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Abstract

This thesis details two new computational methods for the comprehensive search for sequence-
and group-specific oligonucleotide signatures in whole genome or marker gene sequence datasets.
Designing primers and probes for molecular diagnostic methods depends on the identification
of these signatures, the short binding sites on genome or marker gene sequences. CaSSiS, the
implementation of this thesis, combines the powerful inexact sequence search capabilities of
the ARB PT-Server search index with the structured storage of signature-to-sequence relations.
With PLEASE, a client-server application was evaluated which facilitates the access to signature
candidates.

This thesis deals with the challenge that the signatures should reliably be detectable within
target groups (i.e. have a high group coverage), but not interact with any non-targets that might
be in the same sample. The two CaSSiS algorithms both allow strict and relaxed (fault-tolerant)
search conditions within user-defined constraints. CaSSiS was successfully tested with multiple
versions of the ARB SILVA database, the largest collection of annotated aligned SSU-rRNA
sequences of almost full length (> 900 nt).

The first algorithm CaSSiS-BGRT tackles these problems with the newly designed data
structure “Bipartite Graph Representation Tree” (BGRT). Results are sorted by their degree
of specificity. All signatures guarantee a defined weighted mismatch value as a measurement
for the Hamming distance to non-target sequences. The problem, that the search for signatures
becomes computationally expensive when working with large collections of deeply hierarchically
clustered target (and non-target) sequences was successfully addressed by using bounding meth-
ods. The CaSSiS-BGRT structure allows the comprehensive signature computation as well as
single queries of freely defined groups.

With our second algorithm CaSSiS-LCA, we present an even more runtime and memory
efficient solution for the comprehensive in silico search for promising signature candidates even
under relaxed search conditions. This is done by not using the intermediate storage as BGRT
data structure. Instead, signatures are directly added into the phylogenetic tree structure. As a
result, only comprehensive computations are possible, but at a significantly faster runtime and
with far less memory consumption.

Even with the optimizations that were applied in the implementation of the two algorithms,
processing the amounts of data expected in the future will still be a struggle. The DUP System
was used to address a major issue that is expected: the memory limitation of the available

search indices, in our case the ARB PT-Server. Multi-stream pipelines were used to distribute



the work load onto multiple nodes within a cluster. The speedups achieved with distributed
indices were by themselves clearly not sensational; But they show, that the combination of new
algorithmic approaches for the signature selection and the use of distributed index structures
allow us to process unreduced datasets and deep hierarchical clusterings we could not process
before.

By partitioning the search index in a cluster and additionally using a distributed CaSSiS-
LCA topology, we estimate that the CaSSiS-LCA implementation should be able to process
genome data of virtually arbitrary size. It would mostly be limited by the size of the structure
which is used to store the resulting signature candidates on each node. This structure can then
be merged in a final step to gather all results and produce the signature candidate lists.

Besides the command line tool CaSSiS, the client-server application PLEASE was imple-
mented to allow end users to (re-)evaluate the signature candidates without the need for power-
ful computer architectures. A new, intuitive graphical interface allows group selection within a
loaded phylogenetic tree. Single requests are usually processed within a few seconds. The result
is a list of signatures with maximum coverage (sensitivity) for each entry within the range of

allowed non-target matches, and their thermodynamic characteristics.
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Chapter 1

Introduction

1.1 Motivation

Computational methods play an essential role in the development of oligonucleotide primers
and probes, the key diagnostic agents in contemporary molecular technologies. This thesis will
present new approaches which extend and improve the central step in the primer and probe
design process: the search and evaluation of genetic signatures. These approaches will allow
the rapid sensitive and specific identification of single organisms or groups of organisms based
on large sequence datasets and phylogenetic trees.

The identification of an organism is done based on its genetic material, more specifically on
short matching sites called oligonucleotide signatures [120]. In order for the diagnostic methods
to work, a signature must reliably be present within the genetic material of a target (group), and
be absent in non-targets. Additionally, the signatures’ thermodynamic characteristics must be
within the constraints of common techniques, e.g. of primers within polymerase chain reactions
(PCR) [15] or probes in nucleic acid hybridization [5, 105] based techniques.

In case of well-studied groups of organisms, sources for primers and probes (the counterparts
of signatures) can be field-tested oligonucleotides from scientific publications and from curated
collections (Section 1.5). Primers and probes from such sources are usually based on sequence
datasets that are a few years old. This is not necessarily a disadvantage. But we currently see
a vast continuing growth in the size of all kinds of public gene and genome sequence databases
— an exponentially growing number of stored nucleotides (Section 1.5). The gap between the
number of published oligonucleotide primers and probes and the size of the available sequence
datasets widens. The specificity and sensitivity of published signatures therefore needs to be
carefully reevaluated with newer datasets before applying them. In cases where the requirements
of the detection method or the target group differ from the ones of publicly available primers
and probes, an adaption or a redesign from scratch is necessary.

Designing signatures with computational methods and evaluating their applicability in a wet
lab are both costly processes — in time and money. Signature search applications are either
limited by runtime or memory constraints (or both) regarding the amount of sequence data

they are able to process. Compromises must usually be made as the source material has to be
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reduced to an amount that is processable on common workstations. Stripping (in most cases
non-target) sequences from the dataset might have an influence on the specificity and sensitivity
of the resulting signatures.

This thesis will focus on the computational process, but it thereby has also positive influence
on the following evaluation in the wet lab. By vastly reducing the computation time it will allow
faster evaluation cycles. By allowing to process significantly larger dataset sizes compared
to other approaches [10, 12] (Section 3.3.5) it will increase the quality of resulting signature
candidates. Another main goal of this thesis will be enabling the comprehensive computation
of signature candidates for complete phylogenies. This will further reduce the overall time of
the design process. It will enable maintainers of gene and genome databases to precompute and
offer collections of signature candidates along with their up-to-date datasets. User can rely on
these collections without the need of additional costly computations.

A basic requirement for signature searches is the separation of organisms' into target and
non-target groups. In general, these group definitions are based in phylogenetic or taxonomic
classifications (Section 1.4). Tools that compute phylogenies usually apply heuristics and their
results therefore may differ based on the initial parameters and the used dataset revision.
Taxonomic classifications were for a long time based on observable features of the organisms
(e.g. their cellular structure or metabolism) and have in some cases significantly changed over
the last decades. Bergey’s Manual of Systematic Bacteriology is a good source to track these
changes. Both, the computational induced uncertainties and the human factor in subdividing
the organisms into groups based on the best knowledge may induce errors in the groupings. Such
errors may have a great influence on the design process. A single false negative (i.e. falsely
defined as non-target) sequence may sort out an otherwise good signature candidate. The
approaches presented in this thesis will therefore allow comprehensive relaxed (fault-tolerant)
search conditions. They will allow non-target hits within a defined range to cope with erroneous
groupings.

Another very probable source for errors is the sequence material itself. Assuming a constant
error rate, the exponential growth of the sequenced material results in an equally growing error
rate. Additionally, the error rate largely varies with the applied sequencing technique [74]. These
errors have direct influence on the signature search process and indirect influence through falsely
annotated datasets, resulting in wrong groupings. The approaches presented in this thesis will
deal with erroneous bases in the sequence material by allowing mismatches within a target
group.

This thesis will extend and improve the overall search and evaluation of genetic signatures
(Figure 1.1). The presented algorithms and implementations, called Comprehensive and Sensi-
tive Signature Search (CaSSiS), will be able to comprehensively compute signatures for complete
phylogenies or taxonomic groups. Unreduced up-to-date sequence datasets will be used. This
will enable sequence database maintainers to provide signature candidates along with their se-
quence datasets. Non-target hits (false positives) as well as mismatches within a target group
will be handled to deal with erroneous bases in the sequence material.

'In this thesis it is assumed that each organism is represented by a genetic sequence.
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Figure 1.1: Schema of the primer and probe design pipeline in which CaSSiS is embedded. The

input data for CaSSiS comes from public sequence and phylogenetic tree databases. The search
index (PT-Server) is described in Chapter 2. The two algorithms CaSSiS-BGRT and CaSSiS-

LCA are presented in the following Chapters 3 and 4. Not shown is our distributed approach

to parallelize the search index with the DUP-System (Chapter 5). The client-server application

PLEASE is presented in Chapter 6. The resulting signatures can be used as a template for new

RNA/DNA primer and probes, for example to provide diagnostic microarrays.
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1.2 Structure of the thesis

All chapters of this thesis are mostly self-contained. This allows reading them without having
to read the previous ones. However, the approaches presented in the chapters reference the ones
in preceding and subsequent chapters. This applies particularly to the Chapters 3, 4 and 5.

Being an interdisciplinary computer science work, a brief introduction to the biological
background is given in the remainder of this Chapter 1. This covers the basic of nucleic acids,
classification schemes and sequence collections. Chapter 2 presents related work which was used
in the algorithms and the CaSSiS implementations. Chapter 3 describes the CaSSiS-BGRT al-
gorithm, our first approach that brings together comprehensive and relaxed search methods
for oligonucleotide signatures. Its design also allows creating precomputed index files to allow
single queries based on freely defined groups. To gain additional speedup, a parallelized version
of the BGRT traversal is explored in Section 3.4. Chapter 4 presents our second algorithm
CaSSiS-LCA. It provides a direct, more memory- and runtime-efficient approach to comprehen-
sively compute signature candidates. In Chapter 5 we evaluate a distributed signature matching
approach. Distributing the search index allows the reduction of the memory consumption per
partition and simultaneously a speedup. Besides providing comprehensive sets of signature
candidates along with the source sequence datasets, different approaches of querying and visu-
alizing signature datasets are evaluated in Chapter 6. Supplementary information on the used
datasets and systems that were used in this thesis for testing are given in the Appendix A. The
Appendix B contains a brief description (“HowTo”) of the CaSSiS implementation. The open
source CaSSiS library as its core development and other implementations are presented in the
Appendix B. The source code as well as binary releases can be downloaded from the projects

website: http://www.lrr.in.tum.de/~cassis/

1.3 Molecular biology and genetics

Since this is an interdisciplinary computer science work, terms are used in the following chapters
that come from molecular biology and genetics. The first field covers interactions that happen
on a molecular level within cells. The second field addresses the function of genes and their
importance in the inheritance of characteristics. In this thesis, the biological focus lies on
the components and reactions that are associated with the storage and processing of genetic
information, mainly the nucleic acids RNA and DNA (Section 1.3.1). As most of the tests
and measurements were computed with 16S SSU rRNA gene sequences, a brief introduction to
this special nucleic acid is given in Section 1.3.2. Signature candidates are short sections on the
genetic material that are more or less unique within the genetic information of a single organism
or a group or organisms. They are the templates for primers and probes, which are presented
in Section 1.3.3.
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1.3.1 Nucleic acids

Nucleic acids are essential parts of all organisms as carriers of the genetic information. They
are long macromolecules, strands, consisting of chained structural units called nucleotides. We
distinguish between two types of nucleic acids, the single-stranded ribonucleic acid (RNA) and
the double-stranded deoxyribonucleic acid (DNA) (Figure 1.2).

Cytosine Cytosine
NH, |§| NH, |§|
f\N |\N
N/ko N/ko
H H
Guanine |§| Guanine |§|
0 o)
N N N NH
( \ />\NH2 ( \ )\NHZ
N~ N N N
H H
Adenine Adenine
o B . B
N \“ﬁ N \“j
14 \ ~ L \ ~
N~ N N~ N
H H
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o) o]
EI\NH HSC\EA\NH
LK LK
N o N Yo
H H
Nucleobases Nucleobases
of RNA of DNA
RNA DNA
Ribonucleic acid Deoxyribonucleic acid

Figure 1.2: Nucleotides are composed of a five-carbon sugar (either ribose or deoxyribose), a
phosphate group and a nucleobase. The sugars and phosphate groups build the backbone of
ribonucleic acids. The primary nucleobases in DNA are adenine, cytosine, guanine, and thymine.
In RNA, thymine is replaced by uracil. (Image adapted from: Sponk/Wikimedia/cc-by-sa)

From a computer scientist’s point of view, nucleic acid strands can be seen as a stream
of concatenated information units (i.e. bases) and be reduced to a sequence of characters
representing these units. The origin of replication (ORI or oriC) is used as “base number
one” when counting base positions. The bonds of the phosphate-sugar-backbone of a nucleic
acid are used as an aid when describing the end-to-end orientation of a strand. The ends are
defined as 3’ — end (three prime end) and 5" — end (five prime end), based on which of the
five numbered carbon atoms on the sugar ring is “free” for a potential binding. The reading
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direction on a strand is called upstream towards the 5’ —end (3" — 5') and downstream towards
the 3’ — end (5" — 3’). In case of DNA, the two strands are called “anti-parallel”: they run
in opposite directions. One strand is the reverse complement of the other [19, Section 5.4].
Therefore only one of the two strains is usually given as sequence string. In most cases it
will be in downstream direction as a strain is read in that direction during the process of
transcription [27, Section 1.2.2.3].

In the 1970s, the International Union of Pure and Applied Chemistry (IUPAC) began to
standardize the nomenclature for nucleic acids [51]. In the following years, this “IUPAC code”
was extended [26, 79] to additionally include 11 ambiguity characters for every possible com-
bination of nucleotides (Table 1.1). These ambiguity characters can either be used to describe
variations among single positions on related gene sequences, or they may be used to represent
positions on the sequence material that are disputable. A similar nomenclature exists for amino
acids consisting of 23 characters, representing 20 amino acids? and 3 ambiguity characters. The
algorithms described in this work are not per se limited to a certain type of alphabet, but
external factors (project requirements and given tool sets) led to a focus on nucleic acids.

’ Code ‘ ‘ Description
A A Adenine
C C Cytosine
G G Guanine
T T | Thymine
U U | Uracil
R A G Purine
Y C T,U | Pyrimidine
M A C Amino group
K G T,U | Keto group
W A T,U | Weak hydrogen bonding interaction
S C G Strong hydrogen bonding interaction
B C G T,U | Not A (B follows A)
D A G T,U | Not C (D follows C)
H A C T,U | Not G (H follows G)
\Y% A C G Not T (V follows T and U)
N A C G T,U| Any base

Table 1.1: TUPAC nomenclature for nucleic acids (upper 5 rows), including ambiguity charac-
ters [26] (lower 11 rows). Although a (nucleo)base, a nucleoside (= nucleobase + sugar) and
a nucleotide (= nucleoside + phosphate group) are different from a chemical point of view, all
three terms can be (and are) used to describe the same genetic information units. The bases
are abbreviated by their initial characters: A, C, G, T and U. Another commonly used special
character is the “.” dot (in rare cases a “-” dash). It represents a deleted base or a gap in a
sequence.

Although not being the primary building blocks from which a cell is constructed — this

2There are currently 22 “proteinogenic” amino acids known, but only 20 of them can be directly encoded
using base triplets [9, 52]
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position is occupied by the proteins — nucleic acids are directly and indirectly involved in the
construction and the metabolism of cells. Especially RNA sequences are central parts of the
synthesis of proteins, which is discussed in more detail in the following Section 1.3.2. Defined
subsequences, which specify proteins or functional polypeptides, are called “genes”. Nucleic
acid sequence information may be also arranged in higher level organization structures, most
notably “chromosomes” and “plasmids”. The comprehensive genetic material of an organism is
called its genome.

1.3.2 Ribosomal RNA (rRNA)

An essential part of a living cell is the ribosome. Ribosomes are found in the organisms of all
procaryotes (archaea and bacteria) and eucaryotes. They translate messenger RNA (mRNA)
sequences into polypeptide (protein) chains, a catalytic process called protein biosynthesis. In
a cell, single nucleotides are attached to short 3-base sequences called transfer RNA (tRNA).
The ribosome begins reading the mRNA and allows tRNA triplets to temporarily attach to the
reverse complement part on the mRNA. The peptide is connected to the others and the process
continues with the next triplet. The result is a polypeptide chain that may be further processed
and folded, and finally may form a protein [27, Section 1.2.3.1].

The ribosome itself is built out of subunits of ribosomal RNA (rRNA), most notably the
small subunit (SSU) and large subunit (LSU). They are differentiated by their sedimentation
coefficients in a centrifuge, measured in Svedberg S. Procaryotes have 70S ribosomes with a
30S SSU and a 50S LSU. Eucaryotes have 80S ribosomes with a 40S SSU and a 60S LSU [27,
Section 1.2.3.1].

The rather short rRNA sequence and its vital presence in all organisms early made it an ideal
candidate for sequence comparison in evolutionary biology. Especially a part of the procaryotic
30S SSU called 165 small subunit RNA (16S rRNA) with approximately 1500 bases is used. Due
to the importance of ribosomes for protein synthesis, rRNA sequences share a core structure
to preserve their functionality. This is reflected by highly conserved regions on the ribosomal
RNA sequences [24]. These conserved regions allow the selective enrichment and duplication
of the rRNA material with PCR techniques and specific primers. Then, oligonucleotide probes
can be used to distinguish between single organisms and groups. The probes rely on the more
variable regions on the rRNA sequence, on signature patterns that are only present within the
target group.

Both, primers and probes, are further discussed in the following Section 1.3.3. They are
crucial for the success of the applied detection methods. A central part of this work is to permit
and improve their design. Additionally, the differences between the rRNA sequences of a set of
organisms can be used to derive phylogenetic trees, as shown in Section 1.4.

1.3.3 Oligonucleotide primers and probes

Primers are short oligonucleotide sequences that adhere to an opposite (reverse complement)

nucleic acid strand. They are artificially created and designed for a particular application and
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specific target sequences. The most common application of primers nowadays is the Polymerase
Chain Reaction (PCR), a method invented by Kary Mullis in 1983 [78]. In 1993, he was awarded
the Nobel Prize in Chemistry for his invention. PCR is used to amplify a certain range of a
sequence. The amplification is done by thermal cycling, the repetition of three steps: First
denaturation, where the nucleic acid strands are broken into single-stranded forms by applying
heat (over 90°C). During the annealing step at about 50 — 60°C, primers bind to complement
sections on the single strands. In a third step called elongation at about 75—80°C, the remaining
single strand is completed, beginning at the primer, into a double stranded form.

In modern PCR, usually a special enzyme called “Taq polymerase” is used. This DNA
polymerase was discovered in Thermus aquaticus, a thermophilic bacterium (it can thrive at
high temperatures). The main advantage is its temperature resistance with a maximum activity
around 75 — 80°C [60]. Before this discovery allowed the stable use of thermal cycling, DNA
polymerase had to be added after each cycle as it was inactivated due to the high temperature
during the denaturation step. The repeated process during PCR results in multiple (in most
cases) identical replicates of the original DNA sequence. Usually primer pairs, a forward-primer
for the strain and a backward-primer for the opposite strain, are used.

Artificially created oligonucleotide probes are very similar to primers. They are used to
detect the presence (or absence) of a RNA or DNA sequence by binding to them. The length
of probes depends on the used technique: common “short” oligonucleotide probes have length
of 20-50 nucleotides (nt), but they can reach lengths up to 1,000 nucleotides (nt). Longer
probes tend to provide a significantly better tolerance of base mismatches and thereby a better
target group coverage (sensitivity). Short probes on the other hand are good at discriminating
between targets and non-targets (specificity) [55, 92].

Probes are usually tagged (“labeled”) with a molecular (e.g. radioactive or fluorescent)
marker. A typical application is Fluorescent In Situ Hybridization (FISH) for the “rapid identi-
fication of microorganisms in environmental and medical samples.” [112]. In DNA microarrays,
also called DNA chips, probes are attached to a surface, such as a glass slide. The slide contains
microscopic dots of probes. The sample sequences are cleaned and purified. Because the probes
are attached to a surface, detection is here done by labeling the target sequences instead of
the probes. Targets hybridize against the fixed probes, and sequences that have not hybridized
are washed away. The amount of bound DNA material can then be determined using special

(fluorescence) scanners.

1.4 Taxonomic classification and phylogenetic trees

Biological classification in its modern form has its roots in the Darwinian principle of a common
ancestor. Although evolutionary theories were already discussed before Charles Darwin’s epoch-
making publication “On the Origin of Species. ..” [28], it popularized the term “evolution” and
resulted in classifying organisms on their relationship. Before, the main distinction was made
based on variations of observable features like morphologic differences.

A taxonomy is a standardized model to classify organisms according to certain criteria.
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Taxonomies are hierarchically ordered; in case of microorganisms, the most frequent occurring

case in this work, it usually consists of eight subclasses (in descending order):
Domain — Kingdom — Phylum — Class — Order — Family — Genus — Species

Groups of (one or more) organisms are known as taxonomic units, or taxa (singular: taxon). The
most common taxonomy is separated into three domains: Archaea, Bacteria and Eucarya [119].
Two examples are given in Table 1.2.

Rank Black Death ‘ Baker’s Yeast
Domain Bacteria Eucarya

Kingdom - Fungi

Phylum Proteobacteria Ascomycota

Class Gammaproteobacteria | Saccharomycetes
Order Enterobacteriales Saccharomycetales
Family Enterobacteraceae Saccharomycetaceae
label Genus | Yersinia Saccharomyces
Species Y. pestis S. cerevisiae

Table 1.2: Overview of the eight common taxonomic ranks used for classification of organisms,
here with two examples: The supposed cause of Black Death [45], Yersinia pestis, and Baker’s
yeast.

Especially microorganisms are difficult to categorize due to their few observable features
(mainly their cellular structure and metabolism) [19, Section 18.9]. In many cases, the necessary
cultivation is time consuming and possible only with great effort [48]. The renaming and
reorganizations of organisms and complete subclasses in the last decades demonstrate how
newly achieved knowledge about the relations of organisms influences their taxonomic order.
Maybe one of the best example is Bergey’s Manual of Systematic Bacteriology, where sequencing
studies began to take influence on the nomenclature that was at first only based on “classical”
taxonomic groupings [19, Section 18.10].

We are now in a situation in which we have access to the sequenced genetic material of
numerous (micro)organisms. Artificial scores for the evolutionary distances can be computed,
based on the dissimilarities between the sequences of two or more organisms. A variety of algo-
rithms and tools exist to create a phylogenetic tree with such scores, e.g. parsimony, maximum
likelihood or Bayesian inference [17, Chapter 11]. In a phylogenetic tree, inner nodes represent
hypothetical ancestors of the underlying organisms, also called hypothetical taxonomic units
(HTUs). Taxonomic units (subclasses) that are mapped onto a phylogenetic tree are called op-
erational taxonomic units (OTUs). The distance between organisms can be displayed by branch
lengths (the longer a branch, the greater the distance to a common ancestor; see Figure 1.3).

One of the most common representatives that is used to compute phylogenetic trees is the
SSU rRNA 1.3.2 gene. It es essential for the protein biosynthesis and therefore found in all
organisms. Being rather “short” with of about 1500 bases and having a mixture of curated and

highly variable regions make it an ideal candidate. Multiple sources exist where rRNA sequence
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Figure 1.3: Two representations of an exemplary phylogenetic tree, generated with the Inter-
active Tree Of Life (iTOL) tool [63]. In the left, the tree is represented as as “dendrogram”, in
the right as a “circular cladogram”.

datasets and corresponding phylogenetic trees can be downloaded, which will be discussed in

the following chapter.

1.5 Publicly available sequence collections

In 1965 the Integrated Electronics (today better known as Intel) co-founder Gordon E. Moore
formulated a 10-year prognosis of the growth of the number of components placed on an inte-

grated circuit:

“The complexity for minimum component costs has increased at a rate of roughly
a factor of two per year. Certainly over the short term this rate can be expected to
continue, if not to increase. Over the longer term, the rate of increase is a bit more
uncertain, although there is no reason to believe it will not remain nearly constant
for at least 10 years.” [77, slightly abridged]

More than 40 years later this prognosis has become well known under the name “Moore’s law”.
Although the interpretation over time slightly changed to doubling the number of transistors
every 18 months, the once predicted trend still seems to continue at least for the next few years.

Similar predictions will probably soon occur for the field of genomics, as we currently see a

vast continuing growth in the size of public genome databases — and lately also in the number



1.5. PUBLICLY AVAILABLE SEQUENCE COLLECTIONS 11

of sequenced organism genomes. One reason for this growth are the falling sequencing costs.
Another reason is the increasing throughput of the sequencers. Time will tell if these predictions
will prevail, but we can already see that the growing amount of publicly available sequence data
represents a chance as well as a burden.

The growing number of genetic information needs to be carefully handled. The first (viral)
genomes sequenced in the late 1970s contained about 3.5 — 5.4 kilobases (kb) [36, 97] and at
that time the genetic information was collected mostly “by hand”. The first bacterial genome
with a length of 1.8 megabases (Mb) was sequenced in 1995 [39]. At that time sequence datasets
were already being processed with software tools. Today, typical public available DNA sequence
collections contain billions of bases (Figure 1.4). A source for the ribosomal RNA gene sequences
and corresponding phylogenetic trees that were used as test datasets in this thesis are the The
Ribosomal Database Project (RDP-II) [71] and the non-redundant ARB SILVA database [89].

Both projects provide free access to curated datasets (Figure 1.5).
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Figure 1.4: Two of the largest sequence databases are the GenBank collection of all publicly
available annotated DNA sequences and the Reference Sequence (RefSeq) collection for genomic
DNA, transcripts, and proteins. Both are located at the National Center for Biotechnology
Information (NCBI). The RefSeq release no. 53 from May 10, 2012 contains 17,339 organisms
with ~ 175.3 billion bases (nucleotides). This figure shows the exponential growth of both
databases since 1982 (Genbank) and 2003 (RefSeq). Sources: http://www.ncbi.nlm.nih.
gov/RefSeq/ and http://www.ncbi.nlm.nih.gov/genbank/
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Figure 1.5: Growth rate (in 16S rRNA gene sequences per year) of the rRNA databases
The Ribosomal Database Project (RDP-II) and ARB SILVA between 1992 and 2012. RDP-
IT currently provides free access to 2,320,464 16S rRNA sequences (Release 10, June 1,
2012). The latest ARB SILVA release SSU Ref NR 108 from September 2011 contains
618,442 quality checked rRNA sequences and additionally provides a phylogenetic tree. The
statistics were taken from the release notes of ARB SILVA and RDP-II websites. Sources:
http://www.arb-silva.de/no_cache/download/archive/ and http://rdp.cme.msu.edu/

1.6 Outlook

A main goal of this thesis is the comprehensive computation of signature candidates for large
sequence datasets and corresponding phylogenies. Maintainers of the previously mentioned
large gene and genome databases can use this to precompute and offer collections of signature
candidates along with their up-to-date datasets. A crucial part of this design process is building
a bipartite graph that contains the links between sequences and signatures. Efficient search
indices are used to find match locations of substrings on indexed string sets. The algorithms
that are presented in the following Chapters 3 and 4 are using the ARB PT-Server as search
index. A brief introduction to indices and the PT-Server is given in the following Chapter 2.
Another important factor is the evaluation of the usefulness of a signature by predicting its
thermodynamic characteristics. These characteristics may differ depending on what is going to
be designed (primer or probe) and the biotechnological process that is going to be used. The
following chapter provides background on the thermodynamic formulas that were used in the

implementation of this thesis.



Chapter 2

Related Computational Methods in
Bioinformatics

The search for patterns in sequence datasets quickly becomes a problem difficult to solve when
applying naive search approaches without reducing the search space. Even widely applied
approaches and tools (Section 3.3.5) either run into runtime constraints or lead to excessive
memory consumption — or both — when processing a typical gene or genome dataset. This
chapter contains necessary preparatory work in order to attenuate computational requirements

for the approaches which will be presented in the following chapters.

The most obvious step is the reduction of the overall number of processed k-mer signatures.
When dealing with RNA or DNA signatures of a defined length %, 4¥ unique variations exist
— but not all of them might be worth to be processed. In Section 3.3.4 the pre-filtering
of signatures is discussed from a computational point of view. In Section 2.1 biochemical
aspects are considered that may influence the search for valuable signature candidates, especially

thermodynamic requirements.

Under certain conditions, a primer or probe may bind even if it does not completely match
the corresponding signature site on the organism’s genetic material. Unsuitable environmental
conditions, on the other hand, can lead to failing bindings even if a perfect match exists in
silico. Relaxed search methods that were applied in this work cope with such problems up to
a certain degree, and they may also counteract typical errors in the datasets themselves. They
are discussed in Section 2.2.3.

Efficient methods for the storage and search within sequence collections have to be applied.
On the one hand signatures have to be generated from the sequences, on the other hand they
have to be matched against the dataset. The implementation in this work is a way to cope with

this problem.

13



14 CHAPTER 2. RELATED COMPUTATIONAL METHODS IN BIOINFORMATICS
2.1 Thermodynamic prediction and filtering

In the following subsections, thermodynamic models are discussed for their use as pre-filters.
They can further reduce the signature search space by, for example, dropping signature can-
didates whose thermodynamic parameters are outside the boundaries defined by the selected
detection method.

Whether a primer or probe binds to a signature site, or not, is (unfortunately from a
computer scientist’s point of view) not a binary effect. The biochemical processes that let two
oligonucleotide sequences bind to each other are influenced by a number of factors: the base
types and their sequential arrangement, the detection method, the conditions of the environment
at which the hybridization takes place — just to name a few. All these factors have influence
on the thermodynamic stability of the RNA or DNA duplex and thereby on the quality of the
primer or probe.

A lot of thermodynamic models have been designed throughout the last half-century to
calculate the stability and temperature-dependent behavior of RNA and DNA duplexes. They
range from simple ones like the GC-content (Section 2.1.2) and the simple melting temperature
predictions by Marmur or Wallace (Section 2.1.3) to complex predictions based on the AG
Gibbs free energy (Section 2.1.4).

2.1.1 Introduction

The interaction that happens between two complementary DNA strains that form a double
stranded helical structure or an RNA-RNA hybrid is called hybridization. Under normal con-
ditions (e.g. 37°C) the two complementary DNA strands are only when being replicated (tran-
scription) or when being repaired in a single stranded form. The process of forcing DNA to
split up into its single stranded form by breaking the hydrogen bonds is called denaturation or
melting. This process is usually heat-induced. The contrary process of RNA or DNA pairing to
a complementary sequence by hydrogen bonds is called annealing. Single stranded RNA typi-
cally binds to complementary regions on its own strand forming secondary structures. Often,
these secondary structures are important for metabolic or catalytic processes in which the RNA

is directly involved.

The temperature at which annealing and denaturation take place is essential for the speci-
ficity of an oligonucleotide when binding to its target. Working at wrong temperatures can lead
to incorrect bindings of primers and probes. A key parameter here is the melting temperature
Ty, It is defined as the temperature at which the number of two bound oligonucleotide strands
and the number of single stranded ones are in equilibrium, i.e. 50% of the oligonucleotides
are forming a duplex. Annealing or hybridization is usually performed at temperatures a few
degrees below that temperature, and denaturation significantly above it [95]. The length and
concentration of RNA or DNA oligonucleotides are the main factors which influence the melting

temperature. Besides, the salt concentration and present denaturants can also influence it.
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Figure 2.1: In the following sections, this DNA oligonucleotide with 14 bases will be used as a
sample for the thermodynamic calculations.

2.1.2 GC-content

The guanine-cytosine content (GC-content) is the percentage of the nucleotides guanine (G) and
cytosine (C) that are present in an oligonucleotide strand:

6] +[c|

%GC =
Al + [T + [6] + [C]

-100% (2.1)

The GC-content of the sample DNA oligonucleotide in Figure 2.1 is 28.6%.

A high GC-content is an indicator for a higher melting temperature of an oligonucleotide
sequence. Guanine and cytosine pairs bind by three hydrogen bonds, while adenine and thymine
(uracil) pairs only bind by two hydrogen bonds (Figure 2.2). A higher number of hydrogen
bonds stabilizes the oligonucleotide duplex and thereby results in a higher thermal stability [19,

page 142].
H3C O ................ H2N N
% =)
Thymine / AL N/ \ AN Adenine
N / \ N deoxyribose
/TN
deoxyribose 0}
NH g O N
N
Cytosine / \N ----------------- HN \ NG Guanine
_ deoxyribose
/N ~< —N
deoxyribose (O H,N

Figure 2.2: Cytosine and Guanine share three hydrogen bonds, Thymine and Adenine only two.
(Not shown: Uracil also binds only with two hydrogen to Adenine.) RNA or DNA with a high
GC-content tends to be more stable due to the higher number of hydrogen bonds.

2.1.3 Simple melting temperature predictions

Several simple formulas exist to predict the melting temperature of oligonucleotides. Maybe

the most simple one is known as the “2+4 rule” or Wallace-rule [113]. It can only be applied
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for short DNA oligonucleotide sequences for about 14-20 base pairs (at a salt concentration of
0.9M NaCl):
T = (|A] +[T]) - 2°C + (|G| +|C|) - 4°C (2.2)

Guanine and Cytosine with the possibility of building three hydrogen bonds lead to a higher
melting temperature; their number of occurrence is multiplied by 4°C. Adenine and Cytosine
only lead to an increase of 2°C per base.

Another simple formula to compute the melting temperature for short oligonucleotide se-
quence lengths was defined by Marmur and Doty [73]:

41°C - (|G| + [c| — 16.4)

T,, = 64.9°C +
" (|A] +|T] + |G| + [C])

(2.3)

Both formulas are still widely used for a first approximate determination of the melting
temperature of short oligonucleotide primers and probes. Many software tools or calculation
servers [83, suppl.mat.] use a combination of both approaches for a fast prediction. For oligonu-
cleotides up to 13 base pairs the formula according to Wallace is used and for longer oligonu-
cleotides the formula according to Marmur and Doty.

In case of our example from Figure 2.1 with 14 bases, T}, is 28.6°C according to equa-
tion (2.3). (Equation (2.2) would lead to 36°C and would diverge even more for longer oligonu-

cleotides.)

2.1.4 Nearest-Neighbor predictions

Instead of solely focusing on the interactions between complementary base pairs of two oligonu-
cleotide strands, nearest-neighbor methods [18, 108, 98, 111] also take neighboring bases, i.e.
the base composition, into consideration. The prediction of the melting temperature 7;,, for
complementary oligonucleotides is based on the thermodynamic relation between the entropy S
and enthalpy H. In thermodynamics, the entropy change AS is a measure of the randomness
or uniform distribution of energy within a process, having its maximum at the equilibrium of
a reaction. The change in enthalpy (or heat content) AH describes the energy that is emit-
ted during a reaction. A positive enthalpy value describes an endothermic (energy absorbing)
reaction, a negative value an exothermic (energy releasing) one.

The entropy AS and enthalpy AH of an oligonucleotide duplex can be calculated by sum-
ming up the respective values for the dinucleotides, the initial and terminal nucleotide, and

symmetry terms [111]:

n—1
AH® = (Z AH®(s;, si+1)> + AH°(init. s1) + AH®(term. s,) + AH®(symm.) (2.4)

i=1

where n is the number of nucleotides in the sequence S = 5" —(s1,...,s,) —3" and AH®(i) is the
enthalpy of the dinucleotide at position ¢ (from the 5'- to the 3’-end). The same formula (2.4)
applies for the entropy AS°. If the oligonucleotide is self-complementary, the symmetry correc-
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tion value AH°(symm.) in the equation is added — otherwise it is zero. Corresponding tables
with the thermodynamic parameters can be taken from published data, e.g. from Sugimoto [108]
or Santalucia [98]. The latter parameters are shown in Table 2.1 on page 18.

Based on the summed up values for the entropy and enthalpy, the following equation [111]
is used to calculate the melting temperature T, for the oligonucleotide sequence

B AH®
ASS,, + In(<lelizely 1 gg7 cal

corr K-mol

T — 273.15K (2.5)

where c[oligo] is the concentration of the oligonucleotides (in mol/l). If the oligonucleotide is
self-complementary, its concentration c[oligo] in the denominator in the equation is divided by
4 instead of 2.

The factor AS°

O Is correcting the influence of the salt concentration on the entropy [111]:

ASe,

corr

= AS° 4 0.368 - nIn(c[salt]) (2.6)

where n is the number of nucleotides and the salt concentration c[salt], normalized to mol/l, is

given as
clsalt] = ¢[Na™] + ¢[Mg?*] - 140 (2.7)

The enthalpy is not influenced by the salt concentration and therefore needs no correction.

In the following example, the DNA duplex from Figure 2.1 is again used to calculate the
melting temperature with the nearest-neighbor method. The entropy and enthalpy changes are
determined by stepping through the dinucleotides from the 5’- to the 3’-end. The respective
values from the Table 2.1 are then added up (calculation was truncated):

AH® =AH°(init.G) + AH®(GA) + AH(AT) + AH®(TT)+

+ AH°(TA) + AH°(AC) + AH°(CA) + AH®(term.A)
kcal

=—100.2 —
mol

AS° =AS°(init.G) + AS°(GA) + AS°(AT) + AS°(TT)+

+ AS°(TA) + AS°(AC) + AS°(CA) + AS°(term.A)
cal

=—282.1
mol - K

Under the assumption that the concentration of the salt c[salt] = 1 mol/l (so no correction

of the enthalpy is necessary) and the oligonucleotide concentration is c[oligo] = 0.01pmol/1, the
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Dinucleotide AH° in X281 AS° in L AGS; in K&
AA -7.9 -22.2 -1.00

AC -8.4 -22.4 -1.44

AG -7.8 -21.0 -1.28

AT -7.2 -20.4 -0.88

CA -8.5 -22.7 -1.45

CC -8.0 -19.9 -1.84

CG -10.6 -27.2 -2.17

CT -7.8 -21.0 -1.28

GA -8.2 -22.2 -1.30

GC -10.6 -27.2 -2.17

GG -8.0 -19.9 -1.84

GT -8.4 -22.4 -1.44

TA -7.2 -21.3 -0.58

TC -8.2 -22.2 -1.30

TG -8.5 -22.7 -1.45

TT -7.9 -22.2 -1.00
Init./Term. A 2.3 4.1 1.03
Init./Term. C 0.1 -2.8 0.98
Init./Term. G 0.1 -2.8 0.98
Init./Term. T 2.3 4.1 1.03
Symmetry correction 0 -1.4 0.43

Table 2.1: Unified thermodynamic nearest-neighbor parameters according to SantaLucia [98].
The table contains the entropy change AS° and enthalpy change AH® at a salt concentration
of 1 M NaCl. The Gibbs free energy AGS; is given at 37°C.

melting temperature is

—100.2 keal
Ty = - Olj{i{ﬂ —273.15K = 39.9°C (2.10)
—282.1 Gl 4 In(——1—) - 1.987 2L

2.1.5 Gibbs free energy AG°

The previously presented approaches resulted in the melting temperature 7;,, as main parameter
for the prediction of the cross-hybridization of two oligonucleotides. A thermodynamic param-
eter that is used for the prediction is the Gibbs free Energy (AG). Its value describes how
“sticky” a signature is at a certain temperature, i.e. the thermodynamic stability of a signature
site and a corresponding primer or probe [98, 114].

Based on the nearest-neighbor model, the Gibbs free energy for an oligonucleotide duplex can
be computed by summing up the respective values of all dinucleotides similar to Formula (2.4).
AG values for a temperature of 37°C, published by Santal.ucia [98], can be found in Table 2.1.
Another more generic approach is to derive the Gibbs free energy AG®° from the enthalpy and
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entropy values with the Gibbs-Helmholtz equation
AGT7 = AH® — TAS® (2.11)

where the temperature 7' is defined in Kelvin (K).
For our sample oligonucleotide from Figure 2.1, the entropy change from equation (2.9) and
enthalpy change from equation (2.8) can be used to determine
kcal cal kcal

AG3 o = —100.2 — — (273.15 K K) .- —282.1 =-12.71 — 2.12
Girec = —100.2 —— — (273.15 K + 37 K) - —282.1 ——= = (2.12)

in this case at 37°C.

The AG value is temperature dependent, as the Formula (2.11) indicates: a AG value of a
primer at the minimum and maximum temperature of a PCR will most certainly differ. Besides
that, the only relationship between the melting temperature T;, and the Gibbs free energy AG
is their derivation of the enthalpy AH and entropy AS changes. A good explanation of the
possible lack of a relation between the Gibbs free energy (AG) and the melting temperature
(T),) can be found in a technical report by J. Manthey [72]. He suggests using the AG value in

combination with T,:

Unfortunately, there is no real relationship between AG and T,,, where one can be
used to identify the other. While it has been the standard to only use the T, value
when comparing thermodynamic equivalency between oligonucleotides, whether it is
for PCR, or microarray designs, or maximizing SNP discrimination, it is suggested
that the T}, value alone is also insufficient for thermodynamic comparison. The
recommendation is that the two values, T},, and AG, together can provide much more
qualitative thermodynamic understanding of a duplex or structure than either of the
two values alone. Where as, the utilization of their principle components Enthalpy
(AH) and Entropy (AS) can produce a quantitative thermodynamic understanding
and is ideal for computational comparisons. [72, Abstract]

A factor that is important for the following Section is the Gibbs free energy AG value of e.g.
a probe with its targets and possible non-targets. Mismatches, as described in the following
Section 2.2, are used to discriminate targets from non-targets. As a consequence, the AG values
of an oligonucleotide binding to a target sequence should differ from any non-target sequence.
Although the melting temperatures of both may lie next to each other, their free energy can be
used to differentiate good from bad oligonucleotide signature candidates.

2.2 Approximate Search

Searching signature sites using “paper and pencil” strategies might work for small datasets,
but already a single gene will take some time depending on your skills. When confronted with
longer sequences or more organisms, this method quickly fails. Search indices (Section 2.2.1)

help to cope with that problem and even allow approximate string searching methods.
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2.2.1 Search indices

Searching for a given sequence pattern, a signature, or querying for a non redundant set of
signatures of a certain size in the complete dataset using linear methods (e.g. a sliding window
over the complete dataset) is time consuming. Digital search trees [57, page 492-496], most
notably suffiz tries and suffiz trees, are data structures that facilitate such searches. A nice
overview of algorithms for the search tree construction, which are not described in detail in this

work, can be found in Barsky et al. They also provide an introduction to search trees:

A signature string S = s153...5, is a sequence of n symbols from the alphabet
>~ and a terminal sentinel symbol s,, = $ ¢ > . The alphabet for RNA or DNA
sequence data would be Y = {A,C,G,T|U}. A suffix S; = s;...5,,0 <i <n of
the signature string S is the substring that begins at position 3.

A suffiz trie is a trie for all the suffixes of S. In a trie, each edge represents a
character from the alphabet . Sibling edges must represent distinct symbols; each
trie node therefore has a maximum of || children. Each suffix can be found
in a trie by starting at the root node and following the edges that represent the
continuous characters of the suffix string (Figure 2.3, left). In the worst case, the
total number of nodes in the trie is quadratic in n. This happens when all paths
in a trie are disjoint. In our case, the small number of characters in the alphabet
(I>-| =4 for RNA or DNA sequences) should prevent the worst case.

By collapsing paths that contain unary nodes into a single edge, the total number
of edges and nodes can be reduced. The resulting structure is called a suffix tree
(Figure 2.3, right). Instead of following single characters when searching a suffix,
substrings that are associated with the edges are compared and concatenated. A
generic suffix tree contains exactly n leaves with a degree of at least 2, and at most
n — 1 inner nodes. In our case, the length of signature strings that are searched
within a suffix tree are limited by their biochemical characteristics. Common im-
plementations therefore reduce the search trees by pruning them at a certain depth,
which was determined empirically (an example is shown in Figure 2.4).

[13, notation and phrases adapted]

In our case two main advantages of search trees are important. First, they allow querying
all unique substrings in linear time by traversing the tree. Furthermore, they allow pattern
matching, i.e. searching a substring within sequence data, again in linear time depending on
the substrings’ length. Both features are needed when building the bipartite graph that matches
sequences (organisms) with signatures. This is more deeply described in the two approaches
implemented in this work: in Section 3.2.1 and in Section 4.4. The main disadvantage of search
trees is their memory consumption which is significantly higher that that of the input data. A
rule of thumb is a factor of 10-30 (Section 3.3.1).

Having long-term experience with the ARB Software Environment and being a co-developer
has lead to the use the ARB PT-Server. It is presented in the following Section 2.2.2. But



2.2. APPROXIMATE SEARCH 21

suffix tree

suffix trie

sequence: GATTACA
charpos: 12 3 4567

Figure 2.3: Digital search trees that facilitate the search for suffixes within sequence strings,
here S = {GATTACA$}. The terminal character $ is not shown in the trees. A suffix can be found
through traversing the tree from the root to a terminal leave node with the starting position of
the suffix in the tree. In case of a suffix trie (left), this is done by concatenating single characters
from the edges. In case of a suffix tree (right), substrings at the edges are concatenated.

being a “basic tool” in computer science and of great importance in bioinformatics, many
other approaches exist that provide search index features. One of the most common uses is
processing “Sequencing by Oligonucleotide Ligation and Detection” (SOLiD) reads. In this
case the index is used to efficiently align short sequence reads against large reference sequence
datasets. The Burrows-Wheeler Alignment tool (BWA) [64] is an example for such a tool.
Other approaches even rely on different types of index structures. Abouelhoda et al. has
shown that the functionalities of a suffix tree can be replaced by a less memory consuming
suffix array [1]. Spaced seeds may even further reduce the memory footprint and still allow
relaxed string searches [21], but are tricky to use in generic approaches. So, although the
underlying index structures may be generic in many cases, the implemented tools are designed

and optimized for applications that do not have the same requirements as this work.
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2.2.2 The ARB PT-Server and MiniPT

The ARB Position Tree server (PT-Server) is the central search index of ARB, a software
environment for handling and analyzing rRNA data, managing protein sequences, contigs and
genomes [117, 70]. It provides interfaces for signature extraction and exact and approximate
string matching in nucleic acid sequence data.

The PT-Server is designed as a client-server application with a persistent search index.
Requests and the corresponding answers are transmitted via TCP-IP, using an application-
specific protocol. Before a PT-Server can be used for the first time, its index has to be created
in memory and then be written to the hard disk. From there, the index can be loaded whenever
necessary.

The ARB PT-Server implements a k-truncated suffix trie [101, similar approach] with a
maximum height of k& = 20 bases (Figure 2.4). Every edge of the suffix trie represents a base,
so that the paths from the top to the bottom form all possible substrings in the dataset. Leaves
contain a special array structure called chain. Chain entries contain sequence identifiers and
absolute base positions, at which the characters from the path (from the root node to the leaf)
can be found. A PT-Server specialty is the internal use of the dot character “.” to indicate base
positions with an unknown base. It can be compared to “N” in the IUPAC code. In the official
IUPAC code a dot has a different meaning (Table 1.1). The PT-Server therefore internally
works with five different branches {A, C,G,T|U, N}.

trunkated
suffix trie

N, . . . _ depth=2 sequence: GATTACA
(53 72; (&) {1i{4ai{3; charpos: 123 456 7

search extended to sequence

Figure 2.4: Example of a PT-Server’s suffix trie structure, built from the sequence S =
{GATTACA$} and truncated at a depth of 2. When the the depth limit is reached (i.e. the
query string is longer than the trie’s depth limit), linear search is performed in the sequence
itself at the referenced character positions in the chain (leaf node).

The k-truncated suffix trie is a good compromise for applications where short oligonu-
cleotides are being used. By default the ARB PT-Server depth is set to £ = 20 and can
(only) be changed in the source code. Empirical tests have shown that limiting the depth to
20 avoids an extreme degeneration of the suffix trie [107] and thereby allows a memory efficient
fast search (Section 3.3.1). A disadvantage of this design is the way in which searches for sig-
natures whose length exceeds k are handled. When reaching a chain (a leaf node), the search
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is continued directly on sequences at the positions that are referenced in the chains. This can
lead to significant performance degradation. Additionally, the sequences have to be available in
memory to continue the search, if necessary. It is therefore recommended to keep the maximum
search string length below the tree’s depth.

An even greater disadvantage of the PT-Server is its huge dependency on main memory
when building its search index. Initially, the PT-Server loads the complete source database
into the main memory. Current (February 2012) sequence databases like Greengenes [29] or
SILVA [89], which both contain small subunit rRNA gene sequences, already require about
4 GBytes of main memory and an end to growth is not in sight. This makes them unusable on
32 bit architectures or systems with only up to 4 GBytes of main memory.

The PT-Server estimates the required memory for building the search index by assuming a
maximum of 55 bytes per base. If the memory requirements for the complete index structure
exceeds the available main memory, the PT-Server splits the search index structure into 5? par-
titions. Each partition represents a branch in the suffix trie. It can be processed independently.
The value 1 < p < k is increased until the size of a partition fits into main memory.

The MiniPT search index is a lightweight derivate of the PT-Server, providing the same
functionality. It was developed parallel to CaSSiS in order to avoid overhead in search queries.
Unlike the PT-Server, which is a client-server application, MiniPT allows direct access to in-
ternal data structures. The PT-Server’s communication protocol was removed. The MiniPT
search index is not dependent on the ARB environment and thereby avoids a drawback of its
predecessor: The PT-Server can only be constructed from an ARB database and relies on this
database even after its construction. MiniPT’s memory consumption is lower as it does not
require the completely loaded sequence database during its build or during runtime. This is
only possible due to the fact, that in this work the maximum search string length is already
known when building the search index. In other cases, this would lead to a significant loss of
information, as a continued search in the sequence itself would not be possible. Up to a hard
defined limit, it can extend the trie truncation limit k& to perform the search completely in the
suffix trie. In the following chapters, the MiniPT is used as the central search index in all
applications.

The PT-Server and its descendant MiniPT are not the only search indices that provide the
two main features that are of importance for this thesis: providing a list of all unique substrings
in linear time and allowing searching these substrings within their index structures. Another
search index that was developed in the context of the ARB environment is PTPan (pronounced:
Peter Pan). It also is a descendant of the PT-Server and was designed as an improved drop-in
replacement. It therefore provides the same interfaces. Eissler et al. describes PTPan as. ..

... a space-efficient indexing structure for approximate oligonucleotide string match-
ing in nucleic acid sequence data. Based on suffix trees, it combines partitioning,
truncation and a new suffix tree stream compression to deal with large amounts
of aligned and unaligned data. PTPan operates efficiently in main memory and
on secondary storage, balancing between memory consumption and runtime during

construction and application. [33, Abstract]
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PTPan provides approximate string matching based on Levenshtein “edit” distances. This
allows the search for base insertions and deletions “indels” — a feature that is not provided by
the PT-Server. Another advantage is its lower memory consumption during build time due to
a more sophisticated partitioning strategy. PTPan, on the other hand, is significantly slower in

processing queries [33].

This work and the development of PtPan were done at the same time. It was not until the
beginning of 2012 that a working test version was available. It is currently (June 2012) being
integrated into the testing branch of the ARB software package. For this reason, all tests in this
work were performed with the at that time available ARB PT-Server and the nearly identical
MiniPT.

2.2.3 Approximate string matching

Statistical analysis is necessary in order to make statements about the quality of an oligonu-
cleotide probe. Two conditional probabilities are usually used to describe the quality: the
sensitivity and the specificity of a probe [92]. Both probabilities have their roots in the statis-
tical analysis of medical screening [2].

It is necessary to distinguish between the calculated and the real “quality” of a probe. The
i stlico quality of an oligonucleotide probe is determined by comparing its calculated target
scores with the target group it was designed for (and with the non-targets). This is usually done
by the software that computes and proposes the oligonucleotides as probe candidates. The real
quality of an oligonucleotide probe can only be determined in a wet lab under the conditions
the probe was designed for. The probe should reliably hybridize against the targets and not
hybridize with possibly present non-targets. The results of the experiments in the wet lab
are then compared with the results from a gold standard test, the best known reference that
is comparable. In both cases, wet lab and in silico evaluation, the results are then arranged
according to Table 2.2.

Outcome True state (gold standard / target group)
(wet lab / evaluation) @ ‘ o ‘ Total
Hybridized S TP FP TP+ FP
Not hybridized S) FN TN FN+TN
Total TP+ FN | FP+TN N

Table 2.2: To simplify the statistical analysis, it is assumed that an oligonucleotide either
hybridizes with a target (i.e. positive) or it does not (i.e. negative). As already shown in
Section 2.1, this assumption is only as good as the underlying model. The results of N tests
are ordered into true positives (T'P), true negatives (T'N), false positives (F'P), and false neg-
atives (F'N).

The sensitivity (true positive rate) is the proportion of true positives (7'P) that are correctly
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identified to the total number of positives [14]:

TP
sensitivity = P(positive|TP) = TP+ FN (2.13)
In case of oligonucleotide probes, it shows how good a probe is in detecting a defined target
group. A high sensitivity indicates a high chance that a positive result (i.e. the probe hybridizes)
was caused by a target that lies within this group. This can also be used to rule out the presence
of a defined group: a probe with a high sensitivity and a negative result (i.e. no hybridization)
suggests that no target from the group is in the sample.

The term sensitivity is also used for the lowest concentration of a probe and their targets to
obtain reproducible results: The higher the sensitivity, the lower the concentration. Thermo-
dynamic effects have a strong influence on this sensitivity (Section 2.1). Although both cases
in which the term is used are associated, the first definition will be used in the following text.

The specificity (true negative rate) is the proportion of true negatives that are correctly
identified to the total number of negatives:

speci ficity = P(negative|TN) = _IN (2.14)
TN+ FP
Ideally, a probe should have both, a high sensitivity and high specificity. In most cases, there
are trade-offs between the two factors.






Chapter 3

The CaSSiS-BGRT Approach

PCR, hybridization, DNA sequencing and other important methods in molecular diagnostics
rely on both sequence-specific and sequence-group-specific oligonucleotide primers and probes.
Their design depends on the identification of oligonucleotide signatures in whole genome or
marker gene sequences. Although genome and gene databases are generally available and reg-
ularly updated, collections of valuable signatures are rare. Even for single requests, the search
for signatures becomes computationally expensive when working with large collections of target
(and non-target) sequences. Moreover, with growing dataset sizes, the chance of finding exact
group-matching signatures decreases, necessitating the application of relaxed search methods.
The resultant substantial increase in complexity is exacerbated by the dearth of algorithms able

to solve these problems efficiently.

We have developed CaSSiS-BGRT, a fast and scalable method for computing comprehen-
sive collections of sequence- and sequence-group-specific oligonucleotide signatures from large
sets of hierarchically-clustered nucleic acid sequence data. Based on the ARB Positional Tree
(PT-)Server and a newly-developed BGRT data structure, CaSSiS-BGRT not only determines
sequence-specific signatures and perfect group-covering signatures for every node within the
cluster (i.e. target groups), but also signatures with maximal group coverage (sensitivity)
within a user-defined range of non-target hits (specificity) for groups lacking a perfect common
signature. An upper limit of tolerated mismatches within the target group, as well as the min-
imum number of mismatches with non-target sequences, can be predefined. Test runs with one
of the largest phylogenetic gene sequence datasets available indicate good runtime and mem-
ory performance, and in silico spot tests have shown the usefulness of the resulting signature

sequences as blueprints for group-specific oligonucleotide probes.

This Chapter is an extended version of an article [12] published in Bioinformatics, that was
joint work with Christian Grothoff and Harald Meier. Section 3.4 is based on the final report for
a bachelor project supervised by me: Sebastian Wiesner implemented an OpenMP-parallelized
version of the CaSSiS-BGRT traversal algorithm.

27
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3.1 Introduction

Oligonucleotide primers and probes are the key diagnostic agents in technologies that allow the
rapid, sensitive and specific detection of nucleic acid signatures in samples. In fields such as
medicine, food research and environmental microbiology, they are used to identify organisms
with specific properties [109, 91, 23]. For applications such as microbial population analysis
and molecular screening for microbial pathogens or indicators, there is the additional challenge
of detecting and distinguishing organism groups (rather than single organisms), which can be
identified in a number of ways (phylogenetically, taxonomically, etc). Designing group-specific
primers and probes, however, is a significant challenge, as these primers and probes should
reliably hybridize with the target sequences (i.e. have a high coverage) within the group but
not interact with any non-target sequence that might be in the same sample [76, 66].

In many studies, conserved housekeeping genes or gene products such as ribosomal RNA
(rRNA) are targeted [3, 102]. Considerable collections of probe or signature sequences for
suitable target genes are rare. One exception is probeBase, which provides sequences and anno-
tations of already published rRNA-targeted oligonucleotide probes [68]; however, many of these
probes were designed in the past on the basis of small sequence data collections. Some of them
would have to be reevaluated, optimized or even newly designed to take the relevant rRNA
gene sequence data in comprehensive highly curated databases into account [3]. The SILVA
SSU-rRNA reference database [89] contains such a curated collection of annotated nucleic acid
sequence data, which is deeply hierarchically-clustered by phylogenetic relationship.

This work details a new computational method for the comprehensive search for sequence
and group-specific oligonucleotide signatures (hereafter simply referred to as signatures). Our
method uses the SILVA reference database to create a signature collection that could be used to
provide the sequence information of binding sites and design templates for valuable phylogenetic
primers and probes. Signature collections could be published alongside the generally available
and regularly updated sequence databases, and in combination, both could facilitate the design
of oligonucleotide primers and probes.

There are already several published approaches for searching signature or probe sequences.
PROBESEL [53], OligoArray [94], OligoWiz [116], YODA [80] and CMD/PSID [62] all spe-
cialize in finding unique signatures for single sequences but cannot search for signatures that
are specific to groups. Others, such as PRIMROSE [8] and ARB-ProbeDesign [70], allow
searches for group-specific signatures; however, they are limited to one selected target or tar-
get group per run. Performing individual runs for all sequences or sequence groups of a large
hierarchically-clustered dataset is impossible due to memory and runtime limitations. HPD [22]
is more comprehensive and uses a bottom-up approach on a hierarchical cluster to generate both
sequence- and group-specific signatures from one dataset in a single run. Unfortunately, HPD’s
search capability exhibits memory and runtime problems when applied to large-scale datasets
for several thousand sequences and clusters [34].

More recently published tools, ProDesign [34] and Insignia [87], are capable of comprehen-
sively identifying signatures for large collections of clustered DNA sequences and even whole
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genomes. ProDesign uses a sophisticated spaced seed hashing approach to speed up its word
indexing process; however, depending on the seed and the clustering used, ProDesign may lead
to suboptimal results. Furthermore, for the identified group-specific signatures, ProDesign does
not provide detailed information regarding coverage and specificity beyond hard-coded search
constraints (more than 95% ingroup matches, less than 5% outgroup matches). Insignia relies
on a large set of preprocessed genome sequences to quickly determine only those signatures
that match the entire target sequence group [86]. As a result, potentially valuable signatures
matching a subgroup may be missed. Both ProDesign and Insignia are primarily designed to
handle flat clusterings and are unsuited to comprehensively process predefined deep hierarchies.

This chapter describes the specifics and implementation of Comprehensive and Sensitive
Signature Search (CaSSiS-BGRT, Figure 3.1), a new algorithm addressing some of the limita-
tions mentioned above. Specifically, CaSSiS-BGRT is capable of computing comprehensive sets
of sequence- and group-specific signatures, even for large collections of deeply hierarchically-
clustered sequences under both strict and relaxed search conditions. CaSSiS-BGRT sorts sig-
nature sequence results by degree of specificity, and all signatures guarantee the predefined
Hamming distance to non-target sequences. For signatures which cover sequence groups incom-
pletely, statistical information on the sensitivity is provided.

3.2 Material and Methods

CaSSiS-BGRT consists of three computational stages. The first stage (Section 3.2.1) is the
extraction of signature candidates (candidates, because their specificity has to be further eval-
uated) from sequence data and their specificity evaluation; the result of the first stage is a
bipartite graph relating sequences to signature candidates. The second stage (Section 3.2.2)
performs hierarchical sorting of the signature candidates, resulting in a Bipartite Graph Rep-
resentation Tree (BGRT). The last stage (Section 3.2.3) extracts valuable signatures from the
BGRT for each node in a hierarchical cluster — in our case, a phylogenetic tree. The result is

a comprehensive set of signature candidates for all nodes in a phylogenetic tree (phy-nodes).

We will illustrate the algorithm using a running example (Figures 3.2, 3.4 and 3.5, and
Table 3.1). Arabic numerals are used to refer to both the sequence entries in the analyzed data
collection and the leaves representing them in the phylogenetic tree. Signatures are labeled
with capital letters. Phylogenetic groups of sequences and their respective inner tree phy-nodes
are specified using Roman numerals to indicate their depth in the tree, with lowercase letters
used to distinguish between groups at the same depth. We will refer to matches within a target
group as ingroup hits and non-target matches as outgroup hits. Additionally, because each
sequence entry in our test databases represents an organism, sequence and organism are used

synonymously in this manuscript.
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Figure 3.1: Schematic of the primer and probe design pipeline in which CaSSiS is embedded.
The input data for the CaSSiS-BGRT algorithm comes from public sequence and phylogenetic
tree databases. It can either be used to create comprehensive sets of signatures, which can be
used as a templates for new primers and probes. Or individual queries could be used to target
freely-defined groups.

3.2.1 Extraction and evaluation of signature candidates

The first stage of our algorithm generates a bipartite graph where signature candidates and
sequences are unique and signature matches within sequences are represented as edges between
the two sets (Figure 3.2). To build the bipartite graph in reasonable time (i.e. extract all
signature candidates and their matches), the ARB Position Tree (PT-)Server [70] was used.
The PT-Server supports index-based exact and inexact searches in nucleic acid sequence data
using a truncated suffix tree. It returns all matches of a query sequence that meet predefined
search constraints such as length, allowed Hamming distance (number of base mismatches),
weighted mismatches and others.

To allow signature candidates with up to m; mismatches within the target group and a
Hamming distance of at least mo > mj to the next non-target match, an upper limit of mo — 1
mismatches is used when fetching a list of matching organisms for any one signature candidate
(Figure 3.3). Sequences with Hamming distance less than m; (I and O) are used to generate
the bipartite graph. Sequences with Hamming distances between m; and msy mismatches are

only counted; those totals are then added to the number of outgroup hits for the candidate that
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Figure 3.2: Illustration of the input data for the second and third stage of our algorithm for
the running example. Left: the phylogenetic tree with group phy-nodes (Latin numerals) and
organisms (leaves: Arabic numerals). Right: the bipartite graph, showing which organisms
(Arabic numerals) are matched by which signature candidates (capital letters).

is computed from the bipartite graph in the next stage.

Note that currently only the Hamming distance between a signature candidate and its
matched targets is used for evaluation, not the actual position and type of mismatch on the
target sequences.

To restrict cross-hybridization to non-targets, CaSSiS-BGRT can be configured to check
candidates for matches within the antisense strands and exclude them, at the expense of possibly
producing suboptimal results. Additionally, CaSSiS-BGRT can discriminate against signatures
with abnormal melting temperatures and high GC-content. But such filters must be handled
with care (Section 3.3.4).

The basic melting temperature T, pqsic for oligonucleotides up to a length [ < 13 base
pairs is calculated according to the equation (2.2). For longer oligonucleotides with [ > 13 the
equation (2.3) is used. T}, pasic is rather inaccurate when evaluating long oligonucleotide probes,
e.g. [ > 50 would lead to temperatures of 100°C > T}, pasic > 200°C). For short oligonucleotides
(common primers and probes have lengths between 15 — 25 nucleotides) the temperature is a
good estimation.

Signature filtering can be done based on two different melting temperature calculations: the
basic melting temperature T}, pasic (see Section 2.1.3) and a melting temperature T, 37 using
the nearest-neighbor (base stacking) method at 37°C (see Section 2.1.4).

The implemented nearest-neighbor model (Section 2.1.4) is working with approximate pa-
rameters (especially the salt correction; [111])based on SantalLucia [98]. The entropy and en-
thalpy parameters in his publication were obtained around 37°C and for perfect matching du-
plexes. With increasing deviation from this temperature, the parameters become less accurate.
For duplexes with one or more mismatches, they have to be adapted, resulting in an error of

< 2°C [111]. Additionally, the parameters were determined by measuring the thermodynamic
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Figure 3.3: Sequences with Hamming distance less than mso to the candidate C are fetched.
Sequences with Hamming distance up to my can be ingroup (I) or outgroup (O) hits. Sequences
with Hamming distances between m; and mgy (X) are counted, but not added to the bipartite
graph.

properties of short (~ 20 bases) oligonucleotides in solution. The parameters for probes bound
to a RNA/DNA chip surfaces may therefore differ.

3.2.2 Organizing signature candidates by specificity

This stage arranges the signature candidates according to their specificities, resulting in the
BGRT. Each node in the BGRT (bgrt-node) contains a list of organisms and a list of signatures.
A signature in a descendant matches all of the organisms on the path from the root bgrt-node to
the bgrt-node where the signature is located. Each signature is located at exactly one position
in the BGRT, and organisms can be listed multiple times. Figure 3.4 illustrates the BGRT
construction algorithm.

Note that when 2,3:B (i.e. signature B matches organism 2 and 3) is added in step 2, the
construction procedure chooses not to merge with 1,2:A because the organism with the lowest
numerical ID (here 1) is not matched by both signatures. In contrast, 1,3:C is merged with
1,2:A because here the organisms with the lowest numerical ID (again 1) is matched by both
signatures.

This construction of the BGRT ensures a unique construction in the case where sets partially
overlap. The example illustrates the issue in Figure 3.4 in step 3. Here, there are theoretically
two possible ways for inserting 1,3:C. First, as shown in Figure 3.4, a bgrt-node with no
signature for organism 1 with two sub-bgrt-nodes 2:A and 3:C could be created (splitting
1,2:4). Alternatively, a bgrt-node with no signature for organism 3 with two sub-bgrt-nodes
2:B and 1:C could be created (splitting 2,3:B).

As described, our algorithm always splits the bgrt-node where the numerically smallest
organism ID overlaps. Consequently, the BGRT will contain deeper subtrees for organisms

with low IDs. As a result, assigning organisms deep in the phylogenetic tree smaller numeric
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Figure 3.4: The signatures in Figure 3.2 are added to the BGRT based on the organisms they
match. In each step, the algorithm inserts a signature and a numerically sorted set of organisms
that match it. For insertion, the algorithm traverses the BGRT, looking for overlaps between
the existing sets of organisms and the set for the signature being inserted. If the first elements
of the sorted sets intersect with the current bgrt-node, the algorithm generally splits the current
bgrt-node, creating new child bgrt-nodes to represent set differences. If the first elements are
different, it moves on to the next sibling. If there is no other sibling, a new sibling is created.

values is likely to improve performance in stage 3. Splitting bgrt-nodes differently would have
no impact on the correctness of the algorithm.

3.2.3 Determination of valuable signatures

The last stage performs a depth-first traversal of the phy-nodes of the phylogenetic tree. The
processing of an organism or a group of organisms during this traversal is called a phase and
we label the phase with the respective organism number (for example, “Phase 4”) or group
name (for example, “Phase IIb”). In each phase, the algorithm performs a depth-first traversal
of the BGRT in order to find signatures with the maximum number of ingroup hits for each
entry within the range of [0, k] outgroup hits. Since the organism sets are sorted numerically,
the algorithm determines the number of ingroup and outgroup hits at each bgrt-node in linear
time. If a signature with higher coverage (higher number of ingroup hits) for one of the entries
within the same outgroup hits range for the current phase is found, the algorithm updates the
result table accordingly.

The performance of the algorithm can be significantly improved by bounding the BGRT
traversal. If the number of outgroup hits at a given bgrt-node is already larger than k, the
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algorithm does not need to traverse the respective part of the BGRT for any of the descendants
of the current phy-node: the number of outgroup hits in the BGRT subtree under the bgrt-node
is guaranteed to be at least as large. Furthermore, since the algorithm traverses the phylogenetic
tree in a depth-first manner, we can bound the traversal of phylogenetic subtrees by considering
the best results found in the parent phase: organism groups that are parents in the phylogenetic
tree contain strictly more organisms than all of their descendant nodes; hence, when compared
to the best result achieved for the parent phase, the number of hits in the descendants can only
be fewer (or equal) and the number of outgroup hits can only be larger (or equal).

Our algorithm tracks the best results achieved for the parent phase in an additional array
associated with each bgrt-node (Figure 3.5). When traversing a bgrt-node in phase at depth
d, the algorithm consults the phase result table from the parent phase with depth d — 1 and
only traverses the bgrt-node if the current best solution (for a given number of outgroup hits)
is worse than the best solution of the respective BGRT subtree for the parent phase. If the
algorithm decides to traverse the BGRT subtree, it stores the best solution found in the phase
result table for all ancestors.

Bounding the BGRT traversal in this manner is particularly effective if the algorithm has
already found a reasonably good solution for the current phase. Our simple approach for finding
a good starting solution before traversing the tree is to use the best signature found in the parent
phase.

Note that on average, the number of organisms the BGRT traversal algorithm will try to
match in each phase is O(1). Thus, the worst-case complexity of BGRT traversal is O(nm),
where n is the number of phy-nodes and m is the number of bgrt-nodes. However, performance
is much better in practice due to the bounding method, especially given a reasonably low limit
for the outgroup hit range. Storing the best solutions for the parent phases increases memory
consumption from O(m) to O(md) where d is the depth of the phylogenetic tree. Thus, using
this bounding method is a time-memory tradeoff.

outgroup Phase
# I | Ha | 1 \ 2 | Ib
0 3 (D, 2 (4) 1 (E) - 2 (H)
1 — 2 (D) 1 (A,C) | 1 (A,B) 2 (&)
2 - 1 (G 1 (D) 1 (D,6) 1 (D)
outgroup Phase
# Ma | 3 | 4 | mb | 5 | 6
0 1 (F) - 1 (F) - - -
1
1 (B.C.H) 1 (B,C) 1 (H) 1 (H) - 1 (H)
2 1 (D,G) 1 (D) — 1 (G) 1 (G) -

Table 3.1: Results of the signature search for the running example. Rows are ordered by the
number of outgroup hits, columns by the phase. The fields contain the number of ingroup hits

and the corresponding signatures (capital letters). “~” indicates “no signature found”.
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Figure 3.5: Each bgrt-node stores a table with the number of ingroup hits for the respective
group phy-nodes. This table is used to bound the BGRT traversal based on the best known
result for the current phase. Note that the in-memory size of the table is determined by the
depth of the phylogenetic tree and not (as illustrated in print) by the total number of groups.
For this example, the implementation would use the same memory cells for processing of groups
ITa and IIb as well as for groups IIla and IIIb.

The final result of this stage is a table listing for each phase and for h € [0, k| outgroup
hits the signature that achieves the maximum number of ingroup hits, as shown for the running

example in Table 3.1.

3.2.4 Testing conditions

We used SSURef_102_SILVA_12_02_10_opt (hereafter referred to as SSURef_102), a comprehen-
sive database of small subunit rRNA sequences available in the ARB format [89], to generate
our test datasets. It is the largest collection of annotated aligned SSU rRNA sequences of
almost full length (more than 900 nucleotides). Furthermore, it includes a large phylogenetic
tree referencing all the sequences in the dataset as Operational Taxonomy Units (OTUs) at
the leaves. Inner phy-nodes correspond to groups of phylogenetically related sequences. More
about the database, including information on sequence content and quality as well as sequence
statistics can be found on the SILVA website (http://www.arb-silva.de/).

For the performance evaluation, we produced different size subsets of the SSURef_102 by
applying a random sequence selection algorithm. In the phylogenetic trees, for each subset we
only kept those leaves referenced by remaining sequences. The test sets range in size from 100
to 460,783 sequences, the largest test set being the complete SSURef_102 (Table 3.2).

For all test datasets, signatures with a length of 18 bases were computed using a tolerance

setting of at most 10 outgroup hits. Furthermore, we used the full SSURef 102 and searched
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‘ Sequences Nucleotides ‘ ‘ Sequences Nucleotides

100 152,466 10,000 15,404,216
200 306,961 20,000 30,773,749
500 762,960 50,000 76,870,889
1,000 1,540,372 100,000 153,768,356
2,000 3,081,068 200,000 289,312,540
5,000 7,693,065 300,000 433,858,110
(*) 460,783 666,311,940

Table 3.2: Test datasets. Numbers of SSU rRNA sequences (representing organisms) and overall
nucleotides within SSURef 102 (*) and subsets of it.

for 18-mer signatures for different settings ranging from 0 up to 1024 outgroup hits. We used
a Hamming distance of 1 (i.e. at least one base mismatch) between target and non-target
matches. Within target groups no mismatches were allowed. No melting temperature or G+C
content filtering was applied.

The evaluation of the signatures, computed by CaSSiS-BGRT and from other sources, was
done with the ARB ProbeMatch tool [70]. It is able to visualize the matches within a phylo-
genetic tree and shows the exact location of mismatches on the sequence data compared to the
signature strings.

All tests were done on a workstation with 24 GB of RAM and an Intel Core i7 CPU @ 2.67
GHz (4 cores, 8 threads with hyperthreading support turned on).

3.3 Results

We present the results of runtime performance and memory consumption analyses with respect
to each of the stages of CaSSiS-BGRT. Furthermore, we show data reflecting quantitative and
qualitative properties of the comprehensive 18-mer signature collection CaSSiS-BGRT calcu-
lated from the full SSURef_102.

3.3.1 Performance of search index and signature candidate evaluation

The time for building the search index, as well as the overall memory consumption of the
PT-Server, increased linearly with the number of nucleotide bases in the underlying sequence
database. Building the full SSURef_102 (~ 660 megabases) took about 19 minutes (Figure 3.6)
and consumed 26 bytes per base at its peak (about 17 GB total); the running PT-Server required
just 11 bytes per nucleotide base (about 7 GB total; Figure 3.6).

Increasing the minimum Hamming distance my increases the upper mismatch limit when
querying the PT-Server (see Section 3.2.1). Large values for this distance parameter result
in a significant increase in the overall number of edges between signature candidates and the
sequences of a dataset: processing our 10,000 sequence dataset with 2.23 million signature

candidates and with a distance mo = 1 resulted in 15.2 million edges and took about 32 seconds;
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Figure 3.6: Build time and peak memory consumption of the PT-Server during the build process
and at runtime in relation to the number of nucleotides.

querying the same dataset with a distance of mo = 5 led to 2.33 billion edges and increased the
runtime of stage 1 to over 4 hours (detailed results given as supplementary material). While
my determines the runtime of the PT-Server, m; has an impact on the size and creation time
of the BGRT as sequences between m; and mg are only counted (see Section 3.2.1).

3.3.2 Performance of the BGRT-generation

The creation of the BGRT structure based on the collected specificity information did not
significantly impact the overall runtime. Its build time grew linearly in relation to the number
of sequences; for the SSURef_102 database, BGRT construction took about 18 minutes. Also
the number of bgrt-nodes exhibited linear growth (Figure 3.7). The BGRT computed from the
SSURef_102 database resulted in 4.7 million bgrt-nodes with a tree depth of 103.

3.3.3 Performance of the BGRT-traversal

An individual search for signatures for an organism or an organism group in the BGRT is very
fast. Even in the large BGRT built from the full SSURef_102, this took less than a second. But
performing this search for all 921,565 phy-nodes of SSURef 102 would have taken more than
10 days on our test system.

Bounding the BGRT traversal using the best-known current signature and bounds from the
parent phase (Section 3.2.3) was shown to be an effective method for reducing the search time.
We measured the proportion of the total number of BGRT branches which could be skipped
during the search for signatures for each test dataset. The results (Figure 3.8) show that we
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Figure 3.7: BGRT statistics for test datasets, plotting the size of the datasets against the
number of bgrt-nodes in the resulting BGRT (solid line) and against the depth of the BGRT
(dotted line).

were able to reduce the overall search space for datasets with more than 1000 sequence entries
by about 90%. Searching for signatures for all phy-nodes in SSURef_102 with bounding took
132 hours (Figure 3.9).

The memory required to store the number of ingroup hits for each phase in the BGRT (Fig-
ure 3.5) resulted in the expected increase in memory consumption (Figure 3.9). For SSURef_102,
memory consumption increased from 4.1 to 11 GB. These values include optimizations such as
reducing the ingroup array size by reusing memory for different phases at the same depth.

3.3.4 Signature search space reduction

The number of signatures of a defined length found in a dataset is far lower than the theoretical
possible number of signatures of that length (see Table 3.3).

Only querying the signatures found in the respective dataset is not a problem as long as strict
search conditions are used. When using relaxed search conditions. i.e. allowing a mismatch
distance of 1 or more within the target group, a case can be constructed where a signature
candidate is valid under the defined constraints but does not appear in the sequential list of
signatures that was described above. An example is given in Figure 3.10.

A comparison of the results for a test database with 64,000 sequences has shown no significant
difference in the results between a run with extracted signatures (i.e. signatures, that are present
in the sequences) and all generated signatures. But querying all signatures, especially under
relaxed search conditions, will lead to an extreme increase in the overall runtime (Table 3.4).

The comparison was done with a signature length of 18 bases, 1 allowed mismatch within
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Figure 3.8: Efficiency of our bounding methods during comprehensive searches, depending on
the dataset sizes (number of sequences). With growing dataset sizes, the chance of early branch
cut-off in the BGRT declined. On the other hand, more cut-offs happened due to previously-
found better results.

the target group and a mismatch distance of 1 to non-targets. The range from 0-10 allowed
outgroup matches was processed. Both runs led to the same coverage “scores”, i.e. the same
number of matched sequences for every phylogenetic tree node. They differed only in the number
of signatures found — for some phylogenetic nodes more signatures were found when processing
all signature candidates.

It was not tested, if the 64,000 test sequences have a certain distribution of bases that
might lead to an equal score for both runs. This seems unlikely. A possible explanation can be
found when directly comparing the resulting signatures for all nodes. The more organisms and
thereby related signatures are covered by a group node, the higher is the chance that one of
these sequences contains the signature without mismatches. The signature is thereby found in
both results. All leaves had a maximum score of 1, i.e. were at least matched by one signature.
Here, the chance is highest to find additional signatures when querying all signatures. In the test
results, these nodes were the ones with the highest growth in the number of found signatures.

An optional reduction of the search space provided by CaSSiS is thermodynamic filtering.
Signatures can be dropped if they do not lie within defined GC-content or melting temperature
ranges. Although these filters appear very helpful at first sight, they should be used with
caution.

The GC-content is the percentage of bases with strong hydrogen bonds (Guanine and Cy-
tosine) present in a signature sequence (Section 2.1.2). Neither the actual base type (besides

being either G,C or A, T/U) nor its position is relevant for computing this percentage value. The
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Figure 3.9: The BGRT shows linear growth in memory consumption in relation to the number of
sequences. Its size, including the ingroup array (see Figure 3.5), was measured after a complete
computation for all phy-nodes.

number of possible GC-content values is therefore directly influenced by the signature length [:
at most |GC| = [+ 1 different GC-content values may occur (Figure 3.11). The resulting spikes
in the distribution of the GC-content make it in most cases difficult to define appropriate lim-
its. Even a small change in one boundary may skip over a GC-content spike and thereby vastly
reduce (or increase) the search space. Limits should be generously set and the distribution of
the GC-content, if possible, determined before usage.

The basic melting temperature (Section 2.1.3) can be used as a filter by defining an allowed
temperature range that valid signatures must meet. Not being much more sophisticated than
the GC-content formula, the basic melting temperature distribution may also result in similar
spikes (Figure 3.12). Determining the melting temperature with nearest neighbor (Section 2.1.4)
approximations reduces this effect. An effect not shown here is the mutual influence of the GC-
content and a melting temperature filter. Based on the same data with somewhat similar
predictions, they may enforce each other when being applied together. If not stated otherwise,

no filters were applied in the measurements presented in this work.

3.3.5 Comparison to other approaches

We used our test datasets to compare CaSSiS-BGRT with two other tools for comprehensive
signature search, HPD and ProDesign (Table 3.5). We were able to process up to 1,000 se-
quences with HPD, at a runtime of 99 minutes and a peak memory consumption of 1,010 MB.
Larger datasets could not be processed due to memory limitations (as a 32-bit MS Windows

program, HPD is limited to 2 GB RAM). ProDesign displayed a moderate growth in memory
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Length Possible Signatures Unique Signatures
k bases Al (test dataset)
3 64 64

6 4,096 4,096

9 262,144 262, 144

12 16,777,216 7,867,492

15 1,073,741,824 17,516,531

18 68,719,476, 736 24,125,196

21 4.40 - 1012 30, 334,407

30 1.15-10% 47,632,410

50 1.27-10% 80,617,100

Table 3.3: The number of possible k-mer signatures grows exponentially with their length k.
For RNA and DNA signatures with the alphabet S2% = {A,C,G,T|U} the growth factor is
4%, There are fewer unique signatures present in real datasets. The third column contains the
number of unique signatures extracted from a rRNA gene test dataset consisting of 512,000
rRNA genes (734,101,088 bases in total).

’ Evaluation of... signatures from dataset all 4!® signatures
Bipartite graph edges 90,712,819 91,116,545
Signatures in graph 7,110,160 7,474,112
Overall runtime (h:m:s) 4m 46s 59h 39m 9s

Table 3.4: Comparison of the number of edges and signatures in the resulting bipartite graphs,
computed from extracted (left) and all possible signatures (right). Evaluating all signatures led
only to a slight increase in the number of added signatures, but to a vast increase in the overall
runtime. The dataset contained 64,000 rRNA gene sequences. The signatures had a length of
18 bases. One mismatch within the target group was allowed.

consumption, but the runtime increased dramatically with growing dataset sizes. Processing
2,000 sequences took over 7 hours and consumed 377 MB RAM at its peak. For comparison,
CaSSiS-BGRT was able to process 2,000 sequences in less than 2 minutes using only 111 MB
RAM.

We additionally tested Primrose and ARB ProbeDesign. In principle, both tools were able
to process the more than 460,000 sequences from SSURef 102, but the two programs could
only search signatures for one selected sequence or sequence group per run. Processing single
randomly selected sequences without mismatches and outgroup hits took more than 5 hours
with Primrose and 5 minutes with ARB ProbeDesign (the creation time of the index excluded).
Analyzing all 460,000 sequences with these tools would thus take 262 years or 133 months
respectively. (Recall that CaSSiS-BGRT took just 132 hours to find primers for all sequences
and sequence groups for this data set (see Section 3.3.3).)

Searches for sequence groups were not conducted with Primrose due to the unexpected long
runtime on single sequences. Furthermore, since it is using the NCBI taxonomy and is not

capable of processing the phylogenetic tree from SSURef 102, a more thorough comparison of
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Sequence 1

2 mismatches Signature

Sequence 2

Figure 3.10: Under certain constraints signatures exist, that match within the defined limits
but cannot be derived from the sequence data. In this example two sequences with a length of
18 bases are given. A signature with a length of 12 bases is searched and up to one mismatch
is allowed. Every subsequence of Sequence 1 with a length of 12 has at least two mismatches
in Sequence 2 (displayed as circles), and vice versa. It is still possible to create an appropriate
signature with only one mismatch to each of the sequences (matches highlighted gray).

CaSSiS-BGRT with Primrose regarding group specific signatures is out of the scope of this
work.

ARB ProbeDesign processed sequence groups in 25 seconds to 70 minutes per group (see
supplementary material). Based on the shortest runtime measured for every node in the phylo-
genetic tree, a comprehensive computation using ARB ProbeDesign would take almost 270 days
— excluding the initial configuration and final summarization and evaluation for every query.

By using appropriately adapted settings, ARB ProbeDesign was able to deliver results com-
parable to those of CaSSiS-BGRT. Applying settings that were too strict or too lax represented
a trade-off between computational costs and unsatisfactory results, often leading to a re-run.
CaSSiS-BGRT avoids these issues through a more sophisticated preparation of the results.

3.3.6 Evaluation of the computed signature collection

The probability of finding an 18-mer that matches only a single organism in SSURef_102 is
55%. Signatures that match all organisms in a particular group and have no outgroup hits were
found for only 14% of all groups. Allowing a small number of outgroup hits led to a noticeable
increase in the number of phy-nodes with complete coverage. By computing signatures up to
two outgroup hits for the SSURef 102 dataset, the percentage grew from 14% to 23%. For
single sequences, the percentage increased from 55% to 71%. Figure 3.13 shows the number of
sequences and sequence groups completely covered by signatures against the number of outgroup
hits. For higher numbers of allowed outgroup hits, the curves flatten out.

In addition to quantitative aspects, the qualitative usefulness of the signature collection
computed for SSURef_102 has been examined by spot tests. For selected target groups, we
compared computed signatures with relevant entries in probeBase [68] or the literature con-

cerning availability, coverage and specificity.



3.3. RESULTS 43

4500 T T
GC-content distribution ——
4000 R
3500 | R
3000 | R
2500 R

2000 R

1500 i

Signatures (in thousand)

1000 -

e NN

0 20 40 60 80 100
GC-content (percent)

Figure 3.11: GC-content distribution for 24,125,196 signatures extracted from a test dataset
with 512,000 SSU rRNA sequences. The signatures had a length of 18 bases, resulting in 19
different possible GC-content percentages.

The target sequence of the SSU-targeted probe EUB338, which is used worldwide with
different hybridization technologies for the detection of members of the domain “Bacteria”
[4, 3], matches 355,790 sequences in SSURef_102 and three outgroup sequences from other
domains. The signature with the highest ingroup coverage found by CaSSiS-BGRT also has
three outgroup matches, but matches 356,185 ingroup sequences; significantly, its sequence is
almost identical to the EUB338 target sequence except that it is shifted to the SSU rRNAs
3-prime-end by one position. We cannot state exactly which signature is the better one to be
targeted in practice. We can state, however, that this 18-mer signature found by CaSSiS-BGRT
is highly valuable, since it is almost identical to one of the most frequently targeted signatures
cited. This finding was possible because of CaSSiS-BGRT’ advantageous capacity to search
with relaxed specificity constraints.

The probe VP403, a new 20-mer targeting the 16S rRNA of Verrucomicrobium, most Proste-
cobacter spp., and uncultured relatives specifically, has been recently successfully applied for
Fluorescence in situ Hybridization by [7]. CaSSiS-BGRT also found the complementary signa-
ture for this bacterial group, namely the three possible 18-mer substrings of the 20-mer signature
sequence targeted by VP403 (N.B.: in this study we conducted CaSSiS-BGRT searches for 18-
mer signatures only). All three signatures show the same coverage and specificity properties in
silico.

Another signature we evaluated was an 18-mer computed for the group Deinococ-

caceae_Deinococcus. It hits in silico 199 out of the 238 ingroup sequences. In regards to
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Figure 3.12: Melting temperature distribution for 24,125,196 signatures (with a length of 18
bases) extracted from a test dataset with 512,000 SSU rRNA sequences. CaSSiS provides a
“basic” melting temperature computation (Section 2.1.3) and one based on “Nearest Neighbor”
predictions (Section 2.1.4). They may significantly differ, as indicated in this figure, and their
applicability differs based on the later applied detection method the signature length.
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rRNA | CaSSiS-BGRT | PT-Server HPD ProDesign
Sequences | runtime memory memory | runtime memory | runtime memory
100 9 12 18 40 45 1 162
200 17 16 25 178 122 3 164
500 31 31 48 1.226 361 36 166
1.000 56 49 85 5.985 1.010 928 203
1.500 79 66 97 - —(1) 4.679 277
2.000 111 85 109 — — 26.159 377
5.000 302 175 169 - — —(2) -
10.000 873 311 262 — — — —

Table 3.5: Comparison of the runtime (wall time, in seconds) and the peak memory consumption
(in MB) of CaSSiS-BGRT, HPD, and ProDesign. (1) HPD: 2 GB Memory limit reached (32-bit
program; no more memory available). (2) ProDesign: The measurement was aborted due to
extreme runtime (in step 3, reclustering). The memory consumption of CaSSiS-BGRT and the
PT-Server were measured separately. (They are two separate processes). The peak memory
consumption of the PT-Server was measured after stage 1, as it is only needed in this stage.
The peak memory consumption of CaSSiS-BGRT was measured after stage 3. Test system:
Lenovo Thinkpad X200s; Intel Core2 Duo CPU L9400 @ 1.86GHz; 8 GB RAM; Windows 7
Professional 64-bit; Ubuntu 10.10 64-bit

the group coverage, this signature is clearly superior to the only signature published so far for
this group [118], which matches just 37 ingroup sequences. Furthermore, we could rapidly find
7 new signatures with a coverage of more than 95% for the group Coprothermobacter. We have
no information about the significance of this group of bacteria, but no signature for this group
has been published to date.

These results indicate that the comprehensive 18-mer collection computed from SSURef_102
by CaSSiS-BGRT does include sequences which could be valuable diagnostic targets. Using
CaSSiS-BGRT, we found signatures which have been already successfully targeted in the wet
lab. We identified signatures which have ingroup coverages superior to previously published
signatures, and we found potentially valuable signatures for bacterial groups for which no SSU
rRNA-targeted signature has been published so far. More details are presented in the supple-

mentary material in Section A.2.

3.4 Parallelizing the BGRT traversal with OpenMP

The CaSSiS-BGRT approach was in its initial implementation designed as a single process,
consisting of three subsequent stages (Section 3.2). The first two extract valuable signature
candidates and build the BGRT data structure. The third stage traverses the BGRT structure
and searches the best possible signatures for every node of a phylogenetic tree. Consequently,
the first two stages were combined as BGRT “create” and the latter defined as BGRT “process”.
This also allowed storing the BGRT data structures into files, and thereby their sharing and

independent processing.
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Figure 3.13: Percentage of sequences and sequence groups in SSURef_102 which are completely
covered by at least one signature. Searches are performed under relaxed specificity conditions
(disjoint values; stepwise allowance of 0 to 128 outgroup matches).

When comparing the runtime of BGRT “create” (Section 3.3.2) with BGRT “process” (Sec-
tion 3.3.3), the runtime and memory consumption of the latter grows faster with increasing
dataset sizes. The parallelization of the BGRT traversal, being the bottleneck, was therefore
further evaluated in a student’s project. This section presents aggregated extracts from the
final report of the bachelor project “OpenMP Parallelization of CaSSiS-BGRT” by Sebastian
Wiesner, that was supervised by me. It documents the modifications that were necessary to
parallelize the CaSSiS-BGRT traversal with OpenMP and the achieved runtime gains.

3.4.1 OpenMP Implementation

CaSSiS-BGRT contains multiple data structures, most notably the phylogenetic tree, the BGRT
structure, and the result array (Section 3.2). The phylogenetic tree and the BGRT are only read
in the third stage of the algorithm, the BGRT traversal, and therefore needed no modification
to be thread-safe. However, each new best result is immediately stored in a result array. The
array therefore must be thread-safe to prevent race conditions, lost updates and other typical
problems that might occur when parallelizing an algorithm.

Two different kinds of strategies could be used to avoid these problems. The first would be
simply changing the result array into a thread local resource. Each thread independently fills
the result array and in the end the results are merged. An obvious drawback of this approach
could be a reduced number of cutoffs and thereby a decreased effectivity of the bounding during
BGRT traversal. On the other side it completely avoids any kind of locking and allows to

perform cutoffs truly parallel. To be effective it is assumed, that each thread still gathers
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enough cutoff data and thus the reduction of the cutoff rate is negligible compared to the gain
of unhindered parallelization.

A second approach would be adding locking mechanisms to the result array and thereby
allowing exclusive access for one thread at a time. The result array would remain shared and
all results would be available at the end without the need to merge them.

The actual implementation of a parallelized BGRT traversal was preceded by tests to check
the level and quality of OpenMP support provided by the GNU C+4 compiler. The most
notable one was the attempt to use the task directive [82]. Measurements revealed, that tasks
greatly slowed down the overall runtime. Apparently, the OpenMP implementation used by
the GNU C++ compiler was unable to automatically determine a sensible threshold for task-
based parallelism. New tasks were generated on each single recursive call, straightly following
the directives, so that the task management overhead by far exceeded any possible gain from
parallelization. Given these observations, tasks were dismissed.

Classic work-sharing directives from OpenMP 2.0 were used to parallelize the BGRT
traversal. Unlike tasks, these directives are unable to parallelize any kind of irregular prob-
lems, e.g. recursions or unbounded loops. During BGRT traversal, a bounded loop (Proce-
dure traverseBgrTree) is used to iterate over all top-level nodes in a BGRT tree. The heavy
computational work is performed in a recursive function (Procedure traverseBgrTreeRecursion)
which is called for each of these nodes. The rest (outside the loop) deals with the relatively
cheap traversal of the phylogenetic tree. It was chosen to distribute the computational work
among the processing cores of the system by simply parallelizing the first bounded loop.

OpenMP provides the for directive [82] to parallelize such bounded loops. Proce-
dure traverseBgrTree shows how this directive was applied in the CaSSiS-BGRT sources. Leav-
ing locking aside, this little change was sufficient to parallelize the computational work by
letting OpenMP split the loop into somehow even parts, and execute each of these parts in a
separate thread. The exact strategy how the work is distributed among the threads, and the
scheduling strategy, are implementation-defined. We did not influence the standard scheduling
strategies [82] that OpenMP provides.

Input: BGRTNode node
1 ...process current BGRT node ...
2 foreach childnode of node do
3 traverseBgrTreerecursion(childnode);
4 end
Procedure traverseBgrTreeRecursion(BGRTNode node) recursively traverses BGRT nodes.

3.4.2 Benchmark setup and results

The influence of the OpenMP parallelized BGRT traversal was measured on a 64 bit Ubuntu
11.10 system equipped with 36 GB of main memory. Its two 6-core Nehalem (X5670 West-
mere) processors, fixed at 2.93 GHz, allowed with activated HyperThreading up to 24 concur-
rent threads. For the test, five databases of increasing size (8,000, 16,000, 32,000, 64,000
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Input: BGRTree tree
1 #pragma omp parallel

2 {

3 #pragma omp for

4 foreach 1st_level_node of tree do

5 traverseBgrTreeRecursion(1st_level node);
6 end

7}
Procedure traverseBgrTree(. .. ) initial bounded loop iterates over all top level nodes in the
BGRT.

and 128,000 randomly selected rRNA gene sequences) were derived from the ARB SILVA
SSURef_104 dataset. Each database was processed with different parallelization settings. First,
OpenMP was completely disabled to obtain a serial reference measurement. Then the datasets
were processed with 1, 2, 4, 6 and further in binary steps up to 24 OpenMP threads.

The runtimes in Table 3.6 and the resulting speedup in Figure 3.14 show, that the overhead
of the single threaded OpenMP parallelization compared to the serial version of the BGRT
traversal is negligible. The speedup grew sublinear with the number of threads. With 24
threads, the traversal was up to about 4.5 times faster. Within our test range, the benchmarks
did not reveal a point, at which the speedup stagnates or even declines. This should not imply
that no such point exists. Additionally, a certain overhead due to the management of the
threads via OpenMP is noticeable. Note, that the BGRT construction was not affected by
parallelization, and its runtime was identical for same dataset sizes. The higher speedup of
the dataset with 32,000 sequences is probably due to a favorable distribution of the randomly

selected sequences.

3.5 Discussion

The CaSSiS-BGRT algorithm enables fast and comprehensive search for sequence- and sequence
group-specific signatures in large hierarchically-clustered sequence datasets with modest mem-
ory requirements. Adding CaSSiS-BGRT to their workflow (Figure 3.15) could be of inter-
est for maintainers of hierarchically-clustered databases, such as SILVA, RDP, or Greengenes
[89, 25, 29]. Many of these maintainers provide online tools for matching oligonucleotide se-
quence strings against their data collections, such as Probe Match on the RDP website or Probe
by Greengenes. However, neither of them provide tools for signature search, nor do they offer a
collection of signature sequence candidates for their data — two features CaSSiS-BGRT is able
to provide. CaSSiS-BGRT could also be beneficial for users who want to process collections
from projects like FunGene at the Michigan State University (http://fungene.cme.msu.edu/),
which maintains more than 40 aligned collections of homologous gene sequences. An appropriate
clustering, usually a phylogenetic tree, could be computed from the available aligned sequences
using third party tools like FastTree or RaxML [88, 106]. By using precomputed BGRT-files
(which contain the BGRT structure), single queries based on freely defined group definitions
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Threads Dataset size (rRNA sequences)

# 8,000 | 16,000 | 32,000 | 64,000 | 128,000
serial | 6.39 (5.94) | 22.70 (21.78) | 96.12 (94.36) | 242.32 (238.61) | 897.05 (890.21)
1| 6.57 (6.14) | 22.36 (21.53) | 77.00 (75.38) | 255.17 (251.93) -
2 | 5.97 (5.54) | 19.31 (18.44) | 66.35 (64.72) | 207.73 (204.28) -
4| 4.44 (4.00) | 15.22 (14.39) | 51.14 (49.37) | 164.22 (160.88) -
6 | 3.87 (3.45) | 12.96 (12.12) | 43.45 (41.66) | 139.30 (135.91) -
8 | 3.36 (2.93) | 11.05 (10.21) | 37.77 (36.11) | 121.93 (118.73) -

10 | 3.04 (2.60) | 10.08 (9.21) | 35.37 (33.70) | 113.15 (109.84)
12 | 2.78 (2.36) 9.27 (8.45) | 30.49 (28.85) 99.17 (95.84) | 328.23 (321. 86)
14 | 2.59 (2.16) 8.64 (7.81) | 28.12 (26.48) 94.60 (91.34) | 301.02 (294.69)
16 | 2.45 (2.03) 7.96 (7.14) | 27.16 (25.52) 88.63 (85.45) | 283.28 (277.03)
18 | 2.35 (1.94) 7.66 (6.83) | 25.02 (23.42) 84.97 (81.81) | 269.58 (263.32)
20 | 2.29 (1.87) 7.36 (6.55) | 24.37 (22.77) 81.17 (77.93) | 258.42 (252.13)
22 | 2.31 (1.87) 7.30 (6.47) | 23.79 (22.17) 77.68 (74.37) | 246.55 (239.88)
24 | 2.22 (1.79) 6.89 (6.06) | 22.82 (21.22) 75.67 (72.45) | 238.92 (232.58)

Table 3.6: Overall runtime of the OpenMP parallelized CaSSiS-BGRT approach in minutes.
The sole runtime of the BGRT traversal step is shown in brackets. The sequence datasets
were computed without allowing mismatches (m; = 0) and a distance of one (mg = 1). Results
within a range from 0-10 outgroup hits were computed. Some of the measurements with 128, 000
sequences could not be done due to the lack of computation time.

can be processed.

The computation of valuable signatures for every group within a large phylogenetic tree can
quickly lead to excessive runtime. Other tools we have tested were either unable to process
current dataset sizes or they would have needed an extremely long time to do so (Section 3.3.5).
CaSSiS-BGRT copes with this by relying on the BGRT structure for the storage of the relation
between signatures and sequences (Section 3.2.2). Its combination with a phylogenetic tree
allows CaSSiS-BGRT to avoid expensive computations to determine clusters and to instead focus
on finding signatures. This allows CaSSiS-BGRT to process the SILVA SSURef_102 dataset with
more than 460,000 sequences. The group hierarchy of the phylogenetic tree is critical for the
bounding method; given only flat clusterings, the 90% reduction in the BGRT-traversal using
our bounding method (Section 3.3.3) would not be applicable. Additionally, only processing
signatures that are present in a dataset is in most cases sufficient (Section 3.3.4). Processing all
theoretically possible numbers of signatures does not lead to a significant increase in the quality
of the results, especially when evaluating signatures for large target groups.

The BGRT only contains the relation between signatures and the organisms they match
(Section 3.2.2). The information where exactly a signature matched a sequence as well as the
position(s) of possible mismatches are not stored within the BGRT. Adding this information
directly to the BGRT would lead to a huge increase in its memory consumption, without causing
significant benefits. Through this data reduction, a fast signature search even for freely defined

groups of organism identifiers is possible. By making the BGRT storable, multiple different
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Figure 3.14: The speedup of the parallelized BGRT traversal step grows sublinear with the
number of threads. For each database size, it is calculated by dividing the traversal time for
each measured number of threads with the corresponding serial measurement (in the graph
displayed as 0 OpenMP threads).

clusterings based on the same set of sequences could be evaluated in stage 3 without the necessity
of repeating the previous two stages. The “loss” on information could be compensated with a
post-processing stage of the results. A fourth stage could be added to CaSSiS-BGRT to gain
this information. This stage would be cheap in runtime and memory consumption, compared

to the BGRT creation and traversal stages.

Processing large phylogenetic sequence datasets means processing fuzzy data for two reasons:
probable errors in the sequences, and errors in the clusterings. Although SILVA, the source of
our test datasets, is a maintained secondary database containing high quality sequences and
annotations from public databases [89], the occurrence of erroneous information, e.g. sequence
errors, cannot be ruled out. Naturally, sequence errors influence the results of a CaSSiS-BGRT
calculation negatively, in particular with regards to the signatures selected for single organisms.
We are aware of regions with sequence errors that are selected as organism-specific signatures
where “uniqueness” has been induced by the error itself. This problem is not solved by any
extant tool, including CaSSiS-BGRT. In order to minimize such erroneously selected signatures,
probabilities for the occurrence of highly individual signatures within certain gene regions —
e.g. based on conservation profiles — would have to be taken into account for SSURef_102. Such
a method is computationally expensive and could lead to the exclusion of valuable signatures as
well. However, the main application of CaSSiS-BGRT is searching for group-specific signatures.
Here, the effect of erroneous sequences is not dramatic, since CaSSiS-BGRT selects signatures



3.5. DISCUSSION 51

BGRT Phylogenetic
SequenceData| === 0 ——————__ N
4 : Data Structure Tree
I
I
I
I
I \
I
. | .
Slgnatgre | Interactive Comprehensnve
Extraction | Queryin Signature
(with Search Index) : rying Computation
I
I
I
I
I
I
I

BGRT

Data Structure CSV Table Files

BGRT "create" BGRT "process"

-
CaSSiS

Figure 3.15: CaSSiS-BGRT enables the rapid computation of comprehensive sets of valuable
sequence- and sequence-group-specific signatures. In a first step, the BGRT data structure is
created and stored. In combination with a phylogenetic tree, the BGRT structure can then
be used for comprehensive computations of signature candidates. End users who are primarily
interested in few defined target groups, but do not want to give up a large amount of background
data, can use these pre-computed BGRT structures to generate signature candidates for freely
defined groupings of sequences.

with the highest possible group coverages. This approach reduces the chance of selecting an
erroneous signature significantly; the probability of a signature being erroneous decreases with
the increasing number of group sequences in which it occurs. Some other systems [22, 34| also
have this capability, but exhibit significant limitations in runtime and memory performance
(Section 3.3.5).

Furthermore, since several heuristics have to be applied for reconstructing large phylogenies,
an error-free tree cannot be guaranteed. As a result, the phylogenetic trees could suffer from
misplaced organisms. If CaSSiS-BGRT was to only consider signatures that match within a
target group, this would lead to suboptimal results for large datasets; for example, perfect sig-
natures were only found for 14% of all groups for SSURef_102. By allowing outgroup matches
when searching for signatures, false negatives (e.g. misarranged OTUs in a phylogenetic tree)
can be found with CaSSiS-BGRT. The only other approach that tries to cope with such uncer-
tainties is ProDesign. ProDesign uses reclustering [34] to find more perfect group signatures.
This program, however, is not applicable with a large dataset such as SSURef_102 due to its
computational complexity (Section 3.3.5 and supplementary material).

Aside from mitigating negative effects introduced by inexact input data, the ability to find
signatures with outgroup hits can help to determine further valuable diagnostic sites. Such sig-
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natures become applicable when the co-occurrence of target and cross-reacting non-target DNA
within the samples examined can be ruled out [3] or when negative probes sensing specifically
for the presence of the non-target DNA are additionally applied [75].

Using the ARB PT-Server for high-throughput matching of the signature candidates in
stage 1, inexact searches according to a predefined mismatch limit can be performed. CaSSiS-
BGRT is able to enforce a defined minimum Hamming distance to outgroup sequences (mg)
as well as an upper limit for mismatches to the target sequences (mj; see Section 3.2.1). This
feature could be valuable for finding signatures that provide advanced sensitivity and specificity
properties under non-standard conditions. These could include degenerated signature sequences
or signatures which cover some ingroup sequences with a small number of weak mismatches
and exhibit large Hamming distances to outgroup sequences simultaneously. The ARB PT-
Server also supports weighted mismatches, a more sophisticated distance measurement that
also considers the position of a mismatch. Its applicability has been shown for hybridization
approaches [121], and it allows experienced users a usability prediction without requiring a
post-evaluation in the wet lab.

We are not aware of any other comprehensive approach that allows the definition of a max-
imum Hamming distance to targets or a minimum distance to non-targets. Due to hard-coded
search constraints [34] ProDesign is unable to guarantee any of these two. ARB-ProbeDesign
[70] can at least be configured to guarantee a distance of one mismatch to the outgroup. Insignia
first calculates short signatures that have at least one mismatch with all outgroup signatures.
It then concatenates these signatures if they overlap within the targets [86]. However, Insignia’s
method does not guarantee a defined minimum distance to non-target sequences for signatures
of a particular length.

By providing a comprehensive signature collection for hierarchically-clustered sequence data,
CaSSiS-BGRT could support so-called multiple probe approaches. Here, multiple oligonu-
cleotide probes, targeting signatures with overlapping specificities, e.g. different taxonomic
levels, are used in order to increase the overall specificity. Signature sets with nested specifici-
ties are often used for bacterial diagnostics or biodiversity studies. They allow the detection
and classification of previously unknown bacteria: specific signatures for known organisms or
organism groups are not detected, but a signature of a superior taxon is [99, 69, 100]. Addi-
tionally, collections of oligonucleotide signatures of different lengths (e.g 15-25) can significantly
improve the signature supply for primer and probe design and can be created by combining the
results from multiple CaSSiS-BGRT-runs.

CaSSiS-BGRT creates result files containing target names (taxonomic group/organism
names, if available) or node IDs, the group size, the coverage, and the respective signatures
for each node in the phylogenetic tree. Each file contains the signatures with a particular num-
ber of outgroup matches featuring the highest in-group coverage. Oligonucleotide probes or
primers, derived from signature sequences found by CaSSiS-BGRT in SSURef_102, could be
worth a trial in wet laboratory experiments. This is indicated by spot tests in which signatures
found by CaSSiS-BGRT have already been successfully targeted in earlier FISH studies [4, 7].
For optimizing each probe in silico as far as possible according to application-dependent re-
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quirements, however, additional information, such as names of inexact outgroup matches, their
exact Hamming distance to the signature string, as well as mismatch types and positions, would
be helpful for downstream users. Such information is currently not provided with the CaSSiS-
BGRT result files, although it could be determined in a future version. This information can be
easily retrieved by simple string matching against the SSURef_102, using either the online tool
probecheck, or, if the computational hardware resources are sufficient, applying the tool ARB
ProbeMatch (both approaches rely on the ARB PT-Server [66, 70]).

Although CaSSiS-BGRT performs quite well on the large test dataset analyzed, we evaluated
further strategies to enhance its performance, especially in regard to memory consumption. For
our tests, the SSURef_102 dataset was computed on a workstation with 24 GB of RAM. Clearly,
larger genomic datasets could exceed the capacity of individual machines. Additionally, the
signature extraction during the first two stages depends on an (external) search index, the PT-
Server, which is only able to sequentially process requests. For the construction of the BGRT,
a distributed approach was therefore evaluated which is presented and discussed in Chapter 5.
With this approach, we were able to accelerate the matching of signatures with the PT-Server
up to five-fold using parallel and distributed computing. Furthermore, by partitioning the
dataset, we were able to reduce the memory consumption per phy-node inversely proportional
to the number of partitions for the first stage (the second stage is not performance critical; see
Section 3.3.2).

In order to improve the critical third stage, the impact of multicore processing on its runtime
was evaluated. An OpenMP parallelized version of the BGRT traversal was implemented as
a student’s work (Section 3.4). The results, the achieved four-fold speedups on 24 cores, were
disappointing. The probable causes are multiple locks that were used to synchronize the threads
during the merge of the results for each phy-node. In retrospect, a better solution could have
been to give up the used “global” bounding method where cutoffs are shared throughout all
threads. Using thread-local bounds could still have lead to a certain number of cutoffs. Locking
mechanisms could have been prevented with thread-local result tables (instead of one shared)
which are merged after all results were computed. Both approaches were not implemented
because the expected increase in memory consumption was considered to be too high. As
Figure 3.9 shows is the memory footprint of a BGRT linear to the number of sequences it was
computed from, but the additional information for the cutoffs and the result entries leads to an
exponential growth of the memory consumption. This factor would probably multiply with the
number of threads.

Another compromise could be the partitioning of the BGRT structure. Partitioning the
BGRT is likely to have a negative impact on the efficacy of the bounding method as well, but
with less overall impact in a distributed approach like in Chapter 5. This would enable both
parallel processing on different bgrt-nodes within a computer cluster as well as reduction of
per-node memory consumption.

But a far more important reason why the parallelization was not pursued was the develop-
ment of a more efficient approach which is presented in the following Chapter 4. The CaSSiS-
BGRT algorithm, presented in this chapter, has a worst-case complexity of O(|M] - |V]) time
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where M is the size of the BGRT and and |V| is the set of all organisms. The implemented
bounded search, a time-memory trade-off, requires O(d - |M|) memory where d is the depth of
the phylogenetic tree. The new algorithm, called CaSSiS-LCA, allows to solve the same com-
binatorial problem in almost linear time (empirically observed). Without the need for a BGRT
lookup structure, its overall memory consumption is vastly reduced to the memory footprint of
search index and the result entries in the phylogenetic tree nodes.

Besides optimization and parallelization, replacing the ARB PT-Server by a faster approx-
imate search method could further accelerate the performance. Especially when searching for
signatures with guaranteed Hamming distances to the outgroup (or to within-group sequences)
of more than one base, stage 1 becomes the runtime-critical computational step (see Section 3.3.1
and supplementary material). Periodic spaced seed based search methods showed promising re-
sults when applied to mapping high throughput reads to the human genome [21]. However, their
suitability for usage in CaSSiS-BGRT was not examined in this work. Data handling, search
efficiency for matches with more than 3 mismatches, and performance for short oligonucleotide

searches resulting in huge match lists would have to be taken into account.



Chapter 4

The CaSSiS-LCA Approach

This chapter presents a new algorithm for finding oligonucleotide signatures that are specific
and sensitive for organisms or groups of organisms in large-scale sequence datasets. We assume
that the organisms have been organized in a hierarchy, for example a phylogenetic tree. The
resulting signatures, binding sites for primers and probes, match the maximum possible number
of organisms in the target group while having at most £ matches outside of the target group.

The key step in the algorithm is the use of the Lowest Common Ancestor (LCA) to search
the organism hierarchy; this allows to solve the combinatorial problem in almost linear time
(empirically observed). The presented algorithm improves performance by several orders of
magnitude in terms of both memory consumption and runtime when compared to the best-
known previous algorithms while giving identical, exact solutions.

This chapter gives a formal description of the algorithm, discusses details of our publicly
available implementation and presents the results from our performance evaluation.

This Chapter is an extended version of an article [10] published in the ACM Journal of
Experimental Algorithmics. It is a collaboration with Prof. Mikhail J. Atallah and Christian
Grothoff and describes the CaSSiS-LCA algorithm.

4.1 Introduction

Molecular diagnostic techniques, which are applying polymerase chain reaction (PCR) [15] or
RNA/DNA hybridization [5, 105], are becoming a standard in various fields of life sciences and
medicine. They rely on oligonucleotide primers and probes, short (15 to 25 bases) subsequences
of DNA or RNA. These subsequences bind to longer sequences from a biological sample to start
the desired biochemical reaction. Binding sites on the samples, the complement of the primers
or probes, are called oligonucleotide signatures (hereafter simply referred to as signatures). To
interact only with sequences from the target organism, they must be specific to the target
organism or group of organisms.

A source for such primers and probes can be curated databases like probeBase [68] or, in
many cases, the design “by hand.” Given the size of modern sequence datasets, software tools

are necessary to design new or re-evaluate already published candidates before testing in the
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wet lab. In this chapter we present an efficient algorithm for the comprehensive in silico search
for good signature candidates (Figure 4.1). Maintainers of gene and genome databases, such as
SILVA, RDP, or Greengenes [89, 25, 29|, could use it to precompute and offer a collection of
signature candidates along with their datasets, but it also is useful for end-users with custom
sequence collections based on projects like FunGene!.

For applications in this domain, our algorithm assumes that the organisms are hierarchically
clustered. Clusterings could be based on any kind of classification where inner nodes represent
related groups. An example is a phylogenetic tree: Inner nodes represent derived evolutionary
relationships between groups of organisms, and the individual organisms correspond to the
leaves. Phylogenetic trees, if not supplied with sequence datasets, can be computed using
third-party tools such as FastTree or RAxML [88, 106].

The other main input is a bipartite graph (Figure 4.1, center) that relates signatures to
matched sequences (organisms). A relation means that a signature is present in a sequence.
Such a bipartite graph is easily computed using existing search index tools that construct suffix
trees over sequence data. Signatures are extracted by traversing the tree until a certain (length)
constraint is met, and references to the sequences can be found in the underlying nodes.

Genetic sequencing,
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Maafsn M AN databases
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) Phylogenetic tree (7)
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Figure 4.1: Schematic of the primer and probe design pipeline in which CaSSiS is embedded.
The input data for the new algorithm CaSSiS-LCA comes from public sequence and phylogenetic
tree databases. The resulting signatures can be used as a template for new RNA/DNA primers
and probes (e.g. to provide diagnostic microarrays).

"http://fungene.cme.msu. edu/
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It should be noted that depending on the target group and the available sequence data,
there may not be a perfect match; a perfect match would be a signature that matches all
target sequences and has no matches outside of the target group (no false-positives). Thus,
we are interested in algorithms that support relaxed search conditions; the algorithm should
minimize the number of target sequences that are not matched (false-negatives) while allowing
for at most k false-positives (where k is typically a small number). In practice, inaccuracies
in the available sequence data and additional constraints (such as melting point restrictions)
complicate the situation further. However, many of these issues have been addressed in the
prior chapter 3. In this chapter, we concentrate on the central algorithm for the search for good
signature candidates, hereinafter referred to as CaSSiS-LCA.

We will use the following formalism to present and discuss our algorithm. Let G = (U, V, E)
be a bipartite graph where edges (u,v) € E represent that a signature u € U matches an
organism v € V. Furthermore, let T be a tree with leaves in V' (e.g. 7T might represent a
phylogenetic tree). Furthermore, let D(¢) be the set of all descendants of ¢ € T' and P(t) the
result set of signatures for ¢. Then, this chapter presents an O(k|U|log|V| + k|V| + |E|) time
algorithm (detailed analysis in Section 4.3.3) which determines for all elements ¢t € T those
element(s) v € U that maximize the number of edges (u,v) € E with v € D(t) while not having
more than k edges (u,v’) € E with v ¢ D(t). For each ¢, the resulting signatures are stored in
P(t). Note that in practice |E| is several orders of magnitude larger than k|U|log|V|; thus the
runtime is practically linear in the size of the input.

Following the notation from the previous Chapter 3, we will call edges (u,v) € E with
v € D(t) ingroup matches for group t and edges (u,v’) € E with v ¢ D(t) outgroup matches for
group t. The bound £ is the maximum number of outgroup matches that can be tolerated. If
the resulting signature u is used for diagnostics, outgroup matches would result in false-positive
tests. The goal of the algorithm is to maximize the number of ingroup matches. If there exist
organisms v € D(t) where (u,v) ¢ E, this would result in false-negative tests when using
signature u to test for group t. In other words, the presented algorithm finds for each group of
organisms ¢t € T all of those signatures u € U that have less than k false-positives and minimize
false-negatives.

The remainder of this chapter is structured as follows. We review related work in Section 4.2.
Our algorithm is presented in Section 4.3. Details about our implementation and its performance
are given in Section 4.4.

4.2 Related Work

Currently, the use of primers and probes is widespread in the field of medical diagnostics. In
previous work, we have shown that computational methods can find typical representatives
that are applied in this field [12]. An example is EUB338, a domain-specific probe used for the
detection of organisms classified as “bacteria” [3]. Our algorithm not only found the signature
corresponding to EUB338, but it also presented a signature with a higher coverage (its position
was shifted by one base compared to EUB338) [12].
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The in silico search for oligonucleotides is provided by various tools. Most of them are
specialized in either primer design [32, 85, 35, 93] for PCR applications, or the design of
probes [22, 34] that could be applied in DNA microarrays. However, more generic approaches
also exist that try to identify signature sites [70, 62].

For various reasons, we found these tools unsuitable for the comprehensive computation of
hierarchically clustered sequence datasets. They are typically limited to processing datasets
of a few thousand gene sequences or a few genomes due to excessive memory or time require-
ments [12]. In most cases, oligonucleotides are computed only for one predefined set of targets
and nontargets per run. Another limit is the lack of relaxed nonheuristic search methods, which
gain importance when processing large datasets [12].

Prior to this work, the only algorithms known to us capable of doing a comprehensive
nonheuristic signature computation based on large hierarchically linked gene and genome se-
quence datasets were Insignia [87] and the first CaSSiS implementation, hereinafter referred to
as CaSSiS-BGRT [12].

4.2.1 Insignia

Insignia is a Web application developed and maintained by the Center for Bioinformatics and
Computational Biology at the University of Maryland. It currently (May 2012) contains 13,928
genomic organism sequences (11,274 viruses/phages and 2,653 nonviruses).

Insignia consists of two pipelines. The first “match pipeline” is used to pre-compute “match
cover” arrays M for every pair of organisms. For example, for v1,v9 € V and vy # v, the match
cover array M (vy,vy) contains the positions and lengths of all sequence regions of v; that are
also present at one or more positions on vs. To find common regions for an organism pair,
Insignia uses MUMmer [59] to build a suffix-tree-based search index. Signatures of a defined
length matching v, and vy are extracted, merged if their positions on v, overlap, and added as
regions to the match cover.

A match cover consists of integers, that is, position and length pairs on a reference sequence.
The number of pairs in a match cover is bound by the sequence length I. To process ~80 billion
nucleotides from NCBI RefSeq genome database?, the first pipeline had to be distributed across
a 192-node cluster [86]. The authors did not provide information about the actual runtime of
the algorithm. The memory consumption for the match cover M for 300 organisms is reported
to be only ~2GB [87].

After precomputing the match cover, the second “signature pipeline” is triggered over In-
signia’s web interface. The signature pipeline computes regions (i.e., one or more overlapping
signatures) shared between a user-defined group of target organisms V’ C V which must also
be absent in the background V" = V \ V/ [87]. One target organism v' € V' is designated as
the reference organism and used to visualize the result.

The signature pipeline consists of three steps. In a first step, an intersection [, :=
Ny,ev M (v, v¢) of the match cover structures from o' with the other target organisms from

Zhttp://www.ncbi.nlm.nih.gov/RefSeq/
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V' is created. It contains only sequence regions on v’ that are shared by all targets V’'. In a
second step, a union Uy := {J,,cy» M(v',v) of the match cover structures from v’ with all
background organisms V" is created. U, thus contains all regions on v’ that match one or more
organisms from the background V”. In the last step, the regions from I, are compared to the
ones in U, to find possible signature candidates. Valid signatures for the targets V' have to
completely lie within a region on I, and must not entirely lie within a region on U, .

All operations in the signature pipeline have (practically) linear time complexity in the size
of the match cover [87]. The match cover intersection I, for a target group V' (and a reference
organism v’) has a time complexity of O(|I|log|V’|). The log|V’| factor can be treated as a
constant due to the bounded number of genomes [87]. A single query takes, on average, one
minute to process [87].

The final output of Insignia is a list of regions consisting of overlapping k-mer signatures.
Insignia was primarily designed to process single queries (single targets or groups of target
sequences) and not for handling deep hierarchies. In contrast to the work presented in this
chapter, Insignia is only able to report k-mer signatures perfectly matching the whole target
group without allowing nontarget matches. However, for many reasonable groups of organisms
such perfect signatures often simply do not exist. In our test datasets, only 55% of the organ-
isms and 14% of all groups were perfectly covered [12, Section 3.5] by one or more signatures.
Furthermore, Insignia can also not be used to find signatures with small mismatches to the
target sequences (which is useful to tolerate sequencing errors) or to enforce larger Hamming
distances to nontarget (background) organisms. CaSSiS and the improvements over CaSSiS
that are presented in this chapter address these shortcomings.

4.2.2 CaSSiS-BGRT

The CaSSiS-BGRT [12] algorithm and the CaSSiS-LCA algorithm presented in this chapter
use the same input sources and provide the same outputs. Specifically, both approaches use
the ARB PT-Server [70] to construct a bipartite graph that matches signature candidates to
organisms. ARB first generates all possible signatures of the specified length and then matches
them (using a suffix trie) against the sequences of the organisms. The PT-Server supports
approximate matching, for example, to compensate for sequencing errors in the database. The
algorithms then process the resulting data stream and generate a map P, which contains a set
of promising signature candidates for each ¢t € T

The two approaches differ in the central algorithm, which searches and evaluates signature
candidates. Given a phylogenetic tree and the bipartite graph, CaSSiS-BGRT uses a new data
structure, the bipartite graph representation tree (BGRT), to process more than 460,000 gene
sequences (660M nucleotides, matched without mismatches or outgroup hits) in about 132 hours
on an Intel Core i7 with 24GB of system memory [12]. The algorithm employed by CaSSiS has
worst-case complexity O(|M| - |V]) time, where M is the size of the BGRT (which is in turn
bounded by |U|, the number of edges in the bipartite graph) and |V| is the set of all organisms.
CaSSiS-BGRT uses a time-memory trade-off to implement a bounded search to significantly
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reduce the execution time in practice; however, as a result, CaSSiS-BGRT requires O(d - |M]|)
memory where d is the depth of the (phylogenetic) tree T'.

While 132 hours may seem sufficient to find signatures for all sequences and sequence groups
of interest, SSURef 102 only contains long (>900nt) annotated aligned SSU rRNA sequences
and not full genomes. CaSSiS-BGRT cannot be expected to process contemporary data sets
containing full genomes, as memory consumption is linear in the number of nucleotides and 700-
million nucleotides already require about 16GB of RAM. For comparison, a human genome has
3.3-billion nucleotides, and ideally a signature search should to consider all available sequence
data for all organisms. The CaSSiS-LCA algorithm presented in this chapter significantly
outperforms CaSSiS-BGRT both in terms of memory and time complexity and is thus able to

process full genomes.

4.3 The CaSSiS-LCA Algorithm

In this section, we present our new algorithm CaSSiS-LCA. We build up to the full-featured
algorithm in three steps to introduce each of the key ideas separately and to properly highlight

how the algorithm handles the different cases.

The bipartite graph G = (U, V, E) has the key property that in practice we can expect there
to be a relatively small number of organisms in V' (hundreds of thousands) and many more
signatures U (billions) and even more edges (Figure 4.2). Thus, it is impractical to load E (or
even U) into main memory at any given time. Existing tools that generate signature candidates
and match them against organisms can efficiently create E in the form of a data stream, giving
all of the tuples (u,v) € E for a given u € U in a single contiguous block in the overall stream.
The basic philosophy of our algorithm is thus to do stream processing [11] over a stream that
represents the bipartite graph. Each round of the algorithm is given a u € U and the set S;,, CV
of all organisms v € S, that match signature candidate w. Our stream processing algorithm

must then decide to keep w in a preliminary result set or discard u for good.

Prior to the main algorithms, we always perform some basic precomputations. First, we
number the organisms sequentially in the tree 7" from left to right; thus, (without loss of gener-
ality) v € N. Second, we precompute the sparse tables necessary for computing lowest common
ancestors in 7. This precomputation can be done in O(|V]) time [16, 37, 40]. Henceforth,
we can compute the lowest common ancestor (LCA) of v and v’ (denoted by LC A(v,v")) for
v,v" € T in O(1) time.

We will present the new algorithm in three consecutive steps. The simplest algorithm,
presented in Section 4.3.1, is only considering perfect matches. A more relaxed algorithm that
allows partial matches is given in Section 4.3.2. The actual algorithm that additionally allows
outgroup matches follows in Section 4.3.3. A list of notations used in the three algorithms is
shown in Table 4.1.
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Figure 4.2: This figure shows the number of signatures that reference a certain number of
organisms. It is based on the bipartite graph of the complete SSURef 108 dataset (618,442
organisms, 31,976, 771 signatures). Of the signatures, 57% match a single organism and only
11% match 10 or more organisms. Both axis use a logarithmic scale.
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indexof,,q. (€, S)
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LCA(v,

e
=
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S— N

sort

<N TN wne

Child nodes of node t € T’

Set of all descendants of t € T’

Edges (u € U,v € V) in the bipartite graph

Bipartite graph (U, V, E)

Returns the index of element e € S in the array S, if e ¢
S, the index e would have had if e was in S minus one is
returned

Returns the index of element e € S in the array S, if e ¢ S,
the index e would have had if e was in .S is returned
Lowest Common Ancestor of v € V and v’ € V

Result set for tree node t € T

Result set for tree node t € T and k& € N outgroup hits

Set of sequences S,, C V that are matched by a signature u
Returns a sorted array with the elements from S
(Phylogenetic) Tree

Signature set

Sequence set

Table 4.1: Notations that are used in the following three algorithms.

Perfect Match Algorithm

We begin our exposition with an algorithm for the simple case of finding a probe that provides

perfect group coverage, that is, we are only interested in finding probes that match all sequences
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in the target group and have no outgroup hits.

Figure 4.3 illustrates the two key cases the perfect match algorithm considers. First, the
common case that the organisms matched by the signature do not correspond perfectly to any
group. Second, the desired case that the signature corresponds exactly to a particular group,
which LCA can identify in O(1) time.

Algorithm: Perfect Matching
Input: G(U,V,E), T, LCA(v,v"), |D(t)|
Output: P: T — P(U)

1 for u € U do

2 P(u) « 0;

3 end

4 for u e U do

5 Sy sort {vy|(u,v,) € E};
6 V™" ¢ min S, ;

7 v — max Sy, ;

8 U< LOA(v™n, ypma);

9 if |Sy| = |D(u)| then

10 P(u) < P(a) U{u};

11 end

12 end

Algorithm 1: This algorithm computes a relation P that maps for each organism or group
of organisms ¢ € T to signature that perfectly cover all organisms in D(t) (with no false-
positives).

Algorithm 1 can then be used to find perfect matches for each organism or group of organisms
(i.e. relation P). The key idea here is to use LCA to quickly determine the only ¢t € T' that
might be matched perfectly by a given signature u, and then to use arithmetic to determine
if w matches all descendants D(t). For this algorithm, we need to precompute the number of
descendants |D(t)| for all ¢ € T' (which is trivial to do in O(|V]) time). For determining the
LCA 4, the minimum and maximum organism identifiers v and v™® are fetched and used.
This can be done in O(1) time in the sorted list S,,. Although sorting might be exaggerated in
order to find the minimum and maximum identifiers, it was used for consistency to the third
(implemented) algorithm where it becomes mandatory.

The complexity of the computation given in Algorithm 1 is O(|U| + |E|) (|E| from sorting
arrays of integers with a total of |E| entries in linear time, |U| from processing each signature
u). Together with the precomputation, the overall complexity of this first algorithm is thus

O(|V]|+ |E| + |U|) time.

4.3.2 Partial Group Coverage

The second version of the algorithm will now relax the constraint that the group coverage must
be perfect. Instead, we will permit that some organisms in the group are not covered by the

signature. The goal of the algorithm is to find those signatures that provide the maximum group
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U
T
v;nin v;naz
—V
E
U
u
(a) No match. |S,| # |D(a)|
T
Pw=({u})
—V
E
U

(b) Perfect match. |S.| = |D(%)]

Figure 4.3: Illustration of Algorithm 1. In 4.3a, the set size |S,| = 3 is smaller than |D(@)| = 6,
so the candidate w is not a perfect probe for any sequence or sequence group; 4.3b shows a
probe that would be a perfect match (|S,| =2 = |D(a)|).

coverage (minimizing false-negatives) while not allowing any outgroup hits (no false-positives).

Let » € T be the root of the tree T and let C(t) C T denote the children of ¢t € T.
Algorithm 2 can then be used to find those signatures that maximize group coverage (with no
outgroup hits) in O(|U| + |E|) time. The result is stored in a map P which maps each t € T' to
a pair consisting of the set of signatures &/ C U and the number of organisms matched in the
target group by all u € U.

A key step in Algorithm 2 is the propagation of results up the tree in Procedure PropagateUp.
This step exploits the fact that the parent p’ of a node p € T always represents a superset of
organisms, and thus a probe that has no outgroup hits for p will also have no outgroup hits



64 CHAPTER 4. THE CASSIS-LCA APPROACH

Algorithm: Partial Group Coverage
Input: G(U,V,E), T, LCA(v,v")
Output: P: 7T — (P(U),N)

1 for u € U do

2 P(u)=(0,0);

3 end

4 for u € U do

5 Sy  sort {vy|(u,vy,) € E};
6 V™ < min S, ;

7 U <~ max Sy ;

8 0 + LOA(vmin ymar);
9

u u

(U,n') « P(i);
10 n < |Sul;

11 if n > n’ then

2 P(@) < (fu)n);

13 end

14 if n =n' then

15 P(a) < (U U{u},n');
16 end

17 end

18 PropagateUp (T, r, P);
Algorithm 2: This algorithm computes a relation P that maps for each organism or group
of organisms t € T to the set of signatures that provide maximum coverage of the organisms
in D(t) (with no false-positives). The algorithm runs in O(|U| + |V| + |E|) time, as we can
use bucket sort to sort in O(|E|) time and Procedure PropagateUp adds O(|V|) time.

for p’. A suitable probe candidate for p can therefore also be a good candidate for p’. Thus,
Procedure PropagateUp is needed to ensure that, probes that provide partial group coverage
are found. Note that for partial group coverage, the computation of | D(t)] is no longer required.

Figure 4.4 illustrates the key steps in Algorithm 2. Given a signature u, the algorithm

min

w and vy'**, then determines @ using LCA, associates the signature w with

first determines v
|S| = 2 ingroup hits with P(@), and finally (assuming there were no other, better signatures

found in U) propagates the signature u to the ancestors of .

4.3.3 Allowing at most £ Outgroup Hits

Finally, we present the complete CaSSiS-LCA algorithm that computes for each ¢ € T those
signatures u € U that maximize the number of matched target organisms v € D(t), while not
matching more than k organisms v’ ¢ D(T). More precisely, our algorithm computes for each
i€{0,...,k} and each t € T the set of signatures u € U that have exactly ¢ outgroup hits and
the maximum number of ingroup hits.

Before the main algorithm, we precompute for each ¢t € T its leftmost and rightmost leaf
in the subtree rooted at ¢, which we will refer to as the border B(t) = (v/" v["%) (where

v = min(D(t)) and v := maz(D(t))). It is trivial to do this precomputation in O(|V|)



4.3. THE CASSIS-LCA ALGORITHM 65

Input: T, p, P: T — (P(U),N)
Output: Updated P: T — (P(U),N)
1 foreach ¢ € C(p) do

2 PropagateUp (T, ¢, P);
3 if p # r then

4 p’ « parent (p);

5 U, n) < P(p);

6 U',n') < P(p');

7 if n > n/ then

s P) « (U, n);
9 end

10 if n =n' then

11 P« UulU',n);
12 end

13 end

14 end
Procedure PropagateUp(T, p, P): Helper function to propagate good matches up the tree
using depth first traversal (in O(|V]) time).

T Ar)=({u},2)

P ropagateUp

\
\

\
1
\
1
i

o Ruw=({u}.2)

Figure 4.4: Tlustration of Algorithm 2. The coverage of the probe w is |S,| = 2. It is added at
the node 4. Note that the PropagateUp step happens once (for each t € T') at the end of the
algorithm and not after each u € U.

time.

Given this, Algorithm 3 computes P, a mapping from pairs (7,{0,...,k}) (representing a
target organism or target group of organisms and a number of outgroup hits) to a pair (P(U),N)
consisting of a set of signatures and the number of organisms matched by those signatures in the

target group. The Procedure PropagateUpWithK corresponds to the procedure PropagateUp,
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Algorithm: Partial Group Coverage with Outgroup Hits
Input: G(U,V,E), T, LCA(v,v"), k
Output: P: (T,{0,...,k}) — (P(U),N)

for u € U do
for o € {0,...,k} do
P(u,0) = ((070);
end

for u € U do

Sy  sort {vy|(u,vy,) € E};
V™" ¢ min S, ;

v <= max Sy ;

10 @ + LOA(vmin ymar),

11 (U,n") « P(1,0);

12 n <+ |Syl;

1
2
3
4
5 end
6
7
8
9

13 if n > n’ then

14 P(4,0) + ({u},n);

15 end

16 if n = n’ then

17 P(4,0) «+ (U U{u},n);

18 end

19 PropagateDown (T, 4, P, Sy, k,u) ;
20 end

21 PropagateUpWithK (T, r, P, k);

Algorithm 3: This algorithm computes a relation P that maps for each organism or group
of organisms ¢t € T to the set of signatures that provide maximum coverage of the organisms
in D(t) (with no false-positives). The algorithm runs in O(k|U|log|V| + k|V| + |E]) time.
The algorithm requires O(|V]) space for the LCA data structure and can process the bipartite
graph (u,v,) € F in a streaming fashion; thus, there is no need to store the entire bipartite
graph in memory. There are O(k|V]) result entries in the output P. As written, the union
operation in line 17 creates the theoretical possibility of O(k-|V|-|U|) space (if every signature
is a perfect signature for some k and some sequence). If only a best match (instead of all
best matches) is desired, one can replace (U U {M}) with {u} to improve space consumption
to O(k - [V|). In either case, the algorithm requires space linear to the size of the output.

differing only in propagating k + 1 matches up.

Algorithm 3 requires another helper Procedure PropagateDown, which propagates signatures
down the tree T'. At the LCA node, a signature will only have ingroup matches and it has the
highest sensitivity, but the signature could also be valuable candidate for its children, which in
their case results in outgroup matches. Propagating signatures downwards requires recalculating
the number of ingroup and outgroup hits at each step. Given that at most k& outgroup hits are
allowed, the propagation stops after a total of at most O(k) downward steps.?

At each step, the procedure uses the border B and a binary search to quickly determine

3Without loss of generality, we can assume that 7T is a binary tree; thus, |C(p)| < 2 can be assumed and the
first iteration over |C(p)| children of p is also in O(k) time.
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Input: T, p, P: T — (P(U),N), k
Output: Updated P: T — (P(U),N)
1 foreach ¢ € C(p) do

2 foreach o € {0,...,k} do

3 PropagateUpWithK (T, ¢, P, k);
4 if p # r then

5 p’ + parent (p);

6 (U,n) < P(p,o);

7 U',n') < P(p',0);

8 if n > n’ then

9 P(p,0) + (U,n);

10 end

11 if n =n' then

12 P(p',0) « (UUU 1),
13 end

14 end

15 end

16 end

Procedure PropagateUpWithK(T, p, P, k) Helper function to propagate good matches up
the tree using depth-first traversal (in O(k|V|) time). This procedure closely corresponds to
Procedure PropagateUp, except that we need to propagate the best signatures up £+ 1 times.

the number of outgroup and ingroup hits for the new target group. Let indexof,,;,(e,S) be
a function that returns the index of element e € S in the zero-indexed, sorted array S. If
e ¢ S, the index of the element left of the position e would have had in S should be returned
(we never use indexof,,;,(e,S) on elements e that have no smaller element in S). Similarly,
let indexof,,q. (€, S) be a function that returns the index of element e € S in the zero-indexed,
sorted array S, and if e ¢ S returns the index of the element right of the position, e would
have had in S (again, we never use indexof,,,4z (e, S) on elements e that have no larger element
in S). Figure 4.6 illustrates how indexof is used to quickly determine the number of outgroup
hits 0. As S is sorted, both indexof computations can be done in O(log|S|) time using binary
search. Procedure PropagateDown then lists the steps necessary to propagate signatures down
the tree.

Figure 4.5 illustrates the downward propagation for k¥ = 1. Going toward the left, the
propagation immediately terminates as o = 2 > k. Propagating toward x, the propagation
first updates the result set for o = 1 outgroup hit and then terminates on the next level as the

number of outgroup hits again rises to o = 2 > k.

4.4 Implementation and Results

All experiments were performed on an Intel Core i7-920 (2.67GHz) Debian GNU/Linux system
with 16GB of main memory. We evaluated the performance of our algorithm using the sequence
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Input: T, p, P: T — (P(U),N), S, k, u, indexof(e, S)
Output: Updated P: T — (P(U),N)
foreach c € C(p) do
(o7, 07" B(o);
i« indexofi, (v, S)
i «— indexofpqq (V" S) ;
0 < i 4 | S| —imaT — 1;
n <« |S|—o;
if o <k then
U',n') < P(c,o);
if n > n/ then
P(c,0) « ({u},n);
end
if n =n' then
P(c,0) + (U ' U{u},n);
end
PropagateDown (T, ¢, P, S, k, u);
end
end

THE CASSIS-LCA APPROACH

Procedure PropagateDown(T, p, P, S, k, u) Helper function to propagate good matches
down the tree, bounded by k. The recursion is bounded to at most O(k) calls, thus the
complexity of this procedure is O(klog|S|) time and thus O(klog|V]) as S C V.

u  ROw)=({u},3)

PropagateDown /
1

Figure 4.5: Illustration of Algorithm 3. For the example, we use an outgroup limit of k := 1.
At 4 (and its parent nodes) no outgroup matches are possible, i.e. P(0,4) < (U, 3). The match
is then propagated towards the child nodes. At node z, the match is added with 1 outgroup
match, i.e. P(1,z) < (U,2). In the other child nodes, the outgroup limit & is exceeded.



4.4. IMPLEMENTATION AND RESULTS 69
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Figure 4.6: Detailed illustration of one iteration in the foreach loop of the PropagateDown

procedure. The left- and rightmost descendants (v7" and v7%*) of the node c are read. Then,

the indexof procedures are used to fetch their positions in the match set S: ™" = 2 and

iM% = 5. The number of outgroup matches at c is 0 = i™" + |S| — iM% — 1 =248 -5 —1 = 4,
the number of matches is, therefore, n = |S| —o0 =4

data and phylogenetic tree from the SILVA SSURef 108 dataset*. It should be noted that the
output of the new algorithm is identical to the output from CaSSiS-BGRT (Chapter 3.3.6).

The inputs to our implementation are a (binary) phylogenetic tree in the Newick format [81]
and MultiFasta® formatted 16S rRNA gene sequence datasets. Each sequence represents an
organism. For our experiments, we used a modified ARB PT-Server to generate the bipartite
graph that maps signature candidates to organisms. The modifications allowed direct access to
the result sets without double parsing (once in the PT-Server and again in CaSSiS). Also, the
memory management was adapted to reduce the memory consumption.

The PT-Server allows the definition of a Hamming distance when matching a signature
against the sequences. Our implementation utilizes this to allow a certain Hamming distance
m1 for matches within the target group as well as enforcing a minimum Hamming distance
ms > my to sequences outside of the target group. The latter is implemented by adding the
number of organisms with a distance between my and mo to the initial number of outgroup hits
for the probe. This strategy was also used and discussed in [12]. In both approaches, using the
same Hamming distance values result in identical bipartite graphs.

For the precomputation, we used the canonical approach of reducing the LCA problem into a
range minimum query (RMQ) problem [40]. We used the Sparse Table (ST) algorithm described
by Bender and Farach-Colton [16] to preprocess with a complexity of O(nlogn) time and to
achieve O(1) time for the RMQ queries during the main phase of the algorithm. While solutions

“http://www.arb-silva.de/documentation/background/release—108/
*http://blast.ncbi.nlm.nih.gov/blastcgihelp.shtml
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for preprocessing the LCA look-up with linear runtime and memory complexity exist [16, 37, 38|,
we did not implement those as the O(nlogn) processing is not the bottleneck (costing less than
1% of the total execution time) and the constant factors for the main phase of the algorithm
would be higher for those other schemes. However, for the complexity analysis, we assume that
the best-known linear algorithm for LCA could be used and thus the LCA precomputation will
take O(|V]) time and space.

We created test datasets of increasing sizes by randomly selecting sequences from the original
SILVA SSURef 108 dataset. We reduced the phylogenetic trees to only include leaves which
reference the selected sequences. The test datasets range from 16,000 to 512,000 sequences
(Table 4.2, upper part).

To evaluate the processing of genome sequences with the CaSSiS-LCA approach, Wolfgang
Ludwig provided us an unpublished dataset consisting of procaryotic (bacterial) genome se-
quences of varying completeness. Additionally, he provided a phylogenetic tree referencing
these sequences at its leaves and containing group definitions at its inner nodes. We extracted
three test datasets and corresponding trees with 100, 200 and 400 complete genome sequences
(Table 4.2, lower part).

’ Sequences |V| ‘ Bigraph Edges |E| Signatures |U| Nucleotides

16,000 22,675,424 3,035,608 22,961,088
32,000 45,332,247 4,654,334 45,882,367
64,000 90,712,819 7,110,160 91,766,991
128,000 181,546,054 10,767,681 183,567,793
256,000 363,195,618 16,219,346 367,064,051
512,000 726,690,069 24,125,196 734,101,089

(*) 618,442 882,460,379 31,976,771 891,481,250
100 genomes 340,765,921 302,033,422 348,381,663
200 genomes 663,933,797 573,445,204 680,490,674
400 genomes 1,328,208,091  1,039,549,521 1,360,775,974

Table 4.2: The upper part of the table contains test datasets derived from the SSURef 108 (*)
dataset. Sequences represent rRNA genes of organisms. For each dataset, the total number
of nucleotides and unique exact-matching 18 mer signatures are shown. The bigraph edges
represent matches between 18 mer signatures and sequences. The lower part of the table contains
the statistical information for the test datasets consisting of 100, 200 and 400 complete bacterial
genome sequences.

As expected, the main phase of the algorithm spends most of its time performing the down-
ward propagation. However, execution time is dominated by far by the queries to the ARB
PT-Server (Figure 4.7), especially for larger Hamming distance values (m1 and ms; Table 4.3).
It should be noted that it would be trivial to run multiple instances of the ARB PT-Server in
a cluster [11] (memory per node permitting). Distributing the queries across multiple search
indices and aggregating the results afterwards would further decrease the runtime of our ap-

proach.
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Figure 4.7: Overall runtime of the CaSSiS-BGRT and CaSSiS-LCA implementations for growing
dataset sizes (16,000 to 512,000 sequences) with m; = 0, mg = 1 and k = 10. CaSSiS-BGRT
was split in its two computing stages BGRT Create and BGRT Search. The creation of the
BGRT and the CaSSiS-LCA approach runtimes include building the search index. The measured
runtimes grow linear with the dataset sizes.

Distances | Runtime | Bigraph Edges Signatures
mq mgy | (seconds) |E| |U|
0 1 54 22,675,424 3,035,608
0 2 188 3,669,142 1,932,039
0 3 1,167 1,746,651 1,113,679
0 4 5,292 752,918 534,838
1 2 259 369,546,279 3,035,608
1 3 1,233 4,399,485 1,229,004
1 4 5,378 1,315,221 566,610
2 3 1,488 1,386,742,230 3,035,608
2 4 5,628 3,402,659 646,788
3 4 6,203 3,349,697,538 3,035,608

Table 4.3: Allowing mismatches within the target group by increasing the Hamming distance
mq increases the number of edges |E| in the bipartite graph. The number of signatures |U]|
decreases with growing Hamming distances mo to nontargets. The number of sequences, here
|V| = 16,000, stays constant. The total runtime is mainly influenced by the time needed to
process the search index queries and, therefore, increases with growing mismatch distances (mg).
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Both algorithms, CaSSiS-BGRT and CaSSiS-LCA, begin with the computation of the search
index. Afterward, the search index is loaded into memory for further processing. Up to this
point, runtime and memory consumption for both algorithms are identical. Afterward, either
a BGRT is created and in a later step processed (CaSSiS-BGRT), or the results are directly
inserted at the appropriate node in the phylogenetic tree (CaSSiS-LCA). Figure 4.8 illustrates
the growth in memory requirement of all major steps for different input sizes. With growing
dataset sizes, the signature search based on the BGRT becomes the most memory consuming

step.

16

o

914

_512

3210

E —

o 8

5

O 6

Z\ - |

s 4

= _

s ? *H.H:\H

OJ:U;L!_- —!-

C g U clc €« Y €| <« clc <« clc « 9 €|l <« 9 <
85HEs38EES8E80RE(sSSFEECRE
c <5 Y gl 5 ¢ gle 7 L g 5 L g|lo 5 ¢ o 5 L g
8@Um81’um8.@um81’um8@um8@um
(V)] (Vp] (V)] (V)] (V)] (V5]
meEmeEmeEmeEmeEmeE
wmome@owmwowm@owmomewo
16,000 32,000 64,000 128,000 256,000 512,000

OSearch Index OLCA-Tree mBGRTree

Figure 4.8: Comparison of the memory consumption of CaSSiS-BGRT and CaSSiS-LCA for
growing dataset sizes (16, 000 to 512, 000 sequences) computed with m; = 0, mg = 1, and k = 10.
Results for the complete SSURef 108 dataset are not shown as the BGRT search step exceeded
the available main memory on our test system (20.1GB; the CaSSiS-LCA implementation only
required 10.8GB). Note that the CaSSiS-BGRT approach was split into its two main steps,
BGRT Create and BGRT Search. The memory consumption of the search index after its
computation is identical for CaSSiS-LCA and BGRT Create. For the BGRT search/traversal,
the search index is not needed anymore. Traversing the BGRT consumes far more memory than
the LCA approach, although the same phylogenetic tree structure is used to store the results

(in the nodes).

We used the largest test dataset to provide a detailed comparison of the two approaches
(Figure 4.9). Due to the identical search index computation and result processing in both
implementations, the most significant difference is the runtime of the search for promising
signatures at the BGRT- and the LCA-Tree-traversal steps.
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Figure 4.9: Detailed comparison of the runtime of CaSSiS-BGRT and CaSSiS-LCA algorithm
for the dataset with 512,000 sequences. CaSSiS-BGRT was split in its two computing stages
BGRT Create and BGRT Search. Steps with a runtime below one minute (e.g. loading the
BGRT) are not shown. The runtime is represented by area. The most notable difference
is the reduction of the 83 hours of the BGRT Traversal step to 148 seconds during LCA
Search/Traversal”.

4.5 Discussion

When compared to the CaSSiS-BGRT approach from the previous Chapter 3, CaSSiS-LCA of-
fers a vastly reduced memory footprint and a significantly faster runtime. Both approaches share
the same advantages and disadvantages when it comes to the selection of signature candidates
based on relaxed search conditions and the application of filters. These were already discussed
in Section 3.5. A major difference from a user perspective is that CaSSiS-LCA does not rely on
a BGRT lookup structure. During computation, signature candidates are directly added to the
respective nodes in the phylogenetic tree. As a result, it only allows the comprehensive com-
putation and is not capable of processing single freely defined queries — an advantage of a the
BGRT structure, which can be stored as a file and loaded when needed. CaSSiS-LCA is there-
fore directed primarily to the maintainers of hierarchically-clustered databases, such as SILVA,
RDP, or Greengenes [89, 25, 29]. However, it should be pointed out that both approaches lead
to the same results when used with the same configuration.
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With CaSSiS-LCA, we were not only able to process gene datasets but also ones containing
complete bacterial genomes.

In all our tests, one single identifier was used per sequence, i.e. the terms “sequence” and
“organism” were used interchangeably. Also applying this definition when processing complete
genomes is possible, but might lead to several disadvantages. Compared to gene datasets, the
longer genome sequences obviously increase the chance of matches. From a computer science
perspective they are considered equally legitimate. And of course all matches also need to be
considered when a resulting primer and probe is tested in the wet lab. But sometimes it is
desirable to have matches within a certain range on the sequence, e.g. a certain gene. By
using per-sequence identifiers, promising signatures that match at similar gene locations within
a target group might get rejected due to outgroup matches at completely different sequence
locations (e.g. different genes). And vice versa, the match positions of a signature with a high
target group coverage might be completely scattered over the complete genomes.

A biological problem that is currently not covered when processing genomic datasets is the
possibility of multiple occurrences of functionally identical genes at different sequence positions.
CaSSiS only stores relations between sequences and signatures, e.g. “a signature X matches a
sequence A”. The information at which locations matches occur are not stored.

A solution to both mentioned problems could be an extension to the identifier scheme used
throughout CaSSiS: “Composite Primary Keys” (also called “Compound Keys”) could be used.
These keys could consist of 2 or more sequence attributes, i.e. names or accession numbers®.
When querying for signatures for a target group, adding a specific gene identifier would narrow
down the region where the signature may lie. Matches on different locations would count to
the outgroup, thus allowing a more fine-grained search. Such a search can already be achieved
through a modification of the identifiers that are fed to CaSSiS in the input sequence datasets.
Additionally, the group definition must as well be adapted to contain the specific sub-identifiers,
e.g. a certain gene for a defined group of genomes. But as future work, this feature could be
added to CaSSiS itself.

4.6 Conclusion

With CaSSiS-LCA, we have presented a runtime and memory efficient solution for the the in
silico search for promising signature candidates even under relaxed search conditions. Com-
bined with modern algorithms for genome-scale pattern matching this approach will allow the
computation of specific and sensitive signatures.

Our tests with genome datasets have shown that the selection and configuration of the used
search index is very important in order to even be able to process such large datasets. The search
indices” memory consumption is added to the consumption of CaSSiS during runtime — and
both should fit into the main memory. The CaSSiS approaches are based on the ARB PT-Server
or rather its descendant MiniPT. Its memory requirement grows linearly with the number of

5 Accession numbers are unique identifiers that are used to refer to single nucleic acid sequences, proteins, and
even complete genomes.
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nucleotides it is indexing (Figure 3.9), which is already quite effectively. But a future step could
be switching to an even more efficient search index for pattern matching, such as PTPan [33] or
SeqAn [30]. PTPan stores its index on secondary storage (e.g. a hard drive). It also supports
Levenshtein distances (the PT-Server currently only supports Hamming distances), which might
lead to better results during relaxed searches. SeqAn provides suffix array search structures,
which are considered more memory efficient than suffix tree structures [1]. Both approaches are
slower in answering queries when compared to the ARB PT-Server [33], a factor which should
at least be considered.

Another approach is partitioning the search index in a cluster. By this, we predict that
CaSSiS-LCA should be able to process genome data of virtually arbitrary size. It would mostly
be limited by the size of the clustering that is used to store the resulting signature candidates.
The following Chapter 5 presents first promising results.






Chapter 5

Distributed Signature Matching

Finding optimal oligonucleotide signatures that are both specific and sensitive for organisms
or groups of organisms in large-scale sequence datasets is a very computationally expensive
task. In the last two Chapters 3 and 4 the approaches CaSSiS-BGRT and CaSSiS-LCA were
presented, that tackle this problem from the algorithmic side. We have accelerated the signature
gathering and evaluation step and largely reduced its memory consumption.

Looking at the entire CaSSiS implementation, there still remains a barely altered component:
the search index. This index is necessary to compute the mapping between the signatures and
matched sequences. It has huge influence on the overall runtime and, depending on the search
settings, may also have a very high memory consumption.

We present in this chapter our experiences with parallelizing and distributing the ARB PT-
Server, the search index for RNA/DNA sequence databases that was used in this work. The
case study shows that it is possible to rapidly parallelize and distribute an existing complex
legacy bioinformatics application and obtain significant speedups.

For this purpose we have used the DUP System, a simple framework for parallel stream
processing. The DUP System enables developers to compose applications from stages writ-
ten in almost any programming language and to run distributed streaming applications across
all POSIX-compatible platforms. Parallel applications written with the DUP System do not
suffer from many of the problems that exist in traditional parallel languages. The DUP Sys-
tem includes a range of simple stages that serve as general-purpose building blocks for larger
applications.

This Chapter is an extended version of a LNCS “Network and Parallel Computing” arti-
cle [11]. It was joint work with Tilo Eiller, Nathan Evans, Prof. Chris GauthierDickey, Chris-
tian Grothoff, Krista Grothoff, Jeff Keene, Harald Meier, Craig Ritzdorf, and Prof. Matthew
J. Rutherford.

5.1 Introduction

Exact and inexact string searching in gene sequence databases plays a central role in molecular

biology and bioinformatics. Many applications require string searches, such as searching for gene
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sequence relatives and mining for PCR-primers or DNA-probes in DNA sequences [80, 65, 53];
both of these applications are important in the process of developing molecular diagnostic assays
for pathogenic bacteria or viruses based upon specific DNA amplification and detection.

In the ARB software package, a suffix-tree-based search index, called the PT-Server, is the
central data structure used by applications for fast sequence string matching [70]. A PT-Server
instance is built once from the sequence entries of a gene sequence database of interest and is
stored permanently on disk.

In order to perform efficient searches, the PT-Server is loaded into main memory in its
entirety. Its memory requirement grows linearly with the number of nucleotides it is indexing
(Figure 3.9). If the entire index structure cannot fit into the available main memory (the PT-
Server requires ~ 26 bytes of memory per sequence base at peak; Section 3.3.1), the structure
cannot be efficiently searched.

In addition to memory consumption, the runtime performance of the search can be quite
computationally intensive. An individual exact string search — in practice, short sequence
strings of length 15-25 base pairs are searched for — is quick (3—-15 milliseconds). However,
the execution time can become significant when millions of approzimate searches are performed
during certain bioinformatic analyses, such as probe design.

In the near future, the number of published DNA sequences will explode due to the avail-
ability of new high-throughput sequencing technology [103]. As a result, current sequential
analysis methods will be unable to process the available data within reasonable amounts of
time. Furthermore, rewriting more than half-a-million lines of legacy C and C++ code of the
high-performance ARB software package is prohibitively expensive. The goal of this case study
was to see how readily the existing ARB PT-Server could be distributed and parallelized. Specif-
ically, we were interested in parallelization in order to reduce execution time and in distribution
in order to reduce per-system memory consumption.

We have used the DUP System!, a language system which facilitates productive parallel
programming for stream processing on POSIX platforms. It is introduced in Section 5.2. It
is not the goal of the DUP System to provide ultimate performance; we are instead willing to
sacrifice some performance gain for significant benefits in terms of programmer productivity.
By providing useful and intuitive abstractions, the DUP System enables programmers without
experience in parallel programming or networking to develop correct parallel and distributed
applications and obtain speedups from parallelization.

The key idea behind the DUP System is the multi-stream pipeline programming paradigm
and the separation of multi-stream pipeline specification and execution from the language(s)
used for the main computation. Multi-stream pipelines are a generalization of UNIX pipelines.
However, unlike UNIX pipelines, which are composed of processes which read from at most one
input stream and write to a single output stream (and possibly an error stream), multi-stream
pipelines are composed of processes that can read from any number of input streams and write to
any number of output streams. In the remainder of this document, we will use the term “stage”

for individual processes in a multi-stream pipeline. Note that UNIX users — even those with

!The DUP System is available at http://dupsystem.org/
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only rudimentary programming experience — can usually write correct UNIX pipelines which
are actually parallel programs. By generalizing UNIX pipelines to multi-stream pipelines, we
eliminate the main restriction of the UNIX pipeline paradigm — namely, the inherently linear
data flow.

In order to support the developer in the use of multi-stream pipelines, the DUP System
includes a simple coordination language which, similar to syntactic constructs in the UNIX
shell, allows the user to specify how various stages should be connected with streams. The
DUP runtime then sets up the streams and starts the various stages. Key benefits of the DUP
System include:

1. Stages in a multi-stream pipeline can run in parallel and on different cores;

2. Stages can be implemented, compiled and tested individually using an appropriate lan-
guage and compiler for the given problem and architecture;

3. Stages only communicate using streams; streams are a great match for networking appli-
cations and for modern processors doing sequential work;

4. If communication between stages is limited to streams, there is no possibility of data races
and other issues that plague developers of parallel systems;

5. While the DUP System supports arbitrary data-flow graphs, the possibility of deadlocks
can be eliminated by only using acyclic data-flow graphs;

6. Applications built using multi-stream pipelines can themselves be composed into a larger
multi-stream pipeline, making it easy for programmers to express hierarchical parallelism

In Section 5.3.2 we present experimental results from a case study involving the ARB PT-
Server in combination with the DUP System. The case study shows that it is possible to
rapidly parallelize and distribute an existing complex legacy bioinformatics application and
obtain significant speedups using DUP.

5.2 The DUP System

The fundamental goal of multi-stream pipelines is to allow processes to read from multiple input
streams and write to multiple output streams, all of which may be connected to produce the
desired data-flow graph. This generalization of linear UNIX pipelines can be implemented using
traditional UNIX APIs,? especially the dup2 system call. Where a typical UNIX shell command
invocation only connects stdin, stdout and stderr, the DUP System establishes additional
I/O streams before starting a stage. Using this method, traditional UNIX filters (such as grep)
can be used as stages in the DUP System without modification. New stages can be implemented
in any language environment that supports POSIX-like input-output operations (specifically,

2The APIs needed are supported by all platforms conforming to the POSIX standard, including BSD,
GNU/Linux, OS X, and z/0S.
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reading and writing to a file). Since dup2 also works with TCP sockets, the DUP System

furthermore generalizes multi-stream pipelines to distributed multi-stream pipelines.

5.2.1 Related Work

The closest work to the DUP System presented in this chapter are multi-stream pipelines in
CMS [49]. CMS multi-stream pipelines provide a simple mini-language for the specification of
virtually arbitrary data-flow graphs connecting stages from a large set of pre-defined tools or
arbitrary user-supplied applications. The main difference between CMS and the DUP System
(which uses parallel execution of stages) is that CMS pipelines are exclusively record-oriented
and implemented through co-routines using deterministic and non-preemptive scheduling with
zero-copy data transfer between stages. CMS pipelines were designed for efficient execution in
a memory-constrained, single-tasking operating system with record-oriented files. In contrast,
DUP is designed for modern applications that might not use record-oriented I/O and need to
run in parallel and on many different platforms.

Another close relative to the DUP System are Kahn Process Networks (KPNs) [54]. A major
difference between DUP and KPNs is that buffers between stages in DUP are bounded, which
is necessary given that unbounded buffers cannot really be implemented and that in general
determining a bound on the necessary size of buffers (called channels in KPN terminology)
is undecidable [84]. Note that the UNIX command buffer can be used to create buffers of
arbitrary size between stages in DUP. Another major difference with KPNs is that DUP does
not require individual processes to be deterministic. Non-determinism on the process level voids
some of the theoretical guarantees of KPNs; however, it also enables programmers to be much
more flexible in their implementations. While DUP allows non-determinism, DUP programmers
explicitly choose non-deterministic stages in specific places; as a result, non-determinism in DUP
is less pervasive and easier to reason about compared to languages offering parallel execution
with shared memory.

Where CMS pipelines focus on the ability to glue small, reusable programs into larger appli-
cations, the programming language community has extended various general-purpose languages
and language systems with support for pipelines. Existing proposals for stream-processing
languages have focused either on highly-efficient implementation (for example, for the data ex-
change between stages [42]) or on enhancing the abstractions given to programmers to specify
the pipeline and other means of communication between stages [110]. The main drawback of
all of these designs is that they force programmers to learn a complex programming language
and rewrite existing code to fit the requirements of the particular language system. The need to
follow a particular paradigm is particularly strong for real-time and reactive systems [104, 61].
Furthermore, especially when targeting heterogeneous multi-core systems, quality implementa-
tions of the particular language must be provided for each architecture. In contrast, the DUP
language implementation is highly portable (relying exclusively on canonical POSIX system
calls) and allows developers to implement stages in any language.

On the systems side, related research has focused on maximizing performance of streaming
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applications. For example, StreamFlex [104] eliminates copying between filters and minimizes
memory management overheads using types. Other research has focused on how filters should
be mapped to cores [58] or how to manage data queues between cores [42]. While the com-
munication overheads of DUP applications can likely be improved, this could not be achieved
without compromising on some of the major productivity features of the DUP System (such as
language neutrality and platform independence).

In terms of language design and runtime, the closest language to the DUP Assembly language
is Spade [47] which is used to write programs for InfoSphere Streams, IBM’s distributed stream
processing system [6]. The main differences between Spade and the DUP Assembly language
is that Spade requires developers to specify the format of the data stream using types and
has built-in computational operators. Spade also restricts developers of filters to C++; this
is largely because the InfoSphere runtime supports migrating of stages between systems for
load-balancing and can also fuse multiple stages for execution in a single address space for
performance. Dryad [50] is another distributed stream processing system similar to Spade in that
it also restricts developers to developing filters in C+4. Dryad’s scheduler and fault-tolerance
provisions further require all filters to be deterministic and graphs to be free of cycles, making
it impossible to write stages such as faninany or holmerge in Dryad. In comparison to both
Spade and Dryad, the DUP System provides a simpler language with a much more lightweight
and portable runtime system. DUP also does not require the programmer to specify a specific
stream format, which enables the development of much more generic stages. Specifically, the
Spade type system cannot be used to properly type stream-format agnostic filters such as cat
or fanout. Finally, DUP is publicly available whereas both Spade and Dryad are proprietary.

DUP is a coordination language [41] following in the footsteps of Linda [20]: the DUP System
is used to coordinate computational blocks described in other languages. The main difference
between DUP and Linda is that in DUP, the developer specifies the data flow between the
components explicitly, whereas in Linda, the Linda implementation needs to match tuples pub-
lished in the tuplespace against tuples published by other components. The matching of tuples
in the Linda system enables Linda to execute in a highly dynamic environment where processes
joining and leaving the system are easily managed. However, the matching and distribution
of tuples also causes significant performance issues for tuplespace implementations [115]. As a
result, Linda implementations are not suitable for distributed stream processing with significant
amounts of data.

5.2.2 The DUP Assembly Language

The DUP Assembly language allows developers to specify precisely how to connect stages and
where those stages should be run. Figure 5.1 lists the DUP Assembly code for a distributed
“Hello World” example program.

In essence, the DUP language allows developers to specify a directed graph using an ad-
jacency list representation and IO redirection syntax similar to that of well-known UNIX
shells [90]. The nodes in the directed graph are the stages initiated by DUP. A DUP pro-
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s ©10.0.0.1[0<in.txt,1|gl1:0,3|g2:0]$ fanout;

g1@10.0.0.1[1|in:0] $ grep Hello;
g2010.0.0.2[1]in:3] $ grep World;
in@10.0.0.2[1>out.txt] $ faninany;

Figure 5.1: DUP specification. in.txt is passed to fanout (“O<in.txt”) which copies the
stream to all outputs; in this case output 1 to stream 0 (= stdin) at g1 (“1|g1:0”) and output
3 to stream 0 at g2 (“3|g2:0”). gl and g2 run grep, the outputs (1 = stdout) flowing into
stage in as streams 0 and 3 respectively. in merges those streams and writes the output into
out.txt. The resulting data flow is illustrated in Figure 5.3.

gram consists of a list of statements, each of which corresponds to one such node. Statements
start with a label that is used to reference the respective stage in the specification of other stages.
The keyword DUP is used to reference streams associated with the controlling dup command in
the case that the dup command itself is used as a stage.

<PROGRAM> = <STAGE>*

<STAGE> = <LABEL> ’Q@’ <ADDRESS> ’[’ <EDGELIST> ’]’ ’$’ <COMMAND> ’;’
<EDGELIST> ::= <EDGE> (’,’ <EDGE>)x*

<EDGE> = <INTEGER> <0P> <NODE>

<NODE> : := <REMOTEPR> | <UNIX_PATH>

<REMOTEPR> ::= <LABEL> ’:’ <INTEGER>

<0P> ce= ;|) | 10 | 10 | 1SS

Figure 5.2: Simplified grammar for the DUP Assembly language. Note that we do not expect
programmers to need to develop applications by directly using this language in the future;
this language is the “assembly” language supported by the DUP runtime system. Higher-level
languages running on top of DUP that facilitate (static) process scheduling and aspect oriented
programming are under development.

The label is followed by a hostname specifying on which system the stage will be run. A
helper process, dupd, will be started on the specified host, listen on a port to establish network
connections and eventually supervise stages run there. The address is followed by a comma-
separated list of edges representing primarily the outgoing streams for this stage. Input streams
are only explicitly specified in the case of input from files or the controlling dup command.
Inputs from other stages are not specified because they can be inferred from the respective
entry of the producing stage. DUP supports four different ways to create streams for a stage:

Read An input file edge consists of an integer, the “<” operator and a path to the file to be
used as input. The integer is the file descriptor from which the stage will read the input
stream. dupd is responsible for opening the input stream and validating that the file exists
and is readable.

Write An output file edge for writing consists of an integer, the “>" operator and a path to
the file to be overwritten or created. The integer is the file descriptor to which this stage
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will write. dupd checks that the specified path can be used for writing.

Append An output file edge for appending consists of an integer, the “>>" operator and a
path to the file. The integer is the file descriptor to which this stage will write.

@,

Pipe Non-file output edges consist of an integer, the char-

“|” operator, a stage label, the
acter and another integer. The first integer specifies the file descriptor to which this stage
will write. The label specifies the process on the other end of the pipe or TCP stream
and the second integer is the file descriptor from which the other stage will read. If an
edge list contains a label that is not defined elsewhere in the configuration file then the

program file is considered malformed and rejected by dup.

The final component of a complete stage statement is the command (with arguments) that
is used to start the process. Figure 5.2 contains a formal grammar for the DUP language. The

grammar omits /O redirection from/to the controlling dup command for clarity.

5.2.3 DUP System Architecture

The dup client interprets the mini-language from Section 5.2.2 which specifies how the various
stages for the application should be connected. dup then connects to hosts running ssh servers
and starts dupd helper processes which then receive control information via the SSH tunnel.
The control information specifies the binary names and arguments for the stages as well as how
to establish TCP streams and UNIX pipes to connect the stages with each other.

Figure 5.3 illustrates how the components of the system work together.

The primary interaction between dup and the dupds involves four key steps [44]:

1. dup starts the dupds and transmits session information. This includes all of the information
related to processes that are supposed to be run on the respective dupd.

2. When a stage is configured to transmit messages to a stage initiated by another dupd, the
dupd responsible for the data-producing stage establishes a TCP connection to the other
dupd and transmits a header specifying which stage and file descriptor it will connect to
the stream. If dup is used as a filter, it too opens similar additional TCP streams with
the respective dupds. The main difference here is that dup also initiates TCP connections

for streams where dup will ultimately end up receiving data from a stage.

3. Once a dupd has confirmed that all required TCP streams have been established, that all
required files could be opened, and that the binaries for the stages exist and are executable,
it transmits a “ready’ message to the controlling dup process (using the connection on

which the session information was initially received).

4. Once all dupds are ready, dup sends a “go” message to all dupds. The dupds then start
the processes for the session.



84 CHAPTER 5. DISTRIBUTED SIGNATURE MATCHING
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Figure 5.3: Overview for one possible configuration of the DUP System. Dashed lines show
application data flow. Solid lines correspond to actions by DUP. Data-flow graph for DUP
Assembly corresponding to the illustration are given in Figure 5.1.

5.2.4 Generic DUP Stages

Taking inspiration from stages available in CMS [46, 49], the DUP System includes a set of
fundamental multi-stream stages. UNIX already provides a large number of filters that can be
used to quickly write non-trivial applications with a linear pipeline. Examples of traditional
UNIX filters include grep [43], awk [31], sed [31], tr, cat, wc, gzip, tee, head, tail, unigq,
buffer and many more [90].

While these standard tools can all be used in the DUP System, none of them support multiple
input or output streams. In order to facilitate the development of multi-stream applications
with DUP, we provide a set of primitive stages for processing multiple streams. Some of the
stages currently included with the DUP System are summarized in Table 5.1. Many of the
stages listed in Table 5.1 are inspired by the CMS multi-stream pipeline implementation [49].

Naturally, we expect application developers to write additional application-specific stages.

5.2.5 DUP Programming Philosophy

In order to avoid the common data consistency issues often found in parallel programming
systems, stages and filters for DUP should not perform any updates to shared storage outside
of the memory of the individual process. While the DUP System has no way to enforce this
property, updates to files or databases could easily cause problems; if stages were allowed
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Stage Description I/O Streams
in out
fanout Replicate input n times 1 n
faninany | Merge inputs, any order n 1
gather Merge inputs, round-robin (waits for input) n 1
holmerge | Forward input from stream that has sent the most n 1

data so far, discard data from other streams until
they catch up

deal Split input round robin to output(s), or per control 2 n
stream

mgrep Like grep, except non-matching lines output to sec- 1 2
ondary stream

lookup Read keys from stream 3; tokens to match keys 2 3

from stream 0; write matched tokens to 1, un-
matched to 4 and unmatched keys to 5

gate forward 1st input to 1st output until 2nd input 2 1
ready

Table 5.1: Summary of general-purpose multi-stream stages to be used with DUP in addition
to traditional UNIX filters. Most of the filters above can either operate line-by-line in the style
of UNIX filters or using a user-specified record length.

to update storage, changes in the order of execution could easily result in unexpected non-
determinism. This might be particularly problematic when network latency and stage scheduling
cause non-deterministic runs in a larger system that replicates parts of the computation (e.g.,

in order to improve fault-tolerance).

For applications that require parallel access to shared mutable state, the DUP System can
still be used to parallelize (and possibly distribute) those parts that lend themselves naturally
to stream processing. Other parts of the code should then be designed to communicate with
the DUP parts of the application through streams.

We specifically expect stages developed for the DUP System to be written in many different
languages. This will be necessary so that the application can take advantage of the specialized
resources available in heterogeneous multi-core or HPC systems. Existing models for application
development on these systems often force the programmer to use a particular language (or small
set of languages) for the entire application. For example, in a recent study of optimization
techniques for CUDA code [96], twelve benchmark programs were modified by porting critical
sections to the CUDA model. On average, these programs were only 14% CUDA-specific, yet the
presence of CUDA sections limits the choice of languages and compilers for the entire program.
The implications are clear: the use of a monolithic software architecture for programs designed
to operate efficiently on high-performance hardware will severely restrict choices of development
teams and possibly prevent them from selecting the most appropriate programming language

and tool-chain for each part of a computation. Using the DUP System, developers will be able
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to compose larger applications from stages written in the most appropriate language available.

Another important use-case for DUP is the parallel and distributed execution of legacy code.
In contrast to other new languages for parallel programming, which all too often advocate for
large-scale (and often manual) program translation efforts, the DUP philosophy calls for writing
thin wrappers around legacy code to obtain a streaming API. As we experienced in our case
study, it is typically easy to adapt legacy applications to consume inputs from streams and to

produce outputs as streams.

5.3 Material and Methods

5.3.1 Testing conditions

The study used 16 compute nodes of the Infiniband Cluster in the Faculty of Informatics at
the Technische Universitdt Miinchen [56]. Each node was equipped with an AMD Opteron
850 2.4 GHz processor with 8 GB of memory, and the nodes were connected using a 4x In-
finiband network. The SILVA database (SSURef 91 _SILVA _18_07_07_opt.arb) [89], which stores
sequences of small subunit ribosomal ribonucleic acids and consists of 196,890 sequence entries
(with 289,563,473 bases), was used for preparing test database sets and respective PT-Servers.
We divided the original database into 1, 2, 4, 8, and 16 partitions, and a random sampling
algorithm was used for composing the partitioned database sets (within each database analysis
set, each partition is about the same size). The PT-Servers used in this study were created
from these partitions. Table 5.2 characterizes the resulting partitions and PT-Servers.

# Part. | # Sequences # MBases | Memory (MB)
part. total

1 196,890 289.6 | 1,430 1,430

2 98,445 144.7 745 1,489

4 49,222 72.4 402 1,609

8 24,611 36.2 231 1,849

16 12,305 18.1 145 2,327

Table 5.2: Resulting problem sizes for the different numbers of partitions. This table lists
the average number of sequences and bases for the PT-Server within each partition and the
resulting memory consumption for each PT-Server as well as the total memory consumption for
all partitions.

For the queries, we selected 800 inverse sequence strings of rRNA-targeted oligonucleotide
probe sequences of length 15-20 from probeBase, a database of published probe sequences [68].
Each retrieved sequence string has matches in the SILVA database and the respective PT-Server
instance. Applying these real world query sequence strings ensured that every search request re-
quired non-trivial computation and communication. We generated four sets of inverse sequence

strings (400 strings each) by random string distribution of the original dataset from probeBase,
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and every test run was performed with these four datasets. The presented performance values
are the means of the four individually recorded runs.

5.3.2 Adapting the PT-Server for DUP

In the ARB software package, arb_probe is a program which performs, per execution, one
string search using the PT-Server when a search string and accompanying search parameters
are specified (these are passed as command line arguments). For DUP, arb_probe had to be
modified to read the parameters and the search string as a single line from stdin and pass one
result set per line to stdout. It took one developer (who had experience with ARB but not DUP
or distributed systems) about three hours to create the modified version arb_probe_dup and
another two hours to compile DUP on the Infiniband Cluster, write adequate DUP scripts and
perform the first run-time test. Debugging, testing, optimization and gathering of benchmark
results for the entire case study was done in less than two weeks.

All searches were conducted using the program arb_probe_dup with similar parameters:
id 1 mcmpl 1 mmis 3 mseq ACGTACGT. The first parameter (id 1) set the PT-Server ID; the
second activated the reverse complement sequence (mcmpl 1). For each dataset and approach,
the third parameter was used to perform an exact search (mmis 0) in order to find matches
identical with the search string and an approximate search (mmis 3) in order to find all identical
strings and all similar ones with maximum distance of three characters to the search string. The
last parameter indicated the match sequence.

Figure 5.4 shows the DUP assembly code for the replicated run with two servers. Here,
identical PT-Servers are used with the goal of optimizing execution time. Figure 5.6 shows the
equivalent DUP assembly code for the partitioned setting. In this case, since each PT-Server
only contains a subset of the overall database, all requests are broadcast to all PT-Servers using

fanout.

snd@optl1[0<queries.txt,1|ptl1:0,3|pt2:0] $ deal;

ptl@opti[1|rcv:0] $ arb_probe_dup;
pt2@opt2[1]rcv:3] $ arb_probe_dup;
rcv@opt2[1>results.txt] $ faninany;

Figure 5.4: DUP specification for the replicated configuration that uses identical ARB PT-
Servers. The queries are simply distributed round-robin over the (in this case two) available
PT-Servers and the results collected as they arrive. Note that the order of individual results is
not relevant for the correct function of CaSSiS.

5.4 Results

As shown in Table 5.2, partitioning the original database into n partitions results in almost
proportional reductions in per-node memory consumption: doubling the number of partitions

means almost halving the memory consumption per PT-Server partition. In practice we expect
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Figure 5.5: PT-Server querying using replicated datasets. Data-flow graph of the code from
Figure 5.4. Note: Predefined lists of queries were used in our test, and the results were collected
in text form for further evaluation.

significantly larger databases to be partitioned, resulting in partition sizes close to the size of
the main memory of the HPC node responsible for the partition.

Figure 5.8 summarizes the speedup we obtained using n PT-Server replicas (each processing
a fraction of the queries). This answers the question as to how much performance could be
gained by distributing the queries over n identical (replicated) PT-servers, each containing the
full database. Compared with a local version (direc