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Zusammenfassung

Auf der Suche nach neuer Physik werden seltene Zerfälle von B-Mesonen betrachtet,
die durch b → s Übergänge charakterisiert sind. Hierzu wird ein modellunabhängi-
ger globaler Fit durchgeführt, in dem die Kopplungen bzw. Wilsonkoeffizienten C7,
C9 und C10 der ∆B = 1 effektiven Feldtheorie bestimmt werden. Unter der Annah-
me reellwertiger Ci werden dabei alle Operatoren, die im Standardmodell b → sγ und
b→ s`+`− Übergänge beschreiben, betrachtet. Von den Experimenten BaBar, Belle, CDF,
CLEO und LHCb gehen insgesamt 59 Messungen von Observablen aus den Zerfällen
B →K∗γ, B →K(∗)`+`− und Bs → µ+µ− ein.

Die vorgestellte Analyse ist die erste ihrer Art, die den Bayesschen Zugang zur Wahr-
scheinlichkeitstheorie vollständig ausnutzt. Alle wichtigen Beiträge zur Theorieunsi-
cherheit werden explizit mit Hilfe von Nuisanceparametern abgebildet. Auf diese Wei-
se wird die Information aus den Messungen optimal genutzt, um gleichzeitig die Wil-
sonkoeffizienten und die Nuisanceparameter, insbesondere die Formfaktoren, einzu-
schränken. Letztere stellen die größte Quelle von Theorieunsicherheit dar.

Aus numerischer Sicht besteht die Aufgabe darin, Zufallszahlen nach der a-posteriori
Wahrscheinlichkeitsverteilung P zu ziehen, um damit die marginalisierten Verteilun-
gen der Fitparameter zu bestimmen und die Vorhersage bisher nicht gemessener Ob-
servablen per Fehlerfortpflanzung zu ermöglichen. Dies wird durch zwei Punkte er-
schwert. Zum einen ist der Parameterraum hochdimensional, und P hat mehrere weit
entfernte Maxima sowie Entartungen. Zum anderen ist die Berechnung der Theorie-
vorhersagen, die im Fit mit den Messdaten verglichen werden, sehr rechenaufwän-
dig. Eine einzelne Auswertung von P benötigt ca. 1 s, insgesamt sind einige Millionen
Auswertungen nötig. Population Monte Carlo (PMC) löst beide Probleme auf einmal.
Hierzu wird eine Mischverteilung schrittweise an P angepasst, sodass per Importance
Sampling die Zufallszahlen auf massiv-parallele Art gezogen werden können. Als hin-
derlich erweist sich die empfindliche Abhängigkeit von PMC auf die Initialisierung,
für die P bereits relativ gut bekannt sein muss. Auf dem Weg zu einem allgemeinen,
problemunabhängig funktionierenden Monte Carlo Algorithmus wird ein neue Metho-
de entwickelt, welche die nötige Information über P automatisch und zuverlässig aus
Markov-Ketten mittels hierarchischem Clustering gewinnt.

Unter Mitnahme der neuesten experimentellen Ergebnisse aus dem Jahr 2012 zeigt
der Fit zwei getrennte Bereiche hoher Wahrscheinlichkeit. Neben einer dem Standard-
modell ähnlichen Lösung verbleibt auch eine Lösung mit umgekehrten Vorzeichen, die
wegen der näherungsweisen Invarianz aller Observablen unter Ci → −Ci ähnlich wahr-
scheinlich ist. An beiden lokalen Maxima von P werden die Messdaten gut beschrie-
ben. Der Standardmodell-Punkt ist nahe am globalen Maximum von P . Obwohl der
Fit noch große Abweichungen vom Standardmodell in Ci zulässt, zeigen sich dennoch
keine zwingenden Hinweise auf neue Physik, da das Standardmodell als einfachere
Beschreibung der Daten durch den Bayes-Faktor klar bevorzugt wird.
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Es werden zwei Sätze von Vorhersagen für Observablen in der Winkelverteilung von
B → K∗(→ Kπ) `+`− berechnet. Darin sind insbesondere bisher nicht gemessene, op-
timierte Observablen enthalten, die aufgrund ihrer geringen Formfaktor-Abhängigkeit
und der Empfindlichkeit auf vom Standardmodell abweichende Wechselwirkungen für
zukünftige Analysen von herausragendem Interesse sind. Zum einen werden mit ei-
ner Bayesschen Methode Standardmodell-Vorhersagen abgeleitet, die in guter Überein-
stimmung mit der Literatur stehen. Des weiteren wird das verbesserte Wissen über die
Nuisanceparameter aus dem Fit verwendet. Hierbei ergeben sich beträchtlich genaue-
re Vorhersagen für Observablen, die von Formfaktoren abhängen. Sollten zukünftige
Messungen von diesen Vorhersagen abweichen, wären sie als deutliche Hinweise auf
neue Physik jenseits des hier betrachteten Szenarios mit Standardmodell-Operatoren
zu werten.



Abstract

Searching for new physics in rare B meson decays governed by b → s transitions, we
perform a model-independent global fit of the short-distance couplings C7, C9, and C10

of the ∆B=1 effective field theory. We assume the standard-model set of b → sγ and
b→ s`+`− operators with real-valued Ci. A total of 59 measurements by the experiments
BaBar, Belle, CDF, CLEO, and LHCb of observables in B → K∗γ, B → K(∗)`+`−, and
Bs → µ+µ− decays are used in the fit. Our analysis is the first of its kind to harness the
full power of the Bayesian approach to probability theory. All main sources of theory
uncertainty explicitly enter the fit in the form of nuisance parameters. We make optimal
use of the experimental information to simultaneously constrain the Wilson coefficients
as well as hadronic form factors — the dominant theory uncertainty.

Generating samples from the posterior probability distribution to compute marginal
distributions and predict observables by uncertainty propagation is a formidable nu-
merical challenge for two reasons. First, the posterior has multiple well separated max-
ima and degeneracies. Second, the computation of the theory predictions is very time
consuming. A single posterior evaluation requires O(1 s), and a few million evalua-
tions are needed. Population Monte Carlo (PMC) provides a solution to both issues;
a mixture density is iteratively adapted to the posterior, and samples are drawn in a
massively parallel way using importance sampling. The major shortcoming of PMC is
the need for cogent knowledge of the posterior at the initial stage. In an effort towards
a general black-box Monte Carlo sampling algorithm, we present a new method to ex-
tract the necessary information in a reliable and automatic manner from Markov chains
with the help of hierarchical clustering.

Exploiting the latest 2012 measurements, the fit reveals a flipped-sign solution in ad-
dition to a standard-model-like solution for the couplings Ci. The two solutions are
related by approximate invariance of the observables under Ci → −Ci. Both solutions
contain about half of the posterior probability and provide a good fit to the data. The
standard-model prediction is close to the global best-fit point. The Bayes factor strongly
favors the simplicity of the standard model over the more complex new-physics sce-
nario.

For future searches, we compute two sets of predictions of observables in the angular
distributions of B → K∗(→ Kπ) `+`−. This includes currently unmeasured optimized
observables with reduced form-factor dependence and sensitivity to nonstandard in-
teractions. In the first set, predictions within the standard model are calculated with
a Bayesian approach and found to agree well with existing results. In the second set,
we make use of the improved posterior knowledge of nuisance parameters to compute
predictions based on the new-physics fit output. In the latter case, we observe signif-
icantly reduced theory uncertainty for all observables with form-factor dependence.
Deviations from the predictions in future measurements of the predicted observables
would clearly indicate new physics beyond the considered scenario in the standard-
model operator basis.
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1 Introduction

High energy physics has entered an exciting phase. Just a little over two years after the
start of the physics program at the large hadron collider (LHC) in the spring of 2010, the
two collaborations ATLAS [Aad+12a] and CMS [Cha+12a] presented strong evidence
of the existence of a new boson. So far, little is known about this boson beyond its
mass near 125 GeV and its spin (0 or 2), but these facts suggest that it is the long-sought
Higgs boson, predicted nearly 50 years ago [EB64; Hig64; GHK64]. If that were true, it
would be the last piece in a sequence of elementary particles that had been predicted
by the standard model (SM) of particle physics and were subsequently observed. Ex-
amples include the b quark [Her+77], the t quark [Aba+95; Abe+95] and the τ neutrino
[Kod+01].

But with the standard model apparently complete, we have not reached the end of
particle physics. Over the past years, a number of experimental facts have accumu-
lated that cannot be explained within the standard model. First, the confirmation of
neutrino oscillation [Cle+98] has clearly demonstrated that neutrinos do have a small
mass, yet they are treated as massless particles in the standard model. A new state, a
heavy sterile right-handed neutrino could explain the small masses of the left-handed
SM neutrinos via the “see-saw” mechanism. Second, galaxy rotation curves, galaxy
(cluster) formation, and the mismatch between visible matter and the total matter den-
sity inferred from the cosmic microwave background hint at a new form of matter that
interacts only weakly and gravitationally, the cold dark matter. No particle with the
right characteristics exists within the SM. Third, the observation of the accelerated ex-
pansion of the universe provides evidence of a substance with an exotic equation of
state that is held responsible for about 75 % of the energy density in the universe —
dark energy. Fourth, considering charge (C) and parity (P) transformations, the amount
of CP violation in the SM is too small to quantitatively account for the observed dis-
crepancy between matter and antimatter in nature. It appears that some form of new
physics (NP) interaction is needed at very high energies, that is in the early universe, to
explain baryogenesis.

In addition, there are a number of open questions in the standard model that call for
a profound explanation by a more fundamental theory of particle physics. For exam-
ple, why are there exactly three generations of quarks and leptons? Or why is the θ
term that breaks CP symmetry in quantum chromodynamics (QCD), the gauge theory of
strong interactions, so small? A dynamical solution for this strong CP problem is pro-
vided by a hypothetical new particle, the axion. And why is the Higgs mass so much
smaller than the Planck mass of O(1018 GeV)? One popular solution to this hierarchy
problem is to assume supersymmetry, thereby predicting superpartners for the SM parti-
cles. An open area of research is to unite the SM description of the strong, weak, and
electromagnetic force with the force of gravity to obtain a theory of quantum gravity.
At present, the most promising candidate of such a theory of everything is super string
theory that predicts a plethora of new states.

Most probably there is not one simple theory that solves all of the puzzles introduced
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above, but there certainly is a recurring theme — to require new particles. Therefore,
the overarching goal of this work is to search for the presence of new states in order to
make progress in answering the fundamental questions. There are two complementary
approaches at current collider experiments. On the one hand, higher beam energies
allow the direct production of heavy new particles, visible as resonances in invariant
mass spectra. On the other hand, those particles also leave measurable traces if they
are off shell; i.e. when they indirectly modify reactions allowed in the SM via quantum
corrections. In either case, the goal is to observe a discrepancy between SM predictions
and measurements.

In this work, we concentrate on the indirect searches, and we study reactions involv-
ing the transition of a b quark into an s quark, where large data sets are available. In
the standard model, this transition is mediated by the weak force via a flavor changing
neutral current (FCNC), hence there is no SM contribution at tree level that could mask
NP effects. The branching ratios involving b → s are small due to loop as well as CKM
suppression, yet large enough to be observed, as opposed to the similar t→ c transition
that is further suppressed by the GIM mechanism (see Section 5.1.2). Rare decays of B
mesons involving b → s transitions occur with SM branching ratios ranging from 10−4

(radiative B → K∗γ) over 10−7 (semileptonic B → K(∗)`+`−, ` = e, µ) to 10−9 (leptonic
Bs → µ+µ−); see Section 6.3 for more details.

These decay modes are of special interest for multiple reasons. First, SM extensions
like supersymmetry predict significantly enhanced branching fractions for certain pa-
rameter values. Second, experiments were only recently able to observe these rare de-
cays, and the precision will improve dramatically within this decade. Third, the theo-
retical description through an effective field theory (EFT) provides the ideal tool to per-
form a model-independent separation of the short-distance, high-energy scales where
we hope to see signs of NP and the long-distance, low-energy scales where we have to
deal with nonperturbative QCD effects, the major source of theory uncertainty.

Chances are that signs of new physics in B decays are rather tenuous, and there
may be no single observation showing a significant deviation from SM expectations.
Therefore, our goal in this work is to construct a global fit of the effective theory of
b → s transitions to a large number of experimental observations of rare B decays and
to search for a mismatch. In particular, we want to fit the effective couplings, or Wilson
coefficients, that contain the short-distance effects.

The earliest measurement we include is the determination of theB →K∗γ branching
ratio by the CLEO collaboration at the Cornell electron storage ring [Coa+00] from 1999.
Around that time, the two first-generation B factories with e+e− colliders, PEP-II with
the BaBar detector in the USA [Aub+02], and KEKB with the Belle detector [Aba+02]
in Japan, started operating. Both BaBar and Belle discovered CP violation within the
B − B̄ system [Abe+01; Aub+01], and measured the basic observables like branching
ratios, forward-backward asymmetries, and longitudinal polarizations in B → K∗γ
and B →K(∗)`+`−.
B factories provide a clean environment and a well defined initial energy, so certain

reactions like B → K∗γ are best observed there, but at the expense of a small BB̄ pro-
duction cross section of about 0.001 µb. On the contrary, reactions likeB →K∗`+`− with
muons in the final state can be well observed at hadron colliders where the production
cross section is a factor of 100 000 larger. Therefore, we also use data from the general-
purpose CDF experiment at the Tevatron and from LHCb, the LHC experiment with a
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B-physics focus. LHCb is the only experiment that currently collects data.
The first LHCb results with 900B →K∗`+`− events [Par12], based on the 2011 data at

a center-of-mass energy of 7 TeV and integrated luminosity of 1 fb−1, have the smallest
statistical uncertainty for this process of all experiments. Due to the increase of energy
and luminosity in the 2012 run, LHCb expects a total of O(3000) events before LHC is
shut down for maintenance and upgrades in early 2013. With this number, LHCb will
have the highest accuracy in exclusive decays with a meson (K or K∗) and two charged
leptons in the final state until the advent of the super flavor factory Belle II after about
2015. In conclusion, the near future promises significantly more accurate results on the
experimental side.

With more precise input from the experiments, it is of utmost importance to improve
the theory uncertainty accordingly in order to discover signs of new physics. Low-
energy hadronic physics — form factors in particular — are the major source of theory
uncertainty for exclusive decays; our strategy is to simultaneously fit the form factors
and the Wilson coefficients, as the data constrain both. To this end, we model all un-
certainties — CKM parameters, quark masses, form factors, missing subleading correc-
tions — explicitly with the help of 28 nuisance parameters. Cogent prior knowledge of
these parameters is available; the natural language to coherently include it in the fit is
Bayesian probability theory. Another advantage of the Bayesian approach is the abil-
ity to phrase, and quantitatively answer, the following question: given the data, which
model is more probable? Is it the SM, or an extension involving NP? This is the central
question we seek to answer in this thesis.

The treatment of theory uncertainty through nuisance parameters sets us apart from
previous analyses [BHD10; BHD11b; Des+11; APS12; Bob+12; AS12], and allows us to
make complete and consistent use of the information available. By choosing the Bayes-
ian framework, we can directly use the posterior knowledge of the nuisance parameters
to make improved predictions for observables that, on the one hand, are sensitive to the
Wilson coefficients, but, on the other hand, were not measured yet. However, the more
detailed modeling comes at a price; obtaining the marginal distributions of a compli-
cated 30 dimensional posterior density with multiple maxima and degeneracies poses
a tough numerical problem; standard Markov chain Monte Carlo (MCMC) techniques
fail to give proper results, because individual chains are trapped in local modes. To
make matters worse, a single evaluation of the posterior requires approximately 0.3 s
on a state-of-the-art 3.4 GHz CPU, and we need a few million evaluations in the course
of the global fit. The most naïve — and most inefficient — implementation would then
require more than 10 days to complete.

Our choice is to merge MCMC with adaptive importance sampling, or population
Monte Carlo (PMC), a new technique [Cap+08] that promises to cure the major short-
comings of MCMC. In addition, importance sampling provides an estimate of the pos-
terior normalization needed for model comparison along with the marginal distribu-
tions at no extra cost, and it is well suited to run on a massively parallel computing
architecture. However, PMC comes with its own set of problems; most prominently, it
is highly dependent on the initialization — we need to know the location and shape of
the support of the posterior before PMC can exert its full power.

The major unpublished contribution of this work is the description of a new robust
algorithm to perform that initialization. No knowledge beyond the prior information
is required from the user, and all relevant features of the posterior are explored by first
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running multiple Markov chains. The information from the ensemble of chains is then
brought into a form suitable for PMC with the help of hierarchical clustering. The good
performance in the global fit demonstrates the power of this combination of MCMC
and PMC, which is of general use and not tied to any specifics of B physics.

The contents of this thesis are organized as follows. The basics of Bayesian prob-
ability theory are established in Chapter 2. In Chapter 3, we review two fundamen-
tal Monte Carlo techniques, MCMC and (adaptive) importance sampling. Next, we
present our new algorithm that combines the two techniques with numerous examples
to highlight its strengths and potential pitfalls in Chapter 4. A concise summary of the
theoretical background of rare B decays is given in Chapter 5, followed by a more de-
tailed discussion of the observables used in the fit in Chapter 6. In Chapter 7 we show
the main results of the global fit. The Appendices A – C contain details on the input
numbers, priors, tables with predictions of new observables, and goodness of fit. Fi-
nally, we present background material on Monte Carlo and other numerical methods
in Appendices D – F.



2 Bayesian probability theory

The main objective of this short chapter is to introduce the foundations of probability
theory and to establish the notation needed to construct the global fit in Chapter 7. We
follow the reasoning of the excellent book by Jaynes [JB03]. Other useful text books on
the Bayesian approach include [DAg03; Ken+04; SS06].

2.1 Axioms and basic definitions

The scope of Bayesian probability theory is extremely wide: whenever one seeks to per-
form logical reasoning involving uncertainty, Bayesian probability applies. The rules of
reasoning are based on the following three axioms:

Axiom I The plausibility, or degree of belief, associated with a logical proposition A, is
described by a real value, P (A), the probability of A.

If A represents a discrete set of mutually exclusive propositions, P (A) is a real-valued
function taking values in [0,1].

Axiom II Qualitative correspondence with common sense.

A small change of information should result in a small change of the degree of belief in
a definite direction.

Axiom III Consistency:

a) For fixed information, different ways of reasoning must produce the identical result.

b) All available, relevant information is used in the reasoning, and no piece of information is
arbitrarily ignored.

c) Equivalent states of knowledge yield equivalent degrees of belief.

For practical calculations, it is more convenient to use the axioms proposed by Kol-
mogorov [Kol33], formulated in the language of abstract set theory. Let S be a set, called
the sample space, and let A,B denote subsets of S.

Axiom 1 The probability is described by a real number:

P (A) ≥ 0 .

Axiom 2 Sum rule:
A ∩B = ∅ ⇒ P (A ∪B) = P (A) + P (B) .

Axiom 3 Normalization:
P (S) = 1 .
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Axiom 4 Continuity at zero:

A1 ⊇ A2 ⊇ ⋅ ⋅ ⋅ ⊇ An ⊇ ⋅ ⋅ ⋅ → ∅ ⇒ lim
n→∞

P (An) = 0 .

The above axioms can be derived from the basic reasoning Axioms I – III; cf. [JB03,
App. A.1]. The conditional probability is defined as

P (A∣B) = P (A ∩B)
P (B) . (2.1)

Given a partition of S into mutually disjoint subsets, ⋃iAi = S, Kolmogorov’s axioms
and (2.1) immediately yield the law of total probability

P (B) = ∑
i

P (B∣Ai)P (Ai) . (2.2)

Plugging (2.2) into (2.1) and using the commutativity A ∩ B = B ∩ A, we obtain the
discrete formulation of Bayes’ theorem [BB58]

P (A∣B) = P (B∣A)P (A)
∑i P (B∣Ai)P (Ai)

. (2.3)

For propositions indexed by a real rather than an integer number, we use the same
symbol P (⋅) to denote the probability density function (PDF). The equations (2.1) –
(2.3) are then modified with summation replaced by integration. For example, consider
a statistical modelM — a set of assumptions used to make predictions for an experiment
— with one real parameter θ, and observations denoted by D. The continuous version
of Bayes’ theorem, derived in [Har83], is

P (θ∣D,M) = P (D∣θ,M)P (θ,M)
Z

. (2.4)

Each term in Bayes’ theorem, the central equation of probability theory, is referred to
by a specific identifier. P (θ,M) is the prior density, P (D∣θ,M) is called the probability of
the data when treated as a function of D, and known as the likelihood when considering
the dependence on θ, for fixed D. The model-dependent normalization constant Z is
known as the evidence or marginal likelihood:

Z = ∫ dθ P (D∣θ,M)P (θ,M) . (2.5)

Finally, the left-hand side of (2.4), P (θ∣D,M), is the posterior density. Prior and poste-
rior (“density” is usually omitted) represent the state of knowledge of the parameter
θ before and after seeing the data. Note that θ appears on opposite sides of “|” in
P (D∣θ,M) and P (θ∣D,M). Bayes’ theorem is therefore known also as the theorem of
inverse probability.

For one dimensional problems, we define the monotonously increasing cumulative
distribution function (CDF) as the integral of the corresponding PDF:

F (a) = ∫
a

−∞
dθ P (θ) . (2.6)
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The following quantities are often used to characterize a 1D PDF:
Expectation value or mean

EP [θ] ≡ ∫ dθ P (θ) θ , (2.7)

mode

θ∗ ≡ arg max
θ
P (θ) , (2.8)

and variance

VP [θ] ≡ ∫ dθ P (θ)(θ −EP [θ])2 . (2.9)

When the model contains more than one parameter, we will use the notation
θ = (θ1, θ2, . . .). The covariance between θ1 and θ2 is defined as

CovP [θ1, θ2] ≡ EP [(θ1 −EP [θ1]) (θ2 −EP [θ2])] = EP [θ1θ2] −EP [θ1]EP [θ2] , (2.10)

and the correlation coefficient is

ρP [θ1, θ2] ≡
CovP [θ1, θ2]√
VP [θ1]VP [θ2]

, ρP ∈ [−1,1] . (2.11)

Two parameters are independent if their joint distribution factorizes

P (θ1, θ2) = P (θ1)P (θ2) ⇒ CovP [θ1, θ2] = ρP [θ1, θ2] = 0 . (2.12)

Suppose the set of parameters is partitioned into the parameters of interest, θ, and the
nuisance parameters, ν. At the fundamental level of Bayes’ theorem, there is no distinc-
tion between θ and ν. However, the goal of the analysis is to extract the posterior of
θ, while ν is only needed at an intermediate stage; for example in order to correctly
model the measurement process of D. From the joint posterior P (θ,ν ∣D), we compute
the marginalized posterior and remove ν by integration:

P (θ∣D) = ∫ dν P (θ,ν ∣D) . (2.13)

If there is only a single model under consideration, and no potential for confusion,
the model label M is implied and usually omitted from the equations. But suppose
that there are two competing models, M1,M2, with parameters θ1,2, that quantitatively
predict the outcome D of an experiment. The task is to find the model with the higher
degree of belief. Using Bayes’ theorem, the posterior odds of the models are easily found
as

P (M1∣D)
P (M2∣D) = B12 ⋅

P (M1)
P (M2)

, (2.14)

where the Bayes factor of M1 versus M2, B12, is just the ratio of the evidences

B12 =
P (D∣M1)
P (D∣M2)

= Z1

Z2
= ∫ dθ1 P (D∣θ1,M1)P (θ1,M1)
∫ dθ2 P (D∣θ2,M2)P (θ2,M2)

(2.15)
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The prior odds P (M1)/P (M2) represent the relative degree of belief in the models, in-
dependent of the data. The Bayes factor quantifies the relative shift of degree of belief
induced by the data. In general, dimθ1 ≠ dimθ2, and without loss of generality let
dimθ1 < dimθ2. The Bayes factor automatically penalizes M2 for its larger complex-
ity, as the prior mass is spread out over a higher-dimensional volume. However, this
can be compensated if the likelihood P (D∣θ2,M2) is significantly higher in regions of
reasonably high prior density; i.e. the Bayes factor implements Occam’s razor 1: the
simplest model that describes the observations is preferred.

In the Bayesian approach, there is, however, no straightforward answer to the fol-
lowing question: if there is only one model at hand, how to decide if that model is
sufficient to explain the data, or if the search for a better model needs to continue? The
standard procedure to tackle this problem of evaluating the goodness of fit is explained
in Appendix C.

2.2 Uncertainty propagation

Suppose the random variable A is a function of θ, A = f(θ), and we know the distribu-
tion of θ, θ ∼ P (θ). Then what is the distribution of A, P (A)? Using the law of total
probability (2.2), we find the fundamental equation

P (A) = ∫ dθP (A,θ) = ∫ dθP (A∣θ)P (θ) = ∫ dθ δ(A − f(θ))P (θ) , (2.16)

with the Dirac δ distribution. In 1D with f(θ) invertible, we obtain the usual rule for a
change of variables as a special case

P (A) = P (θ(A)) ∣ dθ
dA

∣ . (2.17)

In most cases, (2.16) does not have an analytical solution. But if a set of identically
distributed samples {θi} from P (θ) is available, then we can approximate the integral
by calculating the set of samples {Ai ∶ Ai = f(θi)} to obtain draws from P (A). The
approximation converges because (2.16) is a special case of the fundamental Monte
Carlo principle (3.1). Here, we use the superscript i instead of a subscript to highlight
that θi is a draw from a distribution.

2.3 Priors

A crucial part in the Bayesian approach is to specify the state of knowledge before new
data is taken into account; i.e., the priors need to be specified. We can distinguish the
following cases.

Posterior The posterior of a previous analysis, P1(θ∣D1) is reused as a prior P1(θ) for
the next analysis:

P2(θ∣D2) ∝ P (D2∣θ)P1(θ) . (2.18)

1Numquam ponenda est pluralitas sine necessitate – Plurality [model complexity] must never be assumed
without necessity, William of Occam.
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Care needs to be taken that there is no double use of the data In other words,
the data distribution factorizes, and we can simply define a product likelihood to
analyze all data at once with the help of Bayes theorem:

P2(θ∣D2) ∝ P (D2∣θ)P (D1∣θ)P0(θ) . (2.19)

It does not matter whether D1 or D2 is analyzed first, in agreement with the con-
sistency requirement of Axiom III. However, it still remains to define the original
prior P0(θ).

Indifference For a finite set of alternatives {Ai ∶ i = 1 . . .N}, it is straightforward to
define a prior expressing complete ignorance. If no Ai is favored a-priori, then
each Ai is equally probable, and the normalized probability is

P (Ai) =
1

N
, i = 1 . . .N . (2.20)

This is the famous Laplace principle of indifference [Lap20].

Symmetry In the case of continuous parameters, the concept of indifference is less well
defined. Let us consider a measurement of a distance x, described by a normal, or
Gaussian, distribution

P (x∣µ,σ) = N(x∣µ,σ2) = 1

2πσ2
exp(−(x − µ)2

2σ2
) . (2.21)

N(⋅∣µ,σ2) has its mean and mode at µ, and its variance is σ2, where σ is the stan-
dard deviationq. The standard normal distribution is defined N(⋅∣µ = 0, σ2 = 1). µ
is the location parameter, as N(x∣µ,σ2) is a function of (x − µ), and σ is the scale
parameter

N(x∣0, σ2) = N (x
σ

∣0,1) . (2.22)

Suppose we want to infer only the value of µ from the experiment, and assume σ
known. Demanding that it be irrelevant where the origin of the coordinate system
is, we are led to choose a flat, or uniform, prior: P (µ) = const. On the other hand,
if we are interested in σ only, and we require that it be unimportant whether we
measure distances in meters or feet, then the prior choice is P (σ) = 1/σ, the classic
Jeffreys rule [Jef39, Ch. 3]. Note that without additional information on the allowed
ranges, both priors are not normalized, they are improper priors. In this and many
other examples where improper priors are used, it can be shown that the resulting
posterior is proper [Ber05], and ultimately only the posterior matters. The bottom
line is this: the nature of the parameter in the model leads to a different prior
choice.

We want to stress a subtle point with flat priors: upon transforming to another
parameter, say from µ to ν = 1/µ, the densities transform as (2.17). Hence a flat
prior in µ does not yield a flat prior in ν. While there often is a standard way
to parametrize a statistical model, there is no principle to prohibit the use of an
alternative set of parameters. The task is thus to define an algorithm that yields
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a definite prior starting from complete ignorance, while preserving coordinate in-
variance. There has been considerable debate over the last two centuries about
whether complete ignorance is ill defined, but we take a stand and follow Jaynes
[JB03, p.373]:

“Just as zero is the natural starting point in adding a column of num-
bers, the natural starting point in translating a number of pieces of prior
information is the state of complete ignorance.”

Continuing the analogy, once numbers are put in, we cannot stay in the state of
complete ignorance. And it would not be desirable to do so, because one cannot
perform a statistical analysis without making assumptions; in fact, Axiom III de-
mands that all information be used. Priors provide the means to transparently
state what information is used; and Bayes’ theorem is the rule to learn from data.
It often happens that scientists disagree about what is known, and hence what the
prior ought to be; even a single person may be undecided, and want to explore
the effect of different priors as part of a sensitivity study. Thus it has been sug-
gested to define consensus priors to investigate, for example, the existence of the
SM Higgs boson [Cal11]. The data would be analyzed with different sets of priors,
corresponding to say the optimists’ and pessimists’ view on the current status on
the Higgs. It seems noncontroversial to state that, although the data are fixed,
there is not only one way to interpret them; consensus priors are a straightfor-
ward way to acknowledge this insight, and they would be of great use to avoid
misinterpretation. But a large fraction of the experimental high-energy physics
community adheres to the tenet that there can be only one published answer, and
thus there usually is only one answer given.

Reference Bernardo has formalized the notion of ignorance in his concept of the refer-
ence prior [Ber79; BB92; Ber05]. The main idea is to find a prior density that min-
imizes the expected impact on the posterior for a fixed likelihood. A reference
prior is often desired when a collaboration seeks to communicate the outcome
of an experiment in an “objective” fashion, and there is no consensus within the
community on the prior state of knowledge. Here, objective means that, while
the reference prior may not represent the state of knowledge of any single person
in the collaboration, it is based only on the statistical model encoded in the likeli-
hood, and the class of candidate priors. Note however that prior knowledge can
be included transparently by restricting the class of candidate priors. The refer-
ence prior reduces to the Jeffreys prior in the 1D case. In addition, the reference
prior enjoys the following properties:

1. The reference prior can be, at least in principle, derived for any statistical
problem. The resulting reference posterior is proper for a sufficiently large
data set D.

2. For any one-to-one change of variables ν(θ), the reference prior adjusts in
such a way that the reference posterior P (ν ∣D) is properly related to the
posterior P (θ∣D) as

P (ν ∣D) = P (θ∣D) ∣dθ
dν

∣ . (2.23)

Hence the choice of parametrization does not affect the posterior inference.
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3. For repeated sampling under the assumed model, the posterior will concen-
trate on a region of parameter space that contains the true value of θ.

Maximum entropy The principle of maximum entropy (MAXENT) in probability the-
ory was put forth most ardently by Jaynes in [JB03]. It is not to be confused with
the entropy of thermodynamics. Though there is an intimate relation between the
fields, the reason the term “entropy” is used in probability theory is due to its
usage in the classic masterpiece by Shannon [Sha48]. MAXENT appears to be the
answer to include prior information as constraints into discrete (prior) probability
distributions {Pi ∶ i = 1 . . .N}, where N = ∞ is included. The (Shannon) entropy
is

H(P1, . . . , PN) = −
N

∑
i=1

Pi log(Pi) . (2.24)

For example, by using Gibb’s inequality

−
N

∑
i=1

Pi log(Pi) ≤ −
N

∑
i=1

Pi log(qi) (2.25)

which holds for any two distributions P and q, it is easy to verify that the uni-
form distribution, Pi = 1/N , maximizes H if the only constraint is normalization,
∑Ni=1 Pi = 1. For continuous problems, MAXENT proves very useful, though it is
not universally applicable. We will only consider a few very important examples
of practical use in the global fit. Suppose we want to assign a probability distribu-
tion to θ, and we only know its mean value, µ, and the magnitude of the variation
of θ, given by the variance σ2. Then the MAXENT distribution is uniquely deter-
mined as

P (θ∣µ,σ2) = N (θ∣µ,σ2) . (2.26)

Similarly, the MAXENT distribution among all distributions with finite support
[a, b] (no constraint on mean and variance) is the uniform distribution:

U[a,b](θ) =
1

b − a . (2.27)

It is a fact that the posterior is prior dependent; that is the content of Bayes’ theorem
(2.4). Asymptotically, as more data is added, the likelihood, and correspondingly the
posterior, converge to a (multivariate) normal distribution centering on the “true” pa-
rameter value under mild regularity conditions [Cra99; Wal69]. In that case, the prior is
negligible. For a realistic problem, there never is an infinite amount of data, there may
exist several posterior modes etc., and the convergence to the normal is typically quite
slow. It is thus up to the researcher to investigate the effect of different, reasonable pri-
ors, and to judge whether that effect is deemed significant. If so, conclusions based on
the posterior should be taken with a grain of salt, and more data needs to be collected.
It is a feature of the Bayesian approach that it automatically reveals this need for a more
substantial data basis.

In practice, it is hard, and often even impossible, to follow the above guidelines to
elicit the (reference) prior, as there are many parameters, and the dependence of the
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likelihood on them is often hidden inside a computer program. Therefore, one often
resorts to a convenient prior that is sufficiently diffuse in the region of the likelihood
maximum, in the expectation that the prior tails are cut off by a sharply falling likeli-
hood, and that the details around the posterior mode are dominated by the data. As
explained in detail in Appendix A.1, we benefit greatly from the MAXENT principle
and from posteriors of other analyses to assign priors to the nuisance parameters in the
global fit.



3 Monte Carlo sampling

We begin with the fundamental Monte Carlo principle. For generality, we choose the
notation x to denote a random variable in this chapter. If we wish to emphasize the
multidimensional character, then x → x. In case we are interested in the parameter(s)
of a model M , we identify x = θ as in Chapter 2. Suppose a probability density P (x),
often called the target density, and an arbitrary function f(x) with finite expectation
value under P

EP [f] = ∫ dxP (x)f(x) < ∞ . (3.1)

Then a set of draws {xi ∶ i = 1 . . .N} from the density P is enough to estimate the
expectation value. Specifically, the integral (3.1) can be replaced by the estimator (dis-
tinguished by the symbol ̂)

ÊP [f] ≈
1

N

N

∑
i=1

f(xi), x ∼ P . (3.2)

As N → ∞, the estimate converges almost surely at a rate ∝ 1/
√
N [RC04, Ch. 3.2] by

the strong law of large numbers if ∫ dxP (x)f2(x) < ∞.
How does (3.2) relate to Bayesian inference? Upon applying Bayes’ theorem to real-

life problems, one quickly encounters integrals of the form (3.1) that cannot be com-
puted analytically, hence one has to resort to numerical techniques. In low dimensions,
say d ≤ 2, quadrature and other grid-based methods are fast and accurate, but as d in-
creases, these methods generically suffer from the curse of dimensionality. The number
of function evaluations grows exponentially as O(md), where m is the number of grid
points in one dimension. Though less accurate in few dimensions, Monte Carlo — i.e.,
random-number based — methods are the first choice in d ≳ 3 because the computa-
tional complexity is (at least in principle) independent of d.

Which function f is of interest to us? For example when integrating over all but the
first dimension of x, the marginal posterior probability (cf. (2.13)) that x1 is in [a, b] is
given by

P (a ≤ x1 ≤ b∣D) ≈ 1

N

N

∑
i=1

1x1∈[a,b] (x
i) , (3.3)

with the indicator function

1x1∈[a,b] (x) =
⎧⎪⎪⎨⎪⎪⎩

1, x1 ∈ [a, b]
0, else .

(3.4)

Equation (3.3) follows immediately from the fundamental equation (3.2) with f(x) =
1x1∈[a,b](x). The major simplification arises as we perform the integral over d−1 dimen-
sions simply by ignoring these dimensions in the indicator function. If the parameter
range of x1 is partitioned into bins, then (3.3) holds in every bin, and defines the his-
togram approximation to P (x1∣D). In exact analogy, the 2D histogram approximation is
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computed from the samples. For understanding and presenting the results of Bayesian
parameter inference, the set of 1D and 2D marginal distributions is the primary goal.
Given samples from the full posterior, we have immediate access to all marginal dis-
tributions at once; i.e., there is no need for separate integration to obtain for example
P (x1∣D) and P (x2∣D). This is a major benefit of the Monte Carlo method in conducting
Bayesian inference.

In order to compute the evidence (2.5) for Bayesian model comparison, however, it
is necessary to integrate over all d dimensions. Note that the posterior samples alone
do not yield this information, as the precise value of the evidence, or normalization
constant, is irrelevant for their generation. Thus, extra information is required, and an
algorithm that produces Z along with the marginal distributions is preferred.

In this chapter, we will discuss the two classic algorithms to generate samples from
an arbitrary distribution: MCMC [Met+53; Has70] and importance sampling [NMU51].
Remarkably, those ideas were conceived at the very beginning of the computer age
around 1950, and Nicholas Metropolis is a coauthor of both original articles. There is a
powerful third alternative — nested sampling — that has been developed in the new
millennium [Ski06; FHB09], but for brevity we will not detail it here. All three basic
ideas are continuously refined for higher efficiency, with numerous variants existing for
specific problems; cf. [RC04] for a comprehensive overview of Monte Carlo methods
until 2004.

Of the three, MCMC is the most general, as it naturally deals with discrete and con-
tinuous problems, but it cannot provide the evidence without additional effort [GM98;
CJ01]. Both importance and nested sampling yield posterior draws and the evidence in
one run. All three algorithms can be parallelized to a certain degree, but to the best of
our knowledge, importance sampling is the only one that can be run massively parallel;
i.e., using hundred or even thousands of computing cores.

3.1 Markov chains and the Metropolis-Hastings algorithm

The following review is based on the lectures held by Prof. Caldwell at the Technische
Universität München in the years 2006 – 2012 [Cal10] and a similar lecture given by the
author at the Universidad de Costa Rica [Bea09].

Informally, a Markov process [Mar06; RC04] is a random-number generating process
without memory. Its output, a sequence of states, constitutes the Markov chain. The
output at (discrete) time t0 + 1 is defined entirely by the state of the chain at time t0 and
a (fixed) transition kernel, but unaffected by the history of the chain at t < t0. One of the
main features of Markov chains is that they easily generalize to many dimensions. We
can view a Markov process as a procedure that converts a sequence of independent,
uniformly distributed random numbers into a chain of dependent random numbers
from an arbitrary distribution, see Fig. 3.1.

In this section, we will define Markov chains more rigorously, and show how a
Markov chain transition kernel is constructed that yields correlated samples from a
desired target density as the chain grows (infinitely) long. After a description of an
adaptive version that tunes itself, we consider a realistic example of a multimodal dis-
tribution that resembles the problem of the global fit, where the standard MCMC ap-
proach is highly inefficient. In Appendix D, we present some MCMC extensions that
we developed to deal with the multimodality. Our recommended solution, however, is
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Markov chain

Ut ∼ U[0,1](⋅)

Xt−1

Ut−1

Xt

Ut

Xt+1

Ut+1

Figure 3.1: Discrete Markov chain. Reproduced from [Cal10].

the new combination of MCMC and importance sampling shown in Chapter 4.
The state space, X , of a Markov chain may be discrete or continuous, however, in this

work we will only treat the continuous case, and we think of X as the parameter space
of a statistical model. LetXt denote the random variable that is the chain output at time
t. Specific instances of X , that is, elements of X , are represented by x, y, z. For brevity,
we do not use the vector notation x, but X is certainly not restricted to 1D. The defining
property of a Markov process is

P (Xt = x∣X0 = x0, . . . ,Xt−1 = xt−1) ≡ P (Xt = x∣Xt−1 = xt−1) . (3.5)

The one-step transition kernel Pxy to go from state x to state y,

Pxy = P (Xt+1 = y∣Xt = x) , (3.6)

completely defines the Markov chain, along with the initial state X0. Similarly, Pnxy is
the n-step transition kernel. For illustration, let us assume X has k elements, then the
transition kernel is a matrix P ∈ Rk×k, Pxy is the element in the xth row and yth column,
the normalization condition reads∑y Pxy = 1, and the n-step transition kernel is simply
the nth matrix power Pn. In fact, we can decompose each element of Pn as

Pnxy = ∑
z

P rxzP
n−r
zy (3.7)

by introducing the intermediate state z, reached after r ≤ n steps. Equation (3.7), known
as the Chapman-Kolmogorov equation, is the exact analogy of the path integral [Fey42]
defined on a discrete spacetime. For consistency, we define P 0

xy = δxy with the Kro-
necker symbol δ, which naturally extends to the continuous case in which it denotes
the Dirac distribution.

We shall need the following definitions. Two states communicate if there exists n such
that there is nonzero probability to access one state from the other in n steps

Pnxy ≥ 0, Pnyx ≥ 0 . (3.8)

Communication defines an equivalence relation on the state space; if all states in X are
in the same equivalence class, the chain is irreducible. The period of a state, d(x), is the
greatest common divisor of all n ≥ 1 for which the return probability Pnxx is nonzero. If
d(x) = 1∀x, the chain is called aperiodic. A chain is stationary if the joint distributions of

(Xt,Xt+1, . . . ,Xt+n) and (Xt+h,Xt+1+h, . . . ,Xt+n+h) (3.9)
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agree for all h and arbitrary t. In the following, we will only consider stationary, aperi-
odic, and irreducible chains. Let fnxx denote the probability of a first return from x to x
after exactly n steps. Then the basic limit theorem is

lim
n→∞

Pnxx ≡ P (x) = 1

∑∞
t=0 tf

t
xx

, (3.10)

lim
n→∞

Pnyx = P (x) . (3.11)

The basic limit theorem states that, asymptotically, the probability of being in a state x
is independent of the starting point. In practice, it is of paramount importance to verify
that this asymptotic regime is reached, since we can only ever perform a finite number
of steps on a computer. A specific algorithm to perform this check is presented in Sec-
tion 3.1.2. If we interpret t as time, then ∑∞

t=0 tf
t
xx is the average return time, thus the

limiting probability P (x) is given by the frequency 1/∑∞
t=0 tf

t
xx. If P (x) > 0 for one x,

then P (y) > 0∀ y ∈ X , and the chain is strongly ergodic. Again, the term “ergodic” is bor-
rowed from physics; it describes the fundamental assumption of statistical mechanics
that the time average of a macroscopic system equals the average over the microscopic
states. From (3.7) and (3.10), we can immediately infer the left-eigenvalue problem

P (x) = ∑
z

P (z)Pzx . (3.12)

The set {P (x) ∶ x ∈ X}, is the stationary distribution of the Markov chain. The important
message is this: with the help of the Metropolis-Hastings algorithm, we can construct
the proper transition kernel such that the stationary distribution of the Markov chain
is the function we want to sample from, the target density — the posterior in our ap-
plications. Thus the chain — the sequence of states visited — represents a (correlated)
sample from the target provided the chain is ergodic. A sufficient condition for the
distribution P (x) to be the target distribution is detailed balance [RC04, Ch. 6]:

PxyP (x) = PyxP (y) . (3.13)

Detailed balance reflects a state of equilibrium and symmetry; i.e., it is as probable to
be in x and move to y as it is in the opposite direction to be in y and move to x.

The celebrated Metropolis-Hastings algorithm [Met+53; Has70] yields the right tran-
sition kernel to sample from a given target P (x); at its core, it is deceptively short and
simple. The key new ingredient is the proposal function q(y∣x), which generates a new
proposal point y based on the current state x. The proposal is essential to the success
of the method, and needs to be adjusted to the problem at hand. For now, our only re-
quirement on q is that it have nonzero probability on the entire state space to guarantee
irreducibility. Let us define the probability of accepting the proposal y as

ρ(y∣x) = min{P (y)
P (x) ⋅

q(x∣y)
q(y∣x) ,1} . (3.14)

Note that ρ(y∣x) is independent of the normalization of P (x); it cancels in the factor
P (y)/P (x). Metropolis [Met+53] originally suggested to use a symmetric proposal,
q(x∣y) = q(y∣x), such that ρ(y∣x) is independent of q. The ability to use an asymmetric
proposal was added later by Hastings [Has70], and therefore the factor q(x∣y)/q(y∣x) is
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known as the Hastings factor. The Metropolis-Hastings algorithm determines the next
point of the chain, Xt+1, as follows: generate u ∼ U[0,1], then set

Xt+1 =
⎧⎪⎪⎨⎪⎪⎩

y, u < ρ(y∣x)
x, else .

(3.15)

Since proposals may be rejected, we may have repeated instances of x in the chain,
thereby introducing autocorrelation, but also guaranteeing aperiodicity. We can de-
compose the transition kernel into two parts. Either we accept the new proposal point,
or the chain reproduces its current state:

Pxy = ρ(y∣x)q(y∣x) + (1 − Px⋅) δ(y − x) , (3.16)

where Px⋅ = ∫ dz ρ(z∣x)q(z∣x) is the probability of jumping to an arbitrary state from x.
We now want to verify that this kernel satisfies detailed balance (3.13). For x = y, this is
trivial. In the nontrivial case, we have

PxyP (x) = ρ(y∣x)q(y∣x)P (x) = min{P (y)q(x∣y)
P (x)q(y∣x) ,1} q(y∣x)P (x)

= min{P (y)q(x∣y), q(y∣x)P (x)} (3.17)

PyxP (y) = ρ(x∣y)q(x∣y)P (y) = min{P (x)q(y∣x)
P (y)q(x∣y) ,1} q(x∣y)P (y)

= min{P (x)q(y∣x), q(x∣y)P (y)} (3.18)
⇒ PxyP (x) = PyxP (y) . (3.19)

Thus by the basic limit theorem, P (x) is the target distribution of the Markov chain that
is reached asymptotically.

3.1.1 Adaptive Metropolis-Hastings

The basic properties of the Metropolis-Hastings algorithm guarantee a set of samples
from the target only asymptotically. The overarching goal of Monte Carlo sampling
is to construct an algorithm that can handle any target in a black box manner; i.e., no
knowledge of the target is required initially, but the algorithm learns the details as it
proceeds. Such an algorithm that works efficiently with any target, in any dimension,
without the need of carefully checking consistency of the result etc. is the applied statis-
tician’s dream, but surely it does not exist. However, it serves as a guide to direct our
efforts.

In this subsection, we describe the standard MCMC approach with a local, adaptive,
multivariate proposal function based on [HST01; Wra+09]. For a local proposal q(x∣y),
the density at the proposed new point x depends on the current point y, whereas a
global proposal is independent of y, q(x∣y) = q(x). The basic local random walk is per-
formed with a symmetric proposal centered around y. It is a remarkable that in practice
a simple class of proposal functions, such as the multivariate normal distribution

N(x∣µ,Σ) = 1

(2π)d/2
∣Σ∣−1/2 exp(−1

2
(x −µ)TΣ−1(x −µ)) , (3.20)
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or the multivariate Student’s t distribution

T (x∣µ,Σ, ν) = Γ ((ν + d)/2)
Γ (ν/2) (πν)d/2

∣Σ∣−1/2 (1 + 1

ν
(x −µ)TΣ−1(x −µ))

−(ν+p)/2
, (3.21)

can adapt in such a way as to efficiently generate samples from essentially any smooth,
unimodal distribution. The parameter ν, the degree of freedom, controls the “fatness”
of the tails of T ; the covariance of T is related to the scale matrix Σ as ν

ν−2 ×Σ for ν > 2,
while Σ is the covariance of N . Hence for finite ν, T has fatter tails than N , and for
ν →∞, T (x∣µ,Σ, ν) → N(x∣µ,Σ).

Before delving into the details, let us clarify at least qualitatively what we mean by
an efficient proposal. Our requirements are

1. that it allow to sample from the entire target support in finite time,

2. that it resolve small and large scale features of the target,

3. and that it lead to a Markov chain quickly reaching the asymptotic regime.

An important characteristic of Markov chains is the acceptance rate α, the ratio of ac-
cepted proposal points versus the total length of the chain. We argue that there exists
an optimal α for a given target and proposal. If α = 0, the chain is stuck and does not
explore the state space at all. On the contrary, suppose α = 1 and the target distribution
is not globally uniform, then the chain explores only a tiny volume where the target
distribution changes very little. So for some α ∈ (0,1), the chains explore X well.

How should the proposal function be adapted? After a chunk of Nupdate iterations,
we change two things. First, in order to propose points according to the correlation
present in the target density, the proposal scale matrix Σ is updated based on the sam-
ple covariance of the last n iterations. Second, Σ is multiplied with a scale factor c that
governs the range of the proposal. c is tuned to force the acceptance rate to lie in a
region of 0.15 ≤ α ≤ 0.35. The α range is based on empirical evidence and the follow-
ing fact: for a multivariate normal proposal function, the optimal α for a normal target
density is 0.234, and the optimal scale factor is c = 2.382/d as the dimensionality d ap-
proaches ∞ and the chain is in the stationary regime [RGG97]. We fix the proposal after
a certain number of adaptations, and then collect samples for the final inference step.
However, if the Gaussian proposal function is adapted indefinitely, the Markov prop-
erty (3.5) is lost, but the chain and the empirical averages of the integrals represented
by (3.1) still converge under mild conditions [HST01].

The efficiency can be enhanced significantly with good initial guesses for c and Σ.
We use a subscript t to denote the status after t updates. It is often possible to extract an
estimate of the target covariance by running a mode finder like MINUIT [Jam75] that
yields the covariance matrix at the mode as a by product of optimization. In the case of
a degenerate target density, MINUIT necessarily fails, as the gradient is not defined. In
such cases, one can still provide an estimate as

Σ0 = diag (σ2
1, σ

2
2, . . . , σ

2
d) , (3.22)

where σ2
i is the prior variance of the i-th parameter. In the global fit detailed in Chap-

ter 7, there are a lot of nuisance parameters whose posterior is similar to their prior. In
that case, (3.22) is a very good starting guess. The updated value of Σ in step t is

Σt = (1 − at)Σt−1 + atSt , (3.23)
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where St is the sample covariance of the points in the tth chunk and its element in the
mth row and nth column is computed as

(St)
mn

= 1

Nupdate − 1

t⋅Nupdate

∑
i=(t−1)⋅Nupdate

((xi)m − ̂EP [(x)m]) ((xi)n − ̂EP [(x)n]) . (3.24)

The weight at = 1/tλ, λ ∈ [0,1] is chosen to make for a smooth transition from the initial
guess to the eventual target covariance, the implied cooling is needed for the ergodicity
of the chain if the proposal is not fixed at some point [HST01]. One uses a fixed value
of λ, and the particular value has an effect on the efficiency, but the effect is generally
not dramatic; in this work, we set λ = 0.5 [Wra+09].

We adjust the scale factor c as described in Algorithm 1. The introduction of a min-
imum and maximum scale factor is a safeguard against bugs in the implementation.
The only example we can think of that would result in large scale factors is that of sam-
pling from a uniform distribution over a very large volume. All proposed points would
be in the volume, and accepted, so α ≡ 1, irrespective of c. All other cases that we en-
countered where c > cmax hinted at errors in the code that performs the update of the
proposal.

Algorithm 1 Single update of the covariance scale factor. We use αmin = 0.15, αmax =
0.35, β = 1.5, cmin = 10−4, and cmax = 100.

if α > αmax ∧ c < cmax then
c← β ⋅ c

else if α < αmin ∧ c > cmin then
c← c/β

end if

3.1.2 Asserting convergence

When we discussed the basic limit theorem (3.10), the need for a method to assess
when a chain has become stationary became apparent. There are two basic approaches:
one can look at the autocorrelation properties of a single chain [RC04, Ch. 12], or one
runs multiple chains from different starting points and declares convergence once these
chains mix. For then, the chain output indeed is independent of the starting point.
We select the multiple-chain approach, as it allows for trivial parallel execution on a
multicore or multiprocessor computing architecture.

Our approach is based on Gelman and Rubin [GR92]; we review their approach, and
indicate where we differ. The basic requirement of the chains’ starting points is that
they come from a distribution that is overdispersed with respect to the target density.
Gelman and Rubin suggest to find the target modes µj , j = 1,2, . . . and the respective
covariance matrix from the second derivative at µj , and to create a mixture density P̂ (x)
that roughly interpolates P (x) with one Student’s t component for each mode as

P̂ (x) = ∑
j

αjT (x∣µj ,Σj , ν) , (3.25)

and ν ≈ 4 (thick tails). The starting points are drawn with importance resampling from
P̂ (x) with component weights wj suitably adjusted. In contrast, we achieve a good
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compromise between overdispersion and efficiency by drawing x from the prior. In
our main application, the global fit in Chapter 7, we assume a completely factorizable
prior: the Wilson coefficients have a flat prior but the posterior is sharply concentrated,
ensuring overdispersion. In other dimensions, the prior closely resembles the respec-
tive 1D marginalized posterior, thus the starting point is very close to a posterior mode.

The question that Gelman and Rubin pose is not: Have the chains converged? In-
stead, they seek to estimate how much information could be gained if the chains were
run for an infinite number of steps. To this end, they consider a scalar quantity of in-
terest, T , that depends on the parameters x. Example quantities include one of the d
parameters, T = xi, or the logarithm of the target, T = logP (x).

Using a flat prior in T and treating the N samples from k chains as data, the pos-
terior distribution PkN(T ) denotes what is known about T . We stress that PkN(T )
is the posterior for the inference problem described in the previous paragraph, and
it is not to be confused with the target density from which samples are to be gener-
ated. PkN(T ) includes uncertainty due to finite k and N , as well as due to the target
distribution P (T ∣x). It is assumed that, asymptotically, samples are from the target,
limN→∞ PkN(T ) → P (T ∣x). One can incorporate the finite N effect in a Student’s t
distribution with scale V̂ and degrees of freedom ν, and compare its variance to the
asymptotic normal form (see Section 2.3) of the posterior with variance σ2. Note that
both distributions are estimated from the same set of k ⋅ N draws. Finally, the main
quantity of interest is the Gelman-Rubin R value

R(T ) = V̂

σ2
⋅ ν

ν − 2
. (3.26)

The R value estimates the reduction of uncertainty about T which would result if N →
∞. In theory, R ≲ 1.1, and a value R ≈ 1 indicates convergence. Note that R is a
function of N,k, and the k individual chain means and variances of T . For a practical
implementation, it is important to correctly deal with the special cases of V̂ = 0, σ2 ≠ 0
(R undefined), V̂ = σ2 = 0 (R = 1), and ν < 2 (R undefined) to avoid an infinite or NaN
floating point value. In addition, since there is statistical uncertainty on V̂ and σ2, for
small N ≲ 500, R may actually come out slightly less than 1, say O(0.98).

3.1.3 Summary of adaptive MCMC

We now summarize the basic steps of our implementation of the adaptive MCMC in the
software package EOS [Dyk+12]; see Algorithm 2. k chains are initialized with start-
ing points drawn from the prior. The prior variances and a dimension-dependent scale
factor are used to construct a multivariate normal distribution, serving as the initial
proposal function for a local random walk. In each iteration, the proposal is centered
around the current point. The chains are run for chunks ofNupdate iterations in parallel.
The proposal covariance is adapted based on the Nupdate steps as in (3.23) and Algo-
rithm 1. Convergence is declared, that is the prerun or burn-in is completed, if all chains
have a suitable acceptance rate and the R value for each parameter is sufficiently close
to 1. In addition, we require a minimum number of iterations,Nmin, to avoid premature
convergence, and conversely Nmax to stop if convergence is not reached. For the main
run, the proposal covariance is held constant, and a fixed number of samples O(105) is
collected from each chain to perform inference on the parameters. The prerun samples
are discarded.
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Algorithm 2 The MCMC algorithm with prerun and main run. We use Nmin = 104,
Nmax = 5 × 105 and Nfinal = 105.
Require: number of chains k, Nupdate, proposal type = N ,T

for all chains do (▷) initialization
Draw initial point from prior
Setup proposal with diagonal initial scale matrix from priors
Rescale matrix by 2.382/d

end for
number of iterations i← 0
while i < Nmax do (▷)prerun

for all chains do
run chains for Nupdate iterations
update proposal

end for
i← i +Nupdate

if acceptance rates and R values OK and i ≥ Nmin then
prerun finished

end if
end while
for all chains do (▷)main run

run chains for Nfinal iterations
end for

3.2 Multimodal example

In order to illustrate the MCMC algorithm, we consider an explicit example target den-
sity P , similar in many aspects to the posteriors encountered in Chapter 7. P has
multiple, well separated maxima, each of which has the same shape, but potentially
a different probability mass. For the purpose of simplicity, we shall begin in d = 2 di-
mensions and assume that P (x) = P (x1, x2) = P (x1) ⋅ P (x2). Let P (x1) a mixture of
two LogGamma components (cf. Appendix A.2) centered around x1 = ±10 with unit
scale and unit shape parameter. Similarly, P (x2) is a mixture of standard normal dis-
tributions centered around x2 = ±10, where we assume non-equal relative weight ω:

P (x1) = 1
2LogGamma(x1∣10,1,1) + 1

2LogGamma(x1∣ − 10,1,1)
P (x2) = ω

1+ωN(x2∣10,1) + 1
1+ωN(x2∣ − 10,1) . (3.27)

A single mode of P (x1, x2) is depicted in Fig. 3.2, using the analytical values (Fig. 3.2(a))
and the MCMC histogram approximation (Fig. 3.2(b)) based on a single chain with
200 000 iterations, with the first 20 % discarded for burn-in, and proposal adaptation
every 500 steps until the very end (no main run). The MCMC initialization is as follows.
For concreteness, we assume flat priors on the ranges (x1, x2) ∈ [−30,20] × [−20,20],
from which the initial point is drawn. The initial covariance of the Gaussian proposal
in each dimension is that given by the respective prior (flat in this example), with an
additional scale factor of 1/10 on top of the dimensional scaling c that ensures initial
acceptance rates of > 20 %.

The Markov chain in Fig. 3.2(b) quickly reaches the asymptotic regime and its station-
ary distribution is the part of the target P (x1, x2) in the positive quadrant x1, x2 > 0. The
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Figure 3.2: The example density P (x1, x2) = P (x1)P (x2) with P (x1) and P (x2) given in (3.27).
(a) The density contours from evaluating P (x1, x2) on a fine grid around the (+,+) mode.
(b) Histogram of a single Markov chain with 200 000 iterations that visits only the (+,+) mode.

chain does not visit the other three modes, thus the chain’s stationary distribution is not
the target; in this example, MCMC fails at global scale, but it is successful at the local
scale.

What happens if we run k = 20 chains in parallel? The distance between the modes is
deliberately chosen large in this example; each chain only visits a single mode. While
the combination of chain outputs, shown in Fig. 3.3(a), gives a good impression of the
local features of P (x1, x2), it does not reflect the relative weight of the modes at all.
Using fixed random number generators, we verified that the chains behave identically
for drastically different values of ω; explicitly we checked this for ω = 1,10,104,106.
The relative proportions of the maxima in Fig. 3.3 are entirely due to the number of
chains in a particular mode, which in turn depends only on the chain’s initial posi-
tion and the random numbers used. The proportions do not depend on the value of
P (x1, x2) even though they should for correctness. We label the modes by their sig-
nature, for example the mode at (10,10) is the (+,+) mode. For clockwise ordering
(+,+), (+,−), (−,−), (−,+), the relative proportions in the concrete run of Fig. 3.3(a) are
given by 7:2:6:5.

The large R values, displayed in Fig. 3.3(b), for both x1 and x2 clearly show that
the ensemble of chains has not mixed, therefore convergence cannot be declared. The
difference between R(x1) ≈ 9 and R(x2) ≈ 11 is due to the smaller ratio of single-mode
variance to intermode distance in x1 direction, but the absolute value is not important;
what matters is that R(xi) ≫ 1. In contrast, when considering the group of chains
in one mode, both R(x1) and R(x2) are less than 1.1. We can thus conclude that the
chains converge in each group, but the ensemble of chains fails in sampling from the
target density. This is not a special case, MCMC methods are well known to fail when
the support of the target is disconnected.

One may wonder if there is an error in the Metropolis-Hastings algorithm (cf. Sec-
tion 3.1), its adaptive realization (cf. Section 3.1.1), or our implementation. The answer
is no; the loophole is the condition of the “asymptotic” regime. There is nonzero prob-
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The proposal q is required to be positive on the support of P to guarantee convergence.
For N independent draws from the proposal, the estimator is

ÊP [f] =
1

N

N

∑
i=1

wif(xi), x ∼ q , (3.30)

with the importance weight w ≡ P (x)/q(x). As with MCMC, it is (fortunately) possible to
work with P unnormalized, then one has to replace wi/N in (3.30) by the self-normalized
important weight

w̄i =
wi

∑Ni=1wi
. (3.31)

Note that (3.30) follows immediately from the fundamental Monte Carlo principle (3.2),
and is identical if q = P , in which case wi ≡ 1.

For practical reasons, q must be of a simple form to permit direct sampling. Note that,
unlike in MCMC, the normalization of P can be inferred if q is properly normalized,
because the value of P (xi) appears explicitly in (3.30) through the weight w = P /q .
Suppose P (x) is an unnormalized posterior distribution and let f(x) = 1, then the
estimate of the normalization constant — the evidence Z (2.5) — is just the average
unnormalized importance weight,

Z = Eq [
P

q
] ≈ 1

N
∑
i

wi (3.32)

(3.29) is valid for any q whose support includes that of P , so which q should we choose?
Suppose q(x) = P (x)/Z . The variance of the evidence estimator is [OZ00]

Vq[Z] = Eq [
P 2

q2
] − (Eq [

P

q
])

2

= ∫ dx
P (x)
Z

[P (x)
P (x)Z]

2

−Z2 = Z2 −Z2 = 0 . (3.33)

So if q is the normalized version of P , the estimator has minimum variance; but if
we could sample from P directly, we would have no need to introduce q and to use
importance sampling at all. However, the very important message is this:

Make q as close as possible to P for maximum efficiency. (3.34)

For completeness, we have to remark that the optimal q depends on f . Robert and
Casella [RC04, Ex. 3.8] present an example in which tail probabilities are estimated,
and they show that a suitable proposal reduces the importance sampling estimator’s
variance by orders of magnitude compared to q = P . In this work however, we are
interested in multiple f at the same time; e.g. all 1D and 2D marginal distributions of
P and the evidence. In that case, q ≈ P is considered optimal.

In addition, it is important that the tails of q do not fall off more rapidly than those
of P [Gew89]; i.e., P /q must be bounded from above, else outliers with very large w
negatively affect the accuracy. In other words, we require that the estimator’s variance
be finite, which follows from

Eq [f2P
2

q2
] < ∞ . (3.35)
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3.3.1 Adaptive importance sampling

The great advantage of importance sampling over MCMC is that samples are drawn
independently from q; thus the sampling, and in particular the evaluation of the poste-
rior, can be massively parallelized, and there is no burn-in phase. At present, massive
parallelization seems to be the only viable option to benefit from new computing infras-
tructures in order to increase the number of posterior evaluations per wallclock time,
because the frequency of a single CPU has leveled off in the last 10 years at about 3 GHz
and is not likely to increase in the future [Nor12].

The Metropolis-Hastings algorithm with an adaptive local random walk is robust in
terms of choice of q, and it requires very little information to start. With no information
present, MCMC adapts its multivariate Gaussian or Student’s t proposal on the fly;
cf. Section 3.1.1. In contrast, there is no such simple function that works well with an
arbitrary target in importance sampling.

Adaptive importance sampling, or population Monte Carlo (PMC) [Cap+04; Cap+08;
Wra+09; Kil+10], is a relatively new approach that tries to remedy the situation. The
basic idea is to use a flexible proposal function, a mixture density of multivariate normal
or Student’s t distributions, and iteratively update its form to match the target density
as closely as possible. In each iteration, not only one sample, but an entire population
of samples is used, hence the name. That is, each iteration is a regular importance
sampling step.

Typically, only the samples after the last proposal update are used for inference, so
another kind of prerun emerges in which samples are discarded (cf. [Cor+12] for a
formulation of adaptive importance sampling that combines samples from all steps).
The option to massively parallelize the evaluation and the ability to naturally deal with
degenerate and multimodal target distributions by scattering the mixture components
apart make it a very powerful alternative to MCMC.

Let us now discuss the PMC algorithm in more detail. The proposal in step t is a
mixture density

qt(x) =
K

∑
j=1

αtjq
t
j(x∣ξtj), qtj ∈ {N ,T } . (3.36)

qtj is a single multivariate component that depends on the simulation parameters col-
lectively denoted by ξtj . For the Gaussian case, qtj = N , we have ξtj = (µtj ,Σt

j), and for
the Student’s t case qtj = T , ξtj = (µtj ,Σt

j , ν). The set of (normalized) component weights
is denoted by {αtj}, j = 1, . . . ,K. Note that the component type, N or T (including
ν), is fixed throughout a PMC run. The T components are preferred if the target has
degeneracies or fat tails.

It is important to quantitatively assess the distance between the target and the pro-
posal in the spirit of (3.34) to have a well posed optimization problem; this is accom-
plished with the Kullback-Leibler divergence, or relative entropy, KL, an extension of
the Shannon entropy (2.24) to continuous distributions [KL51]:

KL (P ∥q) = ∫ dxP (x) log
P (x)
q(x) . (3.37)

Beware that in general KL (P ∥q) ≠ KL (q∥P ), so KL is not an actual metric on the space
of probability distributions. The minimum occurs for P = q, then KL(P ∥P ) = 0. KL
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is an important information-theoretical quantity; it quantifies the expected number of
extra bits needed to code up a message — random sample — from P using an alphabet
with characters distributed according to q, rather than using the true distribution P .

The goal in each update step is to reduce KL (P ∥q). The general problem of optimiz-
ing the KL functional is intractable, it is therefore necessary to reduce the complexity
to an ordinary parameter optimization problem by fixing q to the form (3.36) and op-
timizing over αj ,ξj , j = 1, . . . ,K. We want to remark that in the basic formulation of
[Cap+08], the parameter ν of the Student’s t distribution is held fixed, but it could be up-
dated along with the other parameters through 1D numerical optimization [HOVD11].

KL is minimized using a variant of the expectation-maximization algorithm; see
[Cap+08; Wra+09] for details, and Appendix E for a general introduction to expectation
maximization. In the limit that the number of samples per update step tends to ∞, the
algorithm guarantees that KL(P ∥qt+1) < KL(P ∥qt). For the Gaussian and Student’s t
case, the updated values αt+1

j and ξt+1
j are known, relatively simple-to-evaluate expres-

sions of the importance sampling output (xti,wti) ∶ i = 1 . . .N and qt [Cap+08]. But they
require at least a single summation over all samples, thus if N is large, parallelization
of the proposal update is beneficial.

The update procedure is nothing but fitting q to P via the set of importance samples
{(xti,wti) ∶ i = 1 . . .N}. Let us consider an example in d = 30 dimensions with K = 100
components. Then q contains a total of

dimαt + dimξt = 100 + (30 + 302) × 100 = 93 100 (3.38)

parameters. It is thus necessary to determine an appropriate value for N ; on the one
hand, it should be large to have as much information about the target as possible, and
certainly N ≳ dimξt, on the other hand, it should remain small as the CPU time grows
linearly with N . Fortunately, the wall clock time grows only as N/#processors in a
parallel computing environment.

It is important to stress that PMC depends crucially on the initial proposal q0, because
the updates tend toward the next local minimum of KL, and not every such minimum
leads to good sampling results. In addition, finding a good initial proposal is far from
trivial; we assume it given for the time being, but we devote Chapter 4 to explain a
new algorithm that forms q0 automatically. In our opinion, the absence of such an
initialization procedure until now made PMC basically unusable with very complicated
target densities.

3.3.2 Convergence monitoring

Is there a quantity similar to the R value to use as a stopping criterion? Two statistics
are available. Obviously, if KL(P ∥q) = 0, or equivalently if exp (−KL(P ∥q)) = 1, no
further improvement can be made. The latter is estimated by the normalized perplexity

P ≡ exp (Ht)/N , (3.39)

with the Shannon entropy (2.24) for the normalized weights in step t given by

Ht(w̄t1, . . . , w̄tn) = −∑
i

w̄ti log w̄ti . (3.40)
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By construction, P ∈ [0,1]. The other relevant quantity is the effective sample size (ESS),
heuristically motivated in [LC95]. While P is sensitive rather to the mean of the distri-
bution of the importance weights, ESS is a function of variance. Define the coefficient of
variation as

C2 = 1

N

N

∑
i=1

(Nw̄tj − 1)2
, (3.41)

and note that for large N , C2 is a reasonable approximation to V [w̄t]. Suppose that N0

of the weights vanish, while the other N − N0 weights are equal and nonzero. Then
C2 = N/(N −N0) − 1, and the normalized ESS is

ESS ≡ 1

1 +C2
= N −N0

N
. (3.42)

Thus ESS is an estimate of the fraction of samples that effectively contribute to the
importance sample, ESS ∈ [0,1]. Ideally, all weights are identical, then ESS ≡ 1.

An outlier — a sample with a weight much larger than the average — has a par-
ticularly large impact on ESS, whereas P is more robust against outliers. We will see
in Section 4.3.3 that individual outliers are clearly visible in density plots of marginal
distributions, and the ESS provides a quantitative warning about existing outliers. On
the contrary, contours inferred from the marginal distributions are affected to a lesser
extent by outliers. Thus, if the contours are the primary interest, the important criterion
is P . Hence, we do not to use ESS for the stoppage rule. A more detailed reasoning for
this is given below in Section 4.3.3. The PMC algorithm in abstract form, including our
stoppage rule, is given in Algorithm 3.

Algorithm 3 The generic PMC algorithm. We use tmin = 2, tmax = 20, ε = 0.02, Pcrit =
0.92, and Nfinal = 2 × 106

Require: number of samples N , initial proposal q0

converged ← false
while (t < tmax) ∧ (¬converged) do (▷)Update loop

{(xi,wi)}Ni=1 = IMPORTANCE_SAMPLE(qt,N )
if t > tmin ∧ (∣Pt−Pt−1

Pt ∣ < ε ∨ Pt > Pcrit) then
converged ← true

end if
qt+1 = UPDATE_PROPOSAL(qt,{xi,wi}Ni=1 )
t← t + 1

end while
if converged then (▷)final step

{(xi,wi)}Nfinal
i=1 = IMPORTANCE_SAMPLE(qt,Nfinal)

end if
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The simple example of the multimodal target density introduced in Section 3.2 clearly
shows the weaknesses of the local random walk MCMC approach. If the various modes
are well separated, a single chain visits only a single mode. In particular, which mode
is visited does not depend on the probability mass of the mode; instead, the chain’s
initial position and the random numbers used in each Metropolis-Hastings step are the
decisive factors.

On the contrary, the example also shows the strengths of MCMC. Given a sufficiently
large number of chains, k, there is good chance that every mode is covered by at least
one chain. Running several chains in parallel is not really a burden, as it is the sim-
plest and most natural means to parallelize the evaluation of the target density, and it
does not increase the required wallclock time. Without extra information required from
the user, we can adapt a simple multivariate proposal function to draw samples from
the target, at least in a subset of the full parameter space. Thus every chain provides
valuable local information, and the crucial task is to combine the information of the
ensemble of chains into a global picture.

Parallelization of MCMC is limited due to the sequential nature of the Metropolis-
Hastings algorithm. Given the number of iterations required for burn-in and adapta-
tion of the proposal, a minimum of O(104) steps are required. Hence if we have 50
cores available, we can run k = 50 chains, but the wallclock time is that needed for a
single chain on a single core for at least O(104) iterations.

The population Monte Carlo (PMC) algorithm offers the complementary set of
strengths and weaknesses compared with MCMC. First, it features the ability to mas-
sively parallelize the posterior evaluation to reduce the wallclock time by using more
cores. Second, its mixture proposal function naturally copes with multiple modes.
Third, importance sampling yields posterior samples along with the evidence. How-
ever, the main disadvantage of PMC is the crucial dependence on the initial proposal.
In the first paper about PMC in physics [Wra+09], the authors discuss several rather
basic strategies to place the initial components, such as centering in the allowed range
or around a mode, with covariance taken from the inverse Hessian at the mode, For the
complicated posteriors that we treat in the global fit, for an example see Fig. 7.1, these
strategies failed completely.

Our focus is on creating a good initial proposal for PMC with a minimum of manual
intervention. Our new suggestion is to combine the best of MCMC and PMC in three steps
(cf. Fig. 4.1):

1. We perform a prerun with k Markov chains in parallel, each doing a local random
walk with an adaptive proposal. Then we extract the support of the target density
by splitting each chain into many small patches.

2. Sample mean and covariance of each patch define one multivariate density, the
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The patch length ought to be chosen in such a way that small-scale features of the
posterior can be explored during L iterations. Again, a good value of L increases with
d and possible degeneracies. On the other hand, L must not be too small, else the chain
cannot move enough. Combing all k chains together, we obtain a Gaussian mixture
density of K̃ components

f(⋅) ≡
K̃

∑
i=1

αiN(⋅ ∣µi,Σi) =
K̃

∑
i=1

αifi(⋅) , (4.2)

and assign equal weight αi = 1/K̃ to each component. Note that we do not take into
account the value of the posterior in each patch; rather, we will ultimately rely on PMC
to find the proper component weights. In this way, an identical number of samples
is drawn from each component in the initial, and most important, PMC step. For the
example in d = 2 with L = 100 and the prerun settings described in Table 4.1, Row I,
we have the enormous number of K̃ = 20 × 320 = 6400 components. This number is
impractically large even with massive parallelization. Fortunately, we do not actually
need all these components, as there is a lot of redundant information; two chains that
mix will approximately yield the same information as a single chain. Further, if a single
chain explores the same region multiple times duringN iterations, then that chain itself
is redundant.

4.2 Hierarchical clustering

It is important to reduce the complexity of the proposal mixture density to keep the
number of samples needed in each PMC update step low for computational efficiency.
At the same time, we wish to preserve as much information as possible, in particular
where the support of the target density is. In the previous section, the mixture density
f , defined in (4.2), contained a total of K̃ components, each resulting from one patch
of a Markov chain. For the simple 2D, multimodal example, K̃ = 6400 components
are much more than needed for PMC. Our goal in this section is to compress the K̃
components into a mixture with only K ≪ K̃ components by removing redundant in-
formation. Hierarchical clustering [GR04] is our weapon of choice. Compression is to be
understood in the information-theoretical sense, because a distance measure between
the mixtures based on the Kullback-Leibler divergence (3.37) is minimized during the
clustering.

4.2.1 Review of hierarchical clustering

We start with a mixture density of K̃ Gaussian input components in d dimensions (4.2).
The objective is to reduce the number of input components to K < K̃, resulting in a
Gaussian mixture density

g(⋅) ≡
K

∑
j=1

βjgj(⋅) . (4.3)

This goal is achieved by finding the optimal output component weights, means, and
covariances of aK-component Gaussian mixture density minimizing the distance mea-
sure

d(f, g) =
K̃

∑
i=1

αimin
j

KL(fi∥gj) . (4.4)
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Figure 4.4: Hierarchical clustering. πt maps each of the K̃ input components to the respective
output component in step twith the smallest Kullback-Leibler divergence. For example, πt(5) =
2 and πt(9) = 4. The third output component is dead.

Due to the properties of the Kullback-Leibler divergence KL, d(f, g) ≠ d(g, f), hence
d(⋅,⋅) is not a distance in the strict sense. With our motivation of removing redundant
information, constructing d(⋅,⋅) based on KL is a natural choice, as KL quantifies the
extra information needed to represent fi by gj ; cf. (3.37). The particular form of d(⋅,⋅) is
chosen to facilitate the minimization of d. However, it can be shown that d(⋅,⋅) arises as
the limiting form of a likelihood of a suitable statistical model [GR04, Sec. 4]. Another
very desirable property of d(⋅,⋅) is that it only requires the exactly known Kullback-
Leibler divergence between two Gaussians, whereas KL of a Gaussian mixture is not
known analytically. Thus we do not need to work at the level of samples; once the
components are defined from the patches, we can operate at the component level. This
provides a dramatic speed up compared to similar hierarchical grouping procedures
that require resampling data points. For two Gaussians, we have

KL(1∥2) = 1

2
[log

∣Σ2∣
∣Σ1∣

+Tr (Σ−1
2 Σ1) + (µ1 −µ2)T Σ−1

2 (µ1 −µ2) − d] . (4.5)

There is no analytical solution to find the optimal g, but an iterative algorithm, based on
the expectation-maximization (EM) algorithm [DLR77], exists. It is a direct extension
of the Gaussian mixture EM from the sample to the component level; the former is
described in detail in Appendix E. In hierarchical clustering, the key in each step t is to
find a mapping πt to associate each of the K̃ input components with the closest output
component, πt(i) ≡ arg minj KL(fi∥gtj), as displayed schematically in Fig. 4.4.

Given the mapping πt and its inverse π−1,t, the parameters of the mixture gt are now
updated such that for each j with π−1,t(j) ≠ ∅, the new component gt+1

j is the weighted
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Algorithm 4 The hierarchical clustering algorithm. We use εmin = 10−4.
t← 0

Require: initial output components {g0
j }

repeat
create optimal mapping πt (▷) regroup, E step
compute dt(πt,{fi},{gtj})
t← t + 1
for each output component do

update weight, mean, and covariance (▷) refit, M step
end for

until t > 1 ∧ (∣ (dt−1 − dt−2)/dt−1 ∣ < εmin)

average of all input components fi ∈ π−1,t(j) with parameters

βt+1
j = ∑

i∈π−1,t(j)
αi , (4.6)

µt+1
j = 1

βt+1
j

∑
i∈π−1,t(j)

αiµi , (4.7)

Σt+1
j = 1

βt+1
j

∑
i∈π−1,t(j)

αi (Σi + (µi −µt+1
j )(µi −µt+1

j )T ) . (4.8)

Note that both πt and {gtj} are updated, one after the other, in each step t, but the input
components {fi} are fixed. Once π−1,t(j) = ∅, the j-th output component will not be
updated anymore in subsequent steps. Its weight is zero, hence it is “dead”. Next,
the optimal mapping πt+1 for the output components {gt+1

j } is constructed, the output
components are updated again, and so forth. The process of regrouping and refitting is
repeated until a minimum is found. Due to the discrete nature of the problem, a local
minimum of d(⋅,⋅) is reached after a finite number of steps when πt+1 = πt ⇒ dt+1 = dt.
Observing that d(⋅,⋅) changes only little near the minimum, it is even quicker to check
the relative precision, ε = ∣ (dt+1 − dt)/dt+1 ∣, and to declare convergence if ε ≤ εmin =
O (10−4). In practice, the procedure, summarized in Algorithm 4, usually terminates
due to πt+1 = πt for K small, and due to a small relative change of dt for K ≳ 20.

4.2.2 Initialization

Hierarchical clustering, being an expectation-maximization variant, converges only on
a local minimum of the distance measure d(⋅,⋅). Given a large number of input com-
ponents, there exist numerous local minima, hence it is crucial to supply good initial
guesses for the output components {g0

j }, such that the initial solution d0 is already very
close to a good final solution. We then note rapid convergence after O(10) steps. There
are two important questions we need to address.

1. Where to put the initial output components {g0
j }?

2. How many output components, K, are needed?

Unfortunately, we cannot offer a procedure to automatically calculate K. Goldberger
and Roweis [GR04] vaguely recommend to use “standard methods for model selec-
tion”. We can only speculate that they refer to the Bayesian information criterion
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(a) (b)

Figure 4.5: Centers and marginal 1-σ contours of an 8-component mixture density in the (a)
initial guess and (b) final step of hierarchical clustering. We display only the (+,+) mode of the
multimodal example from Section 3.2. The tail of P (x1) is captured by the purple component;
cf. Fig. 3.2(a).

[Sch78] or the Akaike information criterion [Aka74]. Another approach would be to
add one component at a time until K is “large enough”. It then remains to specify
a quantitative stopping criterion. In [HOVD11], an attempt at such a criterion is pre-
sented, but it appears highly inefficient for large d and well-separated modes. More
alternatives are discussed in Section 4.5.

With no algorithmic solution at the moment, we assume the user provides a sensible
value of K. In Section 4.3, we will explore the effect of varying K on the PMC run to
guide the user in this choice; as a rule of thumb, we recommend K should be at least as
large as d.

But to answer the first question, we have a good idea where to place the components.
The key is to group the chains, and to have a fixed number of components per group
from long patches. To begin with, it is necessary to determine which chains have mixed
in the prerun. Two or more chains whose common R values are less than a given con-
stant, say Rc = 1.1, for all parameters, form a group of chains. Most importantly, this
ensures that a similar and sufficient number of components is placed in every mode
of the target density, regardless of how many chains visited that mode. We ignore the
burn-in samples of each chain as described above in Section 4.1.

Let us assume we want Kg components from a group of kg chains. If Kg ≥ kg, we
find the minimal lexicographic integer partition (see [BC11] and references therein) of
Kg into exactly kg parts. Hence, the partition, represented as a kg-dimensional vector
of integers n, is given by

n = (⌈Kg

kg
⌉ , . . . , ⌈Kg

kg
⌉ , ⌊Kg

kg
⌋ , . . . , ⌊Kg

kg
⌋) , (4.9)
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where we used the ceiling (⌈⌉) and floor (⌊⌋) operation. The first Kg mod kg parts are
one larger than the remaining parts. For example, with Kg = 6 and kg = 4, the partition
is (2,2,1,1). If Kg < kg, the integer partitioning cannot be performed as above. Instead,
we combine all individual chains into one long chain, and set kg = 1.

Finally, the ith chain is partitioned into ni long patches, and the sample mean and
covariance of each patch define one multivariate Gaussian as before. The long patches,
say there are two or three per chain, represent expectation values over a long time.
Small-scale features are averaged out, while the center of gravity is preserved. Thus
the initial output components from one group are very similar (cf. Fig. 4.5(a)), and
the hierarchical clustering shifts and shrinks them to fit (cf. Fig. 4.5(b)). Due to the
initial similarity, very few, and usually zero, components “die” during the hierarchical
clustering. Thus, the chosen value of K is preserved, which is desired behavior.

In conclusion, let ng denote the number of chain groups, then the initial mixture of
output components for hierarchical clustering consists of K = (Kg × ng) components.
Note that ng is determined automatically, but ng is a function of the critical R value
Rc, a parameter that requires moderate tuning. For well separated modes, Rc = 1.1 − 2
gives stable, reproducible results. As a rule of thumb, Rc can be chosen smaller when
either the parameter space is low dimensional, or the distributions are narrow in the
sense that the chains had sufficient time to fully explore one mode in N steps. In our
2D example with N = 40 000 iterations in the prerun, R = 1.1 is fine, but if we extend
the example by adding, for instance, 28 unimodal Gaussians directions, R = 1.5 is more
suitable.

4.3 Population Monte Carlo

The result of the first two stages of the new algorithm, the MCMC prerun in Section 4.1
and the hierarchical clustering in Section 4.2, is a Gaussian mixture density g. Naïvely,
we would set the initial proposal q0 = g, and start mapping the target density with
PMC. However, a number of considerations have to be taken into account. We use
Gaussians because the hierarchical clustering is then particularly fast and simple to im-
plement. But we do not expect the chain patches turned into Gaussians to approximate
the target density with the highest precision. In particular, most realistic problems have
thicker tails, and are more accurately described by a Student’s t mixture1. In fact, a more
complicated hierarchical clustering for Student’s t exists [EAPG09], but we don’t expect
it to reduce the number of PMC updates. The sole purpose of g is to cover the support
of the target with some accuracy, and the actual adaptation is left to the PMC update
algorithm. In the end, we only use the samples drawn from the adapted PMC proposal
for inference. We therefore consider it appropriate to perform two modifications to g.

First, all component weights are set equal, to balance the effect of an unequal number
of chains in each group. The weights are adjusted properly in the first PMC update, so
components are discarded if their target probability mass is low, and not because few
chains visited them.

Second, if a Student’s t mixture is believed to yield a better representation of the tar-
get, we create a “clone” of g where each Gaussian component is replaced by a Student’s
t component with identical location and scale parameter. The degree of freedom, ν, is

1See [DE10] for a review of the 2008 financial crisis with regard to the failure of Gaussian-based risk
models to capture extreme events.
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Algorithm 5 Initialization of the output components for hierarchical clustering. We use
a = 0.2 and Rc = 1.1 . . .2.
Require: Empty initial mixture density g0

Require: k chains with N samples
Require: Number of components per group Kg

Discard the first a ×N burn-in samples
GROUP_CHAINS(Rc)
ng ← number of groups
for all groups do

kg ← number of chains in group
if Kg < kg then

Merge chains into one long chain
kg ← 1

end if
n =MINIMAL_PARTITION(Kg, kg)
for all chains in group do

Partition into ni patches
for all patches in chain do

Compute sample mean µ and covariance Σ
Add one component g0

j (µ,Σ) to mixture
end for

end for
end for
Assign equal weight 1

ngKg
to every component

the same for all components, and currently has to be chosen a-priori by the user in the
PMC approach. Its optimal value in the update is not known in closed form [Cap+08].
However, as noted in [HOVD11], ν can be obtained from one-dimensional root finding.
This is one source of future improvement, as guessing the proper value of ν is not easy.
In low dimensions, the difference is usually small, but for large d, the impact may be
significant (see Section 4.3.2).

Assuming that q0, the initial proposal, is fixed, there is still an open question before
we can start PMC: how many samples N to draw from the proposal? In the derivation
of the PMC update step, N → ∞ is assumed, and this guarantees a reduced Kullback-
Leibler divergence [Cap+08]. Large N ensures many samples from each component,
but increases the computational burden. If N is too small, the updates may render qt+1

worse than qt, and the PMC algorithm fails. A proper choice of N depends mostly on
the dimensionality of the target density d; for guidance, cf. the discussion in Section 4.4.
After all, N is a required input to PMC, and cannot be deduced from the problem. A
reliable, quantitative rule to determine N would be very desirable, but is not available
to us. We then attempt to ensure that every component is explored initially, so the
quantity of interest is Nc, the number of samples per component in the first step, whence
N = K ×Nc. Once the component weights are adjusted in the first update step, com-
ponents that receive a very low relative weight are discarded, or “die”; i.e., the number
of samples drawn from them is so small that there is not enough information gained
to perform another update. In the reference implementation of PMC by Kilbinger et al.
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[Kil+11] that we use for the updating, the minimum number of samples per component
is set at 20. We stop the update process when the convergence criteria of Algorithm 3
are met, and collect the sample used for inference in the final step. Note that we do not
have to keep N constant in every step; in fact, we have experimented with reducing
N as N = Klive ×Nc, where Klive is the number of live components. But we often saw
PMC fail in those cases, as after a short number of steps, Klive → 1 resulting in P → 0.
Therefore, we recommend using identical values N in every PMC update step, but for
the accuracy of inference, a larger sample is advisable in the final step.

4.3.1 Multimodal example revisited

Let us reconsider the 2D example with four modes, defined in Section 3.2, recalling
MCMC’s poor performance. The problem includes the LogGamma distribution in one
of the two dimensions; for its asymmetry and its thick tail, LogGamma makes the ex-
ample more realistic and more difficult for the proposal to adapt to. In particular, we
avoid the accidental perfect fit of a Gaussian proposal to a Gaussian target. But note
that the marginal P (x2) is a unit Gaussian, and the components in Fig. 4.5 capture this
very well.

We run the new algorithm on the example with a relative suppression factor of ω = 1
(all modes equally probable) and ω = 105 (two modes suppressed). For completeness,
the settings of the MCMC prerun, clustering, and PMC are listed in Table 4.1 in Row I
and Row II respectively. The convergence statistics and the densities obtained with the
final importance sampling step are displayed in Fig. 4.6.

For ω = 1, all four modes have equal weight (cf. Fig. 4.6(b)), and the initial proposal
at t = 0 produces a very good estimate of the target, with perplexity and ESS above
0.8. Convergence is achieved after two importance sampling steps, and the perplexity
even rises in the final step t = 2; cf. Fig. 4.6(a). For ω = 105, two of the four modes
are strongly suppressed, and do not appear in the 2D marginal Fig. 4.6(d). In fact, the
6 components covering the suppressed modes “die” at t = 1 (Fig. 4.6(c)). After their
removal, perplexity and ESS rise sharply by a factor of 2, reaching a similar level at
t = 1 as for ω = 1.

Running 20 chains for 40 000 iterations is a large computational investment for a 2D
problem; the length is chosen large enough to be certain that the chains are able to
explore the parameter space. However, when reducing the number of iterations to
5000, 1000, even to 500, we still obtain similarly good results as in Fig. 4.6: convergence
after two steps, perplexity and ESS above 90 %; see Table 4.1, Row III. With only 500
iterations, the MCMC proposal is not adapted at all, showing that the initial proposal
is good as the chains quickly move in on a target mode. If the initial MCMC proposal is
not known to be this efficient, the chains should of course be run longer until successful
adaptation.

In all cases, PMC converges very quickly and produces accurate results, demonstrat-
ing that our initialization procedure is successful. All modes are detected automatically
in the prerun, and PMC properly determines the relative weights of the modes. Both
perplexity and ESS are close to the maximum value of 100 %, showing excellent pro-
posal adaptation to the target. Hence, the combination of MCMC and PMC succeeds
where the local random walk MCMC by itself failed. After this successful proof of con-
cept, we explore the impact of the target density on PMC in the following sections, and
discuss how to adjust the various parameters to achieve satisfactory performance. It
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Run d ω NMCMC L ν Nc Kg Ng tfinal P/% ESS /%
I 2 1 40 000 100 12 500 3 4 2 96.5 94.7
II 2 105 40 000 100 12 500 3 4 2 96.0 93.7
III 2 1 ≤ 5000 100 12 500 3 4 2 > 90 > 90

IV 22 105 50 000 150 12 500 22 4 5 56.6 22.9
V 22 105 50 000 150 - 1000 22 4 20 67.0 27.7
VI 22 105 50 000 150 12 500 32 4 6 61 44
VII 32 105 50 000 150 12 1000 12 1 - - -
VIII 42 105 100 000 300 12 2500 62 1 7 25 7.5

IX 12 - 50 000 200 12 500 62 1 4 69 50
X 32 - 50 000 200 - 1000 32 1 7 29 8.6

Table 4.1: Settings and results of various test runs referred to in the main text. d is the di-
mension of the target density’s parameter space. ω is the suppression factor of two of the four
maxima of the targets defined in (3.27) and (4.11). NMCMC and L denote the length of a single
chain and patch respectively. ν is the degree of freedom of each component in each T mixture
proposal density, a missing value represents aN mixture. Kg is the number of components per
group of chains, and Nc is the number of samples per component drawn during a PMC update
step. Ng is the number of chain groups detected. tfinal is the number of PMC updates before the
final step, in which P and ESS characterize the quality of the adaptation of the proposal to the
target. Common setting among all runs: in the MCMC prerun, the number of chains is k = 20,
the Gaussian local random walk proposal function is updated after Nupdate = 500 iterations in
d = 2 and Nupdate = 1000 iterations in d > 2. Chains are grouped according to a critical R value
of Rc = 1.2. Nfinal = 5 × 105 samples are collected in the final PMC step.

is instructive to go to extreme parameter values to see PMC’s response, in particular
when it fails. In turn, that knowledge serves as a “prior” to solve the inverse problem:
where to tweak if PMC does not behave as desired? It turns out that the initialization is
robust, and most issues are related directly to the more volatile importance sampling.

4.3.2 Higher dimensions

Having solved the 2D example for illustrative purposes, it remains to be be seen how
far d can be increased until PMC suffers from the curse of dimensionality. In particular,
we want to demonstrate that it is useful for the 30D global fit of Chapter 7, in the course
of which we have developed the method. There exist many Monte Carlo approaches
that only work in relatively few dimensions up to d ≲ 10 (e.g. Appendix D) and we
want to show that the combination of MCMC and PMC is more powerful.

To explore the effect of higher dimensions, we augment the 2D target density with
an equal number of LogGamma and Gaussian distributions. Specifically, the target is

P (x) =
d

∏
i=1

P (xi) , (4.10)

where the distribution in the first two dimensions is given by (3.27) as before, and

P (xi) =
⎧⎪⎪⎨⎪⎪⎩

LogGamma(xi∣l = 10, λ = 1, α = 1), 3 ≤ i ≤ d+2
2

N(xi∣µ = 10, σ = 1), d+2
2 < i ≤ d

(4.11)
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There are still four modes due to the first two dimensions; the extra dimensions do not
add any further modes. For the purpose of drawing initial points for MCMC, we use a
flat prior in all dimensions.

When d increases, the most important parameter to adjust is Kg, the number of com-
ponents per group of chains. As a rule of thumb, Kg should be of the order of d, and
slightly larger when d > 15. Another closely related issue is the number of samples
per component, Nc, to be drawn in each importance sampling step. Evidently, as d
increases, more samples are needed to explore the vicinity of each component, and ul-
timately, to better reduce the Kullback-Leibler divergence in the proposal update. This
effect is a mild form of the curse of dimensionality: the number of parameters in the
proposal, ∼ dimξ (see (3.36)), is dominated by the scale matrices, and grows as d2.

As a concrete example, consider d = 22, with Kg = 22 (all settings listed in Table 4.1,
Row IV). The evolution of P and ESS is displayed in Fig. 4.7(a). In the first step, the
perplexity is at a high level of 40 %, showing that the initialization with MCMC and
hierarchical clustering works well. The PMC updates monotonously increase the per-
plexity as desired, but the ESS drops significantly at t = 1 and in the final step. These
drops are caused by outliers with large importance weight, showing that the proposal
function is not (yet) well adapted to the target. In particular, large weight outliers arise
when the proposal does not have thicker tails than the target on the entire support; cf.
Section 4.3.3. If the size of the importance sample is too small, such rare outliers may
not even show up in every update step, but they are present in the larger final sample.
Note that we collect only 44 000 samples for each update (t < 5), and 500 000 in the final
step. So it happens that ESS seems stable in t = 3,4, convergence is declared, but in the
final step, outliers are present and ESS drops by 60 %.

We repeat the run with Nc = 1000 using Gaussian components, that is the thinnest
tails available to us; cf. Fig. 4.7(b) and Table 4.1, Row V. Now the perplexity is pretty sta-
ble at an even higher level than with T components, but ESS shows enormous volatil-
ity, and convergence — the stability of perplexity and ESS over two steps within 2 % —
cannot be declared until the run is aborted at tmax = 20. This is not to say that the final
result is unusable, but it leads us to discourage the use of ESS for convergence moni-
toring with PMC. After all, PMC explicitly attempts to minimize the Kullback-Leibler
divergence, so KL(P ∥q) ↘ 0 ⇒ P ↗ 1. Hence if PMC cannot increase P , further up-
dates are unnecessary. Considering only P , convergence is declared after four steps in
this example, and the final result is of similar quality as in the run with T proposal. Us-
ing a more computing-intensive run with a T mixture with ten additional components
and more samples per component compared to the Gaussian run V, we observe that
the perplexity and ESS rise monotonously (details in Table 4.1, Row VI). Hence outliers
do not appreciably affect PMC in that case, and the ESS increases by (60 – 90) %, mostly
due to extra components covering the tails more accurately. P rises by only 5 % with
the extra components, but even then P is still 5 % less than in the Gaussian case. The
Gaussian proposal describes the Gaussian directions in P very well, and thus results in
a better average weight.

It is surprising to see what happens when Kg and Nc are too small. The PMC update
algorithm then displays a “suicidal” tendency to assign low weights to many compo-
nents. As a consequence, these components “die out”, as no more samples are drawn
from them. With more updates, the rate of component deaths grows, until finally there
is only one component left; PMC has failed to adjust the proposal, and the importance
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weights cannot be used for inference. An example is shown in Fig. 4.8(a), where we
focus on a single mode in d = 32 dimensions for simplicity (Table 4.1, Row VII). The
number of components is stable at 12 until t = 6, then drops quickly until only one is
left at t = 15. At the same time, perplexity and ESS tend to zero. A characteristic of PMC
failing is that the sizes of components shrink far too much; e.g, the (1,1) element of the
surviving component’s scale matrix Σ decreases by a factor of 30 from t = 5 to t = 18.

Note that the fact that components can die has some desirable ramifications. In our
example with ω = 105, all components in the suppressed modes die out in the first
proposal update, because their contribution to the integral is negligible. Unfortunately,
if components are not placed close enough to a region of high probability, they face the
same situation as if they were in a suppressed mode. The Kullback-Leibler divergence
is usually a complicated function with many local minima, few of which represent an
efficient adaptation of q to P . A variant of expectation-maximization (Appendix E),
PMC updates tend toward a local mode. Cf. [Cap+08] for an instructive example where
KL is known to have three minima, one of which leads to a bad fit with components
dying out. This highlights the crucial impact of choosing a good initial proposal and
provides the motivation to develop the method presented here.

We verified that PMC works up to d = 42; see Table 4.1, Row VIII and cf. Fig. 4.8(b). At
this large dimension, the fit fails unless a massive number of Kg = 62 components and
Nc = 2500 samples per component are used. Nevertheless, P and ESS are much lower
than at d = 22 — evidently a sign of the curse of dimensionality. The update procedure
itself — computing new component weights, means, and scale matrices — consumes a
significant amount of time, about one minute on a single core of an Intel i7-2600 oper-
ating at 3.4 GHz, whereas the importance sampling (including input and output) takes
only 2 s. While it is not difficult to thread-parallelize the update to increase the speed, it
becomes nevertheless apparent that PMC hits its limits of applicability at d ≈ 40. Unless
the target happens to be a Gaussian or Student’s t, the task of adjusting the proposal to
match the target, in particular in the tails, becomes increasingly difficult, as witnessed
by low values of P and ESS in the final step. Outliers can affect 1D and 2D marginal
distributions; cf. Fig. 4.10(b).

4.3.3 Degeneracy

In real-life problems, the formulation of the statistical model often contains parameters
that provide a redundant explanation of the data. The posterior value is (nearly) con-
stant along a connected subregion. Such a “flat direction” is called a degeneracy. We
simulate this situation by adding two flat directions to the (+,+) mode of the previous
example target P (x) defined in (4.10) and (4.11). Specifically, our new, unimodal target,
Pf(x), factorizes as

Pf(xi) ∝
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

LogGamma(xi∣10,1,1), i = 1 ∨ 3 ≤ i ≤ d
2

N(xi∣10,1), i = 2 ∨ d
2 < i ≤ d − 2

const, d − 1 ≤ i ≤ d .
(4.12)

Wraith et al. [Wra+09] quote the ability to deal with degeneracies as one of the strengths
of PMC; in the following, we want to verify this. Let us first consider Pf for d = 12.
Using the settings in Table 4.1, Row IX, the initial components are properly distributed
along the flat direction (Fig. 4.9(a)) and give a high starting perplexity of 63 %. With just
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three PMC updates, the final step importance sample yields good results: P = 69 % and
ESS = 50 %. The marginal distribution P (x1, x12) is shown as a histogram in Fig. 4.9(b).
We note that the region of maximum probability around x1 = 10 is not covered very
accurately, in particular the bins with the maximum weight, colored in red, are few and
scattered far apart. These bins come from samples with an importance weight w far
above average. As a reminder, large w = P (x)/q(x) usually appears when the tail of
the target is thicker than the proposal’s; a situation that is much more likely to happen
with degeneracy.

The question arises how to reduce the effect of isolated histogram bins with large
weight. We seek an alternative nonparametric density estimation based on the dis-
crete set of samples — 500 000 (x,w) pairs in this case. Our choice is kernel density
estimation (KDE) for its smoothing capabilities; details on KDE are presented in Ap-
pendix F. The KDE-smoothed output makes it easier to quickly grasp the important
structures of the underlying density due to its visual appeal; cf. the clear vertical band
in Fig. 4.9(c). Its virtues in computing marginal distributions are discussed below, and
exploited in the global fit results shown in Section 7.2.

4.3.3.1 Cropping

In higher dimensions, importance sampling suffers much more from outliers with very
large relative importance weights. To illustrate this, let us use an ill-fitting Gaussian
(instead of a ν = 12 Student’s t) mixture in d = 32 (Table 4.1, Row X). Ignoring the
oscillating ESS, the run converges after 7 steps, with P = 0.29 and ESS = 0.09 in the
final sample. The distribution of the 500 000 final-step importance weights is shown
in Fig. 4.10(a) on a logarithmic scale of the ordinate spanning more than five orders
of magnitude. Remarkably, nearly all weights are in the first bin, only ∼ 100 samples,
the outliers, have a larger weight. In the 2D plot Fig. 4.10(b), the single event with
the largest self-normalized weight of w̄ = 5.2 % dominates completely, and the vertical
band at x1 = 10 is barely visible despite the KDE smoothing applied. This behavior is
highly undesirable. There are several remedies: we could salvage this simple example
by choosing a proposal function with fat tails and more components, but mild outliers
would still be present. In general, if the target’s shape is sufficiently complicated, the
PMC update is not able to guarantee good covering properties in the tails. It appears
outliers are inevitable for d ≳ 25 — a major weak point of importance sampling.

A practical approach to get the most out of a given set of importance samples marred
by outliers is to simply remove the outliers. Cropping the 200 samples with highest
weight in the previous example leads to Fig. 4.10(c). The result is exactly what we ex-
pect, and in very good agreement with the output in the simpler 12D case of Fig. 4.9(c),
which is and should be identical up to Monte Carlo uncertainty. As a cross check, we
compare the contours of the marginal P (x1, x32) produced by MCMC and the filtered
PMC output (not shown) and again find good agreement. In addition, it is useful to
consider the value of the target density in the removed samples. While the maximum
target value in the entire importance sample is max logP = −163.6, we find a maximum
(minimum) log value of −173.3 (−184.7) among the filtered samples. This confirms that
the outliers occur out in the tails of P (x), and that we do not miss local modes by
removing them.
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4.4 Short guide to parameter settings

At this point, we summarize the previous sections to provide guidance on the various
tunable parameters to a novice that wants to use PMC with MCMC initialization. The
knowledge comes from running the examples described in this chapter, but also from
the experience with the global fit in Chapter 7. Crucial settings of the particular runs
are listed in Table 4.1 and Table 7.4.

For the MCMC step, we used k = 20 . . .50 chains to discover all four modes of the ex-
ample target density. The chains were run for 10 000 (d ≳ 2) – 100 000 (d = 42) iterations
with a Gaussian proposal, though Student’s t could be used as well. Discarding the
initial 20 % for burn-in, we split up the chains into patches of length L = 100 – 300, the
exact value of L is not critical. Patches during which no move is accepted are discarded,
those where the numerical Cholesky decomposition fails are used with off-diagonal el-
ements set to zero.

With regard to hierarchical clustering, we group chains according to theR values, us-
ing a threshold value of Rc = 1.1 − 2. The number of components per group, Kg, ought
to be ≳ d; the bigger Kg, the more accuracy is obtained at the expense of more evalu-
ations of the target. The initial components arise from long patches of chains within
a group. Hierarchical clustering is stopped if the distance measure in two consecutive
steps is reduced by less than εmin = 10−4.

In the PMC step, we initially set all component weights equal. In most applications,
a Gaussian mixture has tails that are thinner than the target’s tails, so one can decide for
a Student’s t mixture with degree of freedom ν = 2 . . .15. Good results were obtained
in the examples with Nc = 500 (d = 2), 1000 (d = 12), and 2500 (d = 42) samples per
component. Convergence is declared when the normalized perplexity P is stable to
within 2 % between consecutive steps, or when it exceeds 92 %. Jumps in the ESS hint
at outliers caused by too few mixture components or by a proposal whose tails are too
thin. If the PMC updates “kill” more and more components and reduce the perplexity,
more initial components and a larger sample size may help. If outliers have a dominant
effect on the resulting marginal distributions, the combined effect of KDE smoothing
and outlier removal provides a partial remedy. After convergence, a sample size of
500 000 is adequate when the P ≲ 1 and d is small, and a size ranging in the millions is
recommended for targets in higher dimensions where P is small.

4.5 Outlook

We presented a new method that cleverly initializes adaptive importance sampling to
replace manually inputting knowledge of the target density. The components of the
proposal mixture density are extracted from a MCMC prerun with the help of hierarchi-
cal clustering. The support of multimodal and degenerate targets is reliably found and
well covered by the proposal, allowing quick and successful adaption of the proposal
via PMC. In the development of the method, our focus was to successfully perform
the complicated 30D global fit described in Chapter 7. Having achieved that, we now
discuss the potential for future improvement.

Our examples suggest that importance sampling works up to d ≈ 40, but problems
with outliers appear already for d ≳ 20. To a certain degree, they can be circumvented
by more mixture components, an adjustment of the Student’s t degree of freedom ν,
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and a larger sample size. We presented guidance how to manually adjust these pa-
rameters, but an automatic adjustment is highly preferred. [HOVD11] show that ν can
be updated along with the component weight, means, and variances. The soft limit of
d ≈ 40 arises because importance sampling starts to falter, but the MCMC initialization
still works well. It is thus conceivable that marginal distributions are less affected by
outliers if the proposal function of the final PMC step is used as a global proposal in
MCMC. In the spirit of the global-local proposal (Appendix D.1), individual mixture
components guide local jumps, and the full proposal is used for global jumps. Using
a fixed proposal and assuming rapid mixing due to the global jumps, massive paral-
lelization is straightforward — individual chains need not run for 1000’s of iterations
before the results are usable.

Minor improvements are possible when replacing the Gaussian clustering with the
considerably more involved Student’s t clustering to obtain a Student’s t mixture pro-
posal density from the chain patches [EAPG09]. However, the more urgent problem
is to determine the number of mixture components from the prerun; the Bayesian or
Akaike information criteria [Sch78; Aka74] may prove useful, and could eliminate the
need for chain grouping. A promising alternative to hierarchical clustering is the varia-
tional Bayes approach described in [BGP10], in which the “best” number of components
is computed along with the positions and covariances of the reduced mixture’s compo-
nents.

At a more fundamental level, one could eliminate the MCMC prerun entirely in favor
of a large number of samples from the prior or a uniform distribution on the parameter
space. Two advantages are that the samples can be computed with massive paralleliza-
tion and that potentially fewer samples are required by avoiding the redundancy of
multiple chains in the same region. One would need to replace hierarchical cluster-
ing with a more sophisticated algorithm that explicitly takes into account the value of
the target at each sample point — this information is not used at present. Ideally, it
should also determine the number of mixture components — similar to the initial stage
of nested sampling [Ski06; FHB09]. But by giving up the MCMC prerun, we suspect
there is a greater chance that suppressed modes and degeneracies are missed or poorly
captured in high-dimensional problems. In addition, it proved useful for validation
purposes to compare the marginal distributions from MCMC and PMC for qualitative
agreement. If a region is visible in the MCMC but not in the PMC output, either PMC
failed, or that region contains negligible probability mass, which can be verified with
the samples’ target values in that region.

During the final stages of preparing this work, we became aware of a recent effort that
comprises many of the above points. Cornuet et al. [Cor+12] use a large sample from
the uniform or prior distribution with a logistic rescaling to learn the features of the
target. They run Gaussian mixture clustering with the integrated likelihood criterion
determining the optimal number of components of the initial proposal for PMC. By
cleverly combining the samples of all PMC update steps, and not only the most recent
one as in our approach, they report a significant Monte Carlo variance reduction.
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Figure 4.6: The convergence diagnostics (a), (c) and posterior density (b), (d) resulting from
PMC runs I and II; cf. Table 4.1. The maxima with negative x2 are suppressed by a factor of 1
(upper panels) and 105 (lower panels). Note that three components per mode are used in step 0
in both runs. The stopping criterion of 0.92 for perplexity and ESS is indicated by the horizontal
line in (a) and (c). Compare (b) and (d) with clustering output in Fig. 4.5(b).
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Figure 4.7: Evolution of PMC convergence criteria for the runs IV and V of the example tar-
get in d = 22 with (a) Student’s t and (b) Gaussian components. Outliers cause ESS to drop,
especially in the final step with sample size 500 000.
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Figure 4.8: Evolution of PMC convergence criteria for the runs VII and VIII with unimodal
targets. (a) d = 32 dimensions with only Kg = 12 components. PMC fails, components start to
die after the update at t = 6; perplexity and ESS drop to zero. (b) d = 42 dimensions withKg = 62
components. PMC monotonously increases P , and converges at a low level. All components
stay alive.
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(a)

(b) (c)

Figure 4.9: Results of PMC run IX for the marginal distribution Pf(x1, x12) in d = 12. The 1D
marginal distributions are P (x1) = LogGamma(x1∣10,1,1) and P (x12) = const. (a) 1σ ellipses
of the components of the initial mixture proposal density. (b) Histogram approximation. (c)
KDE with pixels whitened with an intensity of 10−4 less than the maximum.
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Figure 4.10: Results of PMC run X for the marginal distribution Pf(x1, x32) in d = 32
using a poorly fitting Gaussian proposal. The 1D marginal distributions are P (x1) =
LogGamma(x1∣10,1,1) and P (x32) = const. (a) Histogram of importance weights with loga-
rithmic scale discloses outliers. The dominant outlier at (x1, x32) = (7.0,−7.3) has a weight of
w̄ = 5.2 % and dominates the KDE (b) of Pf(x1, x32). But when the 200 highest-weight samples
are cropped, the KDE (c) is in very good agreement with Pf(x1, x12) of Fig. 4.9(c).



5 Theory of rare B decays

In this chapter, we want to establish the notation and the theoretical basis for describ-
ing rare B decays that we use in the search for new physics. After reviewing the stan-
dard model of particle physics with emphasis on the quark mixing in Section 5.1, we
introduce a model-independent approach, the ∆B = 1 effective field theory (EFT), to
describe the decays quantitatively in Section 5.2. Finally, the main difficulties on the
theory side — the nonperturbative effects of QCD — are briefly discussed in Section 5.3
Throughout, we follow [Bea+12; Dyk12] and work in natural units where c = h̵ = 1.

5.1 Standard model

The standard model (SM) of particle physics, also known as the Glashow-Salam-
Weinberg model, is a quantum field theory that describes the strong, weak, and elec-
tromagnetic forces in terms of local gauge symmetries; the SM gauge group is

SU(3)C × SU(2)L ×U(1)Y . (5.1)

In compact notation, the Lagrangian density of the SM is given by

LSM =ıψ̄ /Dψ − 1

4
[AaµνAµνa +BµνBµν +GbµνG

µν
b ] (5.2)

− ψ̄LY φψR + (Dµφ)∗(Dµφ) − V (φ) + h.c.

LSM describes fermions — quarks and leptons — with Dirac spinors ψ and their inter-
actions mediated by the gauge fields through the respective field strength tensors Aaµν
(SU(2)L), Bµν (U(1)Y), and Gbµν (SU(3)C). The gauge fields appear in the covariant
derivative D and the gauge kinetic terms. The symmetry group SU(2)L × U(1)Y is
spontaneously broken through the Higgs mechanism [EB64; Hig64; GHK64]. φ is the
SU(2)L Higgs doublet, coupled to the fermions through (matrix-valued) Yukawa cou-
plings Y ; the Higgs potential is

V (φ) = −µ2∣φ∣2 + λ∣φ∣4, µ2 > 0 . (5.3)

ψL/R denotes a left- [right-] chiral Dirac spinor. We omit any gauge-fixing, ghost, and
counter terms needed to render S matrix elements of physical processes finite in the
quantized field theory.

The fermion content of the SM consists of three generations of leptons and quarks;
left-handed particles are combined into SU(2)L doublets. In the lepton sector, the dou-
blets are composed of charged leptons and neutrinos; e.g., the first generation contains
the electron e and the electron neutrino νe. In the quark sector, doublets contain pairs of
one up- and one down-type quark. The right-handed charged leptons and quarks are
singlets under SU(2)L, and the right-handed neutrinos are not part of the SM. Local
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mu,d mc,s mt,b

∼ 0.003 ∼ 1.3 ∼ 170
∼ 0.005 ∼ 0.1 ∼ 4.2

Table 5.1: Quark masses in GeV [Nak+10]. Each column contains one quark generation. The
numbers are renormalization scheme dependent, but purport the proper order of magnitude.

SU(2)L gauge invariance does not permit mass terms for leptons and quarks, since the
product ψ̄LψR is not gauge invariant.

The gauge groups contribute a number of vector bosons: there are eight massless glu-
ons associated with the unbroken color group SU(3)C of the strong interaction, and the
broken electroweak SU(2)L × U(1)Y symmetry yields the three massive vector bosons
of the weak force, the W ± and the Z, and the massless photon γ of electromagnetism.
Last, the standard model predicts the existence of a massive, neutral, scalar particle,
the Higgs boson H , corresponding to one of the four degrees of freedom of the complex
SU(2)L doublet φ that is needed for the spontaneous breaking of SU(2)L ×U(1)Y and
for mass terms of quarks and leptons from the Yukawa interactions, see Section 5.1.1.
Note that the neutrinos remain massless.

After decades of searches for the Higgs boson, the LHC experiments ATLAS and
CMS have reported strong evidence of a new boson with a mass around 125 GeV at the
time of writing [Aad+12a; Cha+12a]. If that particle indeed is the Higgs boson, then at
last all SM particles have been observed, completing the enormous success of the SM.

5.1.1 Quark mixing

The three generations of quarks have identical gauge properties; the only distinction is
the quark mass. The u, d, and s quarks are nearly massless, but the c, b and t quark
masses exhibit a clear mass hierarchy; cf. Table 5.1. It is useful to introduce the flavor
quantum number for each quark, such that, e.g., a b quark has bottomness1 B = −1, and
its antiparticle b̄ has bottomnessB = +1. Mass eigenstates (u, d) do not coincide with the
interaction eigenstates (ũ, d̃); rather, they are connected by the 3×3 Yukawa matrices Y u

and Y d for up- and down-type quarks. When the Higgs field φ condenses, it acquires
a vacuum expectation value ⟨φ⟩ = (0, ⟨H⟩) with v =

√
2 ⟨H⟩ ≈ 246 GeV [Ber+12] and

produces mass terms for the quarks, leptons, and the W and Z bosons. In the interac-
tion basis, in which covariant derivatives are flavor-diagonal, the Yukawa terms for the
quarks q̃ then become

LSM ⊃ v [¯̃uLY uũR + ¯̃
dLY dd̃R] (5.4)

= v [¯̃uLV 1,uMuV
†
2,uũR +

¯̃
dLV 1,dMdV

†
2,dd̃R] (5.5)

≡ v [ūLMuuR + d̄LMddR] , (5.6)

where we changed to the mass basis by diagonalizing Y u and Y d with the unitary
matrices V 1,u,V 1,d, V 2,u, and V 2,d [Nak+10, Ch. 11]. The masses are related to the

1We follow the slightly misleading convention of using the same symbol B to denote both the B meson
and the quantum number bottomness.
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diagonal matrices,Mu andMd, and the Higgs vacuum expectation value by

vMu = diag(mu,mc,mt), vMd = diag(md,ms,mb) . (5.7)

In the remainder of this work, we are concerned with quark flavor changes. In the SM,
the electromagnetic and the strong force conserve flavor. The only interaction term that
mixes quark flavors is the charged current involving the weak bosons W ±

L ⊃ LCC = − g√
2
(V 1,uV

†
1,d)ij ūiW +

µ γ
µPLdj + h.c. (5.8)

where g is the coupling constant of SU(2)L, i = u, c, t denotes the up-quark generation,
j = d, s, b represents the down-type generations, γµ is a Dirac matrix, and PL is the
left-chiral projector, implementing the V − A structure of maximum parity violation;
i.e., only left-chiral quarks couple to the W ± bosons. The magnitude of flavor mixing
between an up-type quark i and a down-type quark j is given by the matrix element

Vij ≡ (V 1,uV
†
1,d)ij (5.9)

of the celebrated Cabibbo-Kobayashi-Maskawa (CKM) matrix [Cab63; KM73]

V CKM ≡
⎛
⎜
⎝

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

⎞
⎟
⎠
. (5.10)

V CKM is a unitary matrix with four real degrees of freedom. It is well confirmed ex-
perimentally that mixing across generations is strongly suppressed. In this work, we
will therefore use the Wolfenstein parametrization [Wol83], which makes this hierarchy
explicit. Using the four parameters A ≈ 0.8, λ ≈ 0.2, ρ̄ ≈ 0.1, and η̄ ≈ 0.4 (more accurate
values are given in Table A.5), we find

V CKM =
⎛
⎜
⎝

1 − λ2/2 λ Aλ3(ρ̄ − iη̄)
−λ 1 − λ2/2 Aλ2

Aλ3(1 − ρ̄ − iη̄) −Aλ2 1

⎞
⎟
⎠
+O (λ4) , (5.11)

and V CKM is unitary to all orders in λ in this parametrization [Nak+10, Ch. 11].
Due to the unitarity of the CKM matrix, there are six conditions on the elements Vij ,

which can be visualized as unitarity triangles in the suitable complex plane. Any devi-
ation from unitarity indicates NP. Two collaborations, CKMfitter [Cha+05, frequentist]
and UTfit [Bon+06, Bayesian] endeavor to extract the four CKM parameters from a
large number of decays. Results are available for explicit models, such as the SM or
various NP models, and for the generic class of models that include only SM tree-level
processes. For our purposes, we will only need the following triangle:

0 = VubV ∗
us + VcbV ∗

cs + VtbV ∗
ts . (5.12)

5.1.2 Flavor changing neutral currents

There are no FCNCs at tree level in the SM; i.e., there is no interaction vertex linking
different quark flavors of the same electric charge (−1/3 or 2/3 ). The only possible
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Figure 5.1: Sample FCNC Feynman diagram contributions that describe b → s`+`− decays (a)
in the SM and (b) with NP particles X and Y .

transition is via loop processes involving two charged-current interactions from the
term (5.8); cf. Fig. 5.1(a) for an example Feynman diagram.

The reason why FCNCs are interesting is that transitions occurring only through
FCNCs are strongly suppressed in the SM. Therefore, any NP contribution with un-
known heavy particles in the loop as shown in Fig. 5.1(b) could a-priori be of the same
order of magnitude as the SM contribution. Essentially, all precise measurements of
tree-level processes confirmed the SM in the sense that all flavor changes are medi-
ated by V CKM and ruled out sizable NP contributions; cf. the continuously updated
analyses of the CKMfitter [Cha+05] and UTfit [Bon+06] collaborations. But for FCNC-
mediated processes, the experiments have not yet reached such a level of accuracy.
FCNC decays are thus a prime target of investigation, potentially showing hints of new
physics at an energy scale much higher than that of the decaying particle b. Thus one
can probe energy scales in the TeV range with a particle collider operating at 10 GeV;
cf. Section 6.2.1 on the B-factory experiment Belle.

We consider the b → s transition as our main example to illustrate the mechanisms
responsible for the suppression of FCNC decays in the SM. The generic amplitude is

Ab→s = VubV ∗
usf(m̂2

u) + VcbV ∗
csf(m̂2

c) + VtbV ∗
tsf(m̂2

t ) , m̂q ≡mq/mW , (5.13)

with a process-dependent loop function f(m̂2) containing a prefactor of (g/4π)2 ≪ 1,
an example of loop suppression for a small coupling constant. Using the unitarity triangle
(5.12), we remove Vcj from the amplitude (5.13):

Ab→s = VtbV ∗
ts [f(m̂2

t ) − f(m̂2
c)] + VubV ∗

us [f(m̂2
u) − f(m̂2

c)] . (5.14)

The first term in Ab→s is mildly CKM suppressed, for VtbV ∗
ts ∝ λ2 ≃ O (10−2). The second

term is further CKM suppressed with respect to the first, as VubV ∗
us/VtbV ∗

ts ≃ O (10−2).
The quark mass hierarchy (cf. Table 5.1) plays an important role here; an expansion of

the loop functions yields f(m̂2
u)−f(m̂2

c) ≃ O (10−4), a result of the Glashow-Iliopoulos-
Maiani (GIM) mechanism [GIM70]. The same suppression is in effect for any pair of
quarks i ≠ j such that both m̂2

i and m̂2
j are ≪ 1. Hence, the only unsuppressed contribu-

tions are those involving a top quark like the first term in (5.14), because only m̂2
t > 1. In

numbers, the SM branching ratios for b → s transitions range from O(10−4) (B →K∗γ)
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over O(10−7) (B → K∗`+`−) to O(10−9) (Bs → µ+µ−); hence they are rare decays, but
still within experimental reach. In contrast, the decays with the equivalent up-type,
quark-level transition t → c are at the level of O(10−12) – O(10−14) in the SM [Agu04],
and thus not detectable with present or even next-generation experiments. Within the
minimal supersymmetric extension of the SM (MSSM), rates can be enhanced, but remain
too small to be detected [Beh+12]. Similarly, we do not consider the ∆B = 2 transition
b → d in our fit. First because of extra CKM suppression ∣Vtd/Vts∣ ≈ 10−2, and second,
because it could only constrain the Wilson coefficients of the ∆B = 1 EFT under the
assumption of minimal flavor violation. Therefore, we focus on b→ s only.

Comparing V CKM (5.9) with the Wolfenstein parametrization (5.11), we observe that
in (5.14), only the second term has a nonzero imaginary part, and is thus responsible
for CP violation in the SM; but if we consider only CP conserving observables, we may
safely ignore that term due to its small relative contribution.

5.2 Effective field theory

In quantum field theory, the prediction of an observable reaction with real particles
requires including the effects of all virtual particles, where the latter typically appear at
much higher energy scales than the former. The concept of an effective field theory (EFT)
provides a framework to simplify the multiscale problem by reducing it into separate
single-scale problems. A Lagrangian is constructed with fields describing the relevant
degrees of freedom at the low scale, and the effects of particles that only appear at the
high scale are absorbed in the coupling constants of the effective operators.

A classic example of an EFT is the muon decay

µ→ eνµν̄e , (5.15)

described by the four-Fermi Lagrangian [Fer34]

LFermi =
GF√

2
[ν̄eγρ(1 − γ5)e] [ν̄µγρ(1 − γ5)µ] . (5.16)

In the SM, LFermi arises in the low-energy limit of the muon four-momentum q2 ≪m2
W

by “integrating out” the heavy W in the contribution to the scattering amplitude

A ∝ g2 [ν̄eγµ(1 − γ5)e] 1

m2
W − q2

[ν̄µγµ(1 − γ5)µ] . (5.17)

Thus theW boson is removed as a degree of freedom in the effective theory, but its effect
is captured in the effective coupling, the Fermi constant GF = g2

√
2

8m2
W

. It is important to
note that we have approximated the nonlocal operator appearing in the SM by a local
operator in the EFT, resulting in a contact interaction.

Due to the confinement property of QCD, it is impossible to observe the reaction
b → s`+`− directly. But we can observe, for example, the decay B̄d(bd̄) → K̄(sd̄)`+`−,
where both the b and the s quark are in a bound state together with a d̄ to form mesons.
Hence, we need a description of the decay that allows us to separate the different scales.
On the one hand, we have the low-energy, nonperturbative physics involving the for-
mation of the meson with the spectator quark at the scale ΛQCD ≈ 0.3 GeV. On the other
hand, there are the high-energy, perturbative scales µb ≈ 4 GeV and mW ≈ 80 GeV. At
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a more technical level, EFT takes care of the resummation of large logarithms appear-
ing in perturbation theory with large mass hierarchies. These are the basic reasons for
introducing the concept of the ∆B = 1 EFT.

An additional benefit is the independence of the detailed structure of the (fundamen-
tal) theory. When looking for NP effects, we consider only extensions of the SM in the
sense that every theory has to agree with the SM at tree level, else it would be in con-
tradiction with the experimental facts. In the simplest case, the effect of a particular
extension of the SM is to alter only a handful of scalar quantities, the effective coupling
constants or Wilson coefficients Ci (see below). It is therefore sufficient to verify that the
Wilson coefficients, as dictated by the data, agree with the SM predictions in order to
rule out sizable NP contributions. In the more complicated case, an extension of the SM
introduces new operators and thus also extra Wilson coefficients arise, to be compared
with the vanishing SM predictions.

We define the ∆B = 1 effective theory of b → s transitions by the effective Hamilto-
nian [CMM97; BMU00]

Heff ≡ −4GF√
2
VtbV

∗
ts (H

(t)
eff + λ̂uH(u)

eff ) + h.c., λ̂u ≡ VubV ∗
us/VtbV ∗

ts, (5.18)

H(t)
eff ≡ C1Oc

1 + C2Oc
2 +∑

3≤i
CiOi, H(u)

eff ≡ C1(Oc
1 −Ou

1) + C2(Oc
2 −Ou

2) . (5.19)

The unitarity triangle (5.12) has been used to splitHeff into two parts: H(t)
eff is the domi-

nant contribution for all CP conserving b → s observables, while all CP violating terms
in the SM involveH(u)

eff that is doubly Cabibbo suppressed; cf. (5.11) and (5.14). We omit
the explicit dependence of Ci on the renormalization scale µ. Throughout, we work at
the scale µ = 4.2 GeV and assume MS renormalization.

The dynamics of the light-quark (q = u, d, s, c, b) and leptonic (` = e, µ, τ) degrees of
freedom at the scale of the b quark are described by operators of mass dimension 5 and
6 for the parton transitions b → s + (γ, g, q̄q, `+`−). The SM Wilson coefficients Ci (i =
1, . . . ,10) are presently known up to NNLO (and partially NNNLO) in QCD [CMM97;
BMU00; MS04; GH05; GHM05; CHM07] and NLO in QED [BGH00; Hub+06; Bob+04;
GH01]. This includes the renormalization group evolution (RGE) from the electroweak
scale µW ∼ mW down to µb ∼ mb, which resums sizable logarithmic corrections to all
orders in the QCD coupling αs [BBL96].

In this work, we want to study NP effects on rareB decays. We choose to work in the
SM operator basis that is defined in such a way that only the relevant operators — a total
of 10 — of dimension 5 and 6 are included and the corresponding 10 Wilson coefficients
are real-valued; i.e., the formulation is geared at the V −A structure of the SM. This set of
assumptions is the simplest (most parsimonious) model-independent extension of the
SM, in which each Ci has a fixed value. The operators due to b→ s q̄q transitions are the
current-current operators Ou,c1,2 , the QCD penguin operators for i = 3,4,5,6, and the b →
s gluon chromomagnetic dipole operator i = 8. Effects of QED penguin operators are
neglected since they are small for the decays under consideration. Following the studies
of QED corrections to the inclusive decay, we choose the QED coupling αe at the low
scale µb, capturing most effects of QED corrections [Bob+04; Hub+06] and removing
the main uncertainty due to the choice of the renormalization scheme at LO in QED.
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Figure 5.2: Sample FCNC Feynman diagrams of the EFT that describe b → s`+`− decays. Ci
denotes the coupling strength of the effective vertex.

The electromagnetic dipole operator

O7 =
e

(4π)2
mb [s̄σµνPRb]Fµν (5.20)

governs b→ sγ transitions. The semileptonic operators

O9 =
αe
4π

[s̄γµPLb] [¯̀γµ`] , O10 =
αe
4π

[s̄γµPLb] [¯̀γµγ5`] (5.21)

govern b → s `+`− transitions, cf. Fig. 5.2(c), in combination with less important contri-
butions from O7 (Fig. 5.2(b)) and from O1,2 (Fig. 5.2(a)).

Beyond the SM, the effects due to new heavy degrees of freedom can be included
systematically as additional contributions to the short-distance couplings Ci, i = 1 . . .10,
possibly giving rise to operators beyond the SM with a different chiral nature or addi-
tional light degrees of freedom. Another possible NP effect is extra CP violation due to
nonzero imaginary parts of the Wilson coefficients. An important class of NP operators
is the chirality-flipped operator basis Oi′; e.g.,

O′10 =
αe
4π

[s̄γµPRb] [¯̀γµγ5`] . (5.22)

But in this work, we do not considerOi′ further in accordance with our goal to consider
only the simplest extension of the SM. The full set of operators is defined in [CMM97,
O1 −O6] as well as [BMU00, O7 −O10], and summarized in [Dyk12, Section 2.2].

5.3 Nonperturbative effects

When searching for NP in b → s transitions at the parton level, we need to consider
the observable reactions involving B decays. In the particle data group nomenclature,
B̄q is defined as a bound state of one b and one q̄ valence quark, B̄q ≡ (bq̄). In this
work, we usually consider CP averages, thus Bq represents an admixture of both (bq̄)
and (b̄q). For further simplification, we mostly omit the subscript q and then restrict to
q = u, d, but we explicitly display strange B mesons as Bs. The properties of the B and
K mesons relevant to this work are listed in Table 5.2. Note that K∗ is a vector meson,
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K+ K0 K∗0 Bu Bd Bs

valence quarks s̄u s̄d s̄d b̄u b̄d b̄s
mass [MeV] 493.7 497.6 896.0 5279.3 5279.6 5366.8

JP 0− 0− 1− 0− 0− 0−

Table 5.2: Properties of selected mesons [Nak+10].

while the other mesons listed are pseudoscalar. For concreteness, we are interested in
the exclusive, radiative, and (semi)leptonic, decays

B →K∗γ , B →K`+`− , B →K∗`+`− , Bs → µ+µ− , (5.23)

with ` = e, µ. In the previous section, the ∆B = 1 EFT was introduced to separate
the short-distance from long-distance behavior. Now we want to briefly sketch the
treatment of the long-distance, nonperturbative effects. In naïve factorization, matrix
elements of B →K`+`− decouple into a leptonic and a hadronic part; e.g.

A = ⟨ ¯̀̀ K ∣ C9O9 ∣B⟩ = ⟨ ¯̀̀ K ∣ C9 [s̄γµPLb] [¯̀γµ`] ∣B⟩ (5.24)

= C9 ⟨ ¯̀̀ ∣ ¯̀γµ` ∣0⟩ ⟨K ∣ s̄γµPLb ∣B⟩ . (5.25)

Naïve factorization is justified for interactions described by O9 and O10 as there are no
gluon exchanges between the parts at leading order. Incorporating long-distance ef-
fects due to quark loops or gluon exchanges with the spectator quark requires separate
approaches depending on the kinematic region. For dilepton invariant mass squared
q2 (see below (5.28)) between 1 GeV2 and 6 GeV2, we use QCD factorization (QCDF)
[BFS01; BFS05]. The charmonium resonances J/ψ and ψ′ (cf. the quark loop diagram
Fig. 5.2(a)) are dominant in the intermediate region, posing a major problem to the
comparison of theory and experiment. Even as we ignore that region, it is important to
keep in mind that the tails of the resonances can contribute as much as 20 % even below
6 GeV2 [Kho+10]. For q2 ≳ 14 GeV2, an operator production expansion (OPE) [WZ72;
GP04; BBF11] approach that again coincides with naïve factorization at leading order is
used. The two regions are displayed in Fig. 5.3.

Contributions to B → K(∗)`+`− from intermediate quark loops — charm loops in
particular — (see Fig. 5.2(b)) at leading order in the strong coupling do not require any
new hadronix matrix elements compared to those arising from C7,C9, and C10. Hence
these long-distance contributions can be absorbed in the effective Wilson coefficients

Ceff
7 = C7 −

1

3
[C3 +

4

3
C4 + 20C5 +

80

3
C6] +

αs
4π

[(C1 − 6C2)A(q2) − C8F
(7)
8 (q2)] , (5.26)

Ceff
9 = C9 + h(0, q2) [4

3
C1 + C2 +

11

2
C3 −

2

3
C4 + 52C5 −

32

3
C6] (5.27)

− 1

2
h(mb, q

2) [7C3 +
4

3
C4 + 76C5 +

64

3
C6] +

4

3
[C3 +

16

3
C5 +

16

9
C6]

+ αs
4π

[C1 (B(q2) + 4C(q2)) − 3C2 (2B(q2) −C(q2)) − C8F
(9)
8 (q2)]

+ 8
m2
c

q2
[(4

9
C1 +

1

3
C2) (1 + λ̂u) + 2C3 + 20C5] ,
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Figure 5.3: The kinematic regions and the different theory approaches to handle nonperturba-
tive effects for the prediction of B(B → K∗`+`−) (solid line). No theory prediction is given for
the intermediate region of the charmonium resonances. The blue dashed line indicates extrap-
olation, the colored bands represent various sources of theory uncertainty (blue: form factors).
Reproduced from [BHD10] with the authors’ permission.

where we use the results and the nomenclature of [BHD11b].
The leptonic part ofA in (5.24) is calculated in perturbation theory, while the hadronic

matrix element is parametrized by form factors. ConsiderB →K`+`−, or more generally,
the overlap of a B and a pseudoscalar meson P . Using the Lorentz transformation
properties, the three nonvanishing contributions can be formulated as the scalar, vector,
and tensor form factors [BZ05b]

⟨P (k)∣ s̄b ∣B(p)⟩ = m
2
B −m2

P

mB +mP
f0(q2) , (5.28)

⟨P (k)∣ s̄γµb ∣B(p)⟩ = ((p + k)µ − qµ
m2
B −m2

P

q2
) f+(q2) + m

2
B −m2

P

q2
qµf0(q2) , (5.29)

⟨P (k)∣ s̄σµνb ∣B(p)⟩ = ı

mB +mP
[(p + k)µqν − qµ(p + k)ν] fT (q2) . (5.30)

The transferred four-momentum squared, q2 ≡ (p − k)2, pertains to the photon or dilepton,
and the three real-valued functions f0(q2), f+(q2), and fT (q2) are the form factors.

Similarly, the five contributions to the overlap of aB meson and a vector meson V can
be parametrized in terms of the massesmB,mV , the momenta p, k, q, the V polarization
vector, and seven form factors V (q2),A0–2(q2), and T1–3(q2) [BZ05a]. At large hadronic
recoil, or equivalently at low q2, the number of independent form factors reduces to
one (P ) and two (V ) universal soft form factors when expanding in 1/mB and relying on
large energy effective theory [Cha+99]. In the low recoil region, the improved Isgur-Wise
relations [GP04; BHD10] — valid up to higher order terms of O(Λ/Q) ,Q =mb,

√
q2 —

can be used to relate the dipole form factors Ti[fT ] to the vector and axial form factors
V,A1, and A2 [f+]. Therefore, the number of independent form factors reduces to four
in the case of B → V , and two in B → P .

Nonperturbative QCD effects are taken into account through the form factors. Two
competing methods to compute them exist: lattice QCD [Liu+09; AlH+10; Zho+11;
Liu+11], and light cone sum rules (LCSR)[BZ05a; BZ05b; Kho+10]. We remark that
LCSR is valid only up to q2 ≲ 14 GeV2, whereas the lattice method works best in the
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high-q2 region where the kaon is nearly at rest in the restframe of the decaying B me-
son. At present, no final results from the lattice are available. While T1 and T2 have
been determined on the lattice, no such results exist for the vector form factors. Thus,
the LCSR predictions are currently extrapolated to larger q2. The accuracy can be im-
proved by fitting to experimental data; cf. Section 7.2.2 and [HH12]. In general, the form
factors are known to a rather low precision ofO(10 % − 20 %), and constitute the major
source of theory uncertainty in the prediction of basic observables like the branching
ratio B in which the form factors enter quadratically.



6 Observables and experimental input

The primary goal of this thesis is to search for evidence of new physics in rare B decays
using Bayes’ theorem (2.4). The essential ingredient in the fit is the likelihood that in-
corporates the experimental inputs; we list the necessary assumptions in Section 6.1. In
the following sections, we take a brief look at where the B decays are actually observed
by reviewing two important detector experiments, Belle and LHCb, in Section 6.2. Af-
ter that, we define the individual observables, grouped according to the decay channel,
in Section 6.3. Note that there are two sets of observables: the first contains those that
have already been measured and therefore impose constraints on the Wilson coeffi-
cients C7,9,10 that we extract in the fit. The second set is made up of observables that
are sensitive to the operators of interest and exhibit a reduced hadronic uncertainty, but
have not been measured yet; for those we compute improved theory predictions based
on the fit output in Section 7.6.

6.1 Basic assumptions

Let us in the following state the assumptions underlying the likelihood and individual
observations; as an example, we consider a branching ratio B. Unless indicated other-
wise, experimental numbers refer to CP-averaged quantities; i.e., B(X → Y ) is taken as
an abbreviation of

(B(X → Y ) + B(X̄ → Ȳ ))/2 . (6.1)

We want to stress that we do not use the actual observations — event numbers, event
momenta etc. — in our fit. First, it is nearly impossible for us to use them without
a precise understanding of the detector. Second, the experiments do not publish the
“data” directly, instead they only release a convenient summary of an analysis, typi-
cally a maximum-likelihood or maximum-posterior fit in which B is just one parameter,
among many other nuisance parameters modeling the measurement process. Without
loss of generality1, let us assume the posterior P (B∣D) is the 1D function supplied by an
experiment, with the understanding that the data are implicit and unknown to us, and
only the functional dependence on B is explicitly given. In order to obtain a contribu-
tion to the likelihood from P (B∣D), we “invert” the probability using Bayes’ theorem:

P (B∣D) ∝ ∫ dν P̃ (D∣B,ν)P (B,ν)

≡ P (D∣B) . (6.2)

As a matter of fact, we define an effective likelihood P (D∣B) in (6.2) for use in the fit that
implicitly absorbs the effects of the prior P (B,ν) and of the nuisance parameters ν in
the experiment’s full likelihood P̃ (D∣B,ν). The unknown constant of proportionality
is irrelevant for parameter inference and even for model comparison, provided that

1A similar argument could be made if we assumed a profile likelihood instead of a posterior.
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only Bayes factors are used in which P (D∣B) appears in both models. For example,
let P (D∣B) → cP (D∣B), then for two models M1,M2 with parameters θ1,θ2 that both
predict B as B(θi∣Mi), the Bayes factor

Z1

Z2
= c ∫ dθ1 P (D∣B(θ1))P (θ1)
c ∫ dθ2 P (D∣B(θ2))P (θ2)

(6.3)

is unchanged. In contrast, the value of Zi by itself is arbitrary, thus meaningless. For
consistency, we normalize likelihood contributions such that ∫ dBP (D∣B) ≡ 1, but it
really should be ∫ dDP (D∣B) ≡ 1.

In the global fit, we use up to 59 measurements, so let D represent all measurements,
not just those used to determine a single observable like B in the example above. For
numerical stability, we work on the log scale; the total log likelihood including the Wil-
son coefficients θ and nuisance parameters ν, logP (D ∣θ,ν) is computed by summing
over the individual, independent contributions. The complete list of experimental re-
sults used is given in Section 6.3.4 and Tables A.2 to A.4. The majority of results is
incorporated as 1D Gaussian distributions, whose variances are obtained by adding
statistical and systematic uncertainties in quadrature, σ2 = σ2

stat + σ2
syst. In the case of

asymmetric uncertainties, we use a split Gaussian,

N(B∣µ,σ+, σ−) ≡
⎧⎪⎪⎨⎪⎪⎩

N(B∣µ,σ+), B ≥ µ
N(B∣µ,σ−), B < µ

(6.4)

constructed from two half-Gaussian distributions around the central value with vari-
ances σ+ and σ−. Note thatN(⋅∣µ,σ+, σ−) is normalized such that 50 % of the probability
is on either side of µ, thus if σ+ ≠ σ−, there is a discontinuity at µ. While this discon-
tinuity — an artifact of the attempt to summarize a probability distribution with just
three numbers µ,σ+, σ− — is certainly unpleasant, we accept it in order to obtain re-
sults that are comparable with the existing literature. We consider it preferable to use
the LogGamma distribution (cf. Appendix A.2) to model asymmetric uncertainties in a
smooth way, and we do so for asymmetric priors (cf. Appendix A.1).

In summary, the total likelihood is a product of 1D (asymmetric) Gaussians, with
the exception of the correlated observables S and C (Section 6.3.1), and the limit on
B(Bs → µ+µ−) (Section 6.3.4).

6.2 Experiments

The experiments that contribute to our fit can be grouped into two categories. On the
one hand, there are the e+e− colliders CESR, PEP-II, and KEKB with the respective de-
tectors CLEO, BaBar, and Belle; on the other hand, the two hadron colliders Tevatron
(pp̄) and LHC (pp). Of the two general-purpose detectors at Tevatron, CDF and DØ,
only CDF has released results on B → K(∗)µ+µ−. At the LHC, there are four detectors:
ALICE, ATLAS, CMS, and LHCb. ALICE focuses on a heavy-ion program, and is of no
relevance to this work. The two general-purpose detectors ATLAS and CMS, like CDF,
feature the ability to accurately identify muons in the final state, and thus are most
competitive at detecting the very rare decay Bs → µ+µ−. The general-purpose detectors
collect B → K(∗)µ+µ− reactions, albeit with a reduced sensitivity as they lack accurate
separation of kaons and pions. However, the top priority at CERN is the Higgs search,
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so ATLAS and CMS have not yet released an analysis of B →K(∗)`+`− as of September
2012.

Last, but certainly not least, LHCb is the detector dedicated to bottom and charm
physics at the LHC. Its current analysis of B →K∗µ+µ−, based on 1 fb−1 and 900 candi-
date events collected in 2011, is already the most accurate in the world (cf. Table A.4).
The statistical uncertainties will further decrease with the 2012 data sample, expected
to contain an additional 2.2 fb−1 andO(2000) events [Hut12]. With regard toBs → µ+µ−

searches, ATLAS, CMS, and LHCb are on a similar footing; the current 95 % CLS limits
on B(Bs → µ+µ−) are 22 × 10−9 (2.4 fb−1), 7.2 × 10−9 (5 fb−1), and 4.5 × 10−9 (1 fb−1) re-
spectively [ATL12]. Note that, among the three experiments, LHCb is able to provide
the most stringent limit despite the smallest integrated luminosity; more details about
how this is accomplished with a special detector setup are given in Section 6.2.2.

In the global fit, we consider these four decays:

B →K∗γ , B →K`+`− , B →K∗`+`− , Bs → µ+µ− . (6.5)

Note that ` = µ is measured by all experiments, but so far, results for ` = e are available
only from BaBar and Belle, as discussed below. Since the experimental accuracy is
highest for charged particles in the final state, we only consider the charged kaon K±

and the neutral K∗0 that subsequently decays as K∗0 →K±π∓ in the respective decays.
The two channels with the highest statistical impact are B → K∗γ (mostly for C7),

and B →K∗`+`−, ` = µ (mostly for C9,10). The former is best observed at the e+e− collid-
ers, and most accurately determined at the two first-generation B factory experiments
BaBar and Belle; cf. Table A.2. The latter channel is seen in all experiments; at present,
the most accurate measurements are from LHCb. This situation will continue until at
least 2016 [Shi11], when first results from Belle II at the second generation B (super
flavor) factory SuperKEKB are expected. At the time of writing, it is unclear whether
the planned competitor, SuperB, to be located at Frascati, Italy, will receive sufficient
funding [Bia+10].

In the following, we present a short overview of the Belle detector representing the
first generation B factories, and of LHCb representing a hadron collider detector. With
a focus on the decays of interest to us, we highlight the major differences between the
two detector concepts. Our review follows [Fuj09] for Belle, and [Ree10] on LHCb.

6.2.1 Belle

The KEKB accelerator and storage ring, located at Tsukuba, Japan, is an e+e− collider
with about 3 km circumference [Aka+03]. It is the world-record holder in instantaneous
luminosity at 2.1 × 1034 cm2 s−1 and integrated luminosity of 1 ab−1. The electrons and
positrons in the beams have energies of 8 GeV and 3.5 GeV respectively, resulting in a
center-of-mass energy of

√
s = 10.58 GeV at the interaction point, around which the

Belle detector is built.
√
s is chosen to lie on the Υ(4S) resonance, just above the

BB̄ production threshold. The branching fraction of Υ(4S) → BB̄ is larger than 96 %
[Ber+12]. Because of 2mB ≈ mΥ(4S), the quantum-entangled BB̄ mesons are produced
nearly at rest in the Υ(4S) restframe.

The reason for choosing asymmetric energies of e+ and e− is that B mesons receive a
Lorentz boost of βγ = 0.425 in the laboratory frame in the direction of the e− beam axis
leading to a mean flight length of 200 µm until the B mesons decay at secondary ver-
tices. This length is large enough to separate the interaction point from the secondary
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Figure 6.1: The Belle detector at KEKB [Aus12].

vertices, and thus also to separately identify the B and the B̄ vertex. The distance ∆z
between secondary vertices can be translated into the time difference ∆t = ∆z/βγ . ∆t is
crucial to analyzing time-dependent CP asymmetries, one of the main physics concerns
of the B factories [Abe+01; Aub+01].

The Belle detector is an asymmetric, large-solid-angle magnetic spectrometer
[Aba+02; Nat+06]. It took data from April 2000 until the shutdown in the summer
of 2010. In this period, 772 × 106 BB̄ pairs were recorded. Belle and the important
subdetectors are depicted in Fig. 6.1. The detector is capable of identifying the most
commonly arising final state particles in B decays:

Charged particles: K±, π±, e±, p±, µ±

Neutral particles: γ,K0
L ,

where K0
L denotes the neutral kaon with the longer lifetime.

In the following, we briefly describe the subdetectors, starting with the innermost
part, the silicon strip vertex detector (SVD). The first SVD version consists of three con-
centric cylindrical layers of silicon sensors. This SVD covers a polar angle between 23°
and 139° and provide the high resolution needed to separately identify the secondary
vertices. After 150 × 106 BB̄ pairs, it was replaced with an improved, four-layer SVD
that is 1 cm closer to the beam pipe and covers the polar-angle range between 17° and
150°. Overall, the SVD achieves a resolution of ∆z between the B vertices better than
100 µm.

The central drift chamber (CDC) is a tracking system for charged particles placed
around the SVD. It measures particle momenta from the curvature of the helical path
that the charged particles follow in the strong 1.5 T field provided by the solenoid mag-
net; cf. Fig. 6.1. In addition to momenta, the CDC also measures the energy loss dE/dx
of a particle and thus helps to distinguish electrons, kaons, pions, and protons at mo-
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menta below 1 GeV. The particles of interest lose energy by scattering with the gas, a
mixture of half helium and half ethane, that permeates the CDC. Location information
is obtained from the 8400 drift cells that are mounted inside the CDC. Each cell is made
of eight negatively charged wires around a positively charged sense wire.

In order to distinguish charged kaons from charged pions at momenta between 1
and 4 GeV, Bell is equipped with an aerogel Cherenkov counter, a device based on the
following effect. Charged particles traveling through a medium, called the radiator, at a
velocity greater than the speed of light in the medium emit light in a forward cone. The
aperture angle of the cone is directly related to the relativistic particle velocity β as

cos θ = 1

nrβ
, (6.6)

where nr is the refractive index of the radiator. In combination with the momentum
determination available from the particle’s track in the magnetic field of the bending
magnet, the mass and thus the identity of the particle is deduced. It is worth noting
that this technique does not work for neutral particles. Therefore, the experimental
accuracy is significantly better for B0 → K∗0`+`−, where K∗0 decays into two charged
particles, K∗0 → K±π∓, as opposed to B± → K∗±`+`−, where we have K∗± → (Kπ)±
with only one charged meson in the final state. Experimentally, the most difficult decay
is K∗0 → K0π0, but this invisible neutral final state is corrected for in the branching
ratio. As a consequence, we only use B0 →K∗0`+`− and B± →K±`+`− in our global fit.

One of the clever ideas is to use a radiator, the aerogel, with nr ≳ 1 chosen such
that pions (and electrons) emit Cherenkov light, but the heavier kaons do not because
of their lower velocity. A flexible medium, the silica aerogel’s refractive index can be
chosen by adjusting the manufacturing process; this is exploited to discriminate pions
from kaons at different polar angles.

The central drift chamber is supplemented by the time of flight (TOF) subdetector
to better distinguish kaons from pions and protons at low momenta. A simple on-off
device, the TOF measures the time a particle needs to travel from the interaction point
to the plastic scintillators of the TOF, where the light is collected in photomultiplier
tubes providing a very fast timing resolution of 100 ps.

Identification of electrons and photons is achieved by the electromagnetic calorimeter
(ECAL) that contains 8736 thallium-doped Cesiumiodide crystals of 30 cm length di-
rected towards the interaction point. Electrons and photons lose energy in the crystals
by bremsstrahlung and pair production, while other charged particles transfer energy
to the crystal via ionization. The identification of a particle is achieved by comparing
the energy estimate in the ECAL and the CDC. The estimates agree more or less for
electrons, but differ for other particles. CDF, ATLAS, and CMS have a reduced ability
to separate pions from electrons, therefore consider only ` = µ in the final state. Simi-
larly, those three experiments do not consider B → K∗γ with the neutral photon in the
final state.

Finally, the outermost shell of the detector is given by alternating layers of 5 cm iron
blocks and resistive plate counters. The latter are large parallel electrodes with a gas
filling the gap. Interactions between hadrons and iron nuclei lead to showers of parti-
cles that can ionize the gas and lead to an avalanche. The K0

L meson lives long enough
to reach and strongly interact with the iron, where it is quickly absorbed. But K0

L does
not leave a matching track in the CDC as opposed to charged hadrons. Muons are rel-
atively easy to detect; because they only interact electromagnetically with the iron and
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Figure 6.2: A cross section of the LHCb detector. The interaction point is at the left [LHC08].

have a much larger mass than electrons, they have the highest penetration power of all
the charged particles expected in the final state. Hence only muons make it through all
15 iron blocks, and their track can be put together with the CDC information.

6.2.2 LHCb

The large hadron collider (LHC) at CERN accelerates two proton beams, revolving in
opposite directions in the LEP tunnel of 27 km circumference, and collides them at a
center-of-mass energy

√
s of currently 8 TeV (7 TeV in the 2011 run). Its design lumi-

nosity is 1034 cm2 s−1 with
√
s = 14 TeV, exceeding the previous record by the Tevatron

of
√
s = 1.96 TeV by a factor of 7. The LHCb detector [LHC08] is located at one of the

four interaction points, where the beams are focused and brought into collision. At the
design energy, the b quark production cross section is at a large value of 500 µb, result-
ing in the production of 1012 bb̄ pairs in one year of operation at a reduced luminosity
[LHC98]. To achieve the high detection precision, it is desirable to have mostly zero
or one bb̄ pair per bunch crossing. Therefore, the beams are not focused as strongly as
at ATLAS or CMS to level off the luminosity at a value of 2 × 1032 cm2 s−1. For com-
parison, the peak luminosity at Belle is larger by a factor of 100. Nevertheless, LHCb
has recorded 900 B → K∗`+`− events during the 2011 run — more than Belle has seen
during its entire lifetime (300 events) because of the drastically larger production cross
section of 280 µb (LHC at 7 TeV) versus 0.001 µb (KEKB).

The vast majority of bb̄ pairs — often hadronizing intoBB̄ pairs — are produced with
momenta in the forward direction from gluon-gluon or quark-quark fusion. Therefore,
LHCb is built as a long forward detector to maximize the acceptance and precision at
small angles with respect to the beam axis. The interaction point is shifted outside of the
cavern hosting the LHCb detector. Thus LHCb covers only one direction in which BB̄
pairs are created, but with its length of roughly 20 m, LHCb can achieve great tracking
efficiency.

Let us now focus on the most important subdetectors; a cross section of LHCb is
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shown in Fig. 6.2. BB̄ pairs created at LHCb have a large Lorentz boost in the labo-
ratory frame. Combined with the long lifetime of ≈ 1.5 ps and an average momentum
of about 80 GeV, a B meson travels an average distance of 7 mm before decaying. The
presence of a secondary vertex, clearly displaced from the primary interaction point,
is the number one criterion to identify a B meson. The vertex locator is a silicon vertex
detector designed to provide high precision tracking near the interaction point. It con-
sists of 21 silicon discs, each split into two overlapping parts. The partition is required
to remove the vertex locator from the beam during injection and readjustment of the
proton beams. With stable beam conditions, the vertex locator is placed very close to
the beam within a distance of only 8 mm, shielded only by a 200 µm thick aluminum
foil. Each disc is further divided into smaller segments in a R − Φ layout, to yield a
total of 180 000 read out channels and a precision of roughly 4 µm. The vertex locator
is cooled to a temperature of about 270 K to extend its lifetime in the harsh radiation
environment.

There are two more silicon trackers, the tracker turicensis (TT in Fig. 6.2) and the inner
tracker (in the center of the tracking stations T1 – T3 in Fig. 6.2). The TT has an active
area of 8.4 m2 to cover the full acceptance region 10 to 250 mrad polar angle, while the
inner tracker covers only the small region with the highest occupancy. The outer tracker
is made of gas drift tubes filled with Argon and CO2; the tubes are cheaper and cover a
bigger volume, but the large drift time of 50 ns prohibits their use in the inner tracker.
The area of the tubes relative to the inner tracker was chosen to have an occupancy of
less than 10 % in the drift tubes.

A very important part of LHCb is the particle identification provided by the ring-
imaging Cherenkov (RICH) detector. For our purposes, the most relevant task is to sepa-
rate kaons from pions, because soft pions from collinear QCD effects can systematically
distort the spectra in B →K∗`+`−.

The RICH system uses the two radiators to increase the identification power. Che-
renkov light is created in forward direction and reflected by mirrors onto an array of
photon detectors mounted further away from the beam axis. The general-purpose de-
tectors CDF, ATLAS, and CMS lack a good particle identification, in part because of the
excessive volume that a RICH system would consume.

Particle energies are determined with the help of the electromagnetic and hadronic
calorimeters; the detection mechanism is similar in both. The calorimeters are made of
alternating layers of lead and scintillator plastic. The primary particles lose energy in
the calorimeter and form a shower of secondary particles, that in turn deposit a fraction
of the energy as photons in the scintillator. Those photons are counted by photomul-
tiplier tubes, and with a good understanding of the whole process, the energies of the
primary particles are inferred. The calorimeters are segmented, and thus provide addi-
tional information for track reconstruction.

Finally, the muon system is key to identifying interesting events with B mesons.
Muons are used heavily in the level zero trigger; most of the events without muons are
discarded right away to reduce the amount of data that needs to be read out, stored, and
processed. What makes muons unique is that they have the highest penetrating power
of all charged SM particles. The five muon stations (M1 – M5 in Fig. 6.2) are separated
by 80 cm thick iron blocks that effectively stop all other particles but muons and neu-
trinos, the latter escaping undetected. The minimum momentum for a muon to reach
M5 is ≈ 6 GeV, but momenta down to 3 GeV are detectable when less station hits are
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required. Those low-momentum muons are important to accurately filter B → K∗`+`−

events. Again, the muon stations are segmented to provide tracking information. Mul-
tiwire proportional chambers are used except in the most finely granulated section in
M1, where gas electron multipliers provide faster readout times needed for the trigger-
ing.

6.3 b→ s observables

In the following subsections, we present the individual B decays and describe the ob-
servables whose experimental determination enters the global fit. Whenever the like-
lihood contribution is different from a simple Gaussian, we explain in detail how the
information is incorporated. In addition, we discuss observables that have the potential
to constrain the Wilson coefficients once they are extrated by the experiments.

6.3.1 B →K∗γ and other radiative decays

For B → K∗γ, several observables have been measured, such as the branching ratio B,
the time-dependent CP asymmetries S and C, and the isospin asymmetry AI . Their
impact on the scenario of real C7,7′ has been studied in [Des+11; APS12] using the in-
clusive B instead of the exclusive one. Here, “inclusive” refers to any final state with a
strange meson and a photon, B → Xsγ. The measurement of Bs → φγ provides similar
information and allows a third CP asymmetry H to be studied [MXZ08]. The angular
distribution in the decay B →K1(1270)γ → (Kππ)γ is sensitive to the photon polariza-
tion and tests C7,7′ . A recent theory study [Bec+12] claims that uncertainties in the range
of 20 % for suitably constructed observables are possible at LHCb with 2 fb−1; at present,
however, there are no published experimental results for B →K1(1270)γ → (Kππ)γ.

In our analysis, we use B and the time-dependent CP asymmetries S and C of B →
K∗γ with their measurements and correlations at BaBar and Belle compiled in Ta-
ble A.2, and follow the calculations outlined in [FM03; BFS05]. More details on the
numerical input and nuisance parameters can be found in Appendix A.
S and C are interesting due to BB̄ mixing, we consider only the case B ≡ Bd. With

the decay rate Γ and the mass difference ∆md ≈ 3 × 10−10 MeV between the heavy and
the light mass eigenstate, S and C are extracted simultaneously from [APS12]

Γ (B̄0(t) → K̄∗0γ) − Γ (B0(t) →K∗0γ)
Γ (B̄0(t) → K̄∗0γ) + Γ (B0(t) →K∗0γ)

= S sin(∆mdt) −C cos(∆mdt) . (6.7)

We include the correlation, as given by the correlation coefficient ρ, into the likelihood
as follows. Given the most likely values S∗ and C∗, and the total uncertainties σS and
σC , for one experiment, the results are combined into a bivariate Gaussian N(⋅∣µ,Σ)
with

µ = (S∗,C∗) , Σ = ( σ2
S ρσSσC

ρσSσC σ2
C

) . (6.8)

For the Belle result with asymmetric uncertainties, we set σS to the larger of the two
uncertainties.
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6.3.2 B →K`+`−
In principle, the exclusive decay B →K `+`− offers three observables: the branching ra-
tio B(q2), the lepton forward-backward asymmetry AFB(q2), and the flat term FH(q2).
The latter two arise in the double-differential decay rate when differentiating with re-
spect to the dilepton invariant mass q2 and cos θ` [BHP07]

1

dΓ/dq2

d2Γ

dq2 dcos θ`
= 3

4
(1 − FH) sin2θ` +

1

2
FH +AFB cos θ`, (6.9)

where θ` is the angle between the 3-momenta of the negatively charged lepton and the
B̄ meson in the dilepton center of mass system. Two further interesting observables
are the rate CP asymmetry ACP and the ratio of decay rates for the `=e and `=µ modes
RK . AFB is nonzero only in the presence of scalar or tensor NP contributions, and FH
is helicity suppressed by m`/

√
q2 in the scenario under consideration, but is sensitive

to scalar and tensor contributions [Bob+01; BHP07]. In view of this, available measure-
ments ofAFB, FH , andRK are not considered, and we include only the Bmeasurements
for one low-q2 and two high-q2 bins as listed in Table A.3. Our theory evaluation at low
and high q2 follows [BHP07; Bob+12]. Details concerning numerical input and nuisance
parameters are given in Appendix A.

6.3.3 B →K∗(→Kπ)`+`−
The angular analysis of the 4-body final state B → K∗(→ Kπ) `+`− offers a large set of
angular observables

⟨Ji⟩ [q2
min, q

2
max] = ∫

q2
max

q2
min

dq2Ji(q2) , i = 1, . . . ,9 , (6.10)

where the boundaries of the q2 bin (throughout in units of GeV2) are not explicitly
shown when they are not relevant. The angular observables ⟨Ji⟩ are defined in the
3-fold angular distribution

32π

9

d3 ⟨Γ⟩
dcos θ` dcos θK dφ

≡ (6.11)

[ ⟨J1s⟩ + ⟨J2s⟩ cos 2θ` + ⟨J6s⟩ cos θ`] sin2θK

+ [ ⟨J1c⟩ + ⟨J2c⟩ cos 2θ` + ⟨J6c⟩ cos θ`] cos2θK

+ ⟨J3⟩ sin2θK sin2θ` cos 2φ + ⟨J4⟩ sin 2θK sin 2θ` cosφ + ⟨J5⟩ sin 2θK sin θ` cosφ

+ ⟨J7⟩ sin 2θK sin θ` sinφ + ⟨J8⟩ sin 2θK sin 2θ` sinφ + ⟨J9⟩ sin2θK sin2θ` sin 2φ .

Equation (6.11) accounts for all possible (s̄ . . . b)(¯̀. . . `) Lorentz structures of chirality-
flipped, scalar, pseudoscalar, and tensor operators [KM05; Alt+09; Alo+11]. The explicit
dependence of Ji on Wilson coefficients and form factors is presented in [KM05] and
[Dyk12, Ch. 3] for the new physics scenario considered in this work. The phase space is
parametrized through the dilepton invariant mass squared q2 and three angles θK , θ`,
and φ; see also Fig. 6.3. We define θK as the angle between the final state kaon and
the B meson in the rest frame of K∗, θ` as the angle between `− and the B meson in
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The branching ratio ⟨B⟩, the lepton forward-backward asymmetry ⟨AFB⟩, and the
longitudinal K∗-polarization fraction ⟨FL⟩

⟨B⟩ = τB0 ⟨Γ⟩ , ⟨AFB⟩ = 3

8

2 ⟨J6s⟩ + ⟨J6c⟩
⟨Γ⟩ , ⟨FL⟩ =

3 ⟨J1c⟩ − ⟨J2c⟩
4 ⟨Γ⟩ , (6.19)

have been measured by BaBar [Lee+12; Poi12], Belle [Wei+09], CDF [Aal+11a; Aal+12],
and LHCb [Par12]. The angular observable ⟨A(2)

T ⟩ [KM05] has been measured by CDF
[Aal+12]; and ⟨S3⟩ [Alt+09] has been determined by LHCb [Par12]:

⟨A(2)
T ⟩ = ⟨J3⟩

2 ⟨J2s⟩
, ⟨S3⟩ =

⟨J3⟩
⟨Γ⟩ . (6.20)

The experimental results are summarized in Table A.4. Note that BaBar, Belle, and
CDF determine ⟨AFB⟩ and ⟨FL⟩ from a combined fit to the single-differential angular
distributions

1

⟨Γ⟩
d ⟨Γ⟩

dcos θK
= 3

4
[1 − ⟨FL⟩ ] sin2θK + 3

2
⟨FL⟩ cos2θK , (6.21)

1

⟨Γ⟩
d ⟨Γ⟩

dcos θ`
= 3

4
⟨FL⟩ sin2θ` +

3

8
[1 − ⟨FL⟩ ] (1 + cos2θ`) + ⟨AFB⟩ cos θ` (6.22)

The observables ⟨A(2)
T ⟩ and ⟨Aim⟩ = ⟨J9⟩ / ⟨Γ⟩ are determined from

2π

⟨Γ⟩
d ⟨Γ⟩
dφ

= 1 + 1

2
[1 − ⟨FL⟩ ] ⟨A(2)

T ⟩ cos 2φ + ⟨Aim⟩ sin 2φ, (6.23)

implying 2S3 = (1 − ⟨FL⟩) ⟨A(2)
T ⟩. Note that (6.22) and (6.23) are based on the approxi-

mation (6.12), which is well justified within our scenario.
The angular observables ⟨Ji⟩ and the branching ratio ⟨B⟩ are proportional to the

square of hadronic form factors, the main source of theory uncertainty. In normalized
combinations of the angular observables, for example AFB and FL, these uncertain-
ties partially cancel. The most prominent example is the position q2

0[AFB] of the zero
crossing ofAFB [Ali+00; BFS01]. It has been determined only recently by LHCb [Par12];
however, we do not include it in the fit due to the large experimental uncertainty. More-
over, note that q2

0[AFB] is extracted from a fit using mostly the same information as for
⟨AFB⟩ [1,6], hence including the former in addition to the latter would be double use
of the data. A number of suitable combinations of the angular coefficients that reduce
the form-factor dependence have been discovered for both low- and high-q2 regions.
At low q2 [KM05; Ege+08; Ege+10; BS12; Mat+12]

⟨A(2)
T ⟩ = ⟨J3⟩

2 ⟨J2s⟩
, ⟨A(re)

T ⟩ = ⟨J6s⟩
4 ⟨J2s⟩

, ⟨A(im)
T ⟩ = ⟨J9⟩

2 ⟨J2s⟩
, (6.24)

⟨A(3)
T ⟩ =

¿
ÁÁÀ ⟨2J4⟩2 + ⟨J7⟩2

−2 ⟨J2c⟩ ⟨2J2s + J3⟩
, ⟨A(4)

T ⟩ =
¿
ÁÁÀ⟨J5⟩2 + ⟨2J8⟩2

⟨2J4⟩2 + ⟨J7⟩2
, (6.25)
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⟨A(5)
T ⟩ =

√
⟨4J2s⟩2 − ⟨J6s⟩2 − 4( ⟨J3⟩2 + ⟨J9⟩2 )

8 ⟨J2s⟩
; (6.26)

whereas at high q2 [BHD10]

⟨H(1)
T ⟩ =

√
2 ⟨J4⟩√

−2 ⟨J2c⟩ ⟨2J2s − J3⟩
, (6.27)

⟨H(2)
T ⟩ = ⟨J5⟩√

−2 ⟨J2c⟩ ⟨2J2s + J3⟩
, ⟨H(3)

T ⟩ = ⟨J6s⟩

2
√

⟨2J2s⟩2 − ⟨J3⟩2
. (6.28)

For brevity, factors of β` =
√

1 − 4m2
`/q2 have been set to unity, since they are negligible

in our scenario for the considered range q2 ≳ 1 GeV2. Recently, [Mat+12] found that
H

(1)
T and H(2)

T (P4 and P5 in their notation) are also optimized observables at low q2.
We note that at low q2, J3 and J9 vanish at leading order in QCDF [BHP08], making

them ideal probes of chirality-flipped operators i = 7′,9′,10′ because leading terms in
QCDF are ∼ Re[CiC∗i′] and ∼ Im[CiC∗i′]. Only partial results of the subleading corrections
exist [BFS05; FM03] and only those of kinematic origin are included in the numerical
evaluation. ⟨A(2)

T ⟩ and ⟨2S3⟩ are included in our fit because they might allow us to
obtain information on the nuisance parameters used to model yet-unknown subleading
contributions (see Appendix A.1.3). J9 and also J7,8 vanish for real Wilson coefficients,
and therefore the measurements of ⟨A(im)

T ⟩ and ⟨Aim⟩ are not of interest in our scenario.

At high q2, FL and A
(2)
T become short-distance independent [BHD10] and the ex-

perimental data allow us to constrain the form-factor-related nuisance parameters; see
Section 7.2.2 and Appendix A.1.2. This has been exploited recently [HH12] to extract
the q2 dependence of form factors from data; compared to preliminary lattice results,
the authors report overall agreement within the currently sizable uncertainties.

In our predictions, we therefore focus on the yet-unmeasured optimized observables
⟨A(re,3,4,5)

T ⟩ at low q2 and ⟨H(1,2,3)
T ⟩ at high q2.

6.3.4 Bs → µ+µ−

The rare decay Bs → µ+µ− is helicity suppressed in the SM, making it an ideal probe
of contributions from scalar and pseudoscalar operators. Its branching ratio depends
only on C10 in the scenario under consideration. At leading order in the SM, it is

B(Bs(t = 0) → µ+µ−) =
G2
F α

2
eM

3
Bs
f2
Bs
τBs

64π3
∣VtbV ∗

ts∣
2

¿
ÁÁÀ1 −

4m2
µ

M2
Bs

4m2
µ

M2
Bs

∣C10∣
2

(6.29)

and is predicted in the SM to be around 3 × 10−9. The main uncertainties are due to the
decay constant fBs and the CKM factor ∣VtbV ∗

ts∣. This rare decay is particularly strong in
constraining the MSSM parameter tanβ, as its extra contribution to the (pseudo-) scalar
Wilson coefficient is ∝ tan3 β [BK00].

In (6.29), the BsB̄s mixing has not been taken into account, i.e., the branching ratio
refers to time t = 0. However, experimentally the time-integrated branching ratio is
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determined. Both are related in our SM-like scenario as [Bru+12]

B(Bs → µ+µ−) = 1

1 − ys
B(Bs(t = 0) → µ+µ−), ys =

∆Γs
2 Γs

. (6.30)

Lately, the most precise measurement of the lifetime difference of the two Bs mass
eigenstates, ∆Γs, became available from LHCb [Cla12] and moreover LHCb succeeded
to determine the sign of ∆Γs [Aai+12a] which turned out to be SM-like. In view of this,
we will use the numerical value from LHCb ys = 0.088 [Cla12].

In the last decade, the Tevatron experiments DØ [Aba+10] and CDF [Aal+11b; Cor12]
lowered the upper bound on the branching ratio by several orders of magnitude to a
value close to 1 × 10−8; and CDF announced the first direct evidence based on a 2σ
fluctuation over the background-only hypothesis [Aal+11b; Cor12]. In 2012, the LHC
experiments LHCb, CMS, and ATLAS provided their results based on the complete
2011 run [Aai+12c; Aai+12d; Cha+11; Cha+12b; Aad+12b]. In our analysis we use the
most stringent result presented before the 2012 summer conferences, B(Bs → µ+µ−) <
4.5×10−9 (3.8×10−9) at 95 % (90 %) CL, obtained by LHCb [Aai+12d]. In the meantime,
an improved limit, B(Bs → µ+µ−) < 4.2 × 10−9 (3.7 × 10−9), based on a combination of
the 2012 data of LHCb, CMS, and ATLAS has been published [ATL12]. The experiments
report less events than expected within the SM, but overall the agreement is within 1σ.

All of the above limits are extracted using the CLS method [Rea02]. Now we are
facing the question of how to include the search result, or limit, into our likelihood.
The CLS method — a hybrid somewhere in between Bayesian and frequentist territory
— is designed with the purpose of either setting a limit or claiming a discovery, but it is
not meant to produce a probability distribution about how probable a particular value
of B is. In our opinion, there is no clean way to translate the CLS curve, much less only
two numbers, say B90 and B95, into a useful contribution to the likelihood. However,
several schemes of varying sophistication that try to accomplish just that exist in the
literature [ATR06; Fla+09; Ree10].

6.3.4.1 Exclusion limit and the Amoroso distribution

We suggest a Bayesian alternative: it is preferable to directly use the posterior on the
branching ratio P (B ∣D), computed by a general algorithm for multichannel search
experiments [Hei05]. This posterior is almost always produced to compute Bayesian
limits for cross checks with CLS results, but for political reasons, collaborations often
decide to include only the CLS results in a publication. Having obtained P (B ∣D),
we can include it directly into the likelihood as in (6.2), thereby including the max-
imum amount of information. The input numbers — expected signal yields, back-
ground yields — that are needed to compute P (B ∣D) are publicly available from LHCb
[Aai+12d]; only the correlations of the yields are not published. Our colleagues at
LHCb2 provided the posterior in the form of pairs (Bi, Fi) with Fi = i×0.01, i = 1, . . . ,98.
Here, F is the posterior cumulative allowing to determine the limit Bα at credibility
level α from

F (Bα∣D) ≡ ∫
Bα

0
dBP (B∣D) = α . (6.31)

For convenience, we seek an analytical expression g(B) interpolating the data points.
We constrain g(⋅) by requiring that it vanish for negative branching ratios and that it

2Special thanks to Diego Martinez Santos.
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yield the same 10 %, 50 %, and 90 % limits as obtained from F (⋅∣D):

g(B ≤ 0) = 0 (6.32)

∫
Ba

0
dB g(B) = α, α = 0.1,0.5,0.9 . (6.33)

We choose g(B) = Amoroso(B∣µ,λ, a, b). The Amoroso family [Cro10] is a continuous
unimodal four-parameter family of probability distributions that easily accommodates
the constraints and provides an accurate approximation. Many well known distribu-
tions are direct members or appear as limits of the Amoroso family. Its functional form
is

Amoroso(B∣µ,λ, a, b) = 1

Γ(a) ∣ b
λ
∣ (B − µ

λ
)
ab−1

exp [−(B − µ
λ

)
b

] (6.34)

for B, µ, λ, a, b ∈ R, a > 0,

support B ≥ µ if λ > 0, B ≤ µ if λ < 0.

We set the location parameter µ to the minimum physical value, µ = 0, and ensure that
the scale parameter λ is positive to satisfy (6.32). The values of λ and of the shape
parameters a and b are found by numerically solving the set of three equations (6.33).
Great care must be taken to select a good initial value for the numerical minimiza-
tion, else the gradient finding will go astray. We choose initial values similar to the
case of the LogGamma distribution, for which details are given in Section A.2. The
Amoroso distribution provides an excellent closed-from approximation of the LHCb
data; cf. Fig. 6.4. For the input data of

B0.1 = 0.56, B0.5 = 2.03, B0.9 = 4.45, (6.35)

the relative error is at most 2 %, and the Amoroso parameters are

µ = 0, λ = 2.971 × 10−9, a = 0.824, b = 1.699 . (6.36)

Compared with the CLS numbers, the Bayesian limits B90 = 4.45 × 10−9,B95 = 5.32 come
out slightly larger. Finally, it is worth stressing that the posterior mode of the Amoroso
PDF is at B = 1.27 × 10−9 (B = 4.2 × 10−9 in the SM with the correction proposed in
[Bru+12], and not at B = 0, as a naive interpretation of a limit might suggest. Indeed,
LHCb reports B = (0.8+1.8

−1.3) × 10−9 from an unbinned maximum-likelihood fit, in agree-
ment with the mode of P (B∣D). At present, fewer events than expected within the SM
are detected, yet it is too early to speak of an anomaly.
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Figure 6.4: The posterior cumulative (dotted blue) from the LHCb search [Aai+12d] for Bs →
µ+µ− and the interpolation with the cumulative (solid red) of the Amoroso PDF (solid green).
The three interpolation fixed points are indicated by horizontal dashed lines.





7 Global fit of rare B decays

In our search for new physics in rare B decays, our model M ought to contain minimal
assumptions beyond the SM, in particular it should be agnostic to the specifics of the
hypothetical underlying physics model; e.g., the MSSM. The effective field theory (EFT)
description presented in Section 5.2 is the ideal framework for this purpose. To mini-
mize assumptions about new physics, we assume an EFT with real (instead of complex)
Wilson coefficients Ci and no effective operators beyond the SM basis. In that case, NP
is allowed only from heavy, unknown particles in extra contributions to Ci as

Ci = CSM
i +∆CNP

i . (7.1)

The motivation is as follows: if there is no discrepancy between the data and the SM,
and M fails to give a significantly better explanation of the data, then by Occam’s ra-
zor it is futile to posit even more involved models than M . Note that this is a purely
statistical argument, but it also helps with the physics case. By restricting to Ci ∈ R,
we explicitly disallow sources of CP violation beyond the CKM mechanism. Revers-
ing the argument, should the need for complex Ci arise from the data, then we would
have a (partial) answer to the CP problem. On a related footing, more involved EFTs
have been studied that include additional scalar, vector, and tensor operators [Des+11;
BHD11b; APS12; AS12]. If such contributions were found to be present in nature, they
would constitute the footprint of a new, more fundamental theory.

7.1 Overview

We analyze the following four b→ s reactions

B →K∗γ , B →K`+`− , B →K∗`+`− , Bs → µ+µ− (7.2)

using the ∆B = 1 EFT (cf. Section 5.2) in the SM operator basis (5.18) (5.20) with real
Wilson coefficients Ci. Through Bayes’ theorem (2.4), we infer the posterior probability
of the three parameters of interest, θ = (C7,C9,C10), given the data D from experiments.
As a convenient diffuse prior, we choose P (θ,M) = const in the ranges

C7 ∈ [−1,1], C9,10 ∈ [−10,10]. (7.3)

In order to account for the uncertainty in the theory predictions, we include 28 nuisance
parameters ν, six of which due to the CKM parameters (cf. (5.11)) and the masses of the
b and c quark are common to all observables. Hadronic uncertainties (cf. Section 5.3)
are modeled with two parameters for the B → K`+`− form factor, one parameter for
each of the three form factors appearing in B → K∗γ,B → K∗`+`− decays , and one
parameter for the Bs → µ+µ− decay constant. Unknown subleading corrections are
separately considered for low and high q2 due to the different theoretical approaches,
QCD factorization (QCDF) at low q2 and OPE at high q2 (cf. Section 5.3); they are further



76 7. Global fit of rare B decays

subdivided into parameters forB →K andB →K∗ observables. In total, there are four
(K) and twelve (K∗) nuisance parameters for subleading corrections. Full details about
each nuisance parameter νi and our prior choice P (νi) are given in Appendix A.1. We
assume nuisance parameters independent a-priori,

P (θ,ν,M) = P (θ,M)P (ν,M), P (ν,M) =∏
i

P (νi,M) . (7.4)

The likelihood P (D∣θ,ν,M) is a product of 57 independent terms comprising 59
measurements of 27 observables in the channels (7.2); B → K∗`+`− is the dominant
contributor with 42 inputs. All observables are defined in Sections 6.3.1 – 6.3.4, their
experimental values are summarized in Section 6.3.4.1 and Tables A.2 – A.4. All mea-
surements are included as 1D (asymmetric) Gaussians, except for the bivariate Gaus-
sian describing the two correlated time-dependent CP asymmetries in B → K∗γ (cf.
Section 6.3.1), and the Amoroso limit on B(Bs → µ+µ−) (cf. Section 6.3.4). Bayes’ theo-
rem expresses the full 31D posterior as

P (θ,ν ∣D,M) = P (D∣θ,ν,M)P (θ,ν,M)
Z

. (7.5)

Samples from the posterior are generated using the PMC algorithm with initialization
from MCMC and hierarchical clustering as explained at length in Chapter 4. These
draws provide access to all 1D and 2D marginalized distributions as well as the evi-
dence Z. In addition, they are used to perform uncertainty propagation as in (2.16) to
compute predictions for observables that have not been measured so far.

We repeat the fit with different settings. One the one hand, by using only subsets of
the observables we demonstrate the information coming from, for example, the B →
K`+`− observables. On the other hand, we run the fit with all observables and two sets
of priors to study the prior dependence of our results. Finally, we run the fit within
the SM by fixing the Wilson coefficients to SM values and varying only the nuisance
parameters for the model comparison with the NP scenario.

7.2 Marginal distributions

7.2.1 Wilson coefficients

Now we present the main physics result of this work: the marginal posterior distribu-
tions of the Wilson coefficients C7,9,10. The 2D 95 %-credibility regions are shown in
Fig. 7.1 when applying the B →K∗γ constraints (Section 6.3.1) in combination with (a)
only low- and high-q2 data from B → K`+`− (Section 6.3.2); (b) only low-q2 data from
B → K∗`+`− 1; (c) only high-q2 data from B → K∗`+`− (Section 6.3.3); and finally (d) all
the data, including also Bs → µ+µ− (Section 6.3.4).

The most stringent constraints on C9,10 come from the high-q2 data of B → K∗`+`−

that should be taken with some caution since the form factors are only available as
extrapolations of LCSR results from low q2. In the near future, we expect more accurate
lattice calculations of form factors to close this weak point. Also shown are the SM
predictions of C7,9,10(µ = 4.2 GeV) using NNLO evolution [Bob+04].

1Here we enlarged the prior ranges of C7,9,10 by a factor of 2.
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Figure 7.1: The posterior 95 %-credibility
regions of the Wilson coefficients
C7,9,10(µ = 4.2 GeV) are shown when
applying the B → K∗γ constraints in
combination with (a) only low- and
high-q2 data fromB →K`+`− (brown); (b)
only low-q2 data from B →K∗`+`− (blue);
(c) only high-q2 data from B → K∗`+`−

(green); and (d) all the data, including
also Bs → µ+µ− (light red), showing as
well the 68 %-credibility interval (red).
The SM values CSM

7,9,10(not fitted) are
indicated by ◆.

Using all the data, we confirm the findings of previous analyses [APS12; Bob+12]
that only two solutions exist at the 95 %-credibility level: the first exhibits the same
signs of C7,9,10 as the SM. The second solution corresponds to a first order degeneracy
of all observables under a simultaneous sign flip C7,9,10 → −C7,9,10, which arises as each
observable X is a function of products of Wilson coefficients X = f(∑i∑j≥i aijCeff

i Ceff
j )

for some coefficients aij . Ignoring the small contributions from the operators O1 − O6

to the effective Wilson coefficients Ceff
i , the symmetry is exact. There are two additional

local maxima that correspond to a sign flip of C7 → −C7 of the former solutions. In
Table 7.1, we list the properties of these four modes, categorized by the signs of C7,9,10.
As witnessed by the evidence, Z, the SM-like and sign-flipped solutions essentially
make up the whole posterior mass, with ratios of 52 % and 48 %, respectively. The other
two solutions are suppressed by many orders of magnitude due to B → K∗`+`−, and
thus do not appear at the 95 % level. With the evidence values shown in Table 7.1, the
solutions would appear at the 6.3σ and 7.0σ level. For the two dominant solutions, the
goodness-of-fit results are nearly identical: both p values based on the statistics Rlike
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sgn(C7, C9, C10) best-fit point log(MAP) Rlike plike/% Rpull ppull/% log(Z)

(−, +, −) (−0.293,3.69,−4.19) 425.22 402.59 60 48.4 75 385.3
(+, −, +) (0.416,−4.59,4.05) 425.08 402.49 60 48.5 75 385.2
(−, −, +) (−0.393,−3.12,3.20) 404.67 387.88 0.9 76.5 4 363.9
(+, +, −) (0.558,2.25,−3.24) 400.91 384.52 0.2 83.1 1 358.9

SM: (−, +, −) (−0.327,4.28,−4.15) 431.46† 402.53 70 48.5 83 392.6

Table 7.1: Best-fit point (ν omitted), log maximum a-posteriori (MAP) value, goodness of fit
summary and log evidence for the four local modes (denoted by the signs of (C7, C9, C10)) of
the posterior including all experimental constraints. The renormalization scale is fixed to µ =
4.2 GeV. For comparison, we include the case with (C7, C9, C10) fixed at the SM values for which
only nuisance parameters are varied (denoted by SM). The nuisance parameters are discarded
when counting the degrees of freedom to compute the shown p values based on the statistics
Rlike and Rpull. † When comparing the posterior of the SM with the other modes, note that the
prior volume of (C7, C9, C10) is 6.68 in log units.

and Rpull (see Section 7.3) are large, indicating a good fit. In contrast, the suppressed
solutions do not seem to explain the data well. We note that the MCMC revealed a
handful of additional modes with large 6 ≲ ∣C9,10∣ ≲ 9. We do not consider these further
because they are suppressed by a factor of roughly exp(40) compared to the global
maximum.

To study the dependence of our fit results on the priors, we use a second set of pri-
ors (wide priors). We scale the uncertainties of those parameters associated with form
factors and unknown subleading contributions in Λ/mb (Table A.7) by a factor of three
and adjust the parameter ranges accordingly. All other priors are kept the same. This
choice includes the major sources of theory uncertainty and represents a pessimist’s
view of (a) the validity of form factor results based on LCSR at low q2, (b) their extrap-
olation to high q2 values, and c) subleading corrections exceeding expectations from
power counting. The results of the fit at the low scale µ = 4.2 GeV to all data with these
new priors is shown in Fig. 7.2 alongside the corresponding 68 %- and 95 %-credibility
regions of Fig. 7.1 for the two solutions in each of the three planes C7 − C9, C7 − C10 and
C9 − C10. Most importantly, the fit is stable and gives comparable results with both sets
of priors thanks to the large number of experimental constraints. In all six planes, the
area covered by the 68 % region with wide priors is similar to that of the 95 % region
with nominal priors. While the two sets of regions are concentric in the C7 − C9 plane,
there appears a rather hard cut-off at ∣C10∣ ≈ 5 in the C7,9 – C10 planes. For completeness,
we list the set of smallest intervals and local maxima derived from the 1D marginalized
distributions for C7,9,10 for both sets of priors in Table 7.2. Our results for the 95 %-
credibility intervals are compatible with those of Ref. [APS12]. More specifically, we
find a larger interval for C7, covering smaller values of ∣C7∣. This is due to the use of
B →Xsγ constraints that are used in Ref. [APS12], but not included in our work. How-
ever, with regard to C9,10, our credibility intervals are 10 – 40 % smaller. Compared to
Ref. [APS12], we have added the 2012 results by LHCb and BaBar. The question arises if
the inclusion of the inclusive decaysB →Xsγ andB →Xs `

+`− could further shrink the
C9,10 credibility intervals. In a future continuation of this work, we expect that stronger
constraints on C7, for example from B → Xsγ, will lead to reduced uncertainty also on
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Figure 7.2: The marginalized 2D 68 %- and 95 %-credibility regions of the Wilson coefficients
C7,9,10 at µ = 4.2 GeV for the SM-like (top row) and sign-flipped solution (bottom row), arising
from nominal ranges as in Fig. 7.1 (red and light red) and wide ranges (solid and dashed con-
tours) of the nuisance parameters. We indicate the values of CSM

7,9,10 in the SM (◆) and at the local
maximum of the full posterior (6) resulting from nominal prior ranges in the respective region.

C9,10 due to the tight connection to B →K∗`+`− at low q2.
From the allowed ranges for C7,9,10, we can estimate limits on the scale of generic

flavor-changing neutral currents at tree level, described by

Heff = ∑
i=7,9,10

Õi
(ΛNP

i )2
, (7.6)

Õ7 =mb [s̄σµνPRb]Fµν , Õ9,10 = [s̄γµPLb][¯̀γµ(1, γ5)`] . (7.7)

Using Ci = CSM
i + ∆CNP

i and setting Ci to the boundary values of the 95 % intervals
(nominal priors), we extract ∆CNP

i . By matching (7.6) with (5.18), (5.20) and (5.21), we
extract the minimum scale ΛNP

i for both destructive and constructive interference with
the SM; see Table 7.3. The difference between, for example, O9 and Õ9 is that in the
latter the coupling is set to one, and the entire suppression is due to the scale 1/ΛNP,
while the former contains SM parameters like α/4π , Vts, and GF. The resulting scales
of ≳ 10 TeV above which NP “is still allowed” are similar to those found in previous
analyses [Bob+12; APS12]. In general, ΛNP

i is about 20 TeV larger in the SM-like solu-
tion, but even for the sign-flipped solution with a large deviation from the SM, a direct
detection at LHC seems unlikely.
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C7 C9 C10

68 % [−0.34,−0.23] ∪ [0.35,0.45] [−5.2,−4.0] ∪ [3.1,4.4] [−4.4,−3.4] ∪ [3.3,4.3]

95 % [−0.41,−0.19] ∪ [0.31,0.52] [−5.9,−3.5] ∪ [2.6,5.2] [−4.8,−2.8] ∪ [2.7,4.7]

modes {−0.28} ∪ {0.40} {−4.56} ∪ {3.64} {−3.92} ∪ {3.86}

68 % [−0.39,−0.19] ∪ [0.30,0.48] [−5.6,−3.8] ∪ [2.9,5.1] [−4.0,−2.5] ∪ [2.6,3.9]

95 % [−0.53,−0.13] ∪ [0.24,0.61] [−6.7,−3.1] ∪ [2.2,6.2] [−4.7,−1.9] ∪ [2.0,4.6]

modes {−0.30} ∪ {0.38} {−4.64} ∪ {3.84} {−3.24} ∪ {3.30}

Table 7.2: The 68 %- and 95 %- credibility intervals and the two local modes of the marginalized
1D posterior distributions of the Wilson coefficients at µ = 4.2 GeV, P (Ci∣D), i = 7,9,10, for
nominal (upper) and wide (lower) ranges of nuisance parameters (see Appendix A.1).

ΛNP
7 [TeV] ΛNP

9 [TeV] ΛNP
10 [TeV]

SM-like 29, 38 28, 37 30, 44
SM-sign-flipped 12, 13 11, 13 12, 13

Table 7.3: Constraints on the NP scale ΛNP
i (i = 7,9,10) assuming generic flavor violation at tree

level using the 95 %-credibility region from Table 7.2. Two possibilities arise from destructive
and constructive interference of the SM with SM-like and SM-sign-flipped solutions.
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Figure 7.3: Prior (dotted) and posterior distributions of the nuisance parameters f+(0) (a) and
b+1 (b), governing the normalization and the q2 shape of the B → K form factor f+(q2), respec-
tively. We show the posterior using B →K`+`− data only (dashed) vs all data (solid).

7.2.2 Nuisance parameters

So far, we have discussed the fit results for the Wilson coefficients C7,9,10 that enter most,
but not all of the observables. Exceptions are those of B → K∗γ, which depends only
on C7, and Bs → µ+µ−, which depends only on C10. The marginalized distributions in
the C9 − C10 plane of Fig. 7.1 show that, compared to B → K∗, the fit with B → K only
measurements prefers a smaller value of ∣C9∣2+∣C10∣2; the marginal modes (see Fig. 7.8(c))
are near C9 = 0, C10 = ±5. Since the B → K∗ constraints dominate the combination, a
“tension” arises.

Let us now discuss the role that the nuisance parameters play in the fit. First, we note
that the posterior distributions of the common nuisance parameters — those that are not
specific to rare b→ s decays, like the CKM parameters and the c and b quark MS masses
— do not deviate from their prior distributions given in Table A.5. This is mainly due
to the strong prior knowledge from other measurements and the comparatively low
precision of both experimental and other, mostly hadronic, theory inputs in the rare
b→ s decays.

Second, we consider the remaining hadronic nuisance parameters of form factors
and subleading corrections, for which the priors are based mostly on educated guesses
rather than precise knowledge. Because B → K and B → K∗ form factors enter ob-
servables at both low and high q2, they are determined by all the B → K`+`− and
B →K∗(γ, `+`−) observables respectively. In contrast, the parametrization of unknown
subleading Λ/mb corrections is different at low and high q2 (and naturally in B → K
and B → K∗ decays). Since subleading corrections at high q2 receive further paramet-
ric suppression by either C7/C9 or αs [GP04; BHD10], the corresponding observables at
high q2 are rather weakly dependent on them. In contrast, at low q2 large effects are not
surprising.

Therefore, we expect a significant update to our knowledge of form factors to accom-
modate the tension between B → K and B → K∗ constraints. Any remaining tension
should be visible in low-q2 subleading corrections.

Let us first consider the posterior distributions of the two nuisance parameters f+(0)
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and b+1 entering the q2 parametrization of the B → K form factor f+(q2) (see (A.5) and
priors in Table A.7 from LCSR results [Kho+10]). The q2 shape of the form factor is
controlled by b+1 . The low- and high-q2 data of the B → K`+`− branching fraction (Ta-
ble A.3) give rise to a narrower posterior compared to the prior distribution in Fig. 7.3,
which does not change much when using only B → K`+`− data or combining it with
B →K∗`+`−. This preference also appears when choosing the wide set of ranges for the
prior distributions of the nuisance parameters, demonstrating that the data suppress
the tails in the prior of b+1 . Concerning f+(0) that corresponds to the normalization of
the form factor, we observe a strong preference for low values in the posterior distribu-
tion in Fig. 7.3. However, this preference almost disappears when onlyB →K`+`− data
is used in the fit. This behavior persists even when allowing for wider prior ranges,
and is easily understood in terms of the above-mentioned tension.

We also find strong modifications of the posterior with respect to prior distribu-
tions for the three scale factors ζA1,A2,V multiplying the three form factors A1,A2, V
in B → K∗. The posteriors are shown in Fig. 7.4 along with the common prior dis-
tribution. Of the three, A1 is known most accurately after the fit, while A2 and V are
simultaneously shifted and compressed. Using all constraints,A1,A2, and V are shifted
towards higher values, but without B → K constraints, the shift actually points in the
opposite direction. Again, the positive shift serves to reduce the tension and allows
a good fit to all constraints with values of C9,10 smaller than required by the B → K∗

constraints alone.

Parameters describing subleading phases are mostly unaffected by the fit. All phases
come out with a flat distribution, indicating that they could have been omitted from the
fit without any consequences. These phases will become important in the future with
measurements of CP violating observables.

The largest update to knowledge of subleading parameters occurs for the scale factor
of the transversity amplitudes AL0,⊥ (Appendix A.1.3) describing the B → K∗ decays,
with a downward shift of about 10 % and a slight reduction of variance. We observe this
effect only in the fit with all observables. NeitherARi norB →K subleading parameters
are updated significantly in any of the fits. ARi has little effect compared to ALi because
the observables depend on AL,Ri ∝ C9 ∓ C10, and C9 ≈ −C10.

There are a number of ”optimized” B → K∗`+`− observables with reduced form
factor dependence; cf. (6.24) – (6.28) and the predictions in Section 7.6 However, the
opposite is also beneficial. In fact, FL and A(2)

T are independent of Ci at high q2. Never-
theless, we include them in the fit to reduce the theory uncertainty, which in turn helps
to improve the posterior knowledge of Ci. This interplay is what makes the global fit
powerful. Similarly, A(2)

T depends strongly on subleading corrections at low q2.

In summary, we do not observe a drastic update of any nuisance parameter, show-
ing that the fit is stable 2. The uncertainty on the form factors and some subleading
corrections is reduced by the data; the most likely values are shifted due to the tension
between B → K and B → K∗ constraints. More theory as well as experimental input is
required to reduce the uncertainty on the remaining subleading corrections.

2For the suppressed solutions, scale factors for B → K∗ form factors and AL⊥ shift by O(15 %) and AL∥
even peaks at the left boundary.
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Figure 7.4: Posterior distributions of the fit with all data for the nuisance parameters ζA1,A2,V

serving as scale factors to the corresponding B → K∗ form factors. The common prior is indi-
cated.

7.3 Goodness of fit

To check that the assumed model with three real Wilson coefficients provides a good
description of the experimental observations, we determine the goodness of fit. We fol-
low the standard procedure (cf. Appendix C): first we choose a discrepancy variable
R(D∣θ,ν) with the parameter values chosen at a local mode of the posterior, then calcu-
late its distribution, and finally determine the p value of the test statistic for the actual
data set. For more details on p values and how we interpret them in this work, we refer
to [Bea+11]. We make two closely related choices for R, defined as follows.

For each observable X , we compare its theory prediction Xpred(θ, ν) with the mode
of the experimental distribution (central value) ofX , denoted byX∗. Next, we compute
the frequency f that a value ofX less extreme thanXpred would be observed. Using the
inverse of the Gaussian cumulative distribution function, Φ−1(⋅), we define the pull:

δ ≡ Φ−1 [f + 1

2
] . (7.8)

Note that for a 1D Gaussian, this reduces to the usual δ = (X∗ −Xpred)/σ. In the 1D
case, the (Gaussian, Amoroso) distributions yield a signed δ (positive ifX∗ >Xpred, else
negative), while for the multivariate Gaussian, δ is positive semidefinite. We define the
discrepancy variable Rpull as

Rpull(D∣θ,ν) = ∑
i

δ2
i , (7.9)

where i extends over all 57 experimental inputs. In order to pass from the discrepancy
variable to a test statistic, we have to evaluateR at fixed parameter values; we choose the
local modes of the posterior denoted by θ∗,ν∗. As a cross check to Rpull, we also con-
sider Rlike, defined as the value of the log likelihood, Rlike(D∣θ∗,ν∗) = logP (D∣θ∗,ν∗).
Its frequency distribution is approximated by generating 105 pseudo experiments D ∼
P (D∣θ∗,ν∗). Since we do not have the raw data — events, detector simulations etc. —
available, we generate pseudo experiments. Consider the case of a single measurement
with Gaussian uncertainties N(µ = X∗, σ): we fix the theory prediction, shifting the
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maximum of the Gaussian to Xpred(θ∗,ν∗), but keep the uncertainties reported by the
experiment. Then we generate X ∼ N(µ = Xpred(θ∗,ν∗), σ), and proceed analogously
for all observations to sample D. The p value is computed by counting the fraction of
experiments with a likelihood value smaller than that for the observed data set and cor-
rected for the number of degrees of freedom; see [Bea+11, Section III.D.5]. Although the
generation of pseudo data is far from perfect, we emphasize that, on the one hand, it
is fast and, on the other hand, we will not consider the actual value of p too rigorously.
Two models with p values of 40 % and 60 % both describe the data well, and that is all
the information we want from the p value.

If we used the maximum likelihood parameters and ignored the Bs → µ+µ− contri-
bution, both statistics would be equivalent to χ2 and thus yield the same p value. The
parameter values at the global mode of the posterior differ only little from the maxi-
mum likelihood values, and the Bs → µ+µ− input is negligible as it is only one of 59
inputs. We therefore consider it reasonable to approximate the distribution of Rpull by
the χ2-distribution with dimD − dimθ degrees of freedom in order to compute the p
value.

To highlight the excellent quality of the fit, we present the pulls (7.8) for all 57 con-
straints individually; cf. Fig. 7.5(a) (B → K∗γ), Fig. 7.5(b) (B → K`+`−), and Fig. 7.6
(B → K∗`+`−). Finally, the pull for LHCb’s result of Bs → µ+µ− is -1.1; i.e., its most
likely value from the measurement is about 1σ (in terms of the experimental uncer-
tainty) lower than the theory prediction. Here, the theory parameters are chosen at the
global maximum of the posterior with SM signature. Fixing θ at SM values but allow-
ing ν to vary, we obtain nearly identical plots, and we therefore omit them. The values
ofRlike andRpull are just as good as for the two dominant solutions, but the p values are
even larger, as the number of degrees of freedom used in the χ2-distribution to calculate
p differs by three.

We observe the largest pull at +2.5 for the Belle measurement of ⟨B⟩ [16,19.21] for
B → K∗`+`−. It is the only pull surpassing 2.0. Fig. 7.6 shows, for example, how the
debate about the existence of a zero crossing of AFB at large recoil was settled: the
first published measurements by Belle and CDF deviated from the SM prediction, but
when taken together with LHCb’s recent result that shifts the best-fit point towards
the SM, there is good agreement between the SM and the experiments. In fact, LHCb
has presented the first direct measurement of the zero crossing based on 1 fb−1 at q2

0 =
(4.9+1.1

−1.3) GeV2 this year [Par12].
In conclusion, the overall goodness of fit as indicated by the p values of Rpull in Ta-

ble 7.1 is very high, and there is not a single very large pull. At the posterior global
mode in our scenario M , there are essentially no differences compared with the SM
pulls. We conclude that M does not significantly improve over the SM. The data are
well described by both fit solutions as well as the SM. p values for Rlike are uniformly
lower, but provide similar support of our findings.

7.4 Model comparison

Since there are several posterior local modes with reasonably high p values, it is neces-
sary to assess which of them is favored by the data; i.e., to perform a model compari-
son. Suppose the full parameter space is decomposed into disjoint subsets Si, i = 1 . . . n,
where Si contains only a single mode of the posterior. Then we compute the local ev-
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Figure 7.5: Pull values for observables in (a) B → K∗γ and (b) B → K`+`− calculated at the
best-fit point. The pull definition for the correlated observables S and C permits only δ ≥ 0; for
details see Section 7.3.

idence Z(Si) by integrating over Si in (2.5). In fact, Z(Si) is available as the average
weight of all importance samples in Si, with an accuracy of roughly 5 %.

We also perform the global fit with C7,9,10 fixed to the SM values, varying only the
nuisance parameters; see the bottom row in Table 7.1. The prior normalization then
changes by log(800) = 6.68 due to omitting C7,9,10 with ranges given in (7.3), and we
denote the corresponding evidence by Z(SM). We compute the Bayes factor of the SM
vs the SM-like solution by dividing their respective evidences

B = P (D∣SM)
P (D∣M) = Z(SM)

Z(M) = exp(392.6 − 385.3) ≈ 1500 ≫ 1. (7.10)

Assuming prior odds of one, the posterior odds are given by B,

P (SM∣D)
P (M ∣D) = B P (SM)

P (M) = B , (7.11)

and thus clearly in favor of the simpler model. The effect persists if we cut the prior
range of each Ci in half to exclude all but the SM-like solution, then Z(Si) → Z(Si)/8 .
Similarly, the Bayes factor of SM versus the combination of all local modes is ≈ B/2 ≈
750 ≫ 1.

In conclusion, both the SM (with nuisance parameters allowed to vary) and our ex-
tension with real floating C7,9,10 fit the 59 experimental observations of rare B decays
well. All the Bayes factor variants are clearly in favor of the SM due its reduced com-
plexity compared to M . In our opinion, prior odds of one do not accurately reflect our
degree of belief in the SM relative to this particular scenario M considered here; e.g.
P (SM)/P (M) = 1 × 104 seems more appropriate. Then the posterior odds (2.14) give
even stronger support for the SM. In any case, we discouragingly see no evidence of NP
in the rare b → s transitions at the current level of theoretical and experimental preci-
sion. However, this may change in the future when optimizedB →K∗`+`− observables
with reduced form-factor dependence are measured.
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Figure 7.6: Pull values for observables in B →K∗`+`− calculated at the best-fit point.

7.5 Sampling performance

Our new combination of MCMC, hierarchical clustering, and PMC detailed in Chap-
ter 4 is the tool we use to obtain samples from the posterior densities in order to de-
rive marginal distributions, to compute the Bayes factors, and to compute predictions
through uncertainty propagation. Note that we have to run four independent fits to
obtain Fig. 7.1; the likelihood and the number of parameters included in the fit are
different for each set of observables. A fifth fit is needed for the set of wide priors to
compute Fig. 7.2. Introducing the shorthand notation B → K`+`− (I), B → K∗@low q2

(II), B → K∗@high q2 (III), all data with nominal (IV) and wide (V) priors, and (VI) for
the SM, we present the individual fit settings and properties in Table 7.4 for reference.
In each fit, the target is far more complex than in the examples that illustrated the clus-
tering in Chapter 4; it is therefore interesting to see how our method fares here. Multiple
sources of complexity arise: flat directions are present in the fits (III) – (V) because the
uniform priors on the phases of the complex-valued subleading corrections at high q2

are hardly altered by the fit; most 2D posteriors exhibit significant correlation between
parameters. Our results show that all fits converged after ≳ 10 iterations, independent
of the parameter dimensions. Most of the proposal components stay alive throughout
the updates, indicating that our construction of the initial proposal is successful.

A particularly beautiful example of the proposal adaptation is shown in Fig. 7.7. The



7.5 Sampling performance 87

d k NMCMC Rc L Ng Kg Nc tfinal Klive P/% ESS /%
(I) B →K 24 40 50 000 2 500 2 45 3000 12 62 32 11
(II) B →K∗@low q2 18 59 40 000 2 800 4 35 3000 11 126 70 45
(II) B →K∗@high q2 24 26 40 000 2 800 4 30 3000 14 109 58 32

(IV) all 31 50 60 000 2 1000 4 50 5000 11 95 49 23
(V) wide 31 50 100 000 1.5 1000 5 80 5000 10 78 21 6

(VI) SM 28 30 32000 - 800 1 45 3000 4 43 53 30

Table 7.4: Settings and properties used for the MCMC prerun and the PMC run; symbols as
defined in Chapter 4. NMCMC is the length of each chain in the prerun before discarding the
burn-in. tfinal is the number of update steps until convergence; Klive, P , and ESS are given for
Gaussian components in the final step with 2 × 106 samples and 200 highest-weights cropped.

dominant source of knowledge about C9 and C10 in the 24D B →K`+`− fit comes from

B(B →K`+`−) ∼ ∣Ceff
79 ∣2 + ∣C10∣2 , (7.12)

producing the annulus degeneracy in the C9 − C10 plane. The quantity Ceff
79 is defined

below in (7.14). The 90 components computed by hierarchical clustering overcover the
annulus (Fig. 7.7(a)). After the 12 updates, 28 components have died out, the remain-
ing are shrunk and scattered along the annulus, avoiding the low-probability center
(Fig. 7.8(b)). The 2D density (Fig. 7.8(c)) shows two banana-shaped local modes around
(C9,C10) = (0,±5), but the 1σ and 2σ regions wrap around the entire annulus. Due to
this complex shape, both P and ESS are fairly low, but overall, we consider the adapta-
tion remarkably successful. A single Markov chain traverses only a part of the annulus
during the relatively short prerun of length 50 000. But the ensemble of chains contains
the necessary information about the full annulus.

Common settings among fits (I) – (V) are as follows. In total, we collect 2 × 106 sam-
ples in the final step. The marginal densities shown in this chapter are computed from
the importance samples with kernel density estimation (KDE) after cropping — those
200 samples with the highest weights are ignored in order to remove outliers, and
thereby increasing the ESS. See Section 4.3.3 and Appendix F for more details. The
proposal components are of the Gaussian type. Comparing with Student’s t with ν = 13
and ν = 25, we observe highest P and ESS with the Gaussian components. This comes
at the expense of a handful severe outliers, but after cropping, the results obtained with
the Gaussian proposal have higher ESS, thus lower variance. It is not surprising that
Gaussian components give the best results since many of the marginal 1D distributions
are approximately Gaussian (see Fig. 7.4), and fat tails present in the priors of θ and
the parameters b+1 and f+(0) (see 7.3) are removed in the posterior by the peaking like-
lihood.

We verified that our main results — the contours of Fig. 7.1 and Fig. 7.2 — are stable
by repeating the three fits with lowest P — (I), (IV) and (V) — twice with Gaussian and
once with Student’s t (ν = 13) components. The biggest variations we encountered are
the slight “wiggles” in the contours of (V) (see Fig. 7.2) as a consequence of the low
ESS = 0.06, the minimum ESS of all fits. In contrast, the contours for fit (IV), also shown
in Fig. 7.2, are indistinguishable by eye for repeated runs. The 1D marginal 1(2)−σ
regions and the majority of local mode of Table 7.2 differ only in the least significant
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(a)

Figure 7.7: Fit (I) to B → K∗γ and B →
K`+`− data. 1σ ellipses of the proposal
components in the (a) initial and (b) fi-
nal step. The color serves to identify
the components between iterations, but
does not reflect the component weight.
(c) The filtered and KDE-smoothed den-
sity in the final step with 1σ (solid), 2σ
(dashed) contours and the SM prediction
(◆) at (C9,C10) = (+4.28,−4.15); compare
with the lower right panel in Fig. 7.1.

(b) (c)

digit by at most one unit, but a handful of the local modes differs also in next-to-least
significant digit by one or two units.

Finally, we scrutinized all marginals by comparing with the MCMC output to en-
sure all relevant regions of posterior support correctly appear in the PMC output. In
the MCMC prerun, we have discarded the first 20 % of the samples for burn-in, and
considered the R value for grouping only in θ, but not in ν. By construction, R is a
function of a single direction only, and its discriminating power is much larger along a
direction (θ)i compared to (ν)i, because the local modes are well separated only in the
θ direction.

The computations were carried out at the local Max Planck institute for physics
(MPP) condor cluster (MCMC prerun only) and at the MPP tier-2 cluster at Rechen-
zentrum Garching (RZG) (both MCMC and PMC). A single, serial evaluation of the
posterior in fit (IV) and (V) with all observables takes about 0.3 s on an Intel i7-2600 op-
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erating at 3.4 GHz (MPP condor), and about 0.9 s on an Intel Xeon E5645 (RZG). The ma-
jor fraction of time is spent on the 2D numerical integration needed for the prediction of
binned B → K(∗)`+`− observables at large recoil; one integration over q2 and one over
the momentum fraction of the s quark in the light cone distribution amplitude (LCDA)
are required. A total of O(5 × 106) posterior evaluations, or at least 17 CPU days, are
required for fit (IV) and (V) — the advantage of massive parallelization becomes ob-
vious. We have submitted individual jobs for each of the k chains in the prerun, then
merged and split up the chains for the hierarchical clustering that only takes at most
3 min. Finally, the importance sampling has been performed with 200 – 1000 jobs in
parallel, but note that the update of the proposal has been done in serial execution, af-
ter all jobs computing the importance weights had finished. For the fits in d = 31, this
update step took a similar amount of time as one of the many jobs computing a small
subset of importance weights; we intend to parallelize the updating at the thread level
in the future. A massively parallelized update would almost certainly incur no reduc-
tion of wallclock time due to the large overhead of starting the jobs and transferring the
data; the (binary) output of the final step of the fit with wide priors consumes 560 MB
of storage.

7.6 Predictions

As outlined in Section 6.3.3, the angular distribution of B → K∗(→ Kπ) `+`− with its
rich set of angular observables gives us the opportunity to form optimized observables
that have reduced form factor uncertainties and may exhibit sensitivity to a particular
type of new physics. Currently, no measurements of these observables are available.
We provide predictions at low and high q2 within the scenario of the SM operator ba-
sis, taking into account the present data. Consequently, future observations outside the
predicted ranges would indicate physics beyond the considered scenario. At the tech-
nical level, we use the posterior importance samples of the fit with all data and nominal
priors to compute samples of an observable X ; then we extract the credibility regions
from a histogram approximation to the distribution P (X). The procedure is a simple
application of uncertainty propagation; cf. Section 2.2.

The predictions of A(3,4,5,re)
T and H

(1,2)
T at low q2 are given in q2-integrated form for

the bin q2 ∈ [1,6] GeV2 in Table 7.5. In addition, Fig. 7.8 shows the results of the five
subbins with a bin width of 1 GeV2, as used in the first measurement of the lepton
AFB of B → K∗`+`− by LHCb [Par12]. The observables A(3,4)

T have been chosen due
to their sensitivity to the chirality-flipped C′7 [Ege+08]. The large discontinuity of A(4)

T
in q2 ∈ [1,3] GeV2 is caused by the zero crossing of J4 in its denominator (6.25). The
observable A(5)

T is restricted by construction to take values in [−0.5, 0.5] and reaches
its maximum value at the zero crossing of the lepton AFB in the bin q2 ∈ [4,5] GeV2

[Ege+10]. Its shape is sensitive to new physics contributions of the Wilson coefficients.
Note that the theory uncertainty is at a minimum when A(5)

T approaches 0.5.

The observableA(re)
T has a peak value of about 1.0 at q2 ∈ [2,3] GeV2 and has the very

same zero crossing as the leptonic AFB. Our results are in qualitative agreement with
those of Bećirević and Schneider [BS12], who stress that the deviation of the maximum
value from 1.0 and its position are sensitive to new physics. The observables H(1,2)

T
were first proposed for the high-q2 region [BHD10] as long-distance free observables.
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In addition, H(1)
T is also short-distance free, with ∣H(1)

T (q2)∣ = 1, depending only on the
sign of a form factor. Recently it was shown that at low q2, form factors also cancel in
H

(1,2)
T [Mat+12]. Each has a zero crossing in the region q2 ∈ [1,3] GeV2 that is the very

same as in the CP-averaged normalized observables J4/Γ and J5/Γ [Alt+09; BR10]. For
H

(1)
T , one observes the rise towards ≈ 1.0 for rising q2.
At high q2, the situation is more restrictive, and within the scenario of the SM opera-

tor basis, there are only three optimized observables H(1,2,3)
T [BHD10]. The predictions

for three q2 bins are given in Table 7.6. Besides ∣H(1)
T (q2)∣ = 1, we have the additional

relationH(2)
T (q2) =H(3)

T (q2). Small deviations in the predictions of ⟨H(1,2,3)
T ⟩ arise from

separate q2-integration of Ji (see (6.14) and below), such that the equality does not hold
exactly. Any large experimental deviation from the prediction ∣H(1)

T (q2)∣ = 1 would sig-
nal a breakdown of the OPE; cf. Fig. 7.9. The observables H(2,3)

T (q2) are given by the
short-distance ratio [BHD10]

H
(2,3)
T (q2) =

2 Re [Ceff
79 (q2) C∗10]

∣ Ceff
79 (q2) ∣2 + ∣ C10 ∣2

= cos (ϕ79(q2) − ϕ10)
2 r

1 + r2
, (7.13)

with

Ceff
79 (q2) = Ceff

9 (q2) + κ2m2
b

q2
Ceff

7 (q2), r(q2) = ∣Ceff
79 (q2)∣
∣ C10 ∣

, (7.14)

and Ceff
i (q2) and the factor κ = 1+O (αs) of the improved Isgur-Wise form factor relation

defined in [BHD10]. In the SM, CSM
10 ≈ −4.2 and therefore its phase is ϕ10 = π. The q2

dependence of the sum of the effective Wilson coefficients Ceff
79 (q2) is rather weak and

its imaginary parts small at NLO in QCD [BHD11b], such that ϕ79(q2) ≈ 0; whereas
the magnitudes of the Wilson coefficients are CSM

9 ≈ +4.2 and CSM
7 ≈ −0.3, and lead to

r ≈ 1 and cos (ϕ79(q2) − ϕ10) ≈ −1. Therefore, H(2,3)
T test roughly the ratio of ∣ C9 ∣/∣ C10 ∣

within our scenario of the SM operator basis and real Wilson coefficients. The results
in Table 7.6 show that current data do not allow for deviations from the SM prediction.
We remark once again that the prediction of ⟨H(1)

T ⟩ is based on the OPE and is expected
to be 1 at any particular value of q2. Therefore, our results just reflect how precisely the
form factor and the modeled subleading corrections cancel for the q2-integrated version
when taking into account the update of our knowledge of the nuisance parameters due
to the experimental information.

SM predictions have been given before [Alt+09; BHD10; APS12; Bob+12], but our full
Bayesian approach provides several improvements with respect to the conventional
procedure to estimate theory uncertainties, which we briefly review here. Convention-
ally, an observableX(ν) is computed at three values of a single parameter ν: at the cen-
tral value νcen and at (νcen)+b−a. The changes in the prediction ofX are then interpreted as
the associated uncertainty: σ+,− = ∣X(νcen)−X(νcen

+b
−a)∣, and the most probable value of

X is assumed to be the central valueX(νcen). In the presence of several parameters, the
respective uncertainties are then combined either linearly or in quadrature into a total
uncertainty. In contrast to this so-called min-max approach, we vary all parameters at
the same time and thus automatically take correlations into account. Our intervals have
a strict probabilistic interpretation as Bayesian credibility intervals, and the procedure
automatically takes care of nonlinearities and provides the most probable value.
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Figure 7.8: Predictions of unmeasured optimized observables at large recoil based on the
global fit output. We show the most probable value (solid black line) as well as the smallest
68 % (green) and 95 % (yellow) intervals of the q2-integrated observables.

q2-bin ⟨A(3)
T ⟩ ⟨A(4)

T ⟩ ⟨A(5)
T ⟩

[1.0, 6.0] 0.454 +0.081
−0.086

+0.181
−0.158 0.565 +0.156

−0.121
+0.355
−0.234 0.468 +0.019

−0.025
+0.030
−0.056

q2-bin ⟨A(re)
T ⟩ ⟨H(1)

T ⟩ ⟨H(2)
T ⟩

[1.0, 6.0] 0.33 +0.14
−0.10

+0.25
−0.22 0.441 +0.055

−0.058
+0.105
−0.113 −0.271 +0.057

−0.060
+0.117
−0.117

Table 7.5: Predictions of unmeasured optimized observables based on global fit output inte-
grated over the large recoil region. We list the most probable value and the smallest 68 % and
95 % intervals.

q2-bin ⟨H(1)
T ⟩ ⟨H(2)

T ⟩ ⟨H(3)
T ⟩

[14.18, 16] 0.99969 +0.00009
−0.00011

+0.00015
−0.00026 −0.9843 +0.0023

−0.0022
+0.0056
−0.0039 −0.9837 +0.0022

−0.0019
+0.0053
−0.0033

[16,19.21] 0.99896 +0.00025
−0.00032

+0.00044
−0.00076 −0.9704 +0.0018

−0.0019
+0.0042
−0.0037 −0.9614 +0.0015

−0.0012
+0.0037
−0.0021

[14.18,19.21] 0.99772 +0.00058
−0.00078

+0.00105
−0.00179 −0.9733 +0.0027

−0.0023
+0.0057
−0.0043 −0.9608 +0.0019

−0.0015
+0.0045
−0.0027

Table 7.6: Predictions of unmeasured optimized observables based on global fit output for the
two conventional bins and the entire low recoil region. We list the most probable value and the
smallest 68 % and 95 % intervals.
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Figure 7.9: Probability distributions of the SM predictions of q2-integrated observables in the
B →K∗`+`− decay, when varying nuisance parameters within their allowed prior ranges (solid
blue). The shaded region is the 68 % interval and the vertical (red) line indicates the prediction
when using central values of nuisance parameters. For comparison, we show the predictions
based on the posterior of the global fit (dashed green).

As a simple example consider the quadratic dependence of a branching ratio B on a
decay constant or form factor f , B ∝ f2. Assuming a Gaussian prior distribution for
f due to MAXENT, P (B) is the asymmetric χ2-distribution with one degree of free-
dom. Typical examples of such asymmetry can be seen in in Fig. 7.9 for ⟨B⟩ [1,6] and
⟨FL⟩ [1,6] (blue, solid) of the decay B → K∗`+`−, where the maximum of the distribu-
tion deviates from the vertical (red) line that indicates the prediction obtained by fixing
the nuisance parameters to their prior modes; i.e., the red line denotes the central values
of the min-max approach. This asymmetric behavior is not present in ⟨A(re)

T ⟩ [1,6] since

the form factors cancel; likewise in ⟨H(1)
T ⟩ [14.18, 16]. We list the modes and 68 % inter-

vals for a number of observables in Appendix B in Table B.1 and Table B.2, but stress
that the uncertainty of an observable X is described by the probability distribution
P (X). In the simplest Gaussian case, P (X) can be described by the mode and the 68 %
interval (for example ⟨A(re)

T ⟩ [1,6]), but in general, P (X) contains more information. As

an example, consider the boundary mode in the distribution of P (⟨H(1)
T ⟩ [14.18, 16])

in Fig. 7.9.
Our SM predictions are in good agreement with the existing literature, in which the

min-max approach is used throughout. Given that we use the same codebase of EOS
[Dyk+12], our results closely match those of Bobeth, Hiller, and Dyk [BHD10] and Bo-
beth et al. [Bob+12]. Minor differences in the central value and the magnitude of the
(asymmetric) uncertainties are due to the different statistical approach as described
above. Specifically, all central values are contained in the minimal 68 % regions of
the Bayesian results. Compared to the results of Altmannshofer, Paradisi, and Straub
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[APS12], our modes are contained in their uncertainty intervals and vice versa. But for
some observables, the size of the uncertainty region differs drastically. For example,
compare our result

⟨B(B →K∗`+`−)⟩ [1,6] = 1.64 +1.80
−0.83 (7.15)

to [APS12]

⟨B(B →K∗`+`−)⟩ [1,6] = 2.28 ± 0.63 . (7.16)

On the other hand, we also observe instances in which our region is much smaller. For
example, for FL at high q2, which is independent of Ci, but strongly dependent on form
factors, we find

⟨FL(B →K∗`+`−)⟩ [> 16] = 0.35 +0.02
−0.03 (7.17)

and [APS12]

⟨FL(B →K∗`+`−)⟩ [> 16] = 0.34 ± 0.22 . (7.18)

These discrepancies are a consequence not only of min-max versus Bayes, but of the
different ways hadronic and parametric uncertainties are taken into account; e.g, all
seven B →K∗`+`− form factors at low q2 are kept in [APS12], while we use form factor
relations to arrive at only two independent form factors (Section 5.3).

Let us finally compare the SM predictions of observables based on the prior informa-
tion with predictions based on the posterior distribution of the global fit that includes
also NP in C7,9,10. Our posterior findings are overlaid on the SM predictions for the
examples in Fig. 7.9. Although the Wilson coefficients are (unconstrained) a-priori, in
all cases the posterior predictions are narrower than the SM prediction based on prior
knowledge only. Apparently, the additional information in the data on both θ and ν —
in particular the form factors — more than compensates the effect of floating θ, which
shows the benefit of our statistical approach. The difference is less pronounced for
observables with reduced hadronic uncertainty such as ⟨A(re)

T ⟩ [1,6], where both pre-
dictions are of similar quality, the global-fit prediction shifted slightly towards larger
values, compared to the SM prediction based on prior knowledge alone.

The same situation emerges for the other optimized observables where main uncer-
tainties are due to lacking subleading corrections; compare Table 7.5 and Table B.1 for
low-q2 as well as Table 7.6 and Table B.2 for high q2. At this stage, the precision can
only improve with better prior knowledge of the nuisance parameters. This will help
to distinguish NP from the SM with the help of optimized observables in the scenario
of the SM operator basis with real Wilson coefficients. However, any experimental ob-
servation outside of the predicted range would point strongly to an extended scenario.

7.7 Conclusion

We performed a fit of the short-distance couplings C7,9,10 appearing in the effective
theory of ∆B=1 decays describing b → sγ and b → s `+`− transitions. Working in the
SM-operator basis and assuming C7,9,10 ∈ R, we searched for hints of new physics in



94 7. Global fit of rare B decays

the simplest model-independent extension of the SM. For the first time, we included
all relevant theory uncertainties in the analysis by means of 28 nuisance parameters.
A total of 59 measurements of exclusive rare decays B → K∗γ, B → K(∗)`+`− and
Bs → µ+µ− obtained by CLEO, BaBar, Belle, CDF, and LHCb served as experimental
inputs.

The main results of our analysis are the marginalized posterior distributions dis-
played in Fig. 7.1 and summarized in Tables 7.1 – 7.2. Using only subsets of the mea-
surements, we performed several fits to highlight the impact of the individual decays.
It is seen that the statistically most relevant contributions for C7 are from B → K∗γ,
and that the strongest constraints on C9 and C10 are from B → K∗`+`− at high q2. In all
fits, multiple maxima due to discrete symmetries appear. Focusing on the fit with all
experimental input, we observe two dominant solutions, the SM-like solution and the
flipped-sign solution, arising from the approximate invariance of all observables under
the transformation Ci → −Ci. Within the Monte Carlo uncertainty, the two solutions
have an equal posterior probability mass of roughly 52 % (SM) over 48 % (flipped-sign).
Other local maxima exist, but their posterior masses are negligible. In each of the three
2D marginal posterior distributions of Fig. 7.1, the SM values CSM

7,9,10 are close to the local
maximum and inside the smallest 68 % region. Performing a back-of-the-envelope cal-
culation, we placed lower limits on the energy scale of NP contributions; cf. Table 7.3.
The resulting scales ≳ 10 TeV are beyond the reach of direct production at the LHC.

Judging by two discrepancy variables, both solutions describe the data very well. For
comparison, we considered the SM itself, by which we mean Ci fixed at SM predictions,
but nuisance parameters allowed to vary with the same prior P (ν) that is used in the
global fit. Then the SM also provided a very good fit of the data. The pull values in
Fig. 7.5 and Fig. 7.6 show the individual distances from the best-fit point to the most
likely experimental value for all inputs; we observed only moderate deviations.

Finally, we computed the Bayes factor to conduct model comparison; the data clearly
favor the plain SM over a model with arbitrary real C7,9,10 — a tribute to Occam’s ra-
zor. Apparently, adding extra model complexity through variable Ci does not yield a
significantly better description of the data, hence the Bayes factor lends more support
to the simpler model. Thus, from a purely statistical point of view, even the simplest
model-independent extension of the SM is “too much” to describe the data at the cur-
rent level of experimental and theory uncertainty. We emphasize that the presence of
the sign-flipped solution still allows large NP contributions to the Wilson coefficients.
However, the degeneracy within the set of considered observables does not allow us to
distinguish them easily. This degeneracy is mildly broken by contributions of 4-quark
operators, typically included in the effective Wilson coefficients C7,9 → Ceff

7,9. While the
data do not favor one solution over the other, we have a much higher a-priori degree of
belief in the SM-like solution given that the SM has been well tested to describe parti-
cle decays in and beyond the sector of B decays. Indeed, assuming improved theory
uncertainties and current experimental central values in B →K∗γ, the fit suggests that
additional information on Ceff

7 may enhance the SM-like solution over the flipped-sign
solution. For example, more information about C7 is available in the inclusive decay
B →Xsγ, where Xs represents any final state meson with one s quark.

For cross validation, we repeated the full fit with a second set of wide priors that
may reflect a pessimist’s opinion on the accuracy of form factors and the size of un-
known subleading corrections — these uncertainties were enlarged by a factor of three.
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Our comparison of the result from both sets in Fig. 7.2 indicates that the fit is stable
and dominated by the experimental inputs encoded in the likelihood. Unsurprisingly,
the marginal distributions do not coincide exactly; hence improvements both on the
experimental side and on the theory side are desirable.

We observed that a fit with current B → K`+`− constraints prefers smaller values of
C9,10 than a fit with the B → K∗`+`− constraints. Including both sets of constraints, the
fit accommodated this tension by shifting the B →K form factors towards smaller val-
ues, and theB →K∗ form factors towards larger values; see Fig. 7.1 and also Fig. 7.8(c),
where the SM values of (C9,C10) are at the edge of the 95 % credibility region. While
the tension shifted some marginal modes, it is important to stress that the posterior
variance of all form factors was reduced significantly in the fit; cf. Fig. 7.3 and Fig. 7.4.

We computed updated predictions within the SM of selected observables in the an-
gular distribution of B → K∗(→ Kπ)`+`−; cf. Section 7.6 and Appendix B. In contrast
to previous analyses [BHD10; BHD11b; APS12], we varied all parameters at once by
performing uncertainty propagation (see Section 2.2) with the joint prior density P (ν).
In this way, we properly treated the observables being nonlinear functions of ν and
further, we did not not implicitly restrict the outcome to a Gaussian distribution. All
our 1σ intervals contain the central values of the previous analyses, and have similar
width. We did not see an observable for which our interval is significantly larger; in
most cases, the intervals are (slightly) smaller.

Based on the fit output, we predict ranges for currently unmeasured observables that
exhibit a reduced form factor dependence. Given that the Wilson coefficients are not
fixed in this case, it was a surprise that the predictions based on the fit output yielded
smaller ranges than SM predictions based on prior knowledge; see Fig. 7.9. Evidently,
the extra variance due to Wilson coefficients is more than compensated for by the re-
duced form factor uncertainties. This fact demonstrates the power of our statistical
approach. For those observables where the impact of form factors is very small, the
predictions were essentially identical; for example, compare ⟨H(3)

T ⟩ at high q2 in Ta-
ble 7.6 and Table B.2.

In the future, we want to improve the fit by including the measurements of the inclu-
sive decays B → Xsγ as well as B → Xs `

+`−. In particular, B (B →Xsγ) is known with
a good relative precision of ∼ 7 % both experimentally and theoretically; it has the po-
tential to significantly reduce the posterior uncertainty on C7 by ∼ 25 %. Furthermore, it
aids in distinguishing the SM-like from the sign-flipped solution. Current B → Xs `

+`−

results from BaBar and Belle have a much higher uncertainty. This is unlikely to change
before the end of data taking at the upcoming super flavor factories. Besides the in-
clusion of additional observables, further enhancements could arise when using the z
parametrization ofB →K∗ form factors [BFW10]. Then we could continue to use LCSR
at low q2, and stabilize the extrapolation to high q2 by fitting to new lattice results that
are expected to appear in their final form in the near future [Win11] .

Apart from form factors, subleading corrections are the second-largest source of the-
ory uncertainty. In our approach, they arise in two ways. The first source is the ap-
plication of form factor relations to reduce the number of independent form factors
(Section 5.3). If the form factors became available from the lattice at high q2, we could
trade the uncertainty arising from form factor relations for the (hopefully lower) un-
certainty of the lattice form factors. Second, known subleading corrections ∝ (Λ/mb)2

come into play due to dimension 5 operators in the OPE at high q2 [BBF11]. Unfortu-
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nately, the additional form factors of these higher dimensional operators are unknown,
but could in principle be calculated on the lattice as well. At low q2, form factors can be
calculated with the help of QCD sum rules that include subleading corrections usually
omitted when applying large energy form factor relations. Furthermore, subleading
corrections to the amplitude contributing to isospin breaking are known. These and
other corrections given by Beneke, Feldmann, and Seidel [BFS05] are implemented in
our software package EOS [Dyk+12].

On the data side, we see the following opportunities. The final analyses with the
full data sample of Belle and CDF of B → K(∗)`+`− will likely have only a small im-
pact. In contrast, new results from LHCb that include the full 2012 data set will contain
roughly three times as many B → K∗`+`− events as the 2011 results we used in this
work; those results, scheduled to be released to the public in 2013, might be accompa-
nied by first analyses of ATLAS and CMS. In addition, there is the first LHCb analysis
of B(B → K`+`−) based on 2011 data that came out in the final stage of preparing this
work [Aai+12b]. So far, theBs → µ+µ− limit had a negligible impact on the fit, but if AT-
LAS, CMS, and LHCb continue to combine their search results also with the 2012 data,
this channel could become competitive with B → K∗`+`− in constraining ∣C10∣. In the
long term after 2015, results from Belle II at SuperKEKB will have a substantial impact
in all decay channels considered in the fit.
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The primary goal of this thesis was to find signals of new physics in rare B meson de-
cays mediated by b→ s transitions. To this end, we considered the ∆B = 1 effective field
theory with the SM set of operators and three Wilson coefficients Ci, i = 7,9,10 assumed
real but otherwise unrestricted. This choice represents the minimal extension of the
SM, as it assumes new physics only contributes to the Wilson coefficients. The Wilson
coefficients were extracted in several global fits to a set of up to 59 measurements of
observables in B → K∗γ, B → K(∗)`+`−, and Bs → µ+µ− reactions. Including all mea-
surements, the fit revealed two degenerate regions of high posterior probability. The
first solution contains the standard-model prediction in its 1σ region, and the second is
related to the first through a simultaneous sign flip Ci → −Ci; cf. Section 7.2.1.

Our choice to phrase the global fit in the Bayesian approach to probability theory
proved crucial to the success of this work. As opposed to any other fit of rare B decays
[BHD10; BHD11b; Des+11; Bob+12; APS12; AS12], we modeled all main uncertainties
explicitly, using 28 nuisance parameters. While increasing the computational effort,
this allowed us to consistently address the relevant questions. Most prominently, we
performed a model comparison of the standard model versus new physics to see which
is preferred by the data in Section 7.4. The Bayes factor yielded a relative change in
probability of about 1500 in favor of the simpler SM. In addition, we investigated the
goodness of fit in Section 7.3, and observed that the two fit solutions as well as the SM
itself (nuisance parameters fitted) provided an excellent description of the data. Both
facts combined — the Bayes factor and the good fit — imply that, at the current level
of the rather high theoretical and experimental uncertainty, there is no extension that
could outperform the SM when taking into account the extra model complexity.

Therefore, we refrained from analyzing nonminimal extensions such as Ci ∈ C or new
scalar and tensor operators. The situation may change in the near future, if LHCb mea-
sures B → K∗`+`− observables optimized to reduce form factor dependence. In that
case, the sensitivity to small deviations from SM expectations in the real and imaginary
parts of the Ci would be greatly enhanced [BHD11a]. However, there are several other
means by which we can improve the fit. Using more existing measurements, in partic-
ular, the inclusive decay B → Xsγ, we can reduce the uncertainty on C7, and perhaps
resolve the ambiguity between the two fit solutions. Also, ongoing efforts to compute
B → K(∗)`+`− form factors with lattice QCD aid in reducing the theory uncertainty. A
more thorough discussion of the fit results and possible future enhancements is given
in the conclusion of Chapter 7. The physics results described in this thesis are published
[Bea+12].

The multimodality and the large dimensionality of the posterior posed a difficult
numerical problem. Our solution was to combine Markov chain Monte Carlo and pop-
ulation Monte Carlo in order to draw samples from the posterior, benefiting from the
speed-up of massive parallelization. Using the new combination successfully in all fits,
we found the algorithm’s performance very encouraging. However, there still is room
for significant improvement; see Section 4.5 for a discussion of ideas in this direction.
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In particular, outliers started to affect marginal distributions; the larger the parameter
space, the stronger the effect. It remains to be seen whether the sampling can be en-
hanced to accomodate even more parameters in a future global fit with additional Wil-
son coefficients or extra nuisance parameters, for example to describe the uncertainties
in B →Xsγ.

Given the posterior samples, we calculated predictions based on the global fit output.
In addition, we also presented SM predictions where we did not use any b→ smeasure-
ments, but fixed the Ci to the SM values and varied the nuisance parameters according
to the priors. Both sets of predictions were consistently obtained as a straightforward
application of uncertainty propagation — another benefit of choosing the Bayesian ap-
proach. Within the SM, the smallest 1σ intervals are in good agreement with previous
results. The big advantage of including the nuisance parameters in the fit became ap-
parent in the prediction of standard observables such as B or FL that exhibit form-factor
dependence. As the fit constrained the form factors, the theory uncertainty on predic-
tions was significantly reduced compared to the SM results; cf. Section 7.6.

In summary, we found no compelling evidence of new physics, yet at the same time
the data allow large new-physics contributions due to the approximate invariance of
observables under a simultaneous sign-flip of all Wilson coefficients. In the next few
years, new results from LHCb, Belle II, and lattice QCD will hopefully enable us to
disentangle the ambiguity; perhaps we will even be able to identify new physics in
small deviations from the SM currently obscured by the fairly large uncertainties.



A Numerical input

The numerical values of those input parameters that enter the calculation of observ-
ables, but are not fitted to the data, are listed in Table A.1. Their impact on the fit un-
certainty is small, either because they are known very precisely, or because they enter
in numerically subleading contributions to the observables of interest.

The theory predictions of all the relevant semileptonic and radiative processes at
large recoil are based on the QCDF results of [BFS01; BFS05]. These make use of the
LCDA of the involved kaons which are parametrized in terms of Gegenbauer moments
an(M) (M = K, K∗

⊥ , K
∗
∥ ). In this work, we include terms in the expansion in Gegen-

bauer moments up to n = 2, using the central values in Table A.1.
Since the moments an(M) also enter the computation of the B →K∗ form factors via

LCSR [BZ05a], variation of the former would lead to double counting. Furthermore, the
residual influence of an(M) on the observables is small compared to that of the other
parameters considered. We therefore do not vary the Gegenbauer moments.

In addition, QCDF makes use of the decay constants fM (M = K, K∗
⊥ , K

∗
∥ ) that enter

in numerically suppressed contributions. The central values are listed in Table A.1.
The experimental inputs to the likelihood are listed for B → K∗γ (Table A.2), B →

K`+`− (Table A.3), and B →K∗`+`− (Table A.4); for details on the definitions of observ-
ables, we refer to Chapter 6.

A.1 Nuisance parameters

In this section we present the nuisance parameters ν that are included in the global
fit to describe the main theory uncertainties. Priors are assumed independent a-priori,
P (ν) = ∏i P (νi), and clipped to finite ranges that correspond to the 3σ interval of the
unclipped prior with the exception of the phases that naturally have a finite support (cf.
Appendix A.1.3), where we do not perform any clipping. For the sake of readability,
we categorize the individual nuisance parameters according to their impact.

A.1.1 Common nuisance parameters

The common nuisance parameters are those that enter most of the observables and are
not specific to rare b → s decays. These are the parameters of the quark-mixing matrix
V CKM (5.9) and the b and c quark masses. Note that for computational reasons we omit
the uncertainty related to the renormalization scale µ.

For the purpose of the fit, we take the CKM parameters from other observables such
as tree decays. We parametrize the CKM matrix using the Wolfenstein parametriza-
tion (5.11) to O(λ9) [Cha+05] and use the results of the tree-level fit of the UTfit collab-
oration [Bon+06] as priors in the fit of b → s decays. In this way, we include non-SM
effects, but assume they do not affect tree-level decays. However, we use the results
of the SM CKM fit in order to determine the uncertainties of observables in the frame-
work of the SM in Section 7.6. Note that the CKM matrix elements only enter in the
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αs(mZ) 0.11762 [Nak+10] mµ 0.106 GeV [Nak+10]
αe(mb) 1/133 [Nak+10] mpole

t 173.3 GeV [Tev09]
sin2θW 0.23116 [Nak+10] mW 80.399 GeV [Nak+10]

τB+ 1.638 ps [Nak+10] τB0 1.525 ps [Nak+10]
mB+ 5.2792 GeV [Nak+10] mB0 5.2795 GeV [Nak+10]
mK+ 0.4937 GeV [Nak+10] mK0 0.4976 GeV [Nak+10]

mK∗+ 0.8917 GeV [Nak+10] mK∗0 0.8960 GeV [Nak+10]

τBs 1.472 ps [Nak+10] mBs 5.3663 GeV [Nak+10]

λB,+ 0.485 GeV [BHD10] fB0,+ 0.212 GeV [Sim+10]
fK 0.1561 GeV [Nak+10]

fK∗⊥ (2 GeV) 0.173 GeV [BHD10] fK∗
∥

0.217 GeV [BHD10]

a1(K) 0.048 [BBL06] a2(K) 0.174 [BBL06]

a1(K∗
⊥) 0.1 [BBL06] a2(K∗

⊥) 0.1 [BBL06]

a1(K∗
∥ ) 0.1 [BBL06] a2(K∗

∥ ) 0.1 [BBL06]

Table A.1: The numerical input used in the analysis. The mass of the strange quark has been
neglected throughout. τB0 (τB+ ) denotes the lifetime of the neutral (charged) B meson. The
following parameters appear in A(B → (K, K∗) `+`−) at large recoil: λB,+ denotes the first
inverse moment of the B-meson distribution amplitude, fX is the decay constant of state X ,
and a1,2(M) are the first two Gegenbauer moments of the LCDA of the respective kaon states
M =K, K∗

⊥ , K
∗
∥ .

observable value ρ

B × 105
4.55+0.72

−0.68 ± 0.34 [Coa+00]
4.47 ± 0.10 ± 0.16 [Aub+09]
4.01 ± 0.21 ± 0.17 [Nak+04]

S −0.03 ± 0.29 ± 0.03
5 % [Aub+08]

C −0.14 ± 0.16 ± 0.03

S −0.32 +0.36
−0.33 ± 0.05

8 % [Ush+06]
C +0.20 ± 0.24 ± 0.05

Table A.2: Experimental results for CP-averagedB0 →K∗0γ observables: branching fraction B
(CLEO, BaBar, Belle) and time-dependent CP asymmetries S and C (BaBar, Belle), including the
correlation coefficient ρ. Throughout, statistical errors are given first, followed by the systematic
errors.
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q2-bin [GeV2] [1.00, 6.00] [14.18, 16.00] [> 16.00]

⟨B⟩ × 107
2.05 +0.53

−0.48 ± 0.07 1.46 +0.41
−0.36 ± 0.06 1.02 +0.47

−0.42 ± 0.06 [Lee+12]

1.36 +0.23
−0.21 ± 0.08 0.38 +0.19

−0.12 ± 0.02 0.98 +0.20
−0.18 ± 0.06 [Wei+09]

1.41 ± 0.20 ± 0.09 0.53 ± 0.10 ± 0.03 0.48 ± 0.11 ± 0.03 [Aal+11a]

Table A.3: Experimental results for the CP-averaged branching fraction of charged B± →
K±µ+µ− decays from BaBar [Lee+12], Belle [Wei+09], and CDF [Aal+11a], integrated over bins
of q2. The publicly available results of BaBar and Belle are unknown admixtures of charged
and neutral B decays. The difference between interpreting the data as coming from either
purely charged or purely neutral B decays is negligible [Bob+12]. The kinematic endpoint is
q2
max = 19.21 GeV2.

q2-bin [GeV2] [1.00, 6.00] [14.18, 16.00] [> 16.00]

⟨B⟩ × 107

2.05 +0.53
−0.48 ± 0.07 1.46 +0.41

−0.36 ± 0.06 1.02 +0.47
−0.42 ± 0.06 [Lee+12]

1.49 +0.45
−0.40 ± 0.12 1.05 +0.29

−0.26 ± 0.08 2.04 +0.27
−0.24 ± 0.16 [Wei+09]

1.42 ± 0.41 ± 0.08 1.34 ± 0.26 ± 0.08 0.97 ± 0.26 ± 0.06 [Aal+11a]
2.10 ± 0.20 ± 0.20 1.08 ± 0.13 ± 0.07 1.32 ± 0.15 ± 0.09 [Par12]

⟨AFB⟩

−0.02 +0.18
−0.16 ± 0.07 −0.31 +0.19

−0.11 ± 0.13 −0.34 +0.26
−0.17 ± 0.08 [Poi12]

−0.26 +0.30
−0.27 ± 0.07 −0.70 +0.22

−0.16 ± 0.10 −0.66 +0.16
−0.11 ± 0.04 [Wei+09]

−0.36 +0.28
−0.46 ± 0.11 −0.40 +0.21

−0.18 ± 0.07 −0.66 +0.26
−0.18 ± 0.19 [Aal+12]

0.18 ± 0.06 +0.02
−0.01 −0.49 +0.06

−0.04
+0.05
−0.02 −0.30 ± 0.07 +0.01

−0.04 [Par12]

⟨FL⟩

0.47 ± 0.13 ± 0.04 0.42 +0.12
−0.16 ± 0.11 0.47 +0.18

−0.20 ± 0.13 [Poi12]
0.67 ± 0.23 ± 0.05 −0.15 +0.27

−0.23 ± 0.07 0.12 +0.15
−0.13 ± 0.02 [Wei+09]

0.60 +0.21
−0.23 ± 0.09 0.32 ± 0.14 ± 0.03 0.16 +0.22

−0.18 ± 0.06 [Aal+12]
0.66 ± 0.06 +0.04

−0.03 0.35 +0.07
−0.06

+0.07
−0.02 0.37 +0.06

−0.07
+0.03
−0.04 [Par12]

⟨A(2)
T ⟩ 1.6 +1.8

−1.9 ± 2.2 0.4 ± 0.8 ± 0.2 −0.9 ± 0.8 ± 0.4 [Aal+12]

⟨2S3⟩ 0.10 +0.15
−0.16

+0.02
−0.01 0.04 +0.15

−0.19
+0.04
−0.02 −0.47 +0.21

−0.10
+0.03
−0.05 [Par12]

Table A.4: Experimental results of B0 → K∗0`+`− for the CP-averaged branching fraction
B, lepton forward-backward asymmetry AFB, longitudinal K∗-polarization fraction FL, the
transversity observable A

(2)
T and (2S3) from BaBar [Lee+12; Poi12], Belle [Wei+09], CDF

[Aal+11a; Aal+12], and LHCb [Par12]. Note that the sign of AFB is reversed due to a different
definition of θ` in the experimental community. The kinematic endpoint is q2

max = 22.86 GeV2.
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A 0.804 ± 0.010 [Bon+06] λ 0.22535 ± 0.00065 [Bon+06]
ρ̄ 0.111 ± 0.070 [Bon+06] η̄ 0.381 ± 0.030 [Bon+06]

mc(µ =mc) (1.27 +0.07
−0.09) GeV [Nak+10] mb(µ =mb) (4.19 +0.18

−0.06) GeV [Nak+10]

Table A.5: Common nuisance parameters. The CKM Wolfenstein parameter values as obtained
from the CKM tree-level fit; cf. Sec. Section 2.3 and (5.11). Quark masses are given in the MS
scheme.

r1 r2 m2
R [GeV2] m2

fit [GeV2]
V 0.923 −0.511 5.322 49.40
A1 – 0.290 – 40.38
A2 −0.084 0.343 – 52.00

Table A.6: The parameters of the form factors V andA1,2 are defined in (A.1) and (A.2).

combinations VtbV
∗
ts and VubV

∗
us. Although numerically negligible, the latter included

in the analysis. It becomes relevant only for CP-asymmetric observables. All priors are
Gaussian, with their 1σ ranges given in Table A.5.

The values of the quark masses mb and mc enter most observables. In order to ac-
count for the asymmetric errors, we use LogGamma distributions (see Section A.2) as
priors whose modes and 68 %-probability intervals match the values given in Table A.5.

A.1.2 B →K(∗) form factors and fBs

The heavy-to-light form factors f+,T,0 for B → K as well as V, A0,1,2, and T1,2,3 for
B → K∗ transitions present a major source of uncertainty in predictions of rare exclu-
sive B decays. They are functions of the dilepton invariant mass q2 and we adopt the
definition used in [BF01; BFS05; Kho+10; BZ05a]. Due to the application of form fac-
tor relations at large and low recoil, only f+ enters B → K, and only V and A1,2 enter
B → K∗ transitions1. The application of form factor relations introduces uncertainties
of order ΛQCD/mb that will be discussed in Appendix A.1.3.

Currently, the form factors are only known from LCSR which are applicable at low q2.
Lattice QCD can provide results at high q2, where quenched results of some form factors
[BLM07; AlH+10] are available and some preliminary unquenched results have been re-
ported [Liu+09; Zho+11; Liu+11]. An extensive discussion of the q2-shape parametriza-
tion using series expansion and a fit to low-q2 LCSR combined with high-q2 lattice re-
sults (where available) is given in [BFW10].

With regard to B → K∗ form factors V,A1,2, we use the LCSR results at low q2 as
given in [BZ05a], where the extrapolation to high-q2 is based on a (multi-)pole ansatz

V = r1

1 − q2/m2
R

+ r2

1 − q2/m2
fit

, (A.1)

A1 =
r2

1 − q2/m2
fit

, A2 =
r1

1 − q2/m2
fit

+ r2

(1 − q2/m2
fit)2

, (A.2)

1The form factors f0 and A0 do not contribute within the framework of the SM operator basis, up to
negligible terms suppressed by m2

`/q
2.
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and the numerical values of the parameters given in Table A.6. We do not vary these
parameters themselves as they strongly depend on the LCSR analysis, but rather assign
one multiplicative scaling factor ζi per form factor (i = V,A1,A2) to model the respective
uncertainty such that the value ζi = 1.0 corresponds to the central value of the form
factor. What do we know about ζi? The only information that we use is that the current
consensus in the community is that the form factors are known to an accuracy of (10 –
15) %. Based on the MAXENT principle and (2.26), we assign a Gaussian prior with a
width of σ = 0.15 (i.e., 15 % uncertainty) and support extending up to 3σ (i.e., at most
45 % uncertainty) (see Table A.7); e.g.,

V → ζV V, P (ζV ) = N(ζV ∣µ = 1, σ = 0.15) . (A.3)

Note that in this way we do not vary the q2 shape of the form factors. At large recoil,
two universal form factors [BFS05] appear:

ξ⊥ ≡
mB

mB +mK∗
V , ξ∥ ≡

mB +mK∗

2EK∗
A1 −

mB −mK∗

mB
A2 . (A.4)

Their variation is obtained by the uncorrelated variation of V and A1,2 as described
above.

Since we calculate the B →K∗γ matrix element within QCDF for q2 = 0, all nuisance
parameters that affect the process B → K∗ `+`− in the large recoil region likewise affect
the radiative process, as far as they are applicable.

Note that the prediction of the form-factor independent ratio T1/V differs between
heavy quark symmetry and LCSR. Favoring heavy quark symmetry, we introduce a
correction factor 0.319464 to reduce T1 in order to make both approaches consistent.
The number differs slightly from the original proposal in [BFS01, Eq. (46)] as we use
more recent input numbers.

With regard to the B → K form factor f+, we use the BCL parametrization [BCL09]
of the LCSR results [Kho+10]

f+(q2) = f+(0)
1 − q2/m2

res,+
[1 + b+1 (z(q2) − z(0) + 1

2
[z(q2)2 − z(0)2])] , (A.5)

z(s) =
√
τ+ − s −

√
τ+ − τ0√

τ+ − s −
√
τ+ − τ0

, τ0 =
√
τ+ (√τ+ −√

τ+ − τ− ) , τ± = (mB ±mK)2 .

This parametrization depends on the central value of the form factor at q2 = 0, f+(0),
and the slope parameter b+1 (and mres,+ = 5.412 GeV). At large recoil, the dipole form
factor fT is replaced by the large-energy universal form factor ξP ≡ f+ [BF01; BHP07].
At low recoil, the dipole form factor fT is substituted for by means of the improved
Isgur-Wise relation [BHD11b]. We assign LogGamma priors to f+(0) and b+1 with un-
certainties listed in Table A.7.

In addition, we vary the decay constant fBs of the Bs meson, since it constitutes the
dominant uncertainty in the decayBs → µ+µ−. The most recent lattice results [McN+12;
Baz+12] have been averaged [LLVdW10], yielding the number listed in Table A.7.

The prior elicitation requires a bit of educated guessing; in order to assess the depen-
dence of the fit on the choice of priors quantitatively, we adopt two sets of priors and
repeat the fit. The first set reflects the uncertainties as reported by the authors of [BZ05a;
Kho+10; LLVdW10], thereby assuming the extrapolation of form factors to high q2 has
the same uncertainties as predicted by LCSR at low q2. In the second set, we triple the
uncertainties. Both sets are given in Table A.7.
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parameter central
nominal wide

1σ support 1σ support

ζV,A1,A2 1.0 0.15 3σ 0.45 3σ

f+(0) 0.34 [0.32, 0.39] [0.28, 0.49] [0.28, 0.49] [0.0, 0.79]
b+1 −2.1 [−3.7, −1.2] [−6.9, 0.6] [−6.9, 0.6] [−10, 3.7]

fBs 227.7 MeV 6.2 MeV 3σ 18.6 MeV 3σ

ζijK∗ , ζK 1.0 0.15 3σ 0.45 [0.0, 2.0]
∣r0,⊥,∥∣, ∣rK ∣ 0.0 0.15 3σ 0.45 3σ

Table A.7: Priors of the nuisance parameters of the B → K(∗) form factors, the Bs decay
constant fBs , and parametrization of lacking subleading corrections at low q2 (i = L,R and
j = 0,⊥,∥) and high q2, specified for the nominal and wide set. All priors are Gaussian except
those for f+(0) and b+1 ; we give the central value, the 1σ ranges, and the support of the prior.
The nominal 1σ ranges of V and A1,2 correspond to uncertainties quoted in [BZ05a], whereas,
f+(0) and b+1 are taken from the LCSR analysis [Kho+10]; however, possible correlations among
f+(0) and b+1 are not available. The uncertainty of fBs is due to the combined uncertainties of
[McN+12] and [Baz+12].

A.1.3 Subleading Λ/mb corrections

There are several distinct sources of Λ/mb corrections arising in exclusiveB →K(∗)`+`−

decays. Here Λ is assumed to be of the order of the strong scale, however the particular
physical meaning depends on the framework. When using power counting, we use the
generic value of 500 MeV.

The first type is due to the form factor relations in the limit of heavy quark masses
[IW90], which is valid in the entire kinematic region of q2. At the leading order in Λ/mb,
they relate the B → K∗ (B → K) tensor form factors T1,2,3 (fT ) to vector and axial-
vector V and A1,2 (f+) form factors2. This approximation receives a further numerical
suppression due to C7/C9 ∼ O(0.1). The additional collinear limit [Cha+99; BF01] at
low q2 allows us to eliminate another B → K∗ form factor, introducing an additional
subleading uncertainty not suppressed by C7/C9. Besides subleading corrections due to
the use of form factor relations, the two distinct expansions in Λ/mb, QCDF at low q2

and the OPE at high q2, introduce a second type at the amplitude level, when truncating
the expansion after the leading order in Λ/mb.

At low q2, QCDF (or equivalently soft collinear effective theory) provides a possibil-
ity to calculate such corrections, which are in general suppressed by a factor of Λ/mb.
But in some subleading corrections one encounters infrared divergences [FM03]. In
principle, the partially known corrections [FM03; BFS05] could be included as an esti-
mate of the lacking corrections, but here we model them by 6 real scale factors for each
of the transversity amplitudes AL,R⊥,∥,0 in the case of B →K∗`+`− and one for B →K `+`−.

These scale factors ζijK∗ (i = L,R and j = 0,⊥,∥) and ζK are included in the fit with a
Gaussian prior P (⋅) = N(⋅∣1,0.15) as in (A.3). For the nominal priors, the support ex-
tends up to 3σ. A 1σ range of 0.45 ≈ Λ/mb with a support [0.0, 2.0] is chosen for the

2The authors of [Alt+09] suggest that such corrections can be accounted for at low q2, if form factor
relations are not used in the leading-order contribution (in Λ/mb and αs) to the amplitude.
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wide-prior scenario.
At high q2, the interaction of the 4-quark operators and the electromagnetic current,

which couples to the pair of leptons, is treated within a local operator product expan-
sion either in full QCD [BBF11] or with subsequent matching on heavy quark effective
theory (HQET) [GP04]. In both approaches, subleading corrections to the decay ampli-
tudes arise at (Λ/mb)2 and αsΛ/mb, respectively, which are of similar numerical size.
The additional suppression factor of Λ/mb or αs, yields smaller theory uncertainties due
to omission of subleading corrections at high q2 in contrast to the low-q2 region. This
is also not spoiled by the use of form factor relations [GP04; BHD10] for tensor form
factors T1,2,3 (fT ) due to the accompanying numerical suppression by C7/C9, which
depends on the new physics contributions. Note that for both approaches, full QCD
and HQET, the subleading corrections are known in part, and in the future it is con-
ceivable that they can be included completely. For example, the unknown subleading
form factor arising in [BBF11] could be calculated on the lattice. We follow [GP04],
using αs(mb) ∼ 0.3. This gives rise to 3 complex contributions ra ∼ Λ/mb (a = 0,⊥,∥)
for B → K∗`+`− [BHD11b] and one complex contribution rK ∼ Λ/mb for B → K `+`−

[Bob+12], which are additive at the amplitude level. We treat the complex-valued sub-
leading contributions ra with eight additional real-valued nuisance parameters, assign-
ing Gaussian priors with central value 0, a 1σ range of 0.15 ≈ Λ/mb, and a support up to
3σ to describe ∣ri∣. Invoking MAXENT and (2.27), we describe our state of knowledge
of the accompanying phases arg ri with uniform priors on [−π/2, π/2]. A tripled 1σ
range of 0.45 ≈ Λ/mb and a support up to 3σ is chosen for the wide-prior scenario.

The prior choices are summarized in Table A.7.

A.2 LogGamma distribution

Consider a parameter xwhose reported uncertainties are asymmetric, x = µ+σ+−σ− , σ− ≠ σ+.
In this case, we use the LogGamma distribution [Cro10] to obtain a continuous prior
over the given range of x. The LogGamma family is a continuous unimodal three-
parameter family of probability distributions

LogGamma(x∣l, λ,α) = 1

Γ(α)∣λ∣ exp(α(x − l
λ

) − exp(x − l
λ

)) (A.6)

for x, l, λ, α, in R, α > 0,

support −∞ ≤ x ≤ ∞.

The three parameters are uniquely fixed by demanding that the mode of P (x) be at µ,
that the interval [µ − σ−, µ + σ+] contain 68 %, and that the density be identical at µ − σ−
and µ + σ+. More concisely, the three conditions are:

arg max
x

P (x) = µ (A.7)

∫
µ+σ+

µ−σ−
dxP (x) = 0.68 (A.8)

P (µ − σ−) = P (µ + σ+). (A.9)

For a finite range of x, say [xmin, xmax], the resulting density is normalized such that
∫ xmaxxmin

dxP (x) = 1. While (A.7) is used to fix the location parameter l = µ − λ logα,
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Figure A.1: The LogGamma(x∣µ = 0, λ = 1, α) density for various values of the shape parameter
α.

the scale parameter λ and the shape parameter α must be extracted numerically by
solving the coupled equations (A.8) and (A.9). Note that the asymmetry is governed
by α: LogGamma(⋅) approaches a symmetric Gaussian distribution in the limit α →∞,
whereas the skew diverges and the mode is shifted to ∞ as α → 0; see Fig. A.1 for a
graphical illustration.

Solving the constraints (A.8) and (A.9) numerically is not an easy task, because the
PDF (A.6) depends strongly on the scale and shape parameter. It is therefore imperative
to start a gradient-based numerical optimization at a very good starting point. In the
following, we explain how to determine that starting point. Without loss of generality,
let σ+ > σ− and define the normalized uncertainties as σ̂+ ≡ σ+/σ− , σ̂− ≡ 1. The normal-
ized scale factor, λ̂, is then negative and related to the actual scale λ as λ = σ−λ̂. It turns
out that the initial values of λ̂ and α can be chosen independently as functions of σ̂+.
Our empirical results are

λ̂0 = −56 + 55Φ(σ̂+ − 1∣µ = 0, σ = 0.05) (A.10)

α0 = ( 1.13

σ̂+ − 1
)

1.3

, (A.11)

with the Gaussian cumulative function Φ(⋅∣µ,σ). In our analysis, these values differed
from the output of the optimization within 5 %(α), and 10 %(λ), respectively. Note
that this procedure does not yield meaningful results for very symmetric uncertainties
where σ̂+ < 1.06. In that case, we recommend using a Gaussian instead to avoid the
singularity as α →∞. Similarly, the procedure becomes unstable for σ̂+ ≫ 1.



B Standard model predictions

In this appendix we provide q2-integrated SM predictions for measured and unmea-
sured observables, focusing on those low- and high-q2 bins that are currently used in
experimental analyses and are also accessible to theoretical methods. All quantities are
CP averaged and lepton-mass effects have been taken into account using ` = µ. The
theory uncertainties are calculated using uncertainty propagation (Section 2.2) with the
(nominal) prior distributions of the 28 nuisance parameters presented in Appendix A.1.
Note that the uncertainty on the renormalization scale µ is not incorporated.

The results are listed in Table B.1 and Table B.2 for low and high q2 in the form

X =X∗ +σ+
−σ− (Xcentral) , (B.1)

where X∗ is the mode of resulting distribution P (X) approximated by a histogram,
[X∗ − σ−,X∗ + σ+] is the minimal interval containing at least 68 %, and Xcentral is the
value obtained by evaluating X at the prior mode, corresponding to the conventional
estimate of the SM prediction. Some example distributions are displayed in Fig. 7.9.

At low q2, we do not predict J3, J9 and associated optimized observables A(2)
T and

A
(im)
T , since they vanish at leading order in QCDF (including the αs corrections), al-

though we obtain non-vanishing values due to the implementation of subleading terms
of kinematic origin (∼MK∗/MB).

At high q2, J7, J8, and J9 are zero at leading order in the OPE and when applying
form factor relations, so is A(im)

T . Furthermore, we recall that FL and A
(2,3)
T become

short-distance independent [BHD10] within the framework of the SM operator basis,
and predictions are strongly dependent on the extrapolation of the form factor results
from low q2 obtained using LCSR.

We do not predict J6c since it vanishes in the absence of scalar and tensor operators.
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Observable [2.0, 4.3] [1.0, 6.0]
⟨BK⟩ × 107 † 0.85 +0.25

−0.13 (0.81) 1.85 +0.54
−0.28 (1.75)

⟨BK∗⟩ × 107 ‡ 0.69 +0.77
−0.41 (1.05) 1.64 +1.80

−0.83 (2.46)
⟨AFB⟩ 0.055 +0.087

−0.033 (0.086) 0.03 +0.07
−0.02 (0.05)

⟨FL⟩ 0.85 +0.08
−0.20 (0.78) 0.81 +0.09

−0.22 (0.73)
⟨J1s⟩ × 108 1.18 +0.48

−0.35 (1.26) 3.43 +1.37
−0.95 (3.66)

⟨J1c⟩ × 107 0.31 +0.57
−0.29 (0.63) 0.83 +1.07

−0.76 (1.37)
⟨J2s⟩ × 108 0.39 +0.16

−0.12 (0.42) 1.13 +0.45
−0.31 (1.21)

⟨J2c⟩ × 107 −0.30 +0.28
−0.56 (−0.61) −0.79 +0.75

−1.05 (−1.33)
⟨J4⟩ × 108 0.57 +0.39

−0.24 (0.77) 1.43 +0.82
−0.62 (1.82)

⟨J5⟩ × 108 −0.69 +0.37
−0.64 (−1.07) −1.80 +0.88

−1.37 (−2.58)
⟨J6s⟩ × 108 0.84 +0.45

−0.29 (0.90) 1.19 +0.87
−0.74 (1.21)

⟨J7⟩ × 109 2.52 +1.50
−1.06 (2.78) 5.86 +3.03

−2.62 (6.21)
⟨J8⟩ × 109 −0.89 +0.49

−0.57 (−0.97) −1.79 +0.94
−1.36 (−2.14)

⟨A(3)
T ⟩ 0.45 +0.12

−0.08 (0.50) 0.42 +0.11
−0.08 (0.47)

⟨A(4)
T ⟩ 0.63 +0.17

−0.17 (0.69) 0.64 +0.18
−0.15 (0.71)

⟨A(5)
T ⟩ 0.41 +0.03

−0.05 (0.42) 0.48 +0.01
−0.03 (0.48)

⟨A(re)
T ⟩ 0.61 +0.10

−0.13 (0.54) 0.29 +0.14
−0.14 (0.25)

⟨H(1)
T ⟩ 0.45 +0.08

−0.08 (0.48) 0.42 +0.07
−0.07 (0.45)

⟨H(2)
T ⟩ −0.29 +0.08

−0.08 (−0.34) −0.29 +0.07
−0.07 (−0.33)

Table B.1: SM predictions of q2-integrated observables at low q2 in the bins q2 ∈ [q2
min, q

2
max] for

†B− → K−µ+µ− and ‡B̄0 → K̄∗0µ+µ−. We list the mode and the smallest 68 % interval of the
probability distribution, along with the value obtained by the conventional method of setting
all nuisance parameters to the prior modes (in parentheses).
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Observable [14.18, 16.0] [> 16.0] [> 14.18]
⟨BK⟩ × 107 † 0.39 +0.22

−0.09 (0.37) 0.73 +0.43
−0.22 (0.68) 1.11 +0.66

−0.28 (1.04)
⟨BK∗⟩ × 107 ‡ 1.19 +0.37

−0.31 (1.26) 1.41 +0.40
−0.38 (1.46) 2.57 +0.80

−0.68 (2.72)
⟨AFB⟩ −0.44 +0.07

−0.07 (−0.44) −0.37 +0.06
−0.07 (−0.38) −0.40 +0.06

−0.07 (−0.41)
⟨FL⟩ 0.38 +0.04

−0.06 (0.36) 0.35 +0.02
−0.03 (0.34) 0.36 +0.04

−0.05 (0.35)
⟨J1s⟩ × 108 4.44 +0.96

−1.00 (4.51) 5.10 +1.48
−1.11 (5.44) 9.70 +2.31

−2.21 (9.96)
⟨J1c⟩ × 108 3.23 +1.31

−1.37 (3.43) 3.40 +1.41
−1.07 (3.72) 6.64 +2.75

−2.43 (7.14)
⟨J2s⟩ × 108 1.48 +0.32

−0.33 (1.50) 1.70 +0.49
−0.37 (1.81) 3.23 +0.77

−0.74 (3.31)
⟨J2c⟩ × 108 −3.21 +1.36

−1.31 (−3.41) −3.38 +1.07
−1.41 (−3.70) −6.61 +2.42

−2.74 (−7.11)
⟨J3⟩ × 108 −0.99 +0.59

−0.71 (−1.11) −2.12 +0.89
−0.82 (−2.19) −3.06 +1.44

−1.57 (−3.29)
⟨J4⟩ × 108 2.47 +0.95

−0.85 (2.65) 3.10 +1.08
−0.96 (3.27) 5.49 +2.06

−1.77 (5.92)
⟨J5⟩ × 108 −3.36 +0.87

−0.87 (−3.54) −2.95 +0.63
−0.80 (−3.17) −6.23 +1.34

−1.79 (−6.72)
⟨J6s⟩ × 107 −0.52 +0.10

−0.12 (−0.55) −0.53 +0.11
−0.12 (−0.56) −1.05 +0.22

−0.24 (−1.11)

⟨A(2)
T ⟩ −0.38 +0.17

−0.18 (−0.37) −0.64 +0.15
−0.10 (−0.60) −0.51 +0.16

−0.16 (−0.50)
⟨A(3)

T ⟩ 1.45 +0.29
−0.31 (1.47) 1.95 +0.42

−0.40 (2.01) 1.67 +0.36
−0.34 (1.72)

⟨A(4)
T ⟩ 0.66 +0.14

−0.14 (0.67) 0.48 +0.10
−0.10 (0.48) 0.56 +0.12

−0.11 (0.57)
⟨A(5)

T ⟩ 0.085 +0.008
−0.008 (0.081) 0.111 +0.014

−0.014 (0.109) 0.123 +0.012
−0.012 (0.120)

⟨A(re)
T ⟩ −0.982 +0.110

−0.003 (−0.915) −0.777 +0.099
−0.089 (−0.767) −0.843 +0.075

−0.087 (−0.834)

⟨H(1)
T ⟩ 0.9996 +0.0002

−0.0003 (0.9996) 0.9986 +0.0008
−0.0007 (0.9986) 0.9970 +0.0017

−0.0018 (0.9969)
⟨H(2)

T ⟩ −0.9844 +0.0027
−0.0020 (−0.9853) −0.9719 +0.0034

−0.0024 (−0.9722) −0.9748 +0.0040
−0.0031 (−0.9751)

⟨H(3)
T ⟩ −0.9837 +0.0024

−0.0018 (−0.9845) −0.9614 +0.0017
−0.0011 (−0.9618) −0.9606 +0.0018

−0.0016 (−0.9613)

Table B.2: SM predictions of q2-integrated observables at high q2 in the bins q2 ∈ [q2
min, q

2
max] for

†B− → K−µ+µ− and ‡B̄0 → K̄∗0µ+µ−. We list the mode and the smallest 68 % interval of the
probability distribution, along with the value obtained by the conventional method of setting
all nuisance parameters to the prior modes (in parentheses).





C Goodness of fit

In the ideal case, it is possible to calculate the degree of belief in a model based on
the data. This option is only available when a complete set of models and their prior
probabilities can be defined. However, the conditions necessary for this ideal case are
usually not met in practice. We nevertheless often want to make some statement con-
cerning the validity of the model(s). We then are left with using probabilities of data
outcomes assuming the model to try to make some judgments. These probabilities can
be determined deductively since the model is assumed, and therefore frequencies of
possible outcomes can be produced within the context of the model. These can then be
used to produce frequency distributions of discrepancy variables (defined below), and
p values (defined below) can be calculated using the distributions and the observed
values. The use of p values has been widely discussed in the literature (see, e.g., [BB00;
SBB01]) and many authors have commented that p values are frequently misused in
claiming support for models, cf. [Sch96; Blo+06]. We give a Bayesian argumentation for
the use of p values to make judgments on model validity, and it is in this Bayesian sense
that we will use p values.

C.1 General approach

For a given model, we can define one or more discrepancy variables — scalar functions
of the data — and calculate its expected frequency distribution assuming the model. We
use R(x∣θ,M) and R(D∣θ,M) to denote discrepancy variables evaluated with a possi-
ble set of observations x for given model and parameter values, and for the observed
data, x = D, respectively. To simplify the notation, we will occasionally drop the argu-
ments on R and use RD to denote the value of the discrepancy variable found from the
data set at hand. R can be interpreted as a random variable (e.g., possible χ2 values for
a given model), whereas RD has a fixed value (e.g., the observed χ2 derived from the
data set at hand). If the discrepancy variable is well chosen, then the distribution for a
“good” model should look significantly different than for a “bad” model. Finding the
discrepancy variable in the region populated by incorrect models then gives us cause
to think our model is not adequate.

C.2 p value

A p value is the probability that, in a future experiment, the discrepancy variable will
have a larger value (indicating greater deviation of the data from the model) than the
value observed, assuming that the model is correct and all experimental effects are per-
fectly known. In other words, not only is the model the correct one to describe the
physical situation, but correct distribution functions are used to represent data fluctua-
tions away from the “true values”.
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Assuming that smaller values of R imply better agreement between the data and
model predictions, the definition of p (for continuous distributions of R) is written as:

p = ∫
R>RD

dRP (R∣θ,M) . (C.1)

The quantity p is the “tail-area” probability to find a result withR(x) > RD, assuming
that the model M and the parameters θ are valid. If the modeling is correct (including
that of the data fluctuations), p will have a flat probability distribution between [0,1].
For discrete distributions ofR, the integral is replaced by a sum, the p value distribution
is no longer continuous, and the cumulative distribution for p will be step-like.

If the existing data are used to modify the parameter values, the extracted p value will
be biased to higher values. The amount of bias will depend on many aspects, including
the number of data points, the number of parameters, and the priors. We can remove
the bias for the number of fitted parameters in χ2 fits by evaluating the probability of
R = χ2 forN −n degrees-of-freedom, P (χ2∣N −n), whereN is the number of data points
and n is the number of parameters fitted [Dri+71], if

• the data fluctuations are Gaussian and independent of the parameters,

• the function to be compared to the data depends linearly on the parameters, and

• the parameters are chosen such that χ2 is at its global minimum.

In general, the bias introduced by the number of fitted parameters becomes small if
N ≫ n.
p values cannot be turned into probabilistic statements about the model being cor-

rect without priors, and statements of “support” for a model directly from the p value
behave “incoherently” [Sch96]. Furthermore, approximations used for the distributions
of the discrepancy variables, biases introduced when model parameters are fitted and
difficulties in extracting reliable information from numerical algorithms used to eval-
uate the discrepancy variable further complicate their use. p values should therefore
be handled with care. Nevertheless, we discuss the use of p values to make judgments
about the models at hand, based on a sequence of considerations of the type:

• the p value distribution for a good model is expected to be (reasonably) flat be-
tween [0,1];

• the p values for bad models usually have sharply falling distributions starting at
p = 0;

• small p values are worrisome; if we know that other models can be reasonably
constructed which would have higher p values, then a small p value for the model
under consideration indicates that we may have picked a poor model;

• if the p value is not too small, then our model is adequate to describe the existing
data.
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Figure C.1: p value distributions of incorrect models assumed as P (p∣Mi) ≈ cie−cip. The red
area represents the flat distribution under the true model.

C.3 Bayesian motivation

We contend that the use of p values for evaluation of models as just described is essen-
tially Bayesian in character. Following the arguments given above, assume that the p
value probability density for a good model, M0, is flat,

P (p∣M0) = 1 , (C.2)

and that for poor models, Mi (i = 1 . . . n), can be represented by

P (p∣Mi) ≈ cie−cip , (C.3)

where ci ≫ 1 so that the distribution is strongly peaked at 0 and approximately normal-
ized to 1; cf. Fig. C.1. Using Bayes’ theorem (2.4), the degree of belief assigned to model
M0 after finding a particular p value is then

P (M0∣p) =
P (p∣M0)P (M0)

∑ni=0 P (p∣Mi)P (Mi)
. (C.4)

If we take all models to have similar prior degree of belief, then

P (M0∣p) ≈
P (p∣M0)

∑ni=0 P (p∣Mi)
. (C.5)

In the limit p→ 0, we have

P (M0∣p) ≈
1

1 +∑ni=1 ci
≪ 1 , (C.6)

while for cip≫ 1 ∀i
P (M0∣p) ≈ 1 . (C.7)

Although this formulation in principle allows for a ranking of models, the vague
nature of this procedure indicates that any model which can be constructed to yield



114 C. Goodness of fit

a reasonable p value should be retained. A further consideration is that the correct
distributions for the data fluctuations are often not known (due to the vague nature
of systematic uncertainties) and best guesses are used. This will generally also lead to
non-flat p value distributions for good models.

Scientific prejudices (Occam’s razor, elegance or aesthetics, etc.) will influence the
decision and act as a guide in selecting the “best” model in cases where several good
models are available. The preferred quantitative approach for two fully specified mod-
els is to use the posterior odds as in (2.14).

A more thorough discussion of goodness of fit, including many detailed examples, is
presented in [Bea+11].



D Nonlocal MCMC variants

It is well known that the local random walk MCMC algorithm fails with target densities
exhibiting well separated modes. One such example is discussed in Section 3.2. Qual-
itatively speaking, “well separated” corresponds to many widths of the local proposal
function. In general, the larger the dimensionality, the smaller the width to maintain a
good acceptance rate. Even if the modes are separated only in one of d dimensions, say
x1, then a local multivariate proposal is tuned in a way that the proposal width in x1 is
roughly ∝ 1/

√
d ; cf. Algorithm 1. Hence chains are trapped in local modes, and do not

mix; they only explore a small subset of the whole parameter space. The chain’s current
position depends on the starting position, so the asymptotic regime is not reached, and
the chain’s output is not a sample of the target density, in violation of the basic limit
theorem (3.10).

Therefore, it seems reasonable to add nonlocality to the MCMC proposal to cope with
multimodality. In this chapter, we sketch some of our early, unsuccessful attempts at
such algorithms. Despite considerable effort, we did not arrive at a formulation that is
problem-independent or works in d = 30, as required for the global fit. The following is
shown for completeness, perhaps to warrant further development in this direction. At
present, we recommend the procedure based on PMC and outlined in Chapter 4, which
is superior and cleaner in every aspect.

D.1 Global-local jumps

In order to overcome the problems with multimodality seen in the example of Sec-
tion 3.2, we propose to combine global and local jumps. Schematically, the proposal
function is divided into two parts

q(x∣y) = αqglobal(x) + (1 − α)qlocal(x∣y), α ∈ [0,1] . (D.1)

The local part is a multivariate normal or student-t, exactly as described in Section 3.1.1.
Our primary task is to include as much information about the various regions as possi-
ble into the global part to make this approach useful. A second objective is to extract, or
learn, the necessary information automatically, without the user having to supply hints
manually.

The key realization is that the Markov chains in a adaptive local random walk are
good at extracting local information. Now we only have to run multiple chains, and
combine the wisdom of the chain ensemble to obtain global information. Our general
strategy consists of two phases. First, we perform a prerun with k independent chains
doing a local random walk. Next, we extract the information from the combined chain
histories to construct qglobal, and perform the main run.

In each mode, an efficient qlocal may look very different. To guarantee a good local
proposal density, we introduce a discrete hyperparameter h that labels the different
modes; e.g., with four modes, h = 1,2,3,4. We then perform a random walk on the
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manifestation of the curse of dimensionality. For example, suppose d = 30, and the
chain has made a few local jumps, now a global jump from x to y is attempted. The
coverage being poor, let us assume y is close to only one history point zy. With a Gaus-
sian local proposal, the typical distance of y to z corresponds to a χ2 = 30. Assuming x
and y far apart, we can neglect the contribution from qlocal, thus

q(y∣x) ∝ qglobal(y∣x) ∝ exp(− 30/2) , (D.4)

while it takes a few local moves from x to its nearest history point zx, with a distance of
say χ2 = 100

q(x∣y) ∝ qglobal(x∣y) ∝ exp(− 100/2) . (D.5)

Normalization constants cancel in the Hastings factor, so

q(x∣y)
q(y∣x) ≈ exp(−35) . (D.6)

The typical change in posterior P (y)/P (x) is much smaller than exp(−35), hence the
Metropolis-Hastings probability of accepting the jump (3.14)

ρ(y∣x) = min{P (y)
P (x) ⋅

q(x∣y)
q(y∣x) ,1} . (D.7)

is dominated by the Hastings factor and largely independent of the target. Essentially
all global jumps are rejected; the method fails completely.

Our approach is original work, but in fact strikingly similar to the “bank of clues”
by Allanach and Lester [AL08], of which we had not been aware when we investigated
the idea. The only key difference is that in [AL08], there is no hyperparameter, and the
same kernel is used for every history point. We note that Allanach and Lester [AL08]
introduced the idea in particle physics, but they themselves only reinvented what had
been known long before in the applied statistics community as “mixture hybrid kernel
MCMC” [Tie94]. Allanach and Lester [AL08] remark that the method works only up to
d ≈ 10, in agreement with our numerical tests and the argument leading to (D.6).

D.2 Long jumps

The point of failure of the global-local proposal of Section D.1 is that one needs a very
good approximation to the target to avoid the Hastings factor taking over control. This
problem cannot occur in the local random walk, because qlocal is symmetric by con-
struction, thus the Hastings factor is one. The motivation for long jumps is to circum-
vent the need for correct interpolation of the target by a mechanism similar to the lo-
cal random walk. Suppose there are n local modes {x∗i }, then we compute the set of
n(n − 1)/2 translation vectors between the modes. For example, x∗i = x∗j + b(hi∣hj), so
b(hi∣hj) = −b(hj ∣hi). Then the global proposal part is

qglobal(y∣x,hx) = ∑
hy≠hx

P (hy)δ (y − (x + b(hy ∣hx))) . (D.8)

The basic principle is illustrated in Fig. D.2. For x, y in different modes we find





E The expectation-maximization
algorithm

Introduced by Dempster, Laird, and Rubin [DLR77], the expectation-maximization, or
EM, algorithm is a powerful tool to solve an optimization problem in the presence of
missing or hidden data. EM is applicable when a problem is intractable in terms of
the incomplete data, but solvable in closed form with the complete data. Our main
application of EM in this work is fitting a mixture density to samples. In that case, the
samples are the observed data, the source component of each sample is unknown, and
the parameters of interest are the component weights, means, and covariances. First,
we discuss the basics of EM along the lines of [Bor04], then treat the mixture fitting
example in some detail for illustration in Section E.1.

The EM algorithm is an iterative procedure alternating between the E step and the M
step. In the E step, the hidden data are inferred using the current parameter estimates
and the observed, incomplete data. Assuming the current estimate of the hidden data,
the parameter values are updated. The steps are repeated until a fixed point is reached;
in most cases, that is a local maximum, but in pathological cases, EM might converge
to a saddle point or even a local minimum.

EM often converges in very few steps, and, as opposed to gradient-based algorithms,
copes with very large parameter spaces; e.g., in our global fit, the proposal function
requires O(50 000) parameters, and the PMC method, a variant of EM, needs about 10
steps to converge.

Let us discuss the foundations of EM in its original context, maximum- likelihood es-
timation. However, it is important to note that the EM idea is applied in many variants,
and not limited to maximizing a likelihood. Suppose D is observed, and we assume D
arises from a distribution with parameter θ, then we want to find the mode of

L(θ) ≡ logP (D∣θ) . (E.1)

Let Z denote the hidden data, then by the law of total probability

P (D∣θ) = ∑
Z

P (D∣Z,θ)P (Z ∣θ) . (E.2)

Given the estimate of θ at time t, θt, we need to maximize the difference

L(θ) −L(θt) = log(∑
Z

P (Z ∣D,θt)P (D∣Z,θ)P (Z ∣θ)
P (Z ∣D,θt)

) − logP (D∣θt) (E.3)

≥ ∑
Z

P (Z ∣D,θt) log(P (D∣Z,θ)P (Z ∣θ)
P (Z ∣D,θt)

) − logP (D∣θt) (E.4)

= ∑
Z

P (Z ∣D,θt) log( P (D∣Z,θ)P (Z ∣θ)
P (Z ∣D,θt)P (D∣θt)

) (E.5)

≡ ∆(θ∣θt) . (E.6)
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From (E.3) to (E.4), we used the fact that log(⋅) is concave to apply Jensen’s inequality,

log∑
i

αiyi ≥ ∑
i

αi log(yi), ∑
i

αi = 1 . (E.7)

and (E.5) follows from (E.4) because ∑Z P (Z ∣D,θt) = 1. Defining the function

l(θ∣θt) ≡ L(θt) +∆(θ∣θt) , (E.8)

we see that l(θt∣θt) = L(θt) due to the definition of conditional probability and that
l(θ∣θt) ≤ L(θ). Thus by maximizing the approximate likelihood l(θ∣θt) with respect to
θ we increase L. Of course, we only gain something if the mode of l(θ∣θt) is easier to
find than that of L(θ) because of guessing the hidden data; see the example below. For
the maximization of (E.8), we can ignore constant terms and focus on the function

Q(θ∣θt) ≡ {∑
Z

P (Z ∣D,θt) log (P (D∣Z,θ)P (Z ∣θ))} (E.9)

= {∑
Z

P (Z ∣D,θt) logP (D,Z ∣θ)} (E.10)

= EP (Z∣D,θt) [logP (D,Z ∣θ)] . (E.11)

The final result (E.11) explains the terminology: First one has to compute the expec-
tation value under the posterior density of Z conditional on D and θt (E step), then
maximize Q to find the next value θt+1 (M step). In practice, EM is not only applied
to maximum likelihood estimation; for example, in the PMC algorithm, one strives to
minimize the Kullback-Leibler divergence, so Q is then redefined, but the process of
alternating E and M steps to improve the parameter estimate is of general use.

E.1 Gaussian mixture

We want to illustrate the EM algorithm in a simple application. Suppose N samples
are drawn independently from a 1D Gaussian mixture density with K components,
then the data are D = {xi ∶ i = 1 . . .N}. Note that this example is very closely related
to the PMC updates (Section 3.3.1) and the hierarchical clustering (Section 4.2). The
incomplete-data likelihood is

P (D∣θ) =
N

∏
i=1

K

∑
j=1

αjN(xi∣µj , σj) , ∑
j

αj = 1 . (E.12)

In this case, the hidden data Z comprises the unknown source component of each
sample, Z = {zi ∶ i = 1 . . .N, zi = 1 . . .K}. Each component is parametrized by θj =
(αj , µj , σj) for j = 1 . . .K, hence θ = (θ1, . . . ,θK).

On the one hand, if we knew θ, we could infer the most likely source component
Z. On the other hand, if we knew Z, finding the most likely value of θ would be
straightforward, because the problem would factorize into K independent problems,
and each one is simple. However, the combined system of equations does not have a
closed-form solution, and so we employ the EM algorithm.
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Let us fill in the terms to make use of (E.11). The joint distribution of observed and
hidden data is

logP (D,Z ∣θ) = ∑
i

log (P (xi∣zi)P (zi)) = log (αziN(xi∣µzi , σzi)) , (E.13)

so αj = P (z = j) is just the prior probability of the jth component. Thus the probability at
time t that xi was generated from component zi is just the posterior probability obtained
through Bayes’ theorem

P (zi∣xi,θt) =
P (xi∣zi,θt)αt

zi

∑j P (xi∣j,θt)αt
zi

=
αt
zi
N(xi∣µt

zi
, σt
zi
)

∑j αtjN(xi∣µtj , σtj)
, (E.14)

where the denominator is the (incomplete-data) likelihood for a single sample P (xi∣θ).
Hence P (Z ∣D,θt) = ∏i P (zi∣xi,θt). The evaluation of the expectation value can be done
in closed form, and after some algebra one obtains as final result of the E step [Bil98]

Q(θ∣θt) =
K

∑
j=1

N

∑
i=1

log (αjN(xi∣µj , σj))P (j∣xi,θt) . (E.15)

Defining N t+1
j ≡ ∑Ni=1 P (j∣xi,θt) as the effective number of samples from component j,

the M step leads to the following update of θt+1:

αt+1
j =

N t+1
j

N
, (E.16)

µt+1
j = ∑i x

i P (j∣xi,θt)
N t+1
j

, (E.17)

(σt+1
j )2 =

∑i (xi − µt+1
j )2

P (j∣xi,θt)
N t+1
j

. (E.18)

The results for µt+1 and σt+1 reduce to the well-known sample mean and sample co-
variance that maximize the likelihood in the case of a single Gaussian, K = 1. Note that
the E step has been absorbed into the update Equations (E.16) – (E.18), hence due to
the simplicity of the problem, there is no need to explicitly calculate the intermediate
quantity Q.





F Kernel density estimation

Let us consider kernel density estimation (KDE) [SS05] as an alternative to histograms
for the task of nonparametric estimation of a probability density from a discrete set of
samples. The major conceptional difference is that KDE assumes the probability dis-
tribution underlying the data is smooth. Whereas a histogram “swallows” samples in
discrete bins, KDE approximates the density at a point by a coherent sum over all N
samples as

P̂ (x) =
N

∑
i=1

w̄iK(x∣xi) , (F.1)

where w̄i is the self-normalized weight, and K(x∣y) is a kernel. Many kernels can be
used1, but we restrict ourselves to Gaussian kernels of the form

K(x∣y) ∝ exp [− 1

h2
(x − y)T (x − y)] , (F.2)

because we can then exploit the package FIGTree [Mor+09; Mor10] that provides a
speed-up of up to a factor of 100 over a naïve summation through clever caching and
ignoring of samples that are too far away to have an impact at a given estimation accu-
racy. This fast improved Gauss transform with tree data structure is the analogy of the fast
Fourier transform.

The equivalent of the bin width is the bandwidth h for a given kernel. The only free
parameter of KDE, h has to be chosen with great care to ensure accurate density es-
timation [SS05, Ch. 3.2]. Another difference with the histogram approach is the data
preprocessing required for KDE in the multivariate case. Its use is quickly seen as fol-
lows: suppose we wish to estimate a density in 2D, and the variances are such that
V [x1] ≫ V [x2]. Then the euclidean distance between two sample points is dominated
by the distance in the first dimension, and the density estimate P̂ is nearly indepen-
dent of the x2 direction! One way to remedy this situation is to transform the data into
almost principal components to arrive at the simple form of (F.2) [SS05, Ch. 3.3]. An-
other, faster alternative that we follow in this work is to rescale the samples to the unit
hypercube; e.g. the first dimension of the jth sample becomes

xj1 →
xj1

maxi xi1 −mini xi1
. (F.3)

After rescaling, h = 0.01 provides a good starting point for the densities shown in this
work. Ultimately, we tune h such that the resulting image is smooth, and features
such as the location and diameter of a mode are in good agreement with the histogram
results.

From the smoothness assumption, the biggest gain of KDE over the histogram is the
smoother output that makes it easier to quickly grasp the important structures of the

1The kernel K(x∣xi) = 1x1,xi1∈[a,b] (x∣x
i
) reproduces the histogram, but when we use the term KDE, we

do not include histogram, but only Gaussian kernels.
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Figure F.1: Illustration of KDE for a set of (a) 20 and (b) 1000 samples from the exponential
density. Individual samples are indicated by the “+” symbol. The bandwidth h is chosen ac-
cording to the conventional rule for samples from the normal density [SS05] depending on the
size N and variance σ2 of the sample as h = 1.06σN−1/5. The density drops at a distance h
(vertical black line) away from the minimum x = 0 due to the boundary effect.

underlying density. Compare the vertical band present in both Fig. 4.9(b) and Fig. 4.9(c),
but in the latter Figure, created with KDE, it is much more pronounced. In addition,
KDE is indispensable in computing the 1σ and 2σ contours in the global fit; cf. the
Figures in Section 7.2. Consider as a specific example Fig. 7.8(c). Due to the Monte
Carlo variance, the histogram approximation yields a 1σ region partitioned into many
disjoint regions (not shown), while KDE provides the a-priori more plausible simply
connected region shown.

However, there are disadvantages of note, too. First, KDE is more sensitive to a
proper bandwidth choice than a histogram is to a proper binning. Second, densities
peaking at the boundary of the allowed range are not captured correctly; instead, the
KDE interpolation always decreases when within a distance of ≲ h of the boundary.
This boundary effect arises because the density is cut off at the boundary, violating the
smoothness assumption; it is visible in Fig. 4.9(c) near (x1, x12) = (10,±30), where the
red band does not extend to the boundary although the density is constant. To the best
of our knowledge, there is a solution to the boundary effect only in d = 1 [Jon93], but
not for d ≥ 2.

An illustration of KDE and the boundary effect is displayed in Fig. F.1 for samples
from the exponential density. The method produces decent results, even after only 20
samples, but drops for x ≲ h due to the boundary effect. As more samples are acquired,
h is reduced, hence the boundary effect appears in a smaller region. In cases in which
the boundary effect is present, we use the histogram approximation instead; cf. the
theory predictions in Section 7.6.
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List of abbreviations

CDC central drift chamber

CDF cumulative distribution function

CERN Organisation européenne pour la recherche nucléaire

CKM Cabibbo-Kobayashi-Maskawa

ECAL electromagnetic calorimeter

EFT effective field theory

ESS effective sample size

FCNC flavor changing neutral current

GIM Glashow-Iliopoulos-Maiani

HQET heavy quark effective theory

KDE kernel density estimation

LCDA light cone distribution amplitude

LCSR light cone sum rules

LHC large hadron collider

MAXENT maximum entropy

MCMC Markov chain Monte Carlo

MSSM minimal supersymmetric extension of the SM

NP new physics

OPE operator production expansion

PMC population Monte Carlo

PDF probability density function

QCD quantum chromodynamics

QCDF QCD factorization

RICH ring-imaging Cherenkov

SM standard model

SVD silicon strip vertex detector

TOF time of flight
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[BS12] D. Bećirević and E. Schneider. „On transverse asymmetries in B →
K∗`+`−.“ Nucl.Phys.B 854 (2012), pp. 321–339. arXiv:1106.3283.

[BZ05a] P. Ball and R. Zwicky. „Bd,s → ρ,ω,K∗, φDecay Form Factors from Light-
Cone Sum Rules Revisited.“ Phys.Rev.D 71 (2005), p. 014029.
arXiv:hep-ph/0412079.

[BZ05b] P. Ball and R. Zwicky. „New results on B → π, K, η decay form factors
from light-cone sum rules.“ Phys.Rev.D 71 (2005), p. 014015.
arXiv:hep-ph/0406232.

[Cab63] N. Cabibbo. „Unitary Symmetry and Leptonic Decays.“ Phys.Rev.Lett. 10
(1963), pp. 531–533.

[Cal10] A. Caldwell. Data Analysis and Monte Carlo Methods. Lecture held at Tech-
nische Universität München. 2010.
http://www.mpp.mpg.de/~caldwell/ss10.html.

[Cal11] A. Caldwell. „Signal discovery in sparse spectra: a Bayesian analysis.“ In
proceedings of: PHYSTAT2011, CERN-2011-006. 2011, pp. 138–142.

http://arxiv.org/abs/hep-ph/0611295
http://arxiv.org/abs/hep-ph/9910220
http://arxiv.org/abs/hep-ph/0104284
http://arxiv.org/abs/hep-ph/0312090
http://arxiv.org/abs/1111.2558
http://arxiv.org/abs/hep-ph/0606167
http://www.utfit.org
http://www.seanborman.com/publications/EM_algorithm.pdf
http://www.seanborman.com/publications/EM_algorithm.pdf
http://arxiv.org/abs/1002.4310
http://arxiv.org/abs/1002.4310
http://arxiv.org/abs/1204.1737
http://arxiv.org/abs/1106.3283
http://arxiv.org/abs/hep-ph/0412079
http://arxiv.org/abs/hep-ph/0406232
http://www.mpp.mpg.de/~caldwell/ss10.html
http://cdsweb.cern.ch/record/1306523


134 Bibliography

[Cap+04] O. Cappé, A. Guillin, J. Marin, and C. Robert. „Population Monte Carlo.“
J.Comput.Graph.Statist. 13.4 (2004), pp. 907–929.

[Cap+08] O. Cappé et al. „Adaptive importance sampling in general mixture
classes.“ Stat.Comp. 18 (2008), pp. 447–459.

[Cha+05] J. Charles et al. [CKMfitter Group]. „CP violation and the CKM matrix:
Assessing the impact of the asymmetric B factories.“
Eur.Phys.J.C 41 (2005), pp. 1–131. arXiv:hep-ph/0406184.

[Cha+11] S. Chatrchyan et al. [CMS Collaboration]. „Search forBs andB → dimuon
decays in pp collisions at 7 TeV.“ Phys.Rev.Lett. 107 (2011), p. 191802.
arXiv:1107.5834.

[Cha+12a] S. Chatrchyan et al. [CMS Collaboration]. „Observation of a new boson
at a mass of 125 GeV with the CMS experiment at the LHC.“ Phys.Lett.B
716 (2012), pp. 30–61. arXiv:1207.7235.

[Cha+12b] S. Chatrchyan et al. [CMS Collaboration]. „Search for B0
s → µ+µ− and

B0 → µ+µ− decays.“ JHEP 1204 (2012), p. 033. arXiv:1203.3976.

[Cha+99] J. Charles et al. „Heavy to light form-factors in the heavy mass to large
energy limit of QCD.“ Phys.Rev.D 60 (1999), p. 014001. arXiv:hep-ph/
9812358.

[CHM07] M. Czakon, U. Haisch, and M. Misiak. „Four-Loop Anomalous Dimen-
sions for Radiative Flavour-Changing Decays.“ JHEP 0703 (2007), p. 008.
arXiv:hep-ph/0612329.

[CJ01] S. Chib and I. Jeliazkov. „Marginal likelihood from the Metropolis-
Hastings output.“ J.Amer.Statist.Assoc. 96.453 (2001), pp. 270–281.

[Cla12] P. Clarke [LHCb Collaboration]. „Tagged time-dependent angular analy-
sis of B0

s → J/ψφ decays at LHCb.“ In proceedings of: 47th Rencontres de
Moriond: Electroweak Interactions and Unified Theories, LHCb-CONF-
2012-002. 2012.

[Cle+98] B. Cleveland et al. „Measurement of the solar electron neutrino flux with
the Homestake chlorine detector.“ Astrophys.J. 496 (1998), pp. 505–526.

[CMM97] K. G. Chetyrkin, M. Misiak, and M. Munz. „Weak radiative B meson
decay beyond leading logarithms.“ Phys.Lett.B 400 (1997), pp. 206–219.
arXiv:hep-ph/9612313.

[Coa+00] T. Coan et al. [CLEO Collaboration]. „Study of exclusive radiative B me-
son decays.“ Phys.Rev.Lett. 84 (2000), pp. 5283–5287.
arXiv:hep-ex/9912057.

[Cor+12] J.-M. Cornuet, J.-M. Marin, A. Mira, and C. P. Robert. „Adaptive Multiple
Importance Sampling.“ Scand.J.Stat. (2012).

[Cor12] M. D. Corcoran [CDF and D0 Collaborations]. „CP violation and rare Bs
decays at the Tevatron.“ Nuovo Cim. C035N1 (2012), pp. 273–280.

[Cra99] H. Cramér. Mathematical methods of statistics. Princeton University Press,
1999.

[Cro10] G. Crooks. „The Amoroso Distribution“ (2010). arXiv:1005.3274.

http://arxiv.org/abs/hep-ph/0406184
http://arxiv.org/abs/1107.5834
http://arxiv.org/abs/1207.7235
http://arxiv.org/abs/1203.3976
http://arxiv.org/abs/hep-ph/9812358
http://arxiv.org/abs/hep-ph/9812358
http://arxiv.org/abs/hep-ph/0612329
http://cdsweb.cern.ch/record/1423592
http://cdsweb.cern.ch/record/1423592
http://arxiv.org/abs/hep-ph/9612313
http://arxiv.org/abs/hep-ex/9912057
http://arxiv.org/abs/1005.3274


Bibliography 135

[DAg03] G. D’Agostini. Bayesian Reasoning in Data Analysis: A Critical Introduction.
World Scientific, 2003.

[DE10] C. Donnelly and P. Embrechts. „The devil is in the tails: actuarial math-
ematics and the subprime mortgage crisis.“ Astin Bulletin 40.1 (2010),
pp. 1–33.

[Des+11] S. Descotes-Genon, D. Ghosh, J. Matias, and M. Ramon. „Exploring New
Physics in the C7 −C

′
7 plane.“ JHEP 1106 (2011), p. 099. arXiv:1104.3342.

[DLR77] A. Dempster, N. Laird, and D. Rubin. „Maximum likelihood from incom-
plete data via the EM algorithm.“ J.R.Stat.Soc.Ser.B Stat. Methodol. 39.1
(1977), pp. 1–38.

[Dri+71] D. Drijard et al. Statistical methods in experimental physics. North-Holland,
1971.

[Dyk+12] D. van Dyk, F. Beaujean, C. Bobeth, and C. Wacker [EOS Collaboration]
(2012). http://project.het.physik.tu-dortmund.de/eos/.

[Dyk12] D. van Dyk. „The Decays B̄ → K̄(∗)`+`− at Low Recoil and their Con-
straints on New Physics.“ PhD thesis, Technical University of Dortmund,
2012. HDL: 2003/29514.

[EAPG09] A. El Attar, A. Pigeau, and M. Gelgon. „Fast aggregation of Student mix-
ture models.“ In proceedings of: European Signal Processing Conference
(Eusipco 2009). 2009.

[EB64] F. Englert and R. Brout. „Broken Symmetry and the Mass of Gauge Vector
Mesons.“ Phys.Rev.Lett. 13 (1964), pp. 321–323.

[Ege+08] U. Egede et al. „New observables in the decay mode B̄d → K̄∗0`+`−.“
JHEP 0811 (2008), p. 032. arXiv:0807.2589.

[Ege+10] U. Egede et al. „New physics reach of the decay mode B̄ → K̄∗0`+`−.“
JHEP 1010 (2010), p. 056. arXiv:1005.0571.

[Fer34] E. Fermi. „Versuch einer Theorie der β-Strahlen. I.“ Zeitschrift für Physik
88 (1934), pp. 161–177.

[Fey42] R. Feynman. Feynman’s thesis: a new approach to quantum theory. Ed. by L.
Brown. World Scientific, 1942.

[FHB09] F. Feroz, M. Hobson, and M. Bridges. „MultiNest: an efficient and ro-
bust Bayesian inference tool for cosmology and particle physics.“ Mon.
Not.Roy.Astron.Soc. 398 (2009), pp. 1601–1614. arXiv:0809.3437.

[Fla+09] H. Flacher et al. „Revisiting the Global Electroweak Fit of the Standard
Model and Beyond with Gfitter.“ Eur.Phys.J.C 60 (2009), pp. 543–583.
arXiv:0811.0009.

[FM03] T. Feldmann and J. Matias. „Forward backward and isospin asymmetry
for B → K∗`+`− decay in the standard model and in supersymmetry.“
JHEP 0301 (2003), p. 074. arXiv:hep-ph/0212158.

[Fuj09] M. Fujikawa. „Measurement of Branching Fraction and Time-dependent
CP Asymmetry Parameters in B0 → K0π0 Decays.“ PhD thesis, Nara
Women’s University, 2009.

http://arxiv.org/abs/1104.3342
http://project.het.physik.tu-dortmund.de/eos/
http://hdl.handle.net/2003/29514
http://arxiv.org/abs/0807.2589
http://arxiv.org/abs/1005.0571
http://arxiv.org/abs/0809.3437
http://arxiv.org/abs/0811.0009
http://arxiv.org/abs/hep-ph/0212158


136 Bibliography

[Gew89] J. Geweke. „Bayesian inference in econometric models using Monte Carlo
integration.“ Econometrica 57.6 (1989), pp. 1317–1339.

[GH01] P. Gambino and U. Haisch. „Complete electroweak matching for radia-
tive B decays.“ JHEP 0110 (2001), p. 020. arXiv:hep-ph/0109058.

[GH05] M. Gorbahn and U. Haisch. „Effective Hamiltonian for non-leptonic
∣∆F ∣ = 1 decays at NNLO in QCD.“ Nucl.Phys.B 713 (2005), pp. 291–332.
arXiv:hep-ph/0411071.

[GHK64] G. Guralnik, C. Hagen, and T. Kibble. „Global Conservation Laws and
Massless Particles.“ Phys.Rev.Lett. 13 (1964), pp. 585–587.

[GHM05] M. Gorbahn, U. Haisch, and M. Misiak. „Three-loop mixing of dipole op-
erators.“ Phys.Rev.Lett. 95 (2005), p. 102004. arXiv:hep-ph/0504194.

[GIM70] S. Glashow, J. Iliopoulos, and L. Maiani. „Weak Interactions with Lepton-
Hadron Symmetry.“ Phys.Rev.D 2 (1970), pp. 1285–1292.

[GM98] A. Gelman and X.-L. Meng. „Simulating Normalizing Constants: From
Importance Sampling to Bridge Sampling to Path Sampling.“ Stat.Sci.
13.2 (1998), pp. 163–185.

[GP04] B. Grinstein and D. Pirjol. „Exclusive rare B →K∗`+`− - decays at low re-
coil: Controlling the long-distance effects.“ Phys.Rev.D 70 (2004), p. 114005.
arXiv:hep-ph/0404250.

[GR04] J. Goldberger and S. Roweis. „Hierarchical clustering of a mixture model.“
Adv.Neur.Info.Proc.Syst. 17 (2004), p. 505.

[GR92] A. Gelman and D. Rubin. „Inference from iterative simulation using mul-
tiple sequences.“ Stat.Sci. 7.4 (1992), pp. 457–472.

[Har83] J. A. Hartigan. Bayes theory. Springer, 1983.

[Has70] W. Hastings. „Monte Carlo sampling methods using Markov chains and
their applications.“ Biometrika 57.1 (1970), pp. 97–109.

[Hei05] J. Heinrich. „Bayesian limit software: multi-channel with correlated back-
grounds and efficiencies“ (2005). CDF-MEMO-7587.

[Her+77] S. Herb et al. „Observation of a Dimuon Resonance at 9.5-GeV in 400-GeV
Proton-Nucleus Collisions.“ Phys.Rev.Lett. 39 (1977), pp. 252–255.

[HH12] C. Hambrock and G. Hiller. „ExtractingB →K∗ Form Factors from Data“
(2012). arXiv:1204.4444.

[Hig64] P. W. Higgs. „Broken Symmetries and the Masses of Gauge Bosons.“
Phys.Rev.Lett. 13 (1964), pp. 508–509.

[HOVD11] L. Hoogerheide, A. Opschoor, and H. Van Dijk. „A Class of Adaptive EM-
Based Importance Sampling Algorithms for Efficient and Robust Poste-
rior and Predictive Simulation.“ Tinbergen Institute Discussion Paper 004
(2011).

[HST01] H. Haario, E. Saksman, and J. Tamminen. „An Adaptive Metropolis Al-
gorithm.“ Bernoulli 7.2 (2001), pp. 223–242.

[Hub+06] T. Huber, E. Lunghi, M. Misiak, and D. Wyler. „Electromagnetic loga-
rithms in B̄ → X(s)`+`−.“ Nucl.Phys.B 740 (2006), pp. 105–137.
arXiv:hep-ph/0512066.

http://arxiv.org/abs/hep-ph/0109058
http://arxiv.org/abs/hep-ph/0411071
http://arxiv.org/abs/hep-ph/0504194
http://arxiv.org/abs/hep-ph/0404250
http://arxiv.org/abs/1204.4444
http://arxiv.org/abs/hep-ph/0512066


Bibliography 137

[Hut12] D. Hutchcroft [LHCb Collaboration]. „Rare decays at LHCb.“ In proceed-
ings of: BEACH 2012, Wichita, KS, USA. 2012.

[IW90] N. Isgur and M. B. Wise. „Relationship between form-factors in semilep-
tonic b̄ and D decays and exclusive rare b̄ decays.“ Phys.Rev.D 42 (1990),
pp. 2388–2391.

[Jam75] F. James. „MINUIT — a system for function minimization and analysis of
the parameter errors and correlations.“ Comput.Phys.Commun. 10 (1975),
pp. 343–367.

[JB03] E. T. Jaynes and G. L. Bretthorst. Probability theory. Cambridge University
Press, 2003.

[Jef39] H. Jeffreys. Theory of Probability. Oxford: Clarendon Press, 1939.

[Jon93] M. C. Jones. „Simple boundary correction for kernel density estimation.“
J.Stat.Comp. 3 (1993), pp. 135–146.

[Ken+04] M. G. Kendall et al. Kendall’s Advanced Theory of Statistics: Bayesian Infer-
ence. Arnold, 2004.

[Kho+10] A. Khodjamirian, T. Mannel, A. Pivovarov, and Y.-M. Wang. „Charm-
loop effect in B → K(∗)`+`− and B → K∗γ.“ JHEP 1009 (2010), p. 089.
arXiv:1006.4945.

[Kil+10] M. Kilbinger et al. „Bayesian model comparison in cosmology with Pop-
ulation Monte Carlo.“ Mon.Not.R.Astron.Soc 405.4 (2010), pp. 2381–2390.
arXiv:0912.1614.

[Kil+11] M. Kilbinger et al. PMC lib v1.0. 2011.
http://www2.iap.fr/users/kilbinge/CosmoPMC/.

[KL51] S. Kullback and R. Leibler. „On information and sufficiency.“ Ann.Math.
Stat. 22.1 (1951), pp. 79–86.

[KM05] F. Kruger and J. Matias. „Probing new physics via the transverse ampli-
tudes of B0 → K∗0(→ K−π+)`+`− at large recoil.“ Phys.Rev.D 71 (2005),
p. 094009. arXiv:hep-ph/0502060.

[KM73] M. Kobayashi and T. Maskawa. „CP Violation in the Renormalizable The-
ory of Weak Interaction.“ Prog.Theor.Phys. 49 (1973), pp. 652–657.

[Kod+01] K. Kodama et al. [DONUT Collaboration]. „Observation of tau neutrino
interactions.“ Phys.Lett.B 504 (2001), pp. 218–224.
arXiv:hep-ex/0012035.

[Kol33] A. N. Kolmogorov. Grundbegriffe der Wahrscheinlichkeitsrechnung. Springer,
1933.

[Lap20] P. S. de Laplace. Théorie analytique des probabilités. Paris, 1820.

[LC95] J. Liu and R. Chen. „Blind deconvolution via sequential imputations.“
J.Amer.Statist.Assoc. 90.430 (1995), pp. 567–576.

[Lee+12] J. Lees et al. [BABAR Collaboration]. „Measurement of Branching Frac-
tions and Rate Asymmetries in the Rare DecaysB →K(∗)l+l−.“ Phys.Rev.D
86 (2012), p. 032012. arXiv:1204.3933.

http://arxiv.org/abs/1006.4945
http://arxiv.org/abs/0912.1614
http://www2.iap.fr/users/kilbinge/CosmoPMC/
http://arxiv.org/abs/hep-ph/0502060
http://arxiv.org/abs/hep-ex/0012035
http://arxiv.org/abs/1204.3933


138 Bibliography

[LHC08] LHCb Collaboration. „The LHCb Detector at the LHC.“ J.Inst. 3 (2008),
S08005.

[LHC98] LHCb Collaboration. LHCb : Technical Proposal. Geneva: CERN, 1998.

[Liu+09] Z. Liu et al. „Form factors for rare B decays: Strategy, methodology, and
numerical study.“ PoS LAT2009 (2009). arXiv:0911.2370.

[Liu+11] Z. Liu et al. „A Lattice calculation of B → K(∗)`+`− form factors“ (2011).
arXiv:1101.2726.

[LLVdW10] J. Laiho, E. Lunghi, and R. S. Van de Water. „Lattice QCD inputs to the
CKM unitarity triangle analysis.“ Phys.Rev.D 81 (2010), p. 034503.
arXiv:0910.2928.

[Mar06] A. Markov. „Extension of the law of large numbers to dependent events.“
Bull. Soc. Phys. Math. Kazan 2.15 (1906). In Russian, pp. 155–156.

[Mat+12] J. Matias, F. Mescia, M. Ramon, and J. Virto. „Complete Anatomy of B̄d →
K̄∗0(→ Kπ)`+`− and its angular distribution.“ JHEP 1204 (2012), p. 104.
arXiv:1202.4266.

[McN+12] C. McNeile et al. „High-Precision fBs and HQET from Relativistic Lattice
QCD.“ Phys.Rev.D 85 (2012), p. 031503. arXiv:1110.4510.

[Met+53] N. Metropolis et al. „Equation of state calculations by fast computing ma-
chines.“ J.Chem.Phys. 21 (1953), p. 1087.

[Mor+09] V. I. Morariu et al. „Automatic online tuning for fast Gaussian summa-
tion.“ Adv.Neural.Info.Proc.Syst 21 (2009), pp. 1113–1120.

[Mor10] V. Morariu. FIGTree v0.9.3. 2010.
http://www.umiacs.umd.edu/~morariu/figtree/.

[MS04] M. Misiak and M. Steinhauser. „Three loop matching of the dipole op-
erators for b → sγ and b → sg.“ Nucl.Phys.B 683 (2004), pp. 277–305.
arXiv:hep-ph/0401041.

[MXZ08] F. Muheim, Y. Xie, and R. Zwicky. „Exploiting the width difference in
Bs → φγ.“ Phys.Lett.B 664 (2008), pp. 174–179. arXiv:0802.0876.

[Nak+04] M. Nakao et al. [Belle Collaboration]. „Measurement of the B →
K∗(892)γ branching fractions and asymmetries.“ Phys.Rev.D 69 (2004),
p. 112001. arXiv:hep-ex/0402042.

[Nak+10] K. Nakamura et al. [Particle Data Group]. „Review of particle physics.“
J.Phys.G 37 (2010), p. 075021.

[Nat+06] Z. Natkaniec et al. „Status of the Belle silicon vertex detector.“ Nucl.
Instrum.Meth.A 560 (2006), pp. 1–4.

[NMU51] J. von Neumann, N. Metropolis, and S. Ulam. „Monte Carlo Method.“
National Bureau of Standards/Applied Math. Series 12 (1951), pp. 36–38.

[Nor12] F. Norrod. „Perspective Across The Technology Landscape.“ In proceed-
ings of: CHEP 2012, New York, NY, USA. 2012.

[Occ95] W. of Occam. Quaestiones et decisiones in quattuor libros Sententiarum Petri
Lombardi. London, 1495.

http://arxiv.org/abs/0911.2370
http://arxiv.org/abs/1101.2726
http://arxiv.org/abs/0910.2928
http://arxiv.org/abs/1202.4266
http://arxiv.org/abs/1110.4510
http://www.umiacs.umd.edu/~morariu/figtree/
http://arxiv.org/abs/hep-ph/0401041
http://arxiv.org/abs/0802.0876
http://arxiv.org/abs/hep-ex/0402042


Bibliography 139

[OZ00] A. Owen and Y. Zhou. „Safe and effective importance sampling.“ J.Amer.
Statist.Assoc. 95.449 (2000), pp. 135–143.

[Par12] C. Parkinson [LHCb Collaboration]. „Differential branching fraction and
angular analysis of the B0 → K∗0µ+µ− decay.“ In proceedings of: 47th
Rencontres de Moriond: QCD Sessions, LHCb-CONF-2012-008. 2012.

[Poi12] V. Poireau [BaBar Collaboration]. „A selection of recent results from the
BaBar experiment“ (2012). arXiv:1205.2201.

[RC04] C. Robert and G. Casella. Monte Carlo statistical methods. Springer, 2004.

[Rea02] A. L. Read. „Presentation of search results: The CL(s) technique.“ J.Phys.G
28 (2002), pp. 2693–2704.

[Ree10] W. R. Reece. „Exploiting angular correlations in the rare decay B →
K∗µ+µ− at LHCb.“ CERN-THESIS-2010-095. PhD thesis, Imperial Col-
lege London, 2010.

[RGG97] G. O. Roberts, A. Gelman, and W. R. Gilks. „Weak Convergence and Op-
timal Scaling of Random Walk Metropolis Algorithms.“ Ann.Appl.Probab.
7.1 (1997), pp. 110–120.

[SBB01] T. Sellke, M. J. Bayarri, and J. O. Berger. „Calibration of p Values for Test-
ing Precise Null Hypotheses.“ Am.Stat 55 (2001), pp. 62–71.

[Sch78] G. Schwarz. „Estimating the dimension of a model.“ Ann.Stat. 6.2 (1978),
pp. 461–464.

[Sch96] M. J. Schervish. „P Values: What They Are and What They Are Not.“
Am.Stat 50 (1996), pp. 203–206.

[Sha48] C. E. Shannon. „The Mathematical Theory of Communication.“ Bell Sys-
tem Techn.J. 27 (1948), pp. 379–423.

[Shi11] K. Shibata. „Status and schedule of SuperKEKB.“ PoS EPS-HEP2011
(2011), p. 38.

[Sim+10] J. Simone et al. [Fermilab Lattice and MILC Collaborations]. „The decay
constants fDs , fD+ , fBs and fB from lattice QCD.“ PoS LAT2010 (2010),
p. 317.

[Ski06] J. Skilling. „Nested sampling for general Bayesian computation.“ Bayesian
Analysis 1.4 (2006), pp. 833–860.

[SS05] D. Scott and S. Sain. „Multidimensional density estimation.“ Handbook of
Statistics 24 (2005), pp. 229–261.

[SS06] D. S. Sivia and J. Skilling. Data analysis: a Bayesian tutorial. Oxford Univer-
sity Press, 2006.

[Tev09] Tevatron Electroweak Working Group. „Combination of CDF and D0 Re-
sults on the Mass of the Top Quark“ (2009). arXiv:0903.2503.

[Tie94] L. Tierney. „Markov chains for exploring posterior distributions.“ Ann.
Stat. 22.4 (1994), pp. 1701–1728.

[Ush+06] Y. Ushiroda et al. [Belle Collaboration]. „Time-Dependent CP Asymme-
tries in B0 → K0

Sπ
0γ transitions.“ Phys.Rev.D 74 (2006), p. 111104.

arXiv:hep-ex/0608017.

http://cdsweb.cern.ch/record/1427691
http://arxiv.org/abs/1205.2201
http://arxiv.org/abs/0903.2503
http://arxiv.org/abs/hep-ex/0608017


140 Bibliography

[Wal69] A. M. Walker. „On the Asymptotic Behaviour of Posterior Distributions.“
J.R.Stat.Soc.Series B Stat. Methodol 31 (1969), pp. 80–88.

[Wei+09] J.-T. Wei et al. [Belle Collaboration]. „Measurement of the Differential
Branching Fraction and Forward-Backward Asymmetry for B →
K(∗)l+l−.“ Phys.Rev.Lett. 103 (2009), p. 171801. arXiv:0904.0770.

[Win11] M. Wingate. „Lattice QCD Calculations with b Quarks: Status and Pro-
spects.“ PoS BEAUTY2011 (2011), p. 057. arXiv:1105.4498.

[Wol83] L. Wolfenstein. „Parametrization of the Kobayashi-Maskawa Matrix.“
Phys.Rev.Lett. 51 (1983), p. 1945.

[Wra+09] D. Wraith et al. „Estimation of cosmological parameters using adaptive
importance sampling.“ Phys.Rev.D 80 (2009), p. 023507. arXiv:0903.0837.

[WZ72] K. Wilson and W. Zimmermann. „Operator product expansions and com-
posite field operators in the general framework of quantum field theory.“
Commun.Math.Phys. 24 (1972), pp. 87–106.

[Zho+11] R. Zhou et al. [Fermilab Lattice, MILC Collaborations]. „Form Factors for
B → K`+`− Semileptonic Decay from Three-Flavor Lattice QCD.“ PoS
LAT2011 (2011), p. 298. arXiv:1111.0981.

http://arxiv.org/abs/0904.0770
http://arxiv.org/abs/1105.4498
http://arxiv.org/abs/0903.0837
http://arxiv.org/abs/1111.0981

	Introduction
	Bayesian probability theory 
	Axioms and basic definitions
	Uncertainty propagation
	Priors

	Monte Carlo sampling
	Markov chains and the Metropolis-Hastings algorithm
	Adaptive Metropolis-Hastings
	Asserting convergence
	Summary of adaptive MCMC

	Multimodal example
	Importance sampling
	Adaptive importance sampling
	Convergence monitoring


	Markov Chains and adaptive importance sampling united
	Markov chain prerun
	Hierarchical clustering
	Review of hierarchical clustering
	Initialization

	Population Monte Carlo
	Multimodal example revisited
	Higher dimensions
	Degeneracy
	Cropping


	Short guide to parameter settings
	Outlook

	Theory of rare B decays
	Standard model
	Quark mixing
	Flavor changing neutral currents

	Effective field theory
	Nonperturbative effects

	Observables and experimental input
	Basic assumptions
	Experiments
	Belle
	LHCb

	b to s observables
	B to K* gamma and other radiative decays 
	B to K l+ l-
	B to K* (to K pi) l+ l-
	B_s to mu+ mu-
	Exclusion limit and the Amoroso distribution



	Global fit of rare B decays
	Overview
	Marginal distributions
	Wilson coefficients
	Nuisance parameters

	Goodness of fit
	Model comparison
	Sampling performance
	Predictions
	Conclusion

	Conclusion
	Numerical input 
	Nuisance parameters 
	Common nuisance parameters
	B to K(*) form factors and f_Bs
	Subleading Lambda/m_b corrections

	LogGamma distribution

	Standard model predictions
	Goodness of fit
	General approach
	 p value
	Bayesian motivation

	Nonlocal MCMC variants
	Global-local jumps
	Long jumps

	The expectation-maximization algorithm
	Gaussian mixture

	Kernel density estimation
	Acknowledgments
	List of abbreviations
	Bibliography



