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Abstract—In order to increase spectral efficiency, it is be-
coming more and more important that next generation wireless
networks wisely integrate multiple services such as transmissions
of private, common, and confidential messages at the physical
layer. This is referred to asphysical layer service integration, and
in this paper is being studied for bidirectional relay networks.
Here, a relay node establishes a bidirectional communication
between two other nodes using a decode-and-forward protocol.
This is also known as two-way relaying. In the broadcast
phase, the relay efficiently integrates additional common and
confidential services at the physical layer, which then requires the
study of the bidirectional broadcast channel (BBC) with common
and confidential messages. The entire secrecy capacity regions
for discrete memoryless and MIMO Gaussian channels are
established. These results further unify previous partial results
such as the BBC with common messages or the classical broadcast
channel with common and confidential messages, where the relay
node provides only some of the services.

Index Terms—Bidirectional Relaying, Bidirectional Broadcast
Channel, Capacity Region, Physical Layer Security, Embedded
Security, Multicast, MIMO, Wireless Network, Physical Layer
Service Integration.

I. I NTRODUCTION

Recently, significant progress has been made in improving
the performance of next generation cellular networks. Pro-
posed techniques such as multiuser MIMO, channel adaptive
scheduling, cooperative multi-point transmission, or relaying
can increase the spectral efficiency.

An additional research area that is gaining importance is the
efficient physical layer implementation of multiple services
such as the simultaneous transmission of private, common,
or confidential messages. For example, in current cellular
systems, operators not only offer traditional services such as
(bidirectional) voice communication, but also further multicast
services or confidential services that are subject to certain
secrecy constraints. Nowadays, the integration of multiple
services is realized by policies that allocate different services
on different logical channels and further by applying secrecy
techniques on higher levels. In general this is quite inefficient,
and thus there is a trend to efficiently merge multiple coex-
isting services from an information theoretic point of view,

The authors are with the Lehrstuhl für Theoretische Informationstech-
nik, Technische Universität München, Germany (e-mail:{wyrembelski,
boche}@tum.de). This work was partly supported by the German Research
Foundation (DFG) under Grants BO 1734/12-1 and BO 1734/25-1and by the
German Ministry of Education and Research (BMBF) under Grant01BQ1050.
This work was partly presented at IEEE-ITW, Paraty, Brazil,Oct. 2011 and
IEEE-GLOBECOM, Houston, TX, USA, Dec. 2011.

so that they work on the same wireless resources. Such an
integration of multiple transmission tasks at the physicallayer
is referred to asphysical layer service integrationand has the
potential to significantly increase the spectral efficiencyfor
next generation wireless networks and, especially, 5G cellular
networks.

Multicast services can efficiently be realized by common
messages; for example the Multimedia Broadcast Multicast
Service (MBMS), as specified by the 3GPP organization [1], or
the Multicast and Broadcast Service (MCBCS) in WiMAX [2]
benefit from such studies. Broadcast channels with common
messages and certain receiver side information are studiedin
[3, 4]. A general model for multi-user settings with correlated
sources can be found in [5].

Since the aforementioned services do not require that
they are kept secret from non-legitimate receivers, they are
classified aspublic services. But there are services such as
mobile banking or industrial applications which have security
constraints. Accordingly, these are classified asconfidential
services. Currently, secrecy techniques usually rely on the
assumption of unproven hardness of certain problems or insuf-
ficient computational capabilities of non-legitimate receivers.
Thus, physical layer secrecy techniques are becoming more
and more attractive since they do not rely on such assumptions
and therefore provide so-called unconditional security. Not
surprisingly, this is also identified by operators as a promising
and important task for next generation mobile networks [6].

In the seminal work [7], Wyner introduced thewiretap chan-
nel which characterizes the secure communication problem for
a point-to-point link with an additional eavesdropper. Csisźar
and Körner generalized this to thebroadcast channel with
confidential messagesin [8] and characterized the optimal
integration of common and confidential services at the physical
layer. Recently, there has been growing interest in physical-
layer secrecy, cf. [9, 10] and references therein. Besides the
point-to-point link [7, 11–13], there are extensions to multi-
user settings such as the multiple access channel with confi-
dential messages [14], the MIMO Gaussian broadcast channel
with common and confidential messages [15, 16], or the two-
way wiretap channel [17–19].

The concept ofbidirectional relaying, or two-way relaying,
is becoming more and more attractive since it has the potential
to significantly improve the overall performance and coverage
in wireless networks such as ad-hoc, sensor, and even cellular
systems, especially in those that use relays for coverage
extension. But it also significantly improves the inter-cell
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Fig. 1. Physical layer service integration in decode-and-forward bidirectional
relaying. In the initial MAC phase, nodes 1 and 2 transmit their messagesm1

andm2 with ratesR2 andR1 to the relay node. Then, in the BBC phase,
the relay forwards the messagesm1 andm2 and adds a common message
m0 with rateR0 to the communication and further a confidential message
mc for node 1 with rateRc which should be kept secret from node 2.

performance of cellular systems if it is directly applied at
the base station [20]. This is mainly based on the fact that
it advantageously exploits the property of bidirectional com-
munication to reduce the inherent loss in spectral efficiency
induced by half-duplex relays [21–24].

Bidirectional relaying applies to three-node networks, where
a half-duplex relay node establishes a bidirectional communi-
cation between two other nodes using a decode-and-forward
protocol. There, in the initial multiple access (MAC) phase,
two nodes transmit their messages to the relay node which
decodes them. In the succeeding bidirectional broadcast (BBC)
phase, the relay re-encodes and transmits both messages in
such a way that both receiving nodes can decode their intended
message using their own message from the previous phase as
side information. It is shown in [4, 25, 26] that capacity is
achieved by a single data stream that combines both messages
based on the network coding idea.

In this work, we consider physical layer service integration
in bidirectional relay networks. Here, the relay node integrates
additional common and confidential services in the broadcast
phase. More precisely, in addition to the transmission of both
private messages, the relay node has the following tasks as
shown in Figure 1: the transmission of a common message
to both nodes, and further, the transmission of a confidential
message to one node, which should be kept secret from the
other non-legitimate node. Since the receiving nodes can use
their own message from the previous phase for decoding, this
channel differs from the classical broadcast scenario and is
therefore calledbidirectional broadcast channel (BBC) with
common and confidential messages. For this scenario we
completely characterize the optimal integration of private,
common, and confidential services at the physical layer.

The rest of this paper is organized as follows. In Section
II we introduce the BBC with common and confidential
messages and derive the secrecy capacity region for discrete
memoryless channels. In Section III we prove the correspond-
ing result for MIMO Gaussian channels. It is shown that these
results unify previous partial results, where the relay provides
only some of the services. This is discussed in Section IV,
while Section V concludes the paper.

Notation

In this paper we denote random variables by non-italic
capital letters and their realizations and ranges by lower case
italic letters and script letters, respectively; scalars,vectors,

and matrices are denoted by lower case letters, bold lower
case letters, and bold capital letters;H(·), h(·), and I(·; ·)
are the traditional entropy, differential entropy, and mutual
information;X−Y−Z denotes a Markov chain of the random
variablesX, Y, andZ in this order;N andR+ are the sets of
non-negative integers and non-negative real numbers;(·)−1,
(·)T , and | · | denote the inverse, transpose, and determinant
respectively; tr(·) is the trace of a matrix;Q � 0 means
the matrixQ is positive semidefinite;E{·} andP{·} are the
expectation and probability;A(n)

ǫ (·) is the set of (weakly)
typical sequences, cf. for example [27].

II. B IDIRECTIONAL BROADCAST CHANNEL WITH

COMMON AND CONFIDENTIAL MESSAGES

In this section we analyze physical layer service integra-
tion in bidirectional relay networks for discrete memoryless
channels with finite input and output alphabets. This channel
model is motivated by the fact that in practical systems, a
transmitter usually uses a finite modulation scheme and a
receiver usually quantizes the received signal before further
base band processing.

Besides establishing the bidirectional communication, the
relay integrates additional common and confidential messages
in the broadcast phase, which necessitates the study of the
bidirectional broadcast channel (BBC) with common and
confidential messages. The aim of the relay node is to integrate
all messages as efficiently as possible while keeping the
confidential message secret from the non-legitimate node. We
address this transmission problem from a general point of view
and therefore derive the corresponding secrecy capacity region.
This allows us to gain insights to the best possible approachfor
the integration of private, common, and confidential messages
in bidirectional relay networks. It characterizes the maximal
achievable rates for all messages, while at the same time
keeping the non-legitimate node ignorant of the confidential
message. We prove the secrecy capacity region using random
coding arguments which mainly exploit ideas of the BBC with
common messages [28], and of the classical broadcast channel
with confidential messages [8, 29].

A. Physical Layer Description and Capacity Result

Let X andYi, i = 1, 2, be finite input and output sets. Then
for input and output sequencesxn ∈ Xn and yni ∈ Yn

i , i =
1, 2, of lengthn, the discrete memoryless broadcast channel is
given byW⊗n(yn1 , y

n
2 |x

n) :=
∏n

k=1 W (y1,k, y2,k|xk). We do
not allow any cooperation between the receiving nodes so that
it is sufficient to consider the marginal transition probabilities
W⊗n

i :=
∏n

k=1 Wi(yi,k|xk), i = 1, 2 only.
We consider the standard model with a block code of

arbitrary but fixed lengthn. The set of private messages of
node i, i = 1, 2, is denoted byMi := {1, ...,Mi,n}, which
is also known at the relay node. Further, the sets of common
and confidential messages of the relay node are denoted by
M0 := {1, ...,M0,n} andMc := {1, ...,Mc,n}, respectively.
We use the abbreviationMp := M0×M1×M2 for all public
messages, and furtherM := Mc ×Mp.
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In the bidirectional broadcast (BBC) phase, we assume that
the relay has successfully decoded both private messagesm1 ∈
M1 and m2 ∈ M2 which nodes 1 and 2 have transmitted
in the previous multiple access (MAC) phase. Besides both
private messages, the relay additionally integrates a common
messagem0 ∈ M0 for both nodes and a confidential message
mc ∈ Mc for node 1, which should be kept secret from the
non-legitimate node 2.

Definition 1: An (n,Mc,n,M0,n,M1,n,M2,n)-codefor the
BBC with common and confidential messages consists of one
(stochastic) encoder at the relay node

f : Mc ×M0 ×M1 ×M2 → Xn

and decoders at nodes 1 and 2

g1 : Yn
1 ×M1 → Mc ×M0 ×M2

g2 : Yn
2 ×M2 → M0 ×M1.

When the relay has sent the messagem =
(mc,m0,m1,m2), and nodes 1 and 2 have received
yn1 and yn2 , the decoder at node 1 is in error if
g1(y

n
1 ,m1) 6= (mc,m0,m2). Accordingly, the decoder

at node 2 is in error ifg2(yn2 ,m2) 6= (m0,m1). Then, the
average probability of error at nodei, i = 1, 2 is given by

µi,n :=
1

|M|

∑

m∈M

λi(m)

with λ1(m) = P{g1(y
n
1 ,m1) 6= (mc,m0,m2)|m sent} and

λ2(m) = P{g2(yn2 ,m2) 6= (m0,m1)|m sent}.
The secrecy level of the confidential messagemc ∈ Mc

is characterized by the concept of equivocation rate as,
for example, is done in [7, 8]. Here, the equivocation rate
1
n
H(Mc|Y

n
2 ,M2) describes the uncertainty of node 2 about

the confidential messageMc, having the received sequence
Yn

2 and its own messageM2 as side information available
under the assumption that the random variablesMc andM2

are uniformly distributed overMc andM2. Consequently, the
higher the equivocation rate, the higher the secrecy level of the
confidential message.

Definition 2: A rate tupleR = (Rc, R0, R1, R2) ∈ R
4
+

is said to beachievable for the BBC with common and
confidential messages if for anyδ > 0 there is ann(δ) ∈ N and
a sequence of(n,Mc,n,M0,n,M1,n,M2,n)-codes such that for
all n ≥ n(δ) we have 1

n
logMc,n ≥ Rc − δ, 1

n
logM0,n ≥

R0 − δ, 1
n
logM2,n ≥ R1 − δ, 1

n
logM1,n ≥ R2 − δ, and

1
n
H(Mc|Y

n
2 ,M2) ≥ Rc − δ (1)

while µ1,n, µ2,n → 0 asn → ∞. The set of all achievable rate
tuples is thesecrecy capacity regionof the BBC with common
and confidential messages, and is denoted byCBBC.

Remark 1:The secrecy condition (1) requires that the
equivocation rate is as high as the rate of the confidential
message. Hence, it is often equivalently written as

1
n
I(Mc; Y

n
2 |M2) ≤ δ (2)

and usually referred to asperfect secrecycondition.
Now we are in the position to state the secrecy capacity

region of the BBC with common and confidential messages.

Theorem 1:The secrecy capacity regionCBBC of the dis-
crete memoryless BBC with common and confidential mes-
sages is the set of all rate tuplesR ∈ R

4
+ that satisfy

Rc ≤ I(V;Y1|U)− I(V;Y2|U) (3a)

R0 +Ri ≤ I(U;Yi), i = 1, 2 (3b)

with perfect secrecy, i.e., (1) is satisfied, for random variables
U−V−X−(Y1,Y2). The cardinalities of the ranges ofU and
V can be bounded by|U| ≤ |X |+3 and|V| ≤ |X |2+4|X |+3.

Remark 2:The security criterion is always given in terms
of equivocation rate, which means that the equivocation is
normalized by the block lengthn, cf. (1) and (2). This criterion
is also known as weak secrecy and is heuristically reasonable,
but no operational meaning has been given to it yet. There is
a stronger version where (2) is strengthened by dropping the
division byn and thereby considering the absolute amount of
information leaked to the non-legitimate node [30]. For the
classical wiretap setup, thestrong secrecycriterion has been
given an operational meaning: it was established in [31, 32]
that under the strong secrecy criterion, the average decoding
error at a non-legitimate receiver tends to one for any decoding
strategy it may use.

The operational meaning of strong secrecy in [31, 32] can
also be interpreted as security against an attack of the wiretap-
per to decode the confidential message. The extension to other
forms of attacks, such as identification attacks based on [33],
or active wiretappers, would be an interesting and worthwhile
research direction for future wireless systems.

Theorem 1 is proved in the following two subsections.

B. Proof of Achievability

Here, we present a coding strategy that achieves the desired
rates with prefect secrecy and therewith prove the achievability
of Theorem 1.

Lemma 1:Let U − X − (Y1,Y2) and I(X;Y1|U) >
I(X;Y2|U). Then all rate tuplesR ∈ R

4
+ that satisfy

Rc ≤ I(X;Y1|U)− I(X;Y2|U) (4a)

R0 +Ri ≤ I(U;Yi), i = 1, 2 (4b)

are achievable with perfect secrecy, i.e., condition (1) is
satisfied.

Proof: The proof uses the same codebook idea as pre-
sented in [34, Lemma 1] for the BBC with confidential
messages (and no common messages) which is actually based
on ideas for the classical broadcast channel with common
and confidential messages [8] and the BBC with common
messages [28]. It consists of two superimposed layers of
codewords; one for the public communication, i.e., the com-
mon and individual messages, and one for the confidential
communication. The structure of the codebook is visualized
in Figure 2. For further details we refer to [34].

By introducing an auxiliary channelV that enables addi-
tional randomization, the desired region in Theorem 1 follows
immediately from Lemma 1 by standard arguments, cf. [8, 34].

To complete the proof all that remains is to bound the
cardinalities ofU andV. Since the cardinalities depend only
on the structure of the random variables, the bounds follow
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Fig. 2. Structure of the codebook for the BBC with common and confidential
messages. It consists of two layers, one for the public communication (gray)
and one for the confidential communication (white). The randomization set
J is designed such that the non-legitimate node is forced to decode the
corresponding index at the maximum rate its channel provide and therefore
is not able to obtain any information about the confidential message.

immediately from [8, Appendix] or [34]. This completes the
proof of achievability.

C. Proof of Converse

To prove the weak converse we need a version of Fano’s
lemma that is suitable for the BBC with common and confi-
dential messages.

Lemma 2 (Fano’s inequality):For the BBC with common
and confidential messages we have the following versions of
Fano’s inequality

H(Mc,M0,M2|Y
n
1 ,M1)

≤ µ1,n log(Mc,nM0,nM2,n) + 1 = nǫ1,n

H(M0,M1|Y
n
2 ,M2)

≤ µ2,n log(M0,nM1,n) + 1 = nǫ2,n

with ǫ1,n = 1
n
log(Mc,nM0,nM2,n)µ1,n + 1

n
→ 0 and ǫ2,n =

1
n
log(M0,nM1,n)µ2,n+

1
n
→ 0 for n → ∞ asµ1,n, µ2,n → 0.

Proof: The lemma can be shown analogously as in [25,
28], where similar versions of Fano’s inequality for the BBC
(without confidential messages) are presented.

Next, we have to show that for any given sequence of
(n,Mc,n,M0,n,M1,n,M2,n)-codes withµ1,n, µ2,n → 0 there
exist random variablesU − V − X − (Y1,Y2) such that all
rate tuplesR = (Rc, R0, R1, R2) ∈ R

4
+ are bounded by

(3). For notational convenience we introduce the abbreviation
Mp = (M0,M1,M2).

From the independence ofMc, M0, M1, M2, the chain
rule for entropy, the definition of mutual information, Fano’s
inequality, cf. Lemma 2, and the chain rule for mutual infor-
mation, we get for the public rates

n(R0 +R1) ≤ H(M0) +H(M2) = H(M0,M2|M1)

≤ I(M0,M2; Y
n
1 |M1) + nǫ1,n

≤ I(Mp; Y
n
1 ) + nǫ1,n (5)

and similarly

n(R0 +R2) ≤ I(Mp; Y
n
2 ) + nǫ2,n. (6)

Due to the perfect secrecy condition (1) the confidential rate
is bounded by

nRc ≤ H(Mc|Y
n
2 ,M2)

= H(Mc|Y
n
2 ,Mp) + I(Mc;M0,M1|Y

n
2 ,M2)

= H(Mc|Mp)− I(Mc; Y
n
2 |Mp)

+ I(Mc;M0,M1|Y
n
2 ,M2)

= I(Mc; Y
n
1 |Mp)− I(Mc; Y

n
2 |Mp)

+H(Mc|Y
n
1 ,Mp) + I(Mc;M0,M1|Y

n
2 ,M2)

≤ I(Mc; Y
n
1 |Mp)− I(Mc; Y

n
2 |Mp) + nǫ1,n+nǫ2,n (7)

where the last inequality follows fromH(Mc|Y
n
1 ,Mp) ≤

H(Mc,M0,M2|Yn
1 ,M1) ≤ nǫ1,n, I(Mc;M0,M1|Yn

2 ,M2) =
H(M0,M1|Y

n
2 ,M2) − H(M0,M1|Y

n
2 ,Mc,M2) ≤

H(M0,M1|Y
n
2 ,M2) ≤ nǫ2,n, and Fano’s inequality, cf.

Lemma 2.
Once we have established the bounds (5)-(7), the rest of the

proof goes along with [34, Sec. IV]. Starting from [34, Eq.
(17)] and introducing auxiliary random variablesU andV that
satisfy the Markov chain relationU−V−X− (Y1,Y2), it is
straightforward to show that

I(Mp; Y
n
i ) ≤ nI(U;Yi), i = 1, 2

I(Mc; Y
n
1 |Mp)− I(Mc; Y

n
2 |Mp)

≤ nI(V;Y1|U)− nI(V;Y2|U).

Substituting this into (5)-(7) and dividing byn, we end up
with (3) which establishes the weak converse.

III. MIMO G AUSSIAN CHANNELS

In this section we consider physical layer service integra-
tion multiantenna bidirectional relay networks and prove the
corresponding secrecy capacity region of the MIMO Gaussian
BBC with common and confidential messages. In principle,
the secrecy capacity region is computable by evaluating the
corresponding region of the discrete case for MIMO Gaussian
channels. Unfortunately, a direct evaluation is almost in-
tractable due to the presence of the auxiliary random variables
U andV, cf. Theorem 1, so that we establish a precise matrix
characterization in the following.

The main idea for proving the secrecy capacity is to
construct an enhanced MIMO Gaussian BBC that reveals some
degradedness similar to [29]. This results in a secrecy capacity
region that needs only one auxiliary random variable, which
again makes the evaluation tractable. Finally, an extremal
entropy inequality from [35] establishes the desired result.

A. Physical Layer Description and Capacity Result

Here we consider MIMO Gaussian channels. Therefore let
NR be the number of antennas at the relay node andNi be the
number of antennas at nodei, i = 1, 2, as shown in Figure 3.
The discrete-time real-valued input-output relation between the
relay node and nodei, i = 1, 2, can now be modeled as

yi = Hix+ ni, (8)

where yi ∈ R
Ni×1 denotes the output at nodei, Hi ∈

R
Ni×NR the multiplicative channel matrix,x ∈ R

NR×1 the
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Fig. 3. General MIMO Gaussian BBC with common and confidential
messages.

input of the relay node, andni ∈ R
Ni×1 the independent

additive noise according to a Gaussian distributionN (0, INi
)

with zero mean and identity covariance matrix. We assume
perfect channel state information at all nodes.

As in [29, 36, 37], we consider two different kinds of
power constraints: an average power constraint and a more
general matrix power constraint. An input sequencexn =
(x1,x2, ...,xn) of length n satisfies an average power con-
straintP if

1

n

n∑

k=1

xT
k xk ≤ P (9)

holds. Similarly, a sequencexn satisfies a matrix power
constraintS if

1

n

n∑

k=1

xkx
T
k � S (10)

whereS � 0 is a positive semidefinite matrix.1

Theorem 2:The secrecy capacity regionCMIMO
BBC of the

MIMO Gaussian BBC with common and confidential mes-
sages under the matrix power constraintS is the set of all
rate tuplesR ∈ R

4
+ that satisfy

Rc ≤
1

2
log

∣∣∣IN1
+H1Q

(c)HT
1

∣∣∣

−
1

2
log

∣∣∣IN2
+H2Q

(c)HT
2

∣∣∣

R0 +Ri ≤
1

2
log

∣∣∣∣∣
INi

+HiSH
T
i

INi
+HiQ

(c)HT
i

∣∣∣∣∣ , i = 1, 2

for some0 � Q(c) � S.
Having [36, Lemma 1] in mind, we immediately obtain

from the secrecy capacity region under the matrix power
constraint (10) the corresponding region under the average
power constraint (9) which usually characterizes the practically
more relevant case.

Corollary 1: The secrecy capacity regionCMIMO
BBC of the

MIMO Gaussian BBC with common and confidential mes-
sages under the average power constraintP is the set of all
rate tuplesR ∈ R

4
+ that satisfy

Rc ≤
1

2
log

∣∣∣IN1
+H1Q

(c)HT
1

∣∣∣

−
1

2
log

∣∣∣IN2
+H2Q

(c)HT
2

∣∣∣

R0 +Ri ≤
1

2
log

∣∣∣∣∣
INi

+Hi(Q
(c) +Q(p))HT

i

INi
+HiQ

(c)HT
i

∣∣∣∣∣ , i = 1, 2

for someQ(c) � 0, Q(p) � 0 with tr(Q(c) +Q(p)) ≤ P .

1The notationA � B means the matrixA−B is positive semidefinite.

21 R
mc m0 m1 m2

I

NR NR

n1 ∼ N (0,Σ1)
m1

n2 ∼ N (0,Σ2)
m2

m̂0 m̂2

m̂c

m̂0 m̂1

mc

I

NR

Fig. 4. Aligned MIMO Gaussian BBC with common and confidential
messages.

Theorem 2 is proved in the following subsections. First,
we consider the special case of square and invertible channel
matrices and establish the secrecy capacity region for this
case using channel-enhancement arguments. Then we outline
how this result can be extended to arbitrary (possibly non-
square and non-invertible) channel matrices using standard
approximation arguments as in [29, 36, 37] to finally end up
with the desired result.

B. Aligned MIMO Bidirectional Broadcast Channel

In this section, we consider the case where the channel ma-
tricesH1 andH2 are square and invertible. Then, multiplying
both sides (8) byH−1

i , an equivalent channel model is given
by

yi = x+ ni (11)

whereyi,x,ni ∈ R
NR×1 but the additive noiseni is now

Gaussian distributed with zero mean and covariance matrix

Σi = H−1
i H−T

i ∈ R
NR×NR , (12)

i.e., ni ∼ N (0,Σi), i = 1, 2, as shown in Figure 4. We
adopt the notation used in [29, 36] and call the channel model
(11) the aligned MIMO Gaussian BBC and (8) thegeneral
MIMO Gaussian BBC. The main result for the aligned case
is summarized in the following theorem.

Theorem 3:The secrecy capacity regionCaligned
BBC of the

aligned MIMO Gaussian BBC with common and confidential
messages under the matrix power constraintS is the set of all
rate tuplesR ∈ R

4
+ that satisfy

Rc ≤
1

2
log

∣∣∣∣∣
Q(c) +Σ1

Σ1

∣∣∣∣∣−
1

2
log

∣∣∣∣∣
Q(c) +Σ2

Σ2

∣∣∣∣∣

R0 +Ri ≤
1

2
log

∣∣∣∣
S +Σi

Q(c) +Σi

∣∣∣∣ , i = 1, 2

(13)

for some0 � Q(c) � S.
The theorem is proved in the following two subsections.

C. Proof of Achievability

Similarly, as for the classical aligned MIMO Gaussian
broadcast channel [29], the proof of achievability is a straight-
forward extension of its discrete counterpart. To obtain the
desired region (13) we follow the proof of the discrete case,
cf. Section II, with a proper choice of auxiliary and input
random variables. More precisely, withG ∼ N (0,Q(c)) for
the confidential messages andU ∼ N (0,S − Q(c)) for the
public messages withG andU being independent, and further
V = X = U + G, the region (13) follows immediately from
Theorem 1. Therefore we omit the details for brevity.
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D. Proof of Converse

To establish the converse it remains to show that no other
rate tuples than characterized by (13) are achievable for some
0 � Q(c) � S. At this point it suffices to consider only matrix
power constraints that satisfyS ≻ 0.2

We prove the optimality by contradiction. Therefore, we
construct a rate tupleRo = (Ro

c , R
o
0, R

o
1, R

o
2) ∈ R

4
+ that

lies outside the desired region (13) and assume that this rate
tuple is achievable for the aligned MIMO Gaussian BBC with
common and confidential messages.

First, we observe that achievable public ratesRo
0, Ro

1, and
Ro

2 are bounded from above by

Ro
0 +Ro

i ≤
1

2
log

∣∣∣∣
S +Σi

Σi

∣∣∣∣ , i = 1, 2.

We note that forRo
c = 0 and Q(c) = 0 in (13) there are

public rates that actually achieve this upper bound. Further, for
given achievable public ratesRo

0, Ro
1, andRo

2 the achievable
confidential rateRc,opt according to Theorem 3 is characterized
by the following optimization problem:

max
Q(c)

1

2
log

∣∣∣∣∣
Q(c) +Σ1

Σ1

∣∣∣∣∣−
1

2
log

∣∣∣∣∣
Q(c) +Σ2

Σ2

∣∣∣∣∣ (14)

s.t.
1

2
log

∣∣∣∣
S +Σi

Q(c) +Σi

∣∣∣∣ ≥ Ro
0 +Ro

i , i = 1, 2

0 � Q(c) � S.

Finally, we setRo
c = Rc,opt+ δ for someδ > 0 to ensure that

this rate tuple lies outside the region (13) as required, i.e.,
Ro /∈ Caligned

BBC .
Then the Lagrangian for the corresponding minimization

problem of (14) is given by

L(Q(c),µ,Ψ1,Ψ2) =
1

2
log

∣∣∣∣∣
Q(c) +Σ2

Σ2

∣∣∣∣∣−
1

2
log

∣∣∣∣∣
Q(c) +Σ1

Σ1

∣∣∣∣∣

+

2∑

i=1

µi

(
Ro

0 +Ro
i −

1

2
log

∣∣∣∣
S +Σi

Q(c) +Σi

∣∣∣∣
)

− tr(Q(c)
Ψ1) + tr

(
(Q(c) − S)Ψ2

)

with Lagrange multipliersµ = (µ1, µ2), µi ≥ 0, andΨi �
0, i = 1, 2. Then we know from the Karush-Kuhn-Tucker
(KKT) conditions, cf. for example [38], that the derivativeof
the Lagrangian must vanish at an optimalQ

(c)
opt which yields3

µ1

2

(
Q

(c)
opt +Σ1

)−1
+

µ2 + 1

2

(
Q

(c)
opt +Σ2

)−1
+Ψ2

=
1

2

(
Q

(c)
opt +Σ1

)−1
+Ψ1

(15)

2For the validity of this restriction we refer to [36, Lemma 2].
3As in [36, Appendix IV] or [29] one can easily show that a set ofconstraint

qualifications hold for the optimization problem (14). This implies that the
KKT conditions hold and are necessary for characterizing the optimal transmit
covariance matrix.

while the optimalQ(c)
opt further has to satisfy the complemen-

tary slackness conditions

µi

(
Ro

0 +Ro
i −

1

2
log

∣∣∣∣
S +Σi

Q
(c)
opt +Σi

∣∣∣∣
)

= 0, i = 1, 2 (16)

Q
(c)
optΨ1 = 0, (S −Q

(c)
opt)Ψ2 = 0. (17)

By combining (14) and (16) we get for the weighted secrecy
sum-capacity of the constructed rate tupleRo the following

Ro
c + µ1(R

o
0 +Ro

1) + µ2(R
o
0 +Ro

2)

= Rc,opt + δ + µ1(R
o
0 +Ro

1) + µ2(R
o
0 +Ro

2)

=
1

2
log

∣∣∣∣∣
Q

(c)
opt +Σ1

Σ1

∣∣∣∣∣−
1

2
log

∣∣∣∣∣
Q

(c)
opt +Σ2

Σ2

∣∣∣∣∣

+

2∑

i=1

µi

2
log

∣∣∣∣∣
S +Σi

Q
(c)
opt +Σi

∣∣∣∣∣+ δ. (18)

But we will show in the following that for any achievable rate
tupleR ∈ R

4
+, the weighted secrecy sum-capacity is bounded

from above by

Rc + µ1(R0 +R1) + µ2(R0 +R2)

≤
1

2
log

∣∣∣∣∣
Q

(c)
opt +Σ1

Σ1

∣∣∣∣∣−
1

2
log

∣∣∣∣∣
Q

(c)
opt +Σ2

Σ2

∣∣∣∣∣

+

2∑

i=1

µi

2
log

∣∣∣∣∣
S +Σi

Q
(c)
opt +Σi

∣∣∣∣∣

which will then establish the desired contradiction to (18).
1) Reinterpretation of Legitimate Receiver:For the follow-

ing analysis it will be beneficial to reinterpret this scenario
by splitting the legitimate node 1 into two virtual receivers:
one designated for the public and one for the confidential
communication. Then, an equivalent aligned MIMO Gaussian
BBC can be represented by

y1a = x+ n1a (19a)

y1b = x+ n1b (19b)

y2 = x+ n2 (19c)

with n1a ∼ N (0,Σ1), n1b ∼ N (0,Σ1), andn2 ∼ N (0,Σ2).
Here, each (virtual) receiver is only interested in either the
public or the confidential messages. Receiver 1a wants to know
the confidential messagemc, receiver 1b the public messages
m0 andm2, and receiver 2 the public messagesm0 andm1.
Here the confidential message has to be kept secret only from
receiver 2, but, of course, need not be kept secret from (virtual)
receiver 1b.

Note that (virtual) receivers 1a and 1b in (19a) are affected
by noise that has the same covariance matrixΣ1, cf. (12),
which is the same as of the noise at the legitimate receiver 1 in
the original aligned BBC (11). Similarly, the noise at receiver
2 in (19c) is according to the same covariance matrixΣ2, cf.
(12), corresponding to the noise at the non-legitimate receiver
2 in (11). Therefore, any strategy that achieves a certain rate
tuple for (11) will do likewise for (19) and vice versa, so that
both scenarios share the same secrecy capacity region.
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2) Channel Enhancement:Next, with the reinterpretation
(19) of the communication scenario as a starting point, we
enhance the channel designated for the confidential message,
i.e., (virtual) receiver 1a. For this purpose letΣ̃1 be a real
symmetric matrix that satisfies

1

2
(Q

(c)
opt + Σ̃1)

−1 =
1

2
(Q

(c)
opt +Σ1)

−1 +Ψ1. (20)

Then we know from [36, Lemma 11] that

0 ≺ Σ̃1 � Σ1 (21)

and ∣∣∣∣∣
Q

(c)
opt + Σ̃1

Σ̃1

∣∣∣∣∣ =
∣∣∣∣∣
Q

(c)
opt +Σ1

Σ1

∣∣∣∣∣ (22)

hold. With (20), Equation (15) becomes

µ1

2
(Q

(c)
opt +Σ1)

−1 +
µ2 + 1

2
(Q

(c)
opt +Σ2)

−1 +Ψ2

=
1

2
(Q

(c)
opt + Σ̃1)

−1.
(23)

Since the matrices(Q(c)
opt + Σ1)

−1, (Q(c)
opt + Σ2)

−1, andΨ2

on the right hand side of (23) are all positive semidefinite, it
follows immediately that12 (Q

(c)
opt + Σ̃1)

−1 � 1
2 (Q

(c)
opt +Σ2)

−1

and consequently
Σ̃1 � Σ2. (24)

This allows us to construct an enhanced MIMO Gaussian
BBC by replacing the noise covariance matrixΣ1 at the
(virtual) receiver 1a with its enhanced versioñΣ1, cf. (21).
Then, (19a) becomes

ỹ1a = x+ ñ1a (25)

with ñ1a ∼ N (0, Σ̃1), while the channels for receiver 1b and 2
remain the same. Figure 5 shows the communication scenario
of the enhanced MIMO Gaussian BBC. SinceΣ̃1 � Σ1, cf.
also (21), the covariance matrix of the noise for receiving the
confidential message for the enhanced BBC (25) is ”smaller”
than for the original BBC (19). Hence, its secrecy capacity
region is at least as large as that of the aligned MIMO Gaussian
BBC. Moreover, from (21) and (24) we get

0 � Σ̃1 � Σi, i = 1, 2 (26)

which means that both received signalsy1b and y2 at the
public receivers are (stochastically) degraded with respect to
the received signal̃y1a at the confidential receiver. For the
discrete memoryless counterpart of the enhanced BBC, the
following proposition characterizes the corresponding secrecy
capacity region.

Proposition 1: For a discrete memoryless BBC with com-
mon and confidential messages and transition probability
W̃ (ỹ1a, y1b, y2|x) that satisfies the Markov chain conditions
X− Ỹ1a−Y1b andX− Ỹ1a−Y2, the secrecy capacity region
is given by the set of all rate tuplesR ∈ R

4
+ that satisfy

Rc ≤ I(X; Ỹ1a|U)− I(X;Y2|U)

R0 +R1 ≤ I(U;Y1b)

R0 +R2 ≤ I(U;Y2)

2R

1a

1b
mc m0 m1 m2

I

NR NR NR

n1a ∼ N (0, Σ̃1)

m1

n2 ∼ N (0,Σ2)
m2

m̂c

m̂0 m̂1

mc

n1b ∼ N (0,Σ1)
m1

m̂0 m̂2

I

Fig. 5. Enhanced MIMO Gaussian BBC with common and confidential
messages. Node 1 is split up into two virtual receivers, one enhanced for the
confidential message and one for the public messages. For receiver 1a the
noise covariance matrixΣ1 is replaced bỹΣ1 to enhance the channel for the
confidential message.

for random variablesU−X− Ỹ1a − (Y1b,Y2).
Proof: Using the same ideas and techniques as for the

non-degraded case, cf. Section II-B, the achievability follows
immediately. Similarly, the converse follows the one in Section
II-C while exploiting the degradedness as in [29, Proposition
1]. We omit the details for brevity.

Remark 3: In contrast to the non-degraded case, cf. Theo-
rem 1, we only need one auxiliary random variableU instead
of both U and V. This makes the evaluation of the secrecy
capacity region for MIMO Gaussian channels tractable as is
done in the following.

3) Equivalence of Weighted Secrecy Sum-Capacity:To es-
tablish the desired contradiction we must bound the weighted
secrecy sum-capacity of the enhanced MIMO Gaussian BBC.
As is done in [29] for the classical MIMO Gaussian broadcast
channel with common and confidential messages, we use an
extremal entropy inequality that is a special case of [35,
Corollary 4].

Proposition 2 ([35]): Let ñ1a ∼ N (0, Σ̃1), n1b ∼
N (0,Σ1), and n2 ∼ N (0,Σ2) be given, which satisfy
0 � Σ̃1 � Σi, i = 1, 2, cf. (26). Further, letS ≻ 0 be
given. If there exists aNR ×NR real symmetric matrixQ(c)

opt

such that0 � Q
(c)
opt � S and satisfying

1

2
(Q

(c)
opt + Σ̃1)

−1

=
µλ

2
(Q

(c)
opt +Σ1)

−1 +
µ(1− λ)

2
(Q

(c)
opt +Σ2)

−1 +Ψ2,

(S −Q
(c)
opt)Ψ2 = 0

for someΨ2 � 0 and real scalarsµ ≥ 0 and0 ≤ λ ≤ 1, then

h(X+ Ñ1a|U)− µλh(X+N1b|U)− µ(1− λ)h(X+N2|U)

≤
1

2
log

∣∣∣2πe(Q(c)
opt + Ñ1)

∣∣∣− µλ

2
log

∣∣∣2πe(Q(c)
opt +N1)

∣∣∣

−
µ(1− λ)

2
log

∣∣∣2πe(Q(c)
opt +N2)

∣∣∣

for any (U,X) independent of(Ñ1a,N1b,N2) such that
E{XX

T } � S.
By Proposition 1 we get for the weighted secrecy sum-

capacity of any rate tupleR ∈ R
4
+ for the enhanced BBC (25)

Rc + µ1(R0 +R1) + µ2(R0 +R2)

≤ I(X; Ỹ1a|U)− I(X;Y2|U)

+ µ1I(U;Y1b) + µ2I(U;Y2)
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= h(N2)− h(Ñ1a) + µ1h(X+N1b) + µ2h(X+N2)

+
[
h(X+ Ñ1a|U)− µ1h(X+N1b|U)

− (µ2 + 1)h(X+N2|U)
]

≤
1

2
log |2πeΣ2| −

1

2
log

∣∣∣2πeΣ̃1

∣∣∣

+

2∑

i=1

µi

2
log |2πe(S +Σi)|

+
[
h(X+ Ñ1a|U)− µ1h(X+N1b|U)

− (µ2 + 1)h(X+N2|U)
]

(27)

where the last inequality follows fromh(Ñ1a) =
1
2 log

∣∣∣2πeΣ̃1

∣∣∣, h(N2) = 1
2 log |2πeΣ2| and h(X + N1b) ≤

1
2 log |2πe(S +Σ1)|, h(X+N2) ≤

1
2 log |2πe(S +Σ2)|.

Now with µ = µ1 + µ2 + 1 andλ = µ1

µ1+µ2+1 we get from
(23) together with Proposition 2

h(X+ Ñ1a|U)− µ1h(X+N1b|U)− (µ2 + 1)h(X+N2|U)

≤
1

2
log

∣∣∣2πe(Q(c)
opt + Σ̃1)

∣∣∣− µ1

2
log

∣∣∣2πe(Q(c)
opt +Σ1)

∣∣∣

−
µ2 + 1

2
log

∣∣∣2πe(Q(c)
opt +Σ2)

∣∣∣ .

Substituting this into (27) we end up with

Rc + µ1(R0 +R1) + µ2(R0 +R2)

≤
1

2
log

∣∣∣2πeΣ2

∣∣∣− 1

2
log

∣∣∣2πeΣ̃1

∣∣∣

+

2∑

i=1

µi

2
log

∣∣∣2πe(S +Σi)
∣∣∣+ 1

2
log

∣∣∣2πe(Q(c)
opt + Σ̃1)

∣∣∣

−
µ1

2
log

∣∣∣2πe(Q(c)
opt +Σ1)

∣∣∣

−
µ2 + 1

2
log

∣∣∣2πe(Q(c)
opt +Σ2)

∣∣∣

=
1

2
log

∣∣∣∣∣
Q

(c)
opt + Σ̃1

Σ̃1

∣∣∣∣∣−
1

2
log

∣∣∣∣∣
Q

(c)
opt +Σ2

Σ2

∣∣∣∣∣

+

2∑

i=1

µi

2
log

∣∣∣∣∣
S +Σi

Q
(c)
opt +Σi

∣∣∣∣∣

=
1

2
log

∣∣∣∣∣
Q

(c)
opt +Σ1

Σ1

∣∣∣∣∣−
1

2
log

∣∣∣∣∣
Q

(c)
opt +Σ2

Σ2

∣∣∣∣∣

+

2∑

i=1

µi

2
log

∣∣∣∣∣
S +Σi

Q
(c)
opt +Σi

∣∣∣∣∣ (28)

where the last equality follows from (22), cf. [36, Lemma 11].
Since the secrecy capacity region of the aligned MIMO

Gaussian BBC (8) is contained in the corresponding region
of the enhanced MIMO Gaussian BBC (25), cf. also Section
III-D2, it is clear that for any rate tupleR ∈ R

4
+ the upper

bound on the weighted secrecy sum-capacity (28) – established
above for the enhanced BBC – must hold, of course, for the
non-enhanced aligned BBC as well. But sinceδ > 0, this
contradicts (18). This completes the proof of converse and
therewith establishes the secrecy capacity regionCaligned

BBC .

E. General MIMO Bidirectional Broadcast Channel

Here we briefly outline how the results for the aligned
MIMO Gaussian BBC (11) can be extended to the general
case (8) to complete the proof of Theorem 2. Since the
argumentation is the same as in [29, 36, 37], we only sketch
the main ideas in the following.

Similarly as for the aligned case, cf. Theorem 3, the
achievability follows from the discrete result in Theorem 1
with the same choice of auxiliary and input random variables.
Therefore, the more intricate part is again the converse.

The case of square and invertible channel matrices can
easily be transformed into an aligned MIMO Gaussian BBC,
whose secrecy capacity region is known from Theorem 3.
Thus, the goal is to approximate any general MIMO Gaussian
BBC (with possibly non-square and non-invertible channel
matrices) by an appropriate aligned MIMO Gaussian BBC.
This can be done as in [29, 36, 37] where similar approxima-
tions are presented. This concludes the proof of the secrecy
capacity of the general MIMO Gaussian BBC with common
and confidential messages.

Remark 4: Interestingly, the derivation shows that a simple
superposition strategy that superimposes two signals, onefor
the public messages and one for the confidential message,
suffices to achieve capacity. Moreover, an additional random-
ization as in the discrete case, realized by the auxiliary random
variable V in Theorem 1, is no longer needed for MIMO
Gaussian channels.

IV. D ISCUSSION

In this work we established the secrecy capacity region of
the BBC with common and confidential messages where the
relay transmits public private and common messages as well
as a confidential message. This is a very general setup which
includes some special cases where the relay provides only
some these services. The corresponding capacity regions can
be deduced from our result so that it unifies these previous
partial results that were individually studied in [8, 28, 29, 34].
In more detail, if there are no confidential services for the relay
to integrate, it solely transmits public services and the scenario
reduces to the BBC with common messages [28]. For the case
of no bidirectional messages we end up with the classical
broadcast channel with common and confidential messages
[29]. If the relay transmits only private and confidential
messages, the scenario reduces to the BBC with confidential
messages.

Corollary 2: The secrecy capacity region of the MIMO
Gaussian BBC with confidential messages under the average
power constraintP is the set of all rate triples(Rc, R1, R2) ∈
R

3
+ that satisfy

Rc ≤
1

2
log

∣∣∣IN1
+H1Q

(c)HT
1

∣∣∣− 1

2
log

∣∣∣IN2
+H2Q

(c)HT
2

∣∣∣

Ri ≤
1

2
log

∣∣∣∣∣
INi

+Hi(Q
(c) +Q(p))HT

i

INi
+HiQ

(c)HT
i

∣∣∣∣∣ , i = 1, 2

for someQ(c) � 0, Q(p) � 0 with tr(Q(c) +Q(p)) ≤ P .
Unfortunately, the optimal transmit covariance matrices are

determined by non-convex optimization problems and so for
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Fig. 6. Secrecy capacity region of the MISO Gaussian BBC withconfidential
messages withNR = 2 and N1 = N2 = 1 for h1 = [2 0.4]T , h2 =
[0.2 1.2]T , andP = 5. Fig. 6(b) compares the secrecy capacity region with
the achievable rate region of a comparable TDMA approach (gray) which
realizes the same routing task in three orthogonal time slots.

the weighted rate sum optimal rate tuples as well. Hence,
obtaining the boundary of the secrecy capacity region is non-
trivial. Following [39] or [29, Sec. V] one can reformulate
the optimization problem for the single receive antenna case
in such a way that the optimization problem becomes convex
and therewith tractable.

Figure 6 depicts the secrecy capacity region of the MISO
Gaussian BBC with confidential messages which characterizes
the optimal processing at the relay node, cf. Corollary 2.
This is compared with a comparable TDMA approach which
realizes the same communication task in three orthogonal time
slots. It shows that the optimal processing as given in Corollary
2 significantly outperforms the simple TDMA approach. For
corresponding plots of capacity regions of the BBC with
common messages and the classical broadcast channel with
common and confidential messages, we refer to [28] and [29]
respectively. Such an analysis is the indispensable basis for
further studies such as fading channels or the impact of the
geometric constellation or position of the relay and the other
two nodes.

Remark 5:We presented the discussion for the average
power constraint (9), but it is clear that this also holds for
the general matrix power constraint (10). Further, the same
discussion can be done for discrete memoryless channels.

V. CONCLUSION

Physical layer service integration deals with the efficient
implementation of different services at the physical layer.
In this paper we studied physical layer service integration
in bidirectional relay networks which basically required the
study of the bidirectional broadcast channel with common
and confidential messages. We established the entire secrecy
capacity regions which characterize the fundamental limits up
to which rates private, common, and confidential messages can
be transmitted in bidirectional relay networks. Interestingly, it
is shown that for MIMO Gaussian channels, a superposition
of two streams–one for the public and one for the confidential
communication–is optimal.

Accordingly, based on general observations regarding the
optimal coding strategy, the next logical step for future work

is to develop practical coding schemes that achieve these limits
and to further characterize the optimal transmit strategies for
MIMO processing. So far, perfect channel state information
was assumed in the whole network. However, due to the nature
of the wireless medium, channel uncertainty is a ubiquitous
phenomenon in practical systems. Hence, it is essential to
study robust physical layer service integration under channel
uncertainty as a next step. For example, in [40] and [41]
the classical broadcast channel with common and confiden-
tial messages and bidirectional relaying (without additional
common and confidential services) are studied under channel
uncertainty. In both, it is shown that reliable communication
is still possible, but at reduced rates compared to the case with
perfect channel state information. Therefore, robust physical
layer service integration in bidirectional relay networksunder
channel uncertainty should be possible, but we similarly expect
a degradation in performance. Another future research direc-
tion would be integration of further services in bidirectional
relay networks. At the moment the relay integrates only one
confidential message for one node. Similar to [15, 16], the
relay could further integrate a second confidential message
intended for the other node.
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