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Abstract— In order to speed up image processing in visual
servoing, the distributed computational power across networks
and appropriate data transmission mechanisms are of partic-
ular interest. In this paper, a high sampling rate of visual
feedback is achieved by distributed computation on a cloud im-
age processing platform. For target tracking with a networked
visual servo control system, a switching control law considering
the varying feedback delay caused by image processing and data
transmission is applied to improve the control performance. A
sending rate scheduling strategy aiming at saving the network
load is proposed based on the tracking error. Experiments on
a 7 degree-of-freedom (DoF) manipulator are carried out to
validate the proposed approach. The proposed approach shows
a similar control performance as a system without sending rate
scheduling, however, beneficially with largely reduced network
load.

I. INTRODUCTION

Real-time tracking of moving objects in unknown environ-
ments by vision systems has gained more and more interests
in the domain of robot control. The visual information
extracted from video sequences is utilized for vision-based
control systems, e.g. target tracking, cooperative action,
surveillance, and navigation. Previous efforts in these areas
are far too numerous to be listed here exhaustively [1]–[4].
In this paper, we focus on the inherent problem of visual
servo control systems: the long image processing delay. The
feedback delay due to image processing limits the control
performance and may lead to unstable systems [5].

The image processing delay consists primarily of delays
caused by feature detection and feature matching, such as the
Scale-Invariant Feature Transform (SIFT) [6] or Speed Up
Robust Features (SURF) [7] extraction for target tracking.
Though in recent years, image processing is accelerated by
GPGPU (General-Purpose Computation on Graphics Pro-
cessing Units) implementation [8]–[10], the about 20 ms time
needed for SIFT feature extraction (on graphic card NVIDIA
GeForce 8800, capable of detecting about 100 features in
an image of size 640×480 pixels) still largely exceeds the
typical updating interval of joint servo control (≤ 1 ms).

In order to achieve better control performance, it is
desirable to obtain visual feedback at high sampling rate.
With recent advances in computation and communication
technologies, parallel computation based on networked com-
putational resources has been proven to be an effective and
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Fig. 1: Scheme of networked visual servo control systems
with distributed sensors and distributed computations.

economical platform for high-performance computing [11]–
[14]. In the light of the success of parallel computation,
Networked visual servo control (NVSC) proposed in [15] is
considered also in this work to deal with the low-sampling-
rate problem of visual servoing, see Fig. 1 for a visualization.
In NVSC systems, video grabbing, image processing algo-
rithms, the controller, and actuators can be implemented on
different processing nodes across a communication network.
The data from sensors can be processed locally or sent to
other computational resources connected to the network. The
processing results are sent to a controller, where the input
signals for the actuators are determined. In our previous
work [15], a tracking problem with a NVSC system with
a random sampling strategy was investigated and its efficacy
was demonstrated in an experiment with two 1 degrees-of-
Freedom (DoF) linear motor axis. In this paper, we further
extend this approach by considering a sampling strategy
dependent on the tracking error and its overall approach
is validated in a 3D target tracking with a redundant robot
manipulator (7-DoF robot arm).

An essential problem of NVSC systems is how to trans-
mit the image data over the network in an efficient way.
Considering a single channel image with a resolution of
640×480 pixels which has a size of about 300 KB, the
network load will be more than 144 Mbps at a sampling
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Fig. 2: Illustration of cloud image processing platform.
Dual-arm [17]: redundant manipulator, 7-DoF each arm;
PC1, . . ., PCm: workstations equipped with GPUs (NVIDIA
GeForce GT260) for image processing; PCcam: image
streaming server; PCcon: controller.

rate of ≥ 60 Hz. Although there are various existing network
protocols in the public domain, they are not suitable for
image transmission, e.g. UDP cannot transmit data larger
than 64 KB and TCP has a larger absolute value and also
larger variance of the transmission delay due to windowing
behavior and retransmissions. Therefore, a novel real-time
image data transmission protocol ncRTP (networked control
Realtime Transport Protocol) developed in [16] is utilized
in this paper. A cloud image processing platform based on
ncRTP is established for parallel image processing. Since the
high sampling rate achieved by the distributed computation
would meanwhile lead to a high traffic load on the network,
a sending rate scheduling considering the network capacity
and the control performance constraints is proposed to reduce
the network load.

The remainder of this paper is organized as follows: The
cloud image processing platform for distributed computation
is introduced in Section II. The 3D tracking problem with
NVSC system on a 7-DoF manipulator and the switching
controller considering varying feedback delay are discussed
in Section III. In Section IV, the sending rate scheduling
strategy for reducing the network load on the promise of
guaranteed control performance is given. The experimental
validation on a 7-DoF dual-arm robot and the performance
comparison are presented in Section V.

II. CLOUD IMAGE PROCESSING PLATFORM

In this section, the platform of the NVSC system for
target tracking with the redundant manipulator is illustrated.
As discussed in Section I, image processing algorithms
are in general time-consuming. The computational capacity
becomes a bottleneck for visual servo control systems. To
improve the control performance limited by the low-sample-
rate problem, a high-sample-rate visual feedback is required.

A. GPGPU Cluster for Image Processing

With the development of GPGPU techniques in recent
years, algorithms of high computational complexity are able
to be implemented on a GPU. To exploit the computation
capacity further, a GPGPU cluster is built in a LAN based
on ncRTP, see Fig. 2. The platform consists of a robot ma-
nipulator, a streaming server, several computation nodes and

a controller. For real-time applications, the ncRTP protocol
is installed on these nodes for transmitting large volume
image data. In the following more details on the individual
components are given.
• Redundant manipulator: A dual-arm robot with each

arm having 7-DoF is chosen for target tracking, see also
Fig. 2 and [17]. A high-speed camera is mounted on the
end-effector of the left arm, while a target is mounted
on the right arm. The objective for the arm with the
camera is to track the motion of the target with the
visual feedback provided by the camera.

• Streaming Server PCcam: The streaming server is con-
nected to the high speed camera and the sending process
is scheduled by the real-time RTAI kernel. To reduce the
latency, two real-time tasks run parallel. The first task
polls the camera frame buffer periodically, while the
other task sends the image data through ncRTP with
an online determined interval dk. The details of sending
rate scheduling will be discussed in Section IV-B. The
sending jitter is not more than several hundred nanosec-
onds. Moreover, multi-streaming is also supported by
ncRTP.

• Computation nodes PC1,. . . ,PCm: Each computation
node in this platform is equipped with a NVIDIA
GeForce GT260 graphic card. Before image processing,
the received image data is assembled to retrieve the
complete image frame. Then the relative pose between
the camera and the target is obtained by running the
pose estimation algorithm. The results of image pro-
cessing within a size of 64 KB are sent to the controller
by UDP.

• Controller PCcon: The controller receives image pro-
cessing results from the computation nodes and deter-
mines the joint torques to be applied to the manipulator,
which drive the left robot arm to track the motion of the
target. The tracking error is sent back to the streaming
server PCcam for sending rate scheduling.

This platform works in an event-based manner. When an
image has been sent by the streaming server, the image pro-
cessing on the workstation equipped with GPU is triggered
immediately. The results are sent to controller directly after
the image processing algorithms are returned.

B. Control Performance versus Number of Processing Nodes

With the platform described above, parallel image pro-
cessing is established. In this section, the benefit of higher
sampling rates for good control performance is demonstrated.
Therefore a tracking problem with a PD controller on a
1-DoF manipulator is simulated. The manipulator is sim-
ulated by a double integrator. A stochastic time-varying
feedback delay bounded by [15 ms, 35 ms] is simulated.
Sampling rates of {40 Hz, 80 Hz} with PD parameters chosen
heuristically are tested for tracking control. If one node
processes image with 40 Hz, m× 40Hz is achieved when
m processing nodes are available over the network.

The simulation results are shown in Fig. 3. It is observed
that, the control error is reduced with increased sampling
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Fig. 3: Simulation results of control performance versus
sampling rate of vision signal. Desired trajectory: sin(t)+
sin(5t + π

5 )+0.7sin(2t + π
6 ); delay: [15 ms, 35 ms].

rate, e.g. the mean control error of 80 Hz is 28.57% smaller
than that of 40 Hz. Thus, it is reasonable to utilize the cloud
image processing platform to obtain a high sampling rate for
a performance-oriented visual servo control system.

III. SYSTEM MODELING

Based on the platform introduced above, a 3D tracking
problem with networked visual servo control is investigated
in this section. A camera-in-hand structure is selected for
target detection and position-based visual servoing (PBVS)
is applied. The system block diagram is shown in Fig.4.
X(tk − τ(t)) is the current position of the manipulator in
Cartesian space sampled at time instant tk. Through the
inverse kinematics model the joint angle q is calculated. A
controller is applied to compute the joint torques. The feed-
back in Cartesian is also utilized for sending rate scheduling.
The dynamics of the 7-DoF robot arm is given by

M(q)q̈+C(q, q̇)+g(q) = Γ,

where q ∈ R
7 denotes the angle displacement of each

joint; M(q) ∈ R
7×7 is the inertia matrix of the manipulator;

C(q, q̇) ∈ R
7×7 represents the centrifugal force and Coriolis

force; g(q) ∈ R
7 is the gravity force of the manipulator;

Γ ∈ R
7 is the force variables. For further stability analysis

and controller design, the robot arm is linearized by an inner
nonlinear compensation loop based on the computed torqued
control approach [18].

Consider the linearized manipulator dynamics and con-
troller u(t)=Kx(tk) with tk representing the sampling instant,
the discrete-time closed-loop system is derived as

ẋ(t) = Ax(t)+BKx(tk), tk ≤ t < tk+1, (1)

where x = [q q̇]T ∈ R
14 is the state; A and B are constant

matrices with appropriate dimensions. x(tk) is delayed due
to image processing and data transmission, see Fig. 5. It
arrives at the controller with delay τc+x

k consisting of image
processing delay τc

k and the transmission delay τx
k . dk is the

sampling interval between k-th and k+1-th samplings, and
hk is the interval between two arriving data at the controller
side defined as

hk = tk+1 + τc+x
k+1− tk− τc+x

k = dk + τc+x
k+1− τc+x

k ,

and the input value to the manipulator is hold constant at the
last value until new data arrives and a new control can be
computed.
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Fig. 4: System diagram of a NVSC system with time-
varying feedback delay τ(t). X ∈R

6: position of end-effector
in Cartesian space; q: joint angles; IK/FK: inverse/forward
kinematics; d1, d2, . . . , dm: different sampling interval.

A. System reformulation

To develop a control algorithm such that the closed-
loop system (1) is mean exponentially stable (MES), the
system is reformulated into a continuous-time system with
time-varying delay by means of input-delay approach [19].
Reconsider the time instant tk as

tk = t− (t− tk) = t− τ(t), t ∈ [tk + τc+k
, tc+k

k+1).

τ(t) is the overall time-varying delay consisting of image
processing, transmission delays τc+x

k and holding delay h(t)
for k-th sampling

τ(t) = τc+x
k +h(t), h(t) ∈ [0,hk),

with τ(t) bounded by τ ≤ τ(t) ≤ τ̄ . Substituting
x(tk) = x(t− τ(t)) into the closed-loop system (1), it
results in a continuous-time system with time-varying delay

ẋ(t) = Ax(t)+BKx(t− τ(t)),

t ∈ [tk + τc+x
k , tk+1 + τc+x

k+1),
(2)

with initial condition x0 = x(θ),θ ∈ [−τ̄,0].

B. Switching controller

A switching control law depending on the current value
of the time delay τ(t) is applied to achieve better control
performance than a worst-case design where a single (non-
switching) controller is required to stabilize for all possible
time delays. The overall closed loop system equation is then
represented by

ẋ(t) = Ax(t)+
n

∑
i−1

βiBKix(t− τ(t)), (3)

where Ki indicates a set of n controllers and the indicator
function βi indicates in which of the n subintervals the overall
time delay τ currently falls with

βi =

{
1, si−1 ≤ τ < si, i = 1, . . . ,n,

0, otherwise,

and si are the bounds of the subintervals. According to the
feedback delay interval si−1 ≤ τ < si, the controller switches
to a different control parameter set Ki. For the detailed sta-
bility analysis and controller design approach please refer to
[15]. With the switching control law, the control performance
of NVSC systems with varying feedback delay is improved
as shown for a 1-DoF case in [15].
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Fig. 5: Timing diagram of a NVSC system with random
computation delay τc

k , transmission delay τx
k and sampling

interval dk.

IV. TRACKING ERROR BASED SENDING

RATE SCHEDULING

In addition to the switching control law in Section III, also
high sampling rate of visual feedback improves the control
performance as demonstrated in Section II. With the cloud
image processing platform introduced above, parallel image
processing is realized by distributing the images to different
processing nodes. However, high network load results from
the large volume of transmitted image data. The goal of
this section is to balance the control performance versus the
network data flow of NVSC systems.

A. Cost Function

The trade-off between the control performance and the
network cost is captured in the cost function

J = lim
T→∞

E

{∫ T

0
xT (t)Rx(t)dt +

1
T

m

∑
w=1

∫ T

0
Cw(t)dt

}
, (4)

where R > 0, R ∈R
14×14, and Cw(t)> 0,Cw(t) ∈R, denotes

the network cost of the associated sampling interval dk. With
a smaller sampling interval dk, a higher network cost factor
Cw is assigned. The first term in (4) concerns the control
performance cost and is bounded by a positive scalar L̄per

[16]. The second term represents the network cost over
the run time T . If the occurrence probabilities of transfer
and processing delays are known a priori, the occurrence
probability pd

j , j = 1, . . . ,m of different sampling interval
is determined by minimizing the cost function (4). In our
previous work [16], the sending rate scheduling is designed
as random selection of sending interval dk at time instant
tk satisfying the predetermined occurrence probability of
different sending intervals. However, a random selection
strategy is not ideal. In this paper, a more reasonable sending
rate scheduling concerning both occurrence probability and
tracking error is proposed.

Remark 1: Within the context of this paper, sending rate
scheduling means to determine an appropriate sending in-
terval dk at time instant tk based on the tracking error and
the occurrence probability obtained by minimizing the cost
function (4).
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Fig. 6: Sending rate scheduling at the streaming server
considering tracking error ΔX and occurrence probability
pd

j , j = 1, . . . ,m.

B. Policy of sending rate scheduling

As shown in Fig. 4, at time instant tk a sampling interval dk

should be determined for the streaming server in the NVSC
system. If there are m processing nodes available over the
network, dk takes the value in a finite set

dk ∈ Td = {
τ̄c

m
,

2τ̄c

m
, . . . , τ̄c}, m ∈ N,

where τ̄c = max(τc
k ). The corresponding numbers of neces-

sary processing nodes are

Nk =
τ̄c

dk
∈ {m,

m
2
, . . . ,1}, Nk ∈ N.

To determine dk at time instant tk, the tracking error ΔX
in Cartesian space is considered. With m sending intervals
available, |ΔX | is accordingly categorized into m intervals

r j−1 ≤ |ΔX |< r j, 0 < r j−1 < r j, j = 1, . . . ,m, (5)

where r j are the bounds of the intervals. Generally speaking,
a smaller sending interval should be assigned when the
tracking error becomes larger. However, as mentioned in
Remark 1 the occurrence probability of different sending
interval obtained by minimizing the cost function should also
be considered in sending rate scheduling. Therefore, at time
instant tk if tracking error falls into interval r j−1 ≤ |ΔX |< r j,
the sending interval dk is selected as

dk =

⎧⎨
⎩

τ̄c

j , if pd
j (tk)< pd

j ,

τ̄c

j′ , otherwise,
(6)

where j′ �= j, and pd
j (tk) is the occurrence probability of

sending interval τ̄c

j till instant tk. Eq. (6) means that, dk is

assigned as τ̄c

j when the occurrence probability of sending

interval τ̄c

j has not reached pd
j till instant tk. Otherwise, a

smaller sending interval τ̄c

j′ , j′ > j is assigned considering

a performance oriented control system, or if no τ̄c

j′ , j′ > j
is available due to reached occurrence probability, a larger
sending interval τ̄c

j′ , j′ < j is selected. Again, the occurrence

probability is considered in choosing τ̄c

j′ .
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The details of the image sending rate scheduling at
the streaming server are illustrated in Fig. 6 as well as
in Algorithm 1: 1) First, at the instant tk, the sampling
interval dk and the number of necessary processing nodes Nk

are determined according to tracking error ΔX and Eq. (6);
2) Then, for the time interval [tk, tk +Nk · dk), the original
image sequence is sub-sampled with sampling interval dk

and sent to processing nodes available over the network; 3)
After sending the images, steps 1) and 2) are repeated from
the instant tk +Nk ·dk and so on.

Algorithm 1 Sending rate scheduling at streaming server

Require: ΔX at tk, pd
j (tk) and pd

j , j = 1, . . . ,m
Task: determine dk and the processing node for Ik (image

sampled at time instant tk)
while 0 < t ≤ T do

determine dk and Nk according to (6) after sorting |ΔX |
with (5).
for t = [tk, tk +Nk×dk) do

tk = t;
send Ik to PC, (PC ∈ {PC1, . . . ,PCm} represents the
processing node available at tk)
t = tk +dk;

end for
end while

With the algorithm introduced above, the sending rate
scheduling is realized at the streaming server in NVSC
systems. As a result the network load caused by image trans-
mission is effectively reduced. It has to be mentioned that in
the current work, the sending interval is determined based on
the tracking error. In the future, the target motion, network
congestion and packet loss problem will be considered for
sending rate scheduling as well.

Remark 2: There is no specific constraints in this work
on selecting thresholds ri for categorizing tracking error. In
the experiments, ri is heuristically selected.

V. EXPERIMENTS

In order to validate the proposed approach, experiments for
a 3D tracking problem with a 7-DoF manipulator [17] are
conducted. The end-effector of the manipulator is equipped
with a high-speed camera (Mikrotron MC1363), while the
target is mounted on the other arm of the end effector, as
shown in Fig.7. The manipulator is connected to a PC run-
ning real-time RTAI/Linux. The control loop is implemented
in MATLAB/SIMULINK blocksets. Standalone real-time is
generated directly from the SIMULINK models. The image
processing runs parallel on PC1 and PC2.

A. Image Processing

On the processing nodes, image processing algorithms
for the 3D pose estimation are implemented. First, the
image features are extracted from the image. To increase
the accuracy of the pose estimation and speed up visual
feedback, a GPGPU implementation of SURF [7] is applied
by exploiting its massive parallel processing capability. After

Fig. 7: Experimental setup with 7-DoF robotic arm, high-
speed camera and moving target.

feature matching [20], RANSAC (RANdom Sample Con-
sensus) [21] is selected for outliers rejection. Finally, the
relative pose between the camera and the target is obtained
by calculating the extrinsic parameters of the camera based
on the matched feature pairs.

B. Sending Rate Scheduling

In the experiments, the camera runs at a fixed sam-
pling rate of 80Hz@640×480 pixels. Two sending rates
{40 Hz, 80 Hz} are selected for the sending rate scheduling.
The sending rate scheduler described in Section IV-B is
realized as follows: the ncRTP steaming server PCcam sends
the images either at 80 Hz to PC1 and PC2 if |ΔX |> r1 , or
at 40 Hz to only one PC if |ΔX | ≤ r1. With this approach, the
sampling rate of the feedback is bounded by [40 Hz, 80 Hz].

C. Experimental System Model

After linearization of the manipulator equations through
computed torque control the system can be represented by
seven decoupled subsystems. For each joint, the summation
of the transmission and the computation delays is categorized
into two intervals with s1 = 45 ms. By optimizing the cost
function (4), the occurrence probabilities of the two
sampling intervals are obtained: pd

40Hz = 31%, pd
80Hz = 69%.

The associated stabilizing state-feedback gains for each
joint with τ(t) ≤ s1 are Kp1 = [120,120,60,60,30,30,30],
Kd1 = [2,2,2,2,1,1,1,1]. The gains for τ(t) > s1 are
Kp2 = [96,96,48,48,24,24,24], Kd2 = [2,2,2,2,1,1,1,1].
The tracking error threshold r1 = 0.01m is heuristically
selected.

To compare the control performance, a standard networked
visual servo control system without sending rate scheduling
(high network load), e.g. both PC1 and PC2 run at 40 Hz, is
implemented.

D. Experimental Results

A sinusoidal function, which has an amplitude of 0.15 m
and a frequency of 1 rad/s, serves as the reference trajectory
for the target moving along one axis at the Cartesian space.
The tracking error ΔX between the motion of left arm and
that of right arm is discussed for performance evaluation.
The approach proposed with sending rate scheduling based
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Fig. 8: The control error evolution of the proposed approach
with data scheduling (solid line) and the standard approach
without data scheduling (dash line).

on tracking error and the standard approach without sending
rate scheduling are tested on the 7-DoF robot arm.

As shown in Fig. 8, a comparable control performance
is achieved with and without sending rate scheduling. The
proposed approach with sending rate scheduling has a mean
tracking error |ΔX |mean = 1.67cm, which are similar to
the mean tracking error of the high sampling rate design
approach (|ΔX |mean = 1.57cm), see Table I. However, the
network load (data flow) is 20.31% less than that of the
high sampling rate design approach.

TABLE I: Control performance and network load.

|ΔX |mean |ΔX |var Network load
[cm] [cm2] [Mbps]

with scheduling 1.67 0.09 149.43

high sampling rate 1.57 0.18 187.50

The experimental results demonstrate a similar control
performance of the proposed approach with lower network
load than that of the standard approach.

VI. CONCLUSION

This paper presents a novel analysis and design approach
for networked visual servo control systems with distributed
computation and sending rate scheduling. Based on a real-
time transport protocol ncRTP for image data transmission,
a GPGPU cluster is built for parallel image processing.
With the cloud image processing platform, high-sampling-
rate visual feedback is achieved. A switching control law
is applied to consider the varying feedback delay caused by
image processing and data transmission. Moreover, a sending
rate scheduling at the streaming server in NVSC systems is
designed based on the tracking error to relieve the network
burden caused by large volume image data transmission. The
proposed approach is validated by experiments on a 7-DoF
manipulator. The results demonstrate comparable control
performance of the proposed approach with lower network
cost than the conventional counterpart.

The future work is concerned with optimizing the sending
rate scheduling by considering not only tracking error, but
also motion dynamics of the target, network congestion and
packet loss.
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