
High-performance approaches to the

comprehensive computation and

evaluation of signatures in bacterial

sequence datasets

Kai Christian Bader

TECHNISCHE UNIVERSITÄT

MÜNCHEN

Lehrstuhl für Rechnertechnik und Rechnerorganisation /

Parallelrechnerarchitektur

High-performance approaches to the comprehensive

computation and evaluation of signatures in bacterial sequence

datasets

Kai Christian Bader

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität

München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. H. M. Gerndt

Prüfer der Dissertation:

1. Chr. Grothoff, Ph.D. (UCLA)

2. Univ.-Prof. Dr. A. Bode

3. Univ.-Prof. Dr. B. Rost

Die Dissertation wurde am 01.10.2012 bei der Technischen Universität München eingereicht und

durch die Fakultät für Informatik am 11.02.2013 angenommen.

Abstract

This thesis details two new computational methods for the comprehensive search for sequence-

and group-specific oligonucleotide signatures in whole genome or marker gene sequence datasets.

Designing primers and probes for molecular diagnostic methods depends on the identification

of these signatures, the short binding sites on genome or marker gene sequences. CaSSiS, the

implementation of this thesis, combines the powerful inexact sequence search capabilities of

the ARB PT-Server search index with the structured storage of signature-to-sequence relations.

With PLEASE, a client-server application was evaluated which facilitates the access to signature

candidates.

This thesis deals with the challenge that the signatures should reliably be detectable within

target groups (i.e. have a high group coverage), but not interact with any non-targets that might

be in the same sample. The two CaSSiS algorithms both allow strict and relaxed (fault-tolerant)

search conditions within user-defined constraints. CaSSiS was successfully tested with multiple

versions of the ARB SILVA database, the largest collection of annotated aligned SSU-rRNA

sequences of almost full length (> 900 nt).

The first algorithm CaSSiS-BGRT tackles these problems with the newly designed data

structure “Bipartite Graph Representation Tree” (BGRT). Results are sorted by their degree

of specificity. All signatures guarantee a defined weighted mismatch value as a measurement

for the Hamming distance to non-target sequences. The problem, that the search for signatures

becomes computationally expensive when working with large collections of deeply hierarchically

clustered target (and non-target) sequences was successfully addressed by using bounding meth-

ods. The CaSSiS-BGRT structure allows the comprehensive signature computation as well as

single queries of freely defined groups.

With our second algorithm CaSSiS-LCA, we present an even more runtime and memory

efficient solution for the comprehensive in silico search for promising signature candidates even

under relaxed search conditions. This is done by not using the intermediate storage as BGRT

data structure. Instead, signatures are directly added into the phylogenetic tree structure. As a

result, only comprehensive computations are possible, but at a significantly faster runtime and

with far less memory consumption.

Even with the optimizations that were applied in the implementation of the two algorithms,

processing the amounts of data expected in the future will still be a struggle. The DUP System

was used to address a major issue that is expected: the memory limitation of the available

search indices, in our case the ARB PT-Server. Multi-stream pipelines were used to distribute

the work load onto multiple nodes within a cluster. The speedups achieved with distributed

indices were by themselves clearly not sensational; But they show, that the combination of new

algorithmic approaches for the signature selection and the use of distributed index structures

allow us to process unreduced datasets and deep hierarchical clusterings we could not process

before.

By partitioning the search index in a cluster and additionally using a distributed CaSSiS-

LCA topology, we estimate that the CaSSiS-LCA implementation should be able to process

genome data of virtually arbitrary size. It would mostly be limited by the size of the structure

which is used to store the resulting signature candidates on each node. This structure can then

be merged in a final step to gather all results and produce the signature candidate lists.

Besides the command line tool CaSSiS, the client-server application PLEASE was imple-

mented to allow end users to (re-)evaluate the signature candidates without the need for power-

ful computer architectures. A new, intuitive graphical interface allows group selection within a

loaded phylogenetic tree. Single requests are usually processed within a few seconds. The result

is a list of signatures with maximum coverage (sensitivity) for each entry within the range of

allowed non-target matches, and their thermodynamic characteristics.

Acknowledgements

This work was supported by the Bayerische Forschungsstiftung (BFS) as part of the NANOBAK

project (AZ767-07).

Parts of this thesis have already been published. Chapter 3, describing the CaSSiS-BGRT

algorithm, is an extended version of an article [12] published in Bioinformatics, that was joint

work with Christian Grothoff and Harald Meier. In a bachelor project supervised by me,

Sebastian Wiesner implemented an OpenMP-parallelized version of the CaSSiS-BGRT traversal

algorithm. Section 3.4 is based on his final report. Chapter 4 is an extended version of an

article [10] published in the ACM Journal of Experimental Algorithmics. It is a collaboration

with Prof. Mikhail J. Atallah and Christian Grothoff and describes the CaSSiS-LCA algorithm.

Chapter 5 on the subject of distributed signature matching is an extended version of a LNCS

“Network and Parallel Computing” article [11]. It was joint work with Tilo Eißler, Nathan

Evans, Prof. Chris GauthierDickey, Christian Grothoff, Krista Grothoff, Jeff Keene, Harald

Meier, Craig Ritzdorf, and Prof. Matthew J. Rutherford. The PLEASE software application

(Chapter 6) is based on the ARB Probe Library, developed by Tina Lai, Lothar Richter, and Ralf

Westram in 2003. It was refactored and extended in two students projects that were supervised

by me: the final project of Peter Klimpt in 2008, and the diploma thesis of Tianxiang Lu in

2011. I am very grateful for the collaboration with all of these co-authors and thank them for

their contributions to this thesis.

This work was carried out while I was a research assistant and Ph.D. student at the Lehrstuhl

für Rechnertechnik und Rechnerorganisation (LRR) at the TU München. I would like to thank

Prof. Arndt Bode, head of the chair, for providing me such supportive work conditions. I am

particularly grateful to Harald Meier and Christian Grothoff. Harald supported me since my

undergraduate studies and he inspired the topic of my dissertation. In Christian, I found a

mentor who helped me both professionally and personally get the thesis done. I would like to

thank all my colleagues, especially Tilo Eißler, Wolfgang Ludwig, and Ralf Westram, for their

suggestions, their support, stimulating discussions, and amusing coffee breaks.

I would like to thank my son Adam Vinzenz for distracting me when I needed a break from my

thesis. My family and my friends were an important support for me during my time as a Ph.D.

student. And last, but not least, I especially thank my wife Angelika for her love and for being

the most supportive person I can imagine.

V

Figure 1: Thanks for the distraction, Adam! Comics used with permission by “Piled
Higher and Deeper”, Jorge Cham, www.phdcomics.com. Originally published 1st – 8th June,
2012.

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Structure of the thesis . 4

1.3 Molecular biology and genetics . 4

1.3.1 Nucleic acids . 5

1.3.2 Ribosomal RNA (rRNA) . 7

1.3.3 Oligonucleotide primers and probes . 7

1.4 Taxonomic classification and phylogenetic trees 8

1.5 Publicly available sequence collections . 10

1.6 Outlook . 12

2 Related Computational Methods in Bioinformatics 13

2.1 Thermodynamic prediction and filtering . 14

2.1.1 Introduction . 14

2.1.2 GC-content . 15

2.1.3 Simple melting temperature predictions 15

2.1.4 Nearest-Neighbor predictions . 16

2.1.5 Gibbs free energy ∆G◦ . 18

2.2 Approximate Search . 19

2.2.1 Search indices . 20

2.2.2 The ARB PT-Server and MiniPT . 22

2.2.3 Approximate string matching . 24

3 The CaSSiS-BGRT Approach 27

3.1 Introduction . 28

3.2 Material and Methods . 29

3.2.1 Extraction and evaluation of signature candidates 30

3.2.2 Organizing signature candidates by specificity 32

3.2.3 Determination of valuable signatures . 33

3.2.4 Testing conditions . 35

3.3 Results . 36

3.3.1 Performance of search index and signature candidate evaluation 36

VII

VIII CONTENTS

3.3.2 Performance of the BGRT-generation . 37

3.3.3 Performance of the BGRT-traversal . 37

3.3.4 Signature search space reduction . 38

3.3.5 Comparison to other approaches . 40

3.3.6 Evaluation of the computed signature collection 42

3.4 Parallelizing the BGRT traversal with OpenMP 45

3.4.1 OpenMP Implementation . 46

3.4.2 Benchmark setup and results . 47

3.5 Discussion . 48

4 The CaSSiS-LCA Approach 55

4.1 Introduction . 55

4.2 Related Work . 57

4.2.1 Insignia . 58

4.2.2 CaSSiS-BGRT . 59

4.3 The CaSSiS-LCA Algorithm . 60

4.3.1 Perfect Match Algorithm . 61

4.3.2 Partial Group Coverage . 62

4.3.3 Allowing at most k Outgroup Hits . 64

4.4 Implementation and Results . 67

4.5 Discussion . 73

4.6 Conclusion . 74

5 Distributed Signature Matching 77

5.1 Introduction . 77

5.2 The DUP System . 79

5.2.1 Related Work . 80

5.2.2 The DUP Assembly Language . 81

5.2.3 DUP System Architecture . 83

5.2.4 Generic DUP Stages . 84

5.2.5 DUP Programming Philosophy . 84

5.3 Material and Methods . 86

5.3.1 Testing conditions . 86

5.3.2 Adapting the PT-Server for DUP . 87

5.4 Results . 87

5.5 Conclusion . 89

6 Web-based Signature Evaluation with PLEASE 93

6.1 Introduction . 93

6.2 Implementation . 94

6.2.1 The PLEASE Probe Library . 96

6.2.2 The PLEASE Probe Match . 100

CONTENTS IX

6.2.3 The PLEASE Client . 101

6.3 Results and Discussion . 102

7 Conclusion and Future Work 105

7.1 Conclusion . 105

7.2 Future Work . 106

Appendix 111

A Supplementary Material 111

A.1 Test systems . 111

A.2 Signature evaluation . 112

A.2.1 Computing the signature dataset . 112

A.2.2 Comparison with relevant published signatures 113

B The CaSSiS software package 117

B.1 Availability . 118

B.1.1 Building CaSSiS from source . 118

B.1.2 Binary packages . 119

B.2 CaSSiS command line interface . 119

B.3 The CaSSiS result files . 122

B.4 CaSSiS graphical user interface . 123

B.5 CaSSiS bgrt2Graphviz . 123

B.6 Changelog . 125

B.7 License for CaSSiS . 133

B.8 License for MiniPT . 146

Bibliography 149

List of Figures

1 Thanks for the distraction, Adam! . VI

1.1 Schema of the CaSSiS pipeline . 3

1.2 RNA and DNA structure . 5

1.3 Two representations of a phylogenetic tree . 10

1.4 Sequence database growth 1 . 11

1.5 Sequence database growth 2 . 12

2.1 Sample DNA oligonucleotide . 15

2.2 Hydrogen bonds between nucleotides . 15

2.3 Digital search trees . 21

2.4 Depth-limited suffix trie . 22

3.1 Schematic of the CaSSiS-BGRT pipeline . 30

3.2 CaSSiS-BGRT input data structure . 31

3.3 Hamming distance schemata . 32

3.4 BGRT construction . 33

3.5 Final BGRT structure . 35

3.6 CaSSiS-BGRT: Build time and peak memory consumption 37

3.7 BGRT statistics . 38

3.8 Efficiency of the bounding methods . 39

3.9 Memory consumption of the BGRT structure . 40

3.10 Sample signature that cannot be derived from sequence data 42

3.11 GC-content distribution . 43

3.12 Melting temperature distribution . 44

3.13 Percentage of completely covered sequences and groups 46

3.14 Speedup of the parallelized BGRT traversal . 50

3.15 CaSSiS-BGRT workflow . 51

4.1 Schematic of the CaSSiS-LCA pipeline . 56

4.2 Number of organisms matched per signature . 61

4.3 Illustration of the Perfect Match Algorithm . 63

4.4 Illustration of the Partial Match Algorithm . 65

XI

XII LIST OF FIGURES

4.5 Illustration of the Partial Match Algorithm with outgroup hits 68

4.6 Illustration of one iteration in the foreach loop of CaSSiS-LCA 69

4.7 Overall runtime of the CaSSiS-BGRT and CaSSiS-LCA implementations 71

4.8 Comparison: memory consumption of CaSSiS-BGRT and CaSSiS-LCA 72

4.9 Comparison: runtime of CaSSiS-BGRT and CaSSiS-LCA (512, 000 sequences) . . 73

5.1 The DUP specification . 82

5.2 Simplified grammar for the DUP Assembly language 82

5.3 Example of a configuration of the DUP System 84

5.4 DUP specification for multiple identical ARB PT-Servers 87

5.5 PT-Server querying using replicated datasets . 88

5.6 DUP specification for the partitioned configuration with PT-Server slices 89

5.7 PT-Server querying using dataset partitions . 90

5.8 Speedup of string matches for replicated PT-Servers 91

6.1 ARB Probe Library (ARB-PL) client/server structure 95

6.2 PLEASE client/server structure . 95

6.3 E-R-Model of the PLEASE database . 99

6.4 The PLEASE Probe Library UI . 102

6.5 PLEASE Probe Match UI . 103

7.1 Schema of the CaSSiS pipeline . 106

B.1 CaSSiS homepage . 117

B.2 Screenshot: CaSSiS user interface . 123

B.3 Signature computation result . 125

B.4 Circular visualization of a BGRT . 126

B.5 Unrooted visualization of a BGRT . 127

List of Tables

1.1 IUPAC nomenclature . 6

1.2 Examples for taxonomic ranks . 9

2.1 Thermodynamic nearest-neighbor parameters . 18

2.2 Specificity and Sensitivity . 24

3.1 CaSSiS-BGRT Result Array . 34

3.2 CaSSiS-BGRT — Test datasets . 36

3.3 Exponential growth in the number of possible k-mer signatures 41

3.4 Number of edges and signatures in the bigraph 41

3.5 Comparison to other approaches . 45

3.6 Runtime of the OpenMP parallelized CaSSiS-BGRT approach 49

4.1 Notations . 61

4.2 Statistical information on the test datasets . 70

4.3 Influence of mismatches on the runtime . 71

5.1 Summary of multi-stream stages to be used with DUP 85

5.2 Resulting problem sizes for the different numbers of partitions 86

6.1 CaSSiS result array content . 97

6.2 CaSSiS results X array content . 97

B.1 CaSSiS result array content . 122

B.2 CaSSiS results X array content . 124

XIII

Chapter 1

Introduction

1.1 Motivation

Computational methods play an essential role in the development of oligonucleotide primers

and probes, the key diagnostic agents in contemporary molecular technologies. This thesis will

present new approaches which extend and improve the central step in the primer and probe

design process: the search and evaluation of genetic signatures. These approaches will allow

the rapid sensitive and specific identification of single organisms or groups of organisms based

on large sequence datasets and phylogenetic trees.

The identification of an organism is done based on its genetic material, more specifically on

short matching sites called oligonucleotide signatures [120]. In order for the diagnostic methods

to work, a signature must reliably be present within the genetic material of a target (group), and

be absent in non-targets. Additionally, the signatures’ thermodynamic characteristics must be

within the constraints of common techniques, e.g. of primers within polymerase chain reactions

(PCR) [15] or probes in nucleic acid hybridization [5, 105] based techniques.

In case of well-studied groups of organisms, sources for primers and probes (the counterparts

of signatures) can be field-tested oligonucleotides from scientific publications and from curated

collections (Section 1.5). Primers and probes from such sources are usually based on sequence

datasets that are a few years old. This is not necessarily a disadvantage. But we currently see

a vast continuing growth in the size of all kinds of public gene and genome sequence databases

— an exponentially growing number of stored nucleotides (Section 1.5). The gap between the

number of published oligonucleotide primers and probes and the size of the available sequence

datasets widens. The specificity and sensitivity of published signatures therefore needs to be

carefully reevaluated with newer datasets before applying them. In cases where the requirements

of the detection method or the target group differ from the ones of publicly available primers

and probes, an adaption or a redesign from scratch is necessary.

Designing signatures with computational methods and evaluating their applicability in a wet

lab are both costly processes — in time and money. Signature search applications are either

limited by runtime or memory constraints (or both) regarding the amount of sequence data

they are able to process. Compromises must usually be made as the source material has to be

1

2 CHAPTER 1. INTRODUCTION

reduced to an amount that is processable on common workstations. Stripping (in most cases

non-target) sequences from the dataset might have an influence on the specificity and sensitivity

of the resulting signatures.

This thesis will focus on the computational process, but it thereby has also positive influence

on the following evaluation in the wet lab. By vastly reducing the computation time it will allow

faster evaluation cycles. By allowing to process significantly larger dataset sizes compared

to other approaches [10, 12] (Section 3.3.5) it will increase the quality of resulting signature

candidates. Another main goal of this thesis will be enabling the comprehensive computation

of signature candidates for complete phylogenies. This will further reduce the overall time of

the design process. It will enable maintainers of gene and genome databases to precompute and

offer collections of signature candidates along with their up-to-date datasets. User can rely on

these collections without the need of additional costly computations.

A basic requirement for signature searches is the separation of organisms1 into target and

non-target groups. In general, these group definitions are based in phylogenetic or taxonomic

classifications (Section 1.4). Tools that compute phylogenies usually apply heuristics and their

results therefore may differ based on the initial parameters and the used dataset revision.

Taxonomic classifications were for a long time based on observable features of the organisms

(e.g. their cellular structure or metabolism) and have in some cases significantly changed over

the last decades. Bergey’s Manual of Systematic Bacteriology is a good source to track these

changes. Both, the computational induced uncertainties and the human factor in subdividing

the organisms into groups based on the best knowledge may induce errors in the groupings. Such

errors may have a great influence on the design process. A single false negative (i.e. falsely

defined as non-target) sequence may sort out an otherwise good signature candidate. The

approaches presented in this thesis will therefore allow comprehensive relaxed (fault-tolerant)

search conditions. They will allow non-target hits within a defined range to cope with erroneous

groupings.

Another very probable source for errors is the sequence material itself. Assuming a constant

error rate, the exponential growth of the sequenced material results in an equally growing error

rate. Additionally, the error rate largely varies with the applied sequencing technique [74]. These

errors have direct influence on the signature search process and indirect influence through falsely

annotated datasets, resulting in wrong groupings. The approaches presented in this thesis will

deal with erroneous bases in the sequence material by allowing mismatches within a target

group.

This thesis will extend and improve the overall search and evaluation of genetic signatures

(Figure 1.1). The presented algorithms and implementations, called Comprehensive and Sensi-

tive Signature Search (CaSSiS), will be able to comprehensively compute signatures for complete

phylogenies or taxonomic groups. Unreduced up-to-date sequence datasets will be used. This

will enable sequence database maintainers to provide signature candidates along with their se-

quence datasets. Non-target hits (false positives) as well as mismatches within a target group

will be handled to deal with erroneous bases in the sequence material.

1In this thesis it is assumed that each organism is represented by a genetic sequence.

1.1. MOTIVATION 3

G
T

T
G

C
A

A
G

T
C

T
T

C

G
e

n
e

tic
 s

e
q

u
e

n
ci

n
g

,
a

ss
e

m
b

ly
 &

 a
n

n
o

ta
tio

n

cr
e

a
te

P
o

st
 in

 s
ili

co
 e

va
lu

a
tio

n
(e

.g
.

w
ith

 t
h

e
 A

R
B

 t
o

o
ls

)

M
ic

ro
a

rr
a

y
w

ith
o

lig
o

n
u

cl
e

o
tid

e

R
N

A
/D

N
A

 p
ro

b
e

s

5
'

3
'

5
'

3
'

R
N

A
/D

N
A

 p
ri

m
e

r
p

a
ir

s

b
y

a
lig

n
m

e
n

t
co

m
p

a
ri

so
n

P
ri

m
e

r
&

 P
ro

b
e

 c
a

n
d

id
a

te
s

p
u

b
lis

h
e

d

O
lig

o
n

u
cl

e
o

tid
e

se
a

rc
h

 in
d

e
x

(e
.g

.
P

T
-S

e
rv

e
r)

P
u

b
lic

se
q

u
e

n
ce

d
a

ta
b

a
se

s

O
rg

a
n

is
m

s
S

ig
n

a
tu

re
s

P
h

yl
o

.
tr

e
e

C
h

ip

R
es

ul
t f

ile
s:

Li
st

 o
f s

ig
na

tu
re

ca
nd

id
at

es
 fo

r
tr

ee
 n

od
es

ap
pl

ie
d

(e
.g

. i
n

P
C

R
)

C
aS
S
iS
-B
G
R
T

B
G

R
T

F
ile

A
C

C
A

G
A

A
G

C
C

T
G

TA
A

G

T
T

G
C

A
G

G
A

T
G

T
T

G
A

A
C

A
G

A
T

TA
C

A

C
om

pr
eh

en
si

ve
 r

es
ul

ts
S

in
gl

e
qu

er
ie

s
(e

.g
. C

aS
S

iS
-G

U
I)

C
aS
S
iS
-L
C
A

A
C

C
A

G
A

A
G

C
C

T
G

TA
A

G

T
T

G
C

A
G

G
A

T
G

T
T

G
A

A
C

A
G

A
T

TA
C

A

S
ig

n
a

tu
re

D
a

ta
b

a
se

P
LE

A
S

E
C

lie
nt

S
of

tw
ar

e

W
W

W

Im
po

rt

o
r

P
LE

A
S

E

S
er

ve
r

1 2 3 4 5 6

E
A B

F
C

G
D

H

e
xt

ra
ct

 B
ip

a
rt

ite
 G

ra
p

h

P
LE

A
S

E

Figure 1.1: Schema of the primer and probe design pipeline in which CaSSiS is embedded. The
input data for CaSSiS comes from public sequence and phylogenetic tree databases. The search
index (PT-Server) is described in Chapter 2. The two algorithms CaSSiS-BGRT and CaSSiS-
LCA are presented in the following Chapters 3 and 4. Not shown is our distributed approach
to parallelize the search index with the DUP-System (Chapter 5). The client-server application
PLEASE is presented in Chapter 6. The resulting signatures can be used as a template for new
RNA/DNA primer and probes, for example to provide diagnostic microarrays.

4 CHAPTER 1. INTRODUCTION

1.2 Structure of the thesis

All chapters of this thesis are mostly self-contained. This allows reading them without having

to read the previous ones. However, the approaches presented in the chapters reference the ones

in preceding and subsequent chapters. This applies particularly to the Chapters 3, 4 and 5.

Being an interdisciplinary computer science work, a brief introduction to the biological

background is given in the remainder of this Chapter 1. This covers the basic of nucleic acids,

classification schemes and sequence collections. Chapter 2 presents related work which was used

in the algorithms and the CaSSiS implementations. Chapter 3 describes the CaSSiS-BGRT al-

gorithm, our first approach that brings together comprehensive and relaxed search methods

for oligonucleotide signatures. Its design also allows creating precomputed index files to allow

single queries based on freely defined groups. To gain additional speedup, a parallelized version

of the BGRT traversal is explored in Section 3.4. Chapter 4 presents our second algorithm

CaSSiS-LCA. It provides a direct, more memory- and runtime-efficient approach to comprehen-

sively compute signature candidates. In Chapter 5 we evaluate a distributed signature matching

approach. Distributing the search index allows the reduction of the memory consumption per

partition and simultaneously a speedup. Besides providing comprehensive sets of signature

candidates along with the source sequence datasets, different approaches of querying and visu-

alizing signature datasets are evaluated in Chapter 6. Supplementary information on the used

datasets and systems that were used in this thesis for testing are given in the Appendix A. The

Appendix B contains a brief description (“HowTo”) of the CaSSiS implementation. The open

source CaSSiS library as its core development and other implementations are presented in the

Appendix B. The source code as well as binary releases can be downloaded from the projects

website: http://www.lrr.in.tum.de/~cassis/

1.3 Molecular biology and genetics

Since this is an interdisciplinary computer science work, terms are used in the following chapters

that come from molecular biology and genetics. The first field covers interactions that happen

on a molecular level within cells. The second field addresses the function of genes and their

importance in the inheritance of characteristics. In this thesis, the biological focus lies on

the components and reactions that are associated with the storage and processing of genetic

information, mainly the nucleic acids RNA and DNA (Section 1.3.1). As most of the tests

and measurements were computed with 16S SSU rRNA gene sequences, a brief introduction to

this special nucleic acid is given in Section 1.3.2. Signature candidates are short sections on the

genetic material that are more or less unique within the genetic information of a single organism

or a group or organisms. They are the templates for primers and probes, which are presented

in Section 1.3.3.

1.3. MOLECULAR BIOLOGY AND GENETICS 5

1.3.1 Nucleic acids

Nucleic acids are essential parts of all organisms as carriers of the genetic information. They

are long macromolecules, strands, consisting of chained structural units called nucleotides. We

distinguish between two types of nucleic acids, the single-stranded ribonucleic acid (RNA) and

the double-stranded deoxyribonucleic acid (DNA) (Figure 1.2).

RNA
Ribonucleic acid

DNA
Deoxyribonucleic acid

Nucleobases

Base pair

Cytosine

Guanine

Adenine

ThymineUracil

Cytosine

Guanine

Adenine

Helix of
sugar-phosphates

Nucleobases
of RNA

Nucleobases
of DNA

Figure 1.2: Nucleotides are composed of a five-carbon sugar (either ribose or deoxyribose), a
phosphate group and a nucleobase. The sugars and phosphate groups build the backbone of
ribonucleic acids. The primary nucleobases in DNA are adenine, cytosine, guanine, and thymine.
In RNA, thymine is replaced by uracil. (Image adapted from: Sponk/Wikimedia/cc-by-sa)

From a computer scientist’s point of view, nucleic acid strands can be seen as a stream

of concatenated information units (i.e. bases) and be reduced to a sequence of characters

representing these units. The origin of replication (ORI or oriC) is used as “base number

one” when counting base positions. The bonds of the phosphate-sugar-backbone of a nucleic

acid are used as an aid when describing the end-to-end orientation of a strand. The ends are

defined as 3′ − end (three prime end) and 5′ − end (five prime end), based on which of the

five numbered carbon atoms on the sugar ring is “free” for a potential binding. The reading

6 CHAPTER 1. INTRODUCTION

direction on a strand is called upstream towards the 5′− end (3′ → 5′) and downstream towards

the 3′ − end (5′ → 3′). In case of DNA, the two strands are called “anti-parallel”: they run

in opposite directions. One strand is the reverse complement of the other [19, Section 5.4].

Therefore only one of the two strains is usually given as sequence string. In most cases it

will be in downstream direction as a strain is read in that direction during the process of

transcription [27, Section 1.2.2.3].

In the 1970s, the International Union of Pure and Applied Chemistry (IUPAC) began to

standardize the nomenclature for nucleic acids [51]. In the following years, this “IUPAC code”

was extended [26, 79] to additionally include 11 ambiguity characters for every possible com-

bination of nucleotides (Table 1.1). These ambiguity characters can either be used to describe

variations among single positions on related gene sequences, or they may be used to represent

positions on the sequence material that are disputable. A similar nomenclature exists for amino

acids consisting of 23 characters, representing 20 amino acids2 and 3 ambiguity characters. The

algorithms described in this work are not per se limited to a certain type of alphabet, but

external factors (project requirements and given tool sets) led to a focus on nucleic acids.

Code Description

A A Adenine
C C Cytosine
G G Guanine
T T Thymine
U U Uracil

R A G Purine
Y C T,U Pyrimidine
M A C Amino group
K G T,U Keto group
W A T,U Weak hydrogen bonding interaction
S C G Strong hydrogen bonding interaction
B C G T,U Not A (B follows A)
D A G T,U Not C (D follows C)
H A C T,U Not G (H follows G)
V A C G Not T (V follows T and U)
N A C G T,U Any base

Table 1.1: IUPAC nomenclature for nucleic acids (upper 5 rows), including ambiguity charac-
ters [26] (lower 11 rows). Although a (nucleo)base, a nucleoside (= nucleobase + sugar) and
a nucleotide (= nucleoside + phosphate group) are different from a chemical point of view, all
three terms can be (and are) used to describe the same genetic information units. The bases
are abbreviated by their initial characters: A, C, G, T and U. Another commonly used special
character is the “.” dot (in rare cases a “-” dash). It represents a deleted base or a gap in a
sequence.

Although not being the primary building blocks from which a cell is constructed — this

2There are currently 22 “proteinogenic” amino acids known, but only 20 of them can be directly encoded
using base triplets [9, 52]

1.3. MOLECULAR BIOLOGY AND GENETICS 7

position is occupied by the proteins — nucleic acids are directly and indirectly involved in the

construction and the metabolism of cells. Especially RNA sequences are central parts of the

synthesis of proteins, which is discussed in more detail in the following Section 1.3.2. Defined

subsequences, which specify proteins or functional polypeptides, are called “genes”. Nucleic

acid sequence information may be also arranged in higher level organization structures, most

notably “chromosomes” and “plasmids”. The comprehensive genetic material of an organism is

called its genome.

1.3.2 Ribosomal RNA (rRNA)

An essential part of a living cell is the ribosome. Ribosomes are found in the organisms of all

procaryotes (archaea and bacteria) and eucaryotes. They translate messenger RNA (mRNA)

sequences into polypeptide (protein) chains, a catalytic process called protein biosynthesis. In

a cell, single nucleotides are attached to short 3-base sequences called transfer RNA (tRNA).

The ribosome begins reading the mRNA and allows tRNA triplets to temporarily attach to the

reverse complement part on the mRNA. The peptide is connected to the others and the process

continues with the next triplet. The result is a polypeptide chain that may be further processed

and folded, and finally may form a protein [27, Section 1.2.3.1].

The ribosome itself is built out of subunits of ribosomal RNA (rRNA), most notably the

small subunit (SSU) and large subunit (LSU). They are differentiated by their sedimentation

coefficients in a centrifuge, measured in Svedberg S. Procaryotes have 70S ribosomes with a

30S SSU and a 50S LSU. Eucaryotes have 80S ribosomes with a 40S SSU and a 60S LSU [27,

Section 1.2.3.1].

The rather short rRNA sequence and its vital presence in all organisms early made it an ideal

candidate for sequence comparison in evolutionary biology. Especially a part of the procaryotic

30S SSU called 16S small subunit RNA (16S rRNA) with approximately 1500 bases is used. Due

to the importance of ribosomes for protein synthesis, rRNA sequences share a core structure

to preserve their functionality. This is reflected by highly conserved regions on the ribosomal

RNA sequences [24]. These conserved regions allow the selective enrichment and duplication

of the rRNA material with PCR techniques and specific primers. Then, oligonucleotide probes

can be used to distinguish between single organisms and groups. The probes rely on the more

variable regions on the rRNA sequence, on signature patterns that are only present within the

target group.

Both, primers and probes, are further discussed in the following Section 1.3.3. They are

crucial for the success of the applied detection methods. A central part of this work is to permit

and improve their design. Additionally, the differences between the rRNA sequences of a set of

organisms can be used to derive phylogenetic trees, as shown in Section 1.4.

1.3.3 Oligonucleotide primers and probes

Primers are short oligonucleotide sequences that adhere to an opposite (reverse complement)

nucleic acid strand. They are artificially created and designed for a particular application and

8 CHAPTER 1. INTRODUCTION

specific target sequences. The most common application of primers nowadays is the Polymerase

Chain Reaction (PCR), a method invented by Kary Mullis in 1983 [78]. In 1993, he was awarded

the Nobel Prize in Chemistry for his invention. PCR is used to amplify a certain range of a

sequence. The amplification is done by thermal cycling, the repetition of three steps: First

denaturation, where the nucleic acid strands are broken into single-stranded forms by applying

heat (over 90◦C). During the annealing step at about 50− 60◦C, primers bind to complement

sections on the single strands. In a third step called elongation at about 75−80◦C, the remaining

single strand is completed, beginning at the primer, into a double stranded form.

In modern PCR, usually a special enzyme called “Taq polymerase” is used. This DNA

polymerase was discovered in Thermus aquaticus, a thermophilic bacterium (it can thrive at

high temperatures). The main advantage is its temperature resistance with a maximum activity

around 75 − 80◦C [60]. Before this discovery allowed the stable use of thermal cycling, DNA

polymerase had to be added after each cycle as it was inactivated due to the high temperature

during the denaturation step. The repeated process during PCR results in multiple (in most

cases) identical replicates of the original DNA sequence. Usually primer pairs, a forward-primer

for the strain and a backward-primer for the opposite strain, are used.

Artificially created oligonucleotide probes are very similar to primers. They are used to

detect the presence (or absence) of a RNA or DNA sequence by binding to them. The length

of probes depends on the used technique: common “short” oligonucleotide probes have length

of 20–50 nucleotides (nt), but they can reach lengths up to 1, 000 nucleotides (nt). Longer

probes tend to provide a significantly better tolerance of base mismatches and thereby a better

target group coverage (sensitivity). Short probes on the other hand are good at discriminating

between targets and non-targets (specificity) [55, 92].

Probes are usually tagged (“labeled”) with a molecular (e.g. radioactive or fluorescent)

marker. A typical application is Fluorescent In Situ Hybridization (FISH) for the “rapid identi-

fication of microorganisms in environmental and medical samples.” [112]. In DNA microarrays,

also called DNA chips, probes are attached to a surface, such as a glass slide. The slide contains

microscopic dots of probes. The sample sequences are cleaned and purified. Because the probes

are attached to a surface, detection is here done by labeling the target sequences instead of

the probes. Targets hybridize against the fixed probes, and sequences that have not hybridized

are washed away. The amount of bound DNA material can then be determined using special

(fluorescence) scanners.

1.4 Taxonomic classification and phylogenetic trees

Biological classification in its modern form has its roots in the Darwinian principle of a common

ancestor. Although evolutionary theories were already discussed before Charles Darwin’s epoch-

making publication “On the Origin of Species. . . ” [28], it popularized the term “evolution” and

resulted in classifying organisms on their relationship. Before, the main distinction was made

based on variations of observable features like morphologic differences.

A taxonomy is a standardized model to classify organisms according to certain criteria.

1.4. TAXONOMIC CLASSIFICATION AND PHYLOGENETIC TREES 9

Taxonomies are hierarchically ordered; in case of microorganisms, the most frequent occurring

case in this work, it usually consists of eight subclasses (in descending order):

Domain→ Kingdom→ Phylum→ Class→ Order → Family → Genus→ Species

Groups of (one or more) organisms are known as taxonomic units, or taxa (singular: taxon). The

most common taxonomy is separated into three domains: Archaea, Bacteria and Eucarya [119].

Two examples are given in Table 1.2.

Rank Black Death Baker’s Yeast

Domain Bacteria Eucarya
Kingdom – Fungi
Phylum Proteobacteria Ascomycota
Class Gammaproteobacteria Saccharomycetes
Order Enterobacteriales Saccharomycetales
Family Enterobacteraceae Saccharomycetaceae
label Genus Yersinia Saccharomyces
Species Y. pestis S. cerevisiae

Table 1.2: Overview of the eight common taxonomic ranks used for classification of organisms,
here with two examples: The supposed cause of Black Death [45], Yersinia pestis, and Baker’s
yeast.

Especially microorganisms are difficult to categorize due to their few observable features

(mainly their cellular structure and metabolism) [19, Section 18.9]. In many cases, the necessary

cultivation is time consuming and possible only with great effort [48]. The renaming and

reorganizations of organisms and complete subclasses in the last decades demonstrate how

newly achieved knowledge about the relations of organisms influences their taxonomic order.

Maybe one of the best example is Bergey’s Manual of Systematic Bacteriology, where sequencing

studies began to take influence on the nomenclature that was at first only based on “classical”

taxonomic groupings [19, Section 18.10].

We are now in a situation in which we have access to the sequenced genetic material of

numerous (micro)organisms. Artificial scores for the evolutionary distances can be computed,

based on the dissimilarities between the sequences of two or more organisms. A variety of algo-

rithms and tools exist to create a phylogenetic tree with such scores, e.g. parsimony, maximum

likelihood or Bayesian inference [17, Chapter 11]. In a phylogenetic tree, inner nodes represent

hypothetical ancestors of the underlying organisms, also called hypothetical taxonomic units

(HTUs). Taxonomic units (subclasses) that are mapped onto a phylogenetic tree are called op-

erational taxonomic units (OTUs). The distance between organisms can be displayed by branch

lengths (the longer a branch, the greater the distance to a common ancestor; see Figure 1.3).

One of the most common representatives that is used to compute phylogenetic trees is the

SSU rRNA 1.3.2 gene. It es essential for the protein biosynthesis and therefore found in all

organisms. Being rather “short” with of about 1500 bases and having a mixture of curated and

highly variable regions make it an ideal candidate. Multiple sources exist where rRNA sequence

10 CHAPTER 1. INTRODUCTION

Figure 1.3: Two representations of an exemplary phylogenetic tree, generated with the Inter-
active Tree Of Life (iTOL) tool [63]. In the left, the tree is represented as as “dendrogram”, in
the right as a “circular cladogram”.

datasets and corresponding phylogenetic trees can be downloaded, which will be discussed in

the following chapter.

1.5 Publicly available sequence collections

In 1965 the Integrated Electronics (today better known as Intel) co-founder Gordon E. Moore

formulated a 10-year prognosis of the growth of the number of components placed on an inte-

grated circuit:

“The complexity for minimum component costs has increased at a rate of roughly

a factor of two per year. Certainly over the short term this rate can be expected to

continue, if not to increase. Over the longer term, the rate of increase is a bit more

uncertain, although there is no reason to believe it will not remain nearly constant

for at least 10 years.” [77, slightly abridged]

More than 40 years later this prognosis has become well known under the name “Moore’s law”.

Although the interpretation over time slightly changed to doubling the number of transistors

every 18 months, the once predicted trend still seems to continue at least for the next few years.

Similar predictions will probably soon occur for the field of genomics, as we currently see a

vast continuing growth in the size of public genome databases — and lately also in the number

1.5. PUBLICLY AVAILABLE SEQUENCE COLLECTIONS 11

of sequenced organism genomes. One reason for this growth are the falling sequencing costs.

Another reason is the increasing throughput of the sequencers. Time will tell if these predictions

will prevail, but we can already see that the growing amount of publicly available sequence data

represents a chance as well as a burden.

The growing number of genetic information needs to be carefully handled. The first (viral)

genomes sequenced in the late 1970s contained about 3.5 − 5.4 kilobases (kb) [36, 97] and at

that time the genetic information was collected mostly “by hand”. The first bacterial genome

with a length of 1.8 megabases (Mb) was sequenced in 1995 [39]. At that time sequence datasets

were already being processed with software tools. Today, typical public available DNA sequence

collections contain billions of bases (Figure 1.4). A source for the ribosomal RNA gene sequences

and corresponding phylogenetic trees that were used as test datasets in this thesis are the The

Ribosomal Database Project (RDP-II) [71] and the non-redundant ARB SILVA database [89].

Both projects provide free access to curated datasets (Figure 1.5).

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1985 1990 1995 2000 2005 2010

N
uc

le
ot

id
es

 (
in

 m
ill

io
n;

 lo
g

sc
al

e)

Date of Publication

NCBI GenBank
NCBI RefSeq

Figure 1.4: Two of the largest sequence databases are the GenBank collection of all publicly
available annotated DNA sequences and the Reference Sequence (RefSeq) collection for genomic
DNA, transcripts, and proteins. Both are located at the National Center for Biotechnology
Information (NCBI). The RefSeq release no. 53 from May 10, 2012 contains 17, 339 organisms
with ∼ 175.3 billion bases (nucleotides). This figure shows the exponential growth of both
databases since 1982 (Genbank) and 2003 (RefSeq). Sources: http://www.ncbi.nlm.nih.

gov/RefSeq/ and http://www.ncbi.nlm.nih.gov/genbank/

12 CHAPTER 1. INTRODUCTION

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010

16
S

 r
R

N
A

 S
eq

ue
nc

es
 (

lo
g

sc
al

e)

Date of Publication

RDP-II
ARB SILVA

Figure 1.5: Growth rate (in 16S rRNA gene sequences per year) of the rRNA databases
The Ribosomal Database Project (RDP-II) and ARB SILVA between 1992 and 2012. RDP-
II currently provides free access to 2, 320, 464 16S rRNA sequences (Release 10, June 1,
2012). The latest ARB SILVA release SSU Ref NR 108 from September 2011 contains
618, 442 quality checked rRNA sequences and additionally provides a phylogenetic tree. The
statistics were taken from the release notes of ARB SILVA and RDP-II websites. Sources:
http://www.arb-silva.de/no_cache/download/archive/ and http://rdp.cme.msu.edu/

1.6 Outlook

A main goal of this thesis is the comprehensive computation of signature candidates for large

sequence datasets and corresponding phylogenies. Maintainers of the previously mentioned

large gene and genome databases can use this to precompute and offer collections of signature

candidates along with their up-to-date datasets. A crucial part of this design process is building

a bipartite graph that contains the links between sequences and signatures. Efficient search

indices are used to find match locations of substrings on indexed string sets. The algorithms

that are presented in the following Chapters 3 and 4 are using the ARB PT-Server as search

index. A brief introduction to indices and the PT-Server is given in the following Chapter 2.

Another important factor is the evaluation of the usefulness of a signature by predicting its

thermodynamic characteristics. These characteristics may differ depending on what is going to

be designed (primer or probe) and the biotechnological process that is going to be used. The

following chapter provides background on the thermodynamic formulas that were used in the

implementation of this thesis.

Chapter 2

Related Computational Methods in

Bioinformatics

The search for patterns in sequence datasets quickly becomes a problem difficult to solve when

applying naive search approaches without reducing the search space. Even widely applied

approaches and tools (Section 3.3.5) either run into runtime constraints or lead to excessive

memory consumption — or both — when processing a typical gene or genome dataset. This

chapter contains necessary preparatory work in order to attenuate computational requirements

for the approaches which will be presented in the following chapters.

The most obvious step is the reduction of the overall number of processed k-mer signatures.

When dealing with RNA or DNA signatures of a defined length k, 4k unique variations exist

— but not all of them might be worth to be processed. In Section 3.3.4 the pre-filtering

of signatures is discussed from a computational point of view. In Section 2.1 biochemical

aspects are considered that may influence the search for valuable signature candidates, especially

thermodynamic requirements.

Under certain conditions, a primer or probe may bind even if it does not completely match

the corresponding signature site on the organism’s genetic material. Unsuitable environmental

conditions, on the other hand, can lead to failing bindings even if a perfect match exists in

silico. Relaxed search methods that were applied in this work cope with such problems up to

a certain degree, and they may also counteract typical errors in the datasets themselves. They

are discussed in Section 2.2.3.

Efficient methods for the storage and search within sequence collections have to be applied.

On the one hand signatures have to be generated from the sequences, on the other hand they

have to be matched against the dataset. The implementation in this work is a way to cope with

this problem.

13

14 CHAPTER 2. RELATED COMPUTATIONAL METHODS IN BIOINFORMATICS

2.1 Thermodynamic prediction and filtering

In the following subsections, thermodynamic models are discussed for their use as pre-filters.

They can further reduce the signature search space by, for example, dropping signature can-

didates whose thermodynamic parameters are outside the boundaries defined by the selected

detection method.

Whether a primer or probe binds to a signature site, or not, is (unfortunately from a

computer scientist’s point of view) not a binary effect. The biochemical processes that let two

oligonucleotide sequences bind to each other are influenced by a number of factors: the base

types and their sequential arrangement, the detection method, the conditions of the environment

at which the hybridization takes place — just to name a few. All these factors have influence

on the thermodynamic stability of the RNA or DNA duplex and thereby on the quality of the

primer or probe.

A lot of thermodynamic models have been designed throughout the last half-century to

calculate the stability and temperature-dependent behavior of RNA and DNA duplexes. They

range from simple ones like the GC-content (Section 2.1.2) and the simple melting temperature

predictions by Marmur or Wallace (Section 2.1.3) to complex predictions based on the ∆G

Gibbs free energy (Section 2.1.4).

2.1.1 Introduction

The interaction that happens between two complementary DNA strains that form a double

stranded helical structure or an RNA-RNA hybrid is called hybridization. Under normal con-

ditions (e.g. 37◦C) the two complementary DNA strands are only when being replicated (tran-

scription) or when being repaired in a single stranded form. The process of forcing DNA to

split up into its single stranded form by breaking the hydrogen bonds is called denaturation or

melting. This process is usually heat-induced. The contrary process of RNA or DNA pairing to

a complementary sequence by hydrogen bonds is called annealing. Single stranded RNA typi-

cally binds to complementary regions on its own strand forming secondary structures. Often,

these secondary structures are important for metabolic or catalytic processes in which the RNA

is directly involved.

The temperature at which annealing and denaturation take place is essential for the speci-

ficity of an oligonucleotide when binding to its target. Working at wrong temperatures can lead

to incorrect bindings of primers and probes. A key parameter here is the melting temperature

Tm. It is defined as the temperature at which the number of two bound oligonucleotide strands

and the number of single stranded ones are in equilibrium, i.e. 50% of the oligonucleotides

are forming a duplex. Annealing or hybridization is usually performed at temperatures a few

degrees below that temperature, and denaturation significantly above it [95]. The length and

concentration of RNA or DNA oligonucleotides are the main factors which influence the melting

temperature. Besides, the salt concentration and present denaturants can also influence it.

2.1. THERMODYNAMIC PREDICTION AND FILTERING 15

5’-G-A-T-T-A-C-A-G-A-T-T-A-C-A-3’

| | | | | | | | | | | | | |

3’-C-T-A-A-T-G-T-C-T-A-A-T-G-T-5’

Figure 2.1: In the following sections, this DNA oligonucleotide with 14 bases will be used as a
sample for the thermodynamic calculations.

2.1.2 GC-content

The guanine-cytosine content (GC-content) is the percentage of the nucleotides guanine (G) and

cytosine (C) that are present in an oligonucleotide strand:

%GC =
|G|+ |C|

|A|+ |T|+ |G|+ |C|
· 100% (2.1)

The GC-content of the sample DNA oligonucleotide in Figure 2.1 is 28.6%.

A high GC-content is an indicator for a higher melting temperature of an oligonucleotide

sequence. Guanine and cytosine pairs bind by three hydrogen bonds, while adenine and thymine

(uracil) pairs only bind by two hydrogen bonds (Figure 2.2). A higher number of hydrogen

bonds stabilizes the oligonucleotide duplex and thereby results in a higher thermal stability [19,

page 142].

NH

N

O

O

H 3 C

deoxyribose

N

N

N

 N H 2 N

deoxyribose

N

N

O

NH 2

deoxyribose

N

HN
N

 N O

H 2 N

deoxyribose

Thymine Adenine

GuanineCytosine

Figure 2.2: Cytosine and Guanine share three hydrogen bonds, Thymine and Adenine only two.
(Not shown: Uracil also binds only with two hydrogen to Adenine.) RNA or DNA with a high
GC-content tends to be more stable due to the higher number of hydrogen bonds.

2.1.3 Simple melting temperature predictions

Several simple formulas exist to predict the melting temperature of oligonucleotides. Maybe

the most simple one is known as the “2+4 rule” or Wallace-rule [113]. It can only be applied

16 CHAPTER 2. RELATED COMPUTATIONAL METHODS IN BIOINFORMATICS

for short DNA oligonucleotide sequences for about 14–20 base pairs (at a salt concentration of

0.9M NaCl):

Tm = (|A|+ [T]) · 2◦C + (|G|+ |C|) · 4◦C (2.2)

Guanine and Cytosine with the possibility of building three hydrogen bonds lead to a higher

melting temperature; their number of occurrence is multiplied by 4◦C. Adenine and Cytosine

only lead to an increase of 2◦C per base.

Another simple formula to compute the melting temperature for short oligonucleotide se-

quence lengths was defined by Marmur and Doty [73]:

Tm = 64.9◦C +
41◦C · (|G|+ |C| − 16.4)

(|A|+ |T|+ |G|+ |C|)
(2.3)

Both formulas are still widely used for a first approximate determination of the melting

temperature of short oligonucleotide primers and probes. Many software tools or calculation

servers [83, suppl.mat.] use a combination of both approaches for a fast prediction. For oligonu-

cleotides up to 13 base pairs the formula according to Wallace is used and for longer oligonu-

cleotides the formula according to Marmur and Doty.

In case of our example from Figure 2.1 with 14 bases, Tm is 28.6◦C according to equa-

tion (2.3). (Equation (2.2) would lead to 36◦C and would diverge even more for longer oligonu-

cleotides.)

2.1.4 Nearest-Neighbor predictions

Instead of solely focusing on the interactions between complementary base pairs of two oligonu-

cleotide strands, nearest-neighbor methods [18, 108, 98, 111] also take neighboring bases, i.e.

the base composition, into consideration. The prediction of the melting temperature Tm for

complementary oligonucleotides is based on the thermodynamic relation between the entropy S

and enthalpy H. In thermodynamics, the entropy change ∆S is a measure of the randomness

or uniform distribution of energy within a process, having its maximum at the equilibrium of

a reaction. The change in enthalpy (or heat content) ∆H describes the energy that is emit-

ted during a reaction. A positive enthalpy value describes an endothermic (energy absorbing)

reaction, a negative value an exothermic (energy releasing) one.

The entropy ∆S and enthalpy ∆H of an oligonucleotide duplex can be calculated by sum-

ming up the respective values for the dinucleotides, the initial and terminal nucleotide, and

symmetry terms [111]:

∆H◦ =

(
n−1∑
i=1

∆H◦(si, si+1)

)
+ ∆H◦(init. s1) + ∆H◦(term. sn) + ∆H◦(symm.) (2.4)

where n is the number of nucleotides in the sequence S = 5′−(s1, . . . , sn)−3′ and ∆H◦(i) is the

enthalpy of the dinucleotide at position i (from the 5’- to the 3’-end). The same formula (2.4)

applies for the entropy ∆S◦. If the oligonucleotide is self-complementary, the symmetry correc-

2.1. THERMODYNAMIC PREDICTION AND FILTERING 17

tion value ∆H◦(symm.) in the equation is added — otherwise it is zero. Corresponding tables

with the thermodynamic parameters can be taken from published data, e.g. from Sugimoto [108]

or SantaLucia [98]. The latter parameters are shown in Table 2.1 on page 18.

Based on the summed up values for the entropy and enthalpy, the following equation [111]

is used to calculate the melting temperature Tm for the oligonucleotide sequence

Tm =
∆H◦

∆S◦corr + ln(c[oligo]2) · 1.987 cal
K·mol

− 273.15K (2.5)

where c[oligo] is the concentration of the oligonucleotides (in mol/l). If the oligonucleotide is

self-complementary, its concentration c[oligo] in the denominator in the equation is divided by

4 instead of 2.

The factor ∆S◦corr is correcting the influence of the salt concentration on the entropy [111]:

∆S◦corr = ∆S◦ + 0.368 · n ln(c[salt]) (2.6)

where n is the number of nucleotides and the salt concentration c[salt], normalized to mol/l, is

given as

c[salt] = c[Na+] + c[Mg2+] · 140 (2.7)

The enthalpy is not influenced by the salt concentration and therefore needs no correction.

In the following example, the DNA duplex from Figure 2.1 is again used to calculate the

melting temperature with the nearest-neighbor method. The entropy and enthalpy changes are

determined by stepping through the dinucleotides from the 5’- to the 3’-end. The respective

values from the Table 2.1 are then added up (calculation was truncated):

∆H◦ =∆H◦(init.G) + ∆H◦(GA) + ∆H◦(AT) + ∆H◦(TT)+

. . .

+ ∆H◦(TA) + ∆H◦(AC) + ∆H◦(CA) + ∆H◦(term.A)

=− 100.2
kcal

mol

(2.8)

∆S◦ =∆S◦(init.G) + ∆S◦(GA) + ∆S◦(AT) + ∆S◦(TT)+

. . .

+ ∆S◦(TA) + ∆S◦(AC) + ∆S◦(CA) + ∆S◦(term.A)

=− 282.1
cal

mol ·K

(2.9)

Under the assumption that the concentration of the salt c[salt] = 1 mol/l (so no correction

of the enthalpy is necessary) and the oligonucleotide concentration is c[oligo] = 0.01µmol/l, the

18 CHAPTER 2. RELATED COMPUTATIONAL METHODS IN BIOINFORMATICS

Dinucleotide ∆H◦ in kcal
mol ∆S◦ in cal

mol·K ∆G◦37 in kcal
mol

AA -7.9 -22.2 -1.00
AC -8.4 -22.4 -1.44
AG -7.8 -21.0 -1.28
AT -7.2 -20.4 -0.88
CA -8.5 -22.7 -1.45
CC -8.0 -19.9 -1.84
CG -10.6 -27.2 -2.17
CT -7.8 -21.0 -1.28
GA -8.2 -22.2 -1.30
GC -10.6 -27.2 -2.17
GG -8.0 -19.9 -1.84
GT -8.4 -22.4 -1.44
TA -7.2 -21.3 -0.58
TC -8.2 -22.2 -1.30
TG -8.5 -22.7 -1.45
TT -7.9 -22.2 -1.00

Init./Term. A 2.3 4.1 1.03
Init./Term. C 0.1 -2.8 0.98
Init./Term. G 0.1 -2.8 0.98
Init./Term. T 2.3 4.1 1.03

Symmetry correction 0 -1.4 0.43

Table 2.1: Unified thermodynamic nearest-neighbor parameters according to SantaLucia [98].
The table contains the entropy change ∆S◦ and enthalpy change ∆H◦ at a salt concentration
of 1 M NaCl. The Gibbs free energy ∆G◦37 is given at 37◦C.

melting temperature is

Tm =
−100.2 kcal

mol

−282.1 cal
mol·K + ln(

0.01µmol
l

2) · 1.987 cal
K·mol

− 273.15K = 39.9◦C (2.10)

2.1.5 Gibbs free energy ∆G◦

The previously presented approaches resulted in the melting temperature Tm as main parameter

for the prediction of the cross-hybridization of two oligonucleotides. A thermodynamic param-

eter that is used for the prediction is the Gibbs free Energy (∆G). Its value describes how

“sticky” a signature is at a certain temperature, i.e. the thermodynamic stability of a signature

site and a corresponding primer or probe [98, 114].

Based on the nearest-neighbor model, the Gibbs free energy for an oligonucleotide duplex can

be computed by summing up the respective values of all dinucleotides similar to Formula (2.4).

∆G values for a temperature of 37◦C, published by SantaLucia [98], can be found in Table 2.1.

Another more generic approach is to derive the Gibbs free energy ∆G◦ from the enthalpy and

2.2. APPROXIMATE SEARCH 19

entropy values with the Gibbs-Helmholtz equation

∆G◦T = ∆H◦ − T∆S◦ (2.11)

where the temperature T is defined in Kelvin (K).

For our sample oligonucleotide from Figure 2.1, the entropy change from equation (2.9) and

enthalpy change from equation (2.8) can be used to determine

∆G◦37◦C = −100.2
kcal

mol
− (273.15 K + 37 K) · −282.1

cal

mol ·K
= −12.71

kcal

mol
(2.12)

in this case at 37◦C.

The ∆G value is temperature dependent, as the Formula (2.11) indicates: a ∆G value of a

primer at the minimum and maximum temperature of a PCR will most certainly differ. Besides

that, the only relationship between the melting temperature Tm and the Gibbs free energy ∆G

is their derivation of the enthalpy ∆H and entropy ∆S changes. A good explanation of the

possible lack of a relation between the Gibbs free energy (∆G) and the melting temperature

(Tm) can be found in a technical report by J. Manthey [72]. He suggests using the ∆G value in

combination with Tm:

Unfortunately, there is no real relationship between ∆G and Tm where one can be

used to identify the other. While it has been the standard to only use the Tm value

when comparing thermodynamic equivalency between oligonucleotides, whether it is

for PCR, or microarray designs, or maximizing SNP discrimination, it is suggested

that the Tm value alone is also insufficient for thermodynamic comparison. The

recommendation is that the two values, Tm and ∆G, together can provide much more

qualitative thermodynamic understanding of a duplex or structure than either of the

two values alone. Where as, the utilization of their principle components Enthalpy

(∆H) and Entropy (∆S) can produce a quantitative thermodynamic understanding

and is ideal for computational comparisons. [72, Abstract]

A factor that is important for the following Section is the Gibbs free energy ∆G value of e.g.

a probe with its targets and possible non-targets. Mismatches, as described in the following

Section 2.2, are used to discriminate targets from non-targets. As a consequence, the ∆G values

of an oligonucleotide binding to a target sequence should differ from any non-target sequence.

Although the melting temperatures of both may lie next to each other, their free energy can be

used to differentiate good from bad oligonucleotide signature candidates.

2.2 Approximate Search

Searching signature sites using “paper and pencil” strategies might work for small datasets,

but already a single gene will take some time depending on your skills. When confronted with

longer sequences or more organisms, this method quickly fails. Search indices (Section 2.2.1)

help to cope with that problem and even allow approximate string searching methods.

20 CHAPTER 2. RELATED COMPUTATIONAL METHODS IN BIOINFORMATICS

2.2.1 Search indices

Searching for a given sequence pattern, a signature, or querying for a non redundant set of

signatures of a certain size in the complete dataset using linear methods (e.g. a sliding window

over the complete dataset) is time consuming. Digital search trees [57, page 492–496], most

notably suffix tries and suffix trees, are data structures that facilitate such searches. A nice

overview of algorithms for the search tree construction, which are not described in detail in this

work, can be found in Barsky et al. They also provide an introduction to search trees:

A signature string S = s1s2 . . . sn is a sequence of n symbols from the alphabet∑
and a terminal sentinel symbol sn = $ /∈

∑
. The alphabet for RNA or DNA

sequence data would be
∑

= {A,C,G, T |U}. A suffix Si = si . . . sn, 0 ≤ i ≤ n of

the signature string S is the substring that begins at position i.

A suffix trie is a trie for all the suffixes of S. In a trie, each edge represents a

character from the alphabet
∑

. Sibling edges must represent distinct symbols; each

trie node therefore has a maximum of |
∑
| children. Each suffix can be found

in a trie by starting at the root node and following the edges that represent the

continuous characters of the suffix string (Figure 2.3, left). In the worst case, the

total number of nodes in the trie is quadratic in n. This happens when all paths

in a trie are disjoint. In our case, the small number of characters in the alphabet

(|
∑
| = 4 for RNA or DNA sequences) should prevent the worst case.

By collapsing paths that contain unary nodes into a single edge, the total number

of edges and nodes can be reduced. The resulting structure is called a suffix tree

(Figure 2.3, right). Instead of following single characters when searching a suffix,

substrings that are associated with the edges are compared and concatenated. A

generic suffix tree contains exactly n leaves with a degree of at least 2, and at most

n − 1 inner nodes. In our case, the length of signature strings that are searched

within a suffix tree are limited by their biochemical characteristics. Common im-

plementations therefore reduce the search trees by pruning them at a certain depth,

which was determined empirically (an example is shown in Figure 2.4).

[13, notation and phrases adapted]

In our case two main advantages of search trees are important. First, they allow querying

all unique substrings in linear time by traversing the tree. Furthermore, they allow pattern

matching, i.e. searching a substring within sequence data, again in linear time depending on

the substrings’ length. Both features are needed when building the bipartite graph that matches

sequences (organisms) with signatures. This is more deeply described in the two approaches

implemented in this work: in Section 3.2.1 and in Section 4.4. The main disadvantage of search

trees is their memory consumption which is significantly higher that that of the input data. A

rule of thumb is a factor of 10–30 (Section 3.3.1).

Having long-term experience with the ARB Software Environment and being a co-developer

has lead to the use the ARB PT-Server. It is presented in the following Section 2.2.2. But

2.2. APPROXIMATE SEARCH 21

7

C T

5

A T

A

C

2

A

6

A A

T

T

A

C

1

A

A T

C

4

A

A

C

3

A

root

A C G T

7

2

TTACA

5

CA

3

TTACA

4

ACA

1 6

root

A T GATTACA CA

G A T T A C A

1 2 3 4 5 6 7

sequence:

char pos:

suffix trie suffix tree

Figure 2.3: Digital search trees that facilitate the search for suffixes within sequence strings,
here S = {GATTACA$}. The terminal character $ is not shown in the trees. A suffix can be found
through traversing the tree from the root to a terminal leave node with the starting position of
the suffix in the tree. In case of a suffix trie (left), this is done by concatenating single characters
from the edges. In case of a suffix tree (right), substrings at the edges are concatenated.

being a “basic tool” in computer science and of great importance in bioinformatics, many

other approaches exist that provide search index features. One of the most common uses is

processing “Sequencing by Oligonucleotide Ligation and Detection” (SOLiD) reads. In this

case the index is used to efficiently align short sequence reads against large reference sequence

datasets. The Burrows-Wheeler Alignment tool (BWA) [64] is an example for such a tool.

Other approaches even rely on different types of index structures. Abouelhoda et al. has

shown that the functionalities of a suffix tree can be replaced by a less memory consuming

suffix array [1]. Spaced seeds may even further reduce the memory footprint and still allow

relaxed string searches [21], but are tricky to use in generic approaches. So, although the

underlying index structures may be generic in many cases, the implemented tools are designed

and optimized for applications that do not have the same requirements as this work.

22 CHAPTER 2. RELATED COMPUTATIONAL METHODS IN BIOINFORMATICS

2.2.2 The ARB PT-Server and MiniPT

The ARB Position Tree server (PT-Server) is the central search index of ARB, a software

environment for handling and analyzing rRNA data, managing protein sequences, contigs and

genomes [117, 70]. It provides interfaces for signature extraction and exact and approximate

string matching in nucleic acid sequence data.

The PT-Server is designed as a client-server application with a persistent search index.

Requests and the corresponding answers are transmitted via TCP-IP, using an application-

specific protocol. Before a PT-Server can be used for the first time, its index has to be created

in memory and then be written to the hard disk. From there, the index can be loaded whenever

necessary.

The ARB PT-Server implements a k-truncated suffix trie [101, similar approach] with a

maximum height of k = 20 bases (Figure 2.4). Every edge of the suffix trie represents a base,

so that the paths from the top to the bottom form all possible substrings in the dataset. Leaves

contain a special array structure called chain. Chain entries contain sequence identifiers and

absolute base positions, at which the characters from the path (from the root node to the leaf)

can be found. A PT-Server specialty is the internal use of the dot character “.” to indicate base

positions with an unknown base. It can be compared to “N” in the IUPAC code. In the official

IUPAC code a dot has a different meaning (Table 1.1). The PT-Server therefore internally

works with five different branches {A,C,G, T |U,N}.

trunkated
suffix trie

7

C T

5 2 6

A A

1

A T

4 3

root

A C G T

depth=2 G A T T A C A

1 2 3 4 5 6 7

sequence:

char pos:

search extended to sequence

Figure 2.4: Example of a PT-Server’s suffix trie structure, built from the sequence S =
{GATTACA$} and truncated at a depth of 2. When the the depth limit is reached (i.e. the
query string is longer than the trie’s depth limit), linear search is performed in the sequence
itself at the referenced character positions in the chain (leaf node).

The k-truncated suffix trie is a good compromise for applications where short oligonu-

cleotides are being used. By default the ARB PT-Server depth is set to k = 20 and can

(only) be changed in the source code. Empirical tests have shown that limiting the depth to

20 avoids an extreme degeneration of the suffix trie [107] and thereby allows a memory efficient

fast search (Section 3.3.1). A disadvantage of this design is the way in which searches for sig-

natures whose length exceeds k are handled. When reaching a chain (a leaf node), the search

2.2. APPROXIMATE SEARCH 23

is continued directly on sequences at the positions that are referenced in the chains. This can

lead to significant performance degradation. Additionally, the sequences have to be available in

memory to continue the search, if necessary. It is therefore recommended to keep the maximum

search string length below the tree’s depth.

An even greater disadvantage of the PT-Server is its huge dependency on main memory

when building its search index. Initially, the PT-Server loads the complete source database

into the main memory. Current (February 2012) sequence databases like Greengenes [29] or

SILVA [89], which both contain small subunit rRNA gene sequences, already require about

4 GBytes of main memory and an end to growth is not in sight. This makes them unusable on

32 bit architectures or systems with only up to 4 GBytes of main memory.

The PT-Server estimates the required memory for building the search index by assuming a

maximum of 55 bytes per base. If the memory requirements for the complete index structure

exceeds the available main memory, the PT-Server splits the search index structure into 5p par-

titions. Each partition represents a branch in the suffix trie. It can be processed independently.

The value 1 ≤ p ≤ k is increased until the size of a partition fits into main memory.

The MiniPT search index is a lightweight derivate of the PT-Server, providing the same

functionality. It was developed parallel to CaSSiS in order to avoid overhead in search queries.

Unlike the PT-Server, which is a client-server application, MiniPT allows direct access to in-

ternal data structures. The PT-Server’s communication protocol was removed. The MiniPT

search index is not dependent on the ARB environment and thereby avoids a drawback of its

predecessor: The PT-Server can only be constructed from an ARB database and relies on this

database even after its construction. MiniPT’s memory consumption is lower as it does not

require the completely loaded sequence database during its build or during runtime. This is

only possible due to the fact, that in this work the maximum search string length is already

known when building the search index. In other cases, this would lead to a significant loss of

information, as a continued search in the sequence itself would not be possible. Up to a hard

defined limit, it can extend the trie truncation limit k to perform the search completely in the

suffix trie. In the following chapters, the MiniPT is used as the central search index in all

applications.

The PT-Server and its descendant MiniPT are not the only search indices that provide the

two main features that are of importance for this thesis: providing a list of all unique substrings

in linear time and allowing searching these substrings within their index structures. Another

search index that was developed in the context of the ARB environment is PTPan (pronounced:

Peter Pan). It also is a descendant of the PT-Server and was designed as an improved drop-in

replacement. It therefore provides the same interfaces. Eissler et al. describes PTPan as. . .

. . . a space-efficient indexing structure for approximate oligonucleotide string match-

ing in nucleic acid sequence data. Based on suffix trees, it combines partitioning,

truncation and a new suffix tree stream compression to deal with large amounts

of aligned and unaligned data. PTPan operates efficiently in main memory and

on secondary storage, balancing between memory consumption and runtime during

construction and application. [33, Abstract]

24 CHAPTER 2. RELATED COMPUTATIONAL METHODS IN BIOINFORMATICS

PTPan provides approximate string matching based on Levenshtein “edit” distances. This

allows the search for base insertions and deletions “indels” — a feature that is not provided by

the PT-Server. Another advantage is its lower memory consumption during build time due to

a more sophisticated partitioning strategy. PTPan, on the other hand, is significantly slower in

processing queries [33].

This work and the development of PtPan were done at the same time. It was not until the

beginning of 2012 that a working test version was available. It is currently (June 2012) being

integrated into the testing branch of the ARB software package. For this reason, all tests in this

work were performed with the at that time available ARB PT-Server and the nearly identical

MiniPT.

2.2.3 Approximate string matching

Statistical analysis is necessary in order to make statements about the quality of an oligonu-

cleotide probe. Two conditional probabilities are usually used to describe the quality: the

sensitivity and the specificity of a probe [92]. Both probabilities have their roots in the statis-

tical analysis of medical screening [2].

It is necessary to distinguish between the calculated and the real “quality” of a probe. The

in silico quality of an oligonucleotide probe is determined by comparing its calculated target

scores with the target group it was designed for (and with the non-targets). This is usually done

by the software that computes and proposes the oligonucleotides as probe candidates. The real

quality of an oligonucleotide probe can only be determined in a wet lab under the conditions

the probe was designed for. The probe should reliably hybridize against the targets and not

hybridize with possibly present non-targets. The results of the experiments in the wet lab

are then compared with the results from a gold standard test, the best known reference that

is comparable. In both cases, wet lab and in silico evaluation, the results are then arranged

according to Table 2.2.

Outcome True state (gold standard / target group)
(wet lab / evaluation) ⊕ 	 Total

Hybridized ⊕ TP FP TP + FP

Not hybridized 	 FN TN FN + TN

Total TP + FN FP + TN N

Table 2.2: To simplify the statistical analysis, it is assumed that an oligonucleotide either
hybridizes with a target (i.e. positive) or it does not (i.e. negative). As already shown in
Section 2.1, this assumption is only as good as the underlying model. The results of N tests
are ordered into true positives (TP), true negatives (TN), false positives (FP), and false neg-
atives (FN).

The sensitivity (true positive rate) is the proportion of true positives (TP) that are correctly

2.2. APPROXIMATE SEARCH 25

identified to the total number of positives [14]:

sensitivity = P (positive|TP) =
TP

TP + FN
(2.13)

In case of oligonucleotide probes, it shows how good a probe is in detecting a defined target

group. A high sensitivity indicates a high chance that a positive result (i.e. the probe hybridizes)

was caused by a target that lies within this group. This can also be used to rule out the presence

of a defined group: a probe with a high sensitivity and a negative result (i.e. no hybridization)

suggests that no target from the group is in the sample.

The term sensitivity is also used for the lowest concentration of a probe and their targets to

obtain reproducible results: The higher the sensitivity, the lower the concentration. Thermo-

dynamic effects have a strong influence on this sensitivity (Section 2.1). Although both cases

in which the term is used are associated, the first definition will be used in the following text.

The specificity (true negative rate) is the proportion of true negatives that are correctly

identified to the total number of negatives:

specificity = P (negative|TN) =
TN

TN + FP
(2.14)

Ideally, a probe should have both, a high sensitivity and high specificity. In most cases, there

are trade-offs between the two factors.

Chapter 3

The CaSSiS-BGRT Approach

PCR, hybridization, DNA sequencing and other important methods in molecular diagnostics

rely on both sequence-specific and sequence-group-specific oligonucleotide primers and probes.

Their design depends on the identification of oligonucleotide signatures in whole genome or

marker gene sequences. Although genome and gene databases are generally available and reg-

ularly updated, collections of valuable signatures are rare. Even for single requests, the search

for signatures becomes computationally expensive when working with large collections of target

(and non-target) sequences. Moreover, with growing dataset sizes, the chance of finding exact

group-matching signatures decreases, necessitating the application of relaxed search methods.

The resultant substantial increase in complexity is exacerbated by the dearth of algorithms able

to solve these problems efficiently.

We have developed CaSSiS-BGRT, a fast and scalable method for computing comprehen-

sive collections of sequence- and sequence-group-specific oligonucleotide signatures from large

sets of hierarchically-clustered nucleic acid sequence data. Based on the ARB Positional Tree

(PT-)Server and a newly-developed BGRT data structure, CaSSiS-BGRT not only determines

sequence-specific signatures and perfect group-covering signatures for every node within the

cluster (i.e. target groups), but also signatures with maximal group coverage (sensitivity)

within a user-defined range of non-target hits (specificity) for groups lacking a perfect common

signature. An upper limit of tolerated mismatches within the target group, as well as the min-

imum number of mismatches with non-target sequences, can be predefined. Test runs with one

of the largest phylogenetic gene sequence datasets available indicate good runtime and mem-

ory performance, and in silico spot tests have shown the usefulness of the resulting signature

sequences as blueprints for group-specific oligonucleotide probes.

This Chapter is an extended version of an article [12] published in Bioinformatics, that was

joint work with Christian Grothoff and Harald Meier. Section 3.4 is based on the final report for

a bachelor project supervised by me: Sebastian Wiesner implemented an OpenMP-parallelized

version of the CaSSiS-BGRT traversal algorithm.

27

28 CHAPTER 3. THE CASSIS-BGRT APPROACH

3.1 Introduction

Oligonucleotide primers and probes are the key diagnostic agents in technologies that allow the

rapid, sensitive and specific detection of nucleic acid signatures in samples. In fields such as

medicine, food research and environmental microbiology, they are used to identify organisms

with specific properties [109, 91, 23]. For applications such as microbial population analysis

and molecular screening for microbial pathogens or indicators, there is the additional challenge

of detecting and distinguishing organism groups (rather than single organisms), which can be

identified in a number of ways (phylogenetically, taxonomically, etc). Designing group-specific

primers and probes, however, is a significant challenge, as these primers and probes should

reliably hybridize with the target sequences (i.e. have a high coverage) within the group but

not interact with any non-target sequence that might be in the same sample [76, 66].

In many studies, conserved housekeeping genes or gene products such as ribosomal RNA

(rRNA) are targeted [3, 102]. Considerable collections of probe or signature sequences for

suitable target genes are rare. One exception is probeBase, which provides sequences and anno-

tations of already published rRNA-targeted oligonucleotide probes [68]; however, many of these

probes were designed in the past on the basis of small sequence data collections. Some of them

would have to be reevaluated, optimized or even newly designed to take the relevant rRNA

gene sequence data in comprehensive highly curated databases into account [3]. The SILVA

SSU-rRNA reference database [89] contains such a curated collection of annotated nucleic acid

sequence data, which is deeply hierarchically-clustered by phylogenetic relationship.

This work details a new computational method for the comprehensive search for sequence

and group-specific oligonucleotide signatures (hereafter simply referred to as signatures). Our

method uses the SILVA reference database to create a signature collection that could be used to

provide the sequence information of binding sites and design templates for valuable phylogenetic

primers and probes. Signature collections could be published alongside the generally available

and regularly updated sequence databases, and in combination, both could facilitate the design

of oligonucleotide primers and probes.

There are already several published approaches for searching signature or probe sequences.

PROBESEL [53], OligoArray [94], OligoWiz [116], YODA [80] and CMD/PSID [62] all spe-

cialize in finding unique signatures for single sequences but cannot search for signatures that

are specific to groups. Others, such as PRIMROSE [8] and ARB-ProbeDesign [70], allow

searches for group-specific signatures; however, they are limited to one selected target or tar-

get group per run. Performing individual runs for all sequences or sequence groups of a large

hierarchically-clustered dataset is impossible due to memory and runtime limitations. HPD [22]

is more comprehensive and uses a bottom-up approach on a hierarchical cluster to generate both

sequence- and group-specific signatures from one dataset in a single run. Unfortunately, HPD’s

search capability exhibits memory and runtime problems when applied to large-scale datasets

for several thousand sequences and clusters [34].

More recently published tools, ProDesign [34] and Insignia [87], are capable of comprehen-

sively identifying signatures for large collections of clustered DNA sequences and even whole

3.2. MATERIAL AND METHODS 29

genomes. ProDesign uses a sophisticated spaced seed hashing approach to speed up its word

indexing process; however, depending on the seed and the clustering used, ProDesign may lead

to suboptimal results. Furthermore, for the identified group-specific signatures, ProDesign does

not provide detailed information regarding coverage and specificity beyond hard-coded search

constraints (more than 95% ingroup matches, less than 5% outgroup matches). Insignia relies

on a large set of preprocessed genome sequences to quickly determine only those signatures

that match the entire target sequence group [86]. As a result, potentially valuable signatures

matching a subgroup may be missed. Both ProDesign and Insignia are primarily designed to

handle flat clusterings and are unsuited to comprehensively process predefined deep hierarchies.

This chapter describes the specifics and implementation of Comprehensive and Sensitive

Signature Search (CaSSiS-BGRT, Figure 3.1), a new algorithm addressing some of the limita-

tions mentioned above. Specifically, CaSSiS-BGRT is capable of computing comprehensive sets

of sequence- and group-specific signatures, even for large collections of deeply hierarchically-

clustered sequences under both strict and relaxed search conditions. CaSSiS-BGRT sorts sig-

nature sequence results by degree of specificity, and all signatures guarantee the predefined

Hamming distance to non-target sequences. For signatures which cover sequence groups incom-

pletely, statistical information on the sensitivity is provided.

3.2 Material and Methods

CaSSiS-BGRT consists of three computational stages. The first stage (Section 3.2.1) is the

extraction of signature candidates (candidates, because their specificity has to be further eval-

uated) from sequence data and their specificity evaluation; the result of the first stage is a

bipartite graph relating sequences to signature candidates. The second stage (Section 3.2.2)

performs hierarchical sorting of the signature candidates, resulting in a Bipartite Graph Rep-

resentation Tree (BGRT). The last stage (Section 3.2.3) extracts valuable signatures from the

BGRT for each node in a hierarchical cluster — in our case, a phylogenetic tree. The result is

a comprehensive set of signature candidates for all nodes in a phylogenetic tree (phy-nodes).

We will illustrate the algorithm using a running example (Figures 3.2, 3.4 and 3.5, and

Table 3.1). Arabic numerals are used to refer to both the sequence entries in the analyzed data

collection and the leaves representing them in the phylogenetic tree. Signatures are labeled

with capital letters. Phylogenetic groups of sequences and their respective inner tree phy-nodes

are specified using Roman numerals to indicate their depth in the tree, with lowercase letters

used to distinguish between groups at the same depth. We will refer to matches within a target

group as ingroup hits and non-target matches as outgroup hits. Additionally, because each

sequence entry in our test databases represents an organism, sequence and organism are used

synonymously in this manuscript.

30 CHAPTER 3. THE CASSIS-BGRT APPROACH

G T T G C A A G T C T T C

Genetic sequencing,
assembly & annotation

1

2

3

4

5

6

E
A

B
F

C
G

D
H

extract Bipartite Graph

create

Post in silico evaluation
(e.g. with the ARB tools)

Microarray with
oligonucleotide
RNA/DNA probes

5' 3'

5'3'

RNA/DNA primer pairs

by alignment
comparison

Primer & probe
candidates

published

Oligonucleotide
search index

(e.g. PT-Server)

Public
sequence
databases

Organisms Signatures

Phylo. tree

Chip

Result files:
List of signature
candidates for

tree nodes

applied
(e.g. in PCR)

BGRT Create BGRT Traverse

BGRT
File

ACCAGAAG

CCTGTAAG

TTGCAGGA

TGTTGAAC

AGATTACA

Comprehensive
resultsSingle queries

Figure 3.1: Schematic of the primer and probe design pipeline in which CaSSiS is embedded.
The input data for the CaSSiS-BGRT algorithm comes from public sequence and phylogenetic
tree databases. It can either be used to create comprehensive sets of signatures, which can be
used as a templates for new primers and probes. Or individual queries could be used to target
freely-defined groups.

3.2.1 Extraction and evaluation of signature candidates

The first stage of our algorithm generates a bipartite graph where signature candidates and

sequences are unique and signature matches within sequences are represented as edges between

the two sets (Figure 3.2). To build the bipartite graph in reasonable time (i.e. extract all

signature candidates and their matches), the ARB Position Tree (PT-)Server [70] was used.

The PT-Server supports index-based exact and inexact searches in nucleic acid sequence data

using a truncated suffix tree. It returns all matches of a query sequence that meet predefined

search constraints such as length, allowed Hamming distance (number of base mismatches),

weighted mismatches and others.

To allow signature candidates with up to m1 mismatches within the target group and a

Hamming distance of at least m2 > m1 to the next non-target match, an upper limit of m2 − 1

mismatches is used when fetching a list of matching organisms for any one signature candidate

(Figure 3.3). Sequences with Hamming distance less than m1 (I and O) are used to generate

the bipartite graph. Sequences with Hamming distances between m1 and m2 mismatches are

only counted; those totals are then added to the number of outgroup hits for the candidate that

3.2. MATERIAL AND METHODS 31

Figure 3.2: Illustration of the input data for the second and third stage of our algorithm for
the running example. Left: the phylogenetic tree with group phy-nodes (Latin numerals) and
organisms (leaves: Arabic numerals). Right: the bipartite graph, showing which organisms
(Arabic numerals) are matched by which signature candidates (capital letters).

is computed from the bipartite graph in the next stage.

Note that currently only the Hamming distance between a signature candidate and its

matched targets is used for evaluation, not the actual position and type of mismatch on the

target sequences.

To restrict cross-hybridization to non-targets, CaSSiS-BGRT can be configured to check

candidates for matches within the antisense strands and exclude them, at the expense of possibly

producing suboptimal results. Additionally, CaSSiS-BGRT can discriminate against signatures

with abnormal melting temperatures and high GC-content. But such filters must be handled

with care (Section 3.3.4).

The basic melting temperature Tm basic for oligonucleotides up to a length l ≤ 13 base

pairs is calculated according to the equation (2.2). For longer oligonucleotides with l > 13 the

equation (2.3) is used. Tm basic is rather inaccurate when evaluating long oligonucleotide probes,

e.g. l ≥ 50 would lead to temperatures of 100◦C ≥ Tm basic ≥ 200◦C). For short oligonucleotides

(common primers and probes have lengths between 15 − 25 nucleotides) the temperature is a

good estimation.

Signature filtering can be done based on two different melting temperature calculations: the

basic melting temperature Tm basic (see Section 2.1.3) and a melting temperature Tm 37 using

the nearest-neighbor (base stacking) method at 37◦C (see Section 2.1.4).

The implemented nearest-neighbor model (Section 2.1.4) is working with approximate pa-

rameters (especially the salt correction; [111])based on SantaLucia [98]. The entropy and en-

thalpy parameters in his publication were obtained around 37◦C and for perfect matching du-

plexes. With increasing deviation from this temperature, the parameters become less accurate.

For duplexes with one or more mismatches, they have to be adapted, resulting in an error of

≤ 2◦C [111]. Additionally, the parameters were determined by measuring the thermodynamic

32 CHAPTER 3. THE CASSIS-BGRT APPROACH

Figure 3.3: Sequences with Hamming distance less than m2 to the candidate C are fetched.
Sequences with Hamming distance up to m1 can be ingroup (I) or outgroup (O) hits. Sequences
with Hamming distances between m1 and m2 (X) are counted, but not added to the bipartite
graph.

properties of short (∼ 20 bases) oligonucleotides in solution. The parameters for probes bound

to a RNA/DNA chip surfaces may therefore differ.

3.2.2 Organizing signature candidates by specificity

This stage arranges the signature candidates according to their specificities, resulting in the

BGRT. Each node in the BGRT (bgrt-node) contains a list of organisms and a list of signatures.

A signature in a descendant matches all of the organisms on the path from the root bgrt-node to

the bgrt-node where the signature is located. Each signature is located at exactly one position

in the BGRT, and organisms can be listed multiple times. Figure 3.4 illustrates the BGRT

construction algorithm.

Note that when 2,3:B (i.e. signature B matches organism 2 and 3) is added in step 2, the

construction procedure chooses not to merge with 1,2:A because the organism with the lowest

numerical ID (here 1) is not matched by both signatures. In contrast, 1,3:C is merged with

1,2:A because here the organisms with the lowest numerical ID (again 1) is matched by both

signatures.

This construction of the BGRT ensures a unique construction in the case where sets partially

overlap. The example illustrates the issue in Figure 3.4 in step 3. Here, there are theoretically

two possible ways for inserting 1,3:C. First, as shown in Figure 3.4, a bgrt-node with no

signature for organism 1 with two sub-bgrt-nodes 2:A and 3:C could be created (splitting

1,2:A). Alternatively, a bgrt-node with no signature for organism 3 with two sub-bgrt-nodes

2:B and 1:C could be created (splitting 2,3:B).

As described, our algorithm always splits the bgrt-node where the numerically smallest

organism ID overlaps. Consequently, the BGRT will contain deeper subtrees for organisms

with low IDs. As a result, assigning organisms deep in the phylogenetic tree smaller numeric

3.2. MATERIAL AND METHODS 33

Figure 3.4: The signatures in Figure 3.2 are added to the BGRT based on the organisms they
match. In each step, the algorithm inserts a signature and a numerically sorted set of organisms
that match it. For insertion, the algorithm traverses the BGRT, looking for overlaps between
the existing sets of organisms and the set for the signature being inserted. If the first elements
of the sorted sets intersect with the current bgrt-node, the algorithm generally splits the current
bgrt-node, creating new child bgrt-nodes to represent set differences. If the first elements are
different, it moves on to the next sibling. If there is no other sibling, a new sibling is created.

values is likely to improve performance in stage 3. Splitting bgrt-nodes differently would have

no impact on the correctness of the algorithm.

3.2.3 Determination of valuable signatures

The last stage performs a depth-first traversal of the phy-nodes of the phylogenetic tree. The

processing of an organism or a group of organisms during this traversal is called a phase and

we label the phase with the respective organism number (for example, “Phase 4”) or group

name (for example, “Phase IIb”). In each phase, the algorithm performs a depth-first traversal

of the BGRT in order to find signatures with the maximum number of ingroup hits for each

entry within the range of [0, k] outgroup hits. Since the organism sets are sorted numerically,

the algorithm determines the number of ingroup and outgroup hits at each bgrt-node in linear

time. If a signature with higher coverage (higher number of ingroup hits) for one of the entries

within the same outgroup hits range for the current phase is found, the algorithm updates the

result table accordingly.

The performance of the algorithm can be significantly improved by bounding the BGRT

traversal. If the number of outgroup hits at a given bgrt-node is already larger than k, the

34 CHAPTER 3. THE CASSIS-BGRT APPROACH

algorithm does not need to traverse the respective part of the BGRT for any of the descendants

of the current phy-node: the number of outgroup hits in the BGRT subtree under the bgrt-node

is guaranteed to be at least as large. Furthermore, since the algorithm traverses the phylogenetic

tree in a depth-first manner, we can bound the traversal of phylogenetic subtrees by considering

the best results found in the parent phase: organism groups that are parents in the phylogenetic

tree contain strictly more organisms than all of their descendant nodes; hence, when compared

to the best result achieved for the parent phase, the number of hits in the descendants can only

be fewer (or equal) and the number of outgroup hits can only be larger (or equal).

Our algorithm tracks the best results achieved for the parent phase in an additional array

associated with each bgrt-node (Figure 3.5). When traversing a bgrt-node in phase at depth

d, the algorithm consults the phase result table from the parent phase with depth d − 1 and

only traverses the bgrt-node if the current best solution (for a given number of outgroup hits)

is worse than the best solution of the respective BGRT subtree for the parent phase. If the

algorithm decides to traverse the BGRT subtree, it stores the best solution found in the phase

result table for all ancestors.

Bounding the BGRT traversal in this manner is particularly effective if the algorithm has

already found a reasonably good solution for the current phase. Our simple approach for finding

a good starting solution before traversing the tree is to use the best signature found in the parent

phase.

Note that on average, the number of organisms the BGRT traversal algorithm will try to

match in each phase is O(1). Thus, the worst-case complexity of BGRT traversal is O(nm),

where n is the number of phy-nodes and m is the number of bgrt-nodes. However, performance

is much better in practice due to the bounding method, especially given a reasonably low limit

for the outgroup hit range. Storing the best solutions for the parent phases increases memory

consumption from O(m) to O(md) where d is the depth of the phylogenetic tree. Thus, using

this bounding method is a time-memory tradeoff.

outgroup Phase
I IIa 1 2 IIb

0 3 (D,G) 2 (A) 1 (E) – 2 (H)

1 – 2 (D) 1 (A,C) 1 (A,B) 2 (G)

2 – 1 (G) 1 (D) 1 (D,G) 1 (D)

outgroup Phase
IIIa 3 4 IIIb 5 6

0 1 (F) – 1 (F) – – –

1
1

(B,C,H)
1 (B,C) 1 (H) 1 (H) – 1 (H)

2 1 (D,G) 1 (D) – 1 (G) 1 (G) –

Table 3.1: Results of the signature search for the running example. Rows are ordered by the
number of outgroup hits, columns by the phase. The fields contain the number of ingroup hits
and the corresponding signatures (capital letters). “–” indicates “no signature found”.

3.2. MATERIAL AND METHODS 35

Figure 3.5: Each bgrt-node stores a table with the number of ingroup hits for the respective
group phy-nodes. This table is used to bound the BGRT traversal based on the best known
result for the current phase. Note that the in-memory size of the table is determined by the
depth of the phylogenetic tree and not (as illustrated in print) by the total number of groups.
For this example, the implementation would use the same memory cells for processing of groups
IIa and IIb as well as for groups IIIa and IIIb.

The final result of this stage is a table listing for each phase and for h ∈ [0, k] outgroup

hits the signature that achieves the maximum number of ingroup hits, as shown for the running

example in Table 3.1.

3.2.4 Testing conditions

We used SSURef 102 SILVA 12 02 10 opt (hereafter referred to as SSURef 102), a comprehen-

sive database of small subunit rRNA sequences available in the ARB format [89], to generate

our test datasets. It is the largest collection of annotated aligned SSU rRNA sequences of

almost full length (more than 900 nucleotides). Furthermore, it includes a large phylogenetic

tree referencing all the sequences in the dataset as Operational Taxonomy Units (OTUs) at

the leaves. Inner phy-nodes correspond to groups of phylogenetically related sequences. More

about the database, including information on sequence content and quality as well as sequence

statistics can be found on the SILVA website (http://www.arb-silva.de/).

For the performance evaluation, we produced different size subsets of the SSURef 102 by

applying a random sequence selection algorithm. In the phylogenetic trees, for each subset we

only kept those leaves referenced by remaining sequences. The test sets range in size from 100

to 460,783 sequences, the largest test set being the complete SSURef 102 (Table 3.2).

For all test datasets, signatures with a length of 18 bases were computed using a tolerance

setting of at most 10 outgroup hits. Furthermore, we used the full SSURef 102 and searched

36 CHAPTER 3. THE CASSIS-BGRT APPROACH

Sequences Nucleotides

100 152,466
200 306,961
500 762,960

1,000 1,540,372
2,000 3,081,068
5,000 7,693,065

Sequences Nucleotides

10,000 15,404,216
20,000 30,773,749
50,000 76,870,889

100,000 153,768,356
200,000 289,312,540
300,000 433,858,110

(*) 460,783 666,311,940

Table 3.2: Test datasets. Numbers of SSU rRNA sequences (representing organisms) and overall
nucleotides within SSURef 102 (*) and subsets of it.

for 18-mer signatures for different settings ranging from 0 up to 1024 outgroup hits. We used

a Hamming distance of 1 (i.e. at least one base mismatch) between target and non-target

matches. Within target groups no mismatches were allowed. No melting temperature or G+C

content filtering was applied.

The evaluation of the signatures, computed by CaSSiS-BGRT and from other sources, was

done with the ARB ProbeMatch tool [70]. It is able to visualize the matches within a phylo-

genetic tree and shows the exact location of mismatches on the sequence data compared to the

signature strings.

All tests were done on a workstation with 24 GB of RAM and an Intel Core i7 CPU @ 2.67

GHz (4 cores, 8 threads with hyperthreading support turned on).

3.3 Results

We present the results of runtime performance and memory consumption analyses with respect

to each of the stages of CaSSiS-BGRT. Furthermore, we show data reflecting quantitative and

qualitative properties of the comprehensive 18-mer signature collection CaSSiS-BGRT calcu-

lated from the full SSURef 102.

3.3.1 Performance of search index and signature candidate evaluation

The time for building the search index, as well as the overall memory consumption of the

PT-Server, increased linearly with the number of nucleotide bases in the underlying sequence

database. Building the full SSURef 102 (∼ 660 megabases) took about 19 minutes (Figure 3.6)

and consumed 26 bytes per base at its peak (about 17 GB total); the running PT-Server required

just 11 bytes per nucleotide base (about 7 GB total; Figure 3.6).

Increasing the minimum Hamming distance m2 increases the upper mismatch limit when

querying the PT-Server (see Section 3.2.1). Large values for this distance parameter result

in a significant increase in the overall number of edges between signature candidates and the

sequences of a dataset: processing our 10, 000 sequence dataset with 2.23 million signature

candidates and with a distance m2 = 1 resulted in 15.2 million edges and took about 32 seconds;

3.3. RESULTS 37

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 100 200 300 400 500 600 700
 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

B
ui

ld
 ti

m
e

(m
in

ut
es

)

M
em

or
y

co
ns

um
pt

io
n

(G
B

)

Nucleotides (in million)

Build time
Memory cons. (build)

Memory cons. (runtime)

Figure 3.6: Build time and peak memory consumption of the PT-Server during the build process
and at runtime in relation to the number of nucleotides.

querying the same dataset with a distance of m2 = 5 led to 2.33 billion edges and increased the

runtime of stage 1 to over 4 hours (detailed results given as supplementary material). While

m2 determines the runtime of the PT-Server, m1 has an impact on the size and creation time

of the BGRT as sequences between m1 and m2 are only counted (see Section 3.2.1).

3.3.2 Performance of the BGRT-generation

The creation of the BGRT structure based on the collected specificity information did not

significantly impact the overall runtime. Its build time grew linearly in relation to the number

of sequences; for the SSURef 102 database, BGRT construction took about 18 minutes. Also

the number of bgrt-nodes exhibited linear growth (Figure 3.7). The BGRT computed from the

SSURef 102 database resulted in 4.7 million bgrt-nodes with a tree depth of 103.

3.3.3 Performance of the BGRT-traversal

An individual search for signatures for an organism or an organism group in the BGRT is very

fast. Even in the large BGRT built from the full SSURef 102, this took less than a second. But

performing this search for all 921, 565 phy-nodes of SSURef 102 would have taken more than

10 days on our test system.

Bounding the BGRT traversal using the best-known current signature and bounds from the

parent phase (Section 3.2.3) was shown to be an effective method for reducing the search time.

We measured the proportion of the total number of BGRT branches which could be skipped

during the search for signatures for each test dataset. The results (Figure 3.8) show that we

38 CHAPTER 3. THE CASSIS-BGRT APPROACH

 0

 1

 2

 3

 4

 5

 0 50 100 150 200 250 300 350 400 450 500
 0

 20

 40

 60

 80

 100

 120

B

G
R

T
-n

od
es

 (
in

 m
ill

io
n)

B
G

R
T

-d
ep

th

Sequences (in thousands)

Nodes
Max. depth

Figure 3.7: BGRT statistics for test datasets, plotting the size of the datasets against the
number of bgrt-nodes in the resulting BGRT (solid line) and against the depth of the BGRT
(dotted line).

were able to reduce the overall search space for datasets with more than 1000 sequence entries

by about 90%. Searching for signatures for all phy-nodes in SSURef 102 with bounding took

132 hours (Figure 3.9).

The memory required to store the number of ingroup hits for each phase in the BGRT (Fig-

ure 3.5) resulted in the expected increase in memory consumption (Figure 3.9). For SSURef 102,

memory consumption increased from 4.1 to 11 GB. These values include optimizations such as

reducing the ingroup array size by reusing memory for different phases at the same depth.

3.3.4 Signature search space reduction

The number of signatures of a defined length found in a dataset is far lower than the theoretical

possible number of signatures of that length (see Table 3.3).

Only querying the signatures found in the respective dataset is not a problem as long as strict

search conditions are used. When using relaxed search conditions. i.e. allowing a mismatch

distance of 1 or more within the target group, a case can be constructed where a signature

candidate is valid under the defined constraints but does not appear in the sequential list of

signatures that was described above. An example is given in Figure 3.10.

A comparison of the results for a test database with 64,000 sequences has shown no significant

difference in the results between a run with extracted signatures (i.e. signatures, that are present

in the sequences) and all generated signatures. But querying all signatures, especially under

relaxed search conditions, will lead to an extreme increase in the overall runtime (Table 3.4).

The comparison was done with a signature length of 18 bases, 1 allowed mismatch within

3.3. RESULTS 39

 0

 20

 40

 60

 80

 100

 0.1 1 10 100 1000

C
ut

 o
ff

no
de

s
(in

 %
)

Sequences (in thousands; log scale)

Better results already found
Outgroup limit reached

Sum

Figure 3.8: Efficiency of our bounding methods during comprehensive searches, depending on
the dataset sizes (number of sequences). With growing dataset sizes, the chance of early branch
cut-off in the BGRT declined. On the other hand, more cut-offs happened due to previously-
found better results.

the target group and a mismatch distance of 1 to non-targets. The range from 0–10 allowed

outgroup matches was processed. Both runs led to the same coverage “scores”, i.e. the same

number of matched sequences for every phylogenetic tree node. They differed only in the number

of signatures found — for some phylogenetic nodes more signatures were found when processing

all signature candidates.

It was not tested, if the 64,000 test sequences have a certain distribution of bases that

might lead to an equal score for both runs. This seems unlikely. A possible explanation can be

found when directly comparing the resulting signatures for all nodes. The more organisms and

thereby related signatures are covered by a group node, the higher is the chance that one of

these sequences contains the signature without mismatches. The signature is thereby found in

both results. All leaves had a maximum score of 1, i.e. were at least matched by one signature.

Here, the chance is highest to find additional signatures when querying all signatures. In the test

results, these nodes were the ones with the highest growth in the number of found signatures.

An optional reduction of the search space provided by CaSSiS is thermodynamic filtering.

Signatures can be dropped if they do not lie within defined GC-content or melting temperature

ranges. Although these filters appear very helpful at first sight, they should be used with

caution.

The GC-content is the percentage of bases with strong hydrogen bonds (Guanine and Cy-

tosine) present in a signature sequence (Section 2.1.2). Neither the actual base type (besides

being either G,C or A,T/U) nor its position is relevant for computing this percentage value. The

40 CHAPTER 3. THE CASSIS-BGRT APPROACH

 0

 20

 40

 60

 80

 100

 120

 140

 0 50 100 150 200 250 300 350 400 450 500
 0

 2

 4

 6

 8

 10

 12

B
G

R
T

-t
ra

ve
rs

al
 (

ho
ur

s)

M
em

or
y

co
ns

um
pt

io
n

(G
B

)

Sequences (in thousands)

BGRT-traversal (runtime)
BGRT size

BGRT+ingroup-arrays size

Figure 3.9: The BGRT shows linear growth in memory consumption in relation to the number of
sequences. Its size, including the ingroup array (see Figure 3.5), was measured after a complete
computation for all phy-nodes.

number of possible GC-content values is therefore directly influenced by the signature length l:

at most |GC| = l+ 1 different GC-content values may occur (Figure 3.11). The resulting spikes

in the distribution of the GC-content make it in most cases difficult to define appropriate lim-

its. Even a small change in one boundary may skip over a GC-content spike and thereby vastly

reduce (or increase) the search space. Limits should be generously set and the distribution of

the GC-content, if possible, determined before usage.

The basic melting temperature (Section 2.1.3) can be used as a filter by defining an allowed

temperature range that valid signatures must meet. Not being much more sophisticated than

the GC-content formula, the basic melting temperature distribution may also result in similar

spikes (Figure 3.12). Determining the melting temperature with nearest neighbor (Section 2.1.4)

approximations reduces this effect. An effect not shown here is the mutual influence of the GC-

content and a melting temperature filter. Based on the same data with somewhat similar

predictions, they may enforce each other when being applied together. If not stated otherwise,

no filters were applied in the measurements presented in this work.

3.3.5 Comparison to other approaches

We used our test datasets to compare CaSSiS-BGRT with two other tools for comprehensive

signature search, HPD and ProDesign (Table 3.5). We were able to process up to 1, 000 se-

quences with HPD, at a runtime of 99 minutes and a peak memory consumption of 1, 010 MB.

Larger datasets could not be processed due to memory limitations (as a 32-bit MS Windows

program, HPD is limited to 2 GB RAM). ProDesign displayed a moderate growth in memory

3.3. RESULTS 41

Length Possible Signatures Unique Signatures
k bases 4k (test dataset)

3 64 64
6 4, 096 4, 096
9 262, 144 262, 144

12 16, 777, 216 7, 867, 492
15 1, 073, 741, 824 17, 516, 531
18 68, 719, 476, 736 24, 125, 196
21 4.40 · 1012 30, 334, 407
30 1.15 · 1018 47, 632, 410
50 1.27 · 1030 80, 617, 100

Table 3.3: The number of possible k-mer signatures grows exponentially with their length k.
For RNA and DNA signatures with the alphabet

∑k = {A,C,G, T |U} the growth factor is
4k. There are fewer unique signatures present in real datasets. The third column contains the
number of unique signatures extracted from a rRNA gene test dataset consisting of 512, 000
rRNA genes (734, 101, 088 bases in total).

Evaluation of. . . signatures from dataset all 418 signatures

Bipartite graph edges 90, 712, 819 91, 116, 545
Signatures in graph 7, 110, 160 7, 474, 112

Overall runtime (h:m:s) 4m 46s 59h 39m 9s

Table 3.4: Comparison of the number of edges and signatures in the resulting bipartite graphs,
computed from extracted (left) and all possible signatures (right). Evaluating all signatures led
only to a slight increase in the number of added signatures, but to a vast increase in the overall
runtime. The dataset contained 64, 000 rRNA gene sequences. The signatures had a length of
18 bases. One mismatch within the target group was allowed.

consumption, but the runtime increased dramatically with growing dataset sizes. Processing

2,000 sequences took over 7 hours and consumed 377 MB RAM at its peak. For comparison,

CaSSiS-BGRT was able to process 2, 000 sequences in less than 2 minutes using only 111 MB

RAM.

We additionally tested Primrose and ARB ProbeDesign. In principle, both tools were able

to process the more than 460, 000 sequences from SSURef 102, but the two programs could

only search signatures for one selected sequence or sequence group per run. Processing single

randomly selected sequences without mismatches and outgroup hits took more than 5 hours

with Primrose and 5 minutes with ARB ProbeDesign (the creation time of the index excluded).

Analyzing all 460,000 sequences with these tools would thus take 262 years or 133 months

respectively. (Recall that CaSSiS-BGRT took just 132 hours to find primers for all sequences

and sequence groups for this data set (see Section 3.3.3).)

Searches for sequence groups were not conducted with Primrose due to the unexpected long

runtime on single sequences. Furthermore, since it is using the NCBI taxonomy and is not

capable of processing the phylogenetic tree from SSURef 102, a more thorough comparison of

42 CHAPTER 3. THE CASSIS-BGRT APPROACH

Figure 3.10: Under certain constraints signatures exist, that match within the defined limits
but cannot be derived from the sequence data. In this example two sequences with a length of
18 bases are given. A signature with a length of 12 bases is searched and up to one mismatch
is allowed. Every subsequence of Sequence 1 with a length of 12 has at least two mismatches
in Sequence 2 (displayed as circles), and vice versa. It is still possible to create an appropriate
signature with only one mismatch to each of the sequences (matches highlighted gray).

CaSSiS-BGRT with Primrose regarding group specific signatures is out of the scope of this

work.

ARB ProbeDesign processed sequence groups in 25 seconds to 70 minutes per group (see

supplementary material). Based on the shortest runtime measured for every node in the phylo-

genetic tree, a comprehensive computation using ARB ProbeDesign would take almost 270 days

— excluding the initial configuration and final summarization and evaluation for every query.

By using appropriately adapted settings, ARB ProbeDesign was able to deliver results com-

parable to those of CaSSiS-BGRT. Applying settings that were too strict or too lax represented

a trade-off between computational costs and unsatisfactory results, often leading to a re-run.

CaSSiS-BGRT avoids these issues through a more sophisticated preparation of the results.

3.3.6 Evaluation of the computed signature collection

The probability of finding an 18-mer that matches only a single organism in SSURef 102 is

55%. Signatures that match all organisms in a particular group and have no outgroup hits were

found for only 14% of all groups. Allowing a small number of outgroup hits led to a noticeable

increase in the number of phy-nodes with complete coverage. By computing signatures up to

two outgroup hits for the SSURef 102 dataset, the percentage grew from 14% to 23%. For

single sequences, the percentage increased from 55% to 71%. Figure 3.13 shows the number of

sequences and sequence groups completely covered by signatures against the number of outgroup

hits. For higher numbers of allowed outgroup hits, the curves flatten out.

In addition to quantitative aspects, the qualitative usefulness of the signature collection

computed for SSURef 102 has been examined by spot tests. For selected target groups, we

compared computed signatures with relevant entries in probeBase [68] or the literature con-

cerning availability, coverage and specificity.

3.3. RESULTS 43

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 20 40 60 80 100

S
ig

na
tu

re
s

(in
 th

ou
sa

nd
)

GC-content (percent)

GC-content distribution

Figure 3.11: GC-content distribution for 24, 125, 196 signatures extracted from a test dataset
with 512, 000 SSU rRNA sequences. The signatures had a length of 18 bases, resulting in 19
different possible GC-content percentages.

The target sequence of the SSU-targeted probe EUB338, which is used worldwide with

different hybridization technologies for the detection of members of the domain “Bacteria”

[4, 3], matches 355, 790 sequences in SSURef 102 and three outgroup sequences from other

domains. The signature with the highest ingroup coverage found by CaSSiS-BGRT also has

three outgroup matches, but matches 356,185 ingroup sequences; significantly, its sequence is

almost identical to the EUB338 target sequence except that it is shifted to the SSU rRNAs

3-prime-end by one position. We cannot state exactly which signature is the better one to be

targeted in practice. We can state, however, that this 18-mer signature found by CaSSiS-BGRT

is highly valuable, since it is almost identical to one of the most frequently targeted signatures

cited. This finding was possible because of CaSSiS-BGRT’ advantageous capacity to search

with relaxed specificity constraints.

The probe VP403, a new 20-mer targeting the 16S rRNA of Verrucomicrobium, most Proste-

cobacter spp., and uncultured relatives specifically, has been recently successfully applied for

Fluorescence in situ Hybridization by [7]. CaSSiS-BGRT also found the complementary signa-

ture for this bacterial group, namely the three possible 18-mer substrings of the 20-mer signature

sequence targeted by VP403 (N.B.: in this study we conducted CaSSiS-BGRT searches for 18-

mer signatures only). All three signatures show the same coverage and specificity properties in

silico.

Another signature we evaluated was an 18-mer computed for the group Deinococ-

caceae Deinococcus. It hits in silico 199 out of the 238 ingroup sequences. In regards to

44 CHAPTER 3. THE CASSIS-BGRT APPROACH

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 20 40 60 80 100

S
ig

na
tu

re
s

(in
 th

ou
sa

nd
)

Melting temperature (degree Celsius)

Basic Temperature approximation

(a) Basic melting temperature approximation

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 20 40 60 80 100

S
ig

na
tu

re
s

(in
 th

ou
sa

nd
)

Melting temperature (degree Celsius)

Nearest Neighbor approximation

(b) Nearest Neighbor approximation

Figure 3.12: Melting temperature distribution for 24, 125, 196 signatures (with a length of 18
bases) extracted from a test dataset with 512, 000 SSU rRNA sequences. CaSSiS provides a
“basic” melting temperature computation (Section 2.1.3) and one based on “Nearest Neighbor”
predictions (Section 2.1.4). They may significantly differ, as indicated in this figure, and their
applicability differs based on the later applied detection method the signature length.

3.4. PARALLELIZING THE BGRT TRAVERSAL WITH OPENMP 45

rRNA CaSSiS-BGRT PT-Server HPD ProDesign
Sequences runtime memory memory runtime memory runtime memory

100 9 12 18 40 45 1 162
200 17 16 25 178 122 3 164
500 31 31 48 1.226 361 36 166

1.000 56 49 85 5.985 1.010 928 203
1.500 79 66 97 – –(1) 4.679 277
2.000 111 85 109 – – 26.159 377
5.000 302 175 169 – – –(2) –

10.000 873 311 262 – – – –

Table 3.5: Comparison of the runtime (wall time, in seconds) and the peak memory consumption
(in MB) of CaSSiS-BGRT, HPD, and ProDesign. (1) HPD: 2 GB Memory limit reached (32-bit
program; no more memory available). (2) ProDesign: The measurement was aborted due to
extreme runtime (in step 3, reclustering). The memory consumption of CaSSiS-BGRT and the
PT-Server were measured separately. (They are two separate processes). The peak memory
consumption of the PT-Server was measured after stage 1, as it is only needed in this stage.
The peak memory consumption of CaSSiS-BGRT was measured after stage 3. Test system:
Lenovo Thinkpad X200s; Intel Core2 Duo CPU L9400 @ 1.86GHz; 8 GB RAM; Windows 7
Professional 64-bit; Ubuntu 10.10 64-bit

the group coverage, this signature is clearly superior to the only signature published so far for

this group [118], which matches just 37 ingroup sequences. Furthermore, we could rapidly find

7 new signatures with a coverage of more than 95% for the group Coprothermobacter. We have

no information about the significance of this group of bacteria, but no signature for this group

has been published to date.

These results indicate that the comprehensive 18-mer collection computed from SSURef 102

by CaSSiS-BGRT does include sequences which could be valuable diagnostic targets. Using

CaSSiS-BGRT, we found signatures which have been already successfully targeted in the wet

lab. We identified signatures which have ingroup coverages superior to previously published

signatures, and we found potentially valuable signatures for bacterial groups for which no SSU

rRNA-targeted signature has been published so far. More details are presented in the supple-

mentary material in Section A.2.

3.4 Parallelizing the BGRT traversal with OpenMP

The CaSSiS-BGRT approach was in its initial implementation designed as a single process,

consisting of three subsequent stages (Section 3.2). The first two extract valuable signature

candidates and build the BGRT data structure. The third stage traverses the BGRT structure

and searches the best possible signatures for every node of a phylogenetic tree. Consequently,

the first two stages were combined as BGRT “create” and the latter defined as BGRT “process”.

This also allowed storing the BGRT data structures into files, and thereby their sharing and

independent processing.

46 CHAPTER 3. THE CASSIS-BGRT APPROACH

 0

 20

 40

 60

 80

 100

 20 40 60 80 100 120

S
eq

ue
nc

es
/G

ro
up

s
(in

 %
)

Allowed outgroup matches

Covered sequences
Completely covered groups

Figure 3.13: Percentage of sequences and sequence groups in SSURef 102 which are completely
covered by at least one signature. Searches are performed under relaxed specificity conditions
(disjoint values; stepwise allowance of 0 to 128 outgroup matches).

When comparing the runtime of BGRT “create” (Section 3.3.2) with BGRT “process” (Sec-

tion 3.3.3), the runtime and memory consumption of the latter grows faster with increasing

dataset sizes. The parallelization of the BGRT traversal, being the bottleneck, was therefore

further evaluated in a student’s project. This section presents aggregated extracts from the

final report of the bachelor project “OpenMP Parallelization of CaSSiS-BGRT” by Sebastian

Wiesner, that was supervised by me. It documents the modifications that were necessary to

parallelize the CaSSiS-BGRT traversal with OpenMP and the achieved runtime gains.

3.4.1 OpenMP Implementation

CaSSiS-BGRT contains multiple data structures, most notably the phylogenetic tree, the BGRT

structure, and the result array (Section 3.2). The phylogenetic tree and the BGRT are only read

in the third stage of the algorithm, the BGRT traversal, and therefore needed no modification

to be thread-safe. However, each new best result is immediately stored in a result array. The

array therefore must be thread-safe to prevent race conditions, lost updates and other typical

problems that might occur when parallelizing an algorithm.

Two different kinds of strategies could be used to avoid these problems. The first would be

simply changing the result array into a thread local resource. Each thread independently fills

the result array and in the end the results are merged. An obvious drawback of this approach

could be a reduced number of cutoffs and thereby a decreased effectivity of the bounding during

BGRT traversal. On the other side it completely avoids any kind of locking and allows to

perform cutoffs truly parallel. To be effective it is assumed, that each thread still gathers

3.4. PARALLELIZING THE BGRT TRAVERSAL WITH OPENMP 47

enough cutoff data and thus the reduction of the cutoff rate is negligible compared to the gain

of unhindered parallelization.

A second approach would be adding locking mechanisms to the result array and thereby

allowing exclusive access for one thread at a time. The result array would remain shared and

all results would be available at the end without the need to merge them.

The actual implementation of a parallelized BGRT traversal was preceded by tests to check

the level and quality of OpenMP support provided by the GNU C++ compiler. The most

notable one was the attempt to use the task directive [82]. Measurements revealed, that tasks

greatly slowed down the overall runtime. Apparently, the OpenMP implementation used by

the GNU C++ compiler was unable to automatically determine a sensible threshold for task-

based parallelism. New tasks were generated on each single recursive call, straightly following

the directives, so that the task management overhead by far exceeded any possible gain from

parallelization. Given these observations, tasks were dismissed.

Classic work-sharing directives from OpenMP 2.0 were used to parallelize the BGRT

traversal. Unlike tasks, these directives are unable to parallelize any kind of irregular prob-

lems, e.g. recursions or unbounded loops. During BGRT traversal, a bounded loop (Proce-

dure traverseBgrTree) is used to iterate over all top-level nodes in a BGRT tree. The heavy

computational work is performed in a recursive function (Procedure traverseBgrTreeRecursion)

which is called for each of these nodes. The rest (outside the loop) deals with the relatively

cheap traversal of the phylogenetic tree. It was chosen to distribute the computational work

among the processing cores of the system by simply parallelizing the first bounded loop.

OpenMP provides the for directive [82] to parallelize such bounded loops. Proce-

dure traverseBgrTree shows how this directive was applied in the CaSSiS-BGRT sources. Leav-

ing locking aside, this little change was sufficient to parallelize the computational work by

letting OpenMP split the loop into somehow even parts, and execute each of these parts in a

separate thread. The exact strategy how the work is distributed among the threads, and the

scheduling strategy, are implementation-defined. We did not influence the standard scheduling

strategies [82] that OpenMP provides.

Input: BGRTNode node
1 . . . process current BGRT node . . .
2 foreach childnode of node do
3 traverseBgrTreerecursion(childnode);
4 end

Procedure traverseBgrTreeRecursion(BGRTNode node) recursively traverses BGRT nodes.

3.4.2 Benchmark setup and results

The influence of the OpenMP parallelized BGRT traversal was measured on a 64 bit Ubuntu

11.10 system equipped with 36 GB of main memory. Its two 6-core Nehalem (X5670 West-

mere) processors, fixed at 2.93 GHz, allowed with activated HyperThreading up to 24 concur-

rent threads. For the test, five databases of increasing size (8, 000, 16, 000, 32, 000, 64, 000

48 CHAPTER 3. THE CASSIS-BGRT APPROACH

Input: BGRTree tree
1 #pragma omp parallel
2 {
3 #pragma omp for
4 foreach 1st level node of tree do
5 traverseBgrTreeRecursion(1st level node);
6 end
7 }
Procedure traverseBgrTree(. . .) initial bounded loop iterates over all top level nodes in the
BGRT.

and 128, 000 randomly selected rRNA gene sequences) were derived from the ARB SILVA

SSURef 104 dataset. Each database was processed with different parallelization settings. First,

OpenMP was completely disabled to obtain a serial reference measurement. Then the datasets

were processed with 1, 2, 4, 6 and further in binary steps up to 24 OpenMP threads.

The runtimes in Table 3.6 and the resulting speedup in Figure 3.14 show, that the overhead

of the single threaded OpenMP parallelization compared to the serial version of the BGRT

traversal is negligible. The speedup grew sublinear with the number of threads. With 24

threads, the traversal was up to about 4.5 times faster. Within our test range, the benchmarks

did not reveal a point, at which the speedup stagnates or even declines. This should not imply

that no such point exists. Additionally, a certain overhead due to the management of the

threads via OpenMP is noticeable. Note, that the BGRT construction was not affected by

parallelization, and its runtime was identical for same dataset sizes. The higher speedup of

the dataset with 32, 000 sequences is probably due to a favorable distribution of the randomly

selected sequences.

3.5 Discussion

The CaSSiS-BGRT algorithm enables fast and comprehensive search for sequence- and sequence

group-specific signatures in large hierarchically-clustered sequence datasets with modest mem-

ory requirements. Adding CaSSiS-BGRT to their workflow (Figure 3.15) could be of inter-

est for maintainers of hierarchically-clustered databases, such as SILVA, RDP, or Greengenes

[89, 25, 29]. Many of these maintainers provide online tools for matching oligonucleotide se-

quence strings against their data collections, such as Probe Match on the RDP website or Probe

by Greengenes. However, neither of them provide tools for signature search, nor do they offer a

collection of signature sequence candidates for their data — two features CaSSiS-BGRT is able

to provide. CaSSiS-BGRT could also be beneficial for users who want to process collections

from projects like FunGene at the Michigan State University (http://fungene.cme.msu.edu/),

which maintains more than 40 aligned collections of homologous gene sequences. An appropriate

clustering, usually a phylogenetic tree, could be computed from the available aligned sequences

using third party tools like FastTree or RaxML [88, 106]. By using precomputed BGRT-files

(which contain the BGRT structure), single queries based on freely defined group definitions

3.5. DISCUSSION 49

Threads Dataset size (rRNA sequences)
8, 000 16, 000 32, 000 64, 000 128, 000

serial 6.39 (5.94) 22.70 (21.78) 96.12 (94.36) 242.32 (238.61) 897.05 (890.21)
1 6.57 (6.14) 22.36 (21.53) 77.00 (75.38) 255.17 (251.93) –
2 5.97 (5.54) 19.31 (18.44) 66.35 (64.72) 207.73 (204.28) –
4 4.44 (4.00) 15.22 (14.39) 51.14 (49.37) 164.22 (160.88) –
6 3.87 (3.45) 12.96 (12.12) 43.45 (41.66) 139.30 (135.91) –
8 3.36 (2.93) 11.05 (10.21) 37.77 (36.11) 121.93 (118.73) –

10 3.04 (2.60) 10.08 (9.21) 35.37 (33.70) 113.15 (109.84) –
12 2.78 (2.36) 9.27 (8.45) 30.49 (28.85) 99.17 (95.84) 328.23 (321.86)
14 2.59 (2.16) 8.64 (7.81) 28.12 (26.48) 94.60 (91.34) 301.02 (294.69)
16 2.45 (2.03) 7.96 (7.14) 27.16 (25.52) 88.63 (85.45) 283.28 (277.03)
18 2.35 (1.94) 7.66 (6.83) 25.02 (23.42) 84.97 (81.81) 269.58 (263.32)
20 2.29 (1.87) 7.36 (6.55) 24.37 (22.77) 81.17 (77.93) 258.42 (252.13)
22 2.31 (1.87) 7.30 (6.47) 23.79 (22.17) 77.68 (74.37) 246.55 (239.88)
24 2.22 (1.79) 6.89 (6.06) 22.82 (21.22) 75.67 (72.45) 238.92 (232.58)

Table 3.6: Overall runtime of the OpenMP parallelized CaSSiS-BGRT approach in minutes.
The sole runtime of the BGRT traversal step is shown in brackets. The sequence datasets
were computed without allowing mismatches (m1 = 0) and a distance of one (m2 = 1). Results
within a range from 0–10 outgroup hits were computed. Some of the measurements with 128, 000
sequences could not be done due to the lack of computation time.

can be processed.

The computation of valuable signatures for every group within a large phylogenetic tree can

quickly lead to excessive runtime. Other tools we have tested were either unable to process

current dataset sizes or they would have needed an extremely long time to do so (Section 3.3.5).

CaSSiS-BGRT copes with this by relying on the BGRT structure for the storage of the relation

between signatures and sequences (Section 3.2.2). Its combination with a phylogenetic tree

allows CaSSiS-BGRT to avoid expensive computations to determine clusters and to instead focus

on finding signatures. This allows CaSSiS-BGRT to process the SILVA SSURef 102 dataset with

more than 460, 000 sequences. The group hierarchy of the phylogenetic tree is critical for the

bounding method; given only flat clusterings, the 90% reduction in the BGRT-traversal using

our bounding method (Section 3.3.3) would not be applicable. Additionally, only processing

signatures that are present in a dataset is in most cases sufficient (Section 3.3.4). Processing all

theoretically possible numbers of signatures does not lead to a significant increase in the quality

of the results, especially when evaluating signatures for large target groups.

The BGRT only contains the relation between signatures and the organisms they match

(Section 3.2.2). The information where exactly a signature matched a sequence as well as the

position(s) of possible mismatches are not stored within the BGRT. Adding this information

directly to the BGRT would lead to a huge increase in its memory consumption, without causing

significant benefits. Through this data reduction, a fast signature search even for freely defined

groups of organism identifiers is possible. By making the BGRT storable, multiple different

50 CHAPTER 3. THE CASSIS-BGRT APPROACH

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 2 4 6 8 10 12 14 16 18 20 22 24

S
pe

ed
up

OpenMP Threads

8,000 Sequences
16,000 Sequences
32,000 Sequences
64,000 Sequences

128,000 Sequences

Figure 3.14: The speedup of the parallelized BGRT traversal step grows sublinear with the
number of threads. For each database size, it is calculated by dividing the traversal time for
each measured number of threads with the corresponding serial measurement (in the graph
displayed as 0 OpenMP threads).

clusterings based on the same set of sequences could be evaluated in stage 3 without the necessity

of repeating the previous two stages. The “loss” on information could be compensated with a

post-processing stage of the results. A fourth stage could be added to CaSSiS-BGRT to gain

this information. This stage would be cheap in runtime and memory consumption, compared

to the BGRT creation and traversal stages.

Processing large phylogenetic sequence datasets means processing fuzzy data for two reasons:

probable errors in the sequences, and errors in the clusterings. Although SILVA, the source of

our test datasets, is a maintained secondary database containing high quality sequences and

annotations from public databases [89], the occurrence of erroneous information, e.g. sequence

errors, cannot be ruled out. Naturally, sequence errors influence the results of a CaSSiS-BGRT

calculation negatively, in particular with regards to the signatures selected for single organisms.

We are aware of regions with sequence errors that are selected as organism-specific signatures

where “uniqueness” has been induced by the error itself. This problem is not solved by any

extant tool, including CaSSiS-BGRT. In order to minimize such erroneously selected signatures,

probabilities for the occurrence of highly individual signatures within certain gene regions —

e.g. based on conservation profiles — would have to be taken into account for SSURef 102. Such

a method is computationally expensive and could lead to the exclusion of valuable signatures as

well. However, the main application of CaSSiS-BGRT is searching for group-specific signatures.

Here, the effect of erroneous sequences is not dramatic, since CaSSiS-BGRT selects signatures

3.5. DISCUSSION 51

Signature
Extraction

(with Search Index)

BGRT
Data Structure

BGRT
Data Structure

Interactive
Querying

Phylogenetic
Tree

Comprehensive
Signature

Computation

CSV Table Files

BGRT "create" BGRT "process"

CaSSiS

Sequence Data

Figure 3.15: CaSSiS-BGRT enables the rapid computation of comprehensive sets of valuable
sequence- and sequence-group-specific signatures. In a first step, the BGRT data structure is
created and stored. In combination with a phylogenetic tree, the BGRT structure can then
be used for comprehensive computations of signature candidates. End users who are primarily
interested in few defined target groups, but do not want to give up a large amount of background
data, can use these pre-computed BGRT structures to generate signature candidates for freely
defined groupings of sequences.

with the highest possible group coverages. This approach reduces the chance of selecting an

erroneous signature significantly; the probability of a signature being erroneous decreases with

the increasing number of group sequences in which it occurs. Some other systems [22, 34] also

have this capability, but exhibit significant limitations in runtime and memory performance

(Section 3.3.5).

Furthermore, since several heuristics have to be applied for reconstructing large phylogenies,

an error-free tree cannot be guaranteed. As a result, the phylogenetic trees could suffer from

misplaced organisms. If CaSSiS-BGRT was to only consider signatures that match within a

target group, this would lead to suboptimal results for large datasets; for example, perfect sig-

natures were only found for 14% of all groups for SSURef 102. By allowing outgroup matches

when searching for signatures, false negatives (e.g. misarranged OTUs in a phylogenetic tree)

can be found with CaSSiS-BGRT. The only other approach that tries to cope with such uncer-

tainties is ProDesign. ProDesign uses reclustering [34] to find more perfect group signatures.

This program, however, is not applicable with a large dataset such as SSURef 102 due to its

computational complexity (Section 3.3.5 and supplementary material).

Aside from mitigating negative effects introduced by inexact input data, the ability to find

signatures with outgroup hits can help to determine further valuable diagnostic sites. Such sig-

52 CHAPTER 3. THE CASSIS-BGRT APPROACH

natures become applicable when the co-occurrence of target and cross-reacting non-target DNA

within the samples examined can be ruled out [3] or when negative probes sensing specifically

for the presence of the non-target DNA are additionally applied [75].

Using the ARB PT-Server for high-throughput matching of the signature candidates in

stage 1, inexact searches according to a predefined mismatch limit can be performed. CaSSiS-

BGRT is able to enforce a defined minimum Hamming distance to outgroup sequences (m2)

as well as an upper limit for mismatches to the target sequences (m1; see Section 3.2.1). This

feature could be valuable for finding signatures that provide advanced sensitivity and specificity

properties under non-standard conditions. These could include degenerated signature sequences

or signatures which cover some ingroup sequences with a small number of weak mismatches

and exhibit large Hamming distances to outgroup sequences simultaneously. The ARB PT-

Server also supports weighted mismatches, a more sophisticated distance measurement that

also considers the position of a mismatch. Its applicability has been shown for hybridization

approaches [121], and it allows experienced users a usability prediction without requiring a

post-evaluation in the wet lab.

We are not aware of any other comprehensive approach that allows the definition of a max-

imum Hamming distance to targets or a minimum distance to non-targets. Due to hard-coded

search constraints [34] ProDesign is unable to guarantee any of these two. ARB-ProbeDesign

[70] can at least be configured to guarantee a distance of one mismatch to the outgroup. Insignia

first calculates short signatures that have at least one mismatch with all outgroup signatures.

It then concatenates these signatures if they overlap within the targets [86]. However, Insignia’s

method does not guarantee a defined minimum distance to non-target sequences for signatures

of a particular length.

By providing a comprehensive signature collection for hierarchically-clustered sequence data,

CaSSiS-BGRT could support so-called multiple probe approaches. Here, multiple oligonu-

cleotide probes, targeting signatures with overlapping specificities, e.g. different taxonomic

levels, are used in order to increase the overall specificity. Signature sets with nested specifici-

ties are often used for bacterial diagnostics or biodiversity studies. They allow the detection

and classification of previously unknown bacteria: specific signatures for known organisms or

organism groups are not detected, but a signature of a superior taxon is [99, 69, 100]. Addi-

tionally, collections of oligonucleotide signatures of different lengths (e.g 15-25) can significantly

improve the signature supply for primer and probe design and can be created by combining the

results from multiple CaSSiS-BGRT-runs.

CaSSiS-BGRT creates result files containing target names (taxonomic group/organism

names, if available) or node IDs, the group size, the coverage, and the respective signatures

for each node in the phylogenetic tree. Each file contains the signatures with a particular num-

ber of outgroup matches featuring the highest in-group coverage. Oligonucleotide probes or

primers, derived from signature sequences found by CaSSiS-BGRT in SSURef 102, could be

worth a trial in wet laboratory experiments. This is indicated by spot tests in which signatures

found by CaSSiS-BGRT have already been successfully targeted in earlier FISH studies [4, 7].

For optimizing each probe in silico as far as possible according to application-dependent re-

3.5. DISCUSSION 53

quirements, however, additional information, such as names of inexact outgroup matches, their

exact Hamming distance to the signature string, as well as mismatch types and positions, would

be helpful for downstream users. Such information is currently not provided with the CaSSiS-

BGRT result files, although it could be determined in a future version. This information can be

easily retrieved by simple string matching against the SSURef 102, using either the online tool

probecheck, or, if the computational hardware resources are sufficient, applying the tool ARB

ProbeMatch (both approaches rely on the ARB PT-Server [66, 70]).

Although CaSSiS-BGRT performs quite well on the large test dataset analyzed, we evaluated

further strategies to enhance its performance, especially in regard to memory consumption. For

our tests, the SSURef 102 dataset was computed on a workstation with 24 GB of RAM. Clearly,

larger genomic datasets could exceed the capacity of individual machines. Additionally, the

signature extraction during the first two stages depends on an (external) search index, the PT-

Server, which is only able to sequentially process requests. For the construction of the BGRT,

a distributed approach was therefore evaluated which is presented and discussed in Chapter 5.

With this approach, we were able to accelerate the matching of signatures with the PT-Server

up to five-fold using parallel and distributed computing. Furthermore, by partitioning the

dataset, we were able to reduce the memory consumption per phy-node inversely proportional

to the number of partitions for the first stage (the second stage is not performance critical; see

Section 3.3.2).

In order to improve the critical third stage, the impact of multicore processing on its runtime

was evaluated. An OpenMP parallelized version of the BGRT traversal was implemented as

a student’s work (Section 3.4). The results, the achieved four-fold speedups on 24 cores, were

disappointing. The probable causes are multiple locks that were used to synchronize the threads

during the merge of the results for each phy-node. In retrospect, a better solution could have

been to give up the used “global” bounding method where cutoffs are shared throughout all

threads. Using thread-local bounds could still have lead to a certain number of cutoffs. Locking

mechanisms could have been prevented with thread-local result tables (instead of one shared)

which are merged after all results were computed. Both approaches were not implemented

because the expected increase in memory consumption was considered to be too high. As

Figure 3.9 shows is the memory footprint of a BGRT linear to the number of sequences it was

computed from, but the additional information for the cutoffs and the result entries leads to an

exponential growth of the memory consumption. This factor would probably multiply with the

number of threads.

Another compromise could be the partitioning of the BGRT structure. Partitioning the

BGRT is likely to have a negative impact on the efficacy of the bounding method as well, but

with less overall impact in a distributed approach like in Chapter 5. This would enable both

parallel processing on different bgrt-nodes within a computer cluster as well as reduction of

per-node memory consumption.

But a far more important reason why the parallelization was not pursued was the develop-

ment of a more efficient approach which is presented in the following Chapter 4. The CaSSiS-

BGRT algorithm, presented in this chapter, has a worst-case complexity of O(|M | · |V |) time

54 CHAPTER 3. THE CASSIS-BGRT APPROACH

where M is the size of the BGRT and and |V | is the set of all organisms. The implemented

bounded search, a time-memory trade-off, requires O(d · |M |) memory where d is the depth of

the phylogenetic tree. The new algorithm, called CaSSiS-LCA, allows to solve the same com-

binatorial problem in almost linear time (empirically observed). Without the need for a BGRT

lookup structure, its overall memory consumption is vastly reduced to the memory footprint of

search index and the result entries in the phylogenetic tree nodes.

Besides optimization and parallelization, replacing the ARB PT-Server by a faster approx-

imate search method could further accelerate the performance. Especially when searching for

signatures with guaranteed Hamming distances to the outgroup (or to within-group sequences)

of more than one base, stage 1 becomes the runtime-critical computational step (see Section 3.3.1

and supplementary material). Periodic spaced seed based search methods showed promising re-

sults when applied to mapping high throughput reads to the human genome [21]. However, their

suitability for usage in CaSSiS-BGRT was not examined in this work. Data handling, search

efficiency for matches with more than 3 mismatches, and performance for short oligonucleotide

searches resulting in huge match lists would have to be taken into account.

Chapter 4

The CaSSiS-LCA Approach

This chapter presents a new algorithm for finding oligonucleotide signatures that are specific

and sensitive for organisms or groups of organisms in large-scale sequence datasets. We assume

that the organisms have been organized in a hierarchy, for example a phylogenetic tree. The

resulting signatures, binding sites for primers and probes, match the maximum possible number

of organisms in the target group while having at most k matches outside of the target group.

The key step in the algorithm is the use of the Lowest Common Ancestor (LCA) to search

the organism hierarchy; this allows to solve the combinatorial problem in almost linear time

(empirically observed). The presented algorithm improves performance by several orders of

magnitude in terms of both memory consumption and runtime when compared to the best-

known previous algorithms while giving identical, exact solutions.

This chapter gives a formal description of the algorithm, discusses details of our publicly

available implementation and presents the results from our performance evaluation.

This Chapter is an extended version of an article [10] published in the ACM Journal of

Experimental Algorithmics. It is a collaboration with Prof. Mikhail J. Atallah and Christian

Grothoff and describes the CaSSiS-LCA algorithm.

4.1 Introduction

Molecular diagnostic techniques, which are applying polymerase chain reaction (PCR) [15] or

RNA/DNA hybridization [5, 105], are becoming a standard in various fields of life sciences and

medicine. They rely on oligonucleotide primers and probes, short (15 to 25 bases) subsequences

of DNA or RNA. These subsequences bind to longer sequences from a biological sample to start

the desired biochemical reaction. Binding sites on the samples, the complement of the primers

or probes, are called oligonucleotide signatures (hereafter simply referred to as signatures). To

interact only with sequences from the target organism, they must be specific to the target

organism or group of organisms.

A source for such primers and probes can be curated databases like probeBase [68] or, in

many cases, the design “by hand.” Given the size of modern sequence datasets, software tools

are necessary to design new or re-evaluate already published candidates before testing in the

55

56 CHAPTER 4. THE CASSIS-LCA APPROACH

wet lab. In this chapter we present an efficient algorithm for the comprehensive in silico search

for good signature candidates (Figure 4.1). Maintainers of gene and genome databases, such as

SILVA, RDP, or Greengenes [89, 25, 29], could use it to precompute and offer a collection of

signature candidates along with their datasets, but it also is useful for end-users with custom

sequence collections based on projects like FunGene1.

For applications in this domain, our algorithm assumes that the organisms are hierarchically

clustered. Clusterings could be based on any kind of classification where inner nodes represent

related groups. An example is a phylogenetic tree: Inner nodes represent derived evolutionary

relationships between groups of organisms, and the individual organisms correspond to the

leaves. Phylogenetic trees, if not supplied with sequence datasets, can be computed using

third-party tools such as FastTree or RAxML [88, 106].

The other main input is a bipartite graph (Figure 4.1, center) that relates signatures to

matched sequences (organisms). A relation means that a signature is present in a sequence.

Such a bipartite graph is easily computed using existing search index tools that construct suffix

trees over sequence data. Signatures are extracted by traversing the tree until a certain (length)

constraint is met, and references to the sequences can be found in the underlying nodes.

G T T G C A A G T C T T C

Genetic sequencing,
assembly & annotation

1

2

3

4

5

6

E
A

B
F

C
G

D
H

extract Bipartite Graph (G)

create

Post in silico evaluation
(e.g. with the ARB tools)

Microarray with
oligonucleotide
RNA/DNA probes

5' 3'

5'3'

RNA/DNA primer pairs

by alignment
comparison

Output (P)

Primer & probe
candidates

published

Oligonucleotide
search index

(e.g. PT-Server)

Public
sequence
databases

Organisms (V) Signatures (U)

Phylogenetic tree (T)

Chip

Result files:
List of signature
candidates for

tree nodes

applied
(e.g. in PCR) CaSSiS-LCA

Central algorithm:
directly computes signature
candidates for all tree nodes

ACCAGAAG

CCTGTAAG

TTGCAGGA

TGTTGAAC

AGATTACA

Figure 4.1: Schematic of the primer and probe design pipeline in which CaSSiS is embedded.
The input data for the new algorithm CaSSiS-LCA comes from public sequence and phylogenetic
tree databases. The resulting signatures can be used as a template for new RNA/DNA primers
and probes (e.g. to provide diagnostic microarrays).

1http://fungene.cme.msu.edu/

4.2. RELATED WORK 57

It should be noted that depending on the target group and the available sequence data,

there may not be a perfect match; a perfect match would be a signature that matches all

target sequences and has no matches outside of the target group (no false-positives). Thus,

we are interested in algorithms that support relaxed search conditions; the algorithm should

minimize the number of target sequences that are not matched (false-negatives) while allowing

for at most k false-positives (where k is typically a small number). In practice, inaccuracies

in the available sequence data and additional constraints (such as melting point restrictions)

complicate the situation further. However, many of these issues have been addressed in the

prior chapter 3. In this chapter, we concentrate on the central algorithm for the search for good

signature candidates, hereinafter referred to as CaSSiS-LCA.

We will use the following formalism to present and discuss our algorithm. Let G = (U, V,E)

be a bipartite graph where edges (u, v) ∈ E represent that a signature u ∈ U matches an

organism v ∈ V . Furthermore, let T be a tree with leaves in V (e.g. T might represent a

phylogenetic tree). Furthermore, let D(t) be the set of all descendants of t ∈ T and P (t) the

result set of signatures for t. Then, this chapter presents an O(k|U | log |V | + k|V | + |E|) time

algorithm (detailed analysis in Section 4.3.3) which determines for all elements t ∈ T those

element(s) u ∈ U that maximize the number of edges (u, v) ∈ E with v ∈ D(t) while not having

more than k edges (u, v′) ∈ E with v /∈ D(t). For each t, the resulting signatures are stored in

P (t). Note that in practice |E| is several orders of magnitude larger than k|U | log |V |; thus the

runtime is practically linear in the size of the input.

Following the notation from the previous Chapter 3, we will call edges (u, v) ∈ E with

v ∈ D(t) ingroup matches for group t and edges (u, v′) ∈ E with v /∈ D(t) outgroup matches for

group t. The bound k is the maximum number of outgroup matches that can be tolerated. If

the resulting signature u is used for diagnostics, outgroup matches would result in false-positive

tests. The goal of the algorithm is to maximize the number of ingroup matches. If there exist

organisms v ∈ D(t) where (u, v) /∈ E, this would result in false-negative tests when using

signature u to test for group t. In other words, the presented algorithm finds for each group of

organisms t ∈ T all of those signatures u ∈ U that have less than k false-positives and minimize

false-negatives.

The remainder of this chapter is structured as follows. We review related work in Section 4.2.

Our algorithm is presented in Section 4.3. Details about our implementation and its performance

are given in Section 4.4.

4.2 Related Work

Currently, the use of primers and probes is widespread in the field of medical diagnostics. In

previous work, we have shown that computational methods can find typical representatives

that are applied in this field [12]. An example is EUB338, a domain-specific probe used for the

detection of organisms classified as “bacteria” [3]. Our algorithm not only found the signature

corresponding to EUB338, but it also presented a signature with a higher coverage (its position

was shifted by one base compared to EUB338) [12].

58 CHAPTER 4. THE CASSIS-LCA APPROACH

The in silico search for oligonucleotides is provided by various tools. Most of them are

specialized in either primer design [32, 85, 35, 93] for PCR applications, or the design of

probes [22, 34] that could be applied in DNA microarrays. However, more generic approaches

also exist that try to identify signature sites [70, 62].

For various reasons, we found these tools unsuitable for the comprehensive computation of

hierarchically clustered sequence datasets. They are typically limited to processing datasets

of a few thousand gene sequences or a few genomes due to excessive memory or time require-

ments [12]. In most cases, oligonucleotides are computed only for one predefined set of targets

and nontargets per run. Another limit is the lack of relaxed nonheuristic search methods, which

gain importance when processing large datasets [12].

Prior to this work, the only algorithms known to us capable of doing a comprehensive

nonheuristic signature computation based on large hierarchically linked gene and genome se-

quence datasets were Insignia [87] and the first CaSSiS implementation, hereinafter referred to

as CaSSiS-BGRT [12].

4.2.1 Insignia

Insignia is a Web application developed and maintained by the Center for Bioinformatics and

Computational Biology at the University of Maryland. It currently (May 2012) contains 13,928

genomic organism sequences (11,274 viruses/phages and 2,653 nonviruses).

Insignia consists of two pipelines. The first “match pipeline” is used to pre-compute “match

cover” arrays M for every pair of organisms. For example, for v1, v2 ∈ V and v1 6= v2, the match

cover array M(v1, v2) contains the positions and lengths of all sequence regions of v1 that are

also present at one or more positions on v2. To find common regions for an organism pair,

Insignia uses MUMmer [59] to build a suffix-tree-based search index. Signatures of a defined

length matching v1 and v2 are extracted, merged if their positions on v1 overlap, and added as

regions to the match cover.

A match cover consists of integers, that is, position and length pairs on a reference sequence.

The number of pairs in a match cover is bound by the sequence length l. To process ≈80 billion

nucleotides from NCBI RefSeq genome database2, the first pipeline had to be distributed across

a 192-node cluster [86]. The authors did not provide information about the actual runtime of

the algorithm. The memory consumption for the match cover M for 300 organisms is reported

to be only ≈2GB [87].

After precomputing the match cover, the second “signature pipeline” is triggered over In-

signia’s web interface. The signature pipeline computes regions (i.e., one or more overlapping

signatures) shared between a user-defined group of target organisms V ′ ⊆ V which must also

be absent in the background V ′′ = V \ V ′ [87]. One target organism v′ ∈ V ′ is designated as

the reference organism and used to visualize the result.

The signature pipeline consists of three steps. In a first step, an intersection Iv′ :=⋂
vt∈V ′M(v′, vt) of the match cover structures from v′ with the other target organisms from

2http://www.ncbi.nlm.nih.gov/RefSeq/

4.2. RELATED WORK 59

V ′ is created. It contains only sequence regions on v′ that are shared by all targets V ′. In a

second step, a union Uv′ :=
⋃

vb∈V ′′M(v′, vb) of the match cover structures from v′ with all

background organisms V ′′ is created. Uv′ thus contains all regions on v′ that match one or more

organisms from the background V ′′. In the last step, the regions from Iv′ are compared to the

ones in Uv′ to find possible signature candidates. Valid signatures for the targets V ′ have to

completely lie within a region on Iv′ and must not entirely lie within a region on Uv′ .

All operations in the signature pipeline have (practically) linear time complexity in the size

of the match cover [87]. The match cover intersection Iv′ for a target group V ′ (and a reference

organism v′) has a time complexity of O(|Iv′ | log |V ′|). The log |V ′| factor can be treated as a

constant due to the bounded number of genomes [87]. A single query takes, on average, one

minute to process [87].

The final output of Insignia is a list of regions consisting of overlapping k-mer signatures.

Insignia was primarily designed to process single queries (single targets or groups of target

sequences) and not for handling deep hierarchies. In contrast to the work presented in this

chapter, Insignia is only able to report k-mer signatures perfectly matching the whole target

group without allowing nontarget matches. However, for many reasonable groups of organisms

such perfect signatures often simply do not exist. In our test datasets, only 55% of the organ-

isms and 14% of all groups were perfectly covered [12, Section 3.5] by one or more signatures.

Furthermore, Insignia can also not be used to find signatures with small mismatches to the

target sequences (which is useful to tolerate sequencing errors) or to enforce larger Hamming

distances to nontarget (background) organisms. CaSSiS and the improvements over CaSSiS

that are presented in this chapter address these shortcomings.

4.2.2 CaSSiS-BGRT

The CaSSiS-BGRT [12] algorithm and the CaSSiS-LCA algorithm presented in this chapter

use the same input sources and provide the same outputs. Specifically, both approaches use

the ARB PT-Server [70] to construct a bipartite graph that matches signature candidates to

organisms. ARB first generates all possible signatures of the specified length and then matches

them (using a suffix trie) against the sequences of the organisms. The PT-Server supports

approximate matching, for example, to compensate for sequencing errors in the database. The

algorithms then process the resulting data stream and generate a map P , which contains a set

of promising signature candidates for each t ∈ T .

The two approaches differ in the central algorithm, which searches and evaluates signature

candidates. Given a phylogenetic tree and the bipartite graph, CaSSiS-BGRT uses a new data

structure, the bipartite graph representation tree (BGRT), to process more than 460,000 gene

sequences (660M nucleotides, matched without mismatches or outgroup hits) in about 132 hours

on an Intel Core i7 with 24GB of system memory [12]. The algorithm employed by CaSSiS has

worst-case complexity O(|M | · |V |) time, where M is the size of the BGRT (which is in turn

bounded by |U |, the number of edges in the bipartite graph) and |V | is the set of all organisms.

CaSSiS-BGRT uses a time-memory trade-off to implement a bounded search to significantly

60 CHAPTER 4. THE CASSIS-LCA APPROACH

reduce the execution time in practice; however, as a result, CaSSiS-BGRT requires O(d · |M |)
memory where d is the depth of the (phylogenetic) tree T .

While 132 hours may seem sufficient to find signatures for all sequences and sequence groups

of interest, SSURef 102 only contains long (>900nt) annotated aligned SSU rRNA sequences

and not full genomes. CaSSiS-BGRT cannot be expected to process contemporary data sets

containing full genomes, as memory consumption is linear in the number of nucleotides and 700-

million nucleotides already require about 16GB of RAM. For comparison, a human genome has

3.3-billion nucleotides, and ideally a signature search should to consider all available sequence

data for all organisms. The CaSSiS-LCA algorithm presented in this chapter significantly

outperforms CaSSiS-BGRT both in terms of memory and time complexity and is thus able to

process full genomes.

4.3 The CaSSiS-LCA Algorithm

In this section, we present our new algorithm CaSSiS-LCA. We build up to the full-featured

algorithm in three steps to introduce each of the key ideas separately and to properly highlight

how the algorithm handles the different cases.

The bipartite graph G = (U, V,E) has the key property that in practice we can expect there

to be a relatively small number of organisms in V (hundreds of thousands) and many more

signatures U (billions) and even more edges (Figure 4.2). Thus, it is impractical to load E (or

even U) into main memory at any given time. Existing tools that generate signature candidates

and match them against organisms can efficiently create E in the form of a data stream, giving

all of the tuples (u, v) ∈ E for a given u ∈ U in a single contiguous block in the overall stream.

The basic philosophy of our algorithm is thus to do stream processing [11] over a stream that

represents the bipartite graph. Each round of the algorithm is given a u ∈ U and the set Su ⊆ V
of all organisms v ∈ Su that match signature candidate u. Our stream processing algorithm

must then decide to keep u in a preliminary result set or discard u for good.

Prior to the main algorithms, we always perform some basic precomputations. First, we

number the organisms sequentially in the tree T from left to right; thus, (without loss of gener-

ality) v ∈ N. Second, we precompute the sparse tables necessary for computing lowest common

ancestors in T . This precomputation can be done in O(|V |) time [16, 37, 40]. Henceforth,

we can compute the lowest common ancestor (LCA) of v and v′ (denoted by LCA(v, v′)) for

v, v′ ∈ T in O(1) time.

We will present the new algorithm in three consecutive steps. The simplest algorithm,

presented in Section 4.3.1, is only considering perfect matches. A more relaxed algorithm that

allows partial matches is given in Section 4.3.2. The actual algorithm that additionally allows

outgroup matches follows in Section 4.3.3. A list of notations used in the three algorithms is

shown in Table 4.1.

4.3. THE CASSIS-LCA ALGORITHM 61

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1 10 100 1000 10000 100000

S
ig

na
tu

re
s

Organisms

Number of organisms matched per signature

Figure 4.2: This figure shows the number of signatures that reference a certain number of
organisms. It is based on the bipartite graph of the complete SSURef 108 dataset (618, 442
organisms, 31, 976, 771 signatures). Of the signatures, 57% match a single organism and only
11% match 10 or more organisms. Both axis use a logarithmic scale.

C(t) Child nodes of node t ∈ T
D(t) Set of all descendants of t ∈ T
E Edges (u ∈ U, v ∈ V) in the bipartite graph
G Bipartite graph (U, V,E)

indexofmin(e, S) Returns the index of element e ∈ S in the array S, if e /∈
S, the index e would have had if e was in S minus one is
returned

indexofmax(e, S) Returns the index of element e ∈ S in the array S, if e /∈ S,
the index e would have had if e was in S is returned

LCA(v, v′) Lowest Common Ancestor of v ∈ V and v′ ∈ V
P (t) Result set for tree node t ∈ T

P (t, k) Result set for tree node t ∈ T and k ∈ N outgroup hits
Su Set of sequences Su ⊂ V that are matched by a signature u

sort S Returns a sorted array with the elements from S
T (Phylogenetic) Tree
U Signature set
V Sequence set

Table 4.1: Notations that are used in the following three algorithms.

4.3.1 Perfect Match Algorithm

We begin our exposition with an algorithm for the simple case of finding a probe that provides

perfect group coverage, that is, we are only interested in finding probes that match all sequences

62 CHAPTER 4. THE CASSIS-LCA APPROACH

in the target group and have no outgroup hits.

Figure 4.3 illustrates the two key cases the perfect match algorithm considers. First, the

common case that the organisms matched by the signature do not correspond perfectly to any

group. Second, the desired case that the signature corresponds exactly to a particular group,

which LCA can identify in O(1) time.

Algorithm: Perfect Matching

Input: G(U, V,E), T , LCA(v, v′), |D(t)|
Output: P : T → P(U)

1 for u ∈ U do
2 P (u)← ∅;
3 end
4 for u ∈ U do
5 Su ← sort {vu|(u, vu) ∈ E};
6 vmin

u ← min Su ;
7 vmax

u ← max Su ;
8 û← LCA(vmin

u , vmax
u);

9 if |Su| = |D(û)| then
10 P (û)← P (û) ∪ {u};
11 end

12 end
Algorithm 1: This algorithm computes a relation P that maps for each organism or group
of organisms t ∈ T to signature that perfectly cover all organisms in D(t) (with no false-
positives).

Algorithm 1 can then be used to find perfect matches for each organism or group of organisms

(i.e. relation P). The key idea here is to use LCA to quickly determine the only t ∈ T that

might be matched perfectly by a given signature u, and then to use arithmetic to determine

if u matches all descendants D(t). For this algorithm, we need to precompute the number of

descendants |D(t)| for all t ∈ T (which is trivial to do in O(|V |) time). For determining the

LCA û, the minimum and maximum organism identifiers vmin
u and vmax

u are fetched and used.

This can be done in O(1) time in the sorted list Su. Although sorting might be exaggerated in

order to find the minimum and maximum identifiers, it was used for consistency to the third

(implemented) algorithm where it becomes mandatory.

The complexity of the computation given in Algorithm 1 is O(|U | + |E|) (|E| from sorting

arrays of integers with a total of |E| entries in linear time, |U | from processing each signature

u). Together with the precomputation, the overall complexity of this first algorithm is thus

O(|V |+ |E|+ |U |) time.

4.3.2 Partial Group Coverage

The second version of the algorithm will now relax the constraint that the group coverage must

be perfect. Instead, we will permit that some organisms in the group are not covered by the

signature. The goal of the algorithm is to find those signatures that provide the maximum group

4.3. THE CASSIS-LCA ALGORITHM 63

(a) No match. |Su| 6= |D(û)|

(b) Perfect match. |Su| = |D(û)|

Figure 4.3: Illustration of Algorithm 1. In 4.3a, the set size |Su| = 3 is smaller than |D(û)| = 6,
so the candidate u is not a perfect probe for any sequence or sequence group; 4.3b shows a
probe that would be a perfect match (|Su| = 2 = |D(û)|).

coverage (minimizing false-negatives) while not allowing any outgroup hits (no false-positives).

Let r ∈ T be the root of the tree T and let C(t) ⊂ T denote the children of t ∈ T .

Algorithm 2 can then be used to find those signatures that maximize group coverage (with no

outgroup hits) in O(|U |+ |E|) time. The result is stored in a map P which maps each t ∈ T to

a pair consisting of the set of signatures U ⊆ U and the number of organisms matched in the

target group by all u ∈ U .

A key step in Algorithm 2 is the propagation of results up the tree in Procedure PropagateUp.

This step exploits the fact that the parent p′ of a node p ∈ T always represents a superset of

organisms, and thus a probe that has no outgroup hits for p will also have no outgroup hits

64 CHAPTER 4. THE CASSIS-LCA APPROACH

Algorithm: Partial Group Coverage

Input: G(U, V,E), T , LCA(v, v′)
Output: P : T → (P(U),N)

1 for u ∈ U do
2 P (u) = (∅, 0);
3 end
4 for u ∈ U do
5 Su ← sort {vu|(u, vu) ∈ E};
6 vmin

u ← min Su ;
7 vmax

u ← max Su ;
8 û← LCA(vmin

u , vmax
u);

9 (U , n′)← P (û);
10 n← |Su|;
11 if n > n′ then
12 P (û)← ({u}, n);
13 end
14 if n = n′ then
15 P (û)← (U ∪ {u}, n′);
16 end

17 end
18 PropagateUp (T , r, P);
Algorithm 2: This algorithm computes a relation P that maps for each organism or group
of organisms t ∈ T to the set of signatures that provide maximum coverage of the organisms
in D(t) (with no false-positives). The algorithm runs in O(|U | + |V | + |E|) time, as we can
use bucket sort to sort in O(|E|) time and Procedure PropagateUp adds O(|V |) time.

for p′. A suitable probe candidate for p can therefore also be a good candidate for p′. Thus,

Procedure PropagateUp is needed to ensure that, probes that provide partial group coverage

are found. Note that for partial group coverage, the computation of |D(t)| is no longer required.

Figure 4.4 illustrates the key steps in Algorithm 2. Given a signature u, the algorithm

first determines vmin
u and vmax

u , then determines û using LCA, associates the signature u with

|S| = 2 ingroup hits with P (û), and finally (assuming there were no other, better signatures

found in U) propagates the signature u to the ancestors of û.

4.3.3 Allowing at most k Outgroup Hits

Finally, we present the complete CaSSiS-LCA algorithm that computes for each t ∈ T those

signatures u ∈ U that maximize the number of matched target organisms v ∈ D(t), while not

matching more than k organisms v′ /∈ D(T). More precisely, our algorithm computes for each

i ∈ {0, . . . , k} and each t ∈ T the set of signatures u ∈ U that have exactly i outgroup hits and

the maximum number of ingroup hits.

Before the main algorithm, we precompute for each t ∈ T its leftmost and rightmost leaf

in the subtree rooted at t, which we will refer to as the border B(t) = (vmin
t , vmax

t) (where

vmin
t := min(D(t)) and vmax

t := max(D(t))). It is trivial to do this precomputation in O(|V |)

4.3. THE CASSIS-LCA ALGORITHM 65

Input: T , p, P : T → (P(U),N)
Output: Updated P : T → (P(U),N)

1 foreach c ∈ C(p) do
2 PropagateUp (T , c, P);
3 if p 6= r then
4 p′ ← parent (p);
5 (U , n)← P (p);
6 (U ′, n′)← P (p′);
7 if n > n′ then
8 P (p′)← (U , n);
9 end

10 if n = n′ then
11 P (p′)← (U ∪ U ′, n′);
12 end

13 end

14 end
Procedure PropagateUp(T, p, P): Helper function to propagate good matches up the tree
using depth first traversal (in O(|V |) time).

Figure 4.4: Illustration of Algorithm 2. The coverage of the probe u is |Su| = 2. It is added at
the node û. Note that the PropagateUp step happens once (for each t ∈ T) at the end of the
algorithm and not after each u ∈ U .

time.

Given this, Algorithm 3 computes P , a mapping from pairs (T, {0, . . . , k}) (representing a

target organism or target group of organisms and a number of outgroup hits) to a pair (P(U),N)

consisting of a set of signatures and the number of organisms matched by those signatures in the

target group. The Procedure PropagateUpWithK corresponds to the procedure PropagateUp,

66 CHAPTER 4. THE CASSIS-LCA APPROACH

Algorithm: Partial Group Coverage with Outgroup Hits

Input: G(U, V,E), T , LCA(v, v′), k
Output: P : (T, {0, . . . , k})→ (P(U),N)

1 for u ∈ U do
2 for o ∈ {0, . . . , k} do
3 P (u, o) = (∅, 0);
4 end

5 end
6 for u ∈ U do
7 Su ← sort {vu|(u, vu) ∈ E};
8 vmin

u ← min Su ;
9 vmax

u ← max Su ;
10 û← LCA(vmin

u , vmax
u);

11 (U , n′)← P (û, 0);
12 n← |Su|;
13 if n > n′ then
14 P (û, 0)← ({u}, n);
15 end
16 if n = n′ then
17 P (û, 0)← (U ∪ {u}, n′);
18 end
19 PropagateDown (T, û, P, Su, k, u) ;

20 end
21 PropagateUpWithK (T , r, P , k);
Algorithm 3: This algorithm computes a relation P that maps for each organism or group
of organisms t ∈ T to the set of signatures that provide maximum coverage of the organisms
in D(t) (with no false-positives). The algorithm runs in O(k|U | log |V | + k|V | + |E|) time.
The algorithm requires O(|V |) space for the LCA data structure and can process the bipartite
graph (u, vu) ∈ E in a streaming fashion; thus, there is no need to store the entire bipartite
graph in memory. There are O(k|V |) result entries in the output P . As written, the union
operation in line 17 creates the theoretical possibility of O(k · |V | · |U |) space (if every signature
is a perfect signature for some k and some sequence). If only a best match (instead of all
best matches) is desired, one can replace (U ∪ {u}) with {u} to improve space consumption
to O(k · |V |). In either case, the algorithm requires space linear to the size of the output.

differing only in propagating k + 1 matches up.

Algorithm 3 requires another helper Procedure PropagateDown, which propagates signatures

down the tree T . At the LCA node, a signature will only have ingroup matches and it has the

highest sensitivity, but the signature could also be valuable candidate for its children, which in

their case results in outgroup matches. Propagating signatures downwards requires recalculating

the number of ingroup and outgroup hits at each step. Given that at most k outgroup hits are

allowed, the propagation stops after a total of at most O(k) downward steps.3

At each step, the procedure uses the border B and a binary search to quickly determine

3Without loss of generality, we can assume that T is a binary tree; thus, |C(p)| ≤ 2 can be assumed and the
first iteration over |C(p)| children of p is also in O(k) time.

4.4. IMPLEMENTATION AND RESULTS 67

Input: T , p, P : T → (P(U),N), k
Output: Updated P : T → (P(U),N)

1 foreach c ∈ C(p) do
2 foreach o ∈ {0, . . . , k} do
3 PropagateUpWithK (T , c, P , k);
4 if p 6= r then
5 p′ ← parent (p);
6 (U , n)← P (p, o);
7 (U ′, n′)← P (p′, o);
8 if n > n′ then
9 P (p′, o)← (U , n);

10 end
11 if n = n′ then
12 P (p′, o)← (U ∪ U ′, n′);
13 end

14 end

15 end

16 end
Procedure PropagateUpWithK(T, p, P, k) Helper function to propagate good matches up
the tree using depth-first traversal (in O(k|V |) time). This procedure closely corresponds to
Procedure PropagateUp, except that we need to propagate the best signatures up k+1 times.

the number of outgroup and ingroup hits for the new target group. Let indexofmin(e, S) be

a function that returns the index of element e ∈ S in the zero-indexed, sorted array S. If

e /∈ S, the index of the element left of the position e would have had in S should be returned

(we never use indexofmin(e, S) on elements e that have no smaller element in S). Similarly,

let indexofmax(e, S) be a function that returns the index of element e ∈ S in the zero-indexed,

sorted array S, and if e /∈ S returns the index of the element right of the position, e would

have had in S (again, we never use indexofmax(e, S) on elements e that have no larger element

in S). Figure 4.6 illustrates how indexof is used to quickly determine the number of outgroup

hits o. As S is sorted, both indexof computations can be done in O(log |S|) time using binary

search. Procedure PropagateDown then lists the steps necessary to propagate signatures down

the tree.

Figure 4.5 illustrates the downward propagation for k = 1. Going toward the left, the

propagation immediately terminates as o = 2 > k. Propagating toward x, the propagation

first updates the result set for o = 1 outgroup hit and then terminates on the next level as the

number of outgroup hits again rises to o = 2 > k.

4.4 Implementation and Results

All experiments were performed on an Intel Core i7-920 (2.67GHz) Debian GNU/Linux system

with 16GB of main memory. We evaluated the performance of our algorithm using the sequence

68 CHAPTER 4. THE CASSIS-LCA APPROACH

Input: T , p, P : T → (P(U),N), S, k, u, indexof(e, S)
Output: Updated P : T → (P(U),N)

1 foreach c ∈ C(p) do
2 (vmin

c , vmax
c)← B(c);

3 imin
c ← indexofmin(vmin

c , S) ;
4 imax

c ← indexofmax(vmax
c , S) ;

5 o← imin
c + |S| − imax

c − 1;
6 n← |S| − o;
7 if o ≤ k then
8 (U ′, n′)← P (c, o);
9 if n > n′ then

10 P (c, o)← ({u}, n);
11 end
12 if n = n′ then
13 P (c, o)← (U ′ ∪ {u}, n′);
14 end
15 PropagateDown (T, c, P, S, k, u);

16 end

17 end
Procedure PropagateDown(T, p, P, S, k, u) Helper function to propagate good matches
down the tree, bounded by k. The recursion is bounded to at most O(k) calls, thus the
complexity of this procedure is O(k log |S|) time and thus O(k log |V |) as S ⊆ V .

Figure 4.5: Illustration of Algorithm 3. For the example, we use an outgroup limit of k := 1.
At û (and its parent nodes) no outgroup matches are possible, i.e. P (0, û)← (U , 3). The match
is then propagated towards the child nodes. At node x, the match is added with 1 outgroup
match, i.e. P (1, x)← (U , 2). In the other child nodes, the outgroup limit k is exceeded.

4.4. IMPLEMENTATION AND RESULTS 69

Figure 4.6: Detailed illustration of one iteration in the foreach loop of the PropagateDown
procedure. The left- and rightmost descendants (vmin

c and vmax
c) of the node c are read. Then,

the indexof procedures are used to fetch their positions in the match set S: imin
c = 2 and

imax
c = 5. The number of outgroup matches at c is o = imin

c + |S|− imax
c − 1 = 2 + 8− 5− 1 = 4,

the number of matches is, therefore, n = |S| − o = 4

data and phylogenetic tree from the SILVA SSURef 108 dataset4. It should be noted that the

output of the new algorithm is identical to the output from CaSSiS-BGRT (Chapter 3.3.6).

The inputs to our implementation are a (binary) phylogenetic tree in the Newick format [81]

and MultiFasta5 formatted 16S rRNA gene sequence datasets. Each sequence represents an

organism. For our experiments, we used a modified ARB PT-Server to generate the bipartite

graph that maps signature candidates to organisms. The modifications allowed direct access to

the result sets without double parsing (once in the PT-Server and again in CaSSiS). Also, the

memory management was adapted to reduce the memory consumption.

The PT-Server allows the definition of a Hamming distance when matching a signature

against the sequences. Our implementation utilizes this to allow a certain Hamming distance

m1 for matches within the target group as well as enforcing a minimum Hamming distance

m2 > m1 to sequences outside of the target group. The latter is implemented by adding the

number of organisms with a distance between m1 and m2 to the initial number of outgroup hits

for the probe. This strategy was also used and discussed in [12]. In both approaches, using the

same Hamming distance values result in identical bipartite graphs.

For the precomputation, we used the canonical approach of reducing the LCA problem into a

range minimum query (RMQ) problem [40]. We used the Sparse Table (ST) algorithm described

by Bender and Farach-Colton [16] to preprocess with a complexity of O(n log n) time and to

achieve O(1) time for the RMQ queries during the main phase of the algorithm. While solutions

4http://www.arb-silva.de/documentation/background/release-108/
5http://blast.ncbi.nlm.nih.gov/blastcgihelp.shtml

70 CHAPTER 4. THE CASSIS-LCA APPROACH

for preprocessing the LCA look-up with linear runtime and memory complexity exist [16, 37, 38],

we did not implement those as the O(n log n) processing is not the bottleneck (costing less than

1% of the total execution time) and the constant factors for the main phase of the algorithm

would be higher for those other schemes. However, for the complexity analysis, we assume that

the best-known linear algorithm for LCA could be used and thus the LCA precomputation will

take O(|V |) time and space.

We created test datasets of increasing sizes by randomly selecting sequences from the original

SILVA SSURef 108 dataset. We reduced the phylogenetic trees to only include leaves which

reference the selected sequences. The test datasets range from 16, 000 to 512, 000 sequences

(Table 4.2, upper part).

To evaluate the processing of genome sequences with the CaSSiS-LCA approach, Wolfgang

Ludwig provided us an unpublished dataset consisting of procaryotic (bacterial) genome se-

quences of varying completeness. Additionally, he provided a phylogenetic tree referencing

these sequences at its leaves and containing group definitions at its inner nodes. We extracted

three test datasets and corresponding trees with 100, 200 and 400 complete genome sequences

(Table 4.2, lower part).

Sequences |V | Bigraph Edges |E| Signatures |U | Nucleotides

16,000 22,675,424 3,035,608 22,961,088
32,000 45,332,247 4,654,334 45,882,367
64,000 90,712,819 7,110,160 91,766,991

128,000 181,546,054 10,767,681 183,567,793
256,000 363,195,618 16,219,346 367,064,051
512,000 726,690,069 24,125,196 734,101,089

(*) 618,442 882,460,379 31,976,771 891,481,250

100 genomes 340,765,921 302,033,422 348,881,663
200 genomes 663,933,797 573,445,204 680,490,674
400 genomes 1,328,208,091 1,039,549,521 1,360,775,974

Table 4.2: The upper part of the table contains test datasets derived from the SSURef 108 (*)
dataset. Sequences represent rRNA genes of organisms. For each dataset, the total number
of nucleotides and unique exact-matching 18 mer signatures are shown. The bigraph edges
represent matches between 18 mer signatures and sequences. The lower part of the table contains
the statistical information for the test datasets consisting of 100, 200 and 400 complete bacterial
genome sequences.

As expected, the main phase of the algorithm spends most of its time performing the down-

ward propagation. However, execution time is dominated by far by the queries to the ARB

PT-Server (Figure 4.7), especially for larger Hamming distance values (m1 and m2; Table 4.3).

It should be noted that it would be trivial to run multiple instances of the ARB PT-Server in

a cluster [11] (memory per node permitting). Distributing the queries across multiple search

indices and aggregating the results afterwards would further decrease the runtime of our ap-

proach.

4.4. IMPLEMENTATION AND RESULTS 71

10

100

1,000

10,000

100,000

1,000,000

In
de

x
C

re
at

io
n

C
aS

S
iS

-L
C

A

B
G

R
T

C
re

at
e

B
G

R
T

S
e
ar

ch

In
de

x
C

re
at

io
n

C
aS

S
iS

-L
C

A

B
G

R
T

C
re

at
e

B
G

R
T

S
e
ar

ch

In
de

x
C

re
at

io
n

C
aS

S
iS

-L
C

A

B
G

R
T

C
re

at
e

B
G

R
T

S
e
ar

ch

In
de

x
C

re
at

io
n

C
aS

S
iS

-L
C

A

B
G

R
T

C
re

at
e

B
G

R
T

S
e
ar

ch

In
de

x
C

re
at

io
n

C
aS

S
iS

-L
C

A

B
G

R
T

C
re

at
e

B
G

R
T

S
e
ar

ch

In
de

x
C

re
at

io
n

C
aS

S
iS

-L
C

A

B
G

R
T

C
re

at
e

B
G

R
T

S
e
ar

ch

16,000 32,000 64,000 128,000 256,000 512,000

O
v
e
ra

ll
ru

n
ti

m
e
 (

s)

Search Index LCA-Tree BGRTree

Figure 4.7: Overall runtime of the CaSSiS-BGRT and CaSSiS-LCA implementations for growing
dataset sizes (16, 000 to 512, 000 sequences) with m1 = 0, m2 = 1 and k = 10. CaSSiS-BGRT
was split in its two computing stages BGRT Create and BGRT Search. The creation of the
BGRT and the CaSSiS-LCA approach runtimes include building the search index. The measured
runtimes grow linear with the dataset sizes.

Distances Runtime Bigraph Edges Signatures
m1 m2 (seconds) |E| |U |

0 1 54 22,675,424 3,035,608
0 2 188 3,669,142 1,932,039
0 3 1,167 1,746,651 1,113,679
0 4 5,292 752,918 534,838
1 2 259 369,546,279 3,035,608
1 3 1,233 4,399,485 1,229,004
1 4 5,378 1,315,221 566,610
2 3 1,488 1,386,742,230 3,035,608
2 4 5,628 3,402,659 646,788
3 4 6,203 3,349,697,538 3,035,608

Table 4.3: Allowing mismatches within the target group by increasing the Hamming distance
m1 increases the number of edges |E| in the bipartite graph. The number of signatures |U |
decreases with growing Hamming distances m2 to nontargets. The number of sequences, here
|V | = 16, 000, stays constant. The total runtime is mainly influenced by the time needed to
process the search index queries and, therefore, increases with growing mismatch distances (m2).

72 CHAPTER 4. THE CASSIS-LCA APPROACH

Both algorithms, CaSSiS-BGRT and CaSSiS-LCA, begin with the computation of the search

index. Afterward, the search index is loaded into memory for further processing. Up to this

point, runtime and memory consumption for both algorithms are identical. Afterward, either

a BGRT is created and in a later step processed (CaSSiS-BGRT), or the results are directly

inserted at the appropriate node in the phylogenetic tree (CaSSiS-LCA). Figure 4.8 illustrates

the growth in memory requirement of all major steps for different input sizes. With growing

dataset sizes, the signature search based on the BGRT becomes the most memory consuming

step.

0

2

4

6

8

10

12

14

16

In
de

x
C

re
at

io
n

C
aS

S
iS

-L
C

A

B
G

R
T

C
re

at
e

B
G

R
T

S
e
ar

ch

In
de

x
C

re
at

io
n

C
aS

S
iS

-L
C

A

B
G

R
T

C
re

at
e

B
G

R
T

S
e
ar

ch

In
de

x
C

re
at

io
n

C
aS

S
iS

-L
C

A

B
G

R
T

C
re

at
e

B
G

R
T

S
e
ar

ch

In
de

x
C

re
at

io
n

C
aS

S
iS

-L
C

A

B
G

R
T

C
re

at
e

B
G

R
T

S
e
ar

ch

In
de

x
C

re
at

io
n

C
aS

S
iS

-L
C

A

B
G

R
T

C
re

at
e

B
G

R
T

S
e
ar

ch

In
de

x
C

re
at

io
n

C
aS

S
iS

-L
C

A

B
G

R
T

C
re

at
e

B
G

R
T

S
e
ar

ch

16,000 32,000 64,000 128,000 256,000 512,000

M
e
m

o
ry

 C
o
n
su

m
p
ti

o
n
 (

G
B

)

Search Index LCA-Tree BGRTree

Figure 4.8: Comparison of the memory consumption of CaSSiS-BGRT and CaSSiS-LCA for
growing dataset sizes (16, 000 to 512, 000 sequences) computed withm1 = 0, m2 = 1, and k = 10.
Results for the complete SSURef 108 dataset are not shown as the BGRT search step exceeded
the available main memory on our test system (20.1GB; the CaSSiS-LCA implementation only
required 10.8GB). Note that the CaSSiS-BGRT approach was split into its two main steps,
BGRT Create and BGRT Search. The memory consumption of the search index after its
computation is identical for CaSSiS-LCA and BGRT Create. For the BGRT search/traversal,
the search index is not needed anymore. Traversing the BGRT consumes far more memory than
the LCA approach, although the same phylogenetic tree structure is used to store the results
(in the nodes).

We used the largest test dataset to provide a detailed comparison of the two approaches

(Figure 4.9). Due to the identical search index computation and result processing in both

implementations, the most significant difference is the runtime of the search for promising

signatures at the BGRT- and the LCA-Tree-traversal steps.

4.5. DISCUSSION 73

1 hour

BGRT Search:
BGRT Traversal
Match/Result Processing

BGRT Create:
Create Index
Query Index
BGRT Creation

CaSSiS-LCA:
Create Index
Query Index
LCA Search/Traversal
Match/Result Processing

84 hours

36 minutes

97 minutes

Figure 4.9: Detailed comparison of the runtime of CaSSiS-BGRT and CaSSiS-LCA algorithm
for the dataset with 512, 000 sequences. CaSSiS-BGRT was split in its two computing stages
BGRT Create and BGRT Search. Steps with a runtime below one minute (e.g. loading the
BGRT) are not shown. The runtime is represented by area. The most notable difference
is the reduction of the 83 hours of the BGRT Traversal step to 148 seconds during LCA
Search/Traversal”.

4.5 Discussion

When compared to the CaSSiS-BGRT approach from the previous Chapter 3, CaSSiS-LCA of-

fers a vastly reduced memory footprint and a significantly faster runtime. Both approaches share

the same advantages and disadvantages when it comes to the selection of signature candidates

based on relaxed search conditions and the application of filters. These were already discussed

in Section 3.5. A major difference from a user perspective is that CaSSiS-LCA does not rely on

a BGRT lookup structure. During computation, signature candidates are directly added to the

respective nodes in the phylogenetic tree. As a result, it only allows the comprehensive com-

putation and is not capable of processing single freely defined queries — an advantage of a the

BGRT structure, which can be stored as a file and loaded when needed. CaSSiS-LCA is there-

fore directed primarily to the maintainers of hierarchically-clustered databases, such as SILVA,

RDP, or Greengenes [89, 25, 29]. However, it should be pointed out that both approaches lead

to the same results when used with the same configuration.

74 CHAPTER 4. THE CASSIS-LCA APPROACH

With CaSSiS-LCA, we were not only able to process gene datasets but also ones containing

complete bacterial genomes.

In all our tests, one single identifier was used per sequence, i.e. the terms “sequence” and

“organism” were used interchangeably. Also applying this definition when processing complete

genomes is possible, but might lead to several disadvantages. Compared to gene datasets, the

longer genome sequences obviously increase the chance of matches. From a computer science

perspective they are considered equally legitimate. And of course all matches also need to be

considered when a resulting primer and probe is tested in the wet lab. But sometimes it is

desirable to have matches within a certain range on the sequence, e.g. a certain gene. By

using per-sequence identifiers, promising signatures that match at similar gene locations within

a target group might get rejected due to outgroup matches at completely different sequence

locations (e.g. different genes). And vice versa, the match positions of a signature with a high

target group coverage might be completely scattered over the complete genomes.

A biological problem that is currently not covered when processing genomic datasets is the

possibility of multiple occurrences of functionally identical genes at different sequence positions.

CaSSiS only stores relations between sequences and signatures, e.g. “a signature X matches a

sequence A”. The information at which locations matches occur are not stored.

A solution to both mentioned problems could be an extension to the identifier scheme used

throughout CaSSiS: “Composite Primary Keys” (also called “Compound Keys”) could be used.

These keys could consist of 2 or more sequence attributes, i.e. names or accession numbers6.

When querying for signatures for a target group, adding a specific gene identifier would narrow

down the region where the signature may lie. Matches on different locations would count to

the outgroup, thus allowing a more fine-grained search. Such a search can already be achieved

through a modification of the identifiers that are fed to CaSSiS in the input sequence datasets.

Additionally, the group definition must as well be adapted to contain the specific sub-identifiers,

e.g. a certain gene for a defined group of genomes. But as future work, this feature could be

added to CaSSiS itself.

4.6 Conclusion

With CaSSiS-LCA, we have presented a runtime and memory efficient solution for the the in

silico search for promising signature candidates even under relaxed search conditions. Com-

bined with modern algorithms for genome-scale pattern matching this approach will allow the

computation of specific and sensitive signatures.

Our tests with genome datasets have shown that the selection and configuration of the used

search index is very important in order to even be able to process such large datasets. The search

indices’ memory consumption is added to the consumption of CaSSiS during runtime — and

both should fit into the main memory. The CaSSiS approaches are based on the ARB PT-Server

or rather its descendant MiniPT. Its memory requirement grows linearly with the number of

6Accession numbers are unique identifiers that are used to refer to single nucleic acid sequences, proteins, and
even complete genomes.

4.6. CONCLUSION 75

nucleotides it is indexing (Figure 3.9), which is already quite effectively. But a future step could

be switching to an even more efficient search index for pattern matching, such as PTPan [33] or

SeqAn [30]. PTPan stores its index on secondary storage (e.g. a hard drive). It also supports

Levenshtein distances (the PT-Server currently only supports Hamming distances), which might

lead to better results during relaxed searches. SeqAn provides suffix array search structures,

which are considered more memory efficient than suffix tree structures [1]. Both approaches are

slower in answering queries when compared to the ARB PT-Server [33], a factor which should

at least be considered.

Another approach is partitioning the search index in a cluster. By this, we predict that

CaSSiS-LCA should be able to process genome data of virtually arbitrary size. It would mostly

be limited by the size of the clustering that is used to store the resulting signature candidates.

The following Chapter 5 presents first promising results.

Chapter 5

Distributed Signature Matching

Finding optimal oligonucleotide signatures that are both specific and sensitive for organisms

or groups of organisms in large-scale sequence datasets is a very computationally expensive

task. In the last two Chapters 3 and 4 the approaches CaSSiS-BGRT and CaSSiS-LCA were

presented, that tackle this problem from the algorithmic side. We have accelerated the signature

gathering and evaluation step and largely reduced its memory consumption.

Looking at the entire CaSSiS implementation, there still remains a barely altered component:

the search index. This index is necessary to compute the mapping between the signatures and

matched sequences. It has huge influence on the overall runtime and, depending on the search

settings, may also have a very high memory consumption.

We present in this chapter our experiences with parallelizing and distributing the ARB PT-

Server, the search index for RNA/DNA sequence databases that was used in this work. The

case study shows that it is possible to rapidly parallelize and distribute an existing complex

legacy bioinformatics application and obtain significant speedups.

For this purpose we have used the DUP System, a simple framework for parallel stream

processing. The DUP System enables developers to compose applications from stages writ-

ten in almost any programming language and to run distributed streaming applications across

all POSIX-compatible platforms. Parallel applications written with the DUP System do not

suffer from many of the problems that exist in traditional parallel languages. The DUP Sys-

tem includes a range of simple stages that serve as general-purpose building blocks for larger

applications.

This Chapter is an extended version of a LNCS “Network and Parallel Computing” arti-

cle [11]. It was joint work with Tilo Eißler, Nathan Evans, Prof. Chris GauthierDickey, Chris-

tian Grothoff, Krista Grothoff, Jeff Keene, Harald Meier, Craig Ritzdorf, and Prof. Matthew

J. Rutherford.

5.1 Introduction

Exact and inexact string searching in gene sequence databases plays a central role in molecular

biology and bioinformatics. Many applications require string searches, such as searching for gene

77

78 CHAPTER 5. DISTRIBUTED SIGNATURE MATCHING

sequence relatives and mining for PCR-primers or DNA-probes in DNA sequences [80, 65, 53];

both of these applications are important in the process of developing molecular diagnostic assays

for pathogenic bacteria or viruses based upon specific DNA amplification and detection.

In the ARB software package, a suffix-tree–based search index, called the PT-Server, is the

central data structure used by applications for fast sequence string matching [70]. A PT-Server

instance is built once from the sequence entries of a gene sequence database of interest and is

stored permanently on disk.

In order to perform efficient searches, the PT-Server is loaded into main memory in its

entirety. Its memory requirement grows linearly with the number of nucleotides it is indexing

(Figure 3.9). If the entire index structure cannot fit into the available main memory (the PT-

Server requires ∼ 26 bytes of memory per sequence base at peak; Section 3.3.1), the structure

cannot be efficiently searched.

In addition to memory consumption, the runtime performance of the search can be quite

computationally intensive. An individual exact string search — in practice, short sequence

strings of length 15–25 base pairs are searched for — is quick (3–15 milliseconds). However,

the execution time can become significant when millions of approximate searches are performed

during certain bioinformatic analyses, such as probe design.

In the near future, the number of published DNA sequences will explode due to the avail-

ability of new high-throughput sequencing technology [103]. As a result, current sequential

analysis methods will be unable to process the available data within reasonable amounts of

time. Furthermore, rewriting more than half-a-million lines of legacy C and C++ code of the

high-performance ARB software package is prohibitively expensive. The goal of this case study

was to see how readily the existing ARB PT-Server could be distributed and parallelized. Specif-

ically, we were interested in parallelization in order to reduce execution time and in distribution

in order to reduce per-system memory consumption.

We have used the DUP System1, a language system which facilitates productive parallel

programming for stream processing on POSIX platforms. It is introduced in Section 5.2. It

is not the goal of the DUP System to provide ultimate performance; we are instead willing to

sacrifice some performance gain for significant benefits in terms of programmer productivity.

By providing useful and intuitive abstractions, the DUP System enables programmers without

experience in parallel programming or networking to develop correct parallel and distributed

applications and obtain speedups from parallelization.

The key idea behind the DUP System is the multi-stream pipeline programming paradigm

and the separation of multi-stream pipeline specification and execution from the language(s)

used for the main computation. Multi-stream pipelines are a generalization of UNIX pipelines.

However, unlike UNIX pipelines, which are composed of processes which read from at most one

input stream and write to a single output stream (and possibly an error stream), multi-stream

pipelines are composed of processes that can read from any number of input streams and write to

any number of output streams. In the remainder of this document, we will use the term “stage”

for individual processes in a multi-stream pipeline. Note that UNIX users — even those with

1The DUP System is available at http://dupsystem.org/

5.2. THE DUP SYSTEM 79

only rudimentary programming experience — can usually write correct UNIX pipelines which

are actually parallel programs. By generalizing UNIX pipelines to multi-stream pipelines, we

eliminate the main restriction of the UNIX pipeline paradigm — namely, the inherently linear

data flow.

In order to support the developer in the use of multi-stream pipelines, the DUP System

includes a simple coordination language which, similar to syntactic constructs in the UNIX

shell, allows the user to specify how various stages should be connected with streams. The

DUP runtime then sets up the streams and starts the various stages. Key benefits of the DUP

System include:

1. Stages in a multi-stream pipeline can run in parallel and on different cores;

2. Stages can be implemented, compiled and tested individually using an appropriate lan-

guage and compiler for the given problem and architecture;

3. Stages only communicate using streams; streams are a great match for networking appli-

cations and for modern processors doing sequential work;

4. If communication between stages is limited to streams, there is no possibility of data races

and other issues that plague developers of parallel systems;

5. While the DUP System supports arbitrary data-flow graphs, the possibility of deadlocks

can be eliminated by only using acyclic data-flow graphs;

6. Applications built using multi-stream pipelines can themselves be composed into a larger

multi-stream pipeline, making it easy for programmers to express hierarchical parallelism

In Section 5.3.2 we present experimental results from a case study involving the ARB PT-

Server in combination with the DUP System. The case study shows that it is possible to

rapidly parallelize and distribute an existing complex legacy bioinformatics application and

obtain significant speedups using DUP.

5.2 The DUP System

The fundamental goal of multi-stream pipelines is to allow processes to read from multiple input

streams and write to multiple output streams, all of which may be connected to produce the

desired data-flow graph. This generalization of linear UNIX pipelines can be implemented using

traditional UNIX APIs,2 especially the dup2 system call. Where a typical UNIX shell command

invocation only connects stdin, stdout and stderr, the DUP System establishes additional

I/O streams before starting a stage. Using this method, traditional UNIX filters (such as grep)

can be used as stages in the DUP System without modification. New stages can be implemented

in any language environment that supports POSIX-like input-output operations (specifically,

2The APIs needed are supported by all platforms conforming to the POSIX standard, including BSD,
GNU/Linux, OS X, and z/OS.

80 CHAPTER 5. DISTRIBUTED SIGNATURE MATCHING

reading and writing to a file). Since dup2 also works with TCP sockets, the DUP System

furthermore generalizes multi-stream pipelines to distributed multi-stream pipelines.

5.2.1 Related Work

The closest work to the DUP System presented in this chapter are multi-stream pipelines in

CMS [49]. CMS multi-stream pipelines provide a simple mini-language for the specification of

virtually arbitrary data-flow graphs connecting stages from a large set of pre-defined tools or

arbitrary user-supplied applications. The main difference between CMS and the DUP System

(which uses parallel execution of stages) is that CMS pipelines are exclusively record-oriented

and implemented through co-routines using deterministic and non-preemptive scheduling with

zero-copy data transfer between stages. CMS pipelines were designed for efficient execution in

a memory-constrained, single-tasking operating system with record-oriented files. In contrast,

DUP is designed for modern applications that might not use record-oriented I/O and need to

run in parallel and on many different platforms.

Another close relative to the DUP System are Kahn Process Networks (KPNs) [54]. A major

difference between DUP and KPNs is that buffers between stages in DUP are bounded, which

is necessary given that unbounded buffers cannot really be implemented and that in general

determining a bound on the necessary size of buffers (called channels in KPN terminology)

is undecidable [84]. Note that the UNIX command buffer can be used to create buffers of

arbitrary size between stages in DUP. Another major difference with KPNs is that DUP does

not require individual processes to be deterministic. Non-determinism on the process level voids

some of the theoretical guarantees of KPNs; however, it also enables programmers to be much

more flexible in their implementations. While DUP allows non-determinism, DUP programmers

explicitly choose non-deterministic stages in specific places; as a result, non-determinism in DUP

is less pervasive and easier to reason about compared to languages offering parallel execution

with shared memory.

Where CMS pipelines focus on the ability to glue small, reusable programs into larger appli-

cations, the programming language community has extended various general-purpose languages

and language systems with support for pipelines. Existing proposals for stream-processing

languages have focused either on highly-efficient implementation (for example, for the data ex-

change between stages [42]) or on enhancing the abstractions given to programmers to specify

the pipeline and other means of communication between stages [110]. The main drawback of

all of these designs is that they force programmers to learn a complex programming language

and rewrite existing code to fit the requirements of the particular language system. The need to

follow a particular paradigm is particularly strong for real-time and reactive systems [104, 61].

Furthermore, especially when targeting heterogeneous multi-core systems, quality implementa-

tions of the particular language must be provided for each architecture. In contrast, the DUP

language implementation is highly portable (relying exclusively on canonical POSIX system

calls) and allows developers to implement stages in any language.

On the systems side, related research has focused on maximizing performance of streaming

5.2. THE DUP SYSTEM 81

applications. For example, StreamFlex [104] eliminates copying between filters and minimizes

memory management overheads using types. Other research has focused on how filters should

be mapped to cores [58] or how to manage data queues between cores [42]. While the com-

munication overheads of DUP applications can likely be improved, this could not be achieved

without compromising on some of the major productivity features of the DUP System (such as

language neutrality and platform independence).

In terms of language design and runtime, the closest language to the DUP Assembly language

is Spade [47] which is used to write programs for InfoSphere Streams, IBM’s distributed stream

processing system [6]. The main differences between Spade and the DUP Assembly language

is that Spade requires developers to specify the format of the data stream using types and

has built-in computational operators. Spade also restricts developers of filters to C++; this

is largely because the InfoSphere runtime supports migrating of stages between systems for

load-balancing and can also fuse multiple stages for execution in a single address space for

performance. Dryad [50] is another distributed stream processing system similar to Spade in that

it also restricts developers to developing filters in C++. Dryad’s scheduler and fault-tolerance

provisions further require all filters to be deterministic and graphs to be free of cycles, making

it impossible to write stages such as faninany or holmerge in Dryad. In comparison to both

Spade and Dryad, the DUP System provides a simpler language with a much more lightweight

and portable runtime system. DUP also does not require the programmer to specify a specific

stream format, which enables the development of much more generic stages. Specifically, the

Spade type system cannot be used to properly type stream-format agnostic filters such as cat

or fanout. Finally, DUP is publicly available whereas both Spade and Dryad are proprietary.

DUP is a coordination language [41] following in the footsteps of Linda [20]: the DUP System

is used to coordinate computational blocks described in other languages. The main difference

between DUP and Linda is that in DUP, the developer specifies the data flow between the

components explicitly, whereas in Linda, the Linda implementation needs to match tuples pub-

lished in the tuplespace against tuples published by other components. The matching of tuples

in the Linda system enables Linda to execute in a highly dynamic environment where processes

joining and leaving the system are easily managed. However, the matching and distribution

of tuples also causes significant performance issues for tuplespace implementations [115]. As a

result, Linda implementations are not suitable for distributed stream processing with significant

amounts of data.

5.2.2 The DUP Assembly Language

The DUP Assembly language allows developers to specify precisely how to connect stages and

where those stages should be run. Figure 5.1 lists the DUP Assembly code for a distributed

“Hello World” example program.

In essence, the DUP language allows developers to specify a directed graph using an ad-

jacency list representation and IO redirection syntax similar to that of well-known UNIX

shells [90]. The nodes in the directed graph are the stages initiated by DUP. A DUP pro-

82 CHAPTER 5. DISTRIBUTED SIGNATURE MATCHING

s @10.0.0.1[0<in.txt,1|g1:0,3|g2:0]$ fanout;

g1@10.0.0.1[1|in:0] $ grep Hello;

g2@10.0.0.2[1|in:3] $ grep World;

in@10.0.0.2[1>out.txt] $ faninany;

Figure 5.1: DUP specification. in.txt is passed to fanout (“0<in.txt”) which copies the
stream to all outputs; in this case output 1 to stream 0 (≡ stdin) at g1 (“1|g1:0”) and output
3 to stream 0 at g2 (“3|g2:0”). g1 and g2 run grep, the outputs (1 ≡ stdout) flowing into
stage in as streams 0 and 3 respectively. in merges those streams and writes the output into
out.txt. The resulting data flow is illustrated in Figure 5.3.

gram consists of a list of statements, each of which corresponds to one such node. Statements

start with a label that is used to reference the respective stage in the specification of other stages.

The keyword DUP is used to reference streams associated with the controlling dup command in

the case that the dup command itself is used as a stage.

<PROGRAM> ::= <STAGE>*

<STAGE> ::= <LABEL> ’@’ <ADDRESS> ’[’ <EDGELIST> ’]’ ’$’ <COMMAND> ’;’

<EDGELIST> ::= <EDGE> (’,’ <EDGE>)*

<EDGE> ::= <INTEGER> <OP> <NODE>

<NODE> ::= <REMOTEPR> | <UNIX_PATH>

<REMOTEPR> ::= <LABEL> ’:’ <INTEGER>

<OP> ::= ’|’ | ’<’ | ’>’ | ’>>’

Figure 5.2: Simplified grammar for the DUP Assembly language. Note that we do not expect
programmers to need to develop applications by directly using this language in the future;
this language is the “assembly” language supported by the DUP runtime system. Higher-level
languages running on top of DUP that facilitate (static) process scheduling and aspect oriented
programming are under development.

The label is followed by a hostname specifying on which system the stage will be run. A

helper process, dupd, will be started on the specified host, listen on a port to establish network

connections and eventually supervise stages run there. The address is followed by a comma-

separated list of edges representing primarily the outgoing streams for this stage. Input streams

are only explicitly specified in the case of input from files or the controlling dup command.

Inputs from other stages are not specified because they can be inferred from the respective

entry of the producing stage. DUP supports four different ways to create streams for a stage:

Read An input file edge consists of an integer, the “<” operator and a path to the file to be

used as input. The integer is the file descriptor from which the stage will read the input

stream. dupd is responsible for opening the input stream and validating that the file exists

and is readable.

Write An output file edge for writing consists of an integer, the “>” operator and a path to

the file to be overwritten or created. The integer is the file descriptor to which this stage

5.2. THE DUP SYSTEM 83

will write. dupd checks that the specified path can be used for writing.

Append An output file edge for appending consists of an integer, the “>>” operator and a

path to the file. The integer is the file descriptor to which this stage will write.

Pipe Non-file output edges consist of an integer, the “|” operator, a stage label, the “:” char-

acter and another integer. The first integer specifies the file descriptor to which this stage

will write. The label specifies the process on the other end of the pipe or TCP stream

and the second integer is the file descriptor from which the other stage will read. If an

edge list contains a label that is not defined elsewhere in the configuration file then the

program file is considered malformed and rejected by dup.

The final component of a complete stage statement is the command (with arguments) that

is used to start the process. Figure 5.2 contains a formal grammar for the DUP language. The

grammar omits I/O redirection from/to the controlling dup command for clarity.

5.2.3 DUP System Architecture

The dup client interprets the mini-language from Section 5.2.2 which specifies how the various

stages for the application should be connected. dup then connects to hosts running ssh servers

and starts dupd helper processes which then receive control information via the SSH tunnel.

The control information specifies the binary names and arguments for the stages as well as how

to establish TCP streams and UNIX pipes to connect the stages with each other.

Figure 5.3 illustrates how the components of the system work together.

The primary interaction between dup and the dupds involves four key steps [44]:

1. dup starts the dupds and transmits session information. This includes all of the information

related to processes that are supposed to be run on the respective dupd.

2. When a stage is configured to transmit messages to a stage initiated by another dupd, the

dupd responsible for the data-producing stage establishes a TCP connection to the other

dupd and transmits a header specifying which stage and file descriptor it will connect to

the stream. If dup is used as a filter, it too opens similar additional TCP streams with

the respective dupds. The main difference here is that dup also initiates TCP connections

for streams where dup will ultimately end up receiving data from a stage.

3. Once a dupd has confirmed that all required TCP streams have been established, that all

required files could be opened, and that the binaries for the stages exist and are executable,

it transmits a “ready” message to the controlling dup process (using the connection on

which the session information was initially received).

4. Once all dupds are ready, dup sends a “go” message to all dupds. The dupds then start

the processes for the session.

84 CHAPTER 5. DISTRIBUTED SIGNATURE MATCHING

dup

dupd dupd

DUP
Code

in
Text

out
Text

faninany /
gather

fanout /
deal

grep /
PT-Server

grep /
PT-Server

execexecexecexec

TCP

TCP

pipe

pipe

sshssh

Figure 5.3: Overview for one possible configuration of the DUP System. Dashed lines show
application data flow. Solid lines correspond to actions by DUP. Data-flow graph for DUP
Assembly corresponding to the illustration are given in Figure 5.1.

5.2.4 Generic DUP Stages

Taking inspiration from stages available in CMS [46, 49], the DUP System includes a set of

fundamental multi-stream stages. UNIX already provides a large number of filters that can be

used to quickly write non-trivial applications with a linear pipeline. Examples of traditional

UNIX filters include grep [43], awk [31], sed [31], tr, cat, wc, gzip, tee, head, tail, uniq,

buffer and many more [90].

While these standard tools can all be used in the DUP System, none of them support multiple

input or output streams. In order to facilitate the development of multi-stream applications

with DUP, we provide a set of primitive stages for processing multiple streams. Some of the

stages currently included with the DUP System are summarized in Table 5.1. Many of the

stages listed in Table 5.1 are inspired by the CMS multi-stream pipeline implementation [49].

Naturally, we expect application developers to write additional application-specific stages.

5.2.5 DUP Programming Philosophy

In order to avoid the common data consistency issues often found in parallel programming

systems, stages and filters for DUP should not perform any updates to shared storage outside

of the memory of the individual process. While the DUP System has no way to enforce this

property, updates to files or databases could easily cause problems; if stages were allowed

5.2. THE DUP SYSTEM 85

Stage Description I/O Streams
in out

fanout Replicate input n times 1 n

faninany Merge inputs, any order n 1

gather Merge inputs, round-robin (waits for input) n 1

holmerge Forward input from stream that has sent the most
data so far, discard data from other streams until
they catch up

n 1

deal Split input round robin to output(s), or per control
stream

2 n

mgrep Like grep, except non-matching lines output to sec-
ondary stream

1 2

lookup Read keys from stream 3; tokens to match keys
from stream 0; write matched tokens to 1, un-
matched to 4 and unmatched keys to 5

2 3

gate forward 1st input to 1st output until 2nd input
ready

2 1

Table 5.1: Summary of general-purpose multi-stream stages to be used with DUP in addition
to traditional UNIX filters. Most of the filters above can either operate line-by-line in the style
of UNIX filters or using a user-specified record length.

to update storage, changes in the order of execution could easily result in unexpected non-

determinism. This might be particularly problematic when network latency and stage scheduling

cause non-deterministic runs in a larger system that replicates parts of the computation (e.g.,

in order to improve fault-tolerance).

For applications that require parallel access to shared mutable state, the DUP System can

still be used to parallelize (and possibly distribute) those parts that lend themselves naturally

to stream processing. Other parts of the code should then be designed to communicate with

the DUP parts of the application through streams.

We specifically expect stages developed for the DUP System to be written in many different

languages. This will be necessary so that the application can take advantage of the specialized

resources available in heterogeneous multi-core or HPC systems. Existing models for application

development on these systems often force the programmer to use a particular language (or small

set of languages) for the entire application. For example, in a recent study of optimization

techniques for CUDA code [96], twelve benchmark programs were modified by porting critical

sections to the CUDA model. On average, these programs were only 14% CUDA-specific, yet the

presence of CUDA sections limits the choice of languages and compilers for the entire program.

The implications are clear: the use of a monolithic software architecture for programs designed

to operate efficiently on high-performance hardware will severely restrict choices of development

teams and possibly prevent them from selecting the most appropriate programming language

and tool-chain for each part of a computation. Using the DUP System, developers will be able

86 CHAPTER 5. DISTRIBUTED SIGNATURE MATCHING

to compose larger applications from stages written in the most appropriate language available.

Another important use-case for DUP is the parallel and distributed execution of legacy code.

In contrast to other new languages for parallel programming, which all too often advocate for

large-scale (and often manual) program translation efforts, the DUP philosophy calls for writing

thin wrappers around legacy code to obtain a streaming API. As we experienced in our case

study, it is typically easy to adapt legacy applications to consume inputs from streams and to

produce outputs as streams.

5.3 Material and Methods

5.3.1 Testing conditions

The study used 16 compute nodes of the Infiniband Cluster in the Faculty of Informatics at

the Technische Universität München [56]. Each node was equipped with an AMD Opteron

850 2.4 GHz processor with 8 GB of memory, and the nodes were connected using a 4x In-

finiband network. The SILVA database (SSURef 91 SILVA 18 07 07 opt.arb) [89], which stores

sequences of small subunit ribosomal ribonucleic acids and consists of 196,890 sequence entries

(with 289,563,473 bases), was used for preparing test database sets and respective PT-Servers.

We divided the original database into 1, 2, 4, 8, and 16 partitions, and a random sampling

algorithm was used for composing the partitioned database sets (within each database analysis

set, each partition is about the same size). The PT-Servers used in this study were created

from these partitions. Table 5.2 characterizes the resulting partitions and PT-Servers.

Part. # Sequences # MBases Memory (MB)
part. total

1 196,890 289.6 1,430 1,430
2 98,445 144.7 745 1,489
4 49,222 72.4 402 1,609
8 24,611 36.2 231 1,849

16 12,305 18.1 145 2,327

Table 5.2: Resulting problem sizes for the different numbers of partitions. This table lists
the average number of sequences and bases for the PT-Server within each partition and the
resulting memory consumption for each PT-Server as well as the total memory consumption for
all partitions.

For the queries, we selected 800 inverse sequence strings of rRNA-targeted oligonucleotide

probe sequences of length 15–20 from probeBase, a database of published probe sequences [68].

Each retrieved sequence string has matches in the SILVA database and the respective PT-Server

instance. Applying these real world query sequence strings ensured that every search request re-

quired non-trivial computation and communication. We generated four sets of inverse sequence

strings (400 strings each) by random string distribution of the original dataset from probeBase,

5.4. RESULTS 87

and every test run was performed with these four datasets. The presented performance values

are the means of the four individually recorded runs.

5.3.2 Adapting the PT-Server for DUP

In the ARB software package, arb probe is a program which performs, per execution, one

string search using the PT-Server when a search string and accompanying search parameters

are specified (these are passed as command line arguments). For DUP, arb probe had to be

modified to read the parameters and the search string as a single line from stdin and pass one

result set per line to stdout. It took one developer (who had experience with ARB but not DUP

or distributed systems) about three hours to create the modified version arb probe dup and

another two hours to compile DUP on the Infiniband Cluster, write adequate DUP scripts and

perform the first run-time test. Debugging, testing, optimization and gathering of benchmark

results for the entire case study was done in less than two weeks.

All searches were conducted using the program arb probe dup with similar parameters:

id 1 mcmpl 1 mmis 3 mseq ACGTACGT. The first parameter (id 1) set the PT-Server ID; the

second activated the reverse complement sequence (mcmpl 1). For each dataset and approach,

the third parameter was used to perform an exact search (mmis 0) in order to find matches

identical with the search string and an approximate search (mmis 3) in order to find all identical

strings and all similar ones with maximum distance of three characters to the search string. The

last parameter indicated the match sequence.

Figure 5.4 shows the DUP assembly code for the replicated run with two servers. Here,

identical PT-Servers are used with the goal of optimizing execution time. Figure 5.6 shows the

equivalent DUP assembly code for the partitioned setting. In this case, since each PT-Server

only contains a subset of the overall database, all requests are broadcast to all PT-Servers using

fanout.

snd@opt1[0<queries.txt,1|pt1:0,3|pt2:0] $ deal;

pt1@opt1[1|rcv:0] $ arb_probe_dup;

pt2@opt2[1|rcv:3] $ arb_probe_dup;

rcv@opt2[1>results.txt] $ faninany;

Figure 5.4: DUP specification for the replicated configuration that uses identical ARB PT-
Servers. The queries are simply distributed round-robin over the (in this case two) available
PT-Servers and the results collected as they arrive. Note that the order of individual results is
not relevant for the correct function of CaSSiS.

5.4 Results

As shown in Table 5.2, partitioning the original database into n partitions results in almost

proportional reductions in per-node memory consumption: doubling the number of partitions

means almost halving the memory consumption per PT-Server partition. In practice we expect

88 CHAPTER 5. DISTRIBUTED SIGNATURE MATCHING

dupd
@node1

dupd
@node2

faninany
rcv@node2

deal
snd@node1

PT-Server
pt2@node2

PT-Server
pt1@node1 RESPONSE_1

QUERY_2

QUERY_1

RESPONSE_2

RESPONSE_2
RESPONSE_1

...
RESPONSE_n

QUERY_1
QUERY_2

...
QUERY_n

Cluster node 1 Cluster node 2

Query
generation

(e.g. CaSSiS)

QUERY_1
QUERY_2

...

RESPONSE_2
RESPONSE_1

...

Client

RESPONSE_2
RESPONSE_1

...

QUERY_1
QUERY_2

...

dupDUP
Code

dupd
@client

Figure 5.5: PT-Server querying using replicated datasets. Data-flow graph of the code from
Figure 5.4. Note: Predefined lists of queries were used in our test, and the results were collected
in text form for further evaluation.

significantly larger databases to be partitioned, resulting in partition sizes close to the size of

the main memory of the HPC node responsible for the partition.

Figure 5.8 summarizes the speedup we obtained using n PT-Server replicas (each processing

a fraction of the queries). This answers the question as to how much performance could be

gained by distributing the queries over n identical (replicated) PT-servers, each containing the

full database. Compared with a local version (direct communication between a PT-Server and

arb probe dup) we have measured a speedup of 5.84 for 16 compute nodes.

The available bandwidth of the compute cluster using TCP is about 107 MB/s, which is

close to the 85 MB/s consumed on average by the collector node for 16 compute nodes. For this

run, the average CPU utilization of the 16 compute nodes is about 34% and the master node

uses about 56%. The legacy ARB code produces rather verbose output, which explains why

this benchmark is IO-bound on our cluster when run with more than approximately 8 compute

nodes. Converting the human-readable output to a compact binary format would likely result

in a significant performance improvement; however, the purpose of this study was to evaluate

possible speedups for legacy code without significant changes to the existing infrastructure and

5.5. CONCLUSION 89

snd@opt1[0<queries.txt,1|pt1:0,3|pt2:0] $ fanout;

pt1@opt1[1|rcv:0] $ arb_probe_dup;

pt2@opt2[1|rcv:3] $ arb_probe_dup;

rcv@opt2[1>results.txt] $ gather;

Figure 5.6: DUP specification for the partitioned configuration where each ARB PT-Server
only contains a slice of the database. In this example two partitions are used. The queries
are broadcast to the available PT-Servers and the results collected in round-robin order. This
ensures, that results for the same query arrive in one batch.

changing the message format of the ARB framework would be a significant change.

The overall runtime for querying a partitioned PT-Server with one sequence string set (400

requests) was in a range of 2 seconds (16 partitions) to 8.25 seconds (one partition) for exact

searches, and 16 seconds (16 partitions) to 73 seconds (one partition) for approximate searches.

For the replicated PT-Servers, execution time for exact searches ranged from approximately

8.3 seconds on one node to 1.5 seconds on 16 nodes. The approximate search (up to three

mismatches) ranged from 72 seconds on one node to 13 seconds on 16 nodes. In an additional

test run with the replicated servers, we increased the number of requests (to 2000) by repeating

the string set to increase the measured time and reduce possible side effects. The execution

time ranged from 140.91 seconds (one node) to 27.09 seconds (16 nodes) for exact searches, and

1479.60 seconds (one node) and 222.26 (16 nodes) for the approximate search.

5.5 Conclusion

The significant challenges with writing efficient parallel high-performance code are numerous

and well-documented. The DUP System presented in this chapter addresses some of these

issues using multi-stream pipelines as a powerful and flexible abstraction around which an

overall computation can be broken into independent stages, each developed in the language

best suited for the stage, and each compiled or executed by the most effective tools available.

Our experience so far makes us confident that DUP can be used to quickly implement parallel

programs, to obtain significant performance gains, and to experiment with various dataflow

graph configurations with different load-distribution characteristics.

The speedups achieved in our tests are by themselves clearly not sensational; however, the

ratio of speedup to development time is. Programmer productivity is key here, especially since

researchers in bioinformatics are rarely also experts in distributed systems. Furthermore, the

improvements in performance and memory consumption are significant and have direct practical

value for molecular biologists and bioinformaticians: aside from the acceleration of sequence

string searches by a factor 3.5 to 5.8, this approach also offers biologists the possibility to search

very large databases using the ARB PT-Server without having to access special architectures

with extreme extensions to main memory. Adapting existing DUP dataflows to new topologies

to improve the overall performance due to changed requirements should easily be done by

90 CHAPTER 5. DISTRIBUTED SIGNATURE MATCHING

dupd
@node1

dupd
@node2

gather
rcv@node2

fanout
snd@node1

PT-Server
pt2@node2

PT-Server
pt1@node1 RESPONSE_1a

QUERY_1b

QUERY_1a

RESPONSE_1b

RESPONSE_1
RESPONSE_2

...
RESPONSE_n

QUERY_1
QUERY_2

...
QUERY_n

Cluster node 1 Cluster node 2

Query
generation

(e.g. CaSSiS)

QUERY_1 RESPONSE_1

Client

RESPONSE_1QUERY_1

dupDUP
Code

dupd
@client

Figure 5.7: PT-Server querying using dataset partitions. Data-flow graph of the code from
Figure 5.6. Note: Predefined lists of queries were used in our test, and the results were collected
in text form for further evaluation.

adapting the configuration files and installing the respective software.

In the future, DUP could be used to drive large-scale genome database analyses. Depending

on the problem size, we expect to use DUP to combine partitioning and replication in one system.

For example, it would be easy to create n replicas of m partitions in order to improve throughput

while also reducing the memory consumption of the PT-Servers. The memory requirements of

CaSSiS, which still would run on a the node with the most memory, were already reduced in the

previous Chapter 4 Finally, assuming additional performance is desired, the ARB data format

could be changed to be less verbose and thereby avoid bandwidth limitations.

5.5. CONCLUSION 91

 0

 2

 4

 6

 0 2 4 6 8 10 12 14 16

S
pe

ed
-u

p

Nodes

replicated,exact
replicated,approximate

Figure 5.8: Speedup of sequence string matches for the replicated PT-Server. The plot shows
the average speedup over five runs for an exact search and an approximate search (with up to
three mismatches).

Chapter 6

Web-based Signature Evaluation

with PLEASE

In this chapter we describe the Probe Library Query and Evaluation System (PLEASE), a

multiple component client-server application. PLEASE provides a structured access to signature

sequences that were precomputed with CaSSiS, and it allows the comprehensive evaluation of

their specificities and sensitivities. Organisms matched by a signature sequence are displayed as

difference alignments including hit values. Additionally, signatures and matched organisms are

highlighted in a graphical representation of a phylogenetic tree. This tree structure also serves

to select phylogenetic groups to be evaluated.

The PLEASE software application was derived from the the ARB Probe Library, developed

by Tina Lai, Lothar Richter, and Ralf Westram in 2003. In the context of students’ work which

was supervised by me, the application was modified and new features added: For his thesis,

the apprentice (Auszubildender) Peter Klimpt extended PLEASE with a remote probe match

functionality in 2008 (Section 6.2.2). Tianxiang Lu did a complete refactoring of the server

architecture and the client-server communication (Section 6.2.1) in 2011 for his diploma thesis.

A prototype implementation of PLEASE was tested on a server at the TU München.

6.1 Introduction

Oligonucleotide probes targeted to corresponding signature sites on ribosomal ribonucleic acids

(rRNA) are widely applied in molecular microbial diagnostics [23, 67]. The application of probes

in hybridization techniques such as FISH and diagnostic microarrays [3] enable a cultivation

independent detection and identification of microorganisms.

The amount of sequence data in publicly available rRNA databases is currently growing at

very strong rate (Figure 1.5 shows the growth rate for the RDP-II and ARB SILVA databases).

Despite the vast improvements achieved in the previous chapters, processing up-to-date datasets

with CaSSiS can still turn the in silico search for signature candidates into a computationally

intensive task. This is especially true when applying very relaxed search conditions and using

93

94 CHAPTER 6. WEB-BASED SIGNATURE EVALUATION WITH PLEASE

older computer hardware requirements for the ARB software environment [70] in combination

with ARB SILVA databases are a 64bit system with minimum 4GB RAM 1. Processing current

ARB SILVA rRNA datasets requires more than 4GB of main memory to at least be able to use

the ARB PT-Server [33]. Setting up database servers specifically for probe candidates could

help to overcome this limitation. Online applications could access these databases and thereby

allow easy retrieval of probe candidates and provide additional quality evaluation.

probeBase [68] is an online database for curated oligonucleotide probes. It provides 2, 662

probes (status as of September 2012) targeted to either small or large subunit rRNA genes.

It additionally provides information on specificity and experimental usage conditions. This

information can be cross-checked with probeCheck [66], an online probe match tool based on the

ARB probe match functionality. However, this service may not be satisfactory in every case for a

wet lab biologist. A proper evaluation of the specificity of the candidates by using the functions

provided in probeBase and probeCheck (comparing probe match lists, re-formatting the results)

by hand can become very time consuming. Some of the probes were designed several years ago

by analyzing smaller datasets. They may not be suitable due to an inappropriate specificity as

outlined by in silico cross-matching in current large datasets [3]. For the majority of phylogenetic

or taxonomic prokaryotic groups, probe candidates are not available in probeBase [68].

The following sections present a more comprehensive and interactive web-based approach,

the Probe Library Query and Evaluation System (PLEASE). This client-server application

allows online retrieval and fine evaluation of signatures, the binding sites of oligonucleotide

probes on rRNA gene sequences. The PLEASE server provides access to multiple signature sets

which were precomputed with CaSSiS. From a Java client application, signature candidates can

be accessed via navigation through a phylogenetic tree. Due to the use of a static database

for the signatures, client requests are (on average) answered within seconds and the memory

footprint of the client application is kept low.

6.2 Implementation

The PLEASE software application was derived from the the ARB Probe Library (ARB-PL), a

client-server application with similar functionality. But the original version was clearly limited

when it came to the quantity of the processed data and the provided functionality. Several

design changes were necessary during the transition from the old ARB-PL design (Figure 6.1)

to the new client-server structure (Figure 6.2) of PLEASE.

PLEASE consists of two client-server components: The “Probe Library” for accessing signa-

ture candidates and the “Probe Match” for their additional evaluation. The “PLEASE Client”

acts as the main software application which is downloaded and run by the user. It combines

the client applications of both components under a common graphical user interface.

The client application depends on an installed Java Runtime Environment 1.6 (or higher).

It has been implemented as a Java Web Start application. PLEASE can therefore in principle

be run from a browser windows on every Internet-connected operating system.

1http://www.ribocon.com/home/arb/arbuntu/

6.2. IMPLEMENTATION 95

Figure 6.1: The ARB-PL client-server structure used an Apache web server and CGI scripts
for handling client requests. An ARB database was used as the database back-end. Perl scripts
were used to process the requests and generate database queries.

Figure 6.2: The PLEASE client/server structure was completely redesigned in order to overcome
limitations of the old approach. The ARB database was replaced by a MySQL database back-
end. Apache Tomcat is used as web-server and servlet-container. The CGI-scripts are replaced
by Java servlets to handle client requests.

The server installation additionally requires Java Swing and Apache Tomcat. A MySQL

database server is necessary as database back-end. Although the server component of PLEASE

is not depending on native GNU/Linux services or applications, the current version was de-

veloped and tested only under GNU/Linux. An Intel Quad Core I7 920 system with Ubuntu

96 CHAPTER 6. WEB-BASED SIGNATURE EVALUATION WITH PLEASE

Server 10.04.2 LTS as operating system and 16GB of main memory was used for this purpose.

The source dataset for our tests was the SILVA SSURef 102 database. The original database

contains 460, 783 SSU rRNA gene sequences (about 666 million nucleotides). In order to advance

the finding of phylogenetic oligonucleotide probes of high quality in terms of specificity and

sensitivity, we reduced database and phylogenetic tree by removing sequence that were too

short (≤ 1, 200 nucleotides) or entries of insufficient quality.

6.2.1 The PLEASE Probe Library

The first step was the transition from the ARB database structure to a SQL-based database

management system. The switch from pure ARB datasets to the precalculated results of CaSSiS

as source for the signatures has offered this opportunity. ARB uses a hierarchical in-memory

database structure. It allows fast read access to entries in the database, at the expense of

memory usage: large datasets can lead to excessive memory consumption. But its biggest

drawback is the lack of JOINS, which makes it necessary to manually cache intermediate results.

This lack results in multiple accesses and subsequent hardcoded merges by PLEASE, instead of

optimized merges within the database management system. It was therefore decided to switch

to MySQL2. We compared the two freely available MySQL engines MyISAM and InnoDB.

The latter supports transaction based queries. MyISAM, on the other hand, is able to handle

“read” operations faster than InnoDB. With only one import run every few weeks but numerous

SELECT operations and no need for transactions, the MyISAM engine was chosen as the PLEASE

database back-end. The following requirements were the decisive factors for us:

• Only few INSERT operations during the import of precalculated signature sets (i.e. not

“write-intensive”). After the import of new datasets no write operations are performed

on the database.

• No UPDATE operations necessary. Again, the database entries are all read-only after the

initial import process. Possible updates are performed by switching the complete database.

• Queries need not be transaction-based, as there are no larger blocks of multiple queries

during the runtime.

• Frequent SELECT operations (i.e. “read-intensive”) when requests by a PLEASE client

have to be processed.

• Server-enforced data integrity checking is not necessary, as the database is read-only

after the import process. During import, integrity checks are manually performed by the

importer.

• Foreign keys are externally defined during the import process. Their automatic manage-

ment by the database management system after the import process is not necessary.

2http://www.mysql.com/

6.2. IMPLEMENTATION 97

• To facilitate the generation of foreign keys during the import process, AUTO INCREMENT is

a necessary feature.

The PLEASE Probe Library stores the signature candidate database(s) including associated

data. It also contains phylogenetic trees based on SSU-rRNA sequences. Terminal nodes (leaves)

of the trees reference to the respective sequence-specific signature candidates, whereas internal

nodes point to signatures specific for groups of sequences defined by the node.

The signature datasets are imported from the result files that are created by either the

CaSSiS-BGRT or CaSSiS-LCA approach: The CSV files result array.csv (Table 6.1) and the

associated results X.csv (Table 6.2; X represents the number of outgroup hits). Additionally,

the phylogenetic tree that was used to compute during the CaSSiS computations is needed.

Group # outgroup hits
ID Size 0 1 2 3 4 5 6 7 8 9 10

Bacteria 74 69 22 0 1 0 0 0 0 0 0 0
Proteobacteria 31 24 29 11 25 29 25 11 23 12 26 14
Eukarya 25 25 3 0 0 0 0 0 0 0 0 0
Actinobacteridae 18 18 18 18 17 17 18 11 17 18 17 11
Firmicutes 15 13 13 11 11 12 10 13 13 13 12 4
Bacilli 12 12 12 12 9 10 11 10 10 10 12 11
Metazoa 12 11 10 9 9 9 11 10 9 10 11 12
Gammaproteobacteria 1 11 11 11 10 10 8 9 9 10 10 9 9
Alphaproteobacteria 10 9 8 8 6 7 9 9 6 6 9 7
...

...
...

...
...

...
...

...
...

...
...

...
...

Table 6.1: The CaSSiS result array.csv file contains for every node the number of ingroup
matches, that occurred over the entire range of allowed outgroup matches. For example in the
group ’Proteobacteria’ at least one signature was found, that matches 29 of the 31 sequences
with one outgroup hit.

ID Size Ingroup Signatures. . .

Bacteria 74 69 UCCUACGGGAGGCAGCAG CUCCUACGGGAGGCAGCA . . .
Proteobacteria 31 24 CGCCCGUCACACCAUGGG GCCCGUCACACCAUGGGA . . .
Eukarya 25 25 GGGCAAGUCUGGUGCCAG GGCAAGUCUGGUGCCAGC . . .
Actinobacteridae 18 18 GCCGGGGUCAACUCGGAG GGGGUCAACUCGGAGGAA . . .
Firmicutes 15 13 CAGCAGUAGGGAAUCUUC GCAGCAGUAGGGAAUCUU . . .
Bacilli 12 12 GGCAGCAGUAGGGAAUCU AGGCAGCAGUAGGGAAUC

Metazoa 12 11 GGUAGUGACGAAAAAUAA GUAGUGACGAAAAAUAAC . . .
Gammaproteobacteria 1 11 11 AUGAAUUGACGGGGGCCC UGAAUUGACGGGGGCCCG

Alphaproteobacteria 10 9 AGAGGUGAAAUUCGUAGA AGGUGAAAUUCGUAGAUA . . .
...

...
...

...
...

Table 6.2: A separate result file exists for every number of outgroup hits. In the example above,
an excerpt from the file results 0.csv, all signatures match without outgroup hits.

Although only run once, the method that is used to import the datasets from the CSV files

has great influence on the overall runtime — directly on the runtime of the import process,

and later indirectly through its influence on the database scheme. Although a single INSERT

operation may seem fast, using them serially led to large runtime issues. In our tests, even the

98 CHAPTER 6. WEB-BASED SIGNATURE EVALUATION WITH PLEASE

import of a small CaSSiS result set (computed from a few thousand sequences) generated tens

of millions import operations. The whole import process took multiple days.

A second way to import data into MySQL tables is the LOAD DATA operation. This feature

was designed to import bulk data from external CSV files. The MySQL process requires read

access rights to the file and its folder. Additionally, the structure of the destination table

must correspond with the file structure. According to the official reference manual3, the LOAD

DATA operation can speedup the import process about 20-fold compared to multiple INSERT

operations. One prerequisite for the maximum import speed is an empty target table or, at

least, the deletion of the indices in advance. In our case, the import tool reads the CaSSiS

result files at a defined path and imports them into temporary tables. Then, the content of the

temporary tables is imported into the appropriate destination tables. A table index is (re)built

once after the import, instead of constant updates with each insert.

Much more important than the time for importing datasets is the answer time of database

queries when processing PLEASE client requests. Two concepts, using indices and the parti-

tioning of datasets, can be used to prevent costly searches through complete database tables.

The idea behind partitioning is splitting up datasets (tables) into smaller chunks or logic units

to distribute the load when processing queries. A further step is the distribution of complete

databases onto different physical nodes of a cluster. This concept was partly used in the orig-

inal Probe Library, where the signatures were split into different database files based on their

length. In PLEASE, only indices were used — a feature the ARB database is lacking. Indices

reduce the necessary search costs with the tables and are used in combination with primary and

foreign keys. These keys are usually integers which are easy to sort and compare. Their main

disadvantage, high runtime costs when inserting or updating data, do not apply for our given

model where the database is seldomly updated (e.g. every few weeks).

The old ARB-PL system relied on a single pre-computed ARB database with a proprietary

hierarchical scheme. With the switch to a SQL-based database management system, this scheme

was exchanged with an entity-relationship model. The dependencies between the individual data

sets is shown in Figure 6.3. Five entities were defined to represent the datasets as tables:

tree A set of CaSSiS result files (i.e. CSV tables) always is computed from a phylogenetic

tree. Groups and single sequences in the sets resemble inner nodes and leaves in the tree.

References to the tree (not the tree itself) is therefore stored as an entity in the database.

On request, the tree file can be looked up, transferred to the PLEASE client and displayed

there. Four attributes id, name, file path, outgroup are defined.

node Every node in the tree again is an entity, with a “readable” identifier (e.g. the group or

organism name). It contains the four attributes TreeId, ID, Name, Size.

match Each node can be matched by one or more signatures. These match entities contain

four attributes NodeId, ID, outgroup, ingoup. The number of outgroup hits is defined by

3http://dev.mysql.com/doc/refman/5.1/de/insert-speed.html

6.2. IMPLEMENTATION 99

the CaSSiS result file, e.g. “results 1.csv” contains signatures with one outgroup hit. The

number of ingroup hits is given for each node in the result file.

match to signature A key design feature to reduce the amount of redundant signature entries

is an entity which links unique signature entities to matches. This entity contains two

foreign keys as attributes, MatchId and SignatureId.

signature Signature entities contain the five attributes ID, signature, length, mismatch, dis-

tance. The length is stored to speed up search queries which only apply for a for a certain

signature length. The attributes mismatch and distance are closely linked to a signature

match and could have also be stored in the match to signature entity. As a design decision

they were stored in the signature entry to to facilitate the processing of certain queries.

A certain amount of redundancy (identical signature strings with different distances) was

taken into account.

Figure 6.3: Entity-Relationship-Model of the PLEASE database.

The Probe Library Server is a combination of six Java servlets which are running on an

Apache Tomcat server. The client directly addresses its queries to these servlets. The servlets

themselves rely on two Java back-end classes which process and forward client requests to the

100 CHAPTER 6. WEB-BASED SIGNATURE EVALUATION WITH PLEASE

MySQL database via a JDBC4 driver.

The servlets provide the phylogenetic trees and detailed information about nodes and lists

of the related probe sequences. By retrieving the server and tree revision numbers, clients may

notify users about updates and automatically download newer tree files. At the moment only

one tree file is accessible. Future releases will provide access to multiple trees, one for each

PT-Server offered by the Probe Evaluation Server:

• They process “hello” calls by the client to fetch initial version and configuration informa-

tion from the server, e.g. the names (IDs) of available phylogenetic trees.

• They submit phylogenetic tree files (in an adapted NEWICK format [81]) to the client.

• They submit the maximum number of outgroup hits for a phylogenetic tree and associated

result sets.

• They look-up and return all names (IDs) that are associated with a certain phylogenetic

tree node. The ID is submitted by a client.

• They are used to query all signatures for a phylogenetic tree node that match the sub-

mitted constraints.

6.2.2 The PLEASE Probe Match

The PLEASE Probe Match server consists of a CGI interface script running on an Apache

Webserver. The CGI script, written in Perl, receives and processes probe match requests and

returns the results in XML-formatted form. All query parameters, sent to the server by the

client, are stored in the result header. For every result entry, identification attributes similar

to the ARB probe match tool (e.g. name, full name, accession number) as well as information

about the type and position of possible mismatches (e.g. e.coli position, mismatch value and

base) are included. This also allows the subsequent association of responses, as well as a session-

free processing of requests up to a certain degree. By returning result matches in XML format,

an interface is provided which may also be used by other applications beside the PLEASE Probe

Match Client. All query information and associated results are combined in one file.

The CGI Perlscript requires a running ARB PT-Server, the search index, to process the

probe matches. It is able to handle multiple search indices and provides a function to transmit

a list of available server identifiers to clients. A small tool “arb probe” is used to handle the PT-

Server queries. It allows submitting query settings via command line parameters, and possible

matches are returned via output stream.

The PT-Servers have to be pre-computed; they should correspond to the provided signature

datasets and the phylogenetic trees. In our tests, we have used datasets of growing sizes that

were derived from he SILVA SSURef 102 dataset. Currently, the list available servers has to be

hardcoded directly in a configuration section of the Perl script.

4Java Database Connectivity, a data access technology / API.

6.2. IMPLEMENTATION 101

6.2.3 The PLEASE Client

The Probe Library Query and Evaluation System Client (short: PLEASE Client) is a platform

independent Java application which is easily distributed using the Java Web Start technology.

Downloading, running the client and its installation process, if wanted, is initiated just by

clicking on a link on our web page. The PLEASE Client requires a Java Runtime Environment

1.6, at least 1 GB RAM and access to the Internet to launch server requests. Consistent

to the interfaces provided by the PLEASE server (Figure 6.2), the PLEASE Client as well

consists of two modules: it combines the client functionalities of the “PLEASE Probe Library”

with the “PLEASE Probe Match” in one graphical user interface (GUI). Easy access to the

signature candidates is possible through a browsable phylogenetic probe tree. The retrieved

oligonucleotide signatures can be matched against sequence datasets. The results of probe

matches can be listed and interactively displayed in the phylogenetic tree.

The “Probe Library Client” (Figure 6.4) communicates via servlet API with the Java servlets

on the Apache Tomcat server. When started, it first retrieves a list of the available phylogenetic

trees from the server and loads a defined default tree with its node specific references. Other

trees can be selected by the user, downloaded, and displayed. Tree datasets are stored and

submitted in an adapted form of the NEWICK tree format [81]. The PLEASE client supports

switching between multiple phylogenetic tree files and displays them as separate tabs. Although

several different calculations can be made starting from a single tree file and sequence dataset,

each of these calculations are referenced with their own (possibly redundant) tree datasets. This

small redundancy was tolerated to facilitate the interface design.

The main function of the Client is to allow the user to interactively browse the phylogenetic

tree and select groups or leaves (= sequences) of interest. Selections are sent to the server and

node-specific information is returned and displayed: signatures including coverage information

and thermodynamic information is displayed in a list. The specificity of a selected signature

candidate, i.e. matched branches and sequences/leaves, can be highlighted in the currently

displayed tree. Optionally, the signature list including their parameters can be stored.

The “PLEASE Probe Match Client” (Figure 6.5) is an online nucleic acid sequence eval-

uation tool for short oligonucleotide sequences. Currently, oligonucleotides with lengths from

15–20 nucleotides (nt) are supported, as this is a common length in many typical hybridization

techniques. It provides an intuitive graphical user interface: The User pastes his DNA/RNA

sequence as the search string in 5′ → 3′ direction and has the opportunity to influence the

match with additional parameters. We have tried to match those of the ARB Probe Match

functionality [70]. Two options should be emphasized here: The option “Search Database”

determines the database to be searched. The database need not have to match the one that

was used for tree calculation. And the option “Use Weighted Mismatch” determines a value

for the relative strength of the bonding of the duplex between the signature and the respective

matched sequence. This value includes empirical knowledge from the behavior of fluorescent

oligonucleotide probes for the detection of whole bacterial cells using FISH [5].

102 CHAPTER 6. WEB-BASED SIGNATURE EVALUATION WITH PLEASE

Figure 6.4: Screenshot of the PLEASE Probe Library user interface. The phylogenetic tree
(left area) is for navigation. Inner nodes in the tree represent groups. Sequences (organisms)
are positioned at the leaves. By selecting a node, a list of signature candidates is fetched (if
available) and presented in the upper right area. Single signatures can be selected and more
detailed information (e.g. matches and thermodynamic parameters) are presented in the lower
right area. Right clicking on a signature opens the Probe Match UI (Figure 6.5). Switching
between multiple datasets is down through tabs.

6.3 Results and Discussion

The Probe Library Query and Evaluation System (PLEASE) is a versatile client-server appli-

cation for the retrieval and evaluation of signature candidates. These candidates can be the

starting point for the design of oligonucleotide primers and probes.

The Probe Library (Section 6.2.1) was completely ported onto a modern web server and

database architecture. Unlike the the old ARB Probe Library, PLEASE is now able to han-

dle huge signature datasets that were computed from sequence databases and corresponding

phylogenetic tree with more than 100, 000 entries.

Signature candidates can be directly accessed by clicking onto a phylogenetic tree node in

the client user interface. If available, a list of candidates including scores and thermodynamic

parameters is displayed. The user interface allows text-searches for defined group or leave node

names (e.g. Eukarya or Firmicutes). Without direct access, traversing the phylogenetic tree

may result in excessive “clicking” until the requested group or leave node is reached. The binary

tree structure of the phylogenetic trees results in a lot of unnamed inner nodes without a group

definition. It was proposed to hide or at least automatically expand and collapse such unnamed

inner nodes. Due to the lack of time, this feature was not yet implemented.

6.3. RESULTS AND DISCUSSION 103

Figure 6.5: Screenshot of the PLEASE Probe Match user interface. This function can be used to
fetch specificity information not only for signature candidates but also freely defined signature
strings. Results (matched sequences) are displayed in a table, including exact information about
possible mismatches.

By using CGI for queries and returning datasets as XML datasets, a universal interface

is provided which may also be used by other applications beside the PLEASE Match Client.

In the future, the PLEASE Probe Match Server might be modified to directly return a result

dataset as Comma Separated Value (CSV). At the moment, this feature is (only) provided by

exporting the results from the PLEASE Evaluation Client.

Chapter 7

Conclusion and Future Work

7.1 Conclusion

Over the last years changes on websites that provide biological data sets could be noticed. The

maintainers switched from being mere providers of a single service to offering packages of mul-

tiple services which are interconnected. Most of these new services on the one hand arose from

users’ need to evaluate the data sets because of their increasing sizes — the available computer

power could not keep up with the amount of available data that needed to be processed. It

is therefore advantageous to give (limited) access to functionalities running powerful central

computing systems and, if applicable, precalculate the provided data. On the other hand, it

offers advantages for the users to have a continuous work flow, a direct connection between the

data selection and the data evaluation.

A good example for this change is the ARB SILVA website [89], maintained by the Max

Planck Institute for Marine Microbiology in Bremen. At first, it only provided a curated data

set of aligned rRNA sequences and a corresponding phylogenetic tree. In 2008, a year after

their launch, they presented a Web aligner which allowed users to upload and align their own

sequences to the existing alignment in their dataset. In 2010, a taxonomy browser and search

functionality was added to improve the selection and download of sequence sets.

The same effect, only from the opposite direction, could be observed at probeBase [68].

This website at the University of Vienna manages since 2003 a curated database with published

oligonucleotide probes, mainly for rRNA gene sequences. A new service was added in 2007

which allows testing the specificity of the probes against ARB SILVA sequence data sets. This

service, probeCheck [66], is based on the ARB PT-Server and thereby very similar to the probe

match functionality offered by PLEASE (Section 6.2.2). Both were developed at the same time.

Being the ARB software environment [70] developers, our team at the TU München is in

contact with both groups and this thesis was partly inspired by this fruitful collaboration.

The thesis details new computational methods for the comprehensive and relaxed search for

sequence- and group-specific oligonucleotide signatures in whole genome or marker gene se-

quence datasets: the Comprehensive and Sensitive Signature Search (CaSSiS, Figure 7.1). This

functionality is of interest for both groups, but it might also be useful for others not mentioned

105

106 CHAPTER 7. CONCLUSION AND FUTURE WORK

here. As with other services (e.g. the aligner), the computation of signatures based on large

sequence datasets is for most users too expensive. The ARB SILVA website could provide pre-

calculated sets of signatures along with the sequence data sets in their taxonomic browser. The

user-sided computation of signatures would no longer be necessary. CaSSiS bridges the gap

between ARB SILVA and the other services probeBase and probeCheck. Published probe can-

didates that were tested in the wet lab could be provided along with the signatures computed

with CaSSiS. A prototypical approach, which was intended to test such a unifying service, was

presented in this thesis with PLEASE (Chapter 6).

G T T G C A A G T C T T C

Genetic sequencing,
assembly & annotation

Post in silico evaluation
(e.g. with the ARB tools)

Microarray with
oligonucleotide
RNA/DNA probes

5' 3'

5'3'

RNA/DNA primer pairs

by alignment
comparison

Primer & probe
candidates

published
Public

sequence
databases

Phylogenetic tree

Chip

Result files:
List of signature
candidates for

tree nodes

applied
(e.g. in PCR)

input input

comprehensive
result sets

single
signature candidates

Figure 7.1: Schema of the CaSSiS and PLEASE primer and probe design pipeline.

7.2 Future Work

Due to the focus on rRNA sequence datasets in the project this thesis was developed for, the

current CaSSiS implementation is limited to nucleic acid sequence data. Future approaches

could extend CaSSiS to also process other types of sequence strings. The biggest obstacle is

the underlying search index which has to support the relevant sequence type. CaSSiS itself

internally handles signatures as mere strings and does not interpret them. Thus, at least the

code basis of CaSSiS could easily be modified to support other types of sequence data as well.

Both solutions presented in this work, CaSSiS-BGRT and the CaSSiS-LCA, are based on

the ARB PT-Server1. Especially when searching under very relaxed conditions (by allowing

1Just to be exact: CaSSiS uses MiniPT, a descendant of the PT-Server with identical features, but a lower

7.2. FUTURE WORK 107

multiple mismatches) or when guaranteeing a high Hamming distance, querying the PT-Server

becomes the runtime-critical computational step. This has been adressed by distributing the

index in Chapter 5. But replacing the index by a faster approximate search index could further

accelerate the overall performance. An abstract search index interface was created to facilitate

this. Two promising approaches for this future task are PtPan [33] and SeqAn [30].

For each node within a tree, CaSSiS only returns the signature(s) with the highest coverage.

CaSSiS allows the definition of a specificity range, but a sensitivity range can not yet be defined.

The reason for this was a design decision at the beginning of this thesis, as allowing outgroup

hits ranges was considered to be more important.

Especially in RNA/DNA microarray applications, combinations of probes are used to in-

crease the coverage or the identification rate of single organisms or groups. CaSSiS supports

this by allowing the design of signature candidates for complete phylogenies, i.e. inner group

nodes at different hierarchical levels can be combined. A line for future work could be the search

for combinations of multiple probes to better cover all organisms in a target group, as for some

groups of organisms probes with perfect coverage simply do not exist.

memory footprint. MiniPT allows direct access to the internal data structures, a feature not available in the
PT-Server.

Appendix

109

Appendix A

Supplementary Material

A.1 Test systems

Multiple test systems were used between 2009 and 2012 to perform runtime and memory con-

sumption measurements of our CaSSiS implementations. The following list shows the charac-

teristics of the individual test systems, ordered by the first appearance (section) in which they

were used for measurements.

thinkpad

Processor Intel R© CoreTM2 Duo CPU L9400 @ 1.86GHz (Montevina)

Cores 2 cores

Cache 6 MB L2 cache

RAM 8 GB DDR3-RAM

OS GNU/Linux (Ubuntu 10.10, 64 bit),

MS Windows 7 (64 bit)

Used in . . . Section 3.3.5

nehalem1

Processor Intel R© Xeon R© CPU X5670 @ 2.93GHz (Westmere)

Cores 2x 6 cores (24 threads with HyperThreading turned on)

Cache 12 MB L3 cache

RAM 36 GB DDR3-RAM

OS GNU/Linux (Ubuntu 11.10, 64 bit)

Used in . . . Section 3.4

111

112 APPENDIX A. SUPPLEMENTARY MATERIAL

atbode223 + atbode230

Processor Intel R© CoreTM i7 CPU 920 @ 2.67 GHz (Bloomfield)

Cores 4 cores (8 threads with HyperThreading turned on)

Cache 1 MB L2 cache, 8 MB L3 cache

RAM 24 GB DDR3-RAM

OS GNU/Linux (Ubuntu 10.04.2 LTS, 64 bit),

later GNU/Linux (Ubuntu 11.10, 64 bit)

Used in . . . Section 4.4; Section 6.2

infiniband (opteron nodes)

Cluster 32 AMD Opteron 4-way nodes

4x SDR Infiniband interconnect

Processor AMD OpteronTM Processor 850 @ 2.4 GHz (SledgeHammer)

4 processors per node

Cores 1 core

Cache 1 MB L2 cache

RAM 8 GB DDR-RAM

OS GNU/Linux (Ubuntu 8.04.2 LTS, 64 bit)

Used in . . . Section 5.3.1

A.2 Signature evaluation

This section contains in revised form the analysis of the signatures that were computed with

the CaSSiS-BGRT approach (Chapter 3). It is part of the supplementary material from the

joint publication [12] in Bioinformatics. The analysis was done by Harald Meier, whom I thank

for allowing me to add it to my thesis.

A.2.1 Computing the signature dataset

We computed a comprehensive oligonucleotide signature collection from the SILVA SSURef 102

rRNA database1. This database contains 460, 783 SSU rRNA sequence entries, each including

annotation information. It is assumed, that each sequence represents an unique organism. The

database also contains a phylogenetic tree with the same number of leafs, each referring to

the an organism. Internal nodes with identifiers in the tree refer to groups of organisms. The

comprehensive collection of signature sequences has been calculated using CaSSiS-BGRT under

the following constraints:

• Find all sequence specific 18-mer signatures.

• For every phylogenetic group defined by an internal tree node, find all 18-mer signatures

with full group coverage (which appear in every sequence of the group).

1http://www.arb-silva.de/download/arb-files/

A.2. SIGNATURE EVALUATION 113

• For phylogenetic sequence groups without full coverage, find those signatures with the

highest coverage.

• Find signatures for a range of different specificity levels (0–10 allowed outgroup matches).

• A signature should not have a mismatch to ingroup sequences.

• A signature should have at least one mismatch to an outgroup sequences.

• A signature should not occur twice in a sequence entry or its inverse sequence.

A.2.2 Comparison with relevant published signatures

For selected target groups, we compared signatures that were computed with the CaSSiS-BGRT

approach with relevant entries in probeBase [68], a curated oligonucleotide probe database with

online access. We also checked the available literature concerning availability, coverage and

specificity.

One signature proposed by CaSSiS-BGRT is already available through probeBase. Another

evaluated signature even exhibits a better coverage of the target group than previously published

ones. For groups without any available published signatures, such as Coprothermobacter, we

found new promising signatures. Furthermore, a valuable signature was identified which could

only be found under relaxed search conditions. For each signature sequence below, the following

information is specified:

Signature Source:

• Signature-Sequence (target name)

• # of ingroup hits / total # of ingroup members

• # of outgroup hits

• # of mismatches with next similar outgroup sequence

CaSSiS found group specific signatures which exhibit a better coverage and the same or

better specificity than signatures published previously for the same target. One probe/signature

— pB-00011 (probeBase Accession no.) [118] — was found in probeBase/literature specifying

the genus Deinococcus as target group. This is a 35 mer, which matches only 37 out of the 238

sequences of the group Deinococcus perfectly. Therefor only 5 out of 42 described species of

the genus Deinococcus are covered.

probeBase pB-00011:

• GTACGTTGGCTAAGCGCAGGATGCTGTGCTTGGCG (Genus Deinococcus)

• 37 of ingroup hits / total 238 of ingroup members

114 APPENDIX A. SUPPLEMENTARY MATERIAL

• 0 of outgroup hits

• 2 of mismatches with next similar outgroup sequence

CaSSiS identified a signature which covers 85% of the 238 sequences of the group “Deinococ-

cus”, and 31 out of the 42 described Deinococcus species. The signature sequence introduced

above has one strong central mismatch to the next outgroup sequence, denoted as “an uncul-

tured Acidobacterium”, and two central mismatches ore more to other outgroup sequences.

For the group Deinococcaceae/Deinococcus CaSSiS clearly finds signatures superior to already

published ones in both coverage and specificity.

CaSSiS signature:

• UGGACAGAAGGUGACGCU (Genus Deinococcus)

• 199 of ingroup hits / total 238 of ingroup members

• 0 of outgroup hits

• 1 of mismatches with next similar outgroup sequence

CaSSiS found (new) signatures for phylogenetic or taxonomic groups, for which no group

specific probe has been published so far. A group of 368 closely related 16S rRNA sequences

which have a common internal node in the phylogenetic tree specified “Coprothermobacter” has

been selected. CaSSiS found several signatures at different specificity levels for this group. The

signature sequence with the best group coverage found by CaSSiS is listed below:

Signature Source:

• UACCCCAGUAGAAAGGGA (Group Coprothermobacter)

• 340 of ingroup hits / total 368 of ingroup members

• 1 of outgroup hits

• 1 of mismatches with next similar outgroup sequence

These signatures match more than 90% of the sequences of the Coprothermobacter group,

but match additionally one outgroup sequences. Signature candidates without outgroup

matches cover only about 15% ingroup sequences. This example shall demonstrate that in

the signature collection calculated by CaSSiS signatures with reasonable coverage can be re-

trieved for sequence groups, for which to the best of our knowledge an oligonucleotide signature

or probe sequence has not been published so far.

A.2. SIGNATURE EVALUATION 115

CaSSiS’ ability to perform additional searches under relaxed conditions makes the identi-

fication of highly valuable oligonucleotide signatures possible. EUB338 (probeBase Acc. no.

pB-00159) [4] is a widely used oligonucleotide probe, which targets a signature present in more

than 90% of available bacterial 16S rRNA sequences. Even in 2008, Amann and colleagues

described this probe in Nature Reviews Microbiology as highly specific, since it did not match

any sequence outside of the Domain Bacteria (i.e. had no outgroup match).

CaSSiS found a signature sequence, which is — compared with the EUB338 -target — shifted

by one position to the 3’-end. It covers even more group sequences than the already published

EUB338 -target sequence. Surprisingly it is listed in the result table as “signature with the

highest group coverage and three outgroup matches”. In the database the matched outgroup

sequences are specified as eukaryotic entries. Matching the original target sequence of EUB338

against the whole SSURef 102 SILVA database, we received about 400 less group hits, but

surprisingly the same three (unproblematic) outgroup matches within the domain Eukarya.

CaSSiS:

• Signature source

• CUCCUACGGGAGGCAGCA (Domain Bacteria)

• 356, 188 of ingroup hits / total 391, 167 of ingroup members

• 3 of outgroup hits

• 1 of mismatches with next similar outgroup sequence

probeBase: pB-00159 (EUB338):

• Signature source

• ACUCCUACGGGAGGCAGC (Domain Bacteria)

• 355, 789 of ingroup hits / total 391, 167 of ingroup members

• 3 of outgroup hits

• 1 of mismatches with next similar outgroup sequence

The probe VP403, published in 2010 by Arnds and colleagues [7], was just recently sub-

mitted to probeBase (accession number pB-02645). It is a 20-mer targeting the 16S rRNA of

Verrucomicrobium, most Prostecobacter spp., and uncultured relatives (In SSU Ref102 equiv-

alent with the group Verrucomicrobiaceae 2, a subgroup of the family Verrucomicrobiaceae).

The authors show in their publication that the probe works well for whole cell detection by flu-

orescence in situ hybridization [7]. CaSSiS found for the same group (Verrucomicrobiaceae 2)

116 APPENDIX A. SUPPLEMENTARY MATERIAL

three 18-mers, which are the three possible substrings of the 20-mer signature sequence targeted

by VP403. All three have the same coverage and specificity (Note: we conducted CaSSiS test

runs for 18-mers only). This example also indicates, that CaSSiS finds signatures, which work in

wet lab applications (hybridize with complementary oligonucleotide probes, shown for FISH [7].

CaSSiS:

• GUGGAGGAUAAGGUCUUC / CGUGGAGGAUAAGGUCUU / UGGAGGAUAAGGUCUUCG (NODE185359:

Verrucomicrobium, Prostecobacter spp., and relatives)

• 71 of ingroup hits / total 88 of ingroup members

• 1 of outgroup hits

• 1 of mismatches with next similar outgroup sequence

probeBase: pB-02645 (VP403):

• CGUGGAGGAUAAGGUCUUCG (Verrucomicrobium, Prostecobacter spp., and relatives)

• 71 of ingroup hits / total 88 of ingroup members

• 1 of outgroup hit

• 1 of mismatches with next similar outgroup sequence

In summary, the spot-tests performed to illuminate the quality of the 18-mer-signature

collection confirmed the assumption, that CaSSiS performs well in finding valuable sequence

and group specific signatures, even in large hierarchically clustered datasets. CaSSiS finds

signatures which are comparable or identical to already published useful signatures, which have

been shown to work in the wet lab by at least one hybridization technique (see EUB338, VP403).

For some groups, for which signatures are already published, CaSSiS finds signatures of

higher in silico coverage and specificity (see Deinococcus). In addition CaSSiS found an in

silico promising new signature sequences, for so far untargeted groups of microorganisms (see

Coprothermobacter). Some highly valuable probes were found because of CaSSiS special ability

to search under relaxed conditions, too.

Appendix B

The CaSSiS software package

During the last four years of the development of CaSSiS, its tools and functions have gone

through numerous changes. To keep track of these changes (Section B.6) and to have a central

hub for the source code and binary releases, a Git repository and a project homepage hosted

by the Lehrstuhl für Rechnertechnik und Rechnerorganisation / Parallelrechnerarchitektur (TU

München) was created. This chapter is an overview of the tools and their functionalities that

are provided by the CaSSiS project. Parts of this chapter are also presented as HowTos and

supplementary documents on the CaSSiS homepage.

Figure B.1: Homepage of the CaSSiS project: http://cassis.in.tum.de/ (Screenshot;
September 2012)

117

118 APPENDIX B. THE CASSIS SOFTWARE PACKAGE

B.1 Availability

The CaSSiS homepage provides multiple download options for CaSSiS. the latest release is

available as source code as well as a GNU/Linux (64 bit Ubuntu) binary package. Older releases

(most of previous the stable and maintenance releases) are available a 32 bit and 64 bit binary

packages. The following two sections detail the content of the (latest) binary release package

and how to build CaSSiS from source. The latter might be important on Linux distributions

where the binary releases may have different library dependencies.

B.1.1 Building CaSSiS from source

The CaSSiS project relies on the cmake1 build system. CMake allows the platform- and compiler-

independent generation of build files. In case of CaSSiS, large parts of the code are compatible

with the GNU project C and C++ compilers and Microsoft Visual C++. Due to the search

index (a core functionality) with its highly adapted code, a complete platform independence

was not yet archived. This may change in future releases by the use of other search index

approaches.

Please make sure to have at least CMake version 2-6 installed. In CaSSiS, CMake is config-

ured to prevent builds in the same directory as the source code was extracted. In such a case,

the build will be halted with an error message.

The following example shows how a build could look like on a GNU/Linux system. A

“Makefile” is generated during the process that allows building all necessary CaSSiS com-

ponents. The output messages were omitted in the example and the users home directory

/home/$USER/cassis was assumed as the destination of our build. Please adapt all paths

according to your needs.

It is assumed, that the package containing the CaSSiS source code was already downloaded to

a temporary location, here /tmp. An intermediate build folder /tmp/build will be created and

used. If no further destination is defined, the installation will be done in the respective folders

under /usr. The parameter -DCMAKE INSTALL PREFIX can be used to define an alternative

installation destination. This is done in the example (set to /home/$USER/cassis):

~$ cd /tmp/

/tmp$ tar xvfj CaSSiS-0.5.1-src.tar.bz2

/tmp$ mkdir build

/tmp$ cd build/

/tmp/build$ cmake ../CaSSiS-0.5.1-src -DCMAKE_INSTALL_PREFIX=/home/$USER/cassis

/tmp/build$ make install

/tmp/build$ cd /home/$USER/cassis/

~/cassis$ mv lib/* bin/* .

~/cassis$ rm -r bin lib

1http://www.cmake.org/

B.2. CASSIS COMMAND LINE INTERFACE 119

The command line tools (Section B.2) of CaSSiS only depends on standard GNU C/C++

libraries. When built on an Ubuntu 12.04 64 bit system, CaSSiS is linked against (sample

output):

~/cassis$ ldd cassis

linux-vdso.so.1 => (0x0000...)

libCaSSiS.so.0 => ./libCaSSiS.so.0 (0x0000...)

libminipt.so => ./libminipt.so (0x0000...)

libstdc++.so.6 => /usr/lib/x86_64-linux-gnu/libstdc++.so.6 (0x0000...)

libgcc_s.so.1 => /lib/x86_64-linux-gnu/libgcc_s.so.1 (0x0000...)

libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x0000...)

libm.so.6 => /lib/x86_64-linux-gnu/libm.so.6 (0x0000...)

/lib64/ld-linux-x86-64.so.2 (0x0000...)

B.1.2 Binary packages

There are two versions of archives, one for 32 bit Linux architectures and one for 64 bit archi-

tectures. CaSSiS was built with Ubuntu 11.10 (Natty Narwhal). The CaSSiS binary tar archive

contains the following files:

cassis The CaSSiS command line tool.

cassis-gui A graphical user interface for CaSSiS. (buggy)

libCaSSiS.so (symbolic link)

libCaSSiS.so.0 (symbolic link)

libCaSSiS.so.0.4.0 The CaSSiS Library v0.4.0

libminipt.so

arb_license.txt The ARB license (for libARBDB.so and libminipt.so)

gpl.txt The GNU General Public License v3

lgpl.txt The GNU Lesser General Public License v3

readme.txt Help file.

B.2 CaSSiS command line interface

The CaSSiS command line interface provides the parameter -all which, if enabled, generates

and queries all possible signature strings of a defined length. By default, only signatures ex-

tracted from the respective datasets will be used. Under strict search conditions (i.e. no allowed

mismatches between signatures and the target sequences), the results will be the same. Query-

ing all signatures especially under relaxed search conditions will lead to an extreme runtime

overhead.

There are two versions of archives, one for 32 bit Linux architectures and one for 64 bit

architectures. CaSSiS was built with Ubuntu 11.10 (Natty Narwhal). The CaSSiS binary tar

archive contains the following files:

120 APPENDIX B. THE CASSIS SOFTWARE PACKAGE

cassis The CaSSiS command line tool.

cassis-gui A graphical user interface for CaSSiS. (buggy)

libCaSSiS.so (symbolic link)

libCaSSiS.so.0 (symbolic link)

libCaSSiS.so.0.4.0 The CaSSiS Library v0.4.0

libminipt.so

arb_license.txt The ARB license (for libARBDB.so and libminipt.so)

gpl.txt The GNU General Public License v3

lgpl.txt The GNU Lesser General Public License v3

readme.txt Help file.

USING CASSIS:

Comment: Please make sure to point ’LD_LIBRARY_PATH’ to the correct directory,

if necessary. (export LD_LIBRARY_PATH="/path/to/cassis/lib)

CaSSiS usage: cassis {1pass|create|process|info} [options]

cassis 1pass

Mandatory: -seq [... -seq] -tree

Optional: -all -dist -gc -idx -len -mis -og -out -rc -temp -wm

Comment: ’1pass’ uses the faster CaSSiS-LCA algorithm.

cassis create

Mandatory: -bgrt -seq [... -seq]

Optional: -all -dist -gc -idx -len -mis -rc -temp -wm

cassis process

Mandatory: -bgrt -tree|-list

Optional: -og -out

cassis info

Mandatory: -bgrt

Options (alphabetical):

-all Evaluate all 4^len possible signatures.

(Not recommended, may take forever... Default: off)

-bgrt <filename> BGRT file path and name.

-dist <number> Minimal mismatch distance between a signature candidate

and non-targets. Must be higher than "-mis <number>".

B.2. CASSIS COMMAND LINE INTERFACE 121

(Default: 1.0 mismatches)

-gc <min>-<max> Only allow signatures within a defined G+C content range.

(Default: 0 -- 100 percent)

-idx <name> Defines the used search index:

minipt = "MiniPt Search Index" (Default)

-len {<len>|<min>-<max>}

Length of the evaluated oligonucleotides. Either a

fixed length or a range. (Default: 18 bases)

Lengths must be between 10 and 25 bases.

-list <filename> Instead of a phylogenetic tree, a list with comma separated

identifiers can be used to define groups the should be

queried. Each line in the list defines one group.

The output format is set to ’sigfile’.

(Comment: Only available in ’cassis process’.)

-mis <number> Number of allowed mismatches within the target group.

(Default: 0.0 mismatches)

-og <limit> Number of outgroup hits up to which group signatures are

computed. (Default: 0)

-out <format> Defines the output format.

classic = "Classic CSV format" (Default)

detailed = "Detailed CSV format"

sigfile = "Signature file for each group/leaf"

-rc Drop signatures, if their reverse complement matches

sequences not matched by the signature itself.

(Default: off)

-seq <filename> MultiFasta file as sequence data source Multiple sequence

sources can be defined.

-temp <min>-<max> Only allow signatures with a melting temperature within

the defined range. (Default: -273 -- 273 degree Celsius)

-tree <filename> Signature candidates will be computed for every defined

(i.e. named) node within a binary tree. Accepts a binary

Newick tree file as source.

-v Verbose output

-wm Enable "weighted mismatch" values. (Default: off)

Caution: Combining the "-gc" and "-temp" filters can cause unwanted side

effects because they influence each other.

122 APPENDIX B. THE CASSIS SOFTWARE PACKAGE

B.3 The CaSSiS result files

CaSSiS was designed to compute comprehensive signature sets based on large sequence

databases. To be able to further process/parse the result files of CaSSiS, the simple but flexible

CSV format was chosen. Smaller files can be read/edited with spreadsheet software (Excel,

OpenOffice, . . .). Larger files can still be easily parsed with an appropriate editor or small

scripts. When directly run without further parameters, CaSSiS creates two different types of

result files in the CSV format in the current directory: ’result array.csv’ and ’results xxx.csv’

where ’xxx’ is defined by the outgroup hits range.

result array.csv: This file gives an overview of the results. The rows represent the range

from 0 to max. outgroup hits. Columns represent the nodes of the hierarchical cluster. All

information within this file is also included in the following ones.

Group # outgroup hits
ID size 0 1 2 3 4 5

Bacteria 74 69 22 0 1 0 0
Proteobacteria 31 24 29 11 25 29 25
Eukarya 25 25 3 0 0 0 0
Actinobacteridae 18 18 18 18 17 17 18
Firmicutes 15 13 13 11 11 12 10
Bacilli 12 12 12 12 9 10 11
Metazoa 12 11 10 9 9 9 11
Gammaproteobacteria 1 11 11 11 10 10 8 9
Alphaproteobacteria 10 9 8 8 6 7 9
Betaproteobacteria 8 8 8 8 8 8 8
Arthropoda 6 6 6 6 6 6 6
Burkholderiales 6 5 6 6 6 6 6
Lactobacillales 6 5 5 6 5 6 6
Streptomycineae Streptomycetaceae 6 6 6 6 6 6 6
Streptomyces 4 2 4 4 4 4 4
Actinomycetales 4 3 3 3 3 3 3 3
Actinomycetales Micrococcineae 1 3 3 3 2 3 3 3
Bacteroidetes 3 3 2 2 3 2 2
Brachyspiraceae Brachyspira 3 3 3 3 3 3 3
Corynebacterineae 3 3 3 3 3 3 3
Cyanobacteria 3 3 3 3 2 2 3
Fungi 3 3 3 2 3 3 3
Microbacteriaceae 3 3 3 3 3 3 3
Pseudomonadales Pseudomonadaceae 3 3 3 3 3 3 3
Rhizobiales 1 3 3 3 3 3 3 3
Rhodophyta 3 3 3 3 2 3 3
Streptococcus 3 3 3 3 3 3 3
Vibrionales Vibrionaceae 3 3 3 3 3 3 3
...

...
...

...
...

...
...

...

Table B.1: The CaSSiS result array.csv file contains for every node the number of ingroup
matches, that occurred over the entire range of allowed outgroup matches. For example in the
group ’Proteobacteria’ at least one signature was found, that matches 29 of the 31 sequences
with one outgroup hit.

B.4. CASSIS GRAPHICAL USER INTERFACE 123

results xxx.csv: This file contains the actual results of CaSSiS, separated by their number

of outgroup hits ’xxx’. The first column contains the node identifier within the hierarchical

cluster. The second and third column show the number of organisms within the group/node

(for leaves/organisms: 1) and the number of actually hit organisms by the signatures for this

node. The appropriate signatures follow subsequently.

B.4 CaSSiS graphical user interface

As a prototypical implementation, an intuitive graphical interface based on the CaSSiS library

was created (Figure B.2). It was designed to allow single freely defined queries. The CaSSiS UI

allows group selection within a loaded phylogenetic tree or its definition as a list of identifiers.

By defining a range of non-target hits, users may influence the specificity. Single requests are

usually processed within a second. The result is a list of signatures (Figure B.3) with maximum

coverage (sensitivity) for each entry within the range of allowed non-target matches and their

thermodynamic characteristics.

Figure B.2: Screenshot: The CaSSiS user interface. Left area: group selection within a phylo-
genetic tree. Right area: tabs with signature candidates for a selected phylogenetic group. Not
visible: Preferences and statistical data.

B.5 CaSSiS bgrt2Graphviz

The tool bgrt2graphviz is a small helper that allows the conversion of BGR-Tree structures

into Graphviz (.gv) files. These files can then be further processed into Scalable Vector Graphics

(SVG) or other graphic formats. The Figures B.4 and B.5 show two different representation of

a BGRT tree built from 10 rRNA sequences.

Usage: bgrt2Graphviz <bgrt-file> <Graphviz-file>

124 APPENDIX B. THE CASSIS SOFTWARE PACKAGE

ID
S
iz
e

In
g
ro

u
p

S
ig
n
a
tu

re
s.
.
.

B
a
ct

er
ia

7
4

6
9

U
C
C
U
A
C
G
G
G
A
G
G
C
A
G
C
A
G

C
U
C
C
U
A
C
G
G
G
A
G
G
C
A
G
C
A

..
.

P
ro

te
o
b
a
ct

er
ia

3
1

2
4

C
G
C
C
C
G
U
C
A
C
A
C
C
A
U
G
G
G

G
C
C
C
G
U
C
A
C
A
C
C
A
U
G
G
G
A

..
.

E
u
ka

ry
a

2
5

2
5

G
G
G
C
A
A
G
U
C
U
G
G
U
G
C
C
A
G

G
G
C
A
A
G
U
C
U
G
G
U
G
C
C
A
G
C

..
.

A
ct

in
o
b
a
ct

er
id

a
e

1
8

1
8

G
C
C
G
G
G
G
U
C
A
A
C
U
C
G
G
A
G

G
G
G
G
U
C
A
A
C
U
C
G
G
A
G
G
A
A

..
.

F
ir

m
ic

u
te

s
1
5

1
3

C
A
G
C
A
G
U
A
G
G
G
A
A
U
C
U
U
C

G
C
A
G
C
A
G
U
A
G
G
G
A
A
U
C
U
U

..
.

B
a
ci

ll
i

1
2

1
2

G
G
C
A
G
C
A
G
U
A
G
G
G
A
A
U
C
U

A
G
G
C
A
G
C
A
G
U
A
G
G
G
A
A
U
C

M
et

a
zo

a
1
2

1
1

G
G
U
A
G
U
G
A
C
G
A
A
A
A
A
U
A
A

G
U
A
G
U
G
A
C
G
A
A
A
A
A
U
A
A
C

..
.

G
a
m

m
a
p
ro

te
o
b
a
ct

er
ia

1
1
1

1
1

A
U
G
A
A
U
U
G
A
C
G
G
G
G
G
C
C
C

U
G
A
A
U
U
G
A
C
G
G
G
G
G
C
C
C
G

A
lp

h
a
p
ro

te
o
b
a
ct

er
ia

1
0

9
A
G
A
G
G
U
G
A
A
A
U
U
C
G
U
A
G
A

A
G
G
U
G
A
A
A
U
U
C
G
U
A
G
A
U
A

..
.

B
et

a
p
ro

te
o
b
a
ct

er
ia

8
8

A
G
C
A
G
U
G
A
A
A
U
G
C
G
U
A
G
A

A
G
C
A
G
U
G
G
G
G
A
A
U
U
U
U
G
G

..
.

A
rt

h
ro

p
o
d
a

6
6

A
A
C
A
C
G
G
G
A
A
A
C
C
U
C
A
C
C

A
A
G
A
A
C
G
A
A
A
G
U
U
A
G
A
G
G

..
.

B
u
rk

h
o
ld

er
ia

le
s

6
5

A
C
G
C
U
C
A
U
G
C
A
C
G
A
A
A
G
C

A
C
U
G
A
C
G
C
U
C
A
U
G
C
A
C
G
A

..
.

L
a
ct

o
b
a
ci

ll
a
le

s
6

5
A
A
U
G
C
G
U
A
G
A
U
A
U
A
U
G
G
A

A
C
G
C
U
G
A
G
G
C
U
C
G
A
A
A
G
C

..
.

S
tr

ep
to

m
y
ci

n
ea

e
S
tr

ep
to

m
y
ce

ta
ce

a
e

6
6

A
G
A
U
C
A
G
C
A
U
U
G
C
U
G
C
G
G

A
G
C
A
U
G
U
G
G
C
U
U
A
A
U
U
C
G

..
.

S
tr

ep
to

m
y
ce

s
4

2
A
C
A
A
U
G
A
G
C
U
G
C
G
A
U
G
C
C

C
A
A
U
G
A
G
C
U
G
C
G
A
U
G
C
C
G

..
.

A
ct

in
o
m

y
ce

ta
le

s
4

3
3

A
A
A
G
U
C
G
G
C
A
A
C
A
C
C
C
G
A

A
A
G
U
C
G
A
G
C
G
G
A
A
A
G
G
C
C

..
.

A
ct

in
o
m

y
ce

ta
le

s
M

ic
ro

co
cc

in
ea

e
1

3
3

A
A
A
C
G
U
U
G
G
G
C
A
C
U
A
G
G
U

A
A
C
G
U
U
G
G
G
C
A
C
U
A
G
G
U
G

..
.

B
a
ct

er
o
id

et
es

3
3

A
A
U
U
C
G
A
U
G
A
U
A
C
G
C
G
A
G

A
G
C
G
G
U
G
A
A
A
U
G
C
A
U
A
G
A

..
.

B
ra

ch
y
sp

ir
a
ce

a
e

B
ra

ch
y
sp

ir
a

3
3

A
A
A
A
A
A
G
U
U
G
C
C
U
C
A
G
U
U

A
A
A
A
A
C
C
U
U
A
C
C
U
G
G
G
U
U

..
.

C
o
ry

n
eb

a
ct

er
in

ea
e

3
3

A
A
C
A
C
G
U
G
G
G
U
G
A
U
C
U
G
C

A
A
G
G
C
G
G
G
U
C
U
C
U
G
G
G
C
A

..
.

C
y
a
n
o
b
a
ct

er
ia

3
3

A
A
G
C
G
G
U
G
G
A
G
U
A
U
G
U
G
G

A
A
G
G
A
G
G
A
A
U
C
G
C
U
A
G
U
A

..
.

F
u
n
g
i

3
3

C
U
A
G
A
G
C
U
A
A
U
A
C
A
U
G
C
U

M
ic

ro
b
a
ct

er
ia

ce
a
e

3
3

A
A
G
G
C
A
G
A
U
C
U
C
U
G
G
G
C
C

A
C
C
G
A
U
G
G
C
G
A
A
G
G
C
A
G
A

..
.

P
se

u
d
o
m

o
n
a
d
a
le

s
P

se
u
d
o
m

o
n
a
d
a
ce

a
e

3
3

A
A
A
G
C
A
C
U
U
U
A
A
G
U
U
G
G
G

A
A
C
C
C
U
U
G
U
C
C
U
U
A
G
U
U
A

..
.

R
h
iz

o
b
ia

le
s

1
3

3
A
A
C
C
C
C
G
G
A
A
C
U
G
C
C
U
U
U

A
A
C
U
G
C
C
U
U
U
G
A
U
A
C
U
G
G

..
.

R
h
o
d
o
p
h
y
ta

3
3

A
A
U
A
C
G
U
C
C
C
U
G
C
C
C
U
U
U

A
A
U
U
G
A
C
G
G
A
A
G
G
G
C
A
U
C

..
.

S
tr

ep
to

co
cc

u
s

3
3

A
A
A
G
C
G
G
C
U
C
U
C
U
G
G
U
C
U

A
A
A
G
C
U
C
U
G
U
U
G
U
A
A
G
A
G

..
.

V
ib

ri
o
n
a
le

s
V

ib
ri

o
n
a
ce

a
e

3
3

A
A
A
G
C
C
C
G
G
G
G
C
U
C
A
A
C
C

A
A
C
C
C
U
U
A
U
C
C
U
U
G
U
U
U
G

..
.

. . .
. . .

. . .
. . .

. . .

Table B.2: A separate result file exists for every number of outgroup hits. In the example above,
an excerpt from the file results 0.csv, all signatures match without outgroup hits.

B.6. CHANGELOG 125

Figure B.3: Comprehensive signature computation result (CSV dataset, 0 mismatches, 1 non-
target hit)

Sample session:

$./bgrt2graphviz tree.bgrt output.gv

$ twopi -Tsvg output.gv -o output.gv.svg

Graphviz2 is a graph visualization software licensed under the “Eclipse Public License”.

B.6 Changelog

This is a summary of the changes and updates during the development of CaSSiS in reverse

chronological order. CaSSiS was managed with a Git repository. Its creation and the first

commit is dated back to the 21.November 2009. The changelog was derived from the commit

messages and combined where applicable.

CaSSiS 0.5.0 (Released 6.August 2012; Stable release)

• Added -list parameter to allow processing without phylogenetic trees.

• Updated ARB compatibility.

• Disabled warnings when processing huge sequence datasets.

• Fixed mismatch parameter settings.

• Increased MiniPT tree depth (and thereby the signature length limit) to 25.

• Fixed a bug in the melting temperature formula.

• Added a test tool for thermodynamic parameters.

2http://www.graphviz.org/

126 APPENDIX B. THE CASSIS SOFTWARE PACKAGE

root

0

1

2

3

4

5

6

7

8

9
1

234
6,8,97

8

2

3

4,8
59

3,4,9

4,7

5
6,7,8

6,8
7

7

6,85,6,8,9

9
3

5,6,8

6,8

5

6,8 6,8

3

5

5

3

4,5

8

6,8,9
7

6,8,9

4,5,7
9

6,9

5
6,7,9

7

6,9
7

7

2,6,9
5

3
5

3,6,8,9

4,75

5

6,8,995,6,8,96,8,9

7

7
2

3

4

5

6,8

8

9

3,4,5,6,7,8,9

4,7

9

5

9

6,8,9

4,7

6,9

8,9

5

8

5

6,8,9

7

8

7

9

3

4

5

6

7
8

9

4,7

5,9

6,9

9

5

6,8,9

8,9

9

6,8

9

6,8

8

5,6,7

7,9

9

4
5 6

7
8,9

9

5
6,9

7,9 8,9

6,7,8,9
9

6,7,8

7,8

6,7,8,99 8 9

9

8,9
9

5

6

7

9

6,7
7

8

9

8

8

9

6

8

9

7,8,9

8

7,9

9

7

8

9

9

8

9

Figure B.4: Rooted circular visualization of a BGRT built from 10 sequences. First level nodes
are represented by double circles.

B.6. CHANGELOG 127

0

1

2
3

4

6,8,9

7

8

2

3

4,8

5
9

3,4,9

4,7

5

6,7,8

6,8

7

7

6,8
5,6,8,9

9

3

5,6,86,8

5

6,8

6,835

5
3

4,5

8

6,8,9

7

6,8,9

4,5,7

9

6,9

5

6,7,9

7

6,9

7

7

2,6,9

5

3

5

3,6,8,9

4,7
5

5

6,8,9

9

5,6,8,9

6,8,9

7

7

1

23

4

5
6,8

8

9

3,4,5,6,7,8,9

4,7

9

5

9

6,8,9

4,7

6,9

8,9

5

8

5

6,8,9

7

8

7

9

2

3

4

5 6
7

8

9

4,7

5,9

6,9

9

5

6,8,9

8,9
9

6,8

9
6,8

8

5,6,7

7,9

9

3

4

5

6

7

8,9

9

5

6,9
7,9

8,9

6,7,8,9

9

6,7,8
7,8

6,7,8,9

9

8

9

9

8,9
9

4

5

6

7

9

6,7

7

8

9

8

8

9

5

6

8 9

7,8,98

7,9

9

6

7

8

9

9

78

89

9

Figure B.5: Unrooted visualization of a BGRT built from 10 sequences. First level nodes are
represented by double circles.

128 APPENDIX B. THE CASSIS SOFTWARE PACKAGE

• Minor changes in the graphviz visualization tool.

• Added (untested) DUP support.

• Added stubs for the index server.

• Major refactoring.

• Added another form of detailed output: Signature files.

• Minor changes in cmake build chain.

• Unofficial pThread support.

• Various fixes for the (untested) pThreads version.

• Added a second output format: Detailed CSV

• Updated various copyright headers and comments.

• Updated (better) error messages instead of mere assertions.

• Various bugfixes that address the formatting of the input file.

CaSSiS 0.4.0 (Released 14.January 2012; Stable release)

• CaSSiS is now under the LPGL v3 license.

• Added bgrt2graphviz tool for testing purposes.

• Updated/fixed the untested pThreads support.

• Fixed error handling.

• Removed obsolete comments.

• Code clean-up.

• Various changes in the ARB Pt-Server interface.

• Moved MiniPT into its own namespace. Avoids collisions due to global (legacy) variables.

• Added new parameter: check all signatures (all 4length possibilities).

• Disabled CaSSiS tree load when creating a BGRT.

• Reverted the (too high) memory estimation when building a MiniPT index.

• Updated the output of statistical information.

• Removed erroneous gene memory consumption calc. from the MiniPT index.

B.6. CHANGELOG 129

• Added numbering to the snapshots (debug version only).

• Fixed a bug in the CMakeslist.

• Redesigned the memory and runtime dump.

• Refactoring: Merged the BGRT create and 1pass process in CaSSiS.

• Updated the ARB interface (compatibility).

• Added a (unified) CaSSiSTree class and removed obsolete PhyloTree class.

• Removed warnings when building the MiniPt Index.

• Updated the parameter parser.

• Various minor fixes. Fixed a dependency problem.

• Renamed binary project to: CaSSiS-CLI (command line interface tool).

• Added CaSSiS-tool as a unified binary for the BGRT and LCA approach.

• Added IndexInterface base class as an interface for search indices.

• Added ARB database support to CaSSiS-LCA. Untested.

• Major refactoring of the CaSSiS library.

CaSSiS 0.3.3 (Internally released 24.October 2011; Maintenance release)

• Added the MiniPT search index (derived from the ARB PT-Server).

• Removed obsolete code.

• Removed some warnings (at compile time).

• Do not handle warnings as errors by default (at compile time).

• Added placeholders for the SeqAn and the PtPan search indices.

• Updated/fixed the Newick tree importer. Also updated the internal tree structure.

• Various updates that should keep the PT-Server compatible with the ARB version.

• Removed some of the debug code.

• Added a sparse table to the CaSSiS-LCA. This allows LCA-searches in O(1).

• Removed unnecessary code.

• Applied some fixes that should reduce the memory consumption.

130 APPENDIX B. THE CASSIS SOFTWARE PACKAGE

• Added log messages during runtime. Disabled by default.

• Various modifications that are necessary to support “outgroup matches” in CaSSiS-LCA.

• Added a RMQ implementation to CaSSiS-LCA.

• Removed obsolete code from the PT-Server.

• Refactoring: “species” to “sequence”.

• Added make package by adding CPack.

• Various updates/fixes to the pthreads support. Untested and disabled by default.

• Disabled a PT-Server warning that resulted in gigabytes of output.

• Fixed a double free when computing signatures of different lengths.

• Added the MiniPT tool for PT-Index debugging.

• Added basic Base4Set merge support. Untested.

• Added VarInt support to the BGRT tools.

• Removed redundant code.

CaSSiS 0.3.2 (Released 12.August 2011; Stable release)

• Fixed parameter handling. Fixed help in CaSSiS.

• Disabled various unimplemented functions.

• Optimized the BGRT layout.

• Added “Creme de CaSSiS” (CdCaSSiS), a user interface version of CaSSiS.

• Removed the outdated unit tests. (Not visible to the end user.)

• Removed the outdated statistics code.

• Removed various warnings during compilation.

• Various small improvements. (Too small to be mentioned in detail.)

• Removed obsolete ARBHOME environment variable dependency.

• Reduced the code complexity a bit.

• Small update that might speed up the PT-Server a little bit.

• Removed proprietary memory management from the PT-Server.

B.6. CHANGELOG 131

• Fixed three memory leaks (in the PT-Server and the ARB-DB code).

• Moved the more generic BGRT generation code parts from the ARBDB into CaSSiS.

• Added ARB files to the repository. Created a project-specific ARBDB library.

• Directly added the PT-Server (former ARB PT-Server) to CaSSiS. This code does no

longer match the original ARB PT-Server code.

• Various changes due to strict gcc settings.

• Added date/version numbers to the cmake files and the source code.

• Updated the documentation.

• Switched to templates for internal types.

CaSSiS 0.3.1 (Released 27.June 2011; Maintenance release)

• Fixed minor dependency problems in the shell scripts.

CaSSiS 0.3.0 (Internally released 9.June 2011; Stable release)

• Added/updated the documentation.

• Fixed various memory leaks and minor bugs.

• Added I/O functionality for Base4Set and Base4 t. Added Base4 type functionality.

• Added the Base4 support throughout the BGRT library, resulting in less memory con-

sumption.

• Various changes to reduce the memory consumption of a loaded BGRT.

• Implemented a new (slightly faster) traversal approach.

• Updated the CaSSiS PT-Server code due to ARB source code updates. Updated the ARB

PT-Server dependencies.

• Clean-up does not remove computed BGRT-files any longer.

• Adapted the batch job script according to the new parameters.

• Split the CaSSiS functionalities into three different functions: create / traverse / info

• Updated the parameter parser function.

• Set a dummy ARBHOME environment variable to satisfy the PT-Server.

• Added branch lengths to the phylogenetic tree.

132 APPENDIX B. THE CASSIS SOFTWARE PACKAGE

• Moved thermodynamic functionalities into the BGRT library.

• Added single group search to the BGRT library.

• BGRT file checksum added.

• Updated phylogenetic tree reduction.

• Removed progress bar from phylogenetic tree reader.

• Disabled dump stats by default.

• Refactored the CSV result dump.

• Updated the BGRT filename generation.

• Renamed all referenced probe(s) to signature(s)

• Updated the BGRT library (separate base types)

• Updated the output. BGRT header information is now dumped when loading a BGRT.

• Code moved from C to C++.

• Major changes in the handling of the BGRT file. BGRT structures can now be

stored/loaded.

CaSSiS 0.2.0 (Released 7.March 2011; Stable release)

• Updated the error handling within CaSSiS.

• Updated/fixed an error in the mismatch calculation.

• Fixed the mismatch parameter parsing.

• Support of weighted mismatches (ARB PT-Server functionality).

• Various preparations for the usage of thermodynamics (G+C, melting temp, . . .) during

the BGRT build process.

• Updated the PT-Server+BGRT to count outgroup matches between m1 and m2.

• Code clean-up. Updated to the newest ARB code base. Code split into three libraries

(libCORE.so, libARBDB.so and libptserver.so).

• Removed obsolete output (status messages) in the release build.

• Updated the batch job script: Removed the PT-Server name parameter because it is

obsolete.

• Minor fix to correctly sync. the ids between CaSSiS and the PT-Server.

B.7. LICENSE FOR CASSIS 133

• Fixed a bug when using mismatch distances > 1.

• Added an ARB PT-Server wrapper. No need for a PT-Server binary any longer.

• The BGRT functionality is combined in a dynamic library: libbgrt.so

• Fixed ID handling for phylogenetic trees that only contain a subset of the sequences within

the BGRT.

• Swapped the processing order of the BGRT and phylogenetic tree.

• Memory leak fix.

CaSSiS 0.1.1 (Released 22.October 2010; Maintenance release)

• Added debugging information to the BGRT traversal.

• Applied two hotfixes for the cut-off algorithm. (Fixed data loss.)

• Minor improvement in the BGRT traversal.

CaSSiS 0.1.0 (Released 10.September 2010; Stable release)

• Warning: The 0.1.0 release of CaSSiS contains a flaw that leads to the loss of promising

signatures.

• First official release.

B.7 License for CaSSiS

GNU Lesser General Public License

GNU LESSER GENERAL PUBLIC LICENSE Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc. (http://fsf.org/) Everyone is permitted

to copy and distribute verbatim copies of this license document, but changing it is not allowed.

This version of the GNU Lesser General Public License incorporates the terms and conditions

of version 3 of the GNU General Public License, supplemented by the additional permissions

listed below.

0. Additional Definitions.

As used herein, “this License” refers to version 3 of the GNU Lesser General Public License,

and the “GNU GPL” refers to version 3 of the GNU General Public License.

“The Library” refers to a covered work governed by this License, other than an Application or

a Combined Work as defined below.

134 APPENDIX B. THE CASSIS SOFTWARE PACKAGE

An “Application” is any work that makes use of an interface provided by the Library, but which

is not otherwise based on the Library. Defining a subclass of a class defined by the Library is

deemed a mode of using an interface provided by the Library.

A “Combined Work” is a work produced by combining or linking an Application with the

Library. The particular version of the Library with which the Combined Work was made is also

called the “Linked Version”.

The “Minimal Corresponding Source” for a Combined Work means the Corresponding Source

for the Combined Work, excluding any source code for portions of the Combined Work that,

considered in isolation, are based on the Application, and not on the Linked Version.

The “Corresponding Application Code” for a Combined Work means the object code and/or

source code for the Application, including any data and utility programs needed for reproducing

the Combined Work from the Application, but excluding the System Libraries of the Combined

Work.

1. Exception to Section 3 of the GNU GPL.

You may convey a covered work under sections 3 and 4 of this License without being bound by

section 3 of the GNU GPL.

2. Conveying Modified Versions.

If you modify a copy of the Library, and, in your modifications, a facility refers to a function or

data to be supplied by an Application that uses the facility (other than as an argument passed

when the facility is invoked), then you may convey a copy of the modified version:

a) under this License, provided that you make a good faith effort to ensure that, in the event

an Application does not supply the function or data, the facility still operates, and performs

whatever part of its purpose remains meaningful, or

b) under the GNU GPL, with none of the additional permissions of this License applicable to

that copy.

3. Object Code Incorporating Material from Library Header Files.

The object code form of an Application may incorporate material from a header file that is part

of the Library. You may convey such object code under terms of your choice, provided that,

if the incorporated material is not limited to numerical parameters, data structure layouts and

accessors, or small macros, inline functions and templates (ten or fewer lines in length), you do

both of the following:

a) Give prominent notice with each copy of the object code that the Library is used in it and

that the Library and its use are covered by this License.

b) Accompany the object code with a copy of the GNU GPL and this license document.

4. Combined Works.

You may convey a Combined Work under terms of your choice that, taken together, effectively

do not restrict modification of the portions of the Library contained in the Combined Work and

B.7. LICENSE FOR CASSIS 135

reverse engineering for debugging such modifications, if you also do each of the following:

a) Give prominent notice with each copy of the Combined Work that the Library is used in it

and that the Library and its use are covered by this License.

b) Accompany the Combined Work with a copy of the GNU GPL and this license document.

c) For a Combined Work that displays copyright notices during execution, include the copyright

notice for the Library among these notices, as well as a reference directing the user to the copies

of the GNU GPL and this license document.

d) Do one of the following:

0) Convey the Minimal Corresponding Source under the terms of this License, and the Corre-

sponding Application Code in a form suitable for, and under terms that permit, the user to

recombine or relink the Application with a modified version of the Linked Version to produce a

modified Combined Work, in the manner specified by section 6 of the GNU GPL for conveying

Corresponding Source.

1) Use a suitable shared library mechanism for linking with the Library. A suitable mechanism

is one that (a) uses at run time a copy of the Library already present on the user’s computer

system, and (b) will operate properly with a modified version of the Library that is interface-

compatible with the Linked Version.

e) Provide Installation Information, but only if you would otherwise be required to provide such

information under section 6 of the GNU GPL, and only to the extent that such information

is necessary to install and execute a modified version of the Combined Work produced by

recombining or relinking the Application with a modified version of the Linked Version. (If

you use option 4d0, the Installation Information must accompany the Minimal Corresponding

Source and Corresponding Application Code. If you use option 4d1, you must provide the

Installation Information in the manner specified by section 6 of the GNU GPL for conveying

Corresponding Source.)

5. Combined Libraries.

You may place library facilities that are a work based on the Library side by side in a single

library together with other library facilities that are not Applications and are not covered by

this License, and convey such a combined library under terms of your choice, if you do both of

the following:

a) Accompany the combined library with a copy of the same work based on the Library, un-

combined with any other library facilities, conveyed under the terms of this License.

b) Give prominent notice with the combined library that part of it is a work based on the

Library, and explaining where to find the accompanying uncombined form of the same work.

6. Revised Versions of the GNU Lesser General Public License.

The Free Software Foundation may publish revised and/or new versions of the GNU Lesser

General Public License from time to time. Such new versions will be similar in spirit to the

present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library as you received it specifies

136 APPENDIX B. THE CASSIS SOFTWARE PACKAGE

that a certain numbered version of the GNU Lesser General Public License “or any later version”

applies to it, you have the option of following the terms and conditions either of that published

version or of any later version published by the Free Software Foundation. If the Library as you

received it does not specify a version number of the GNU Lesser General Public License, you

may choose any version of the GNU Lesser General Public License ever published by the Free

Software Foundation.

If the Library as you received it specifies that a proxy can decide whether future versions of the

GNU Lesser General Public License shall apply, that proxy’s public statement of acceptance of

any version is permanent authorization for you to choose that version for the Library.

GNU General Public License

GNU GENERAL PUBLIC LICENSE Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc. (http://fsf.org/) Everyone is permitted

to copy and distribute verbatim copies of this license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for software and other kinds of works.

The licenses for most software and other practical works are designed to take away your freedom

to share and change the works. By contrast, the GNU General Public License is intended to

guarantee your freedom to share and change all versions of a program — to make sure it remains

free software for all its users. We, the Free Software Foundation, use the GNU General Public

License for most of our software; it applies also to any other work released this way by its

authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public

Licenses are designed to make sure that you have the freedom to distribute copies of free software

(and charge for them if you wish), that you receive source code or can get it if you want it, that

you can change the software or use pieces of it in new free programs, and that you know you

can do these things.

To protect your rights, we need to prevent others from denying you these rights or asking you

to surrender the rights. Therefore, you have certain responsibilities if you distribute copies of

the software, or if you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must

pass on to the recipients the same freedoms that you received. You must make sure that they,

too, receive or can get the source code. And you must show them these terms so they know

their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright

on the software, and (2) offer you this License giving you legal permission to copy, distribute

and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains that there is no warranty

B.7. LICENSE FOR CASSIS 137

for this free software. For both users’ and authors’ sake, the GPL requires that modified versions

be marked as changed, so that their problems will not be attributed erroneously to authors of

previous versions.

Some devices are designed to deny users access to install or run modified versions of the software

inside them, although the manufacturer can do so. This is fundamentally incompatible with

the aim of protecting users’ freedom to change the software. The systematic pattern of such

abuse occurs in the area of products for individuals to use, which is precisely where it is most

unacceptable. Therefore, we have designed this version of the GPL to prohibit the practice for

those products. If such problems arise substantially in other domains, we stand ready to extend

this provision to those domains in future versions of the GPL, as needed to protect the freedom

of users.

Finally, every program is threatened constantly by software patents. States should not allow

patents to restrict development and use of software on general-purpose computers, but in those

that do, we wish to avoid the special danger that patents applied to a free program could make

it effectively proprietary. To prevent this, the GPL assures that patents cannot be used to

render the program non-free.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS

0. Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of works, such as semi-

conductor masks.

“The Program” refers to any copyrightable work licensed under this License. Each licensee is

addressed as “you”. “Licensees” and “recipients” may be individuals or organizations.

To “modify” a work means to copy from or adapt all or part of the work in a fashion requiring

copyright permission, other than the making of an exact copy. The resulting work is called a

“modified version” of the earlier work or a work “based on” the earlier work.

A “covered work” means either the unmodified Program or a work based on the Program.

To “propagate” a work means to do anything with it that, without permission, would make you

directly or secondarily liable for infringement under applicable copyright law, except executing

it on a computer or modifying a private copy. Propagation includes copying, distribution (with

or without modification), making available to the public, and in some countries other activities

as well.

To “convey” a work means any kind of propagation that enables other parties to make or receive

copies. Mere interaction with a user through a computer network, with no transfer of a copy,

is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the extent that it includes

a convenient and prominently visible feature that (1) displays an appropriate copyright notice,

and (2) tells the user that there is no warranty for the work (except to the extent that warranties

138 APPENDIX B. THE CASSIS SOFTWARE PACKAGE

are provided), that licensees may convey the work under this License, and how to view a copy

of this License. If the interface presents a list of user commands or options, such as a menu, a

prominent item in the list meets this criterion.

1. Source Code.

The “source code” for a work means the preferred form of the work for making modifications

to it. “Object code” means any non-source form of a work.

A “Standard Interface” means an interface that either is an official standard defined by a

recognized standards body, or, in the case of interfaces specified for a particular programming

language, one that is widely used among developers working in that language.

The “System Libraries” of an executable work include anything, other than the work as a whole,

that (a) is included in the normal form of packaging a Major Component, but which is not part

of that Major Component, and (b) serves only to enable use of the work with that Major

Component, or to implement a Standard Interface for which an implementation is available to

the public in source code form. A “Major Component”, in this context, means a major essential

component (kernel, window system, and so on) of the specific operating system (if any) on which

the executable work runs, or a compiler used to produce the work, or an object code interpreter

used to run it.

The “Corresponding Source” for a work in object code form means all the source code needed

to generate, install, and (for an executable work) run the object code and to modify the work,

including scripts to control those activities. However, it does not include the work’s System Li-

braries, or general-purpose tools or generally available free programs which are used unmodified

in performing those activities but which are not part of the work. For example, Correspond-

ing Source includes interface definition files associated with source files for the work, and the

source code for shared libraries and dynamically linked subprograms that the work is specifi-

cally designed to require, such as by intimate data communication or control flow between those

subprograms and other parts of the work.

The Corresponding Source need not include anything that users can regenerate automatically

from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the Program,

and are irrevocable provided the stated conditions are met. This License explicitly affirms your

unlimited permission to run the unmodified Program. The output from running a covered work

is covered by this License only if the output, given its content, constitutes a covered work. This

License acknowledges your rights of fair use or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not convey, without conditions

so long as your license otherwise remains in force. You may convey covered works to others for

the sole purpose of having them make modifications exclusively for you, or provide you with

facilities for running those works, provided that you comply with the terms of this License in

B.7. LICENSE FOR CASSIS 139

conveying all material for which you do not control copyright. Those thus making or running the

covered works for you must do so exclusively on your behalf, under your direction and control,

on terms that prohibit them from making any copies of your copyrighted material outside their

relationship with you.

Conveying under any other circumstances is permitted solely under the conditions stated below.

Sublicensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under any applicable

law fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December

1996, or similar laws prohibiting or restricting circumvention of such measures.

When you convey a covered work, you waive any legal power to forbid circumvention of tech-

nological measures to the extent such circumvention is effected by exercising rights under this

License with respect to the covered work, and you disclaim any intention to limit operation or

modification of the work as a means of enforcing, against the work’s users, your or third parties’

legal rights to forbid circumvention of technological measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you receive it, in any medium,

provided that you conspicuously and appropriately publish on each copy an appropriate copy-

right notice; keep intact all notices stating that this License and any non-permissive terms

added in accord with section 7 apply to the code; keep intact all notices of the absence of any

warranty; and give all recipients a copy of this License along with the Program.

You may charge any price or no price for each copy that you convey, and you may offer support

or warranty protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to produce it from the

Program, in the form of source code under the terms of section 4, provided that you also meet

all of these conditions:

a) The work must carry prominent notices stating that you modified it, and giving a relevant

date.

b) The work must carry prominent notices stating that it is released under this License and

any conditions added under section 7. This requirement modifies the requirement in section 4

to “keep intact all notices”.

c) You must license the entire work, as a whole, under this License to anyone who comes

into possession of a copy. This License will therefore apply, along with any applicable section 7

additional terms, to the whole of the work, and all its parts, regardless of how they are packaged.

This License gives no permission to license the work in any other way, but it does not invalidate

such permission if you have separately received it.

d) If the work has interactive user interfaces, each must display Appropriate Legal Notices;

140 APPENDIX B. THE CASSIS SOFTWARE PACKAGE

however, if the Program has interactive interfaces that do not display Appropriate Legal Notices,

your work need not make them do so.

A compilation of a covered work with other separate and independent works, which are not

by their nature extensions of the covered work, and which are not combined with it such as

to form a larger program, in or on a volume of a storage or distribution medium, is called an

“aggregate” if the compilation and its resulting copyright are not used to limit the access or

legal rights of the compilation’s users beyond what the individual works permit. Inclusion of

a covered work in an aggregate does not cause this License to apply to the other parts of the

aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4 and 5,

provided that you also convey the machine-readable Corresponding Source under the terms of

this License, in one of these ways:

a) Convey the object code in, or embodied in, a physical product (including a physical distribu-

tion medium), accompanied by the Corresponding Source fixed on a durable physical medium

customarily used for software interchange.

b) Convey the object code in, or embodied in, a physical product (including a physical distri-

bution medium), accompanied by a written offer, valid for at least three years and valid for as

long as you offer spare parts or customer support for that product model, to give anyone who

possesses the object code either (1) a copy of the Corresponding Source for all the software in

the product that is covered by this License, on a durable physical medium customarily used for

software interchange, for a price no more than your reasonable cost of physically performing

this conveying of source, or (2) access to copy the Corresponding Source from a network server

at no charge.

c) Convey individual copies of the object code with a copy of the written offer to provide the

Corresponding Source. This alternative is allowed only occasionally and noncommercially, and

only if you received the object code with such an offer, in accord with subsection 6b.

d) Convey the object code by offering access from a designated place (gratis or for a charge),

and offer equivalent access to the Corresponding Source in the same way through the same place

at no further charge. You need not require recipients to copy the Corresponding Source along

with the object code. If the place to copy the object code is a network server, the Corresponding

Source may be on a different server (operated by you or a third party) that supports equivalent

copying facilities, provided you maintain clear directions next to the object code saying where to

find the Corresponding Source. Regardless of what server hosts the Corresponding Source, you

remain obligated to ensure that it is available for as long as needed to satisfy these requirements.

e) Convey the object code using peer-to-peer transmission, provided you inform other peers

where the object code and Corresponding Source of the work are being offered to the general

public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Corresponding

Source as a System Library, need not be included in conveying the object code work.

B.7. LICENSE FOR CASSIS 141

A “User Product” is either (1) a “consumer product”, which means any tangible personal

property which is normally used for personal, family, or household purposes, or (2) anything

designed or sold for incorporation into a dwelling. In determining whether a product is a

consumer product, doubtful cases shall be resolved in favor of coverage. For a particular product

received by a particular user, “normally used” refers to a typical or common use of that class of

product, regardless of the status of the particular user or of the way in which the particular user

actually uses, or expects or is expected to use, the product. A product is a consumer product

regardless of whether the product has substantial commercial, industrial or non-consumer uses,

unless such uses represent the only significant mode of use of the product.

“Installation Information” for a User Product means any methods, procedures, authorization

keys, or other information required to install and execute modified versions of a covered work

in that User Product from a modified version of its Corresponding Source. The information

must suffice to ensure that the continued functioning of the modified object code is in no case

prevented or interfered with solely because modification has been made.

If you convey an object code work under this section in, or with, or specifically for use in, a

User Product, and the conveying occurs as part of a transaction in which the right of possession

and use of the User Product is transferred to the recipient in perpetuity or for a fixed term

(regardless of how the transaction is characterized), the Corresponding Source conveyed under

this section must be accompanied by the Installation Information. But this requirement does

not apply if neither you nor any third party retains the ability to install modified object code

on the User Product (for example, the work has been installed in ROM).

The requirement to provide Installation Information does not include a requirement to continue

to provide support service, warranty, or updates for a work that has been modified or installed

by the recipient, or for the User Product in which it has been modified or installed. Access

to a network may be denied when the modification itself materially and adversely affects the

operation of the network or violates the rules and protocols for communication across the

network.

Corresponding Source conveyed, and Installation Information provided, in accord with this

section must be in a format that is publicly documented (and with an implementation available

to the public in source code form), and must require no special password or key for unpacking,

reading or copying.

7. Additional Terms.

“Additional permissions” are terms that supplement the terms of this License by making ex-

ceptions from one or more of its conditions. Additional permissions that are applicable to the

entire Program shall be treated as though they were included in this License, to the extent

that they are valid under applicable law. If additional permissions apply only to part of the

Program, that part may be used separately under those permissions, but the entire Program

remains governed by this License without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option remove any additional

permissions from that copy, or from any part of it. (Additional permissions may be written

142 APPENDIX B. THE CASSIS SOFTWARE PACKAGE

to require their own removal in certain cases when you modify the work.) You may place

additional permissions on material, added by you to a covered work, for which you have or can

give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add to a covered work,

you may (if authorized by the copyright holders of that material) supplement the terms of this

License with terms:

a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of

this License; or

b) Requiring preservation of specified reasonable legal notices or author attributions in that

material or in the Appropriate Legal Notices displayed by works containing it; or

c) Prohibiting misrepresentation of the origin of that material, or requiring that modified ver-

sions of such material be marked in reasonable ways as different from the original version;

or

d) Limiting the use for publicity purposes of names of licensors or authors of the material; or

e) Declining to grant rights under trademark law for use of some trade names, trademarks, or

service marks; or

f) Requiring indemnification of licensors and authors of that material by anyone who conveys the

material (or modified versions of it) with contractual assumptions of liability to the recipient, for

any liability that these contractual assumptions directly impose on those licensors and authors.

All other non-permissive additional terms are considered “further restrictions” within the mean-

ing of section 10. If the Program as you received it, or any part of it, contains a notice stating

that it is governed by this License along with a term that is a further restriction, you may

remove that term. If a license document contains a further restriction but permits relicensing

or conveying under this License, you may add to a covered work material governed by the terms

of that license document, provided that the further restriction does not survive such relicensing

or conveying.

If you add terms to a covered work in accord with this section, you must place, in the relevant

source files, a statement of the additional terms that apply to those files, or a notice indicating

where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of a separately

written license, or stated as exceptions; the above requirements apply either way.

8. Termination.

You may not propagate or modify a covered work except as expressly provided under this

License. Any attempt otherwise to propagate or modify it is void, and will automatically

terminate your rights under this License (including any patent licenses granted under the third

paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular copyright

holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally

terminates your license, and (b) permanently, if the copyright holder fails to notify you of the

violation by some reasonable means prior to 60 days after the cessation.

B.7. LICENSE FOR CASSIS 143

Moreover, your license from a particular copyright holder is reinstated permanently if the copy-

right holder notifies you of the violation by some reasonable means, this is the first time you

have received notice of violation of this License (for any work) from that copyright holder, and

you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who

have received copies or rights from you under this License. If your rights have been terminated

and not permanently reinstated, you do not qualify to receive new licenses for the same material

under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the Program.

Ancillary propagation of a covered work occurring solely as a consequence of using peer-to-peer

transmission to receive a copy likewise does not require acceptance. However, nothing other

than this License grants you permission to propagate or modify any covered work. These actions

infringe copyright if you do not accept this License. Therefore, by modifying or propagating a

covered work, you indicate your acceptance of this License to do so.

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license from the

original licensors, to run, modify and propagate that work, subject to this License. You are not

responsible for enforcing compliance by third parties with this License.

An “entity transaction” is a transaction transferring control of an organization, or substantially

all assets of one, or subdividing an organization, or merging organizations. If propagation of a

covered work results from an entity transaction, each party to that transaction who receives a

copy of the work also receives whatever licenses to the work the party’s predecessor in interest

had or could give under the previous paragraph, plus a right to possession of the Corresponding

Source of the work from the predecessor in interest, if the predecessor has it or can get it with

reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or affirmed

under this License. For example, you may not impose a license fee, royalty, or other charge for

exercise of rights granted under this License, and you may not initiate litigation (including a

cross-claim or counterclaim in a lawsuit) alleging that any patent claim is infringed by making,

using, selling, offering for sale, or importing the Program or any portion of it.

11. Patents.

A “contributor” is a copyright holder who authorizes use under this License of the Program

or a work on which the Program is based. The work thus licensed is called the contributor’s

“contributor version”.

A contributor’s “essential patent claims” are all patent claims owned or controlled by the con-

tributor, whether already acquired or hereafter acquired, that would be infringed by some

manner, permitted by this License, of making, using, or selling its contributor version, but do

144 APPENDIX B. THE CASSIS SOFTWARE PACKAGE

not include claims that would be infringed only as a consequence of further modification of the

contributor version. For purposes of this definition, “control” includes the right to grant patent

sublicenses in a manner consistent with the requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the

contributor’s essential patent claims, to make, use, sell, offer for sale, import and otherwise run,

modify and propagate the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express agreement or commitment,

however denominated, not to enforce a patent (such as an express permission to practice a

patent or covenant not to sue for patent infringement). To “grant” such a patent license to a

party means to make such an agreement or commitment not to enforce a patent against the

party.

If you convey a covered work, knowingly relying on a patent license, and the Corresponding

Source of the work is not available for anyone to copy, free of charge and under the terms of

this License, through a publicly available network server or other readily accessible means, then

you must either (1) cause the Corresponding Source to be so available, or (2) arrange to deprive

yourself of the benefit of the patent license for this particular work, or (3) arrange, in a manner

consistent with the requirements of this License, to extend the patent license to downstream

recipients. “Knowingly relying” means you have actual knowledge that, but for the patent

license, your conveying the covered work in a country, or your recipient’s use of the covered

work in a country, would infringe one or more identifiable patents in that country that you have

reason to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey, or prop-

agate by procuring conveyance of, a covered work, and grant a patent license to some of the

parties receiving the covered work authorizing them to use, propagate, modify or convey a spe-

cific copy of the covered work, then the patent license you grant is automatically extended to

all recipients of the covered work and works based on it.

A patent license is “discriminatory” if it does not include within the scope of its coverage,

prohibits the exercise of, or is conditioned on the non-exercise of one or more of the rights that

are specifically granted under this License. You may not convey a covered work if you are a

party to an arrangement with a third party that is in the business of distributing software, under

which you make payment to the third party based on the extent of your activity of conveying

the work, and under which the third party grants, to any of the parties who would receive the

covered work from you, a discriminatory patent license (a) in connection with copies of the

covered work conveyed by you (or copies made from those copies), or (b) primarily for and in

connection with specific products or compilations that contain the covered work, unless you

entered into that arrangement, or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or other

defenses to infringement that may otherwise be available to you under applicable patent law.

12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that contra-

B.7. LICENSE FOR CASSIS 145

dict the conditions of this License, they do not excuse you from the conditions of this License.

If you cannot convey a covered work so as to satisfy simultaneously your obligations under this

License and any other pertinent obligations, then as a consequence you may not convey it at all.

For example, if you agree to terms that obligate you to collect a royalty for further conveying

from those to whom you convey the Program, the only way you could satisfy both those terms

and this License would be to refrain entirely from conveying the Program.

13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission to link or combine any

covered work with a work licensed under version 3 of the GNU Affero General Public License

into a single combined work, and to convey the resulting work. The terms of this License will

continue to apply to the part which is the covered work, but the special requirements of the

GNU Affero General Public License, section 13, concerning interaction through a network will

apply to the combination as such.

14. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of the GNU General

Public License from time to time. Such new versions will be similar in spirit to the present

version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that a certain

numbered version of the GNU General Public License “or any later version” applies to it, you

have the option of following the terms and conditions either of that numbered version or of any

later version published by the Free Software Foundation. If the Program does not specify a

version number of the GNU General Public License, you may choose any version ever published

by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU General

Public License can be used, that proxy’s public statement of acceptance of a version permanently

authorizes you to choose that version for the Program.

Later license versions may give you additional or different permissions. However, no additional

obligations are imposed on any author or copyright holder as a result of your choosing to follow

a later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY

APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPY-

RIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITH-

OUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING,

BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND

FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY

AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM

PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, RE-

146 APPENDIX B. THE CASSIS SOFTWARE PACKAGE

PAIR OR CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRIT-

ING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES

AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU

FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSE-

QUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PRO-

GRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING REN-

DERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A

FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN

IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF

SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given local

legal effect according to their terms, reviewing courts shall apply local law that most closely

approximates an absolute waiver of all civil liability in connection with the Program, unless a

warranty or assumption of liability accompanies a copy of the Program in return for a fee.

B.8 License for MiniPT

COPYRIGHTS

The ARB software and documentation are not in the public domain. External programs dis-

tributed together with ARB are copyrighted by and are the property of their respective authors

unless otherwise stated. All other copyrights are owned by Lehrstuhl für Mikrobiologie, TU

München.

USAGE LICENSE

You have the right to use this version of ARB for free. Please read as well the attached copyright

notices below whether you may or may not install this package. Since many of the included

programs is free software and nobody is allowed to sell that software you may safely assume

ARB will never become a commercial product.

REDISTRIBUTION LICENSE

This release of the ARB program and documentation may not be sold or incorporated into a

commercial product, in whole or in part, without the expressed written consent of the Technische

Universität München and of its supervisors Ralf Westram or Wolfgang Ludwig.

All interested parties may redistribute and modify ARB as long as all copies are accompanied

by this license information and all copyright notices remain intact. Parties redistributing ARB

must do so on a non-profit basis, charging only for cost of media or distribution.

B.8. LICENSE FOR MINIPT 147

If you modify parts of ARB and redistribute these changes the ’Lehrstuhl für Mikrobiologie’

of the TU München gains the right to incorporate these changes into ARB and to redistribute

them with future versions of ARB.

DEBIAN DISTRIBUTION

Hereby anybody is granted the right to build debian-packets of the ARB software package

(http://www.arb-home.de/) and publish them on debian mirrors (or any other way of debian-

distribution). This includes any debian derivatives like ubuntu. The ARB developers may (but

most likely wont ever) revoke this granting. If really done so, it’ll only affect ARB versions

released after such a revocation.

DISCLAIMER

THE TU MÜNCHEN AND THE VARIOUS AUTHORS OF ARB GIVE NO WARRANTIES,

EXPRESSED OR IMPLIED FOR THE SOFTWARE AND DOCUMENTATION PROVIDED,

INCLUDING, BUT NOT LIMITED TO WARRANTY OF MERCHANTABILITY AND WAR-

RANTY OF FITNESS FOR A PARTICULAR PURPOSE. User understands the software is a

research tool for which no warranties as to capabilities or accuracy are made, and user accepts

the software “as is.” User assumes the entire risk as to the results and performance of the

software and documentation. The above parties cannot be held liable for any direct, indirect,

consequential or incidental damages with respect to any claim by user or any third party on

account of, or arising from the use of software and associated materials. This disclaimer covers

both the ARB core applications and all external programs used by ARB.

Bibliography

[1] M. I. Abouelhoda, S. Kurtz, and E. Ohlebusch. Replacing suffix trees with enhanced

suffix arrays. Journal of Discrete Algorithms, 2(1):53 – 86, 2004. The 9th International

Symposium on String Processing and Information Retrieval.

[2] D. G. Altman and J. M. Bland. Statistics Notes: Diagnostic tests 1: sensitivity and

specificity. Br. Med. J., 308(6943):1552+, June 1994.

[3] R. Amann and B. M. Fuchs. Single-cell identification in microbial communities by im-

proved fluorescence in situ hybridization techniques. Nat. Rev. Microbiol., 6(5):339–348,

2008.

[4] R. I. Amann, B. J. Binder, R. J. Olson, S. W. Chisholm, R. Devereux, and D. A. Stahl.

Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for ana-

lyzing mixed microbial populations. Appl. Environ. Microbiol., 56:1919–1925, Jun 1990.

[5] R. I. Amann, W. Ludwig, and K. H. Schleifer. Phylogenetic identification and in situ

detection of individual microbial cells without cultivation. Microbiol Rev., 59(1):143–169,

March 1995.

[6] L. Amini, H. Andrade, R. Bhagwan, F. Eskesen, R. King, P. Selo, Y. Park, and C. Venka-

tramani. Spc: A distributed, scalable platform for data mining. In Workshop on Data

Mining Standards, Services and Platforms (DM-SPP), 2006.

[7] J. Arnds, K. Knittel, U. Buck, M. Winkel, and R. Amann. Development of a 16S rRNA-

targeted probe set for Verrucomicrobia and its application for fluorescence in situ hy-

bridization in a humic lake. Syst. Appl. Microbiol., 33:139–148, Apr 2010.

[8] K. E. Ashelford, A. J. Weightman, and J. C. Fry. PRIMROSE: a computer program for

generating and estimating the phylogenetic range of 16S rRNA oligonucleotide probes and

primers in conjunction with the RDP-II database. Nucleic Acids Res., 30(15):3481–3489,

August 2002.

[9] J. F. Atkins and R. Gesteland. Biochemistry. The 22nd amino acid. Science,

296(5572):1409–1410, May 2002.

[10] K. C. Bader, M. J. Atallah, and C. Grothoff. Efficient relaxed search in hierarchically

clustered sequence datasets. J. Exp. Algorithmics, 17(1):1.4:1.1–1.4:1.18, July 2012.

149

150 BIBLIOGRAPHY

[11] K. C. Bader, T. Eißler, N. Evans, C. GauthierDickey, C. Grothoff, K. Grothoff, J. Keene,

H. Meier, C. Ritzdorf, and M. J. Rutherford. Distributed stream processing with DUP.

In Network and Parallel Computing, volume 6289 of Lecture Notes in Computer Science,

pages 232–246. Springer Berlin / Heidelberg, 2010.

[12] K. C. Bader, C. Grothoff, and H. Meier. Comprehensive and relaxed search for oligonu-

cleotide signatures in hierarchically clustered sequence datasets. Bioinformatics, 27:1546–

1554, Jun 2011.

[13] M. Barsky, U. Stege, and A. Thomo. A survey of practical algorithms for suffix tree

construction in external memory. Software: Practice and Experience, 40(11):965–988,

2010.

[14] F. Barth, P. Mühlbauer, F. Nikol, and K. Wörle. Mathematische Formeln und Definitio-

nen. Bayerischer Schulbuch-Verlag Lindauer, München, 1976.

[15] J. M. S. Bartlett and D. Stirling. A short history of the polymerase chain reaction. In

J. M. Bartlett and D. Stirling, editors, PCR Protocols, volume 226 of Methods in Molecular

Biology, pages 3–6. Humana Press, 2003. 10.1385/1-59259-384-4:3.

[16] M. Bender and M. Farach-Colton. The lca problem revisited. In G. Gonnet and A. Viola,

editors, LATIN 2000: Theoretical Informatics, volume 1776 of Lecture Notes in Computer

Science, pages 88–94. Springer Berlin / Heidelberg, 2000.

[17] H.-J. Böckenhauer and D. Bongartz. Algorithmische Grundlagen der Bioinformatik: Mod-

elle, Methoden und Komplexität. Teubner, Stuttgart u.a., 2003.

[18] K. J. Breslauer, R. Frank, H. Blocker, and L. A. Marky. Predicting DNA duplex stability

from the base sequence. Proc. Natl. Acad. Sci. U.S.A., 83:3746–3750, Jun 1986.

[19] T. D. Brock and M. T. Madigan. Biology of Microorganisms. Prentice Hall, Englewood

Cliffs, N.J, 1994.

[20] N. Carriero and D. Gelernter. Linda in context. Commun. ACM, 32(4):444–458, 1989.

[21] Y. Chen, T. Souaiaia, and T. Chen. PerM: efficient mapping of short sequencing reads

with periodic full sensitive spaced seeds. Bioinformatics, 25:2514–2521, Oct 2009.

[22] W. H. Chung, S. K. Rhee, X. F. Wan, J. W. Bae, Z. X. Quan, and Y. H. Park. Design

of long oligonucleotide probes for functional gene detection in a microbial community.

Bioinformatics, 21:4092–4100, Nov 2005.

[23] J. E. Clarridge. Impact of 16S rRNA gene sequence analysis for identification of bacteria

on clinical microbiology and infectious diseases. Clin. Microbiol. Rev., 17(4):840–862, Oct

2004.

BIBLIOGRAPHY 151

[24] T. Coenye and P. Vandamme. Intragenomic heterogeneity between multiple 16S ribosomal

RNA operons in sequenced bacterial genomes. FEMS Microbiol. Lett., 228(1):45–49, Nov

2003.

[25] J. R. Cole, Q. Wang, E. Cardenas, J. Fish, B. Chai, R. J. Farris, A. S. Kulam-Syed-

Mohideen, D. M. McGarrell, T. Marsh, G. M. Garrity, and J. M. Tiedje. The Ribosomal

Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids

Res., 37:D141–145, Jan 2009.

[26] A. Cornish-Bowden. Nomenclature for incompletely specified bases in nucleic acid se-

quences: recommendations 1984. Nucleic Acids Res., 13:3021–3030, May 1985.

[27] G. Czihak, H. Langer, and H. Ziegler, editors. Biologie: Ein Lehrbuch. Springer-Verlag,

Berlin New York, 1990.

[28] C. Darwin. On the Origin of Species by Means of Natural Selection, or the Preservation

of Favoured Races in the Struggle for Life. J. Murray, sixth edition, June 1872.

[29] T. Z. DeSantis, P. Hugenholtz, N. Larsen, M. Rojas, E. L. Brodie, K. Keller, T. Huber,

D. Dalevi, P. Hu, and G. L. Andersen. Greengenes, a chimera-checked 16S rRNA gene

database and workbench compatible with ARB. Appl. Environ. Micorbiol., 72(7):5069–

5072, July 2006.

[30] A. Doring, D. Weese, T. Rausch, and K. Reinert. Seqan an efficient, generic c++ library

for sequence analysis. BMC Bioinformatics, 9(1):11, 2008.

[31] D. Dougherty. Sed and AWK. O’Reilly & Associates, Inc., Sebastopol, CA, USA, 1991.

[32] J. Duitama, D. M. Kumar, E. Hemphill, M. Khan, I. I. Mandoiu, and C. E. Nelson.

PrimerHunter: a primer design tool for PCR-based virus subtype identification. Nucleic

Acids Res., 37:2483–2492, May 2009.

[33] T. Eißler, C. P. Hodges, and H. Meier. PTPan — overcoming memory limitations in

oligonucleotide string matching for primer/probe design. Bioinformatics, 27(20):2797–

2805, 2011.

[34] S. Feng and E. Tillier. A fast and flexible approach to oligonucleotide probe design for

genomes and gene families. Bioinformatics, 23:1195–1202, May 2007.

[35] G. F. Ficetola, E. Coissac, S. Zundel, T. Riaz, W. Shehzad, J. Bessiere, P. Taberlet, and

F. Pompanon. An in silico approach for the evaluation of DNA barcodes. BMC Genomics,

11:434, 2010.

[36] W. Fiers, R. Contreras, F. Duerinck, G. Haegeman, D. Iserentant, J. Merregaert,

W. Min Jou, F. Molemans, A. Raeymaekers, A. Van den Berghe, G. Volckaert, and

M. Ysebaert. Complete nucleotide sequence of bacteriophage MS2 RNA: primary and

secondary structure of the replicase gene. Nature, 260(5551):500–507, Apr 1976.

152 BIBLIOGRAPHY

[37] J. Fischer and V. Heun. Theoretical and practical improvements on the RMQ-problem,

with applications to LCA and LCE. In M. Lewenstein and G. Valiente, editors, Com-

binatorial Pattern Matching, volume 4009 of Lecture Notes in Computer Science, pages

36–48. Springer Berlin / Heidelberg, 2006.

[38] J. Fischer and V. Heun. A new succinct representation of RMQ-information and im-

provements in the enhanced suffix array. In B. Chen, M. Paterson, and G. Zhang, editors,

Combinatorics, Algorithms, Probabilistic and Experimental Methodologies, volume 4614

of Lecture Notes in Computer Science, pages 459–470. Springer Berlin / Heidelberg, 2007.

[39] R. D. Fleischmann, M. D. Adams, O. White, R. A. Clayton, E. F. Kirkness, A. R.

Kerlavage, C. J. Bult, J. F. Tomb, B. A. Dougherty, and J. M. Merrick. Whole-genome

random sequencing and assembly of Haemophilus influenzae Rd. Science, 269(5223):496–

512, Jul 1995.

[40] H. N. Gabow, J. L. Bentley, and R. E. Tarjan. Scaling and related techniques for geometry

problems. In Proceedings of the sixteenth annual ACM symposium on Theory of computing,

STOC ’84, pages 135–143, New York, NY, USA, 1984. ACM.

[41] D. Gelernter and N. Carriero. Coordination languages and their significance. Commun.

ACM, 35(2):97–107, 1992.

[42] J. Giacomoni, T. Moseley, and M. Vachharajani. Fastforward for efficient pipeline par-

allelism: a cache-optimized concurrent lock-free queue. In PPoPP ’08: Proceedings of

the 13th ACM SIGPLAN Symposium on Principles and practice of parallel programming,

pages 43–52, New York, NY, USA, 2008. ACM.

[43] E. Goebelbecker. Using grep: Moving from DOS? discover the power of this linux utility.

Linux J., 18, Oct. 1995.

[44] C. Grothoff and J. Keene. The DUP protocol specification v2.0. Technical report, The

DUP Project, 2010.

[45] S. Haensch, R. Bianucci, M. Signoli, M. Rajerison, M. Schultz, S. Kacki, M. Vermunt,

D. A. Weston, D. Hurst, M. Achtman, E. Carniel, and B. Bramanti. Distinct clones of

yersinia pestis caused the black death. PLoS Pathog, 6(10):e1001134, 10 2010.

[46] J. P. Hartmann. CMS Pipelines Explained. IBM Denmark, http://vm.marist.edu/

~pipeline/, Sep 2007.

[47] M. Hirzel, H. Andrade, B. Gedik, V. Kumar, G. Losa, R. Soule, and Kun-Lung-Wu. Spade

language specification. Technical report, IBM Research, March 2009.

[48] P. Hugenholtz, B. M. Goebel, and N. R. Pace. Impact of culture-independent studies on

the emerging phylogenetic view of bacterial diversity. J. Bacteriol., 180:4765–4774, Sep

1998.

BIBLIOGRAPHY 153

[49] IBM. CMS Pipelines User’s Guide. IBM Corp., http://publibz.boulder.ibm.com/

epubs/pdf/hcsh1b10.pdf, version 5 release 2 edition, Dec 2005.

[50] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: Distributed data-parallel

programs from sequential building blocks. In European Conference on Computer Systems

(EuroSys), pages 59–72, Lisabon, Portugal, March 2007.

[51] IUPAC-IUB Commission on Biochemical Nomenclature (CBN). Abbreviations and sym-

bols for nucleic acids, polynucleotides and their constituents. Recommendations 1970.

Biochem. J., 120:449–454, Dec 1970.

[52] IUPAC-IUB Commission on Biochemical Nomenclature (CBN) and Nomenclature Com-

mittee of the International Union of Biochemistry (NC-IUB). Newsletter 1999. European

Journal of Biochemistry, 264(2):607–609, 1999.

[53] L. Kaderali and A. Schliep. Selecting signature oligonucleotides to identify organisms

using DNA arrays. Bioinformatics, 18(10):1340–1349, October 2002.

[54] G. Kahn. The Semantics of a Simple Language for Parallel Programming. In J. L.

Rosenfeld, editor, Information Processing ’74: Proceedings of the IFIP Congress, pages

471–475. North-Holland, New York, NY, 1974.

[55] M. D. Kane, T. A. Jatkoe, C. R. Stumpf, J. Lu, J. D. Thomas, and S. J. Madore. As-

sessment of the sensitivity and specificity of oligonucleotide (50mer) microarrays. Nucleic

Acids Res., 28(22):4552–4557, Nov 2000.

[56] T. Klug. Hardware of the InfiniBand Cluster. http://www.lrr.in.tum.de/Par/arch/

infiniband/ClusterHW/cluster.html, 2008.

[57] D. Knuth. The Art of Computer Programming. Addison-Wesley, Boston, 1998.

[58] M. Kudlur and S. Mahlke. Orchestrating the execution of stream programs on multi-

core platforms. In PLDI ’08: Proceedings of the 2008 ACM SIGPLAN conference on

Programming language design and implementation, pages 114–124, New York, NY, USA,

2008. ACM.

[59] S. Kurtz, A. Phillippy, A. L. Delcher, M. Smoot, M. Shumway, C. Antonescu, and S. L.

Salzberg. Versatile and open software for comparing large genomes. Genome Biol., 5:R12,

2004.

[60] F. C. Lawyer, S. Stoffel, R. K. Saiki, S. Y. Chang, P. A. Landre, R. D. Abramson, and

D. H. Gelfand. High-level expression, purification, and enzymatic characterization of full-

length Thermus aquaticus DNA polymerase and a truncated form deficient in 5’ to 3’

exonuclease activity. PCR Methods Appl., 2:275–287, May 1993.

[61] E. A. Lee. Ptolemy project. http://ptolemy.eecs.berkeley.edu/, 2008.

154 BIBLIOGRAPHY

[62] H. P. Lee, T.-F. Sheu, and C. Y. Tang. A parallel and incremental algorithm for efficient

unique signature discovery on dna databases. BMC Bioinformatics, 11:132, 2010.

[63] I. Letunic and P. Bork. Interactive Tree Of Life v2: online annotation and display of

phylogenetic trees made easy. Nucleic Acids Res., 39:W475–478, Jul 2011.

[64] H. Li and R. Durbin. Fast and accurate short read alignment with Burrows-Wheeler

transform. Bioinformatics, 25:1754–1760, Jul 2009.

[65] C. Linhart and R. Shamir. The degenerate primer design problem. Bioinformatics, 18

Suppl 1:S172–181, 2002.

[66] A. Loy, R. Arnold, P. Tischler, T. Rattei, M. Wagner, and M. Horn. probeCheck–a central

resource for evaluating oligonucleotide probe coverage and specificity. Environ. Microbiol.,

10:2894–2898, Oct 2008.

[67] A. Loy and L. Bodrossy. Highly parallel microbial diagnostics using oligonucleotide mi-

croarrays. Clinica Chimica Acta, 363(1–2):106 – 119, 2006.

[68] A. Loy, F. Maixner, M. Wagner, and M. Horn. probeBase–an online resource for rRNA-

targeted oligonucleotide probes: new features 2007. Nucleic Acids Res., 35(Database

issue):D800–804, Jan 2007.

[69] S. Lücker, D. Steger, K. U. Kjeldsen, B. J. MacGregor, M. Wagner, and A. Loy. Improved

16S rRNA-targeted probe set for analysis of sulfate-reducing bacteria by fluorescence in

situ hybridization. J. Microbiol. Methods, 69:523–528, Jun 2007.

[70] W. Ludwig, O. Strunk, R. Westram, L. Richter, H. Meier, Yadhukumar, A. Buchner,

T. Lai, S. Steppi, G. Jobb, W. Förster, I. Brettske, S. Gerber, A. W. Ginhart, O. Gross,

S. Grumann, S. Hermann, R. Jost, A. König, T. Liss, R. Lüssmann, M. May, B. Nonhoff,

B. Reichel, R. Strehlow, A. Stamatakis, N. Stuckmann, A. Vilbig, M. Lenke, T. Ludwig,

A. Bode, and K. H. Schleifer. ARB: a software environment for sequence data. Nucleic

Acids Res., 32(4):1363–1371, 2004.

[71] B. L. Maidak, J. R. Cole, T. G. Lilburn, C. T. Parker, P. R. Saxman, R. J. Farris, G. M.

Garrity, G. J. Olsen, T. M. Schmidt, and J. M. Tiedje. The RDP-II (Ribosomal Database

Project). Nucleic Acids Res., 29(1):173–174, Jan 2001.

[72] J. A. Manthey. mFold, Delta G, and Melting Temperature: What Does it Mean? Technical

report, Integrated DNA Technologies, Bioinformatics Group, Integrated DNA Technolo-

gies Inc., 1710 Commercial Park, Coralville, Iowa 5224, USA, 2005.

[73] J. Marmur and P. Doty. Determination of the base composition of deoxyribonucleic acid

from its thermal denaturation temperature. J. Mol. Biol., 5:109–118, Jul 1962.

BIBLIOGRAPHY 155

[74] S. J. McIlroy, D. Tillett, S. Petrovski, and R. J. Seviour. Non-target sites with single

nucleotide insertions or deletions are frequently found in 16s rrna sequences and can lead

to false positives in fluorescence in situ hybridization (fish). Environmental Microbiology,

13(1):33–47, 2011.

[75] H. Meier, A. Krause, M. Kräutner, and A. Bode. Development and implementation of

a parallel algorithm for the fast design of oligonucleotide probe sets for diagnostic DNA

microarrays. Concurr. Comput.: Pract. Exper., 16(9):873–893, 2004.

[76] M. Mitsuhashi, A. Cooper, M. Ogura, T. Shinagawa, K. Yano, and T. Hosokawa. Oligonu-

cleotide probe design–a new approach. Nature, 367:759–761, Feb 1994.

[77] G. E. Moore. Cramming more components onto integrated circuits. Electronics, 38(8):114–

117, Apr. 1965.

[78] K. B. Mullis. The unusual origin of the polymerase chain reaction. Scientific American,

262(4), Apr. 1990.

[79] Nomenclature Committee of the International Union of Biochemistry (NC-IUB). Nomen-

clature of electron-transfer proteins. Recommendations 1989. J. Biol. Chem., 267:665–677,

Jan 1992.

[80] E. K. Nordberg. YODA: selecting signature oligonucleotides. Bioinformatics, 21(8):1365–

1370, April 2005.

[81] G. Olsen. The “Newick’s 8:45” Tree Format Standard. http://evolution.genetics.

washington.edu/phylip/newick_doc.html, August 1990.

[82] OpenMP Architecture Review Board. OpenMP Application – Program Interface, 2008.

http://www.openmp.org/mp-documents/spec30.pdf.

[83] A. Panjkovich and F. Melo. Comparison of different melting temperature calculation

methods for short DNA sequences. Bioinformatics, 21:711–722, Mar 2005.

[84] T. M. Parks. Bounded Scheduling of Process Networks. PhD thesis, University of Califor-

nia, Berkeley, December 1995.

[85] P. Peterlongo, J. Nicolas, D. Lavenier, R. Vorc’h, and J. Querellou. c-gamma:comparative

genome analysis of molecular markers. In V. Kadirkamanathan, G. Sanguinetti, M. Giro-

lami, M. Niranjan, and J. Noirel, editors, Pattern Recognition in Bioinformatics, volume

5780 of Lecture Notes in Computer Science, pages 255–269. Springer Berlin / Heidelberg,

2009.

[86] A. M. Phillippy, K. Ayanbule, N. J. Edwards, and S. L. Salzberg. Insignia: a DNA signa-

ture search web server for diagnostic assay development. Nucleic Acids Res., 37:W229–234,

Jul 2009.

156 BIBLIOGRAPHY

[87] A. M. Phillippy, J. A. Mason, K. Ayanbule, D. D. Sommer, E. Taviani, A. Huq, R. R.

Colwell, I. T. Knight, and S. L. Salzberg. Comprehensive DNA signature discovery and

validation. PLoS Comput. Biol., 3:e98, May 2007.

[88] M. N. Price, P. S. Dehal, and A. P. Arkin. Fasttree 2 – approximately maximum-likelihood

trees for large alignments. PLoS ONE, 5(3):e9490, 03 2010.

[89] E. Pruesse, C. Quast, K. Knittel, B. M. Fuchs, W. Ludwig, J. Peplies, and F. O. Glöckner.

SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA

sequence data compatible with ARB. Nucleic Acids Res., 35(21):7188–7196, December

2007.

[90] E. Quigley. UNIX Shells. Prentice Hall, 4 edition, September 2004.

[91] D. Raoult, P. E. Fournier, and M. Drancourt. What does the future hold for clinical

microbiology? Nat. Rev. Microbiol., 2:151–159, Feb 2004.

[92] A. Relogio, C. Schwager, A. Richter, W. Ansorge, and J. Valcarcel. Optimization of

oligonucleotide-based DNA microarrays. Nucleic Acids Res., 30:e51, Jun 2002.

[93] T. Riaz, W. Shehzad, A. Viari, F. Pompanon, P. Taberlet, and E. Coissac. ecoPrimers:

inference of new DNA barcode markers from whole genome sequence analysis. Nucleic

Acids Res., 39:e145, Nov 2011.

[94] J.-M. Rouillard, M. Zuker, and E. Gulari. OligoArray 2.0: design of oligonucleotide probes

for DNA microarrays using a thermodynamic approach. Nucleic Acids Res., 31(12):3057–

3062, June 2003.

[95] W. Rychlik, W. J. Spencer, and R. E. Rhoads. Optimization of the annealing temperature

for DNA amplification in vitro. Nucleic Acids Res., 18(21):6409–6412, Nov 1990.

[96] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B. Kirk, and W. mei W. Hwu.

Optimization principles and application performance evaluation of a multithreaded GPU

using CUDA. In PPoPP ’08: Proceedings of the 13th ACM SIGPLAN Symposium on

Principles and practice of parallel programming, pages 73–82, New York, NY, USA, 2008.

ACM.

[97] F. Sanger, G. M. Air, B. G. Barrell, N. L. Brown, A. R. Coulson, C. A. Fiddes, C. A.

Hutchison, P. M. Slocombe, and M. Smith. Nucleotide sequence of bacteriophage phi

X174 DNA. Nature, 265(5596):687–695, Feb 1977.

[98] J. SantaLucia. A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-

neighbor thermodynamics. Proc. Natl. Acad. Sci. U.S.A., 95:1460–1465, Feb 1998.

[99] K. Schleifer and R. Amann. Nucleic acid probes and their application in environmental

microbiology. In G. Garrity, editor, Bergey’s Manual of Systematic Bacteriology, volume

6289, pages 67–82. Springer, New York, 2001.

BIBLIOGRAPHY 157

[100] S. Schönmann, A. Loy, C. Wimmersberger, J. Sobek, C. Aquino, P. Vandamme, B. Frey,

H. Rehrauer, and L. Eberl. 16S rRNA gene-based phylogenetic microarray for simultane-

ous identification of members of the genus Burkholderia. Environ. Microbiol., 11:779–800,

Apr 2009.

[101] M. H. Schulz, S. Bauer, and P. N. Robinson. The generalised k-truncated suffix tree for

time- and space-efficient searches in multiple dna or protein sequences. Int. J. Bioinfor-

matics Res. Appl., 4:81–95, February 2008.

[102] M. Severgnini, P. Cremonesi, C. Consolandi, G. Caredda, G. De Bellis, and B. Cas-

tiglioni. ORMA: a tool for identification of species-specific variations in 16S rRNA gene

and oligonucleotides design. Nucleic Acids Res., 37:e109, Sep 2009.

[103] J. Shendure and H. Ji. Next-generation DNA sequencing. Nat. Biotechnol., 26:1135–1145,

2008.

[104] J. H. Spring, J. Privat, R. Guerraoui, and J. Vitek. Streamflex: high-throughput stream

programming in java. SIGPLAN Not., 42(10):211–228, 2007.

[105] D. A. Stahl, B. Flesher, H. R. Mansfield, and L. Montgomery. Use of phylogenetically

based hybridization probes for studies of ruminal microbial ecology. Appl. Environ. Mi-

crobiol., 54:1079–1084, May 1988.

[106] A. Stamatakis. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with

thousands of taxa and mixed models. Bioinformatics, 22:2688–2690, Nov 2006.

[107] O. Strunk. ARB: Entwicklung eines Programmsystems zur Erfassung, Verwaltung und

Auswertung von Nuklein- und Aminosäuresequenzen. PhD thesis, TU München, 1993.

[108] N. Sugimoto, S. Nakano, M. Yoneyama, and K. Honda. Improved thermodynamic pa-

rameters and helix initiation factor to predict stability of DNA duplexes. Nucleic Acids

Res., 24:4501–4505, Nov 1996.

[109] F. C. Tenover. Rapid detection and identification of bacterial pathogens using novel

molecular technologies: infection control and beyond. Clin. Infect. Dis., 44:418–423, Feb

2007.

[110] W. Thies, M. Karczmarek, and S. P. Amarasinghe. Streamit: A language for streaming

applications. In CC ’02: Proceedings of the 11th International Conference on Compiler

Construction, pages 179–196, London, UK, 2002. Springer-Verlag.

[111] N. von Ahsen, M. Oellerich, V. W. Armstrong, and E. Schutz. Application of a ther-

modynamic nearest-neighbor model to estimate nucleic acid stability and optimize probe

design: prediction of melting points of multiple mutations of apolipoprotein B-3500 and

factor V with a hybridization probe genotyping assay on the LightCycler. Clin. Chem.,

45:2094–2101, Dec 1999.

158 BIBLIOGRAPHY

[112] M. Wagner, M. Horn, and H. Daims. Fluorescence in situ hybridisation for the identifi-

cation and characterisation of prokaryotes. Current Opinion in Microbiology, 6(3):302 –

309, 2003.

[113] R. B. Wallace, J. Shaffer, R. F. Murphy, J. Bonner, T. Hirose, and K. Itakura. Hybridiza-

tion of synthetic oligodeoxyribonucleotides to phi chi 174 DNA: the effect of single base

pair mismatch. Nucleic Acids Res., 6:3543–3557, Aug 1979.

[114] S. Weckx, E. Carlon, L. De Vuyst, and P. Van Hummelen. Thermodynamic behavior

of short oligonucleotides in microarray hybridizations can be described using gibbs free

energy in a nearest-neighbor model. The Journal of Physical Chemistry B, 111(48):13583–

13590, 2007.

[115] G. C. Wells. A Programmable Matching Engine for Application Development in Linda.

PhD thesis, University of Bristol, 2001.

[116] R. Wernersson and H. B. Nielsen. OligoWiz 2.0–integrating sequence feature annotation

into the design of microarray probes. Nucleic Acids Res., 33:W611–615, Jul 2005.

[117] R. Westram, K. C. Bader, E. Prüsse, Y. Kumar, H. Meier, F. O. Glöckner, and W. Lud-

wig. ARB: A software environment for sequence data. In F. J. de Bruijn, editor, Handbook

of Molecular Microbial Ecology I: Metagenomics and Complementary Approaches, chap-

ter 46, pages 399–406. John Wiley & Sons, Hoboken, New Jersey, 2011.

[118] M. G. Wise, J. V. McArthur, and L. J. Shimkets. 16S rRNA gene probes for Deinococcus

species. Syst. Appl. Microbiol., 19:365–369, 1996.

[119] C. R. Woese, O. Kandler, and M. L. Wheelis. Towards a natural system of organisms:

proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Natl. Acad. Sci. U.S.A.,

87:4576–4579, Jun 1990.

[120] C. R. Woese, J. Maniloff, and L. B. Zablen. Phylogenetic analysis of the mycoplasmas.

Proc. Natl. Acad. Sci. U.S.A., 77(1):494–498, Jan 1980.

[121] L. S. Yilmaz, L. I. Bergsven, and D. R. Noguera. Systematic evaluation of single mismatch

stability predictors for fluorescence in situ hybridization. Environmental Microbiology,

10(10):2872–2885, 2008.

