the next candidate merge pair is q2
and q5. This merge is accepted (Figure 5.8).
The next candidate pair of merge is q0 and q6 which is accepted and the

resulting transducer is depicted in Figure 5.9.
Finally, the Ffst is converted into a Pst (Figure 5.10) using Algorithm 13

and the algorithm terminates. The inferred Pst is shown in Figure 5.10.
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q0 q1
b : y( 2

3 )

] : ε( 3
4 )

a : x( 1
3 ) a : x( 1

4 )

Figure 5.3.: The Pst in canonical normal form that generates R defined in Ex-
ample 2.

Table 5.1.: Training data for the target Pst in Figure 5.3.

input output frequency

b] y 500

ab] xy 160

ba] x 120

aab] xxy 50

aba] xyx 40

total 870
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q2

q4

q0

q1

q3

q6

q8

q7

q5

q9

q10

q11

q12
a : x(250)

b : y(620)

a : xy(50)

b : y(200)

a : ε(120)

] : ε(500)

b : ε(50) ] : ε(50)

a : x(40)

] : ε(160)

] : ε(40)

] : ε(120)

Figure 5.4.: An onward Fptst built from stochastic sample given in Table 5.1.

q2q0

q6

q5 q10

a : x(300)

b : y(870)

a : ε(160)

] : ε(710)

] : ε(160)

Figure 5.5.: After merging and folding q0 and q1.
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q2q0

q6

q5 q10

a : x(300)

b : y(870)

a : ε(160)

] : ε(710)

] : ε(160)

Figure 5.6.: Merge between q0 and q2 is rejected.

q2q0

q6

q5 q10

a : x(300)

b : y(870)

a : ε(160)

] : ε(710)

] : ε(160)

Figure 5.7.: q2 is promoted to Red and as a consequence of that q5 and q6 are
added to Blue.
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q2q0

q6

a : x(300)

b : y(870)

a : ε(160)

] : ε(870)

Figure 5.8.: After merging and folding q2 and q5.

q2q0

a : x(300)

b : y(870)

a : ε(160)

] : ε(870)

Figure 5.9.: After merging and folding q0 and q6.

q2q0

a : x(0.26)

b : y(0.74)

a : ε(0.16)

] : ε(0.84)

Figure 5.10.: After converting the Ffst shown in Figure 5.7 to a Pst using
Algorithm 13.
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5.7. Analysis of the Algorithm

The proposed algorithm Apti2 is inherently an optimistic algorithm. It is op-
timistic from the view point of the merge strategy. If there is no evidence in
the observed data for a pair of candidate states to disallow their merging, the
algorithm will simply do the merge. Therefore, while defining the merge strategy
of the algorithm, the question to be asked is ”when should two candidate states
not be merged?” rather than the question ”when should two candidate states be
merged?”. The lack of evidence in the data to make the correct merge decisions
may lead to two situations: 1) too many merges take place and the algorithm
over generalizes; the size of the hypothesis machine is usually smaller than the
target machine, 2) too few merges take place, i.e., insufficient evidences or mis-
leading evidences in the data that forbid even the correct merges to take place;
the size of the hypothesis machine is usually bigger than the target machine. In
both the cases, the data lacks the characteristics of having the evidences that
allows the algorithm to infer the correct machine.
As an example, let us consider the run of Apti2 given in the previous section.

In this example, if the merge between q0 and q2 (see Figure 5.6) were not rejected
due to statistical test, the algorithm would perform a bad early merge and as a
result infer a wrong hypothesis. On the other hand, if one of the valid merges,
e.g., the merge between q0 and q1 (see Figure 5.5), were rejected due to statistical
test, the algorithm would also lead to a wrong hypothesis. Here we define the
properties a stochastic sample must have, for the algorithm to infer the correct
machine.
We recall the definition of a stochastic sample Sn 〈X, f〉 (see page 80) where

the frequency of a translation pair (u,v) is given by f(u,v).
Similarly, we define the prefix frequency FSn

w.r.t. a stochastic sample Sn as
the following:

FSn
(uΣ ∗,v) = |{(w,x) : (w,x) ∈ Sn ∧ u ∈ Pref(w)}| .

Less formally, FSn
(uΣ ∗,v) is the number of translation pairs where the input

string starts with the substring u.
We use the definitions above to define the conditions a stochastic sample must

obey in order to obtain a correct Pst.
A stochastic sample Sn 〈X, f〉 must satisfy the following conditions in order to

learn the syntactic machine w.r.t. an Sdrt R:

1. ∀u ∈ K, ∃(uw,vx) ∈ X such that w ∈ Σ ∗,vx ∈ Ω∗, (w,x) ∈ (u,v)−1R,

2. ∀u ∈ SP, u′ ∈ K, if (u,v)−1R 6= (u′,v′)−1R where v,v′ ∈ Ω∗, then any one
of the following holds:
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a) ∃(uw,vx), (u′w,v′x′), (ur,vy), (u′r,v′y′) ∈ X such that for a given
value of δ:
∣

∣

∣

∣

∣

∣f(uw,vx)−f(ur,vy)

∣

∣

FSn(uΣ
∗,z)

−

∣

∣f(u′w,v′x′)−f(u′r,v′y′)

∣

∣

FSn(u
′Σ∗,z′)

∣

∣

∣

∣

<
√

1
2
log 2

δ

(

1
FSn(uΣ

∗,z)
+ 1

FSn(u
′Σ∗,z′)

)

b) ∃(uw,vx), (u′w,v′x′),∈ X such that: (w,x) ∈ (u,v)−1R, (w,x′) ∈
(u′,v′)−1R, x 6= x′

3. ∀u ∈ K, ∃(uw,vx)(uw′,vx′) ∈ X such that lcp(x,x′) = ε ∧ w 6= w′.

With the conditions above, the properties a stochastic sample Sn have been
formalized in order to guarantee the algorithm to learn correctly. The condition
1, 2(b), and 3 are essentially similar to its non-probabilistic counterpart Ostia

(Oncina et al., 1993). Condition 1 is to ensure that there are at least as many
states in the learning phase as the target transducer. Condition 2(b) is for
making merge decisions w.r.t. the output strings. Condition 3 ascertains the
alignments of the output strings by factorizing them during the state merging
phase. Condition 2(b) is not guaranteed if the transduction scheme is not a
total function (Oncina et al., 1993), i.e., it is not sufficient to make the merge
decision if the transduction scheme is a partial function. In order to overcome
this issue, in our proposed algorithm we have used the frequencies of the given
data. Condition 2(a) ensures that the relative frequencies of the observed data is
sufficient to distinguish non-mergable states by means of Hoeffding bound (see
Section 5.3). The inequality shown in condition 2(a) is from inequality 5.2.
Notice that condition 2(a) depends on the value of δ. Carrasco and Oncina

have discussed how a large or a small value of δ effects the merge decision in
(1994). Basically, if the size of the stochastic sample Sn is significantly large,
one could keep δ negligibly small. On the contrary, for a relatively small size
of stochastic sample Sn, δ requires to be sufficiently high. We will show some
experimental results in Section 5.8 with different values of δ to show how the
choice of δ influences the learning outcome.
The runtime complexity of algorithm Apti2 is given by O((‖Sn‖)3(m+ n) +
‖Sn‖mn), where:

• ‖Sn‖ =
∑

(u,v)∈Sn
|u|

• m = max{|u| : (u,v) ∈ Sn}.

The Fptst can be built in linear time w.r.t. ‖Sn‖ (Algorithm 14). We will
now analyze the outermost while loop in the Apti2 algorithm. Being pessimistic,
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there will be at most ‖Sn‖ number of states in the Fptst. In the worse case,
if no merges are accepted, there will be O(‖Sn‖) executions of the outer most
while loop and O(‖Sn‖

2) executions of the inner for loop, resulting O(‖Sn‖
3)

executions of the core algorithm. In each of these executions, lcp operation
can be implemented in O(m) times and the pushback operation in O(n) times.
Assuming that all arithmetic operations are computed in unit time, the total
core operation of Apti2 can be bounded by O((‖Sn‖)3(m+n)+‖Sn‖mn). This
runtime complexity is pessimistic and the runtime of Apti2 is much lower in
practice. Experimental evidence of runtime of Apti2 is presented in the next
section.

5.8. Experimental results

5.8.1. Data

The experiments have been conducted using synthetic data generated from ran-
dom Psts. The random transducer construction procedure is fundamentally
similar to the random Pfa construction procedure in the PAutomaC1 competi-
tion (Verwer et al., 2012) with some modifications. The construction procedure
of a random Pst takes the following parameters:

• An integer N as the number of states;

• Σ and Ω , the sets of input and output symbols respectively;

• An integer k as the maximum output length, i.e., the output strings are in
Ω≤k;

• Two integers max and min as a range such that max > min in order to
generate random probabilities for the transitions.

First, a random Dfa is generated in the minimal form of size N by connecting
the states randomly with input symbols. Each state is randomly selected as a
final state with probability 0.5. An extra edge with symbol ] is added for each
of the final states going to the initial state. Second, for each of the edges, a
random input string is generated with maximum length of k. To generate a
random string, we randomly draw a symbol a ∈ Ω uniformly with replacement
n times, where n is a random number such that 0 ≤ n ≤ k. After drawing n
symbols randomly, the symbols are concatenated to form the output string. If

1http://ai.cs.umbc.edu/icgi2012/challenge/Pautomac/index.php
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the random number n = 0, then the output string is ε. Finally, to assign the
probabilities of the edges of each state q, we generate |E [q]| random numbers
ranging frommin tomax using a uniform distribution. After that the transducer
is normalized using Algorithm 13. Notice that the lower is the difference between
max and min, the more uniform will be the distribution of the states, in case of
max = min the distribution will be uniform.
Using the target Pst, the training sample is generated following the paths of

the Pst. The test data is also generated in the similar manner. In order to
test the algorithm with unseen examples, we make sure that the test set and the
training set are disjoint.

5.8.2. Evaluation

As a measure of correctness we compute two metrics: word error rate (Wer) and
sentence error rate (Ser). Intuitively, Wer is the percentage of symbol error in
the hypothesis translation w.r.t. the reference translation. For each test pair, the
Levenshtein distance (Levenshtein, 1966) between the reference translation and
hypothesis translation is computed and then the Levenshtein distance is divided
by the length of the reference string. The mean of the scores computed for each
test pair is reported as the Wer. On the other hand Ser is more strict; it is
the percentage of wrong hypothesis translations w.r.t. the reference translations.
The number of times the hypothesis translation does not match the reference
translation is counted, then it is divided by the number of test pairs and the
score is reported as Ser.
Figure 5.11(a) and Figure 5.11(b) show the results of our first experiment.

The objectives of the first experiment are to demonstrate the correctness of
our algorithm and to show that the runtime in practice. Figure 5.11(a) shows
experiments conducted on randomly generated Psts with 5 states and |Σ | =
|Ω | = 2. We start with a training sample size 200, we keep incrementing the
training size by 200 up to a size of 10000. For every training size the experiment is
repeated 10 times by generating new datasets. The mean of these 10 experimental
results is reported. We have conducted the experiment for 10 random Psts.
Thus, in total we have conducted 5000 trials. Figure 5.11(a) shows the mean
of the results obtained from 10 random Psts. As the Figure 5.11(a) shows,
the error rate is approaching zero. As expected, the Wer in most cases remains
below Ser. The execution time for this experiment is reported in Figure 5.11(b).
The results of our second experiment are shown in 5.11(c) and Figure 5.11(d).

In this experiment, the objective was to demonstrate the correctness and runtime
of Apti2 for Psts bigger number of states. In the second experiment we have
taken a randomly generated Psts with 10 states and |Σ | = |Ω | = 2. We start
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Figure 5.11.: Performance of Apti2 reported for the artificially generated data
set (Figures 5.11(a), 5.11(b), 5.11(c), and 5.11(d)) and the data set
for the Mla task (Figures 5.11(e), 5.11(f)).

with a training sample size 1000, we keep incrementing the training size by 1000
up to a size of 40000. Similar to the previous experiment, experiment with each
training sample size is repeated 10 times. The experiment is conducted for 10
random Psts. The results are shown in Figures 5.11(c) and 5.11(d).

Finally, we have conducted another experiment with the Feldman dataset (see
page 4.15.1). The objectives of this experiment are 1) to do a comparison of
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prediction accuracy of Ostia and Apti2 and 2) a comparison of runtime of
Ostia and Apti2. Here we start with 1000 training pairs and incremented by
1000 till 10000 training pairs. Each data point is repeated 10 times for statistical
significance. The results are depicted in Figure 5.11(e) and 5.11(f). The results
of Figure 5.11(e) demonstrate significant improvement in prediction accuracy of
Apti2 in comparison with Ostia.
We have implemented Apti2 using an open source C++ library for weighted

transducers (Allauzen et al., 2007). Figures 5.11(b), 5.11(d), and 5.11(f) shows
the execution times for Apti2 using our implementation. Although, the theoret-
ical worst case runtime complexity of Apti2 is cubic, in practice Apti2 exhibits
much lower execution time.

5.9. Summary

In this chapter we have endeavored to solve the problem of learning Psts from
positive examples, which is one of the research questions of the thesis formulated
as RQ5 (see page 10). We have presented a learning algorithm Apti2 that
learns any Pst provided a characteristic training sample is given. We have also
presented experimental results based on synthetic data to proof the correctness
of our algorithm. Moreover, based on our implementation, we have reported that
the runtime complexity of Apti2 in practice is much lower than the theoretical
worst case runtime complexity.
The limitation of our work is twofold: first, our model is restricted to regular

stochastic bi-grammar, and hence not capable of capturing many practical sce-
narios, e.g., natural languages. Second, as a statistical test we have used a basic
Hoeffding bound. We believe that more sophisticated statistical tests will lead
to better accuracy of the algorithm.
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Chapter 6
Conclusion

6.1. Overview

W
e started the thesis with several motivating examples where transduc-
ers are used in real life. The theoretical results and algorithms we have
developed in this thesis are all having these potential applications in

mind. Within the scope of the thesis, a possible application that has been exper-
imentally demonstrated is: the potential application of transducer learning in an
automated machine translation task. The experiments have been reported based
on synthetic data. We believe that the algorithms presented here can also be
adapted to other application scenarios presented in Chapter 1 with little efforts.

The objectives of the thesis were defined as five research questions (RQs) in
Chapter 1. We attempted to solve the RQs throughout the thesis and have
presented our findings and results. Here we will summarize the contributions of
the thesis:

6.1.1. Chapter 2

The contributions in Chapter 2 are primarily theoretical. In this chapter our aim
was to provide solutions to RQ1, RQ2, and RQ3 defined in Chapter 1. The
results and findings of this chapter are summarized as the following:

Research Question 1 (RQ1)

The objective of RQ1 is to examine the relative expressive power of different
types of probabilistic transducers. In other words, the objective is to provide
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a hierarchical view of stochastic bi-languages generated by different types of
syntactic machines. We have presented three hierarchies:

• The hierarchy of bi-languages modeled by finite state machines (Chapter
2 Figure 2.11, page 30 ).

• The hierarchy of stochastic bi-languages modeled by finite state machines
(Chapter 2 Figure 2.20, page 40 ).

• The hierarchy of different types of probabilistic transducers and other prob-
abilistic models in terms of their relative expressive power (Chapter 2 Fig-
ure 2.24, page 62).

Research Question 2 (RQ2)

RQ2 concerns the runtime complexities of computation problems w.r.t. a prob-
abilistic transducer. Depending on the area of application, there can be various
types of computation requirements using the same syntactic machine. We have
provided general definitions of several possible types of computations using prob-
abilistic transducers independent of the application areas. We have presented
runtime complexities of these computation tasks using each type of probabilistic
transducers we have defined. As by-products of RQ2 we have developed novel
algorithms for parsing using probabilistic transducers.

Research Question 3 (RQ3)

RQ3 is about comparison of our learning model w.r.t. the other existing models.
We have shown that Pfsts are equivalent to another widely used model, namely
Phmms under certain conditions. Moreover, we have also showed that Pfsts are
a specific use of Wfsts which is another well known model and widely applied.
All in all, the results presented in Chapter 2 provide supports in favor of

our learning model: probabilistic subsequential transducers (Psts). It shows,
although Psts are not the most powerful machines w.r.t. expressive power, they
are relatively inexpensive w.r.t. parsing. Moreover, the comparison results to
other existing models support the generality of our model.

6.1.2. Chapter 3

In Chapter 3 we have presented an extensive literature review regarding trans-
ducer learning. Our survey shows that there have been three waves of transducer
learning. The early work involves sequential models, which are deterministic
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models and subsets of subsequential models (see Chapter 2). The second wave
starts with the commencement of the well known Ostia algorithm which is ca-
pable of learning subsequential transducers that represent total functions. A
number of follow ups of Ostia algorithm emerged in the last decade of the 20th
century and continued till the middle of the first decade of the 21st century. As
the third wave of transducer learning, some recent attempts have been made to
learn transducers which have got more expressive power than a subsequential
transducer. The third wave continues till today. The problem of learning Psts
is also an open problem till date.

6.1.3. Chapter 4

In this chapter we have worked on RQ4, which involves identification of Psts in
the limit. The results presented in this chapter are summarized as the following:

• We have shown a novel approach of asking queries w.r.t. the observed data,
which is traditionally not the case in the field of grammatical inference.

• We have presented a novel algorithm for learning Psts, which is a hy-
bridization of active learning and state merging paradigm.

• We have proved that Psts are identifiable in the limit with probability
1 from positive presentation and probabilistic queries w.r.t. the domain
language.

• We have overcome the limitation of total function of Ostia by introducing
the notion of phantoms.

• We have presented experimental results with synthetic data to backup the
correctness of our algorithm.

6.1.4. Chapter 5

In this chapter we have endeavored RQ5, which is about learning Psts from
positive data only. The idea is to substituting the oracle by an empirical distri-
bution of the positive data to learn Psts. We have presented a novel algorithm
that uses the frequencies of the given data to learn the target Pst. This algo-
rithm works as a support for the theoretical results in Chapter 4 to illustrate the
practicability of our approach. The contributions of this chapter are summarized
as the following:
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• We have presented a novel algorithm for learning Psts from empirical
distribution of positive data.

• We have formalized the conditions under which learning is guaranteed.

• We have presented experimental results using synthetic data to support
the correctness of our algorithm.

We have implemented the proposed learning algorithmsApti and Apti1 using
an open source C++ library called OpenFST (Allauzen and Mohri, 2002) and
conducted our experiments using the implementations.

6.1.5. Other Contributions

Besides the main contributions of the thesis, we have presented a parallel algo-
rithm for learning Dfas from positive and negative data and have shown signif-
icant speedup by experimentations in Appendix A. The algorithm presented is
essentially the parallel counterpart of the basic Rpni (Oncina and Garćıa, 1992).
The parallel algorithm is designed in the master-slave paradigm. We believe that
our approach of parallelization can easily be adapted for the other algorithms
presented in this thesis.
Moreover, we have implemented an open source library for grammatical in-

ference algorithm in MATLAB and reported the feasibility and performance in
Appendix B. This toolbox for grammatical inference allows easy and intuitive
experimentations, comparisons and parallelizations of grammatical inference al-
gorithms for learning automata and transducers.

6.2. Open Problems

We started with five RQs in the beginning of the thesis and while pursuing the
RQs, new questions, problems and intuition for alternative solutions came into
our mind. In order to stay focused toward the thesis objectives, we decided
to put those new questions, problems and intuition aside as open problems for
future work. In this section, we will highlight some of those open problems.

Open Problem 1 Can we improve the prediction accuracy by asking probabilis-
tic queries w.r.t. the output language?

This problem involves asking queries about the output languages and using
that information to improve prediction accuracy. This problem can be looked at
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from two settings: theoretical setting (the queries are asked to an oracle) and
practical setting (the queries are simulated by statistical tests). The feasibility
of the later setting depends on the first one. The issues in the theoretical setting
are: first, since Psts are non-deterministic w.r.t. the output and have ε outputs,
how to compute probabilistic queries w.r.t. the output strings; second, how to
utilize such queries in a learning algorithm to gain prediction accuracy. Having
such issues resolved in the theoretical setting should allow us to develop another
algorithm by using statistical tests in order to make the approach practicable.

Open Problem 2 Is it possible to find an algorithm for learning Psts for which
the characteristic sample is highly probable to appear in a stochastic sample Sn?

The proposed algorithm Apti requires the presence of a characteristic sample
in the training data to learn the Pst. However, the definition of the charac-
teristic sample does not tell us what is the probability that a given stochastic
sample will contain a characteristic sample. This open problem aims to find
a learning algorithm for which the characteristic sample is less demanding and
more probable to appear in a training data of relatively smaller size.

6.3. A Conjecture

Based on the lessons learnt from the thesis work and the deterministic properties
of a probabilistic p-subsequential transducer, we believe that identification of
probabilistic p-subsequential transducers in the limit is plausible. We postulate
the following conjecture:

Conjecture 1 There exists an algorithm Φ such that ∀R ∈ SPREGBL(Σ ,Ω),
Φ identifies the probabilistic p-subsequential transducers T with probability 1 from
positive presentation and EXPQ where T generates R.

We believe that similar state merging strategies used in learning Psts with
some additional measures for probabilistic p-subsequential transducers will allow
us to achieve this. However, it still requires formal proof and experimental
evidences for practicability, and therefore, it remains a conjecture.

6.4. Epilogue

We will conclude the thesis by making the following remarks based on the ex-
perience gained through our work: first, the problem of learning probabilistic
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transducers is a relatively young branch of grammatical inference with a lot of
unsolved problems and potential applications. We believe the contributions of
this thesis will surely open doors for further investigations. We also believe
that the open problems illustrated in this chapter will help leading the problem
domain toward the next steps.
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Appendix A
PSMA: A Parallel Algorithm for
Learning Regular Languages

A.1. Preamble

The results presented here have been jointly conducted in collaboration with
Alban Batard, Colin de la Higuera and Claudia Eckert and a preliminary version
of this work has been published in (Akram et al., 2010a). This appendix is self
contained in terms of the notations and definitions used and not to be confused
with the notations used in the rest of the thesis.

A.2. Introduction

Inferring a regular language from examples and counter-examples is a classical
problem in grammatical inference (de la Higuera, 2010). It is also known as
automata synthesis or grammar induction and corresponds to finding the smallest
Dfa consistent with a labelled sample of strings. The classical algorithm (Rpni

(Oncina and Garćıa, 1992)) to solve this problem runs in polynomial (but cubic)
time, and in practical situations where the size of the learning sample is large
the algorithm cannot be used. A number of alternative algorithms have been
proposed in the past 40 years (Trakhtenbrot and Barzdin, 1973; Lang et al., 1998;
Heule and Verwer, 2010). In grammatical inference, the only other attempt (to
our knowledge) of parallelizing learning algorithms was made in the alternative
framework of active learning (Balcázar et al., 1994; Angluin, 1987a).

Our Parallel State Merging Algorithm (Psma) is an EREW PRAM learning
algorithm for learning Dfa. This algorithm is strongly based on the sequential
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state merging algorithm Rpni (Oncina and Garćıa, 1992) and adopts a multi-
core processor computation paradigm that allows to test possible state merges
in parallel.

A.3. Preliminaries

Let Σ be a non-empty set of symbols called letters. Σ∗ is the set of all strings
over the alphabet Σ where a string x ∈ Σ∗ is a finite sequence of letters x =
x1x2 · · ·xn. A language L is any subset of Σ∗. If x = uv is a string, then u is a
prefix of the string x. The prefix set Pref(L) of the language L is defined as
Pref(L) = {u ∈ Σ∗ : uv ∈ L}.
A Deterministic Finite Automaton (Dfa) is a quintuple A

= (Σ, Q, q0, F, δ) where Σ is an alphabet, Q is a set of finite states, q0 ∈ Q
is the initial state, F ⊆ Q is the set of final states and δ : Q × Σ → Q is the
transition function.

A.4. The problem

Let 〈S+, S−〉 be a finite sample of some language L consisting of a subset S+ ⊆ L,
set of positive strings of the language L and S− ⊆ Σ∗ \ L, set of negative strings
of the language L. Throughout the paper we assume the samples to be non-
conflicting , i.e., S+ ∩ S− = ∅.
In a Dfa learning (or synthesis) problem, we are given a sample 〈S+, S−〉 as

above, and the goal is to find the language L. Obviously, there is a number of
languages such that S+ ⊆ L and S− ⊆ Σ∗ \ L: such a language is said to be
consistent with 〈S+, S−〉. As a combinatorial problem, the corresponding goal
is to find the smallest consistent Dfa. As an inference problem, we want to have
an algorithm which returns a Dfa and furthermore we would like the algorithm
to converge with the data, i.e., there is a guarantee that with more and more
elements in S+ and S−, we can be sure to find L.
The general strategy used by the most common family of Dfa learning algo-

rithms is that of state merging . The starting point is the Prefix Tree Accep-
tor (Pta), built from S+: this is a tree-like Dfa A = (Σ, Q, q0, F, δ) Pta(S+)
defined as follows: {Q = qu : u ∈ Pref(S+)}, ∀ua ∈ Pref(S+) : δ (qu, a) = qua,
F = {qu : u ∈ S+}.
State-merging algorithms maintain a set of Red states corresponding to the

confirmed states, i.e., those present in the final Dfa, and a set of Blue states,
successors of theRed states and candidates for merging. The goal is to generalise
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the language recognised by the running Dfa by iteratively choosing one Red

state and one Blue state and attempting to merge these together: if the result
of this merge is not over-general (i.e., no string from S− is recognised: the two
states are then said to be compatible and incompatible otherwise) the merge is
kept; if not, it is rejected. Whenever a particular Blue state can be merged with
no Red state it gets promoted: it becomes Red and all its non Red successors
become Blue.
Rpni (Oncina and Garćıa, 1992) is a deterministic algorithm where the merge

compatibilities between two states are checked sequentially in a predefined (length
lexicographic) order. Whenever a merge is rejected, Rpni tries to merge another
pair of states and continues until no further merges are possible. It is known
that Rpni ensures identification of Dfa in the limit and works in polynomial
time (de la Higuera, 2010).

A.5. The PSMA Algorithm

We introduce a new learning algorithm called Psma (Parallel State Merging
Algorithm) which obtains the same result as Rpni but makes use of a multi
processor architecture.
Let us denote by n the number of states of the Pta and suppose these are

numbered (in a breadth-first way) from 0 to n − 1. Pairs of (indexes of) states
will be ordered: 〈i, j〉 < 〈i′, j′〉 if j < j′ or j = j′ and i < i′. The first element of
each pair corresponds to a Red state, the second to a Blue state. For example,
〈3, 5〉 < 〈2, 6〉 and 〈3, 5〉 < 〈4, 5〉.
The master processor node M takes the responsibility of initialising and up-

dating the shared data:

• a set R of Red states; initially R = {0};

• a set B of Blue states; initially B = {i : ∃a ∈ Σ such that δ(q0, a) = qi};

• a table containing for each pair 〈i, j〉 with i ∈ R, j ∈ B, the information
T [i][j];

• a counter called SIT which corresponds to the position in the table up to
which the merges are validated by the master so far.

T can be implemented as a queue in order to have a small data struicture: it
will only contain the values corresponding to active pairs of states. T [i][j] will
take the following possible values:
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• if the merge between state i ∈ R and j ∈ B has an unknown status the
value is U;

• if the merge is being considered in the actual context by some processor
the value is C;

• if the merge is being considered by some processor, but the master has
accepted a merge the value is R;

• if the merge has been discarded the value is D;

• if the merge is proposed in the current context by one processor the value
is P;

• if the merge is accepted and has been validated by the master processor,
the value is A;

The master processor is in charge of updating the shared information. It
does so by looking at the entry in the table T corresponding to SIT= 〈i, j〉:

• if T [i][j] =D and is the last corresponding to that particular Blue (j) the
table is updated by promoting state j. This consists in (1) updating the
local B and R sets (i.e., state j is moved from B to R, and successors of
state j are moved to B; (2) pairs 〈j, k〉 are inserted in their correct position
in the table, where k is any Blue state; (3) counter SIT is incremented.

• if T [i][j] =P the following update takes place: (1) T [i][j] ← A; (2)
∀k > j, T [i][k] ← D; (3) ∀〈h, k〉 >SIT, if T [h][k] =C, T [h][k] ←R and if
T [h][k] =P, T [h][k]←U; (4) B and R are updated in the usual way Rpni

does it; (5) SIT is incremented to < 〈i′, j′〉 where i′ is the first Red state
and j′ is the next Blue state.

Each other processor Pz plays the part of a slave processor. It finds the smallest
〈i, j〉, from SIT onwards such that T [i][j] =U. Pz sets T [i][j] to C.
Then Pz runs Rpni with the help of the table T : every time a merge between

two states r and b is to be tested, Pz checks the table T . If T [r][b] is A the merge
is done; in all other cases the compatibility result is fail. When Pz has to test
the merge between i and j, it really does it and returns the compatibility result.
Processor Pz does the following when it has finished its task, consisting in

testing the merge between i and j:

1. If T [i][j]=C then if the merge Pz has tested is OK, it updates T [i][j] to P
(proposed). If the merge is not OK, it updates T [i][j] to D.
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2. If T [i][j]=R (which means that at least one new merge has been taken into
account), then if the merge is not OK, it updates T [i][j] to D. If the merge
is OK, nothing can be decided: it updates T [i][j] to U.

3. It searches for another merge to be checked.

A small analysis of the algorithm

The key idea is that each slave processor is kept busy at all times: it finds
the next job in the queue and will try to check a merge in which the context
is that all the previous unfinished jobs are going to fail. If the result of this
job is incompatible, then the result will hold even if an unfinished job returns
compatible. The bad case occurs when the job returns compatible: the result
in only kept if all previous compatibility tests fail.

A.6. Experimental Results

We have conducted our experiments on a multi-core machine having IntelR©

XeonR© processors, 4x6 cores, 2.66 GHz, 16 MB cache memory, RAM: 128 GB.
A series of runs of the algorithm was performed using datasets generated by
Gowachin1, with different sizes of targets Dfa, number of examples, and number
of slaves used in the algorithm.
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Figure A.1.: Plot of time taken to execute different sizes of datasets over number
of slaves. nt is the number of nodes in the target Dfa, ni is the
number of nodes in the initial Pta and S is the sample size.

1Gowachin allows to generate artificial datasets for testing Dfa learning methods: http:

//www.irisa.fr/Gowachin/
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Figure A.2.: Plot of speedup gained over the number of processors. nt is the
number of nodes in the target Dfa, ni is the number of nodes in
the initial Pta and S is the sample size.

p → 1 2 3 4 5 6 7 8 9 10 12 14 16 18 20
n ↓
12348 1 0.97 0.93 0.83 0.82 0.75 0.6 0.6 0.63 0.58 0.51 0.45 0.38 0.34 0.3
20339 1 0.8 0.9 0.63 0.74 0.68 0.75 0.63 0.53 0.59 0.51 0.43 0.38 0.34 0.3
38418 1 1.09 0.99 0.92 0.96 0.89 0.85 0.83 0.78 0.75 0.65 0.57 0.51 0.45 0.4
30498 1 1.13 0.99 1 0.88 0.82 0.83 0.75 0.73 0.67 0.6 0.53 0.46 0.42 0.38
34187 1 1.01 0.95 0.91 0.84 0.83 0.69 0.73 0.68 0.63 0.54 0.49 0.44 0.39 0.35

Table A.1.: Efficiency E as a function of n (Pta size) and p (number of
processors).

From Figure 1 it appears that significant speedup can be gained when using
large datasets (leading to large Pta). As we increase the number of slaves, the
speedup decreases until reaching a saturation point (here with 13 slaves). This
behaviour can be explained as follows: the hypothesis under which a processor
checks the merge it has to test has a probablity of being invalidated that grow
with the number of processors.Therefore, at some point, increasing the number
of processors brings no speedup.

Let the sequential execution time (Gupta and Kumar, 1993), i.e., the time
taken to execute the algorithm with a single processor be denoted by T1. The
parallel execution time, i.e., the execution time for the algorithm with p proces-
sors be denoted by Tp. The speedup is defined as S = T1

Tp
. The efficiency is defined

as E = S
p
. Figure 2 depicts the speedup of the algorithm over the number of

processors. Table 1 shows the efficiency table as a function of number of states in
the PTA and number of slaves. Efficiency appears to be very high (Table 1) with
lower number of slaves and decreases as the number of slaves increases due to
the similar reason as limitation in speedup gain explianed earlier. Adding more
resources to gain relatively small fraction of speedup (or no speedup) results in
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low efficeincy.

A.7. Conclusion & Future Outlook

In this paper we have described a parallel version of a state merging algorithm
for inferring regular languages (Rpni). Experimental results have been presented
based on a Java implementation2 of the algorithm, where a significant perfor-
mance gain has been obtained. However, the results also indicate that there is a
limit for the speedup gain.
In this version, the algorithm remains deterministic and depends on a pre-

defined ordering of the states. A parallelisation of the Evidence Driven State
Merging algorithm (Edsm, (Lang et al., 1998)) can also be done: in this case,
between the different P values returned by the slave processors, the master will
choose the one with the highest score.

2http://pagesperso.lina.univ-nantes.fr/~cdlh/Downloads/RPNIP.tar.gz
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Appendix B
GIToolBox: A Grammatical Inference
Library in MATLAB

B.1. Preamble

The results presented here have been jointly conducted in collaboration with
Huang Xiao, Colin de la Higuera and Claudia Eckert and a preliminary version
of this work has been published in (Akram et al., 2010b). This appendix is self
contained in terms of the notations and definitions used and not to be confused
with the notations used in the rest of the thesis.

B.2. Introduction

In this paper we focus on two important tasks for GI - learning regular languages
from an informant and learning k-testable languages (Garćıa and Vidal, 1990)
from text. We have implemented the RPNI (Oncina and Garćıa, 1992) and
EDSM (Lang et al., 1998) algorithms to investigate the feasibility of running
such classes of algorithm in MATLAB1. We have also implemented algorithms
to learn k-testable languages which corresponds to a subset of regular languages.

We have followed the notations and algorithms given in Colin de la Higuera’s
(de la Higuera, 2010) book. The details of RPNI algorithm can be found in
chapter 12, EDSM in chapter 14 and k-testable language in chapter 11 of the
book. In this section we briefly introduce notations and definitions.

1MATLAB is a registered trademark of The MathWorks, Inc.
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B.2.1. Preliminaries

Definition 27 A Deterministic Finite Automaton is defined as a 6-tuple
A = 〈Σ, Q, q0,FA,FR, δ〉, where Σ is the set of alphabets, Q is the set of finite
states, q0 ∈ Q is the initial state, FA ⊆ Q is the set of final accepting states,
FR ⊆ Q is set of final rejecting states, δ is the transition function.

Definition 28 A Prefix Tree Acceptor (PTA) is a tree-like DFA generated
by extracting all the prefixes of the samples as states that only accepts the samples
it is built from. A prefix tree is also known as trie which is an ordered data
structure and it is expressed as a DFA to form a PTA. Let S be the sample from
which we build a PTA. APT A = PTA(S) is a DFA that contains a path from the
initial state to a final accepting state for each strings in S.

To recognize k-testable languages we would require a special machine called
k-testable machine from which we can build an equivalent DFA.

Definition 29 Given k > 0, a k-testable machine k − T SS is a 5-tuple
Zk = 〈Σ, I, F, T, C〉 where Σ is the set of alphabets, I ⊆ Σk−1 set of prefixes of
length k− 1, F ⊆ Σk−1 suffixes of length k− 1, C ⊆ Σk set of short strings, and
T ⊆ Σk set of allowed segments.

A k-testable machine k − T SS will recognize strings only either exactly in C,
or those whose prefix of length k − 1 is in I, suffix of length k − 1 is in F , and
where all substrings of length k is in T .

B.3. State Merging Algorithms

The basic idea of state merging algorithm to infer a DFA is to build a PTA from
the positive sample (S+), conduct the state-merging iteratively, each intermediate
DFA is verified by examining the negative samples. Only the merge resulting in a
DFA that rejects all the negative samples is kept as current status, otherwise the
merge is discarded. This process is repeated until the target automaton is found.
Examples of such state merging algorithms are RPNI, EDSM, Blue-Fringe etc.

B.3.1. RPNI

The RPNI version given in (de la Higuera, 2010) uses two labels for the states
in the automaton: red states and blue states. After a series of merges between
the red states and blue states, promoting the states (e.g., blue to red), the target
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DFA is produced. For the details of RPNI please consult chapter 12 of (de la
Higuera, 2010).
By consideration of overhead of computing, we initiated another version of

RPNI, Parallel RPNI, which opens multiple sessions for states in PTA and runs
those sessions concurrently so that if the merge at state i is failed, then the
merges at states {i + 1, i + 2, i+ 3, · · · } might be already prepared to be taken
into execution.

B.3.2. EDSM

RPNI basically performs a greedy search to find out the target DFA, meaning
whenever two states are mergable, they are merged. Obviously there could be
other option, e.g., choosing a better or even best merge by means of some heuris-
tics. EDSM algorithm introduced by Lang and et. al., (Lang et al., 1998) which
takes such heuristics into consideration.

B.4. MATLAB GI Toolbox

In this section we present the MATLAB GI Toolbox, an open source implemen-
tation of a set of GI algorithms in MATLAB. The Toolbox offers out-of-the-box
implementations of a range of GI algorithms that can be used like every other
machine learning tool provided in MATLAB.
The fundamental data structures in the MATLAB (MathWorks, 2010) plat-

form are matrices. Therefore, in our implementation we have used matrices as
primary data structure to represent a DFA. The DFA object contains eight dif-
ferent sets represented as matrices: FiniteSetOfStates: the set of finite states
(Q) of the DFA, it is stored as an integer vector in MATLAB. Alphabets : the
set of symbols. It is stored as a cell array where each cell contains a character.
TransitionMatrix : each column of the matrix corresponds to a symbol a ∈ Σ
(Alphabets) and each row corresponds to a state q ∈ Q (FiniteSetOfStates). Each
cell of the matrix is a transition δ, e.g., if there is a transition from a state qi
to qj via a symbol a, then the corresponding cell for qi and a is marked as qj .
No transition cells are marked with −1. InitialState: the set of initial states,
an integer vector which contains only state. FinalAcceptedStates: the set of
final accepted states, an integer vector which is a subset of FiniteSetOfStates.
FinalRejectStates: the set of final rejecting states, an integer vector which
is a subset of FiniteSetOfStates. RED: the set of red states, an integer vector
which is a subset of FiniteSetOfStates. BLUE: the set of blue states, an integer
vector which is a subset of FiniteSetOfStates.
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The input file is given in the similar format as the Abbadingo2 format. How-
ever, internally in MATLAB the training dataset is represented as cell arrays
(MathWorks, 2010), each cell containing a character, which is independent of
the input file format.

B.4.1. Features

The MATLAB GI Toolbox provides the GI algorithms in a modular fashion so
that they can be reused to enhance or improve the existing GI algorithms. The
DFA data structure and the built-in methods can be used for RPNI, Blue-Fringe,
EDSM and can be extended to incorporate other methods such as Genetic Algo-
rithm techniques to optimize the search strategy. Moreover, this toolbox has been
made absolutely compatible to other MATLAB features and toolboxes which en-
ables ways of trying out new experiments using other MATLAB Toolboxes in an
extremely easy manner. It is simple to use the toolbox to do a k-fold cross-
validation, ROC analysis etc. using internal MATLAB classes to obtain fast
results.

B.5. Experimental Results

In this section we present our experiments which are conducted on the Gowachin3

dataset varying the size of the target DFA and the sample size Table B.1 for RPNI
and EDSM. The results obtained from the MATLAB GI Toolbox are tested also
with Gowachin. Table 2 shows experiments on learning k-testable machines. The
experiments were run in a machine having two CPUs, each with 4 core Quad-
Core AMD OpteronTMProcessor 2384, cache size: 512 KB, memory 66175292
KB. In these experiments, the accuracy results are as expected, bad when an
insufficient amount of data is provided.

B.6. Conclusion & Future Work

The experimental results shown above clearly indicate that MATLAB is per-
fectly suitable for GI algorithms and experiments, at least for reasonable sizes of
datasets. Besides the two state merging algorithms, we have also implemented

2Abbadingo is a DFA learning competition held in 1998. The details about the competition
and data format can be found at: http://www-bcl.cs.may.ie/

3Gowachin: DFA Learning Competition is a test version of a follow-on to Abbadingo One.
Artificial datasets for training and testing can be generated using this website: http:

//www.irisa.fr/Gowachin/
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sample size → 200 500 1000 5000

DFA size ↓ RPNI EDSM RPNI EDSM RPNI EDSM RPNI EDSM ↓

3
99.17 99 100 99.28 99.33 100 99.17 100 a
0.49 0.44 0.48 2.25 1.03 1221.6 43.12 23.09 t

5
100 77.94 92.28 100 99.78 99.67 100 99.72 a
0.50 639.59 511.67 31.84 2.28 26.06 11.10 245.95 t

10
67.39 66.78 100 99.89 99.61 100 100 100 a
16.09 736.31 2.9 257.79 4.57 464.95 31.47 1421.8 t

20
63.94 52.5 61.67 60.77 99.06 99.33 100 100 a
13.10 2043.6 180.71 1873.8 21.46 3677.99 99.20 3989.71 t

Table B.1.: MATLAB GI ToolBox executions of RPNI and EDSM with different
target DFA sizes and sample sizes. Row a shows the accuracy (%)
and row t shows the time cost in seconds.

sample size → 200 500 1000 5000
k ↓ t p r t p r t p r t p r

2 1.16 0.12 0.14 2.98 1 0.58 6.03 1 0.408 31.77 0.5 1
3 1.16 1 0.14 2.84 1 0.579 5.83 1 0.407 31.30 1 1
5 1.17 1 0.04 2.86 1 0.142 5.89 1 0.023 30.78 1 0.543
10 4.58 1 0.002 9.19 NaN 0 16.08 1 0.007 65.06 1 0.002

Table B.2.: MATLAB GI ToolBox executions of learning k-testable machine.
Column t shows the time cost in seconds, p the precision and r the
recall.

learning algorithm for k-testable machine. Moreover, we have implemented a par-
allel version of RPNI using the MATLAB Parallel Toobox (MathWorks, 2010),
where we have been able to gain 10-15% speedup for each additional CPU. Our
future plan is to incorporate other GI algorithms such as L*, OSTIA (for learning
transducers) etc. in the toolbox.
To the best of our knowledge this is the first open source implementation of

GI algorithms in MATLAB. We plan to publish the MATLAB GI ToolBox as an
open source library under the MIT License for open source software. The beta
version of MATLAB GI ToolBox can be downloaded from the following link:
http://www.sec.in.tum.de/~hasan/matlab/gi_toolbox/.
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Appendix C
Auxiliary Properties of Transducers

C.1. Properties of Sequential & Subsequential

Transducers

Property 6 Let tT : Σ ∗ → Ω∗ be a transduction realized by a sequential trans-
ducer T where every state of T is reachable from the initial state. tT is a total
function iff ∀q ∈ Q, ∀a ∈ Σ , ∃e ∈ E [q] : i [e] = a.

Proof First, we set our premise as the following: the transduction tT (x) is
realized by a subsequential transducer T such that ∀q ∈ Q, ∀a ∈ Σ , ∃e ∈ E [q] :
i [e] = a. We prove by induction on string length that tT (x) is a total function,
i.e., ∀x ∈ Σ ∗, |tT (x)| = 1, where |tT (x)| stands for the cardinality of tT (x).
Basis: Let tT (q, a) be the transduction produced by T , when q ∈ Q is treated

as the initial state of T and a ∈ Σ . It is easy to see that: ∀a ∈ Σ , |tT (q, a)| = 1.
Similarly, it is easy to see that the following is also true:

∀x ∈ Σ ∗, |tT (q, x)| = 1 if |x| = 1 (C.1)

If q = q0, we have,
∀x ∈ Σ ∗, |tT (x)| = 1 if |x| = 1

Inductive step: Let x = yw such that |w| = 1. We set our induction hypothesis
as:

∀y ∈ Σ ∗, |tT (y)| = 1, if |y| = n

We prove,

∀x ∈ Σ ∗, |tT (x)| = 1, if |x| = n + 1
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q0

q1

q2

ε : 1

a : 1

a : 1

Figure C.1.: A counterexample showing that ε-transitions cause ambiguity in the
output strings.

Let πy ∈ ΠT : i [πy] = y.

|tT (x)| = |tT (yw)|

= |tT (y) · tT (next [πy] , w)|

= |tT (y)| |tT (next [πy] , w)|

From induction hypothesis and (C.1):

∀x ∈ Σ ∗, |tT (x)| = 1, if |x| = n+ 1

Second, it is easy to see that the converse is true, i.e., if tT is a total function
and it is realized by T then ∀q ∈ Q, ∀a ∈ Σ , ∃e ∈ E [q] : i [e] = a. �

Corollary 5 For any sequential transducer T that realizes a total function and
if every state of T is reachable from the initial state the following property holds:
∀x ∈ Σ ∗, ∃!π ∈ ΠT (I) : i [π] = x.

From Property 6, it logically follows that if tT is not a total function, tT may
only be defined for a subset of Σ ∗. We denote Dom(tT ) ⊆ Σ ∗ for which tT is
defined. In less formal terms, tT is a total function iff Dom(tT ) = Σ ∗.
Another important restriction that has been added in Definition 8 is that no

ε-transitions for the input is allowed. This restriction is necessary to guarantee
the unambiguity of the output string for a given input string.

Property 7 Sequential transducers that allow ε-transitions do not always realize
functions.

Proof We prove the proposition by showing the counterexample depicted in
Figure C.1. Clearly there are two different outputs for the input string a: (a, 1)
and (a, 11). This violates the condition of being a function. �
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Property 8 Let tT : Σ ∗ → Ω∗ be a transduction realized by a subsequential
transducer T where every state of T is reachable from the initial state. tT is a
total function iff ∀q ∈ Q, ∀a ∈ Σ , ∃e ∈ E [q] : i [e] = a and ∀q ∈ Q, σ(q) is
defined.

Proof The proof is analogous to the proof of Property 6. It can be shown by
applying induction on string length and by contradiction that the property holds.
�

A subsequential transducer that realizes a total function is said to be a total
subsequential transducer. Figure 2.6 depicts an example of a total subsequential
transducer.

C.2. The Twins Property

One of the reasons why p-subsequential transducers (p-Sts) are useful is because
they are equivalent to rational transducers with the twins property, i.e., rational
transducers having the twins property, a.k.a. p−subsequentiable transducers,
can be determinized to p-Sts. Here we will briefly discuss the twins property.
The twins property was first introduced by Berstel in (1979). Afterwards, a
generic definition of the twins property over an arbitrary semiring was presented
in (Allauzen and Mohri, 2003a). Here to discuss the idea, we define the twins
property w.r.t. a string to string rational transducer.

Definition 30 (Siblings) Let T be a rational transducer. The two states q1
and q2 of T are said to be siblings if there exist two strings x and y in Σ ∗ such
that:

• ∃πx1 , πx2 ∈ ΠT (I) :

– i [πx1 ] = x ∧ next [πx1 ] = q1

– i [πx2 ] = x ∧ next [πx2 ] = q2

• ∃πy1 , πy2 ∈ ΠT :

– i [πy1 ] = y ∧ prev [πy1] = next [πy1 ] = q1

– i [πy2 ] = y ∧ prev [πy2] = next [πy2 ] = q2

Less formally, the first condition for the two states q1 and q2 to be siblings
is that they both have to be reachable from the initial state with input string
x ∈ Σ ∗. The second condition is that q1 and q2 both must have a cycle with
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q1

q0

q2

b : ε
a : x

a : yx b : y

Figure C.2.: Illustration of the twins property.

the input string y ∈ Σ ∗. In Figure C.2 q1 and q2 are siblings because both are
reachable from the initial state q0 with the input string a and both the states
have got cycles with the input string b.

Definition 31 (Twins) Let T be a rational transducer where q1 and q2 are two
sibling states with πx1 , πx2 ∈ ΠT (I) and πy1 , πy2 ∈ ΠT have the same meaning
for q1 and q2 as in Definition 30. q1 and q2 are said to be twins if the following
equation and its symmetric counterpart obtained by transposing q1 and q2 hold:

lcp(o [πx1 ] , o [πx2 ])
−1o [πx2 ] = lcp(o [πx1 ] o [πy1 ] , o [πx2 ] o [πy2 ])

−1o [πx2 ] o [πy2 ]
(C.2)

In Figure C.2 the two states q1 and q2 satisfy equation C.2 and therefore, are
twins.

Definition 32 (The Twins Property) A rational transducer T has the twins
property if any two sibling states of T are twins.

The rational transducer depicted in Figure C.2 has two sibling states q1 and
q2 which are twins and hence why, the transducer has the twins property.
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Appendix D
The Length-lex Order

Formally, the length-lex order is defined as:

Definition 33 (Length-lex Order) Let ≤Σ be the total order relation over the
symbols of Σ. The length-lex order ≤lex: Σ ∗×Σ ∗ → B of two strings w,w′ ∈ Σ ∗

is a total order relation defined as: suppose w = w1 . . . w|w|, w
′ = w′1 . . . w

′
|w′|

where wi, w
′
i ∈ Σ, then

w ≤lex w
′ =















|w| < |w′| if |w| 6= |w′|
wi ≤Σ w′i if wi 6= w′i ∧ wj = w′j where 1 ≤ j < i ≤ |w| ,
true if w = w′ = ε
false otherwise.

Let us consider the example Sn = {(],xx), (a],xx),
(b],yx), (aa],xxx), (baa],yxxx)}.
For example, the elements of the set Pref({x : (x,Ω∗) ∈ Sn}) is sorted in

length-lex order in Table D.1. The second row of the table shows the corre-
sponding states in the Ptst (Figure D.1) for each prefixes numbered according
to their length-lex order.

Table D.1.: Prefixes of the input strings of the training data in length-lex order
and their corresponding states in the Ptst.

prefixes ε a b ] aa a] ba b] aa] baa baa]

corresponding states in the Ptst q0 q1 q2 q3 q4 q5 q6 q7 q8 q9 q10
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q2

q4

q0

q1

q3

q6

q8

q7

q5

q9 q10

a : ε(0.4)

b : ε(0.5)

] : xx(0.1)

a : ε(0.5)

] : yx(0.5)

] : xx(0.5)

a : ε(0.5)

] : xxx(0.5)

a : ε(0.5) ] : yxxx(0.5)

Figure D.1.: A Ptst built from Sn = {(],xx), (a],xx), (b],yx), (aa],xxx),
(baa],yxxx)} where states are numbered in length-lex order (see
Table D.1).
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