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abstract

The volume of readily available data sets is growing at exponential rates. Besides
large internet companies like Google, Microsoft or Facebook collecting, e. g., user
data, this trend also applies to scientific data sets like observations or simulations. In
both industry and science, there is a high interest in analysing these large data sets
quickly. Observing the exponential data growth rates, centralised analysis will no
longer be able to accommodate interactive data exploration. Distributed processing
is the method of choice in such scenarios, as it allows to exploit the massive amount
of corporate main memory and processing resources available in compute clusters.

Scientific data sets are often hierarchically structured. In contrast to flat data with
tuples of roughly identical sizes, hierarchical structures may cause significant skew in
the size of data elements. This aspect needs to be taken into account when exploring
hierarchically structured data sets in a distributed manner in order to balance the
workload reasonably well.

The MapReduce programming model gained much attention in the database com-
munity over the last years for offering a simple method of exploiting massive paral-
lelism. In this thesis, we analyse the applicability of MapReduce style processing to
scientific data exploration on tree structured data. Employing frequent subtree min-
ing as a sample application, we propose the Pipelined MapReduce framework. This
framework extends standard MapReduce in order to better support scientific data
analysis. These extensions cover both large scale parallelisation in cluster environ-
ments, and small scale parallelisation on each of the cluster nodes.

We design TreeLatin, a high-level scripting language which allows to construct
workflows for the Pipelined MapReduce framework in a user friendly manner. Simi-
lar to relational database management systems, we integrate an optimiser component
in order to improve the efficiency of the workflows we compile TreeLatin scripts into.

The performance of MapReduce style systems strongly depends on a uniform data
distribution to the cluster nodes. The inherent skew of many scientific data sets
causes load imbalances which raise the processing time significantly. This imbalance
is even amplified by the high runtime complexities of the scientific data exploration
tasks. We propose an adaptive load balancing strategy for tackling this problem.
A distributed monitoring component detects skewed data distributions. Taking into
account the runtime complexity of the processing tasks, we distribute the data to the
cluster nodes such that the workload is well balanced. Thereby, we reduce the time
to complete the processing tasks.





zusammenfassung

Die Menge weltweit vorgehaltener Daten steigt exponentiell an. Neben der Affini-
tät großer Internet-Unternehmen wie Google, Microsoft und Facebook zur Samm-
lung von Daten betrifft dieser Trend auch wissenschaftliche Anwendungsbereiche.
Die Möglichkeit, diese Datensets schnell analysieren zu können, ist dabei in beiden
Gebieten essentiell. Zentralisierte Ansätze interaktiver Datenexploration sind dabei
aufgrund der exponentiell wachsenden Datenmenge nicht länger plausibel. Stattdes-
sen werden verteilte Verarbeitungsmethoden nötig, die die Ausnutzung der massiven
Hauptspeicher- und Rechenressourcen von Rechnerverbünden erlauben.

Häufig sind wissenschaftliche Datensets hierarchisch strukturiert. Im Gegensatz zu
„flachen“ Daten, deren Tupel annähernd gleich groß sind, können durch die hierar-
chische Struktur massive Größenunterschiede auftreten. Gerade bei verteilter Verar-
beitung muss dieser Aspekt mit berücksichtigt werden, um die entstehende Arbeits-
last möglichst gleichmäßig auf die einzelnen Rechner zu verteilen.

In den letzten Jahren erregte das MapReduce-Modell für massiv datenparallele
Verarbeitung großes Aufsehen im Datenbank-Umfeld. Im Rahmen dieser Arbeit ana-
lysieren wir die Einsatzmöglichkeiten von MapReduce zur Exploration hierarchisch
strukturierter wissenschaftlicher Daten. Anhand der Suche nach häufigen Teilbäumen
als Beispiel einer wissenschaftlichen Anwendung schlagen wir das Pipelined MapRe-
duce Framework als Erweiterung von MapReduce vor. Unsere Ergänzungen, die so-
wohl verteilte Verarbeitung in Rechnerverbünden als auch Parallelisierung auf einzel-
nen Rechnern abdecken, ermöglichen effizientere wissenschaftliche Datenanalysen.

Um Arbeitsabläufe für das Pipelined MapReduce Framework möglichst anwen-
derfreundlich erstellen zu können, entwerfen wir die Programmiersprache TreeLatin.
Im Rahmen der Übersetzung von TreeLatin-Skripten in Arbeitsabläufe des zugrun-
deliegenden Frameworks wenden wir, ähnlich zu relationalen Datenbanksystemen,
Optimierungen an, um einen möglichst effizienten Ausführungsplan zu erhalten.

Die Performance MapReduce-artiger Systeme hängt stark von einer gleichmäßi-
gen Datenverteilung ab. Wissenschaftliche Datensets weisen jedoch häufig deutliche
Schräglagen auf. Der negative Einfluss solcher Schräglagen auf die Verarbeitungs-
dauer wird durch die hohe Laufzeitkomplexität wissenschaftlicher Analyseanwen-
dungen noch verstärkt. Wir entwerfen einen adaptiven Lastbalancierungsansatz zur
Lösung dieses Problems. Daten-Schräglagen werden von einer verteilten Monitoring-
Komponente erkannt und unter Miteinbeziehung der Laufzeitkomplexität der An-
wendung durch eine geeignete Verteilung der Daten auf die einzelnen Rechner aus-
geglichen, um die Verarbeitungszeit zu reduzieren.
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1
I N T R O D U C T I O N

1.1 e-science

Modern scientific research is based on large, comprehensive and often complex data
sets. These data sets are typically available to entire research communities, or to the
general public, on-line. Basing analyses on this kind of data sets has several advan-
tageous effects on the complete scientific processing workflow from data discovery
down to the incurred analysis results.

readily available data sets Relevant data sets are readily available. Scientists
do not need to collect the base data for their experiments and analyses by them-
selves or request relevant data sets from other institutes through complicated,
off-line processes. Thereby, they can save time which allows them to verify and
publish their results faster than before.

large data sets Many of the publicly available scientific data sets are very com-
prehensive. By basing their analyses on large base data, scientists can effectively
reduce the risk of obtaining results which apply only to a few special situations
which are accidentally covered by a small base data set.

well-known data sets Basing analyses on data sets which are available to an
entire research community also increases the trust in the results obtained, as
the base data is obviously not tailored to fit the desired result.

replicated data sets Eventually, these data sets are typically mirrored by sev-
eral research institutes around the globe. This reduces the risk of data loss.

The term e-science was coined to describe this new type of science, where new
knowledge is extracted from, or verified by, analysing massive, comprehensive, and
complex data sets.

E-science also introduces several new challenges which need to be faced before the
advantages described above can be fully exploited. Often, explorative data analysis
methods play a central role in both identifying and analysing interesting aspects of
the data sets. However, the size and complexity of the data sets and the complexity of

1



2 introduction

the analysis methods render providing the infrastructure required for interactive data
exploration a challenging task. We will describe these three challenges in more detail
in the following, and present approaches for tackling them throughout this thesis. In
particular, we will emphasise that a centralised infrastructure will typically not be
able to satisfy the constraints imposed by e-science environments.

1.1.1 Massive, Readily Available Data Volumes

Modern scientific research is based on, or supported by, the (often explorative) anal-
ysis of data sets collected through, e. g., experiments, observations, or simulations.
As the analysis and evaluation methods improve over time and allow for continu-
ously better and more precise results, the quality of the base data underlying the
scientific processing becomes more and more important. Gathering base data which
is sufficiently accurate to allow for meaningful analytical results, thereby, becomes a
challenging and expensive task on its own. High costs are caused by the need for
modern, highly precise, and powerful equipment like measurement instruments and
data preprocessing devices on the one hand, and by the experts required to operate
this equipment on the other hand. It becomes thus infeasible for every scientist to
collect the base data required for her research project on her own. Instead, in mod-
ern e-science, the data acquisition and analysis steps are separated, and only a few
institutes focus on the former.

With only a limited number of research institutes responsible for data acquisition
and curation, the available human and financial resources can be dedicated to it more
precisely and with greater benefit, e. g., by allowing larger data collectors to be built
or larger experiments generating data to be performed. This obviously increases the
amount of data available [Szalay and Gray 2006]. Thanks to the rapidly dropping
costs of storage media over the last years, it is possible to preserve all this data. There
is no necessity to store just aggregated data, or reduce the precision just for the sake
of reducing the storage requirements. This trend is clearly reflected by the sizes of
modern e-science data sets, as reported in Table 1.1 exemplary for the Astrophysics
domain.

Moreover, with data curation expertise concentrated in a limited number of data
centres, data cleansing and preprocessing is possible to a much higher extent and
with higher precision than in a scenario where every single scientist has to care for

1 The numbers refer to data release 8, the largest and most recent version available at the time of writing
this thesis.

2 The Pan-STARRS project is still running. The data volume is estimated.
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Data Set Publication Year Size

Millennium Simulation (Figure 1.1) 2005 25 TB

Millennium II Simulation 2009 27 TB

Millennium XXL Simulation 2011 100 TB

Sloan Digital Sky Survey (SDSS)1
2011 49.6 TB

Pan-STARRS2 still running 100 TB

Table 1.1: Sizes of Modern E-Science Data Sets

Figure 1.1: Visualisation: Millennium Simulation [Springel et al. 2005]
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his own, small data set. Therefore, not just the amount of data, but also the quality
of the available data sets increases.

The growing size and improving precision of the data sets impacts on the data
analyses. Existing tools for scientific processing designed for smaller data sets often
face a severe slow-down when the data sets grow larger and larger. In order to
complete the analyses in reasonable time, more computational resources are required.
The improved precision of the base data sets allows for more exact analyses, which
again requires more computational resources.

Due to this increased demand of computational resources, scientific processing
tools running on one single host are hitting their limits. In order to cope with the size
and complexity of current and upcoming e-science data sets, a distributed infrastruc-
ture is required for performing analyses within reasonable time and with reasonable
precision. In this thesis, we will devise a distributed framework allowing to run
scientific data analyses in a massively parallel manner.

1.1.2 Complex Data Structures

Besides the sheer volume of scientific data sets, their structure is a second key aspect.
Many data sets do not consist of “flat” relational data, but have an inherent tree
or graph structure. This structure implicitly represents additional information like
dependencies, containment, or a sort order. In scientific processing, this structure
must be taken into account in order to ensure correct processing results. Often, one
must process all the nodes and edges of a compound together in order to resolve
the structure and honour this implicit information properly. If the number of nodes
per compound varies, so will the processing time required for the single compounds.
This raises the need for workload balancing strategies. Only with a well-balanced
workload, the distributed resources can be fully utilised, and only a good utilisation
of the infrastructure permits for a significant speed-up of the distributed processing
as compared to a non-distributed variant.

Examples for structured e-science data sets are the protein database swissprot3,
DBLP4 and, once more, the Millennium simulation. The latter exhibits a tree structure
which represents temporal order. In describing the evolution of the universe over
time, child nodes precede their parent in time. Thereby, the structure symbolises the
influence of mass attraction over time. Due to simulation settings, the trees grow up

3 http://www.uniprot.org

4 http://dblp.uni-trier.de

http://www.uniprot.org
http://dblp.uni-trier.de
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.

Figure 1.2: Sample Trees from the Millennium Simulation

to a height of 64 nodes. The largest tree in the simulation consists of almost 100 000

nodes, while on average, trees are composed of less than 50 nodes.

Example 1.1. Figure 1.2 shows three trees from the Millennium simulation5. The left and
right ones are rather complex and consist of about 1 800 nodes each. The middle tree, instead,
is quite simple and consists of only 40 nodes. Assume a simple processing task consisting of
a single pass over the nodes of a tree. Processing one of the large trees will require 45 times
as much time as processing the small tree, even though each tree represents a single, “atomic”
unit of processing.

1.1.3 Complex Data Analysis Algorithms

Not only scientific data sets tend to be complex. Many scientific data analysis appli-
cations have a high – often superlinear – runtime complexity. This high complexity
further complicates the task of balancing the workload in a distributed processing

5 Note that the Millennium trees are four-dimensional, with three spatial and one temporal dimension.
The temporal dimension defines the parent-child relationship between the nodes. The plot uses the
temporal dimension and one of the spatial dimensions.
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environment. It is no longer sufficient to evenly distribute the data volume. Instead,
the complexity of the algorithm must be taken into account.

Example 1.2. Consider again the trees in Figure 1.2 and an algorithm with quadratic runtime
complexity, e. g., comparing every pair of nodes within a tree to each other. We associate a cost
of 402 = 1 600 with the simple tree in the middle, while the cost for each of the complex trees
is 1 8002 = 3 240 000. The cost hence differs by a factor of 2 025, as opposed to the factor of 45
with the linear processing algorithm of Example 1.1.

These cost aspects must be taken into account in order to obtain a well-balanced
workload in a distributed processing environment. Without reasonable load balanc-
ing, a distributed analysis tool can easily run as slow as a centralised variant, or even
slower.

Efficiency is an essential aspect in e-science applications. The massive and com-
plex data sets must still be processed in reasonable time. However, many e-science
applications are developed by scientists of the respective domain which are rarely
experienced in realising distributed applications. Therefore, the technical aspects of
distribution must be handled by an underlying framework allowing the application
developers to focus on the scientific aspects of their applications.

1.2 a case study : astronomy

As a pioneering scientific discipline, astronomy puts a strong focus on supporting
e-science. Due to this pioneering role and the free availability of astronomical data
sets to the general public, we focus on astronomy in this section. Moreover, we will
use astronomical data sets in experimental evaluations throughout this thesis.

Astronomy bundles its e-science support in the Virtual Observatory. In a globally
joint effort, the International Virtual Observatory Alliance (IVOA)6 was formed in 2002.
Its goal is to

facilitate the international coordination and collaboration necessary for
the development and deployment of the tools, systems and organizational
structures necessary to enable the international utilization of astronomical
archives as an integrated and interoperating virtual observatory [IVOA
2010].

The IVOA is composed of national Virtual Observatory projects which collabo-
ratively aim at standardising ways for representing, querying and transferring as-
tronomical data sets. By 2011, 19 national virtual observatories from around the

6 http://www.ivoa.net

http://www.ivoa.net
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globe were participating in this joint effort. The Virtual Observatory infrastructure
the IVOA is building consists of

• standardised data discovery mechanisms, data models, exchange protocols and
data formats,

• data centres and institutions publishing their data according to these standards,
and

• tools exploiting these standards in order to allow for easy integration of data
from multiple sources.

In order to provide a solid foundation for this infrastructure, the IVOA defines stan-
dards for data formats and data access methods. The data formats include both data
models (e. g., the Simulation Data Model [Lemson et al. 2011]), and data exchange for-
mats (VOTable [Ochsenbein and Williams 2009]). The standards for data access range
from data discovery (the IVOA Registry [Benson et al. 2009]) to data retrieval lan-
guages (the Astronomical Data Query Language [Ortiz et al. 2008]) and protocols (e. g.,
the Table Access Protocol [Dowler et al. 2010], Simple Cone Search [Williams et al. 2008],
Simple Image Access Protocol [Tody and Plante 2009]). Some of the largest available
data sets from both observational and theoretical astronomy and astrophysics, the
aforementioned Sloan Digital Sky Survey and the Millennium Simulation are already
published according to these standards. Upcoming data sets like Pan-STARRS7 and
the Millennium XXL simulation8 will be available through VO compatible interfaces
right from the beginning.

Virtual observatory-enabled tools like VODesktop [VODesktop 2010], Aladin [Al-
adin 2010] and TOPCAT [TOPCAT 2011] implement these standards. Thereby, they
allow scientists to work with data published to the Virtual Observatory in a simi-
lar fashion as they are already used to work with data sets stored locally on their
workstations. At the time of writing this thesis, the underlying workflow is typically
as follows. Data sources relevant for a scientist’s current research are identified via
meta-data lookups in a Virtual Observatory Resource Registry, e. g., by searching for
spacial coverage and interesting frequency bands. The identified data sources are
then queried for relevant data, e. g., by sending a query formulated in the Astronom-
ical Data Query Language over the Table Access Protocol. The resulting data sets are
transferred, in VOTable format, either to the scientist’s workstation, or to a personal
remote storage location accessible through the VOSpace [Graham et al. 2010] protocol.

7 http://pan-starrs.ifa.hawaii.edu/public

8 http://www.mpa-garching.mpg.de/mpa/research/current_research/hl2011-9/hl2011-9-en.html

http://pan-starrs.ifa.hawaii.edu/public
http://www.mpa-garching.mpg.de/mpa/research/current_research/hl2011-9/hl2011-9-en.html
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These data sets can then be combined with each other, and with other, locally avail-
able data, in order to perform scientific research. Thereby, the Virtual Observatory
becomes a reliable and valuable source for scientific data sets, providing scientists
with a simple way of finding and retrieving data relevant for their research. With
more and more data sets published according to these standards, the value of the
Virtual Observatory will rise even further.

With ever more and larger data sets available, however, running comprehensive
experiments and analyses becomes a challenging task on its own. Performing all
the processing on the scientist’s workstation, as before with smaller data sets, is no
longer feasible. The IVOA acknowledges this issue and defines the Universal Worker
Service interface [Harrison and Rixon 2010] for remote job execution. Through this in-
terface, well-known data analysis applications can be executed on remote sites which
may provide more processing power than a scientist’s local workstation does. The
Universal Worker Service is similar to Grid-based remote application execution [An-
jomshoaa et al. 2008] in that a processing task is scheduled on a remote system and
processed asynchronously. In contrast to the very generic Grid job execution, the
Universal Worker Service is tightly integrated with other Virtual Observatory com-
ponents like the IVOA authentication and authorisation mechanisms [Rixon 2005] and
VOSpace. The strongest restriction as compared to Grid-based jobs, however, is that
the Universal Worker Service is limited to well-known scientific applications pre-
installed on the worker nodes. There is no possibility of passing user-specific applica-
tions for execution. Only the application parameters of the pre-installed applications
may be set. For scientists relying on non-standard analysis tools, e. g., applications
developed by themselves, or more recent versions of a tool than the one offered by
a Universal Worker Service site provider, this standard is, therefore, not sufficiently
flexible. Moreover, distribution and parallelisation aspects are not treated in the Uni-
versal Worker Service. This makes it difficult to control applications running on top
of the Universal Worker service in a distributed environment.

With growing data volumes, scalability (by means of parallelisation, distributed
computing and exploitation of multi-core processors) becomes a central aspect of
scientific processing. Applications need to be scalable up to hundreds or even thou-
sands of processors in order to keep up with the processed data volumes while still
providing reasonable response times. Developing a parallel application is a highly
non-trivial task comprising communication, synchronisation, execution control, and
load balancing aspects. A scientist developing a new research tool should be able to
focus on the actual scientific aspect of his new application, and not be bothered with
these technical aspects of distributed execution.
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1.3 contributions and outline

In this thesis, we propose a framework for scientific data processing which provides
out-of-the-box scale-out and scale-up and a comfortable user interface abstracting
from the technical aspects of distributed and parallel computing.

Throughout this thesis, we use frequent subtree mining as a sample application.
Frequent subtree mining is an interesting data analysis application in many scien-
tific disciplines. In theoretical astrophysics, e. g., it can be employed to find recurring
evolution patterns in data sets like the Millennium simulation. In biology, frequent
subtree mining can be used to analyse protein data sets like Swissprot, and in Phy-
logeny [Shasha et al. 2004]. We will describe frequent subtree mining in detail in
Chapter 2, and discuss ideas for efficiently parallelising this task in a distributed
environment.

The distributed execution framework we propose for scalable scientific data analy-
sis is based on Google’s MapReduce [Dean and Ghemawat 2008]. We introduce the
Pipelined MapReduce Framework and describe the modifications to standard MapRe-
duce we retain necessary for efficient scientific data analysis and for processing tree
shaped data in Chapter 3.

Recent processors integrate multiple processing cores on a single chip. This trend
of producing so-called multi-core CPUs, or CMPs (chip multi-processors) started with
dual-core processors, and continues to evolve, increasing the number of cores per
chip. Current commodity CPUs integrate up to 16 cores on a single chip. In contrast
to the single-core processor speed-up according to Moore’s Law [Moore 1965] over
the past decades, exploiting this new kind of increased processing power requires
modifications to the applications. We analyse to what extent multi-core processors
can be exploited automatically for further speeding up scientific applications based
on our distributed execution framework in Chapter 4.

A simple and user-friendly interface to the framework presented is a strict require-
ment in order to attract users. Technical aspects, especially concerning parallelisation,
need to be hidden from the users such that they can focus on the scientific aspects of
their applications. We propose a dedicated scripting language, TreeLatin, for writing
inherently parallel applications on both relational and tree shaped data structures,
in Chapter 5. We show how to automatically translate these scripts into highly opti-
mised applications for the previously presented execution framework.

In distributed applications, load balancing is an important aspect to consider. With
a poorly balanced workload, an application distributed on a cluster might perform
just the same, or possibly even worse, than a stand-alone variant of the same ap-
plication. Current MapReduce-style frameworks do not consider the load balancing
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issue at all. We demonstrate the importance of load balancing especially in the con-
text of distributed scientific data processing in Chapter 6. We introduce the Partition
Cost Model and propose TopCluster, a distributed monitoring and load balancing ap-
proach tightly integrated with the MapReduce processing scheme, as a solution to
this challenge.

Finally, we conclude this thesis by summarising the presented contributions and
outlining future challenges in Chapter 7.

previous publications

Parts of this thesis have been previously published at CLOSER 2011 [Gufler et al.
2011], at ICDE 2012 [Gufler et al. 2012a] and in the Springer series “Service Science:
Research and Innovations in the Service Economy” [Gufler et al. 2012b].



2
F R E Q U E N T S U B T R E E M I N I N G

2.1 introduction

Throughout this thesis, we will employ frequent subtree mining algorithms as an
example of a scientific data analysis application. Analogously to frequent itemset
mining [Agrawal and Srikant 1994], frequent subtree mining aims at identifying pat-
terns exceeding a given number of minimum appearances within the base data. In
frequent itemset mining, the analysed data set consists of sets (or transactions) of
items. In frequent subtree mining, in contrast, the data to analyse is a set of trees.
Based on [Chi et al. 2005], we formally define this data structure.

Definition 2.1 (Tree Structure). A rooted, unordered tree T = (V ,E, r) is a directed,
connected, acyclic graph with vertices (or nodes) V = {v0, v1, . . . , vn}, edges E = {(v,w) :

v,w ∈ V}, |E| = n and a dedicated root node r ∈ V .
A sequence ((v0, v1), (v1, v2), . . . , (vm−2, vm−1), (vm−1, vm)) of length m of connected

edges is a path. It may be denoted shorter as (v0, v1, v2, . . . , vm−1, vm). For v0 = r, the path
is called a root path. All vertices reached by root paths of length m form the m-th level of T .

For an edge (v,w) ∈ E, v is called the parent of w, and w is a child of v. If there are edges
(v,w0), (v,w1) ∈ E with w0 ̸= w1, then w0 and w1 are siblings. For each path (v, . . . , z),
v is an ancestor of z, and z is a descendant of v.

Given a relation <⊂ V × V inducing a total order between all sibling nodes of a rooted,
unordered tree T ′ = (V ,E, r), T = (V ,E, r,<) is a rooted, ordered tree.

A set F = {T1, T2, . . . , Tn} of trees is a forest.

Analogously to frequent itemset mining, labels are used to identify matching frag-
ments in multiple trees. We can assign a label to each node of a tree. Furthermore, we
can also assign labels to edges — an aspect which exceeds the possibilities offered by
frequent itemset mining. In a frequent subtree mining algorithm, edge labels, e. g., al-
low us to distinguish various types of edges, thereby putting a very strong emphasis
on the structural aspect.

Definition 2.2 (Labelled Tree). Given a rooted, unordered tree T ′ = (V ,E, r), a set of
labels L and a labelling function l : V ∪ E → L assigning labels to vertices and edges, then
T = (V ,E, r,L, l) is a rooted, unordered, labelled tree.

11
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If only vertices are labelled, i. e., if l = l|V , T is a vertex-labelled tree. If labels are only
applied to edges, i. e., l = l|E, then T is an edge-labelled tree.

A rooted, ordered, labelled tree can be defined analogously.

In this thesis, we focus on vertex-labelled trees. We will therefore use the terms
vertex label and label as synonyms, and explicitly refer to edge labels in situations in
which a label may also be assigned to an edge.

In frequent itemset mining, the goal is to identify all sets of items which exceed a
user-defined minimum support threshold, i. e., that are contained in a sufficient number
of transactions in the base data. Analogously, in frequent subtree mining, all sub-
trees with a sufficiently large support in the base forest are discovered. Due to the
structural aspect of trees, which is not present in frequent itemset mining, counting
the occurrences of subtrees is an ambiguous goal. In fact, there are multiple possibilities
for defining subtrees, and also for counting their occurrences. We will discuss these
two aspects in the following.

2.1.1 Subtree Types

First, we focus on possible definitions of subtrees. We introduce three types of subtrees
often encountered in literature (see [Chi et al. 2005]), which represent three classes
of difficulty for frequent subtree mining. While we present subtree definitions for
unordered trees only, the definitions hold for ordered trees analogously.

Definition 2.3 (Bottom-Up Subtree). A tree TB = (VB,EB, rB,LB, lB) is called a bottom-
up subtree of tree T = (V ,E, r,L, l), denoted as TB ⊂B T , if and only if

1. VB ⊆ V

2. if v ∈ VB, then all descendants of v in T are also in VB

3. (v,w) ∈ E∧ v,w ∈ VB ⇒ (v,w) ∈ EB, and

4. both the vertex and edge labelling are preserved

In order to emphasise the number of vertices m = |VB|, TB may be called an m-subtree.

Example 2.1. Consider the three trees shown in Figure 2.1a. Tree S1 from Figure 2.1b is a
bottom-up subtree of tree T3. However, it is no bottom-up subtree of trees T1 and T2, as the
only vertex labelled a in both of these trees has child nodes which are not contained in S1.

Tree S2 is not a bottom-up subtree of any of trees T1, T2 and T3.



2.1 introduction 13

..a.

b

.

b

.

c

.

d

.T1

. a.

e

.

b

. T2

. c.

d

.

f

.

f

.

a

. T3

(a) Sample Forest

..a.S1

. a.

b

. S2

(b) Sample Subtrees

Figure 2.1: Sample Forest and Subtrees

Lemma 2.1. A rooted, labelled tree T = (V ,E, r,L, l) has exactly |V | bottom-up subtrees.

Proof. A bottom-up subtree may be rooted in any vertex v ∈ V and includes all the
descendants of v in T along with the respective edges. Thus, a bottom-up subtree is
uniquely identified by choosing its root node v, for which there are |V | possibilities.

Definition 2.4 (Induced Subtree). A tree TI = (VI,EI, rI,LI, lI) is called an induced
subtree of tree T = (V ,E, r,L, l), denoted TI ⊂I T , if and only if

1. VI ⊆ V ,

2. v,w ∈ VI ∧ (v,w) ∈ E⇒ (v,w) ∈ EI, and

3. both the edge and vertex labelling are preserved.

As before, in order to emphasise the number of vertices m = |VI|, the term m-subtree may be
used.

Example 2.2. Tree S1 from Figure 2.1b is an induced subtree of all three trees in Figure 2.1a.
Tree S2 is an induced subtree of tree T1 (picking the root vertex and either its left or its

right child). However, it is not a subtree of T2 (the vertex labelled b is not a child of the vertex
labelled a) and T3 (there is no node labelled b).

Lemma 2.2. A rooted, labelled tree T = (V ,E, r,L, l) has up to |V | + 2|V |−1 − 1 induced
subtrees.

Proof. Every single vertex is a valid induced subtree of T . Hence, we have |V | induced
1-subtrees. For k-subtrees with k > 1, the shape of the tree influences the number of
subtrees. The maximum number is reached if T consists of two levels, i. e., r is the
parent vertex of all nodes in V \ {r}. Then, we can choose for each of the nodes except
r whether to include it in the subtree or not, resulting in 2|V |−1 possibilities. This
includes the subtree consisting only of the root node, which we already counted as
one of the |V | 1-subtrees; we must thus subtract it once.
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Definition 2.5 (Embedded Subtree). A tree TE = (VE,EE, rE,LE, lE) is called an embed-
ded subtree of tree T = (V ,E, r,L, l), denoted TE ⊂E T , if and only if

1. VE ⊆ V ,

2. ∀(v,w) ∈ EE : ∃(v0, v1, . . . , vn) : v0 = v∧ vn = w∧ ∀0 ⩽ i < n : (vi, vi+1) ∈ E,
and

3. the vertex labelling is preserved, as is the edge labelling for edges contained in both T

and TE. As TE may contain edges not available in T , lE might be extended to include
edges in EE \ E if we allow edges to be labelled.

If special focus is laid on the number of vertices in the subtree, it might be referred to as a
m-subtree, where m = |VE|.

Example 2.3. Consider again the trees in Figure 2.1. Tree S1 is an embedded subtree of T1,
T2, and T3.

Tree S2 is an embedded subtree of T1 (as in the scenario for induced subtrees), and also of
T2: the definition of embedded subtrees allows us to skip the vertex labelled e, and connect the
vertices labelled a and b directly.

Lemma 2.3. A rooted, labelled tree T = (V ,E, r,L, l) has up to 2|V | − 1 non-empty embedded
subtrees.

Proof. We obtain the maximum number of subtrees if we are free to choose, for every
vertex v ∈ V , whether to include it in the subtree or not. This is the case when T

consists of a single path. We can then remove any node without splitting the tree into
multiple subtrees which are no longer connected. This results in 2|V | possible choices
including the empty subtree, or one less, if we eliminate the choice of not including
any vertex in the constructed subtree.

These three types of subtrees represent three levels of difficulty for frequent subtree
mining. Bottom-up subtrees are the easiest to mine for. This is intuitively clear when
looking at the number of possible subtrees, which grows exponentially in the number
of vertices for both induced and embedded subtrees, but only linearly for bottom-up
subtrees. Therefore, when mining for bottom-up subtrees, there are way less feasible
patterns to take into account. In fact, mining for bottom-up subtrees does not even
require the use of dedicated frequent subtree mining algorithms. Instead, it is possible
to apply a pre-order serialisation (see below) to the trees. Then, frequent substring
mining algorithms can be employed to detect the frequent bottom-up subtrees [Chi
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et al. 2005]. Due to their simplicity, we will not consider bottom-up subtrees further
in this thesis.

Definition 2.6 (Pre-Order Serialisation). Let T = (V ,E, r) be a rooted tree. The pre-order
serialisation of T is a string S composed of

1. a serialised representation of the root node r,

2. the pre-order serialisation of the bottom-up subtrees rooted in the child nodes of r in T ,

3. and an end marker ⊥,

in this order.

Example 2.4. Consider tree T1 in Figure 2.1. Assume the serialisation of a node consists of
just the node label. Then, the pre-order serialisation of T1 is S = ab⊥bc⊥d⊥⊥⊥.

The number of both induced and embedded subtrees of a tree grows exponentially
in its number of vertices. Algorithms enumerating all subtrees of these two types
cannot, therefore, have less than exponential complexity. Despite both delivering an
exponential number of choices in the worst case, however, the structural difference
between induced and embedded subtrees makes it worthwhile to distinguish them,
and provide dedicated algorithms for each of these two types.

Induced subtrees are easier to identify. Consider two matching vertices v and w

from the complete tree T and the subtree S, respectively. Only immediate child nodes
of v may be matched with children of w.

Embedded subtrees are the most difficult to search for, as parent-child relationships
in the pattern tree may correspond to arbitrary ancestor-descendant relationships
in the original tree. Consider, as above, the nodes v and w from trees T and S,
respectively. All descendant nodes of v may be matched with immediate child nodes
of w. This results in a much higher number of choices than with induced subtrees for
all trees with more than two levels.

2.2 principles of frequent subtree mining

As already stated before, the goal of frequent subtree mining algorithms is to deter-
mine all subtrees with a sufficiently large support in the analysed forest. Two essential
components of a frequent subtree mining algorithm are therefore candidate genera-
tion and support counting. Candidate generation describes the method employed for
generating trees which are likely to be frequent in the base data and whose exact
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support must hence be determined. Support counting determines how occurrences of
a candidate subtree in a forest are counted. We will elaborate on these two aspects in
the following.

2.2.1 Candidate Generation

Recall from above that, for both induced and embedded subtrees, the number of
possible subtrees grows exponentially in the number of nodes of the base tree. This
makes “blind” extraction of all possible subtrees an infeasible approach to frequent
subtree mining. Instead, frequent subtree mining algorithms start detecting the fre-
quent 1-subtrees, which are then extended to form larger and larger candidates whose
support is then checked. Thereby, the frequent 1-subtrees play a special role. Frequent
1-subtrees are the building blocks for more complex patterns. The frequent 1-subtrees
can be identified with one scan over the input data set by counting the number of oc-
currences of each node label and then discarding those labels whose count is below
the minimum support threshold. Candidates consisting of more nodes are then de-
rived from the already identified frequent subtrees with fewer nodes.

In order to restrict the number of generated candidate subtrees, frequent subtree
mining algorithms rely on the downward closure property. Intuitively, a frequent sub-
tree cannot contain nodes which are not frequent themselves. More formally, given
a forest F and two candidate subtrees S and S ′ with S being a subtree of S ′, the
downward closure property states that S ′ cannot have a larger support in F than S.
Generating candidate subtrees, this property allows us to skip all those trees contain-
ing a subtree which we already know to be infrequent. In many practical situations,
this allows for a significant reduction of the number of candidates whose occurrences
must be counted.

Eventually, the actual support of the generated candidates is determined. The sup-
port calculation is an expensive operation, as it requires identifying the matches of
the candidate subtree in the complete base data. Therefore, frequent subtree mining
algorithms should generate as few false candidates, i. e., candidates with an effec-
tive support value below the minimum support threshold, as possible. Moreover,
each candidate should only be generated once. On the other hand, of course, the
algorithms must not miss any subtree which actually is frequent. There are two pop-
ular techniques for generating larger candidate subtrees from previously identified
simpler ones which aim at reducing the amount of false candidates generated.

pattern growth approaches extend frequent n-subtrees which were already iden-
tified by a single frequent node a time in order to form candidate n+ 1-subtrees
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whose frequency is then checked. By restricting the positions in the n-subtree
where the new node can be attached it is possible to avoid duplicate candidate
generation. Some of the algorithms using the pattern growth approach, espe-
cially those focussing on XML mining, additionally evaluate structural infor-
mation (e. g., a DTD or XML schema) in order to avoid the creation of subtrees
which can not occur in the input data due to the imposed structural constraints.

Example 2.5. Consider an XML data set describing books according to the following DTD.
<!ELEMENT book (title, author*, publisher?)>

<!ELEMENT title #PCDATA>

<!ELEMENT author #PCDATA>

<!ELEMENT publisher #PCDATA>

Assume we find both the book and the title nodes to be frequent. Employing a pattern
growth candidate generation which does not exploit structural information, we will create all
four candidate 2-subtrees shown in Figure 2.2. Exploiting the information provided by the
DTD, we will only create the leftmost of these four candidates. According to the DTD, the
other three subtrees cannot be contained in the data set.

à-priori style algorithms proceed similarly to the à-priori algorithm for frequent
itemset mining [Agrawal and Srikant 1994]. They combine frequent n-subtrees
which differ in only one node in order to form new candidate n+ 1-subtrees.

Example 2.6. Consider again the XML data set introduced in the previous example, and
assume we found the two 2-subtrees on the left of Figure 2.3 to be frequent. An à-priori style
candidate generator for unordered trees will combine these two subtrees to obtain the 3-subtree
on the right of Figure 2.3 as a new candidate.

Both these techniques have advantages. Pattern growth approaches allow the
search space to be traversed in a depth-first manner. This boils down in low memory
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consumption, as only very few of the generated subtrees must be kept in memory
simultaneously. On the other hand, by expanding a frequent subtree with a frequent
1-subtree, the number of generated false candidates may be large.

À-priori approaches require two frequent n-subtrees to create a new candidate n+

1-subtree. In order to provide this input, the search space must be traversed breadth-
first. This is more memory-intensive than a depth-first traversal. All candidates
of size n must be generated, keeping the frequent ones in memory, before starting to
work on n+ 1-subtrees. However, by combining two frequent n-subtrees, the number
of false candidates is likely to be lower than with pattern growth.

Both approaches, however, have in common that they start with frequent 1-subtrees
which are then extended to form larger and larger patterns. If an infrequent subtree
is found, no extensions of that pattern need to be considered due to the downward
closure property.

2.2.2 Support Measures

Relying on the downward closure property to limit the number of candidates re-
quires the employed occurrence counting algorithm to provide compatible counts.
The number of occurrences of a candidate in the base data is termed its (absolute)
support. Normalising this value by the number of trees in the base data, we obtain the
relative support. The counting algorithm is called support measure.

Consider a forest F and two trees S and S ′ with S ⊆ S ′. With a support measure
compatible to the downward closure property, it must be impossible for S ′ to have
a larger support than S. Informally, this defines an admissible [Vanetik et al. 2002]
support measure. While this might seem a trivial requirement at first glance, not all
support measures fulfil it.

Determining the support of a tree in a forest is an essential step in frequent subtree
mining. It must be performed for every generated candidate in order to determine if it
is frequent or not. In frequent itemset mining, it is clear how to count the occurrences
of an itemset: it is the number of transactions containing that itemset as a subset. Due
to the structural aspect of trees, counting occurrences of a subtree in a forest is not
as straight-forward. Effectively, there are multiple ways by which we could count the
occurrences of a tree in a forest, as the following example shows.

Example 2.7. Consider the trees S2 and T1 from Figure 2.1. S2 is contained in T1 twice as
an induced subtree: The root node with its left child, and the root node with its right child.
We could count this as either a support of one (“S2 is contained in T1”) or two (“there are
two occurrences of S2 in T1”).
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While both these support measures may be reasonable depending on the applica-
tion scenario, only the former obeys the downward closure property.

Example 2.8. Tree S1 from Figure 2.1 appears once in tree T1. Tree S2 is contained in T1
twice. However, S1 is a subtree of S2. Apparently, counting all occurrences of a subtree
within a tree does not obey the downward closure property. It is thus not an admissible
support measure.

The support measure appearing most prominently in frequent subtree mining lit-
erature is the transaction based support, which is very similar to the support measure
in frequent itemset mining.

Definition 2.7 (Transaction Based Support). Given a tree S and a forest F, the absolute
transaction based support of S in F is defined as

suppx
A(S,F) = |{T ∈ F : S ⊂x T }| x ∈ {I,E} ,

i. e., the number of trees in F containing S as a subtree according to the employed subtree
definition (induced or embedded).
The relative transaction based support of S in F is

suppx
R(S,F) =

suppx
A(S,F)
|F|

x ∈ {I,E} .

Example 2.9. Consider once more the forest depicted in Figure 2.1a. The (absolute) transac-
tion based support of tree S1 from Figure 2.1b is 3, as a node labelled a is contained in every
tree of the forest. The support of tree S2 depends on the choice of the subtree definition. If
we consider induced subtrees, S2 has a support of 1, as it only appears in tree T1 (see Exam-
ple 2.2). If we look for embedded subtrees, the support of S2 is 2, as it is a subtree of both T1
and T2 (Example 2.3).

In the remainder of this thesis, we will assume transaction based support in de-
scriptions and examples. However, any other admissible support measure is applica-
ble as well.

2.3 distributing frequent subtree mining

Literature provides a vast variety of algorithms for mining frequent induced and em-
bedded subtrees [Chi et al. 2005]. The essential differences between these algorithms
are the way (and the order) in which they generate candidate subtrees and the re-
alisation of the support counting. Nonetheless, all these algorithms share common
aspects on which we will focus in the following.
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Coarsely, frequent subtree mining algorithms proceed in two steps. First, the fre-
quent labels — corresponding to frequent 1-subtrees — are detected. These are then
used as building blocks for constructing more complex frequent subtrees. This pat-
tern, which all frequent subtree mining algorithms follow, allows to derive a generic
workflow to which all these algorithms can be mapped. We will identify the chal-
lenges arising from distributing the mining process in the following, and then derive
the distributed workflow for frequent subtree mining.

2.3.1 Challenges

For candidate generation and support counting, frequent subtree mining algorithms
typically do not scan the original input data set repeatedly. Doing so would be pro-
hibitively expensive. Rather, they first extract the essential information on frequent
nodes required for their work into a more compact data summary. The actual process-
ing, then, takes place on this intermediate structure solely. The concrete realisation of
this intermediate structure is specific to the mining algorithm. The structure may, e. g.,
be a forest like the compressed trees employed by PathJoin [Xiao et al. 2003], lists as the
scope lists used by TreeMiner [Zaki 2005], or tree serialisations like TRIPS’ [Tatikonda
and Parthasarathy 2009] Prüfer sequences. There are, however, two important aspects
common to all of these data structures:

size As the intermediate data structure needs to represent every tree node of possible
interest, its size grows at least linearly with the number of frequent nodes in the
forest.

extraction of structure fragments We can partition the intermediate struc-
ture by extracting fragments relevant for finding a certain subset of all frequent
patterns. That is, for finding frequent subtrees with a given label at the root
node, we only require fragments extracted from subtrees whose root node has
this label. We will exploit this property for distributing the tree mining process
to multiple hosts.

The intermediate structure summarises all aspects of the original input data rele-
vant to the mining task. Once it is built, we can thus discard the input data. The
intermediate structure is used to accelerate the scanning for frequent patterns in the
input forest. Part of the support calculation is a subtree isomorphism test which is
NP-hard for unordered trees. Special properties of the employed intermediate struc-
ture are often exploited in order to reduce the amount of required calculations under
certain circumstances.
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The intermediate structure is typically not accessed in a linear manner, but by
random patterns. Thus, the performance of the mining algorithms degrades rapidly
as soon as the intermediate structure no longer fits into the available main memory.
The size of data sets which can be efficiently handled by an algorithm is thus limited
by the lower bound on the intermediate structures’ size mentioned above.

We aim at mining very large data sets whose intermediate structure will usually
not fit into the main memory of a single server. Therefore we will distribute the min-
ing process in cluster environments. Thereby, obviously, we must also distribute both
the base data and the intermediate structure to allow for parallel processing through-
out the entire frequent subtree mining workflow. This adds some new interesting
challenges to the frequent subtree mining problem.

base data distribution Initially, the base data must be distributed to the in-
volved hosts. This distribution must be such that the frequent subtree mining
algorithm can begin extracting the intermediate structure on each host locally,
without requiring communication (e. g., all nodes of a tree must typically be
processed together on the same host).

intermediate data distribution Once all hosts have extracted the fragments
of the intermediate data structure from their share of input data, these frag-
ments must be redistributed. Thereby, each fragment must be sent to all hosts
that will require it during the final phase of the mining process.

intermediate data merging On the receiver side, intermediate structure por-
tions coming in from various hosts must be consolidated before the mining
algorithm can use them.

Based on this analysis, we derive the distributed tree mining workflow presented
in the following section.

2.3.2 A Distributed Tree Mining Workflow

Figure 2.4 shows a generic workflow for distributed frequent subtree mining. Process-
ing steps are depicted as rectangles, arrows symbolise data flow between these steps
(which is not necessarily data flow between different hosts). The possible parallelism
is sketched by drawing two identically labelled processors for each phase. The actual
number of parallel processors is, however, not limited to two. The workflow basically
consists of the processing steps and the data exchange phases described above. We
will explain the single steps in more detail in the following.
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Figure 2.4: Distributed Tree Mining Workflow

ld : load data The first step is to load the data into the system. The input data is
either already partitioned (e. g., a set of files representing a partition each) or
it is accessible in one big block (e. g., a single file or a database table) and we
need to partition it in order to process the single partitions in parallel. We do
not, however, assume any particular order on the data; it might be distributed
arbitrarily to the involved hosts. While loading, we also discard attributes not
relevant to the mining process, if there are such.

et : extract tree membership Tree data sets are often stored one record per tree
node. Before we can begin to work on the trees in a distributed setup, we thus
need to ensure that all nodes belonging to the same tree will be processed on the
same host, that is, the nodes are treewise distributed. The processors of this step
receive the data loaded by one of the processors of the ld phase and determine
the tree membership of each node, allowing to subsequently repartition the data
in order to achieve a treewise distribution. Hence, this step ensures that the tree
data is distributed to the processing hosts such that the requirements on the
initial data distribution explained above are met.

el : extract labels Logically independent from the et phase, we determine the
frequent labels in our data set. Therefore, in this phase we extract label occur-
rence lists, i. e., information on which labels occur in which trees. Note that, for
this processing step, we do not need the data to be treewise distributed.
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sf: sum label frequencies These label occurrence lists are distributed to the
processors of the sf phase such that all information regarding the same label
is collected on the same host. By aggregating the occurrence information, we
can now determine the support of each label and hence decide whether it is
frequent or not.

bi: build intermediate structure fragments We now combine the original
tree data with the knowledge on the frequent labels, and extract the fragments
of intermediate structure. Specifically, each processor receives a partition of the
tree data from the processors of the dt phase. This is the first processing step
where the data is treewise distributed, i. e., all nodes belonging to the same tree
are guaranteed to be located on the same host. We combine the tree data with
the complete list of frequent labels, which each host receives from the processors
of the sf phase. Note that, for reasonable minimum support thresholds, the size
of this list is independent of the size of the input data. The processors of the bi

phase cannot begin their work until both the dt and sf phases have successfully
completed, since all of their input is required. Each processor then creates the
fragments of the intermediate structure for the trees in its partition, discard-
ing information on nodes with infrequent labels. The need to work with the
intermediate data structure makes bi the first processing step of this workflow
whose concrete realisation depends on the actually employed frequent subtree
mining algorithm.

cm: combine fragments and perform mining Finally, we assign the inter-
mediate structure fragments extracted in the previous step to processors of the
cm phase according to the extraction property explained above and employ-
ing a redundant partitioning approach. By redundant partitioning, we refer to
a distribution where parts of the data are replicated to multiple hosts, while
other parts are available on one host only. We combine the received fragments
to obtain the actual intermediate structure, and exploit this resulting structure
to scan for frequent subtrees, which we store either in files or in a database.
The implementation of this phases’ processors is again specific to the employed
frequent subtree mining algorithm, as it processes the intermediate structure.

2.4 sample application scenarios

Having introduced the abstract distributed frequent subtree mining workflow, we
will now present sample application scenarios. First, we will present the concrete
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mapping of two frequent subtree mining algorithms onto our workflow. Then, we
will sketch real e-science application scenarios from the astrophysics domain which
can exploit this workflow.

2.4.1 Sample Algorithms

As exemplary realisations of frequent subtree mining algorithms using our distributed
workflow, we pick one algorithm mining for induced and one for embedded sub-
trees. Note that only the bi and cm phases’ realisations depend on the actual frequent
subtree mining algorithm. All preceding phases are independent of the algorithm.
Therefore, we only describe the bi and cm phases of the two algorithms.

pathjoin [Xiao et al. 2003] mines for induced subtree in which no two sibling
nodes share the same label. It employs an intermediate structure called compressed for-
est which summarises the appearances of frequent nodes in the base forest. Thereby,
it annotates frequent nodes with positional information on each appearance and dis-
cards infrequent nodes. Figure 2.5 sketches the basic idea of distributed PathJoin with
two hosts and two input trees, assuming node labels a and b are frequent. In the bi

phase, we start building the compressed trees at each involved host from the data
partition assigned to that host. The obtained tree fragments are then redistributed
among the cm hosts such that all compressed trees sharing the same label at the root
node are located on the same host. The cm workers merge the compressed tree frag-
ments they obtain from the bi processors. Based on this information, the frequent
subtrees rooted in a node with that label can be identified.

treeminer [Zaki 2005] was one of the first frequent subtree mining algorithms to
be published. It mines for embedded subtrees. As intermediate structure, TreeMiner
uses scope lists. For each frequent label, these lists store all the (identifiers of the) trees
the label appears in, together with the scope information specifying the position the
corresponding node appears at in that tree. The actual mining process of TreeMiner
starts with the frequent 2-subtrees. In the bi phase, we therefore extract both the
scope list fragments and candidates for frequent 2-subtrees. The candidate 2-subtrees
are sent to the cm host responsible for the label of the root node of the candidate
subtree. The scope list entries are sent to all cm hosts responsible for labels on the
path from the node the scope list entry refers to the root node of the corresponding
tree. The cm phase workers then combine the candidate 2-subtrees in order to identify
the frequent 2-subtrees. By merging the obtained scope list fragments, all scope list
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Figure 2.5: Distributed Path Join

entries relevant to that host are constructed. With this information, each host can
begin the mining process on its partition of possible frequent subtrees.

2.4.2 Astrophysical Applications

Frequent subtree mining is an interesting data analysis application in both scientific
and business environments. In theoretical astrophysics, for example, frequent sub-
tree mining can be employed to analyse data sets like the Millennium simulation
presented in the introductory chapter. Recall that the sheer size of the simulation
results renders centralised frequent subtree mining infeasible. This is manifested by
frequent subtree mining literature, where the data sets used for experimental evalua-
tion are typically smaller than 1 GB.

A straight-forward application of frequent subtree mining to the trees of the Millen-
nium simulation allows to identify common patterns in the evolution of the universe.
Knowing the frequent evolution patterns allows scientists to restrict further analyses
to either common subtrees, or outliers, depending on the goals of the research project.

As an example of a more complex scientific application, consider the Millennium
and Millennium XXL simulations. Both these simulations describe the evolution of
mass distribution in the universe. The Millennium XXL simulation covers a larger
spatial area than the Millennium simulation. However, the Millennium simulation
has a much higher level of detail than the Millennium XXL simulation, i. e., the Mil-
lennium trees contain nodes which were too small to be captured in Millennium
XXL. Replacing coarse-grained trees from Millennium XXL by corresponding higher-
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resolution trees from Millennium, the former simulation can be enhanced. Corre-
sponding trees thereby refers to trees which are identical in the low resolution of the
Millennium XXL simulation. In this task, frequent subtree mining can help identify-
ing the trees most worthwhile to find replacements for.

2.5 related work

Data mining offers a vast variety of interesting, complex data analysis methods. Espe-
cially since the seminal work presenting the À-priori algorithm [Agrawal and Srikant
1994], it has gained substantial attention in the research community.

There is not much prior work on distributed frequent subtree mining. Therefore,
we will handle frequent subtree mining and distributed data mining separately.

Like for other areas, a noticeable number of algorithms were presented for frequent
subtree mining, each proving its advantages for specific application scenarios or on
data sets with specific properties. A comprehensive overview is given in [Chi et al.
2005].

TRIPS and TIDES [Tatikonda and Parthasarathy 2009, 2008] are two algorithms
searching for embedded subtrees. Their intermediate structure is composed of string
serialisations of the trees in the input forest. The authors proposed to exploit mod-
ern multi-core CPUs for speeding up these two algorithms. In their approach, the
intermediate structure is not kept in memory, but is recalculated every time it has
to be accessed, utilising all the processing cores available on that host. This ap-
proach requires continuous access to the entire data set, which may be expensive in a
distributed environment. Moreover, their approach highly benefits from the shared-
memory architecture it is supposed to run on. The cost of network messaging would
be prohibitively high for their communication scheme, consisting of a high number
of relatively small messages.

For a variety of data mining applications distributed algorithms were proposed.
They can be classified into client/server and peer-to-peer approaches.

For client/server scenarios, [Januzaj et al. 2004] presents a distributed clustering
algorithm. Each host extracts the candidate clusters from its data partition. Then, a
central site combines this information to determine global clusters. Such an approach
is feasible for applications in which the last processing step is rather light-weight.
In frequent subtree mining, the last processing step — which is performed in the
cm phase of our workflow — is the most complex. Hence, such an approach is not
feasible for frequent subtree mining applications.
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A basic component of many distributed data mining algorithms is the majority vote
which allows to decide whether the sum of values held by each server is above a given
threshold or not. [Datta et al. 2006] presents a majority vote for peer-to-peer environ-
ments where no global synchronisation is possible. While we can see the demand for
algorithms with such a communication behaviour for volatile environments like P2P
networks, they are not required in clusters, which we see as the typical environment
for our workflow.





3
L A R G E - S C A L E PA R A L L E L I S AT I O N

3.1 introduction

E-science data sets are typically far too large to be analysed in a centralised manner on
a single host. In this chapter, we will investigate means of distributing the processing
of large, possibly tree structured data sets to a multitude of hosts. We propose the
Pipelined MapReduce Framework, an enhancement of the popular MapReduce [Dean
and Ghemawat 2008] programming model, which provides inherent parallelisation
for data-intensive processing tasks. The key challenges in designing such a frame-
work are

scalability In order to cope with the ever-growing sizes of e-science data sets,
the framework must scale from small environments consisting of just a few
scientists’ workstations up to clusters in data centres composed of thousands of
hosts.

efficiency The framework must permit the efficient processing of data sets of just
a few gigabytes up to several petabytes which could not be handled on stand-
alone hosts. Thereby, the framework must provide a significant speed-up of
data-intensive applications as compared to stand-alone executions of the same
application.

ease of use In order to be widely accepted, the framework must be easy to use.
It should clearly abstract from the technical aspects of distributed processing,
such as communication with remote sites, data distribution, synchronisation,
and the related error handling. This permits application developers to focus on
the core aspects of their application, leaving error-prone technical distribution
aspects to the framework.

3.2 distributing the data

The first aspect to consider when planning distributed processing is data distribution.
The decision on how to initially distribute the data influences the choices available

29
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for the actual data processing. With some types of data distribution, additional com-
munication phases may be necessary to provide every host in the cluster with the
information it requires. Depending on the storage configuration, we distinguish two
possible scenarios.

shared storage The input data is stored on a file system which is directly accessi-
ble by all hosts participating in the distributed processing. On the one hand, this
includes centrally provided storage systems like NAS or SAN. In these systems,
the storage is typically provided by a dedicated server. All processing hosts
thus need to access their data over the network. On the other hand, this sce-
nario comprises distributed file systems in which each of the processing hosts
shares some of its local disks. Examples for such systems are Lustre1, the Red-
Hat Global File System2, but also special-purpose file systems like the Google
File System [Ghemawat et al. 2003] and its free counterpart HDFS (Hadoop File
System).

local storage Every host participating in the distributed processing only has
some dedicated storage — typically on a local disk — to store its portion of
the input data. Other hosts may not be able to directly access the data residing
on other hosts on file level. This storage configuration also includes environ-
ments in which partitions of the base data must not be brought together, e. g.,
due to privacy constraints (a possible scenario in medical sciences).

Even with shared storage configurations, typically, single hosts will not access the
complete data set. Doing so would often result in every host performing the same
data accesses and calculations – an unnecessary slow-down. It is typically better to
distribute the processing to all hosts, and subsequently exchange the results. There-
fore, shared storage settings can be interpreted as local storage settings in which the
data distribution to the hosts can be defined on a per-job basis. We will focus on
shared storage settings in the following.

For the initial data distribution, we consider the following possibilities. While we
focus on distributed tree processing here, similar reasoning applies to other appli-
cation scenarios in which the data items are processed in (not necessarily disjoint)
groups as well. Such situations arise, e. g., in graph processing when all nodes and
edges of a compound must be processed together, or in business intelligence applica-
tions where all items of an order must be processed together.

1 http://www.lustre.org/

2 http://www.redhat.com/gfs/

http://www.lustre.org/
http://www.redhat.com/gfs/
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Figure 3.1: Distributing the Data: Sample Trees

Note that we only elaborate on the initial data distribution here. During process-
ing, the data may be redistributed according to the requirements of the algorithms
employed. A workload balancing data distribution plays an important role in this
processing stage. We will focus on redistributing data in a workload balancing man-
ner during processing in Chapter 6.

3.2.1 Full Replication

A very simplistic approach may require to have the entire input data accessible from
all hosts. Consider the scenario of a distributed frequent subtree mining application,
as introduced in Chapter 2. Instances of the algorithm running on each host can, in
such a setup, agree on a partitioning of the node labels and then mine for frequent
subtrees with “their” labels on the root node. Every host can run its share of the
frequent subtree mining task independently from the other hosts.

Example 3.1. Assume we have three hosts and the tree data set shown in Figure 3.1. With
full replication and a local storage configuration, we store a copy of every tree on each of the
hosts.

Given the sheer size of e-science data sets and their expected exponential growth
rate, it is clear that a replication approach would quickly reach its limits on storage
requirement with local storage. With shared storage, we do not need to store a copy of
the complete data set on every host. However, as already mentioned above, a scenario
requiring full replication will most likely suffer from performance problems, as part
of the calculation is repeated on every host. Therefore, we consider full replication
no viable option.

3.2.2 Distributing by Attribute Value

For application scenarios where the workload can be partitioned according to some
attribute of the data items (e. g., the node label for frequent subtree mining) by node
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Host Trees

Host 1 T1, T2, T4

Host 2 T1, T2, T3, T4, T5

Host 3 T2, T3

Table 3.1: Tree Distribution by Label

labels, we can assign each host a set of values of these workload partitioning attributes
that host is responsible for. For tree data, this distribution still causes data replication
if the partitioning attributes are node attributes. We then replicate each tree only to
those hosts which are responsible for it. This way, the assignment of labels to their
responsible hosts is defined when distributing the data. However, each host is still
able to work on its trees without having to interact with others.

Example 3.2. Consider the same scenario as in the preceding example. We assign the labels
to the three hosts in a round-robin manner, i. e., labels a, d and g to the first host, labels b, e
and h to the second, and finally labels c and f to the third host. Distributing the trees by label,
we obtain the data distribution shown in Table 3.1.

The effectiveness of such a distribution approach depends on the data distribution
on the partitioning attributes. In the Millennium simulation, the 8 most frequent
node labels (out of over 130 000) appear in more than 40% of the trees. Thus, even
distributing the trees by node labels would lead to immoderately large data sets on
the hosts responsible for those very frequent labels.

3.2.3 Random Tree Partitioning

In order to avoid the skewed data distribution observed, we consider assigning trees
to hosts using a random (uniform) distribution. This allows for a better distribution
of the trees among the hosts. However, the processing might need to be adapted
to this scenario, and intermediate data exchange phases might be necessary. Our
distributed frequent subtree mining workflow presented in the preceding chapter is
already prepared for running in such an environment.

Example 3.3. Consider once more the five trees in Figure 3.1. With random tree partitioning,
we assign each tree to one host only. For example, we could store trees T1 and T3 host 1,
trees T2 and T5 on host 2, and tree T4 on host 3.
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3.3 massive parallel data processing

Processing data in parallel in a distributed environment has been a challenging sub-
ject in both research and industry for many years. Well-known parallelisation con-
cepts range from multithreading APIs like PThreads to programming language con-
structs like OpenMP3 to task queueing mechanisms like the Google Task Queue4.
Especially the two former approaches, which introduce parallelisation on a very low
abstraction level, are known to be complex and error-prone. The latter is already
more abstract and typically hides the low-level thread handling and synchronisation
aspects from the user. Other aspects like, e. g., data partitioning are, however, still left
to the user.

With the publication of the MapReduce programming model [Dean and Ghemawat
2008] in 2004, Google started a new hype on distributed, data-parallel processing.
The basic idea behind MapReduce is to partition the data and run side effect free
functions, first on single data items (map) and then on groups of items (reduce),
in parallel. This allows the execution of a filtering and aggregation operation on a
data set in one MapReduce job, exploiting massive parallelism. Thereby, MapReduce
scales from small setups with only a few hosts up to deployments in data centres
with thousands of compute nodes.

MapReduce uses a shared storage setting to store both the input data and the
results of MapReduce jobs. The data sets processed with MapReduce are sets of inde-
pendent tuples. An abstract MapReduce job is shown in Figure 3.2. In the beginning
of the MapReduce job, the input data is partitioned into chunks of fixed size – 500 MB
to 1 GB in typical settings.

For the first processing phase, one data partition is assigned to each mapper. The
mappers read their data partition from the shared storage and apply a map function

3 http://www.openmp.org/

4 https://developers.google.com/appengine/docs/java/taskqueue/

http://www.openmp.org/
https://developers.google.com/appengine/docs/java/taskqueue/
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supplied by the user to every tuple. For every input tuple, the map function pro-
duces a set of intermediate (key,value) pairs. These tuples are then hash-partitioned
according to their key and stored on the local disk of the host running the map task.
All mappers create the same number of partitions and use the same hash function
for partitioning the intermediate data. Therefore, intermediate pairs with the same
key are assigned to the same partition, no matter which mapper they are created on.
Note that the mappers of a MapReduce job do not need to all run simultaneously. As
the map function must be side effect free and the intermediate results are stored on
disk, every map task can run independently of all other map tasks of the job.

Example 3.4. We want to calculate the absolute transaction based support (Section 2.2.2) of
all labels in the tree data set in Figure 3.1. Assume the tree data set is stored one node a tuple.
Each tuple contains the node identifier, the node label, a reference to the parent node, and the
tree identifier, i. e., the input data set for tree T1 is {(1,a,⊥, T1), (2,d, 1, T1), (3,b, 1, T1)}.

In order to calculate the transaction based support, we first need to group the data set
by label. Then we can count the number of distinct tree identifiers in each group. In this
scenario, the mapper must emit, for each tree node, a tuple containing the node label as key
and the tree identifier as value. For tree T1, we generate the following three tuples: (a, T1),
(d, T1), (b, T1).

The second processing phase is the reduce phase. One reducer is run for every par-
tition of intermediate data. The reducers retrieve their partition of intermediate data
from all mappers. As all mappers employed the same partitioning, all intermediate
pairs sharing the same key will be retrieved by the same reducer. Then the reduce
function, which is again supplied by the user, is applied to all tuples sharing the same
key in one step. The output generated by the reducers form the result of the MapRe-
duce job, which is written to the shared storage once the reducer has completed its
work.

Example 3.5. We complete our sample MapReduce task calculating the absolute transaction
based support of all labels in a tree data set. The reduce function is invoked once for each
node label. It obtains all intermediate tuples emitted by the mappers for that label and can
then count the number of distinct tree identifiers. For label b, we obtain the four tuples
(b, T1), (b, T4), (b, T4), (b, T5). The number of distinct tree identifiers and thus the absolute
transaction based support of label b is 3.

Google’s implementation of the MapReduce framework is not publicly released.
However, there are numerous realisations of the framework which are freely available.
The most prominent free MapReduce framework is Hadoop5, provided by the Apache

5 http://hadoop.apache.org/

http://hadoop.apache.org/
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Software Foundation and implemented in Java, which we will use throughout this
thesis as well.

MapReduce frameworks handle the distribution, communication, and fault toler-
ance aspects of the system transparently to the user. In large scale deployments of
MapReduce frameworks, host failures are the most frequent problem encountered.
This includes software and hardware failures on a host, and (often transient) network
problems making a host unreachable. Such problems can be solved without having
to recompute the complete job for failures on both mappers and reducers. For hosts
running a map task, a problem arises if the host becomes unavailable before all re-
ducers retrieved their partition of the intermediate data. In that case, only this single
mapper must be run again. For hosts running a reduce task, a problem arises only if
the host becomes unavailable during processing. The results of the reducer are only
written to the shared storage once it has successfully completed its work. Therefore,
a failed reducer can simply be started again, possibly on a different host. All this
failure handling takes place in the MapReduce framework and is transparent to the
application developer.

We can map our frequent subtree mining workflow presented in Chapter 2 to se-
quences of MapReduce jobs in multiple ways. In the following, we will discuss pos-
sible mappings. Then, we will propose the Pipelined MapReduce Framework, which
provides extensions to the MapReduce framework allowing us to run the frequent
subtree mining workflow more efficiently than on plain MapReduce.

3.4 frequent subtree mining with mapreduce

Our goal is to run a frequent subtree mining application on MapReduce. As the fre-
quent subtree mining workflow we presented in Chapter 2 is quite complex, different
ways of mapping it to a sequence of MapReduce jobs are possible. We will analyse
three possible mappings which result in different numbers of MapReduce jobs. The
key for all illustrations in this section is given in Figure 3.3. Note that in the figures
showing the mappings of our frequent subtree mining workflow to the execution
framework, we only show one processor for each map and reduce task. The focus of
the figures is the mapping of the tree mining workflow to the underlying framework,
not the multiplicity of single processing tasks.
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3.4.1 Straight-Forward Approaches

We derive the first, straight-forward workflow realisation as illustrated in Figure 3.4a
by translating each of the phases of our distributed frequent subtree mining workflow
to a separate MapReduce job and serialising the parallel phases such that the frequent
labels are determined before partitioning the data.

We determine the frequent labels in one MapReduce job which extracts label occur-
rence information in its map phase. This information is distributed to the reducers
using the label as the distribution key. In the reduce phase, we can then count the
number of distinct trees a label occurs in. Note that this is the MapReduce job we
constructed in Examples 3.4 and 3.5.

The second MapReduce job partitions the input forest into a configurable number
of files, such that the data is treewise distributed. In the map phase of this partitioning
job, we read the forest one node a time, parse it and hand it on to the reduce phase
using the attribute (or attribute combination) indicating the tree the node belongs to
as key. The reducer then needs to write all the values associated with the same key
to the same output file. The files resulting from this MapReduce job may be reused
by subsequent frequent subtree mining jobs as long as the original tree data does not
change.

Eventually, in the third job, we start building the intermediate data structure em-
ployed by the actual frequent subtree mining algorithm in the map phase. The result-
ing structure fragments are distributed to the reducers, where we consolidate them
in order to obtain the partitions of the intermediate representation each single re-
ducer requires. Finally, we search for frequent subtrees exploiting the intermediate
representation on the reducers.

Figure 3.4b shows an architecture variant consisting of the same three MapReduce
jobs, but with a different serialisation of the parallel phases. Data partitioning is done
before finding the frequent labels. Knowing the data is treewise distributed allows us
to optimise the frequent label detection. As all of a trees’ nodes are processed by the
same mapper, we can eliminate duplicate label occurrences in the same tree already
in the mapper. With this optimisation, we reduce the amount of data which needs to
be transmitted from the mappers to the reducers in the MapReduce job determining
the frequent labels.

While both of these straight-forward translations of our frequent subtree mining
workflow to a sequence of MapReduce jobs show a very clear and comprehensible
structure, the high number of jobs they are composed of introduces two severe draw-
backs:
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1. We need to read the entire tree data set from disk as input for each of the three
MapReduce jobs. Reading from disk is a quite expensive operation and may
easily consume more time than the actual calculations for simple jobs like, e. g.,
the job extracting the frequent labels.

2. Especially in the latter of the two variants, where data distribution is done
before frequent label detection, the second and third MapReduce jobs depend
on the output produced by the job immediately preceding them, leading to
two points of synchronisation. This will lead to a noticeable slow-down in
processing.

However, since the data partitions are written to disk, they can be reused for sub-
sequent mining tasks on the same data set, as long as the input data is not modified.
If the partitioned data is already available, we can skip the partitioning phase, thus
reducing the number of data reads by one.

An aspect to keep in mind is the number of files created by the data partitioning
job. Obviously, we cannot create more files than there are trees in the data set, as a
single tree must not be split over multiple files. A high number of files will lead to a
large overhead spent on file system operations. Creating only a few files, on the other
hand, limits the number of mappers we can create for subsequent jobs, as we assign
entire files to mappers. Our experience shows that generating approximately ten
times as many files as we expect the number of mappers to be is a good compromise.

3.4.2 Partitioning Data on the Fly

The straight-forward approaches presented above are able to reduce the data reading
and synchronisation effort in the case of rarely changing data sets. Nonetheless, they
remain expensive if applied to rapidly changing data or if a data set needs to be
mined just once.
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The architecture variant shown in Figure 3.5 reduces the number of MapReduce
jobs to two even for data sets which have not yet been appropriately partitioned.
However, this approach requires the input data set to be sorted such that all nodes
belonging to the same tree are stored in an uninterrupted sequence. Then, we exploit
the possibility offered by Hadoop to provide an InputFormat containing specialised
instructions on how and where input files may be split. Using a customised In-
putFormat, the TreeInputFormat, we split the input file into partitions containing
complete trees each. Thereby, we employ a binary search like approach to detect
appropriate splitting positions in the input data. The two MapReduce jobs of this
architecture variant are identical to the frequent labels and the mining job of the
straight-forward architectures. The MapReduce job splitting the data in the straight-
forward approaches is replaced by out TreeInputFormat and the condition that the
tuples of the input data are sorted appropriately.

The goal of this variant is to reduce the number of MapReduce jobs and thus the
number of times the tree data must be read from disk. Thanks to the binary search
approach, the InputFormat only needs to read small parts of the data set. Using this
architecture we hence need to read the data set twice completely, in the two map
phases, and twice partially, in the TreeInputFormat. If the InputFormat caches its
calculated splitting points, no tree data needs to be read when splitting the data for
the second MapReduce job. Furthermore, as with the straight-forward architectures,
cached results can be reused for subsequent invocations of the workflow – as long
as neither the data nor the number of desired mappers changes. As opposed to the
straight-forward variants, where partitioning was done in a MapReduce job, employ-
ing an InputFormat makes it impossible to speculatively create a higher number of
partitions. Hadoop determines the effective number of mappers based on the num-
ber of partitions it receives from the employed InputFormat. Note also that Hadoop
executes the InputFormat on one of the involved hosts only. As opposed to the
straight-forward variants, the available massive parallelism is thus not exploited for
partitioning the data set.

3.4.3 2-Step Mining with Persistent Partitions

The biggest advantage of the straight-forward workflow realisation variants over the
variant with on-the-fly partitioning is the flexibility in the number of mappers em-
ployed for the actual mining MapReduce job. In order to regain this flexibility, we
present the realisation depicted in Figure 3.6. We achieve a lower number of MapRe-
duce jobs as compared to the straight-forward variants by reallocating the job deter-
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Figure 3.6: 2-Step Mining with Persistent Partitions

mining the frequent labels: Its map phase, which extracts the label occurrence lists
from the data set, is integrated into the reduce phase of the data partitioning job.
The reduce phase, aggregating the label occurrence lists in order to determine the
frequent labels, is combined with the map phase of the last MapReduce job in the
workflow, which extracts the intermediate structure fragments from the tree data.

Hence, in the first MapReduce job, besides partitioning the input data exactly as
in the straight-forward variants, we determine label occurrences. As the reducers
process entire trees at a time, we can easily extract all the distinct labels from a tree
at that point. This label occurrence information is then pre-aggregated and stored in
a separate file.

The second MapReduce job starts its map phase reading and aggregating the label
information. It proceeds building the intermediate data representation and mining it,
the same way as described for the previous architectures.

This variant reads the entire tree data set twice (once in each map phase). Addi-
tionally, at the beginning of the second MapReduce job, every mapper needs to read
the pre-aggregated label occurrence list as well. As with the straight-forward ap-
proaches, once the data is partitioned, these partitions can be reused for subsequent
data mining jobs unless the input data is modified. Reusing the label occurrence list
is only possible as long as neither the input data nor the label definition (i. e., the set
of attributes the label is composed of) changes. As opposed to the variants presented
before, in this setting every mapper of the final MapReduce job needs to extract the
frequent labels from the label occurrence lists. This is a very light-weight operation
compared to the frequent subtree mining operations which are run in the remainder
of this MapReduce job. Therefore, we consider this redundant calculation a viable
solution.



3.4 frequent subtree mining with mapreduce 41

Aspect Architecture variant

straight forward on-the-fly 2-step persistent

(Figure 3.4) (Figure 3.5) (Figure 3.6)

data partitioning once, distributed,
persistent

twice, centralised once, distributed,
persistent

read tree data three times entire
set

twice entire set,
twice partially

twice entire set

find frequent labels once, distributed once, distributed on each mapper in-
dividually

synchronisation twice once once

usage scenarios fixed data set,
changing label def-
inition, changing
cluster size

changing data set,
changing label defi-
nition, fixed cluster
size

fixed data set, fixed
label definition,
changing cluster
size

Table 3.2: Plain MapReduce Architecture Variant Overview

3.4.4 Discussion

In this section, we presented possible realisations of our distributed frequent sub-
tree mining workflow on top of MapReduce. All realisations consist of two to three
MapReduce jobs. A realisation of the workflow as a single MapReduce job is not
possible, as we need to exchange data twice: first for determining the frequent labels,
then for distributing the intermediate structure fragments. However, within a single
MapReduce job, we can exchange data only once.

Based on the preceding analysis, we can derive usage scenarios for each mapping to
MapReduce jobs tailored to expected changes in the data set, the cluster size, and the
label definition for our frequent subtree mining application. These are summarised
along with other important aspects in Table 3.2. We will now further discuss the
usage scenarios.

The straight-forward variant benefits from fixed data sets, as it reuses the data
partitions which are stored to disk. If we create a reasonable number of partitions,
we can flexibly react on changing cluster sizes without needing to repartition the
data. The frequent labels are determined in a separate MapReduce task. If we want
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to run multiple frequent subtree mining jobs using different minimum support values
or different label definitions, we can reuse the data partitions.

The implementation using on-the-fly data partitioning needs to read only parts of
the data set for extracting new partitions. This makes partitioning the data cheaper
than for the other variants. However, it is necessary to recalculate the partitioning
on both changes in the data set, and changes of the cluster size. Altering the mini-
mum support or the label definition between subsequent mining jobs has no negative
impact when using this workflow realisation.

The two-step variant with persistent partitioning again benefits from a fixed data
set, as it reads the entire data for partitioning. Changes in the cluster size are flexibly
handled if we create an appropriate number of partitions. As the label frequencies
are determined together with the data partitioning, changing the label definition is
expensive in this variant: it requires us to also recalculate the partitioning.

3.5 operator library

Observing the four MapReduce translations presented in the previous section, we
identify components appearing in more than one architecture. Effectively, some of
them even appear multiple times within the same architecture (e. g., partitioning the
input data using a dedicated InputFormat for tree data is done twice in the workflow
realisation with on-the-fly data partitioning (Section 3.4.2)).

In plain MapReduce, the map and reduce functions are provided by the user and
represent a black box to the framework. The same holds for the data deserialisa-
tion and serialisation routines, the InputFormat and OutputFormat, respectively, in
Hadoop. Moreover, several components of the frequent subtree mining workflow,
such as the mappers and reducers for splitting data or calculating frequent labels, or
again the Input- and OutputFormat for treewise distributed data, are not specific to
our application. We realise them in a generic, reusable manner and provide end-users
with them in a scientific data processing library.

Note that the components of this library do not necessarily form a complete mapper
or reducer each. Rather, they each represent a single data manipulation operation.
An arbitrary number of such operators can then be combined to form a mapper
or reducer. Consider, e. g., the bi phase of the distributed frequent subtree mining
workflow. This phase consists of several logical steps. First, it combines the tree data
with the label frequency information in order to retain only the frequent tree nodes.
Next, it arranges the nodes according to the tree structure. Finally, it extracts the
fragments of intermediate structure from these trees.
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Figure 3.7: Modules of the Straight-Forward Workflow Realisation in Figure 3.4a

In our library, each of these steps is realised as a separate operator, similar to
operators in relational database management systems. Each operator provides an
elementary operation. By combining them, complex workflows can be constructed.
In our example of the bi phase, the first step, i. e., combining the tree nodes with the
label frequency information, is basically an equijoin of the two data sets on the label
attribute.

The users of the operator library can hence focus on implementing just the core
of the algorithm they want to run, plugging in ready-made components for common
tasks. Figure 3.7 shows a possible module structure for the straight-forward workflow
realisation depicted in Figure 3.4b. For all other workflow realisations we presented,
similar module structures can be derived.

Assuming the input data to reside in text files and the results to be stored in text
files as well, Hadoops out-of-the-box routines for reading and writing CSV files can
be used for reading the input data to the first MapReduce job, and for storing the
results of the last job which are also the results of the frequent subtree mining work-
flow. The MultiTreeOutputFormat, writing entire trees to a predefined number of files
at the end of the data partitioning task, as well as the matching MultiTreeInputFormat,
reading those files in subsequent tasks, are modules provided by our library. Like-
wise, the mappers and reducers for partitioning the tree data (the TreeIDMapper and
the ForwardingReducer) and for determining the frequent labels (FrequencyMapper and
FrequencyReducer) can be built using library components only. Both the TreeIDMapper
and the FrequencyMapper just extract the key attribute for the subsequent data rear-
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Figure 3.8: Pipelined MapReduce Workflow

rangement from each tuple. In case of the TreeIDMapper, the key is the tree identifier;
for the FrequencyMapper, the node label is the key. Therefore, they will use the same
operator from our library – the operator for setting the key of a (key,value) pair to
some attribute from the value of that pair. The information on which attribute(s) to
use form the configuration of the operator. For the third and final job, the reading and
writing modules can again be provided by Hadoop or the mining library. Mapper
and reducer implement the core of the mining algorithm employed and are thus the
main user’s contributions to the entire mining process. Nonetheless, some steps, like
the join operation for combining the tree nodes with the label frequency information,
can still be provided by the library.

3.6 pipelined mapreduce : e-science extensions to mapreduce

We have seen that every mapping of the frequent subtree mining workflow to plain
MapReduce has both its strengths and drawbacks. There is no mapping which suits
all possible usage scenarios well. In the following, we will present three extensions to
plain MapReduce which allow for an efficient mapping of the frequent subtree min-
ing workflow for all usage scenarios considered. The extensions we propose allow
for a more flexible number of processing steps within a job, and they permit to run
multiple steps of a workflow overlapping each other. While we design these exten-
sions with our frequent subtree mining workflow as a concrete application scenario
in mind, they are not limited to this scenario. The goal of these extensions is to run
the frequent subtree mining workflow as depicted in Figure 3.8.

3.6.1 Multi-Step Jobs

As major differences between our workflow and MapReduce, we identify the num-
ber and the ordering of the processing steps. While MapReduce consists of only two
steps — map and reduce — with a strict sequential ordering, our workflow is com-
posed of six steps (cf. Section 2.3.2), some of which could be executed in parallel if the
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framework offered that possibility. As we have seen, it is possible to formulate our
workflow as a series of MapReduce jobs. The performance of such a setup suffers,
however, from the fact that the results of each single MapReduce job are written to
the shared storage, even though all but the last job’s outputs are only intermediate
results which only need to be passed to the next processing step.

Jobs in the Pipelined MapReduce Framework may consist of more than the two
processing steps permitted by plain MapReduce. This enables us to translate logically
connected processing tasks to a single job instead of obeying the artificial limitation
of having only two processing steps per job.

Example 3.6. We realise the entire frequent subtree mining workflow as a single job on the
Pipelined MapReduce Framework. This enables us to realise the workflow in a more efficient
manner than with multiple standard MapReduce jobs. In particular, we do not need to store
intermediate results to the distributed file system.

Independent of the number of processing steps per job, we preserve the assumption
of MapReduce that each processing step can be parallelised. The data items or item
groups processed in each step are independent from each other. By partitioning the
data and distributing it to all involved processing hosts, a notable speedup can be
achieved.

3.6.2 Multi-Input and Multi-Output Tasks

As a consequence of allowing more than two processing steps, we have multiple in-
termediate result within a job. A processing task may thus be interested in gathering
its input data from more than one of the preceding tasks. The Pipelined MapReduce
Framework allows for such setups. If a processor is configured to have multiple data
sources, each of the sources is presented to the processor as an iterator, as in the
Sphere framework [Grossman and Gu 2008]. By selectively advancing or resetting
these iterators, sequential, interleaved, or nested loop semantics can be achieved.

Analogously to a step consuming more than one input data set, it is possible for
a processing step to generate more than one output data set. These data sets can
then be used independently of each other, as if they were generated by different
processing steps. We can thus reduce the number of processing steps by combining
steps consuming the same inputs.

Example 3.7. In our frequent subtree mining workflow, we merge the et and el steps, which
are both not very CPU intensive. The label occurrences are thus counted in the same process-
ing step as the tree membership of each node is identified. This reduces the number of data
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exchanges, the number of times the input data set must be read, and the number of processing
steps of the job by one each and thereby allows us to solve the frequent subtree mining task
more efficiently.

Note that MapReduce defines two slightly different programming interfaces for
the map and reduce phases, as the mappers process single items, while the reducers
work on item groups. Our framework does not distinguish between those phases.
The interface of all processors is identical. Access to the input data sets is provided
via a list of iterators, each representing one data set. If a processor is used like a
mapper in MapReduce, its only input iterator provides access to a single data item.
If used like a reducer, the iterator delivers all items of an item group. Analogously to
the inputs, each processor has access to a list of data sinks for the generated results.
For interaction with the framework, a reporting interface is provided.

Example 3.8. Consider once more the bi phase of our distributed frequent subtree mining
workflow. It obtains two inputs: the tree data set to analyse, and the label frequency informa-
tion. These data sets are then joined in order to identify the frequent tree nodes. In standard
MapReduce, such a multi-input task can only be realised using a trick. We need to add a new
attribute to each tuple which indicates the data set that tuple originates from. According to
this attribute, a bi phase processor can then separate the tuples of the two input data sets and
process them accordingly. With Pipelined MapReduce, the two input data sets are two inde-
pendent iterators to the worker, allowing for a clear and easy distinction between the different
inputs.

3.6.3 Data Streaming

A very important modification, compared to MapReduce, concerns the data exchange
between subsequent processing steps. In MapReduce, the results of the map phase
are stored to local disks. Writing intermediate results to disk severely impacts the
performance of a processing step. In the Pipelined MapReduce Framework, we allow
the pipelining of intermediate results to the subsequent processors as soon as they
are available. This enables the receiver side processors to start their work as early as
possible, thus speeding up the processing.

In case a processor cannot immediately digest the data it receives (e. g., if it requires
two input data sets, but one of them is not yet available), the processor caches the data.
Caching is done, if possible, using main memory. Only if the main memory available
is too small, disks are used.

In the only data exchange phase defined by the MapReduce processing scheme, the
data is distributed in a full mesh. Since the Pipelined MapReduce Framework allows
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to have more processing phases, data can be exchanged more often within one job.
It may not be necessary to have the data redistributed via a full mesh between all
subsequent phases. In the case of computationally very intensive processing steps,
e. g., one might decide to split this processing step to two (or more) processors, which
are then sequentially concatenated. The data flow in such a scenario is one-to-one.
A full mesh is, of course, the most general type of data exchange, and it can thus
also be used for one-to-one communication or any other possible exchange pattern.
However, this introduces unnecessary overhead, as we create a large number of com-
munication channels most of which are not required. In order to avoid this overhead,
the Pipelined MapReduce Framework provides a set of different communication pat-
terns, including, e. g., one-to-one communication.

Example 3.9. Consider the sf phase of the distributed frequent subtree mining workflow. In
this step, we count the number of distinct tree identifiers for each label. We can start this
aggregation for a label as soon as the first tuples with that label reach the worker, and then
continuously aggregate the data as new tuples arrive.

With the presented modifications to plain MapReduce, the Pipelined MapReduce
Framework enables us to execute the distributed tree mining workflow as depicted
in Figure 3.8, without having to write intermediate results to disk.

3.7 towards lower communication and synchronisation overhead : a

probabilistic approach

In order to further reduce the communication and synchronisation overhead incurred
by executing our distributed frequent subtree mining workflow on MapReduce style
frameworks, we consider replacing exact calculations by probabilistic ones. Our
workflow contains two components which could be executed in a probabilistic man-
ner: frequent label detection and the actual mining. The former component is inde-
pendent of the actual frequent subtree mining algorithm, as all algorithms require
a list of frequent labels in order to detect frequent subtrees. The latter component
encapsulates the core of the actual frequent subtree mining algorithm. Replacing this
component by a probabilistic approach would effectively result in a redesign of the
frequent subtree mining algorithm.

We therefore pick the former component to investigate the impact of probabilistic
approaches onto our distributed workflow. We are, however, aware that the commu-
nicated data volume in this component is quite low compared to the processed data
sets. While we consider choosing this component viable for demonstrating the inte-
gration of probabilistic calculations into our workflow, we do not expect significant
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savings in communication volume due to the choice of the component. We performed
this work together with Anja Grünheid in terms of her bachelor’s thesis [Grünheid
2009].

In its exact variant, the frequent label detection proceeds as follows. Every proces-
sor of the el phase extracts label occurrence lists from its partition of the input data.
Each list entry describes the occurrence of a specific label within a specific tree, i. e.,
it consists of the label and the tree identifier. The processors can remove duplicate
list entries as, with transaction based support (see Section 2.2.2), multiple occurrences
of a label within a tree have no impact on the support value. The label occurrence
lists are then distributed to the processors of the sf phase using the label as the dis-
tribution key. Hence, all list entries for the same label are sent to the same sf phase
processor. Counting the number of distinct tree identifiers per label, they can then
determine the support of each label. Comparing the support values obtained to the
minimum support threshold, which is an input parameter to the frequent label de-
tection component, the frequent labels are identified and sent to the processors of the
subsequent bi phase of our workflow.

The sf phase processors will typically receive a relative minimum support threshold
from the user. Hence, we need to determine the number of trees in the data set in
order to decide which labels are frequent. We achieve this by introducing a special
label ⊥ not occurring as a real label within the data set. For every tree identifier
encountered, an el phase processor emits a tuple with that tree identifier and ⊥ as
node label. This special label is then distributed to all sf phase processors. Counting
the number of distinct tree identifiers for that label, the sf phase processors can then
determine the number of trees in the data set.

We focus on two modifications to the frequent label detection, which aim at reduc-
ing the communicated data volume and synchronisation effort, respectively.

3.7.1 Reducing Communication Overhead

Consider the data communicated from the el to the sf phase processors. Every pro-
cessor of the el phase sends out one data item for each label appearing in a tree. This
information is required in order to determine the exact support of every label.

Nonetheless, labels appearing in only a few trees locally on one el phase processor
are less likely to be frequent than labels appearing in many trees. We exploit this
fact, which is also used in distributed Top-K algorithms [Fagin et al. 2003], in order
to reduce the communicated data volume. Every el phase processor obtains a local
minimum support threshold as an input parameter. During processing, we calculate
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the local support of every label. We can perform this calculation efficiently in com-
bination with the aforementioned duplicate elimination using a sort-based strategy.
Occurrence information on labels which do not exceed the local minimum support
threshold is not communicated to the sf phase processors.

3.7.2 Reducing Synchronisation Overhead

The second point we tackle is the cluster-wide synchronisation of the exact calculation
required between the sf and the bi phase. The bi phase can only start when the
sf phase is completed, as every bi processor requires the list of frequent labels to
perform its work. Due to this synchronisation, many bi phase processors will begin
their work almost simultaneously. Recall that, in the bi phase, the complete input
data set is read — either from the et phase processors in Pipelined MapReduce, or
from disk in plain MapReduce. This may cause network congestion, as large parts of
the data will typically be read from remote hosts.

We relax the synchronisation constraints in order to avoid this scenario. If the bi

phase processors do not start (almost) simultaneously, reading the data is distributed
over a longer time span and network congestion is less likely to occur. We achieve this
goal by arranging the processors in groups, or subsystems. Each subsystem runs the
frequent label detection independently from the others. This means synchronisation
and communication is only necessary in between the processors of a subsystem. As
soon as a subsystem completed the frequent label detection, its processors can start
the bi phase.

In this approach, every subsystem only sees the share of input data assigned to its
processors. The frequent label detection is thus based on incomplete data, and the
list of frequent labels obtained may vary from subsystem to subsystem. According to
the law of large numbers, the larger the subsystems are, the closer the frequent labels
determined within the single subsystems will be to the correct result. This leads to a
trade-off between exactness of the result and decoupling of the processors. With large
subsystems, the frequent label lists will be close to the exact lists, but larger parts of
the cluster need to be synchronised. With small subsystems, we have smaller groups
of processors which need to synchronise, at the cost of less precise frequent label lists.

3.8 experimental evaluation

In the following, we present an experimental comparison of realisations of our dis-
tributed tree mining workflow on the Pipelined MapReduce Framework and on plain
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MapReduce to a “traditional”, centralised implementation of the same algorithm. We
analyse the scalability regarding both the data set size and the size of the compute
cluster available for processing. Moreover, we evaluate the probabilistic frequent label
detection.

In our analysis, we compare the performance of an implementation of PathJoin [Xiao
et al. 2003] (cf. Chapter 2) running as a job on our Pipelined MapReduce framework
and as a series of MapReduce tasks on Apache Hadoop to a stand-alone execution of
the same algorithm. All the variants share the implementation of the core algorithm.
Our PathJoin implementation is not meant to compete with the one of the original
authors; we aim at comparing the scalability of the different distribution approaches
presented in this chapter. For such an evaluation, a common code base for all variants
is essential. Only this way, it is possible to isolate the distribution aspect and obtain
measurement results which can be compared to each other reasonably.

The stand-alone execution is used as a baseline throughout the measurements. In
order to handle the data sets which do not fit into main memory of one host, we
process the data in partitions of roughly 2 GB in the stand-alone implementation.
This approach reads the tree data set from the same distributed file system as the
other approaches, and stores its results there. Temporary files are created on the local
disk, like the intermediate results in MapReduce. Evaluating this approach, we note
an interesting effect. Accessing the distributed file system for reading a complete
data set from a single host gets slower with an increasing number of hosts the file
system is distributed to. This effect, which is clearly visible in Figure 3.10, seems
to be compensated by distributing the reading of the data to many hosts in typical
MapReduce applications.

The workflow realisation on the Pipelined MapReduce Framework implements our
distributed frequent subtree mining application as shown in Figure 3.8.

The implementation running directly on MapReduce realises the architecture in-
troduced in Section 3.4.2, consisting of a series of two MapReduce jobs and using a
specialised InputFormat for partitioning the data appropriately. We choose this ar-
chitecture as we do not want our measurements to be influenced by persisted data
partitionings or label frequency information.

The environment we conduct our tests on consists of a cluster of 16 identically
configured virtual servers, each equipped with an Intel Core 2 Quad CPU running at
2.6 GHz, 7 GB of main memory and a dedicated 250 GB SATA II hard disk for stor-
ing the data sets. The servers run the 64-bit edition of RedHat Enterprise Linux 5.2.
All servers are connected via 1 Gbps ethernet links to a central switch. We use Sun
Java 1.6 Update 10. For Hadoop, we run a development snapshot version (subversion
revision 711 482) as the performance of the Hadoop Distributed File System was im-
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fanout

Size trees nodes labels avg max

2 GB 38 261 4 983 332 6 179 1.07 7

8 GB 151 718 19 734 424 8 080 1.07 8

16 GB 303 436 39 468 848 8 080 1.07 8

Table 3.3: Data Sets Used in the Evaluation

proved by patches not contained in release versions at the time the experiments were
conducted.

The data set we use in our measurements is a subset extracted from the Millennium
simulation. The extracted subset consists of all trees whose root nodes’ np (number
of particles) attribute ranges between 1 000 and 1 500, occupying roughly 8 GB in
CSV format. Starting from this data set, we created a larger one by duplicating each
tree, and a smaller one consisting of 25% of the trees (chosen by a uniform random
distribution). By duplicating each tree, we double the amount of data to process
while keeping all other parameters constant. This allows us to measure the scalability
of the of the distributed workflows with minimal interference from data set related
parameters. The scaling of the data sets is chosen such that, for the largest data set
the ratio of main memory to data set size (regarding the main memory available in
the entire cluster) approximately reflects that of the Hadoop TeraSort [O’Malley 2008]
setup. Table 3.3 summarises the relevant properties of the data sets.

In our experiments, we vary the data set size and the cluster size, in order to
evaluate scaling along those two dimensions. We keep the minimum support fixed
at 50% for the results we report on here. Modifying this parameter would show the
scaling abilities of the algorithm employed, not of the frameworks. Measurements we
conducted with lower minimum support values showed comparable scaling of the
different workflow realisations.

3.8.1 Scaling the Data Set

In our first experiment, we evaluate the behaviour of the different workflow reali-
sations on changing data set size. Figure 3.9 shows the total execution time of the
different workflow implementations on our cluster of 16 hosts. The results for a
cluster of 8 nodes are very similar.
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Figure 3.9: Scaling the Data Set on a Cluster with 16 Hosts

When comparing the results of the Hadoop variant and the Pipelined MapReduce
variant, we can clearly see the benefits of the pipelined execution. The pipelined
framework needs to read the data set only once, in the very beginning of the pro-
cessing, whereas the Hadoop variant reads it twice completely and twice partially in
order to calculate the splitting positions in the input file.

For the smallest data set, where the intermediate structure still fits into the main
memory of one cluster node, the traditional approach is 40 seconds faster than the
Hadoop variant. The Pipelined MapReduce realisation outperforms the stand-alone
implementation even in this scenario, as reading the data set can be done in parallel
on all 16 hosts on Pipelined MapReduce, whereas the traditional approach can only
read sequentially on its only execution host.

3.8.2 Scaling the Cluster Size

In our second experiment, we analyse the impact of scaling the cluster size. Fig-
ure 3.10 shows the measured running time of our workflow realisations when mining
the 8 GB data set on a cluster of 4, 8, and 16 hosts, respectively.

As expected, both the distributed approaches benefit from a higher number of
available hosts. For the step from 4 to 8 hosts, we observe superlinear scaling of
the Pipelined MapReduce framework, dropping from 12.3 minutes down to 5.5,
whereas the Hadoop-based setup scales only sublinearly. We see two reasons why
the Pipelined MapReduce framework outperforms Hadoop. On the one hand, the
Pipelined MapReduce framework is able to keep the entire data in main memory,
whereas Hadoop writes it to disk after each processing phase. On the other hand, the
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Figure 3.11: Approximation Quality of the Probabilistic Frequent Label Detection for the
16 GB Data Set on 16 Hosts

performance is affected by Hadoop choosing to run only one reducer in each MapRe-
duce job, even though the maximum number allowed was configured as 1.75 times
the number of hosts, as suggested by the Hadoop manual. The Pipelined MapReduce
Framework uses all available hosts throughout the entire workflow.

3.8.3 Probabilistic Frequent Label Detection

Finally, we evaluate the impact of probabilistic frequent label detection. For the local
filtering, we reuse the relative minimum support, i. e., every processor only transmits
information on labels which appear in more than 50% of the trees encountered in its
partition of the input data. This filtering allows a significant reduction of the com-
municated data volume. For the exact calculation, the communicated data volume is
60 kB. For the probabilistic approach, it is less than 1 kB in all evaluated settings.
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Figure 3.12: Execution Time of the Frequent Label Detection for the 16 GB Data Set on 16

Hosts

The impact of the probabilistic calculation on the exactness of the result is shown
in Figure 3.11 for a varying number of subsystems on 16 hosts, using the 16 GB data
set. Up to 4 subsystems, the probabilistic calculation introduces no error, i. e., even
though a subsystem only sees down to 25% of the input data, the frequent labels
are detected correctly. For a higher number of subsystems, some subsystems miss
one of the frequent labels. Nonetheless, we feel the probabilistic results are close
enough to the correct results to take the probabilistic frequent label detection as a
viable alternative to the correct calculation.

Figure 3.12 shows the execution time of the probabilistic frequent label detection.
As expected, the required time decreases with an increasing number of subsystems,
because the number of hosts which must synchronise to each other decreases. The
execution time especially for the setup with only one subsystem is larger than the
time required for the exact variant. This shows the overhead introduced by the prob-
abilistic approach, i. e., the subsystem handling and the local minimum support cal-
culation.

3.9 related work

Since the publication of the MapReduce programming model [Dean and Ghemawat
2008] by Google, numerous extensions to the framework were proposed.

Similar to the multiple processing steps in our Pipelined MapReduce Framework
(Section 3.6.1), Nephele [Battré et al. 2010] and Dryad [Isard et al. 2007] abolish the
strict two-step pattern of MapReduce. They allow arbitrary directed acyclic graphs
for specifying the data flow in their applications. Besides file-based data exchange,
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they allow for direct network channels (like our pipelining presented in Section 3.6.3)
and in-memory communication.

Map-Reduce-Merge [Yang et al. 2008] extends MapReduce by a merge phase in
which two data sets can be joined. The merge phase is similar to a processor in our
framework receiving two input data sets. As opposed to Pipelined MapReduce, the
ordering of the phases in Map-Reduce-Merge is fixed: first, both data sets pass their
mappers, followed by the reducers, and only then they are merged. A workflow
requiring the merging to be done first and running the map and reduce tasks on
the joined data set must be realised by two subsequent Map-Reduce-Merge tasks,
including three unnecessary processing phases. Moreover, in Map-Reduce-Merge, it
is not possible to change the key of data items between the reduce and the merge
phase. In Pipelined MapReduce, the keys may be changed in every processing phase,
allowing for more flexibility in the composition of workflows.

HaLoop [Bu et al. 2010] extends the MapReduce model by the possibility to loop
over a sequence of map and reduce phases until a fixpoint is reached. An itera-
tive processing scheme could also be realised with plain MapReduce by writing an
appropriate driver application. By integrating the loop control into the framework,
however, data locality can be exploited better, and the termination condition can be
checked more efficiently.

Sector and Sphere [Grossman and Gu 2008] form a MapReduce-like framework for
data mining applications. In contrast to most other MapReduce-style frameworks
which are targeted at cluster systems, they primarily focus on wide-area clouds.

Both MapReduce and database management systems (DBMSs) are used for large
scale data analysis. Comparisons between the two systems [Stonebraker et al. 2010,
Pavlo et al. 2009, Loebman et al. 2009] show that MapReduce systems excel in sim-
plicity of installation and usage even in large-scale deployments. Distributed DBMSs,
however, are often able to deliver better performance due to their highly optimised
data access and processing patterns.

In order to improve over the drawbacks of each of the systems, some projects con-
sider combinations of DBMSs and MapReduce. The Hadoop++ project [Dittrich et al.
2010] proposes indexing support for MapReduce. They introduce a data loading
phase, in which indexes are built. Moreover, in this phase, the data can be pre-
partitioned to allow for more efficient join operations.

HadoopDB [Abouzeid et al. 2009] replaces the distributed file system storage back-
end of MapReduce by local DBMSs installed on every host. This configuration over-
comes the difficulty of properly installing distributed DBMSs. Moreover, HadoopDB
allows to push initial calculations of a workflow into the DBMS backend. Thereby,
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the advantages of DBMSs like, e. g., indexing support can be exploited for these cal-
culations.

SQL/MapReduce [Friedman et al. 2009] integrates map- and reduce-style func-
tions as new types of user-defined functions in distributed DBMSs. Data is handed
to these new functions partition by partition. As the partitions can be processed
independently of each other, the processing can easily be parallelised. Queries to
the system are formulated in SQL. The new functions can be used like tables in the
queries, allowing for an easy integration of MapReduce-style processing in DBMSs.

Several projects focus on optimising MapReduce applications. [Herodotou and
Babu 2011] perform automatic tuning of Hadoop’s job and system configuration pa-
rameters to suit a given application best. Manimal [Jahani et al. 2011] aims at optimis-
ing MapReduce applications using code analysis. They try to recognise the operations
performed in the map and reduce functions and extract hints for preprocessing the
input data set in order to speed up the actual processing.



4
S M A L L - S C A L E PA R A L L E L I S AT I O N

4.1 introduction

In Chapter 3, we presented the Pipelined MapReduce Framework as an approach to
large scale parallelisation of (tree) processing. This framework allows users to build
highly parallelised applications in a simple way. In this chapter, we will focus on par-
allel processing on a single host. Over the recent years, multi-core CPUs, combining
multiple processing cores on one dice, became the state-of-the-art. Hence, modern
commodity hardware provides the inherent capability of running multiple applica-
tions or threads in parallel.

Current MapReduce systems exploit these capabilities only in a very limited man-
ner. If the framework is configured properly, one map or reduce instance is executed
on each available core. While this is a straight-forward way of exploiting the available
hardware’s parallelism, it still leaves substantial room for improvements. We will dis-
cuss an alternative approach allowing better exploitation of the available resources in
detail in this chapter.

4.2 multi-core processors

For more than 30 years, Moore’s Law [Moore 1965] captured the constantly increasing
processing power of computer processors surprisingly well. With a growing number
of transistors per chip, the clock speed could rise continuously. Only recently, this
trend stopped, hitting most prominently the problem of heat emission.

Chip manufacturers thus switched to a new approach in order to further increase
the processing capabilities of processors. Instead of raising the capacity of a single
processing core, they started increasing the number of cores on a chip. While first
processors in this area contained two processing cores, current commodity chips al-
ready integrate up to 16.

By increasing the number of cores per chip, the overall processing power obviously
increases. However, from an application’s point of view, there are significant differ-
ences between increasing the speed of a single core, and increasing the number of
cores per chip. With the former approach, applications automatically profit from the
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enhanced capabilities of a new chip. Due to the increased clock rate, commands take
less time to complete, and the applications run faster.

With more cores available, however, applications will not automatically run faster,
as most applications are designed to use just one processing core. In order to be able
to run their code in a parallel fashion, they need to be modified manually. Only then,
the increased number of processing cores can be exploited. Parallelising an appli-
cation, i. e., modifying it accordingly, is a difficult and error-prone task. Therefore,
many applications do not immediately profit from multi-core processors.

Additionally, processing cores are not the only component of modern processor
chips. Very important additional components are two to three levels of caches, whose
goal is to significantly speed up main memory access. With single-core processors,
these on-chip caches were at the sole disposition of the one processing core on the
chip. With multi-core processors, multiple cores share the same cache. The actual
assignment of caches to cores depends on the processor design and ranges from
dedicated caches for each core to caches shared by all cores on the chip.

Ideally, all the data a processing core is working on (its working set) should reside
in cache. Otherwise, waiting times of several 100 cycles — so-called cache stalls — will
arise, in which a core is waiting for data it requires to continue its work. However,
the caches are quite small compared to typical modern main memory sizes. Table 4.1
exemplary shows the available cache levels and sizes of two modern multi-core pro-
cessors. In order to fully exploit the processing capabilities of these processors, it is
essential to have the working set readily available in the cache. The cache is filled
asynchronously by a cache prefetcher. The prefetcher tries to detect patterns in the
memory access of applications. It then places the items it expects the application to
access next in the cache. The prefetcher must decide quickly which data items to
load in order to keep up with the data processing speed. Therefore, it is only able
to detect simple access patterns like, e. g., sequential access. It is thus essential for
applications to access their data in a predictable and detectable way for the prefetch-
ing mechanism to accelerate the execution. This fact is emphasised also in [Albutiu
et al. 2012]. They give three “commandments” for scalable multi-core processing,
stating that main memory should be written (C1) and read (C2) sequentially, and
that fine-grained locking should be avoided (C3). Commandment C2 underlines the
importance of reading data sequentially such that the prefetcher can hide memory
access latencies.

With the processing scheme of current MapReduce systems, the caches are not
optimally exploited. Hadoop, e. g., can only be configured to execute one worker, i. e.,
a mapper or a reducer, per processing core. With this strategy, every core processes
a different part of the data set. Thus, every core has a different working set. Due to
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Intel Xeon E3 1280 AMD Opteron 6160 SE

Cores 4 12

L1 Cache 64 kB per core 128 kB per core

L2 Cache 512 kB per core 512 kB per core

L3 Cache 8 MB shared by all cores 6 MB shared by 6 cores

Table 4.1: Cache Structure of Modern Server Processors

the limited cache sizes, the cores will swamp out each other’s data from the caches,
causing each other an increased number of cache stalls.

In the following, we will propose an alternative approach for exploiting multi-
core processors for MapReduce style processing. This alternative takes into account
the cache architecture of modern processors and is thus able to provide significantly
better performance than current MapReduce systems. Thereby, it obeys the three
commandments for scalable multi-core processing stated in [Albutiu et al. 2012].

4.3 inter-operator parallelism

MapReduce style frameworks offer automatic parallelisation of data-intensive appli-
cations on clusters. The data is partitioned and different partitions are processed by
different workers, typically on different hosts of the cluster. Thereby, every worker is
executed in a dedicated process.

The same approach is applicable to multi-core machines as well. One worker is exe-
cuted on each processing core available, and each of them processes a different chunk
of data. This solution is chosen, e. g., by Hadoop. If configured accordingly, it runs
one worker process per processing core. Thereby, all available cores are exploited.

Recall that, in current MapReduce systems, both the map and the reduce algorithm
are provided by the user as a pre-compiled binary, e. g., a Java class or a shared library.
This binary is a black box to the execution framework. Running multiple workers in
parallel is thus the only feasible way for the framework to introduce multithreading
assuming the user provided code is single-threaded. As multi-core processors with
caches shared between processing cores become ubiquitous, however, it may become
beneficial to run a single worker in a multithreaded manner to exploit modern pro-
cessor architectures best.
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If the substeps of a worker are decoupled, each of them can be executed on a
dedicated processing core. Thereby, we form a processing pipeline on the worker,
with the cores sharing one working set. This intra-worker pipelining complements the
inter-worker pipelining we introduced in the preceding chapter. The issue remaining
to solve is how to detect the substeps of a worker and split the code appropriately.

The operator library introduced in Chapter 3 exhibits an additional benefit here.
The operators represent logically independent processing units. They employ tuple
streams as their inputs and outputs, and can be orchestrated by linking one opera-
tor’s output to the subsequent operator’s input. Thereby, they naturally constitute
processing units which can be executed in a multithreaded fashion in an operator
pipeline within the worker. Single operators, or sub-chains of a workers complete
operator chain, can then run in dedicated threads.

To support such execution, we introduce the local multithreading operator. This oper-
ator wraps the operator chain which runs within one worker. Each wrapped operator
(or operator sub-chain) will then run in a dedicated thread within the wrapper. Sub-
sequent wrappers are loosely linked via queues.

Example 4.1. Consider the two variants of the same workflow sketched in Figure 4.1 which
consists of six operators. This is the workflow for the first reducer of our frequent subtree min-
ing application variant presented in Section 3.4.3. The first operator loads the data obtained
from the mappers. The upper one of the two parallel sub-chains arranges the obtained nodes
according to the tree structure (op 2) and stores these trees (op 3). On the lower sub-chain, we
count (op 4), pre-aggregate (op 5), and store (op 6) the label frequency information.

The workflow variant in Figure 4.1a runs in a single-threaded manner, with operators
directly connected to each other. Figure 4.1b shows the same workflow, wrapped within the
local multithreading operator. The entire workflow is surrounded by a single “container”
operator. Within this container, the operators of the replaced workflow run in three threads.

The wrapper for a single operator is shown in detail in Figure 4.2. The wrapped
operator (sub-chain) runs in a dedicated thread. We assume pull-based operators.
Hence, the operator wrapper actively pulls tuples from the wrapped operator and
puts them into the output queue. The wrapped operator, in turn, pulls its input from
the preceding operator(s). Except for the operators loading data from disk, every
operator has such a predecessor. It resides either within the local multithreading
operator, or immediately precedes it. The data loading operators simply read data
from disk a tuple a time. After processing an input tuple, the wrapped operator
places the result tuple(s) in its output queue. The only exception to this scheme are
the operators storing the results of a workflow to disk. As these operators do not
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produce output tuples for subsequent operators, the operator wrappers around these
operators do not need to pull data.

We follow the three commandments for scalable multi-core processing in [Albutiu
et al. 2012] for determining implementation details and beneficial usage scenarios
for the local multithreading operator. We realise the queues linking the wrappers
as arrays. This permits us to obey both commandments C1 and C2, as data is read
and written in a strictly sequential manner when exchanged between threads. For the
usage scenarios, we envision to run independent (i. e., parallel) operator sub-chains in
dedicated threads. Thereby, we follow commandment C3. As the parallel sub-chains
do not interfere with each other, no fine-grained synchronisation is required.

4.4 cache friendly data structures

With the local multithreading operator introduced above, we can efficiently use the
available processing cores and caches of modern multi-core processors building op-
erator pipelines. Data items are loaded into the cache as they enter the pipeline, and
ideally remain within the cache until they passed the entire pipeline.

For efficient processing on multi-core processors, it is also important to avoid cache
stalls as new data items enter the working set. As already explained in Section 4.2,
the cache prefetcher aims at detecting memory access patterns of the application and
loads the data it expects the application to access next into the cache. The application
can then read its data directly from the cache, avoiding waiting times of several 100

processing cycles while the data is transferred from main memory to the cache. With
the clock rates of modern processors, the time the prefetcher can spend on the detec-
tion of memory access patterns is very limited. Therefore, the prefetcher is only able
to detect simple access patterns.
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Data in the caches is accessed a cache line a time. On modern processors, cache lines
typically have a size of 64 bytes. At this same granularity, the cache prefetcher tries
to detect access patterns for the prefetching.

In order for the prefetching to obtain the best results, the data must be accessed
in patterns which are easy to detect on cache line granularity, e. g., sequentially. The
data passed between operators and, even more important, between workers, should
therefore be serialised appropriately. This is especially important for tree data. Ob-
ject structures representing the trees one object a node offer comfortable access to the
data from a user’s perspective. Due to the heavy use of pointer structures in typical
realisations of such structures, the low-level data access patterns produced by such
structures can often not be detected by the prefetcher. They thus result in rather poor
performance as compared to optimised low-level data structures. This is again em-
phasised by commandments C1 and C2 for scalable multi-core processing in [Albutiu
et al. 2012], as well as by the micro-benchmarks motivating these commandments.

In our frequent subtree mining application, we represent the trees using a pre-order
serialisation stored in a byte array. This allows us to sequentially read the tree data
when building the intermediate structure in the bi phase of our workflow. Together
with the local multithreading operator employed, e. g., in the situation described in
Example 4.1, exploiting modern multi-core processors best possible.

4.5 related work

Over the last years, analyses of the behaviour of MapReduce style frameworks on
different platforms, including several multi-core systems, were presented.

The Phoenix project [Ranger et al. 2007] investigates MapReduce on single multi-
core and multi-processor machines. In contrast to our work, they do not consider
pipelining over the cores of a multi-core processor for avoiding cache conflicts. Every
core runs an independent worker thread. They solve the caching issue by sizing work-
ing sets such that the data processed by all cores of a chip fits into the caches of that
chip. With current cache sizes, this leads to working sets which are clearly smaller
than 1 MB. Accordingly, for large data sets, the number of map and reduce tasks
increases drastically, compared to standard MapReduce systems where the working
sets of mappers typically range from 256 MB to 1 GB. Running each of these tasks in a
dedicated thread would incur a huge thread management overhead. Phoenix dimin-
ishes this problem by running continuous worker threads and assigning the tasks to
worker threads dynamically. Nonetheless, the work required for sorting and merging
both the results of the job, and the intermediate (key,value) pairs, increases with the
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number of map and reduce tasks. For the data sets used for evaluating the Phoenix
system, which scale up to 1.5 GB, this overhead is still tolerable. For e-science scale
data sets, however, we consider such small working sets infeasible.

The follow-up project, Phoenix Rebirth [Yoo et al. 2009], considers large-scale shared-
memory systems with non-uniform memory access (NUMA) characteristics. In or-
der to minimise the number of distant memory accesses, they create locality groups,
which aim at keeping the processing close to the data. A work stealing approach
is employed to balance the workload in case the locality groups would cause imbal-
anced system utilisation. Moreover, they adapt the internal data structures to suit
the large number of concurrent threads in a NUMA system better. In contrast to our
approach, which is targeted at a cluster of worker nodes, Phoenix Rebirth is tailored
to one large system.

A number of publications discusses MapReduce on systems with mixed processor
architectures, such as systems equipped with accelerator boards. As with multi-core
processors, a central aspect in these systems is memory management.

The Mars framework [He et al. 2008] realises a MapReduce framework on graphics
processors (GPUs). Modern GPUs are equipped with about 1 GB of memory which
is connected at very high bandwidth to the processing cores. However, they have
no automatic memory management, and no support for direct I/O to hard disks or
network. Therefore, the Mars framework has to manually manage the memory of the
GPUs. As a drawback of this solution, the size of the outputs of map and reduce
tasks must be known beforehand in order to reserve a sufficient amount of memory
for the results, and to avoid write conflicts between the processing cores of a GPU.
The output sizes must be determined by the user of the framework. In a worst-case
scenario, this could require to run each mapper and each reducer twice: first for
calculating the result volume, and then for emitting the actual results.

Merge [Linderman et al. 2005] aims at distributing a MapReduce workload over
processors of different architectures, e. g., GPUs and multi-core general-purpose pro-
cessors. They employ a recursive divide-and-conquer approach for determining the
size of working sets. Data sets are repeatedly split into smaller subsets until they can
be handled by the available processing cores.

Besides GPUs, the Cell Broadband Engine (Cell/B.E.) has gained attention as an
accelerator board for MapReduce applications. IBM proposes a MapReduce frame-
work for their QS20 blade servers which comprise Cell/B.E. processors [de Kruijf
and Sankaralingam 2009]. While the Cell/B.E. processors provide a more general
instruction set than GPU cores, the memory must still be managed by software. In
order to provide the Cell/B.E. processors with a continuous stream of data to process,
IBM employs a double buffering approach for copying data between the system’s
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main memory and the memory on the accelerator. In their evaluation, they classify
MapReduce applications according to the computational intensity of the phases of a
job. Regrettably, they consider reduce-intensive applications — the common scenario
in e-science — a rarely occurring configuration and do not evaluate them further.

An other project [Rafique et al. 2009] considers clusters of Cell systems. The con-
sidered environment consists of a powerful cluster head-node, orchestrating a set of
worker nodes with possibly only small amounts of memory. They propose a man-
agement infrastructure of two layers, where the cluster head-node can delegate some
management tasks to intermediate manager instances co-located with every worker
node. Memory management is tackled by an adaptive partitioning approach. They
assign working sets of varying sizes to the first mappers and reducers to start, and
subsequently adapt the working set size in order to minimise the processing time
per data element. In contrast to our local multithreading operator which allows to
run a single worker using multiple threads, they run an independent worker on each
processing core of the Cell system.





5
T R E E L AT I N : A S C R I P T I N G A P P R O A C H T O ( D I S T R I B U T E D )
T R E E P R O C E S S I N G

5.1 introduction

In the preceding two chapters, we described a pipelined distributed data processing
framework with explicit support for multi-core worker nodes. This framework allows
us to efficiently execute data-intensive applications processing both “flat” and tree
structured data.

So far, the user interface to the framework consists of a Java API. The user provides
classes containing the actual data processing instructions to execute on the workers.
This represents a feasible low-level interface. However, it is not really comfortable
especially for non-expert users, as they need programming experience in order to use
the system.

The operator library we introduced in Chapter 3 is a first step towards a higher
level interface. The users chain predefined operators in order to obtain the desired
processing pipeline. Nonetheless, the users are still required to provide at least some
glue logic to connect the operators. This becomes challenging especially in combina-
tion with the multithreading wrapper operator presented in Chapter 4, where frag-
ments of the constructed workflow must be nested within the wrapper. Additionally,
the operator arrangement within the constructed workflows must still be optimised
manually.

We address these shortcomings in the following. We will define a scripting lan-
guage, TreeLatin, with built-in support for processing tree structured data sets. With
this language, we achieve two goals. First, it represents a user-friendly interface to
the underlying execution framework. Second, it allows for automatic optimisation of
the data processing pipeline while compiling the script into an operator chain.

5.2 pig latin

Dedicated scripting languages for distributed execution have recently gathered sub-
stantial popularity. Typically, these languages offer a set of data manipulation in-
structions similar to that of relational database management systems, including pro-
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jections, selections, grouping and joins. All these instructions are side effect free.
With this precondition, the instruction set allows to only write applications which
can automatically be executed in a massively parallel fashion. The simplicity of these
languages which hide all parallelisation and synchronisation aspects from the user
has made them a very popular data analysis tool of choice especially for many “Web
2.0” enterprises like Facebook, Google, Microsoft or Yahoo!. Among the first of these
languages, there was Pig Latin [Olston et al. 2008, Gates et al. 2009], a project of the
Apache Software Foundation originating from Yahoo!.

Pig, the framework around the Pig Latin language, includes a data model which
helps users to keep track of their data along the processing steps. The data model
comprises three basic data types.

atomic values Atomic values are the primitive data elements in Pig. They include
integers, floating point values, single characters, and character arrays.
Examples: 1, 5.7, ’a’, ’hello’

tuples Similar to entries in relations in a relational database management system,
data items can be arranged in tuples. We will denote tuples by surrounding
their elements with square brackets.
Examples: [1, 5, ’b’], [5.3, ’abcde’]

bags Multiple data items can be placed in a bag or multiset. This roughly corre-
sponds to tables in the relational model [Codd 1970]. In contrast to relational
database management systems, the data items in a bag do not need to adhere
to the same schema. It is possible to place tuples of different structure, possibly
even mixed with plain atomic values, into one bag. We will denote bags by
surrounding their elements by curly brackets.
Examples: { 1, 4 }, { 2.7, [’a’, ’nested tuple’], { ’nested bag’ } }

The schema of a data set is specified at load time, i. e., in the beginning of a Pig
Latin script. Pig then transforms the schema as operations are applied to the data set,
aiding the users to keep track of their data.

Pig Latin provides statements for basic operations, such as loading and storing
data and performing projections, selections and grouping, as well as inner and outer
equijoins.

Example 5.1. Consider a sales data set with schema

{[customer, day, month, year, country, totalprice]} .
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For a statistical analysis, we are interested in the country and price of all orders from 2011.
The Pig Latin script in Algorithm 5.1 extracts this data from the base data set.

Algorithm 5.1 Selection and Projection in Pig Latin

1: sales = LOAD ’/sales’ AS (customer,day,month,year,country,totalprice);
2: sales11 = FILTER sales BY year == 2011;
3: sales11ct = FOREACH sales11 GENERATE country, totalprice;
4: STORE sales11ct INTO ’/sales11ct’;

For this Algorithm, Pig tracks the following schema information. In the LOAD statement
(line 1), the user provides the initial schema of the data set. The selection applied in line 2 does
not modify the schema. In line 3, we apply a projection discarding all but two attributes. The
resulting data set sales11ct thus has schema

{[country, totalprice]} .

Finally, the STORE operation does not create a new data set and hence no schema is derived.

For complex operations, user-defined functions (UDFs) can be included in almost
any statement. Similar to relational database systems, UDFs can be used for calcula-
tions on single attribute values, or for computing aggregates. Moreover, UDFs in Pig
Latin can return complex structures like tuples, bags, or arbitrary nestings thereof.
Finally, UDFs can be used in the statements for reading and writing data from re-
spectively to disk in order to support user specific file formats. By nesting bags of
items within each other, we can build hierarchical data structures.

Pig allows to arbitrarily nest data items within each other. Not only is it possible to
place arbitrary items in bags. It is also allowed to nest tuples and bags within tuples.
We will exploit this possibility for representing the structure of tree data sets. This
aspect of Pigs data model roughly corresponds to NF2 models in databases [Schek
and Pistor 1982].

Pig Latin’s GROUP operation places all the tuples belonging to the same group within
a bag. Thereby, the GROUP statement has different semantics than a GROUP BY operation
in SQL. In SQL, the result of a GROUP BY operation contains one tuple for each combi-
nation of values of the attributes on which the grouping is performed. All attributes
not present in the GROUP BY clause may only be used in aggregate operations. The
single values are no longer accessible after the group operation was applied. Pig cre-
ates one tuple per group attribute combination as well. Each of these tuples gets a
new, additional attribute besides the group attributes. This attribute is a bag holding
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data set schema

sales11ct {[country, totalprice]}

bycountry {[group, sales11ct: {[country, totalprice]}]}

res {[country, volume]}

Table 5.1: Tracked Schema Information for Algorithm 5.2

all the input tuples belonging to that group. Not only is it henceforth possible to
apply aggregation operations per group (as it is in SQL) in subsequent statements of
a Pig Latin script, but every single tuple is preserved and may be further processed
individually. Moreover, by preserving each single tuple, it is possible to revert group-
ing operations. We can do so by applying the FLATTEN operator. Applied to a bag of
tuples, it removes this bag container, thus cancelling the grouping, and returns each
contained tuple individually. As a side effect of this semantics of the group operation,
in contrast to SQL, grouping data in Pig does not reduce the data volume as all tuples
are preserved.

Example 5.2. In Example 5.1, we prepared sales data for an analysis. Now, we are interested
in the total order volume per country for the year 2011. In order to calculate the values of
interest using Pig Latin, we first need to group the data by country. Then, we can sum up
the prices of the single orders in each group. The Pig Latin script in Algorithm 5.2 calculates
these values from the data set we generated in Example 5.1.

Algorithm 5.2 Grouping and Aggregation in Pig Latin

1: sales11ct = LOAD ’/sales11ct’ AS (country,totalprice);
2: bycountry = GROUP sales11ct BY country;
3: res = FOREACH bycountry

GENERATE group AS country, SUM(sales11ct.totalprice) AS volume;
4: STORE res INTO ’/sales11bycountry’;

The tracked schema information for this script is shown in Table 5.1. Note that the GROUP

operation implicitly names the group attribute group. The name of the bag containing the
grouped tuples is inherited from the input data set to the GROUP operation.
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5.3 representing tree data with pigs data model

Pig Latin provides a comfortable way for defining a workflow for massively parallel
execution using high-level procedural statements. The expressiveness of the readily
available processing statements is perfectly suitable for scenarios like large scale log
file analysis, where data is filtered, projected and aggregated. Scientific processing of
tree structured data poses additional requirements on a language to allow for simple
and comprehensible scripts. As this thesis focuses on processing tree structured data,
we aim at processing this type of data in an equally comfortable way. There are two
approaches for representing tree data in Pig in order to allow for reasonably simple
processing.

1. We can group all the nodes belonging to the same tree using Pig’s GROUP op-
eration. Every subsequent operation then gets a bag of nodes representing a
complete tree as input. Operations to which the tree structure is not relevant
can then simply iterate over all tree nodes. Such operations comprise, e. g.,
counting the nodes of a tree, or summing up values of all nodes in a structure-
independent manner. If the operations, however, need to work on the actual tree
structure, they must arrange the tuples accordingly on their own. Summing up
values for each bottom-up subtree is an example for such an operation.

2. We can explicitly build the actual tree structure exploiting Pig’s nested data
model. Then, subsequent operations do not need to arrange the nodes by them-
selves, but can simply traverse the tree exploiting the data structure provided as
input. We choose this option for two reasons. First, it clearly separates the op-
erations building the tree structure from the tree processing. Second, it allows
for simpler realisations of tree processing operators which take into account
the tree structure. We expect this to be the prevalent type of operators in tree
processing applications.

5.3.1 Nested Tree Data Representation

Employing only the statements Pig provides out of the box, it is rather difficult to
create hierarchical data structures of arbitrary depth out of “flat” ones, and to process
them.

We represent tree nodes as tuples. All elements of such a tuple but the last one
contain the actual node data. The last element of the tuple is a bag containing the
child nodes of the current node. For leaf nodes, the bag is empty. This way, we obtain
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Figure 5.1: Sample Trees

a nested representation for subtrees. We represent an entire tree as a 2-tuple, with
the tree identifier in the first component, and the tree’s nodes, arranged as described
above, in the second component. We name this representation of tree data nested tree
representation.

Example 5.3. Consider the two trees in Figure 5.1. The letter within each node is the node
identifier. The value attached to the node is its weight (i. e., an additional attribute besides the
node identifier available for each node). We represent these trees in nested tree representation
as



T1,

a, 3,


[b, 8, {}][

c, 5,

{
[d, 3, {}]

[e, 6, {}]

}]



[
T2,

[
f, 5,

{
[g, 7, {}]

[h, 6, {}]

}]]


.

The nested representation explicitly reflects the tree structure. It allows us to di-
rectly map operations on the tree structure (e. g., finding all child nodes of the current
node) to operations in the data model. This allows us to write intuitive and easily
understandable tree processing statements.

The nested data representation also allows us to reduce the data volume. Parent-
child relations are implicitly represented by nesting the child nodes within the parent
node. Hence, there is no need to store references to parent and/or child nodes, as,
e. g., in relational representations of tree structured data. Moreover, attributes which
are constant throughout a tree need not be stored with every node, but only once per
tree. An example for such an attribute is the tree identifier associated with every tree
node.
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5.3.2 Schema Modifications

Recall that Pig keeps track of the schema of data sets throughout a script. With our
nested tree representation, this would require the schema information to be nested as
deep as the trees.

Example 5.4. Consider the trees in Example 5.3. Using Pig’s metadata model, the schema of
the tree data set is

{[treeid, nodegroup : [nodeid, weight,

nodegroup : {[nodeid, weight,

nodegroup : {[nodeid, weight,

nodegroup : {[nodeid, weight]}

]}

]}

]]} .

We see that the schema information becomes rather complex even for the small
trees in this example. Moreover, the same tuple schema is repeated again and again.
In order to avoid this nesting of metadata, we extend the tuple schema of Pig by a
boolean flag to indicate nested tree representation. This flag is set on the tuple schema
of the root node of a tree data set. It indicates the tuple contains, in its last element, a
bag in which tuples of the same structure can be nested to arbitrary depth. We denote
this flag by appending a T subscript to the tuple schema if and only if the flag is set.
The element of the tuple containing the nested tuples is omitted when denoting the
schema.

Example 5.5. With this schema extension, the schema of the tree data set in Example 5.3 is

{[treeid, nodegroup : [nodeid, weight]T ]} .

5.4 tree processing statements

Although we can now intuitively represent trees using a slightly adapted version of
Pig’s data model, Pig Latin does not provide suitable statements for both bringing
data into this format efficiently, and processing trees in this format node by node
following the tree structure. Grouping and flattening operations add or remove only
one level of nesting. There is no suitable loop statement for iterating over the nodes
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of a tree, and no possibility of writing recursive scripts. Therefore, trees of previ-
ously unknown height cannot be handled using plain Pig Latin. In the following, we
provide a set of new statements extending Pig Latin, which are focused on – but not
limited to – handling trees. Due to its main focus, we call the resulting new language
TreeLatin. The new statements are presented in the following.

5.4.1 Constructing Trees

For tree structured data, two storage layouts are common. The first is to store an
entire tree within a single data item. The most representative example for this rep-
resentation is XML, where each document is a tree. The second storage layout is to
store each tree node separately. This layout is often used when trees are stored within
a relational database management system. Each node typically contains, in addition
to its payload, either a reference to its parent node, or a reference to the first child
node and to the last descendant node (the nested sets representation).

One Tuple Per Tree

When loading tree data stored one tree per tuple, we can employ a UDF to transform
the data into the representation introduced above. This UDF can be used either di-
rectly within the LOAD statement, or in a projection statement inserted between loading
the data and processing the trees. The latter method can be advantageous especially
if preprocessing steps can operate directly on the encoded representation.

Example 5.6. Consider the tree data set shown in Figure 5.1. Suppose we have an XML
document containing this data set, one tree per tuple, according to the following DTD.
<!ELEMENT node (id, weight, node*)>

<!ELEMENT id #PCDATA>

<!ELEMENT weight #PCDATA>

We are interested in the number of child nodes each root node in our data set has. Algo-
rithm 5.3 extracts this information from the data set in nested tree representation.

Algorithm 5.3 Filtering Data After Deserialisation

1: tree = LOAD ’/xmltrees’ USING XmlToTreeLoader;
2: rootchildcount = FOREACH tree

GENERATE node.id, COUNT(node.node) AS childcount;
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In a second application, we are only interested in trees containing nodes with weight 7. We
can recognise these trees by string matching on the serialised data representation. Thereby, we
avoid deserialising all trees we are not interested in. The script in Algorithm 5.4 solves this
problem.

Algorithm 5.4 Filtering Data Before Deserialisation

1: treexml = LOAD ’/xmltrees’ AS (xmldata);
2: weight7 = FILTER treexml BY Contains(xmldata, “<weight>7<”);
3: tree = FOREACH weight7 GENERATE XmlToTree(xmldata);

One Tuple Per Tree Node

If data is stored one node per tuple, we have multiple possibilities for transforming it
into nested tree representation.

First, for a data set where the maximum tree height is known beforehand, we can
use a series of Pig Latin’s GROUP statements, constructing the trees level by level, as
the following example shows.

Example 5.7. Consider the trees in Figure 5.1. With node schema

[nodeid, parentid, treeid, weight]

the data set containing all nodes from both trees is

nodes = { [a,⊥, T1, 3] , [b,a, T1, 8] , [c,a, T1, 5] , [d, c, T1, 3] ,

[e, c, T1, 6] , [f,⊥, T2, 5] , [g, f, T2, 7] , [h, f, T2, 6]}

where ⊥ symbolises the empty parent node reference of the root nodes. The Pig Latin script
in Algorithm 5.5 transforms this data set into nested tree representation (however, every node
still contains the parentid attribute).

In line 1, we load the node data set. As we do not want to include the treeid attribute in
every node, we create a copy of the node data set not containing this attribute in line 2. We
group all nodes sharing the same parent node in line 3. Next, we join these node groups with
the node data set bringing the groups together with their parent node (line 4). Using a left
outer join, we also preserve nodes without child nodes. In line 5, we adapt the attribute names
to the definition of the nested tree representation. The data set cleaned1 contains all subtrees
of height 1 and 2.

In lines 6 to 8, we repeat the statements from lines 3 to 5 in order to obtain subtrees of
heights up to 2. For every additional level, we need to repeat those three lines of code again.
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Algorithm 5.5 Transforming a Data Set in Nested Tree Representation using Pig Latin

1: fullnode = LOAD ’/nodes’ AS (nodeid,parentid,treeid,weight);
2: node = FOREACH fullnode GENERATE nodeid, parentid, weight;
3: nodegroup1 = GROUP node BY parentid;
4: level1 = JOIN node BY nodeid LEFT OUTER , nodegroup1 BY group;
5: cleaned1 = FOREACH level1

GENERATE node::nodeid AS nodeid, node::parentid AS parentid,
node::weight AS weight, nodegroup1::node AS node;

6: nodegroup2 = GROUP cleaned1 BY parentid;
7: level2 = JOIN node BY nodeid LEFT OUTER , nodegroup2 BY group;
8: cleaned2 = FOREACH level2

GENERATE node::nodeid AS nodeid, node::parentid AS parentid,
node::weight AS weight, nodegroup2::cleaned1 AS node;

9: complete = FILTER cleaned2 BY parentid == ⊥;
10: tree = COGROUP fullnode BY nodeid, complete BY nodeid;
11: nested = FOREACH tree

GENERATE FLATTEN(fullnode.treeid) AS treeid, cleaned2 AS node;

With n iterations, we obtain all subtrees of heights up to n+1. Note that, in each iteration,
we need to use different data set names, as every name might be used only once within a Pig
Latin script.

The data set cleaned2 which we obtain after two iterations contains all subtrees of heights
1, 2 and 3, i. e., both the trees T1 and T2, and all of their bottom-up subtrees. Filtering on
the parent id of the root node in line 9, we preserve only the full trees T1 and T2. Finally, in
lines 10 and 11, we add the treeid to each tree.

Besides the required prior knowledge of the maximum tree height, this approach
suffers from the fact that Pig’s current optimiser would generate one MapReduce
task for each (CO)GROUP and JOIN statement. Hence, this approach will perform rather
poorly.

Example 5.8. Pig compiles the script in Algorithm 5.5 to a sequence of 5 MapReduce tasks,
as it contains two GROUP statements, two JOIN statements, and one COGROUP statement. Every
additional iteration, i. e., every additional level of the trees, adds two MapReduce tasks.

A MapReduce system enhanced by a loop control mechanism, HaLoop, was pre-
sented in [Bu et al. 2010]. The HaLoop system allows to re-execute a sequence of
MapReduce tasks until their results converge to a given fixed point, or for a prede-
fined number of times. Moreover, data sets can be pinned to reducers for the duration
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of a loop execution. A pinned data set is distributed to a set of hosts by partition-
ing it according to some attribute values, just like typical data redistribution between
mappers and reducers. The pinned data set is then cached on these hosts, such that
it needs to be distributed during the first loop iteration only. Later iterations pre-
fer to use the same hosts, thereby avoiding to re-distribute the pinned data set. We
can exploit this system for building our nested tree representation in a loop. Us-
ing a fixpoint as loop termination condition, we could even build trees of previously
unknown height using HaLoop. Nonetheless, we still require one iteration per tree
level, which is very expensive. A single, very high tree in the data set may cause an
excessive number of iterations just to build the tree data structure.

Second, we can employ a single GROUP statement for bringing together all nodes
belonging to the same tree, followed by a projection calling a UDF within the reducer.
This UDF transforms a group of tuples into a tree in nested tree representation. We
would thus avoid the problem of having one MapReduce task per tree level, as before.
Depending on the implementation of the UDF, it is also possible to handle trees of
arbitrary height with plain MapReduce. However, developing UDFs is more complex
and more error-prone than using available language constructs. Moreover, we would
need to generate both the result schema, and the actual nested data items manually
within the UDF. Both these tasks are non-trivial and should not be burdened to the
user.

We introduce TreeLatin’s FOREACH...NEST statement as the third way for creating a
nested tree data set. The statement takes a grouped data set as its input. Each group
contains the nodes of one tree. We can create such a grouped data set using Pig’s
GROUP statement. The result of the FOREACH...NEST statement is a data set containing
the trees in nested set representation. We define the syntax of the FOREACH...NEST

statement as

<res> = FOREACH <ds> NEST <ng>
BY CONNECTING OUTER <att1> WITH INNER <att2>
[TREES IDENTIFIED BY <att3>]

Thereby, att1 is the node identifier, att2 holds the reference to the parent node,
and att3 is the tree identifier. This statement (including the optional TREES clause)
transforms a data set

ds : {[group : [group attributes], ng : {[att1, att2, att3, . . . ]}]}

(i. e., the result of a preceding GROUP operation) into the nested tree representation

res : {[att3, ng : [att1, . . . ]T ]}
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where “. . . ” stands for an arbitrary number of attributes on each tree node in the
input data set ds (i. e., the payload of each tree node) which are not touched by the
nesting operation. The ds attribute of the resulting data set res is the root node
of a tree in nested tree representation. The attribute att2 is not part of the result.
This attribute contained the “reference” to the parent node, which is now implicitly
expressed by the data set structure. Note that, as we stick to Pig’s naming scheme
and name inheritance rules, each subtree in the res set will be named ng.

The optional TREES clause can be employed to extract attributes which have constant
values within a tree, e. g., a unique id of the tree. The res data set shown above
assumes the clause was present. If we processed the same data set omitting the
clause, the result would have been

res : {[[], ng : [att1, att3, . . . ]T ]} ,

i. e., the attribute att3 would still be contained in every tree node.

Example 5.9. Consider again the trees in Figure 5.1 and the corresponding node data set
nodes introduced in Example 5.7. In order to transform this data set into nested tree repre-
sentation, we first need to group the nodes such that all nodes belonging to the same tree are
contained in the same bag:

nodegroup = GROUP nodes BY treeid;
We obtain the data set

nodegroup =




T1,



[a,⊥, T1, 3]

[b,a, T1, 8]

[c,a, T1, 5]

[d, c, T1, 3]

[e, c, T1, 6]




,

T2,


[f,⊥, T2, 5]

[g, f, T2, 7]

[h, f, T2, 6]





with schema

nodegroup : {[group, nodes : {[nodeid, parentid, treeid, weight]}]} .

Employing the FOREACH...NEST statement, we then transform the data into nested tree
representation.

ts = FOREACH nodegroup NEST nodes
BY CONNECTING OUTER nodeid WITH INNER parentid
TREES IDENTIFIED BY treeid;

The result of this operation is a data set named ts. Its contents are shown in Example 5.3.
They adhere to the schema we derived in Example 5.5.
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5.4.2 Flattening Trees

In some situations, it may become necessary to convert a data set from nested tree
representation back to a flat representation. This might be the case, e. g., when a
TreeLatin script is used to prepare data to be loaded into a database. We introduce
the FOREACH...UNNEST statement to perform this task. It converts a data set from our
nested tree representation back to a simple, grouped data set. The syntax is

<res> = FOREACH <ds> UNNEST <ng> NODE ID IS <att1>

With this statement, we could thus revert the data sets res from above back to ds.

Example 5.10. Consider the data set ts in nested tree representation, shown in Example 5.3,
we constructed in Example 5.9. By applying the operation

unnest = FOREACH ts UNNEST nodegroup NODE ID IS nodeid;
to this data set, we obtain a new data set unnest with the same contents and schema as the
data set nodegroup from Example 5.9.

5.4.3 Processing Trees

When working with trees, there are three frequent processing patterns.

1. A function is applied to an entire tree. In Pig Latin, this operation can be
realised using the FOREACH...GENERATE statement on a data set in nested tree
representation. As each tree is a single data item, we obtain the desired result.

2. A few nodes at well-known positions within the tree are accessed. With simple
access patterns (e. g., all children of the root node, as in Algorithm 5.3), this is
again possible using Pig Latin.

3. A function is applied to each single node of a tree, or the nodes to which a
function must be applied can not be determined easily by position. We will
focus on this scenario in the following.

If the processing is independent of the actual tree structure, processing trees node
by node is also possible using Pig’s FOREACH...GENERATE. We can then simply UNNEST

the trees beforehand in order to obtain a data set containing all tree nodes, grouped
by tree, and apply the processing on the unnested data set. If the tree structure is
relevant to the processing — which we assume to be the common case for TreeLatin
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applications —, this approach would ignore the benefits of the nested tree representa-
tion. This representation allows to intuitively traverse a tree. We exploit this property
and introduce a loop statement and a corresponding operator for iterating over all
nodes of a set of trees each represented in the nested data set structure.

<res> = FOREACH <ts> FOREACH <ng> [TRAVERSE <order>] GENERATE . . .

This statement processes a tree data set ts, visiting each node of each tree in the
order specified in the TRAVERSE clause. For every node, the GENERATE list is processed
in order to obtain a result tuple, exactly like the “ordinary” FOREACH...GENERATE state-
ment does for flat data sets. Depending on the performed task, different tree traver-
sals might be necessary or preferable.

Example 5.11. Consider an application which wants to annotate each tree node with its
number of descendants. A bottom-up traversal is best in this scenario. We start with the leaf
nodes, which have 0 descendants each. For each inner node, we can sum up the number of
children and their already computed number of descendants.

On the other hand, an application calculating the distance of each node to the root node of
its tree will be best served with a top-down traversal. We start at the root node, which has
distance 0, and proceed towards the leaves, calculating each node’s distance as the distance of
its already processed parent node plus 1.

The traversal can be specified using the optional TRAVERSE clause in the tree traversal
statement. The nodes of every tree are then processed in the specified order. As can
be seen in the preceding example, access to the results of previously processed nodes
can be helpful. Therefore, we provide them as context information when processing a
tree node. Depending on the traversal, different context information is available. The
traversals predefined by TreeLatin are:

top-down Using this traversal, processing starts at the root node of each tree and
proceeds towards the leaves. No node is processed before its parent node has
been processed. For sibling nodes, no processing order is defined. Nodes in dis-
joint subtrees of a single tree may even be processed in parallel, as long as their
common ancestor nodes have been processed before. The context information
for this traversal consists of the parent node and its processing result.

bottom-up This traversal starts at the leaf nodes of each tree and proceeds towards
the root. A node is processed only when all its child nodes were already han-
dled. Again, nodes in disjoint subtrees may be processed in arbitrary order, but
they have all to be processed before processing their common ancestors. The
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context information consists of all the current node’s immediate child nodes
and their processing results.

depth-first This traversal starts at the root node of each tree, and proceeds by
traversing it in a depth-first manner. In contrast to the above traversals, the
nodes of a tree are guaranteed to be visited sequentially. Sibling nodes are
visited in the order they appear in the data representation, i. e., a sort order
introduced by the user is respected by the traversal. (Note that, similar to the
rows of a table in a relational database management system, the elements of a
bag may be sorted.) Each node of a tree is visited twice: once when passing it on
the way from the root towards the leaves below that node, and once on the way
back. The context in this traversal consists of the pass value which indicates
whether a node is visited for the first (pass = 1) or for the second (pass = 2)
time, and the processing results already generated for the tree.

Additional traversals may be implemented by the user as necessary. The traversal
handler obtains a tree and places single nodes in a processing queue as the precondi-
tions for processing them are met.

If no TRAVERSE clause is given, the tree nodes are not visited in any particular order.
It behaves thus similarly to processing each node of a tree independently, as described
before. Using the FOREACH...FOREACH...GENERATE statement in such a scenario can,
however, improve on processing performance even in this scenario, as there is no
need to explicitly decompose the trees to single nodes beforehand.

For UDFs employed in TreeLatin’s tree traversal statement, we extended Pig’s UDF
interface by an additional argument: a data bag providing context information.

From the GENERATE list, the context is accessible using the keyword context, analo-
gously to accessing the current node, as the following example shows.

Example 5.12. Consider the data set ts defined in Example 5.9. The following statement
calculates the distance of each node to the root node of its tree. We start at the root node of
each tree with distance -1+1=0 and increase the distance by 1 with every step towards the
leaves.

r1 = FOREACH ts FOREACH nodegroup
TRAVERSE top-down
GENERATE nodeid, treeid, COALESCE(context.distance,-1) + 1 as distance;

The resulting data set r1 is

r1 = {[a, T1, 0] , [b, T1, 1] , [c, T1, 1] , [d, T1, 2] , [e, T1, 2] , [f, T2, 0] , [g, T2, 1] , [h, T2, 1]}
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Figure 5.2: Tree Traversal Operator

From the same data set ts, we now want to calculate the weight of every bottom-up subtree
of each tree. For the leaf nodes, the subtrees’ weight is just their own weight. Then, proceeding
towards the root node, each subtrees’ weight is its root nodes’ weight plus the weight of all
bottom-up subtrees rooted in the children of its root node.

r2 = FOREACH ts FOREACH nodegroup
TRAVERSE bottom-up
GENERATE nodeid, treeid, nodegroup.weight + SUM(context.weight) AS weight;

r2 = {[e, T1, 6] , [d, T1, 3] , [c, T1, 14] , [b, T1, 8] , [a, T1, 25] , [h, T2, 6] , [g, T2, 7] , [f, T2, 18]}

The operator implementing the tree traversal operation is sketched in Figure 5.2. It
consumes one tree at a time, and outputs the processing results for each tree node.

The operator consists of one controller and a flexible number of workers. The
traversal, representing the core part of the controller, obtains the tree to process. It
schedules the nodes for processing as soon as the dependency constraints of the
traversal allow to. Nodes are scheduled for processing by placing them, along with
their context information, in the worker queue. The workers fetch items from this
queue and process them. The processing results are then stored in the controller
queue. From this queue, the controller learns which tree nodes completed processing,
allowing it to schedule the next nodes for processing as their dependencies are met.
Moreover, the contents of the controller queue form the processing result of the tree
traversal operator.

Complementing the inter-operator multithreading presented in Section 4.3, the tree
traversal operator enables intra-operator parallelisation. Independent nodes of the
same tree can be processed in parallel by different worker threads. The notion of
independence thereby depends on the tree traversal employed. For the bottom-up and
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top-down traversals, bottom-up subtrees rooted in sibling nodes are independent.
For the depth-first traversal, no two nodes of a tree are independent of each other.

Example 5.13. Consider tree T1 in Figure 5.1 being processed using a top-down traversal.
The first node to be scheduled for processing is the root node a. As soon as this node is
processed, both its child nodes, b and c, are scheduled for processing. The bottom-up subtrees
rooted in these two nodes can be processed independent of each other.

5.5 multithreading blocks

In Section 4.3, we introduced the inter-operator multithreading operator. This op-
erator allows us to run chained operators within a worker using multiple threads.
TreeLatin operators are similar to the library operators in that they are composed in
operator chains in a workflow. Therefore, as with the library operators, we consider
running the TreeLatin operators from a chain in dedicated threads each.

The multithreading operator is a container within which other operators are placed.
Therefore, we denote it as a block containing the operator chain which is to be exe-
cuted in a multithreaded manner.

<var> = {
<statements>;
RETURN <statement>;

} ;

Within such a multithreading block, all TreeLatin statements can be used as usual.
There is, however, no data exchange between the hosts involved, but only between
the threads of a single host. The last statement of a multithreading block is a RETURN

statement instead of an assignment. The result of this last statement is stored in the
variable the entire block is assigned to.

Example 5.14. From the sales data set introduced in Example 5.1, we want to find our most
valuable customers, i. e., customers being responsible for 5% or more of a month’s revenue,
along with the number of months in which they exceeded this threshold. The plain Pig Latin
script solving this task is given in Algorithm 5.6. The resulting workflow is shown in Fig-
ure 5.3. We first calculate the total monthly revenue by partitioning the data set by month
(line 2) and then summing up all the prices per month (line 3). Next, we partition the ini-
tial data set by customer and month in order to calculate each customer’s monthly spending
(lines 4 and 5). Then, we join the two resulting data sets bringing together the monthly
revenue of each single customer with the total revenue of the corresponding month (line 6).
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Figure 5.3: Finding the Best Customers with Pig Latin

Eventually, we select the relevant customers (line 7) and count the occurrences of each cus-
tomer (line 8).

Algorithm 5.6 Finding the Best Customers with Pig Latin

1: sales = LOAD ’/sales’ AS (customer,day,month,year,country,totalprice);
2: a = GROUP sales BY month;
3: b = FOREACH a

GENERATE group AS month, SUM(sales.totalprice)/20 AS pp;
4: c = GROUP sales BY (month, customer);
5: d = FOREACH c

GENERATE group.month, group.customer, SUM(sales.totalprice) AS tp;
6: e = JOIN d BY month, b BY month;
7: f = FILTER e BY tp ⩾ pp;
8: g = GROUP f BY customer;
9: h = FOREACH g GENERATE group AS customer, COUNT(f.b::month);

10: STORE h INTO ’/bestcustomers’;

Note that data is partitioned five times in this scenario. The full data set is rearranged twice
(lines 2 and 4). The join partitions both involved data sets on the join attributes (line 6).
For counting the occurrences of each customer we need to repartition the selected customers
(line 8).

With TreeLatin, we can solve this problem partitioning the data only twice. Thereby, we
eliminate even one of the two partitionings of the full data set, which are the most expensive
ones. The TreeLatin script is shown in Algorithm 5.7, and the resulting workflow is depicted
in Figure 5.4. Once more, we begin by grouping our sales data by month (line 2). Then, we
start a block for thread-level parallelisation. We calculate the total monthly revenue as before,
but within the multithreading block (line 4). Then, instead of partitioning the input data
again by customer and month, we exploit the partitioning by month we previously generated.
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Figure 5.4: Finding the Best Customers with TreeLatin

As the grouping by month is more coarse-grained than a grouping by customer and month,
we can refine the grouping without having to move any data between hosts (lines 5 and 6).
Recall that within the multithreading block, no data is exchanged between hosts, so the GROUP

operator in line 6 groups locally available data only. Identical reasoning applies to the join. As
the data is partitioned by month, which is our join attribute as well, the join can be executed
without data exchange between hosts. Only for counting the occurrences of each customer, we
need to leave the multithreading block and repartition the data by customer.

Algorithm 5.7 Finding the Best Customers with TreeLatin

1: sales = LOAD ’/sales’ AS (customer,day,month,year,country,totalprice);
2: a = GROUP sales BY month;
3: b = {
4: c = FOREACH a

GENERATE group AS month, SUM(sales.totalprice)/20 AS pp;
5: d = FOREACH a GENERATE FLATTEN(sales);
6: e = GROUP d BY (month, customer);
7: f = FOREACH e

GENERATE group.month, group.customer, SUM(d.totalprice) AS tp;
8: g = JOIN f BY month, c BY month;
9: RETURN FILTER g BY tp ⩾ pp;

}
10: h = GROUP b BY customer;
11: i = FOREACH h GENERATE group AS customer, COUNT(b.c::month);
12: STORE i INTO ’/bestcustomers’;



86 treelatin : a scripting approach to (distributed) tree processing

5.6 compiling treelatin scripts to mapreduce execution plans

The main advantages of TreeLatin discussed so far are improved efficiency, as com-
pared to PigLatin, introduced by our new statements, and user-friendliness. By using
TreeLatin, users are enabled to accomplish many common tree processing tasks with-
out writing a single line of Java or C code, as would be necessary with plain MapRe-
duce. An additional, very important advantage is that, by using a higher level lan-
guage as user interface, the system gains insight on the processing taking place. The
code executed on the mappers and reducers is no longer a black box, but a sequence
of well-known operators (possibly embedding some user-provided code fragments in
form of UDFs for highly specialised operations). This enables the system to apply
optimisations to the workflow while translating it into the actual operator chain. The
optimising compiler for TreeLatin was realised together with two students. Ludwig
Nägele realised the TreeLatin parser and schema derivation in terms of his bachelor’s
thesis [Nägele 2010]. The optimiser was implemented as a master’s thesis [Hien 2011]
by Michaela Hien.

In some aspects, optimising TreeLatin is similar to the optimisations relational
database management systems apply to SQL statements. Many of the operations
available in TreeLatin have corresponding SQL operators, e. g., selections (FILTER),
projections (FOREACH...GENERATE), or equijoins (JOIN, COGROUP). Accordingly, similar op-
timisation techniques are applicable. For instance, operator re-orderings such as pro-
jection pushdown or techniques like eager aggregation [Yan and Larson 1995] can be
used to reduce the data volume that passes through the operator chain.

Depending on the environment and application, relational database management
systems may follow different optimisation goals. Common such goals are short over-
all execution time (in OLTP scenarios), low resource consumption (e. g., for databases
running on embedded devices), or short time until obtaining the first results (e. g.,
for streaming applications). For TreeLatin, we will focus on short overall execution
time as optimisation goal in this thesis. This is reasonable, as scientists running data
analysis tasks on TreeLatin will typically want to obtain their results quickly, while,
e. g., resource consumption on the workers is less relevant. Obtaining first results
quickly is not possible with standard MapReduce due to the global synchronisation
performed on every transition from map to reduce phase or vice versa, and due to
the fault tolerance realisation of the reducers, making results available only when a
worker completed successfully.
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5.6.1 Optimiser Overview

In compiling TreeLatin scripts to optimised execution plans, we follow the rule based
optimisation approach of relational database management systems [Graefe and De-
Witt 1987]. In the first step, we translate a given TreeLatin script statement by state-
ment into a canonical data flow graph. This graph corresponds to the unoptimised
logical execution plan in database management systems with rule based optimiser.
Then, the optimiser applies transformation rules to the graph. These rules may rear-
range operators within the graph, introduce additional operators, or replace operator
subchains by other, logically equivalent subchains which promise a more efficient
execution according to the chosen optimisation goals.

In relational database management systems, the optimiser typically bases its opti-
misation decisions on comprehensive statistics over the processed data sets. Thereby,
the system gracefully adapts its behaviour to the characteristics of the data it pro-
cesses by ordering the operators appropriately, and by choosing from different im-
plementations of semantically equivalent operators. Current MapReduce systems, in
contrast, provide no statistics on the processed data. This makes it more difficult for
the optimiser to take appropriate choices, as it has no information to base complex de-
cisions on. The optimiser is thus limited to “best practice” and heuristic approaches.
However, it still leaves a large space of optimisation possibilities.

5.6.2 Group Refinement

A very expensive operation in MapReduce is to switch from the map phase to the
reduce phase, as this transition requires global synchronisation. A good execution
plan should therefore contain as few operations as possible requiring such phase
transitions. We classify the available operators into two groups: operators running
locally, within a worker (i. e., a mapper or a reducer), and operators requiring global
data rearrangement, thus causing a transition from map to reduce phase. This clas-
sification is given in Table 5.2. In order to achieve a short job execution time, our
primary optimisation goal is to reduce the number of operations causing phase tran-
sitions within the data flow graph. Besides this primary goal, of course, the data
volume passed through the operator chain should be as low as possible. This is our
secondary optimisation goal.

All operators causing phase transitions rearrange the processed data set such that
all tuples holding the same value in some attribute (combination) are sent to the
same reducer. Therefore, we term these operators data rearrangement operators, and
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Operators Running Locally Operators Rearranging Data

FILTER COGROUP

FOREACH...FOREACH...GENERATE CROSS

FOREACH...GENERATE DISTINCT

FOREACH...NEST GROUP

FOREACH...UNNEST JOIN

LOAD

STORE

Table 5.2: Classification of TreeLatin Operators

the attributes according to which the rearrangement is performed data rearrangement
attributes. We will use these attributes to identify and remove data rearrangement
operators which are not required as the data distribution at the point the operator is
executed already fulfils the new partitioning criteria.

Example 5.15. For a marketing campaign, we are planning to send out gifts to some of our
customers. We devise different gifts, depending on the volume of orders the customers placed.
Moreover, the gifts vary by country. The script in Algorithm 5.8 calculates how many of
which gift items we need for each country. The Pig optimiser installs two data rearrangement
operators to realise the join in line 3 and the grouping operation in line 5. The join partitions
both the joined data sets by country. The grouping operation rearranges the filtered join result
by country and gift. TreeLatin recognises the latter of these two operators is unnecessary.
The available partitioning by country permits the creation of groups by country and gift

without further data rearrangement. It is sufficient to group the items locally according to the
group attributes. Therefore, with TreeLatin we can replace the data rearrangement operator
for the grouping operation on country and gift by a local grouping operator (e. g., using hash
partitioning, or a sort-based strategy).

Now consider a more complex scenario. In a slightly modified version of Algorithm 5.6, we
are interested in the number of customers exceeding our 5% threshold per month. This result
is calculated by Algorithm 5.9. Instead of grouping by customer in line 8, we now group
the data by month and the monthly threshold value, pp. Semantically, this is equivalent to
grouping the data set just by month, as the threshold value pp is calculated per month. We
decided to include pp in the grouping attributes to allow for easier access to the value in line 9.

Due to the JOIN performed in line 6, the data is already partitioned appropriately and the
group operation could be performed without data rearrangement. However, the grouping is not
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Algorithm 5.8 Recognising Group Refinements: A Simple Scenario

1: sales = LOAD ’/sales’ AS (customer,day,month,year,country,totalprice);
2: gifts = LOAD ’/gifts’ AS (country,gift,minprice,maxprice);
3: a = JOIN sales BY country, gifts BY country;
4: b = FILTER a BY totalprice ⩾ minprice and totalprice ⩽ maxprice;
5: c = GROUP b BY (sales::country, gift);
6: d = FOREACH c GENERATE group.country, group.gift, COUNT(b.customer);

performed on just the attributes used in the join. Only by taking into account the calculation
of the pp attribute and its way through the data flow graph, we can correctly recognise the
data is already partitioned appropriately.

Algorithm 5.9 Recognising Group Refinements: A Complex Scenario

1: sales = LOAD ’/sales’ AS (customer,day,month,year,country,totalprice);
2: a = GROUP sales BY month;
3: b = FOREACH a

GENERATE group AS month, SUM(sales.totalprice)/20 AS pp;
4: c = GROUP sales BY (month, customer);
5: d = FOREACH c

GENERATE group.month, group.customer, SUM(sales.totalprice) AS tp;
6: e = JOIN d BY month, b BY month;
7: f = FILTER e BY tp ⩾ pp;
8: g = GROUP f BY b::month, pp;
9: h = FOREACH g GENERATE group.month, group.pp, COUNT(f.customer);

10: STORE h INTO ’/goodcustbymonth’;

Example 5.15 shows two situations in which we want to recognise unnecessary
data rearrangement operators which can be replaced by less expensive, local oper-
ations. The second example emphasises that just observing the data rearrangement
attributes is not sufficient to detect all situations in which data rearrangements are
not necessary. Therefore, we keep track of functional dependencies introduced by
the operations along the data flow graph, and exploit this information for identifying
data rearrangement operations which can be safely replaced.

We proceed as follows. Starting at the LOAD statements, we traverse the data flow
graph capturing the functional dependencies introduced by operations like selections,
calculation of attributes (as in the second part of Example 5.15), groupings, and joins.
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We check for each data rearrangement operator if it can be replaced by a semantically
equivalent operator chain not causing a phase transition. Replacing the operator is
possible if the data set to be partitioned was already partitioned before, and all the
partitioning attributes of this existing partitioning are implied by the partitioning
attributes of the operator under consideration.

Example 5.16. Consider again the script in Algorithm 5.9. The GROUP operation in line 2
introduces a functional dependency indicating the data partitioning is defined by the attribute
month, and one indicating the group attribute determines the sales bag in each tuple. Line 3
renames the group attribute to month. Moreover, we learn that the pp attribute is determined
by month as it is calculated from a bag of values all determined by month.

The join in line 6 is performed on the month attribute of that data set, so the partitioning is
not modified. The functional dependency indicating pp is determined by month remains valid.
We exploit this dependency in line 8 and recognise that the data is distributed appropriately
for executing the GROUP operation without data exchange.

By keeping track of functional dependencies, we are able to recognise all unnec-
essary data rearrangement operations performed on attributes whose functional de-
pendencies become sufficiently clear from the preceding part of the workflow. Due
to the reduction of data rearrangement operations, the processing speed of TreeLatin
applications can be significantly improved.

Note that the parametrisation of the local multithreading operators, e. g., the choice
of the actual number of threads to spread the operator to, is not performed by the
optimiser. Instead, it is postponed to execution time. Thereby, we allow every worker
to adapt the actual processing parameters to the locally available resources without
requiring the optimiser to have knowledge on the worker nodes.

5.6.3 Local Multithreading

Moreover, reducing data rearrangement operations has advantageous side effects on
the further optimisation. The TreeLatin optimiser wraps worker subchains in local
multithreading operators. By replacing data rearrangement operators, global syn-
chronisation points are removed. Thereby, the operator chains per worker grow
longer, allowing to wrap longer workflow fragments in multithreading operators to
exploit multi-core processing as described in the preceding chapter.

Moreover, users can explicitly introduce multithreading blocks using the syntax de-
scribed in Section 5.5. Recall that, within a multithreading block, no data is exchanged
between hosts. Placing data rearrangement operators in multithreading blocks, users
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can thus explicitly forbid global data rearrangement even in situations where the
TreeLatin optimiser cannot detect that data rearrangement is not necessary. Such sit-
uations may arise, e. g., when functional dependencies are implicitly contained in the
data sets, but not expressed in the TreeLatin script. This behaviour allows the user to
gain the advantage of local re-groupings even in situations where the system cannot
automatically recognise their applicability.

5.6.4 Bilateral Projection Push-Down

Recall from above that our secondary optimisation goal was to reduce the interme-
diate data volume. The Pig optimiser applies several optimisation rules known from
database management systems striving for this goal. These optimisations include
transformations like selection and projection push-down. We apply these optimisa-
tions in TreeLatin as well, enhancing the selection push-down as follows.

The Pig optimiser inspects selections in FILTER statements and pushes them down
as far as possible on the path in the data flow graph from the operator currently being
processed back to the loading of the respective data set. In TreeLatin, in this situation,
we exploit once more the functional dependencies captured for recognising replace-
able data rearrangement operations. At JOIN and COGROUP operations, the functional
dependencies provide information we can use to replicate selections and push them
down on multiple input paths of the respective operator.

Example 5.17. Consider again the script in Algorithm 5.8. Assume we are only interested
in the number of gifts required in Germany. We therefore add an appropriate FILTER on the
country attribute at the end of the script. In line 3, the two input data sets are joined on
the country attribute. The functional dependencies introduced by this join allow TreeLatin to
duplicate the FILTER and push it down on both inputs of the join operator.

Once the optimisations are performed, the resulting data flow graph is translated
into chains of physical operators to be run on the single workers, and submitted to
the underlying framework for execution.

5.7 frequent subtree mining with treelatin

TreeLatin enables us to realise tree processing applications on massive data sets in
a clear and comprehensible manner. As an example, we use it to implement the
frequent subtree mining workflow introduced in Chapter 2. The resulting TreLatin
script is shown in Algorithm 5.10.
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Algorithm 5.10 Frequent Subtree Mining with TreeLatin

Input: input tree data set, stored in files
minsupp: absolute minimum support for a label to be frequent

Output: frequent patterns found in input data set are stored on disk
1: node = LOAD ’/nodes’ AS (treeid, nodeid, label, parentid);
2: labelgroup = GROUP node BY label;
3: labelfreq = FOREACH labelgroup

GENERATE group AS flabel, COUNTDISTINCT(nodes.treeid) AS cnt;
4: freqlb = FILTER labelfreq BY cnt ⩾ minsupp;
5: anode = JOIN node BY label, freqlb BY flabel USING ’replicated’;
6: nodegroup = GROUP anode BY treeid;
7: tree = FOREACH anodegroup NEST anode

BY CONNECTING OUTER nodeid WITH INNER parentid
TREES IDENTIFIED BY treeid;

8: intermediate = FOREACH tree FOREACH nodegroup
TRAVERSE bottom-up
GENERATE user.IntermediateStructures(nodegroup) AS (key,structure);

9: intermediategr = GROUP intermediate BY key;
10: res = FOREACH intermediategr

GENERATE user.CombineAndMine(intermediate, minsupp);
11: STORE res to ’/result’;
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This script reflects the processing steps of our distributed frequent subtree mining
workflow introduced in Section 2.3.2 (page 21). We load the data (ld phase) in line 1,
extract the frequent labels in lines 2 to 4 (el and sf phases). We combine the frequent
label information and the tree nodes in line 5 and determine the tree membership of
each node in line 6 (dt phase). Then, we extract the intermediate structure fragments
and redistribute them appropriately (bi phase, lines 7 to 9). Eventually, lines 10 and
11 constitute the cm phase.

The tree traversal to choose for building the intermediate structure (line 8) depends
on the frequent subtree mining algorithm employed. For PathJoin and TreeMiner
(Section 2.4.1), we choose a bottom-up traversal and a depth-first traversal, respec-
tively. For PathJoin, we have the fragments of the compressed forest built from the
child nodes of a node readily available in the context information when processing
a node. The scope lists of TreeMiner resemble the nested sets representation of trees.
With a depth-first traversal, we can assign the left id when we encounter a node on
the way down from the root towards the leaves, and the right id on the way back up
towards the root.

Note how the abstract structure of the frequent subtree mining workflow is com-
pletely expressed with TreeLatin statements. The script in Algorithm 5.10 is suitable
for all algorithms mining for frequent induced subtrees. For frequent embedded sub-
trees, only one detail needs to be changed. As infrequent inner nodes can be skipped
in embedded subtrees, we must ensure the complete trees are constructed in line 7.
Therefore, we must use a left outer join in line 5, as infrequent inner nodes must be
preserved.

For both induced and embedded subtrees, only the fragments specific to the actu-
ally employed frequent subtree mining algorithm are encapsulated in user defined
functions. Recall from Chapter 2 that the data structures used for the intermedi-
ate data representation are specific to the actual frequent subtree mining algorithm.
Therefore, expressing these parts of the algorithm in a generic manner is not possible.

5.8 experimental evaluation

In order to evaluate the impact of the TreeLatin optimisations on our frequent subtree
mining application, we reran the experiments of Chapter 3, comparing TreeLatin to
Pig.

The TreeLatin script presented in Section 5.7 is compiled to the pipelined MapRe-
duce workflow we already benchmarked in Chapter 3. For Pig, we wrote a compa-
rable script using user defined functions instead of the tree handling statements of
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TreeLatin. This script compiles to the workflow we presented in Section 3.4.1 (Fig-
ure 3.4a).

For this evaluation, we used the same infrastructure and data sets as for the mea-
surements presented in Chapter 3. For Pig, we chose a recent snapshot version at the
time we ran the experiments (SVN revision 709206).

Both TreeLatin and Pig show the expected scaling behaviour with respect to both
data set size (Figure 5.5) and the number of hosts (Figure 5.6). The processing times
of TreeLatin are, however, significantly lower than those of Pig. Besides the benefits of
pipelining, this difference arises from the optimisations TreeLatin employs to reduce
the communication and synchronisation overhead.

5.9 related work

Accompanying the advent of MapReduce style frameworks (Chapter 3), several script-
ing languages for general-purpose data parallel processing on top of these frame-
works have been proposed over the last years. We have already discussed Pig [Olston
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et al. 2008, Gates et al. 2009], which provides the foundation for TreeLatin, throughout
this chapter.

Similar to TreeLatin, optimisation in the Nephele/PACTS [Battré et al. 2010] sys-
tem aims at reducing the number of data rearrangement operations. The approach
they follow uses annotations on data rearrangement operators indicating whether the
current data partitioning already fulfils the requirements of the operator or not. If all
operators have complete and correct annotations, Nephele/PACTs can recognise all
situations in which data rearrangement operations can be replaced. Our automatic
detection of data rearrangement operations which can safely be replaced by local
operations corresponds to deriving these annotations automatically.

Hive [Thusoo et al. 2010] builds a data warehouse on top of Hadoop and includes a
query language, HiveQL, which resembles SQL. Similar to Pig, several optimisations
are applied translating queries to execution plans. Besides the optimisations applied
by Pig as well, the Hive optimiser can reorder join operations such that the largest
involved tables are streamed through the operators. This allows a reduction of the
memory consumption as the largest tables are not materialised within an operator to
perform, e. g., hash lookups.

Google presented Sawzall [Pike et al. 2005] and Tenzing [Chattopadhyay et al.
2011], both building on top of their MapReduce implementation. The former pro-
vides a rather low-level language which clearly exhibits the underlying MapReduce
processing framework. Tenzing, in contrast, offers a comprehensive SQL interface.
Queries are translated to sequences of MapReduce jobs applying several optimisa-
tions which focus especially on data locality and low memory consumption. Similar
to the preceding systems there are two types of optimisations. Some, e. g., projection
push-down, are applied blindly as they will improve the resulting execution plan in
most situations. Other optimisations, like the choice between different join imple-
mentations, are explicitly requested by the users by including hints in the queries.

SCOPE [Chaiken et al. 2008, Zhou et al. 2010] provides an SQL-like interface to
the Dryad [Isard et al. 2007] framework. Workflows are specified as sequences of
SQL queries, where each query may use outputs of preceding queries as its input.
Moreover, functions written in C# can be embedded directly within a SCOPE script.
Optimisations applied when translating SCOPE scripts into Dryad workflows primar-
ily focus on reducing the number of data partitioning operations.





6
H A N D L I N G D ATA S K E W

6.1 introduction

In the preceding chapters, we presented approaches for parallelising and distribut-
ing data-intensive and computationally intensive tasks in cluster environments. An
important question in parallelisation is how to distribute the data to the processing
hosts, i. e., which subsets of the data are processed where. The inherent data skew of
many scientific data sets, combined with the complex analysis algorithms, makes this
an interesting and challenging task, which we will discuss in this chapter.

Data skew in e-science data sets arises from physical properties of the observed ob-
jects (e. g., the height of patients in medical studies), from research interests focussing
on subsets of the entire domain (e. g., areas with active volcanoes in geosciences), or
from properties of the instruments and software employed to gather the data. In the
Millennium simulation, each tree node has a mass. The mass distribution is highly
skewed, with the 7 most frequent values appearing over 20 million times each, while
almost 75% of the values appear no more than 10 times.

In the map phase, MapReduce systems generate (key,value) pairs from the input
data. A cluster is the subset of all (key,value) pairs, or tuples, sharing the same key.
Standard systems like Hadoop use hashing to distribute the clusters to the reducers.
Thereby every reducer gets approximately the same number of clusters. For skewed
data, this approach is not good enough since clusters may vary considerably in size.
When the runtime complexity of the reducer is superlinear — a very common sce-
nario in e-science —, the problem is even worse. Sets of clusters (called partitions
subsequently) with the same overall number of tuples can have very different exe-
cution times since the non-linear reduce function is evaluated for each cluster. The
processing time for a small number of large clusters is much higher than the process-
ing time for many small clusters.

Example 6.1. Assume a set of clusters consisting of nine tuples. The cost of a cluster is the
number of tuples squared. If the nine tuples belong to one cluster, its cost is 92 = 81. If the
set consists of three clusters with three tuples each, the cost is only 3 · 32 = 27.

97
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If the cluster cost is exponential in the number of tuples, the difference grows even larger.
For the set consisting of one large cluster, we obtain 29 = 512, while the set consisting of three
clusters only costs 3 · 23 = 24.

In this chapter, we design a new cost model, the Partition Cost Model, which takes
into account non-linear reducer functions and skewed data distributions. Instead of
considering only the size of the data partition that is assigned to each reducer, we es-
timate its processing cost. This is a challenging problem since a single cluster may be
produced by different mappers in a distributed manner. Computing detailed statistics
for every cluster is too expensive since the number of clusters may be proportional
to the data size in the worst case. We propose TopCluster, a distributed monitoring
technique, for collecting statistics on which we can base cardinality estimation and,
consequently, cost estimation.

We design two new algorithms that use our cost model to distribute the work load
to reducers. The first algorithm, fine partitioning, splits the input data into a fixed
number of partitions. Contrasting to standard MapReduce, we choose the number
of partitions to be larger than the number of reducers. The goal is to distribute the
partitions such that the execution times for all reducers are similar. Fine partitioning
does not control the cost of the partitions while they are created, but achieves bal-
anced loads by distributing expensive partitions to different reducers. In our second
approach, dynamic fragmentation, expensive partitions are split locally by each map-
per while they are created, and tuples are replicated if necessary. As a result, the cost
of the partitions is more uniform and a good load balancing is easier to achieve for
highly skewed distributions.

6.2 data skew in mapreduce

From a data-centric perspective, a MapReduce system works as follows. m mappers
transform the input to a MapReduce job into a bag of (key,value) pairs, the intermediate
result I ⊆ K×V. Thereby, K and V represent the key and value domains of the
intermediate result, respectively. The sub-bag of I containing all (key,value) pairs
with a specific key k is a cluster

C(k) = {(k, v) ∈ I} k ∈ K .

The intermediate result is then split into p partitions. The partition for an interme-
diate tuple is determined by applying a partitioning function

π : K→ {1, . . . ,p} k 7→ π(k) = j
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to the key of the tuple. This way, all tuples belonging to the same cluster, i. e., sharing
the same key, are placed into the same partition. A partition is thus a “container”, or
bucket, for one or more clusters. We denote a partition with index j as

P(j) =
⊎

k∈K:π(k)=j

C(k) .

Finally, the partitions are distributed to r reducers which produce the output of the
MapReduce job. All partitions assigned to the same reducer form a partition bundle.

A workload balancing data distribution algorithm tries to assign the clusters such
that all reducers will require roughly the same time for processing. There are two
aspects which need to be considered.

number of clusters Some reducers might get more clusters than others, leading
to larger partition bundles and longer execution times.

difficulty of clusters The execution times may vary from cluster to cluster.
Reducers with “difficult” clusters might take much longer to complete than
reducers with “easy” clusters, even if the number of clusters in the partition
bundles is the same.

The first of these two points can be solved by using an appropriate hash function
for partitioning the data. The second point describes a challenge which cannot be
handled by optimal hashing: The “difficulty” of clusters can vary, e. g., due to a vary-
ing number of tuples per cluster. This is the aspect of load balancing in MapReduce
systems we will focus on in this chapter.

6.3 the partition cost model

Whenever achievable, all reducers of a MapReduce job should require roughly the
same amount of time for processing their share of data. Distributing the workload
evenly over all reducers maximises resource utilisation, as no reducers remain idle,
waiting for some other, overloaded reducers to complete. Moreover, well-balanced
execution times minimise the time until job completion, because parallel processing
is exploited best possible. Finally, similar execution times are a common (and often
implicit) assumption in both scheduling and failure detection detection strategies
proposed for MapReduce [Dean and Ghemawat 2008, Zaharia et al. 2008].
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Figure 6.1: Partition Assignment in Current MapReduce Systems

6.3.1 Current Situation

In state of the art MapReduce systems, like Hadoop, every mapper partitions the
share of intermediate results it creates into r partitions (i. e., p = r in the partitioning
function π defined above, and all partition bundles consist of a single partition only).
As all mappers use the same partitioning function, intermediate tuples belonging to
the same cluster are all placed into the same partition no matter which mapper they
were produced on.

The partitioning strategy of current MapReduce systems is visualised in Figure 6.1.
In this example, we have two reducers. Therefore, every mapper creates two parti-
tions. The partitions of the first mapper are shown in more detail on the left of the
figure. The first partition contains four clusters, the second one holds three.

Typically, a hash function is used for partitioning. Assuming a reasonably good
hash function, the keys are uniformly distributed to the partitions, i. e., every partition
contains roughly the same number of clusters. Every partition is then assigned to
a dedicated reducer for further processing. This is visualised again in Figure 6.1.
Partition P0 of every mapper is assigned to the reducer on the left, P1 to the one on
the right.

This approach is perfectly suitable in situations where the key frequencies are (al-
most) uniformly distributed, and the amount of work a reducer spends per cluster
does not vary strongly. In many other situations, however, distributing the keys uni-
formly is suboptimal. The most prominent problems are:

skewed key frequencies If some keys in the intermediate result are more fre-
quent than others, the clusters will vary in the number of tuples they contain.
The resulting partition assignment to the reducers may thus be skewed in the
number of tuples even though the (distinct) keys are uniformly distributed.
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skewed execution times Finally, even if the partition assignment to the reducers
is well balanced in the total number of tuples, complex calculations within the
reducer may lead to skewed execution times. The processing of a single, large
cluster may take much more time than processing a higher number of small
clusters, even though they may sum up to the same total size.

Example 6.2. Consider a partition consisting of nine tuples distributed to three clusters.
The reducer does a pairwise comparison of the tuples within each cluster, i. e,., n(n− 1)/2

comparisons for a cluster of n tuples. If the three clusters contain three tuples each, the
incurred cost is 3 · 3 = 9. If we have one cluster containing seven tuples while the remaining
two clusters only contain one tuple each, the cost is 2 · 0+ 21 = 21.

Skew is symbolised by smaller and larger partition icons and reducer boxes in
Figure 6.1. In this example, partition P0 is much larger than partition P1 on two of
the mappers. The reducer on the left thus gets a much larger share of data than the
one on the right.

6.3.2 Optimal Solution

In order to balance the workload on the reducers, we need to know the amount of
work to spend on every cluster. Often, the work per cluster depends on the number
of tuples in the cluster. Therefore, while creating the clusters, we monitor for every
cluster C(k) the number of tuples |C(k)| it contains. Based on the complexity of the
reducer algorithm, we can then calculate the amount of work, or weight, w (|C(k)|)

for each cluster k as a function of the tuple count.

Example 6.3. Recall the reducer algorithm described in Example 6.2, comparing all tuples
within a cluster to each other. As the reducer’s complexity is quadratic in the number of tuples
per cluster, we estimate the weight of a cluster in this scenario as w(t) = t(t− 1)/2.

We are aware that, for some applications, monitoring only the tuple count may not
be sufficient for estimating the processing cost accurately. We will present appropriate
extensions of our monitoring algorithms in Section 6.5.

MapReduce systems process the data in a distributed manner. The bag I holding
all intermediate tuples is not materialised on a single host. Therefore, we need to
collect our monitoring data in a distributed manner on the mappers as they process
the data, and then consolidate it after the map phase. We denote by Ii the bag of
intermediate (key,value) pairs generated by mapper i, 1 ⩽ i ⩽ m, i. e., {I1, I2, . . . , Im}

is a partitioning of I. On every mapper, we create a local histogram.
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Definition 6.1 (Local Histogram). Let Ii be the bag of all intermediate (key,value) pairs
produced by mapper i. The local histogram Li(j) is defined as a set of pairs (k, v), where
k ∈ {x : ∃y((x,y) ∈ Ii)∧ π(x) = j} is a key in Ii assigned to partition j and v is the number
of tuples in Ii with key k.

Aggregating these histograms on a central controller, we construct the global his-
togram. Note that we do not need to introduce a new centralised component in
MapReduce, which would represent a new single point of failure, in order to aggre-
gate the local histograms. There is already a centralised controller for task scheduling,
which we exploit for load balancing.

Definition 6.2 (Global Histogram). Given m local histograms Li(j), 1 ⩽ i ⩽ m, of pairs
(k, v), where k is the key and v is the associated cardinality, the global histogram G(j) is the
set {(k, v)} with

(i) ∃v((k, v) ∈ G(j))⇔ ∃i, v ′((k, v ′) ∈ Li(j))

(ii) ∀(k, v) ∈ G(j) : v =
∑

1⩽i⩽m
(k,v ′)∈Li(j)

v ′ .

The global histogram maps all keys in the intermediate data I to the cardinality of
the respective cluster. It is a sum aggregate over all local histograms. Since a global
cluster can consist of 1 to m local clusters, the cardinality of the exact global histogram
is bounded by

max
1⩽i⩽m

|Li(j)| ⩽ |G(j)| ⩽
m∑
i=1

|Li(j)| .

Example 6.4. We compute the global histogram for partition j from the local histograms for
the corresponding partition in a scenario with m = 3 mappers:

L1(j) = {(a, 20), (b, 17), (c, 14), (f, 12), (d, 7), (e, 5)}

L2(j) = {(c, 21), (a, 17), (b, 14), (f, 13), (d, 3), (g, 2)}

L3(j) = {(d, 21), (a, 15), (f, 14), (g, 13), (c, 4), (e, 1)}

The exact global histogram (see Figure 6.2) is

G(j) = {(a, 52), (c, 39), (f, 39), (b, 31), (d, 31), (g, 15), (e, 6)} .

Lemma 6.1. Consider a scenario with m mappers, which each produce O(|I|/m) tuples for
the intermediate result I. The computation of the local histogram requires O(|I|/m log(|I|/m))

time and O(|I|/m) space; the computation of the exact global histogram requires O(|I| log |I|)

time and O(|I|) space.
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Figure 6.2: Local and Exact Global Histograms.

Proof. In the worst case, all keys are unique such that the number of clusters is equal
to the number of tuples. The local histogram for O(|I|/m) clusters requires O(|I|/m)

counters. We store and update the counters in a binary search tree, which requires
O(|I|/m log(|I|/m)) time and O(|I|/m) space. Since the keys of all mappers can be dif-
ferent, the global histogram can be of size O(|I|). The global histogram is aggregated
from the local histograms using an m-way merge in O(|I| log |I|) time.

Based on the monitoring data, we can determine the weight of the clusters. By solv-
ing the associated bin packing problem, we can then calculate the optimal assignment
of clusters to reducers.

In practice, this optimal solution is not feasible for two reasons.

1. In a worst-case scenario, the monitoring data grows linearly in the size of the
intermediate data I. Such a situation arises, e. g., when joining two tables on
their primary key columns. Every key value can appear only once per table.
The clusters over the combined data of both tables can thus contain at most
two elements. Consequently, the number of clusters must grow linearly in the
number of tuples in the input data sets.

2. The bin packing problem is NP hard. Hence, even for a moderate number of
clusters, calculating the optimal assignment of clusters to reducers can become
more expensive than the actual execution of the reducers.

We will address these two problems in Sections 6.4 and 6.6, respectively, and de-
velop heuristics for approximately solving the load balancing problem.
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6.3.3 Approximate Cost Estimation

The first problem with the optimal solution is the size of the data monitored. In the
worst case, the number of clusters, |K|, grows linearly with the number of interme-
diate data tuples. With MapReduce being a system designed for processing terabyte
scale data sets, we can therefore not afford to monitor every cluster individually. We
approximate the exact monitoring data on partition level instead, i. e., the histogram
G(j) approximates the actual monitoring data.

This introduces additional challenges. Each mapper sees only a small fraction of
the data and has only partial information about the cluster sizes. In particular, the
mapper cannot know what fraction of a specific cluster it sees. Capturing the local
histograms exactly on each mapper is feasible, as the number of map tasks is typically
chosen based on the data volume, i. e., the amount of data per mapper is constant.

Sending all partial cluster sizes to the controller and summing up the costs for all
clusters centrally is not feasible since the number of clusters can be in the order of the
data size. The controller must therefore base its cost estimation on small summaries.

In addition, not all mappers do necessarily run at the same time. Thus the con-
troller cannot incrementally retrieve information as is done, e. g., in distributed top-k
scenarios, where the distributed rankings are incrementally consumed until the cen-
tral ranking is accurate enough.

Recall from above that we calculate the weights, or processing costs, per cluster. The
histogram G(j) allows us to extract the required information, i. e., the tuple count, on
a per-cluster basis. We can then estimate the processing cost W(j) of partition j by
summing up the weights of all clusters contained in that partition

W(j) =
∑

(k,v)∈G(j)

w (v) .

Finally, we use these partition costs to balance the load on the reducers.
In the following sections, we will first present concrete realisations of histograms

allowing us to estimate the processing costs according to the Partition Cost Model.
Then, we will show how to exploit the calculated partition costs in order to balance
the reducer workload.

6.4 topcluster : a distributed monitoring approach

Due to the distributed nature of MapReduce, we need to collect the monitoring data
required for load balancing in a distributed manner and then aggregate it. In this
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section, we will present two techniques for creating appropriate histograms of moni-
toring data. The first, Uniformity-Based Monitoring, assumes uniform distribution of
cluster cardinalities within each partition. This assumption allows for a very compact
representation of the monitoring data, but limits the effectiveness of the load balanc-
ing algorithm when the data are heavily skewed. The second algorithm, TopCluster,
allows us to compute good partition cost estimations also when the data are highly
skewed, at the cost of an increased volume of monitoring data.

To simplify the discussion, in the following we describe the computation of the
global histogram for a single partition. We will denote the local histograms as Li
instead of Li(j) and the global histogram as G instead of G(j). The same procedure is
repeated for every partition j.

6.4.1 Histogram Approximation Error

Both Uniformity-Based Monitoring and TopCluster approximate the global histogram.
As the approximation algorithms run on the controller, they must be efficient and the
complexity of the algorithms should be significantly smaller than |I|.

We measure the error of an approximation to the exact global histogram as the per-
centage of tuples that the approximated histogram assigns to a different cluster than
the exact histogram. The goal is to have a small approximation error. For the error
computation, we do not identify the clusters by their key, but we order the clusters by
their size and compare clusters with the same ordinal number in sort order, i. e., we
compare the largest clusters from the exact and approximated histograms, then the
second-largest clusters, etc. This is reasonable since the processing cost of a cluster in
the partition cost model is independent of its key.

Example 6.5. Consider the exact histogram G = {(a, 20), (b, 16), (c, 14)} and the approxi-
mated histogram G̃ = {(a, 20), (c, 17), (b, 13)}. The difference between the largest clusters in
both these histograms is 0. For the second largest, b in G and c in G̃, we note a difference
of 1, the same as for the smallest clusters. So, in total we have a difference of 0+ 1+ 1 = 2

tuples. Both the histograms contain information on 50 tuples. As every tuple assigned to a
wrong cluster is counted twice (once for the cluster it is missing in, and once for the cluster it
is assigned to), we obtain an approximation error of 1/50 = 2%.

6.4.2 Uniformity-Based Monitoring

The first monitoring approach we present is Uniformity-Based Monitoring. This ap-
proach stands out for very low memory requirements on both the mappers and the
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controller, and by very simple aggregation of the local histograms on the controller.
Therefore, Uniformity-Based Monitoring is a valuable monitoring approach for envi-
ronments where the management overhead for load balancing must be kept at a strict
minimum.

With Uniformity-Based Monitoring, we only capture the tuple count t and the
cluster count c for each partition, i. e., G = (c, t). For the cost calculation, we need the
tuple count per cluster. By assuming uniform distribution of the cluster sizes within
a partition, we can estimate the tuple count per cluster as

tc =
t

c
.

As in the optimal case, we can now determine the processing cost per cluster, w(tc)

using the tuple count estimates. We then sum up all processing costs belonging to
the same partition in order to obtain the partition costs W. As we assume uniform
distribution of clusters within each partition, the partition cost is

W = c ·w(tc) .

Assuming uniform distribution within each partition, the estimated cost might well
deviate from the actual cost when the cluster sizes within a partition are skewed.
The approximation error of Uniformity-Based Monitoring will increase with the data
skew getting heavier. TopCluster will circumvent this issue by capturing the data
distribution within the partitions more precisely.

Distributed Monitoring

Recall that we have to collect the monitoring data in a distributed manner. Counting
the number of tuples per partition in a distributed manner is easy to achieve. On
each mapper, we monitor in the local histogram Li the number of tuples ti assigned
to the corresponding partition for the share of data that mapper processes. Summing
up the values received from all mappers on the controller, we obtain the total number
of tuples in the partition:

t =

m∑
i=1

ti .

For the number of clusters, the same approach is not applicable, as clusters are typ-
ically distributed over multiple mappers. By simply summing up the cluster counts
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from all mappers, we would thus obtain too large a value in most cases. Estimating
the cluster count correctly is crucial for the calculation of the partition cost, as the
following example shows.

Example 6.6. Assume we have a partition consisting of six tuples. The cost of a cluster is
the square of its tuple count. If we estimate the partition to contain three clusters, we get
3 · 22 = 12 as the partition cost. If we estimate the partition to contain only two clusters, the
partition cost is 2 · 32 = 18.

Ideally, we capture the presence of clusters on every mapper exactly. Besides count-
ing the tuples, we would create a presence indicator pi such that pi(k) is true if and
only if a cluster with key k exists in Li:

pi(k) =

true if ∃v((k, v) ∈ Li)

false otherwise.

Capturing the presence indicator exactly is, however, not feasible since we had to
capture each single cluster, and the number of clusters may be O(I). Hence, we create
an approximation of the presence indicator, p̃i, which is implemented as a bit vector
of fixed length. We hash the keys to a position in the bit vector and set the bit for
each key in Ii. In order to estimate the total number of clusters in the partition, we
calculate the disjunction of all bit vectors for a partition. Linear Counting [Whang
et al. 1990] then allows us to estimate the number of clusters based on the bit vector
length and the ratio of reset bits, also taking into account the probability of hash
collisions.

With increasing skew in the cluster distribution, the quality of the Uniformity-
Based Monitoring approximation will decrease, as we ignore skew within a partition.
In this situation, a more sophisticated approach is required, which captures the clus-
ters most relevant for cost estimation as precisely as possible. TopCluster, presented
in the following, fulfils these requirements.

6.4.3 TopCluster Monitoring

In the optimal solution presented in Section 6.3.2, we based the processing cost esti-
mation on exact cardinality information of all clusters, extracted from the exact global
histogram G. We can reconstruct this global histogram G from local histograms Li
collected on every mapper.
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The local histograms Li contain exact cardinality information for all clusters in the
corresponding partition on mapper i (1 ⩽ i ⩽ m). With TopCluster, we capture the
local histograms exactly. (For situations in which this is not feasible, we will present
an appropriate extension to TopCluster in Section 6.5.2.) Each mapper i then sends
only the head of the local histogram, which contains only the largest clusters, to the
controller. The controller uses the local histogram heads to approximate the global
histogram.

Definition 6.3 (Local Histogram Head). Given a local histogram Li (see Definition 6.1)
and a local threshold τi, the head of the histogram, Lτi

i , is defined as a subset of Li such that
the cardinalities of all clusters is at least τi; if there is no cluster of size τi or larger, the next
smallest cluster(s) is (are) also in the head L

τi

i :

L
τi

i = {(k, v) ∈ Li | v ⩾ τi ∨ (v < τi ∧ ∄(k ′, v ′) ∈ Li(v < v ′))} .

The local threshold τi can be different for all local histograms; the sum of all local
thresholds is the global cluster threshold τ which is the input parameter for TopClus-
ter. In the basic TopCluster algorithm we choose the local threshold to be τi = τ/m.
In Section 6.5 we discuss an extension of TopCluster that adapts τi for each histogram
based on the skew of the data. The following discussion holds independently of the
choice of the local threshold τi.

Lower and Upper Bound Histograms

We define the upper and lower bound histograms, which are used to calculate the
global histogram approximation. As we will show in Section 6.4.4, the cardinalities
of all clusters in the lower/upper bound histograms are lower/upper bounds of the
exact cardinality values of the respective clusters.

Definition 6.4 (Upper and Lower Bound Histogram). Given the head of m local his-
tograms Lτi

i , 1 ⩽ i ⩽ m, the lower bound histogram Gl is defined as follows:

(i) ∃v : (k, v) ∈ Gl ⇔ ∃i, v ′ : (k, v ′) ∈ L
τi

i

(ii) ∀(k, v) ∈ Gl : v =
∑

1⩽i⩽m

(k,v ′)∈L
τi
i

v ′ .

Let pi be the (exact) presence indicator for Li, and let vi be the smallest value in L
τi

i , i. e.

vi = min
v

{
(k, v) ∈ L

τi

i

}
1 ⩽ i ⩽ m .

The upper bound histogram Gu is defined as

(i) ∃v : (k, v) ∈ Gu ⇔ ∃i, v ′ : (k, v ′) ∈ L
τi

i
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Figure 6.3: Head of Local Histograms for τi = 14.

(ii) ∀(k, v) ∈ Gu : v =
∑

1⩽i⩽m val(k, i) with

val(k, i) =


v ′ if (k, v ′) ∈ L

τi

i

vi if pi(k)∧ ∄v ′ : (k, v ′) ∈ L
τi

i

0 otherwise.

Note that both Gl and Gu contain values for exactly those clusters that appear in
at least one of the local histogram heads, so |Gl| = |Gu|, and the set of keys of both
histograms is identical. The number of items in Gl and Gu is bounded by the largest
local histogram head on the lower end (if this largest local histogram head contains
all keys which appear in any of the other local histogram heads), and the sum over
all local histogram heads (if all keys in the local histogram heads are distinct):

max
1⩽i⩽m

∣∣Lti∣∣ ⩽ |Gl| = |Gu| ⩽
m∑
i=1

∣∣Lti∣∣ .

Example 6.7. The head of the local histograms Lτi

i extracted from the local histograms intro-
duced in Example 6.4 for τi = 14 are shown in Figure 6.3.

Key a is contained in all three local histogram heads. Therefore, its exact value is known,
and the upper and lower bounds coincide: 20+ 17+ 15 = 52.
Key c is not contained in L143 . The corresponding lower bound is thus 14+ 21+ 0 = 35.
From p3(c) = true, we know c occurred in L3. As v3 = 14, the upper bound for c is
14+ 21+ 14 = 49.
Key b is not contained in L143 as well. The lower bound is 17+14+0 = 31. As p3(b) = false,
we know b was not contained in L3 and we can add 0 in the calculation of the upper bound of
b for local histogram 3: 17+ 14+ 0 = 31.
The bounds for the remaining keys are calculated analogously. We obtain the following bounds,
which are also visualised in Figure 6.4 (the orange dots are explained in the next example).
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Gl = {(a, 52), (c, 35), (b, 31), (d, 21), (f, 14)}

Gu = {(a, 52), (c, 49), (d, 49), (f, 42), (b, 31)}

The approximated global histogram has a named and an anonymous part. The
named part is a histogram which stores cluster cardinalities for specific key values.
The goal is to have the largest clusters in the named part of the global histogram.
The cardinalities of all other keys are covered by the anonymous part. The clusters
in the anonymous part have no name and we do not store values for each cluster; we
only know the number of clusters and their average size. This is sufficient for cost
estimation. Since the largest clusters are in the named part, the error introduced by
the assumption of a uniform distribution on the anonymous part is small.

Named Histogram Part

We define two approximations for the global histogram. The complete histogram stores
a cardinality for all keys that appear in at least one local histogram head, the restrictive
histogram is the subset of the complete histogram in which all cardinalities are at least
τ.

Definition 6.5 (Global Histogram Approximation). Let Gl and Gu be the pair of lower
and upper bound histograms in a given setting. The complete global histogram is defined
as

G̃ =

{(
k,

vu + vl

2

)
: (k, vu) ∈ Gu ∧ (k, vl) ∈ Gl

}
,

the restrictive global histogram is defined as

G̃r =
{
(k, v) : (k, v) ∈ G̃∧ v ⩾ τ

}
.
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Example 6.8. We approximate the global histogram with the upper and lower bounds com-
puted in Example 6.7. For the complete global histogram approximation, we obtain

G̃ = {(a, 52), (c, 42), (d, 35), (b, 31), (f, 28)} .

These values are visualised as orange dots in Figure 6.4. The restrictive global histogram
approximation (τ = 42) is

G̃r = {(a, 52), (c, 42)} .

Anonymous Histogram Part

The named part of the global histogram approximation contains cardinality values
only for the largest clusters. In order to compute the partition cost, however, we need
to consider all clusters in the partition. We assume uniform distribution on the small
clusters that are not in the named histogram part. To compute the average cluster
size, we determine the global sum of cluster cardinalities and the number of different
clusters. We calculate these values like we did with Uniformity-Based Monitoring,
based on the local tuple cardinalities and the presence indicators.

Example 6.9. The sum of cluster cardinalities for the three local histograms in Example 6.4
is 75 + 70 + 68 = 213. Assume a global cluster count of 7. The cardinality sum of the
restrictive approximation, G̃r, in Example 6.8 is 52+ 42 = 94. Thus, for each of the four
anonymous clusters we estimate a value of (213− 94)/(7− 2) = 23.8 tuples. We compute
the approximation error as introduced in Section 6.4.1. The absolute difference between the
exact and the approximated clusters is 0 + 3 + 15.2 + 7.2 + 7.2 + 8.8 + 17.8 = 59.2, thus
59.2/2 = 29.6 tuples were assigned to the wrong cluster. Even though the approximate global
histogram provides no information on 5 out of 7 clusters (more than 70%), less than 14% of
the tuples were assigned to the wrong cluster. For a reducer with n2 complexity, we obtain an
estimated cost of 7300.2, as opposed to the exact cost of 7929; an error of less than 8%.

Although the restrictive histogram approximation has a longer anonymous part in
which uniform distribution is assumed, it outperforms the complete histogram, in
particular when the data skew is small. This is explained as follows.

An approximation error is only introduced if a cluster exists in a local histogram,
but is not in the head. With heavily skewed data, the clusters contained in the local
histogram heads will have clearly larger frequencies than the clusters merged in the
histogram tails. For almost uniform distributions, however, a very small difference in
the tuple count may decide on whether a cluster is contained in a local histogram head
or not. For a key k that is not in the head of a local histogram, Lτi

i , but pi(k) = true,
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we add vi (the smallest cardinality in L
τi

i ) to the upper bound, and 0 to the lower
bound. Using the arithmetic mean as a cardinality estimate, we assume cardinality
vi/2 for that cluster on mapper i. With an almost uniform data distribution, the real
cardinality is however likely to be close to vi. The estimated global cardinality of
such a cluster is typically slightly larger than τ/2 but smaller than τ. Therefore, these
clusters are not contained in G̃r.

Example 6.10. Consider the cardinality estimation for the cluster with key f in Examples 6.7
and 6.8. Although key f exists in all three local histograms, it is not in the heads of L1 and
L2. With v1 = v2 = 14, we approximate the cardinality of cluster f with 14/2 = 7 for both
local histograms. Combined with the exact value for cluster f from L143 , 14, we obtain a value
of 28 in the global histogram approximation. The correct value is 39. Cluster f is not included
in the restrictive histogram since its estimated cardinality is below τ = 42.

Approximate Presence Indicators

As with Uniformity-Based Monitoring, we cannot employ exact presence indicators
as their size may be O(|I|). Instead, we create again a bit vector p̃i of fixed length. Em-
ploying Linear Counting [Whang et al. 1990], as before, we can estimate the number
of clusters in the partition and hence also the number of clusters in the anonymous
part of the histogram. Additionally, we use this bit vector like a Bloom filter [Bloom
1970] on the controller in order to check for the presence of clusters whose keys were
reported by other mappers when calculating the upper and lower bound histograms.
p̃i may introduce false positives, but cannot introduce false negatives.

False positives impact the quality of the approximation of the global histogram.
Recall that we calculate the approximated value of an item as the arithmetic mean of
its upper and lower bound. The lower bound, Gl, is not affected by our approxima-
tion of pi, as we do not employ pi in the respective calculation. The upper bound,
Gu, however, may change. Consider the specification of val(k, i) in Definition 6.4. For
a key k that is not contained in the local histogram Li, we must add 0. In case of
a false positive on pi(k) we add vi (the smallest value in the local histogram head
L
τi

i ) to the upper bound instead, thereby overestimating the upper bound. As false
negatives are impossible, we will never underestimate the bound. Hence, the upper
bound remains in place, but it may become looser in case of false positives.

Regarding the presented variants of the approximated global histogram, the in-
fluence of approximating pi is as follows. If we overestimate the upper bound of a
cluster, the estimated cluster cardinality raises as well. Therefore, the actual values in
the approximated global histogram may change as a consequence of approximating
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pi. As the complete approximation contains all items occurring in any local his-
togram head, approximating pi has no influence on which items are included in the
complete approximation. The restrictive approximation chooses items based on their
average values. If we overestimate the upper bound of an item, its average value rises
as well. Hence, items may be included in the restrictive approximation of the global
histogram which would not have been included with exact presence indicators.

Example 6.11. We approximate pi with a bit vector of length 3, based on a hash function h

mapping character keys a to 0, b to 1 etc. (mod 3). For the histogram heads with τi = 14

from Example 6.7, we will have a false positive for key b on local histogram L3, as p3(b) =

false, but p̃3(b) = true (h(b) = h(e), and key e is contained in local histogram L3). We
therefore calculate the upper bound for b as 17+ 14+ 14 = 45 instead of 17+ 14+ 0 = 31.
In consequence, the estimated value for b in G̃ increases from 31 to 38. In this example,
the overestimation has no impact on the restrictive global histogram approximation, as the
overestimated cardinality of 38 is still below the cluster threshold τ = 42.

6.4.4 TopCluster Approximation Guarantees

Since only the head of each local histogram is sent to the controller, it is not possible
to compute the exact global histogram, G, at the controller. The approximate global
TopCluster histograms presented above take values between the lower and upper
bound histograms, Gl and Gu. We show that Gl and Gu are in fact respectively
lower and upper bounds for the exact global histogram G.

Theorem 6.1. Gl is a lower bound on G:

∀(k, v) ∈ Gl : ∃(k, v ′) ∈ G∧ v ⩽ v ′ .

Proof. As (k, v) ∈ Gl ⇔ ∃i,w : (k,w) ∈ L
τi

i , and L
τi

i ⊆ Li, it is clear that ∀(k, v) ∈ Gl :

∃(k, v ′) ∈ G.
Choose (k, v) ∈ Gl and (k, v ′) ∈ G. Let

K ′ =
{
i ∈ {1, . . . ,m} : ∃(k, v ′′) ∈ L

τi

i

}
and

K =
{
i ∈ {1, . . . ,m} : ∃(k, v ′′) ∈ Li

}
.

From L
τi

i ⊆ Li follows K ′ ⊆ K. As the cluster cardinalities cannot be negative, i. e.,
v ′′ > 0, we obtain v ⩽ v ′. Moreover, v = v ′ ⇔ K ′ = K, i. e., in that case the bound is
tight.
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Note that L
τi

i does not need to contain the t largest elements of Li for Gl to be a
lower bound on G. The theorem is valid for any subsets Si ⊆ Li. For the following
theorem to hold, however, Lτi

i must consist of the largest elements of Li.

Theorem 6.2. Gu is an upper bound on G:

∀(k, v) ∈ Gu : ∃(k, v ′) ∈ G∧ v ⩾ v ′ .

Proof. Analogously to the proof of Theorem 6.1, ∀(k, v) ∈ Gu : ∃(k, v ′) ∈ G. Choose
(k, v) ∈ Gu and (k, v ′) ∈ G. Let

K ′ =
{
i ∈ {1, . . . ,m} : ∃(k, v ′′) ∈ L

τi

i

}
and

K =
{
i ∈ {1, . . . ,m} : ∃(k, v ′′) ∈ Li

}
.

Then, K ′ ⊆ K. For local histograms Li with i ∈ K ′, the same, exact value is added
to both v and v ′. For local histograms Li with i ∈ {1, . . . ,m} \ K, pi(k) = false, and
we add 0 to both v and v ′. Finally, for local histograms Li with i ∈ K \ K ′, we add
vi to the value of the upper bound, v, but ve, where (k, ve) ∈ Li, to the value of the
exact global histogram, v ′. As i /∈ K ′, (k, ve) /∈ L

τi

i . Lτi

i contains the elements from Li
with the largest values. Therefore, vi ⩾ ve, and subsequently also v ⩾ v ′. Moreover,
v = v ′ ⇔ K ′ = K, i. e., in that case the bound is tight.

As an error estimation, we can derive an upper bound on the cardinality of the
clusters that we might have missed in the approximated global histogram.

Theorem 6.3. Let Li be local histograms, 1 ⩽ i ⩽ m, G the corresponding exact global
histogram, and τ a cluster threshold. Then the complete TopCluster histogram approximation
G̃ has the following properties:

• Completeness: All clusters of the exact histogram G with cardinality at least τ are in
the approximated histogram: ∀k(∃v((k, v) ∈ G∧ v ⩾ τ)⇒ ∃v ′((k, v ′) ∈ G̃)).

• Error Guarantee: The error for the cluster cardinalities in the approximated histogram
is at most τ/2: ∀k((k, v) ∈ G∧ (k, v ′) ∈ G̃⇒ |v− v ′| < τ/2).

For the restrictive histogram approximation G̃r, the error guarantee holds as well, but not
completeness.

Proof. Choose (k, v) ∈ G̃ and (k, v ′) ∈ G.

• Completeness: v ′ ⩾ τ = τ1 + . . .+ τm. There must be at least one local histogram
Li with (k, v ′′) ∈ Li and v ′′ ⩾ τi. Then, (k, v ′′) ∈ L

τi

i and the cluster with key
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k is contained in G̃. As we may underestimate the cardinality of cluster k for
local histograms Li which do not contain k in their head, the cluster might not
be contained in G̃r.

• Error Guarantee: Let

K ′ =
{
i ∈ {1, . . . ,m} : ∃(k, v ′′) ∈ L

τi

i

}
and

K = {i ∈ {1, . . . ,m} : pi(k) = true} .

Then, K ′ ⊂ K. We only make estimation errors for local histograms i ∈ K \ K ′.
Recall from Definition 6.4 that we vi is the smallest value contained in L

τi

i . By
using the arithmetic mean as the estimated cardinality, the largest possible error
we make on each of these histograms is vi/2. According to the definition of Lτi

i ,
we know vi ⩽ τi. As (k, v) ∈ G̃, K ′ ̸= ∅ and there is at least one local histogram
for which we know the exact cluster cardinality. Hence, the global error is at
most ∑

i∈K\K ′

vi

2
⩽

∑
i∈K\K ′

τi

2
<

m∑
i=1

τi

2
=

τ

2
.

6.5 extensions to topcluster

Next, we discuss three possible extensions to TopCluster. First, we show how the
parameter τ can be determined automatically in a distributed manner. Then, we re-
consider our assumption that exact monitoring is feasible on all mappers, and analyse
the implications on the approximated global histogram in situations where this as-
sumption no longer holds. Finally, we discuss cost functions that depend on other
parameters than cluster cardinality.

6.5.1 Adaptive Local Thresholds

So far, we assumed the parameter τ to be supplied by the user. Finding a suitable
value for τ before starting a MapReduce job is challenging. Therefore, the system
should be able to determine a suitable τ automatically. As explained before, com-
munication between all mappers is impossible. We devise a strategy in which every
mapper determines the relevant items in its local histogram autonomously, and sends
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only those items to the controller. As we assume uniform distribution on the items
not captured in the named part of the global histogram approximation, the clusters
that depart most prominently from uniform distribution should be transmitted.

We base the decision on which items to transmit on the local data distribution, and
only send the items with values exceeding the local average cardinality on mapper
i, µi, by a factor of ε, where ε is a user-supplied error ratio. This allows us to keep
the local error on every mapper within well-known bounds. The largest item that we
possibly miss in the named global histogram is within τ = (1+ ε)

∑m
i=1 µi.

With these settings, our approach works well with both uniform, and skewed data
distributions. If the data is skewed, only a small number of items with strong impact
on the partition cost will exceed the local error threshold of (1+ ε)µi. We are therefore
able to capture the partition cost reasonably well while keeping the communication
volume for monitoring low. If the data is distributed evenly, on the other hand, our
assumption of uniform distribution on the items that are not communicated to the
controller is accurate, and we obtain good cost estimates as well.

Example 6.12. Continuing our running example, from the monitored tuple and cluster
counts (see Example 6.4), we calculate µ1 = 77/7 = 11, µ2 = 70/7 = 10, and µ3 =

68/6 = 43/3, each on the corresponding mapper. We allow an error of ε = 10%. The thresh-
olds for the local item counts are thus 12.1, 11, and 12.47, respectively. The resulting local
histograms are shown in Figure 6.5a).
The restrictive global approximation based on this input is

G̃r = {(a, 52), (c, 41.5)}

and thus very close to the approximation we obtained in Example 6.8 using the user-supplied
value τ = 42 (resulting in τi = 14).

6.5.2 Approximate Local Histograms

Current MapReduce systems choose the number of mappers for each MapReduce job
based on a compromise. High parallelism and the reduced amount of work which
has to be repeated in case of a node failure are arguments favouring many mappers
processing a small amount of data each. On the other side, the startup and manage-
ment costs for each mapper plea for a low number of mappers and thus a higher data
volume per mapper. Collecting monitoring data on every mapper introduces addi-
tional arguments for processing more data per mapper. As every mapper sees a larger
share of base data, the quality of the local histograms is likely to improve. We thus
propose to increase the amount of data processed by every mapper. As this reduces



6.5 extensions to topcluster 117

..

L141

.

a:20

.

b:17

.

c:14

.

. . . (24)

.

L132

.

c:21

.

a:17

.

b:14

.

f:13

.

. . .

.

5

.L133 . d:21. a:15. f:14. g:13. . . .. 5

(a) Local Histograms

..
10

.

20

.

30

.

40

.

50

.
a

.
b

.
c

.
d

.
f

.
g

.

τ

. Key.

Value

(b) Bounds for the Global Histograms

Figure 6.5: Histogram Aggregation for ε = 10%

the total number of mapper instances, we have the additional benefit of reducing the
burden on the controller, as fewer local histograms must be aggregated.

In a worst case scenario, the number of clusters generated on a mapper could grow
linearly with the amount of data processed. As we locally monitor every cluster, the
monitoring data volume would grow at the same rate as well, possibly occupying
resources required for the actual processing. We therefore need to provision a way
of limiting the amount of monitoring data every mapper keeps. In case the exact
monitoring data would exceed this imposed limit, we can switch to approximate
ranking algorithms, e. g. Space Saving [Metwally et al. 2006], which allow to limit
the amount of memory used. Space Saving was originally designed for finding the
top-k items over data streams. At any point in time, it keeps the most frequent items
encountered so far in a cache of fixed size. A new item not yet contained in the cache
replaces the least frequent item in the cache. Thereby, Space Saving guarantees that
no item whose actual frequency is higher than the reported frequencies is missing in
the obtained ranking.

Obviously, using approximate instead of exact local monitoring impacts the bounds
of clusters we derive on the controller.

Theorem 6.4. For local histograms approximated using the Space Saving algorithm [Met-
wally et al. 2006], both the global lower and upper bound can be overestimated. Underestima-
tion is only possible for the global lower bound.
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Proof. Let L̃τi

i be the head of an approximate local histogram on mapper i calculated
using Space Saving, and let Li be the corresponding exact local histogram. Let k be
a key in L̃

τi

i with estimated occurrence count ṽk and actual occurrence count vk, and
let l be the least frequent item in L̃

τi

i with estimated occurrence count ṽl and actual
occurrence count vl. Then, ṽk ⩾ vk and ṽl ⩾ vl according to [Metwally et al. 2006]
(Lemma 3.4).

• Overestimation:

1. Global Lower Bound: We overestimate the global lower bound for the item
with key k if ṽk > vk.

2. Global Upper Bound: Again, we overestimate the global upper bound of the
item with k if ṽk > vk. For an item with key k ′ not contained in L̃

τi

i , but
appearing in Li according to pi, we overestimate the global upper bound
if ṽl > vl.

• Underestimation: The only scenario in which underestimation may occur is as
follows. Consider an item with key k ′ with actual occurrence count vk ′ , which
is not contained in L̃

τi

i , but would be contained in L
τi

i .

1. Global Lower Bound: As k ′ is not contained in L̃
τi

i , we add 0 to the lower
bound, thus underestimating it.

2. Global Upper Bound: As k ′ is apparently contained in Li, we will add ṽl to
the global upper bound. According to [Metwally et al. 2006] (Theorem 3.5),
ṽl ⩾ vk ′ . Therefore, we do not underestimate the global upper bound.

From Theorem 6.4 follows that the upper bound calculated as described in Def-
inition 6.4 remains valid if it is (completely or partially) based on local histograms
calculated using Space Saving. For the lower bound, this does not hold: due to the
possible overestimation, it might no longer be in place. In consequence, we could
overestimate the corresponding cluster’s size. In order to keep the lower bound in
place, we therefore decide to not increase it at all for mappers using Space Saving.
A flag indicating the usage of Space Saving can be included in the communication
between every mapper and the controller at the cost of one bit per mapper.

When using adaptive thresholds (Section 6.5.1), approximating the local histograms
can also interfere with the choice on how many items to transmit to the controller.
Recall that we base the decision on which items to transmit on the average local clus-
ter cardinality. In order to calculate the average cluster cardinality, we need to keep
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track of the sum of all cluster cardinalities, and the cluster count. When monitoring
all clusters exactly, we obtain both these values as a side product. With approximate
monitoring, this is no longer the case. The global cardinality is still easy to track
with approximate local monitoring employing a dedicated counter. For the cluster
count, we reuse once more the bit vectors p̃i created for approximating the presence
indicator and apply Linear Counting in order to obtain an estimation. Based on the
approximate average cluster cardinality derived from this information, we can then
pick the relevant items from our monitoring data to send to the controller. In an
extreme case, we might not have monitored all clusters which should be transmitted,
i. e., even the cardinality of the smallest clusters monitored is larger than the thresh-
old. If that situation arises, all we can do is inform the user on the actual error margin
we are able to provide on this mapper, and propose to increase the memory available
for monitoring if better cost estimation is required.

Switching from exact local histograms to Space Saving is possible at runtime if the
monitoring data volume exceeds a predefined threshold. The bit vector p̃i is not af-
fected by switching to Space Saving. For the total cluster cardinality on that mapper,
we can initialise the counter with the sum of all cluster cardinalities counted so far.
Then, we can discard the monitoring data on the clusters with the lowest cardinalities
observed in order to reduce the consumed memory. The remaining cluster infor-
mation is the initial state with which we can continue the monitoring process using
Space Saving.

6.5.3 Going Beyond Tuple Count

So far, we considered cluster cardinality being the only parameter for the cost estima-
tion. In some applications additional parameters might be desirable. For example, if
serialized objects (which are a collection of items each) are passed as tuples, the data
volume per cluster could be an appropriate additional parameter of the cost func-
tion. Neither Uniformity-Based Monitoring nor TopCluster are specific to monitoring
cardinalities. The same technique is also applicable to other parameters like data
volume — either instead of, or in addition to, cluster cardinality. When monitoring
multiple parameters per cluster, correlations between the parameters can be impor-
tant for an accurate cost estimation, i. e., we need to know both cardinality and data
volume of a specific cluster. TopCluster allows the reconstruction of these correlations
for clusters in the named histogram part on the controller using the cluster keys.

Example 6.13. Consider an application scenario where every tuple contains an array of val-
ues. The reducer’s task is to find the median of these values per cluster over all contained
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tuples. The amount of work to spend is thus independent of the number of tuples within the
cluster: five tuples containing 10 values each cause the same work as one tuple containing 50
values. The weight depends on the combined size of all arrays within a cluster instead. With
array sizes proportional to the tuple sizes, we will therefore base the work estimation on the
data volume of the clusters. Finding the median element of an array of length n is possible in
n logn time by first sorting the array, then picking the middle element. Therefore, we estimate
the work to spend on a cluster as s log s with s being the data volume.

The nested tree representation we introduced in Chapter 5 also falls into this category. The
more nodes a tree consists of, the larger the tuple representing the tree grows. The amount of
work per tree, for calculations on each node of the tree (e. g., operations using the tree traversal
operator as in Example 5.12), thus grows with the tuple size.

6.6 load balancing

So far, we defined the Partition Cost Model that takes into account skewed data dis-
tributions and non-linear reducer tasks, and we defined two monitoring approaches
suitable for providing the cost model with the required information. Next, we de-
fine two load balancing algorithms based on this cost model, Fine Partitioning and
Dynamic Fragmentation, which aim to balance the load on the reducers. Fine Parti-
tioning achieves this goal by assigning the partitions to reducers such that all reducers
get roughly the same share of the estimated total workload. Dynamic Fragmentation
allows to split partitions in order to obtain an even better balanced distribution of the
workload. However, the splitting may introduce additional costs which we must take
into account.

6.6.1 Fine Partitioning

By creating more partitions than there are reducers (i. e., by choosing p > r, in con-
trast to current MapReduce systems where p = r), we can retain some degree of
freedom for balancing the load on the reducers. The range p should be chosen from
is obviously bounded by the number of reducers, r, on the lower end, and the number
of clusters, |K|, on the upper end. With p < r, some reducers would not obtain any
input. With p > |K|, some partitions will remain empty.

The number of partitions, p, influences the quality of the load balancing obtained.
The higher we choose p, the more possibilities the controller has to balance the load.
On the other hand, the larger p is, the higher the incurred management overhead
becomes. This overhead impacts on the execution of the MapReduce job twice. First,



6.6 load balancing 121

we need to collect and process more monitoring data, as the partitions represent the
histogram buckets. This contradicts our effort to reduce the amount of monitoring
data. For very high values of p, handling the monitoring data could thus become a
bottleneck in the job execution. Second, partitions are the units of data transfer (i. e.,
files) from the mappers to the reducers. Transferring a small number of large files is
faster and results in less overhead than transferring a large number of small files. We
need to be aware of this trade-off when choosing p.

We assign the partitions to reducers in a load balancing manner. As already ex-
plained in Section 6.3.2, ideally we would employ a bin packing algorithm for calcu-
lating the partition bundles. Unfortunately, bin packing is NP hard. We thus propose
a greedy heuristic to determine the partition bundles. This heuristic is sketched in
Algorithm 6.1. In every iteration, we pick the most expensive partition not yet as-
signed to a reducer (lines 4 and 5). If we have not initialised r reducers yet, we assign
the partition to a new reducer (lines 6 and 7). Otherwise, we assign the partition to
the reducer which has the least total load at that point. As the load of a reducer, we
use the sum of the cost of all partitions already assigned to that reducer (lines 9 and
10). We repeat these steps until all partitions have been assigned. The set R we obtain
contains the partition bundles to assign to the reducers.

Algorithm 6.1 Assign Partitions to Reducers

Input: W : {1, . . . ,p}→ R+

Output: R: a set of partition bundles
1: R← ∅
2: P = {1, . . . ,p}
3: while P ̸= ∅ do
4: q = arg maxj∈P W(j)

5: P ← P \ {q}

6: if |R| < r then
7: R← R∪ {{q}}
8: else
9: s = arg minl∈R

∑
j∈lW(j)

10: R← (R \ {s})∪ {s∪ {q}}
11: end if
12: end while
13: return R
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Figure 6.6: Partitioned Data Distribution

Note that we calculate the partition bundles only when all mappers are completed.
This impacts on the reducer slow-start optimisation of Hadoop. We will discuss this
aspect in Section 6.6.3.

Example 6.14. Consider the scenario in Figure 6.6. Even though we only have two reduc-
ers, every mapper creates three partitions. Based on the monitoring data obtained from the
mappers, the controller determines the assignment of partitions to reducers. As partition P1
is most expensive on every mapper (symbolised by the larger partition boxes in the figure), it
is assigned to a dedicated reducer. P0 and P2, which are both less expensive, share the other
reducer.

6.6.2 Dynamic Fragmentation

Even with fine partitioning, in some situations data might not be balanced appropri-
ately and single partitions may grow excessively large. We therefore devise a strategy
which dynamically splits very large partitions into smaller fragments. We define a
partition to be very large if it exceeds the average partition size on that mapper as
calculated up to that point by a predefined factor. Similar to partitions, fragments
are containers for multiple clusters, and each fragment represents a histogram bucket
for monitoring. The number of partitions is, however, fixed, and identical on all
mappers. As for fragmentation, every mapper can decide individually whether to
fragment partitions, and if so, how many of them.

As before, every mapper starts creating its output partitions according to the par-
titioning function π. If a partition gains excessively more weight than the others, the
mapper splits this partition into fragments. We choose the number of fragments, f,
to be the smallest integer greater than 1 s. t. p ̸≡ 0 mod f to avoid empty fragments
caused by the hash strategy. This is shown in Figure 6.7. The leftmost mapper splits
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Figure 6.7: Fragmented Data Distribution

partition P2, which would have grown to almost twice the weight of the other parti-
tions, into two fragments (3 ̸≡ 0 mod 2). The mapper in the middle splits partitions
P0 and P2, while on the rightmost mapper partition P1 grew too large. When a map-
per splits a partition into fragments, it iterates over the intermediate tuples already in
the partition, assigning them to the newly created fragments. Thereby, the monitoring
data is captured on fragment level.

Upon completion, each mapper sends a list of partitions it has split into fragments,
and all its fragment and partition monitoring data to the controller.

For each partition which has been fragmented on at least one mapper, the controller
considers both exploiting, and ignoring the fragments. We achieve this by calculating
the set R according to Algorithm 6.1 for each possible combination and then picking
the best one. When exploiting fragmentation, data from mappers which have not
fragmented that partition needs to be replicated to all reducers which get assigned
one of the fragments. In Figure 6.7, fragment F2a is assigned to the reducer on
the right, whereas fragment F2b is assigned to the left one. Partition P2 from the
rightmost mapper must be copied to both reducers, as it might contain data belonging
to both fragments. A filtering step is inserted at reducer side, immediately after
receiving the file, in order to eliminate data items not belonging to the fragments of
that reducer.

For choosing the best assignment of partitions and fragments to reducers, we em-
ploy a cost based strategy. The cost function needs to consider two aspects.

balancedness The central aspect for load balancing is, of course, to distribute the
load best possible over the reducers. We use the standard deviation σ of the
weight of the bundles R each reducer gets assigned to express this aspect in our
cost function. The lower the standard deviation, the better the load is balanced.
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replication overhead The second point to take into account is the amount of
replication involved. For this aspect, we use the average weight w of the bundles
R in the cost function. We want to keep w, and thus the amount of replicated
data, as low as possible.

We thus define the cost of an assignment R as

C(R) = w(R) · (1+ σ(R))e

and strive for an assignment with low cost. We use the parameter e to adjust the
influence of the balancing over the degree of replication. A low value of e implies a
stronger influence of the average weight of a partition bundle. Therefore, assignments
requiring replication have low cost only if they are balanced much better. A higher
value of e, on the other hand, increases the influence of the load balancing aspect
within the cost function. Replication is thus accepted even if the assignment obtained
is only slightly better balanced. We should therefore choose e depending on the
complexity of the reducer side algorithm.

Example 6.15. In the situation depicted in Figure 6.7, the benefit of assigning fragments F2a
and F2b to different reducers outweighs the increased cost resulting from the required replica-
tion of partition P2 to both reducers. Partition P1, on the other hand, was only fragmented on
the rightmost mapper. Placing its fragments on different reducers would require to replicate
partition P1 from both the other mappers to both reducers, which in this example would have
incurred in too high expenses.

6.6.3 Incremental Assignment Calculation

Both fine partitioning and dynamic fragmentation rely on a controller calculating
the assignment of partitions (and fragments) to reducers. In order to calculate this
assignment, the weights of all partitions (and fragments) need to be known. This, in
turn, implies that we can only determine the assignment when all mappers completed
their processing and sent their local histograms to the controller.

In current MapReduce the first reducers are already launched when a given per-
centage of mappers (default used by Hadoop: 5%) is done. During this so-called
slow-start phase, reducers fetch their inputs from mappers which are already finished,
and start sorting and merging this data. This way, some processing time can be saved
later on. The actual processing of data using the user-supplied reduce function, how-
ever, can only start once all mappers are completed, and the reducers have fetched
and merged all the data. The reason for this is that the reducers cannot know which
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clusters are already complete and could be processed unless they retrieved their in-
put from all mappers. Moreover, some systems guarantee to process the clusters in
ascending key order.

The main focus of our work are MapReduce applications with complex reduce
algorithms. In these scenarios, the time spent for preparing (i. e., retrieving, sorting,
and merging) the input data to the reducers is negligible compared to the reducer
processing time, and so is, therefore, the impact of omitting the slow-start phase.

Nevertheless, a MapReduce system equipped with our partitioning techniques
should not unnecessarily slow down simple MapReduce tasks. For such situations,
we devise an incremental calculation of the assignment function. We calculate, in
these cases, the assignment of partitions to reducers based on aggregated histogram
data from those mappers which are already completed. As in current MapReduce,
the actual percentage of mappers after which to start this incremental calculation
can be defined by the user. By setting this value to 100%, incremental assignment
calculation is disabled.

As more and more mappers complete their processing and send their local his-
tograms to the controller, the incrementally calculated assignment converges towards
the assignment which would balance the partition weights best. We observe the dif-
ference between the assignment currently in use, and the last calculated assignment.
If the difference grows too large, we replace the current assignment by the latest one
in such a way that the least possible amount of data needs to be transferred to differ-
ent reducers. The actual difference threshold triggering such a replacement depends
on the complexity of the reducer side algorithm. The simpler the algorithm, the
less impact on execution times a minor imbalance has. Therefore, the less complex
the reducer side algorithm, the larger the tolerated difference can be. Configuring
this threshold, one should however ensure that the impact of a possibly suboptimal
assignment of clusters to reducers does not outweigh the benefits of the slow-start.

6.7 handling large clusters

The techniques presented so far aim at distributing clusters to reducers such that the
resulting load on all reducers is balanced best possible. There are, however, situations
in which good load balancing is not possible. Such situations arise, e. g., when we
have less clusters than reducers (|K| < r) and thus, some reducers will remain idle,
or when the cluster costs are so heavily skewed that very few of the clusters make up
for most of the total cost.
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According to the MapReduce processing model, a single cluster must not be dis-
tributed to multiple reducers for processing. Therefore, the possibilities for the frame-
work to react on expensive clusters are very limited. In some situations, techniques
like eager aggregation [Yan and Larson 1995] can help to shift some of the workload
from the reducers to the mappers. In other situations, however, such techniques may
not be applicable, or they may not provide a significant benefit. Consider, e. g., a
reduce task calculating the median value of every cluster. It is not possible to shift
(part of) the median calculation to the mappers.

We propose to provide an optional extension to the interface, allowing the frame-
work to notify the user code if expensive clusters are encountered. This extension
consists of an additional method, reduceHeavy. The method’s signature is identical
to that of the reduce method. The user can then decide how to react depending on
which method was called by the framework. Possible reactions could include, e. g., to
process the cluster using multiple threads (if the reducer is running on a multi-core
machine with a sufficient amount of free resources), or to calculate an approximate
result only.

What remains for the framework to do is to recognise expensive clusters. We de-
fine a cluster to be expensive if its cost exceeds the average cluster cost by a given
percentage (which can be supplied by the user, on a per-job basis).

Calculating the global average cost of all clusters is a by-product of the bin packing
heuristic we employ for assigning the partitions to reducers. There, we need to deter-
mine the cost of every partition (line 4 in Algorithm 6.1). The additional overhead for
summing up these weights and dividing them by the number of partitions is negligi-
ble, as is the communication for distributing the obtained value to the reducers.

The cost for each individual cluster is calculated on the reducer processing the
cluster. After retrieving all relevant partitions from the mappers, the reducers sort
and merge these partitions in order to bring together fragments of the same cluster
produced by different mappers. It is easily possible to monitor the relevant parame-
ters for cost estimation during this process. By collecting this information during the
last merge pass, and pipelining a cluster to the user’s reduce function immediately
after merging it, we only need to keep track of size and tuple count of a single cluster
a time. The additional memory required on every reducer for detecting expensive
clusters is thus independent the number of clusters it processes.
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6.8 experimental evaluation

We experimentally evaluate the skew handling techniques presented in this chapter
on both synthetic data with different distributions and skew, and on real world e-
science data.

All experiments are run on a simulator. The simulator generates or loads the input
data and distributes it into partitions the same way standard MapReduce systems
do. The simulator allows us to generate synthetic input data with controlled skew in
the key values. Further, the simulator emulates the runtime of the reducers, which
provides us with the ground truth for our cost estimation.

We use the following parameters in our evaluation. The synthetic data sets follow
Zipf distributions with varying z parameters. Many real world data sets, for exam-
ple, word distributions in natural languages, follow a Zipf distribution. The skew is
controlled with the parameter z; higher z values mean heavier skew. For the syn-
thetic data sets we run 400 mappers that generate 1.3 million output tuples each. The
total of 2,000 clusters is distributed to 40 partitions with a hash function; we found
the number of 40 partitions being a typical setting for the MapReduce environments
used in scientific processing. As real e-science data, we use once more the merger
tree data set from the Millennium simulation [Springel et al. 2005]. We distribute
the data to the mappers the same way Hadoop does, resulting in 389 mappers that
each process 1.3 million tuples. We partition the data by the mass attribute, obtaining
32 000 clusters, and create 40 partitions. We repeat each experiment 10 times and
report averages.

6.8.1 Histogram Approximation Error

We analyse the quality of the approximation obtained with both restrictive and com-
plete TopCluster (with adaptive local thresholds) and compare it to Uniformity-Based
Monitoring. We compute the approximation error as defined in Section 6.4.1.

The results for Zipf distributions with varying z parameter are shown in Figure 6.8a
(ε = 1%). TopCluster restrictive outperforms the other approximations in almost all
settings, and the approximation error is very small (below 3h). As expected, for
heavily skewed data, TopCluster complete achieves similar or even slightly better
results than TopCluster restrictive. Uniformity-Based Monitoring performs slightly
better than TopCluster restrictive if the data is perfectly balanced (z = 0). With in-
creasing skew, this behaviour changes, and TopCluster restrictive widely outperforms
Uniformity-Based Monitoring.
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The difference between the restrictive and the complete variant of TopCluster is
explained as follows. If the data is heavily skewed, the skew is visible on all mappers
and a similar set of clusters is in the heads of all local histograms. Thus we get exact
values for many clusters in the named part of the global histogram, leading to a small
approximation error. There is little or no benefit in omitting clusters of size smaller
than τ like TopCluster restrictive does. For moderate skew, on the other hand, the
restrictive variant is beneficial since the clusters with higher approximation error are
omitted. For z = 0.1, for instance, the approximation error is reduced by more than
an order of magnitude with respect to the complete variant.

We repeat the experiments using a data distribution which simulates a trend over
time (Figure 6.8b). Such trends may appear in scientific data sets, e. g., due to shifting
research interests. In order to simulate a trend, we fix two Zipf distributions. For
every value drawn by a mapper i, the mapper follows the first distribution with
a probability of i/m, and the second distribution with a probability of (m − i)/m,
where m is the total number of mappers. In this setting, the benefits of the restrictive
TopCluster variant over the complete one become more evident, as it results in a
lower error even for heavily skewed data.

6.8.2 TopCluster: Approximation Quality vs. Head Size

For TopCluster monitoring with adaptive local thresholds, the parameter ε controls
the length of the local histogram heads, i. e., the number of cluster cardinalities that
the mappers send to the controller. We evaluate the cluster quality and the size of the
histogram heads depending on ε.

Approximation Quality

The results for a Zipf distribution and a distribution with trend, both with z = 0.3,
i. e., rather moderate skew, are shown in Figure 6.9a and Figure 6.9b, respectively. The
results for the heavily skewed Millennium data set are depicted in Figure 6.9c. For the
complete approximation, we note an interesting effect: the error decreases for small
ε values before growing again for larger values of ε. This is explained as follows.
The error is minimal for ε values that allow the skewed clusters to be in the head,
but the clusters with uniform distribution, which introduce the approximation error,
are ignored. Very low values of ε allow too many non-skewed clusters, very high
values of ε miss part of the skew. The restrictive TopCluster approximation removes
poorly approximated clusters and is robust to this effect. The approximation error
grows with increasing ε, i. e., the shorter the histogram head, the larger the error.
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For the heavily skewed Millennium data, the approximation error of both TopCluster
variants is even smaller.

Histogram Head Size

We measure the size of the local histogram heads with respect to the full local his-
togram. Recall that the size of the histogram head is independent of the chosen
TopCluster variant. Only the heads of the local histograms are sent from the map-
pers to the controller. Short histogram heads imply low network traffic and a small
amount of calculations required on the controller. The experimental results are shown
in Figure 6.10. For the synthetic data set with moderate skew (z = 0.3) the head size
decreases to 1/3 of the full local histogram even for a very low error margin of ε =
0.1%. By increasing the error margin to ε = 200% the head size is further decreased by
an order of magnitude to 2%. Note that the approximation error is below 1% also for
the highest error margin in our setting (see Figure 6.9). For the heavily skewed Mil-
lennium data the histogram head is only about 5% the size of the full local histogram
also for small ε values.

Overall, the results are very encouraging. Due to the high approximation quality
of TopCluster, the error margin can be increased to get head sizes that are 20 to 50

times smaller than the full local histogram. Thus TopCluster scales to large data sets
with good approximation quality.
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6.8.3 Cost Estimation Error

We measure the quality of the cost estimation for reducers with quadratic runtime
and compare Uniformity-Based Monitoring to the restrictive TopCluster approxi-
mation. We use the histogram approximations to compute the expected partition
cost and compare the result with the exact cost. Figure 6.11 shows the average er-
ror over all partitions. TopCluster outperforms Uniformity-Based Monitoring in all
settings. As expected, the advantage of TopCluster increases with the data skew
since Uniformity-Based Monitoring assumes uniform distribution of the cluster sizes
within each partition. Note how the approximation error of the histogram (see Fig-
ure 6.8) is amplified by the non-linear reducer task. Recall however that current
MapReduce systems do not estimate the reducer processing costs at all. Even cost es-
timates with the error of Uniformity-Based Monitoring result in a significantly better
load balancing compared to current systems, as we will see in Section 6.8.5.

6.8.4 Replication Overhead of Dynamic Fragmentation

We analyse the replication overhead introduced by dynamic fragmentation for vary-
ing exponents e (0.05, 0.15, 0.3) in the cost function. We chose the number of par-
titions, p, to be four times the number of reducers. With this choice, we obtain a
sufficient number of partitions to balance the load quite well, while not exceeding the
number of clusters.

We show the results obtained for varying numbers of reducers in Figure 6.12. Dy-
namic fragmentation has the highest impact in the scenario with moderate skew (Fig-
ure 6.12b) and with moderate reducer count. The remaining situations are explained
as follows. For very low skew (Figure 6.12a), except for the scenario with 10 reducers,
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no partition grows noticeably larger than the others. Therefore, no fragments are cre-
ated at all, and dynamic fragmentation cannot introduce replication. For very high
skew (Figure 6.12c), the partition(s) with very expensive clusters are fragmented. The
expensive clusters, however, cannot be split. Therefore, the possible gain in balanced-
ness is low, and fragments – if considered at all – are exploited only for high values
of e. An exception is the scenario with 10 reducers. Due to the very low number
of reducers, splitting the partition with the most expensive cluster allows for a sig-
nificantly better load balancing. Therefore, even a high fragmentation overhead is
tolerated.

We note that e is a reasonable parameter for configuring the “aggressiveness” of
the approach, i. e., the amount of replication tolerated in order to achieve better data
balancing. For e = 0.05, only solutions requiring a very low amount of replication are
accepted. Therefore, the corresponding bars in Figure 6.12 are hardly visible. With
increasing e, more and more replication is accepted if it allows to obtain a better
balancing. It is thus a reasonable approach to choose e depending on the expected
execution time of the reducers. For fast reducers, slightly skewed execution times are
typically acceptable. For long-running reducers, on the other hand, the replication
overhead will still be outweighed by better balancing the reducer execution times.

6.8.5 Influence on Applications

Finally, we evaluate the influence of our load balancing approaches on the execution
times of a MapReduce application. To that end, we assume a reducer with quadratic
complexity in the number of input tuples, e. g., an algorithm doing a pairwise com-
parison of all tuples within a cluster. We create 40 partitions on each mapper and
assign them to 10 reducers. We calculate the synthetic execution time according to
the algorithm complexity, based on exact cluster sizes.

Assuming that all reducers run in parallel, the slowest reducer determines the job
execution time. In Figure 6.13 we compare the standard load balancing of MapReduce
to both Uniformity-Based Monitoring and TopCluster restrictive. The percentage in
the figure is the execution time reduction over standard MapReduce; higher bars
mean shorter processing times. Both load balancing algorithms clearly outperform
the standard load balancing of MapReduce. TopCluster is as good as Uniformity-
Based Monitoring in the settings in which the latter is almost optimal, and better in
the other setting.

For data with moderate skew (z = 0.3), the job execution time primarily depends
on the number of clusters a reducer must process. In this configuration, even the
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simple hash partitioning of current MapReduce systems results in a reasonably well
balanced workload. Both our load balancing algorithms are, however, able to obtain a
better balanced workload even here. Moreover, for data sets that exhibit a trend over
time, TopCluster outperforms Uniformity-Based Monitoring as it is able to capture
the trend within a partition.

For the data sets with z = 0.8, the job execution is dominated by the time required
to process the largest clusters. A good load balancing algorithm should assign less
partitions to reducers with large clusters. We show the highest achievable reduction
of execution time as red lines in the diagram. This limit is dictated by the share of
processing time required for the largest cluster in the data set. Even if this largest
cluster is assigned to a dedicated reducer, the execution time cannot be reduced by
more than indicated by this red line. As expected, the impact of load balancing on
execution time grows with increasing skew. We note that even Uniformity-Based
Monitoring is able to obtain near-optimal load balancing in these scenarios. The
reason is that, for these configurations, it is sufficient to recognize partitions with
expensive clusters, and a good cost approximation for the smaller clusters is less
relevant.

For the heavily skewed Millennium data set distinguishing expensive from cheap
partitions is not sufficient. Rather, the actual cost differences become important.
Partitions with very large clusters must be assigned to a dedicated reducer, while
partitions containing only moderately large clusters may share a reducer with other
partitions. Assuming uniform distribution within a partition that contains a very
large cluster leads to an underestimation of the partition cost. TopCluster captures
the largest clusters explicitly. This has not only a significant impact on the estimated
partition cost, as shown above. It also allows for a much better load balancing, as
indicated by the execution time reduction for the Millennium data set in Figure 6.13.
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6.9 related work

Despite the popularity of MapReduce systems, which have been one of the centres of
distributed systems research over the last years, skew handling has gained attention
only very recently.

SkewReduce [Kwon et al. 2010] is a hierarchical decomposition based approach to
skew handling in MapReduce systems. The default partitioning scheme of MapRe-
duce (random partitioning for the Map phase, hash partitioning for the Reduce phase)
is replaced by a hierarchical decomposition of a multidimensional space into hyper-
cubes. The number of decomposition steps, and the actual splitting of hypercubes
is determined based on user-specified cost functions. These cost functions need to
reproduce the runtime behaviour of the user-defined functions employed. Moreover,
they are required to fulfil several mathematical constraints. The SkewReduce ap-
proach is applicable to all situations in which splitting the input data according to
attribute values allows to reduce the data volume within each partition. If too many
data items are identical in all dimensions, partitioning will not be able to obtain a
balanced data distribution. Moreover, the burden of designing valid cost functions is
shifted to the user.

A load balancing approach for entity resolution is presented in [Kolb et al. 2012].
They introduced an additional MapReduce task for collecting the monitoring data
exploited for load balancing. As the monitoring data is processed in the same dis-
tributed manner as the actual data, they can afford exact monitoring. With a complex
data processing task like entity resolution on skewed data, the cost of an additional
MapReduce task for load balancing is outweighed by the better balanced workload.
For simple reduce tasks or well-balanced data, however, it might deteriorate the over-
all performance. Hence, users must decide whether to run the additional task or not.
Our load balancing approaches, in contrast, are integrated into the MapReduce task
processing the actual data. They are designed to cause low overhead and will there-
fore have no significant performance impact even for simple and well-balanced tasks.
Moreover, the entity resolution task does not require clusters to be processed on a
single reducer. Similar to distributed joins in databases, they only need to ensure that
every pair of possibly matching tuples is processed somewhere. This allows for more
flexibility in the load balancing, which is exploited in [Kolb et al. 2012].

SkewTune [Kwon et al. 2012] monitors the resource utilisation in a MapReduce
cluster. If processing slots become available while a job is running, they distribute the
remaining work of the worker with the largest expected time to completion such that
it utilises all the free slots. Thereby, they need to stop the running worker, determine
the distribution of the data which was not yet processed, and distribute that data to
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the cluster hosts with free capacities. Our approach, in contrast, avoids the overhead
for re-distributing data. We anticipate skewed workload distributions and adapt the
initial data distribution to the reducers in a load balancing manner.

When processing joins on MapReduce systems, data skew might arise as well. A
recent publication [Afrati and Ullman 2010] shows how to use Symmetric Fragment-
Replicate Joins [Stamos and Young 1993] on MapReduce systems best in order to
minimise communication. Based on the input relation sizes, the presented system
determines the optimal degree of replication for all relations. Our work is orthogonal
to this approach. Skewed join attribute distribution can lead to load imbalance on the
reducers, which is tackled by the techniques we presented in this chapter.

An improved scheduling algorithm for MapReduce in heterogeneous environments
was presented in [Zaharia et al. 2008]. They show that an improved scheduling strat-
egy can effectively decrease the response time of Hadoop. The scheduling strategy
determines invocation time and hosts for the single reduce tasks, but not the assign-
ment of clusters to reducers. Their approach can thus be combined with our load
balancing techniques in order to further reduce the response time.

Distributed database literature offers much prior work on handling skewed data
distributions. The dynamic fragmentation approach we presented in this chapter was
inspired by distributed hash join processing [Zeller and Gray 1990], extending it such
that multiple mappers can contribute as data sources.

Data skew was also tackled within the Gamma project [DeWitt et al. 1992]. Some of
the techniques developed there are also applicable to MapReduce. The fine partition-
ing approach, e. g., is similar to the Virtual Processor Partitioning in Gamma. Other
techniques are very specific to distributed join processing and cannot be directly
transferred to our scenario. An example is the Subset-Replicate approach. Similar
to the Fragment-Replicate Join, this approach allows to distribute one cluster over
multiple sites. Such a technique is not applicable to arbitrary distributed group-
ing/aggregation tasks, which we need for load balancing in MapReduce.

Scarlett [Ananthanarayanan et al. 2011] considers skewed popularity of data sets
hosted in a MapReduce cluster. They propose to adapt the number of replica ac-
cording to the popularity of a data set, thereby avoiding resource contention when
accessing popular data sets. Skewed popularity of data sets is orthogonal to skewed
workloads. Therefore, their approach can easily be combined with our workload
balancing solution.





7
C O N C L U S I O N A N D O U T L O O K

In this thesis, we investigated means of load-balanced massively parallel distributed
data exploration. We presented frequent subtree mining on e-science data from the
astrophysics domain as a motivating example for complex scientific data processing
on large, hierarchically structured data sets.

The volume of the data sets of interest is growing at exponential rates. Centralised
data analyses are therefore no longer feasible. We analysed the possibilities of run-
ning scientific data exploration applications in a massively parallel manner, exploiting
both inter-host and intra-host parallelism. We based these analyses on the popular
MapReduce framework. In order to improve the performance of our distributed fre-
quent subtree mining workflow, we proposed three extensions to MapReduce which
we combined to form the Pipelined MapReduce framework. First we abolished the ar-
tificial limitation to two processing tasks per job. This allows us to translate logically
connected processing steps to a single job. Thereby, we avoid storing intermediate re-
sults in the distributed file system, which severely impacts the performance. Second,
we allowed every processing step to have multiple input and output data sets. Tasks
in a multi-step job can thus consume the results of more than one preceding step,
realising, e. g., join operations in a clear and legible manner. Third, we permitted the
pipelining of intermediate results between subsequent processing tasks. Later tasks
can thus start their processing before their predecessor task(s) have completed. These
three extensions permit the execution of complex multi-step processing workflows
like, e. g., our frequent subtree mining application, significantly faster than on plain
MapReduce. We devised a local multi-threading operator for MapReduce style frame-
works which allows to run sub-steps of a task in parallel on a single host. Together
with cache-aware data structures, this operator allows us to exploit the capabilities
provided by modern multi-core processors.

We analysed the impact of probabilistic calculations reducing the communication
and synchronisation overhead. Exemplarily, we evaluated this possibility on the fre-
quent label detection component of our frequent subtree mining workflow. Thereby,
we were able to significantly reduce the communicated data volume while observing
only a slight loss in precision. However, we expect such techniques to have a higher
impact if applied to the processing steps which consume the largest share of process-
ing time. For our example workflow, these would be the bi and cm phases (which are
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specific to the frequent subtree mining algorithm employed). Future research should
investigate this aspect.

We designed TreeLatin, a scripting language based on Pig Latin, which is tailored
to distributed tree processing. TreeLatin includes statements for building, traversing
and flattening tree structures. An optimising compiler translates TreeLatin scripts
to workflows for the underlying MapReduce style platform. In this translation step,
we apply several optimisations to the workflow in order to obtain an efficient exe-
cution plan. These optimisations include tailored techniques, like group refinement,
and well-known techniques applied in relational database management systems, like
projection and selection push-down.

As a next step, cost based optimisation aspects could be included in the optimiser.
Cost based optimisers base their decisions on statistics on the processed data sets.
Similar to relational database management systems, the statistics on the base data
could be collected before processing, e. g., during a loading phase. Moreover, we
also envision approaches collecting statistics on intermediate results during process-
ing. We can then optimise a workflow in multiple steps, basing the optimisation of
later steps of the workflow on the statistics collected during earlier steps. We expect
such an approach to be advantageous especially with complex workflows, where the
statistics on the base data are not able to provide reasonably accurate information on
intermediate results.

Eventually, we analysed the problem of proper workload balancing in MapReduce
style frameworks. We proposed the Partition Cost Model for balancing the workload
based on estimated processing costs. We estimated the processing costs using sta-
tistical information on the input data of the task, taking into account the algorithmic
complexity of the task. TopCluster, the distributed monitoring approach we designed,
provides us with the required statistics on the processed data.

A possible extension to the load balancing aspect to consider in future work is the
scenario of reducers combining multiple input data sets like, e. g., join operations. To
that end, we need to collect multiple statistics in the map phase – one for each data
set – and combine them in the cost estimation in order to properly estimate the parti-
tion costs. Moreover, our prototype implementing the Partition Cost Model currently
assumes a homogeneous environment. However, the cluster running the MapReduce
framework might consist of hosts with varying capabilities (e. g., different processors
or varying amounts of main memory). In such an environment, balancing the work-
load evenly will not minimise the processing time. Instead, the capabilities of the
hosts must be taken into account when distributing the workload.
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In summary, in this thesis, we presented several enhancements for MapReduce
style processing frameworks. Categorising these extensions very coarsely, each of
them belongs to one of the following two points.

1. They simplify the development of MapReduce applications from a user’s per-
spective by allowing the specification of the required workflow in an abstract
manner.

2. They increase the responsiveness of the framework by speeding up the applica-
tion processing, e. g., by means of optimisation and workload balancing.

MapReduce attributes much of its popularity to the fact that technical aspects like
the parallel execution and fault tolerance handling are completely handled by the
framework and thus hidden from the user. The extensions to MapReduce we pro-
posed in this thesis shift the burden of handling more low-level aspects from the user
to the framework. Therefore, we are convinced they are able to further increase the
popularity of MapReduce and bring the benefits of this style of massively parallel
processing to a broader audience, especially in non-IT domains.
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