
TECHNISCHE UNIVERSITÄT MÜNCHEN
Lehrstuhl für Informatik VII

Verification of Reachability Properties and
Termination for Probabilistic Systems

Andreas Gaiser

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität München
zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. H. Seidl

Prüfer der Dissertation:

1. Univ.-Prof. Dr. Dr. h.c. F.J. Esparza Estaun

2. Prof. A. Kučera, Ph.D.
Masaryk Univ. / Tschechien

Die Dissertation wurde am 10.10.2012 bei der Technischen Universität München eingereicht und
durch die Fakultät für Informatik am 20.02.2013 angenommen.

Abstract

In this thesis we study reachability problems for Markov chains and
Markov decision processes originating from probabilistic programs
and multi-type finite branching processes. Manual analysis of such
systems is challenging and error-prone; its automation has been widely
investigated, but mainly for systems with finite state spaces. Apart
from the problem of state explosion (and infinite state spaces) one has
to deal with the quantitative nature of probabilistic programs.

In the first part of the thesis we consider the problem of computing
lower and upper bounds for reachability probabilities of programs. We
extend abstraction approaches to arbitrary domains from the abstract
interpretation framework, making them more flexible and efficient. In
the second part we present a novel algorithm for proving termination
with probability one of probabilistic programs. Our algorithm exploits
the power of state-of-the-art termination provers for nonprobabilistic
programs. In the last part we develop robust numerical algorithms for
the analysis of termination properties of multi-type finite branching
processes and simple recursive programs.

Zusammenfassung

Diese Arbeit beschäftigt sich mit Erreichbarkeitsproblemen für Markov-
Ketten und Markov-Entscheidungsprozesse mit großen und unend-
lichen Zustandsräumen, die von probabilistischen Programmen und
Verzweigungsprozessen stammen. Neben der Zustandsexplosion treten
hierbei auch Herausforderungen auf, die von der quantitativen Art der
Erreichbarkeitsprobleme herrühren.

Im ersten Teil der Arbeit wird das Problem behandelt, obere und
untere Schranken für Erreichbarkeitswahrscheinlichkeiten von Pro-
grammen zu errechnen. Bestehende Abstraktionsansätze werden um
die Möglichkeit erweitert, beliebige abstrakte Domänen zu benutzen,
was die Ansätze flexibler und effizienter macht. Im zweiten Teil wird
ein neuer Algorithmus vorgestellt, der fast sichere Terminierung von
Programmen beweist. Er benutzt dafür kürzlich entwickelte Termi-
nierungsbeweiser für nichtprobabilistische Programme. Außerdem wer-
den robuste numerische Algorithmen für die Analyse von Terminie-
rungseigenschaften von Verzweigungsprozessen und einfachen rekur-
siven Programmen entwickelt.

Acknowledgements

Zuallererst möchte ich meinem Betreuer Prof. Javier Esparza danken.
Während meiner Zeit als Doktorand lernte ich ihn als sorgfältigen
und unendlich geduldigen Betreuer, Ratgeber und Lehrer kennen, der
nach Rückschlägen aufbauen konnte, und mit sicherem Gespür meine
Forschungsversuche immer wieder in die richtigen Bahnen lenkte. Ich
habe viel von ihm gelernt, in vielen Bereichen.

Javier machte mich auch auf das Graduiertenkolleg PUMA (Nr. 1480)
der Deutschen Forschungsgemeinschaft aufmerksam, dessen Stipen-
diat ich sein durfte. Ich danke sowohl der DFG als auch der Tech-
nischen Universität München für ihre Unterstützung. Dank gebührt
auch meinem Zweitbetreuer Helmut Seidl, der als Leiter des Graduier-
tenkollegs immer für seine PUMAs eintrat, und Stefan Schwoon, der
meinen akademischen Werdegang vom ersten Semester an begleitet
hat.

Noch einen Stefan möchte ich ganz besonders hervorheben: Stefan
Kiefer. Viele Ergebnisse dieser Arbeit sind in Kooperation mit ihm
entstanden. Ich schätze mich glücklich, mit einem solch scharfsinnigen
und gütigen Kollegen und Freund zusammenarbeiten zu dürfen, erst
in München, dann während meines Aufenthaltes in Oxford.

Am Lehrstuhl I7 herrscht eine ganz besondere Arbeitsatmosphäre.
Ich denke an inner- und außeruniversitäre Aktivitäten mit (dem drit-
ten) Stefan und Christian, Laufen und Heimfahrten mit Michael, und
an meinen Zimmerkollegen Jan, unsere Gespräche über Deutsche,
Tschechen, Sprache, Religion und den ganzen Rest; sie alle sind mir
Freunde geworden. Danke auch an alle neuen und alten Kollegen:
Jörg, Remy, René, Maximilian, Juan, Frau Leber, Frau Auer etc., und

besonders an Andreas Reuß: es war immer schön, mit ihm Kriegsrat
zu halten.

I am grateful for the opportunity to work with the colleagues of our
new research group: Andrey, Corneliu, Ruslan, and Ashuthosh - I want
to mention in particular the disussions with Ruslan, and Corneliu’s
and Andrey’s help with taming ARMC and lots of other things.

Von Björn Wachter habe ich viel gelernt über probabilistisches Model
Checking und Abstraktion, vielen Dank dafür.

I also thank Prof. Antonín Kučera for agreeing to review this thesis.

Meiner Schwester Diana und Simone möchte ich danken für ihren
Beistand in den vergangenen Jahren. Meine Eltern haben mich in
unaufhörlicher Liebe in jeder Situation meines Lebens unterstützt und
begleitet. Meine Dankbarkeit ihnen gegenüber lässt sich schwerlich in
Worte fassen. Ich bin unendlich froh, sie haben zu dürfen.

S · D · G

Contents

Contents i

List of Figures v

1 Introduction 1

2 Preliminaries 7
2.1 Lattices and Fixed Points . 7
2.2 Languages . 9
2.3 Vectors . 10

3 Probability Theory and Markov Models 11
3.1 Probability Spaces . 12
3.2 Markov Chains and Markov Decision Processes 13

3.2.1 Runs and Paths . 16
3.2.2 Probability Measures for Markov Chains and MDPs 17

3.3 Reachability Problems . 19

4 Reachability in Probabilistic Programs 23
4.1 Probabilistic Programs . 28

4.1.1 PGP Semantics . 29
4.2 Abstracting Program States . 32

4.2.1 Domains . 33
4.2.2 Abstract Transitions . 38
4.2.3 Fixed Points and Widenings 39
4.2.4 Direct Product of Domains 41

ii

4.2.5 Other Abstract Domains 42
4.3 Stochastic Games . 43
4.4 The Approach in a Nutshell . 46

4.4.1 A Game Round . 47
4.4.2 Constructing an Example Arena 50
4.4.3 Reachability Information from Arenas 52

4.4.3.1 Bounds max+,max− for MaxReach(MP , F) . . . 52
4.4.3.2 Bounds min−,min+ for MinReach(MP , F) 53

4.4.4 Infinite Domains, Widenings, and Predicate Domains . . . 57
4.5 Formal Definition of Abstract Game Arenas 58

4.5.1 Obtaining Reachability Bounds 60
4.6 An Algorithm for Building Abstract Game Arenas 73

4.6.1 General Structure . 75
4.6.2 Procedure abstractUpdate 76
4.6.3 Procedure extrapolate 78

4.7 Refining Abstract Game Arenas: Quantitative Widening Delay . . 79
4.8 Experiments . 80
4.9 Related work . 82
4.10 Conclusion . 83

5 Termination of Probabilistic Programs 85
5.1 Probabilistic Imperative Programs 90

5.1.1 Semantics of PIPs . 92
5.1.2 Program Classes . 93

5.2 Patterns . 93
5.3 Constructing Patterns . 97

5.3.1 Finite Programs . 99
5.3.2 Weakly Finite Programs 102

5.4 Implementing Pattern Checkers 104
5.5 Nondeterministic Programs . 107
5.6 Experimental Evaluation . 109
5.7 Termination Information and Reachability Probabilities 111

5.7.1 Improving Lower Bounds for Reachability 113

iii

5.8 Related Work . 114
5.9 Conclusion . 115

6 Extinction in Branching Processes 117
6.1 Multi-Type Finite Branching Processes 122

6.1.1 Stochastic Context-Free Grammars 128
6.1.2 Stateless Probabilistic Pushdown Automata 130

6.2 Probabilistic Systems of Polynomials 133
6.2.1 Preliminaries . 133
6.2.2 Definition and Properties 133

6.3 An Algorithm for Deciding whether ψ = 1 135
6.3.1 Checking Consistency using Linear Programming 136
6.3.2 Our Algorithm . 137
6.3.3 Case Study: MFBPs with ψ being ”almost” 1 139

6.4 Approximating Extinction Probabilities with Inexact Arithmetic . 141
6.4.1 Computing a Strict Pre-Fixed Point 143
6.4.2 Computing Lower and Upper Bounds 144

6.4.2.1 Characterizing Pre-Fixed Points and Post-Fixed
Points . 149

6.4.2.2 Computing Upper Bounds 151
6.4.2.3 Computing Lower Bounds 153
6.4.2.4 Obtaining a Post-Fixed Point ≺ 1 155
6.4.2.5 Concluding Correctness Proof 158

6.5 Case Study: A Neutron Branching Process 160
6.6 Conclusion . 164

7 Summary and Outlook 165

A Missing Proofs of Chapter 4 169
A.1 Proof of Lemma 3, Part (1) . 169
A.2 Proof of Lemma 3, Part (2) . 173
A.3 Proof of Lemma 3, Part (3) . 179

B Missing Proofs of Chapter 5 187

iv

C Missing Proofs of Chapter 6 199

List of Figures

3.1 Bounded random walk . 14
3.2 Unbounded random walk . 15
3.3 Example MDP . 15

4.1 Packet transmission example as CFG 24
4.2 Packet transmission example as PGP. 31
4.3 MDP from the packet transmission example. 32
4.4 Predicate domains . 35
4.5 PGP example for widenings . 38
4.6 Example stochastic game arena 44
4.7 Constructing abstract game arenas 48
4.8 Complete abstract game arena. 49
4.9 Example programs 2 and 3 . 58
4.10 Two guarded-command programs 81

5.1 MDP of the introductory example 86
5.2 Example program FW . 91
5.3 Illustration of the proof of Theorem 7 98
5.4 PIP RW and program RW’ . 102
5.5 MDP associated to RW . 103
5.6 Büchi automaton A(w) . 106
5.7 Code transformation for coin tosses in weakly finite programs. . . 107
5.8 Nondeterministic a.s.-terminating pattern 107
5.9 Constructed patterns of case studies and runtimes 110

vi

6.1 Example MFBP . 124
6.2 Markov chain belonging to the example MFBP 131
6.3 Derivation tree of SCFG example 131
6.4 Computation of a post-fixed point < 1 148
6.5 ψ1 for different values of D (neutron branching process) 163

Chapter 1

Introduction

Everything existing in the universe is the fruit of chance.
∆ηµóκριτoς

Probability theory finds applications in all areas of modern science. Probabilities
are used to model the development of animal populations in systems biology
(Haccou et al. [51]), for RNA and DNA structure prediction in molecular biology
(Anderson et al. [1]), to represent cascade reactions in nuclear physics (Harris
[54]), and to investigate reactive systems and randomized algorithms in computer
science, to name just a few examples.
Important mathematical models for describing such systems are discrete Markov
models, in particularMarkov chains and discrete Markov decision processes. They
represent simple but nevertheless powerful formalisms and are used in all example
applications that we mentioned. Markov chains and Markov decision processes
have finite or countable state spaces. States change in discrete time steps, and
successor states are determined probabilistically. Additionally, Markov decision
processes allow to model nondeterminism: in some states a successor state is
picked by a player, who can have different objectives, and might e.g. represent
an “unpredictable” environment.
In the investigation of systems with probabilistic behaviour it is often important

2

to deduce with which probability certain events occur, like the maximal proba-
bility of reaching an error location in a computer program, the probability that
such a program terminates, or the probability of a nuclear explosion in a con-
tainer filled with radioactive material. These questions can be transferred to the
problem of reaching a certain set of states in the Markov model representing the
system. More precisely: in Markov chains we like to compute the probability of
reaching a given set of states; in Markov decision processes (where such a prob-
ability depends on the behaviour of the player) we are interested in both the
minimum and maximum probability of reaching a given set of states, taken over
all behaviours of the player. We refer to these questions as reachability problems
in the following.
In this work we mainly study reachability problems for Markov models that orig-
inate from probabilistic programs. They are equipped with a random number
generator having a finite number of outcomes. Additionally they can exhibit
nondeterministic behaviour. Manual analysis of probabilistic programs is a very
challenging and error-prone task; its automation has therefore been widely inves-
tigated in the verification community, mainly for systems with finite state spaces.
In addition to the problem of state explosion, which is well-known from the anal-
ysis of nonprobabilistic programs, one has to deal with the quantitative nature of
reachability problems for Markov models, since it is often required to compute
a numerical value (a probability) instead of just giving a 0/1-answer as in non-
probabilistic verification (like: is the state reachable or not). However, qualitative
reachability problems, like proving that a program reaches a state with proba-
bility 1, pose a lot of new challenges as well. In particular they often become
undecidable if one considers infinite state spaces. In this case one has to rely on
incomplete approaches.

Verification of probabilistic programs. Quite early, probabilistic programs
became a popular research topic in the verification community, caused by their
growing importance in areas like reactive systems and concurrent programs; see
e.g. Baier and Katoen [7] for a detailed introduction, and Baier et al. [10] for a
survey of applying analysis techniques for probabilistic systems to performance
evaluation. After the semantical foundations were laid in the 1980s’, e.g. by the

3

work of Kozen (Kozen [65]), approaches evolved for model checking of mostly
finite-state systems against specifications in temporal logics like LTL or PCTL,
for qualitative as well as quantitative properties (see e.g. Bianco and Alfaro [14],
Courcoubetis and Yannakakis [24], Sharir et al. [94], Vardi [97] and Lehmann
and Shelah [67]). In particular, the problem of proving termination of programs
with probability 1 received special attention, e.g. in Arons et al. [3]. We note
that apart from modeling systems with Markov decision processes and Markov
chains, which have a discrete-time semantics, also continuous-time Markov chains
and continuous-time Markov decision processes have become widely used for de-
termining system performance (see e.g. Baier et al. [9]). However we do not
study them in this thesis. Quite often techniques from nonprobabilistic verifi-
cation could be applied successfully to the probabilistic setting. For example,
one of the approaches for fighting the state explosion in probabilistic programs
consists of representing Markov decision processes and Markov chains with the
help of symbolic decision diagrams as in Parker [82], similar to the use of BDDs
in “classical” verification (Esparza and Schwoon [34], Hun et al. [58]). These
techniques were used in one of the first and most widely spread tools for the ver-
ification of probabilistic systems, the model checker PRISM (Kwiatkowska et al.
[66]). It supports finite-state probabilistic programs with nondeterminism and
concurrency and provides a wide range of properties to be checked. The use of
abstraction techniques has been identified quite early as a good solution for coping
with large and especially infinite state spaces. Besides techniques from the ab-
stract interpretation framework (Cousot and Cousot [25]) in work like Monniaux
[76] and Di Pierro et al. [31], the counterexample-guided abstraction refinement
approach (CEGAR, see Clarke et al. [19]) has been adapted to the probabilis-
tic setting, e.g. in Han et al. [53] and Hermanns et al. [55] and the approaches
of Wachter and Zhang [99] and Kattenbelt et al. [62]. In particular the latter
two are of particular importance in this thesis. For probabilistic programs with
recursion or dynamic process creation, analysis tools like PReMo (Etessami and
Yannakakis [42], Wojtczak and Etessami [102]) have been developed, which can
be used to compute e.g. termination probabilities using sophisticated numerical
methods.

4

Contributions of the thesis. In this thesis we develop algorithms for solving
reachability problems for classes of probabilistic programs with potentially infinite
state space in an automatic or semi-automatic way. We show that it is useful
to employ different techniques, specifically tailored to the requirements of the
considered systems and problems:

• Instead of constructing the concrete semantics of a program, we use ab-
straction (Cousot and Cousot [25]) to obtain small abstract systems from
which we can still obtain useful information about reachability probabilities
of the program.

• We use tools from nonprobabilistic verification to reduce special cases of
reachability problems to purely nonprobabilistic problems.

• We develop numerical techniques to analyze special classes of probabilistic
systems. For example, we avoid numerical imprecision by combining inexact
and exact arithmetic and obtain efficient algorithms.

We focus on two important and closely related verification problems: Computing
bounds for the probability of reaching a fixed program point and proving that a
final state of a program (or other system) is reached with probability one; the
latter property is called almost-sure termination.

Outline. In Chapter 2 we introduce basic notational conventions and math-
ematical results that are used throughout the thesis. Chapter 3 recalls basics
from probability theory and then defines Markov chains and Markov decision
processes, together with some important properties of these stochastic models.
Chapter 4 describes our approach for computing bounds for reachability prob-
abilities of probabilistic programs with possibly infinite state space, using arbi-
trary domains from the abstract interpretation framework (Cousot and Cousot
[25]). Our approach is an extension of the game-based abstraction approaches
from Kattenbelt et al. [62] and Wachter and Zhang [99]. These approaches rely
on predicate abstraction. We introduce concepts from abstract interpretation
and game theory for defining so-called abstract game arenas, and explain how
to obtain lower and upper bounds for reachability probabilities from them. We

5

give an algorithm for constructing abstract game arenas using arbitrary domains,
and discuss possible refinement techniques. With the help of examples we show
differences and advantages of our extension compared to the approaches based
solely on predicate abstraction.
The techniques from Chapter 4 are often not efficient when we want to prove
that an (infinite-state) program is almost-surely terminating (i.e., is reaching a
terminating state with probability one). Problems arise which are similar to sit-
uations in nonprobabilistic verification for proving termination: the approaches
tend to unroll loops, which results in large game arenas. We therefore present
a new method for proving almost-sure termination of an important class of infi-
nite state programs, called weakly finite programs, in Chapter 5. Let P be a
program. Our approach is based on patterns: a pattern Φ is a simple expression
describing a set SΦ of runs of P with SΦ having probability one. Φ is called
terminating if every run in SΦ eventually reaches a terminating state. The ex-
istence of a terminating pattern therefore proves almost-sure termination of P .
We give a method for computing terminating patterns that exploits the power
of state-of-the-art model checkers and termination provers for nonprobabilistic
programs. In the case of finite state programs it finds terminating patterns auto-
matically, for general weakly finite programs it requires an extrapolation step. We
give a completeness result of our proof method for the class of weakly finite pro-
grams. We also show how to use termination information to improve algorithms
for quantitative computation of reachability probabilities.
For the programs we study in Chapter 5, almost-sure termination can be proved
without taking the actual probabilities occurring in the program into account.
In Chapter 6 we consider a class of infinite-state Markov chains that originate
from multi-type finite branching processes. These processes are important in
many branches of science and in particular in the termination analysis of simple
recursive programs. For these systems, the actual probabilities play an important
role in their termination properties. It turns out that almost-sure termination of
such systems can be characterized by a sequence of probabilities called extinction
probabilities. We develop a strongly-polynomial algorithm for deciding whether
the extinction probabilities are all equal to one, which gives us an algorithm for
deciding almost-sure termination of special classes of programs based on solving

6

linear equation systems in the size of the branching process. We show that our
algorithm is more efficient in practice than existing ones based on exact Linear
Programming. We also study the problem of how to obtain reliable bounds for
extinction probabilities. We show that existing approaches might exhibit numer-
ical problems, and until now only methods for computing lower bounds were
known. We give a robust algorithm that computes arbitrarily precise lower and
upper bounds for extinction probabilities. Although we use inexact arithmetic
for efficiency in the algorithm, we do so in a controlled way and always obtain
reliable bounds.
We end in Chapter 7 with a short summary and an outlook: we propose several
directions for future research, which on particular aim at combining the proposed
techniques.

Chapter 2

Preliminaries

In this section we establish some basic notational conventions and recall funda-
mental structures and results that are needed throughout the thesis.
We denote by N the set of natural numbers 1, 2, . . ., by Z the integers, by Q the
rational numbers and by R the real numbers. We denote the power set of a set A
by 2A. We write infinite sequences a(1), a(2), . . . respectively a1, a2, . . . as (a(i))i∈N
respectively (ai)i∈N.

2.1 Lattices and Fixed Points

In different parts of the thesis we investigate how to compute or approximate
fixed points of functions defined over partially ordered sets:

Definition 1. (Partially ordered set)
Let A be a set. A pair (A,v) with v ⊆ A × A is a partially ordered set if v is
anti-symmetric (i.e. for all elements a and b in A with a v b and b v a it follows
that a = b), reflexive and transitive.

If v is clear we just write A for (A,v). We often study partially ordered sets
with additional properties, so-called complete lattices:

Definition 2. (Complete lattice)
Let A be a set. A partially ordered set (A,v) is a complete lattice if for every
subset S ⊆ A

8

• there exists an element a ∈ A, written a =
d
S and called the infimum of

S, such that (i) for every x ∈ S it holds that a v x and (ii) for every b ∈ A
such that b v x for every x ∈ S, b v a holds.

• there exists an element a ∈ A, written a = ⊔
S and called the supremum of

S, such that (i) for every x ∈ S it holds that x v a and (ii) for every b ∈ A
such that x v b for every x ∈ S, a v b holds.

d
∅ is denoted by > (the maximal or top element), and ⊔ ∅ by ⊥ (the least or

bottom element).
We often write a complete lattice as tuple (A,v,⊔,d,>,⊥).

If (A,v) is a complete lattice, suprema and infima are unique, as are the bottom
and top element. An easy example of a complete lattice is (2A,⊆,⋃,⋂, A, ∅) for
an arbitrary set A: the supremum of two lattice elements a and b is their union,
the infimum their intersection; the bottom element is ∅, the top element A.
Another example is the lattice ([0, 1],≤, sup, inf, 1, 0): for every subset S ⊆ [0, 1]
both supremum and infimum are again contained in [0, 1].
An important class of functions defined on complete lattices are monotone and
continuous functions1:

Definition 3. (Monotone and continuous functions, fixed points)
Let L = (A,v,⊔,d,>,⊥) be a complete lattice, and f : A→ A a function. f is

• monotone with respect to L if for all elements a and b in A with a v b it
holds that f(a) v f(b),

• f is continuous with respect to L if it is monotone and for all S ⊆ A it
holds that f(⊔S) = ⊔

f(S).2

An element x ∈ A is a fixed point of f if f(x) = x.

A fundamental result from lattice theory for monotone functions is the Knaster-
Tarski theorem (see e.g. Winskel [101]): it gives a characterization of the fixed
points of a monotone function f defined over a complete lattice.

1We do not introduce CPOs here, therefore we give a somewhat stronger definition of
continuous functions etc., that is sufficient for our needs.

2We use the standard notation f(S) := {f(s) | s ∈ S}.

9

Theorem 1. (Knaster-Tarski theorem)
Let (A,v,⊔,d,>,⊥) be a complete lattice, and f : A→ A a monotone function.
Let

µf =
l
{x ∈ A | f(x) v x}.

Then µf is the least fixed point of f , i.e. for every fixed point x of f it holds that
x v µf . Now let

ζf =
⊔
{x ∈ A | x v f(x)}.

Then ζf is the greatest fixed point of f , i.e. for every fixed point x of f it holds
that x v ζf .

A famous theorem due to Kleene characterizes least fixed points of continuous
functions (see e.g. Winskel [101]):

Theorem 2. (Kleene’s fixed point theorem for complete lattices)
Let (A,v,⊔,d,>,⊥) be a complete lattice, and f : A→ A a continuous function.
Then the least fixed point µf of f is given by

µf =
⊔
{f i(⊥) | i ∈ N} = lim

k→∞
fk(⊥),

i.e. µf is the limit of the sequence ⊥, f(⊥), f(f(⊥)),

Consider for example a function f : [0, 1]→ [0, 1] with

f(x) =
m∑
i=0

ai · xi,

with ai ∈ [0, 1] for 0 ≤ i ≤ m, and ∑m
i=0 ai ≤ 1. f is continuous with respect to

([0, 1],≤, sup, inf, 1, 0) (here both in the lattice-theoretic as in the calculus sense).
By Kleene’s Theorem every such f has a least fixed point, given by limn→∞ f

n(0).

2.2 Languages

Let Σ be a finite non-empty set. We denote by Σ∗ and Σω the sets of finite and
infinite words over Σ, and set Σ∞ = Σ∗∪Σω. For L1 ⊆ Σ∗ and L2 ⊆ Σ∗, we write
L1L2 for the set {uv | u ∈ L1 ∧ v ∈ L2}.

10

Sometimes we require the elements of an alphabet to be ordered:

Definition 4. (Ordered alphabet)
Let n ∈ N. Let Σ be a finite nonempty set with |Σ| ≥ n. An ordered alphabet A
is a finite sequence (a1, . . . , an) ∈ Σn with ai 6= aj for 1 ≤ i < j ≤ n. We define
ai < aj iff 1 ≤ i < j ≤ n.

We often write A as {a1, . . . , an} (abusing the notation slightly to encode the
order of the elements) and treat it as a set.

2.3 Vectors

We use bold letters for designating (column) vectors, e.g. v ∈ Rn. We write s
with s ∈ R for the vector (s, . . . , s)> ∈ Rn (where > indicates transpose), if the
dimension n is clear from the context. The i-th component of v ∈ Rn will be
denoted by vi. We write x = y (resp. x ≤ y resp. x ≺ y) if xi = yi (resp. xi ≤ yi
resp. xi < yi) holds for all i ∈ {1, . . . , n}. By x < y we mean x ≤ y and x 6= y.
The (n-dimensional) i-th unit vector is denoted by ei ∈ Rn, i.e. eij = 0 for i 6= j

and eij = 1.
We note that the partial order ([0, 1]n,≤) forms a complete lattice, (as an n-times
product of ([0, 1],≤)), with 0 as the bottom element and 1 the top element.

Chapter 3

Probability Theory and Markov
Models

To give a precise semantics for the probabilistic systems studied in this thesis
we use Markov chains and Markov decision processes, which are simple but fun-
damental models for representing probabilistic systems. We introduce them as
labeled transition systems.

Markov chains are purely probabilistic: in every state, a successor state is de-
termined by a probabilistic choice like e.g. a coin toss, and every transition is
weighted by a probability. However, each transition also has an additional label
that can carry further information.

Markov decision processes, an extension of Markov chains, additionally allow
nondeterministic decisions by introducing a player who is allowed to choose a
successor state in special situations. His choices are represented by action tran-
sitions. There are in general many different possible behaviours for the player,
which influence the properties of the resulting process.

We also introduce reachability problems for both models, the central questions
tackled throughout this thesis. We require some basic facts from probability
theory. More extensive treatments can be found in standard probability theory
literature. Our notation is similar to the one in Rosenthal [91] and Baier and
Katoen [7].

12

3.1 Probability Spaces

Let us consider a random experiment where exactly one event out of a set S
occurs. We then call S the set of elementary events of the experiment. σ-algebras
represent a collection of experiment outcomes, i.e. subsets of S:

Definition 5. (σ-algebra)
Let S be a set. A σ-algebra S is a subset of 2S over S such that:

• {∅, S} ⊆ S,

• for every sequence (Si)i∈N in S, ⋃i∈N Si ∈ S and ⋂i∈N Si ∈ S, and

• if T ∈ S, then also S \ T ∈ S.

A probability measure is used to assign probabilities to elements of a σ-algebra
(in general it is not possible to assign a probability to arbitrary subsets of S):

Definition 6. (Probability measure and probability space)
Given a σ-algebra S ⊆ 2S over S, a function Pr[·] : S → [0, 1] is a probability
measure over S if

• Pr[∅] = 0,Pr[S] = 1, and

• Pr is countably additive, i.e. for every sequence (Si)i∈N in S such that
Si ∩ Sj = ∅ for all i 6= j,

Pr[
⋃
i∈N

Si] =
∑
i∈N

Pr[Si].

The tuple (S,S,Pr) is called a probability space.

Often we will deal with simple probability spaces that describe the probability
that one out of countably many events occurs:

Definition 7. (Discrete probability distribution)
Let S be a finite or countable set. We call a function P : S → [0, 1] a discrete

13

probability distribution, or discrete distribution for short, if ∑s∈S P (s) = 1. Fur-
ther we call P having finite support if P (s) = 0 for all but finitely many s ∈ S.
We denote by Dist(S) the set of all discrete distributions, and by DistF (S) the
set of all discrete distributions with finite support.

A discrete probability distribution P over a set S can be used to form a probability
measure P̂ : 2S → 2S for the σ-algebra 2S, by setting for every M ⊆ S

P̂ (M) :=
∑
s∈M

P (s).

The tuple (S,S, P̂) then forms a probability space.
We mention the usual convention of conditional probability: we define for every
S, T elements in S with Pr[T] 6= 0 the probability Pr[S | T] by Pr[S∩T]

Pr[T] (S∩T ∈ S

due to the definition of σ-algebras). We call a set S ∈ S a null set if Pr[S] = 0.
Note that then Pr[T] = Pr[S ∪ T] for every T ∈ S.

3.2 Markov Chains and Markov Decision Pro-
cesses

Both Markov chains as well as Markov decision processes are transition systems
with finite or countable state space.1 In a Markov chain, each transition is labeled
and weighted with a probability.

Definition 8. (Markov chain)
A Markov Chain M is a tuple (Q,→,Lab), where

• Q is a finite or countable set of states,

• Lab is a finite or countable set of labels,

• → ⊆ Q× (0, 1]× Lab×Q is a transition relation.

The relation → has to satisfy the following conditions:

1. if (q, p, `, q′) and (q, p′, `, q′) are in →, then p = p′;
1We do not study uncountable state spaces in this work.

14

0 1 2 . . . n− 1 n1, τ

0.5, L 0.5, L 0.5, L 0.5, L

0.5, R 0.5, R 0.5, R 0.5, R

1, τ

Figure 3.1: Example of a finite-state Markov chain: the bounded random walk.
The labels R resp. L mean going one step to the right resp. to the left.

2. the probabilities of the outgoing transitions of every q ∈ Q add up to 1, i.e.
for every fixed q ∈ Q, ∑(q,p,`,q′)∈→ p = 1.

For (q, p, `, q′) ∈ → we write q p,`−→ q′. The outgoing transitions of a state q of a
Markov chain can be used to define a transition distribution for q:

Definition 9. (Transition distributions)
Let M = (Q,→,Lab) be a Markov chain. For every q ∈ Q we define the distri-
bution δq : Q→ [0, 1] by setting δq(q′) := ∑

(q,p,`,q′)∈→ p.

A Markov chain can be visualized as a graph with labeled edges. A run in a
Markov chain corresponds to a play on its graph: a token is placed on a state
q ∈ Q. Then an outgoing transition of q is chosen, according to the probability
weights, i.e. a transition (q, p, `, q′) is chosen with probability q. The token is
moved to q′ and the play continues in the same manner.
The Markov chain M = ({0, 1, . . . , n},→, {L,R, τ}) drawn in Fig. 3.1 represents
a standard example from Markov chain theory, the finite random walk, often also
called Drunkard’s Walk: a heavily drunk pub visitor starts at a position pos > 0
(the pub) and staggers randomly either one step to the left or one to the right.
If she reaches 0 or n (0 might be her home, n a police station), she stays there.
Fig. 3.2 represents an infinite random walk, which essentially removes the “sink
state” on the right side of the walk.
For transitions that do not require a label we use the empty label τ (and we often
omit it, especially in figures).
Markov decision processes, MDPs for short, are an extension of Markov chains.
A state of an MDP can be either an action state or a probabilistic state, the
latter having essentially the same behaviour as a state in a Markov chain.

15

0 1 2 . . .1, τ

0.5, L 0.5, L 0.5, L

0.5, R 0.5, R 0.5, R

Figure 3.2: The right-unbounded random walk, an infinite-state Markov chain.

q1

q2

q3

+35e

+1e

−1e

a

b

1
37, τ

36
37, τ

18
37, τ

19
37, τ

τ

τ

τ

Figure 3.3: Example MDP. Probabilistic states are drawn as circle-shaped nodes,
action states as rectangle-shaped nodes.

Definition 10. (Markov Decision Process)
A Markov Decision Process (MDP) is a tuple M = (QA, QP , Init,→,LabA,LabP),
where

• QA and QP are countable or finite sets of action states and probabilistic
states; we set Q := QA ∪QP ,

• Init ⊆ QA ∪QP is a set of initial states, and

• LabA respectively LabP is a countable set of action labels respectively prob-
abilistic labels, and

• the relation→ is equal to→A∪→P , where→A ⊆ QA×LabA×Q is a set of
action transitions, and→P ⊆ QP × (0, 1]×LabP ×Q is a set of probabilistic
transitions.

It further satisfies the following conditions:

• if (q, p, `, q′) and (q, p′, `, q′) are probabilistic transitions, then p = p′,

16

• if (q, `, q1) and (q, `, q2) are action transitions, then q1 = q2,

• the probabilities of the outgoing transitions of a probabilistic state add up
to 1, i.e. for every q ∈ QP ,

∑
(q,p,`,q′)∈→ p = 1,

• every state of QA has at least one successor in →A.

We write q `−→ q′ for (q, `, q′) ∈ →A, and again q p,`−→ q′ for (q, p, `, q′) ∈ →P (we
omit p if it is irrelevant).
If for a Markov Decision Process M = (QA, QP , Init,→,LabA,LabP) it holds that
QA = ∅, then we will interpret M as the Markov chain (QP ,→,LabP). Therefore
we can treat Markov chains as a special case of MDPs from now on. In particular,
each definition in the following given in terms of MDPs can be used for Markov
chains as well. Note however that we include initial states only in the definition
of MDPs, not in the definition of Markov chains.
Similar to Markov chains we can interpret a run in an MDP as a play where a
token is moved on its graph: if the token is located in a probabilistic state, a
probabilistic choice takes place to obtain a successor state as in Markov chains;
however, in an action state, a player chooses the successor state. Consider the
example MDP in Fig. 3.3. As a convention we draw action states as rectangle-
shaped nodes and probabilistic states as ellipse or circle-shaped nodes. It models
a game where the player starts in state q1 and has to decide whether he chooses
label a or label b. The game ends up in one of the three states on the right,
symbolizing the player winning 35e, 2e, or losing 1e. The label a represents a
more adventurous choice of the player (apparently).

3.2.1 Runs and Paths

Let us fix an MDP M = (QA, QP , Init,→,LabA,LabP) for this section (by in-
terpreting Markov chains as MDPs, we can use the following notations for both
Markov chains and MDPs). We set Q = QA ∪ QP and Lab = LabA ∪ LabP . A
run of an MDP M is an infinite word r = q0`0q1`1 . . . ∈ (QLab)ω such that for
all i ≥ 0 either qi

p,`i−−→ qi+1 for some p ∈ (0, 1] or qi
`i−→ qi+1. We call r initial

17

if q0 ∈ Init. We denote the set of runs starting at a state q by RunsM(q). For
MDPs we additionally denote the set of all initial runs of M by RunsM.
A path π is a proper prefix of a run r, and we call π initial if r is initial. We
denote by PathsM(q) the set of all paths starting at q, and by PathsM all initial
paths of M (again if M is an MDP). We denote the last state occuring in a path
π by last(π).
We often write r = q0

`0−→ q1
`1−→ q2

`2−→ . . . instead of r = q0`0q1`1q2 . . . for runs
(similarly for paths), and omit the superscripts of Runs and Paths if the context
is clear. If necessary we also add the probabilities of transitions, i.e. we write
r = q0

p0,`0−−→ q1
p1,`1−−→ q2

p2,`2−−→ . . . if (q0, p0, `0, q1) ∈ →, (q1, p1, `1, q2) ∈ →,
For w ∈ Lab∗ with w = `1 . . . `k we write q w−→ q′ if there exists q1, . . . , qk−1 such
that

q
`1−→ q1

`2−→ q2
`3−→ . . .

`k−1−−→ qk−1
`k−→ q′ ∈ PathsM.

We can extend this notation to regular expressions over Lab∗: e.g. q `∗1−→ q′ holds
iff there exists a path from q to q′ where only the label `1 is visited.
For each path π ∈ PathsM(q) with q ∈ Q, we define

Cyl(π,M) = {r ∈ RunsM(q) |π is prefix of r},

the cylinder set of π. We often abbreviate Cyl(π,M) to Cyl(π) if the context is
clear.
We will sometimes use a “mixed” notation for paths and runs. For example,
assume two paths π1 = q1`1q2`1 . . . `n−1qn and π2 = s1`1s2`2 . . . `m−1sm with qn `−→
s1; then we write π1`π2 as π1

`−→ π2.

3.2.2 Probability Measures for Markov Chains and MDPs

For Markov chains we define probability measures over sets of runs: first we
define probabilities for cylinder sets, and then we extend the definition to obtain
a probability measure for the smallest σ-algebra containing these sets.

Definition 11. (Probability measures for Markov chains)
Let M = (Q,→,Lab) be a Markov chain. For every q0 ∈ Q, we define a function
Mq0 that maps cylinders Cyl(π,M), π ∈ PathsM, to [0, 1]:

18

• if π = q0 then Mq0(Cyl(π,M)) := 1,

• if π = q0
p0,`0−−→ q1

p1,`1−−→ . . .
pn−1,`n−1−−−−−−→ qn, then

Mq0(Cyl(π,M)) := p0 ·Mq1 [Cyl(q1
`1−→ . . .

`n−1−−→ qn,M)],

• otherwise Mq0(Cyl(π,M)) := 0.

We denote by SM the smallest σ-algebra that contains all sets Cyl(π) for π ∈
Paths(M). For each q ∈ QP , we define PrMq : SM → [0, 1] as the unique extension
of Mq to SM that forms a probability measure over SM.

For the construction of SM and a proof of the uniqueness of PrMq we refer the
reader to standard probability theory literature (e.g. Rosenthal [91]). The triple
(RunsM,SM,PrMq) forms a probability space for every q ∈ Q. We often skip the
superscript of PrMq if it is understood.
Let us again fix an MDP M = (QA, QP , Init,→,LabA,LabP) with Q := QA∪QP .
Before we can define probability measures for runs of MDPs we have to resolve
the choices of the player. This is the task of a strategy (often also called policy):

Definition 12. A strategy for M is a function S that maps

• the empty path ε to a state qS ∈ Init,

• every path π = q0
`0−→ q1

`1−→ . . .
`n−2−−→ qn−1

`n−1−−→ qn ∈ PathsM with qn ∈ QA,
to a distribution d ∈ Dist(Lab), such that for ` ∈ Lab, if d(`) > 0 then
there exists q ∈ Q with qn `−→ q.

We denote the set of all strategies for M by S(M).

A strategy represents the behaviour of the player: it inspects the history of a
play and chooses a successor (maybe probabilistically). This behaviour allows us
to construct a Markov chain representing the possible plays:

Definition 13. (Strategy-induced Markov chains)
Let S be a strategy for M. We define M[S] := (PathsM,→S,Lab), the Markov
chain induced by S: states of M[S] are paths in M, and for every state π = q0

`0−→
q1

`1−→ . . .
`n−2−−→ qn−1

`n−1−−→ qn ∈ PathsM of M[S],

19

• if qn ∈ QA and qn `−→ q′ with S(π)(`) = p > 0, then π p,`−→S (π`q′),

• if qn ∈ QP and qn
p,`−→ q′, then π p,`−→S (π`q′).

We define for every state q ∈ Q a probability measure PrM,Sq over SM: for π =
q

`0−→ q1
`1−→ . . .

`n−2−−→ qn−1
`n−1−−→ qn ∈ PathsM, let

π0 = q, π1 = q
`0−→ q1, π2 = q

`0−→ q1
`1−→ q2, . . . , πn = π

be the sequence of all prefixes of π. We set

π := π0
`0−→ π1

`1−→ . . .
`n−1−−→ πn ∈ PathsM[S](qS)

and define
PrM,SqS

[Cyl(π,M)] := PrM[S]
qS

[Cyl(π,M[S])].

We write PrM,S for PrM,SqS
; If M is clear from the context we further abbreviate

PrM,S to PrS. We call a path π ∈ RunsM S-possible in M iff PrS[Cyl(π,M)] > 0.
Finally we write PathsM,S (or PathsS) for the set of all S-possible paths in M.

3.3 Reachability Problems

We are now ready to formulate the problem of computing reachability probabili-
ties, both for Markov chains and Markov decision processes.

Definition 14. (Reaching a state set)
Let M = (QA, QP , Init,→,LabA,LabP) be an MDP. Let F ⊆ QA ∪ QP . A run
r = q0

`0−→ q1
`1−→ q2

`2−→ . . . ∈ RunsM reaches F if there is a k ∈ N such that
qk ∈ F . The set of all initial runs reaching F is denoted by Reach(M, F).

The following lemma implies that for every set of states F the set of runs of
reaching F is measurable, i.e. an element of SM:

Lemma 1. (Reaching a state set is measurable)
Let M be an MDP. For every F ⊆ V , Reach(M, F) ∈ SM.

20

Proof. Reach(M, F) can be written as a countable union of cylinders:

Reach(M, F) =
⋃

π=q0
`0−→q1

`1−→...
`i−1−−→qi∈F

Cyl(π,M).

We can now define the reachability problem in Markov chains.

Problem 1. (Reachability in Markov chains)
Given: Markov chain M = (Q,→,Lab), a state q0 ∈ Q, and a set F ⊆ Q.
Wanted: The probability PrMq0 [Reach(M, F)] of reaching a state in F , the reacha-
bility probability of F in M starting at q0.

In the case that Q is finite we can solve the reachability problem by computing the
least nonnegative solution of a linear equation system with at most |Q| unknowns.
The structure of the equation system is captured by the equations occuring in
the following lemma:

Lemma 2.
Let M = (Q,→,Lab) be a Markov chain, let F ⊆ Q and q ∈ Q. Then

Prq[Reach(M, F)] =


1 if q ∈ F∑
q
p,`−→q′

p · Prq′ [Reach(M, F)] otherwise.
(3.1)

Proof.
For q ∈ F , we get Prq[Reach(M, F)] ≥ Prq[Cyl(q,M)] = 1.

21

If q 6∈ F ,

Prq[Reach(M, F)]

= Prq

 ⋃
π=q

`0−→q1
`1−→...

`i−1−−→qi∈F

Cyl(π,M)

 (Def. 14)

=
∑

q
p,`0−−→q1

p · Prq1

 ⋃
π=q1

`1−→...
`i−1−−→qi∈F

Cyl(π,M)

 (Def. 11)

=
∑

q
p,`0−−→q′

p · Prq′ [Reach(M, F)].

For MDPs we have to provide a player strategy to obtain a probability measure.
Different strategies can cause different probabilities of reaching a given state set.
For applications we are in particular interested in the minimum and maximum
of the reachability probabilities over all possible strategies:

Problem 2. (Reachability in MDPs)
Given: An MDP M = (QA, QP , Init,→,LabA,LabP), and a state set F ⊆ QA∪QP .
Wanted: The values

MinReach(M, F) := inf
S∈S(M)

PrM,S[Reach(M, F)]

MaxReach(M, F) := sup
S∈S(M)

PrM,S[Reach(M, F)],

the extremal reachability values of F in M. We call MinReach(M, F) the minimal
and MaxReach(M, F) the maximal reachability value of F in M.

If M has finitely many states, the computation of extremal reachability values
can be carried out iteratively, e.g. using value iteration or policy iteration, or by
solving a Linear Programming problem constructed from M. For further details
see e.g. Baier and Katoen [7], Puterman [89].
If M has no action states, i.e. it is a Markov chain, both extremal reachability
values of Problem 2 coincide, and Problem 2 reduces to Problem 1.

22

Problem variants. Often it is not feasible to solve Problem 1 and Problem 2
exactly for the probabilistic systems we are investigating. Besides more practical
reasons like too costly computations, quite fundamental obstacles arise, espe-
cially if we deal with infinite-state Markov chains and MDPs. For example, the
reachability probabilities of systems we study in Chapter 6 might not even be
representable by radicals.
Using the notation of Problem 1, instead of computing a reachability probability
Prq[Reach(M, F)] 1 exactly, we therefore propose to compute solutions for the
following two slightly weaker problem variants, which suffice for most applications:

1. Computing arbitrary precise bounds: given ε ∈ Q \ {0}, compute values
{a, b} ⊆ [0, 1] ∩Q such that a ≤ Prq[Reach(M, F)] ≤ b and b− a ≤ ε.

2. Almost-sure reachability: Decide whether Prq[Reach(M, F)] = 1.

1or minimal and maximal reachability values of MDPs of a given set of states

Chapter 4

Reachability in Probabilistic
Programs

In the current and the following chapter we study probabilistic programs. We use
this term in the thesis for computer programs that can make use of a probabilistic
choice operator. Such an operator chooses an alternative from a given finite set of
commands or values according to a fixed probability distribution. Probabilistic
programs are also equipped with a nondeterministic choice operator. It similarly
chooses an alternative from a finite set, but here no additional information is
given on how such an alternative is selected by the program. The semantics of a
probabilistic program P can be given by an MDP MP in which, roughly spoken,
action states correspond to program states of P , nondeterministic choices are
represented by action transitions, and probabilistic choices are represented by
probabilistic transitions.

We study the problem of automatically computing minimal and maximal reach-
ability probabilities for probabilistic programs. Often these programs are used
to represent reactive systems, i.e. they interact with an environment by receiv-
ing input data and reacting to this data by creating output signals. The inputs
received from the environment might be sensor signals or status messages from
other programs or hardware etc. Often information about the behaviour of the
environment is available in the form of probability distributions that describe the
frequency with which specific input values occur. We can embed this information

24

`1 :
receive
loop

request
packet

`2 :
≥ 1 packet
received?

reconnect
attempt

`4 :
end

`3 :
error

nrp← 0 nrp < N

received (0.9)
nrp++

connection
breakdown (0.1)nrp ≥ N

nrp = 0

nrp 6= 0

reconn
failed

reconn
done

Figure 4.1: Packet transmission example, given as control flow graph.

into the program with the help of probabilistic choice operators. However, we
might have no additional information about other aspects of the environment,
e.g. in some situations we only know the possible input values, but have no
information about the frequencies of their occurrence. This uncertainty can be
modeled by introducing nondeterminism into the program.
We often want to know the probability of a fail situation, e.g. the probability of
unsuccessfully trying to send a message over a network within at most k retry
attempts. Since nondeterminism might occur in the program, this probability
depends on the behaviour of the environment. Therefore we are interested in
minimal and maximal probabilities of a fail situation to occur, hereby taking all
the possible behaviours of the environment into account.
As a running example throughout the chapter we use the program in Fig. 4.1,
which is given in form of a control flow graph. The goal of the program is to
receive up to N > 0 packets through a network connection. The number of
received packets is counted by the variable nrp (number of packets).
The transmission is handled in location `1. During each attempt of receiving a

25

packet, the connection can break down with probability 0.1, in which case no
further packet can be received; the program then exits the transmission loop and
jumps to location `2. If N packets have been received in the transmission loop,
the program jumps to `4, signaling successful termination.
If at least one packet is received when the program reaches `2, it terminates
successfully by entering location `4.1 Otherwise, the program tries to repair the
connection, which may fail or succeed. In the former case the program jumps to
`3, signaling an error, in the latter case the program is started again (at `1). The
choice between success and failure is nondeterministic, since we do not have any
information about the “success rate” of repairing a connection.
For assessing the reliability of the system we want to deduce the minimum and
maximum over the probabilities of reaching the error location `3. They are de-
pendent on whether the connection can be repaired or not in case of a connection
breakdown. For this simple program, the smallest probability clearly corresponds
to the situation where the the connection always can be repaired; in this case,
we never reach the error location. The largest probability corresponds to the
situation where all repair attempts fail; we then reach `3 with probability 0.1.
A way of automatically solving the reachability problem for a probabilistic pro-
gram P is e.g to construct MP and then to use value iteration or LP-solvers for
computing the probabilities, as already mentioned in Chapter 2. However, the
main problem we are facing when we follow this approach is state explosion: the
state space of MP can be very large or even infinite, making an explicit construc-
tion of MP infeasible or impossible, a phenomenon well-known from nonproba-
bilistic automatic software verification. For example, if we set N = 100, the MDP
corresponding to our example program has more than 500 states (see Fig. 4.3).
For general probabilistic programs with infinite state spaces, the problem of com-
puting reachability probabilities is even undecidable: probabilistic programs with
integer variables are already Turing-powerful, and e.g. the halting problem can
easily be reduced to a reachability problem. The only solution in this case is to
rely on incomplete methods.
In this chapter we therefore present an approach for tackling these problems

1It would be more realistic to set another bound, like 20 packets, but with one packet the
probabilities are easy to compute.

26

that is based on abstraction techniques. The abstract interpretation framework
provides the general, mathematical basis of abstraction (Cousot and Cousot [25]
and Cousot and Cousot [26]).
Our approach is an extension of frameworks developed in Kattenbelt et al. [62]
and Wachter and Zhang [99]: instead of constructing the concrete MDP MP we
build a stochastic 2-Player game arena G that we call an abstract game arena. For
the construction we use techniques from abstract interpretation. The structure
of game arenas is similar to that of an MDP; however, the action states of G are
controlled by one of two players instead of a single player. In G we can distin-
guish between nondeterminism inherent to the probabilistic program (modeled
by the choices of Player 1) and nondeterminism introduced by abstraction effects
(modeled by Player 2). States belonging to the first player in abstract arenas
are abstract states, i.e. represent a set of program states. G can be considerably
smaller than MP and can be used to derive precise lower and upper bounds for the
extremal reachability values of MP . The crucial idea is to consider four different
games in G that differ in their winning objectives for the players (this was first
considered in Kattenbelt et al. [62]). By computing the game values for these
four games, we obtain an upper and a lower bound for the minimal reachability
value as well as an upper and a lower bound for the maximal reachability value
of MP . In the following we subsume all abstraction approaches using this idea
under the term “game-based abstraction”.
Former approaches (D’Argenio et al. [29], Wachter et al. [100]) abstract probabilis-
tic programs into MDPs and use them to compute a lower bound for the minimal
reachability value and an upper bound for the maximal reachability value. Espe-
cially if the extremal reachability values of MP differ considerably, these bounds
alone are of little use: it is unclear in this situation whether the difference is caused
by the abstraction or by nondeterminism of the considered program. With the
additional bounds given by game-based abstraction approaches we obtain two
intervals in which the probabilities are guaranteed to be contained; their width is
a measure for the imprecision caused by the abstraction. Refinement techniques
allow us to further improve these bounds, i.e., making the intervals tighter.
The game-based approaches of Kattenbelt et al. [62], Wachter and Zhang [99] rely
on predicate abstraction, which partitions the state space into a finite number

27

of classes. In the context of general abstract interpretation theory this means
that only domains with finitely many elements are used to build abstractions,
and that the concretization of two distinct abstract states is always disjoint (the
disjointness property). While predicate abstraction has proved very successful,
it is known to have a number of shortcomings, for example potentially expensive
equality and inclusion checks for abstract states, and “predicate explosion”. Our
contribution consists in extending this approach to the general abstract inter-
pretation framework, which allows us to use arbitrary domains (also such with
infinitely many elements) and non-disjoint abstract states to construct abstract
game arenas. This makes the approach more flexible and powerful, as we show
by several examples. In particular we show how suitable widening operators can
deduce loop invariants difficult to find for predicate abstraction. The proofs of
Wachter and Zhang [99] use the disjointness property to easily define a Galois
connection between the sets of functions assigning values to the abstract and the
concrete states. There seems to be no easy way to adapt their proof to our con-
struction. The framework from Kattenbelt et al. [62] builds game arenas that are
structurally different from ours, and moreover they also depend on the disjoint-
ness property in their proof. Therefore we show the soundness of our approach
by a new proof that uses additional techniques. We also provide refinements
specifically tailored to the more general setting.
This chapter is partly based on joint work with Javier Esparza. Parts of the
material have been published in Esparza and Gaiser [32].

Structure of the chapter. We first define probabilistic guarded programs,
the program model that we use throughout the chapter. Then we will introduce
some basic concepts from abstract interpretation theory and stochastic 2-Player
games. Both are required prerequisites for building abstract game arenas of a
probabilistic program. We sketch the structure of abstract game arenas and their
construction using an example in Section 4.4, and also show how we can obtain
bounds for reachability probabilities.
We give a formal definition of abstract game arenas for probabilistic programs in
Section 4.5 and a precise explanation of our construction algorithm in Section 4.6.
After that we discuss strategies for refining abstractions, and give several smaller

28

case studies in Section 4.8, pointing out the advantages of using the general
abstract interpretation framework for building abstract game arenas. We close
by comparing our approach with related work and give a short conclusion.

4.1 Probabilistic Programs

As program model we use probabilistic guarded command programs (PGPs for
short). PGPs are a subset of the input language of the well-known finite-state
probabilistic model checker PRISM (Kwiatkowska et al. [66]), and many proto-
cols and randomized algorithms have been modeled as PGPs.1 However, as an
important extension we also allow variables with infinite range in our programs.
This can lead to systems with infinitely many reachable states which are not sup-
ported by PRISM. PGPs are also essentially equivalent to the program model of
concurrent probabilistic programs (Wachter [98]).
PGPs form a rich class of programs, supporting probabilistic choices, nondeter-
minism, and concurrency (through interleaving semantics). A PGP is given as
a collection of guarded commands; every guarded command consists of a guard
and a probabilistic update operation. Every PGP manipulates a set of program
variables, which have a possibly infinite value range:

Definition 15. (Variables, states, and guards)
Let V be a finite set of variables, where x ∈ V has a finite or countable range
rng(x). A state of V is a map σ : V → ⋃

x∈V rng(x) such that σ(x) ∈ rng(x) for
all x ∈ V. The sets of states is denoted by ΣV.

State changes are realized using transitions:

Definition 16. (Transitions, guards, and assignments)
A transition is a map f ∈ 2ΣV → 2ΣV such that |f({σ})| ≤ 1 for all σ ∈ ΣV (i.e.,
a transition maps a single state to the empty set or to a singleton again), and

⋃
σ∈M

f({σ}) = f(M) for all M ⊆ ΣV.

1see e.g. http://www.prismmodelchecker.org/.

29

A transition g is a guard if g({σ}) ∈ {{σ}, ∅} for every state σ. We say that σ
enables g if g({σ}) = {σ}.
A transition c is an assignment if |c({σ})| = 1 for all σ ∈ ΣV. The semantics of
an assignment c is the map JcK : ΣV → ΣV given by JcK(σ) := σ′ if c({σ}) = {σ′}.
The set of transitions is denoted by TransV.

Now we can give a complete definition of a PGP:

Definition 17. (Probabilistic Guarded Command Program)
A probabilistic guarded command program (PGP for short) is a triple P = (V, σ0,C)
where V is a finite set of program variables, σ0 ∈ ΣV is the initial state, and C is
a finite set of guarded commands. A guarded command a has the form

a = g → p1 : c1 + . . .+ pm : cm,

where m ≥ 1, g is a guard, p1, . . . , pm are probabilities adding up to 1, and
c1, . . . , cm are assignments. We call a tuple 〈pi, ci〉 an update. We denote the
guard of a by ga, the sequence of updates 〈〈p1, c1〉, . . . , 〈pm, cm〉〉 of a by upa, and
the set {upa | a ∈ C} by upC.
We denote the probability of the i-th update of a (i.e., the first component of the
i-th pair in upa) by pa(i), and denote the i-th assignment by ca(i).

We give an example of how we represent guarded commands in code listings:

ex: (x >= 0) & (y = 0) -> 0.25: (x’ = x+1) & (y’ = 0)
+ 0.75: (x’ = 0)

The name of the guarded command is ex, and the the value pex(2) is equal to
0.75, for example. We write assignments in quote notation; in the first update,
the value of x in the next step (denoted by x’) will be the old value of x plus
one, and y will be set to 0. In the second update, no assignment for y’ is given;
we assume in this case that the value of the variable does not change.

4.1.1 PGP Semantics

A PGP can be seen as a description of an MPD with finite or countable state
space:

30

Definition 18. (Semantics of PGPs)
The MDP associated to a PGP P = (V, σ0,C) is

MP = (QA, QP , {σ0},→,C ∪ {τ},N),

where the set of action states QA is a subset of ΣV, and the set of probabilistic
states QP is a subset of QA × C, and → ⊆ (QA ∪QP)× (QA ∪QP).
QA, QP and→ the are the smallest sets (respectively relation) such that σ0 ∈ QA

and for every σ ∈ QA the following holds:

1. If σ enables ga, then 〈σ, a〉 ∈ QP and σ a−→ 〈σ, a〉. If σ does not enable any
a ∈ C, σ τ−→ σ holds.

2. If σ → 〈σ, a〉 and |upa| = n, then for every i with 1 ≤ i ≤ n it holds that
Jca(i)K(σ) ∈ QA, and

〈σ, a〉 pa(i),i−−−→ Jca(i)K(σ).

Reachability problem for PGPs. For a given PGP P and a guard f we want
to know the minimum and maximum of the probabilities of reaching a state that
enables f . Hereby we assume that no reachable program state σ enables both a
guard of a guarded command in the program as well as f . More precisely:

Problem 3. (Reachability problem for PGPs)
Let P = (V, σ0,C) be a PGP and f a guard, such that for all guarded commands
a ∈ C holds that no σ ∈ ΣV enables both f and ga. The reachability problem
for P and f is then Problem 2 applied to MP and the state set F = {σ ∈ QA |
σ enables f}, i.e. to compute both MinReach(MP , F) and MaxReach(MP , F).
We call F the set of final states and f the final guard.

Assumption: We assume in the following that for every run π → σ ∈ PathsMP

either σ ∈ F or σ enables the guard of at least one command (i.e., we do not
“get stuck” during the computation: either a guard ga of a guarded command

31

a is enabled or f is enabled). This can easily be achieved by adding a suitable
guarded command to the program that simulates a self loop.
Recall our introductory example from Fig. 4.1. In Fig. 4.2 we give the example
program in form of a PGP. The control flow is modeled by the variable loc. As
we already pointed out, the probability of reaching `3 (i.e. loc=3 in the PGP)
depends on the behaviour of the environment. Transferring our considerations
from before to the PGP, the smallest respectively largest probability clearly corre-
sponds to the environment choosing the guarded command l3a, respectively l3b,
whenever possible, and its value is 0, respectively 0.1, independent of the concrete
value of N . A brute-force automatic technique however will construct the MDP
in Fig. 4.3. Note that the size of the MDP depends linearly on the size of N .
We could also imagine setting N to ∞, which leads to an MDP with infinitely
many states. In the following sections we introduce our abstraction technique,
which does better and is able to infer tight intervals for both the smallest and
the largest probability.

int nrp = 0, loc = 1;
l1a: (loc = 1) & (nrp < N)

-> 0.9: (nrp’ = nrp+1)
+ 0.1: (loc’ = 2);

l1b: (loc = 1) & (nrp >= N) -> 1: (loc’ = 4);
l2a: (loc = 2) & (nrp <> 0) -> 1: (loc’ = 4);
l2b: (loc = 2) & (nrp = 0) -> 1: (loc’ = 1);
l2c: (loc = 2) & (nrp = 0) -> 1: (loc’ = 3);
l4: (loc = 4) -> 1: (loc’ = 4); // successful termination
reach: (loc = 3) // error location

Figure 4.2: Packet transmission example, given as a PGP.

A note about conccurrency. PRISM possesses syntactic constructs for sup-
porting concurrency; PGPs do not offer such operations explicitly. However, con-
current PRISM models can be converted to PGPs by a simple syntactic transfor-
mation (see The PRISM Language - Semantics [96]) that preserves the properties
we are interested in.

32

loc = 1
nrp = 0

l1a
loc = 2
nrp = 0

l2b

l2c
loc = 3
nrp = 0

loc = 1
nrp = 1

l1a

loc = 1
nrp = 2

l1a

. . .

loc = 2
nrp = 1 l2a

loc = 4
nrp = 1

loc = 2
nrp = 2 l2a

loc = 4
nrp = 2

l1a

l1a

l1a

0.1, 1

0.9, 2

0.1, 1

0.9, 2

0.1, 1

0.9, 2

l2b

l2c

1, 1

1,1
τ

l2a 1,1
τ

l2a 1,1
τ

Figure 4.3: Prefix of the MDP from the packet transmission example. In prob-
abilistic states 〈σ, a〉, σ is not displayed for lucidity. The single initial state is
〈loc = 1, nrp = 0〉.

4.2 Abstracting Program States

In this section we introduce standard techniques from abstract interpretation
(Cousot and Cousot [25],Cousot and Cousot [26]) for representing the state space
of abstract game arenas and constructing their transitions. In the following sec-
tion we define stochastic game arenas; using these prerequisites we can finally give
concrete examples of abstract game arenas in Section 4.4. The abstract interpre-
tation framework allows to design program analyses in a systematic and flexible
way. The literature about abstract interpretation is vast, as are the techniques
and tools developed within the framework. In particular one can rely on powerful
libraries which facilitate constructing abstractions.
We fix a PGP P = (V, σ0,C) for this section, and abbreviate ΣV by Σ. We explain
how to apply abstraction to program states of P . The main idea is not to use

33

concrete program states as states of abstract game arenas, but rather abstract
states. An abstract state can be interpreted as a set of (concrete) program states.
We introduce all concepts tightly connected to our application; however, almost
all material in this section is rather standard abstract interpretation theory, and
readers familiar with these topics might safely omit it. For a general treatment
see Cousot and Cousot [25, 26], Nielson et al. [81].

4.2.1 Domains

In abstract interpretation, abstract states are elements of completes lattices which
are called domains:

Definition 19. (Domains)
A domain D = (A,v,⊔,d,>,⊥) is a complete lattice; the relation v is called
the safeness relation.

A particular important domain for us is C = (2Σ,⊆,⋃,⋂,Σ, ∅), which we call the
concrete domain1. It contains all possible abstract states, since every subset of Σ
is contained in it.
For an arbitrary domain D = (A,v,⊔,d,>,⊥), v is used to define safe approx-
imations: for states s and s′ from A, s is a safe approximation of s′ whenever
s′ v s. The choice of v depends on the property we are interested in. Roughly
spoken, if s′ v s, then replacing s′ by s in an abstraction yields a less precise,
but still valid result.
C contains every possible abstract state, therefore it is in some sense the most pre-
cise domain. However, elements M ∈ 2Σ can be infinite and without any obvious
regular structure. If we want to carry out analyses with finite-state computing
devices, representing arbitrary M is therefore difficult or even impossible.
Instead of using the concrete domain for representing abstract states the abstract
interpretation framework offers abstract domains (D],v,⊔,d,>,⊥). We often
abbreviate such a domain to D], if v is clear from the context. Roughly spoken,
every element in D] corresponds also to an abstract state (or sets of abstract
states), but can be represented efficiently by a finite-size description.

1In our case, this is the only concrete domain we are considering.

34

The downside of using an abstract domain D] instead of C in analyses and con-
structions is that not every abstract state M ⊆ 2Σ is contained in D], and so
we might have to choose another state d ∈ D] to represent M . The interplay
between the elements of the concrete domain C and an abstract domain D], i.e.
what sets of states does an element d ∈ D] correspond to and vice versa, can be
described elegantly by a Galois connection, which consists of two functions, an
abstraction function α : 2Σ → D] and a concretization function γ : D] → 2Σ:

Definition 20. (Galois connection)
Let (A,vA,

⊔
A,
d
A,>A,⊥A) and (B,vB,

⊔
B,
d
B,>B,⊥B) be domains. A pair

(α, γ) of monotone maps α : A → B and γ : B → A forms a Galois connection
between (A,vA) and (B,vB) iff the following two conditions hold:

1. a vA γ(α(a)) for all a ∈ A,

2. α(γ(b)) vB b for all b ∈ B.

Assume we have a Galois connection (α, γ) between C and D]. Condition (1)
assures that when we map an element a from C to D] by α and then back again
by γ, the resulting element is always a safe approximation of a: We might lose
information, but we stay safe. On the other hand, Condition (2) is a precision
statement: Whenever we concretize an element b in C by γ, and abstract it
afterwards by α, the resulting element is at least as precise as b. We assume for
every abstract domain D] the existence of a Galois connection (α, γ) between C
and D].

An example: predicate domains. As a first example we introduce predicate
domains, which form the basis of program analyses based on predicate abstrac-
tion and counter-example guided abstraction refinement (Clarke et al. [19]), and
essentially also of the game-based approaches described in Kattenbelt et al. [62],
Wachter and Zhang [99].
Each element of the domain (except⊥ and>, the minimal and maximal elements)
is a class of a finite partition of the state space Σ. The partition is constructed

35

> = true

¬(loc=1)
∧¬(loc=2)
∧¬(loc=3)
∧¬(loc=4)

¬(loc=1)
∧¬(loc=2)
∧¬(loc=3)
∧¬(loc=4)

¬(loc=1)
∧¬(loc=2)
∧¬(loc=3)
∧¬(loc=4)

¬(loc=1)
∧¬(loc=2)
∧¬(loc=3)
∧¬(loc=4)

⊥ = false

> = true

(nrp≥100∧loc=3)
∧(loc≤3)

¬(nrp≥100∧loc=3)
∧(loc≤3)

¬(nrp≥100∧loc=3)
∧¬(loc≤3)

⊥ = false

Figure 4.4: Hasse diagrams of predicate domains. The elements are represented
as logical formulas. Note that e.g. on the right diagram no element (nrp ≥
100 ∧ loc = 3) ∧ ¬(loc ≤ 3) is drawn: the formula is a contradiction, and hence
the element corresponding to it is ⊥.

using a set φ1, . . . , φk of predicates over Σ. Let bi ∈ {true, false} for 1 ≤ i ≤ k.
We define the sets

S(b1, b2, . . . , bk) := {σ ∈ Σ | φ1(σ)⇔ b1 ∧ φ2(σ)⇔ b2 ∧ . . . ∧ φk(σ)⇔ bk},

Let Part(φ1, . . . , φk) be the set of elements S(b1, b2, . . . , bk) 6= ∅. Part(φ1, . . . , φk)
then forms a partition of Σ. We define the abstract domain

PRED(φ1, . . . , φk) = ({>,⊥} ∪ Part(φ1, . . . , φk),v,
⊔
,
l
,>,⊥)

with > = Σ and ⊥ = ∅, by setting a v b iff (a = ⊥) ∨ (a = b) ∨ (b = >) holds
(
d
,
⊔ follow from the definition of v). It contains up to 2k + 2 elements.

As a concrete example we use the predicates φi := (loc = i) for 1 ≤ i ≤ 4 to
partition the state space of our introductory example in Fig. 4.2 and obtain the
domain

L := PRED(loc = 1, loc = 2, loc = 3, loc = 4).

This specific partition ”distinguishes“ only between control locations and does
not preserve any information about nrp. We can represent its order structure by
the Hasse diagram in Fig. 4.4 on the left. As another example we also give the
Hasse diagram of the domain PRED(nrp ≥ 100 ∧ loc = 3, loc ≤ 3) in Fig. 4.4 on
the right.

36

A Galois connection (α, γ) between C and PRED(φ1, . . . , φk) is given by defining

γ(⊥) := ∅, γ(>) := Σ, and γ(S) := S for S ∈ Part(φ1, . . . , φk).

and for M ⊆ Σ

α(M) :=


⊥ if M = ∅

S if there is S ∈ Part(φ1, . . . , φk) such that M ⊆ S

> otherwise.

It is easy to see (α, γ) indeed forms a Galois connection.
Note that for an arbitrary predicate domain PRED(φ1, . . . , φk) we can give a
finite representation of every element S(b1, b2, . . . , bk) as a k-bitvector. The ”spe-
cial cases“ ⊥ and > can be represented by two additional symbols. The entire
representation space is then {0, 1}k ∪ {⊥,>}.

Another example: the interval domain. We describe the interval domain
introduced in Cousot and Cousot [25], a classical example of an abstract domain.
Let us assume that x is an arbitrary integer variable in P . We define for every
M ∈ Σ the set Mx = {σ(x) | σ ∈ M}. An element M ⊆ Σ is represented in the
interval domain (relative to x) by the smallest interval that contains every element
in Mx. For example a set M ⊆ Σ with Mx = {−2, 0, 10, 120} is abstracted to the
interval [−2, 120]. Note that e.g. a set N ⊆ Σ with Nx = {−2, 0, 2, 4, 5, 6, . . .} is
abstracted to [−2,∞), hence there is no one-to-one bijection between elements
in C and corresponding intervals in the abstract domain. We set

INTx = (Int,v,
⊔
,
l
,>,⊥),

with

Int = {∅, (−∞,∞)}∪{[a, b] | a, b ∈ Z∧a ≤ b}∪{(−∞, b] | b ∈ Z}∪{[a,∞) | a ∈ Z}

for the partial order that forms the interval domain. Hereby ⊥ = ∅ and > =
(−∞,∞) = Z.

37

We choose the relation v as follows: ⊥ v x for all x ∈ Int, and [a, b] v [a′, b′] iff
a ≥ a′ and b ≤ b′ for all {[a, b], [a′, b′]} ⊆ Int (we use the usual conventions for
comparing numbers with ±∞).
We can transfer the notion of safe approximation to INTx: the interval [2, 10] is
e.g. a safe approximation of [3, 8], since [3, 8] v [2, 10] holds.
It remains to connect C and the abstract domain INTx by a Galois connection.
Note that INTx itself does not contain any information about which variable it
abstracts, i.e. that its elements represent values of x; this is the task of the Galois
connection.
We define the abstraction function α : 2Σ → Int for every M ∈ 2Σ as follows:

α(M) :=



⊥ if M = ∅

[minMx,maxMx] if Mx 6= ∅ and finite

(−∞,maxMx] if Mx ∩ −N infinite and Mx ∩ N finite

[minMx,∞) if Mx ∩ −N finite and Mx ∩ N infinite

Z otherwise.

We give a concretization function γ : Int→ 2Σ that maps an element I of Int to
the largest set of states that itself gets abstracted to I:

γ(I) :=



∅ if I = ⊥

{σ ∈ Σ | a ≤ σ(x) ≤ b} if I = [a, b], a, b ∈ Z

{σ ∈ Σ | σ(x) ≤ b} if I = (−∞, b], b ∈ Z

{σ ∈ Σ | a ≤ σ(x)} if I = [a,∞), a ∈ Z

Z otherwise.

It is easy to see that (α, γ) is a Galois connection between C and INTx. A fi-
nite representation of an element in Int can be given by two values a and b with
{a, b} ∈ Z ∪ {∞,−∞}, representing the bounds of the interval. ⊥ can e.g. be
expressed by any tuple (a, b) with a > b. The representation for INTx is therefore
(Z ∪ {∞,−∞})2.

38

int x = 0;
a: (x >= 0) -> 0.5: (x’=x+2) + 0.5: (x’= -1);
reach: (x = -1)

Figure 4.5: PGP example for illustrating the use of widenings.

4.2.2 Abstract Transitions

Besides fixing a domain we also have to build abstract versions of transitions for
computing successors of abstract states:

Definition 21. (Abstract transitions)
Let D = (A,v,⊔,d,>,⊥) be a domain, and (α, γ) a Galois connection between
C and D. Let further f : C → C be a transition. A monotone function f] : A→
A is an abstract transition for f via (α, γ) if

for all a ∈ A, f(γ(a)) ⊆ γ(f](a)) holds.

The best abstract transition of f is α ◦ f ◦ γ.

Intuitively, results obtained by evaluating an abstract transition f] of f provide
(over-)approximations for results of f (note that f] does not necessarily represent
the best abstract transition).
Computing the best abstract transition for a complex transition is often expen-
sive. However, we can give abstractions for simple assignments and guards and
define abstractions for more complicated guards by composition.
For illustrating abstract transitions we use the simple PGP in Fig. 4.5. The
guard of a is given by ga : 2Z → 2Z with g(M) = {σ ∈ M | σ(x) ≥ 0}. The
first update of the guarded command can be given by the transition u1 : 2Z → 2Z

with u1(M) = {σ | ∃σ′ ∈M : σ(x) = σ′(x) + 2} for M ⊆ Z. The effect of taking
the first update of a is given by the transition t with t := u1 ◦ g. We choose the
interval domain INTx; an abstract transition g]A : Int → Int for gA is given by
g]A(M) = M u [0,∞). An abstract transition of u1 is given by u]1 : Int → Int
such that for a ≤ b with {a, b} ∈ Z ∪ {−∞,∞}, u]1([a, b]) = [a + 2, b + 2] and
u]1(⊥) = ⊥. By combining the two functions we obtain the abstract transition
t] = u]1 ◦ g

]
A for t.

39

4.2.3 Fixed Points and Widenings

Computing fixed points is an essential task in abstract interpretation (and pro-
gram analysis in general). We denote by σ0 the initial state of the example PGP
in Fig. 4.5, i.e. σ0(x) = 0, and set s0 = α({s0}) = [0, 0]. We can use t] to build
(abstract) successor states of s0 by applying t], and so approximate a part of
the reachable state space of MP . However, using a naive approach, we run into
problems: starting with s0, we generate

s0, t
](s0), t](t](s0)), t](t](t](s0))), . . . = [0, 0], [2, 2], [4, 4], [6, 6], . . . ,

which are the successor states if we always take the first update of A. This
sequence however contains infinitely many elements, and therefore our compu-
tation would never stop. Note that this effect occurs although we are using the
interval domain (every abstract state of the sequence in fact represents exactly
one concrete state). Let Rt be the set of all program states reachable from σ0

by applying t repeatedly. A first idea to tackle this problem is, as a rough over-
approximation, to compute one abstract state that subsumes all states in Rt. We
can write Rt = ⋃

i≥0 t
i({σ0}), and can also characterize it as the least solution of

the equation system
X = {σ0} ∪X ∪ t(X). (4.1)

We now build an “abstract version” of this equation:

X = s0 tX t t](X). (4.2)

Every solution of Eq. 4.2 is also a fixed point of the monotone function f(X) =
s0 tX t t](X). By the Knaster-Tarski theorem (Theorem 1) f has a least fixed
point µf , which is also the smallest solution of Eq. 4.2. Using the properties of
Galois connections and abstract transitions one can prove that for µf it holds
that Rt ⊆ γ(µf). Since in this case f is even continuous with respect to our
chosen domain, we can also apply Kleene’s theorem (Theorem 2) and get that
µf = limi→∞ f

i(⊥). We conclude that instead of solving Eq. 4.1 it is sufficient
to find an element m in our domain such that µf v m: γ(m) is then a safe
over-approximation of Rt.

40

Unfortunately, we cannot compute µf by keeping computing iterates f i(⊥) for
increasing i in general, since the sequence might strictly increase as in our example
and never reach Rt.
The approach often used in abstract interpretation in such situations is to apply
a widening operator : It overapproximates the iterates f i(⊥), and we obtain a
new sequence that is guaranteed to be stationary, and whose limit is still a safe
over-approximation of µf .

Definition 22. (Widening Operator)
Let D = (A,v,⊔,d,>,⊥) be a domain. A function ∇ : A×A→ A is a widening
operator for D if

• a v a∇ b and b v a∇ b for all a, b ∈ A,

• for every strictly increasing sequence a(1) < a(2) < . . . in A the sequence
(b(i))i∈N defined by b(1) = a(1) and b(i+1) = b(i)∇ a(i+1) for i ≥ 1 is stationary,
i.e. there exists a j ∈ N such that b(j) = b(j+1) = b(j+2) =

The classical widening for the interval domain (Cousot and Cousot [25]) is given
by ∇ : Int×Int→ Int with [a, b]∇[a′, b′] = [s, t], with s = −∞ if a < a′, otherwise
s = a, and t = ∞ if a′ < a, otherwise t = b. Note that for predicate domains
the usual t-operator is trivially a widening, since every monotone sequence in a
domain with finitely many elements is stationary. The following theorem charac-
terizes the over-approximating sequence and its convergence properties. A proof
can be found e.g. in Nielson et al. [81] (Prop. 4.13), where a slightly stronger
result is shown.

Theorem 3. (Widening sequences)
Let D = (A,v,⊔,d,>,⊥) be a domain, ∇ : A × A → A a widening operator
for D, and f : A → A a monotone function with respect to D. The sequence
(w(i))i∈N with w(1) = ⊥, w(i+1) = w(i)∇f(w(i)) for i ≥ 1 is stationary, i.e. there
is a j ∈ N such that for every k ≥ j it holds that w(k) = w(j). The limit w(f,∇)
of the sequence satisfies µf v w(f,∇) with µf the least fixed point of f .

For our example we compute the sequence (w(i))i∈N in INTx:

41

• w(1) = ⊥,

• w(2) = ⊥∇f(⊥) = [0, 0],

• w(3) = [0, 0]∇f([0, 0]) = [0, 0]∇[0, 2] = [0,∞),

• w(4) = [0,∞)∇f([0,∞)) = [0,∞).

We know for sure that µf v [0,∞) (in this case, even equality holds). We can
transfer this result back into the concrete domain C: γ([0,∞)) = {v ∈ Z | v ≥ 0}
is a safe over-approximation of the exact solution {v ∈ Z | v ≥ 0 ∧ 2|v} of states
that are reachable by just taking the first update of a.

4.2.4 Direct Product of Domains

Abstract interpretation theory allows to combine domains for improving the pre-
cision of the abstractions. A simple combination operator is the direct product of
domains (see e.g. Nielson et al. [81]).

Definition 23. (Direct product of domains)
Let DA = (A,vA,

⊔
A,
d
A,>A,⊥A) and DB = (B,vB,

⊔
B,
d
B,>B,⊥B) be do-

mains, with (αA, γA) a Galois connection between C and DA and (αB, γB) a
Galois connection between C and DB. We define the direct product domain
DA ×DB := (A×B,v) by setting for (a, b) and (a′, b′) in A×B:

(a, b) v (a′, b′) iff a vA a′ ∧ b vB b′.

We define a Galois connection (α, γ) between C and (A × B,v) by setting for
M ∈ 2Σ

α(M) = (αA(M), αB(M))

and for (x, y) ∈ A×B
γ((x, y)) = γA(x) ∩ γB(y).

It is easy to prove that DA × DB forms again a complete lattice and (α, γ) is a
Galois connection (Nielson et al. [81]).

42

Partition domain × Interval domain. We revisit our example from Fig. 4.2.
We already developed L = PRED(loc = 1, loc = 2, loc = 3, loc = 4), an abstract
domain providing information about the value of the loc-variable.
By building the direct product of L and the interval domain INTnrp for Fig. 4.2
we obtain PD = L× INTnrp. Its elements can be represented as tuples 〈x, y〉 ∈
({0, 1}4 ∪ {⊥,>})× (Z ∪ {∞,−∞})2. We give a widening ∇ for PD by defining
for every (x1, x2) and (y1, y2) in PD

(x1, x2)∇ (y1, y2) := (x1 t x2, y1∇ y2).

4.2.5 Other Abstract Domains

A special feature of the abstract interpretation framework is its wealth of existing
domains with different strengths regarding precision and performance. Program
analyzers can be tailored to the needs of the considered analysis problem by
choosing (or designing) a suitable domain.
We use in our case studies

• the polyhedra domain (Cousot and Halbwachs [27]), which is able to repre-
sent its elements by using arbitrary linear inequalities of program variables;

• the octagon domain (Miné [74]), which uses a restricted class of linear in-
equalities of the form ±x±y ≤ c for x, y program variables and c a constant
to represent its elements; therefore it is less expressive than the polyhedra
domain, but abstract transitions can be computed faster and representation
of elements is often cheaper;

• the already introduced interval domain, which uses only linear inequalities
of the form x ≤ c for x a program variable and c a constant for representing
its elements; and

• the integer grid domain (Bagnara et al. [5]), which represents elements by
congruential equations.

43

4.3 Stochastic Games

After describing abstract states we introduce in this section basics of stochastic
2-Player game arenas and stochastic 2-Player games. Stochastic 2-player game
arenas are the formal model of what we call abstract game arenas for PGPs;
given an abstract game arena G for a PGP P , we can obtain bounds for extremal
reachability values of MP by investigating four different games (and their game
values) that are all played within G, but are differing in the winning objectives
of both players. We explain the games and how to obtain bounds from them in
detail in Section 4.4.3.
Stochastic 2-Player game arenas (game arenas for short) are similar to MDPs;
however, action states are partitioned into two classes 1 and 2: states belonging to
class 1 are controlled by player 1, those of class 2 by player 2. For a more thorough
introduction into the subject and proofs for the theorems see e.g. Condon [21]
and Condon [20].

Definition 24. A stochastic 2-Player game arena G (short game arena) is a tuple
(Q1, Q2, QP , s0,→,LabA,LabP), where

• Q1, Q2, QP are distinct, finite sets of states, we set Q = Q1 ∪Q2 ∪QP ,

• s0 ∈ Q is the initial state,

• LabA respectively LabP is a countable set of action labels respectively prob-
abilistic labels,

• the relation → is equal to →1 ∪→2 ∪→P , where

1. →1 ⊆ Q1 × LabA ×Q is a set of player 1 transitions,

2. →2 ⊆ Q2 × LabA ×Q is a set of player 2 transitions, and

3. →P ⊆ QP × (0, 1]× LabP ×Q is a set of probabilistic transitions.

The relation → satisfies the following conditions:

• if (q, p, `, q′) and (q, p′, `, q′) are probabilistic transitions, then p = p′,

• if (q, `, q1) and (q, `, q2) are player transitions, then q1 = q2,

44

q1

q2

a

b

c

d

e
f

0.5, l

0.5, g
τ

τ

h

i 0.5, j

0.5, k

Figure 4.6: Example stochastic game arena. Probabilistic states are drawn as
circle-shaped states, player states have rectangle shape; white states belong to
Player 1, gray states belong to Player 2.

• the probabilities of the outgoing transitions of a probabilistic state add up
to 1, i.e. for every q ∈ QP ,

∑
(q,p,`,q′)∈→ p = 1,

• every state of Q1 resp. Q2 has at least one successor in →1 resp. →2.

Note that, in contrast to MDPs, we have exactly one initial state in our definition
of stochastic 2-Player game arenas. Fig. 4.6 shows an example: rectangle-shaped
states represent action states; white ones are controlled by player 1, gray ones by
player 2.
We fix a game arena G = (Q1, Q2, QP , s0,→,LabA,LabP) for the rest of the
section. Similarly to MDPs, a run of G is an infinite word r = q0`0q1`1 . . . ∈
(QLab)ω such that for all i ≥ 0 either qi

p,`i−−→ qi+1 for some p ∈ (0, 1] or qi
`i−→ qi+1;

r is initial if q0 = s0. We will often use the term play for runs in a game arena.
The set of runs starting at a state q is RunsG(q), the set of all runs starting at s0

is denoted by RunsG.
A path is again a proper prefix of a run, PathsG(q) the set of all paths starting
at q, and PathsG the set of all paths starting at q0.
For each path π ∈ PathsG(q) with q ∈ Q, we again define

Cyl(π,G) = {r ∈ RunsG(q) |π is prefix of r},

45

the cylinder set of π, and abbreviate Cyl(π,G) to Cyl(π) if the context is clear.
We define SG as smallest σ-algebra containing the cylinder sets of G.
The behaviours of Player 1 and 2 in G are described using a pair of strategies:

Definition 25. (Strategies for game arenas)
Let i ∈ {1, 2}. A strategy for player i in G is a function S that maps each path
π = q0

`0−→ q1
`1−→ . . .

`n−2−−→ qn−1
`n−1−−→ qn ∈ PathsG with qn ∈ Qi to a distribution

d ∈ DistF (Lab), such that for ` ∈ LabA, if d(`) > 0 then there exists q ∈ Q with
qn

`−→ q.
We denote by Si(G) the set of strategies for player i in G.

Since there is only one initial state in a game arena, strategies do not have to
select an initial state. By fixing strategies for both player 1 and player 2, we can
define their induced Markov chain, similarly to MDPs:

Definition 26. (Strategy-induced Markov chains for game arenas)
Let Si be a strategy for Player i in G, i ∈ {1, 2}. We define the Markov chain
G[S1, S2] = (PathsG, qS,→S,Lab) , i.e., states of the Markov chain are paths in G.
For every state π = q0

`0−→ q1
`1−→ . . .

`n−2−−→ qn−1
`n−1−−→ qn ∈ PathsG and i ∈ {1, 2},

• if qn ∈ Qi and qn `−→ q′ with Si(π)(`) = p > 0, then π p,`−→S (π`q′),

• if qn ∈ QP and qn
p,`−→ q′, then π p,`−→S (π`q′).

We define a probability measure PrG,(S1,S2)
s0 over SG analogously to MDPs. We

write PrG,(S1,S2) or Pr(S1,S2) for PrG,(S1,S2)
s0 if the context is clear. We call a path

π ∈ RunsG (S1, S2)-possible in G obeying (S1, S2) iff Pr(S1,S2)[Cyl(π,G)] > 0. We
write PathsG,(S1,S2) (abbreviated Paths(S1,S2)) for the set of all possible paths in G

obeying (S1, S2).

Similarly to MDPs, for a given F ⊆ Q, we can also define the set Reach(G, F) of
runs reaching F in G.
Before we are able to define games, we have to introduce winning objectives. They
are used to decide whether a player has won a play:

Definition 27. (Winning objective)
A winning objective for a game arena G is a setW ⊆ RunsG(s0) withW ∈ SG.

46

A game combines an arena with winning objectives for both players:

Definition 28. (Stochastic 2-Player Game)
A stochastic 2-Player game (game for short) is a tuple (G,W1,W2), with G a
stochastic 2-Player game arena and W1,W2 winning objectives for G. We call W1

(resp. W2) the winning objective of Player 1 (resp. Player 2). We say player i
wins a play r if r ∈ Wi, for i ∈ {1, 2}.

Very often it is the case thatW2 = RunsG\W1 holds for a game (G,W1,W2), i.e. if
one player loses, then the other one wins. However, we will also use games where
W1 = W2, i.e. always both player win or both lose. If e.g. W1 = Reach(G, F) for
F ⊆ Q, Player 1 wins the play as soon as it reaches a state in F , and loses if that
is never the case. If W2 = RunsG \Reach(G, F), the winning objective of Player 2
is to avoid any state in F . For example, a possible winning objective for Player
1 in the game arena of Fig. 4.6 is reaching q1 and Player 2’s objective might be
to avoid reaching q1.

4.4 The Approach in a Nutshell

We sketched in Section 4.2 how sets of concrete states of a PGP P can be sub-
sumed into abstract states using the abstract interpretation framework, and in-
troduced stochastic game arenas in Section 4.3.
In this section we combine both concepts and give the core contributions of the
entire chapter in a nutshell: we explain the structure and intuition behind abstract
game arenas for PGPs in Section 4.4. An abstract game arena is a stochastic 2-
Player game arena whose states and transitions are constructed using abstract
interpretation techniques. We illustrate the construction using an example in
Section 4.4.2.
The technique of using stochastic 2-Player games (game-based approach) for ab-
stracting probabilistic programs has first been developed in Kattenbelt et al.
[62]. The structure of our abstract game arenas corresponds to a variant of the
game-based approach called parallel ormenu-based abstraction fromWachter [98],
Wachter and Zhang [99]. We note that game arenas constructed e.g. by Katten-
belt et al. [62] have a somehow different structure (e.g. the roles of the players are

47

reversed); however, the underlying principle is the same. All these frameworks
restrict themselves to predicate domains. Our contribution lies in extending their
approaches to allow the use of arbitrary (in particular infinite) domains for ab-
stract arenas, allowing in particular concretizations of abstract states to overlap.
We sketch why using arbitrary domains can offer advantages compared to pred-
icate abstraction in Section 4.4.4. After having introduced the most important
concepts rather informally in this section, we give a formal definition of abstract
game arenas and correctness proofs in Section 4.5; in Section 4.6 we give our
construction algorithm and prove its correctness and termination.
We again fix a PGP P = (V, σ0,C) and a final guard f . Let F be the final states
corresponding to f . An abstract game arena G of P relative to f is a stochastic
2-Player game arena that captures behaviour of MP as we shall point out in the
following.
States of Player 1 in G are abstract states (representing a set of concrete states of
program states), states of Player 2 in G are tuples of actions and abstract states. G
also contains a “goal state”, denoted by �, and a “reject” state �1 (plus possibly
additional states). The nondeterminism inherent to the system is modeled by the
choices of Player 1, nondeterminism introduced by the abstraction is modeled by
the choices of Player 2.

4.4.1 A Game Round

A play in an abstract game arena is partitioned into “game rounds” (see Fig. 4.8
for an example arena): A round starts at an abstract state n (we think of n as a
set of concrete states) with Player 1 to move. Let ni be the set of concrete states
of n that enable the command ai. Player 1 proposes an ai such that ni 6= ∅,
modeled by a move from n to a state 〈n, ai〉. If n contains some final state, then
Player 1 can also propose to end the play (modeled by a move to 〈n,�〉). Then it
is Player 2’s turn. If Player 1 proposes ai, then Player 2 can accept the proposal
(modeled by a move to a state determined below), or reject it and end the play
(modeled by a move to �), but only if ni 6= n. Let upai = 〈〈p1, c1〉, . . . , 〈pk, ck〉〉
be the updates of ai.

1� has a similar role as the ?-state in menu-based abstraction.

48

1, [0, 0]

s0

〈1, [0, 0]〉, l1a

(1)

l1a

1, [0, 0]

s0

〈1, [0, 0]〉, l1a

d1. . .

1, [1, 1]1, [0,∞)
s2

 1, [0,∞)

s′2

(2)

l1a

d1

0.1, 2

0.9, 1

∇

1, [0, 0]

s0

〈1, [0, 0]〉, l1a

d1. . .

1, [0,∞)

s′2

. . .

〈1, [0,∞)〉, l1a

s3

d2. . .

�

(3)

l1a

d1

0.1, 2

0.9, 1

l1b

l1a

×

× d2

0.1, 2

0.9, 1

Figure 4.7: Construction of an abstract game arena for the example. The three
steps are described in the text.

If Player 2 accepts ai, she ”picks“ a concrete state σ ∈ ni.

Then she selects a probabilistic state q with the following property: q has k
successors s1, . . . , sk, representing the outcome of performing the assignment cj
on σ, i.e. JcjK(σ) is contained in sj for every 1 ≤ j ≤ k.

The next state of the play is determined probabilistically: one of the updates j of
ai is selected randomly according to the probabilities, and the play moves to the
abstract state sj (recall that sj contains JcjK(σ), and so the selection corresponds
to taking the transition 〈σ, a〉 pj ,j−−→ JcjK(σ) in MP).

If Player 1 proposes � by choosing 〈n,�〉, then Player 2 can accept the proposal,
(modeled by a move to �) or, if not all concrete states of n are final, reject it
(modeled by a move 〈n,�〉 ×−→ 〈n,�〉).

49

1, [0, 0]

s0

〈1, [0, 0]〉, l1a

d1 2, [0, 0]

〈2, [0, 0]〉, l2c

d4

〈2, [0, 0]〉, l2b

d3

〈3, [0, 0]〉

〈3, [0, 0]〉,� �

1, [0,∞)

〈1, [0,∞)〉, l1b

�

d5

4, [100,∞)

〈4, [100,∞)〉, l4

d6

〈1, [0,∞)〉, l1a

d2

2, [0,∞)]

〈2, [0,∞)]〉, l2b

〈2, [0,∞)]〉, l2a

〈2, [0,∞)]〉, l2c

d9

d8

d7

4, [1,∞)]

〈4, [1,∞)]〉, l4

d10

�

�

�

�

l1a

d1

0.9, 1

l1a

×

×

d2

0.9, 1

0.1, 2
l2b

d3

1, 1

l2c

d4
1, 1

◦
◦

◦

l1b

d5

1, 1

l4

d6

1, 1

l2b

l2a

l2c

d9

d8

d7

×

×

×

×

×

×

×

×

1, 1

1, 1

l4

d10

1, 1

1, 1

0.1, 2

Figure 4.8: Complete abstraction without refinement (the reject state � is du-
plicated to keep the presentation clear; also we skipped labels from transitions
between states of Player 2 to probabilistic states).

50

4.4.2 Constructing an Example Arena

We illustrate how to build abstract arenas using our example program from
Fig. 4.2. Our algorithm performs an abstract exploration of the reachable state
space of MP , similar to the approaches of Beyer et al. [13], Gulavani et al. [49],
where abstract reachability trees are constructed for investigating the reachable
state space of nonprobabilistic programs. However, to obtain bounds for extremal
reachability values we also have to approximate the structure of the transition
system of MP , by building game arenas that in particular might contain loops
and have to obey additional requirements.
Before the construction we have to select an abstract domain that represents
abstract states. We choose the domain

PD = L× INTnrp = PRED(loc = 1, loc = 2, loc = 3, loc = 4)× INTnrp

from Section 4.2.
For the sake of simplicity we write a concrete state of the example program as
a pair 〈`, x〉, where ` is the value of loc and x is the value of nrp. An abstract
state (i.e. an element of PD) is written as a pair 〈v, [a, b]〉: [a, b] is an interval
abstracting the values of nrp and either v = i for an i ∈ {1, . . . , 4} (representing
the abstract state not equal to > in which φi = (loc = i) holds) or v ∈ {⊥,>}.
Our construction algorithm also requires us to provide a widening. We choose
the widening ∇ for D] that we defined in Section 4.2.
During the symbolic exploration of the state space, the widening is applied at
special situations: after computing a successor state s, an abstract state s′ already
present in the arena is selected, and a widening is performed using s and s′,
resulting in ŝ with s′ v ŝ; we then use ŝ instead of s′ in the construction. By a
suitable widening strategy we can avoid (infinitely) long sequences of generated
abstract states, since every sequence eventually becomes stationary. We apply
the widening operator ∇ (in this example) as follows: if the abstract state s =
〈b, [a, b]〉 has an ancestor s′ = 〈b, [a′, b′]〉 along the path between it and the initial
state given by the construction, then we over-approximate s by ŝ with ŝ =
s′∇ (s t s′). We will see a general example of a widening strategy for arbitrary

51

domains in Section 4.6.
We illustrate the algorithm by showing the first steps of the construction (see
Fig. 4.7):

1. The algorithm first creates the abstract state s0 = α(〈1, 0〉) = 〈1, [0, 0]〉 and
adds it to the game arena as a Player 1 state. It checks which guarded
commands are enabled by some states in γ(s0)1, in this case only l1a.
It adds a Player 2 state 〈s0, l1a〉 to the arena, and a transition s0

l1a−−→
〈s0, l1a〉.

2. The algorithm adds a probabilistic state d1 with 〈s0, l1a〉 d1−→ d1 to the
arena (circle-shaped). Note that in general there might be more than one
probabilistic state as a successor of a Player 2 state, corresponding to Player
2 ”choosing“ a concrete state. Two successors are created, representing the
semantic effects of the two probabilistic updates of l1a on 〈1, [0, 0]〉. Both
are processed by the algorithm. We only explain how the algorithm handles
s2, the state according to the first update here: it applies the widening as
explained above, and adds s′2 = s0∇ (s0 t s2) = 〈1, [0,∞)〉 to the arena
(not s2 itself).

3. In s′2 = 〈1, [0,∞)〉 two guarded commands, namely l1a and l1b, are enabled
(by different concrete states). The algorithm adds a Player 2 state s3 =
〈〈1, [0,∞)〉, l1a〉 (as well as 〈〈1, [0,∞)〉, l1b〉) to the arena, and transitions
from s3 to the reject state �, since not every state in γ(s′2) enables the guard
of l1b. A probabilistic state d2 is added, and again the algorithm creates
a successor for each probabilistic update. For the first update, the state
〈1, [1,∞)〉 is computed. The algorithm performs a widening and computes
〈1, [0,∞)〉 = s′2∇ (〈1, [1,∞)〉ts′2). Since 〈1, [0,∞)〉 = s′2 it adds a transition
s4

0.9,1−−→ s′2.

After processing the other constructed states, we obtain the complete game
arena, which is shown in Fig. 4.8. Note that states s, s′ belonging to Player

1This check can always be performed conservatively: it might report guarded commands
enabled for which actually no concrete state in γ(s0) is enabled. See Section 4.6 for details.

52

1 may ”overlap“, i.e. γ(s) ∩ γ(s′) = ∅ (the disjointness property) is not guaran-
teed in general. In Fig. 4.8 the states 〈2, [0, 0]〉 and 〈2, [0,∞)〉 do overlap, since
γ(〈2, [0, 0]〉) ∩ γ(〈2, [0,∞)〉) = {σ} with σ(loc) = 2 and σ(nrp) = 0.
Furthermore if we did not apply any widenings during the construction, the ab-
stract arena would be as large as the concrete MDP (at least in this example):
Player 2 would never had a proper choice between two alternatives.

4.4.3 Reachability Information from Arenas

After building the arena G, we compute lower and upper bounds for the minimal
and maximal reachability values of MP . Let F be the set of final states in MP .
We obtain bounds max+,max− with max− ≤ MaxReach(MP , F) ≤ max+ and
min+,min− with min− ≤ MinReach(MP , F) ≤ min+ by considering four games
that use G as arena, but have different winning objectives for both players.

4.4.3.1 Bounds max+,max− for MaxReach(MP , F)

Here the winning objective of Player 1 is to reach �. The bounds are given by the
supremum over the probability of Player 1 winning, hereby taking two different
objectives for Player 2 into account:

max+ : Here Player 1 and Player 2 cooperate, i.e. Player 2’s winning objective
is also to reach �. max+ is then the maximum over the probability of reaching
�, taken over all strategies of both Player 1 and Player 2. This value equals the
maximal probability of reaching � in the MDP

M = (Q1 ∪Q2, QP , {s0},→,LabA,LabP)

(we merge the player states of G together), and we can write it as

max+ = sup
S1∈S1(G)

sup
S2∈S2(G)

Pr(S1,S2)[Reach(G, {�})].

53

max− : Here Player 2’s objective is to avoid �, i.e. the players are adversaries:
for every strategy S1 of Player 1, Player 2 plays optimally if Player 1’s probability
of winning is minimized. Let us denote this minimal probability that Player 2 can
achieve dependent on S1 by r−(S1). max− can then be chosen as the supremum
of r−(S1) taken over all strategies S1 of Player 1:

max− = sup
S1∈S1(G)

inf
S2∈S2(G)

Pr(S1,S2)[Reach(G, {�})].

For the intuition behind these objectives, consider first the game described for
obtaining max−. Since Player 1 models the environment and wins by reaching �,
the environment’s goal is to reach a final state. Imagine first that the we use the
concrete domain (and best abstract transitions), i.e., abstract and concrete states
coincide. In our example this corresponds to not using widenings at all. Then
Player 2 never has a choice, and the optimal strategy for Player 1 determines a set
S of action sequences whose total probability is equal to the maximal probability
of reaching a final state. Imagine now that the abstraction is coarser, i.e. we use
an abstract domain or abstract transformers such that some abstract states in the
arena represent more than one concrete state. In the arena for the abstract game
the sequences of S are still possible, but now Player 2 may be able to prevent
them, for instance by moving to � when an abstract state contains concrete states
not enabling the next action in the sequence. Therefore, in the abstract game the
probability that Player 1 wins can be at most equal to the maximal probability.
In the case of max+ the team formed by the two players can exploit the spurious
paths introduced by the use of an abstract domain to find a strategy leading to
a better set of paths; in any case, the probability of S is a lower bound for the
winning probability of the team.

4.4.3.2 Bounds min−,min+ for MinReach(MP , F)

Here the objective of Player 1 is to avoid both � and �. The bounds are given
by minima over the probability of Player 1 losing, again dependent on Player 2’s
objectives:

54

min− : Player 2’s objective is also to avoid � and �, i.e. the players cooperate.
min− is then given by the minimal probability of Player 1 not winning (i.e. of the
game reaching � or �), with the minimum taken over all strategies of both Player
1 and Player 2. Dually to max+ it equals the minimal probability of reaching �
or � in the MDP M and can be written as

min− = inf
S1∈S1(G)

inf
S2∈S2(G)

Pr(S1,S2)[Reach(G, {�,�})].

min+ : The players are again adversaries: for every strategy S1 of Player 1,
Player 2 plays optimally if Player 1’s winning probability is minimized. Let
us denote this minimal probability dependent on S1 by s−(S1). By taking the
maximum m of s−(S1) over all strategies S1 of Player 1 we can give min+ =
1 − m. Note that this again corresponds to the minimal probability of Player
1 not winning in the case where the players play against each other. Note also
the duality: choosing a strategy that minimizes (maximizes) the probability of
reaching a state set is equivalent to maximizing (minimizing) the probability of
avoiding it. With this we can write

m = sup
S1∈S1(G)

inf
S2∈S2(G)

Pr(S1,S2)[RunsG(s0) \ Reach(G, {�,�})]

= 1− inf
S1∈S1(G)

sup
S2∈S2(G)

Pr(S1,S2)[Reach(G, {�,�})]

and so
min− = inf

S1∈S1(G)
sup

S2∈S2(G)
Pr(S1,S2)[Reach(G, {�,�})].

The intuition behind these game settings is similar to the one for max− and max+.
Note the somehow reversed role of � here, for example in the game setting for
min+: if Player 2 is moving to � here, Player 1 again loses the play. min− can
therefore never be less than the minimal probability of reaching a final state, since
here we choose min− as the minimal probability of Player 1 losing the game.

55

Example strategies: Note that the action labels ◦ corresponds to choosing �
by both players; × corresponds to Player 2 rejecting a move of Player 1. Optimal
strategies for the game setting in max+ for Fig. 4.8 are: for Player 1, always play
◦ or l2c if possible; for Player 2, play ◦ if possible, otherwise avoid ×. The value
of the game is 1. In the game for computing max−, the optimal strategy for
Player 1 is the same, whereas Player 2 always plays � whenever possible. The
value of the game is 0.1. We get [0.1, 1] as lower and upper bound for the maximal
probability. For the minimal probability we get the trivial bounds [0, 1].
To get more precision, we can skip widenings at certain situations during the con-
struction. If we skip widening operations at the successors of the initial state, the
resulting abstract arena allows us to obtain the more precise bounds [0, 0.1] and
[0.1, 0.1] for the minimal and maximal reachability values, respectively (roughly
spoken, the ”receive loop“ is unrolled one time if we skip the first widening in
this case).
The values that we defined using the four different game settings give rise to the
definition of extremal game values:

Definition 29. (Extremal game values)
Let G = (Q1, Q2, QP , s0,→,LabA,LabP) be a stochastic 2-Player game arena and
Q = Q1 ∪Q2 ∪QP . Let F ⊆ Q. The extremal game values

max+(G, F),max−(G, F),min+(G, F) and min−(G, F)

(relative to F) are defined as follows:

max+(G, F) := sup
S1∈S1(G)

sup
S2∈S2(G)

Pr(S1,S2)[Reach(G, F)]

max−(G, F) := sup
S1∈S1(G)

inf
S2∈S2(G)

Pr(S1,S2)[Reach(G, F)]

min+(G, F) := inf
S1∈S1(G)

sup
S2∈S2(G)

Pr(S1,S2)[Reach(G, F)]

min−(G, F) := inf
S1∈S1(G)

inf
S2∈S2(G)

Pr(S1,S2)[Reach(G, F)].

To make clear that extremal game values are in fact rather easy to compute we

56

first define memoryless and non-randomized strategies:

Definition 30. (Memoryless and non-randomized strategies)
Let G = (Q1, Q2, QP , s0,→,LabA,LabP) be a stochastic 2-Player game arena. A
strategy S for Player i (i ∈ {1, 2}) is called

• memoryless if for all paths {π1, π2} ⊆ PathsG with last(π1) = last(π2) ∈ Qi

it holds that S(π1) = S(π2), i.e. the strategy choice depends only on the
currently visited state of the play,

• non-randomized if for every path π ∈ PathsG with last(π) ∈ Qi there exists
an action ` ∈ Labi such that S(π)(`) = 1.

A strategy that is both memoryless and non-randomized can be represented by
assigning a single action label to each state of the player. Luckily, in a game arena
with finitely many states, it is sufficient to consider only such simple strategies
for obtaining extremal reachability values. This is justified by the following well-
known theorem (see Condon [21], Condon [20], and Chatterjee et al. [18]):

Theorem 4. (Optimal strategies for 2-player games)1

Let G = (Q1, Q2, QP , s0,→,LabA,LabP) be a stochastic 2-Player game arena. Let
F ⊆ Q1 ∪ Q2 ∪ QP . For each κ ∈ {+,−} there exist non-randomized and
memoryless strategies Sκ1 , T κ1 in S1(G) and Sκ2 , T κ2 in S2(G) such that

maxκ(G, F) = Pr(Sκ1 ,Sκ2)[Reach(G, F)] and

minκ(G, F) = Pr(Tκ1 ,Tκ2)[Reach(G, F)].

Using this theorem, extremal game values can be computed e.g. by variants of
value iteration, similarly to MDPs (see e.g. Condon [20], Puterman [89]). The
main theoretical result of this chapter is the counterpart of the results of Hahn
et al. [52], Kattenbelt et al. [63]: for arbitrary abstract domains, the values of the
four games described above indeed yield upper and lower bounds of the maximal
and minimal probability of reaching the final states. We prove this in Theorem 5.

1An analogous result holds for (finite-state) MDPs.

57

4.4.4 Infinite Domains, Widenings, and Predicate Domains

If we use a predicate domain (and best abstract transitions) in the algorithm
sketched in the previous paragraph, we obtain abstract game arenas that are
essentially equivalent to the ones in Wachter [98] and Hahn et al. [52] (see Sec-
tion 4.6.2). In order to give a first impression of the advantages of general abstract
domains beyond predicate abstraction in the probabilistic case, consider the pro-
gram given in form of pseudo code on the left of Fig. 4.9, a variant of the program
from before. Here coin(p) models a call to a random number generator that re-
turns 1 with probability p and 0 with probability 1 − p.1 It is easy to see that
c ≤ 1 is a global invariant, and so the probability of failure is exactly 0.5. Hence
a simple invariant like c ≤ k for a k ≤ 100, together with the postcondition
i > 100 of the loop would be sufficient to negate the guard of the statement at
line 5. PASS, a leading tool for probabilistic reachability problems using game-
based abstraction with predicate abstraction and abstraction refinement uses a
CEGAR-like approach (see Clarke et al. [19], Hahn et al. [52]): if a constructed
arena gives too coarse lower and upper bounds for the extremal reachability val-
ues, PASS inspects the arena and extracts new, hopefully useful predicates, and
uses them to refine (i.e. extend) its predicate domain and rebuilds the arena.
PASS offers different options for generating such predicates. However, when the
example program is analyzed with PASS, the while loop is unrolled 100 times be-
cause the tool fails to “catch” the invariant, independently of the options chosen
to refine the abstraction.2

On the other hand, an analysis of the program with the standard interval domain
for abstracting the integer variables, the standard widening operator, and the
standard technique of delaying widenings (Blanchet et al. [15]), easily “catches”
the invariant (see Section 4.8). The same happens for the (infinite-state) pro-
gram on the right of the figure, which exhibits a more interesting probabilistic
behaviour, especially a probabilistic choice within a loop: we obtain good up-
per and lower bounds for the probability of failure using the standard interval

1We give this and the following program in pseudo code for brevity; for our experiments we
transformed the program into a PGP, similarly to the example above.

2Actually, the input language of PASS does not explicitly include while loops, they have to
be simulated. But this does not affect the analysis.

58

int c = 0, i = 0;
1: if (coin(0.5)) {
2: while (i <= 100) {
3: i++;
4: c = c-i+2

} }
5: if (c >= i) fail
end.

int c = 0, i = 0;
1: while(i <= 100) {
2: if (coin(0.5)) i++
3: c = c-i+2; }
4: if (c >= i) fail
end.

Figure 4.9: Example programs 2 and 3.

domain. Notice that examples exhibiting the opposite behaviour (predicate ab-
straction with abstraction refinement succeeds where interval analysis fails) are
not difficult to find. Our claim is only that the game-based abstraction approaches
of Hahn et al. [52], Kattenbelt et al. [63] can be extended to arbitrary abstract
domains, making it more flexible and efficient.

4.5 Formal Definition of Abstract Game Arenas

In this section we give a definition of abstract game arenas of a PGP P . We also
prove that every abstract game arena can be used to obtain reliable lower and
upper bounds for extremal reachability values of MP .

Definition 31. Let P = (V, σ0,C) be a PGP with a final guard f forming an
instance of Problem 3. Let F ⊆ ΣV be the set of states that enable f . Let further
D = (D],v,⊔,d,>,⊥) be a domain abstracting ΣV. A 2-player game arena
G = (Q1, Q2, QP , s0,→,C ∪ {×, ◦, τ} ∪ (D])∗,N) with finitely many states is an
abstract game arena of P relative to f (for D) if

• Q1 consists of a subset of D] plus two distinguished states �,�;

• s0 = α({σ0}) ∈ Q1;

• Q2 is a set of pairs 〈s, x〉, where s ∈ Q1 \ {�,�} and either x = � or x is
a guarded command of C;

• QP is a set of tuples 〈s, a, d〉, where s ∈ Q1 \ {�,�}, a ∈ C, and d ∈
(Q1\{�,�})|upa|, i.e. d is a sequence 〈d1, . . . , d|upa|〉 of |upa| abstract states.

59

For every i ∈ {1, . . . , |upa|}, 〈s, a, d〉
pa(i),i−−−→ di.

• � ×−→ � respectively � ◦−→ � are the only outgoing transitions of � respec-
tively �,

and the following conditions hold:

(a) For every s ∈ Q1 \ {�,�}: if γ(s) ∩ F 6= ∅ then s
◦−→ 〈s,�〉 ◦−→ �. If

moreover γ(s) 6⊆ F , then 〈s,�〉 ×−→ 〈s,�〉.
(If γ(s) contains some final state, then Player 1 has the possibility to propose
�. If not all states are final, then Player 2 can reject the proposal by staying
in 〈s,�〉.)

(b) For every s ∈ Q1 \ {�,�} with a ∈ C: if ga(γ(s)) 6= ∅, then 〈s, a〉 ∈ Q2 and
s

a−→ 〈s, a〉. (If a concrete state of s enables ga, Player 1 can choose a.)

(c) For every 〈s, a〉 ∈ Q2 with a ∈ C and upa = 〈〈p1, c1〉, . . . , 〈pk, ck〉〉: if
〈s, a〉 ∈ Q2 and ga(γ(s)) 6= γ(s), then 〈s, a〉 ×−→ �. Further, for every
σ ∈ ga(γ(s)) there exists a sequence dσ with k elements such that 〈s, a〉 dσ−→
〈s, a, dσ〉 ∈ QP , and for si with 〈s, a, dσ〉

pi,i−−→ si, it holds that JciK(σ) ∈ γ(si)
for all i ∈ {1, . . . , k}.
(Player 2 can end the game if at least one concrete state in γ(s) does not
enable ga. If Player 2 accepts the choice of Player 1, she can pick a σ ∈
ga(γ(s)) by choosing the corresponding probabilistic state; this state then
performs an “abstract” update operation.)

(d) If γ(s) ∩ F = ∅ and for all a ∈ C it holds that γ(ga(s)) = ∅, then s τ−→ s.
(If s has not outgoing transitions we add a self-loop.)

Further every outgoing transition of s ∈ Q1\{�,�} has either the form s
a−→ 〈s, a〉

for a ∈ C or s ◦−→ 〈s,�〉; every outgoing transition of 〈s, a〉 ∈ Q2 with a ∈ C

has the form 〈s, a〉 d−→ 〈s, a, d〉 ∈ QP for a sequence d with |upa| elements, or
〈s, a〉 ×−→ �.

We do not require an abstract game arena to be the smallest game arena satisfying
the conditions above. The arena might contain additional transitions and states,

60

caused e.g. by using conservative tests for the premises of the conditions (a)-(d)
during its construction (see also Section 4.6.1).
Abstract game arenas allow Player 2 to choose the action × every time if there
is uncertainty due to abstraction whether a guard can be taken by all concrete
states of a state or not. Note the action label ◦ corresponds to choosing � for
both players; × corresponds to Player 2 rejecting a move of Player 1.

Structure of runs in G. We describe in more detail runs possible in an abstract
game arena G, using the notations from Def. 31. A game round has the form

s
a−→ 〈s, a〉 d−→ 〈s, a, d〉 i−→ s′

for s and s′ states of Player 1, a a guarded command, and d a sequence of abstract
states, i ∈ {1, . . . , |upa|}.
Each run r ∈ RunsG belongs to one of the following classes (r′ denotes a sequence
of game rounds, s a state in Q1, a ∈ C):

(R1) it is an infinite sequence of game rounds;

(R2) it ends in �: r = r′
◦−→ 〈s,�〉 ◦−→ � ◦−→ . . .;

(R3) it ends in a state Q1 × {�}: r = r′
◦−→ 〈s,�〉 ×−→ 〈s,�〉 ×−→ 〈s,�〉 ×−→ . . .;

(R4) it ends in �: r = r′ → 〈s, a〉 → � ×−→ � ×−→ . . .;

(R5) it gets stuck in s: r = r′ → s
τ−→ s

τ−→ s
τ−→

4.5.1 Obtaining Reachability Bounds

We can now state our main theorem: for a PGP P , the extremal game values
from abstract game arenas of P provide upper and lower bounds of the extremal
reachability values of MP .

Theorem 5. (Extremal reachability values and abstract game arenas)
Let P be a PGP and f be a guard forming an instance of Problem 3. Let G be

61

an abstract game arena of P relative to f for an abstract domain D. Then the
following three propositions hold.

MinReach(MP , F) ∈ [min−(G, {�,�}),min+(G, {�,�})] and

MaxReach(MP , F) ∈ [max−(G, {�}),max+(G, {�})].

The proof of the theorem is an immediate consequence of the following lemma:

Lemma 3. (Strategies for extremal game values)
Let P be a PGP and f be a guard forming an instance of Problem 3. Let G be
an abstract game arena of P relative to f for an abstract domain D. Then

(1) Given a strategy S of the (single) player in MP , there exists a strategy
S1 ∈ S1(G) such that

inf
T∈S2(G)

Pr(S1,T)[Reach(G, {�,�})]

≤ PrS[Reach(MP , F)]

≤ sup
T∈S2(G)

Pr(S1,T)[Reach(G, {�})].

(2) Given a strategy S1 ∈ S1(G) there exists a strategy S ∈ S(MP) such that

PrS[Reach(MP , F)] ≤ sup
T∈S2(G)

Pr(S1,T)[Reach(G, {�,�})].

(3) Given a strategy S1 ∈ S1(G) there exists a strategy S ∈ S(MP) such that

PrS[Reach(MP , F)] ≥ inf
T∈S2(G)

Pr(S1,T)[Reach(G, {�})].

We first give the proof of Theorem 5, assuming the correctness of Lemma 3, and
prove Lemma 3 afterwards:

Proof (of Theorem 5).
Let S ∈ S(MP) be an arbitrary strategy for MP . By Lemma 3 (1) there exists a

62

strategy S1 ∈ S1(G) satisfying

inf
T∈S2(G)

Pr(S1,T)[Reach(G, {�,�})]

≤ PrS[Reach(MP , F)]

≤ sup
T∈S2(G)

Pr(S1,T)[Reach(G, {�})].

From this we conclude that for all S ∈ S(MP)

min−(G, {�,�}) ≤ inf
T∈S2(G)

Pr(S1,T)[Reach(G, {�,�})] ≤ PrS[Reach(MP , F)],

i.e. min−(G, {�,�}) is a lower bound for PrS[Reach(MP , F)], and so

min−(G, {�,�}) ≤ inf
S∈S(MP)

PrS[Reach(MP , F)] = MinReach(MP , F).

The inequality MaxReach(MP , F) ≤ max+(G, {�}) can be proved in the same
way by using the left inequality of Lemma 3 (1). The remaining inequations are
proved similarly using Lemma 3 (2) and Lemma 3 (3), respectively.

We now give the proof of Lemma 3:

Proof (of Lemma 3).
Let

G = (Q1, Q2, QP , s0,→,C ∪ {◦,×, τ} ∪ (D])∗,N)

and
MP = (VA, VP , {σ0},⇒,C ∪ {τ},N).

We set Q = Q1 ∪ Q2 ∪ QP and V = VA ∪ VP , and let Lab be the set of action
labels and probabilistic labels of G.
We will use some additional notation. For a guard g and a state σ we write σ |= g

iff σ enables g. We denote paths in G by Π,Π′, Π̂, . . ., paths in MP (or in M, see
below) by π, π′, π̂, Sequences in (D])∗ are denoted by d, d′, d̂, We write
d(i) for the i-th element of a sequence d ∈ (D])∗.
For the following proofs we define an auxiliary function β. Due to the require-
ments of an abstract game arena, we know that for every 〈s, a〉 ∈ Q2 and

63

σ ∈ ga(γ(s)) there exists (at least) one sequence d ∈ (D])∗ such that

• 〈s, a, d〉 ∈ QP , 〈s, a〉 d−→ 〈s, a, d〉, and

• for every 1 ≤ i ≤ k there exists a si with 〈s, a, d〉
pi,i−−→ si and JcK(σ) ∈ γ(si),

see Def. 31 (c). But since there might be overlapping abstract states it is possible
that there is more than one sequence d which satisfies these conditions. We
therefore fix for every 〈s, a〉 and every σ ∈ γ(ga(s)) an arbitrary sequence d ∈
(D])∗ that satisfies the conditions above with respect to s, a and σ, and set
β(s, a, σ) = d.

Proof of (1).
We restate the claim: Given a strategy S of the (single) player in MP , there exists
a strategy S1 ∈ S1(G) such that

inf
T∈S2(G)

Pr(S1,T)[Reach(G, {�,�})]

≤ PrS[Reach(MP , F)]

≤ sup
T∈S2(G)

Pr(S1,T)[Reach(G, {�})].

We modify MP as follows: we add the fresh action label ◦ to MP , a fresh state
〈σf ,�〉 to VP , and a fresh state σf to VA. The state 〈σf ,�〉 has only one out-
going transition (〈σf ,�〉, 1, ◦, σf) as well as σf has only one outgoing transition
(σf , ◦, σf); we add both transitions to ⇒. We also add edges (q, ◦, 〈σf ,�〉) to
⇒ for every q ∈ F and remove all other outgoing transitions of states in F . We
denote this modified MDP by M. So

q
◦=⇒ 〈σf ,�〉

1,◦=⇒ σf
◦=⇒ σf

◦=⇒ . . .

is the only possible path starting from a q ∈ F in M. This simple modification
facilitates our mapping between paths in G and paths in M.
Let now SMP

∈ S(MP). SMP
corresponds uniquely to a strategy S ∈ S(M),

where S chooses σf in every state σ ∈ F (which is the only option for S) and
otherwise behaves exactly as SMP

. Note that we have PrM,S[Reach(M, {σf})] =
PrMP ,S

′ [Reach(MP , F)].

64

We show that there exist strategies S1 ∈ S1(G) and S2 ∈ S2(G) such that

PrS[Reach(M, {σf})] = Pr(S1,S2)[Reach(G, {�})],

which implies PrSMP [Reach(M, {σf})] = Pr(S1,S2)[Reach(G, {�})]. Designing such
strategies bears some similarity to the proof of Prop. 3 in Kattenbelt et al. [62].
However, we can not assume to have a partition of the state space in general, and
also the structure of our game arenas is different e.g. due to the use of � and
the fact that abstract states may contain final states as well as non-final states.
The same reasons and the fact that we use two-player arenas also prevent us from
using results from Segala and Lynch [93] for probabilistic simulations of MDPs
in an obvious way (this will become more apparent in the proofs of part (2) and
(3)). Therefore we build an appropriate strategy from scratch.

Definition of S1 and S2. We define S1 and S2 inductively: given a (S1, S2)-
possible path Π, we define S1 or S2 for Π, and obtain possible “extensions” of Π,
i.e. (S1, S2)-possible paths with Π as a prefix. During the definition of S1, S2 we
implicitly construct G[S1, S2]’s transition system.
We also define inductively a function

T : PathsG,(S1,S2) ∩ (QLab)∗(Q1 ∪Q2)→ PathsM,S

during this construction process. T ’s domain is the set of (S1, S2)-possible paths
in G ending in a player state; T ’s range is the set of S-possible paths in M. T is
used to establish a one-to-one correspondence between paths in G and paths in
M. During the construction of the strategies and the definition of T , the following
property (*) can be immediately shown for all newly defined values of T in each
step of the construction:

Property (*) for a (S1, S2)-possible path Π with T (Π) = π:
π is an S-possible path. Further the last states states of Π and π are related as
follows:

1. Π ends in a state s ∈ Q1 \ {�} iff π ends in an action state σ 6= σf . Then
σ ∈ γ(s) holds.

65

2. Π ends in a state 〈s, a〉 with a ∈ C iff π ends in a state 〈σ, a〉; then σ ∈ γ(s).

3. Π ends in a state 〈s,�〉 iff π ends in 〈σf , ◦〉. Π ends in � iff π ends in σf .

4. The number of occurrences of Player 1 states in Π and the number of
occurences of action states are equal. Also the number of occurrences of �
in Π and the number of occurences of σf in π are equal.

In the definition of S1 respectively S2 for a path Π, we have T (Π) at our disposal,
and for all Π′ that are prefixes of Π we can assume property (*) by induction
hypothesis. We start our definition by setting T (s0) := σ0; property (*) is obvi-
ously satisfied for Π = s0. Property (*) can immediately be verified for all newly
defined values of T .

Case 1: Π = s0 or Π = Π̂→ s, s ∈ Q1 \ {�}.
Let L = {a ∈ C | S1(Π)(a) > 0}.
T (Π) ends in a state σ and σ ∈ γ(s) (using property (*)).

• σ 6∈ F :

(S1) : For every command a enabled by σ: set S1(Π)(a) := S(T (Π))(a).

(T) : For every command a enabled by σ with S(T (Π))(a) > 0: set

T (Π a−→ 〈s, a〉) := T (Π) a=⇒ 〈σ, a〉.

• σ ∈ F : then ◦ can be chosen by S1 due to Def. 31.

(S1) : Set S1(Π)(◦) := 1.

(T) : Set T (Π ◦−→ 〈s,�〉) := T (Π) ◦=⇒ 〈σf , ◦〉.

S1(Π) forms a distribution since 1 = ∑
a∈C:σ|=a S(T (Π))(a) = ∑

a∈C:σ|=a S1(Π)(a).

Case 2: Π = Π̂ a−→ 〈s, a〉, a ∈ C.
Using Property (*), T (Π) ends in a state 〈σ, a〉 and σ ∈ γ(s). Let d = β(s, a, σ)
and let upa = 〈〈p1, c1〉, . . . , 〈pk, ck〉〉. Possible extensions of Π start with Π d−→
〈s, a, d〉 i−→ d(i), where 1 ≤ i ≤ k.

66

(S2) : Set S2(Π)(d) := 1.

(T) : For every 1 ≤ i ≤ k: set T (Π d−→ 〈s, a, d〉 i−→ d(i)) := T (Π) i=⇒ JciK(σ).

Case 3: Π = Π̂ ◦−→ 〈s,�〉 respectively Π = Π̂ ◦−→ �.
T (Π) ends with 〈σf , ◦〉 respectively σf due to property (*).

(S2) : Set S2(Π)(◦) respectively S1(Π)(◦) to 1.

(T) : Set T (Π ◦−→ �) := T (Π) ◦=⇒ σf .

This concludes the construction.
For all other paths we define S1 and S2 arbitrarily (the paths are not (S1, S2)-
possible anyway). Note also that a path Π is an (S1, S2)-possible path if T (Π)
is defined (the construction above is a complete definition of T , since we covered
all possible paths). By our choice of S1 and S2 we never reach a “stuck” state s
where the only possible outgoing transition is s τ−→ s.
By a simple induction we get that cylinders of paths related by T have the same
probability, i.e. for all Π ∈ PathsG,(S1,S2) ∩ (QLab)∗(Q1 ∪ Q2) with π = T (Π) it
holds that

PrG,(S1,S2)[Cyl(Π,G)] = PrM,S[Cyl(π,M)]. (4.3)

We give a proof in Lemma 19 in Appendix A.1. By another induction proof we
get that T actually is a bijection (for a proof see Lemma 20 in Appendix A.1).
We denote by Pf the paths in PathsM,S with exactly one occurrence of σf :

Pf := {π ∈ PathsM,S | π = π̂ → σf ∧ last(π̂) 6= σf}.

Similarly we denote by PF the paths in PathsG,(S1,S2) with exactly one occurrence
of �:

PF := {Π ∈ PathsG,(S1,S2) | Π = Π̂→ � ∧ last(Π̂) 6= �}.

With property (*) and the fact that T is bijective we get that the restriction T
on PF is also bijective, and T (PF) = Pf . Note also that for every run r that ends
in σf , i.e. for every r ∈ Reach(M, {σf}), there is exactly one π ∈ Pf such that

67

r ∈ Cyl(π,M) (analogously for runs ending in � and cylinder sets of paths in
PF). We can conclude:

PrS[Reach(M, {σf})] =
∑
π∈Pf

PrS[Cyl(π,M)]

=
∑

π∈T (PF)
PrS[Cyl(π,M)] (note above)

=
∑

Π∈PF
Pr(S1,S2)[Cyl(Π,G)] (T bijective, Eq. 4.3)

= Pr(S1,S2)[Reach(G, {�})].

S2 never chooses �, and so we get also

PrS[Reach(M, {σf})] = Pr(S1,S2)Reach(G, {�,�}).

We can transfer this result back to MP and get

Pr(S1,S2)[Reach(G, {�})] = PrSMP [Reach(MP , {σf})] = Pr(S1,S2)[Reach(G, {�,�})].

Taking the infimum over strategies of Player 2 on the left and the supremum over
strategies of Player 2 on the right side proves the claim.

Proof of (2).
We restate the claim: given a strategy S1 ∈ S1(G), there exists a strategy S ∈
S(MP) such that

PrS[Reach(MP , F)] ≤ sup
T∈S2(G)

Pr(S1,T)[Reach(G, {�,�})].

At the beginning of the proof of (1) we used a modified version of MP called M.
We perform similar modifications here: we add the fresh action label ◦ to MP

and also add a new state 〈σf ,�〉 to VP and a state σf to VA. 〈σf ,�〉 has only
one outgoing transition (〈σf ,�〉, 1, ◦, σf); σf has only one outgoing transition
(σf , ◦, σf). We add both transitions to ⇒. We also add edges (q, ◦, 〈σf ,�〉) to
⇒ for every q ∈ VA \ {σf}; for every q ∈ F , we also remove all other outgoing

68

transitions of states in F . We denote this modified MDP again by M. So

q
◦=⇒ 〈σf ,�〉

1,◦=⇒ σf
◦=⇒ σf

◦=⇒ . . .

is possible for every q ∈ VA \ {σf} (and every run reaching a q ∈ F ends in this
way).
We show that there exist strategies S ∈ S(M) and S2 ∈ S2(G) such that

PrS[Reach(M, {σf})] = PrG,(S1,S2)[Reach(G, {�,�})],

This equality proves (2): observe that for every S ∈ S(M) there exists a strat-
egy SMP

∈ S(MP) such that PrMP ,SMP [Reach(MP , F)] ≤ PrM,S[Reach(M, {σf})]
(simply distribute the probability assigned to choosing ◦ by S to other labels
arbitrarily if this is not possible in MP). So for every S ∈ S(M) that satisfies the
equality we have

PrMP ,SMP [Reach(MP , F)]

≤ PrG,(S1,S2)[Reach(G, {�,�})]

≤ sup
S2∈S2(G)

PrG,(S1,S2)[Reach(G, {�,�})].

We again relate paths in M to paths in G. The idea of our choice of S and S2 is:
whenever S1 chooses an action that is not possible in a corresponding situation
(path) in M, S2 and S choose to end the play by going to � respectively σf (the
roles of � and � coincide in this part of the proof).

Definition of S and S2. In this proof we define S and S2 inductively and
define both the S-possible paths in M and the (S1, S2)-possible paths in G in the
same construction. Again we define a function T “on the way”; however, this
time we have to relate multiple paths in M to paths in G and define

T : PathsG,(S1,S2) ∩ (QLab)∗(Q1 ∪Q2)× PathsM,S → [0, 1].

T distributes probabilities of a (S1, S2)-possible path in G to probabilities of S-
possible paths in M (and vice versa). We define similar as in the proof of part

69

(1) a property that can easily be shown inductively by a syntactic check of the
new definitions in the construction:

Property (*) for an (S1, S2)-possible path Π:
For all paths π with T (Π, π) > 0: π is a S-possible path. Further the last states
of Π and π are related as follows:

1. Π ends in a state s ∈ Q1 \{�,�} iff π ends in an action state σ 6= σf . Then
σ ∈ γ(s) holds.

2. Π ends in a state 〈s, a〉 with a ∈ C iff either

• π ends in 〈σf , ◦〉, and then 〈s, a〉 ×−→ � in G, or

• π ends in a state 〈σ, a〉, and then σ ∈ γ(s) holds.

3. If Π ends in a state 〈s,�〉, then π ends in 〈σf , ◦〉. Π ends in � or in � iff
π ends in σf .

4. The number of occurrences of Player 1 states in Π and the number of
occurences of action states are equal. Also the number of occurrences of
either � or � in Π and the number of occurences of σf in π are equal.

We perform a case distinction on the shape of a (S1, S2)-possible path Π, and can
assume by induction hypothesis that T (Π′, π) for all Π′ prefixes of Π and all π has
already been defined. In the case distinction we define, given an (S1, S2)-possible
path Π having one of the three possible forms, strategy choices for S2 and for S
for all π with T (Π, π) > 0. We now implicitly construct the transition systems
of G[S1, S2] as well as of M[S]. If T is not defined by the construction below
for Π and π, we set T (Π, π) = 0 by default. We start by setting T (s0, σ0) := 1
(property (*) holds for s0).

Case 1: Π = s0 or Π = Π̂→ s, s ∈ Q1 \ {�,�}.
Let L = {a ∈ C | S1(Π)(a) > 0}.
We define for every π ∈ PathsM with T (Π, π) > 0 the following:
let σ = last(π) with σ ∈ γ(s) (property (*), Def. 31).

70

Let Gσ = {a ∈ C | σ |= a}. For every a ∈ C holds: σ |= a implies s a−→ 〈s, a〉
(Def. 31).

(S) : For each a ∈ Gσ: Set S(π)(a) := S1(Π)(a).
Set S(π)(◦) := 1−∑a∈Gσ S1(Π)(a).

(T) : For a ∈ Gσ: set T (Π a−→ 〈s, a〉, π a=⇒ 〈σ, a〉) := T (Π, π) · S1(Π)(a).
For a ∈ C \Gσ: set T (Π a−→ 〈s, a〉, π ◦=⇒ 〈σf ,�〉) := T (Π, π) · S1(Π)(a).
If S1(Π)(◦) > 0: set T (Π ◦−→ 〈s,�〉, π ◦=⇒ 〈σf ,�〉) := T (Π, π) · S1(Π)(◦).

Case 2: Π = Π̂ a−→ 〈s, a〉, a ∈ C.
We give the following definitions for every π ∈ PathsG with T (Π, π) > 0. By
property (*), two cases arise:

(a) : 〈σf , ◦〉 = last(π): then 〈s, a〉 ×−→ � in G (property (2)).

(T) : Set T (Π ×−→ �, π ◦=⇒ σf) := T (Π, π).

(b) : 〈σ, a〉 = last(π): then σ ∈ γ(s); let d = β(s, a, σ).
Let upa = 〈〈p1, c1〉, . . . , 〈pk, ck〉〉.

(T) : Set for every 1 ≤ i ≤ k: T (Π d−→ 〈s, a, d〉 i−→ d(i), π i=⇒ JciK(σ)) :=
T (Π, π) · pi.

Now we define S2(Π):

(S2) : LetMa be the set of all paths π such that there exists σ ∈ QA with 〈σ, a〉 =
last(π). Let t = ∑

π∈PathsM,S T (Π, π). Set S2(Π)(×) := 1− 1
t
·∑π∈Ma

T (Π, π).
For every possible sequence d:
let Ma,d be the paths π ∈Ma having a last state 〈σ, a〉 s.t. β(s, a, σ) = d.
Set S2(Π)(d) := 1

t
·∑π∈Ma,d

T (Π, π) . 1

Case 3: Π = Π̂ ◦−→ 〈s,�〉 respectively Π = Π̂→ q, q ∈ {�,�}.
We carry out the following definitions for every π ∈ PathsM with T (Π, π) > 0.
The path π ends with 〈σf , ◦〉 respectively σf due to property (*).

1S2(Π) is then a distribution: the sets Ma,· form a partition of Ma.

71

(S) : Set S(π)(◦) := 1 (if π ends with σf).

(S2) : If Π = Π̂→ 〈s,�〉: set S2(Π)(◦) := 1.

(T) : Set T (Π ◦−→ �, π ◦=⇒ σf) := T (Π, π).

This concludes the construction. For all other paths we again define S1 and S

arbitrarily. We state the easy fact that T is well-defined, i.e. no two definitions
collide (follows from the definition of T and the distinctness of the three cases).
Note that only S1 is used for defining T , and that for every (S1, S2)-possible path
there is a π ∈ PathsM,S with T (Π, π) > 0 (in particular, t > 0 holds in case 2).
Again with an inductive argument we can prove that S is well-defined, i.e., no
two definitions of S collide; for the proof see Lemma 21 in Appendix A.2.
The probabilities of (S1, S2)-possible paths can be obtained by summing up their
T -values, i.e. for every Π ∈ PathsG,(S1,S2) it holds that

PrG,(S1,S2)[Cyl(Π,G)] =
∑

π∈PathsM,S

T (Π, π) (4.4)

(this can be shown by a simple induction, see Lemma 22 in Appendix A.2).
A dual result holds for every S-possible path π in M, i.e. it holds that

PrM,S[Cyl(π,M)] =
∑

Π∈PathsG,(S1,S2)

T (Π, π) (4.5)

(see Lemma 23 in Appendix A.2). Now let FG be the set of (S1, S2)-possible paths
Π in G such that Π ends in � or � and has no other occurrence of � or �. We
can write

PrG,(S1,S2)[Reach(G, {�,�})] =
∑

Π∈FG

PrG,(S1,S2)[Cyl(Π,G)]

(note that Cyl(Π,G) ∩ Cyl(Π′,G) = ∅ for Π 6= Π′ paths in FG). Analogously let
FM be the set of S-possible paths π in M such that π ends in σf and has no other
occurence of σf . Again it holds that

PrM,S[Reach(M, {σf})] =
∑
π∈FM

PrM,S[Cyl(π,M)].

72

We conclude:

PrG,(S1,S2)[Reach(G, {�,�})]

=
∑

Π∈FG

PrG,(S1,S2)[Cyl(Π,G)]

=
∑

Π∈FG

 ∑
π∈PathsM,S

T (Π, π)
 (Eq. 4.4)

=
∑

Π∈FG

 ∑
π∈FM

T (Π, π)
 (property (*))

=
∑
π∈FM

 ∑
Π∈FG

T (Π, π)


=
∑
π∈FM

PrM,S[Cyl(π,M)] (Eq. 4.5)

= PrM,S[Reach(M, {σf})].

Proof of (3).
Let us restate the claim: Given a strategy S1 ∈ S1(G), there exists a strategy
S ∈ S(MP) such that

PrSReach(MP , F) ≥ inf
T∈S2(G)

Pr(S1,T)[Reach(G, {�})].

The proof can be done very similarly to the previous one. However, in contrast
to part (2), we have to “distinguish” between a run ending up in � and ending up
in � in G. Again we transform MP into a slightlify modified MDP M: we add the
fresh labels ◦ and × to MP , two new states σf and σr to VA and two new states
〈σf ,�〉, 〈σr,�〉 to VP . Both 〈σf ,�〉 respectively 〈σr,�〉 have only one outgoing
transition (〈σf ,�〉, 1, ◦, σf) respectively (〈σr,�〉, 1,×, σr); both σf respectively
σr have only one outgoing transition (σf , ◦, σf) respectively (σr,×, σr); we add
all these transitions to ⇒. We also add again edges (q, ◦, 〈σf ,�〉) to ⇒ for every
q ∈ F and remove all other outgoing transitions of states in F . Finally we add
edges (q,×, 〈σr,�〉) to ⇒ for every q ∈ VA \ (F ∪ {σf , σr}). We denote this

73

modified MDP again by M. So

q
×=⇒ 〈σr,�〉

1,×=⇒ σr
×=⇒ σr

×=⇒ . . .

is possible for every q ∈ VA \ {σf}. σr is the “counterpart” to � in this setting.
Every run reaching a state in q ∈ F ends in

q
◦=⇒ 〈σf ,�〉

1,◦=⇒ σf
◦=⇒ σf

◦=⇒ . . .

We can show similarly to (2) that there exist strategies S ∈ S(M) and S2 ∈ S2(G)
such that

PrS[Reach(M, {σf})] = Pr(S1,S2),G[Reach(G, {�})].

This proves (3), since for every S ∈ S(M) there exists a strategy SMP
∈ S1(MP)

such that PrMP ,SMP [Reach(MP , F)] ≥ PrS[Reach(M, {σf})] (distribute the prob-
ability with which S chooses × to other arbitrary labels). So for every S ∈ S(M)
that satisfies the equality we have

PrMP ,SMP [Reach(MP , F)]

≥ PrG,(S1,S2)[Reach(G, {�})]

≥ inf
T∈S2(G)

PrG,(S1,T)[Reach(G, {�})].

For the construction of the strategies and the completion of the proof we refer
the reader to Appendix A.3.

4.6 An Algorithm for Building Abstract Game
Arenas

After proving that abstract game arenas can be used to obtain bounds for ex-
tremal reachability values, we now present Algorithm 1, our general algorithmic
framework for building abstract game arenas G of a PGP P relative to a guard
f . The method is instantiated by

• an abstract domain D = (D],v,⊔,d,>,⊥),

74

Algorithm 1: Computing G.
Input: PGP P = (V, σ0,C), final guard f with final states

F = {σ ∈ ΣV | σ enables f}, abstract domain
D = (D],v,⊔,d,>,⊥), widening ∇ for D.

Output: Abstract game arena
G = (Q1, Q2, QP , s0, E,C ∪ (D])∗ ∪ {◦,×, τ},N).

s0 = α({σ0}); pred(s0)← nil;
Q1 ← {s0,�,�}; Q2 ← ∅; QP ← ∅;E ← {(�, ◦,�), (�,×,�)};
WL← {s0};
while WL 6= ∅ do

Remove s from the head of WL; processState(s)

Procedure processState(s ∈ Q1):
hasSucc← false;
if γ(s) ∩ F 6= ∅ then1

E ← E ∪ {(s, ◦, 〈s,�〉), (〈s,�〉, ◦,�)};2

if γ(s) 6⊆ F then3

E ← E ∪ {(〈s,�〉,×, 〈s,�〉))}4

hasSucc← true
forall a ∈ C do

if ga(γ(s)) 6= ∅ then5

Q2 ← Q2 ∪ {〈s, a〉}; E ← E ∪ {(s, a, 〈s, a〉)};6

if ga(γ(s)) 6= γ(s) then E ← E ∪ {(〈s, a〉,×,�)};7

T ← abstractUpdate(s′, a);8

forall t = 〈s1, . . . , sk〉 ∈ T do
Create fresh array d : {1, . . . , k} → D];
forall 1 ≤ i ≤ k do

s′ ← extrapolate(si, s, a) ;
if s′ 6∈ Q1 then

add s′ to WL; Q1 ← Q1 ∪ {s′}; pred(s′)← s; ;
Set i-th entry d(i) of d to s′

QP ← QP ∪ {〈s, a, d〉};
forall 1 ≤ i ≤ k do E ← E ∪ {(〈s, a, d〉, pa(i), i, d(i))} ;
E ← E ∪ {(〈s, a〉, d, 〈s, a, d〉)};9

hasSucc← true;

if ¬hasSucc then E ← E ∪ {(s, τ, s)}10

Procedure extrapolate(v ∈ D], s ∈ Q1 \ {�,�}, a ∈ C):
〈s′, a′〉 ← pred(s);
while pred(s′) 6= nil do

if a′ = a then return s∇ (s t v);
else { buffer← s′; 〈s′, a′〉 ← pred(s′); s← buffer }

return v

75

• a widening ∇ : D] ×D] → D],

• and a procedure abstractUpdate.

4.6.1 General Structure

The algorithm is inspired by the approaches of Beyer et al. [13] and Gulavani et
al. [49] for constructing abstract reachability trees. It constructs the initial state
s0 = α({σ0}) and generates transitions and successor states in a breadth-first
fashion using a work list WL. The processState procedure constructs successors
of a player 1 state guided by the rules from Def. 31. In the initialization phase
of the algorithm, � and � and their transitions are added to G. processState
closely follows the definition of an abstract game arena. A widening is required to
guarantee termination of the algorithm. It is used in the procedure extrapolate;
in particular, for x = extrapolate(s, s′, a) it holds that γ(x) ⊆ γ(s). We dis-
cuss extrapolate in Section 4.6.3. abstractUpdate is used to compute suc-
cessors of abstract update operations. It can be tailored towards the used do-
main. However the following assumption has to hold for every implementation of
abstractUpdate:

Requirement 1. (Requirement for abstractUpdate)
Let s ∈ D] and a ∈ C with upa = 〈〈p1, c1〉, . . . , 〈pk, ck〉〉. Then the function call
abstractUpdate(s, a) has to return a set T of tuples of the form 〈s1, s2, . . . , sk〉 ∈
(D])k. For every σ ∈ ga(γ(s)) such that ga is enabled by σ, there has to be a
tuple t = 〈s1, . . . , sk〉 ∈ T such that JciK(σ) ∈ γ(si) for all 1 ≤ i ≤ k.

We give example instantiations satisfying this requirement in Section 4.6.2.

Correctness. Player 1 states that are generated by the algorithm satisfy the
conditions (a)-(d) from Def. 31: lines 1-4 guarantee that condition (a) holds.
Condition (b) follows from lines 5-6, the first part of condition (c) from the code
between line 8 and line 9 together with the requirement for abstractUpdate that
we stated above: let us assume that s ∈ Q1 is processed by the algorithm, and let
σ ∈ ΣV be with σ ∈ ga(γ(s)). One of the sequences t = 〈s1, . . . , sk〉 ∈ T returned
by the call to abstractUpdate satisfies that ci(σ) ∈ γ(si) for all 1 ≤ i ≤ k. For

76

the array d constructed using t it holds that γ(d(i)) ⊆ γ(si) for all 1 ≤ i ≤ k, due
to the property of extrapolate we stated before, and 〈s, a, d〉 is the probabilistic
state required by condition (c). The second part of condition (c) is guaranteed
by line 7. Finally, hasSucc records whether s has successors; if not, we add a
self-loop in line 29, and so satisfy condition (d).

Conservative tests. processState assumes that it can be decided whether
γ(s) ∩ F 6= ∅, γ(s) 6⊆ F , ga(γ(s)) 6= ∅ or ga(γ(s)) 6= γ(s) hold (lines 1,3,4,
and 7). Each of these tests however can safely be replaced by a conservative
decision procedure having the only requirement that if the exact test returns
true, then also the conservative decision procedure (however there may be false
positives). It is easy to see that then still all conditions (a)-(d) are satisfied, since
we formulated them as implications. These conservative tests can e.g. be realized
by using abstract transitions (recall Section 4.2), and this is what we did in our
experiments. For example, if (¬f)] respectively g]a are abstract transitions for
the negation of the guard f respectively for ga, γ(s) 6⊆ F can be replaced by
(¬f)](s) 6= ⊥, and ga(γ(s)) 6= ∅ can be replaced by g]a(s) 6= ⊥.

4.6.2 Procedure abstractUpdate

We first give an example of a generic instantiation of abstractUpdate that can
be used for arbitrary domains. We use this instantiation for the experiments
in Section 4.8. Afterwards we show how abstractUpdate can be implemented
for predicate domains, which is in essence the method given in Hahn et al. [52],
Wachter [98].

abstractUpdate for arbitrary domains. We slightly extend our notion of
abstract transitions and assume that for every guarded command a ∈ C there
exists g]a : D] → 2D] that satisfies, for all s ∈ D],

• ⋃s′∈g]a(s) γ(s′) ⊇ ga(γ(s)) (g]a is a safe over-approximation of ga) and

• |g]a(s)| <∞ and ⊥ 6∈ g]a(s).

77

I.e. we allow g]a to return a set of elements in D] instead of just one abstract
state to get more precise results, e.g. if the guard is a disjunction (we make
implicit use of finite powerset domains of D], see e.g. Nielson et al. [81]). We
also assume abstract transitions c] : D] → D] for the assignments c of every
〈p, c〉 ∈ upa. Now abstractUpdate(s, a) can be implemented as follows: Let
upa = 〈〈p1, c1〉, . . . , 〈pk, ck〉〉. We use two variables R,B, each storing a set. First
set R := ∅ and compute B := g]a(s). Then for every s′ in B, add to R the tuple
〈c]1(s′), c]2(s′), . . . , c]k(s′)〉. Return R.
It is easy to prove that this implementation satisfies Requirement 1: Let σ ∈
ga(γ(s)). We have to find a tuple t = 〈s1, . . . , sk〉 ∈ T such that JciK(σ) ∈ γ(si)
for all 1 ≤ i ≤ k. There is s′ ∈ g]a(s) such that σ ∈ γ(s′), due to the assumptions
on g]a. For every i with 1 ≤ i ≤ k, JciK(σ) ∈ γ(c]i(s′)), because c

]
i is an abstract

transition, and therefore we can choose the tuple t = 〈c]1(s′), c]2(s′), . . . , c]k(s′)〉.

abstractUpdate for predicate domains. For domains PRED(φ1, . . . , φn) (with
φ1, . . . , φn predicates over ΣV) we can implement abstractUpdate by reusing
techniques of generating successor states in the predicate-abstraction approaches
of Kattenbelt et al. [63], Wachter [98], Wachter and Zhang [99]: We assume the
predicates φ1, . . . , φn are representable as formulas of a decidable theory of first
order logic, and that we have an SMT solver at our disposal which is capable of
returning satisfying models for formulas of this theory. Let s ∈ D] and a ∈ C,
with upa = 〈〈p1, c1〉, . . . , 〈pk, ck〉〉. For an element x ∈ D] \ {>,⊥} let x be the
representation of x as a conjunction, i.e. for σ ∈ Σ

x(σ) := y1(σ) ∧ y2(σ) ∧ . . . ∧ yn(σ),

where yi ∈ {¬φi, φi} for 1 ≤ i ≤ n, and yi = φi iff all states in x satisfy φi. We
set ⊥ = false and > = true. We use the SMT solver to obtain all sequences
〈d1, . . . , dk〉 ∈ (D] \ {>,⊥})k for which there exists a σ ∈ ΣV such that

ga(σ) ∧ d1(Jc1K(σ)) ∧ . . . ∧ dk(JckK(σ))

is true. The approach is described in great detail e.g. in Wachter [98] (Chapter
6), where also optimizations are discussed. This instantiation of abstractUpdate

78

shows that the construction step of menu-based abstraction can be seen as a
special case of our algorithm. Kattenbelt describes in Kattenbelt [60] a similar
method: he considers only finite-state programs, and so SAT-solvers can be used
for generating the successor states.

4.6.3 Procedure extrapolate

We already saw a possible implementation of extrapolate in our introductory
example: there we used as a domain the product of a (finite) predicate domain
and the interval domain. Information represented in the first component of do-
main elements was used for picking existing states in the abstract game arena to
performing widening operations. In our example, the first component represented
control flow information (values of the variable loc), and widening was applied
when, roughly speaking, the program visited the same control flow location again
during the exploration.
We describe now a method that is applicable for arbitrary domains. During the
construction we use the function pred(·) to store for every state s ∈ Q1\{s0,�,�}
its (Player 2-) predecessor in the spanning tree induced by the construction (we
call it the spanning tree from now on; pred(s) = 〈s′, a〉 implies s′ a−→ s in the
spanning tree). For a state s′ ∈ Q1 that was created as the result of chosing a
guarded command a, the procedure finds the nearest predecessor s in the spanning
tree with the same property, and uses s to perform a widening operation. We
can now prove:

Theorem 6. Algorithm 1 terminates, and its result G is an abstract game arena.

Proof. Assume for the sake of contradiction that Algorithm 1 does not terminate.
Since every state in G has only finitely many successors, the spanning tree of G
contains an infinite branch s0

a1−→ s1
a2−→ s2 . . . by König’s lemma, and at least

one action a ∈ C appears infinitely often in the branch, since C is finite. Let
q1, t1, q2, t2 . . . be the sequence of all states in the branch such that ql a−→ tl for
all l ∈ N. Then, by the definition of extrapolate, there exists a sequence
v1, v2, . . . of elements in D] such that tl+1 = tl∇ (vl t tl) w tl for all l ≥ 1, and so

79

t1 v t2 v . . . holds. Define a(1) := t1 and a(l+1) := vl+1 t tl+1 for l ≥ 1. A simple
induction shows that this sequence is monotonically increasing. Since t1 = a(1)

and for l ≥ 1 it holds that tl+1 = tl∇ (vlt tl) = tl∇ a(l), we conclude from Def.22
from Section 4.2 that there is a number k such that tk = tk+1, a contradiction to
the assumption that the branch is infinite (since then we would have a cycle).
We already pointed out that every newly constructed state in G satisfies the
conditions from Def. 31. We conclude that G is indeed an abstract game arena.

4.7 Refining Abstract Game Arenas: Quantita-
tive Widening Delay

Algorithm 1 applies the widening operator whenever the current state has a pre-
decessor in the spanning tree that was created by applying the same guarded
command. This strategy usually leads to too many widenings and poor abstract
game arenas. A popular solution in nonprobabilistic abstract interpretation is to
delay widenings in an initial stage of the analysis (Blanchet et al. [15]), in our case
until the spanning tree reaches a given depth. We call this approach depth-based
unrolling. Note that if MP is finite and the application of widenings is the only
source of imprecision, this simple refinement method is complete.
A shortcoming of this approach is that it is insensitive to the probabilistic in-
formation. We propose to combine it with another heuristic. Given an abstract
game arena G, our procedure yields two pairs (S−1 , S−2) resp. (S+

1 , S
+
2) of mem-

oryless and nonprobabilistic strategies that satisfy PrG,(S
−
1 ,S

−
2)[Reach(G, {�})] =

max−(G, {�}) respectively PrG,(S
+
1 ,S

+
2)[Reach(G, {�})] = max+(G, {�}) (analo-

gously for min− and min+). Given a state s for Player 1, let P+
s and P−s denote

the probability of reaching � (resp. � or � if we are interested in minimal proba-
bilities) starting at s and obeying the strategies (S+

1 , S
+
2) resp. (S−1 , S−2) in G. In

order to refine G we can choose any state s ∈ Q1∩D] such that P+
s −P−s > 0 (i.e.,

a state whose probability has not been computed exactly yet), such that at least
one of the direct successors of s in the spanning tree has been constructed using
a widening. We call these states the candidates (for delaying widening). The
question is which candidates to select. We propose to use the following simple

80

heuristic:

Sort the candidates s according to the product ηs = ws · (P+
s − P−s),

where ws denotes the product of the probabilities on the path of the
spanning tree of G leading from s0 to s. Choose the n candidates with
largest product, for a given n.

We call this heuristic the mass heuristic. The mixed heuristic delays widenings
for states with depth less than a threshold i, and for n states of depth larger
than or equal to i with maximal ηs. In the next section we illustrate depth-based
unrolling, the mass heuristic, and the mixed heuristic on some examples.
We mention that abstraction refinements based on counter-example guided ab-
straction refinement (like the sophisticated techniques developed e.g. in Wachter
and Zhang [99] and Kattenbelt et al. [63]) can also be integrated in our frame-
work, if we either choose a predicate domain or a product domain containing
a predicate domain as a component. Such refinements then correspond to an
extension of the used predicate domain.

4.8 Experiments

We have implemented a prototype of our approach on top of the Parma Polyhe-
dra Library (Bagnara et al. [6]), which provides several numerical domains (see
e.g. Bagnara et al. [5]). We present some experiments showing how simple do-
mains like intervals can outperform predicate abstraction. We stress again that
examples exhibiting the opposite behaviour are also easy to find: our experi-
ments are not an argument against predicate abstraction, but an argument for
abstraction approaches not limited to it.
If the computed lower and upper bounds differ by more than 0.01, we select
refinement candidates using the different heuristics presented before and rebuild
the abstract game arena. We used a Intel c© core 2 duo machine with 4GB RAM
running Linux. For computing extremal game values we used value iteration.
Two small programs. Consider the PGPs of Fig. 4.10. We compute bounds
with different domains: intervals, octagons, integer grids, and the direct product
of integer grids and intervals. For the refinement we use the mass (M) depth (D)

81

int a=0, ctr=0;
a1: (ctr=0)

-> 0.5:(a’=1)&(ctr’=1)
+0.5:(a’=0)&(ctr’=1);

a2: (ctr=1)&(a>=-400)&(a<= 400)
-> 0.5:(a’=a+5)

+0.5:(a’=a-5);
a3: (ctr=1) -> 1:(ctr’=2);
reach: (a=1)&(ctr=2)

int x=0, y=0, c=0;
a1: (c=0)&(x<=1000)

-> 0.25:(x’=3*x+2)&(y’=y-x)
+0.75:(x’=3*x)&(y’=30);

a2: (c=0)&(x>1000) -> 1:(c’=1);
a3: (c=1)&(x>=3) -> 1:(x’=x-3);
reach: (c=1)&(x=2)&(y>=30)

Figure 4.10: Two guarded-command programs.

Program Value Interval Octagon Grid Product
M D Mix M D Mix M D Mix M D Mix

Left

Iters: 23 81 24 28 81 28 1 1 1 1 1 1
Time: 25 66.1 27.6 26.6 63.2 26.9 0.39 0.39 0.39 0.6 0.6 0.6
Size: 793 667 769 681 691 681 17 17 17 61 61 61

Right

Iters: - - - - - - - - - 3 7 3
Time: - - - - - - - - - 8.3 20.3 8.2
Size: - - - - - - - - - 495 756 495

Table 4.1: Experimental results for the programs in Fig. 4.10. Iters is the number
of iterations needed. Time is given in seconds. ’-’ means the analysis did not
return a precise enough bound after 10 minutes (i.e., lower and upper bounds
still differed by more than 0.01). Size denotes the maximal number of states
belonging to Player 1 that occured in one of the constructed games.

and mixed (Mix) heuristics. For M and Mix we choose 15 refinement candidates
at each iteration. The results are shown in Table 4.1. For the left program
the integer grid domain (and the product) computes precise bounds after one
iteration. After 10 minutes, the PASS tool (Hahn et al. [52]) only provides the
bounds [0.5, 0.7] for the maximal reachability value. For the right program only
the product of grids and intervals is able to “see” that x ≡ 0 (mod 3) or y < 30
holds, and yields precise bounds after 3 refinement steps. After 10 minutes PASS
only provides the bounds [0, 0.75]. The example illustrates how pure depth-based
unrolling, ignoring probabilistic information, leads to poor results: the mass and
mixed heuristics perform better. PASS may perform better after integrating
appropriate theories, but the example shows that combining domains is powerful
and easily realizable by using abstract interpretation tools.
Programs of Fig. 4.9. For these PASS does not terminate after 10 minutes,
while using the interval domain our approach computes the exact value after at

82

most 5 iterations and less than 10 seconds. Most of the predicates added by
PASS during the refinement for program 2 have the form c ≤ α · i + β with
α > 0, β < 0: PASS’s interpolation engines seem to take the wrong guesses
during the generation of new predicates. This effect remains also if we change
the refinement strategies of PASS. The tool offers the option of manually adding
predicates. Interestingly it suffices to add a predicate as simple as e.g. i > 3 to
help the tool to derive the solution after 3 refinements for program 2.

Zeroconf protocol K = 4 K = 6 K = 8 K = 4 K = 6 K = 8
(Interval domain) P1 P1 P1 P2 P2 P2
Time (Mass heuristic): 6.2 16.8 32.2 5.8 18.5 50.6
Time (Depth heuristic): 2.6 6.0 6.6 2.6 6.7 8.1
Time (Mix): 2.6 6.3 6.8 2.6 6.9 8.4
Time PASS: 0.6 0.8 1.1 0.7 0.9 1.2

Table 4.2: Experimental results for the Zeroconf protocol. Time in seconds.

Zeroconf. This is a simple probabilistic model of the Zeroconf protocol, adapted
from Kattenbelt et al. [63], where it was analyzed using PRISM and predicate
abstraction. It is parameterized by K, the maximal number of probes sent by
the protocol. We check it for K = 4, 6, 8 and two different properties. Zeroconf
is a very good example for predicate abstraction, and so it is not surprising that
PASS beats the interval domain (see Table 4.2). The example shows how the
mass heuristic by itself may not provide good results either, with depth-unrolling
and the mixed heuristics performing substantially better.

4.9 Related work

Apart from Hahn et al. [52], Hermanns et al. [55], Kattenbelt et al. [62, 63],
Wachter [98] and Wachter and Zhang [99], Monniaux has studied in Monniaux
[76] how to abstract probability distributions over program states (instead of the
states themselves), but only considers upper bounds for probabilities, as already
pointed out in Wachter and Zhang [99]. In Monniaux [77], the author analyses
different quantitative properties of Markov decision processes, again using ab-
stractions of probability distributions. In contrast, our approach constructs an

83

abstract game arena using “nonprobabilistic” domains and widenings and then
performs the computation of strategies and strategy values, which might be used
for a refinement of the abstract game arena. Finally, in Di Pierro et al. [31]
Hankin, Di Pierro, and Wiklicky develop a framework for probabilistic abstract
interpretation which, loosely speaking, replaces abstract domains by linear spaces
and Galois connections by special linear maps, and aims at computing expected
values of random variables. In contrast, we stick to the standard framework, since
in particular we wish to apply existing tools, and aim for upper and lower bounds
of extremal reachability values.

4.10 Conclusion

We have shown in this chapter that game-based approaches for abstraction of
probabilistic systems (Kattenbelt et al. [62, 63], Wachter and Zhang [99]) can be
extended to arbitrary abstract domains, allowing probabilistic checkers to profit
from well developed libraries for abstract domains like intervals, octagons, and
polyhedra (Bagnara et al. [6], Jeannet and Miné [59]).
For this we presented an algorithm for constructing abstract game arenas from
probabilistic programs. We showed how they can be used to obtain bounds
for extremal reachability values of the MDP corresponding to the program. The
algorithm can be instantiated by arbitrary abstract domains and widenings. Since
a generalization of the proofs in Wachter and Zhang [99] and Kattenbelt et al.
[62] did not seem to be straightforward, we provided a new correctness proof.
The new approach allows to refine abstractions using standard techniques like
delaying widenings. We presented a technique that selectively delays widenings
using a heuristics based on quantitative properties of the abstract game arenas.

84

Chapter 5

Termination of Probabilistic
Programs

In the previous chapter we have used abstraction techniques to compute bounds
for reachability probabilities. These bounds are valuable to assess the reliability of
a program or the system which it models. However, besides obtaining quantitative
bounds for probabilities, one is often interested in proving the qualitative property
that a program reaches a set of states with a certain given probability. In this part
of the thesis we study an important special case of this question, namely how to
prove almost-sure termination (a.s.-termination for short). A program is almost-
surely terminating if the probability of a program run reaching a terminating
state is one. We develop a method for proving a.s.-termination for both finite-
state programs and an important class of infinite-state programs. Almost-sure
termination has to be distinguished from the “classical” notion of termination,
which we call sure termination: a program is surely terminating if every program
run eventually reaches a final state.

For many probabilistic programs, a.s.-termination is of critical importance: for
example, protocols for distributed systems as well as randomized algorithms often
do not enjoy sure termination, but a.s.-termination, which still gives an adequate
termination warranty in virtually every practical setting.

For clarifying the different notions of termination consider for example the fol-
lowing program:

86

>, k = 0 `1, k = 1

⊥, k = 1

`1, k = 2

>

`1, k = 3 >, k = 4

1
2, 0 1

2, 0 1
2, 0

1
2, 1 1

2, 1 1
2, 1

1, τ1, τ

1, τ

1, τ

Figure 5.1: MDP of the introductory example. The transitions are labeled by the
coin toss outcomes 0 and 1 .

int k = 1;
l1: while (0 < k < 4) { if (coin(p)) k++ else k-- }
end.

Recall that coin(p) yields 1 (or “true”) with probability 0 < p < 1, and 0 (or
“false”) with probability (1−p). We assume that p is a constant in the following.
We can give it a semantics as an MDP M (see Fig. 5.1)1: states of M are program
states, transitions are chosen according to the program flow and labeled with the
outcome value of coin(p)-calls. We also add an initial state 〈⊥, k = 1〉 and a
final state >. Terminating configurations, i.e. those that correspond to reaching
the end location, are labeled by > and lead to the final state. The resulting MDP
has no action states, and we therefore treat it as a Markov chain in the following.
It is essentially equivalent to the random walk described in Fig. 3.1.
For checking sure termination we can replace the coin(p)-call by a nondeter-
ministic choice operator that returns 0 or 1 nondeterministically. The modified
program terminates surely iff the original one does; Fig. 5.1 then represents its
transition system semantics (if we ignore the probabilistic weights on the tran-

1In this example, we “condensed” the MDP slightly for clarity, since we subsumed the entire
semantic effect of one execution of the loop body into a single transition. See section 5.1 for a
thorough semantic translation of probabilistic programs into MDPs.

87

sitions). Sure termination of programs with finitely many reachable states is a
purely topological property of the transition system associated to the program,
namely absence of cycles. Since Fig. 3.1 contains loops, the program cannot be
surely terminating. A nonterminating program run is e.g.

〈⊥, k = 1〉 → 〈`1, k = 1〉 → 〈`1, k = 2〉 → 〈`1, k = 1〉 → 〈`1, k = 2〉 → . . .

However, the program is almost surely terminating, since we can verify using
Lemma 2 that Pr〈⊥,k=1〉[Reach(M, {>})] = 1.
Sure termination implies almost-sure termination. However, as we can deduce
from the example above, the converse implication is not true. For nonprobabilistic
programs, i.e. programs where no probabilistic choices occur, both notions of
termination trivially coincide.
Proving sure termination is a fundamental challenge of computer science from its
early beginnings. One of the most important results from computability theory
states that the problem of deciding whether a program is surely terminating is
undecidable for general programs. Nonetheless sure termination is expressible in
temporal logic, and so in theory LTL or CTL model checkers can be used to tackle
the problem. However, recent research has shown that special purpose tools, like
Terminator (Cook et al. [22]) and ARMC (Podelski and Rybalchenko [85]), and
techniques like transition invariants, can be dramatically more efficient (Podelski
and Rybalchenko [86, 87], Rybalchenko [92]). Since almost-sure termination is an
equally important property for randomized algorithms and probabilistic protocols
as sure termination is for nonprobabilistic programs, the question arises whether
the very strong advances in automatic termination proving can be exploited in
the probabilistic case.
However, without further restricting the question, the answer is negative. Con-
sider for instance the program

int k = 1;
l1: while (0 < k) { if (coin(p)) k++ else k-- }
end.

whose corresponding MDP is in fact equivalent to the unbounded random walk
(see Fig. 3.2). The program has the same executions for all values of p (only their

88

probabilities change), but it only terminates a.s. for p ≤ 1/2. This shows that
proving a.s.-termination requires arithmetic reasoning not offered by termination
provers (we will see a possible way of solving the problem for simple programs
like the one above in Chapter 6).
The situation changes if we restrict our attention to weakly finite probabilistic
programs. Loosely speaking, a program is weakly finite if the set of states reach-
able from any initial state is finite. Notice that the state space may be infinite,
because the set of initial states may be infinite. Weakly finite programs are a
large class, which in particular contains parameterized probabilistic programs, i.e.,
programs with parameters that can be initialized to arbitrary large values, but
are finite-state for every valuation of the parameters. One can show that a.s.-
termination is a topological property for weakly finite programs. If the program
does not contain nondeterministic choices, then it terminates a.s. iff for every
reachable state s there is a path leading from s to a terminating state, which
corresponds to the CTL property AGEF end (in the nondeterministic case there
is also a corresponding topological property).
As in the nonprobabilistic case that we discussed above, generic infinite-state
model checkers perform poorly for these properties because of the quantifier alter-
nation AGEF . In particular, CEGAR approaches usually fail, because, crudely
speaking, they tend to unroll loops, which is essentially useless for proving ter-
mination.
The same problem appears in particular if we try to apply game-based abstrac-
tion techniques. Here we have to obtain exact extremal reachability values for
proving a.s.-termination, i.e. upper and lower bounds of the minimal reachability
values have both to be 1. In our experiments we learned that this is not fea-
sible in practice for weakly finite programs, see also Section 5.6. Interestingly
though, we show that termination information can help increasing the efficiency
of abstraction techniques in Section 5.7.
In Arons et al. [3], Arons, Pnueli and Zuck present a different and very elegant
approach that reduces a.s.-termination of a probabilistic program to sure termi-
nation of a nondeterministic program obtained with the help of a Planner. A
Planner occasionally and infinitely often determines the outcome of the next k
random choices for some fixed k, while the other random choices are performed

89

nondeterministically. The planner approach is based on the following proof rule,
with P a probabilistic program and R a measurable set of runs of P :

Pr[R] = 1 Every r ∈ R is terminating
P terminates a.s.

In the following we generalize this approach, with the goal of profiting from recent
advances on termination tools and techniques not available when Arons et al. [3]
was published. While we also partially fix the outcome of random choices, we do
so more flexibly with the help of patterns. A first advantage of patterns is that
we are able to obtain a completeness result for weakly finite programs, which
is not the case for Planners. Further, in contrast to Arons et al. [3], we show
how to automatically derive patterns for finite-state and weakly finite programs
using an adapted version of the CEGAR approach (for weakly finite programs, a
simple extrapolation step is used). For this we give an algorithm which exploits
the power of state-of-the-art model checkers and termination provers for non-
probabilistic programs: it calls such tools within a refinement loop and thereby
iteratively constructs a “terminating pattern”, which is a set of terminating runs
with probability one.
This chapter is mostly based on joint work with Javier Esparza and Stefan Kiefer;
parts of the work have been published in Esparza et al. [39] and Esparza et al.
[40].

Structure of the chapter. We first introduce our program model for prov-
ing a.s.-termination, called probabilistic imperative programs (PIPs). We then
present patterns and show that, as a proof method, they are complete for fi-
nite and weakly finite programs. It follows a description of our algorithms for
constructing patterns automatically respectively semi-automatically for finite re-
spectively general weakly finite programs. We report on various case studies
illustrating the effectiveness of our algorithm. Finally, we apply our technique to
improve algorithms for quantitative probabilistic verification based on abstraction
refinement as discussed in Chapter 4 and Kattenbelt et al. [62, 63], Wachter and
Zhang [99]. We close with related work and a short conclusion.

90

5.1 Probabilistic Imperative Programs

We introduce probabilistic imperative programs (PIPs for short), a standard pro-
gram model that is very similar to the one in Kattenbelt et al. [63].
The reason for introducing a new model different from the one in Chapter 4 is
that the tools we use take imperative C-like programs as input; also most of our
test cases are naturally given in an imperative-style language. Differences are
mainly syntactical, and translating programs from one model into the other is
straightforward.
PIPs are given in form of flow graphs whose transitions are labeled with com-
mands. Let V be a set of variable names over the integers (the variable domain
could be easily extended) and let ΣV be the set of possible valuations of V, also
called states. The set of commands contains

• conditional statements, i.e., boolean combinations of expressions e ≤ e′,
where e, e′ are arithmetic expressions (e.g, x+ y ≤ 5 ∧ y ≥ 3);

• deterministic assignments x := e and nondeterministic assignments x :=
nondet() that nondeterministically assign to x the value 0 or 1;

• probabilistic assignments x := coin(p) that assign to x the value 0 or 1 with
probability p or (1− p), respectively, where 0 < p < 1 is a constant.

We can now define our program model:

Definition 32. (Probabilistic Imperative Program)
A probabilistic imperative program (PIP for short) P is a tuple (L, I, ↪→, label,⊥,>),
where

• L is a finite set of control flow locations,

• I ⊆ ΣV is a set of initial configurations,

• ↪→ ⊆ L× L is the flow relation,

• label is a function that assigns a command to each edge,

• ⊥ ∈ L is the start location, and > ∈ L is the end location.

91

⊥

`1

`2

`3 `4

>

k < 100?

oldx := x

x := coin(p)

x = oldx?

x 6= oldx?

k = k + 1

k ≥ 100?

int k = 0, oldx = 0, x = 0;
while (k < 100) {

oldx = x;
x = coin(p);
if (x != oldx) k++

}
end.

Figure 5.2: Example program FW, given as a flow graph on the left and as a code
listing on the right.

We call the elements of ↪→ edges, and as usual we write l ↪→ l′ for (l, l′) ∈ ↪→.
The following standard conditions must hold:

(i) the only outgoing edge of > is > ↪→ >,

(ii) either all or none of the outgoing edges of a location are labeled by con-
ditional statements; if all, then every configuration satisfies the condition
of exactly one outgoing edge; if none, then the location has exactly one
outgoing edge,

(iii) if an outgoing edge of a location is labeled by an assignment, then it is the
only outgoing edge of this location.

A location is nondeterministic if it has an outgoing edge labeled by a nondeter-
ministic assignment, otherwise it is deterministic. Deterministic locations can
be probabilistic or nonprobabilistic. A PIP is deterministic if all its locations are
deterministic.

Observe the program FW shown on the left side of Fig. 5.2. It is an adaption of
a part of the FireWire protocol (McIver et al. [73]). The initial configuration
assigns 0 to k, x, and oldx. FW can be represented by the C-like code shown on
the right side of Fig. 5.2.

92

In the following we often use a representation of PIPs as program listings for the
sake of brevity.

5.1.1 Semantics of PIPs

The semantics of a PIP is given by an MDP:

Definition 33. (Semantics of Probabilistic Imperative Programs)
Let P be a PIP (L, I, ↪→, label,⊥,>), and let LD,LA denote the sets of deter-
ministic and nondeterministic locations of P . The semantics of P is the MDP
MP = (QA, QD, Init,→,LabA,LabP), where QA = LA × ΣV is the set of nonde-
terministic states, QD = ((L \LA)×ΣV)∪ {>} is the set of deterministic states,
Init = {⊥} × I is the set of initial states, LabA = {a0, a1} is the set of action
labels, LabP = {τ, 0, 1} is the set of probabilistic labels, and the relation → is
defined as follows: for every state v = 〈`, σ〉 of MP and every edge ` ↪→ `′ of P

• if label(`, `′) = (x := coin(p)), then v
p,0−→ 〈`′, σ[x 7→ 0]〉 and v

1−p,1−−−→
〈`′, σ[x 7→ 1]〉;

• if label(`, `′) = (x := nondet()), then v
a0−→ 〈`′, σ[x 7→ 0]〉 and v

a1−→
〈`′, σ[x 7→ 1]〉;

• if label(`, `′) = (x := e), then v
1,τ−→ 〈`′, σ[x → e(σ)]〉, where σ[x → e(σ)]

denotes the state obtained from σ by updating the value of x to the expres-
sion e evaluated under σ;

• if label(`, `′) = c for a conditional c satisfying σ, then v 1,τ−→ 〈`′, σ〉.

Further for each state v = 〈>, σ〉, v 1,τ−→ > holds; > 1,τ−→ > is the only outgoing
transition of >.

We distinguish between terminating and nonterminating runs of a PIP:

Definition 34. (Terminating runs)
Let P be a PIP. A run r ∈ RunsMP is terminating if it reaches the final state >
of P , i.e. if r ∈ Reach(MP , {>}); otherwise r is nonterminating.

We can now define almost-sure termination of a PIP:

93

Definition 35. (Almost-sure termination)
A PIP P = (L, I, ↪→, label,⊥,>) is a.s.-terminating if

PrMP ,S
[
{r ∈ RunsMP | r is nonterminating }

]
= 1

for every strategy S, i.e. MinReach(MP , {>}) = 1.

5.1.2 Program Classes

We mainly investigate finite and weakly finite PIPs in the following. A PIP is

• finite if finitely many states are reachable from the initial states of MP ;

• weakly finite if Pb is finite for all b ∈ I, where Pb is obtained from P by
fixing b as the only initial state.

Assumption. In the following sections the focus is on deterministic programs, and
we will assume (in particular in examples and explanations) that the programs
to be analyzed are deterministic. However we will clearly state this assumption
in theorems. We will discuss nondeterministic programs in Section 5.5.

5.2 Patterns

In this section we introduce our notion of patterns. We recall our example program
FW from the previous section, which is a finite PIP:

int k = 0, oldx = 0, x = 0;
while (k < 100) {

oldx = x;
x = coin(p);
if (x != oldx) k++

}
end.

Loosely speaking, FW terminates a.s. because if we keep tossing a coin then with
probability 1 we observe 100 times two consecutive tosses with the opposite
outcome (we even see 100 times the outcome 01). More formally, let us write

94

C := {0, 1} for the set of coin toss outcomes in the following, and let us identify
a run of FW with the sequence of 0’s and 1’s corresponding to the results of the
coin tosses carried out during it. For instance, (01)51 and (001100)50 are termi-
nating runs of FW, and 0ω is a nonterminating run. Every run that is a prefix of
(C∗01)ω eventually reaches the end-statement, and the set of all such runs has
probability 1. From this it follows that FW terminates with probability 1, i.e. is
a.s.-terminating. But it is easy to see that the runs that are prefixes of (C∗01)ω

are also the runs of the following nondeterministic program FW’:

int k = 0, oldx = 0, x = 0;
int c1 = ?, c2 = 2;
while (k < 100) {

oldx = x;
if (c1 > 0) { x = nondet(); c1-- }
elseif (c2 = 2) { x = 0; c2-- }
elseif (c2 = 1) { x = 1; c2-- }
else /* c1 = 0 and c2 = 0 */ { c1 = ?; c2 = 2 }
if (x != oldx) k++

}
end.

The assignment c = ? nondeterministically sets c to an arbitrary nonnegative
integer. FW’ sets c1 to some value and repeatedly tosses the coin (but nonde-
terministically), decreasing the counter c1 each time, until it reaches 0; at this
point, FW’ sets x first to 0 and then to 1, sets the counters again, and iterates.
Termination of FW’ can easily be proved with the help of termination checkers
like ARMC, thus we have proved a.s.-termination of FW.
The set (C∗01)ω is an example of a pattern. We use patterns to restrict a prob-
abilistic program by imposing particular sequences of coin toss outcomes on the
program runs.
In the rest of the section we introduce patterns formally, and prove properties
that allow us to use them as a proof method for a.s.-termination. We recall our
definition C := {0, 1}. We fix a PIP P = (L, I, ↪→, label,⊥,>) and its associated
MDP MP = (QA, QP , Init,→,LabA,LabP), and set Q = QA ∪ QP . We first
introduce the concept of traces:

95

Definition 36. (Traces)
Let M = (QA, QP , Init,→,LabA,LabP) be an MDP and Lab = LabA ∪ LabP .
The trace of a run r = q0

α1−→ q1
α2−→ . . . ∈ RunsM, denoted by r̄, is the infinite

sequence α1α2 . . . ∈ (Lab)∗ of its labels. Given Σ ⊆ Lab, we define r̄|Σ as the
projection of r̄ onto Σ.

Observe that r̄|Σ can be finite.
We introduce patterns as a special class of sets of traces:

Definition 37. (Patterns)
A pattern is a subset of Cω of the form C∗w1C

∗w2C
∗w3 . . ., where w1, w2, . . . ∈

C∗. We say the sequence w1, w2, . . . induces the pattern. A pattern is sim-
ple if it is of the form (C∗w)ω. If w1, w2, . . . is an enumeration of C∗, we call
C∗w1C

∗w2C
∗w3 . . . a universal pattern.

For a pattern Φ ⊆ Cω, a run r ∈ RunsMP is Φ-conforming if there is v ∈ Φ such
that r̄|C is a prefix of v. We call Φ terminating (for P) if all Φ-conforming runs
terminate, i.e., reach >. Note also that for each word w ∈ C∗, the set C∗wCω is
a pattern, induced by the sequence w, ε, ε,
The following theorem illustrates the usefulness of patterns for proving a.s.-
termination:

Theorem 7. (Pattern as a proof method)

(1) Let Φ be a pattern. The set of Φ-conforming runs has probability 1. In
particular, if Φ is terminating, then P is a.s.-terminating.

(2) If P is a.s.-terminating, deterministic and finite with n < ∞ reachable
states in MP , then there exists a word w ∈ C∗ with |w| ∈ O(n2) such that
C∗wCω is terminating for P , and (C∗w)ω is a terminating simple pattern
for P .

(3) If P is a.s.-terminating, deterministic and weakly finite, then every univer-
sal pattern is terminating for P .

96

Part (1) of Theorem 7 is the basis for the pattern approach. It allows to ignore
the set of runs that are not Φ-conforming, because it has probability 0. Part (2)
indicates that for finite programs there is a short word such w that (C∗w)ω is
terminating. Part (3) states that the pattern approach is “complete” for a.s.-
termination and weakly finite programs: for any a.s.-terminating and weakly
finite program there is a terminating pattern (in fact every universal pattern is
terminating).

Proof of Theorem 7.
Part (1) (Sketch, for the full proof see App. B):
We can show that the set of runs r that visit infinitely many probabilistic locations
and do not have the form C∗w1C

ω has probability zero. This result can then easily
be generalized to the set of runs visiting infinitely many probabilistic locations
and not having the form C∗w1C

∗w2 . . . C
∗wiC

ω, for every i ≥ 2. The set of all
runs not conforming to Φ is the countable union of all these sets, which has again
probability zero.
Part (2) :
We define the term “ending up” as follows: A state q ∈ Q ends up in a state
q′ ∈ Q following w = c1c2 . . . cm ∈ C∗ iff

q
τ∗c1τ∗c2τ∗...τ∗cmτ∗−−−−−−−−−−−→ q′, and either q′ = 〈`, σ〉 with ` probabilistic or q′ = >.

Note that q′ is unique if it exists. For every reachable state q and every sequence
w ∈ C∗ holds that either: (i) q ends up in a state 〈`, σ〉 with ` probabilistic
following w, or (ii) q ends up in > following a (possibly empty or not proper)
prefix of w. Otherwise there would exist a state q̃ from which no state with
probabilistic location or > is reachable any more, which contradicts that P is
a.s.-terminating.
For every state q ∈ Q, there exists a sequence c1c2 . . . cm ∈ C∗ such that q ends
up in > following the sequence, again due to the a.s.-termination property of P .
We fix for every q ∈ Q such a sequence w(q); note that we can choose w(q) such
that |w(q)| < n by removing cycles. We set w(>) = ε.
We construct a sequence w(0), w(1), . . . , w(m) using the following algorithm. Set
w(0) := ε and i := 1.

97

1. Pick a q′i ∈ Q that does end up in a state qi 6= > following w(i−1). If no
such q′i exists set w := w(i−1) and terminate.

2. Set w(i) := w(i−1)w(qi). Set i := i+ 1 and go to (1).

See Fig. 5.3 for an illustration of the algorithm.
The state set Q(i) in which a state of Q might end up after following w(i) contains
at most n − i states. This is certainly true for i = 0. In the i-th iteration the
chosen q′i ends up in qi ∈ Q(i−1) after following w(i−1). After following w(qi), qi
ends up in >. Thus q′i ends up in > after w(i). This implies that |Q(i)| < |Q(i−1)|,
since every state can end up in at most one state after following a nonempty coin
sequence, and every Q(i) contains >.
After at most m ≤ n − 1 iterations, |Q(m)| ≤ 1 (i.e., Q(m) = {>}), and the
algorithm terminates. Hence |w(m)| ≤ (n− 1) ·maxq∈Q |w(q)| ≤ (n− 1)2. Every
state of Q ends up in > after following a prefix of w(m). If it ended up in
another state q̂, the algorithm would have performed another iteration (making
the computed sequence element longer); if there were no state q′ such that q ends
up in q′, a prefix of w must have led it to > before.
We can conclude that every run r for which r̄|C is a prefix of a word C∗w(m)Cω

is terminating. Using (C∗w(m))ω ⊆ C∗w(m)Cω it also follows that (C∗w(m))ω is
terminating. This proves the claim.
Part (3) :
Let σ1, σ2, . . . be a (countable or infinite) enumeration of the states in I. Using
Part (2) we obtain for each i ≥ 1 a word wi such that C∗wiCω is terminating for
P , if the only starting state considered is σi. Every universal pattern is a subset
of C∗wiCω for every i ≥ 1 (by its definition), so it is also terminating.

5.3 Constructing Patterns

Theorem 7 (3) guarantees that, for every weakly finite a.s.-terminating program
P , every universal pattern is terminating. This suggests the following method for
proving a.s.-termination of arbitrary, weakly finite P :

98

q1

q2

. . .

qm

>

q1
2

q1
m

>

q2
m . . . qm−1

m >

w(q1)

w(q1)

w(q1)

w(q1
2)

w(q1
2) w(q2

3) w(qm−2
m−1) w(qm−1

m)

Figure 5.3: Illustration for the proof of Theorem 7, part 2. The algo-
rithm chooses successively q1, q2, . . . , qm. The resulting sequence w(m) =
w(q1)w(q1

2) . . . w(qm−2
m−1)w(qm−1

m) leads all states to >.

1. replace in P all probabilistic assignments by nondeterministic ones and
instrument the program so that all its runs are conforming to a universal
pattern;

2. check the resulting program for termination with a termination checker such
as ARMC (Podelski and Rybalchenko [85]).

Although this approach is sound and complete (modulo the strength of the termi-
nation checker), our experience is that it turns out to be rather useless in practice.
This is because the crucial loop invariants are extremely hard to catch for ter-
mination checkers. Already the instrumentation that produces the enumeration
of C∗ requires a nontrivial procedure (such as a binary counter) whose loops are
difficult to analyze.

Therefore we devise in the following another algorithm that tries to compute a ter-
minating pattern C∗w1C

∗w2 The algorithm operates on P and is “refinement”-
based. It uses a “pattern checker” subroutine which takes a sequence w1, w2, . . .,
and checks (or attempts to check) whether the induced pattern is terminating. If
it is not, the pattern checker may return a lasso as counterexample. Formally, a

99

lasso is a sequence

〈l1, σ1〉 → 〈l2, σ2〉 → . . .→ 〈lm, σm〉 → . . .→ 〈ln, σn〉 with 〈ln, σn〉 → 〈lm, σm〉

with 〈l1, σ1〉 ∈ Init and for 1 ≤ i < j ≤ n it holds that 〈li, σi〉 6= 〈lj, σj〉. We call
the sequence 〈lm, σm〉 → . . . → 〈ln, σn〉 the lasso loop of the lasso. Note that a
lasso naturally induces a unique run in RunsMP . If P is finite, pattern checkers
can be made complete, i.e., they either prove the pattern terminating or return
a lasso.
We first show how to automatically construct simple terminating patterns for
finite programs. For this we use a finite-state model checker (in our experiments
SPIN (Holzmann [56])). We then describe how to construct patterns for weakly
finite programs using the procedure for finite-state programs as a building block.
Details about the implementation of pattern checkers and in particular about the
instrumentation of programs is given in Section 5.4.
For the rest of the section we fix a PIP P = (L, I, ↪→, label,⊥,>) and its associ-
ated MDP MP = (QA, QP , Init,→,LabA,LabP).

5.3.1 Finite Programs

Using Theorem 7, we can prove a.s.-termination for every finite PIP P by finding
a simple terminating pattern Φ and constructing a nondeterministic program P ′

whose runs are the Φ-conforming runs of P , and proving that P ′ terminates.
It remains the question of how to find a simple terminating pattern for finite
programs.
The proof of Theorem 7 (3) in fact gives us a method for computing such a pattern.
However, the construction operates on the Markov chain MP , which is expensive
to compute. Moreover, we will see later that it is advantageous to construct
simple patterns (C∗w)ω with w as short as possible (in particular if we invoke
nonprobabilistic termination provers), which this construction does not provide.
We therefore devise a procedure which operates on P , utilizes (nonprobabilistic)
verification tools, such as model checkers and termination provers, and computes
a terminating simple pattern (C∗w)ω for P with w having minimal length.

100

An example. We first give an explanation of our algorithm using an example.
Assume we want to find a terminating pattern for the finite program given in the
introduction (see also Fig. 5.1):

int k = 1;
l1: while (0 < k < 4) { if (coin(p)) k++ else k-- }
end.

First we check if some nonterminating run of the program conforms to Φ0 = Cω,
and get (for example) v1 = (10)ω as answer. This corresponds to the lasso

〈⊥, k = 1〉 → 〈`1, k = 1〉 → 〈`1, k = 2〉 → 〈`1, k = 1〉 → 〈`1, k = 2〉 → . . .

in the MDP of the example (see Fig. 5.1). We compute a spoiler w1 of v1, i.e.
a finite word that is not an infix of v1. The algorithm yields w1 = 00. We now
check if some nonterminating run of the program conforms to Φ1 = (C∗w1)ω, get
v2 = (1100)ω as counterexample, and construct a spoiler w2 of both v1 and v2: a
finite word that is an infix of neither vω1 nor vω2 . We get w2 = 000, and check if
some nonterminating run of the program conforms to Φ2 = (C∗w2)ω. The checker
finds no counterexamples, and so Φ2 is terminating.

The algorithm. We now give a more detailed description of the approach. Let
P be a finite PIP. Our algorithm may take a base word s0 ∈ C∗ as input, which
is set to s0 = ε by default. Further it uses a counter variable i which is set to 0
in the beginning. The algorithm then proceeds as follows:

1. It runs the pattern checker on C∗siC∗si

2. If the pattern checker shows the pattern terminating for P , then, by Theo-
rem 7 (1), P is a.s.-terminating, and the algorithm terminates. Otherwise
the pattern checker returns a lasso 〈l1, σ1〉 → . . . → 〈lm, σm〉 → . . . →
〈ln, σn〉.

3. The algorithm extracts from the lasso loop a word ui+1 ∈ C∗, which in-
dicates a sequence of outcomes of the coin tosses in the lasso loop. If
ui+1 = ε, then the pattern checker has found a nonterminating run with

101

only finitely many coin tosses, hence P is not a.s.-terminating. Otherwise
(i.e., if ui+1 6= ε), let si+1 ∈ C∗ be a shortest word (the spoiler) such that

• s0 (the base word) is a prefix of si+1 and

• si+1 is not an infix of any uωj with 1 ≤ j ≤ i.

We give details on how to construct such an si+1 in the proof of Prop. 4.

4. i is set to i+ 1 and the algorithm goes to step (1).

The algorithm is complete for finite and a.s.-terminating programs:

Theorem 8. (Simple patterns for finite-state PIPs)
Let P be a finite, deterministic, and a.s.-terminating PIP. Then the algorithm
finds a shortest word w such that the pattern C∗wC∗w . . . is terminating and s0

is a prefix of w, thus proving termination of P .

Proof.
Recall from the proof of Theorem 7 (3) that there is a fixed word z ∈ C∗ which
leads from an arbitrary state in RunsMP to termination. In particular, z is never
an infix of uωi for any i. It follows that s0z is never an infix of uωi for any i. Assume
for a contradiction that our algorithm does not succeed in proving termination.
Since the si are all pairwise different, our algorithm eventually chooses sj := s0z

for some j ∈ N (note that the algorithm always chooses a shortest spoiler). By the
definition of z the pattern C∗zC∗z . . . is terminating, and then also C∗sjC∗sj . . . is
terminating. It follows that the pattern checker reports C∗sjC∗sj . . . terminating,
which is a contradiction. For proving that w is the shortest word such that
C∗wC∗ . . . is terminating and s0 is a prefix of w assume the algorithm terminates
after k iterations. For every word v such that C∗vC∗v . . . is terminating and s0 is
a prefix of v, it holds that v is never an infix of uωi for any 1 ≤ i ≤ k. The result
w computed by the algorithm is a shortest word also enjoying this property, since
we always choose a shortest spoiler. It follows that w has minimal length.

In each iteration the algorithm picks a word sj that destroys all previously dis-
covered lasso loops. If the loops are small, then the word is short:

Lemma 4. We have |sj| ≤ |s0|+ 1 + log2 (|u1|+ · · ·+ |uj|).

102

int k = 1;
while (0 < k < N) {

if (coin(p)) k++ else k--
}
end.

int K = 2; int c1 = ?; int c2 = K;
int k = 1;
while (0 < k < N) {

if (c1 > 0) {
if nondet() k++ else k--; c1--

}
elseif (c2 > 0) { k--; c2-- }
else { K++; c1 = ?; c2 = K }

}
end.

Figure 5.4: The PIP RW and the program RW’.

Proof. If a word w is not an infix of any of the words uω1 , . . . , uωj , then neither is
s0w. Hence it suffices to construct such a word w with |w| ≤ 1 + log2K, where
K := |u1| + · · · + |uj|. Let p1, . . . , pK be an enumeration of all suffixes of the
words uω1 , . . . , uωj . For any word w, we denote by S(w) ⊆ {p1, . . . , pK} the set of
words p ∈ {p1, . . . , pK} such that w is a prefix of p. It suffices to construct w such
that |w| ≤ 1 + log2K and S(w) = ∅. We construct w iteratively. Let w0 := ε. In
each iteration i, choose wi+1 := wic with c ∈ {0, 1} so that |S(wic)| is minimized.
Observe that |S(wi+1)| ≤ |S(wi)|/2, as all words in S(wi) start with either wi0
or wi1. It follows that S

(
w1+blog2 Kc

)
= ∅.

5.3.2 Weakly Finite Programs

We now address our main goal, namely proving a.s.-termination for weakly finite
programs. We note that the problem is undecidable in general, since already
proving sure termination for weakly finite programs without probabilistic choices
is undecidable (see e.g. Apt and Kozen [2]). Therefore every approach that at-
tempts to prove termination has to be incomplete.
For weakly finite a.s.-terminating programs there might not be a simple termi-
nating pattern. Consider the random walk program RW on the left of Fig. 5.4,
where N is an input variable. RW terminates a.s., but we can easily show (by set-
ting N to a large enough value) that no simple pattern is terminating. However,
there is a terminating pattern, namely Φ = C∗00C∗000C∗0000 . . .: every Φ-
conforming run terminates, whatever value N is set to. Since, by Theorem 7 (1),

103

>, k = 0, N = 4 `1, k = 1, N = 4

⊥, k = 1, N = 4

`1, k = 2, N = 4 `1, k = 3, N = 4 >, k = 4, N = 4

>, k = 0, N = 3 `1, k = 1, N = 3

⊥, k = 1, N = 3

`1, k = 2, N = 3 >, k = 3, N = 3

>, k = 0, N = 2 `1, k = 1, N = 2

⊥, k = 1, N = 2

>, k = 2, N = 2RW2

RW3

RW4

...

...

1
2, 0 1

2, 0 1
2, 0

1
2, 1 1

2, 1 1
2, 1

1, τ

1
2, 0 1

2, 0

1
2, 1 1

2, 1

1, τ

1
2, 0

1
2, 1

1, τ

Figure 5.5: MDP associated to RW: the states belonging to RW2, RW3 and RW4 are
shown. The state > and transitions to > are omitted for clarity.

the Φ-conforming runs have probability 1 (intuitively, when tossing a coin we will
eventually see longer and longer chains of 0’s), RW terminates a.s.
We propose a technique that uses the procedure for finite-state programs as a
building block, and extends it with an extrapolation step in order to produce a
candidate for a terminating pattern.

An example. We again first sketch the procedure, this time using RW as an
example. The MDP corresponding to RW is shown in Fig. 5.5. Let RWi be the
program RW with N = i. Since every RWi is finite-state, we can find terminating
patterns Φi = (C∗ui)ω for a finite set of values of i, say for i = 1, 2, 3, 4, 5. We ob-
tain u1 = u2 = ε, u3 = 00, u4 = 000, u5 = 0000. As we will see later, we choose ui
such that Φi is not only terminating for RWi, but also for every RWj with j ≤ i. This
suggests to extrapolate and take the pattern Φ = C∗00C∗000C∗0000C∗00000 . . .
as a candidate for a terminating pattern of RW. We automatically construct the
nondeterministic program RW’ on the right of Fig. 5.4 (see Section 5.4 for de-
tails). The theorem prover ARMC proves that RW’ terminates, and so that RW

104

terminates almost surely.

The algorithm. We give a more detailed description of our algorithm. Let P
be an a.s.-terminating and weakly finite PIP. Let b1, b2, . . . be an enumeration of
the set I of initial states. Our algorithm first fixes b1 as the only initial state.
This leads to a finite program, so we can run the previously described algorithm
for finite programs, yielding a word w1 such that C∗w1C

∗w1 . . . is terminating
for the initial state b1. Next our algorithm fixes b2 as the only initial state,
and runs the previously described algorithm taking w1 as base word. As before,
this establishes a terminating pattern C∗w2C

∗w2 By construction of w2, the
word w1 is a prefix of w2, so the pattern C∗w2C

∗w2C
∗w2 . . . is terminating for the

initial states {b1, b2}. Continuing in this way we obtain a sequence w1, w2, . . . such
that C∗w1C

∗w2 . . . is terminating. Our algorithm may not terminate, because it
may keep computing w1, w2, However, as we saw in the RW-example that it is
promising to compute the first few wi and then guess an expression for general wi.
For instance if w1 = 0 and w2 = 00, then one may guess wi = 0i. We represent
the guessed sequence w1, w2, . . . in a finite way. For example, in our experiments
the sequences can often be described by wi = wi+c for a c ∈ N and w ∈ {0, 1}∗.
We pass the obtained pattern C∗w1C

∗w2 . . . to a pattern checker, which then may
show the pattern terminating, establishing a.s.-termination of the weakly finite
program P .

5.4 Implementing Pattern Checkers

In this section we give technical details about constructing pattern checkers both
for checking finite and general weakly finite programs. We use existing tools and
techniques like finite-state model checkers for temporal properties and termina-
tion provers in our tool chain.
Finite Programs. We describe how to build a pattern checker for a finite
program P and a pattern of the form C∗wC∗w . . . (i.e. a simple pattern). We
employ a model checker for finite-state nonprobabilistic programs that can verify
temporal properties: given as input a finite program and a Büchi automaton
A, the model checker returns a lasso if there is a program run accepted by A

105

(such runs are called “counterexamples” in classical terminology). Otherwise it
states that there is no counterexample. For our case studies, we use the SPIN
tool (Holzmann [56]).
Given a finite probabilistic program P and a pattern Φ = C∗wC∗w . . ., we first
transform P into a nonprobabilistic program P ′ as follows. We introduce two
fresh variables c and term, with ranges {0, 1, 2} and {0, 1}, respectively, and add
assignments term = 0 and term = 1 at the beginning and end of the program,
respectively. Then every location ` of P with label(`, `′) = (x := coin(p)) for a
label `′ is replaced by a nondeterministic choice and an if-statement as follows:

x = nondet();
if (x = 0) { c = 0; c = 2 }
else { c = 1; c = 2 }

In this way we can distinguish coin toss outcomes in a program trace by inspecting
the assignments to c. Now we perform two checks on the nonprobabilistic pro-
gram P ′: first we use SPIN to translate the LTL formulaG¬term∧FG(c 6∈ {0, 1})
into a Büchi automaton and check whether P ′ has a run that satisfies this for-
mula. If there is indeed such a lasso, our pattern checker reports it. Observe that
by the construction of the LTL formula the lasso encodes a nonterminating run
in P that eventually stops visiting probabilistic locations. So the lasso loop does
not contain any coin tosses (and our algorithm will later correctly report that P
is not a.s.-terminating). Otherwise, i.e. if no run satisfies the formula, we know
that all nonterminating runs involve infinitely many coin tosses. Then we per-
form a second query: we construct a Büchi automaton A(w) that represents the
set of infinite Φ-conforming runs, see Fig. 5.6. We use SPIN to check whether P ′

has a run that is accepted by A(w). If yes, then there is an infinite Φ-conforming
run, and our pattern checker reports the lasso. Otherwise, it reports that Φ is a
terminating pattern.
Weakly Finite Programs. Recall that for weakly finite programs, the pat-
tern checker needs to handle patterns of a more general form, namely Φ =
C∗w1C

∗w2 Even easy patterns like C∗0C∗00C∗000 . . . cannot be represented
by a finite Büchi automaton. Therefore we need a more involved instrumentation
of the program to restrict its runs to Φ-conforming ones. Now our pattern checker

106

. . .
c = c1 c = c2 c = c3 c = cn−1 c = cn

true c = 2 c = 2 c = 2

true

Figure 5.6: Büchi automaton A(w), for w = c1c2 . . . cn ∈ C∗. Note that the
number of states in A(w) grows linearly in |w|.

employs a termination checker for infinite-state programs. For our experiments
we use ARMC (Podelski and Rybalchenko [85]).
Given a weakly finite program P and a pattern Φ = C∗w1C

∗w2 . . ., we trans-
form P into a nonprobabilistic program PΦ as follows. We use a command x = ?,
which nondeterministically assigns a nonnegative integer to x. Further we assume
that we can access the k-th letter of the i-th element of (wi)i∈N by w[i][k] and
|wi| by length(w[i]). For example, if wi = wi+c for a c ∈ N and w ∈ {0, 1}∗,
then w[i][k] is the ((k mod |w|) + 1)-th letter of w and length(w[i]) equals
|w| · (i + c). We add fresh variables ctr, next and pos, where ctr is initial-
ized nondeterministically with an arbitrary nonnegative integer and next and
pos are both initialized with 1. If a run r is Φ-conforming, r̄|C is a prefix of
v1w1v2w2v3w3 . . ., with vi ∈ C∗. The variable ctr is used to “guess” the length
of the words vi; the individual elements in vi are irrelevant. We replace every
command x := coin(p) by the code sequence given in Fig. 5.7.
The runs in the resulting program PΦ correspond exactly to the Φ-conforming
runs in P . Then PΦ is given to the termination checker. If it proves termination,
we report “Φ is a terminating pattern for P”. Otherwise, the tool might either
return a lasso, which our pattern checker reports, or give up on PΦ, in which case
our pattern checker also has to give up.
In our experiments, a weakly finite program typically has an uninitialized integer
variable N whose value is nondeterministically fixed in the beginning. The pat-
tern C∗w1C

∗ . . . C∗wNC
ω is then often terminating, which makes next ≤ N an

invariant in PΦ. The termination checker ARMC may benefit from this invari-
ant, but may not be able to find it automatically. We therefore enhanced ARMC
to “help itself” by adding the invariant next ≤ N to the program if ARMC’s
reachability mode can verify the invariant.

107

x = nondet();
if (ctr <= 0) {

if (pos > length(w[next])) { ctr = ?; pos = 1; next = next+1 }
else { x = w[next][pos]; pos = pos+1 }

}
else ctr = ctr-1

Figure 5.7: Code transformation for coin tosses in weakly finite programs.

⊥ l1 l2 >
x := nondet() y := coin(p) x 6= y?

x = y?

Figure 5.8: Nondeterministic a.s.-terminating program without terminating pat-
tern.

5.5 Nondeterministic Programs

In the previous sections we have described how to use patterns for proving a.s.-
termination for deterministic PIPs. We now show how to extend our notion of
patterns to obtain a complete method for finite and weakly finite nondeterministic
PIPs.
For nondeterministic a.s.-terminating programs, there might not exist a termi-
nating pattern, even if the program is finite. Figure 5.8 shows an example.
Let Φ be a pattern and c1c2c3 . . . ∈ Φ. The run

〈⊥, σ0〉
ac1−−→ 〈l1, σ1〉

c1−→ 〈l2, σ′1〉
τ−→ 〈⊥, σ′1〉

ac2−−→ 〈l1, σ2〉
c2−→ 〈l2, σ′2〉

τ−→ 〈⊥, σ′2〉
ac3−−→ . . .

in MP is Φ-conforming but nonterminating.
We therefore propose another pattern class that also takes nondeterministic de-
cisions into account. We fix an arbitrary PIP P = (L, I, ↪→, label,⊥,>), and its
associated MDP MP = (QA, QP , Init,→,LabA,LabP). We write A := {a0, a1}
and G := {a0, a1} ∪ C.
We assume that P is in a special normal form: every nondeterministic location
has a probabilistic location as its successor, and every probabilistic location has
a nondeterministic location as its successor. It is easy to transform a PIP into
normal form by adding redundant probabilistic and nondeterministic locations

108

such that the transformed program terminates iff the original one does. For
example, the PIP in Fig. 5.8 is in normal form. If P is in normal form, then
every run r̄ ∈MP satisfies r|G ∈ (AC)∞.
A set W ⊆ (AC)∗ is called a response of length n ≥ 0 if (i) every w ∈ W

has length 2n, (ii) for w1, w2 ∈ W with w1 6= w2, w1|A 6= w2|A holds, and (iii)
W contains exactly 2n elements. We denote by Resp(n) the set of responses of
length n, and set Resp := ⋃

n∈N Resp(n). Intuitively, a response R of length n

contains for every sequence of nondeterministic actions of length n a sequence
of coin toss outcomes of length n (interleaved in one word of R). For example,
{a0c1, a1c0} is a response of length one, {a0c0a0c1, a0c0a1c1, a1c0a0c1, a1c0a1c1} is
a response of length two. We can now define response patterns:

Definition 38. (Response pattern)
A response pattern is a subset of (AC)ω of the form (AC)∗R1(AC)∗R2(AC)∗ . . .,
where R1, R2, . . . are responses. We say R1, R2, . . . induces the response pattern.
As in the deterministic case, if R1, R2, . . . is an enumeration of all responses,
we call the pattern (AC)∗R1(AC)∗R2(AC)∗ a universal response pattern, and a
pattern of the form ((AC)∗R1)ω a simple response pattern.

For a response pattern Φ, a run r ∈ Runs(MP) is Φ-conforming if there is v ∈ Φ
such that r̄|G is a prefix of v. We call a response pattern Φ terminating if all
Φ-conforming runs terminate.
Analogously to the deterministic case, we can show the following theorem. Its
proof is similar to the one of Theorem 7 and is given in Appendix B:

Theorem 9. (Response pattern as a proof method)
Let P be a PIP in normal form.

(1) Let Φ be a response pattern. The set of Φ-conforming runs has probability 1
for every strategy S for MP . In particular, if P has a terminating response
pattern, then P is a.s.-terminating.

(3) If P is a.s.-terminating and finite with n <∞ reachable states in MP , then
there exists a response R of length in O(n2) such that (AC)∗R(AC)ω is
terminating for P and ((AC)∗R)ω is a simple terminating response pattern
for P .

109

(2) If P is a.s.-terminating and weakly finite, then the universal response pat-
tern is terminating for P .

For the program in Fig. 5.8, a terminating response pattern is

Φ = (AC)∗{a0c1, a1c0}(AC)ω.

Every Φ-conforming run has the form

〈⊥, σ0〉 → . . .→ q
ai−→ q′

c1−i−−→ q′′ → >→ . . .

for an i ∈ {0, 1}.

5.6 Experimental Evaluation

We apply our methods to several parameterized programs taken from the litera-
ture.1

• firewire: A fragment of FireWire’s symmetry-breaking protocol, adapted
fromMcIver et al. [73] (we used a simplified version as example program FW).
Roughly speaking, the number 100 of Fig. 5.2 is replaced by a parameter N .

• randomwalk: A slightly different version of the finite-range, one-dimensional
random walk example RW.

• herman: An abstraction of Herman’s randomized algorithm for leader elec-
tion used in Nakata [80]. It can be seen as a more complicated finite random
walk, with N as the walk’s length.

• zeroconf: A model of the Zeroconf protocol taken from Kattenbelt et al.
[63] that we also analyzed in Section 4.8. The protocol assigns IP addresses
in a network. The parameter N is the number of probes sent after choosing
an IP address to check whether it is already in use.

1The sources can be found at http://www.model.in.tum.de/~gaiser/cav2012.html.

http://www.model.in.tum.de/~gaiser/cav2012.html

110

Name #loc Pattern words for Time i-th word of Time
N = 1, 2, 3, 4 (SPIN) guessed pattern (ARMC)

firewire 19 010 010 010 010 17 sec 010 001 min 36 sec
randomwalk 16 ε 02 03 04 23 sec 0i 001 min 22 sec
herman 36 010 0(10)2 0(10)3 0(10)4 47 sec 0(10)i 007 min 43 sec
zeroconf 39 03 04 05 06 20 sec 0i+2 026 min 16 sec
brp 57 00 00 00 00 19 sec 00 045 min 14 sec

Figure 5.9: Constructed patterns of the case studies and runtimes.

• brp: A model adapted from Kattenbelt et al. [63] that models the well-
known bounded retransmission protocol. The original version can be proven
a.s.-terminating with the trivial pattern Cω; hence we study an “unbounded”
version, where arbitrarily many retransmissions are allowed. The param-
eter N is the length of the message that the sender must transmit to the
receiver.

Proving a.s.-termination. We prove a.s.-termination of the examples us-
ing SPIN (Holzmann [56]) to find patterns of finite-state instances, and ARMC
(Podelski and Rybalchenko [85]) to prove termination of the nondeterministic
programs derived from the guessed pattern. All experiments were performed on
an Intel c© i7 machine with 8 GB RAM. The results are shown in Fig. 5.9. The first
two columns give the name of the example and its size. The next two columns
show the words w1, . . . , w4 of the terminating patterns C∗w1C

ω, . . . , C∗w4C
ω com-

puted for N = 1, 2, 3, 4 (see Theorem 7 (3) and Section 5.4), and SPIN’s runtime.
The last two columns give word wi in the guessed pattern C∗w1C

∗w2C
∗w3 . . . (see

Section 5.4), and ARMC’s runtime. For instance, the entry 0(10)i for herman
indicates that the guessed pattern is C∗010C∗01010C∗0101010
We derive two conclusions. First, a.s.-termination is proved by very simple pat-
terns: the general shape is easily guessed from patterns for N = 1, 2, 3, 4, and
the need for human ingenuity is virtually reduced to zero. This speaks in favor of
the Planner technique of Arons et al. [3] and our extension to patterns, compared
to other approaches using fairness and Hoare calculus (McIver and Morgan [72],
Pnueli and Zuck [84]). Second, the runtime is dominated by the termination tool,
not by the finite-state checker. So the most direct way to improve the efficiency
of our technique is to produce faster termination checkers.

111

5.7 Termination Information and Reachability
Probabilities

In the beginning of this chapter we claimed that general purpose probabilistic
model checkers perform poorly for a.s.-termination, since they are not geared
towards this problem. To supply some evidence for this, we tried to prove
a.s.-termination of the first four examples from our experiments (firewire, ran-
domwalk, herman, zeroconf) using the known PASS tool (Hahn et al. [52]) that
we already used for comparisons in Chapter 4. In all four cases the refinement
loop did not terminate.1 Essentially, the tool unfolds the concrete system for
specific single initial states during the refinement, but is never able to prove
a.s.-termination for all initial states.
We sketch the underlying problems of model checkers that use abstraction tech-
niques with the help of an program example P :

int x = N;
while (x > 0) {

if (coin(0.5)) x--
}
end.

We want to prove that P is a.s.-terminating using a game-based abstraction
approach. We use our notation from the previous chapter, where we constructed
game arenas for obtaining extremal reachability values. We transform P into a
PGP:

int x = N;
a: (x > 0) -> 0.5: x’ = x-1 + 0.5: x’ = x
reach: !(x>0)

P is almost surely terminating. Let G be an abstract game arena of P . First recall
that proving a.s.-termination is equivalent to showing that MinReach(MP , F) =
1, for F the set of states enabling ¬(x > 0). For G therefore

min−(G, {�,�}) = min+(G, {�,�}) = 1
1Other checkers, like PRISM, cannot be applied because they only work for finite-state

systems.

112

has to hold. We sketch in the following that every G for which Eq. 5.7 holds is
large: it contains at least N + 1 states belonging to Player 1 (i.e. it has at least
as many Player 1 states as MP has action states).
Let us assume for the sake of contradiction that G has less than N + 1 Player
1 states in G and satisfies Eq. 5.7. Let γ be the concretization function of the
abstract domain used for building G. Let us further assume for simplicity that the
abstract domain is a predicate domain, i.e. for every concrete program state σ
reachable in MP there exists exactly one Player 1 state in s such that σ ∈ γ(s).1

Since for every reachable state σ of the program there has to be one abstract
state s in the abstraction with σ ∈ γ(s), there is a (reachable) Player 1 state s
in G with {σ1, σ2} ⊆ γ(s) such that 0 ≤ σ1(x) < σ2(x), with σ1, σ2 two reachable
action states in MP . Since σ2(x) > 0, Player 1 can choose a from s, and Player
2 can approve and choose a state 〈s, a, d1〉 such that

〈s, a, d1〉
0.5,1−−→ s1

with Jca(1)K(σ2) ∈ γ(s1) and

〈s, a, d1〉
0.5,2−−→ s

(recall that we use a predicate domain, and Jca(2)K(σ2) = σ2 ∈ γ(s)). After
choosing 〈s, a, d1〉 the game is either again in state s, or in an abstract state
s1 that contains the concrete state Jca(1)K(σ2). If Jca(1)K(σ2)(x) = 0, then
σ1(x) = 0 since 0 ≤ σ1(x) < σ2(x) holds, and s = s1 holds; in this case the
play can stay in s, 〈s, a〉, and 〈s, a, d〉 forever, and so never reaches � or �. If
Jca(2)K(σ2)(x) > 0, Player 1 can choose a in s1 again, and Player 2 can approve
by choosing a state d2 such that 〈s1, a, d2〉

0.5,1−−→ s2 and 〈s1, a, d2〉
0.5,2−−→ s1 where

Jca(1)K(Jca(1)K(σ2)) ∈ γ(s2), i.e. we either stay in s1 or reach an abstract state
containing a concrete state whose x-value is again decreased. If we continue in
this manner, we eventually reach a state sk with σ1 ∈ γ(sk), and then sk = s

holds. The players can again play according to the rules from above, resulting in a
cycle: the game stays in s, 〈s, a〉, 〈s, a, d1〉, s1, 〈s1, a〉, 〈s1, a, d2〉, . . . , 〈sk−1, a, dk−1〉

1the following argument applies also for arbitrary domains and overlapping abstract states,
however it is less tedious to use a domain that partitions the state space for showing the claim.

113

forever. Hence min−(G, {�,�}) < 1 has to hold.
Essentially the same problem can arise in all variants of game-based approaches
developed so far (Kattenbelt et al. [62, 63], Wachter and Zhang [99]). In partic-
ular, if we want to show termination for the weakly finite version of P , i.e. if we
replace int x = N by int x = ?, no (finite) game-based abstraction is sufficient
for proving a.s.-termination.1

5.7.1 Improving Lower Bounds for Reachability

Consider now a program of the form

if coin(0.8) {P1()}
else {P2()}
ERROR
end.

We are interested in the probability of reaching ERROR. We saw in the previous
section that game-based abstraction approaches have trouble computing lower
bounds for extremal reachability values: in the example they work with abstrac-
tions of P1 and P2, and so they may not be able to ascertain that paths of the
abstraction are concrete paths of the program, leading to poor lower bounds.
Information on a.s.-termination helps: if e.g. P1 terminates a.s., then we already
have a lower bound of 0.8. We demonstrate this technique on two examples. The
first one is the following modification of firewire:

int N = 1000; int k = 0; int miss = 0;
while (k < N) {

oldx = x; x = coin(0.5);
if (x = oldx) k++
elseif (k < 5) miss = 1

}
end.

1In the previous chapter we did not use more than one concrete initial state for P ; this
restriction however is not essential and can easily be removed by using more than one initial
abstract state in the abstract game arenas.

114

For i ∈ {0, 1}, let pi be the probability that the program terminates with miss = i.
After 20 refinement steps PASS returns upper bounds of 0.032 for p0 and 0.969 for
p1, but a lower bound of 0 for p1, which stays 0 after 300 iterations. Our algorithm
establishes that the loop a.s.-terminates, which implies p0 + p1 = 1, and so after
20 iterations we already get 0.968 ≤ p1 ≤ 0.969. We apply the same technique to
estimate the probabilities p1, p0 that zeroconf detects/does-not-detect an unused
IP address. For N = 100, after 20 refinement steps PASS reports an upper bound
of 0.999 for p0, but a lower bound of 0 for p1, which stays 0 for 80 more iterations.
With our technique after 20 iterations we get 0.958 ≤ p1 ≤ 0.999.

5.8 Related Work

Almost-sure termination is highly desirable for protocols if termination within a
fixed number of steps is not feasible. For instance, Bracha and Toueg [16] consid-
ers the problem of reaching consensus within a set of interconnected processes,
some of which may be faulty or even malicious. They succeed in designing a
probabilistic protocol to reach consensus a.s., although it is known that no de-
terministic algorithm terminates within a bounded number of steps. Therefore
the problem of proving probabilistic programs a.s.-terminating has been tackled
quite early in the research community. A well-known approach for proving a.s.-
termination are Pnueli et al.’s notions of extreme fairness and α-fairness (Pnueli
[83], Pnueli and Zuck [84]). These proof methods, although complete for finite-
state systems, are hard to automatize and require a lot of knowledge about the
considered program. The same applies for the approach of McIver et al. in McIver
and Morgan [72] that offers proof rules for probabilistic loops in pGCL, an ex-
tension of Dijkstra’s guarded language. The paper Monniaux [78] discusses prob-
abilistic termination in an abstraction-interpretation framework. It focuses on
programs with a (single) loop and proposes a method of proving that the prob-
ability of taking the loop k times decreases exponentially with k. This implies
a.s.-termination. In contrast to our work there is no tool support in Monniaux
[78].

115

5.9 Conclusion

In this chapter we have presented an approach for automatically proving a.s.-
termination of probabilistic programs. Inspired by the Planner approach of Arons
et al. [3], we instrument a probabilistic program P into a nondeterministic pro-
gram P ′ such that the runs of P ′ correspond to a set of runs of P with prob-
ability 1. The instrumentation is fully automatic for finite-state programs, and
requires an extrapolation step for weakly finite programs. We automatically check
termination of P ′ profiting from new tools that were not available to Arons et al.
[3]. While our approach maintains the intuitive appeal of the Planner approach,
it allows to prove completeness results. Furthermore, while in Arons et al. [3]
the design of the Planner was left to the verifier, we have provided a CEGAR-
like approach. In the case of parameterized programs, the approach requires an
extrapolation step, which however in our case studies proved to be straightfor-
ward. Finally, we have also shown that our approach improves the game-based
abstraction techniques of Kattenbelt et al. [62], Wachter and Zhang [99] and our
method from Chapter 4 for computing upper and lower bounds for the probability
of reaching a program location. While this technique often provides good upper
bounds, the lower bounds are not so satisfactory (often 0), due to spurious non-
terminating runs introduced by the abstraction. Our approach allows to remove
the effect of these runs.

116

Chapter 6

Extinction in Branching
Processes

In the previous chapters we have studied reachability and termination properties
of probabilistic programs. In Chapter 4 we have developed a method for comput-
ing bounds of extremal reachability values; in Chapter 5 we have given a proof
method for showing that a program is almost-surely terminating. For the lat-
ter we restricted ourselves to weakly finite programs, since for them almost-sure
termination is a topological property of their corresponding MDP. This allowed
us to neglect the actual values of probabilities occuring in the programs. For
other kind of probabilistic programs, however, we argued that more elaborate
techniques are necessary, and used the example program

int k = 1;
l1: while (0 < k) { if (coin(p)) k++ else k-- }
end.

as an illustration: in this example almost-sure termination depends on the con-
crete value of p.
In this part of the thesis we study multi-type finite branching processes (MFBPs
for short), a stochastic model which is widely used in numerous scientific branches.
More precisely, we develop algorithms for investigating extinction probabilities for
MFBPs. Our methods enables us to prove almost-sure termination for a special
class of simple recursive programs (besides solving problems in other areas). In
particular we can represent the example program above within this program class.

118

An MFBP describes the development of a population of individuals. Each indi-
vidual of a population has a type i from {1, . . . , n} for a fixed n. It produces a
random number of children of different types determined by a fixed probability
distribution; the union of all offsprings of every individual then forms the next
generation of the process. The distribution only depends on the type of the in-
dividual (there are no interactions between members of the current population).
Examples of individuals include elementary particles, genes, animals, or program
threads (Athreya and Ney [4], Harris [54]). It turns out that the probability
of a given initial population becoming ultimately extinct is important for many
applications of MFBPs.
We can represent an MFBP as an infinite-state Markov chain; its state space
consists of populations. Extinction in an MFBP corresponds to reaching the
empty population (without any individuals) in the corresponding Markov chain.
We already studied classes of infinite-state Markov chains and MDPs (e.g. those
corresponding to PGPs or weakly finite PIPs) for which computing reachability
probabilities for infinite-state Markov chains is undecidable in general, therefore
we relied on incomplete methods. It is even undecidable to give nontrivial bounds
for probabilities in these chains In the case of Markov chains corresponding to
MFBPs, however, given an initial population, we can give efficient algorithms for
(i) deciding whether the probability of reaching the empty population is one and
(ii) computing bounds for the probability of reaching the empty population. We
show that the latter is even possible in strongly-polynomial time.
It turns out that the extinction probabilities of an MFBP play an important role
for both problems (i) and (ii). For every type i of an MFBP, the extinction
probability ψi denotes the probability that a population consisting of a single in-
dividual of type i eventually goes extinct. We group them together into a vector
ψ = (ψ1, . . . , ψn)>. Given ψ we can easily compute the probability of an arbi-
trary given population going ultimately extinct, so we will focus on investigating
properties of ψ in the following.
MFBPs and in particular the study of their extinction probabilities appear in
many different scientific areas, often with different names: in computer science
MFBPs are used for the study of reachability probabilities and almost-sure ter-
mination in computation models like stateless probabilistic pushdown automata

119

(Esparza et al. [38]) and 1-exit recursive Markov chains (Etessami and Yannakakis
[43]). The consistency problem of stochastic context-free grammars, an important
question in statistical natural language processing (Manning and Schuetze [70]),
boils down to solving (i).
MFBPs are also important in biology, physics and chemistry, e.g. for modeling
the growth of animal populations (and their possible extinction). In Section 6.5
we give an example of how extinction probabilities can be used as a model to
assess the probability of nuclear chain reactions.
Extinction probabilities can be expressed as solutions of an equation system of
the form

X1 = f1(X1, . . . , Xn) . . . Xn = fn(X1, . . . , Xn) ,

where, for every i ∈ {1, . . . , n}, fi is a polynomial over X1, . . . , Xn with pos-
itive rational coefficients that add up to 1. The solutions are the fixed points
of the function f : Rn → Rn with f = (f1, . . . , fn). By Kleene’s theorem (2),
every such f has a least nonnegative fixed point, µf , given by the limit of the
sequence 0, f(0), f(f(0)), A fundamental result of the theory of MFBPs (see
e.g. Athreya and Ney [4], Harris [54]) states that extinction probabilities of species
are equal to µf , i.e. ψ = µf . However, extinction probabilities cannot be repre-
sented by radicals in general (see Etessami and Yannakakis [43]), so we can only
approximate them, e.g. by giving lower and upper bounds.
We develop efficient but nevertheless precise algorithms for the following two
problems: given a PSP f with least nonnegative fixed point µf ,

(A) decide whether µf = 1, and

(B) given a rational number ε > 0, compute lb,ub ∈ Qn such that lb ≤
µf ≤ ub and ub − lb ≤ ε (where u ≤ v for vectors u,v means ≤ in all
components).

Problem (B) immediately allows us to obtain bounds for extinction probabilities
of an MFBP with a given accuracy. Besides the fact that Problem (A) can be
used to decide whether a one-exit recursive Markov chain or a stateless proba-
bilistic pushdown automaton is almost-surely terminating (see also Esparza et al.
[38], Etessami and Yannakakis [43]), we give another motivation in the case study

120

of Section 6.5: there we consider a family of PSPs, taken from Harris [54], mod-
elling the neutron branching process in a ball of radioactive material of radius D
(the family is parameterized by D). The least fixed point is the probability that
a neutron produced through spontaneous fission does not generate an infinite
“progeny” through successive collisions with atoms of the ball; loosely speaking,
this is the probability that the neutron does not generate a chain reaction and
the ball does not explode. Since the number of atoms in the ball is very large,
spontaneous fission produces many neutrons per second, and so even if the prob-
ability that a given neutron produces a chain reaction is very small, the ball will
explode with large probability in a very short time. It is therefore important to
determine the largest radius D at which the probability of no chain reaction is
still 1 (usually called the critical radius). An algorithm for Problem (B) allows
to compute the critical radius using binary search.
Etessami and Yannakakis [43] show that Problem (A) can be solved in polynomial
time by a reduction to (exact) Linear Programming (LP), which is not known
to be strongly polynomial (see Grötschel et al. [47]). Our solution reduces Prob-
lem (A) essentially to the problem of solving two systems of linear equations,
resulting in a strongly polynomial algorithm for Problem (A). The Maple com-
puter algebra system (Maple [71]) offers exact arithmetic LP solvers and exact
methods for solving systems of linear equations, which we use to test the perfor-
mance of our new algorithm. We also do comparisons with a standalone exact
LP solver. In the neutron branching process discussed above we obtain speed-ups
of about one order of magnitude with respect to LP.
Our second result is, to the best of our knowledge, the first practical algorithm
for Problem (B). Lower bounds for µf can be computed using Newton’s method
for approximating a root of the function f(X) − X. This has recently been
investigated in detail (Esparza et al. [37], Etessami and Yannakakis [43], Kiefer
et al. [64]). However, Newton’s method faces considerable numerical problems.
Experiments show that naive use of exact arithmetic is inefficient, while floating-
point computation leads to false results even for very small systems. For instance,
the PReMo tool described in Wojtczak and Etessami [102], which implements
Newton’s method with floating-point arithmetic for efficiency, reports µf ≥ 1 for
a PSP with only 7 variables and small coefficients, although µf < 1 is the case

121

(see Section 6.3.3).
Our algorithm produces a sequence of guaranteed lower and upper bounds, both
of which converge linearly to µf . Linear convergence means that, loosely speak-
ing, the number of accurate bits of the bounds increases linearly with the number
of sequence elements. The algorithm is based on the following idea. Newton’s
method is an iterative procedure that, given a current lower bound lb on µf , ap-
plies a certain operator N to it, yielding a new, more precise lower bound N(lb).
Instead of computing N(lb) using exact arithmetic, our algorithm computes two
consecutive Newton steps, i.e., N(N(lb)), using inexact arithmetic. Then it checks
if the result satisfies a carefully chosen condition. If so, the result is taken as the
next lower bound. If not, then the precision is increased, and the computation
redone. The condition is eventually satisfied, assuming the results of computing
with increased precision converge to the exact result. Usually, the repeated inex-
act computation is much faster than the exact one. At the same time, a careful
analysis shows that the sequence of lower bounds converges linearly to µf .
Computing upper bounds is harder, and has not been considered in the literature
before to the best of our knowledge. Similarly to the case of lower bounds, we
apply f twice to ub, i.e., we compute f(f(ub)) with increasing precision until
a condition holds. The sequence so obtained may not even converge to µf . So
we need to introduce a further operation, after which we can then prove linear
convergence.
We test our algorithm on the neutron branching process. The time needed to
obtain lower and upper bounds on the probability of no explosion with ε =
0.0001 lies below the time needed to check, using Maple’s exact LP, whether this
probability is 1 or smaller than one. That is, in this case study our algorithm is
faster, and provides more information.

Structure of the chapter. We first give in Section 6.1 a more detailed in-
troduction to MFBPs and show that extinction probabilities can be represented
as solutions of PSPs. We then introduce briefly several concepts from computer
science that are closely related to MFBPs. Important properties of PSPs are
investigated in Section 6.2.2. We then present our algorithm for Problem (A)
in Section 6.3 and show its advantages compared to existing approaches in the

122

case study of Section 6.3.3. Our algorithm for Problem (B) is presented in Sec-
tion 6.4. The final case study in Section 6.5 is taken from nuclear physics and
models a neutron branching process; we use it to show the efficiency of both our
algorithms. We end with a short conclusion.
This chapter is mainly based on joint work with Javier Esparza and Stefan Kiefer;
parts of the material have been published in Esparza et al. [35]. In particular,
Stefan Kiefer first proved several propositions in Section 6.4.

6.1 Multi-Type Finite Branching Processes

For the following we fix n ∈ N. A population is a vector x ∈ Nn, where xi for
i ∈ {1, . . . , n} denotes the number of individuals of type i. We call P = Nn

the population space. A multi-type finite branching process (MFBP) models the
development of populations for which certain assumptions apply:

• Populations are changing in discrete time steps.

• In each time step and for each individual of type i of a population, the
following happens:

1. The individual generates randomly a number of children of possibly
different types (a population), according to a fixed probability distri-
bution Pri : P→ [0, 1]. Pri does only depend on the type of the object,
not on the actual time step or on other individuals in the population.

2. The individual dies.

The new population after one time step is the union of the populations
generated by each individual of the old population.

We note that a line of descendants of an individual eventually goes extinct (i.e., no
descendants are alive at a certain time step) if and only if all lines of its children
go eventually extinct. The entire development of such a population system can
be studied by giving the probabilities Pri for i ∈ {1, . . . , n}:

Definition 39. (Multi-type finite branching processes)
A sequence B = (Pr1,Pr2, . . . ,Prn) of distributions with Pri ∈ DistF (P) for every

123

i ∈ {1, . . . , n} is called a multitype finite branching process (MFBP) with n types
or an n-type MFBP.

We give a simple example from cell biology, which we have taken and slightly
modified from Haccou et al. [51]. We study the development of a population of
bacteriae. We distinguish between bacteriae with alleles A and B for a specific
gene. A bacteria with allele A dies with probability 0.25 in a time step. Otherwise
it divides and produces two offsprings. With probability 0.75 both offsprings
exhibit allele A; with probability 0.25, one of the bacteriae is a mutation and
possesses allele B (but never do both offsprings mutate). A bacteria with allele
B has a higher risk of dying (0.99) during one time step; otherwise it divides
into two offsprings, where with probability 0.5, one of the offsprings mutates and
posseses allele A, otherwise both have allele B. The scenario is summarized in
Fig. 6.1. It gives rise to a 2-type MFBP B: let us assume type 1 corresponds
to individuals with allele A, type 2 to those with allele B. Then we can define
B = (Pr1,Pr2) by setting

Pr1(0) = 0.25,Pr1((2, 0)>) = 0.75 · 0.75,Pr1((1, 1)>) = 0.75 · 0.25 and

Pr2(0) = 0.99,Pr2((0, 2)>) = 0.01 · 0.5,Pr2((1, 1)>) = 0.01 · 0.5.

We interpret MFBPs as Markov chains: the states are populations and transi-
tions from a population x to a population y are labeled by the probability that,
under the assumption that the current population is x, in one step the system
will reach the population y. For stating this probability we use the assumption
that reproduction of an individual is independent from other individuals or the
concrete time step.

Definition 40. (Markov chain induced by an MFBP)
Let B = (Pr1,Pr2, . . . ,Prn) be a MFBP with n types. We define the Markov
chain

M[B] = (P, →, {τ}),

124

A

A + A

A +B

(Death)

B

B +B

A +B

(Death)

0.75 · 0.75

0.75 · 0.25

0.25

0.01 · 0.5

0.01 · 0.5

0.99

Figure 6.1: Example MFBP. Bacteria with different allele type multiply or die
with different probabilities. Mutations can occur in the case of multiplication.

with the relation → defined as follows: we define for every z ∈ P, k ∈ N and
1 ≤ i ≤ n

g(z, i, k) :=
∑

(v(1),...,v(k))∈Pk:
v(1)+...+v(k)=z

Pri(v(1)) · . . . · Pri(v(k)),

the probability that k individuals of type i generate the population z in one time
step. For all x ∈ Q and y ∈ Q let

p(x,y) :=
∑

(w(1),...,w(n))∈Pn:
w(1)+...+w(n)=y

(
n∏
i=1

g(w(i), i,xi)
)

be the probability of reaching the population y in one time step from population
x. If p(x,y) 6= 0, then x p(x,y),τ−−−−→ y holds.

Note that each transition is labeled by the empty label τ , since we do not need
additional information about the transitions. The proof that M[B] is well-defined
can be found in Appendix C. Fig. 6.2 shows the MFBP belonging to the intro-
ductory example.
For the rest of the section we fix an n − type MFBP B = (Pr1,Pr2, . . . ,Prn) ∈
(DistF (P))n. We are interested in the probability of a population going eventually
extinct, i.e. reaching the state 0.

Definition 41. (Extinction probabilities)
Let ψi be the probability of reaching 0 in M[B], starting at ei, for i ∈ {1, . . . , n},

125

i.e. ψi = Prei [Reach(M[B], {0})]. We call the vector ψ = (ψ1, . . . , ψn)> ∈ [0, 1]n

the extinction probabilities of B.

Given ψ, we can compute the probability of reaching 0 for arbitrary starting
populations s ∈ P, which is∏n

i=1 (ψi)si . However, M[B] is an infinite-state Markov
chain, hence we are not able to construct it explicitly. Luckily, this is not necessary
for our purposes. It turns out that for computing extinction probabilities it is
more helpful to consider generating functions of MFBPs:

Definition 42. (Generating functions of MFBPs)
Let s ∈ Nn. We define the generating function f [B]s, which is a formal power
series in the variables X1, . . . , Xn, by the following rules:

• If s = ei for an i ∈ {1, . . . , n}, then

f [B]s(X1, . . . , Xn) :=
∑
d∈P

Pri(d) ·
n∏
j=1

X
dj
j

• If otherwise s = ∑n
`=1 α` · e` for {α1, . . . , αn} ⊆ N, then

f [B]s(X1, . . . , Xn) :=
n∑
`=1

α` · f [B]e`(X1, . . . , Xn).

For instance, the generating functions of e1 and e2 for our introductory example
are given by

f [B]e1(X1, X2) = 0.752 ·X2
1 + 0.75 · 0.25 ·X1X2 + 0.25

f [B]e2(X1, X2) = 0.01 · 0.5 ·X2
2 + 0.01 · 0.5 ·X1X2 + 0.99.

Generating functions are in fact a compact representation of (Pr1,Pr2, . . . ,Prn):
Every monomial of f [B]ei (with nonzero coefficient) describes an element d ∈ P
with Pri(d) > 0 (encoded by the exponents of the variables X1, . . . , Xn) as well
as Pri(d) itself (as coefficient). Extinction probabilities and generating functions
of a branching process are closely related, as the following theorem shows:

126

Theorem 10. (ψ as solution of a nonlinear equation system)
The equation system in the variables X1, . . . , Xn

X1 = f [B]e1(X1, . . . , Xn)

. . .

Xn = f [B]en(X1, . . . , Xn).

has a last nonnegative solution X1 = µ1, . . . , Xn = µn, i.e. for every other non-
negative solution X1 = x1, . . . , Xn = xn, (µ1, . . . , µn)> ≤ (x1, . . . , xn)>; further
ψ = (µ1, . . . , µn)> holds.

Proof.
We define f : [0, 1]n → [0, 1]n by

f(x) = (f [B]e1(x1, . . . ,xn), . . . , f [B]en(x1, . . . ,xn))>, (6.1)

for every x ∈ [0, 1]n (note the we can choose [0, 1]n as range of f since the
coefficients of each f [B]ei sum up to 1 and are nonnegative). Every solution of 10
is a fixed point of f and vice versa.
Since f is a continuous function (with respect to the complete lattice ([0, 1]n,≤)),
by Kleene’s theorem (Theorem 2) there exists a least nonnegative fixed point
µf = limk→∞ f

k(0).
We define for all j ∈ {1, . . . , n} the set of runs S(j, k) of M[B] that start at ej

and end in the 0-population after maximal k time steps :

S(j, k) =
⋃

π=ej
`1−→q1

`2−→...
`i−→qi:

qi=0∧ i≤k

Cyl(π,M[B]).

We denote by s(j, k) = Prej [S(j, k)] the probability of reaching 0 in at most k
steps starting at ej. Since S(j, k) ⊆ S(j, k + 1) for all k, and

ψj = Prej

⋃
k≥0

S(j, k)
 ,

127

we get with Def. 41 that limk→∞ s(j, k) = ψj. Note also that for k > 0 by Def. 40

s(j, k) =
∑
d∈P

Prj(d) ·
n∏
i=1

s(i, k − 1)di
i

(the line of every individual generated after one step has to become extinct after
at most k− 1 steps). We show s(j, k) = (fk(0))j for all k ≤ 0 and j ∈ {1, . . . , n}
by induction over k.

• k = 0: s(j, k) = 0 = (fk(0))j.

• k = 1: (fk(0))j = ∑
d∈P Prj(d) ·∏n

i=1 0di = Prj(0) = s(j, 1).

• k > 1:

(fk(0))j = (f(fk−1(0)))j
= (f((s(1, k − 1), s(2, k − 1), . . . , s(n, k − 1))>))j (Ind. hypothesis)

=
∑
d∈P

Prj(d) ·
n∏
i=1

s(i, k − 1)di
i (Def. 42, Def. of s)

= s(j, k). (note above)

Putting all together we obtain

(µf)j = lim
k→∞

(fk(0))j = lim
k→∞

s(j, k) = ψj.

1 is always a nonnegative solution for the equation system described in the pre-
vious theorem. However, in general it is not the least one: in our example
µf = (µ1, µ2)>, with 0.4436 < µ1 = ψ1 < 0.4437 and 0.997 < µ2 = ψ2 < 0.998.
If the population starts e.g. with just one bacteria possessing allele B, the pop-
ulation eventually goes extinct with probability at least 0.997. Interestingly, if
the probability of an individual with allele A dying in one time step were 0.45,
ψ would become 1, i.e. every starting population would eventually die out with
probability 1.

128

In summary we have seen that we can obtain the extinction probabilities of an
MFBP by computing the least nonnegative solution of the equation system from
Theorem 10. In the rest of this section we sketch how important problems of
related formalisms, namely stochastic context-free grammars and special classes
of probabilistic recursive programs, can be reduced to computing extinction prob-
abilities of MFBPs.

6.1.1 Stochastic Context-Free Grammars

Stochastic context-free grammars (SCFGs) are a formal model used in natural
language processing and for structure prediction in molecular biology (see e.g. An-
derson et al. [1]). They represent context-free grammars whose production rules
are weighted with a non-zero probability, and the probabilities of all rules with
the same left hand side add up to 1. At each derivation step a production rule
is selected according to its probability. More precisely, a stochastic context-free
grammar (SCFG for short) is a tuple

G = (N,Σ, ↪→, N1),

where N = {N1, . . . , Nn} is a finite set of nonterminals and Σ a finite alphabet
of terminals. Nonterminals and terminals form disjunct sets. The relation ↪→ ⊆
N × ((0, 1] ∩ Q) × (N ∪ Σ)∗ contains the production rules of the grammar. For
(X, p, w) ∈ ↪→ we write X p

↪−→ w. For every X ∈ N it holds that ∑
X

p

↪−→w
p = 1.

The nonterminal N1 is the axiom or starting nonterminal of the grammar.
Consider for example the grammar G = ({N1, N2}, {∗,×}, ↪→), with the following
production rules:

N1
0.75·0.75
↪−−−−→ N1 ∗N1, N1

0.75·0.25
↪−−−−→ N1 ∗N2, N1

0.25
↪−−→ × and

N2
0.01·0.5
↪−−−−→ N2 ∗N2, N2

0.01·0.5
↪−−−−→ N1 ∗N2, N2

0.99
↪−−→ ×

G is an alternative representation of the bacteria population from the introductory
example: every rule represents a reproduction step of a single bacteria, a terminal
“∗” represents a division taking place, “×” represents the death of a cell.
Derivations in SCFGs can be compactly represented as parse trees, similar to

129

classical context-free grammars. A parse tree T is a finite ordered tree; its root r
is labeled by N1 and a probability pr, every inner node i is labeled by an element
from N×((0, 1]∩Q), and every leaf is labeled by an element from Σ×{1}. Every
node labeled by (X, p) ∈ N × ((0, 1] ∩ Q) has an ordered sequence of children
c1, . . . , ck labeled by (s1, p1), . . . (sk, pk), respectively, such that X p

↪−→ s1 . . . sk.
The word w ∈ Σ∗ generated by T is obtained by the sequence of first components
of leaf labels in prefix order. We can assign probabilities to a parse tree by
multiplying all probabilities (i.e., second components of the labels) in the tree.
For example consider the parse tree in the left part of Fig. 6.3. Its probability is
1
4

3 · 3
4

3 · 99
100 ≈ 0.00653.

We can assign a probability P (w) to every word w ∈ Σ∗ as the sum of the
probabilities of all parse trees generating w. Thus we can define the language
L(G) of an SCFG G by setting L(G) : Σ∗ → [0, 1] with L(G)(w) = P (w).
Interestingly, it might be the case that ∑w∈Σ∗ L(G)(w) < 1, i.e., there might be
a non-zero probability that a derivation starting at N1 never terminates with a
word in Σ∗. In this case we call G inconsistent, otherwise G is consistent.
Deciding whether a grammar is consistent is an important problem in Natural
Language Processing (Manning and Schuetze [70]). We will reduce it to com-
puting extinction probabilities for a branching process. Let G be an SCFG in
the following. We define a branching process BG which can be seen as an ab-
straction of G: we do not take generated words into account, but rather only the
probabilities of generating new nonterminals during a derivation step. Since G
is context-free, the derivations of nonterminals do not interfere with each other.
A derivation d ends if and only if each of the derivations starting at a generated
nonterminal of d end. Therefore, only the number of occurences of the different
nonterminals is important for the termination of a derivation, not their position
within the derived strings.
For a given alphabet Σ and an ordered alphabetM = {A1, . . . , An} withM ⊆ Σ,
we define for every w ∈ Σ the commutative image relative to M by setting

ciM(w) := (|w|A1 , |w|A2 , . . . , |w|An)>.

Definition 43. (MFBPs from SCFGs)

130

Let G = ({N1, . . . , Nn},Σ, ↪→, δ, N1) be an SCFG. We assume that {N1, . . . , Nn}
is an ordered alphabet. We define the n-type MFBP BG = (Pr1, . . . ,Prn) by
setting for every d ∈ Nn and every 1 ≤ i ≤ n:

Pri(d) :=
∑

Ni
p

↪−→w:
ciN (w)=d

p.

Consider again the parse tree in Fig. 6.3. On the right side of the figure we see
the population development in BG corresponding to the parse tree on the left.
BG is in fact the branching process we used for our introductory example.
We call a nonterminal N of an SCFG G reachable if there exists a parse tree
where N occurs. Nonterminals that are not reachable can easily be detected
(and removed) from an SCFG (see e.g. Hopcroft et al. [57]). We can now state
the following easy fact (Etessami and Yannakakis [43]):

Lemma 5. (Extinction probabilities and consistency of SCFGs)
Let G be an SCFG having only reachable nonterminals. The extinction probabil-
ities ψ of BG are then all equal to 1 iff G is consistent.

6.1.2 Stateless Probabilistic Pushdown Automata

We mention another closely related model, namely stateless probabilistic push-
down automata (see e.g. Esparza et al. [38]), a simple class of probabilistic pro-
grams with recursion (or dynamic process creation). Another notion of this class
of programs are recursive Markov chains (Etessami and Yannakakis [43]). State-
less probabilistic pushdown automata (spPDA for short) are tuples (Γ, ↪→, P),
with Γ = {γ1, . . . , γn} a stack alphabet, ↪→ ⊆ Γ × Γ∗ a transition relation, and
P : ↪→ → (0, 1] a function assigning probabilities to transitions. Again we write
γ

P (γ)
↪−−→ w instead of (γ, w) ∈ ↪→. For every γ ∈ Γ, ∑

γ
p

↪−→w
p = 1 holds.

An important question for spPDAs is how to compute termination probabilities:
starting with a given stack configuration w ∈ Γ∗, what is the probability of
eventually reaching the configuration ε (the empty stack), if transitions are chosen
according to P .

131


0
0




1
0



0
1




2
0



1
1



0
2




2
2



3
1



1
3



4
0



0
4



.

1

1
4

99
100

3
16

1
200

1
200

(3
4
)2

0.28125 0.00990.186875

0.31640625 0.2109375

0.03515625

0.2475

0.09375 0.0099

0.556875 0.00125

0.0028125 0.0009375
0.00375 1

40000
1

20000
1

40000

1
16 0.9801

Figure 6.2: Fragment of the Markov chain belonging to the example MFBP.

〈N1, 0.75 · 0.75〉
1
0



2
0



1
1



0
0



〈N1, 0.75 · 0.25〉 〈∗, 1〉 〈N1, 0.25〉

〈N1, 0.25〉 〈∗, 1〉 〈N1, 0.99〉 〈×, 1〉

〈×, 1〉 〈×, 1〉

0.75 · 0.75

0.75 · 0.25 · 0.25

0.25 · 0.99

Figure 6.3: Derivation tree and corresponding population development of the
SCFG example.

132

The similarity to the consistency problems of SCFGs is obvious. We give an
analogous translation from spPDAs to MFBPs for this problem:

Definition 44. (MFBPs from spPDAs)
Let A = ({γ1, . . . , γn}, ↪→, P) be an spPDA. For every w ∈ Γ∗ let

ci(w) := (|w|N1 , |w|N2 , . . . , |w|Nn).

We define the n-type MFBP BA = (Pr1, . . . ,Prn) by setting, for every d ∈ Nn,

Pri(d) :=
∑

γi
p

↪−→w:
ci(w)=d

p.

Again we can state a reduction (see also Esparza et al. [38]):

Lemma 6. (Extinction probabilities and almost-sure termination of spPDAs)
Let A = (Γ = {γ1, . . . , γn}, ↪→, P) be a spPDA, and ψ the extinction probabilities
of BA. The termination probability of a given stack configuration w ∈ Γ∗ is∏n
i=1 (ψ|w|γii). In particular, A is terminating with probability one from any given

initial configuration iff ψ = 1.

As an example we model the program mentionend in the introduction as an
spPDA A = ({γ}, ↪→, P). The value of the variable k is represented by the
number of elements on the stack, and ↪→ resp. P is given by the rules

γ
p
↪−→ γγ

γ
(1−p)
↪−−−→ ε.

The corresponding MFBP BA = (Pr1) has only one type and is defined by

Pr1((i)) :=


p if i = 2

1− p if i = 0

0 otherwise.

133

We get f [BA]e1(X1) = pX2
1 +(1−p). By solving pX2

1 +(1−p) = X1 we obtain the
extinction probability ψ1 = min(1−p

p
, 1): for p ≤ 1

2 the program is almost-surely
terminating (independent of the initial stack configuration, i.e. the value of k).

6.2 Probabilistic Systems of Polynomials

In this section we introduce Probabilistic Systems of Polynomials, which form a
class of equation systems that are important for studying extinction probabilities
of MFBPs. We need some notations and concepts from matrix theory.

6.2.1 Preliminaries

By Rm×n we denote the set of real matrices with m rows and n columns. We
write Id for the identity matrix. For a matrix M ∈ Rm×n, we denote the i-th
component in the j-th column by Mi,j. Let now A ∈ Rn×n be a square matrix.
A vector v is an eigenvector of A with eigenvalue λ ∈ R if Av = λv. We denote
by ρ(A) the spectral radius of A, i.e., the maximum of the absolute values of the
eigenvalues. We also define the matrix star A∗ = ∑∞

i=0A
i = Id + ∑∞

i=1A
i for A.

A matrix is nonnegative if all its entries are nonnegative. A nonnegative matrix
A ∈ Rn×n is irreducible if for every k, l ∈ {1, . . . , n} there exists an i ∈ N so that
(Ai)k,l 6= 0.

6.2.2 Definition and Properties

In Section 6.1 we have seen that the vector of extinction probabilities of an n-type
MFBP B is the least nonnegative fixed point of a polynomial equation system
with nonnegative coefficients. The polynomials f [B]ei(X1, . . . , Xn) forming the
left hand side of every equation also have the property that f [B]ei(1, . . . , 1) = 1,
i.e., their coefficients sum up to 1.
The vector (f [B]e1(X1, . . . , Xn), . . . , f [B]en(X1, . . . , Xn))> is a probabilistic sys-
tems of polynomials:

Definition 45. (Probabilistic System of Polynomials)

134

Let
X1 = f1(X1, . . . , Xn) . . . Xn = fn(X1, . . . , Xn),

be an equation system where the fi are polynomials in the variables X1, . . . , Xn

with positive real coefficients, and for every polynomial fi the sum of its co-
efficients is at most 1. The vector f := (f1, . . . , fn)> is called a probabilistic
system of polynomials (PSP for short) and is identified with its induced func-
tion f : Rn → Rn. If X1, . . . , Xn are the formal variables of f , we define
X := (X1, . . . , Xn)> and Var(f) := {X1, . . . , Xn}. The degree of f is the maxi-
mum of the degrees of f1, . . . , fn. PSPs of degree 0 (resp. 1 resp. >1) are called
constant (resp. linear resp. superlinear). PSPs f where the degree of each fi is
at least 2 are called purely superlinear.

We write f ′ for the Jacobi matrix of f , i.e., (f ′)i,j = ∂fi
∂Xj

. We assume that
f is represented as a list of polynomials, and each polynomial is a list of its
monomials. If S ⊆ {X1, . . . , Xn}, then fS denotes the result of removing the
polynomial fi(X1, . . . , Xn) from f for every xi /∈ S; further, given x ∈ Rn and
B ∈ Rn×n, we denote by xS and BSS the vector and the matrix obtained from x
and B by removing the entries with indices i such that Xi 6∈ S. The coefficients
are represented as fractions of positive integers. The size of f is the size of that
representation. For {x,y} ⊆ Rn, we write f(x + y) = f(x) + f ′(x)y + Rf (x,y)
for the Taylor expansion of f at x. We often write R instead of Rf if the context
is clear.

Dependence relation and SCCs. Given a PSP f , a variable Xi depends
directly on a variable Xj if Xj “occurs” in fi, more formally if ∂fi

∂Xj
is not the

constant 0. A variable Xi depends on Xj if Xi depends directly on Xj or there
is a variable Xk such that Xi depends directly on Xk and Xk depends on Xj.
We often consider the strongly connected components (or SCCs for short) of the
dependence relation. The SCCs of a PSP can be computed in linear time using
e.g. Tarjan’s algorithm (Tarjan [95]). They can be used to define a directed
acyclic graph: its nodes are the SCCs and a transition from an SCCs S1 to an
SCC S2 exists if S1 6= S2 and there is a variable Xi ∈ S1 that depends directly
on a variable Xj ∈ S2. We refer to this graph as the DAG (of the SCCs of f). A

135

bottom SCC S is an SCC whose variables only depend on each other. An SCC S

of a PSP f is constant resp. linear resp. superlinear resp. purely superlinear if the
PSP f̃ has the respective property, where f̃ is obtained by restricting f to the
S-components and replacing all variables not in S by the constant 1. A PSP is
an scPSP if it is not constant and consists of only one SCC. Notice that a PSP f

is an scPSP if and only if f ′(1) is irreducible.

Fixed points, post-fixed points, and pre-fixed points. A fixed point of
a PSP f is a vector x ≥ 0 with f(x) = x. For every v ∈ [0, 1]n, f(v) ∈ [0, 1]n

holds, due to our assumptions on the coefficients of f . We can therefore define
the restriction

f |[0,1]n : [0, 1]n → [0, 1]n

of f (i.e., the function defined on [0, 1]n and there coinciding with f). f |[0,1]n

is continuous in [0, 1]n → [0, 1]n with respect to the complete lattice ([0, 1]n,≤)
(recall Def. 3). We get using Kleene’s theorem (Theorem 2) that there exists a
least nonnegative fixed point µf of f (equal to the least fixed point of f |[0,1]n), i.e.,
µf ≤ x holds for every fixed point x. Moreover, the sequence 0, f(0), f(f(0)), . . .
converges to µf . Vectors x with x ≤ f(x) (resp. x ≥ f(x)) are called pre-fixed
(resp. post-fixed) points (for f). Notice that we always have 0 ≤ µf ≤ 1 (this can
also bee seen by the fact that µf is the least nonnegative post-fixed point of f and
1 is always a post-fixed point of f , using the Knaster-Tarski theorem). It is easy
to detect and remove all components i with (µf)i = 0 by a simple round-robin
method (see e.g. Esparza et al. [37]), which needs linear time in the size of f . We
therefore assume in the following that µf � 0 for all PSPs f we consider.

6.3 An Algorithm for Deciding whether ψ = 1

We have seen that for applications like deciding consistency of SCFGs or checking
almost-sure termination of spPDAs it is crucial to know exactly whether the
extinction probabilities of an MFBP are all equal to 1. This is equivalent to
whether µf = 1 holds for the corresponding PSP f constructed from the MFBP.
We call this condition consistency of a PSP:

136

Definition 46. (Consistency of PSPs)
A PSP f is consistent if µf = 1; otherwise it is inconsistent. Similarly, we call a
component i of f consistent if (µf)i = 1.

(here we borrow the term consistency from our introduction to SCFGs). We
present a new algorithm for the consistency problem, i.e., the problem to check
a PSP for consistency.

6.3.1 Checking Consistency using Linear Programming

It was proved in Etessami and Yannakakis [43] that consistency is checkable in
polynomial time by reduction to Linear Programming (LP). We first observe
that consistency of general PSPs can be reduced to consistency of scPSPs by
computing the DAG of SCCs, and checking consistency SCC-wise (Etessami and
Yannakakis [43]): Take any bottom SCC S, and check the consistency of fS.
(Notice that fS is either constant or an scPSP; if constant, fS is consistent iff
fS = 1, if an scPSP, we can check its consistency by assumption.) If fS is
inconsistent, then so is f , and we are done. If fS is consistent, then we remove
every fi from f such that xi ∈ S, replace all variables of S in the remaining
polynomials by the constant 1, and iterate (choose a new bottom SCC, etc.). Note
that this algorithm processes each polynomial at most once, as every variable
belongs to exactly one SCC. It remains to reduce the consistency problem for
scPSPs to LP. The first step is:

Theorem 11. (Etessami and Yannakakis [43], Harris [54])
An scPSP f is consistent iff ρ(f ′(1)) ≤ 1 (i.e., iff the spectral radius of the Jacobi
matrix f ′ evaluated at the vector 1 is at most 1).

The second step consists of observing that the matrix f ′(1) of an scPSP f is
irreducible and nonnegative. It is shown in Etessami and Yannakakis [43] that
ρ(A) ≤ 1 holds for an irreducible and nonnegative matrix A iff the system of
inequalities

Ax ≥ x + 1 , x ≥ 0 (6.2)

is infeasible. However, no strongly polynomial algorithm for LP is known, and we
are not aware that Eq. 6.2 falls within any subclass solvable in strongly polynomial

137

time (Grötschel et al. [47]).

6.3.2 Our Algorithm

We provide a very simple, strongly polynomial time algorithm to check whether
ρ(f ′(1)) ≤ 1 holds. We need some results from Perron-Frobenius theory (see e.g.
Berman and Plemmons [12]).

Lemma 7. (Facts from Perron-Frobenius theory)
Let A ∈ Rn×n be nonnegative and irreducible.

(1) ρ(A) is a simple eigenvalue of A.

(2) There exists an eigenvector v � 0 with ρ(A) as eigenvalue.

(3) Every eigenvector v � 0 has ρ(A) as eigenvalue.

(4) For all α, β ∈ R \ {0} and v > 0: if αv < Av < βv, then α < ρ(A) < β.

The following lemma is the key to the algorithm:

Lemma 8. Let A ∈ Rn×n be nonnegative and irreducible.

(a) Assume there is v ∈ Rn \ {0} such that (Id − A)v = 0. Then ρ(A) ≤ 1 iff
v � 0 or v ≺ 0.

(b) Assume v = 0 is the only solution of (Id − A)v = 0. Then there exists
a unique x ∈ Rn such that (Id − A)x = 1, and ρ(A) ≤ 1 iff x ≥ 1 and
Ax < x.

Proof.

(a) From (Id − A)v = 0 it follows Av = v. We see that v is an eigenvector
of A with eigenvalue 1. So ρ(A) ≥ 1.

138

(⇐): As both v and −v are eigenvectors of A with eigenvalue 1, we can
assume w.l.o.g. that v � 0. By Lemma 7(3), ρ(A) is the eigenvalue of v,
and so ρ(A) = 1.

(⇒): Since ρ(A) ≤ 1 and ρ(A) ≥ 1, it follows that ρ(A) = 1. By
Lemma 7 (1) and (2), the eigenspace of the eigenvalue 1 is one-dimensional
and contains a vector x � 0. So v = α · x for some α ∈ R, α 6= 0. If α > 0,
we have v � 0, otherwise v ≺ 0.

(b) With the assumption and basic facts from linear algebra it follows that
(Id − A) has full rank and therefore (Id − A)x = 1 has a unique solution
x. We still have to prove the second part of the conjunction:

(⇐): Follows directly from Lemma 7 (4).

(⇒): Let ρ(A) ≤ 1. Assume for a contradiction that ρ(A) = 1. Then, by
Lemma 7(1), the matrix A would have an eigenvector v 6= 0 with eigen-
value 1, so (Id − A)v = 0, contradicting the assumption. So we have, in
fact, ρ(A) < 1. By standard matrix facts (see e.g. Berman and Plemmons
[12]), this implies that (Id − A)−1 = A∗ = ∑∞

i=0A
i exists, and so we have

x = (Id − A)−11 = A∗1 ≥ 1. Furthermore, Ax = ∑∞
i=1A

i1 < ∑∞
i=0A

i1 =
x.

Theorem 11 directly yields an algorithm for checking the consistency of scPSPs,
which we can extend to multiple SCCs in a similar way as described above for
the LP-based approach:
Let f(X1, . . . , Xn) be a PSP. The algorithm performs the following steps:

1. Compute the SCC-DAG of f , and choose any bottom SCC S (possible in
linear time). If fS is constant go to (2), otherwise go to (3).

2. (fS is constant): If fS 6= 1 then report “inconsistent” and terminate. Oth-
erwise go to (4).

3. (fS is an scPSP): Compute A as the Jacobi matrix f ′S evaluated at 1, i.e.
A = f ′S(1). Solve the system (Id − A)v = 0 using Gaussian elimination and
perform the following case distinction:

139

3.1. There is a vector v 6= 0 such that (Id − A)v = 0: If neither v � 0 nor
v ≺ 0, report “inconsistent” (according to Lemma 8(a)) and terminate.
Otherwise go to (4).

3.2. v = 0 is the only solution of (Id − A)v = 0: solve (Id − A)x = 1 using
Gaussian elimination. If x 6≥ 1 or Ax 6< x report “inconsistent” and
terminate (according to Lemma 8(b)). Otherwise go to (4).

4. If fS = f report “consistent” and terminate. Otherwise remove for every
xi ∈ S the polynomial fi from f , replace all variables of S in the remaining
polynomials by the constant 1, and go to (1).

Since Gaussian elimination of a rational n-dimensional linear equation system
can be carried out in strongly polynomial time using O(n3) arithmetic operations
(see e.g. Grötschel et al. [47]) we obtain:

Theorem 12. (Consistency of PSPs)
Let f(X1, . . . , Xn) be a PSP. There is a strongly polynomial time algorithm that
uses O(n3) arithmetic operations and determines the consistency of f .

We note that the reduction of an MFBP to a PSP can be done in linear time in
the size of an representation of an MFBP. We get:

Corollary 1. (Test for ψ = 1 for MFBPs)
Let B = (Pr1, . . . ,Prn) be an n-type MFBP and let ψ ∈ [0, 1]n be its extinction
probabilities. We can decide in strongly polynomial time whether ψ = 1, using
O(n3) arithmetic operations.

6.3.3 Case Study: MFBPs with ψ being ”almost” 1

In this section we illustrate some issues faced by algorithms that try to decide
whether the extinction probabilities ψi for an MFBP are all 1 or, equivalently,
try to solve the consistency problem for PSPs.
Consider the following family of MFBPs, which are given in form of their corre-

140

sponding (sc)PSPs h(n), n ≥ 2:

h(n) =
(
0.5X2

1 + 0.1X2
n + 0.4,

0.01X2
1 + 0.5X2 + 0.49,

0.01X2
2 + 0.5X3 + 0.49,

. . .

0.01X2
n−1 + 0.5Xn + 0.49

)>
.

It is not hard to show that h(n)(p) ≺ p holds for p = (1−0.02n, . . . , 1−0.022n−1)>,
so we have µh(n) ≺ 1 (see Theorem 16), i.e., the h(n) are inconsistent.
The tool PReMo (Wojtczak and Etessami [102]) relies on Java’s floating-point
arithmetic to compute approximations of the least fixed point of a PSP. We
invoked PReMo for computing approximants of µh(n) for different values of n
between 5 and 100. Due to its fixed precision, PReMo’s approximations for µh(n)

are ≥ 1 in all components if n ≥ 7. This might lead to the wrong conclusion that
h(n) is consistent.
Recall that the consistency problem can be solved by checking the feasibility of
the system in Eq. (6.2) with A = f ′(1). We checked it with lp_solve (lp_solve
reference guide [69]), a well-known LP tool using hardware floating-point arith-
metic. The tool wrongly states that Eq. (6.2) has no solution for h(n)-systems
with n > 10. This is due to the fact that the solutions cannot be represented
adequately using machine number precision.1

Finally, we also checked feasibility with Maple’s Simplex package (Maple [71]),
which uses exact arithmetic, and compared its performance with the implementa-
tion, also in Maple, of our consistency algorithm.2 (We note that similar experi-
ments were already performed in Esparza et al. [36]. However for the experimental

1The mentioned problems of PReMo and lp_solve are not due to the fact that the coefficients
of h(n) cannot be properly represented using basis 2: The problems persist if one replaces the
coefficients of h(n) by similar numbers exactly representable by machine numbers.

2We also tried to compare our algorithm with the standalone LP solver QSOpt_ex
(QSOpt_ex solver [90]), which uses floating point arithmetic and then checks the result us-
ing exact arithmetic. The solver required < 1, and 9 seconds for checking feasibility of the
h(n)-systems with n = 100, 200, respectively. However, for all systems with n > 200 the tool
crashed, throwing a floating point exception.

141

n = 100 n = 200 n = 400 n = 600 n = 1000 n = 1400
Exact LP 1 sec 4 sec 23 sec 74 sec 450 sec 641 sec
Our algorithm < 1 sec < 1 sec 2 sec 5 sec 14 sec 33 sec

Table 6.1: Consistency checks for h(n)-systems: Runtimes of different approaches.

evaluations in this section and Section 6.5 improved implementations of our al-
gorithms and another testbed were used, including a newer version of Maple).
Table 6.1 shows the results. Our algorithm clearly outperforms the LP approach.
For more experiments see Section 6.5.

6.4 Approximating Extinction Probabilities with
Inexact Arithmetic

We now turn to the problem of obtaining reliable upper and lower bounds for the
extinction probabilities of an MFBP B. We have shown in Theorem 10 that this
problem is essentially equivalent to approximating the least nonnegative fixed
point µf of a PSP f . It is shown in Etessami and Yannakakis [43] that such a µf
may not be representable by radicals, so one can only approximate µf . We present
an algorithm that solves the problem of computing arbitrary precise bounds (see
Section 3.3) for the components of µf .
More precisely, the algorithm computes two sequences, (lb(i))i∈N and (ub(i))i∈N,
such that lb(i) ≤ µf ≤ ub(i) and limi→∞ ub(i)−lb(i) = 0. In words: lb(i) and ub(i)

are lower and upper bounds on µf , respectively, and the sequences converge to µf .
Moreover, they converge linearly, meaning that the number of accurate bits of lb(i)

and ub(i) are linear functions of i. (The number of accurate bits of a vector x is
defined as the greatest number k such that |(µf −x)j|/|(µf)j| ≤ 2−k holds for all
j ∈ {1, . . . , n}.) These properties are guaranteed even though our algorithm uses
inexact arithmetic: Our algorithm detects numerical problems due to rounding
errors, recovers from them, and increases the precision of the arithmetic as needed.
Increasing the precision dynamically is, e.g., supported by the GMP library (GMP
library [46]) and computer algebra systems like Maple.
To approximate the least fixed point of a PSP, we first transform it into a certain

142

normal form:

Definition 47. (Perfectly superlinar PSP)
A purely superlinear PSP f is called perfectly superlinear if every variable depends
directly on itself and every superlinear SCC is purely superlinear.

The following theorem states that any PSP f can be made perfectly superlinear
(the proof can be found in Appendix C):

Theorem 13. (Normal form of PSPs)
Let f be a PSP of size s. We can compute in time O(n · s) a perfectly superlinear
PSP f̃ with Var(f̃) = Var(f) ∪ {X̃} of size O(n · s) such that µf = (µf̃)Var(f).

Precision and Floating Assignments. We first explain our approach of com-
bining exact and inexact arithmetic in more detail. Consider an elementary oper-
ation g, like multiplication, subtraction, etc., that operates on two input numbers
x and y. The operation g could also return the first component of the solution
of a nonsingular linear equation system, where the inputs x are the coefficients
of the linear system. We can compute g(x, y) with increasing precision if there
is a procedure that on input x, y outputs a sequence g(1)(x, y), g(2)(x, y), . . . that
converges to g(x, y). We do not assume any requirements on the convergence
speed of this procedure, in particular, we do not require that there is an i with
g(i)(x, y) = g(x, y). This procedure, which we assume exists, allows to implement
floating assignments of the form

z g(x, y) such that φ(z)

with the following semantics: z is assigned the value g(i)(x, y), where i ≥ 1 is the
smallest index such that φ(g(i)(x, y)) holds. We say that the assignment is valid if
φ(g(x, y)) holds and φ involves only continuous functions (in the calculus sense)
and strict inequalities. Our assumption on the arithmetic guarantees that (the
computation underlying) a valid floating assignment terminates. As “syntactic
sugar”, more complex operations (e.g., linear equation solving) are also allowed

143

in floating assignments, as long as they can be decomposed into elementary op-
erations.
In our opinion any implementation of arbitrary precision arithmetic should satisfy
our requirement that the computed values converge to the exact result. For
supporting this we cite the documentation of the GMP library (GMP library
[46]): “Each function is defined to calculate with ‘infinite precision’ followed by
a truncation to the destination precision, but of course the work done is only
what’s needed to determine a result under that definition.”

Structure of the algorithm. Our algorithm receives as input a perfectly su-
perlinear PSP f and an error bound ε > 0, and returns vectors lb,ub such that
lb ≤ µf ≤ ub and ub− lb ≤ ε. A first initialization step requires us to compute
a vector x with 0 ≺ x ≺ f(x), i.e., a “strict” pre-fixed point. This is done in
the following section. In Section 6.4.2 we present the algorithm itself. Proofs
of several properties are divided into Sections 6.4.2.1 – 6.4.2.4. The concluding
correctness proof is given in Section 6.4.2.5.

6.4.1 Computing a Strict Pre-Fixed Point

Algorithm 2: Procedure computeStrictPrefix
Input: perfectly superlinear PSP f

Output: x with 0 ≺ x ≺ f(x) ≺ 1
x← 0;
while 0 6≺ x do

Z ← {i | 1 ≤ i ≤ n, fi(x) = 0};
P ← {i | 1 ≤ i ≤ n, fi(x) > 0};
yZ ← 0;
yP fP (x) such that 0 ≺ yP ≺ fP (y) ≺ 1;
x← y;

Algorithm 2 uses a floating assignment yP fP (x), although it must also perform
exact comparisons to obtain the sets Z and P and to decide exactly whether
yP ≺ fP (y) holds in the such that clause of the floating assignment. This is
because, in spite of us performing such operations exactly, we do not want to use

144

the result of exact computations as input for other computations, as this easily
leads to an explosion in the required precision. For instance, the size of the exact
result of fP (y) may be larger than the size of y, while an approximation of smaller
size may already satisfy the such that clause. In order to emphasize this, we
never store the result of an exact numerical computation in a variable.

Theorem 14. Algorithm 2 is correct and terminates after at most n iterations.

Proof.
We will prove the following invariant of the algorithm (i is the number of already
performed loop iterations):

(a) 0 ≤ x ≤ f(x);

(b) for all components j with (f i(0))j > 0 we have 0 < xj < fj(x).

The invariant implies that the loop terminates after at most n iterations, because
fn(0) � 0 holds as µf � 0. The invariant also implies that we have 0 ≺ x ≺ f(x)
after the loop terminates.
So it remains to show the invariant. Part (a) clearly holds throughout the loop
because for all components j either 0 = xj holds or 0 < xj < fj(x) is guaranteed
by the floating assignment. Assume inductively that the invariant holds after
i ≥ 0 iterations. It suffices to prove that (b) holds after i+ 1 iterations. Let x(i)

denote the value of x after i iterations. Let (f i+1(0))j > 0. Then fj(0) > 0 or
there is a monomial in fj which consists only of variables Xk with (f i(0))k > 0.
In the second case we have, by induction hypothesis part (b), that x(i)

k > 0 holds
for those variables Xk. In both cases it follows fj(x(i)) > 0. Furthermore, we
have by induction hypothesis part (a) that fj(x(i)) ≤ fj(f(x(i))) where, in fact,
the inequality is strict because Xj depends on itself (as f is perfectly superlinear).
We conclude that 0 < fj(x(i)) < fj(f(x(i))), and hence the floating assignment
guarantees 0 < x(i+1)

j < fj(x(i+1)). So the invariant holds after i+1 iterations.

6.4.2 Computing Lower and Upper Bounds

Algorithm 2 uses Kleene iteration 0, f(0), f(f(0)), . . . to compute a strict pre-fixed
point. One could, in principle, use the same scheme to compute lower bounds

145

of µf , as this sequence converges to µf from below by Kleene’s theorem. However,
convergence of Kleene iteration is generally slow. It is shown in Etessami and
Yannakakis [43] that for the 1-dimensional PSP f with f(X) = 0.5X2 + 0.5 we
have µf = 1, and the i-th Kleene approximant f i(0) satisfies f i(0) ≤ 1− 1

i
. Hence,

Kleene iteration may converge only logarithmically, i.e., the number of accurate
bits is a logarithmic function of the number of iterations.
In Etessami and Yannakakis [43] it was suggested to use Newton’s method for
faster convergence. In order to see how Newton’s method can be used, observe
that instead of computing µf , one can equivalently compute the least nonnegative
zero of f(X)−X.
Given an approximant x of µf , Newton’s method first computes g(x)(X), the
first-order linearization of f at the point x:

g(x)(X) = f(x) + f ′(x)(X − x)

The next Newton approximant y is obtained by solving X = g(x)(X); this moti-
vates the definition of the Newton operator :

Definition 48. (Newton operator)
The Newton operator Nf is defined for x ∈ Rn by

Nf (x) := x + (Id − f ′(x))−1(f(x)− x).

We usually drop the subscript of Nf if f is clear from the context. If ν(0) ≤ µf is
any pre-fixed point of f , for instance ν(0) = 0, we can define a Newton sequence
(ν(i))i∈N by setting ν(i+1) = N(ν(i)) for i ≥ 0. It has been shown in Etessami and
Yannakakis [43], Kiefer et al. [64] and Esparza et al. [37] that Newton sequences
converge at least linearly to µf . Moreover, we have 0 ≤ ν(i) ≤ f(ν(i)) ≤ µf for
all i.
These facts were shown only for Newton sequences that are computed exactly,
i.e., without rounding errors. Unfortunately, Newton approximants are hard to
compute exactly: since each iteration requires to solve a linear equation system
whose coefficients depend on the results of the previous iteration, the size of

146

Algorithm 3: Procedure calcBounds
Input: perfectly superlinear PSP f , error bound ε > 0
Output: vectors lb,ub such that lb ≤ µf ≤ ub and ub− lb ≤ ε
lb← computeStrictPrefix(f);1

ub← 1;2

while ub− lb 6≤ ε do3

x

N(N(lb)) such that f(lb) + f ′(lb)(x− lb) ≺ x ≺ f(x) ≺ 1;4

lb← x;5

Z ← {i | 1 ≤ i ≤ n, fi(ub) = 1};6

P ← {i | 1 ≤ i ≤ n, fi(ub) < 1};7

yZ ← 1;8

yP fP (f(ub)) such that fP (y) ≺ yP ≺ fP (ub);9

forall superlinear SCCs S of f with yS = 1 do10

t← 1− lbS;11

if f ′SS(1)t � t then12

yS 1−min
{

1, mini∈S(f ′SS(1)t− t)i
2 ·maxi∈S(fS(2))i

}
· t such that

13

fS(y) ≺ yS ≺ 1;

ub← y;14

the Newton approximants easily explodes. Therefore, we wish to use inexact
arithmetic, but without losing the good properties of Newton’s method (reliable
lower bounds, linear convergence). Algorithm 3 accomplishes these goals, and
additionally computes post-fixed points ub of f , which are upper bounds on µf .
In the following we first give an overview over the parts of the algorithm.

Computing lower bounds. The lower bounds are stored in the variable lb.
The first value of lb is not simply 0, but is computed by computeStrictPrefix(f),
in order to guarantee the validity of the following floating assignments. We use
Newton’s method for improving the lower bounds because it converges fast (at
least linearly) when performed exactly. In each iteration of the algorithm, two
Newton steps are performed using inexact arithmetic. The intention is that
two inexact Newton steps should improve the lower bound at least as much
as one exact Newton step. While this may sound like a vague hope for small
rounding errors, it can be rigorously proved thanks to the such that clause

147

of the floating assignment in line 4. The proof involves two steps. The first
step is to prove that N(N(lb)) is a (strict) post-fixed point of the function
g(X) = f(lb) + f ′(lb)(X − lb), i.e., N(N(lb)) satisfies the first inequality in
the such that clause. For the second step, recall that N(lb) is the least fixed
point of g. By Knaster-Tarski’s theorem, N(lb) is also the least post-fixed point
of g. So, our value x, the inexact version of N(N(lb)), satisfies x ≥ N(lb), and
hence two inexact Newton steps are in fact at least as “fast” as one exact Newton
step. Thus, the lb converge linearly to µf .

Computing upper bounds. The upper bounds ub are post-fixed points, i.e.,
f(ub) ≤ ub is an invariant of the algorithm. The algorithm computes the sets
Z and P so that inexact arithmetic is only applied to the components i with
fi(ub) < 1. In the P -components, the function f is applied to ub in order to
improve the upper bound. In fact, f is applied twice in line 9, analogously to
applying N twice in line 4. Here, the such that clause makes sure that the
progress towards µf is at least as fast as the progress of one exact application
of f would be. One can show that this leads to linear convergence to µf .

Obtaining a post-fixed point ≺ 1. The rest of the algorithm (lines 10-13)
deals with the problem that, given a post-fixed ub, the sequence

ub, f(ub), f(f(ub)), . . .

does not necessarily converge to µf . For instance, if f(X) = 0.75X2 + 0.25,
then µf = 1/3, but 1 = f(1) = f(f(1)) = · · · . Therefore, the if-statement of
Algorithm 3 allows to improve the upper bound from 1 to a post-fixed point
less than 1, by exploiting the lower bounds lb. This is illustrated in Figure 6.4
for a 2-dimensional scPSP f . The dotted lines indicate the curve of the points
(X1, X2) satisfying X1 = 0.8X1X2 + 0.2 and X2 = 0.4X2

1 + 0.1X2 + 0.5. Notice
that µf ≺ 1 = f(1). In Figure 6.4 (a) the shaded area consists of those points lb
where f ′(1)(1−lb) � 1−lb holds, i.e., the condition of line 12. One can show that
µf must lie in the shaded area, so by continuity, any sequence converging to µf ,
in particular the sequence of lower bounds lb, finally reaches the shaded area. In

148

(a) (b)

Figure 6.4: Computation of a post-fixed point less than 1.

Figure 6.4 (a) this is indicated by the points with the square shape. Figure 6.4 (b)
shows how to exploit such a point lb to compute a post-fixed point ub ≺ 1 (post-
fixed points are shaded in Figure 6.4 (b)): The post-fixed point ub (diamond
shape) is obtained by starting at 1 and moving a little bit along the straight
line between 1 and lb, cf. line 13. The sequence ub, f(ub), f(f(ub)), . . . now
converges linearly to µf . Putting all together we obtain:

Theorem 15. (Correctness of Algorithm 3)
Algorithm 3 terminates and computes vectors lb,ub such that lb ≤ µf ≤ ub and
ub− lb ≤ ε. Moreover, the sequences of lower and upper bounds computed by the
algorithm both converge linearly to µf .

Notice that Theorem 15 is about the convergence speed of the approximants, not
about the time needed to compute them. To analyze the computation time, one
would need stronger requirements on how floating assignments are performed.
In summary this gives us a method to compute lower and upper bounds for the
extinction probabilities ψ of a MFBP B: We first construct the PSP f corre-
sponding to B according to Theorem 10, then we normalize f and use it as input
for Algorithm 3.

149

We divide the proof of Theorem 15 into several sections corresponding to the
paragraphs in the explanation above. Missing proofs of auxiliary lemmas can be
found in Appendix C. We first have to prove some additional properties of the
computed sequences.

6.4.2.1 Characterizing Pre-Fixed Points and Post-Fixed Points

The lower and upper bounds computed by Algorithm 3 have a special feature:
they satisfy lb ≺ f(lb) and ub ≥ f(ub). The following theorem guarantees that
such points are in fact lower and upper bounds.

Theorem 16.
Let f be a perfectly superlinear PSP. Let 0 ≤ x ≤ 1. If x ≺ f(x), then x ≺ µf .
If x ≥ f(x), then x ≥ µf .

In particular we need Theorem 16 for proving that Algorithm 3 computes correct
results (i.e. for the proof of Theorem 15). It also provides the user a way of
verifying that the computed bounds are indeed correct.
For proving Theorem 16 we start by characterizing the special case of linear PSPs:

Lemma 9.
Let f be a linear PSP. Then µf is the unique fixed point of f .

Proof.
Recall that µf � 0. Assume that there is a fixed point x of f different from µf .
Then, by the linearity of f , all points on the straight line through x and µf are
fixed points of f . So there is a point y ≥ 0 on this straight line with yi = 0
for some i ∈ {1, . . . , n}. This contradicts the fact that µf is the least fixed point
of f .

The following lemma shows how to compute a post-fixed point that satisfies
certain properties and is arbitrarily close to 1.

Lemma 10.
Let f be a perfectly superlinear PSP. Let r ∈ R with 0 < r < 1. Let x =
µf + r(1 − µf). Then f(x) ≤ x. Furthermore, let p = fn(x). Then f(p) ≤ p
and fi(p) < pi holds for all i ∈ {1, . . . , n} with (µf)i < 1.

150

Proof.
Letting u,v be any vectors, we write f(u + v) = f(u) + f ′(u)v +R(u,v) for the
Taylor expansion of f at u. Then we have

µf + f ′(µf)(1− µf) +R(µf , 1− µf)

= f(µf + (1− µf)) = f(1) ≤ 1 = µf + (1− µf) ,

so it follows f ′(µf)d +R(µf ,d) ≤ d where d := 1− µf . Moreover, we have

f(x) = f(µf + rd) = f(µf) + f ′(µf)rd +R(µf , rd)

= µf + rf ′(µf)d +R(µf , rd)

≤ µf + rf ′(µf)d + rR(µf ,d) (since R(µf , ·) is superlinear)

= µf + r(f ′(µf)d +R(µf ,d))

≤ µf + rd (from above)

= x ,

i.e., x is a post-fixed point, hence µf ≤ x ≤ 1. Consider the sequence x ≥
f(x) ≥ f(f(x)) ≥ · · · . Since every component depends directly on itself, we
have for all components i that once (f j(x))i > (f j+1(x))i holds for some j, we
have (fk(x))i > (fk+1(x))i for all k ≥ j. On the other hand, it is easy to see that
if (f j(x))i > (f j+1(x))i for some j, then (fk(x))i > (fk+1(x))i for some k ≤ n. It
follows that fi(p) < pi holds for all components i for which there exists j with
(f j(x))i > (f j+1(x))i. It remains to show that for all components i with (µf)i < 1
there exists j with (f j(x))i > (f j+1(x))i. Assume for a contradiction that this
does not hold. Choose a variable Xi that violates the property (i.e., (µf)i < 1 and
xi = (f j(x))i for all j) so that all components in lower SCCs satisfy the property.
Let S denote the SCC of Xi and let g be the PSP obtained by restricting f to the
S-components and replacing all variables in lower SCCs by the constant 1. Then
for all Xj on which Xi depends we have (µf)j = 1, and so xj = 1. Furthermore,
we have (µf)S ≺ xS ≺ 1. Notice that Lemma 9 guarantees that g is not linear,
since both (µf)S and xS are fixed points of g. Hence, g is superlinear. For any
vectors u,v we write g(u+v) = g(u)+g′(u)v+T (u,v) for the Taylor expansion

151

of g at u. We have:

rdS = xS − (µf)S
= g(xS)− (µf)S
= g((µf)S + rdS)− (µf)S
= (µf)S + g′((µf)S)rdS + T ((µf)S, rdS)− (µf)S
= g′((µf)S)rdS + T ((µf)S, rdS).

Moreover, as dS � 0 and g is superlinear, the following inequality is strict in at
least one component:

g(1) = g
(

(µf)S + 1
r
rd
)

= g((µf)S) + g′((µf)S)1
r
rdS + T

(
(µf)S,

1
r
rd
)

≥ (µf)S + 1
r
g′((µf)S)rdS + 1

r2T ((µf)S, rd)

> (µf)S + 1
r

(g′((µf)S)rdS + T ((µf)S, rd))

= (µf)S + 1
r
rdS (as computed above)

= (µf)S + dS = 1

This is the desired contradiction as g(1) ≤ 1 should hold since g is a PSP.

6.4.2.2 Computing Upper Bounds

The following lemma is used for the proof of Theorem 16, but will also be essential
to prove the convergence statement of Theorem 15: it states that, given a post-
fixed point p ≤ 1, the Kleene sequence “from above” p, f(p), f(f(f(p))), . . .
converges linearly to µf :

Lemma 11. Let f be a perfectly superlinear PSP. Let f(p) ≤ p ≤ 1 and
fi(p) < pi for all i ∈ {1, . . . , n} with (µf)i < 1. Then the sequence (p(i))i∈N
defined by

p(1) := p and p(i+1) := f(p(i)) for i ≥ 1

152

converges linearly to µf .

Proof.
If (µf)i = 1 then (µf)j = 1 has to hold for every component j on which i

depends. As µf is the least post-fixed point by Knaster-Tarski’s theorem, we
have (fk(p))i = 1 for every k ∈ N. Hence we can ignore the 1-components in
our convergence proof and assume w.l.o.g. that µf ≺ 1 and with the assumptions
f(p) ≺ p. By the monotonicity of f and since every variable depends on itself,
we get by a simple induction that p(i) � p(i+1) � µf for all i ∈ N. This already
shows that (p(i))i∈N converges to some limit point. For every u � µf with
u � f(u) we write u = µf + ∆u and get:

f(u)− µf = f(µf + ∆u)− µf
= f(µf) + f ′(µf)∆u +R(µf ,∆u)− µf (Taylor expansion)

Since R(µf ,∆u) depends at least quadratically on ∆u, one can write R(µf ,∆u) =
R̃(µf ,∆u) · ∆u for a nonnegative matrix R̃(µf ,∆u). Continuing the above
equaliy, we obtain:

= (f ′(µf) + R̃(µf ,∆u))∆u

≺∆u (as u � f(u).)

Define A(u) := f ′(µf) + R̃(µf ,∆u), so that we obtain

f(u)− µf = A(u) ·∆u ≺∆u. (6.3)

This holds especially for u = p. From the ≺-inequality in (6.3) follows that there
exists 0 < δ < 1 such that

f(p)− µf = A(p)∆p ≤ δ∆p. (6.4)

We now show for every i ≥ 0 that p(i) − µf = ∆p(i) ≤ δi∆p by induction
over i. This implies the linear convergence of (p(i))i∈N. The base case i = 1 is
proved by (6.4). For i > 1 note that if 0 ≤ u ≤ u′ and 0 ≤ v ≤ v′, we have

153

A(u)v ≤ A(u′)v′, since A(u) is nonnegative if u is nonnegative.

f i(p)− µf = f(p(i−1))− µf
= A(p(i−1))(p(i−1) − µf) (by (6.3))

≤ A(p)(δi−1∆p) (induction hypothesis)

= δi−1A(p)∆p

≤ δi∆p. (6.4)

Now we can prove Theorem 16.

Proof (of Theorem 16).
By Knaster-Tarski’s theorem, µf is the least post-fixed point; the final statement
of the theorem follows. It remains to show the first statement. By choosing the
number r from Lemma 10 large enough we can find a post-fixed point y with
x ≺ y ≤ 1. By Lemma 10 and Lemma 11 the sequence y, f(y), f(f(y)), . . .
converges to µf . On the other hand, by repeatedly applying f to both sides of
the inequality x ≺ y we obtain that x ≺ f(x) ≤ f i(x) ≤ f i(y) holds for all i ≥ 0.
Since (f i(y))i∈N converges to µf , we have x ≺ µf .

After characterizing pre-fixed points and post-fixed points, we now prove the
remaining propositions corresponding to the sections in the explanation of the
algorithm.

6.4.2.3 Computing Lower Bounds

The following lemma was essentially proved in Esparza et al. [37], Etessami and
Yannakakis [43] (for the sake of completeness we give a proof in Appendix C):

Lemma 12.
Let f be a perfectly superlinear PSP and let x ≺ f(x). Then

N(x) = x + (f ′(x))∗(f(x)− x).

154

Lemma 12 allows to replace the matrix inverse (Id−f ′(x))−1 with the matrix star
f ′(x)∗ as long as x ≺ f(x) holds, which will be true whenever we compute N(x).
The following lemmas are needed to show the validity of the floating assignment in
line 4 of Algorithm 3, i.e. for proving that, for every computed lb, z = N(N(lb))
satisfies

f(lb) + f ′(lb)(z− lb) ≺ z ≺ f(z) ≺ 1.

First we state that the Newton operator preserves strict pre-fixed points:

Lemma 13.
Let f be perfectly superlinear. Let 0 ≺ x ≺ f(x) ≺ 1 and y = N(x). Then
f(x) ≺ y ≺ f(y) ≺ 1.

For the other condition of the floating assignment in line 4, we state that for a
strict pre-fixed point x of f , N(N(x)) is a strict post-fixed point of the linearization
of f at x:

Lemma 14.
Let f be perfectly superlinear. Let 0 ≺ x ≺ f(x). Let z = N(N(x)). Then
f(x) + f ′(x)(z− x) ≺ z.

Proof.
Recall hat for vectors u,v, we write f(u + v) = f(u) + f ′(u)v +R(u,v) for the
Taylor expansion of f at u. We write y = N(x) and ∆ = f ′(x)∗(f(x) − x).
Notice that y = x + ∆. We have

z = y + f ′(y)∗(f(y)− y)

= x + ∆ + f ′(y)∗(f(x + ∆)− x−∆)

= x + ∆ + f ′(y)∗(f(x) + f ′(x)∆ +R(x,∆)− x−∆)

= x + ∆ + f ′(y)∗((f(x)− x) + f ′(x)f ′(x)∗(f(x)− x)−∆ +R(x,∆))

= x + ∆ + f ′(y)∗(∆−∆ +R(x,∆))

= x + ∆ + f ′(y)∗R(x,∆) .

155

It follows

f(x) + f ′(x)(z− x) = f(x) + f ′(x) (∆ + f ′(y)∗R(x,∆))

= x + (f(x)− x) + f ′(x)f ′(x)∗(f(x)− x) + f ′(x)f ′(y)∗R(x,∆)

= x + ∆ + f ′(x)f ′(y)∗R(x,∆)

≤ x + ∆ + f ′(y)f ′(y)∗R(x,∆)

≺ x + ∆ + f ′(y)f ′(y)∗R(x,∆) +R(x,∆)

= x + ∆ + f ′(y)∗R(x,∆)

= z .

For the ≺-inequality in this inequality chain, notice that, since x ≺ f(x), we have
∆ � 0, and since f is purely superlinear, we have R(x,∆) � 0.

For showing linear convergence, we show that N(x) is the least post-fixed point
of the linearization of f at x:

Lemma 15.
Let f be a PSP. Let 0 ≺ x ≺ f(x). Let z be with f(x)+f ′(x)(z−x) ≤ z, i.e. z is
a strict post-fixed point of the linearization of f at x. Then N(x) ≤ z holds.

We get that the computed x in the floating assignment of line 4 is at least as
precise as N(x): x is a strict post-fixed point of the linearization of f at lb, and
N(lb) is the least such post-fixed point.

6.4.2.4 Obtaining a Post-Fixed Point ≺ 1

The following lemma states the validity of the floating assignment in line 13 of
Algorithm 3:

Lemma 16.
Let f be a purely superlinear PSP. Let 0 ≺ t ≺ 1 such that f ′(1)t � t. Let

y = 1−min
{

1, mini∈{1,...,n}(f ′(1)t− t)i
2 ·maxi∈{1,...,n}(f(2))i

}
· t .

Then f(y) ≺ y ≺ 1.

156

Proof.
Recall that for vectors u,v, we write f(u + v) = f(u) + f ′(u)v +R(u,v) for the

Taylor expansion of f at u. Let r = min
{

1, mini∈{1,...,n}(f ′(1)t− t)i
2 ·maxi∈{1,...,n}(f(2))i

}
. Then we

have:

R(1,−rt) ≤ R(1, rt)

≤ r2R(1, t) (degree of R(1, ·) at least 2)

≤ r2R(1, 1) (t ≤ 1)

≤ r2f(2) (f(1 + 1) = f(1) + f ′(1)1 +R(1, 1))

≤ r2 max
i∈{1,...,n}

(f(2))i · 1

≤ r ·
mini∈{1,...,n}(f ′(1)t− t)i

2 · 1 (definition of r)

≤ r

2 · (f
′(1)t− t)

≺ r · (f ′(1)t− t) (f ′(1)t � t)

Using this inequality we obtain

f(1− rt) = f(1) + f ′(1) · (−rt) +R(1,−rt)

≤ 1− rf ′(1)t +R(1,−rt) (f(1) ≤ 1)

≺ 1− rf ′(1)t + r · (f ′(1)t− t) (see above)

= 1− rt.

We still need two technical lemmas.

Lemma 17.
Let f be perfectly superlinear. Let y = f(x) ≤ x and fi(x) < xi for some
i ∈ {1, . . . , n}. Then f(y) ≤ y and fi(y) < yi.

Proof.
We have f(y) = f(f(x)) ≤ f(x) = y by the monotonicity of f . Moreover, since

157

each component depends on itself, the strict inequality fi(x) < xi implies the
strict inequality fi(f(x)) < fi(x) = yi.

To show that ubi < 1 eventually holds in the components i with (µf)i < 1, we
prove

Lemma 18.
Let f be a purely superlinear PSP and x ≥ 0,u � 0. Then

f ′(x + u)u � f(x + u)− f(x).

Proof.
It suffices to show fi(x)− fi(x + u) + (f ′(x + u)u)i > 0 for every component i of
f . We can write fi(x + u) as fi(x) +

∫ 1
0 (f ′(x + su)u)i ds. Hence

fi(x)− fi(x + u) + (f ′(x + u)u)i

= fi(x)− fi(x)−
∫ 1

0
(f ′(x + su)u)i ds+ (f ′(x + u)u)i

= −
∫ 1

0
(f ′(x + su)u)i ds+ (f ′(x + u)u)i

= −
∫ 1/2

0
(f ′(x + su)u)i ds−

∫ 1

1/2
(f ′(x + su)u)i ds+ (f ′(x + u)u)i

For 0 ≤ s ≤ 1, we have (f ′(x + su)u)i ≤ (f ′(x + u)u)i, and for 0 ≤ s ≤ 1/2, the
inequality is strict, because u � 0 and f is purely superlinear. Hence

−
∫ 1/2

0
(f ′(x + su)u)i ds−

∫ 1

1/2
(f ′(x + su)u)i ds+ (f ′(x + u)u)i

> −
∫ 1

2

0
(f ′(x + u)u)i ds−

∫ 1

1
2

(f ′(x + u)u)i ds+ (f ′(x + u)u)i

= −(f ′(x + u)u)i + (f ′(x + u)u)i = 0.

158

6.4.2.5 Concluding Correctness Proof

By combing all obtained results we can finally prove Theorem 15. We restate the
claim:
Theorem 15. (Correctness of Algorithm 3)
Algorithm 3 terminates and computes vectors lb,ub such that lb ≤ µf ≤ ub and
ub− lb ≤ ε. Moreover, the sequences of lower and upper bounds computed by the
algorithm both converge linearly to µf .

Proof (of Theorem 15).
The validity of the floating assignment in line 4 follows from Lemma 13 and
Lemma 14. Next we show the convergence of the lower bounds. Let (lb(k))k∈N be
the sequence of the lower bounds lb in the algorithm, where lb(1) is the result of
computeStrictPrefix(f). Moreover, define an “exact” Newton sequence ν(1) =
lb(1) and ν(k+1) = N(ν(k)). We prove by induction that ν(k) ≤ lb(k). The
induction base (k = 1) is trivial. Let k ≥ 1. Notice that the floating assignment
in line 4 guarantees f(lb(k)) + f ′(lb(k))

(
lb(k+1) − lb(k)

)
≤ lb(k+1). Therefore,

Lemma 15 assures N(lb(k)) ≤ lb(k+1). Hence we have

ν(k+1) = N(ν(k))

≤ N(lb(k)) (induction hypothesis, monotonicity of N (Esparza et al. [37]))

≤ lb(k+1) (as argued above) .

So we have ν(k) ≤ lb(k) for all k. By the floating assignment in line 4, we have
lb(k) ≺ f(lb(k)), so lb(k) ≺ µf by Theorem 16. As (ν(k))k∈N converges to µf , the
sequence (lb(k))k∈N converges to µf as well. In addition, it was shown in Esparza
et al. [37], Kiefer et al. [64] that (ν(k))k∈N converges linearly to µf . As ν(k) ≤ lb(k),
the same holds for (lb(k))k∈N.
Now we turn the upper bounds ub. We prove the following invariants of the
algorithm:

(a) f(ub) ≤ ub ≤ 1;

(b) for all components j with ubi < 1, we have fi(ub) < ubi.

159

Clearly, this holds at the beginning (when ub = 1). The invariants are preserved
by the assignment in line 8. Repeated application of Lemma 17 shows that
the floating assignment in line 9 is valid and that the invariants are preserved.
Lemma 16 implies that the floating assignment in line 13 are valid and preserve
the invariants. Hence, the invariants hold.

Next we prove that for any component i with (µf)i < 1, we eventually have
ubi < 1. Let us assume for the sake of a contradiction that there exists a
component i with the property P (i), where P (i) means that (µf)i < 1 and ubi = 1
holds during the entire execution of the algorithm. Choose i “minimal” in the
sense that for all variables Xj on which Xi depends we have that either Xi and
Xj are in the same SCC, or P (j) does not hold. Let S be the SCC of Xi and let
Xj be any variable from Var\S on which Xi depends. Since P (i) holds, we must
have ubj = 1 during the entire execution of the algorithm, because if ubj < 1
were true at some point, it would take at most n iterations before ubi < 1. As
P (j) cannot hold by the minimality of i, we have (µf)j = 1. Therefore, letting
g denote the PSP obtained by restricting f to the S-components and replacing
all variables from other SCCs by the constant 1, we have µg = (µf)S ≺ 1. Since
ubS = 1 holds during the execution of the algorithm, we have g(1) = 1, i.e., 1
is a fixed point of g. Therefore, by Lemma 9, g cannot be linear, as µg ≺ 1.
Since f is perfectly superlinear, g must then be purely superlinear. Application
of Lemma 18 (with x := µg and u := 1− µg) yields

g′(1)(1− µg) � g(1)− g(µg) = 1− µg .

Since the sequence of lbS computed during the execution of the algorithm con-
verges to µg, the continuity of g′(1) implies that eventually g′(1)(1−lbS) � 1−lbS
holds. But this means that the condition of line 12 is satisfied and, thus, the fol-
lowing assignment causes ubS ≺ 1, contradicting our assumption that P (i) holds.
So we have shown that for any component i with (µf)i < 1, we eventually have
ubi < 1.

Denote by (ub(k))k∈N the sequence of upper bounds ub computed by the al-
gorithm. It remains to show that this sequences converges linearly to µf . We
have shown above that there exists k0 such that for all k ≥ k0 we have that

160

ub(k+1)
i ≤ ub(k)

i < 1 holds for all components i with (µf)i < 1. Choose a real
number r with 0 < r < 1 such that for the point p := µf + r(1 − µf) we have
ub(k0) ≤ p ≤ 1 and the following is true for all components i: either (ub(k0))i = 1
or ub(k0)

i < pi < 1. Define the sequence (p(k))k≥k0 by setting p(k0) := p and
p(k+1) := f(p(k)) for all k ≥ k0. By Lemma 10 and Lemma 11, this sequence
converges linearly to µf . To prove that the same holds for (ub(k))k∈N, it suffices
to show that ub(k) ≤ p(k) holds for all k ≥ k0. We proceed by induction on k.
The induction base (k = k0) holds by definition of p(k0). Let k ≥ k0. Then we
have:

ub(k+1) ≤ f(ub(k)) (such that clause of line 9)

≤ f(p(k)) (induction hypothesis)

= p(k+1) (definition of p(k+1))

This completes the proof.

To summarize, Algorithm 3 computes provably and even verifiably correct lower
and upper bounds, although exact computation is restricted to detecting numer-
ical problems.

6.5 Case Study: A Neutron Branching Process

For testing the efficiency of our algorithms we consider a classical problem of
nuclear physics: determining the critical mass or, equivalently, the critical radius
of a perfect sphere of plutonium1. Roughly speaking, the critical radius is the
smallest radius that will cause a nuclear explosion. More precisely, recall that
the explosion is produced by a chain reaction: spontaneous fission of an atom
liberates neutrons, whose collisions with other atoms induce further fissions etc.
Following Harris [54], we model the ball by an MFBP describing the population
of atoms fissioning at different distances from the ball’s center. Initially there is
one free neutron in the ball. A chain reaction occurs if its line of descendants
does not go ultimately extinct (physically, this is identical to all atoms in the

1We assume room temperature, and so the density of plutonium is known.

161

ball fissioning in a very short time). Since the spontaneous fission rate is high
(several hundred atoms per second per cm3), even a small probability that one
fission causes a chain reaction results in an explosion with large probability after
a short time. So the critical radius is approximately given by the smallest radius
such that ψ < 1.
Let us assume that the radius of the considered sphere is D, and that a neutron
born at distance ξ from the center collides with an atom at distance η from the
center with probability density R(ξ, η). Let further pk be the probability that a
collision generates k neutrons (k = 0 means that no fission occurs). Harris uses
the values p0 = 0.025, p1 = 0.830, p2 = 0.07, p3 = 0.05, p4 = 0.025, pk = 0 for
k > 4, and also gives an expression for R(ξ, η) (see Harris [54], p. 86).
The probability that a neutron starting at distance ξ collides with an atom at a
distance in the interval [a, b] (with 0 ≤ a ≤ b ≤ D) and generates k neutrons can
be expressed as

θ(ξ, a, b, k) := pk ·
∫ b

a
R(ξ, η) dη.

By discretizing the interval [0, D] into n segments we obtain an MFBP B(D,n) =
(Pr1, . . . ,Prn) with n types 1, . . . , n. An individual of type i represents a neu-
tron whose distance from the center lies in between (i − 1)D/n and iD/n. The
distributions Pri, 1 ≤ i ≤ n of the MFBP B(D,n) are given, for c ∈ Nn, by

Pri(c) =


θ((i−0.5)D

n
, (j−1)D

n
, jD
n
, k) if cj = k ≥ 1 and c` = 0 for ` 6= j

1− (1− p0) ·
∫D

0 R((i−0.5)D
n

, η) dη if c = 0

0 otherwise,

and we use the methods we developed in the preceding sections to compute bounds
for the extinction probability ψ1 and to decide whether (ψ1, . . . , ψn)> = 1. Note
that ψ1 is the (approximative) probability that a neutron born in the centre does
not cause an explosion.

Results. We used three different discretizations n = 50, 100, 150 for our exper-
iments. We applied our consistency algorithm from Section 6.3 to check incon-

162

D 2 3 6 10
n 50 100 150 50 100 150 50 100 150 50 100 150

inconsistent (yes/no) n n n y y y y y y y y y
Cons. check (Alg. Sec. 6.3) < 1 2 6 < 1 1 3 < 1 1 3 < 1 1 3
Cons. check (Maple LP) 5 95 532 6 99 544 2 21 > 20min < 1 7 > 20min
Approx. ψ1 (ε = 10−3) < 1 2 4 4 24 75 3 12 21 2 8 25
Approx. ψ1 (ε = 10−4) < 1 2 5 4 24 76 3 12 34 3 12 33
Cons. check (QSOpt_ex) < 1 4 41 < 1 12 57 < 1 < 1 6 < 1 4 14

Table 6.2: Runtime in seconds of various algorithms on different values of D
and n; we chose 20 minutes as a timeout.

sistency, i.e., to check whether an explosion occurs, and compare it to the LP
approach using Maple’s exact simplex package. The results are given in the first
3 rows of Table 6.2: Again our algorithm dominates the LP approach, although
the polynomials are much denser than in the h(n)-systems.
We additionally give running times of the LP approach if we replace Maple’s sim-
plex implementation by QSopt_ex (QSOpt_ex solver [90]), a standalone exact
LP solver. It uses a mixture of floating point arithmetic and exact arithmetic
(for checking the computed results) to speed up LP computations. Our consis-
tency algorithm even outperforms this highly optimized LP solver. The speed
differences are especially significant if D is close to the critical radius, i.e. if the
systems are “almost” (in-)consistent.
We also implemented Algorithm 3 using Maple for computing lower and upper
bounds on ψ1 with two different values of the error bound ε. The runtime is
given in the fourth and fifth rows. By setting the Digits variable in Maple we
controlled the precision of Maple’s software floating-point numbers for the floating
assignments. In all cases starting with the standard value of 10, Algorithm 3
increased Digits at most twice by 5, resulting in a maximal Digits value of 20.
We mention that Algorithm 3 computed an upper bound ≺ 1, and thus proved
inconsistency, after the first few iterations in all investigated cases, almost as fast
as the consistency algorithm from Section 6.3. The numerical results, plotted in
Figure 6.5, fit in well with the approximations given in Harris [54].

Computing approximations for the critical radius. From the data dis-
played in Figure 6.5 one can suspect that the critical radius (i.e., the smallest
value of D for which the probability of a neutron in the centre causing an explo-

163

Figure 6.5: ψ1 for different values of D, n = 100.

sion is still 1) lies somewhere between 2.7 and 3.

We take different discretizations n = 25, 50, 75, 100, 150 and combine our algo-
rithm with binary search to determine the critical radius up to an error of 0.001,
using our Maple implementation. During the search, the algorithm analyzes
MBPs that get closer and closer to being critical. The running times of our al-
gorithm for the last (and most expensive) binary search step that decreases the
interval to 0.001 are given in Table 6.3. We found the critical radius to be in
the interval [2.981, 2.982] (using the finest discretization n = 150). Harris [54]
estimates 2.9.

We also measured the time required for analyzing the MFBP in the last step of the
binary search if we replace our algorithm by linear programming. Again we com-
pared our algorithm to Maple’s exact simplex package as well as the QSOpt_ex
tool. Our approach outperforms both by at least an order of magnitude. This
again indicates that the LP approach is less efficient for almost consistent PSPs.

164

n 25 50 75 100 150
Critical radius 2.9790 2.9809 2.9815 2.9815 2.9815
Precision ±0.0005 ±0.0005 ±0.0005 ±0.0005 ±0.0005
Alg. Sec. 6.3 < 1 < 1 < 1 1 4
Exact LP (Maple Simplex) < 1 6 32 108 588
Exact LP (QSOpt_ex solver) < 1 < 1 4 14 72

Table 6.3: Runtimes in seconds for the last step of the binary search described in
the text.

6.6 Conclusion

In this chapter we have studied extinction in multi-type finite branching processes.
We discussed applications for different computer science formalisms like SCFGs
and spPDAs. We have shown how to reduce the problem of computing extinction
probabilities of MFBPs to computing fixed points of PSPs. We presented a new,
simple, and efficient algorithm for checking the consistency of PSPs, which can be
used for deciding whether the extinction probabilities of an MFBP are all equal
to one. Our algorithm outperforms the previously existing LP-based method. In
particular, it has strongly-polynomial complexity. We have also described the
first algorithm that computes reliable lower and upper bounds for the vector of
extinction probabilities of an MFBP, and showed that the sequence of bounds
converges linearly. To achieve these properties without sacrificing efficiency, we
used a novel combination of exact and inexact (floating-point) arithmetic. Ex-
periments originating from concrete branching processes confirm the practicality
of our approach.
————————————————————————

Chapter 7

Summary and Outlook

In this work we have presented techniques for checking reachability properties of
probabilistic programs and multi-type finite branching processes. Our main result
can be summarized as follows: Reachability properties of probabilistic programs
can be efficiently checked for important program classes, by using abstraction,
reduction to nonprobabilistic problems, and numerical techniques, like combining
inexact and exact arithmetic. We shortly provide the three key contributions of
the thesis:

1. We have developed an extension of existing abstraction approaches for prob-
abilistic programs. In particular, we have presented an algorithm for con-
structing abstract game arenas from probabilistic programs, which uses
arbitrary abstract domains and widenings from the abstract interpretation
framework. In contrast to existing approaches, abstract states do not have
to form a partition of the state space, and domains with infinitely many ele-
ments and fast abstract operations can be used. We have shown advantages
of this extension with the help of case studies.

2. We have presented a novel method for proving almost-sure termination
of probabilistic programs using patterns. Our approach forms a complete
proof method for finite and weakly finite programs, an important class of
programs with possibly infinite state space. We have integrated state-of-
the-art termination provers and LTL model checkers in our tool chain to
generate suitable patterns automatically respectively semi-automatically,

166

and have shown how to use the found patterns to prove almost-sure termi-
nation by checking an instrumented program for sure termination.

3. Finally we have developed numerical methods for checking extinction prob-
abilities of multi-type finite branching processes. We provided a strongly-
polynomial algorithm for the problem of deciding whether all extinction
probabilities of an MFBP are one. We also presented an algorithm for com-
puting reliable upper and lower bounds for extinction probabilities that uses
a mixture of exact and inexact arithmetic for efficiency.

However, much remains to do. We point out several directions for future work.

Concurrent programs with fairness constraints. In Chapter 4 we investi-
gated probabilistic programs P with nondeterministic behaviour. We computed
bounds for the minimum and maximum of reachability probabilities, taken over
all possible strategies for MP , the MDP asociated with P . However, these values
can be unrealistic in practice. Consider for example concurrent programs where
the nondeterminism is caused by different decisions of a scheduler. Often one as-
sumes fair schedulers, which e.g. guarantee that every task is scheduled infinitely
often during a program run. This implies that several behaviours (i.e. strategies
for MP) are not possible and should not be considered for computing extremal
reachability values. This can be expressed by fairness constraints, for which many
different variants exist (see e.g. Baier and Kwiatkowska [8], Francez [45]). A sim-
ple fairness constraint can be represented by a set G of guarded commands of
a PGP P ; a program run r then is fair with respect to G if the following holds
for every guarded command a ∈ G: if r visits states infinitely often where ga is
enabled, then infinitely often a transition labeled by a is taken (this corresponds
to so-called strong action fairness). In Baier et al. [11] a method is given for
incorporating fairness constraints efficiently into quantitative model checking of
MDPs. It seems promising to integrate fairness constraints into the game-based
abstraction scenario. For this one might have to define a notion of fairness for
stochastic 2-player game arenas (hereby taking the roles of the two players into
account) and relate it to fairness constraints given for the probabilistic program
P respectively its concrete MDP MP . This would extend the application area

167

and practicability of our programs considerably.
A similar extension seems possible for the pattern approach given in Chapter 4:
we gave a possible class of patterns for arbitrary nondeterministic weakly finite
programs in Section 5.5. However, other pattern classes might be more efficient
for checking e.g. concurrent programs where nondeterministic behaviour is solely
caused by choices of the process scheduler. In particular patterns for showing
a.s.-termination with respect to fairness constraints appear to be worthwhile to
explore in the future.

Precise results from value iteration. In our experiments from Chapter 4
we used value iteration relying on Java’s floating point arithmetic capabilities
for computing the extremal game values of abstract game arenas. To exclude
potential rounding errors it seems wise to adapt our method of floating assign-
ments from Chapter 6 to value iteration and to investigate what other numerical
techniques could profit from our technique.

Combining and extending the techniques. We already sketched in Sec-
tion 5.7 how termination information might help to make game-based abstraction
more efficient. A way of automating the information transfer between the two
approaches might be offered by fairness constraints. Let us recall a variant of the
example program from Section 5.7:

int x = N; int y = 0;

a: (x > 0) -> 0.5: x’ = x-1 + 0.5: x’ = x

b: (x <= 0) -> 0.5: y’ = 0 + 0.5: y’ = 1

reach: (y = 1)

The pattern approach might be used to prove that eventually the guarded com-
mand b is chosen. This information can be expressed as the fairness constraint
{b}, and we can exclude all strategies that do not eventually choose the guarded
command b with probability 1.
Another interesting direction for further research lies in the development of ab-
stract domains that are particularly suited for building abstract game arenas,

168

taking products of predicate domains and numerical domains like intervals or oc-
tagons as a starting point. We saw in Section 4.8 an example for CEGAR-based
predicate-abstraction beating e.g. the sole use of the interval domain, and also
examples for the other way around. One can combine the sophisticated refine-
ment methods offered by CEGAR with the flexibility of infinite domains and
widenings; e.g. invariants computed by widenings might be added as predicates
to the predicate domain. Finally, Algorithm 1 could be made more flexible by
merging newly constructed states into existing ones. For this one could define
an equivalence relation over abstract states, and merge equivalent states, simi-
larly to the DAG-based approach in Gulavani et al. [50]. Also other structures
of game arenas are possible (e.g. more similar to the structure of game arenas
in Kattenbelt et al. [62]).
In our research we used different techniques for several problem variants of reach-
ability problems for probabilistic systems. It became apparent that the developed
approaches offer possibilities for extensions and cross-fertilization. Currently we
are working on a tool that integrates our prototype implementations from Chap-
ter 4 and Chapter 5 into a common framework, which supports a wide range of
probabilistic programs and analysis options. Our hope for the future is to check
properties of important program classes that are still out of reach for our methods
today.

Appendix A

Missing Proofs of Chapter 4

We abbreviate the term “Induction hypothesis” by IH in the following.

A.1 Proof of Lemma 3, Part (1)

We complete the proof of several propositions used in the context of the proof of
Lemma 3, part (1).

Lemma 19. For all Π ∈ PathsG,(S1,S2)∩(QLab)∗(Q1∪Q2) with π = T (Π) it holds

that

PrG,(S1,S2)[Cyl(Π,G)] = PrM,S[Cyl(π,M)].

Proof.

We prove the claim by induction over the structure of Π.

In the case of Π = s0,

PrG,(S1,S2)[Cyl(s0,G)] = 1 = PrM,S[Cyl(σ0,M)] = PrM,S[Cyl(T (s0),M)]

170

holds. We consider the other possible forms of Π:

Π = Π̂ d−→ 〈s, a, d〉 i−→ d(i), a ∈ C, i ∈ N:

Π̂ ends in the state 〈s, a〉. Using property (*) we get that T (Π̂) ends in a state

〈σ, a〉, σ ∈ ΣV.

PrG,(S1,S2)[Cyl(Π̂ d−→ 〈s, a, d〉 i−→ d(i),G)]

= PrG,(S1,S2)[Cyl(Π̂,G)] · S2(Π̂)(d) · pa(i) (structure of G)

= PrM,S[Cyl(T (Π̂),M)] · S2(Π̂)(d) · pa(i) (IH)

= PrM,S[Cyl(T (Π̂),M)] · pa(i) (Def. of S2)

= PrM,S[Cyl(T (Π̂) i=⇒ Jca(i)K(σ),M)] (note above)

= PrM,S[Cyl(T (Π̂ d−→ 〈s, a, d〉 i−→ d(i)),M)] (Def. of T , case 2).

Π = Π̂ a−→ 〈s, a〉, a ∈ C:

PrG,(S1,S2)[Cyl(Π̂ a−→ 〈s, a〉,G)]

= PrG,(S1,S2)[Cyl(Π̂,G)] · S1(Π̂)(a)

= PrG,(S1,S2)[Cyl(Π̂,G)] · S(T (Π̂))(a) (Def. of S1, case 1)

= PrM,S[Cyl(T (Π̂),M)] · S(T (Π̂))(a) (IH)

= PrM,S[Cyl(T (Π̂) a=⇒ 〈s, a〉,M)] (structure of M)

= PrM,S[Cyl(T (Π̂ a−→ 〈s, a〉),M)] (Def. of T).

Π = Π̂ ◦−→ q, with q = 〈s,�〉 respectively q = �:

Then T (Π̂) ends in q′ = 〈σf ,�〉 (and then the second last state in T (Π̂) must be

171

in F) respectively q′ = �, due to property (*). We get

PrG,(S1,S2)[Cyl(Π̂ ◦−→ q,G)]

= PrG,(S1,S2)[Cyl(Π̂,G)] (Def. of S1 resp. S2 in cases 2 and 3)

= PrM,S[Cyl(T (Π̂),M)] (IH)

= PrM,S[Cyl(T (Π̂) ◦=⇒ q′,M)] (structure of M, note above)

= PrM,S[Cyl(T (Π),M)].

Lemma 20. T is bijective.

Proof. We first prove that T is injective: Let Π be a path in the domain of T ,

and let π be a prefix of T (Π). Let Π′ be a path such that Π is a prefix of Π (i.e.

Π′ is an extension of Π). Then π is a prefix of T (Π′), i.e. T preserves prefixes.

Let now Π1,Π2 be two possible paths in the domain of T with Π1 6= Π2. They

have a maximal common prefix Π (at least s0), so we can write them as:

Π1 = Π `1−→ q1 → . . . and Π2 = Π `2−→ q2 →

Since we assume that Π1 6= Π2, either `1 6= `2 or q1 6= q2 has to hold. However,

if we inspect the definition of T , we see that the newly defined values of T differ

among each other in all cases: in case 1 by the action labels of the transitions,

in case 2 by the labels for probabilistic transitions; in case 3, T is defined for

only one possible extension. The definition of T (Π1) and T (Π2) both rely on the

definition of T (Π) as an intermediate step, but as we can conclude from above,

172

there exists prefixes Π′ of Π1 respectively Π′′ of Π2 with the same length and

T (Π′) 6= T (Π′′). With the fact that T preserves prefixes we get T (Π1) 6= T (Π2),

which proves the claim.

We now prove that T is also surjective: Let π ∈ PathsM,S. We show that there

exists Π ∈ PathsG,(S1,S2) such that T (Π) = π via structural induction over π:

• π = σ0: Choose Π = s0.

• π = π̂
a=⇒ 〈σ, a〉 for a ∈ C: π̂ has σ as last state. There exists Π̂ with

T (Π̂) = π̂ by induction hypothesis. Π̂ has a s ∈ Q1 \ {�,�} as last

state due to property (*), and σ ∈ γ(s), hence s a−→ 〈s, a〉 holds in G. By

construction of S1, S1(Π̂)(a) = S(T (Π̂))(a) = S(π̂)(a) > 0. By definition of

T we get

T (Π̂ a−→ 〈s, a〉) = T (Π̂) a=⇒ 〈σ, a〉 = π̂
a=⇒ 〈σ, a〉 = π.

So we can choose Π = Π̂ a−→ 〈s, a〉.

• π = π̂
a=⇒ 〈σ, a〉 i=⇒ Jca(i)K(σ) for 1 ≤ i ≤ |upa|: Let Π̂ be with T (Π̂) = π̂

a=⇒

〈σ, a〉 via induction hypothesis. Π̂’s last state has the form 〈s, a〉 with a ∈ C

due to property (*), and σ ∈ γ(s) (by considering the second last state s in

Π̂). Let then d = β(s, a, σ). By construction of S1, S2(Π̂)(d) = 1. We get:

T (Π̂ d−→ 〈s, a, d〉 i−→ d(i)) = T (Π̂) i=⇒ Jca(i)K(σ)

= π̂
a=⇒ 〈σ, a〉 i=⇒ Jca(i)K(σ) = π.

We choose Π = Π̂ d−→ 〈s, a, d〉 i−→ d(i).

173

• π = π̂
i=⇒ σ

◦=⇒ 〈σf , ◦〉, i ∈ N:

Then Π̂ with T (Π̂) = π̂
i−→ σ exists by induction hypothesis. Furthermore

the last state s of Π̂ is contained in Q1 \ {�,�} and σ ∈ γ(s), due to

property (*). Note that σ ∈ F , and so s ◦−→ 〈s,�〉 and S1(Π̂)(◦) = 1. By

definition of T we get

T (Π̂ ◦−→ 〈s,�〉) = T (Π̂) ◦=⇒ 〈σf ,�〉 = π̂
◦=⇒ 〈σf ,�〉 = π.

We choose Π = Π̂ ◦−→ 〈s,�〉.

• π = π̂
◦=⇒ � is similar to the previous case.

A.2 Proof of Lemma 3, Part (2)

We complete the proof of several propositions used in the context of the proof of
Lemma 3, part (2).

Lemma 21.

S is well-defined.

Proof.

Let us assume that there exists a path π of minimal length such that S(π) is

defined differently at two different steps in the construction. Then π 6= σ0 due

to property (*) and the definitions in case 1 of the construction. π also does not

end in 〈σf ,�〉 or σf , since in these cases there is only one choice for S(π).

174

It therefore remains to show well-definedness for S(π) with π having the shape

π = π̂
a=⇒ 〈σ̂, a〉 `=⇒ σ

with σ 6= σf , ` ∈ N. Both definitions of S(π) have to occur in case 2, for two

different (S1, S2)-possible paths Πi, i ∈ {1, 2}, with

Πi = Π′i
ai=⇒ 〈s′i, ai〉

di−→ 〈s′i, ai, di〉
`i=⇒ si

and T (Πi, π) > 0. Following the construction of (both) Πi backwards we get:

• T (Π1, π) and T (Π2, π) have both been defined in case 2; it follows `1 = `2 =

` and for i ∈ {1, 2} that T (Π′i
ai−→ 〈s′i, ai〉, π̂

ai=⇒ 〈σ̂, a〉) > 0.

• Both values T (Π′i
ai−→ 〈s′i, ai〉, π̂

ai=⇒ 〈σ̂, a〉) were defined in case 1; it follows

T (Π′i, π̂) > 0, and a1 = a = a2.

• From T (Π′i, π̂) > 0 for both i ∈ {1, 2} it follows that S(π̂) is defined in case

1 for the cases (Π′i). Since π is chosen minimal with multiple definitions,

Π′1 = Π′2. This implies d1 = d2 and so s1 = s2, and so Π1 = Π2, which

contradicts our assumption.

Lemma 22. For every Π ∈ PathsG,(S1,S2) it holds that:

PrG,(S1,S2)[Cyl(Π,G)] =
∑

π∈PathsM,S

T (Π, π).

175

Proof.

Note that, for a fixed path Π, all values T (Π, π) > 0 are defined at exactly one

position during the construction; this allows us to give a proof via induction over

the structure of Π. If Π = s0, PrG,(S1,S2)[Cyl(s0,G)] = 1 = T (s0, σ0) holds. Now

we consider the other possible forms of Π:

Π = Π̂ d−→ 〈s, a, d〉 i−→ d(i), a ∈ C, i ∈ N:

PrG,(S1,S2)[Cyl(Π̂ d−→ 〈s, a, d〉 i−→ d(i),G)]

= PrG,(S1,S2)[Cyl(Π̂,G)] · S2(Π̂)(d) · pa(i) (structure of G)

=
 ∑
π∈PathsM,S

T (Π̂, π)
 · S2(Π̂)(d) · pa(i) (IH)

=
 ∑
π∈PathsM,S

T (Π̂, π)
 · ∑

π′∈Ma,d
T (Π̂, π′)∑

π′′∈PathsM,S T (Π̂, π′′)
· pa(i) (Def. of S2)

=
∑

π′∈Ma,d

T (Π̂, π′) · pa(i)

=
∑

π∈PathsM,S

T (Π, π) (Def. of T , case 2).

Π = Π̂ a−→ 〈s, a〉, a ∈ C:

PrG,(S1,S2)[Cyl(Π̂ a−→ 〈s, a〉,G)]

= PrG,(S1,S2)[Cyl(Π̂,G)] · S1(Π̂)(a) (structure of G)

=
∑

π∈PathsM,S

T (Π̂, π) · S1(Π̂)(a) (IH)

=
∑

π∈PathsM,S

T (Π̂ a−→ 〈s, a〉, π) (Def. of T , case 1).

Π = Π̂ ◦−→ 〈s,�〉:

176

Then last(Π̂) ∈ Q1 \ {�,�} holds; we get

PrG,(S1,S2)[Cyl(Π̂ ◦−→ q,G)]

= PrG,(S1,S2)[Cyl(Π̂,G)] · S1(Π̂)(◦)

=
∑

π′∈PathsM,S

T (Π̂, π′) · S1(Π̂)(◦) (IH)

=
∑

π′∈PathsM,S

T (Π̂ ◦−→ 〈s,�〉, π′ ◦=⇒ 〈σf ,�〉) (Def. of T , case 1)

=
∑

π∈PathsM,S

T (Π̂ ◦−→ 〈s,�〉, π) (property (*)).

The last step holds due to property (*): if T (Π̂ ◦−→ 〈s,�〉, π) > 0 for a path π,

then π ends in 〈σf ,�〉.

Π = Π̂ ×−→ � respectively Π = Π̂ ◦−→ �:

The proofs of both cases are very similar, hence we only prove the case Π = Π̂ ×−→

�. Then there exists a ∈ C such that Π̂ ends in a state 〈s, a〉.

PrG,(S1,S2)[Cyl(Π̂ ×−→ �,G)]

= PrG,(S1,S2)[Cyl(Π̂,G)] · S2(Π̂)(×)

=
∑

π∈PathsM,S

T (Π̂, π) · S2(Π̂)(×) (IH)

=
∑

π∈PathsM,S

T (Π̂, π) ·
1− 1∑

π′∈PathsM,S T (Π̂, π′)
·
∑

π′∈Ma

T (Π̂, π′)
 (Def. of S2)

=
∑

π∈PathsM,S

T (Π̂, π)−
∑

π′∈Ma

T (Π̂, π′).

The last term is equal to ∑π 6∈Ma
T (Π̂, π′), and we get with the definition of T in

177

case 2 that ∑π 6∈Ma
T (Π̂, π′) = ∑

π∈PathsM,S T (Π̂ ×−→ �, π).

Lemma 23. For every S-possible path π in M it holds that

PrM,S[Cyl(π,M)] =
∑

Π∈PathsG,(S1,S2)

T (Π, π).

Proof. We prove the claim by induction over the structure of π.

π = σ0 :

We get ∑Π∈PathsG,(S1,S2) T (Π, π) = T (s0, σ0) = 1 = PrM,S[Cyl(σ0,M)].

π = π̂ ⇒ σ̂
a=⇒ 〈σ̂, a〉 i=⇒ σ, a ∈ C :

Let upa = 〈〈p1, c1〉, . . . , 〈pk, ck〉〉 and 1 ≤ i ≤ k. Let Π be such that T (Π, π) > 0.

By using property (*) we can deduce that Π has the shape

Π = Π̂ a−→ 〈s′, a〉 d−→ 〈s′, a, d〉 i−→ s,

and so T (Π, π) has been defined in case 2 of the construction. Due to the definition

of T , T (Π, π) = T (Π̂, π̂) · S1(Π̂)(a) · pi = T (Π̂, π̂) · S(π̂)(a) · pi. Assume on

the other hand that T (Π̃, π̂) > 0 for a path Π̃. a is enabled in the last state

of Π̃ due to property (*). Π̃ has to satisfy the form corresponding to case 1.

Then it follows that S1(Π̃)(a) = S(π̂)(a), and so there exists a Π′ such that

T (Π′, π) = T (Π̃, π̂) · S(π̂)(a) · pi. We get

∑
Π∈PathsG,(S1,S2)

T (Π, π) =
∑

Π∈PathsG,(S1,S2)

T (Π, π̂) · S(π̂)(a) · pi, and conclude:

178

PrM,S[Cyl(π,M)]

= PrM,S[Cyl(π̂,M)] · S(π̂)(a) · pi

=
 ∑

Π̂∈PathsG,(S1,S2)

T (Π̂, π̂)
 · S(π̂)(a) · pi (IH)

=
∑

Π∈PathsG,(S1,S2)

T (Π, π).

π = π̂
a=⇒ 〈σ, a〉, a ∈ C :

PrM,S[Cyl(π,M)]

= PrM,S[Cyl(π̂ a=⇒ 〈σ, a〉,M)] · S(π̂)(a) (structure of M)

=
∑

Π̂∈Paths(S1,S2)

T (Π̂, π̂) · S(π̂)(a) (IH)

=
∑

Π̂∈Paths(S1,S2)

T (Π̂, π̂) · S1(Π̂)(a) (S1(Π̂)(a) = S(π̂)(a))

=
∑

Π̂∈Paths(S1,S2)

T (Π̂ a−→ 〈last(Π̂), a〉, π) (case dist.)

=
∑

Π∈PathsG,(S1,S2)

T (Π, π) (property (*)).

179

π = π̂ ⇒ σ
◦=⇒ 〈σf ,�〉 :

PrS[Cyl(π,M)]

= PrS[Cyl(π̂ ⇒ σ,M)] · S(π)(◦) (structure of M)

=
 ∑

Π̂∈Paths(S1,S2)

T (Π̂, π̂ ⇒ σ)
 · S(π)(◦) (IH)

=
∑

Π̂∈Paths(S1,S2)

(
T (Π̂, π̂ ⇒ σ) · S(π)(◦)

)

=
∑

Π̂∈Paths(S1,S2)

T (Π̂, π̂ ⇒ σ) ·
S1(Π̂)(◦) +

∑
a∈C:σ 6|=a

S1(Π̂)(a)
 (Def. of T).

We now have to distinguish the different cases for definitions of T : S1 can choose

an action a not enabled by σ or it can choose ◦. We can therefore write the last

term from above as

∑
Π̂∈Paths(S1,S2)

T (Π̂ ◦−→ 〈last(Π̂),�〉, π) +
∑

a∈C:σ 6|=a
T (Π̂ a−→ 〈last(Π̂), a〉, π)

 ,
which is equal to ∑

Π∈Paths(S1,S2)

T (Π, π),

again by the definition of T .

A.3 Proof of Lemma 3, Part (3)

In this section we comment on the completion of the proof of the third part of
Lemma 3: given a strategy S1 ∈ S1(G) there exists a strategy S ∈ S(MP) such

180

that
PrSReach(MP , F) ≥ inf

T∈S2(G)
Pr(S1,T)[Reach(G, {�})].

We have already described the structure and function of M in the main text;
again we use a function

T : PathsG,(S1,S2) ∩ (QLab)∗(Q1 ∪Q2)× PathsM,S → [0, 1],

serving the same purpose as in part (2) of the proof. It remains to describe the
construction of S and S2.

Definition of S and S2.
Again we set T (s0, σ0) := 1 and use the following property that can easily be
verified during the construction:

Property (*) for an (S1, S2)-possible path Π:
For all paths Π, π with T (Π, π) > 0: π is a (S)-possible path. Further the last
states states of Π and π are related as follows:

1. Π ends in a state s ∈ Q1 \{�,�} iff π ends in an action state σ 6= σf . Then
σ ∈ γ(s) holds.

2. Π ends in a state 〈s, a〉 with a ∈ C iff either

• π ends in a state 〈σr,�〉, and then also 〈s, a〉 ×−→ � holds, or

• π ends in a state 〈σ, a〉, and then σ ∈ γ(s) holds.

3. If Π ends in 〈s,�〉 ×−→ 〈s,�〉, then π ends in 〈σr,�〉. If Π ends in s ◦−→ 〈s,�〉,
then π ends in 〈σf ,�〉 or in 〈σr,�〉; in the later case Π ×−→ 〈s,�〉 holds.

4. If Π ends in � then π ends in σf . If Π ends in � then π ends in σr.

5. The number of occurrences of Player 1 states in Π and the number of
occurences of action nodes in π are equal. The number of occurrences of
� in Π is equal to the number of occurrences of σr in π. The number of
occurences of states 〈s,�〉 in Π is equal to the number of occurrences of
σf , σr, 〈σf ,�〉 and 〈σr,�〉 in π.

181

For the construction we define several abbreviations: for Π ∈ PathsG,(S1,S2), we
set t(Π) := ∑

π:π∈PathsMP ,S T (Π, π) and

tf (Π) :=
∑

π∈PathsMP ,S :
last(π)=〈σf ,�〉

T (Π, π) and

tr(Π) :=
∑

π∈PathsMP ,S :
last(π)=〈σr,�〉

T (Π, π).

Case 1: Π = s0 respectively Π = Π̂→ s, s ∈ Q1 \ {�,�}.
Let L = {a ∈ C | S1(Π)(a) > 0}.
We give the following definitions for every π ∈ PathsG with T (Π, π) > 0: let σ be
the last state of π with σ ∈ γ(s) (by induction hypothesis, property (*)).
Let Gσ = {a ∈ C | σ |= a}. For every a ∈ C holds: σ |= a implies s a−→ 〈s, a〉. We
use a case distinction:

• σ 6∈ F :

(S) : For each a ∈ Gσ: Set S(π)(a) := S1(Π)(a).
Set S(π)(×) := 1−∑a∈Gσ S1(Π)(a).

(T) : For a ∈ Gσ: set T (Π a−→ 〈s, a〉, π a=⇒ 〈σ, a〉) := T (Π, π) · S1(Π)(a).
For a ∈ C \Gσ: set T (Π a−→ 〈s, a〉, π ×=⇒ 〈σr,�〉) := T (Π, π) · S1(Π)(a).
Set T (Π ◦−→ 〈s,�〉, π ×=⇒ 〈σr,�〉) := T (Π, π) · S1(Π)(◦).

• σ ∈ F :

(S) : Set S(π)(◦) := S1(Π)(◦).
Set S(π)(×) := 1− S1(Π)(◦).

(T) : No a ∈ C is enabled by σ (final states do not enable program guards).
For a ∈ C: set T (Π a−→ 〈s, a〉, π ×=⇒ 〈σr,�〉) := T (Π, π) · S1(Π)(a).
Set T (Π ◦−→ 〈s,�〉, π ◦=⇒ 〈σf ,�〉) := T (Π, π) · S1(Π)(◦).

182

(Note that, although there might be two paths Π1 6= Π2 with T (Πi, π
×=⇒ 〈σr,�〉) >

0, i ∈ {1, 2} according to the last definition, S is still well-defined: there is only
one strategy choice for S(π ×=⇒ σr).)

Case 2: Π = Π̂ a−→ 〈s, a〉, a ∈ C.
We give the following definitions for every π ∈ PathsG with T (Π, π) > 0.
With property (*), two cases arise:

(a) : 〈σr,�〉 last state of π: Then 〈s, a〉 ×−→ � in G (property (*)).

(T) : Set T (Π ×−→ �, π ×=⇒ σr) := T (Π, π).

(b) : 〈σ, a〉 last state of π: Then σ ∈ γ(s); let d = β(s, a, σ). Let upa =
〈〈p1, c1〉, . . . , 〈pk, ck〉〉.

(T) : Set for every 1 ≤ i ≤ k:

T (Π d−→ 〈s, a, d〉 i−→ d(i), π i=⇒ JciK(σ)) := T (Π, π) · pi.

We finally define S2(Π):

(S2) : Let Ma be the set of all paths π satisfying (b).
Set S2(Π)(×) := 1− 1

t(Π) ·
∑
π∈Ma

T (Π, π) and
for every possible sequence d:
let Ma,d be the paths π ∈Ma having a last state 〈σ, a〉 s.t. β(s, a, σ) = d.
Set S2(Π)(d) := 1

t(Π) ·
∑
π∈Ma,d

T (Π, π).

Case 3a: Π = Π̂ ◦−→ 〈s,�〉.

We carry out the following definitions for every π ∈ PathsG with T (Π, π) > 0.
We know that π ends either with 〈σf ,�〉 or with 〈σr,�〉, due to property (*).
Then there is only one choice for S(π) (taking ◦ respectively ×).
It holds that t(Π) = tf (Π) + tr(Π). If tf (Π) > 0 we know due to property (*) and
the definition of abstract game arenas that 〈s,�〉 ×−→ 〈s,�〉 holds.

(S2) : Set S2(Π)(◦) := tf (Π)
t(Π) and set S2(Π)(×) := tr(Π)

t(Π) .

183

(T) : Set T (Π ◦−→ �, π ◦=⇒ σf) := T (Π, π) if last(π) = 〈σf ,�〉 and
set T (Π ×−→ 〈s,�〉, π ×=⇒ σr) := T (Π, π) otherwise.

Case 3b: Π = Π̂→ 〈s,�〉 ×−→ 〈s,�〉.
We carry out the following definitions for every π ∈ PathsG with T (Π, π) > 0.
We know that π ends with σr, due to property (*).

(S2) : Set S2(Π)(×) := 1.

(T) : Set T (Π ×−→ 〈s,�〉, π ×=⇒ σr) := T (Π, π).

Case 4: Π = Π̂ ×−→ � respectively Π = Π̂ ◦−→ �.
We carry out the following definitions for every π ∈ PathsG with T (Π, π) > 0.
We know that π ends with σr respectively σf due to property (*).

(S) : Set S(π)(×) := 1 respectively S(π)(◦) := 1 (the only choice).

(T) : Set T (Π ×−→ �, π ×=⇒ σr) := T (Π, π) respectively T (Π ◦−→ �, π ◦=⇒ σf) :=
T (Π, π).

This concludes the construction.

S is well-defined using the same arguments as in the proof of part (2) and the
additional comment in case 1. Again we can prove that for every Π ∈ PathsG,(S1,S2)

it holds that:
PrG,(S1,S2)[Cyl(Π,G)] =

∑
π∈PathsM,S

T (Π, π).

The proof is essentially the same as the one of Lemma 22, i.e. we can prove it again
using induction over the structure of Π ∈ PathsG,(S1,S2). We only consider some
cases that are nontrivial and substantially different from the proof in Lemma 22:

184

Π = Π̂→ s
◦−→ 〈s,�〉 ◦−→ �:

PrG,(S1,S2)[Cyl(Π,G)]

= PrG,(S1,S2)[Cyl(Π̂→ s
◦−→ 〈s,�〉,G)] · S2(Π̂→ s

◦−→ 〈s,�〉)(�)

=
∑

π∈PathsM,S

T (Π̂→ s
◦−→ 〈s,�〉, π) · tf (Π̂→ s

◦−→ 〈s,�〉)
t(Π̂→ s

◦−→ 〈s,�〉)
(IH, case 3a)

= tf (Π̂→ s
◦−→ 〈s,�〉)

=
∑

π∈PathsM,S

T (Π, π) (Def. of T)

Π = Π̂ a−→ 〈s, a〉 ×−→ �, a ∈ C:

PrG,(S1,S2)[Cyl(Π̂ a−→ 〈s, a〉 ×−→ �,G)]

= PrG,(S1,S2)[Cyl(Π̂ a−→ 〈s, a〉,G)] · S2(Π̂ a−→ 〈s, a〉)(×)

=
∑

π∈PathsM,S

T (Π̂ a−→ 〈s, a〉, π) · S2(Π̂ a−→ 〈s, a〉)(×) (IH)

= t(Π̂ a−→ 〈s, a〉, π) ·
(

1− 1
t(Π̂ a−→ 〈s, a〉)

· tr(Π̂ a−→ 〈s, a〉)
)

(Def. of S2, case 2)

= tr(Π̂ a−→ 〈s, a〉) (Def. of T , case 2)

=
∑

π∈PathsM,S

T (Π, π) (Def. of T and tr).

We can prove that for every S-possible path π in M it holds that

PrM,S[Cyl(π,M)] =
∑

Π∈PathsG,(S1,S2)

T (Π, π).

by using again a similar proof as for Lemma 23, i.e. we prove it by induction over
the structure of a S-possible path π. We again give only some differing nontrivial
cases here:

185

π = π̂
i=⇒ σ

◦=⇒ 〈σf ,�〉, i ∈ N : Then σ ∈ F due to property (*).

PrS[Cyl(π,M)]

= PrS[Cyl(π̂ i=⇒ σ,M)] · S(π̂ i=⇒ σ)(◦)

=
∑

Π̂∈Paths(S1,S2)

T (Π̂, π̂ i=⇒ σ) · S(π̂ ⇒ σ)(◦) (IH)

=
∑

Π̂∈Paths(S1,S2)

T (Π̂, π̂ i=⇒ σ) · S1(Π̂)(◦) (Def. of T , prop. (*))

=
∑

Π∈Paths(S1,S2)

T (Π, π).

π = π̂
i=⇒ σ

×=⇒ 〈σr,�〉, i ∈ N : Let us first assume that σ 6∈ F :

PrS[Cyl(π,M)]

= PrS[Cyl(π̂ i=⇒ σ,M)] · S(π̂ i=⇒ σ)(×) (structure of M)

=
∑

Π̂∈Paths(S1,S2)

T (Π̂, π̂ i=⇒ σ) · S(π̂ i=⇒ σ)(×) (IH)

=
∑

Π̂∈Paths(S1,S2)

T (Π̂, π̂ i=⇒ σ) ·
1−

∑
a∈Gσ

S1(Π̂)(a)
 (Def. of S)

=
∑

Π̂∈Paths(S1,S2)

T (Π̂, π̂ i=⇒ σ) ·
 ∑
a6∈Gσ

S1(Π̂)(a) + S1(Π̂)(◦)


=
∑

Π∈Paths(S1,S2)

T (Π, π) (Def. of T).

186

For σ ∈ F , no a ∈ C is enabled by σ (this is a basic assumption of Problem 3).

PrS[Cyl(π,M)]

= PrS[Cyl(π̂ i=⇒ σ,M)] · S(π̂ i=⇒ σ)(×) (structure of M)

=
∑

Π̂∈Paths(S1,S2)

T (Π̂, π̂ i=⇒ σ) · S(π̂ i=⇒ σ)(×) (IH)

=
∑

Π̂∈Paths(S1,S2)

T (Π̂, π̂ i=⇒ σ) · (1− S1(Π̂)(◦)) (Def. of S)

=
∑

Π̂∈Paths(S1,S2)

T (Π̂, π̂ i=⇒ σ) ·
∑
a∈C

S1(Π̂)(a)

=
∑

Π∈Paths(S1,S2)

T (Π, π) (Def. of T)

A similar argument as in the proof for part (2) concludes the proof of this part,
by letting FG the set of (S1, S2)-possible paths Π in G such that Π ends in �, FM

the set of S-possible runs π such that π ends in σf .

Appendix B

Missing Proofs of Chapter 5

Theorem 7, (1). Let P = (L, I, ↪→, label,⊥,>) be a PIP.

(1) Let Φ be a pattern. The set of Φ-conforming runs has probability 1. In

particular, if Φ is terminating, then P is a.s.-terminating.

Proof (of Theorem 7 (1)).

Let P = (L, I, ↪→, label,⊥,>), and MP = (Q,→,LabP) its corresponding MDP.

Let Φ = C∗w1C
∗w2C

∗ . . .; the set of runs conforming to Φ are denoted by

Runs(Φ). We first prove that Runs(Φ) is measurable, i.e. contained in SM
P .

Let IC ∈ SMP be the set of runs r containing infinitely many coin tosses, i.e.

r̄|C ∈ Cω. For w1, w2, . . . wi, i ≥ 1, we define the set M(w1, w2, . . . , wi) by

M(w1, w2, . . . , wi) := {r ∈ RunsMP | r̄|C ∈ C∗w1C
∗w2C

∗ . . . C∗wiC
ω}.

M(w1, w2, . . . , wi) is measurable: let NC(i) ∈ SMP be the set of all runs r whose

188

i-th label is not in C, and let F (i, c) ∈ SMP be the set of runs that have c as i-th

label. Set

G(b−, b+, c1 . . . ck) =
⋃

b−≤a1<...<ak<b+

(⋂
l>a1

∧l 6∈{a2,...,ak}

NC(l) ∩
⋂

1≤j≤k
F (aj, cj)

)
∈ SMP ,

for {b−, b+, k} ⊆ N and c1 . . . ck ∈ Ck, the set of runs where between the b−-th

and the b+-th label the subword c1 . . . ck can be observed. M(w1, w2, . . . , wn) can

be written as

IC ∩
⋃

1≤b−1 <b
+
1 <b

−
2 <...<b

−
n<b

+
n

G(b−1 , b+
1 , w1) ∩ . . . ∩G(b−n , b+

n , wn) ∈ SMP .

Since

Runs(Φ) =
(
RunsMP \ IC

)
∪
⋂
i≥1

M(w1, w2, . . . , wi) ∈ SMP

we conclude that Runs(Φ) is also measurable.

Next we show that PrS[Runs(Φ)] = 1 for every strategy S. We abbreviate PrS

by Pr in the following.

We first show that for every prefix w1, w2, w3, . . . , wi of (wi)i∈N, Pr[M(w1, . . . , wi)] =

Pr[IC] holds, i.e., the set of runs that visit probabilistic states infinitely often, but

are not C∗w1C
∗w2C

∗ . . . C∗wiC
ω-conforming, have probability zero.

For proving this we write w = w1w2 . . . wi. Let n = |w|. M(w) ⊆M(w1, w2, . . . , wi)

holds for all i. It suffices to show that Pr[M(w)] = Pr[IC], since this implies with

IC ⊇M(w1, . . . , wi) that Pr[IC] = Pr[M(w1, w2, . . . , wi)].

Let V (j) be the (measurable) set of runs that visit a probabilistic state at least

189

j times, and let

B(j) = V (j · n) ∩ (RunsMP \M(w))

be the set of runs r that visit a probabilistic state at least j · n times, and w

is no substring of r̄|C . Since there are only finitely many probabilistic locations

in P , there exists a minimal probability pmin > 0 such that for every transition

q
p′,c−−→ q′ with c ∈ {0, 1} in in MP it holds that p′ ≥ pmin. We write NI(w)

(“not visited initially”) for the set of runs r such that r̄|C does not start with

w. Note that Pr[NI(w) | V (n)] ≤ (1 − pnmin): the probability that a run visiting

probabilistic states at least n times does not observe w in the beginning is at

most 1− p|w|min. We get

Pr[B(1)]

≤ Pr[NI(w) ∩ V (n)]

≤ Pr[NI(w) | V (n)] · Pr[V (n)]

≤ (1− pnmin) · Pr[V (j)] (note above)

≤ (1− pnmin),

i.e., after visiting probabilistic states at least n times, the probability p of not

seeing the sequence w is at most (1 − pnmin) < 1. By repeating the observation

inductively we obtain Pr[B(j)] ≤ (1 − pnmin)j. It holds that B(j) ⊇ B(j + 1) for

all j. Then

Pr[
⋂
j≥1

B(j)] = lim
j→∞

Pr[B(j)] ≤ lim
j→∞

(1− pnmin)j = 0. (B.1)

190

We can write M(w) = IC \
⋂
j≥0B(j). Hence

Pr[M(w1w2 . . . wi)] = Pr[IC \
⋂
j≥1

B(j)] (Def. of B(·))

= Pr[IC]− Pr[
⋂
j≥1

B(j) ∩ IC]

= Pr[IC] (Eq. B.1).

Now Pr[IC \M(w1, . . . , wi)] = Pr[IC]− Pr[M(w1, . . . , wi)] = 0. We can write

IC \
⋂
i≥1

M(w1, . . . , wi) = IC ∩
⋃
i≥1

IC \M(w1, . . . , wi).

For every i ≥ 1, IC \ M(w1, . . . , wi) is a null set, thus the countable union⋃
i≥1 IC \M(w1, . . . , wi) is also a null set, and Pr[⋂i≥0M(w1, . . . , wi)] = Pr[IC]

holds (*). We conclude:

Pr[Runs(Φ)]

= Pr[RunsMP \ IC] + Pr[
⋂
i≥0

M(w1, . . . , wi)]

= Pr[RunsMP \ IC] + Pr[IC] (*)

= 1.

191

Theorem 9. (Response pattern as a proof method)

Let P be a PIP in normal form.

(1) Let Φ be a response pattern. The set of Φ-conforming runs has probability 1

for every strategy S for MP . In particular, if P has a terminating response

pattern, then P is a.s.-terminating.

(3) If P is a.s.-terminating and finite with n <∞ reachable states in MP , then

there exists a response R of length in O(n2) such that (AC)∗R(AC)ω is

terminating for P and ((AC)∗R)ω is a simple terminating response pattern

for P .

(2) If P is a.s.-terminating and weakly finite, then the universal response pat-

tern is terminating for P .

Proof.

Let P = (L, I, ↪→, label,⊥,>). The MDP corresponding to P is denoted by

MP = (QA, QD, Init,→,LabA,LabP). Let Φ = (AC)∗R1(AC)∗R2 . . ., with Ri a

response for all i ≥ 1. We call the set of Φ-corresponding runs Runs(Φ). For

responses R1, R2 of length n1 and n2, respectively, and a word w ∈ (AC)+, we set

w ◦ R1 := {wr | r ∈ R1} and R1 ◦ R2 := {r ◦ R2 | r ∈ R1}. R1 ◦ R2 is a response

of length n1 +n2. We set G := A∪C. Recall that, since P is in normal form, for

every run r in MP , r̄|G is a prefix of a word in (AC)ω.

Part (1):

We first prove that Runs(Φ) is measurable (the proof is very similar to the one

192

of Theorem 7 (1)). Let IG ∈ SMP be the set of runs r with r̄|G ∈ Gω. For

R1, R2, . . . Ri, i ≥ 1, we define the set M(R1, R2, . . . , Ri) by

M(R1, R2, . . . , Ri) := {r ∈ Runs(MP) | r̄|G ∈ G∗R1C
∗R2G

∗ . . . G∗RiG
ω}.

M(R1, R2, . . . , Ri) is measurable: the set of runs r such that

r̄|M ∈ G∗w1G
∗w2G

∗ . . . G∗wiG
ω

for (w1, . . . , wi) ∈ R1 × . . . × Ri is measurable, which can be proved as in the

proof of Theorem 7 (1). M(R1, R2, . . . , Ri) is the finite union of all these sets and

thus is also measurable. Again, since

Runs(Φ) =
(
Runs(MP) \ IG

)
∪
⋂
i≥0

M(R1, R2, . . . , Ri) ∈ SMP

we conclude that Runs(Φ) is measurable.

Let S be a strategy for MP . We show that PrS[Runs(Φ)] = 1, again reusing ideas

from the proof of Theorem 7. We abbreviate PrS again by Pr.

For every prefix R1, R2, R3, . . . , Ri of (Ri)i∈N, we show that Pr[M(R1, . . . , Ri)] =

Pr[IG] holds, i.e., the set of runs that visit probabilistic states infinitely often, but

are not conforming to (AC)∗R1(AC)∗ . . . (AC)∗Ri(AC)ω, have probability zero.

For proving this we write R = R1 ◦R2 ◦ . . . Ri. Let n be the length of R. M(R) ⊆

M(R1, R2, . . . , Ri) holds for all i. Again it suffices to show that Pr[M(R)] =

Pr[IG], since this implies with IG ⊇M(R1, . . . , Ri) that

Pr[IG] = Pr[M(R1, R2, . . . , Ri)].

193

We reuse the definition of the sets of runs V (j) that visit a probabilistic state at

least j times, and set

B(j) = V (j · n) ∩ (Runs(MP) \M(R))

for the set of runs r that visit a probabilistic state at least j · n times, and no

w ∈ R is a substring of r̄|G. Again we use the fact that there exists a minimal

probability pmin > 0 such that for every transition q
p′,c−−→ q′ in MP , c ∈ {0, 1},

p′ ≥ pmin holds. For x ∈ A∗ we write SC(x) (“strategy choice”) for the set of

runs r such that r̄|A starts with x. For x 6= x′ with x, x′ ∈ A∗ having the same

length,

SC(x) ∩ SC(x′) = ∅. (B.2)

Let NI(w) be again the set of runs r such that r̄|C does not start with w ∈ C∗.

If the strategy S initially chooses actions according to the actions in w̄|A, we get

similarly to the proof of Theorem 7 (1):

Pr[NI(w̄|C) | SC(w̄|A) ∩ V (n)] ≤ (1− pnmin). (B.3)

It also holds that

B(1) ⊆ V (n) ∩
⋃
w∈R

(NI(w̄|C) ∩ SC(w̄|A)) .

194

With this we obtain

PrS[B(1)]

≤
∑
w∈R

Pr[
⋃
w∈R

NI(w̄|C) ∩ SC(w̄|A) ∩ V (n)]

≤
∑
w∈R

Pr[NI(w̄|C) | SC(w̄|A) ∩ V (n)] · Pr[SC(w̄|A) ∩ V (n)]

≤
∑
w∈R

(1− pnmin) · PrS[SC(w̄|A) ∩ V (j)] (Eq. B.2, Eq. B.3)

≤ (1− pnmin).

Again we can see that after visiting probabilistic states at least n times, the

probability of not seeing at least one of the w ∈ R is at most (1 − pnmin) < 1.

In B(j), we repeat this experiment at least j times (at positions 1, n, 2n, . . .)

and get again Pr[B(j)] ≤ (1 − pnmin)j. Now we proceed exactly as in the proof

of Theorem 7, substituting IC by IG and M(w1, . . . wi) by M(R1, . . . , Ri), and

obtain Pr[IG] = PrS[⋂i≥0M(R1, . . . , Ri)]. We conclude

Pr[Runs(Φ)]

= Pr[Runs(MP) \ IG] + Pr[
⋂
i≥0

M(R1, . . . , Ri)]

= Pr[Runs(MP) \ IG] + Pr[IG]

= 1.

Part (2):

We reintroduce several notations from the proof of Theorem 7 and generalize them

to accomodate nondeterminism. We redefine the term “ending up” as follows:

195

q ∈ Q ends up in a state q′ ∈ Q following w = x1x2 . . . xm ∈ G∗ iff

q
τ∗x1τ∗x2τ∗...τ∗xmτ∗−−−−−−−−−−−−→ q′ and either

q′ = 〈`, σ〉 with ` probabilistic or nondeterministic, or q′ = >.

Again, if such a q′ exist, it is unique, since all transition choices are resolved.

For every reachable state q ∈ QA and every sequence w ∈ (AC)∗ holds that

either: (i) q ends up in a state 〈`, σ〉 with ` probabilistic or nondeterministic

following w, or (ii) q ends up in > following a prefix of w. Otherwise there exists

a state q′ from which no state with probabilistic or nondeterministic location or

> is reachable any more, which contradicts that P is a.s.-terminating. Note that

there always exists a strategy that is able to cause the initial state of MP to end

up in q′ with nonzero probability, using the nondeterministic choices given in w.

We show that for every state q ∈ QA and every sequence s1 . . . sn ∈ An there

exists a c1c2 . . . cn such that q ends up in > following a prefix of s1c1 . . . sncn.

Assume for the sake of contradiction that there exists q ∈ QA and a sequence

s1 . . . sn ∈ An for which no c1 . . . cn exists with the property described above. We

can then construct a strategy S that assures:

(i) q is reached with probability > 0, and

(ii) every run that reaches q never reaches >.

The probability of reaching> is then smaller than 1, contradicting the assumption

that P is a.s.-terminating. Since q is reachable in MP , there exists a cycle-free

path π from the initial state q0 to q. For all proper path prefixes of π ending in

a nondeterministic state, S selects the corresponding choices contained in π with

196

probability 1, and thus we reach q with probability > 0. This proves (i). For (ii),

let π be a path having the form π = π′ → q1
l1−→ q2

l2−→ . . .
lm−→ qm, with m ≥ 1

and q1 = q, such that π′ does not contain q. We define S(π) as follows: let πr

be the path obtained from q1
l1−→ q2

l2−→ . . .
lm−→ qm by removing all possible cycles.

πr then contains k < n nondeterministic states (there are only n states in total).

Set S(π)(sk) = 1. Then there is no path starting from a reachable state π′ → q in

MP [S] that reaches > (more exactly, that reaches a state π′′ → >), contradicting

the assumption that P is a.s.-terminating: after reaching q, S can avoid reaching

> entirely.

We now select a c1 . . . cn ∈ Cn with the property described above for each q ∈ QA

and s1 . . . sn ∈ An, and define tr(q, s1 . . . sn) := s1c1 . . . sncn. We set

R(q) := {tr(q, w) | w ∈ An}.

Note that every R(q) is a response, and for every w ∈ R(q), q ends up in >

following a prefix of w. We say that a response with this property leads q to >.

We construct now a sequence R(0), R(1), . . . , R(m) using the following algorithm.

Set R(0) := {ε} and i := 1.

1. Pick a q′i ∈ QA that does end up in a state qi 6= > following a w ∈ R(i−1).

If no such qi exists set R := R(i−1) and terminate.

2. Set R(i) := (R(i−1) \ {w}) ∪ w ◦R(qi). Set i := i+ 1 and go to (1).

We show that for every i, if w ∈ R(i), |w| ≤ n2. This implies termination of the

algorithm.

Let w ∈ R(i). Let q′1, . . . , q′m be the states selected in part (1) of the algorithm

197

such that w = w1w2 . . . wm with wj ∈ R(q′j) for 1 ≤ j ≤ m. We define a family

of sets by:

• Q(0) = QA ∪ {>},

• for every j ≥ 1, Q(j) is the set of states consisting of > and all states q̂ such

that there exists a q ∈ QA that ends up in q̂ following w1 . . . wj.

For every j ≥ 1, |Q(j)| ≥ 1. We now prove that Q(j) contains at most n − j

states. This is true for Q(0). For j > 0, note that q′j is chosen such that wj or

one of its prefixes leads a state q in Q(j−1) to >. That implies |Q(j)| < |Q(j−1)|,

and therefore the property (recall that every state ends up in at most one state

following a sequence).

Thus m has to be smaller than n, and |w| ≤ n2, since R(q) has length n for all

q. Note that for every w,w′ ∈ R(i) for all i ≥ 0, if w 6= w′ then w|A 6= w′|A.

Hence after termination of the procedure, we can replace every w ∈ R such that

|w| = k · n < n2 by w ◦R′, with R′ an arbitrary response of length (n− k) · n, to

obtain equal length of all words in R, which then forms a response of length n2.

For every w ∈ R, every state of QA ends up in > after following a prefix of w.

We can conclude that every run r with r̄|G a prefix of a word in (AC)∗R(AC)ω

is terminating, and thus (AC)∗R(AC)ω is a terminating pattern, and so also

((AC)∗R)ω.

Part (3):

The proof proceeds analogously to the one of Theorem 7, part (3): Let σ1, σ2, . . .

be a (countable or infinite) enumeration of the states in I. With Part (2) we

obtain for each i ≥ 1 a response Ri such that (AC)∗Ri(AC)ω is a terminating

198

pattern for P , if the only starting state considered is σi. By its definition, the

universal pattern is a subset of (AC)∗Ri(AC)ω for every i ≥ 1, so it is also

terminating.

Appendix C

Missing Proofs of Chapter 6

Lemma 24. (M[B] is well-defined for every MFBP B)

For every MFBP B = (Pr1,Pr2, . . . ,Prn) with n types, M[B] defined in Def. 40

forms a Markov chain.

Proof.

Let B = (Pr1,Pr2, . . . ,Prn) andM[B] = (P,→, {τ}), We have to verify conditions

(1), (2) of Definition 8. As before we set P = Nn. Given states x and y of M[B],

there is at most one transition (x, p, τ,y) in →. For proving (2), we first note

that ∑
w∈P

g(w, i, k) = 1 (C.1)

200

for every i and k. We compute for a given x ∈ Q:

∑
(x,p,k,y)∈→

p

=
∑
y∈P

∑
(w(1),...,w(n))∈Pn:
w(1)+...+w(n)=y

(
n∏
i=1

g(w(i), i,xi)
)

(Def. 40)

=
∑

(w(1),...,w(n))∈Pn

(
n∏
i=1

g(w(i), i,xi)
)

(Sum over arbitrary y)

=
∑

w(1)∈P
g(w(1), 1,x1) ·

∑
w(2),...,w(n)

(
n∏
i=2

g(w(i), i,xi)
)

= 1 ·
∑

w(2),...,w(n)

n∏
i=2

g(w(i), i,xi) (Eq. C.1)

= 1 (Apply Eq. C.1 iteratively).

Theorem 13.
Let f be a PSP of size s. We can compute in time O(n · s) a perfectly superlinear
PSP f̃ with Var(f̃) = Var(f)∪{X̃} of size O(n ·s) such that µf = (µf̃)Var(f).

Proof.

In a first step, we add to the equation system X = f(X) an (n + 1)-st equation

X̃ = 1
3X̃

2 + 2
3 . The least solution of this equation is X̃ = 1. {X̃} now forms a

purely superlinear bottom SCC. We now take all components fi that are not yet

superlinear and multiply a monomial of fi by X̃. For instance, if fi = 1
4Xj + 1

3Xk,

then we replace fi with 1
4XjX̃+ 1

3Xk. This does not change the least fixed point in

the non-X̃-components. We call the resulting PSP again f for simplicity. Notice

that f is now purely superlinear.

201

In a second step we make sure that all superlinear SCCs are purely superlinear.

For this, we repeatedly apply a certain operation: LetXj be a variable that occurs

in a monomial m of a component fi, i.e., there is a monomial m̃ with m = Xj ·m̃.

The operation that replaces the monomial m in fi with 0.5 ·m+0.5 ·fj ·m̃ is called

substituting (an occurrence of) Xj. It is easy to see that applying this operation

to a PSP yields a PSP with the same set of fixed points. Notice that substituting

does not change the dependency relation between the variables.

In order to make all superlinear SCCs purely superlinear, we apply a sequence of

substituting operations. Take a superlinear SCC S which is not purely superlin-

ear and let g(S) denote the PSP obtained by restricting f to the S-components

and replacing all variables which are not in S by the constant 1. Since S is super-

linear and not purely superlinear, the PSP g(S) is, by definition, superlinear and

not purely superlinear. So there exist variables Xi, Xj ∈ S such that Xi directly

depends on Xj in g(S), and g(S)i is linear, and g(S)j is superlinear. Substitute

the corresponding occurrence of Xj in fi. This makes g(S)i superlinear. By pro-

ceeding this way, at most n substituting operations suffice to make all superlinear

SCCs purely superlinear.

To make f perfectly superlinear, it remains to make each variable directly depend

on itself. We achieve that by replacing, for all variablesX, the polynomial fX with

0.5fX+0.5X. It is easy to see that f has the same least fixed point, the sum of the

coefficients is still at most 1 in all components, and no new variable dependencies

are created by this operation except that every variable now depends directly on

itself. So, this operation makes f perfectly superlinear.

The bottleneck of this whole procedure are the substituting operations. Notice

that computing the DAG of SCCs can be done in time O(s) with Tarjan’s algo-

202

rithm. The size of each single polynomial at the end of the substituting procedure

is O(s), so the total size of the resulting PSP is O(n · s).

Lemma 12.

Let f be a perfectly superlinear PSP and let x ≺ f(x). Then

N(x) = x + (f ′(x))∗(f(x)− x).

Proof (of Lemma 12).

By Proposition 16 we have x ≺ µf . For such points x it was shown in Esparza

et al. [37], Etessami and Yannakakis [43] that ρ(f ′(x)) < 1. By standard matrix

facts (Berman and Plemmons [12]), the matrix star A∗ exists if and only if ρ(A) <

1. Furthermore, if A∗ exists, it is equal to (Id − A)−1. Hence, (Id − f ′(x))−1 =

f ′(x)∗, and the statement follows.

Lemma 13.
Let f be perfectly superlinear. Let 0 ≺ x ≺ f(x) ≺ 1 and y = N(x). Then
f(x) ≺ y ≺ f(y) ≺ 1.

Proof.

By Lemma 12 we have N(x) = x+f ′(x)∗(f(x)−x). Write ∆ = f ′(x)∗(f(x)−x),

i.e., y = x+∆. As every variable depends directly on itself, we have f ′(x)(f(x)−

203

x) � 0. Consequently,

f(x) ≺ x + (f(x)− x) + f ′(x)(f(x)− x)

= x +
∑
i=0,1

f ′(x)i(f(x)− x)

≤ x +
∞∑
i=0

f ′(x)i(f(x)− x)

= x + ∆

= y .

Letting u,v be any vectors, we write f(u + v) = f(u) + f ′(u)v +R(u,v) for the

Taylor expansion of f at u. Notice that R(x,∆) � 0, because x � 0 and f is

purely superlinear. Hence we have

y = x + ∆

≺ x + ∆ +R(x,∆)

= x + f ′(x)∗(f(x)− x) +R(x,∆)

= x + (f(x)− x) + f ′(x)f ′(x)∗(f(x)− x) +R(x,∆)

= f(x) + f ′(x)∆ +R(x,∆)

= f(x + ∆)

= f(y) .

By Etessami and Yannakakis [43], Kiefer et al. [64] we have y ≤ µf . By the

monotonicity of f it follows that f(y) ≤ f(µf) = µf . Using the monotonicity

of f once more and the fact that every variable depends directly on itself, we

204

obtain y ≺ f(y) ≺ f(f(y)) ≤ f(µf) = µf . As µf ≤ 1, it follows f(y) ≺ 1.

Lemma 15.
Let f be a PSP. Let 0 ≺ x ≺ f(x). Let z be with f(x)+f ′(x)(z−x) ≤ z, i.e. z is
a strict post-fixed point of the linearization of f at x. Then N(x) ≤ z holds.

Proof.

We write y = N(x) and ∆ = f ′(x)∗(f(x)−x). Notice that y = x + ∆. We have

(Id − f ′(x)) (z− y)

= z− x−∆ + f ′(x)(x + ∆− z)

= z− f(x) + (f(x)− x)− f ′(x)∗(f(x)− x) + f ′(x)f ′(x)∗(f(x)− x)

+ f ′(x)(x− z)

= z− f(x) + f ′(x)(x− z)

≥ 0 (by assumption) .

It follows that

z− y = (Id − f ′(x))−1 (Id − f ′(x)) (z− y)

= f ′(x)∗ (Id − f ′(x)) (z− y) ≥ f ′(x)∗0 = 0 ,

i.e. N(x) = y ≤ z.

References

[1] J. Anderson, P. Tataru, J. Staines, J. Hein, and R. Lyngso. „Evolving

stochastic context-free grammars for RNA secondary structure predic-

tion“. In: BMC Bioinformatics 13.1 (2012), p. 78.

[2] K. Apt and D. Kozen. „Limits for automatic verification of finite-state con-

current systems“. In: Information Processing Letters 22 (1986), pp. 307–

309.

[3] T. Arons, A. Pnueli, and L.D. Zuck. „Parameterized Verification by Prob-

abilistic Abstraction“. In: FoSSaCS. 2003, pp. 87–102.

[4] K. B. Athreya and P. E. Ney. Branching Processes. Springer, 1972.

[5] R. Bagnara, K. Dobson, P. M. Hill, M. Mundell, and E. Zaffanella. „Grids:

A domain for analyzing the distribution of numerical values“. In: LOPSTR.

2007, pp. 219–235.

[6] R. Bagnara, P. M. Hill, and E. Zaffanella. „The Parma Polyhedra Library:

Toward a Complete Set of Numerical Abstractions for the Analysis and

206

Verification of Hardware and Software Systems“. In: Science of Computer

Programming 72 (2008).

[7] C. Baier and J.-P. Katoen. Principles of model checking. MIT Press, 2008,

pp. I–XVII, 1–975.

[8] C. Baier and M. Z. Kwiatkowska. „Model Checking for a Probabilistic

Branching Time Logic with Fairness“. In: Distributed Computing 11.3

(1998), pp. 125–155.

[9] C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen. „Model-checking

algorithms for continuous-time Markov chains“. In: Software Engineering,

IEEE Transactions on 29.6 (2003), pp. 524 –541.

[10] C. Baier, B. R. Haverkort, H. Hermanns, and J.-P. Katoen. „Performance

evaluation and model checking join forces“. In: Commun. ACM 53.9 (2010),

pp. 76 –85.

[11] C. Baier, M. Groesser, and F. Ciesinski. „Quantitative Analysis under

Fairness Constraints“. In: ATVA. Vol. 5799. 2009, pp. 135–150.

[12] A. Berman and R. J. Plemmons. Nonnegative Matrices in the Mathemat-

ical Sciences. SIAM, 1994.

[13] D. Beyer, T. A. Henzinger, R. Jhala, and R. Majumdar. „The software

model checker BLAST“. In: STTT 9.5-6 (2007), pp. 505–525.

[14] A. Bianco and L. de Alfaro. „Model checking of probabilistic and nonde-

terministic systems“. In: FSTTCS. Springer Verlag, 1995, pp. 499–513.

207

[15] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné,

D. Monniaux, and X. Rival. „Design and Implementation of a Special-

Purpose Static Program Analyzer for Safety-Critical Real-Time Embedded

Software“. In: The Essence of Computation: Essays Dedicated to Neil D.

Jones. 2002, pp. 85–108.

[16] G. Bracha and S. Toueg. „Asynchronous consensus and broadcast proto-

cols“. In: Journal of ACM 32 (4 1985), pp. 824–840.

[17] Case studies for Kattenbelt, Kwiatkowska, Norman, and Parker [. 63]. url:

http://www.prismmodelchecker.org/files/vmcai09/.

[18] Krishnendu Chatterjee, Luca de Alfaro, and Thomas A. Henzinger. „Trad-

ing Memory for Randomness“. In: QEST. 2004, pp. 206–217.

[19] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. „Counterexample-

Guided Abstraction Refinement“. In: CAV. Vol. 1855. Lecture Notes in

Computer Science. 2000, pp. 154–169.

[20] A. Condon. „On Algorithms for Simple Stochastic Games“. In: Volume 13

of DIMACS Series in Discr. Math. and Theor. Comp. Sci. AMS, 1993,

pp. 51–73.

[21] A. Condon. „The Complexity of Stochastic Games“. In: Inf. Comput. 96.2

(1992), pp. 203–224.

[22] B. Cook, A. Podelski, and A. Rybalchenko. „Terminator: Beyond Safety“.

In: CAV. 2006, pp. 415–418.

http://www.prismmodelchecker.org/files/vmcai09/

208

[23] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction

to Algorithms, Second Edition. The MIT Press and McGraw-Hill Book

Company, 2001.

[24] C. Courcoubetis and M. Yannakakis. „The complexity of probabilistic ver-

ification“. In: Journal of ACM 42.4 (July 1995).

[25] P. Cousot and R. Cousot. „Abstract Interpretation: A Unified Lattice

Model for Static Analysis of Programs by Construction or Approxima-

tion of Fixpoints“. In: POPL. 1977, pp. 238–252.

[26] P. Cousot and R. Cousot. „Systematic design of program analysis frame-

works“. In: POPL. 1979, pp. 269–282.

[27] P. Cousot and N. Halbwachs. „Automatic discovery of linear restraints

among variables of a program“. In: POPL. 1978, pp. 84–97.

[28] P. Cousot, P. Ganty, and J.-F. Raskin. „Fixpoint-Guided Abstraction Re-

finements“. In: SAS. 2007, pp. 333–348.

[29] P. R. D’Argenio, B. Jeannet, H. E. Jensen, and K. G. Larsen. „Reduc-

tion and Refinement Strategies for Probabilistic Analysis“. In: PAPM-

PROBMIV. 2002, pp. 57–76.

[30] J.-P. Dedieu. „Estimations for the Separation Number of a Polynomial

System“. In: Journal of Symbolic Computation 24.6 (1997), pp. 683 –693.

issn: 0747-7171.

[31] A. Di Pierro, C. Hankin, and H. Wiklicky. „On Probabilistic Techniques for

Data Flow Analysis“. In: Electr. Notes Theor. Comput. Sci. 190.3 (2007),

pp. 59–77.

209

[32] J. Esparza and A. Gaiser. Probabilistic abstractions with arbitrary do-

mains. Tech. rep. Available at http : / / arxiv . org / abs / 1106 . 1364.

Technische Universität München, 2011.

[33] J. Esparza and A. Gaiser. „Probabilistic Abstractions with Arbitrary Do-

mains“. In: SAS. 2011, pp. 334–350.

[34] J. Esparza and S. Schwoon. „A BDD-based Model Checker for Recursive

Programs“. In: CAV. Lecture Notes in Computer Science. 2001, pp. 324–

336.

[35] J. Esparza, A. Gaiser, and S. Kiefer. Computing Least Fixed Points of

Probabilistic Systems of Polynomials. Tech. rep. Available at http://arx

iv.org/abs/0912.4183. Technische Universität München, 2009.

[36] J. Esparza, A. Gaiser, and S. Kiefer. „Computing Least Fixed Points of

Probabilistic Systems of Polynomials“. In: STACS. 2010, pp. 359–370.

[37] J. Esparza, S. Kiefer, and M. Luttenberger. „Convergence Thresholds of

Newton’s Method for Monotone Polynomial Equations“. In: STACS. 2008,

pp. 289–300.

[38] J. Esparza, A. Kučera, and R. Mayr. „Model Checking Probabilistic Push-

down Automata“. In: LICS 2004. IEEE Computer Society, 2004, pp. 12–

21.

[39] J. Esparza, A. Gaiser, and S. Kiefer. Proving Termination of Probabilistic

Programs Using Patterns. Tech. rep. Available at http://arxiv.org/abs/

1204.2932. 2012.

http://arxiv.org/abs/1106.1364
http://arxiv.org/abs/0912.4183
http://arxiv.org/abs/0912.4183
http://arxiv.org/abs/1204.2932
http://arxiv.org/abs/1204.2932

210

[40] J. Esparza, A. Gaiser, and S. Kiefer. „Proving Termination of Probabilistic

Programs Using Patterns“. In: CAV. 2012.

[41] J. Esparza, A. Kučera, and R. Mayr. Quantitative Analysis of Probabilistic

Pushdown Automata: Expectations and Variances. Tech. rep. FIMU-RS-

2005-07. Masaryk University, 2005.

[42] K. Etessami and M. Yannakakis. „Recursive Markov chains, stochastic

grammars, and monotone systems of non-linear equations“. In: Journal of

ACM (2009).

[43] K. Etessami and M. Yannakakis. „Recursive Markov chains, stochastic

grammars, and monotone systems of nonlinear equations“. In: Journal of

the ACM 56.1 (2009), pp. 1–66.

[44] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. „Impos-

sibility of distributed consensus with one faulty process“. In: Journal of

ACM 32.2 (Apr. 1985).

[45] N. Francez. Fairness. Texts and monographs in computer science. Springer,

1986.

[46] GMP library. url: http://gmplib.org.

[47] M. Grötschel, L. Lovász, and A. Schrijver.Geometric Algorithms and Com-

binatorial Optimization. Springer, 1993.

[48] B. S. Gulavani and S. K. Rajamani. „Counterexample Driven Refinement

for Abstract Interpretation“. In: TACAS. 2006, pp. 474–488.

http://gmplib.org

211

[49] B. S. Gulavani, S. Chakraborty, A. V. Nori, and S. K. Rajamani. „Auto-

matically Refining Abstract Interpretations“. In: TACAS. 2008, pp. 443–

458.

[50] B. S. Gulavani, S. Chakraborty, A. V. Nori, and S. K. Rajamani. „Re-

fining abstract interpretations“. In: Inf. Process. Lett. 110.16 (July 2010),

pp. 666–671.

[51] P. Haccou, P. Jagers, and V.A. Vatutin. Branching Processes: Variation,

Growth, and Extinction of Populations. Cambridge studies in American

literature and culture. Cambridge University Press, 2007.

[52] E. M. Hahn, H. Hermanns, B. Wachter, and L. Zhang. „PASS: Abstraction

Refinement for Infinite Probabilistic Models“. In: TACAS. 2010, pp. 353–

357.

[53] T. Han, J.-P. Katoen, and B. Damman. „Counterexample Generation in

Probabilistic Model Checking“. In: IEEE Trans. Software Eng. 35.2 (2009),

pp. 241–257.

[54] T. E. Harris. The theory of branching processes. Berlin: Springer, 1963.

[55] H. Hermanns, B. Wachter, and L. Zhang. „Probabilistic CEGAR“. In:

CAV. 2008, pp. 162–175.

[56] G. Holzmann. The Spin Model Checker: Primer and Reference Manual.

First. Addison-Wesley Professional, 2003.

[57] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction

to automata theory, languages, and computation. Addison-Wesley, 2003.

212

[58] A. Hun, D. Dill, A. Drexler, and C. Yang. „Higher-level specification and

verification with BDDs“. In: CAV. 1993, pp. 82–95.

[59] B. Jeannet and A. Miné. „Apron: A Library of Numerical Abstract Do-

mains for Static Analysis“. In: CAV. 2009, pp. 661–667.

[60] M. Kattenbelt. „Automated Quantitative Software Verification“. PhD the-

sis. Oxford University, 2011.

[61] M. Kattenbelt. QProver: Quantitative ANSI-C model checker.

url: http://www.prismmodelchecker.org/qprover/.

[62] M. Kattenbelt, M. Z. Kwiatkowska, G. Norman, and D. Parker. „A game-

based abstraction-refinement framework for Markov decision processes“.

In: Form. Methods Syst. Des. 36 (3 2010), pp. 246–280.

[63] M. Kattenbelt, M. Z. Kwiatkowska, G. Norman, and D. Parker. „Abstrac-

tion Refinement for Probabilistic Software“. In: VMCAI. 2009, pp. 182–

197.

[64] S. Kiefer, M. Luttenberger, and J. Esparza. „On the Convergence of New-

ton’s Method for Monotone Systems of Polynomial Equations“. In: STOC.

2007, pp. 217–226.

[65] D. Kozen. „Semantics of probabilistic programs“. In: Journal of Computer

and System Sciences 22 (1981), pp. 328–350.

[66] M. Kwiatkowska, G. Norman, and D. Parker. „PRISM 4.0: Verification of

Probabilistic Real-time Systems“. In: CAV. 2011, pp. 585–591.

http://www.prismmodelchecker.org/qprover/

213

[67] D. Lehmann and S. Shelah. „Reasoning with time and chance“. In: Au-

tomata, Languages and Programming. Lecture Notes in Computer Science.

Springer Berlin / Heidelberg, 1983, pp. 445–457.

[68] C. Limongelli and R. Pirastu. „Exact solution of linear equation sys-

tems over rational number by parallel p-adic arithmetic“. In: CONPAR.

Springer, 1994.

[69] lp_solve reference guide. url: http://lpsolve.sourceforge.net/5.5/.

[70] C. D. Manning and H. Schuetze. Foundations of Statistical Natural Lan-

guage Processing. MIT Press, 1999.

[71] Maple. url: http://www.maplesoft.com/.

[72] A. McIver and C. Morgan. „Developing and Reasoning About Probabilistic

Programs in pGCL“. In: PSSE. 2004, pp. 123–155.

[73] A. McIver, C. Morgan, and Thai Son Hoang. „Probabilistic termination

in B“. In: ZB2003. Springer, 2003.

[74] A. Miné. „The octagon abstract domain“. In: Higher-Order and Symbolic

Computation 19.1 (2006), pp. 31–100.

[75] A. Miné. „Weakly Relational Numerical Abstract Domains“. PhD thesis.

École polytechnique, 2004.

[76] D. Monniaux. „Abstract Interpretation of Probabilistic Semantics“. In:

SAS. 2000, pp. 322–339.

[77] D. Monniaux. „Abstract Interpretation of Programs as Markov Decision

Processes“. In: SAS. 2003, pp. 237–254.

http://lpsolve.sourceforge.net/5.5/
http://www.maplesoft.com/

214

[78] D. Monniaux. „An Abstract Analysis of the Probabilistic Termination of

Programs“. In: SAS. Springer, 2001, pp. 111–126.

[79] S. S. Muchnick. Advanced Compiler Design and Implementation. Morgan

Kaufmann, 1997.

[80] T. Nakata. „On the Expected Time for Herman’s Probabilistic Self-Stabilizing

Algorithm“. In: Theoretical Computer Science 349.3 (2005), pp. 475 –483.

[81] F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis.

Secaucus, NJ, USA: Springer-Verlag New York, Inc., 1999.

[82] D. Parker. „Implementation of Symbolic Model Checking for Probabilistic

Systems“. PhD thesis. University of Birmingham, 2002.

[83] A. Pnueli. „On the Extremely Fair Treatment of Probabilistic Algorithms“.

In: STOC. 1983, pp. 278–290.

[84] A. Pnueli and L.D. Zuck. „Probabilistic verification“. In: Inf. Comput. 103

(1 1993), pp. 1–29.

[85] A. Podelski and A. Rybalchenko. „ARMC: The Logical Choice for Software

Model Checking with Abstraction Refinement“. In: PADL. 2007, pp. 245–

259.

[86] A. Podelski and A. Rybalchenko. „Transition Invariants“. In: LICS. 2004,

pp. 32–41.

[87] A. Podelski and A. Rybalchenko. „Transition Invariants and Transition

Predicate Abstraction for Program Termination“. In: TACAS. 2011, pp. 3–

10.

215

[88] PRISM model checker homepage.

url: http://www.prismmodelchecker.org/.

[89] M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic

Programming. Wiley-Interscience, 1994.

[90] QSOpt_ex solver.

url: http://www2.isye.gatech.edu/~wcook/qsopt/ex/.

[91] J. S. Rosenthal. A first look at rigorous probability theory. 2. ed. Singapore

[u.a.]: World Scientific, 2006. XVI, 219.

[92] A. Rybalchenko. „Temporal verification with transition invariants“. PhD

thesis. Universität des Saarlandes, 2005.

[93] R. Segala and N. A. Lynch. „Probabilistic Simulations for Probabilistic

Processes“. In: Nordic Journal of Computing 2.2 (1995), pp. 250–273.

[94] M. Sharir, A. Pnueli, and S. Hart. „Verification of Probabilistic Programs“.

In: SIAM Journal on Computing 13.2 (1984), pp. 292–314.

[95] R. Tarjan. „Depth-First Search and Linear Graph Algorithms“. In: SIAM

Journal on Computing 1.2 (1972), pp. 146–160.

[96] The PRISM Language - Semantics.

url: http://www.prismmodelchecker.org/doc/semantics.pdf.

[97] M. Y. Vardi. „Automatic Verification of Probabilistic Concurrent Finite-

State Programs“. In: FOCS. 1985, pp. 327–338.

[98] B. Wachter. „Refined Probabilistic Abstraction“. PhD thesis. Universität

des Saarlandes, 2011.

http://www.prismmodelchecker.org/
http://www2.isye.gatech.edu/~wcook/qsopt/ex/
http://www.prismmodelchecker.org/doc/semantics.pdf

216

[99] B. Wachter and L. Zhang. „Best Probabilistic Transformers“. In: VMCAI.

2010, pp. 362–379.

[100] B. Wachter, L. Zhang, and H. Hermanns. „Probabilistic Model Checking

Modulo Theories“. In: QEST. 2007, pp. 129–140.

[101] G. Winskel. The formal semantics of programming languages: an intro-

duction. Cambridge, MA, USA: MIT Press, 1993.

[102] D. Wojtczak and K. Etessami. „PReMo: An Analyzer for Probabilistic

Recursive Models“. In: TACAS. 2007, pp. 66–71.

	Contents
	List of Figures
	1 Introduction
	2 Preliminaries
	2.1 Lattices and Fixed Points
	2.2 Languages
	2.3 Vectors

	3 Probability Theory and Markov Models
	3.1 Probability Spaces
	3.2 Markov Chains and Markov Decision Processes
	3.2.1 Runs and Paths
	3.2.2 Probability Measures for Markov Chains and MDPs

	3.3 Reachability Problems

	4 Reachability in Probabilistic Programs
	4.1 Probabilistic Programs
	4.1.1 PGP Semantics

	4.2 Abstracting Program States
	4.2.1 Domains
	4.2.2 Abstract Transitions
	4.2.3 Fixed Points and Widenings
	4.2.4 Direct Product of Domains
	4.2.5 Other Abstract Domains

	4.3 Stochastic Games
	4.4 The Approach in a Nutshell
	4.4.1 A Game Round
	4.4.2 Constructing an Example Arena
	4.4.3 Reachability Information from Arenas
	4.4.3.1 Bounds max+, max- for MaxReach(MP, F)
	4.4.3.2 Bounds min-, min+ for MinReach(MP, F)

	4.4.4 Infinite Domains, Widenings, and Predicate Domains

	4.5 Formal Definition of Abstract Game Arenas
	4.5.1 Obtaining Reachability Bounds

	4.6 An Algorithm for Building Abstract Game Arenas
	4.6.1 General Structure
	4.6.2 Procedure abstractUpdate
	4.6.3 Procedure extrapolate

	4.7 Refining Abstract Game Arenas: Quantitative Widening Delay
	4.8 Experiments
	4.9 Related work
	4.10 Conclusion

	5 Termination of Probabilistic Programs
	5.1 Probabilistic Imperative Programs
	5.1.1 Semantics of PIPs
	5.1.2 Program Classes

	5.2 Patterns
	5.3 Constructing Patterns
	5.3.1 Finite Programs
	5.3.2 Weakly Finite Programs

	5.4 Implementing Pattern Checkers
	5.5 Nondeterministic Programs
	5.6 Experimental Evaluation
	5.7 Termination Information and Reachability Probabilities
	5.7.1 Improving Lower Bounds for Reachability

	5.8 Related Work
	5.9 Conclusion

	6 Extinction in Branching Processes
	6.1 Multi-Type Finite Branching Processes
	6.1.1 Stochastic Context-Free Grammars
	6.1.2 Stateless Probabilistic Pushdown Automata

	6.2 Probabilistic Systems of Polynomials
	6.2.1 Preliminaries
	6.2.2 Definition and Properties

	6.3 An Algorithm for Deciding whether = 1
	6.3.1 Checking Consistency using Linear Programming
	6.3.2 Our Algorithm
	6.3.3 Case Study: MFBPs with being ''almost'' 1

	6.4 Approximating Extinction Probabilities with Inexact Arithmetic
	6.4.1 Computing a Strict Pre-Fixed Point
	6.4.2 Computing Lower and Upper Bounds
	6.4.2.1 Characterizing Pre-Fixed Points and Post-Fixed Points
	6.4.2.2 Computing Upper Bounds
	6.4.2.3 Computing Lower Bounds
	6.4.2.4 Obtaining a Post-Fixed Point 1
	6.4.2.5 Concluding Correctness Proof

	6.5 Case Study: A Neutron Branching Process
	6.6 Conclusion

	7 Summary and Outlook
	A Missing Proofs of Chapter 4
	A.1 Proof of Lemma 3, Part (1)
	A.2 Proof of Lemma 3, Part (2)
	A.3 Proof of Lemma 3, Part (3)

	B Missing Proofs of Chapter 5
	C Missing Proofs of Chapter 6

