
TECHNISCHE UNIVERSITÄT MÜNCHEN
Lehrstuhl für Informatik II

Normalization of Horn Clauses
with Disequality Constraints

Andreas Reuß

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität München zur
Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Alois Knoll
Prüfer der Dissertation: 1. Univ.-Prof. Dr. Helmut Seidl

2. Univ.-Prof. Dr. Dr. h.c. Javier Esparza

Die Dissertation wurde am 25.10.2012 bei der Technischen Universität München eingereicht
und durch die Fakultät für Informatik am 02.05.2013 angenommen.

Abstract
Horn clauses constitute a convenient, Turing-powerful tool for the specification
and representation of analysis problems. However, it is not possible to express
disequality conditions directly and in a natural way by means of Horn clauses.
This thesis therefore proposes an extension of Horn clauses with several kinds of
disequality constraints.

In order to provide an automatic analysis framework capable of expressing
explicit disequality conditions, the considered class of Horn clauses is restricted
to the class H1, for which the satisfiability problem is decidable. H1 is chosen as
a large and expressive class which can approximate in a natural way any finite set
of Horn clauses, making it particularly useful for approximative analyses of term-
manipulating programs based on abstract interpretation. We build on an existing
normalization procedure that transforms finite sets of H1-clauses to equivalent
tree automata, and show that this procedure can be adapted such that finite sets of
H1-clauses extended with disequality constraints are normalized into equivalent
tree automata with disequality constraints.

Since emptiness is decidable for these automata, this reduction proves satis-
fiability decidable for H1-clauses extended with disequality constraints. In par-
ticular, we provide corresponding proofs for the following extensions: disequali-
ties between terms, disequalities between subterms specified by paths, and hom-
disequalities, i.e., disequalities between images of terms under a given tree homo-
morphism. Such hom-disequalities allow to test whether two terms are distinct
modulo a semantic interpretation, enabling to neglect information that is consid-
ered irrelevant for the intended comparison.

We furthermore provide an extension of tree automata with term equality and
disequality constraints, generalizing the known class of tree automata with con-
straints between brothers of Bogaert and Tison from 1992, enjoying full Boolean
closure, but still having a decidable emptiness problem — whereas emptiness for
automata with path equalities has been shown undecidable by Mongy in 1981.

The four main contributions of the thesis are published in [SR11], [SR12],
[RS12], and [RS10], respectively.

Zusammenfassung
Hornklauseln sind ein geeignetes, turingmächtiges Werkzeug zur Modellierung
von Analyse-Problemen. Es ist jedoch nicht möglich, mit Hornklauseln direkt
und auf natürliche Weise Ungleichheitsbedingungen auszudrücken. Dieses Werk
schlägt daher eine Erweiterung von Hornklauseln mit unterschiedlichen Arten von
Ungleichheits-Constraints vor.
Um ein automatisches Analyse-Framework zu erreichen, mit dessen Hilfe es mög-
lich ist, explizite Ungleichheiten auszudrücken, schränken wir die betrachtete
Klasse von Hornklauseln ein auf die KlasseH1, für die das Erfüllbarkeits-Problem
entscheidbar ist. Diese Klasse ist sehr ausdrucksstark und kann auf natürliche
Weise beliebige Hornklauseln approximieren. Aufgrund dieser Eigenschaft ist
H1 insbesondere für auf der Technik der abstrakten Interpretation basierende ap-
proximative Analysen von Programmen, die Terme verarbeiten, sehr nützlich.
Wir bauen auf einem bereits bestehenden Normalisierungs-Verfahren auf, welches
endliche Mengen von H1-Klauseln in einen dazu äquivalenten Baum-Automaten
überführt, und passen dieses Verfahren dergestalt an, dass es endliche Mengen von
H1-Klauseln mit Ungleichheits-Constraints in einen dazu äquivalenten Baum-
Automaten mit solchen Ungleichheits-Constraints überführt.
Da das Leerheits-Problem für solche Automaten entscheidbar ist, wird durch diese
Reduktion gezeigt, dass das Erfüllbarkeits-Problem fürH1-Klauseln mit Ungleich-
heits-Constraints entscheidbar ist. Für die folgenden Erweiterungen beweisen wir
auf diese Weise Entscheidbarkeit: Ungleichungen zwischen beliebigen Termen,
Ungleichungen zwischen beliebigen Subtermen, welche durch Pfade spezifiziert
werden, und Ungleichungen zwischen homomorphen Bildern von Termen. Die
letzteren beiden ermöglichen es, beim Test auf Ungleichheit Teilterme unberück-
sichtigt zu lassen.
Wir führen des Weiteren eine Erweiterung von Baum-Automaten mit Gleichheits-
und Ungleichheits-Constraints für Terme ein, welche die bekannte Klasse der
Automaten mit constraints between brothers von Bogaert und Tison aus dem
Jahr 1992 verallgemeinert, wie diese unter Booleschen Operationen für Baum-
Sprachen abgeschlossen ist, und für deren Leerheits-Problem wir überraschender-
weise Entscheidbarkeit beweisen können – wohingegen etwa für Automaten mit
Pfad-Gleichheits-Constraints schon 1981 durch Mongy die Unentscheidbarkeit
des Leerheits-Problems gezeigt wurde.

Contents

1 Introduction 1

2 Horn Clauses and Constraints 13
2.1 Basics . 13
2.2 Tree Automata with Term Constraints 23

2.2.1 Generalized Tree Automata with Term Disequalities . . . 24
2.2.2 Tree Automata with Term Equalities and Disequalities . . 26

2.3 Complex Preconditions, Auxiliary Variables 34
2.4 Tree Automata with Hom-Equalities 36

3 Normalization of Horn Clauses 39
3.1 H1-Clauses with Term Disequalities 39

3.1.1 Bounding the Number of Terms 40
3.1.2 Normalizing ConstrainedH1-Clauses 42

3.2 H1-Clauses with Path Disequalities 51
3.2.1 Increased Expressiveness 51
3.2.2 Challenges in Computing with Subterms 54
3.2.3 Termination-sensitive Resolution in Presence of Paths . . 55
3.2.4 Splitting Paths . 59

3.3 H1-Clauses with Hom-Disequalities 65
3.3.1 Tree Automata with Hom-Disequalities 66
3.3.2 Expressiveness . 71
3.3.3 H1-Normalization modulo Tree Homomorphism 73

4 Perspectives 79

VII

Chapter 1

Introduction

First-order Horn1 clauses serve as a convenient tool for representing analyses of
term-manipulating programs. Horn clauses are used in the areas of automated
deduction, theorem proving, and logic programming, e.g., in Prolog. A Prolog
program is a set (put logically: a conjunction) of definite Horn clauses together
with a query. Consider as an example the following set of definite Horn clauses:

human(socrates) ⇐
mortal(X) ⇐ human(X)
human(X) ⇐ ancestor(f(X,Y)), human(Y)

ancestor(f(sophroniskos, socrates)) ⇐

Here, the right-hand sides are the preconditions of the clauses, and the left-hand
sides are the conclusions. Conclusions consist of single literals, while precon-
ditions are comma-separated lists of literals. These lists might also be empty.
The meaning of a precondition is given by the conjunction over the occurring
literals. “⇐” denotes the logical implication (from the right to the left). The
variables, denoted by the upper-case letters, are meant to be universally quanti-
fied in each clause. Besides variables, the terms occurring in literals may also
contain constants and data constructors. The literal in the fourth clause, e.g., con-
tains the data constructor f (abbreviating “father”) and the constants sophroniskos
and socrates . This clause allows to conclude, from an empty precondition, that
the predicate ancestor holds for the composed term f(sophroniskos , socrates) –
telling us that Sophroniskos is the father of Socrates.

A set of Horn clauses allows to deduce facts which can be proven by the
implications. E.g., the first clause has no preconditions and no variables, and
allows to conclude the fact that Socrates is a human. To be more precise, the
predicate human holds for the term socrates . Using this fact, it can be deduced

1Alfred Horn, 1918–2001, American logician and mathematician

1

2 Chapter 1. Introduction

from the second clause that Socrates is also mortal. For this, the variable X must
be substituted by the term socrates . If X and Y are substituted with the term
sophroniskos and the term socrates , respectively, in the third clause, then both
literals of the precondition become facts, i.e., are already proven. This substitution
therefore allows to derive the new fact human(sophroniskos). By that, we have
deduced that, surprisingly, Sophroniskos is a human, too.

While we write a Horn clause in the form of an implication, it is in fact a
finite disjunction of negated or non-negated literals (i.e., predicates applied to
terms), containing at most one non-negated literal. We concentrate on definite
Horn clauses, which have exactly one non-negated literal. This includes facts
such as human(socrates), given by the first clause of the example, but excludes
clauses with an empty conclusion. The latter type of clause may be seen as a
query. E.g., the query

false⇐ human(sophroniskos)

together with the clauses from the example allows for a resolution-based unsat-
isfiability proof, since it is possible to deduce human(sophroniskos), which can
further be resolved to false with this query. Resolution [RV01] is a technique that
is not only used for automated deduction but also serves as the operational model
of Prolog implementations.

In general, the predicates may take a (fixed) number of arguments, yet we only
consider unary predicates in this work. This restriction is convenient and without
loss of generality as the arguments of non-unary predicates may be equipped with
a constructor on top, i.e., literals p(t1, . . . , tk) are rewritten as p(ck(t1, . . . , tk))
where ck is a symbol of arity k ≥ 0. The predicates of a (finite) set of clauses
then characterize possibly infinite sets of variable-free terms with uninterpreted
function symbols. Consider, e.g., the set C consisting of the two clauses:

human(socrates) ⇐
human(parent_of (X)) ⇐ human(X)

The two clauses are equivalent to the logical formula

human(socrates) ∧ (∀X. human(X) =⇒ human(parent_of (X)))

expressing that

• predicate human holds for the term socrates , and

• if human holds for a term t, then it also holds for the term parent_of (t).

Hence, in the least model of the set C, human holds for all terms

socrates , parent_of (socrates), parent_of (parent_of (socrates)), . . .

3

We also say that these terms are recognized, or accepted by the predicate human.
A predicate p is satisfiable w.r.t. a set C of clauses if p accepts at least one term in
the least model of C.

There always is a unique least model for finite sets of definite Horn clauses
[vEK76] – while formulas in first-order logic in general do not enjoy this prop-
erty. But this does not automatically mean that we can also compute the least
model. Horn clauses are Turing-powerful, i.e., there is no restriction on the com-
putational power (roughly speaking, everything that is expressible in some model
of computation is also expressible by a finite set of Horn clauses). Accordingly,
the satisfiability problem is not decidable for finite sets of Horn clauses.

Researchers therefore have aimed at finding large, expressive subclasses of
general Horn clauses for which satisfiability is decidable. In [Wei99], one such
class has been identified for which satisfiability is decidable in exponential time.
This class has been called H1 in [NNS02]. It differs from general Horn clauses
with unary predicates in that the terms in the heads (i.e., the conclusions) may
contain at most one constructor and no variable may occur twice in a head. (Thus,
non-unary predicates in heads ofH1-clauses do not contain any explicit construc-
tor at all.) Finite conjunctions of H1-clauses can effectively be transformed to
equivalent finite tree automata [NNS02] – for which efficient standard algorithms
are available for the decision problems such as emptiness, membership, or univer-
sality. The technique for this transformation, which we call normalization, uses
(ordered) resolution steps with splitting [GL05]. The resulting tree automaton is
given by a set of automata clauses, a subclass of H1. When considering a tree
automaton as a set of automata clauses, the following correspondencies exist:

Horn clause ↔ transition rule
predicate ↔ state

constructor / constant (also called atom) ↔ symbol
variable-free term ↔ tree
satisfiability of p ↔ non-emptiness of p

Satisfiability of a unary predicate p in the original set of H1-clauses then corre-
sponds to non-emptiness of (the language accepted by) the corresponding state p
in the equivalent tree automaton. Non-unary predicates must be equipped with a
constructor on top of their arguments prior to the transformation, in order to allow
for a tree representation.

What makes the classH1 even more attractive, is that there is a natural scheme
how arbitrary Horn clauses can be abstracted byH1-clauses. In so doing, any finite
conjunction of Horn clauses can be approximated by a finite set ofH1-clauses, and
the decision procedures forH1 can be used for automatic program analysis based
on abstract interpretation – given that the analysis problem can conveniently be
described by means of Horn clauses. This approach has been successfully applied

4 Chapter 1. Introduction

to the automatic analysis of secrecy in cryptographic protocols [Bla01] as well as
the implementation of these in real-world programming languages [GLP05].

Finite bottom-up tree automata accept the regular tree languages, which are
closed under regular operations such as union, intersection, complementation,
projection, etc. For the case of finite trees, regular languages correspond to those
languages that are expressible by monadic second-order (MSO) logic [TW68].
But tree automata do not only allow to conveniently represent possibly infinite
regular sets of trees. They also allow for efficient algorithms for the decision of
basic problems — in particular, emptiness and membership, but also universality,
finiteness, inclusion, etc. For this reason, tree automata have been widely used
for the specification of tree languages. Also, program analyses often result in tree
automata.

As tree automata are restricted to inspect their input only locally during a
bottom-up traversal, many efforts have been made to enhance their expressiveness.
One way to achieve this is to add constraints to the transitions. In [Mon81], Mongy
introduces automata that allow transitions to be constrained by equalities of sub-
trees, specified by paths. According to the naming scheme of Section 2.1, these
automata are tree automata (respectively automata clauses) with path equalities.
Since the class of languages accepted by such automata is not closed under com-
plementation, a generalization is proposed in [CDG+07] by additionally allowing
disequality constraints between subtrees. For both classes, however, emptiness
is undecidable. In fact, Tommasi showed in 1992 that already for automata with
equality tests between cousins (i.e., subterms at depth one), emptiness is undecid-
able [Tom92].

For this reason, Bogaert and Tison have considered automata where only
equalities and disequalities between direct subterms, i.e., constraints on paths of
length one, are allowed [BT92]. This class is known as the class of tree automata
with constraints between brothers. The class has a decidable emptiness problem.
In the Horn clause formalism, constraints between brothers are comparisons be-
tween variables occurring in the core clause. Even when only disequalities are
used, such constraints increase the expressiveness.

Example 1 In general, the language L = {f(t1, t2) | t1 = t2} is not regular.
Accordingly the language L = {f(t1, t2) | t1 6= t2} cannot be regular either.
The latter language, however, can easily be expressed by automata clauses with
disequalities between variables:

p(f(X1, X2))⇐ >(X1),>(X2), X1 6= X2

where the predicate > is defined such that it accepts any term constructible with
the set of available symbols for the language L. Consequently, automata clauses

5

with disequalities between variables are strictly more expressive than ordinary tree
automata. �

In 2010, we introduced tree automata with term equality and disequality con-
straints [RS10]. We call these automata TCA (term-constrained automata). TCA
are strictly more expressive than automata with constraints between brothers.
While constraints between brothers correspond to equalities and disequalities be-
tween variables in the Horn clause formalism, TCA allow comparisons between
arbitrary terms over the variables that occur in the clause. As with brother con-
straints, the constraint language of TCA enjoys closure under Boolean operations
(when representing disjunctions as alternative clauses that only differ in their con-
straints). Therefore, also the languages accepted by TCA are still closed under
Boolean operations. Moreover, as the main result for this extension, we were able
to prove that emptiness is decidable for TCA. The latter does not only contrast with
the undecidability of emptiness for the automata with path equalities of [Mon81].
It is also a surprising result as equality constraints for tree automata in general
were assumed to be a source of undecidability — with the notable exception of
the brother constraints.

In 1994, Caron et al. observed that emptiness is also decidable for automata
with arbitrary path constraints if the number of equality tests along each path in
the accepted trees is bounded [CCC+94]. These results have been applied to de-
rive a decision procedure for inductive reducibility of rewrite systems [CJ94] and,
more generally, for the first-order theory of encompassment [CCD93]. In fact, au-
tomata with path disequalities only are sufficient for deciding inductive reducibil-
ity [CJ97]. Automata with equality constraints based on a given tree homomor-
phism and path disequality constraints have recently been applied to solve the
HOM problem for regular tree languages [GGRÀ10]. Extensions of constraints
between brothers in ranked trees to constraints between siblings in unranked trees
are studied by Löding and Wong [LW09]. Global equality and disequality con-
straints are considered by Godoy et al. in the context of MSO logic with iso-
morphism tests and unification with membership constraints [FTT08, BCG+10] –
although it is not clear how this concept is related to the independent local con-
straints for transitions which we consider here.

While finite sets of Horn clauses are Turing-powerful, the clauses themselves also
have certain restrictions. In particular, Horn clauses have difficulties to express
negative information such as that two values must be different. In order to com-
pensate for this deficiency, our goal is to extend Horn clauses with explicit con-
straints that express disequality conditions. As an example, consider freshness
of keys or nonces, a property which is used in cryptographic protocols. A key
is fresh if it does not occur in the list of already used keys. That a key does oc-
cur could be detected by pattern matching based on multiple occurrences of the

6 Chapter 1. Introduction

same variable within a precondition. But it is unclear how to directly specify the
negation of such an equality condition by means of a Horn clause – as in the im-
plication expressed by such a clause, only positive literals occur. That is, based on
the equalities which can be enforced by multiple occurrences of the same variable
within a clause, more equality conditions might be directly inferred – but not their
negations.

In our extension of H1-clauses, such a condition can be added to the precon-
dition of a clause. We also consider extensions with equality conditions (such
as X = Y). Of particular interest, however, are explicit disequalities. While
equalities such as

X = t (X a variable, t a term)

could in principle be “inlined” in the clause by replacing each occurrence of X by
the term t, matters are different with disequality conditions. Also it turns out that
disequalities have much nicer properties than equalities w.r.t. decidability of the
corresponding extension. H1-clauses with simple equalities between variables,
e.g., already yield an undecidable class.

Example 2 When disequalities can be added to the clauses, it becomes possible
to express and propagate negative conditions. The set ofH1-clauses extended with
disequalities

fresh_key(X) ⇐ q(X, [])
q(X,Z) ⇐ q(X, :: (Y, Z)), X 6= Y
q(X, Y) ⇐ key(X), old_keys(Y)

can conveniently define a predicate fresh_key which expresses that a key is not
contained in the list old_keys . (Here, the upper case letters represent variables, []
denotes an empty list, and :: is the list constructor.) The second clause ensures by
means of the disequality X 6= Y that, within the least model, q(t, []) only holds
in the first clause if q(t, l) holds in the second clause for a list l in which t is not
contained. �

Example 3 The extra expressiveness due to disequalities also allows to conve-
niently express that a predicate p contains all elements of another predicate q up
to a finite language L:

p(X)⇐ q(X), φL

where φL ≡
∧
{X 6= t, | t ∈ L}. Likewise, disequalities allow to express that

an implication p(t0) ⇐ α only holds if a given predicate q contains at least r
elements. For that, we define:

p(t0)⇐ α, q(Z1), . . . , q(Zr), φr

where φr ≡
∧
{Zi 6= Zj | 1 ≤ i < j ≤ r}. �

7

We were able to show in [SR11] that the normalization procedure for the trans-
formation of finite sets of H1-clauses to automaton form can be adapted so as to
work also in presence of disequalities of terms. It essentially consists of a satura-
tion procedure which adds, to the original set C of clauses, simpler clauses that are
implied by C according to three rules – until all clauses are implied by the subset
of normal clauses. The rules are splitting, resolution, and propagation. For H1-
clauses without constraints, it is not hard to prove that this procedure terminates if
only clauses are added which are not implied yet, since only finitely many literals
can possibly occur. In presence of disequalities, an extra subtle argument, though,
is required in order to prove that only finitely many conjunctions of disequalities
need to be taken into account. For that, we apply a compactness property of con-
junctions of finite disjunctions of term equalities [MORS05]. The procedure for
the splitting rule is based on an efficient method which decides, for a given set of
automata clauses, a predicate p, and a number k ≥ 1, whether p accepts at least k
terms or not, and if not, enumerates all accepted terms.

Further extensions. Sometimes, the concept of disequality of terms may not be
adequate for expressing more involved properties than freshness of keys or nonces,
or the like. Consider, for instance, a voting protocol where for a submitted vote
not freshness of the overall expression must be checked but that the voter has
not submitted any vote so far [FOO93, BRS07]. Such checks can be realized by
means of disequalities on subterms, specified by paths.

Example 4 Assume that we are given a list l of votes where each element of l is of
the form vote(p, v) for a constructor symbol vote, a person p who has voted, and
his or her vote v. The next vote vote(p′, v′) then should not only be not contained
in the list l but should differ from all elements of l in the first argument. Reusing
the scheme of Example 2, this can be expressed by the predicate valid as defined
by:

valid(X) ⇐ q(X, [])
q(X,Z) ⇐ q(X, :: (Y, Z)), X.1 6= Y.1
q(X, Y) ⇐ is_vote(X), votes(Y)

The second clause of this definition involves a comparison between the person
trying to vote, identified by X.1, and the leftmost (direct) subterm of the first
list entry, identified by Y.1, which denotes one of the persons who have already
voted. Here, the second clause is equivalent to the following clause with a term
disequality.

q(vote(X1, X2), Z)⇐ q(vote(X1, X2), :: (vote(Y1, Y2), Z)), X1 6= Y1

This clause, however, is not an H1-clause because the head is non-flat, i.e., con-
tains more than one constructor: besides the vote constructor, we must also count

8 Chapter 1. Introduction

an implicit constructor for the non-unary predicate q. (Otherwise, H1 would be
undecidable.) �

Since it is known that automata clauses with path disequalities are decidable, we
asked ourselves whether it would even be possible to extendH1-clauses with dis-
equalities of paths. For tree automata, path disequalities are strictly more expres-
sive than term disequalities (we prove this in Section 3.2.1). Consequently, if the
normalization technique still worked, the extension would also strictly generalize
the class ofH1 with term disequalities. Quite surprisingly, we succeeded in prov-
ing H1 with path disequalities decidable in [SR12]. We had to apply a more in-
tricate method for splitting in presence of paths since pigeon-hole principle based
arguments, which we used for splitting in presence of term disequalities do not
work any more for disequalities of paths. In order to make splitting work for path
disequalities, we invented a novel algorithm that computes, for a given predicate
p, an existentially quantified variable Y , and a conjunction ψ of path disequali-
ties containing Y , a finite set T of ground terms covering all “useful effects” of
substituting Y within ψ by an arbitrary term that is accepted by p. I.e., T covers
all cases which satisfy ψ, although there are possibly infinitely many substitutions
for Y . Also the termination proof for this extension was difficult. The problem
is that resolution steps result in growing paths. Interestingly, a further extension
of the constraint language to disequalities of terms containing path expressions,
achieved the desired result. Instead of growing paths, this extension only leads to
growing (general) terms – for which we could then reapply the aforementioned
compactness property for conjunctions of finite disjunctions of (ordinary) term
equalities.

Disequality on terms or subterms, however, may be too imprecise in presence of
semantic interpretations because syntactically distinct terms may represent the
same value. One of the simplest forms of such interpretations are homomor-
phisms. Homomorphisms allow, e.g., to relabel nodes, to select specific subtrees
(depending on labels), or permute subtrees. In the term representation of a tuple of
trees, a suitable tree homomorphism thus allows to select individual components.
Perhaps most useful in the context of cryptographic protocols is the possibility
of disequalities modulo homomorphisms to compare messages while disregard-
ing irrelevant information such as random padding or session keys. Analyses of
anonymity violation or non-interference [GM82, BR05, Cha07] may search for
values which are independent of sender identities or secret subparts, respectively.

Example 5 Consider the following example where the predicates pu, pv model
the set of states reaching stages u, v of a protocol. For simplicity, assume that the
value at stage u is obtained from the value at stage v by combining the value at

9

v with a secret value under a data constructor f , where the secret value is taken
from some set input . This can be formalized by the following clauses:

pu(f(Z, Y)) ⇐ high(Z), pv(Y)
high(secret(X)) ⇐ input(X)

where the value Y at stage v may contain secrets as well. Now assume that we
want to verify that the public view of values at stage u is independent of the se-
crets included into the values. Here, the public view of a value is realized by a
homomorphism H which maps the constructor secret (along with its respective
subtrees) to some constant ⊥ and is the identity for the remaining constructors.
Then a potential violation of the independence could be expressed by the clause

error ⇐ pu(X), pu(Y), X 6=H Y

where 6=H applies disequality to the images of its arguments under H. �

We proved in [RS12] that normalization still works if homomorphic images of
terms are compared instead of just terms. We call such disequalities between
homomorphic images of terms hom-disequalities. In order to enable splitting in
presence of hom-disequalities, we introduced hom-disequality-automata (HDA),
i.e., finite sets of automata clauses with complex heads, auxiliary variables, and
term disequalities, and proved the following two propositions. First, for every
finite set of automata clauses with hom-disequalities, an HDA can be effectively
computed whose predicates accept the homomorphic images of the terms that
these predicates accept in the original automaton. Second, k-finiteness is decid-
able for HDA. (These proofs can be found in Section 3.3.1). We also had to
adapt the termination proof appropriately, in order to account for the effects of
homomorphic transformations (see Section 3.3.3). As is the case with path dis-
equalities, hom-disequalities strictly generalize term disequalities. Both classes,
however, are incomparable to each other, i.e., hom-disequalities are a different
proper extension of term disequalities forH1.

Summary of main contributions. We extend H1-clauses with various kinds
of disequality constraints and show that the satisfiability problem for these ex-
tensions is still decidable. In particular, H1-clauses are proved decidable when
extended with disequalities of terms, disequalities of subterms (known as path
disequalities), or hom-disequalities, i.e., disequalities of images of terms under
a given tree homomorphism. The decidability proofs are provided through con-
structions which, for every finite set C of H1-clauses with disequalities, compute
a finite set A of automata clauses with the same sort of disequalities which is
equivalent to C. The general construction relies on a normalization procedure

10 Chapter 1. Introduction

in the spirit of [NNS02, GL05], although this procedure has to be adapted in a
different way for each kind of disequality.

The resulting setA of automata clauses can be considered as a particular form
of bottom-up tree automaton with disequality constraints. Thus, (finite sets of)
H1-clauses with disequalities are proved equally expressive as tree automata with
disequalities. Since emptiness is decidable for these classes of extended automata,
the reduction proves that H1-clauses extended with disequalities are decidable.
W.r.t. the languages accepted by tree automata extended with disequalities, we
show that disequalities of subterms and hom-disequalities are incomparable to
each other, while both classes are more expressive than tree automata or H1-
clauses with disequalities of terms. Tree automata with term disequalities, on
the other hand, are proved strictly more expressive than finite sets of H1-clauses
without constraints.

Further contributions and results on constrained automata are presented in
Section 2.2, most notably an extension with equality (and disequality) term con-
straints for finite bottom-up tree automata, for which we prove decidability of
the emptiness problem, and closure under Boolean operations. This extension
strictly generalizes the known class of tree automata with constraints between
brothers of Bogaert and Tison [BT92]. We also present undecidability proofs for
other classes of tree automata extended with equality conditions (see Sections 2.3
and 2.4). These results as well as the undecidability of emptiness for automata
with arbitrary equality constraints between subterms as shown in [Mon81] con-
trast with decidability of emptiness for our aforementioned new class of automata
with equality and disequality term constraints.

The used proof techniques for our (un)decidability proofs are in part standard,
but we also introduce novel techniques such as, e.g., a quantifier elimination algo-
rithm (see the proof of Theorem 18 in Section 3.2.4).

Outline. In Chapter 2, we formally introduce Horn clauses and constraints. Sec-
tion 2.1 reviews basic concepts and notations such as terms, paths, which identify
subterms, and constraints. Also tree homomorphisms are introduced, which are
used for the definition of hom-constraints, i.e., comparisons of homomorphic im-
ages of terms. Based on these concepts, Section 2.1 furthermore introduces the
classes of constrained Horn clauses which we consider in this work, in particular
the class H1 as well as useful subclasses of H1 such as simple, normal and au-
tomata clauses. We also establish two basic results: finite sets of normal clauses
extended with term, path, or hom-constraints can be transformed to finite sets of
automata clauses with the same sort of constraints, and the membership prob-
lem for finite sets of such clauses is decidable, i.e., for each variable-free term t
and predicate p, it can be decided whether or not p(t) holds in the least model

11

of the given set of clauses. Section 2.1 also provides an overview over known
and new classes of Horn clauses (resp. tree automata) with constraints, with links
to the respective sections where the classes are considered, and in case of a new
class also the publication where we introduced the corresponding class. Finally,
Boolean combinations of single constraints are discussed, and normal forms for
term constraints are introduced.

In Section 2.2, tree automata with equalities and disequalities of terms (TCA)
are introduced. The decidability proof for TCA is based on a saturation procedure
that reduces TCA to generalized tree automata with disequalities only. This class
is considered in Section 2.2.1. We relate the expressiveness of TCA to the known
classes of tree automata with constraints between brothers and tree automata with
path constraints in Section 2.2.2. We furthermore show that TCA can be deter-
minized and that they are closed under Boolean operations. Finally, emptiness of
TCA is proved decidable. Section 2.3 considers further extensions for automata
with equalities and proves emptiness for these extensions undecidable. In partic-
ular, complex preconditions (i.e., literals p(t) where t is not a variable but a term)
and auxiliary variables not occurring in the head of a clause yield undecidability
when combined with term equalities. Section 2.4 shows that term equalities alone
already make the corresponding class of constrained automata undecidable if the
equalities are interpreted modulo a given tree homomorphism, i.e., if images of
terms under a given tree homomorphism are compared.

Chapter 3 is devoted to procedures for the normalization of finite sets C of
Horn clauses from the class H1, effectively producing an equivalent tree au-
tomaton A (in the sense that non-emptiness of a predicate p within A corre-
sponds to satisfiability of predicate p within C). The general framework of H1-
normalization, instantiated with term disequalities, is presented in Section 3.1.

Section 3.2 extends the framework to H1-clauses with path disequalities. We
show in Section 3.2.1 thatH1-clauses with path disequalities are strictly more ex-
pressive thanH1-clauses with term disequalities. In Section 3.2.2, we illustrate the
challenges that arise in the case of H1 with path disequalities w.r.t. splitting, the
technique for the removal of auxiliary variables from preconditions. Section 3.2.3
then introduces general terms, an extension both of terms and paths, which en-
ables to argue that the resolution steps also terminate in presence of paths. Sec-
tion 3.2.3 also provides evidence that for the extension of tree automata, general
term disequalities are equally expressive as disequalities between labeled or unla-
beled paths. In Section 3.2.4, we present a method that enables splitting even in
presence of paths.

A method for the normalization of H1-clauses with hom-disequalities is pro-
vided in Section 3.3. In order to enable splitting in presence of hom-disequalities,
Section 3.3.1 introduces hom-disequality-automata (HDA), whose predicates ac-
cept homomorphic images of terms, and shows k-finiteness decidable for HDA.

12 Chapter 1. Introduction

Section 3.3.2 then compares the expressiveness of finite sets of automata clauses
(orH1-clauses) extended with term, path, or hom-disequalities, and Section 3.3.3
constructs the normalization procedure for H1 with hom-disequalities based on
the results of Section 3.3.1. Chapter 4 finally provides an outlook.

Chapter 2

Horn Clauses and Constraints

2.1 Basics

This section formally introduces Horn clauses — in particular, the subclass H1

as well as another subclass which corresponds to finite bottom-up tree automata.
For these, extensions are defined, too, resulting from the addition of constraints.
Furthermore, paths and tree homomorphisms are introduced.

A (definite) first-order Horn clause, written usually as a (reversed) implication,
has the form:

A⇐ B1, . . . , Bm m ≥ 0

where the conclusion A as well as the preconditions B1, . . . , Bm are literals, i.e.,
expressions p(t1, . . . , tk) consisting of a predicate p and terms t1, . . . , tk, which
may contain variables. Here, we only consider unary predicates, i.e., k = 1, to
which the general case can be reduced. The variables are implicitly quantified by
a universal quantifier. The terms ti are made up of symbols (constructors with
subterms, and constants) and variables. The precondition of such a clause can be
extended by a constraint φ which allows to express (dis)equality conditions on
terms or subterms, or the like. Then the clause has the form:

A⇐ B1, . . . , Bm, φ

where φ is a conjunction of expressions l ◦ r for terms or subterms l, r, and a
given (set of) operator(s) ◦. The operator could for instance be a disequality.

A classH of (finite sets of) Horn clauses is said to be decidable if for every set
A ∈ H, satisfiability (w.r.t. the least model) can be decided for every query p(t),
where p denotes a predicate, and t an arbitrary term. The decision procedures for
all decidable classes considered in this work are known.

13

14 Chapter 2. Horn Clauses and Constraints

Terms, paths, and constraints. First-order Horn clauses with unary predicates
define sets of trees. The trees are made up of symbols from a ranked alphabet
(Σ, ar) where Σ denotes a finite set of constructors and ar : Σ → N ∪ {0}
specifies each constructor’s arity. If the arities of symbols are understood, then
the ranked alphabet is denoted by Σ alone. Nullary constructors are also called
atoms. In order to avoid trivial cases, let us assume that there is at least one atom
and one constructor of arity greater than 0. For a ranked alphabet Σ and a set
V = {X1, X2, . . .} of variables, the set TΣ(V) of (finite ordered ranked) trees
over Σ and V consists of all terms t given by the grammar:

t ::= Xi | a | b(t1, . . . , tk)

where a, b ∈ Σ, and a has arity 0, while b has arity k > 0. We also use the
word term for tree. For an expression e, the expression vars(e) denotes the set of
variables occurring in e. A tree t is called ground if vars(t) = ∅, i.e., t contains
no variable X ∈ V. The set of ground terms (or ground trees) is denoted TΣ.
Note that TΣ is infinite according to our assumption on Σ. A (positive) literal A
is an expression of the form p(t) where p is a unary predicate and t ∈ TΣ(V).
Non-unary predicates can be integrated in our framework, too, by equipping their
arguments with an implicit constructor of the same arity as the predicate.

term
f

X b

c Y

f(X, b(c, Y)) ∈ TΣ(V)

term
b

X Y

b(X,Y) ∈ TΣ(V)

ground term

f

a d

c a

f(a, d(c, a)) ∈ TΣ

Figure 2.1: Two terms containing variables, and a variable-free term or tree

Subterms are identified by paths. A labeled path π is given by a finite sequence
(f1, i1).(f2, i2).(fn, in) where for every j, fj ∈ Σ and 1 ≤ ij ≤ mj if mj is
the arity of fj . The empty sequence is denoted ε. An expressionX.π for a variable
X and a path π is called path expression. We also write X instead of X.ε.

A substitution θ is a mapping θ : V→ TΣ(V). The mapping may be written as
θ = [ti1/Xi1 , . . . , tij/Xij] or as θ = {Xi1 7→ ti1 , . . . , Xij 7→ tij}. Then Xθ = X
for all variables X that are not mentioned. We write θe and eθ for the result of
applying θ to the expression e. θ is called ground w.r.t. an expression e if θXi is
ground for all variables Xi ∈ vars(e).

Constraints extend the preconditions of clauses by additional conditions. Thus,
the constraint φ of a clause is a conjunction of atomic constraints, for a given finite

2.1 Basics 15

set B of binary Boolean operators:

φ =
∧

i=1,...,m

li ◦i ri (m ≥ 0, ◦i ∈ B)

where the expressions li, ri are compatible with the operator ◦i. In most of the
cases that we consider, B contains a disequality operator and possibly also the
corresponding equality operator, i.e., either all constraints φ are of the form:∧

i=1,...,m

li 6= ri (m ≥ 0)

or they all can be written as:

(
∧

i=1,...,m

li = ri) ∧ (
∧

i=m+1,...,m+n

li 6= ri) (m,n ≥ 0)

A term disequality constraint, for instance, is a conjunction of disequalities s 6= t
for terms s, t. In this case, the type of the li and ri is that of an ordinary term,
and the operator ◦ is the disequality of terms. A path disequality constraint, on
the other hand, is a conjunction of disequalities Xi.π 6= Xj.π

′ of path expressions
Xi.π,Xj.π

′.
The substitution θ satisfies the constraint l ◦ r, denoted by θ |= (l ◦ r), if and

only if θl ◦ θr. An exception to this scheme is needed for path expressions X.π,
since θ(l) and θ(r) may be undefined. Should either θ(l) or θ(r) be undefined,
then θ |= l ◦ r if and only if ◦ expresses disequality. (The intuition behind is that
equality should be more forcing.) Consequently, an atomic equality is the logical
negation of the corresponding disequality. Finally, satisfiability is extended to
monotone Boolean combinations in the usual way:

θ |= (φ1 ∧ φ2) iff (θ |= φ1) ∧ (θ |= φ2)
θ |= (φ1 ∨ φ2) iff (θ |= φ1) ∨ (θ |= φ2)

Tree homomorphisms. A tree homomorphism H maps each symbol f ∈ Σ of
arity k ≥ 0 to a term t(X1, . . . , Xk), i.e., a term containing only variables from the
set {X1, . . . , Xk}. The mapping H∗ : TΣ(V) 7→ TΣ(V) is then recursively defined
as H∗(X) = X for X ∈ V, and H∗(f(t1, . . . , tk)) = H(f)(H∗(t1), . . . ,H∗(tk)) =
t[H∗(t1)/X1, . . . , H∗(tk)/Xk]. Figure 2.2 shows an example of applying H∗.
H∗(s) is ground whenever s is ground. The function H−1 reverses the effect of
applying H∗, i.e., H−1s = {t | H∗t = s}. We extend H∗ and H−1 for sets of
terms T by defining H∗T = {H∗t | t ∈ T} and H−1T = {t | H∗t ∈ T}. For
notational convenience, we may also write He or H(e) instead of H∗e, meaning
that the mapping H∗ is applied to the expression e.

16 Chapter 2. Horn Clauses and Constraints

f

t1 t2 t3

t

⇒ h

a b

H∗(t2) H∗(t2)

H∗(t)

Figure 2.2: Transformation of the term t = f(t1, t2, t3) with ti ∈ TΣ(V) by the
tree homomorphism H with H(f) = h(a, b(X2, X2))

A hom-disequality is an expression s 6=H twhere s, t ∈ TΣ(V). In case that both s
and t are ground terms, s 6=H t is equivalent to H∗s 6= H∗t. A ground substitution
θ satisfies a hom-disequality s 6=H t if (and only if) θs 6=H θt, i.e., H∗(θs) 6=
H∗(θt). For a substitution θ (not necessarily ground) and a homomorphism H,
let θH denote the substitution given by: θHX = H∗(θX). Then it holds that
H∗ ◦ θ = θH ◦H∗, i.e., for every term t, we have: H∗(θt) = θH(H∗t). As with path
(dis)equalities, the hom-equality s =H t is defined as the logical negation of the
corresponding disequality s 6=H t, i.e., we have s =H t⇔ ¬(s 6=H t).
Tree homomorphisms are rather expressive. They may, e.g.,

• rename constructors: H∗(g(X1)) = h(X1)

• delete constructors: H∗(g(X1)) = X1

• delete subtrees: H∗(f(X1, X2)) = g(X2)

• add constructors: H∗(f(X1, X2)) = f(g(X1), h(g(X2)))

• copy subtrees: H∗(g(X1)) = f(X1, X1)

• permute subtrees: H∗(f(X1, X2)) = f(X2, X1)

• combine two or more of these features.

Horn clauses with constraints. A constrained Horn clause c is given by the
implication

B0 ⇐ B1, . . . , Bm, φ

where B0, . . . , Bm are literals and φ is a constraint. The left-hand side B0 is the
head of the clause c while the sequence B1, . . . , Bm, φ denotes the body or pre-
condition of c. The constraint φ imposes an additional restriction on the applica-
bility of the clause. A constraint φ which is always true can be omitted. With the
constraint omitted, B0 ⇐ B1, . . . , Bm is called the core clause of c. The atomic
constraints of φ may be separated by commas.

Let C denote a set of Horn clauses. Then the least modelMC of C is the least
set M such that p(tθ) ∈ M for a ground substitution θ whenever there is a clause

2.1 Basics 17

p(t) ⇐ p1(t1), . . . , pk(tk), φ in C such that pi(tiθ) ∈ M for all i = 1, . . . , k, and
θ |= φ. The language {t ∈ TΣ | p(t) ∈ MC} of p is also denoted [[p]]C . For
convenience, we also consider the set [[p]]iC = {t ∈ TΣ | p(t) ∈ T iC (∅)} where the
operator TC is defined as follows. Assume that M is any set of ground facts p(t).
Then TC(M) is the set of all ground facts θB0 where θ is a ground substitution,
B0 ⇐ B1, . . . , Bm, φ is in C, θB1, . . . , θBm ∈ M , and θ |= φ. The set [[p]]iC thus
consists of all trees t where the fact p(t) can be derived by at most i rounds of
fixpoint iteration, and we have

MC =
⋃
{T iC (∅) | i ≥ 0}

Consider as an example the setA consisting of two (non-constrained) Horn clauses:

p(f(X1))⇐ p(X1) and p(a)⇐

Here, we have [[p]]iA = {f j(a) | 0 ≤ j ≤ i − 1}, the number of elements in [[p]]iA
is given by |[[p]]iA| = i, and the language accepted (or recognized) by p is given by

[[p]]A =
⋃
{[[p]]iA | i ≥ 0} = {f i(a) | i ≥ 0} = {a, f(a), f(f(a)), ...}

H1-clauses, normal clauses, automata clauses. Let us introduce the subclasses
of Horn clauses which we consider here. A Horn clause is anH1-clause if the term
t in the head p(t) is flat and linear, i.e., t contains at most one constructor, and no
variable occurs twice in t. For convenience, we adopt the convention that the vari-
ables in the heads of H1-clauses are enumerated X1, . . . , Xk, i.e., an H1-clause
has one of these two forms:

p(X1) ⇐ α, φ or p(f(X1, . . . , Xk))⇐ α, φ

for an arbitrary sequence of literals α and an arbitrary constraint φ — where the
case of atoms:

p(a)⇐ α, φ

is subsumed by choosing k = 0. Moreover for a distinction, variables that do not
occur in the head will be denoted Y, Y1, . . .

An H1-clause is simple if no literal qj(tj) in the body contains a constructor,
i.e., each tj is a variable. The Horn clause is a normal clause if it is of the form:

q(f(X1, . . . , Xk))⇐ p1(Xi1), . . . , pr(Xir), φ or q(X1)⇐ φ

where all variables occurring in the body of the clause also occur in the head.
Note that in the notation of such clauses, the variable Xi is distinct from Xj for

18 Chapter 2. Horn Clauses and Constraints

i 6= j; predicates pi, pj however may coincide for i 6= j. Also the (universal)
quantification of variables is implicit in each clause.

The clause is an automata clause if additionally each variable Xi occurring
in the head occurs exactly once in the literals occurring in the body and the head
contains exactly one constructor, i.e., the clause has the form:

q(f(X1, . . . , Xk))⇐ p1(X1), . . . , pk(Xk), φ .

In particular, each normal clause as well as each automata clause is anH1-clause.

Example 6 Neither the clause

p(f(X,X))⇐ q(X)

nor the clause
p(f(X, g(Y)))⇐ q(h(Y))

isH1: the first one is not linear while the second one has more than one constructor
in the head. The clause:

p(f(X, Y))⇐ p(f(X, g(Y))), X 6= Y

on the other hand is an H1-clause with a disequality. Moreover, the following
clauses are simple, normal, and automata clauses, respectively:

p(X) ⇐ q1(X), q2(X), q(Y), X 6= h(Y, a)
p(f(X, Y)) ⇐ q1(X), q2(X), q(Y), X 6= h(Y, a)
p(f(X, Y)) ⇐ q1(X), q2(Y), X 6= h(Y, a)

�

Since Σ is fixed, it shall be assumed in the following that there always is a
predicate > which is defined by a set of automata clauses so that it accepts every
term. In particular, for Σ = {a1, . . . , an} the following clauses are implicitly
defined by this convention:

>(ai(X1, . . . , Xki))⇐ >(X1), . . . ,>(Xki) 1 ≤ i ≤ n

where ki = ar(ai) ≥ 0 denotes the arity of the symbol ai.
A small note on tree automata versus automata clauses: in the following, we

do not differentiate between tree automata with constraints and finite sets of au-
tomata clauses. The predicates and clauses of a (finite) set of automata clauses
correspond to the states and transition rules of the corresponding tree automaton
with constraints and vice versa. For convenience, automata are usually defined
together with a subset of distinguished final states. In this work, we consider all
languages accepted by single predicates (and their properties such as emptiness)
so that it is not necessary to define a distinguished set of final predicates.

2.1 Basics 19

Constraints — an overview. The described classes are generic in the kind of
(atomic) constraints that are used. For the basic constraints, we distinguish

• equalities (l = r) and disequalities (l 6= r),

and the following three types of left-hand and right-hand sides that are compared:

• terms: term (dis)equalities,

• subterms: path (dis)equalities,

• homomorphic images of terms: hom-(dis)equalities.

The notations term constraint, path constraint, and hom-constraint denote either
an equality or a disequality. For convenience, here is a table with all instantiations
of (combinations of) constraints that we consider, together with the sections where
they first occur. The framed entries indicate the novel classes introduced in the
publications [RS10], [SR11], [SR12], [RS12].

Type of constraint Example Ext. TA Ext. H1 D. TA D.H1

Brother constraints X = Y 4 4 Yes Yes
Term disequalities X 6= f(a, Y) 24 39 Yes Yes
Term constraints X = g(Y) 23 34 Yes No
Path disequalities X.(f, 2) 6= g(a, b) 51 51 Yes Yes
Path constraints X.(f, 2) = Y.(g, 1) 4 — No No
Hom-disequalities g(X) 6=H a 66 65 Yes Yes
Hom-constraints X =H f(Y, b) 36 — No No

The column Ext. TA (Ext. H1) contains the page where the extension of tree
automata (H1) with the corresponding type of constraint is introduced, while the
column D. TA (D.H1) indicates whether emptiness (satisfiability) is decidable
for the class of extended automata (H1-clauses). H1-clauses with path or hom-
equalities are not directly considered since already the corresponding subsets of
automata clauses with path or hom-equalities are undecidable classes. On the
other hand, we also consider refinements of the tabled classes where needed (e.g.,
clauses in automata form but with complex heads and auxiliary variables are con-
sidered in Section 3.3.1).

Using dynamic programming, the following proposition is obtained:

Lemma 1 Membership (of a ground term) is decidable for every finite set A of
automata clauses extended with term, path, or hom-constraints.

20 Chapter 2. Horn Clauses and Constraints

Proof. We observe that for a given ground substitution θ and a constraint φ,
it is decidable whether θ |= φ. For a ground term t′, let validA(t′) denote the
set of all predicates p with t′ ∈ [[p]]A. The algorithm for testing membership of
a term t determines for all subterms t′ of t the set validA(t′). Then t′ ∈ [[p]]A
iff p ∈ validA(t′). The algorithm proceeds bottom-up over t. Assume that the
algorithm has already determined the sets validA(t′) for all proper subterm t′ of a
term t1. In order to determine validA(t1), the algorithm iterates over all clauses of
A. The set validA(t1) then consists of all predicates p for which there is a clause
p(s) ⇐ p1(X1), . . . , pk(Xk), φ with t1 = sθ, θ = {X1 7→ s1, . . . , Xk 7→ sk},
such that for all i = 1, . . . , k, pi ∈ validA(si) and θ |= φ. Thus, the set validA(t′)
can be computed for all subterms t′ of t, which completes the proof. �

Normal clauses versus automata clauses. Every setN of normal clauses with-
out constraints can be transformed to an equivalent set A of automata clauses
whose predicates correspond to conjunctions p1 ∩ . . . ∩ pj, j ≥ 0, of original
predicates pi from N . This also holds for constrained Horn clauses.

Lemma 2 For every finite set N of normal clauses, extended with term, path,
or hom-constraints, a finite set A of automata clauses (with term, path, or hom-
constraints) can be effectively constructed with [[p]]N = [[p]]A for each predicate p
of N .

Proof. The construction is a variant of the subset construction for finite tree
automata. For every subset A of predicates occurring in N , we introduce a
new predicate [A]. Now consider a subset A of predicates of N and a family
p(f(X1, . . . , Xk)) ⇐ αp, φp of clauses from N (p ∈ A). Let Bp,j denote the set
of all predicates q such that αp contains the literal q(Xj). Then the new set A has
the clause:

[A](f(X1, . . . , Xk))⇐ [B1](X1), . . . , [Bk](Xk), ψ

where Bj =
⋃
p∈ABp,j and ψ =

∧
p∈A φp. And these are the only clauses of A.

Then for all subsets A,
[[[A]]]A =

⋂
p∈A

[[p]]N

Thus by renaming the predicates [p] of A into p, we obtain the required result. �

Example 7 For terms t and constructors s, let s0(t) = t, si+1(t) = s(si(t)).
Consider the set N of normal clauses:

adult(pers(X1, X2)) ⇐ age(X1), name(X2), old(X1)
old(X1) ⇐

∧
i≤18X1 6= si(0)

age(0) ⇐
age(s(X1)) ⇐ age(X1)

2.1 Basics 21

In order to construct a corresponding finite set of automata clauses, the variables
X1 occurring in the heads of normal clauses p(X1) ⇐ φ are instantiated with
all terms c(X1, . . . , Xk), c a constructor of arity k ≥ 0. Additionally, we intro-
duce auxiliary predicates for all conjunctions of predicates, possibly occurring in
preconditions. For the set N of normal clauses, we obtain the set A of clauses:

adult(pers(X1, X2)) ⇐ age_old(X1), name(X2)
old(s(X1)) ⇐ >(X1),

∧
i≤17X1 6= si(0)

age_old(s(X1)) ⇐ age(X1),
∧
i≤17X1 6= si(0)

age(0) ⇐
age(s(X1)) ⇐ age(X1)
>(0) ⇐
>(s(X1)) ⇐ >(X1)
>(pers(X1, X2)) ⇐ >(X1),>(X2)
old(pers(X1, X2)) ⇐ >(X1),>(X2)

From the three possible new clauses defining the predicate old , we only kept the
clauses for the constructors s and pers , since the precondition of the clause

old(0)⇐
∧
i≤18

0 6= si(0)

contains the disequality 0 6= 0 which is unsatisfiable. In order to illustrate the
required conjunctions, we explicitly specify the new predicate > that denotes
the empty conjunction of predicates, i.e., accepts all terms in TΣ where Σ =
{0, s, pers} is given by the atoms and constructors occurring in N . The new
predicate age_old represents the conjunction of the predicates age and old . �

Boolean combinations of single constraints. As we allow the constraints φ to
be finite conjunctions of atomic constraints, the constraint language is always
closed under conjunction. In a certain sense, it is also closed under disjunction,
because a constraint φ1 ∨ φ2 of a clause

h⇐ α, φ1 ∨ φ2

can be simulated by splitting the core clause h⇐ α, obtaining the two clauses:

h⇐ α, φ1 and h⇐ α, φ2

Thus, it is possible to realize any positive Boolean combination of atomic con-
straints by transforming it to DNF (disjunctive normal form) φ1 ∨ . . . ∨ φl and
defining clauses h⇐ α, φi for 1 ≤ i ≤ l.

22 Chapter 2. Horn Clauses and Constraints

However, the constraint language is not automatically closed under negation.
This is only the case if the set of Boolean operators itself is closed under nega-
tion, i.e., if for all ◦ ∈ B we have some ◦′ ∈ B such that ¬(s ◦ t) is logically
equivalent to s ◦′ t. As we define all considered equalities and disequalities in
such a way that they are the negations of each other, the closure conditions can be
simplified as follows. For a class of constraints of a certain kind (term, path, or
hom-constraints), the constraint language always enjoys positive Boolean closure,
and it enjoys full Boolean closure if both equalities and disequalities are allowed.

Normal forms of term constraints. If either only equalities or only disequa-
lities are used, the constraint language is closed only under positive Boolean
combinations (disjunction and conjunction). For term constraints, we observe
that an equality s = t of terms s, t is equivalent to a finite conjunction Xi1 =
t1 ∧ . . . ∧ Xij = tj of equalities where all left-hand sides are variables — while
a disequality s 6= t is equivalent to a disjunction Xi1 6= s1 ∨ . . . ∨ Xir 6= sr of
disequalities.

Example 8 The following clause with one term equality and one term disequal-
ity:

h ⇐ p(X1), q(X2), r(X3), g(X1, a) = g(X3, X2), f(X1, X2) 6= f(X2, X3)

is equivalent to the clause:

h ⇐ p(X1), q(X2), r(X3), (X1 = X3, X2 = a,X1 6= X2)
∨ (X1 = X3, X2 = a,X2 6= X3)

which in turn is equivalent to the two clauses:

h ⇐ p(X1), q(X2), r(X3), X1 = X3, X2 = a,X1 6= X2

h ⇐ p(X1), q(X2), r(X3), X1 = X3, X2 = a,X2 6= X3

�

A term constraint φ is in normal form if it is either false or a conjunction of atomic
constraints where all left-hand sides of equality constraints are variables Xi, and
the following holds:

(1) If Xi = Xj occurs in φ, then i < j; and

(2) If an equality constraint Xi = t occurs in φ, then Xi does not occur in any
other atomic constraint of φ.

The following fact is well-known.

2.2 Tree Automata with Term Constraints 23

Lemma 3 For every term constraint φ, a disjunction φ′ ≡ φ1 ∨ . . . ∨ φr of term
constraints φi can be constructed such that each φi is in normal form and φ is
equivalent to φ′, i.e., for all ground substitutions θ,

θ |= φ iff θ |= φ′

In order to construct φ′, φ is first transformed to an equivalent positive Boolean
formula over atomic constraints where all left-hand sides are variables. Then this
formula is transformed to DNF φ′1 ∨ . . . ∨ φ′r. After that, we further proceed
with each φ′i separately. Let φ′i ≡ ψ1 ∧ ψ2 where ψ1 and ψ2 consist of all equality
constraints and all disequality constraints of φ′i, respectively. If ψ1 is unsatisfiable,
we return false for φi, i.e., remove it from the disjunction. Otherwise, a most
general unifier σ of ψ1 can be constructed with the properties (1), (2). Assume
that σ = {Xj1 7→ t1, . . . , Xjs 7→ ts}. Then the corresponding conjunction φi is
given by:

Xj1 = t1, . . . , Xjs = ts, ψ2σ

�

Example 9 Consider φ ≡ X1 = X2, X1 = f(X4), X2 = f(X3). The normal
form of this term constraint is φ′ ≡ X1 = f(X4), X3 = X4, X2 = f(X4). �

In contrast to term constraints, atomic hom-constraints in general cannot so easily
be split in such a way that all left-hand sides are variables. As a small example,
consider the disequality

g(X) 6=H a

which would be vacuously true in case of a term constraint. If H is defined in
such a way that it deletes the constructor g (i.e., H = {g 7→ X1, . . .}), then for the
substitution θ = {X 7→ a}, the disequality is false (independent of the value of
Ha in this case).

2.2 Tree Automata with Term Constraints
In [RS10], we have introduced TCA (term-constrained automata), the class of tree
automata with term equality and term disequality constraints. Such automata are
strictly more expressive than the automata with constraints between brothers of
[BT92]. In the Horn clause formalism, constraints between brothers are equali-
ties and disequalities between variables while TCA allow comparisons between
arbitrary terms over the variables that occur in the core clause. Since the con-
straint language of TCA includes both disequality and equality constraints, it is
closed under complementation. It is also closed under intersection, and under dis-
junction – when representing disjunctions as alternative clauses that only differ

24 Chapter 2. Horn Clauses and Constraints

in their constraints. Therefore, the languages accepted by TCA are also closed
under Boolean operations. As the main result for TCA we show that the standard
decision problems for tree automata languages, and, in particular, emptiness are
decidable for this class of automata with constraints. Roughly, the main idea for
deciding emptiness of TCA is based on substitutions of variables X with terms t
for equalities X = t occurring in normal form term constraints. In the end, this
yields a class of tree automata with complex heads and term disequalities, which
we consider in the following section. We then return to TCA in Section 2.2.2.

2.2.1 Generalized Tree Automata with Term Disequalities
This class TCA 6= of generalized tree automata with term disequalities allows the
heads of clauses to contain arbitrary terms t with vars(t) = {X1, . . . , Xk} in-
stead of requiring the form f(X1, . . . , Xk). Thus, these terms may be non-linear
(multiple occurrences of the same variable) and of arbitrary depth.

Ordinary tree automata with term disequalities can be represented as finite sets
of Horn clauses of the form:

p(X1, . . . , Xk)⇐ p1(X1), . . . , pk(Xk), φ

where φ is finite conjunction of term disequalities:

φ = s1 6= t1 ∧ . . . ∧ sn 6= tn

for terms si and ti over variables from the set {X1, . . . , Xk}.
TCA 6= constitute a generalization of this model that allows the heads to contain
arbitrary terms over (all) the variables X1, . . . , Xk. Thus, the clauses of a TCA 6=
A have the form:

p(t)⇐ p1(X1), . . . , pk(Xk), φ (k ≥ 0)

where φ is a conjunction of disequalities si 6= ti with vars(φ) ⊆ {X1, . . . , Xk},
and t is a term with vars(t) = {X1, . . . , Xk}. The number of disequalities in a
clause c ∈ A is denoted dc(c).

With TCA 6=, it is also possible to express certain kinds of equalities. This is not
surprising as TCA 6= may be the result of our transformation of a TCA to a TCA6=
which, while not having explicit equalities, still is equivalent to the original au-
tomaton with equality constraints.

Example 10 The (non-regular) language L = {f(t, t) | t ∈ TΣ} is expressible by
the TCA 6=

p(f(X1, X1)) ⇐
�

2.2 Tree Automata with Term Constraints 25

By Lemma 1, the membership problem is decidable for TCA by an algorithm using
dynamic programming. In the exact same manner, membership can be decided for
TCA 6=. We obtain:

Lemma 4 TCA 6=-membership is decidable, i.e., for every TCA6= A, predicate p,
and ground term t, it is decidable whether or not t ∈ [[p]]A. �

The remainder of this section contains a proof that also emptiness is efficiently
decidable for TCA 6=. Assume that the predicate q is defined by a TCA 6= A. An
algorithm for semi-deciding non-emptiness of q computes for i ≥ 1 the sets [[p]]iA
for all predicates p until [[q]]iA 6= ∅. Thereby, the sets [[p]]iA can be computed from
the sets [[p′]]i−1

A by applying the implications c ∈ A, starting from [[p]]0A = ∅ for all
predicates p.

For automata without constraints, each round i ≥ 1 finds all recognized trees
of depth at most i. Assume that n predicates occur in a given set A of automata
clauses. Since each predicate pwith [[p]]A 6= ∅ recognizes at least one tree of depth
≤ n, after a linear number of rounds (non-)emptiness is decided. Constraints,
however, can delay the derivation process: if the term disequality constraint φ of
a clause c ≡ p(t) ⇐ p1(X1), . . . , pk(Xk), φ is false for every substitution θ with
Xiθ ∈ [[pi]]

j
A, i ∈ {1, . . . , k}, then c cannot produce a tree in round j + 1 even if

[[pi]]
j
A 6= ∅ for all i. Still, c may later produce a tree for a suitable combination of

trees ti ∈ [[pi]]
m
A ,m > j.

We establish an upper bound for the number of rounds which are needed in
order to decide emptiness of generalized tree automata with term disequalities.
By a counting argument, it suffices to increase the sets [[p]]iA only up to a fixed
number of trees. The claim is that for proving non-emptiness of a predicate q, at
most (

∑
c∈A dc(c)) + 1 trees for each predicate p 6= q suffice. This claim is based

on the following lemma, which says that each term disequality constraint φ of a
clause c “filters out” at most dc(c) trees.

Lemma 5 Let A be a TCA 6= and c ∈ A a clause q(t) ⇐ p1(X1), . . . , pk(Xk), φ.
Assume that there is a number d ≥ 0 such that ∃θ ∀i ∈ {1, . . . , k} Xiθ ∈ [[pi]]

d
A

∧θ |= φ. Then it holds that |[[q]]d+1
A | ≥ max

1≤i≤k
{|[[pi]]dA| − dc(c)}. �

Based on this observation, the following theorem can be proved.

Theorem 1 Let A be a TCA6= which has n predicates. Then for all predicates p it
holds that [[p]]A = ∅ if and only if [[p]]

n(d+1)
A = ∅ where d =

∑
c∈A dc(c). �

Original proofs for both the lemma and the theorem can be found in [RS10].
Instead of repeating them here, more general versions of these results are proved
in Section 3.3 — namely Lemma 19 and Theorem 22. Although the principal

26 Chapter 2. Horn Clauses and Constraints

proof methods agree, the more general versions additionally take care of auxiliary
variables and decide k-finiteness instead of just emptiness.
In particular, by Theorem 1 emptiness is decidable for TCA 6=.

Corollary 6 For every TCA6= A, it can be effectively decided for each predicate p
whether [[p]]A = ∅. �

2.2.2 Tree Automata with Term Equalities and Disequalities
We now return to automata with term constraints (TCA). There, atomic constraints
are either disequalities s 6= t or equalities s = t for terms s and t. So the clauses
are of this form:

p(b(X1, . . . , Xk)) ⇐ p1(X1), . . . , pk(Xk), φ

where b ∈ Σ, and φ is a conjunction of equalities and disequalities which may
only mention variables from {X1, . . . , Xk}.

Term constraints versus brother constraints. Let us call the automata of Bo-
gaert and Tison with constraints between brothers VCA (variable-constrained au-
tomata). In addition to constraints on variables as in VCA, TCA in general also
allow for comparisons likeXi 6= f(Xj), which express relations between subtrees
at different depths in the given trees. We prove the following theorem.

Theorem 2 TCA are strictly more expressive than VCA.

Proof. By definition, each VCA V can be considered as a TCA defining the same
language. For the reverse direction, consider the TCA A = {c1, c2, c3} with:

c1 ≡ p(b(X1, X2)) ⇐ q(X1), q(X2), X1 = f(X2)
c2 ≡ q(f(X1)) ⇐ q(X1)
c3 ≡ q(a) ⇐

Here, [[p]]A = {b(f i+1(a), f i(a)) | i ≥ 0}. We show by contradiction that no VCA
A′ exists that defines a predicate p′ with [[p′]]A′ = [[p]]A. Let us therefore assume
that such a VCA exists. Since [[p]]A contains infinitely many elements, but A′ has
only finitely many clauses, A′ must contain a clause c:

p′(b(X1, X2))⇐ q1(X1), q2(X2), φc

such that c can produce infinitely many trees t ∈ [[p′]]A′ ⊆ [[p]]A. Let t1, t2 be two
such trees with t1 = b(f i+1(a), f i(a)) and t2 = b(f j+1(a), f j(a)), j > i ≥ 0. By
construction, we have:

2.2 Tree Automata with Term Constraints 27

(1) f j+1(a) ∈ [[q1]]A′ , f i(a) ∈ [[q2]]A′ , but

(2) b(f j+1(a), f i(a)) /∈ [[p′]]A′ ⊆ {b(fk+1(a), fk(a)) | k ≥ 0}, and

(3) t1, t2 ∈ [[p′]]A′ by application of c.

In the following we show that every combination of (dis)equality constraints be-
tween X1, X2 in φc leads to a contradiction:

(i) If either X1 6= X1 or X2 6= X2 occurs in φc, then φc is unsatisfiable and
therefore (3) cannot hold.

(ii) If either X1 = X2 or X2 = X1 occurs in φc, neither t1 nor t2 can be
generated by c, again contradicting (3).

(iii) Both X1 = X1 and X2 = X2 are tautologies. Therefore, assume now that
φc either is a tautology or is equivalent to X1 6= X2. Then f j+1(a) 6= f i(a),
and therefore θ |= φc for θ(X1) = f j+1(a), θ(X2) = f i(a). We conclude
that b(f j+1(a), f i(a)) ∈ [[p′]]A′ , contradicting (2).

�

Path constraints can simulate term constraints. While TCA are strictly more
expressive than VCA, they are strictly less expressive than automata with path
constraints. This is indicated by the fact that emptiness is undecidable for au-
tomata with path equalities [Mon81]. Recall that paths are sequences of integers
that identify subterms. E.g., the constraint X1.2 = X2 in the body of a clause
p(h(X1, X2)) ⇐ r(X1), s(X2), X1.2 = X2 expresses that the second argument
of X1 must exist and equal X2. Likewise, the constraint X1.2 6= X2 in the body
of a clause p(h(X1, X2)) ⇐ r(X1), s(X2), X1.2 6= X2 expresses that either the
path X1.2 does not exist (i.e., the root symbol is of arity at most 1) or the second
subterm of the value of X1 is different from the value of X2. It is not difficult to
see that automata with path constraints can simulate TCA.

Lemma 7 For every TCA A, a tree automaton with path constraints A′ can be
constructed such that [[p]]A = [[p]]A′ for every predicate p.

Proof sketch. Assume that the maximal depth of a term occurring in a constraint
of A is k. The idea of the construction is that A′ records the topmost constructors
up to depth k of the current argument within the predicate and then enforces the
required equalities or disequalities by means of path constraints. The clause

p(h(X1, X2))⇐ r(X1), s(X2), X1 = f(X2, X2)

28 Chapter 2. Horn Clauses and Constraints

for instance, is simulated by the clauses:

ph(_,_)(h(X1, X2))⇐ rf(_,_)(X1), st(X2), X2 = X1.1, X2 = X1.2

for arbitrary patterns t of depth 1. �

Determinism, Closure. A finite set A of automata clauses with (term) con-
straints over a fixed ranked alphabet Σ is called deterministic if for each ground
term t ∈ TΣ there is at most one predicate p with t ∈ [[p]]A. If at least one predi-
cate p with t ∈ [[p]]A exists for each ground term, then A is called total. A is total
deterministic if A is both total and deterministic, i.e, if for each t ∈ TΣ there is
exactly one predicate p with t ∈ [[p]]A.

It shall now be shown that for every TCA A, an equivalent total deterministic
automatonA′ can be constructed with [[p]]A′ = [[p]]A for all p by means of the pow-
erset construction. The powerset construction is a standard automata technique.
A general construction for constrained automata can, e.g., be found in [CDG+07].
For TCA, a powerset automatonA′ may be constructed as follows. The predicates
of A′ are taken from the powerset of A’s predicates. For notational convenience,
let us assume that clauses without explicit constraints occurring in A are replaced
by corresponding clauses with an explicit constraint φ (equivalent to true). Then
we define

P (b(X1, . . . , Xk))⇐ P1(X1), . . . , Pk(Xk), φ
′ ∈ A′

if and only if P is a subset of the set

{p | p(b(X1, . . . , Xk))⇐ p1(X1), . . . , pk(Xk), φ ∈ A, p1 ∈ P1, . . . , pk ∈ Pk}

and
φ′ =

∧
p∈P

(
∨

p(b(X1,...,Xk))⇐p1(X1),...,pk(Xk),φ′′∈A
pi∈Pi

φ′′)

∧
∧
p/∈P

(
∧

p(b(X1,...,Xk))⇐p1(X1),...,pk(Xk),φ′′∈A
pi∈Pi

¬φ′′) .

Note that in the construction of φ′, an atomic constraint s = t may result from
a constraint s 6= t and vice versa. The construction thus relies on the closure of
the constraint language not only under positive Boolean operations but also under
negation. Since each constraint occurring in A′ can be transformed to DNF ψ,
each clause of A′ is equivalent to a finite set of clauses in TCA form. The sizes of
the DNFs are exponentially bounded. We therefore conclude:

Theorem 3 For every TCA, an equivalent total deterministic TCA exists and can
be constructed in exponential time. �

2.2 Tree Automata with Term Constraints 29

Example 11 The powerset construction for the setA consisting of the two clauses

p(a) ⇐
p(f(X1)) ⇐ p(X1), X1 = a

over Σ = {a, f} results in the clauses:

{p}(a) ⇐
{p}(f(X1)) ⇐ {p}(X1), X1 = a
∅(f(X1)) ⇐ {p}(X1), X1 6= a
∅(f(X1)) ⇐ ∅(X1)

If Σ also contains a symbol b of arity 0, we additionally must add the clause
∅(b)⇐. �

Let A be a TCA with predicates p1, . . . , pn, and A′ the equivalent total determin-
istic automaton according to the presented powerset construction. Recall that TΣ

denotes the set of all trees constructible with symbols of Σ. Intersection, union,
and complementation of languages defined by the predicates pi of A can be ob-
tained by the following three equivalences.

1. [[pi1]]A ∩ . . . ∩ [[pim]]A =
⋃
{[[P]]A′ | P ⊇ {pi1 , . . . , pim}}

2. [[pi1]]A ∪ . . . ∪ [[pim]]A =
⋃
{[[P]]A′ | ∃j ∈ {1, . . . ,m} : pij ∈ P}

3. TΣ \ [[pi]]A =
⋃
{[[P]]A′ | pi /∈ P}

Let q1, . . . , qn′ denote the predicates of A′. In order to determine the union of a
subset qi1 , . . . , qir of those predicates, we introduce a new predicate q and add the
following clauses to A′.

q(f(X1, . . . , Xk))⇐ α, φ qij(f(X1, . . . , Xk))⇐ α, φ ∈ A′, 1 ≤ j ≤ r

Then [[q]]A′ =
⋃
{[[qij]]A′ | 1 ≤ j ≤ r}. Altogether, we obtain:

Theorem 4 Tree automata with term equalities and disequalities (TCA) are closed
under union, intersection, and complementation. �

From Boolean closure and decidability of emptiness, it follows that also decision
problems such as universality or inclusion are decidable for TCA.

Saturating deterministic TCA. Recall from Section 2.1 (page 22) that each
term constraint φ can be transformed to normal form, i.e., a form where all left-
hand sides of equality constraints are variables, and the following holds:

1. if Xi = t occurs in φ, then Xi does not occur anywhere else in φ, and

30 Chapter 2. Horn Clauses and Constraints

2. if Xi = Xj occurs in φ, then i < j;

Let A denote a deterministic TCA. Our goal is to construct an equivalent deter-
ministic TCA A′ which is saturated. This means that every clause c given by

H ⇐ p1(X1), . . . , pk(Xk), φ

has the following properties. Let L and R denote the set of variables occurring
in left-hand sides and right-hand sides of equality constraints in φ, respectively.
Then

1. φ is in normal form;

2. For all ground substitutions θ : V → TΣ with θ |= φ and Xiθ ∈ [[pi]]A′ for
all Xi ∈ R, Xjθ ∈ [[pj]]A′ also for all Xj ∈ L.

In this case, the literals pj(Xj), Xj ∈ L, are redundant and therefore can be re-
moved. Let φ ≡

∧
Xi∈L(Xi = ti) ∧ φ′ where φ′ contains disequality constraints

only. Let τ : L → TΣ(R) denote the substitution τ = {Xi 7→ ti | Xi ∈ L}. Let
Xj1 , . . . , Xjr be an enumeration of the variables of the clause which are not in L.
Then the clause:

Hτ ⇐ pj1(Xj1), . . . , pjr(Xjr), φ
′

has disequality constraints only and is equivalent to the clause c. Thus, we obtain:

Theorem 5 For every saturated deterministic TCA A, a TCA6= A′ can be con-
structed such that [[p]]A = [[p]]A′ for every predicate p. �

In particular, this means that emptiness for saturated deterministic TCA is decid-
able.
Saturation steps replace (parts of) preconditions p(X), X = t by constraints
which express that if the leaves of t are accepted by the enforced predicates, then
p(t) also holds. The enforced predicates of variables Xi are given through the lit-
erals p′(Xi) of the precondition while for atoms a there can be only one predicate
pa which accepts a in a deterministic automaton. In particular, pa is given through
a clause pa(a)⇐ φ where φ is equivalent to true.

Example 12 Consider the clause

q(f(X1, X2, X3)) ⇐ q(X1), p(X2), q(X3), X3 = g(f(X2, X1, a), X2)

Assume that a ∈ [[q]]A. Then Figure 2.3 shows one possible construction for the
right-hand side of the constraint, using clauses

r(f(X1, X2, X3)) ⇐ p(X1), q(X2), q(X3), φ1

q(g(X1, X2)) ⇐ r(X1), p(X2), φ2

2.2 Tree Automata with Term Constraints 31

We have to construct a constraint ψ which expresses the conditions under which,
for a given ground substitution θ = {X1 7→ t1, X2 7→ t2} with

t1 ∈ [[q]]A, t2 ∈ [[p]]A

these two clauses can be applied. I.e., if ψ |= θ, then the following must also hold:

f(t2, t1, a) ∈ [[r]]A and g(f(t2, t1, a), t2) ∈ [[q]]A

We choose:

ψ = φ1[X2/X1, X1/X2, a/X3] ∧ φ2[f(X2, X1, a)/X1, X2/X2]

Then the variableX3 in the head can be substituted by the term g(f(X2, X1, a), X2),
and q(X3), X3 = g(f(X2, X1, a), X2) can be replaced by ψ. Thus, the new clause

q(f(X1, X2, g(f(X2, X1, a), X2))) ⇐ q(X1), p(X2), ψ

is obtained and added to the current set of clauses. If ψ contains equality con-
straints, the resulting clause is not saturated yet. The constraint ψ, however, can
now only contain X1, X2 while variable X3 has been removed. Intuitively, this is
the reason that saturation terminates. �

g

f

X2 : p X1 : q a : q

X2 : p

: r

: qX3 =

q(g(X1, X2))⇐ r(X1), p(X2), φ2

r(f(X1, X2, X3))⇐ p(X1), q(X2), q(X3), φ1

Figure 2.3: Building the right-hand side of X3 = g(f(X2, X1, a), X2) where a,
X1, and X2 are recognized by q, q, and p, respectively

Example 13 Consider the deterministic set of clauses C = {c1, c2, c3, c4} with

c1 ≡ p(h(X1, X2)) ⇐ p1(X1), p2(X2), X1 = f(X2, X2), X1 6= a
c2 ≡ p1(f(X1, X2)) ⇐ p2(X1), p2(X2), X2 = a
c3 ≡ p2(g(X1)) ⇐ p2(X1)
c4 ≡ p2(a) ⇐

32 Chapter 2. Horn Clauses and Constraints

over Σ = {a, h, f, g}. Here, clauses c2, c3 and c4 are saturated, while clause c1 is
not. By adding the constraint X2 = a, we obtain from c1 the clause:

p(h(X1, X2))⇐ p1(X1), p2(X2), X1 = f(X2, X2), X2 = a,X1 6= a

or:
p(h(X1, X2))⇐ p1(X1), p2(X2), X1 = f(a, a), X2 = a,X1 6= a

which is saturated and equivalent to c1. The set C ′ of an equivalent TCA6= thus is
given by C ′ = {c′1, c′2, c3, c4} with

c′1 ≡ p(h(f(a, a), a)) ⇐
c′2 ≡ p1(f(X1, a)) ⇐ p2(X1)

and the languages of the predicates p, p1, p2 are given by [[p]]C = {h(f(a, a), a)},
[[p1]]C = {f(gi(a), a) | i ≥ 0}, and [[p2]]C = {gi(a) | i ≥ 0}. �

In the following, let A denote a fixed deterministic TCA. We observe:

Theorem 6 Let V denote a set of variables. For every Xi ∈ V, let pi denote
a predicate. Then for every term t ∈ TΣ(V) and predicate p, a term constraint
Ψt,p can be constructed such that for all ground substitutions θ : V → TΣ with
Xiθ ∈ [[pi]]A for all Xi ∈ V,

tθ ∈ [[p]]A iff θ |= Ψt,p

Proof. We proceed by induction on the structure of t, with the two base cases:

(1) if t = Xi, Xi ∈ V, then Ψt,p is true if p = pi, and false otherwise;

(2) if t = a, a ∈ Σ, then Ψt,p is true if p(a)⇐ φ ∈ A where φ is equivalent to
true, and false otherwise.

In both cases, the assertion of the theorem is satisfied. Note for case (2) that φ is
variable-free, and therefore it is either equivalent to true or equivalent to false.

For the induction step, let t = f(t1, . . . , tk). Let θ′ denote the substitution with
Xiθ

′ = ti for i = 1, . . . , k. Then we define Ψt,p as the disjunction:∨
{φθ′∧Ψt1,p1∧ . . .∧Ψtk,pk | p(f(X1, . . . , Xk))⇐ p1(X1), . . . , pk(Xk), φ ∈ A}

Now assume that θ is a ground substitution such that tθ ∈ [[p]]A. By definition,
tθ = f(t1θ, . . . , tkθ). Since A is deterministic, there exist predicates p1, . . . , pk
and a clause p(f(X1, . . . , Xk)) ⇐ p1(X1), . . . , pk(Xk), φ such that the following
holds:

2.2 Tree Automata with Term Constraints 33

1. tiθ ∈ [[pi]]A for all i = 1, . . . , k;

2. θ′θ |= φ where Xiθ
′θ = tiθ.

By induction hypothesis, the first item implies that θ |= Ψti,pi for all i. From
the second item, we deduce that θ |= φθ′ as well, and therefore by definition
θ |= Ψt,p. For the reverse implication, assume that θ |= Ψt,p. Then some clause
p(f(X1, . . . , Xk))⇐ p1(X1), . . . , pk(Xk), φ exists such that

1. θ |= Ψti,pi for all i, and

2. θ |= φθ′.

By induction hypothesis, we conclude from the first item that tiθ ∈ [[pi]]A for all i.
By the second item, θ′θ |= φ. Overall, we therefore can apply the clause to the ti
to produce t, i.e., t ∈ [[p]]A. �

Assume now that H ⇐ p1(X1), . . . , pk(Xk), φ is an automata clause with the
constraint φ in normal form

(
∧
Xi∈L

Xi = ti) ∧ φ′

where φ′ consists of disequalities only. (The set L consists of all left-hand sides
of φ’s equalities.) Let Ψti,pi be the constraints as provided by Theorem 6 for the
right-hand sides ti of Xi ∈ L in φ. Let φ denote the constraint:

φ ∧
∧
{Ψti,pi | Xi ∈ L}

Then the following holds:

Lemma 8 For a ground substitution θ, the following statements are equivalent:

1. θ |= φ and Xiθ ∈ [[pi]]A for all i;

2. θ |= φ and Xiθ ∈ [[pi]]A for all Xi 6∈ L.

Proof. The constraint φ need not be in normal form, but is equivalent to a (pos-
sibly empty) finite disjunction of constraints φ1 ∨ . . . ∨ φs where each φj is in
normal form. The clause H ⇐ p1(X1), . . . , pk(Xk), φ then is equivalent to the set
of clauses cj, j = 1, . . . , s, given by

H ⇐ p1(X1), . . . , pk(Xk), φj

Let Lj denote the set of left-hand sides of equalities in φj . Then L ⊆ Lj for all
j. Whenever L = Lj , the clause cj is saturated. Otherwise, we apply the same

34 Chapter 2. Horn Clauses and Constraints

procedure to the clause cj . Since L ⊂ Lj , i.e., the set of variables occurring in
left-hand sides of equalities has become strictly larger, this refinement may occur
at most at k levels. �

Overall, we therefore have proved the following theorem:

Theorem 7 For every deterministic TCAA, a saturated deterministic TCAA′ can
be effectively constructed such that [[p]]A = [[p]]A′ for every predicate p. �

By Theorem 3, for every TCA, an equivalent deterministic TCA can be con-
structed, which, by Theorem 7, can be saturated. By Theorem 5, we furthermore
know that every saturated deterministic TCA can be transformed to an equivalent
TCA 6= — to which we can apply the emptiness test from Corollary 6. In summary,
we therefore have obtained:

Theorem 8 For every TCA A, it can be effectively decided for every predicate p
whether [[p]]A = ∅. �

2.3 Complex Preconditions, Auxiliary Variables
In this section, it shall be proven that term equalities in combination with com-
plex preconditions p(t), where t is an arbitrary term, yield an undecidable class
when extending automata clauses accordingly. The proof reduces the undecidable
Post Correspondence Problem (PCP) to the problem of deciding emptiness of a
predicate for a set A of automata clauses with term equalities and complex pre-
conditions. The constructed set A will only contain one single term equality (in
fact, a comparison of two variables suffices).

Let P = ((a1, b1), . . . , (am, bm)) be an instance of the PCP over a binary al-
phabet {a, b}. Let ai(t) and bi(t) be the corresponding codings of the words ai
and bi, respectively, applied to the term t (e.g., if ai = bba then ai(t) is given by
b(b(a(t)))). The alphabet Σ for the set A consists of the constant symbol 0, the
unary symbols a and b, and a binary constructor h. First, a helper predicate >6=0 is
defined which accepts every term with the exception of 0 as follows.

>6=0(a(X1)) ⇐ >(X1)
>6=0(b(X1)) ⇐ >(X1)
>6=0(h(X1, X2)) ⇐ >(X1),>(X2)

Then a predicate s is defined which accepts all terms h(t, t) with t 6= 0:

s(h(X1, X2))⇐ >6=0(X1),>(X2), X1 = X2 (2.1)

2.3 Complex Preconditions, Auxiliary Variables 35

The idea of the construction is that swill first accept the term h(t, t) for the coding
t = ai1(. . . (aik(0)) . . .) = bi1(. . . (bik(0)) . . .) of a solution i1, . . . , ik, k ≥ 1, to P
— which then is verified by the following clauses with a complex precondition:

s(h(X1, X2))⇐ >(X1),>(X2), s(h(ai(X1), bi(X2))) 1 ≤ i ≤ m

The condition for accepting a solution then is that the initial terms t could be
simultaneously reduced to 0:

accept(b(X1))⇐ >(X1), s(h(0, 0))

The predicate accept thus is empty if and only if P has no solution. Hence, the
following lemma has been proved.

Lemma 9 Emptiness is undecidable for automata clauses with term equalities
when complex preconditions p(t), where t is an arbitrary term, may occur in the
preconditions of the clauses. �

With the exception of the clause (2.1), the presented construction for TCA en-
hanced with complex preconditions contains no equality constraints. This clause,
however, is equivalent to the following TCA 6=-clause with a non-linear head:

s(h(X1, X1))⇐ >6=0(X1),>(X1)

Consequently, TCA 6= extended with additional complex preconditions cannot be
decidable either.

Lemma 10 Emptiness is undecidable for TCA6= extended with complex precondi-
tions p(t), where t is an arbitrary term. �

Auxiliary variables and term equalities. Auxiliary variables Y not occurring
in the head in combination with term equalities also yield an undecidable automata
class. This is because complex preconditions can easily be simulated by term
equalities if auxiliary variables are available. E.g., Y = h(X1, g(X2)) together
with p(Y) occurring in the precondition, for a variable Y which does not occur
elsewhere in the clause, is logically equivalent to p(h(X1, g(X2))).

Lemma 11 Emptiness is undecidable for automata clauses extended with term
equalities when auxiliary variables Y not occurring in the head are allowed in
the preconditions. �

Interestingly, auxiliary variables do not increase expressiveness if only disequa-
lities are considered. An alternative undecidability proof for TCA with complex
preconditions is based on the observation that path constraints, which are known
to be undecidable according to Mongy [Mon81], can be expressed by term con-
straints extended with auxiliary variables. The constraintX1.2 = X2, for instance,
can be expressed by the disjunction

∨
φf over all f ∈ Σ with ar(f) = r ≥ 2

where φf is given by X1 = f(Y1, . . . , Yr) ∧X2 = Y2.

36 Chapter 2. Horn Clauses and Constraints

2.4 Tree Automata with Hom-Equalities
As has been shown in Section 2.3, term equalities cannot be combined with either
complex preconditions or auxiliary variables not occurring in the head as both
extensions yield undecidable automata classes. It shall now be shown that term
equalities alone already yield undecidability when they are interpreted modulo a
given tree homomorphism.

The proof that is used here is based on the observation that tree homomor-
phisms are able to delete variables occurring in the terms of heads of clauses, ef-
fectively producing auxiliary variables. It may be seen as an instantiation of the ar-
gument for Lemma 11 that auxiliary variables can simulate complex preconditions
and therefore yield an undecidable class of constrained automata. Consequently,
a construction analogous to the one from the proof of Lemma 9 is used, reducing
the Post Correspondence Problem (PCP) to the problem of deciding emptiness of
a predicate for a set of automata clauses with hom-equalities.

Theorem 9 Emptiness is undecidable for automata clauses extended with hom-
equalities.

Proof. Let P = ((a1, b1), . . . , (am, bm)) be an instance of the PCP over an al-
phabet {a, b}. Consider the following set A = {(a), (b), (c), (d), (1), . . . , (m)} of
automata clauses with hom-equalities over Σ = {0, a, b, h, f}

(a) >6=0(a(X1)) ⇐ >(X1)
(b) >6=0(b(X1)) ⇐ >(X1)
(c) p(h(X1, X2)) ⇐ >(X1),>6=0(X2), X1 =H X2

(d) q(h(X1, X2)) ⇐ >(X1), p(X2), X2 =H h(0, 0)
(i) p(f(X1, X2, X3)) ⇐ >(X1),>(X2), p(X3), X3 =H h(ai(X1), bi(X2))

(for 1 ≤ i ≤ m)

together with the tree homomorphism H = {f 7→ h(X1, X2)}. The goal is now to
show that the predicate q is empty (i.e., [[q]]A = ∅) if and only if P has no solution.

Clauses (a) and (b) define >6=0 so that it accepts exactly all terms of either the
form a(t) or the form b(t). Clause (c) defines a predicate pwhich accepts all terms
h(a(t), a(t)) and h(b(t), b(t)) for arbitrary terms t. This predicate will also accept
the term h(t, t) for the coding t = ai1(. . . (aik(0)) . . .) = bi1(. . . (bik(0)) . . .) of a
solution i1, . . . , ik, k ≥ 1, to P — provided that such a solution exists. Only if this
is the case, the solution can then be verified by the clauses (i).

To see this, assume that t is an arbitrary term. For a term s of the form s =
ai(s

′), let a−i (s) = s′ (analogously for s = bi(s
′)). The predicate p accepts the

term h(t, t) according to clause (c). (The predicate p also accepts terms h(t, t′)
with t 6= t′ but t =H t′, containing the constructor f , for which the following

2.4 Tree Automata with Hom-Equalities 37

deductions, however, are not possible.) If, for some i1, t is of the form ai1(t1)
and also of the form bi1(t2), then the term s1 = f(a−i1(t), b−i1(t), h(t, t)) is in [[p]]A
according to clause (i1). One of the clauses (i) may again be used if and only
if there is some i2 such that a−i1(t) is of the form ai2(t′1) and b−i1(t) is of the form
bi2(t′2). Only in this case, the term s2 = f(a−i2(a−i1(t)), b−i2(b−i1(t)), s1) is in [[p]]A
according to clause (i2). This derivation chain may continue until some term
sl = f(a−il (. . . (a

−
i1

(t)) . . .), b−il (. . . (b
−
i1

(t)) . . .), sl−1) = f(0, 0, sl−1) is proved to
be in [[p]]A — if and only if t is coding a solution for P of length l ≥ 1, i.e.
t = ai1(. . . (ail(0)) . . .) = bi1(. . . (bil(0)) . . .) for a sequence of indexes i1, . . . , il.

Finally, if the initial terms t could be simultaneously reduced to 0 in the first
two arguments below the constructor f through application of the clauses (i), the
predicate q is proved non-empty through clause (d). Thus, the PCP has a solution
if and only if q is non-empty. �

38 Chapter 2. Horn Clauses and Constraints

Chapter 3

Normalization of Horn Clauses

In this chapter, we presentH1-normalization, a procedure transforming finite sets
of Horn clauses of the classH1 to finite sets of automata clauses [NNS02, GL05],
and prove that this procedure can be adapted in such a way that instead of pure
H1-clauses, H1-clauses extended with disequality constraints are transformed to
automata clauses with the same sort of constraints. In particular, it is shown that
this is possible for disequalities of terms as well as for disequalities of paths.
Moreover, the procedure can also be adapted so as to allow term disequalities
to be interpreted modulo a tree homomorphism. For each of these extensions,
finite sets of automata clauses with corresponding constraints are decidable. The
normalization framework thus provides a method for the decision of finite sets of
H1-clauses with disequality constraints.

Based on the result from Section 2.2 that tree automata extended with term
equalities and disequalities are decidable, a natural question is whetherH1-clauses
extended with such constraints can be transformed to automata form by an appro-
priate adaptation of the normalization procedure. This, however, is not the case.
Undecidability arises both from the feature of H1-clauses to provide auxiliary
variables which do not occur in the head and also from the feature of H1-clauses
to allow complex preconditions. In combination with term equalities, either of
theseH1-features yields undecidability already for automata clauses, as shown in
Section 2.3. Thus, normalization is not possible since the class of automata with
term constraints is decidable according to Theorem 8.

3.1 H1-Clauses with Term Disequalities

In this section, the general framework of H1-normalization (in presence of con-
straints) is presented, instantiated with term disequalities [SR11]. The normal-
ization procedure repeatedly applies three rules until the set of clauses becomes

39

40 Chapter 3. Normalization of Horn Clauses

saturated. Each rule adds finitely many simpler clauses which are implied by the
current set of clauses. Then the subset of normal clauses subsumes the whole set
of clauses, and all non-normal clauses may be removed. The three rules are

• Resolution, which applies a resolution step with a normal clause,

• Splitting, which removes auxiliary variables, i.e., variables only occurring
in the precondition, and

• Propagation, which resolves clauses p(X1)⇐ q1(X1), . . . , qm(X1), φwhere
φ contains no variable other than X1, with normal clauses for all predicates
q1, . . . , qm “simultaneously”.

For the Splitting rule, the (number of) terms accepted by a predicate must be
computed w.r.t. the current subset of normal clauses, i.e., we have to decide
k-finiteness. Recall from page 21 that the constraint language enjoys positive
Boolean closure. (Disjunctions are provided by alternative clauses.) We can there-
fore bring a given set of clauses to a form where each satisfiable constraint φ of a
single clause is a conjunction of disequalities Z 6= t for variables Z and terms t.
In order to remove an auxiliary variable Y , we consider the (maximal) part

φY = Z1 6= t1 ∧ . . . ∧ Zm 6= tm

of such a conjunction in which Y occurs within each disequality (i.e., Y either
equals Zi or occurs in ti). By the pigeon-hole principle, φY can be satisfied if
enough, i.e., m+ 1, term are available for the substitution of Y . Hence, one either
removes from the considered clause all literals and disequalities mentioning Y
or, if only n ≤ m terms s1, . . . , sn are available, uses each of the terms si as a
concrete substitution for Y — removing Y in both cases. In the first case, only
one new clause is added, while the latter case results in n ≤ m added clauses.

3.1.1 Bounding the Number of Terms
Assume that the predicate p is defined by a finite setA of automata clauses. In this
section it is established that for all k ≥ 1, it can be efficiently determined whether
p accepts less than k terms or not. Moreover, if p accepts less than k terms, then
these terms can be effectively computed. The presented method is then applied
in Section 3.1.2 for the removal of auxiliary variables in the preconditions ofH1-
clauses.

We recall a simplified version of Lemma 5 which shows that k disequalities
can filter out no more than k terms of any predicate in the precondition of a clause.
To be more precise, if a literal p(X) occurs in the precondition of an applicable
clause c whose constraint consists of k term disequalities, and n terms can be

3.1 H1-Clauses with Term Disequalities 41

deduced for p, then at least n − k terms can be deduced for the predicate in c’s
head. Here, applicable w.r.t. the set of automata clauses A defining c means that
for the sequence of literals q1(X1), . . . , qm(Xm) in c’s precondition, there exists a
sequence of terms t1 ∈ [[q1]]A, . . . , tm ∈ [[qm]]A such that the ground substitution
θ = {X1 7→ t1, . . . , Xm 7→ tm} satisfies c’s constraint.

In Lemma 5, the heads may be complex, i.e., the depth of the terms in the heads
has no upper-bound. Here, that depth is always equal to one, which allows a less
complex proof technique, based on the depth of an accepted term t rather than the
number of rounds of fixpoint iteration needed to deduce a fact p(t) [SR11]. For
a predicate p, a set of automata clauses A and d ≥ 0, let [[p]]A,d denote the set of
terms t ∈ [[p]]A of depth at most d. Then the following holds.

Lemma 12 Let A be a finite set of automata clauses with term disequalities, and
c a clause in A of the form q(t) ⇐ p1(X1), . . . , pk(Xk), φ. Assume furthermore
that there is a number d ≥ 0 and a substitution θ such that Xiθ is of depth at
most d, and Xiθ ∈ [[pi]]A for all i, and, moreover, θ |= φ. Then |[[q]]A,d+1| ≥
max
1≤i≤k

{|[[pi]]A,d| − dc(c)}. �

Based on this lemma, the following theorem can be proven.

Theorem 10 Let A be a finite set of automata clauses with term disequalities.
Then for every k > 0 and predicate p it can be effectively determined whether
|[[p]]A| < k. Moreover if |[[p]]A| < k, then [[p]]A can be effectively computed. �

For the case of automata clauses, this theorem generalizes Theorem 1 where it
is proved that emptiness for such clauses is decidable. Proofs of Lemma 12 and
Theorem 10 are given in [SR11]. In this work we refer to slightly more com-
plex but also more general versions of these proofs as provided in Section 3.3 for
Lemma 19 and Theorem 22. There, k-finiteness is proved decidable even for the
case of clauses with complex heads and auxiliary variables. The proof uses an
algorithm which essentially iteratively derives facts p(t), t a ground term, but for
each predicate p, the number of facts p(t) that need to be considered for decid-
ing k-finiteness can be bounded by d + k, where d denotes the number of atomic
disequalities occurring in the whole set of automata clauses.

Using Lemma 2, the algorithm of Theorem 10 can be applied to normal clauses
as well, resulting in the theorem that enables Splitting:

Theorem 11 Assume that N is a finite set of normal clauses with term disequa-
lities. Then for every subset A of predicates and integer k ≥ 0, it is decidable
whether or not the intersection

⋂
p∈A [[p]]N contains less than k elements, and if

so, these elements can be effectively computed. �

42 Chapter 3. Normalization of Horn Clauses

3.1.2 Normalizing ConstrainedH1-Clauses
Based on the results from the previous section, we shall prove in this section the
following main theorem that claims the existence of a normalization procedure
also in presence of (term) disequality constraints.

Theorem 12 For every finite set C of H1-clauses with term disequalities, a finite
set N of normal clauses with term disequalities can be effectively constructed
which is equivalent to C, i.e., has the same least model, i.e., [[p]]C = [[p]]N for all
predicates p. �

Recall from Section 2.1 (page 21) that the constraint language of H1-clauses
with constraints is always closed under positive Boolean operations and that each
atomic term disequality s 6= t is equivalent to a finite disjunction of disequalities
of the form X = t where X is a variable. W.l.o.g. we shall therefore assume in
the following that each term constraint φ is in normal form

Xi1 6= t1 ∧ . . . ∧Xir 6= tr

where the Xij are variables and the ti are arbitrary terms. We furthermore assume
that each term constraint is satisfiable.

To the set C, we add clauses which are implied by C. Let S denote the current
set of implied clauses and N the subset of normal clauses in S. Thus, S initially
equals C. Then we exhaustively add new clauses to S according to the following
three rules.

Resolution: Assume that S contains a clause

p(t0)⇐ α1, q(f(s1, . . . , sk)), α2, φ

with k ≥ 0. If N contains a clause

q(X1)⇐ ψ

then we add the new clause

p(t0)⇐ α1, α2, φ, ψ
′

where ψ′ = ψ[f(s1, . . . , sk)/X1]. If N contains a clause

q(f(X1, . . . , Xk))⇐ β, ψ

then we add the clause

p(t0)⇐ α1, β
′, α2, φ, ψ

′

where β′ = β[s1/X1, . . . , sk/Xk] and ψ′ = ψ[s1/X1, . . . , sk/Xk].

3.1 H1-Clauses with Term Disequalities 43

Splitting: Assume that S contains a simple clause

p(t)⇐ α, φ

where α, φ contains a variable Y which does not occur in the term t in the
head. Let q1(Y), . . . , qm(Y) denote the subsequence of α containing Y , and
assume that φ has r disequalities containing Y . If L = [[q1]]N ∩ . . .∩ [[qm]]N
contains more than r distinct elements, then we add the clause

p(t)⇐ α′, φ′

where α′ and φ′ are obtained from α and φ, respectively, by removing the
literals and disequalities which contain Y . If L has at most r elements, we
add all clauses

p(t)⇐ α′, φ[t/Y] , t ∈ L

where α′ is obtained from α by removing all literals containing Y .

Propagation: Assume that S contains a simple clause

p(X)⇐ q1(X), . . . , qm(X), φ

where φ contains no variable other than X . If for each i = 1, . . . ,m, N
contains a clause qi(t)⇐ βi, φi, then we add the clause

p(t)⇐ β1, . . . , βm, φ
′, φ1, . . . , φm

where φ′ = φ[t/X].

These rules generalize the corresponding rules for H1 as considered, e.g., in
[NNS02], by a dedicated treatment of disequalities. Forgetting about disequali-
ties, the rules can best be understood as a simple form of ordered resolution steps
with splitting [GL05]. The ordering enforces that only heads of normal clauses
may be resolved with literals in preconditions. Such resolution steps are applied
in the Resolution and the Propagation rule. The Splitting rule allows to elimi-
nate variables from a clause which do not occur in the head. This corresponds to
splitting in resolution proofs.

Example 14 Consider the following set C ofH1-clauses:

p(a) ⇐ q(f(X, Y)), r(g(Y)), X 6= Y
q(f(X, Y)) ⇐ p(Z), Z 6= g(Y)
q(X) ⇐ r(X), X 6= f(a, a)
r(X) ⇐ X 6= g(a)

44 Chapter 3. Normalization of Horn Clauses

where, for better readability, we use X, Y, Z as canonical names of variables oc-
curring in heads. Applying Propagation to the last clause, we obtain:

r(a) ⇐ a 6= g(a)
r(g(X)) ⇐ g(X) 6= g(a)
r(f(X, Y)) ⇐ f(X, Y) 6= g(a)

Since the precondition of r(X) contains an empty sequence of literals, application
of Propagation only amounts to substituting variableX with a, g(X) and f(X, Y),
respectively. The constraints of the resulting clauses can be simplified, obtaining:

r(a) ⇐
r(g(X)) ⇐ X 6= a
r(f(X, Y)) ⇐

Using these clauses, the Propagation rule furthermore gives us:

q(a) ⇐ a 6= f(a, a)
q(g(X)) ⇐ X 6= a, g(X) 6= f(a, a)
q(f(X, Y)) ⇐ f(X, Y) 6= f(a, a)

Simplifying the constraints of these clauses, we obtain:

q(a) ⇐
q(g(X)) ⇐ X 6= a
q(f(X, Y)) ⇐ f(X, Y) 6= f(a, a)

These new clauses allow to deduce by Resolution from the first clause of the
example set, the clause:

p(a)⇐ f(X, Y) 6= f(a, a), Y 6= a,X 6= Y

Applying Splitting for variable Y then removes all disequality constraints. Us-
ing Splitting again, the new fact p(a) ⇐ together with the second clause of the
example set allow to deduce

q(f(X, Y)) ⇐

Now none of the Resolution, Splitting, and Propagation rules yields a new clause.
The resulting set N of normal clauses (with simplified constraints) thus consists

3.1 H1-Clauses with Term Disequalities 45

of:
r(a) ⇐
r(g(X)) ⇐ X 6= a
r(f(X, Y)) ⇐
q(a) ⇐
q(g(X)) ⇐ X 6= a
q(f(X, Y)) ⇐ f(X, Y) 6= f(a, a)
q(f(X, Y)) ⇐
p(a) ⇐

�

Correctness of the normalization procedure is proven analogously to the case
of non-constrained H1-clauses, while the termination proof is less standard and
makes use of a compactness property of disjunctive sequences of conjunctions of
term disequalities (Lemma 13).

Theorem 13 Let S and N denote the set of all derived and all derived normal
clauses, respectively, which are constructed by exhaustively applying the normal-
ization rules. Then for every predicate p,

[[p]]N = [[p]]S = [[p]]C (3.1)

Proof. Since N ⊆ S as well as C ⊆ S, [[p]]N ⊆ [[p]]S and also [[p]]C ⊆ [[p]]S for
all predicates p. Since every clause c in S is implied by C, the least modelMS of
S is still included in the least model of C, i.e., [[p]]S = [[p]]C for every predicate p.
Now we claim that for every ground fact p(t) ∈ MS with a deduction of length
m, there exists a deduction of p(t) of length at mostm using clauses fromN only.
In particular, this implies that p(t) ∈MN , and the statement (3.1) follows.

For a contradiction, assume that the latter claim is wrong. Let m be minimal
such that there exists some ground fact p(t) ∈ MS with a deduction of length m
where p(t) cannot be deduced by normal clauses with at most m steps.

Let c denote the last clause which is applied in the deduction of p(t). Then c
itself cannot be contained in N . We distinguish three cases.

1. If any of the literals on the right-hand side of c contains a constructor, there
is a shorter deduction in S using a derived implication — implying that
there is also a shorter deduction w.r.t. N .

Therefore, now assume that no literal on the right-hand side of c contains a
constructor.

46 Chapter 3. Normalization of Horn Clauses

2. If c contains a literal q(Y) where Y does not occur in the head, then again
there is a shorter deduction with derived clauses.

Since every disequality in c containing a variable which does not occur in
the core clause, simply can be removed, we henceforth may assume that
every variable of c also occurs in the head of c.

3. If the head does not contain a constructor, i.e., is of the form p(X), then
again a shorter deduction with normal clauses can be found.

But then c must be a normal clause, contradicting our assumption. �

Termination. It remains to prove that normalization eventually terminates. In
order to achieve this, we prove that for each core clause p(t0)⇐ q1(t1), . . . , qm(tm)
only finitely many distinct constraints φ must be distinguished. The key idea is
not to add clauses which are implied by the current set of clauses.

Example 15 The set of normalized clauses which have been deduced in Exam-
ple 14, contains the clauses:

q(f(X, Y)) ⇐ f(X, Y) 6= f(a, a)
q(f(X, Y)) ⇐

which agree in their core clauses.
As the first clause is subsumed by the second clause, it can be omitted. �

In general, we consider subsumption not just between two clauses, but between
all clauses which agree in their core clauses. Note that the application of Reso-
lution preserves the number of auxiliary variables (variables not occurring in the
head), while Splitting strictly decreases that number and no auxiliary variables
are involved in the Propagation rule. Hence the number of variables occurring in
any newly generated clause is bounded. For the termination proof we now con-
sider families of clauses which (semantically) only differ in their constraints, and
conceptually replace them by single clauses whose constraints are disjunctions of
conjunctions of disequalities. Two clauses h ⇐ α1, φ1 and h ⇐ α2, φ2 belong to
the same family if α1 and α2 contain the same set of literals.

For the termination of H1-normalization it suffices not to add clauses that are
already subsumed by the current set of clauses. A clause h⇐ α0, φ0 is subsumed
by a set of clauses h⇐ αi, φi, i ≥ 1, if all clauses belong to the same family and
φ0 implies the disjunction

∨
i≥1 φi.

3.1 H1-Clauses with Term Disequalities 47

Example 16 The two clauses from Example 15 belong to the same family, and
they are logically equivalent to the single clause:

q(f(X, Y))⇐ f(X, Y) 6= f(a, a) ∨ true

�

So for each family of clauses, the normalization steps yield a sequence

φ0 ∨ φ1 ∨ φ2 ∨ . . .

of conjunctions φi of disequalities which constitutes the condition under which
at least one clause from that family is applicable (in the current set of implied
clauses). In order to prove that these sequences become stable, we recall Theo-
rem 3 from [MORS05] in a slightly simplified form:

Theorem 14 Let dj, j ≥ 0, be a sequence of disjunctions of equalities over k
variables. Then the sequence ψj =

∧j
i=0 di is ultimately stable, i.e., there is some

m ∈ N such that for all m′ ≥ m, ψm ⇔ ψm′ .

Proof. For convenience, a proof of the theorem is included which essentially
follows the proof given in [MORS05]. The first observation is that, if any of
the ψj is unsatisfiable, i.e., equivalent to false, then all ψj′ for j ≤ j′ also must
be unsatisfiable, and the assertion of the theorem follows. Accordingly, let us
henceforth assume that all ψj are satisfiable. Recall that a conjunction of term
equalities (s1 = t1) ∧ . . . ∧ (sr = tr) is in normal form if

(i) the left-hand sides si all are distinct variables,

(ii) no variable occurring on the left-hand side may occur in a right-hand side
ti, and

(iii) if both si and ti are variables Xj and Xj′ , then j > j′.

We note that every satisfiable conjunction of equalities is equivalent to a con-
junction in normal form which is unique. Let us call a finite disjunction of such
conjunctions a normal DNF.

For the sequence ψj, j ≥ 0, we now successively construct a corresponding
sequence Γj , j ≥ 0, where each Γj is a normal DNF. The sequence is constructed
in such a way that Γj is equivalent to ψj . First, consider an arbitrary disjunction
di = (s1 = t1) ∨ . . . ∨ (sr = tr) where each si = ti is satisfiable. Then each such
equality si = ti is equivalent to a conjunction ci in normal form. Therefore, di is
equivalent to the normal DNF c1 ∨ . . . ∨ cr.

48 Chapter 3. Normalization of Horn Clauses

Now for j = 0, we choose Γ0 as a normal DNF equivalent to d0. For j > 0,
assume that c1∨. . .∨cr is a normal DNF for dj . Then Γj is obtained from Γj−1 and
that normal DNF by constructing a normal DNF for Γj−1∧(c1∨ . . .∨cr). For each
normal DNF Γ, we further maintain a vector v[Γ] ∈ Nk where the i-th component
of v[Γ] counts the number of conjunctions in Γ with exactly i equalities. On Nk

we consider the lexicographical ordering “≤” which is given by: (n1, . . . , nk) ≤
(n′1, . . . , n

′
k) iff either nl = n′l for all l, or there is some 1 ≤ i ≤ k such that

nl = n′l for all l < i, and ni < n′i. Recall that this ordering is a well-ordering, i.e.,
it does not admit infinite strictly decreasing sequences.

Now assume that Γj−1 equals c̄1 ∨ . . . ∨ c̄m for normal conjunctions c̄i. Then
by distributivity, Γj−1 ∧ dj is equivalent to

∨m
i=1 c̄i ∧ (c1 ∨ . . .∨ cr). First, assume

that for a given i, c̄i∧ cl is equivalent to c̄i for some l. Then also c̄i∧ (c1∨ . . .∨ cr)
is equivalent to c̄i. Let V denote the subset of all i with this property. Thus for all
i 6∈ V , c̄i is not equivalent to any of the conjunctions c̄i ∧ cl. Let J [i] denote the
set of all l such that c̄i ∧ cl is satisfiable. For every l ∈ J [i], we can construct a
non-empty normal conjunction c̄il equivalent to c̄i ∧ cl. Note that every variable
occurring on the left-hand side of an equality in c̄i also occurs on the left-hand side
of an equality in c̄il, while at least one variable on the left-hand side of an equality
in c̄il does not occur on a left-hand side in c̄i. Therefore, c̄il contains strictly more
equalities than c̄i. Summarizing, we construct a normal DNF Γj equivalent to
Γj−1 ∧ dj as: (∨

i∈V

c̄i

)
∨

∨
i 6∈V

∨
l∈J [i]

c̄il


According to this construction, we always have v[Γj−1] ≥ v[Γj]. Moreover,
v[Γj−1] = v[Γj] implies that V = {1, . . . ,m} and therefore that Γj−1 is equiv-
alent to Γj . Therefore, if Γj−1 is not equivalent to Γj , then v[Γj−1] > v[Γj].
Accordingly, if the sequence Γj, j ≥ 0, is not ultimately stable, we obtain an
infinite sequence of strictly decreasing vectors — contradiction. �

From that theorem, the following corollary is obtained.

Corollary 13 For every sequence ci, i ≥ 1, of finite conjunctions of term dis-
equalities, there exists some m ≥ 1 such that

∨m
i=1 ci is implied by cj for every

j ≥ 1.

Proof. Consider the sequence di, i ≥ 1, where di ≡ ¬ci is the complement of
ci, i.e., a disjunction of equalities. By Theorem 14, there exists some m ≥ 1
such that

∧m
i=1 di implies dj for all j ≥ 1. Then for all j ≥ 1, ¬dj ≡ cj implies

¬(
∧m
i=1 di) ≡

∨m
i=1 ci, and the assertion follows. �

Example 17
X 6= a ∨X 6= g(Y, b)

3.1 H1-Clauses with Term Disequalities 49

is equivalent to true and therefore implied by any conjunction of term disequali-
ties. The disjunction

(X 6= a ∧X 6= g(Y, b)) ∨ Y 6= h(X)

is not yet a tautology and not implied by X 6= b. But the disjunction

(X 6= a ∧X 6= g(Y, b)) ∨ Y 6= h(X) ∨X 6= b

is equivalent to

(X 6= a ∨ Y 6= h(X) ∨X 6= b) ∧ (X 6= g(Y, b) ∨ Y 6= h(X) ∨X 6= b)

which again is a tautology and therefore implied by any further conjunction of
disequalities. �

Now assume that S ′ is the set of clauses which is obtained if new clauses p(t0)⇐
α, φ are added according to the normalization rules only if φ does not imply the
disjunction

∨
{φ′ | (p(t0) ⇐ α, φ′) ∈ S ′}. Note that the latter is decidable. Let

N ′ denote the set of normal clauses contained in S ′. Then S ′ ⊆ S, and N ′ ⊆ N .
Moreover, for every core clause p(t0) ⇐ α, the set R = {φ′ | (p(t0) ⇐ α, φ′) ∈
S ′} is finite, and

∨
R is implied by every constraint φ for which p(t0) ⇐ α, φ is

contained in S. Therefore, S and S ′ as well as N and N ′ are equivalent.
By Lemma 13, S ′ has for each core clause c only finitely many clauses whose

core is c. It remains to show that the number of possible cores is finite, in order to
conclude that S ′ and hence also N ′ is finite. In order to enforce that, we assume
that duplicates of literals in preconditions are removed. Then the following holds.

Theorem 15 The number of core clauses occurring during normalization of finite
sets ofH1-clauses with term disequalities is finite.

Proof. Since the number of predicates and constructors is finite, there are only
finitely many distinct heads of clauses. The number of literals occurring in precon-
ditions is bounded since new literals p(t) are only added for subterms t of terms
already present in the original set C of clauses. Therefore, the number of families
of clauses occurring during normalization is finite. For each family f let ψC,f de-
note the (possibly empty) disjunction of constraints of clauses of C which belong
to f . Each clause that is added to C extends one of the finitely many constraints
ψC,f to ψC,f ∨ φ for a conjunction of disequalities φ. The number of variables
in each constraint ψC,f is bounded since neither Resolution with normal clauses
nor Splitting does introduce new variables, while Propagation may introduce fresh
variables, but directly produces normal clauses. �

50 Chapter 3. Normalization of Horn Clauses

In particular, we have effectively constructed a finite set of normal clauses which is
equivalent to C, constituting a proof of Theorem 12. Summarizing, every finite set
C ofH1-clauses with term disequalities can be transformed to an equivalent finite
set N of normal clauses with term disequalities. By Lemma 2, N can in turn be
transformed to an equivalent finite set of automata clauses with term disequalities
for which we have shown the availability of algorithms for the standard decision
problems in Section 2.2.1. Overall we therefore have proved decidability of the
extension ofH1-clauses with term disequalities:

Theorem 16 Satisfiability is decidable for a finite set of H1-clauses with term
disequalities. �

3.2 H1-Clauses with Path Disequalities 51

3.2 H1-Clauses with Path Disequalities
The concept of disequalities of terms shall now be generalized to disequalities of
subterms — specified by paths. The generalization is strict for the extension of (fi-
nite sets of) automata clauses (see Section 3.2.1) — and consequently also for the
extension of H1-clauses. In order to make the framework for H1-normalization
work also in presence of path disequalities, a completely new construction for
Splitting is required (sections 3.2.2 and 3.2.4). Also the argument for termination
must be appropriately generalized (Section 3.2.3).

There are two versions for the specification of subterms by means of paths:
labeled paths as introduced in Section 2.1 (page 14), which are primarily consid-
ered in this work, and unlabeled paths i1.i2.in. For the extension of (finite
sets of) automata clauses, though, both versions have the same expressive power
when the alphabet Σ is fixed. Unlabeled paths are obtained from labeled paths
(f1, i1). (fn, in) by omitting the labels f1, . . . , fn. The constructors occurring
in the labeled paths can instead be recorded by means of specialized predicates.
E.g., a clause

p(f(X1, X2))⇐ q(X1), r(X2), X1.(f, 1) 6= X2

is replaced by the clauses

pf(_,_)(f(X1, X2)) ⇐ qf(_,_)(X1), rt(X2), X1.1 6= X2

pf(_,_)(f(X1, X2)) ⇐ qg(_,...,_)(X1), rt(X2)

for arbitrary patterns t and all g 6= f . In this construction, only those patterns are
enumerated which are made up from suffixes of paths occurring in the given set of
automata clauses. For the reverse direction, we observe that every unlabeled-path
disequality is equivalent to a finite conjunction of labeled-path disequalities.

For convenience, we assume in the following that right-hand sides of path
disequalities occurring in automata clauses may also be ground terms, since it can
also be recorded by means of specialized predicates whether a constraint X.π 6= t
for a ground term t holds or not.

3.2.1 Increased Expressiveness

Tree automata with disequalities of subterms have been intensively investigated
by Comon and Jacquemard [CJ94]. While decidability of emptiness is retained,
allowing disequalities of subterms (instead of terms only) increases the expres-
siveness of the resulting class of extended tree automata. One indication for this
is that universality is decidable [RS10] for tree automata with term disequalities

52 Chapter 3. Normalization of Horn Clauses

while it is undecidable for tree automata with path disequalities — since emptiness
for automata with path equalities only [GGRÀ10] is undecidable [Mon81].

Let us define here a specific language T which can be expressed as [[p]]C for a
finite set C of automata clauses with labeled-path disequalities, but which cannot
be characterized by means of finite sets of automata clauses with term disequalities
only. Let T = [[p]]C for the following set C of automata clauses:

p(f(X1, X2)) ⇐ >(X1),>(X2), X1 6= X2.(f, 1)
>(f(X1, X2)) ⇐ >(X1),>(X2)
>(a) ⇐

Lemma 14 There is no finite set C ′ of automata clauses with term disequalities
which define a predicate p such that [[p]]C = [[p]]C′ .

Proof. Assume for a contradiction that there is such a finite set C ′ which defines
such a predicate p. Then we construct a finite set N of normal clauses for C ′
using equality term constraints only such that for every predicate q of C ′, N has
a predicate q̄ with [[q̄]]N is the complement of [[q]]C′ . This set is constructed as
follows. Assume that q(f(X1, . . . , Xk)) ⇐ li1, . . . , liri for i = 1, . . . ,m are the
clauses for q and constructor f where each lij either is a literal of the form p′(Xs)
or a single disequality. Then the predicate q̄ for constructor f is defined by the set
of all clauses

q̄(f(X1, . . . , Xk))⇐
∧

1≤i≤m

l̄iji

where for each i, 1 ≤ ji ≤ ri. For a literal liji of the form p′(Xs), l̄iji is given
by p̄′(Xs), and if liji equals a disequality t1 6= t2, l̄iji is given by t1 = t2. By
this construction the resulting clauses contain equality constraints only. As in
Lemma 2, a finite set A of automata clauses with term equality constraints can be
computed such that for all predicates q̄ of N , [[q̄]]N = [[q̄]]A.

A similar construction for automata without constraints has been described in
[SN99]. Another variant has been presented in [GGRÀ10].

Let T denote the complement of T , i.e., the set TΣ \ T . T consists of all
elements of the form

f(t, f(t, s))

for arbitrary terms s, t. By construction, [[p̄]]A = T̄ . ThenA must contain a clause

p(f(X1, X2))⇐ q1(X1), q2(X2), φ

where φ is a finite conjunction of term equalities, such that there are distinct
ground terms t1, t2 ∈ [[q1]]A and for i = 1, 2 there are two distinct terms ti1, ti2

3.2 H1-Clauses with Path Disequalities 53

such that f(ti, tij) ∈ [[q2]]A and f(ti, f(ti, tij)) ∈ [[p]]A by application of this
clause. This means for θij(X1) = ti and θij(X2) = f(ti, tij), that θij |= φ. In
order to see this, we first convince ourselves that for every term t there must be
some clause ct by which for two distinct terms s1, s2, facts p(f(t, f(t, s1))) and
p(f(t, f(t, s2))) can be derived. Assume for a contradiction, this were not the
case. Then for some t and every clause c for predicate p, there is at most one term
tc such that a fact p(f(t, f(t, tc))) is derived by means of c. Accordingly, for this t,
the set {s | f(t, f(t, s)) ∈ T̄} were finite — which is not the case. Consequently,
for every t we can find a clause ct by which for two distinct terms s1, s2, facts
p(f(t, f(t, s1))) and p(f(t, f(t, s2))) can be derived. Since the number of terms is
infinite while the number of clauses is finite, we conclude that there must be two
distinct terms t1, t2 for which the clauses ct1 and ct2 coincide.

Now recall that each finite conjunction of term equalities si = sj between
arbitrary terms si, sj can be expressed as a finite conjunction of term equalities of
the form Z = s for variables Z. W.l.o.g. let φ be of this form. Furthermore, recall
that a term equality Z = s where s contains Z either is trivially true or trivially
false. In addition to equalities X1 = X1 and X2 = X2, the satisfiable constraint φ
therefore can only contain equalities of one of the following forms:

(1) X1 = g or X2 = g, where g denotes a ground term;

(2) X1 = s, where s contains variable X2;

(3) X2 = s, where s contains variable X1

In the following, we show that an equality of any of these forms leads to a contra-
diction.
Case 1. Assume that there is an equality Xr = g for some ground term g. If
r = 1, then either t1 6= g or t2 6= g implying that θij 6|= (Xr = g) for some i, j.
If on the other hand, r = 2, then either f(t1, t11) 6= g or f(t1, t12) 6= g, and hence
also θij 6|= (Xr = g) for some i, j.
Case 2. Assume that there is an equality X1 = s where s contains X2. If
θ11 |= (X1 = s), then t1 would contain the term f(t1, t11) — which is impossible.
Case 3. Finally, assume that there is an equality X2 = s where s contains X1.

Then consider the two substitutions θ11 and θ12. If θ11 |= (X2 = s), we conclude
that f(t1, t11) = θ11(X2) = s[t1/X1]. Then θ12 |= (X2 = s) implies that s[t1/X1]
also equals f(t1, t12), and therefore, f(t1, t11) = f(t1, t12). This however, implies
that t11 = t12 — in contradiction to our assumption.

We conclude that the conjunction φ is equivalent to true. But then [[p]]A must
also contain the term f(t1, f(t2, t21)) — which is not contained in T̄ . This com-
pletes the proof. �

54 Chapter 3. Normalization of Horn Clauses

3.2.2 Challenges in Computing with Subterms
In Section 3.1.2, the Splitting rule is applied based on a method that determines
the number of terms accepted by a predicate w.r.t. the current subset of normal
clauses. The idea of using this method is straight-forward. Things are, however,
completely different if we are given a conjunction of path disequalities. The prob-
lem is that the number of terms is now irrelevant. Even the number of terms that
are (pairwise) distinct at a specific path (i.e., terms t1, . . . , tm with ti.π 6= tj.π for
all i < j) is insufficient information for the goal of removing auxiliary variables.

Example 18 A small example that illustrates the difficulties is given by the fol-
lowing set C ofH1-clauses with unlabeled-path disequalities.

qb(b) ⇐
r(f(a,X)) ⇐
r(f(b, b)) ⇐
q(f(X, Y)) ⇐ r(X), r(Y), X.1 6= Y.1
p(h(X)) ⇐ qb(X), q(Y), Y.1.2 6= X, Y.2.2 6= X

Note that for the second and third clause, an equivalent finite set of automata
clauses exists. For simplicity, we use the H1 form and variable names X, Y . The
last clause is the one where Splitting for the variable Y should be applied w.r.t. the
other clauses. There are infinitely many terms t ∈ [[q]]C , and, moreover, the set of
terms accepted by q even has infinitely many different subterms both at the path
π1 = 1.2 and at the path π2 = 2.2 as q accepts all terms of the forms

f(f(a, t), f(b, b)) and f(f(b, b), f(a, t))

where t is arbitrary. Still p is empty in this example due to the constraint which
enforces the disequality Y.1.2 6= b in combination with the disequality Y.2.2 6= b.

�

So what has to be considered is different subterm combinations. Essentially, the
question is whether we can cover infinitely many possible substitutions θ(Y) for
the auxiliary variable Y by only finitely many representing terms. What makes
matters even more complicated is the fact that different subterms of the term in
the head of a clause may originate from different predicates of the literals in the
precondition. A straight-forward Splitting solution for paths therefore seems in-
feasible. Moreover, it must be dealt with the problem that each subterm combi-
nation may occur in a possibly infinite number of terms. The latter problem may
be solved by avoiding endless recurrences of the same combinations. Thus, we
have to exclude at paths π ground terms t which occur at π (i.e., s.π = t for some
term s that is available for the substitution of Y) — but then certain combinations

3.2 H1-Clauses with Path Disequalities 55

might be missed in the ongoing calculation, which is not acceptable. Therefore we
additionally consider different orders of excluding such ground terms at different
paths — a “blind exploration” technique which is able to account for any possible
combination of subterms occurring in an infinite number of terms, and which is
described in detail in Section 3.2.4.

3.2.3 Termination-sensitive Resolution in Presence of Paths
Another interesting problem arises when trying to adapt the normalization frame-
work for constrained H1-clauses to the case of path disequalities. While a com-
pactness property (Lemma 13) of disjunctive sequences of conjunctions of term
disequalities can be exploited to guarantee termination of normalization in the
case of term disequalities, the paths occurring in path disequalities may grow by
the application of normalization steps. E.g., the Resolution rule leads to substitu-
tions of variables by terms. Thus, a constraint

X1 6= X2.π

may be transformed by a substitution θ = {X1 7→ g(X1), X2 7→ X2, . . .} to

g(X1) 6= X2.π ≡ X1 6= X2.π.(g, 1)

resulting in a grown path π.(g, 1). Growing data, of course, must be avoided or at
least bounded in saturation procedures. But it is unclear how to specify a maximal
depth of paths in constraints resulting from resolution steps.

Therefore, we implement a different method. The idea is to reuse the compact-
ness property of Lemma 13. To do so, the constraint language is extended from
disequalities of path expressions X.π to disequalities of terms containing such
path expressions. Instead of growing paths this concept only results in growing
terms over a finite set of possible path expressions (since paths may only shrink by
normalization steps). Thus, in the above example, the constraint g(X1) 6= X2.π
is not transformed to the constraint X1 6= X2.π.(g, 1) but kept. We call such
terms possibly containing path expressions general terms. Note that disequalities
of general terms subsume both disequalities of (ordinary) terms and disequalities
of paths. Furthermore, general term disequalities allow to conveniently express
that a specified subterm should be distinct from a given ground term. E.g., the
clause

p(X)⇐ X.(g, 1) 6= a

defines a predicate p which accepts all terms of the forms g(f(s1, . . . , sk)), f 6= a
and h(t1, . . . , tl), h 6= g.
For a general term t, the subterm at path π, denoted t.π, is recursively defined by:

56 Chapter 3. Normalization of Horn Clauses

• t.ε = t;

• (Y.π1).π2 = Y.(π1.π2);

• t.(f, i).π′ = ti.π
′ if t = f(t1, . . . , tm) and 1 ≤ i ≤ m. In particular, for

g 6= f , t.(g, i).π′ is undefined.

Thus, for a variable X , it depends on the respective substitution whether the ex-
pression X.(g, i) will be defined or not.

Example 19 For an atom a and a binary constructor b, the following expressions
ti with

t1 = a t2 = b(b(a, a), X) t3 = b(a,X.(b, 1).(b, 2))

all are general terms, and the following identities hold.

t2.(b, 1).(b, 1) = a t3.(b, 2) = X.(b, 1).(b, 2)
t2.(b, 2).(b, 2) = X.(b, 2) t3.(b, 2).(b, 1) = X.(b, 1).(b, 2).(b, 1)

�

Consider now a general term t and a ground substitution θ. If θ(X).π is defined for
each path expression X.π occurring in t, then tθ is obtained from t by replacing
each occurrence of X.π with the ground term θ(X).π. Otherwise, tθ is undefined.

Satisfiability of general term constraints. As with (dis)equalities of path ex-
pressions X.π, a refinement is needed for the definition of satisfiability w.r.t. a
ground substitution θ, since for a general term t containing such path expressions,
θ(t) may be undefined. Consider a general term disequality t1 6= t2. As with path
expressions, should either θ(t1) or θ(t2) be undefined, then θ |= (t1.π1 6= t2.π2).
General term disequalities can be split into a disjunction of path disequalities.

Lemma 15 For every disequality t1 6= t2 between general terms t1, t2, a finite dis-
junction φ of path disequalities can be constructed such that t1 6= t2 is equivalent
to φ, i.e., for every substitution θ, it holds that θ |= (t1 6= t2) iff θ |= φ.

Proof. In the first step, we observe that the disequality t1 6= t2 is equivalent to a
finite disjunction of disequalities X.π 6= t for suitable path expressions X.π and
subterms t occurring in t1 or t2. Now let Π denote the set of all labeled paths
π′ such that t.π′ either is a path expression or a ground term. Let Π0 denote the
minimal elements in Π, i.e., the set of all paths π′ ∈ Π where Π does not contain a
proper prefix of π′. The elements in Π0 denote labeled paths in t reaching maximal

3.2 H1-Clauses with Path Disequalities 57

ground subterms or path expressions contained in t. Therefore, the subset Π0 is
finite. Then the disequality X.π 6= t is equivalent to the disjunction∨

π′∈Π0

X.π.π′ 6= t.π′

�
Using this lemma, the following simulations can be proven.

Theorem 17 Assume that A is a finite set of automata clauses with general term
disequalities. Then the following holds:

1. A finite set A′ of automata clauses with labeled-path disequalities can be
effectively constructed such that for every predicate p, [[p]]A = [[p]]A′ .

2. A finite setA′′ of automata clauses with unlabeled-path disequalities can be
effectively constructed such that for all predicates p, [[p]]A = [[p]]A′′ .

�

Since unlabeled-path disequalities can be expressed by means of labeled-path
disequalities, and labeled-path disequalities are a special case of general term
disequalities, all three classes of automata clauses compared in Theorem 17 are
equally expressive. It furthermore follows that automata clauses with term dis-
equalities can be simulated by means of automata clauses with labeled-path or
unlabeled-path disequalities. In [CJ94], it has been proven that emptiness for finite
tree automata with unlabeled-path disequalities is decidable. Therefore, emptiness
is also decidable for automata clauses with general term disequalities:

Corollary 16 Given a finite setA of automata clauses with general term disequa-
lities and a predicate p, it is decidable whether or not [[p]]A = ∅. Moreover, in case
that [[p]]A 6= ∅, a witness t ∈ [[p]]A can effectively be computed. �

The following subsections and paragraphs provide the normalization rules for fi-
nite sets of H1-clauses with path disequalities. We refer to the current set of all
implied clauses (whether originally present or added during normalization) as C,
while N ⊆ C denotes the subset of normal clauses in C.

58 Chapter 3. Normalization of Horn Clauses

Resolution. Recall that the Resolution rule simplifies a complicated clause from
C by applying a resolution step with a normal clause. The principle approach is the
same as with the Resolution rule for normalization of H1 with term disequalities.
Assume that C contains a clause h⇐ α1, p(t), α2, ψ.

If N contains a clause p(X1) ⇐ φ, then we add the clause h ⇐ α1, α2, ψ, ψ
′

where ψ′ = φ[t/X1].
If N has a clause p(f(X1, . . . , Xk)) ⇐ β, φ, and t = f(t1, . . . , tk), then we

add the clause:
h⇐ α1, α

′, α2, ψ, ψ
′

where α′ = β[t1/X1, . . . , tk/Xk] and likewise, ψ′ = φ[t1/X1, . . . , tk/Xk]. These
resolution steps may introduce new disequalities. The new constraints are ob-
tained from already available constraints by substitution of terms for variables.
We remark, though, that after simplification of queries t.π with t not a variable,
the new constraints only contain path expressions for paths which are suffixes of
paths already occurring in constraints of C.

Example 20 Consider the labeled-path variant of the voting protocol Example 4:

valid(X1) ⇐ q(X1, [])
q(X1, X2) ⇐ q(X1, :: (Y,X2)), X1.(vote, 1) 6= Y.(vote, 1)
q(X1, X2) ⇐ is_vote(X1), votes(X2)

enhanced with the normal clauses:

empty([]) ⇐ hb(pers(X1, X2)) ⇐ nbob(X1), age25(X2)
age15(15) ⇐ ha(pers(X1, X2)) ⇐ nalice(X1), age15(X2)
age25(25) ⇐ pbob(vote(X1, X2)) ⇐ hb(X1)

nalice(alice) ⇐ palice(vote(X1, X2)) ⇐ ha(X1)
nbob(bob) ⇐ votes(:: (X1, X2)) ⇐ pbob(X1), v′(X2)

v′(:: (X1, X2)) ⇐ palice(X1), empty(X2)

to fill the list of already submitted votes with the two entries vote(pers(alice, 15), _)
and vote(pers(bob, 25), _) where _ is intended to represent one of the atoms yes
or no (yes , no ∈ Σ). Resolving the first two clauses of this example with the third
one for the substitution X2 7→ [] and X2 7→:: (Y,X2), respectively, yields the
clauses:

valid(X1) ⇐ is_vote(X1), votes([])
q(X1, X2) ⇐ is_vote(X1), votes(:: (Y,X2)), X1.(vote, 1) 6= Y.(vote, 1)

With the clause votes(:: (X1, X2)) ⇐ pbob(X1), v′(X2), the second new clause
can further be resolved to obtain

q(X1, X2)⇐ is_vote(X1), pbob(Y), v′(X2), X1.(vote, 1) 6= Y.(vote, 1)

3.2 H1-Clauses with Path Disequalities 59

3.2.4 Splitting Paths

Recall that the Splitting rule removes variables not contained in the head of a
clause. Assume that C contains a simple clause h ⇐ α, ψ and Y is a variable
occurring in α, ψ but not in h. We rearrange the precondition α into a sequence
α′, q1(Y), . . . , qr(Y) where α′ does not contain the variable Y . Then we construct
a finite sequence t1, . . . , tl of ground terms such that, w.r.t. N ,

ψ[t1/Y] ∨ . . . ∨ ψ[tl/Y]

is equivalent to ∃Y q1(Y), . . . , qr(Y), ψ, and add the clauses

h⇐ α′, ψ[tj/Y], j = 1, . . . , l

to the set C.
According to this construction, Splitting may introduce new disequalities. As

in the case of Resolution, new constraints are obtained from already available con-
straints by substitution of (ground) terms. This means that, after simplification of
queries t.π with t not a variable, the new constraints only contain path expressions
for paths which are suffixes of paths already occurring in constraints of C.

The remainder of this section provides a proof that the finite sequence t1, . . . , tl
of ground terms for the removal of Y exists together with an effective construction
of such a sequence. For notational convenience, let us assume that instead of a fi-
nite sequence q1, . . . , qr of predicates we are just given a single predicate p which
is defined by means of a finite set of automata clausesA. By Lemma 2, the results
can then be applied to the case of a finite conjunction q1(Y) ∧ . . . ∧ qr(Y) (and
intersection [[q1]]N ∩ . . . ∩ [[qr]]N , respectively) which is defined by an equivalent
finite set N of normal clauses.

Theorem 18 LetA be a finite set of automata clauses with general term disequa-
lities, p a predicate, and Y a variable. For every conjunction of labeled-path
disequalities ψ, a finite sequence of ground terms t1, . . . , tl can be effectively con-
structed such that, with respect toA, the disjunction φ = ψ[t1/Y]∨ . . .∨ψ[tl/Y]
is logically equivalent to the expression ∃Y p(Y), ψ.

Proof. W.l.o.g. we assume that the variable Y does not occur on both sides
within the same disequality in ψ. Otherwise, we modify the set A of clauses
in such a way that only those terms of the (original) set [[p]]A are accepted by the
predicate p which satisfy those disequalities. (For this construction, we may need
to introduce an auxiliary predicate in order to take care of production cycles, since
terms of [[p]]A may also contain subterms that are accepted by p.)

60 Chapter 3. Normalization of Horn Clauses

Now let Π denote the set of path expressions Y.π occurring in ψ, and m the
total number of occurrences of such expressions in ψ. We construct a finite se-
quence of terms t1, . . . , tl of [[p]]A such that for each ground substitution θ not
mentioning Y , the following holds: if θ ⊕ {Y 7→ t} |= ψ for some t ∈ [[p]]A, then
also θ ⊕ {Y 7→ ti} |= ψ for some i. Each of the terms ti is generated during one
possible run of the following nondeterministic algorithm. The algorithm starts
with one term s0 ∈ [[p]]A. If no such term exists, the empty sequence is returned.
Otherwise, the algorithm adds s0 to the output sequence and proceeds according to
one permutation of the occurrences of path expressions Y.π occurring in ψ. Then
it iterates of the path expressions in the permutation. In the round i for the path
expression Y.π, the current set A of automata clauses is modified in such a way
that all terms t with t.π = si−1.π are excluded from [[p]]A. Let A′ be the resulting
set of automata clauses. If [[p]]A′ is empty, the algorithm terminates. Otherwise, a
term si ∈ [[p]]A′ is selected and added to the output sequence.

For the correctness of the approach, consider an arbitrary ground substitution θ
defined for all variables occurring in ψ with the exception of Y . First, assume that
∃Y p(Y), ψθ is not satisfiable. Then for no s ∈ [[p]]A, ψθ[s/Y] is true. Hence, also
the finite disjunction provided by our construction cannot be satisfiable for such a
θ, and therefore is equivalent to ∃Y p(Y), ψθ. Now assume that θ |= ∃Y p(Y), ψ,
i.e., some s ∈ [[p]]A exists with θ |= ψ[s/Y]. Then we claim that there exists some
s′ occurring during one run of the nondeterministic algorithm with θ |= ψ[s′/Y].
We construct this run as follows. Let s0 ∈ [[p]]A denote the start term of the
algorithm. If s0 satisfies all disequalities, we are done. Otherwise, we choose
one disequality Y.π 6= t in ψθ which is not satisfied. This means that s0.π = t.
Accordingly, we choose Y.π as the first occurrence of a path expression selected
by the algorithm. In particular, this means that all further terms si output by the
algorithm will satisfy the disequality Y.π 6= t. After each round, one further
disequality is guaranteed to be satisfied – while still s is guaranteed to be accepted
by p in the resulting set A′ of automata clauses. �

Corollary 17 Let N be a finite set of normal clauses with general term disequa-
lities, q1, . . . , qr a finite sequence of predicates, and Y a variable. For every
conjunction of general term disequalities ψ, a finite sequence of ground terms
s1, . . . , sl can be constructed such that with respect to N , the disjunction φ =
ψ[s1/Y]∨. . .∨ψ[sl/Y] is equivalent to the expression ∃Y (q1(Y), . . . , qr(Y), ψ).

Proof. First, recall that we can construct a finite set A of automata clauses
together with a predicate p such that [[p]]A = [[q1]]N ∩ . . . ∩ [[qr]]N . Clearly,
∃Y p(Y), ψ is implied by every constraint ψ[s/Y] with s ∈ [[p]]A.

By Lemma 15, every disequality t1 6= t2 is equivalent to a disjunction of
disequalities of the form X.π 6= Z.π′ or X.π 6= t for variables X,Z, paths π, π′,

3.2 H1-Clauses with Path Disequalities 61

and ground terms t. Accordingly, ψ is equivalent to a disjunction ψ1 ∨ . . . ∨ ψk
for suitable conjunctions ψi of labeled-path disequalities. By Theorem 18, each
conjunction p(Y), ψi is equivalent to a disjunction ψi[si1/Y] ∨ . . . ∨ ψi[sili/Y].
Since p(Y), ψ is equivalent to the disjunction

p(Y), ψ1 ∨ . . . ∨ p(Y), ψk

we conclude that it is equivalent to the disjunction:

ψ1[s11/Y] ∨ . . . ∨ ψk[sklk/Y]

The latter, on the other hand, implies the disjunction

ψ[s11/Y] ∨ . . . ∨ ψ[sklk/Y]

Therefore, the sequence s11, . . . , sklk satisfies the requirements of the corollary.
e �

Example 21 The resolution steps of Example 20 produced the clause

q(X1, X2)⇐ is_vote(X1), pbob(Y), v′(X2), X1.(vote, 1) 6= Y.(vote, 1)

In order to decide satisfiability of ∃Y pbob(Y), X1.(vote, 1) 6= Y.(vote, 1), the
algorithm of Theorem 18 starts with the term vote(pers(bob, 25), yes) ∈ [[pbob]]N
for the subsetN of normal clauses. Then it enforces the disequality s.(vote, 1) 6=
pers(bob, 25) for terms s ∈ [[pbob]]N and finds out by a successful emptiness-test
that no such term exists. Therefore only the normal clause:

q(X1, X2)⇐ is_vote(X1), v′(X2), X1.(vote, 1) 6= pers(bob, 25)

is added. This new clause in turn enables two more resolution steps for the first
two clauses of this voting protocol example, yielding

valid(X1) ⇐ is_vote(X1), v′([]), X1.(vote, 1) 6= pers(bob, 25)
q(X1, X2) ⇐ is_vote(X1), v′(:: (Y,X2)), X1.(vote, 1) 6= pers(bob, 25),

X1.(vote, 1) 6= Y.(vote, 1)

for the substitutionX2 7→ [] andX2 7→:: (Y,X2), respectively. Another resolution
step with the clause v′(:: (X1, X2))⇐ palice(X1), empty(X2) now yields:

q(X1, X2)⇐ is_vote(X1), palice(Y), empty(X2), X1.(vote, 1) 6= pers(bob, 25),
X1.(vote, 1) 6= Y.(vote, 1)

with substitution X1 7→ Y . To the last clause, the Splitting rule can again be ap-
plied in order to replace the precondition palice(Y), X1.(vote, 1) 6= Y.(vote, 1)

62 Chapter 3. Normalization of Horn Clauses

with a disjunction of constraints not containing Y . As is the case with pbob,
the algorithm of Theorem 18 finds one term for predicate palice, for instance
vote(pers(alice, 15), no). Then for the path (vote, 1) the term pers(alice, 15)
is excluded, and palice becomes empty. Thus, the new normal clause

q(X1, X2) ⇐ is_vote(X1), empty(X2), X1.(vote, 1) 6= pers(bob, 25),
X1.(vote, 1) 6= pers(alice, 15)

is added. Again the obtained normal clause enables two resolution steps for the
first two clauses of the voting protocol, yielding

valid(X1) ⇐ is_vote(X1), empty([]), φ
q(X1, X2) ⇐ is_vote(X1), empty(:: (Y,X2)), X1.(vote, 1) 6= Y.(vote, 1), φ

where φ abbreviates the conjunctionX1.(vote, 1) 6= pers(bob, 25), X1.(vote, 1) 6=
pers(alice, 15). Finally, a last resolution step with the clause empty([])⇐ for the
first of these two clauses achieves the result

valid(X1)⇐ is_vote(X1), φ

where φ again equalsX1.(vote, 1) 6= pers(bob, 25), X1.(vote, 1) 6= pers(alice, 15),
stating that a vote is valid if it is submitted by a person who is different from the
two persons as stored in the given list. �

In the example, N grows, but the set [[pbob]]N is not affected. Therefore, the con-
straint X1.(vote, 1) 6= Y.(vote, 1) cannot be completely removed but only trans-
lated to X1.(vote, 1) 6= pers(bob, 25). However, if laterN changed in such a way
that [[pbob]]N contains two or more elements, the constraint would be removed by
a splitting step.

Propagation. The Propagation rule is concerned with clauses that are of the
form p(X1) ⇐ q1(X1), . . . , qr(X1), ψ where ψ only contains the variable X1 (or
none). The principal procedure is the same as with Propagation in case of normal-
ization ofH1-clauses with term disequalities as described in Section 3.1. Assume
that r > 0, and N contains normal clauses qj(f(X1, . . . , Xk)) ⇐ αj, ψj for
j = 1, . . . , r. Then we add the normal clause:

p(f(X1, . . . , Xk))⇐ α1, . . . , αr, ψ1, . . . , ψr, ψ
′

where ψ′ = ψ[f(X1, . . . , Xk)/X1].
This rule may create new disequalities, too. Again, however, after simplifica-

tion of queries t.π where t is not a variable, the new constraints only contain path
expressions for paths which are suffixes of paths already occurring in disequalities
of the original set C.

3.2 H1-Clauses with Path Disequalities 63

Example 22 Consider the following variant of the voting protocol example

person(pers(X1, X2)) ⇐ name(X1), age(X2)
adult(X1) ⇐ person(X1),

∧
0≤i≤17X1.(pers , 2) 6= i

valid(vote(X1, Y)) ⇐ q(X1, [])
q(X1, X2) ⇐ q(X1, :: (Y,X2)), X1 6= Y.(vote, 1)
q(X1, X2) ⇐ adult(X1), votes(X2)

intending to only allow adults to submit a vote. Here, the first argument of q is
a person instead of a vote. Then the second clause is instantiated for constructor
pers with substitution X1 7→ pers(X1, X2). Together with the first clause, we
obtain:

adult(pers(X1, X2))⇐ name(X1), age(X2),
∧

0≤i≤17

pers(X1, X2).(pers , 2) 6= i

or simplified: adult(pers(X1, X2))⇐ name(X1), age(X2),
∧

0≤i≤17X2 6= i �

Theorem 19 Let C denote a finite set of H1-clauses with path disequalities. Let
C denote the set of all clauses obtained from C by exhaustively adding clauses
according to the normalization rules. Then the subset N of all normal clauses in
C is equivalent to C, i.e., [[p]]C = [[p]]N for every predicate p occurring in C.

Proof. The proof follows the same lines as the proof of Theorem 13: every
clause added to C by means of Resolution, Splitting or Propagation is implied
by the set of clauses in C. Therefore, for every predicate p, [[p]]C = [[p]]C . In the
second step, it is verified that every fact p(t) which can be deduced by means of
the clauses in C can also be deduced in at most as many steps with clauses from
N alone. �

The proof of termination of H1-normalization in presence of path disequalities is
more specific and makes use of the fact that the paths occurring in general term
constraints do not grow by resolution steps. Note that the proposition of The-
orem 15 that only finitely many core clauses occur still holds, as the resolution
steps are done with normal clauses, resulting only in literals p(t) for subterms t of
terms that are already present. In order to prove termination, however, we addi-
tionally must show that the occurring disjunctive sequences of finite conjunctions
of disequalities also become stable if general terms are used instead of ordinary
terms.

Theorem 20 Let C denote a finite set of H1-clauses with path disequalities. Let
C denote the set of clauses obtained from C by adding all clauses according to the
Resolution, Splitting and Propagation rules that are not subsumed by the current
set of clauses. Then C is finite.

64 Chapter 3. Normalization of Horn Clauses

Proof. The difference w.r.t. the corresponding proof for term disequalities con-
cerns the argumentation that only finitely many constraints can occur. Concern-
ing the core clauses, we recall that the number of cores is bounded, i.e., only
finitely many distinct families of clauses can occur during normalization. For
each family f , let ψC,f denote the disjunction of constraints of clauses of C which
belong to f . Each clause that is added to C extends one of the finitely many con-
straints ψC,f to ψC,f ∨ φ for a conjunction of disequalities φ. In order to show that
the resulting disjunctions eventually are implied, we recall that in every normal-
ization step, the terms in constraints may grow — but the lengths of paths in path
expressions remain bounded. Therefore, the number of all possibly occurring path
expressions is finite.

By Theorem 14, for each sequence ψi of conjunctions of term disequalities
over finitely many variables, the disjunction

∨m
i=1 ψi, m ≥ 1, eventually becomes

stable, i.e., there exists some M such that
∨m
i=1 ψi =

∨M
i=1 ψi for all m ≥ M .

This also holds true if we use finitely many path expressions instead of variables.
Therefore a disjunction

∨m
i=1 ψi,m ≥ 1, also eventually becomes stable if each

ψi is a conjunction of general term disequalities and the set of occurring path
expressions is finite.

We conclude that eventually, every newly added clause is subsumed — im-
plying that the modified normalization procedure terminates with a finite set of
clauses C. �

By Theorem 19 and Theorem 20, the modified normalization rules for path dis-
equalities constitute a sound and complete procedure which constructs for every
finite set C ofH1-clauses with path disequalities an equivalent finite setN of nor-
mal clauses within finitely many steps. By Lemma 2, N can then be transformed
to an equivalent finite setA of automata clauses with path disequalities, for which
emptiness can be decided for every predicate according to [CJ94]. Altogether this
proves our main result of this section:

Theorem 21 Assume that C is a finite set of H1-clauses with general term dis-
equalities. Then a finite set A of automata clauses can be effectively constructed
such that for every predicate p of C, [[p]]C = [[p]]A. In particular, it is decidable
whether or not [[p]]C is empty. �

3.3 H1-Clauses with Hom-Disequalities 65

3.3 H1-Clauses with Hom-Disequalities
Here, we extend the concept of term disequalities by transforming the compared
terms by a tree homomorphism H prior to the test for disequality. The disequality
s 6=H t, as defined in Section 2.1 on page 16, holds true if the images of s and t
under H are distinct. In case of s = t, it also holds that s =H t – and therefore the
hom-disequality s 6=H t is false. If, on the other hand, s and t are distinct terms,
s 6=H t may still be false. This may not only be the case for terms containing
distinct variables such as f(X1) and f(X2), but even for terms whose topmost
symbols are different.

Example 23 Let H = {a 7→ b, g 7→ f(b,X1), b 7→ b, f 7→ f(X1, X2)}. Then the
hom-disequality

g(a) 6=H f(b, Y)

is not satisfied by the substitution θ = {Y 7→ b} since both H(θ(f(b, Y))) =
H(f(b, b)) = f(b, b) and also H(θ(g(a))) = H(g(a)) = f(b,Ha) = f(b, b) yield
the same term. �

At the end of Section 2.1 on page 23, we have seen that in contrast to ordinary
term disequalities, hom-disequalities cannot easily be split in disjunctions of the
form X 6=H t where X is a variable and t is a term which does not contain X . For
the Splitting rule, however, a form where auxiliary variables Y do not occur on
both the left- and right-hand side of a disequality, is desirable.

Example 24 Consider the constraint

f(X1, Y) 6=H g(X2, Y)

In case that Hg = Hf = g(X1, X2), this constraint is equivalent to the disequality
X1 6=H X2 – and thus independent of the substitutions for Y . If, on the other hand,
Hg = g(X1, X2) but Hf = g(X2, X2), then it is equivalent to the disequality
Y 6=H X2 and therefore depends on the substitutions for Y . �

In order to simplify the hom-disequality constraint φ = φ1 ∧ . . . ∧ φn of a clause
h⇐ α, φ, we proceed as follows. In the first step, we apply H to each disequality
φi = (si 6=H ti). In the second step, the topmost symbols of the resulting terms
Hsi are matched with those of the terms Hti, as in the case of ordinary term dis-
equalities. If there is a mismatch, φi is vacuously true and therefore is removed
from the conjunction φ. Otherwise, this step results in a disjunction of disequa-
lities of the form Xij 6= tij where Xij is a variable. Then we undo the effect of
applying H to both sides of the disequality by computing arbitrary pre-images of
the tij under H. The result then is a disjunction of hom-disequalities

di = Xi1 6=H H−1(ti1) ∨ . . . ∨Xim 6=H H−1(tim)

66 Chapter 3. Normalization of Horn Clauses

which is equivalent to φi. Therefore, the conjunction φ′ = d1 ∧ . . . ∧ dn is equiv-
alent to the given constraint φ. We then transform φ′ to DNF ψ1 ∨ . . . ∨ ψl and
replace the clause h⇐ α, φ by clauses h⇐ α, ψi for i = 1, . . . , l.

Outline. We show in Section 3.3.1 that for finite sets A of automata clauses
with hom-disequalities, it can be efficiently decided for every predicate p whether
at least k terms are contained in the homomorphic image of [[p]]A. Moreover, if
only m < k such terms are contained, a witness of terms t1, . . . , tm ∈ [[p]]A can be
computed whose homomorphic images are pairwise distinct. This construction is
used in Section 3.3.3 for the Splitting rule.

In Section 3.3.2, we then show that finite sets of automata clauses with hom-
disequalities are more expressive than H1 with term disequalities, and that they
are incomparable to finite sets of automata clauses with path disequalities.

For the proof that normalization terminates also for hom-disequalities, we
have to take care of syntactically distinct disequality constraints which are se-
mantically equivalent. E.g., the two atomic constraints X 6=H a and X 6=H g(a)
may express the same if H deletes the constructor g. In order to account for such
cases, we replace, for the decision of subsumption, the topmost constructors of
the left-hand sides and right-hand sides of disequalities according to the given
tree homomorphism, as described in Section 3.3.3 on page 75.

3.3.1 Tree Automata with Hom-Disequalities
In this section we first show that to every finite set of automata clauses A with
hom-disequalities s 6=H t, a finite set of generalized automata clauses with term
disequalities AH can be effectively constructed such that H[[p]]A = [[p]]AH

. Gener-
alized here means that the heads may contain complex terms and the preconditions
may contain auxiliary variables. Secondly, we show that it is decidable for AH,
every predicate p, and and number k whether |[[p]]AH

| < k — and thus, whether
|H[[p]]A| < k.

The class HDA(Hom-Disequality-Automata) of general automata with term
disequalities consists of finite sets of clauses of the form:

p(t)⇐ p1(X1), . . . , pk(Xk), φ (k ≥ 0)

where p, p1, . . . , pk are unary predicates, t is a term with vars(t) ⊆ {X1, . . . , Xk},
and φ is a conjunction of disequalities ti 6= tj which may only mention variables
from {X1, . . . , Xk}. The set vars(t) of variables occurring in the head of such a
clause c is denoted hv(c) while its complement with respect to {X1, . . . , Xk}, i.e.,
the set of (auxiliary) variables occurring only in the body of c, is denoted bv(c).
The number of disequalities in a clause c is denoted dc(c).

3.3 H1-Clauses with Hom-Disequalities 67

Note that in this definition of HDA auxiliary variables are named Xi for some
i ≥ 1 — instead of Y, Yi. Also for each auxiliary variable Xi there is some lit-
eral p(Xi) in the precondition of the clause. However, this is not a restriction
on the preconditions of clauses since the predicate p may be chosen as > so that
only the occurrences of Xi within φ are relevant. The following lemma provides
the construction which transforms a finite set of automata clauses with disequa-
lities modulo a given tree homomorphism H to an HDA. The construction also
applies for equalities modulo H — which is used for an undecidability result in
Section 2.4.

Lemma 18 LetA be a finite set of automata clauses with hom-equalities t1 =H t2
and hom-disequalities t1 6=H t2 for an arbitrary tree homomorphism H. Then an
HDA AH with additional term equalities in the preconditions can be constructed
such that for every predicate p, [[p]]AH

= H[[p]]A. IfA only contains (dis)equalities,
then AH only contains (dis)equalities as well.

Proof. Note that an analogous construction has been provided by Godoy et al. for
tree automata with path disequalities [GGRÀ10]. For simplicity, we provide the
construction for automata clauses with hom-disequalities only. If hom-equalities
occur, too, the construction yields additional term equalities in the resulting gen-
eralized automaton AH. AH is obtained from A essentially by applying H to each
clause, i.e., by transforming each clause c of the form:

p(f(X1, . . . , Xk))⇐ p1(X1), . . . , pk(Xk), φ

with φ = l1 6=H r1 ∧ . . . ∧ lm 6=H rm, m ≥ 0 to the new clause c′:

p(H∗(f(X1, . . . , Xk)))⇐ p1(X1), . . . , pk(Xk), φ
′

with φ′ = H∗l1 6= H∗r1 ∧ . . . ∧ H∗lm 6= H∗rm. Instead of [[q]]AH
= H[[q]]A for

all predicates q, we prove by induction that [[q]]iAH
= H[[q]]iA for all i ≥ 0 and

all q, with the base case [[q]]0AH
= H[[q]]0A = ∅. Recall that H∗θs = θHH∗s for

terms s, where θH = {Xi 7→ H∗θXi}. For a collection of terms t1, . . . , tk, let
θ = {Xi 7→ ti} (hence θH = {Xi 7→ H∗ti}). Now assume that f(t1, . . . , tk) ∈
[[p]]i+1
A by application of the clause c, i.e., tj ∈ [[pj]]

i
A for all 1 ≤ j ≤ k and

θ |= lj 6=H rj for all 1 ≤ j ≤ m. By induction hypothesis, the first condition
holds iff H∗tj ∈ [[pj]]

i
AH
∀1 ≤ j ≤ k. The latter condition means that for all

1 ≤ j ≤ m we have H∗θlj 6= H∗θrj , which is equivalent to θHH∗lj 6= θHH∗rj
(for all j). Thus, f(t1, . . . , tk) ∈ [[p]]i+1

A through application of c if and only if
H∗tj ∈ [[pj]]

i
AH
∀1 ≤ j ≤ k and θH |= H∗lj 6= H∗rj ∀1 ≤ j ≤ m, which is

equivalent to H∗f(t1, . . . , tk) ∈ [[p]]i+1
AH

through application of c′, with the ground
substitution θH, since H(f)(H∗t1, . . . ,H

∗tk) = H∗f(t1, . . . , tk). �

68 Chapter 3. Normalization of Horn Clauses

Example 25 Consider the tree homomorphism:

H = {b 7→ a, f(X1, X2) 7→ g(X1, g(X1, a))}

where all other constructors are preserved. Then the set of automata clauses:

p(b) ⇐
p(f(X1, X2)) ⇐ p(X1), p(X2), X1 6=H f(X2, X2)

is transformed into the following set of clauses:

p(a) ⇐
p(g(X1, g(X1, a))) ⇐ p(X1), p(X2), X1 6= g(X2, g(X2, a))

Note that the variable X2 no longer occurs in the head of the second clause, while
the variable X1 occurs more than once. �

Deciding k-Finiteness. In the following we assume that an HDA A is given.
Let us furthermore assume that we are given some predicate p occurring in A and
some number k > 0. The problem to be solved, is:

1. to decide whether p accepts at least k terms in the least model of A, and

2. if only m < k terms are in [[p]]A, to provide a witness of m such terms.

An algorithm based on emptiness decision for a model of tree automata for ho-
momorphic images of regular tree languages, extended with path disequalities,
could be derived from [GGRÀ10]. The time complexity, however, would be a
tower of several exponentials in the worst case. Here, we proceed along the lines
of efficiently deciding k-finiteness of automata with term disequalities in [SR11].
This base algorithm, though, must be extended as now heads are no longer just
single constructor applications. Moreover, not all variables occurring in precon-
ditions necessarily also occur in the head of a clause. Again, we start with a
semi-algorithm that decides for a given HDA A, a predicate p, and a number
k ≥ 1 whether |[[p]]A| ≥ k, by computing in every round i, i ≥ 1, the sets [[q]]iA
for all predicates q until |[[p]]iA| ≥ k after some round i. Here, the sets [[q]]iA can
be computed from the sets [[q′]]i−1

A by applying the implications c ∈ A— starting
with [[q]]0A = ∅ for all q.

In order to obtain an algorithm, we establish an upper bound for the number of
rounds which are needed for deciding HDA-k-finiteness. By a counting argument
(analogous to [SR11] as described in Section 3.1.1), it suffices to increase the sets
[[q]]iA only up to k+

∑
c∈A dc(c) trees for each predicate q 6= p. The claim is again

based on a lemma which states that each term constraint φ of a clause c “filters out”

3.3 H1-Clauses with Hom-Disequalities 69

no more than dc(c) trees. This property of finite conjunctions of term disequalities
also applies for HDA. More precisely, if a clause q1(t) ⇐ α1, q2(X), α2, φ can
produce a tree for predicate q1 in round i, and X ∈ vars(t), then the clause can
produce at least |[[q2]]i−1

A |−|φ|X trees until round i, where |φ|X denotes the number
of disequalities in φ which mention X .

Lemma 19 LetA be an HDA, and c ∈ A a clause q(t)⇐ p1(X1), . . . , pk(Xk), φ.
Assume that we are given a ground substitution θ |= φ with Xiθ ∈ [[pi]]

d
A ∀ i ∈

{1, . . . , k} for some d ≥ 0. Then |[[q]]d+1
A | ≥ max{|[[pi]]dA| − dc(c) | Xi ∈ hv(c)}.

Proof. Let Xj ∈ hv(c) and φ ≡ C1 ∧ . . . ∧ Cm,m = dc(c). Reorder the Ci s.
t. Xj is mentioned exactly in C1, . . . , Cl, 0 ≤ l ≤ m. Choose θ s.t. θ |= Cl+1 ∧
. . . ∧ Cm and Xiθ ∈ [[pi]]

d
A for all i ∈ {1, . . . , k} \ {j}. Making C1, . . . , Cl true

by choosing θ(Xj) can be considered as an instance of the pigeonhole principle
implying that there are at least |[[pj]]dA| − l ≥ |[[pj]]dA| −m different trees in [[pj]]

d
A

which satisfy all Ci, 1 ≤ i ≤ l. Since Xj ∈ hv(c), each of them can be used in
combination with the trees Xiθ, i 6= j, to produce one tree for [[q]]d+1

A . �

The main theorem is based on a procedure which iteratively constructs all facts
p(t) with a proof depth (i.e., the number of rounds that the procedure needs in
order to find this fact) less than or equal to some m ≥ 0 — which depends only
on the number k, the number of predicates occurring in A, and the total number
of disequalities in A. The theorem generalizes Theorem 10 in that now variables
have to be taken into consideration which only occur in the precondition of a
clause but not in the head, and the heads of clauses are not restricted to terms with
exactly one constructor.

Theorem 22 LetA be an HDA with n predicates and d =
∑

c∈A dc(c) disequality
constraints. Let k be a positive number. Then for all predicates p, it holds that
|[[p]]A| < k if and only if |[[p]]n(d+k)

A | < k.

Proof. Direction “⇒” is trivial. For a proof of “⇐”, consider the smallest num-
ber r such that ∀p (|[[p]]rA| < d + k ⇒ [[p]]r+1

A = [[p]]rA). We have r ≤ n(d + k),
since for all 1 ≤ i ≤ r at least one set [[p]]i−1

A with |[[p]]i−1
A | < d + k increases

(i.e., |[[p]]iA| > |[[p]]i−1
A |), which is possible only n(d + k) times. Assume for a

contradiction that |[[p]]A| ≥ k but |[[p]]rA| < k for some predicate p.
Let j be minimal such that j > r+1 and for some predicate p, |[[p]]j−1

A | < k but
|[[p]]jA| ≥ k by application of some clause cj (possibly among other clauses). Then
for all r + 1 ≤ m < j − 1 and predicates q, either [[q]]m+1

A = [[q]]mA or |[[q]]mA | ≥ k.
Consider a chain of clauses cr+1, . . . , cj where for all i ∈ {r + 1, . . . , j − 1}

ci ≡ qi(ti)⇐ pi1(Xi1), . . . , pim(Xim), φi

70 Chapter 3. Normalization of Horn Clauses

is chosen such that for some variable X

(1) [[qi]]
i
A 6= [[qi]]

i−1
A and qi(X) occurs in the body of ci+1, and,

(2) if X ∈ bv(ci+1) then |[[qi]]i−1
A | ≤ dc(ci+1).

Such a chain exists since [[q]]iA = [[q]]i−1
A for all predicates q in the precondition of

a clause ci+1 would imply that ci+1 cannot contribute to the set [[qi+1]]i+1
A \ [[qi+1]]iA,

and concerning (2), if |[[qi]]i−1
A | > dc(ci+1), the exact cardinality of [[qi]]

m
A , m ≥ i

is irrelevant for ci+1 since any ground substitution θ can be made to satisfy all
disequalities in φi+1 mentioning X by changing only θ(X) to an appropriate term
of [[qi]]

m
A .

Case 1. First assume that for all occurrences of qi(X) in the body of ci+1 we
have X ∈ hv(ci+1). Then by Lemma 19, we have |[[qi]]i−1

A | ≤ |[[qi+1]]iA|+ dc(ci+1)
for i = r + 1, . . . , j − 1. Since |[[qj]]j−1

A | = |[[p]]j−1
A | < k, it follows that

|[[qr+1]]rA| <
∑j

i=r+2 dc(ci) + k. If qi 6= ql for all r + 1 ≤ i < l ≤ j, then∑j
i=r+2 dc(ci) ≤

∑
c∈A dc(c) = d — a contradiction because |[[qr+1]]rA| < d + k

but [[qr+1]]r+1
A 6= [[qr+1]]rA, violating the assumption in the definition of r. Other-

wise, let qi = ql such that l− i is maximal. Then [[ql]]
m
A = [[qi]]

m
A∀m, and [[qi]]

i−1
A ⊆

[[qi]]
l−1
A , hence |[[qi]]i−1

A | ≤ |[[ql]]
l−1
A |. Therefore, |[[qr+1]]rA| < k +

∑i
m=r+2 dc(cm)

+
∑j

m=l+1 dc(cm). From maximality of l − i, it follows that qr+1, . . . , qi are
pairwise disjoint with ql+1, . . . , qj , and so also cr+1, . . . , ci are pairwise disjoint
with cl+1, . . . , cj . Multiple occurrences of clauses cm therefore can now be re-
cursively removed in the same way within both sums, proving that |[[qr+1]]rA| <
k +

∑
c∈A dc(c). Again the contradiction follows.

Case 2. Assume X ∈ bv(ci+1) for some occurrence of qi(X) in the body of
ci+1. Instead of |[[qj]]j−1

A | = |[[p]]j−1
A | < k as in Case 1 we now have |[[qi]]i−1

A | ≤
dc(ci+1) for some i < j, given by the definition of the chain cr+1, . . . , cj . By
choosing the minimal i, we get |[[qr+1]]rA| ≤

∑i+1
m=r+2 dc(cm) <

∑i+1
m=r+2 dc(cm)+

k, as in Case 1 (with i+ 1 ≤ j playing the role of j), completing the proof. �

Corollary 20 Let A be an HDA. Then for all predicates p and numbers k ≥ 0, it
can be effectively decided whether |[[p]]A| ≤ k. Moreover, if |[[p]]A| ≤ k, then [[p]]A
can be effectively computed. �

From Lemma 18 and Corollary 20, we conclude:

Corollary 21 Let A be a finite set of automata clauses with hom-disequalities.
Then for all predicates p it can be effectively decided whether [[p]]A = ∅. �

Corollary 22 Let A be a finite set of automata clauses with hom-disequalities.
Then for all predicates p and numbers k > 0 it can be effectively decided whether
|H[[p]]A| < k. Moreover, in case that |H[[p]]A| = m < k, a sequence t1, . . . , tm ∈
[[p]]A can be effectively constructed such that the terms Hti, i = 1, . . . ,m, are
pairwise distinct. �

3.3 H1-Clauses with Hom-Disequalities 71

3.3.2 Expressiveness
This section compares automata classes extended with term, path, and hom-dis-
equalities w.r.t. their expressiveness. First we show that hom-disequalities can-
not be simulated by path disequalities, by presenting a specific language defined
through a set of automata clauses with hom-disequalities which cannot be de-
fined by a finite set of automata clauses with path disequalities only. Intuitively,
path constraints can only express disequalities between subterms of at most a cer-
tain depth d as specified as part of the corresponding path expression. Hom-
disequalities, however, may disregard an unbounded number of constructors on
top of the tree.

Let Σ = {a, s, f} where a, s, and f have arities 0, 1, and 2, respectively. Let
H be the homomorphism defined by: Hs = X1 while terms rooted a or f are not
changed by H. Consider the language L with:

L = {f(t1, t2) | t1 6=H t2}

The following automaton with hom-disequalities accepts L through predicate p.

p(f(X1, X2)) ⇐ >(X1),>(X2), X1 6=H X2

Lemma 23 There is no tree automaton for L with path disequalities only.

Proof. Assume for a contradiction that an automaton A with path disequalities
exists which accepts L through a predicate p. It is known [SN99, GGRÀ10, SR12]
that toA, a complement automaton B with path equalities only can be constructed
such that there is a predicate p which accepts the complement language L given
by: L = TΣ \ L = {f(t1, t2) | t1 =H t2} ∪ {a} ∪ {s(t) | t ∈ TΣ}. Let d be
the maximal depth of a path occurring in B. For a ground term t, let rt1, rt2, . . .
denote the infinite sequence of terms defined by: rti = sd(f(t, si(a))). Then
Hrti = f(Ht, a). Therefore, for t 6=H t′, it holds that for all i, j, rti =H rtj and
rti 6=H rt′j , but for all paths π occurring in B, rti.π 6= rtj.π if i 6= j. As there are
infinitely many sequences (rti) but only finitely many clauses, B has a clause

p(f(X1, X2)) ⇐ q1(X1), q2(X2), φ

such that for two terms t, t′ with t 6=H t′, there are two terms t1, t2 from the
sequence (rti) and two terms t3, t4 from the sequence (rt′i) such that both f(t1, t2)
and f(t3, t4) are in [[p]]B by application of this clause. Especially, t1, t3 ∈ [[q1]]B
and t2, t4 ∈ [[q2]]B. Since φ is a conjunction of path equalities, φmust be equivalent
to true because t1.π 6= t2.π for all paths π occurring in B. But then the clause also
accepts the term f(t1, t4) for p — contradiction. �

72 Chapter 3. Normalization of Horn Clauses

Now consider the set C:

>(a) ⇐
>(f(X1, X2)) ⇐ >(X1),>(X2)
p(f(X1, X2)) ⇐ >(X1),>(X2), X1 6= X2.1

for Σ = {a, f}. The language [[p]]C is not accepted by any automaton with hom-
disequalities since hom-disequalities cannot directly access arbitrary subtrees in-
dependent of the labels in the tree. Let us denote by T the language [[p]]C of p w.r.t.
C. We have T = {f(t, a) | t ∈ TΣ} ∪ {f(t, f(t1, t2)) | t, t1, t2 ∈ TΣ, t 6= t1}.

Lemma 24 There is no tree automatonA with hom-disequalities only that defines
a predicate p with [[p]]A = T .

Proof. This example is the unlabeled-path variant of the corresponding example
from [SR12] which provides the language [[p]]C that is accepted by an automaton
with path disequalities but not by any automaton with term disequalities only.

Assume for a contradiction that an automatonA with hom-disequalities exists
which accepts T through a predicate p. As in Lemma 23 we construct the com-
plement automaton B with hom-equalities only, containing a predicate p which
accepts the language [[p]]B = T = TΣ \ T = {a} ∪ {f(t, f(t, s)) | s, t ∈ TΣ}.
Case 1: If both X1 and X2 occur in Hf , then it holds for each equality of B
that l =H r if and only if l = r, and we refer to the proof in [SR12] that for T no
automaton with term equalities exists.
Case 2: If Hf ∈ {X1, X2, g} for a ground term g, then each equality l =H r
either is vacuously true or false (in case g 6= Ha), so that B may be considered an
automaton with term equalities only, and as in Case 1, the proof in [SR12] applies.
Case 3: Assume therefore that Hf equals a term t = f(t1, t2) where t only
contains the variableX1 (respectivelyX2). Then we define d(t) to be the maximal
i ≥ 0 so that the path 1i (respectively 2i) is defined for t. Then l =H r iff d(l) =
d(r). The contradiction now follows from an argument analogous to Lemma 23
based on the fact that there are infinitely many values d(t) but only finitely many
clauses in B. �

Tree automata with term disequalities can be simulated by tree automata with path
disequalities according to Theorem 17. Choosing the trivial tree homomorphism,
on the other hand, it is clear that hom-disequalities can simulate term disequali-
ties as well. Thus, we conclude that automata clauses with hom-disequalities are
incomparable to automata clauses with path disequalities, while both classes are
more expressive than automata with term disequalities only. Figure 3.1 shows a
summary of classes of normalizable H1-extensions concerning their expressive-
ness.

3.3 H1-Clauses with Hom-Disequalities 73

TA without constraints

TA + term disequalities

TA + hom-disequalitiesTA + path disequalities

Figure 3.1: Relative expressiveness of tree automata (TA) extended with different
kinds of disequality constraints. The transitive reduction of all proper inclusions
is indicated by arrows.

3.3.3 H1-Normalization modulo Tree Homomorphism
In this section, we describe the adaptation of the normalization procedure to con-
struct for every finite set C of H1-clauses with hom-disequalities a finite set N
of normal clauses with hom-disequalities which is equivalent to C. The follow-
ing paragraphs collect the three normalization rules for the case of H1 extended
with hom-disequalities. A significant modification w.r.t. ordinary term disequa-
lities (as described in Section 3.1) is required for Splitting. Again, we refer to
the current set of all implied clauses (whether originally present or added during
normalization) as C, while N ⊆ C is the current subset of normal clauses in C.

Resolution. Complex queries in preconditions are simplified by a resolution
step with a normal clause. Assume that C contains a clause h⇐ α1, p(t), α2, ψ. If
N contains a clause p(X1)⇐ φ, then we add the clause h⇐ α1, α2, ψ, ψ

′ where
ψ′ = φ[t/X1]. IfN has a clause p(f(X1, . . . , Xk))⇐ β, φ, and t = f(t1, . . . , tk),
then

h⇐ α1, α
′, α2, ψ ∧ ψ′

is added with α′ = β[t1/X1, . . . , tk/Xk] and likewise, ψ′ = φ[t1/X1, . . . , tk/Xk].

Splitting. Splitting removes (or replaces) variables that are not contained in the
head of a clause. For better comparability w.r.t. the Splitting step for term disequa-
lities and w.l.o.g. we will assume here that all occurring hom-disequalities are of

74 Chapter 3. Normalization of Horn Clauses

the form X 6=H t for a variable X and a term t not containing X , which can be
obtained by the construction described at the beginning of Section 3.3. Assume
that C contains a simple clause h ⇐ α, ψ and Y is a variable which occurs in the
precondition α, ψ but neither occurs in h nor in any literal q(t) with t 6= Y within
α. Then we can rearrange α into a sequence α′, q1(Y), . . . , qr(Y) where α′ does
not contain Y . Let ψ contain n disequalities involving Y .

In the case of term disequalities, the key issue is to decide whether the in-
tersection L = [[q1]]N ∩ . . . ∩ [[qr]]N contains less than n + 1 terms — and if so,
to provide all terms of this set. In presence of the homomorphism H however,
this is no longer sufficient. Instead, we must refer to the number of images of
terms from L under H. In order to do so, we apply Lemma 18 from Section 3.3.1.
Using Lemma 2, we can construct for N an HDA A such that [[p]]A = H[[p]]N
for all predicates p of N . By Corollary 22, we can decide k-finiteness (choosing
k = n + 1) of the conjunction of the qi with respect to this automaton. If only
n′ < n + 1 terms are in the set H(L), the corollary provides us with n′ witnesses
in the set L whose images under H are pairwise distinct.

Let H(L) contain m terms. If m > n, then we add the clause h ⇐ α′, ψ′ to
the set C where ψ′ is obtained from ψ by removing all disequalities that mention
Y . If m ≤ n, let t1, . . . , tm be the terms as provided by Corollary 22. Then we
add to C all clauses

h⇐ α′, ψ[ti/Y], i = 1, . . . ,m

Example 26 Consider again the clause

error ⇐ pu(X), pu(Y), X 6=H Y

from Example 5 (here, X, Y, Z . . . are used as variable names), and assume that
H[[pu]]N = {t} for some ground term t = f(⊥, b), where N denotes the whole
(current) subset of normal clauses. One potential pre-image of t then is the term
t′ = f(secret(a), b). Applying Splitting for variable Y (and assuming t′ ∈ [[pu]]N),
we obtain the new clause

error ⇐ pu(X), X 6=H f(secret(a), b)

Now applying Splitting for variable X results in

error ⇐ f(secret(a′), b) 6=H f(secret(a), b)

for some possibly different pre-image f(secret(a′), b) ∈ [[pu]]N of t. The dise-
quality of the clause turns out to be false, which is due to the fact that pu does not
accept two or more terms that are different modulo H. �

3.3 H1-Clauses with Hom-Disequalities 75

Propagation. Propagation considers clauses p(X1) ⇐ q1(X1), . . . , qr(X1), ψ
(r > 0) where ψ only contains the variable X1 (or none). If N contains normal
clauses qj(f(X1, . . . , Xk))⇐ αj, ψj for j = 1, . . . , r, then the normal clause

p(f(X1, . . . , Xk))⇐ α1, . . . , αr, ψ1 ∧ . . . ∧ ψr ∧ ψ′

is added with ψ′ = ψ[f(X1, . . . , Xk)/X1].

The correctness of the whole construction for hom-disequalities can be proven
along the lines of the corresponding proof of Theorem 13.

Theorem 23 Let C denote a finite set of H1-clauses with hom-disequalities. Let
C denote the set of clauses obtained from C by adding all clauses according to the
normalization rules. Then the subsetN of all normal clauses in C is equivalent to
C, i.e., [[p]]C = [[p]]N for every predicate p occurring in C. �

Termination. As is the case with term or path disequalities, termination can
be achieved by avoiding to add clauses that are subsumed by the current set of
clauses. However, in presence of a (non-trivial) tree homomorphism H, we need
to apply H to the topmost constructors of the left-hand sides and right-hand sides
of hom-disequalities in order to decide subsumption. Otherwise, the constraints
may grow unnecessarily.

Example 27 Consider the tree homomorphism H = {f 7→ g(X2), g 7→ X1,
a 7→ b, b 7→ a} over the alphabet Σ = {a, b, g, f}. Then for an arbitrary number
i ≥ 0, the disjunction of (conjunctions of) hom-disequalities

X1 6=H X2 ∨ X1 6=H g(X2)∨, . . . ,∨X1 6=H gi(X2) (3.2)

by definition is equivalent to:

HX1 6= HX2 ∨, . . . ,∨HX1 6= HX2 (3.3)

with the convention that a ground substitution θ satisfies the constraint if and only
if H(θ(X1)) 6= H(θ(X2)), i.e., the substitution first applies, and the resulting terms
are then transformed according to H. Then the constraint (3.2) is equivalent to the
single disequality

X1 6=H X2 (3.4)

Especially, i is not bounded here; hence, formulas of type (3.2) may grow arbitrar-
ily although all these formulas are equivalent to just one single hom-disequality.

�

76 Chapter 3. Normalization of Horn Clauses

Example 28 Let H be defined as in Example 27, i.e., H = {f 7→ g(X2), g 7→ X1,
a 7→ b, b 7→ a}. The disjunction

X1 6=H a ∨ X1 6=H g(b) ∨ X1 6=H f(X2, X2) (3.5)

is equivalent to:

HX1 6= b ∨ HX1 6= a ∨ HX1 6= g(HX2) (3.6)

which in turn is equivalent to

X1 6=H a ∨ X1 6=H b ∨ X1 6=H f(a,X2) (3.7)

where we choose a, b, and f(a,X2) as pre-images under H of b, a, and g(X2),
respectively. Now consider the case that Ha is defined as a (instead of b), i.e., the
symbol a is not changed by H. Then the disjunction (3.5) is equivalent to

HX1 6= a ∨ HX1 6= g(HX2) (3.8)

since both a and g(b) are mapped to the ground term a. �

For the decision of subsumption, it is sufficient to consider the formulas (3.3),
(3.6), and (3.8), where the topmost constructors are replaced according to H — so
that the effects of H only apply to the symbols occurring in later substitutions of
the variables Xi.

Theorem 24 Let C denote a finite set of H1-clauses with hom-disequalities. Let
C denote the set of clauses obtained from C by adding all clauses according to
Resolution, Splitting, and Propagation that are not subsumed by the current set of
clauses. Then C is finite.

Proof. Concerning the core clauses, the proof agrees with that of Theorem 15
for normalization of H1-clauses with term disequalities. With the interpretation
of disequalities modulo tree homomorphism, there still are only finitely many
cores.

Now consider a sequence ψi, i ≥ 1, of conjunctions of hom-disequalities. It
remains to show that the disjunction

∨m
i=1 ψi,m ≥ 1, eventually becomes stable,

i.e., there exists some M such that
∨m
i=1 ψi =

∨M
i=1 ψi for all m ≥ M . In or-

der to construct such an M consider the sequence ψH,i, i ≥ 1, of ordinary term
disequalities where ψH,i is obtained from ψi by replacing each hom-disequality
s 6=H t with H(s) 6= H(t). Then θ is a solution to ψi, iff H ◦ θ is a solution to
ψH,i. In Section 3.1 we have shown that disjunctions of sequences of conjunctions
of ordinary term disequalities are ultimately stable. Therefore, there exists an M ′

3.3 H1-Clauses with Hom-Disequalities 77

such that
∨m
i=1 ψH,i =

∨M ′

i=1 ψH,i for all m ≥ M ′. Then we choose the constant
M as M ′. In order to prove that the sequence

∨m
i=1 ψi for m ≥ M ′ is implied by∨M ′

i=1 ψi, assume that θ is a solution of
∨m
i=1 ψi for some m ≥M ′. Then H ◦ θ is a

solution of
∨m
i=1 ψH,i and therefore also of

∨M ′

i=1 ψH,i. Consequently, θ must also
be a solution of

∨M ′

i=1 ψi. Therefore, we conclude that also
∨m
i=1 ψi =

∨M ′

i=1 ψi
for all m ≥ M . This implies that eventually all clauses that can be added are
subsumed. Therefore, the normalization procedure terminates. �

According to Theorem 23 and Theorem 24, for every finite set C of H1-clauses
with hom-disequalities an equivalent finite set N of normal clauses can be con-
structed. By Lemma 2, N can then be transformed to an equivalent finite set A
of automata clauses. Finally, by Corollary 21, emptiness is decidable for every
predicate defined by A. Altogether, we obtain:

Theorem 25 To every finite set C of H1-clauses with hom-disequalities, a finite
set A of automata clauses with hom-disequalities can be effectively constructed
such that for every predicate p of C, [[p]]C = [[p]]A. In particular, emptiness is
decidable for the sets [[p]]C . �

78 Chapter 3. Normalization of Horn Clauses

Chapter 4

Perspectives

Let us briefly recap the described work and collect some ideas for future work.
We have presented several extensions of first-order Horn clauses with constraints.
An extension of finite sets of automata clauses – a particular class of Horn clauses
corresponding to finite bottom-up tree automata – with equality and disequality
term constraints was presented in Section 2.2. The languages accepted by this
new class of term-constrained automata (TCA) are closed under Boolean oper-
ations for tree languages, i.e., union, intersection, and complementation. TCA
are strictly more expressive than tree automata with constraints between brothers
of [BT92], but less expressive than tree automata with path constraints [Mon81].
While emptiness is undecidable for the latter class of automata, we have shown
that emptiness for TCA is decidable.

When adding equality term constraints, however, the classH1 becomes unde-
cidable. In fact, adding either of the two mainH1 features – auxiliary variables, or
complex preconditions – to automata clauses with term equalities already results
in an undecidable class of Horn clauses. ForH1 extended with term disequalities,
on the other hand, we have shown that finite sets of such clauses can still be trans-
formed to tree automaton form (extended with disequalities), and the resulting
automata with term disequalities are decidable.

While for tree automata with equality constraints, both the extension to path
equalities and the extension to equalities of images of terms under a given tree
homomorphism yield undecidability, the disequalities for H1 can be further ex-
tended. Path disequalities enable to express disequality relations between sub-
terms at different levels while disregarding the rests of the compared trees. Hom-
disequalities, on the other hand, allow for comparisons that disregard subterms,
depending on the constructors under which these subterms occur.

Future work and possible applications. Not surprisingly, there is still much
to do. E.g., for the algorithms proposed in our work it would be interesting

79

80 Chapter 4. Perspectives

to determine precise complexity bounds. So far we have developed prototype
implementations for most of the described transformation and decision proce-
dures. It remains to evaluate how they behave on practical examples and in how
far H1-clauses with disequalities can be applied to enhance analyses of term-
manipulating programs. We also wish to see our methods applied in the modelling
of protocols. A direct treatment of disequality conditions is now conveniently pos-
sible in Horn clause representations.

Let us amplify here one concrete example application: cryptographic proto-
cols. Such protocols play a key role in mechanisms for protecting confidential
data from unauthorized access. They are widely used with good success, e.g., for
authentication purposes [BM03]. The insight that it is often insufficient to only
“manually” prove that a protocol is secure has grown at the end of last century.
One witness exemplifying the need of automatic verification in the area of cryp-
tographic protocols is the famous Needham-Schroeder protocol [NS78] for public
key encryption whose insecureness remained undetected for more than one and a
half decades [Low95].

The modelling of cryptographic protocols for analysis and verification pur-
poses normally abstracts from cryptography by Dolev-Yao models [DY83], re-
placing the underlying cryptographic operations by term algebras. Typically, the
models of cryptographic protocol analyses contain (at least) one attacker, and the
goal is to prove that it is impossible for the attacker to deduce certain knowledge,
e.g., a secret that must be protected from unauthorized access. Protocol steps as
well as actions of potential attackers who try to exploit weaknesses of the protocol
often can be modelled by Horn clauses in a natural way. E.g., [Bla01] provides
protocol analyses based on Prolog descriptions, and [NNS02] analyzes, by means
ofH3-clauses (a subclass ofH1), the Spi calculus, an extension of the Pi calculus
with primitives for encryption and decryption, intended to support cryptographic
protocol modelling and analysis.

The result of such an analysis then is an overapproximation of the attacker’s
knowledge and – hopefully – the proof that it does not contain anything that the
protocol is supposed to protect from unauthorized access. Technically, this means
an empty intersection of the sets of terms that are accepted by the corresponding
predicates for the attacker and the secret, respectively.

Since Horn clauses do not allow for a direct treatment of disequality, it is
common practice in the modelling of protocols that negative information is not
directly modelled at all – even if the protocol explicitly specifies disequality con-
ditions (see, e.g., [Aba03, AF04]). The knowledge lost in this way may make a
subsequent analysis doubtful or even unsound as it ignores the fact that an attacker
could be able to deduce useful knowledge not only from successful but also from
unsuccessful attempts at protocol steps – such as, e.g., message decryption.

81

Example 29 Let know be a predicate collecting the knowledge of an attacker.
Assume that keys are modelled as terms b1(b2(. . . (bl(⊥)) . . .)) where bi ∈ {a, b}
are bits, and l denotes the key length. A partially decrypted encrypted message is
given by a term

enc(secret, b1(. . . (bi(⊥)) . . .), si(0)) 0 ≤ i ≤ l, all bj ∈ {a, b}

where still i ≥ 0 bits have to be decrypted step-wise. While the number of re-
maining bits shall be unknown, a fully decrypted secret can be obtained by the
attacker:

know(sec(S))⇐ know(enc(S,⊥, 0))

The ability of the attacker to step-wise decrypt messages is modelled by the
clauses:

know(enc(S,K,N)) ⇐ know(key(d(X), s(N))), know(enc(S, d(K), s(N)))
know(key(X,N)) ⇐ know(key(d(X), s(N))), know(enc(S, d(K), s(N)))

for d ∈ {a, b}. Then an attacker who knows the key k = b1(. . . (bl(⊥)) . . .) can
obtain the secret, i.e., from the facts

know(enc(secret, k, sl(0))) and know(key(k, sl(0)))

the fact know(sec(secret)) can be deduced1. If, on the other hand, the attacker’s
key does not match the encryption key, the decryption “silently” fails so far. Thus,
the attacker is only successful if he or she knows the encryption key.

Assume now that the attacker knows an arbitrary key, e.g., the key that consists
of a’s only:

know(key(a(. . . (a(⊥)) . . .), sl(0)))⇐
Then the attacker could step-wise try that key, and if there is feedback in case that
the attempt was not successful, this information might be used by the attacker in
order to adjust the key. This step may conveniently be modelled with the help of
disequality constraints. E.g., theH1-clauses, for d ∈ {a, b},

fail(key(X,N)) ⇐ know(key(X,N)), know(enc(S, d(K), N)),
X 6= d(Y)

(4.1)

store the information that the attacker’s approach of “decrypting” the bit at posi-
tion N has failed. The attacker can now use this knowledge in order to adjust the
bit at position N :

know(key(d′(X), N)) ⇐ fail(key(d(X), N))

1 The analysis problem would ask for satisfiability of a fresh predicate p when the clause
p(X)⇐ know(sec(secret)) is added.

for d, d′ ∈ {a, b}, d 6= d′. In order to achieve the H1 properties (in particular, a
flat head), an overapproximation could be applied here. Alternatively, the clauses:

know(key(X,N)) ⇐ fail(key(d(X ′), N)), X 6= d(Y)

for d ∈ {a, b} express that the attacker can construct an arbitrary key with the
corrected bit at position N . With a modelling of these steps, the protocol can now
be shown to be potentially insecure. �

Including failure information hence can reveal a particularly simple attack which
might have been “overlooked” by a straight-forward modelling neglecting nega-
tive information. Note that a simple pattern matching approach for clause (4.1) of
Example 29 would disturb the H1 property (the head fail(key(a(X ′), N)) is not
flat, containing the two constructors key and a), which might lead to undecidabil-
ity of the analysis problem.

The important thing here is that the attacker’s abilities have to be modelled
according to the protocol steps; guessing a whole key, e.g., is not permitted
in the Dolev-Yao abstraction from “real actions”. Since the attacker can non-
deterministically choose actions to take, these actions, as a general rule, corre-
spond to protocol steps and their implications. Therefore, it is important to model
these single steps as adequately as possible.

Other potential applications consist in the analysis of functional programming
languages like Haskell [Hei94] or logic programs such as Prolog [FSVY91]. For
functional programs, the goal is to determine for all occurring sub-expressions e
safe supersets of the sets of terms to which e may evaluate. Jones describes these
sets by means of regular tree grammars (in [AH87], see, e.g., [JA07]). In [HJ90],
set constraints are used to describe such sets. Horn clauses with disequality con-
straints would constitute a decent alternative to both. Consider, for instance, a
functional program that computes with lists of integers. Typically, functional pro-
grams provide a function hd that returns the first element of a given list. A call
to this function with an empty list (denoted []) will cause some kind of exception,
and might halt the whole program. The expression

if X 6= [] then hdX else null

is safe, but the analyzing tool needs to “know” that X is a non-empty list when
the expression hdX is reached. A constant propagation analysis could find out
that in the else-part, X = [] holds. This, however, does not help in this example,
since we are interested in negative knowledge for the then-branch.

For the analysis of logic programs, [HJ90] uses set constraints in order to
approximate the least model of a program, while [FSVY91] uses uniform Horn
clauses for that purpose. Using H1 with disequalities instead, one could perhaps
better account for negative conditions.

Acknowledgements
In this section, we feel that we should be thankful.

Proposition 25 This thesis would not have been possible without the valuable
support of great people, including, but not limited to

Helmut Seidl, Javier Esparza,
Prof. Dr. rer. nat./Harvard Univ. Erhard Plödereder,
Florent Jacquemard, Hubert Comon-Lundh, Andreas Gaiser

Proof sketch. I immensely profited from their help and collaboration, including
illuminating discussions, encouragement, and proofreading. Thank you all! �

Funding Acknowledgement
I was supported by the DFG-Graduiertenkolleg 1480 (PUMA).

Errata
Errare humanum est. Wie jedes Werk enthält auch dieses Fehler. Evtl. lohnt sich
daher ein Blick ins Zwischennetz, z.B. dorthin:

http://www2.in.tum.de/

http://www2.in.tum.de/

Bibliography

[Aba03] Martín Abadi. Private authentication. In 2. PET 2002, volume 2482
of LNCS, pages 27–40. Springer, 2003.

[AF04] Martín Abadi and Cédric Fournet. Private authentication. Theoretical
Computer Science, 322(3):427–476, 2004.

[AH87] Samson Abramsky and Chris Hankin. Abstract Interpretation of
Declarative Languages. Ellis Horwood, 1987. ISBN 0-7458-0109-9.

[BCG+10] Luis Barguño, Carles Creus, Guillem Godoy, Florent Jacquemard,
and Camille Vacher. The emptiness problem for tree automata with
global constraints. In LICS, pages 263–272. IEEE Computer Society
Press, 2010. ISBN 978-0-7695-4114-3.

[Bla01] Bruno Blanchet. An efficient cryptographic protocol verifier based on
prolog rules. In CSFW, pages 82–96. IEEE Computer Society, 2001.
ISBN 0-7695-1146-5.

[BM03] Colin Boyd and Anish Mathuria. Protocols for Authentication and
Key Establishment. Springer, 2003. ISBN 3-540-43107-1.

[BR05] Michele Bugliesi and Sabina Rossi. Non-interference proof tech-
niques for the analysis of cryptographic protocols. Journal of Com-
puter Security, 13(1):87–113, 2005.

[BRS07] A. Baskar, R. Ramanujam, and S. P. Suresh. Knowledge-based mod-
elling of voting protocols. In TARK, pages 62–71. Presses universi-
taires de Louvain, 2007. ISBN 978-2-87463-077-4.

[BT92] Bruno Bogaert and Sophie Tison. Equality and disequality constraints
on direct subterms in tree automata. In STACS, volume 577 of LNCS,
pages 161–171. Springer, 1992.

85

[CCC+94] Anne-Cécile Caron, Hubert Comon, Jean-Luc Coquidé, Max
Dauchet, and Florent Jacquemard. Pumping, cleaning and symbolic
constraints solving. In ICALP, volume 820 of LNCS, pages 436–449.
Springer, 1994.

[CCD93] Anne-Cécile Caron, Jean-Luc Coquidé, and Max Dauchet. Encom-
passment properties and automata with constraints. In RTA, volume
690 of LNCS, pages 328–342. Springer, 1993.

[CDG+07] H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard,
D. Lugiez, S. Tison, and M. Tommasi. Tree automata tech-
niques and applications. Available on: http://www.grappa.
univ-lille3.fr/tata, 2007. release October, 12th 2007.

[Cha07] Konstantinos Chatzikokolakis. Probabilistic and Information-
Theoretic Approaches to Anonymity. PhD thesis, École polytech-
nique, 2007.

[CJ94] Hubert Comon and Florent Jacquemard. Ground reducibility and au-
tomata with disequality constraints. In STACS, volume 775 of LNCS,
pages 151–162. Springer, 1994.

[CJ97] Hubert Comon and Florent Jacquemard. Ground reducibility is
exptime-complete. In LICS, pages 26–34. IEEE Computer Society,
1997. ISBN 0-8186-7925-5.

[DY83] Danny Dolev and Andrew Chi-Chih Yao. On the security of public
key protocols. IEEE Transactions on Information Theory, 29(2):198–
207, 1983.

[FOO93] Atsushi Fujioka, Tatsuaki Okamoto, and Kazuo Ohta. A practical
secret voting scheme for large scale elections. In AUSCRYPT, volume
718 of LNCS, pages 244–251. Springer, 1993.

[FSVY91] Thom W. Frühwirth, Ehud Y. Shapiro, Moshe Y. Vardi, and Eyal
Yardeni. Logic programs as types for logic programs. In LICS, pages
314–328. IEEE Computer Society, 1991. ISBN 0-8186-2230-X.

[FTT08] Emmanuel Filiot, Jean-Marc Talbot, and Sophie Tison. Tree au-
tomata with global constraints. In DLT, volume 5257 of LNCS, pages
314–326. Springer, 2008.

[GGRÀ10] Guillem Godoy, Omer Giménez, Lander Ramos, and Carme Àlvarez.
The hom problem is decidable. In STOC, pages 485–494. ACM,
2010. ISBN 978-1-4503-0050-6.

http://www.grappa.univ-lille3.fr/tata
http://www.grappa.univ-lille3.fr/tata

[GL05] Jean Goubault-Larrecq. Deciding H1 by resolution. Information Pro-
cessing Letters, 95(3):401–408, 2005.

[GLP05] Jean Goubault-Larrecq and Fabrice Parrennes. Cryptographic proto-
col analysis on real C code. In VMCAI, volume 3385 of LNCS, pages
363–379. Springer, 2005.

[GM82] Joseph A. Goguen and José Meseguer. Security policies and security
models. In IEEE Symposium on Security and Privacy, pages 11–20.
IEEE Computer Society, 1982.

[Hei94] Nevin Heintze. Set-based analysis of ML programs. In LFP, pages
306–317. ACM, 1994. ISBN 0-89791-643-3, 336.

[HJ90] Nevin Heintze and Joxan Jaffar. A decision procedure for a class
of set constraints (extended abstract). In LICS, pages 42–51. IEEE
Computer Society, 1990. ISBN 0-8186-2073-0.

[JA07] Neil D. Jones and Nils Andersen. Flow analysis of lazy higher-order
functional programs. Theoretical Computer Science, 375(1-3):120–
136, 2007.

[Low95] Gavin Lowe. An attack on the needham-schroeder public-key authen-
tication protocol. Information Processing Letters, 56(3):131–133,
1995.

[LW09] Christof Löding and Karianto Wong. On nondeterministic unranked
tree automata with sibling constraints. In FSTTCS, volume 4 of
LIPIcs, pages 311–322. Schloss Dagstuhl - Leibniz-Zentrum fuer In-
formatik, 2009.

[Mon81] J. Mongy. Transformation de noyaux reconnaissables d’arbres, 1981.
PhD thesis, Laboratoire d’Informatique Fondamentale de Lille, Uni-
versité des Sciences et Technologies de Lille, Villeneuve d’Ascq,
France.

[MORS05] Markus Müller-Olm, Oliver Rüthing, and Helmut Seidl. Checking
Herbrand equalities and beyond. In VMCAI, volume 3385 of LNCS,
pages 79–96. Springer, 2005.

[NNS02] Flemming Nielson, Hanne Riis Nielson, and Helmut Seidl. Normal-
izable Horn Clauses, Strongly Recognizable Relations, and Spi. In
SAS, volume 2477 of LNCS, pages 20–35. Springer, 2002.

[NS78] Roger M. Needham and Michael D. Schroeder. Using encryption for
authentication in large networks of computers. Communications of
the ACM, 21(12):993–999, 1978.

[RS10] Andreas Reuß and Helmut Seidl. Bottom-up tree automata with term
constraints. In LPAR-17, volume 6397 of LNCS, pages 581–593.
Springer, 2010.

[RS12] Andreas Reuß and Helmut Seidl. Crossing the syntactic barrier:
Hom-disequalities for H1-clauses. In CIAA, volume 7381 of LNCS,
pages 301–312. Springer, 2012.

[RV01] John Alan Robinson and Andrei Voronkov. Handbook of Automated
Reasoning. Elsevier and MIT Press, 2001. ISBN 0-444-50813-9,
0-262-18223-8.

[SN99] Helmut Seidl and Andreas Neumann. On guarding nested fixpoints.
In CSL, volume 1683 of LNCS, pages 484–498. Springer, 1999.

[SR11] Helmut Seidl and Andreas Reuß. Extending H1-clauses with disequa-
lities. Information Processing Letters, 111(20):1007–1013, 2011.

[SR12] Helmut Seidl and Andreas Reuß. Extending H1-clauses with path
disequalities. In FoSSaCS, volume 7213 of LNCS, pages 165–179.
Springer, 2012.

[Tom92] M. Tommasi. Automates d’arbres avec tests d’égalité entre cousins
germains, 1992. Mémoire de DEA, Univ. Lille I.

[TW68] James W. Thatcher and Jesse B. Wright. Generalized finite automata
theory with an application to a decision problem of second-order
logic. Mathematical Systems Theory, 2(1):57–81, 1968.

[vEK76] Maarten H. van Emden and Robert A. Kowalski. The semantics of
predicate logic as a programming language. Journal of the ACM,
23(4):733–742, 1976.

[Wei99] Christoph Weidenbach. Towards an automatic analysis of security
protocols in first-order logic. In CADE, volume 1632 of LNCS, pages
314–328. Springer, 1999.

Glossary
• [[p]]A Set of ground terms recognized (or: accepted) by predicate p in the

least model of the set A of clauses – page 17

• [[p]]iA Set of ground terms t where the fact p(t) can be deduced by clauses
from A using at most i rounds of fixpoint iteration – page 17

• bv Variables occurring in the body but not in the head of a Horn clause –
page 66

• dc Number of atomic disequality constraints within a single constrained
Horn clause – page 24

• H denotes a tree homomorphism – page 15

• H1 subclass of definite first-order Horn clauses; unary predicates, the head
has at most one constructor and no variable twice – page 17

• HDA Generalized automaton (complex heads, auxiliary variables, term dis-
equalities) – page 66

• hv Variables occurring in the head of a Horn clause – page 66

• M Least model of the indexed set of Horn clauses – page 16

• > Predicate defined such that it holds for any ground term over the given
ranked alphabet Σ – page 18

• TΣ Set of all ground (i.e., variable-free) terms, or trees; TΣ(V) denotes
terms containing variables from the set V – page 14

• TCA (Tree) automaton with term equalities and term disequalities – page 26

• TCA 6= Generalized automaton with term disequalities – page 24

	Introduction
	Horn Clauses and Constraints
	Basics
	Tree Automata with Term Constraints
	Generalized Tree Automata with Term Disequalities
	Tree Automata with Term Equalities and Disequalities

	Complex Preconditions, Auxiliary Variables
	Tree Automata with Hom-Equalities

	Normalization of Horn Clauses
	H1-Clauses with Term Disequalities
	Bounding the Number of Terms
	Normalizing Constrained H1-Clauses

	H1-Clauses with Path Disequalities
	Increased Expressiveness
	Challenges in Computing with Subterms
	Termination-sensitive Resolution in Presence of Paths
	Splitting Paths

	H1-Clauses with Hom-Disequalities
	Tree Automata with Hom-Disequalities
	Expressiveness
	H1-Normalization modulo Tree Homomorphism

	Perspectives

