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Abstract— This paper explores learning of interaction
force skills by human demonstration in dynamic interaction
tasks. Skillful force regulation is required in many cases
to achieve the goal of a task and at the same time, not
to cause undesired stress on the manipulator or the object
under manipulation which could result in physical failure.
For example, manipulation of compliant objects with varying
physical properties or artistic tasks such as engraving require
skillful force modulation. Humans gracefully manipulate
objects by using their sense of touch and skillfully regulating
exerted forces. To learn the demonstrated force for a task
by demonstration, an interaction force control policy, in
terms of a goal-directed dynamical system, is proposed which
stems from the parallel force/position control. The control
policy is parameterized and its parameters are learned by
Locally Weighted Regression from human demonstrated
data to learn a force trajectory. Scaling of learned force is
possible by modifying the goal of the system. The proposed
method is evaluated in virtual manipulation tasks using a
two degrees-of-freedom haptic device.

I. INTRODUCTION

In manipulation tasks, both positional and force skills are

needed to successfully interact with the environment. To

draw on a rough surface, for example, positional skills are

required to counteract disturbances. To control constrained

movements, however, skillful force regulation is also of inter-

est. In case of compliant environments, a dynamic interaction

is established between the end-effector and the object in

contact and control of interaction force is required [4]. The

interaction force establishes a relationship between exerted

force by the manipulator and change in the kinematic state

of the point of contact with the environment.

Looking into biological systems, the motor control mecha-

nism consists of both feedforward and feedback components

where the feedforward mechanism allows for fast and smooth

movements [5]. Inspired from the motor control mechanism

in humans, we are interested in learning feedforward force

control skills for robots and combine with feedback control

to ensure successful execution in different contexts.

In many robotic tasks, feedforward force control is neces-

sary to guarantee efficiency and safety during task execution.

Many environments, for example, are not homogeneous and

their stiffness varies along their dimensions. Let us imagine

of a soft object which is overlaid by an even softer material

for insulation or protection, shown in Fig. 1(a). Humans

gracefully manipulate such objects by exerting low forces
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Fig. 1. (a) A pipe (blue) covered by two different soft materials (grey and
pink). (b) Engraving of a soft-plastic material.

at the beginning to press the external soft layer and higher

forces afterwards to keep contact with the object and increase

stability and manipulability. Exertion of high forces from

the beginning could result in instability or wrenching on the

object. Force tuning is also required in artistic manipulation

tasks such as engraving where shaping outcome depends on

how much force the user imposes on a material, see Fig. 1(b).

Based on the necessity of learning force skills for efficient

and safe manipulation, in this work, we propose a method to

learn force tuning skills by human demonstration to interact

with compliant external dynamics.

Most works in imitation learning so far are focused

on learning positional skills, see e.g. [3], [6], [7]. In [6],

a methodology based on Gaussian Mixture Regression is

presented to extract the essential features of a task from

multiple demonstrations. In [7], movement primitives are

learned by human demonstration which exhibit robustness to

perturbations during execution. In [3], an extended approach

similar to [7] is proposed to learn free-space movement prim-

itives categorized into discrete and rhythmic control policies.

In addition, motion learning by imitation is employed to

teach robots how to physically interact with humans where

impedance control ensures compliant robot behavior while

in contact with the human [8].

In contrast to previous works which focus on learning

motion skills by demonstration, in the present work, we

propose a method to learn interaction force skills for an end-

effector in contact with a compliant environment. To this

aim, we first model an interaction force by a nominal inter-

action control policy expressed by the parallel force/position

control law [1]. We transform this policy into a goal-driven

dynamical system which evolves in phase space. We add to

the system a parameterized function to compensate for the

uncertainty between desired and modeled task force. This

parametric function is learned by locally weighted regression

from human demonstrated force and position data [3]. By

doing so, we achieve fitting of the nominal force model to

a desired force signal. Scaling of learned force is possible,

by modifying the goal of the system, to generalize learned
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Fig. 2. Schematic overview of the proposed method. Both user force fd and
environmental force f are exerted on the handle which moves accordingly.

skills to new contexts. The proposed method is evaluated in

virtual manipulation tasks by using a two degrees-of-freedom

(DOF) haptic device. A schematic overview of the proposed

method is presented in Fig. 2.

This paper is organized as follows. In Section II, we

present the problem setting and the main steps of our

approach. Section III describes the parallel force/position

control and Section IV introduces our proposed method

of learning interaction forces by demonstration. Finally, in

Section V, we evaluate our method in a virtual manipulation

scenario.

II. PROBLEM SETTING

In the present work, we propose a method to learn in-

teraction force skills by demonstration to physically interact

with compliant dynamics. In compliant environments, a dy-

namic interaction is established between the end-effector and

the environment, and the characteristics of this interaction

depend upon the human intention/task and the physical

properties of the object in contact, given a manipulator with

known properties. Based on that, we are interested in learning

a model for an interaction force which considers the end-

effector, not as an isolated system, but physically coupled

with its environment.

To learn an interaction force demonstrated by the human

user, we take the following steps. First, we model a force tra-

jectory in terms of an interaction control policy represented

by the parallel force/position control law [1]. In this policy,

we represent the nominal environmental dynamics by a linear

spring. By expressing the policy as a goal-driven dynamical

system, we achieve representation of a time-varying force

signal by time-invariant dynamics. Second, we add to the

system a parametric function to account for the deviation

from the true environmental and task dynamics. Third, we

learn this parametric function from human demonstrated

force fd and position xd data to allow for fitting of the

system’s dynamics to the signal fd. The proposed dynamical

system also exhibits spatial invariance which allows for force

scaling by modifying the goal of the system. This property

is exploited in the experiments to manipulate objects with

different physical properties, e.g. generalize from a soft to a

stiffer environment.

In this paper we consider a parallel force/position control

law as nominal control law as it is a direct force control

scheme which allows for explicit force input and takes

into account the dynamic coupling between manipulator and

environment.

III. PARALLEL FORCE/POSITION CONTROL

In this section, we describe the parallel force/position

control scheme presented in [1]. This control scheme allows

for parallel control of force and position of a manipulator

in full-dimensional task space without the use of selection

matrices as in hybrid control. Force control is prioritized over

position control in the constrained directions of movement

through appropriate position and force feedback control

actions. Due to its special design, the controller can deal with

inconsistencies between planning and actual geometry of the

task where, in this case, it is not known a priori which are

the constrained and unconstrained directions of movement.

When an end-effector is in contact with the environment,

its equation of motion in the operational space is given by

M(x)ẍ+C(x, ẋ) +G(x) + f = fm , (1)

where x, ẋ and ẍ are n × 1 vectors representing end-

effector’s position, velocity and acceleration respectively and

n is the operational space dimension. The term M is a

symmetric and positive semidefinite pseudo-inertia matrix,

C Coriolis and centrifugal forces, G the gravity force, fm

a vector of generalized forces and f the force that the

manipulator exerts onto the environment. The term M is an

n× n matrix and C , G, fm and f are n× 1 vectors. Note

that end-effector dynamics (1) is nonlinear due to inertial

coupling, Coriolis and centrifugal forces.

We assume that the environment is stiff, elastically com-

pliant and frictionless. Since planar surfaces have been

successful in approximation of surfaces of regular curvature

[1], environmental surface is considered locally planar at the

contact points for reasons of simplicity. By compensating

for nonlinearities and decoupling dynamics, the end-effector

becomes equivalent to an inertia moving with acceleration ẍ,

see [1], [10]. Considering the position and force control

u(x,f), the end-effector’s equation of motion becomes

Mdẍ = Mdẍd + u(x,f) , (2)

where Md is an n × n inertia matrix and ẍd the desired

acceleration vector. Equation (2) constitutes an acceleration

control law where the control action u is defined by

u(x,f) = up(x) + uf(f) , (3)

with the terms up and uf being the feedback components

of the position and the force error respectively. Position

control is realized based on a resolved acceleration control

scheme [1], [2]

up = Kdėp +Kpep . (4)

The terms Kd and Kp are n × n gain matrices and ep is

the position error defined by ep = xd − x. The term ėp
represents the derivative of the position error and xd is the

vector of desired end-effector position. In the constrained

directions of movement, force control is desired and thus

force should prevail over position control. To achieve that,

345



a proportional-integral control action is taken on the force

error

uf = Kf ef +Ki

∫ t

0

efdτ , (5)

where ef = fd − f is the force error and fd the desired

contact force which is an n × 1 vector. The force control

action prevails over the position control action (4) in presence

of non-zero contact force error [1]. The terms Kf and Ki

are n× n control gain matrices. The combination of (2)-(5)

yields

Mdëp +Kdėp +Kpep +Kfef +Ki

∫ t

0

efdτ = 0 . (6)

For dynamic decoupling in operational space, gain matrices

Md, Kd, Kp, Kf and Ki are defined diagonal. Elements

along the diagonal do not need to be the same. Here, for the

ease of notation we choose equal gains in all directions, i.e.

md, kd, kp, kf and ki represent the elements of the matrices

Md, Kd, Kp, Kf and Ki, respectively.

For simplicity we consider the end-effector position in 2-

dimensional space where x denotes the constrained and y the

unconstrained direction of movement. Similarly, the desired

end-effector position in these directions is represented by xd

and yd. Movement in the direction normal to the environ-

mental plane is constrained while in the other direction,

movement is unconstrained since friction forces are neglected

and the dynamics of the task decoupled by assumption.

As nominal environment model we consider a linear time-

invariant spring law [1], [9], i.e. the nominal interaction force

in the direction normal to the environmental plane is given

by

f = kx , (7)

where we assume the origin of coordinate system at the rest

position of the plane and k the nominal stiffness coefficient

of the material in contact. By substituting ep and ef into (6)

and decoupling into constrained and unconstrained direction

of movement, we can write

mdẍ+ kdẋ+ (kp + k kf )x+ k ki

∫ t

0

x dτ =

mdẍd + kdẋd + kpxd + kffd + ki

∫ t

0

fddτ ,

(8)

for the constrained direction of movement and

mdÿ + kdẏ + kpy = mdÿd + kdẏd + kpyd , (9)

for the unconstrained direction. Equation (8) can be simpli-

fied to

mdẍ+ kdẋ+ (kp + k kf )x+ k ki

∫ t

0

x dτ =

kpxd + kffd + ki

∫ t

0

fddτ ,

(10)

when the aim is to achieve a position setpoint xd, see [1] for

more details. It also holds as approximation for low desired

accelerations and velocities.

IV. LEARNING BY DEMONSTRATION

In this section, we propose an approach to learn interaction

forces by demonstration by learning a parameterized inter-

action control policy. First, we encode the interaction force

in terms of a nominal control policy which stems from the

parallel force/position control law described in Section III

and we represent this policy by a goal-directed dynamical

system. To compensate for the deviation between true task

force and force estimated by the nominal policy, we add a

parametric function to the dynamical system and learn that

from demonstrated data to allow for fitting of the system to

demonstrated force.

A. A nominal force representation

We represent the force control law (10) by a time-invariant

dynamical system. In this section the more challenging part

of constrained movement is considered, i.e. only the direction

normal to the environmental plane where a contact force

exists. For learning the unconstrained motion the approach

from [3] can be employed. We model the nominal interaction

force by f̂d which is encoded in terms of the following

dynamical system of three states (
∫
x, x, z)

ẋ = z − x− γz

∫
x , ż = αz (βz (g

′
− x)− z) , (11)

f̂d = kx (12)

where k represents the nominal stiffness of the environment.

The term g′ represents the goal of the system and αz , βz ,

γz and k are parameters. Note that representation of the

parallel position-force control law is inspired from the dy-

namical system representation for position control proposed

in [3] and is derived through a partial state transforma-

tion z = ẋ+ x+ γz
∫ t

0
x dτ . Accordingly, the goal trajectory

is defined by

g′ =
c

αz βz

. (13)

where c = m−1

d (kpxd + kffd + ki
∫ t

0
fddτ ) and

αz =
kd

md

− 1 , βz =
kp + kkf − γz

mdαz

− 1 , γz =
kki

mdαz

.

(14)

The terms in (13)-(14) are defined such that (11) is equivalent

to (10). The system (11), (12) receives as input demonstrated

position xd and force fd data, and outputs an estimate for

the force f̂d.

The dynamics (11)-(12) encapsulate information both

about a task itself and the environmental dynamics. Note that

the spring model (12) does not only account for estimating

the force f̂d from x in (12) but is also involved into the design

of dynamics (11). We should also note that the goal g′ is not

a positional goal but involves both desired force and position

information. By appropriately setting the parameters αz , βz ,

γz the system (11) is stable. The derivation of the set of

stabilizing parameteres is straightforward through eigenvalue

analysis and is not presented here due to space limitations.
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B. Learning the nominal force representation

Instead of having the goal information inside the system at

each time step, we provide to the system only the final goal

point and make it converge to this goal by following a desired

route prescribed by the demonstrated force fd. A similar

approach has been shown in [3] to learn motion primitives

by learning a control policy. In contrast to [3], we learn a

demonstrated force pattern by learning the policy expressed

by (11), (12). Therefore we modify equation (11) as follows

τẋ = z − x− γz

∫
x+ h , τ ż = αz (βz (g − x)− z) ,

(15)

where h is a parametric nonlinear function, τ a time scaling

constant, and g the endpoint of the goal trajectory g′. By

learning h, we modify dynamics (15), (12) and make it

evolve along the trajectory fd. Function h is defined as a

weighted mixture of locally linear models as follows

h =

∑N

i=1
wihiv∑N

i=1
wi

, (16)

where wi and hi are models’ weights and output functions

respectively. The weights wi are defined by Gaussian kernels

with predefined centers and activation areas. The output

functions hi are linear in the regression parameters and are

trained by batch fitting in the input space represented by the

phase space v. The phase variable v evolves according to the

following second order dynamical system

τ v̇ = αv (βv (g − u)− v) , τ u̇ = v (17)

where αv and βv are set equal to αz and βz respectively.

The learning process is as follows. Given demonstrated

set of position xd and force fd data, we first compute the

goal trajectory g′ by (13) and then, the goal endpoint g. We

substitute position x in (15) by its demonstrated value xd

and then we compute a desired trajectory for h which is

called hd. In order to approximate the desired trajectory hd,

functions hi are trained by the locally weighted regression

method. Given the learned h, x is estimated from (15) and

then, force f̂d from (12), assuming initial conditions of x, ẋ

and z equal to zero.

An important property of the proposed dynamical repre-

sentation is the ability to scale the force profile of a task

by modifying the goal g of the system. This allows that a

learned force profile can be easily scaled up or down for

manipulation of stiffer or softer environments. By using a

a phase variable v instead of an explicit time variable, the

system becomes autonomous which allows for easier online

modication of its behavior.

V. EXPERIMENTS

A. Experimental setup

We evaluate our method in virtual manipulation tasks by

using a 2 DOF linear-actuated haptic device shown in Fig. 3.

Learning of interaction forces is demonstrated in a virtual

environment which consists of a compliant object with planar

surface and mass-spring-damper properties. The object is

2DOF

haptic device

Force sensor
End−effector

Fig. 3. Two degrees-of-freedom linear haptic device (ThrustTube).

placed such that its plane is always perpendicular to one

direction of movement. Movement in the direction normal

to the object’s surface is, thus, constrained while movement

in the other direction is unconstrained. The end-effector,

which is the device’s handle, is considered an inertia with a

rendered inertia md = 40kg and is assumed in continuous

contact with the environment during the task. The reaction

force from the environment is equal to the force exerted by

the end-effector on it since slipping effects on the object’s

surface are not simulated.

Environment
Origin layer 1 layer 2

-0.02m

kv1 kv2

Fig. 4. Two-layer object where layers 1 and 2 have different stiffness
coefficients kv1 and kv2. The user presses the object along the horizontal
axis.

B. Learning forces by demonstration

A human user demonstrates the desired force for a ma-

nipulation task by moving the handle of the haptic device.

During demonstration, we measure the demonstrated force fd
exerted by the user and the demonstrated position xd of

the handle. Both the user and the virtual environment exert

a force on the handle and its movement is modulated

accordingly. The reaction force in the constrained direction

f is rendered from interaction with the virtual object based

on the following relationship f = mvẍ + dvẋ + kvx. The

term dv represents the damping, kv the stiffness and mv the

mass of the object. Demonstrated position xd and force fd
data are employed for learning interaction forces by applying

the methodology described in Section IV. We evaluate our

method in two different types of tasks in homogeneous and

inhomogeneous environments, respectively.

C. Control implementation

The haptic device is attached to a PC which runs the

realtime linux operating system RTAI. The entire control

scheme and also the virtual environment is implemented

in MATLAB/Simulink from which realtime capable code is

generated. The hardware device as well as the control loops

run at a sampling rate of 1000Hz. The parallel force/position

control law as given in (3), (4), and (5) is implemented.
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D. Learning pressing skills

First, we learn a pressing task for an object, which is

required in grasping where appropriate force needs to be

exerted onto the object to grasp and pick it up. The aim of

this experiment is to demonstrate learning of interaction force

in presence of environments with spatially varying stiffness.

In particular we consider objects here with two layers with

different stiffness coefficients kv1 and kv2 as illustrated in

Fig. 4. The object has a planar surface (left boundary of

layer 1) which is opposed perpendicularly to the horizontal

direction of movement and lies at rest at -0.001 m from the

origin (black ball). The inner layer of the object lies at rest

at -0.02 m from the origin.

We learn appropriate forces to press these objects and

reach their inner layer (layer 2) and the results are visualized

in Fig. 5(a), (b). The point where the inner layer is reached

is shown by a red marker on the position plot.

We assume one point of contact of the end-effector with

the environment. We tested with two different objects. Task 1

is the pressing an object with outer stiffness kv1 = 100 N/m

(grey layer) and inner stiffness kv2 = 180 N/m (pink layer).

Task 2 is pressing an object with kv1 = 500 N/m and kv2 =

600 N/m. Both objects have damping of dv = 50Ns/m and

mass 10kg.

Once forces are demonstrated, they are learned by the

methodology described in Section IV. We observe that

the proposed method successfully learns demonstrated in-

teraction force in changing environments with approxima-

tion errors which do not exceed 4 percent of maximum

demonstrated force. The approximation error is calculated by
|fd−f̂d|
fdmax

where fdmax is the maximum demonstrated force.

Learned force is executed via the control law (8) where

the term mdẍ represents the total force command. Forces are

successfully tracked by the controller while a perturbation in

tracking is observed in both cases, when the second layer is

reached which is characterized by a different stiffness value.

The regions of perturbation are marked by red ellipses on

the force plot in Fig. 5(b).

E. Learning engraving skills

In this experiment, the proposed method is tested to a

simplified engrave-like task due to limited haptic rendering

of object deformation effects. In engraving task 1 and task

2, different environment has been used with stiffness 100

N/m and 280 N/m respectively. Both has damping 50 Ns/m

and mass 10 Kg. Objects’ interface is planar, opposed

perpendicularly to the horizontal direction of movement, and

lies at rest at distance -0.001m from the origin.

We learn demonstrated force for engraving on these two

environments and the results are visualized in Fig. 6(a),(b).

Desired force is demonstrated by moving from the origin,

in the horizontal direction, and pressing with random forces

the stiff and compliant objects. We observe that successful

learning of interaction forces takes place with approximation

errors which do not exceed 6 percent of maximum demon-

strated force.
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Fig. 5. Learning and execution result of pressing skills. (a) (top row)
demonstrated (dashed black) and learned (solid green) force, (middle)
approximation error, (bottom) demonstrated constrained movement. (b)
learned (dashed green) and measured (solid blue) force during the execution.

We employ learned engraving skills shown in Fig. 7 to

perform on two other objects with same geometrical con-

figuration but different physical properties. The new objects

have same damping and mass with the previous ones while

their stiffness is 200 N/m for the first and 300 N/m for

the second object. The user exerts a force starting from the

origin to manipulate the objects which are placed at -0.001m

from the origin. To engrave the first object, we combine in

series learned forces of tasks 1 and 2 shown in Fig. 6(a)

and execute for 8 and 9 sec. respectively. To manipulate the

second stiffer object, we scale up the force signals by setting

the goal g in (15) 1.5 times the original goal and scaled

forces are executed in series for 8 and 9 sec. respectively.

Force scaling is illustrated in Fig. 7 (a1), (a2). Force skills

are executed via (8). In Fig. 7 (c), (d), we can observe

how objects’ dimension along the constrained direction of

movement deforms over time following exertion of learned

and scaled forces respectively. We observe that by scaling up

the force in the case of the stiffer environment (Fig. 7 (d)),
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Fig. 6. Learning and execution result of engraving skills. (a) (top)
demonstrated (dashed black) and learned (solid green) force, (bottom)
approximation error. (b) learned (dashed green) and measured (solid blue)
force during the execution.

resulting constrained movement becomes the same with that

in the softer material (Fig. 7 (c)).

VI. CONCLUSIONS AND FUTURE WORKS

In the present study, we propose a method to learn interac-

tion force skills in presence of compliant external dynamics

from human demonstrations. An interaction force is encoded

in terms of a parameterized time-invariant differential equa-

tion based upon the parallel force/position control law. The

parameters of this equation are trained by locally weighted

regression to learn an interaction force pattern. The proposed

method is applied into two tasks in virtual environments:

pressing of inhomogeneous objects and simple engraving

tasks in different environments.

Future work will focus on extending the current framework

to allow for generalization of force skills in real-time by

employing information about the environmental state. In

addition, self-improvement of force skills will be investigated

by using coupling dynamics and reinforcement learning.
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Fig. 7. Engraving using learned force in tasks 1 and 2 in Fig. 6(a). (a1),
(a2) Learned force (dashed green) and scaled force (solid red). (b1), (b2)
Execution of scaled forces for (b1) 8 sec. and (b2) 9 sec., scaled (solid red)
and measured (dashed black) force. Object’s dimension over time along the
constrained direction of movement by executing (c) learned forces and (d)
scaled forces.
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